
INCLUDES MULTIPROCESSING

UNIX
SYSTEM LABORATORIES

UNIX® SYSTEM V RELEASE 4

INTEGRATEd

SoFTWARE

DEVEL0P.MENT
GUi(lE

---<>---
for Intel Processors
---<>---

.UNIX
~ SYSTEM LABORATORIES

Copyright© 1992, 1991 UNIX System Laboratories, Inc.
Copyrlght© 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
All Rights Reserved
Printed In USA

Published by Prentice Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means-graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omis­
sions or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors, omissions, or statements result from negligence, accident, or any other cause.
usL further assumes no liability arising out of the application or use of any product or system
described herein; nor any liability for incidental or consequential damages arising from the use of this
document. USL disclaims all warranties regarding the Information contained herein, whether
expressed, implied or statutory, Including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the
manner described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting of any license to make, use or sell equipment constructed in ac­
cordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARK

Intel386 is a registered trademark of Intel Corporation.
OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
X Window System is a trademark of the Massachusetts Institute of Technology.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-879479-0

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632
Or call: (201) 461-8441

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

1

2

3

Contents

Preface to this Volume
Introduction i
Application Programming in the UNIX System Environment vii
UNIX System Calls and Libraries xviii
Application and Driver Software Packaging xxvii

UNIX System Calls and Libraries
Introduction
Libraries and Header Files
System Calls

File and Device Input/Output
Input/Output System Calls
File and Record Locking
Memory Management

Process Management
Introduction
Program Execution & Process Creation
The Process Scheduler
Signals
Basic Interprocess Communication - Pipes

1-1
1-2
1-26

2-1
2-10
2-26

3-1
3-3
3-11
3-44
3-54

Table of Contents

Table of Contents

4

5

6

7

Interprocess Communication
Introduction
Messages
Semaphores
Shared Memory
IPC Programming Example

Directory and File Management
Introduction
Structure of the File System
Symbolic Links
Summary of UNIX System Files & Directories

Keyboard and Display Input/Output
l'ltroduction
Overview of Video Display Programming
Programming in Text Mode
Programming Access to Video Memory
Graphics Mode
Accessing Video Controller Registers
Using Virtual Terminals
Miscellaneous Capabilities
Comprehensive Video Programming Example
Graphics Modes
Text and Graphics Mode IOCTLs

Driver Software Development
Introduction
What Is a Device Driver?

4-1
4-3
4-33
4-64
4-89

5-1
5-2
5-25
5-38

6-1
6-3
6-13
6-23
6-27
6-35
6-41
6-67
6-75
6-88
6-95

7-1
7-3

II Integrated Software Development Guide

______________________ Table of Contents

8

9

10

The Structure of Driver Source Files 7-6
Driver Activities and Responsibilities 7-11
Driver Entry Point Routines 7-23
Kernel Utility Routines 7-29
Driver Debugging Techniques 7-51
Kernel Debugger 7-55
Converting XENIX System V/386 Drivers to UNIX System

V/386 Release 4 7-63
Driver Programming Examples 7-67

Application Software Packaging
An Overview of Software Packaging
The Packaging Tools
The Installation Tools
The Package Information Files
The Installation Scripts
Basic Steps of Packaging
Package Installation Case Studies

Modifying the sysadm Interface
Overview of sysadm Modification
Planning Your Interface Modifications
Writing Your Administration Actions
Writing Your Help Messages
Packaging Your Interface Modifications
Deleting Interface Modifications
Data Validation Tools

Driver Software Packaging
Installable Driver (10) Implementation
User Interface

8-1
8-4
8-10
8-11
8-21
8-35
8-53

9-1
9-6
9-11
9-12
9-21
9-33
9-34

10-1
10-2

Table of Contents Iii

Table of Contents

A

I

Iv

Modifications for ID 10-3
Commands for Installing Drivers and Rebuilding the Kernel 10-8
The Driver Software Package (DSP) 10-10
Base Syste m Drive rs 10-1 9
Update Driver Software Package (UDSP) 10-21
Installation/Removal Summary 10-22
Tunable System Parameters 10-24
Device Driver Development Methodology 10-26

Manual Pages
Manual Pages

Index
Permuted Index
Subject Index

A-1

Integrated Software Development Guide

Figures and Tables

Figure 1: A Simple ETI Program
Figure 1-1: Excerpt from string(3C) Manual Page
Figure 1-2: How strcmp Is Used in a Program
Figure 1-3: String Operations
Figure 1-4: Classifying 8-Bit Character-Coded Integer Values
Figure 1-5: Converting Characters, Integers, or Strings
Figure 1-6: Standard 1/0 Functions and Macros
Figure 1-7: Math Functions
Figure 1-8: libqan Functions
Figure 1-9: Using argv[l] to Pass a File Name
Figure 1-10: Using Command Line Arguments to Set Flags
Figure 1-11: File and Device 1/0 Functions
Figure 1-12: Terminal Device Control Functions
Figure 1-13: Directory and File System Functions
Figure 1-14: Process Management Functions
Figure 1-15: Signal Functions
Figure 1-16: Basic Interprocess Communication Functions
Figure 1-17: Advanced Interprocess Communication Functions
Figure 1-18: Memory Management Functions
Figure 1-19: Miscellaneous System Functions
Figure 2-1: simplified version of ap
Figure 3-1: Process Status
Figure 3-2: Process Primitives
Figure 3-3: Example of fork
Figure 3-4: The UNIX System V Release 4 Process Scheduler
Figure 3-5: Process Priorities (Programmer View)
Figure 3-6: What Gets Returned by PC GETPARMS

Figure 3-7: Process State Transition Diagram
Figure 3-8: Signal programming example
Figure 3-9: popen
Figure 3-10: palose
Figure 4-1: ipc yerm Data Structure
Figure 4-2: Operation Permissions Codes
Figure 4-3: msgget System Call Example
Figure 4-4: msgctl System Call Example

Table of Contents

xv
1-5
1-7
1-9
1-11
1-12
1-13
1-14
1-17
1-24
1-25
1-27
1-27
1-28
1-29
1-30
1-30
1-31
1-32
1-33
2-7
3-1
3-5
3-7
3-13
3-16
3-31
3-40
3-51
3-55
3-56
4-6
4-9
4-13
4-18

v

Table of Contents

Figure 4-5: msgop System Call Example
Figure 4-6: Operation Permissions Codes
Figure 4-7: semget System Call Example
Figure 4-8: semctl System Call Example
Figure 4-9: semop System Call Example
Figure 4-10: Operation Permissions Codes
Figure 4-11: shmget System Call Example
Figure 4-12: shmctl System Call Example
Figure 4-13: shmop System Call Example
Figure 5-1: A Sample File System
Figure 5-2: Diagram of a Full Path-Name
Figure 5-3: Full Path-Name of the /home/starship Directory
Figure 5-4: Relative Path-Name of the draft Directory
Figure 5-5: Relative Path-Name from starship to outline
Figure 5-6: Example Path-Names
Figure 5-7: File Types
Figure 5-8: Description of Output Produced by the Is -1 Command
Figure 5-9: umask(1) Settings for Different Security Levels
Figure 5-10: File Access Permissions
Figure 5-11: Directory Access Permissions
Figure 5-12: File Tree with Symbolic Link
Figure 5-13: Symbolic Links with RFS: Example 1
Figure 5-14: Symbolic Links with RFS: Example 2
Figure 5-15: Directory Tree from root
Figure 5-16: Excerpt from fete/profile
Figure 5-17: Sample /etc/vfstab File
Figure 7-1: Intel386 Trace Driver Program Example - Space. c File
Figure 7-2: Intel386 Trace Driver Program Example - Program Code
Figure 7-3: Intel386 Trace Driver Program Example - trsav Command
Figure 7-4: Intel386 Trace Driver Program Example - Header File
Figure 7-5: Intel386 Trace Driver Program Example - trfmt Command
Figure 7-6: Floppy Disk Driver Program Example
Figure 7-7: Floppy Disk Driver Program Example
Figure 7-8: Multithreaded Hard Disk Driver Program Example
Figure 8-1: Sample #1 prototype File
Figure 8-2: Sample #2 prototype File
Figure 8-3: Sample pkginfo File
Figure 8-4: Sample corrpver File
Figure 8-5: Sample depend File
Figure 8-6: Sample space File

4-28
4-40
4-44
4-52
4-61
4-69
4-73
4-79
4-86
5-5
5-8
5-9
5-10
5-11
5-13
5-14
5-15
5-18
5-21
5-21
5-28
5-35
5-36
5-38
5-55
5-57
7-70
7-71
7-75
7-77
7-78
7-82
7-93
7-109
8-8
8-9
8-12
8-14
8-16
8-18

vi Integrated Software Development Guide

Figure 8-7: Sample copyright File
Figure 8-8: Placing Parameters into the Installation Environment
Figure 8-9: sed Script Format
Figure 8-10: awk Script Format
Figure 8-11: Case #1 pkginfo File
Figure 8-12: Case #1 prototype File
Figure 8-13: Case Study #1 Request Script
Figure 8-14: Case #2 prototype File
Figure 8-15: Case #2 pkginfo File
Figure 8-16: Case #2 Request Script
Figure 8-17: Case #2 Postinstall Script
Figure 8-18: Case #3 pkginfo File
Figure 8-19: Case #3 prototype File
Figure 8-20: Case #3 space File
Figure 8-21: Case #3 Installation Class Action Script (Ladmin)
Figure 8-22: Case #3 Removal Class Action Script (r.cfgdata)
Figure 8-23: Case #4 pkginfo File
Figure 8-24: Case #4 copyright File
Figure 8-25: Case #4 compver File
Figure 8-26: Case #4 depend File
Figure 8-27: Case #5a pkginfo File
Figure 8-28: Case #5a prototype File
Figure 8-29: Case #5a sed Script Usbin/inittab)
Figure 8-30: Case #5a Postinstall Script
Figure 8-31: Case #5b pkginfo File
Figure 8-32: Case #5b prototype File
Figure 8-33: Case #5b Installation Class Action Script (Linittab)
Figure 8-34: Case #5b Removal Class Action Script (r.inittab)
Figure 8-35: Case #5b inittab File
Figure 8-36: Case #5c pkginfo File
Figure 8-37: Case #5c prototype File
Figure 8-38: Case #5c build Script (lsbin/init)
Figure 8-39: Case #3 pkginfo File
Figure 8-40: Case #6 prototype File
Figure 8-41: Case #6 Installation Class Action Script (Lcron)
Figure 8-42: Case #6 Removal Class Action Script (r.cron)
Figure 8-43: Case #6 Root crontab File (delivered with package)
Figure 8-44: Case #6 Sys crontab File (delivered with package)
Figure 9-1: Item Help File for One Form
Figure 9-2: Item Help File for Multiple Forms

Table of Contents

Table of Contents

8-19
8-25
8-31
8-32
8-56
8-56
8-57
8-61
8-61
8-62
8-63
8-66
8-66
8-67
8-68
8-69
8-71
8-71
8-71
8-72
8-74
8-74
8-75
8-75
8-77
8-78
8-78
8-79
8-79
8-81
8-81
8-82
8-84
8-85
8-85
8-86
8-86
8-87
9-18
9-19

vII

Table of Contents

Figure 9-3: The Shell Commands
Figure 9-4: The Visual Tools
Figure 10-1: The postinstall script for trace driver
Figure 10-2: The preremova script for trace driver
Figure 10-3: The pkginfo file for trace driver
Figure 10-4: The prototype file for trace driver
Figure 10-5: The Master file for trace driver
Figure 10-6: The System file for trace driver
Figure 10-7: The Node file for trace driver
Table 10-1: Components of Driver Software Package (DSP)
Table 10-2: Base System Driver Definitions

9-39
9-42
10-34
10-36
10-38
10-39
10-40
10-40
10-40
10-11
10-19

viii Integrated Software Development Guide

Preface to this Volume

Introduction
Audience and Prerequisite Knowledge
Related Documentation ii
Organization iii
The C Connection iv
Hardware/Software Dependencies iv
Information in the Examples iv
Notation Conventions v
Manual Page References vi

Application Programming in the UNIX
System Environment vii
UNIX System Tools and Languages viii

• Tools Covered and Not Covered in This Guide viii
Programming Tools and Languages in the UNIX System

Environment ix
• The C Language ix
• Shell x
.awk x
• lex xi
• yacc xi
• m4 xii
• bc and dc xii

Character User Interfaces xiii
• curses xiii
• FMLI xiii
• ETI xiv

Graphical User Interfaces xvi
• XWIN Graphical Windowing System xvi
• OPEN LOOK Graphical User Interface xvi

Table of Contents

Table of Contents

UNIX System Calls and Libraries xviii
File and Device Input/Output xviii

• File and Record Locking xviii
• Where to Find More Information xix

Memory Management xx
• The Memory Mapping Interface xx
• Where to Find More Information xxi

Process Management and Scheduling xxii
• Where to Find More Information xxii

Interprocess Communications xxiii
• Where to Find More Information xxiv

Symbolic Links xxv
• Where to Find More Information xxvi

Application and Driver Software Packaging xxvii
Packaging Application Software xxvii

• Where to Find More Information xxviii
Modifying the sysadm Interface xxviii

• Where to Find More Information xxix
Data Validation Tools xxix

• Where to Find More Information xxx
Driver Software Packaging xxx

• Where to Find More Information xxx

Ii Integrated Software Development Guide

Introduction

This book, the Integrated Software Development Guide (ISDG), concentrates on an
application programmer's view of how to develop and package application
software under UNIX System V, using the system services provided by the
UNIX operating system kernel. The ISDG is designed to give you information
about application programming in a UNIX system environment. It does not
attempt to teach you how to write programs. Rather, it is intended to supple­
ment texts on programming by concentrating on the other elements that are part
of getting application programs into operation. The ISDG supplies information
on how to write application software and installable drivers for new hardware
additions to UNIX System V Release 4.0 for the Intel386 microprocessor.

Throughout this chapter and the rest of the ISDG, you will find pointers and
references to other guides and manuals where information is described in detail.
In particular, you will find numerous references to the Programmer's Guide: ANSI
C and Programming Support Tools.

The Programmer's Guide: ANSI C and Programming Support Tools describes the C
programming environment, libraries, compiler, link editor, and file formats. It
also describes the tools provided in the UNIX SystemiC environment for build­
ing, analyzing, debugging, and maintaining programs. The Programmer's Guide:
ANSI C and Programming Support Tools and the Integrated Software Development
Guide are closely connected. Much of the information from both used to be in
the Release 3.2 version of the Programmer's Guide. For Release 4.0 of UNIX Sys­
tem V, the information has been made into a series of guides.

If you are unsure of which book to reference, check the Product Overview and
Master Index. It explains how the document set is organized and where to find
specific information.

Audience and Prerequisite Knowledge

The Integrated Software Development Guide (ISDG) is intended for the Indepen­
dent Software Vendor (ISV) who develops UNIX System software applications
to run on Intel386 microprocessor-based computer systems.

As the title suggests, we are addressing software developers. No special level of
programming involvement is assumed. We hope the book will be useful to peo­
ple who work on or manage large application development projects.

Preface to this Volume

Introduction

Programmers in the expert class, or those engaged in developing system
software, may find the ISDG lacks the depth of information they need. For
them we recommend the Programmer's Reference Manual.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory / file structure is assumed. If you feel shaky about your mastery of
these basic tools, you might want to look over the User's Guide before tackling
this one.

Related Documentation

A variety of documents support the UNIX System V /386. Refer to the Product
Overview and Master Index to help you get acquainted with the documents you
can use with UNIX System V /386 Release 4.0 for the Intel386 microprocessor.

The Master Index helps you to understand general relationships among the docu­
ments and to identify which documents you want to order.

Throughout the ISDG, references are made to certain specific documents listed
in the Product Overview and Master Index. Rather than list the complete title each
time the document is referenced, the following convention is used:

Ii

• The UNIX System V/386 Release 4 Programmer's Guide is referred to as the
Programmer's Guide.

• The UNIX System Vj386 Release 4 User's Reference Manual is referred to as
the User's Reference Manual.

• The UNIX System V/386 Release 4 System Administrator's Reference Manual is
referred to as the System Administrator's Reference Manual.

• The UNIX System V/386 Release 4 Programmer's Reference Manual is referred
to as the Programmer's Reference Manual.

• The UNIX System V /386 Release 4 System Files and Devices Reference Manual
is referred to as the System Files and Devices Reference Manual.

• The UNIX System V/386 Release 4 Device Driver Interface/Driver-Kernel Inter­
face (DDI/DKl) Reference Manual, is referred to as the Device Driver Refer­
ence Manual or as the DDI/DKl Reference Manual.

Integrated Software Development Guide

Introduction

Organization

The material in the ISDG is organized into the following sections and chapters:

• Preface - Application Programming in the UNIX System Environment

Briefly describes what application programming is, introduces program­
ming tools and languages supported in the UNIX system environment
and other UNIX system services you can use to develop and package
application programs, and indicates where to read about them.

• Chapters 1 through 7 - Application and Driver Software Development

This section begins by introducing the UNIX system calls and libraries
you can use to develop application programs, then goes on to provide
detailed information about the use of many of the UNIX system services.
It includes with a sample application that pulls together a lot of the tech­
niques from the preceding chapters. The section concludes with a chapter
on device driver software development which includes two samples of
device driver implementations.

• Chapters 8 through 10 - Application and Driver Software Packaging

This section includes detailed descriptions and case studies about the use
of tools for building application and driver software packages. It outlines
the procedure you use to install the UNIX System software and provides
the details necessary to create a software installation floppy disk set for
your computer. Some broad guidelines are also presented for installing
and removing UNIX programs, as well as examples of installing and
removing scripts. The final chapter, "Driver Software Packaging", con­
tains the rules and procedures you need to follow for packaging device
driver software to work on UNIX System V Release 4.0 for the Intel386
microprocessor.

Following all the chapters in the ISDG is an appendix of manual pages unique
to Application and Driver Software Packaging.

An index is included at the end of the ISDG.

Preface to this Volume III

Introduction

The C Connection

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. Nevertheless, the relationship
between the UNIX operating system and C has always been and remains very
close. Most of the code in the UNIX operating system is written in the C
language, and over the years many organizations using the UNIX system have
come to use C for an increasing portion of their application code. Thus, while
the ISDG is intended to be useful to you no matter what language(s) you are
using, you will find that, unless there is a specific language-dependent point to
be made, the examples assume you are programming in C. The Programmer's
Guide: ANSI C and Programming Support Tools gives you detailed information
about C language programming in the UNIX environment.

Hardware/Software Dependencies

Nearly all the text in this book is accurate for any computer running UNIX Sys­
tem V Release 4.0, with the exception of hardware-specific information such as
addresses.

If you find commands that work a little differently in your UNIX system
environment, it may be because you are running under a different release of the
software. If some commands just don't seem to exist at all, they may be
members of packages not installed on your system. If you do find yourself try­
ing to execute a non-existent command, talk to the administrators of your sys­
tem to find out what you have available.

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly
different output. Some displays depend on a particular machine configuration
that may differ from yours. Changes between releases of the UNIX system
software may cause small differences in what appears on your terminal.

Iv Integrated Software Development Guide

Introduction

Where complete code samples are shown, we have tried to make sure they com­
pile and work as represented. Where code fragments are shown, while we can't
say that they have been compiled, we have attempted to maintain the same
standards of coding accuracy for them.

Notation Conventions

Whenever the text includes examples of output from the computer and/or com­
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX System V documentation:

• All computer input and output is shown in a constant-width font.
Commands that you type in from your terminal are shown in constant­
width type. Text that is printed on your terminal by the computer is
shown in constant-width type.

• Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from
the text that represents computer output or input. Comments that explain
the input or output are shown in the same type font as the rest of the
display. An italic font is used to show substitutable text elements, such as
the word "filename" for example.

• Because you are expected to press the (RETURN) key after entering a
command or menu choice, the (RETURN 1 key is not explicitly shown in
these cases. If, however, during an interactive session, you are expected
to press (RETURN) without having typed any text, the notation is shown.

• Control characters are shown by the string "CTRL-" followed by the
appropriate character, such as "D" (this is known as "CTRL-D"). To
enter a control character, hold down the key marked " (CTRL 1 " (or"
(CONTROL 1 ") and press the CQJ key.

• The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#=).

• When the #= prompt is used in an example, the command illustrated may
be executed only by root.

Preface to this Volume v

Introduction

Manual Page References

When software components are mentioned in a section of the text for the first
time, a reference to the manual section where the software component is for­
mally described is included in parentheses: component_name(section_number).
The numbered sections are located in the following manuals:

Sections (1), (1e), (1G) User's Reference Manual

Sections (1), (1M) System Administrator's Reference Manual

Sections (2), (3) Programmer's Reference Manual

Sections (4), (5), (7), (8) System Files and Devices Reference Manual

Note that Section 1 is listed for both the User's Reference Manual and the System
Administrator's Reference Manual. These manuals describe commands appropri­
ate for general users and system administrators as well as for programmers.

vi Integrated Software Development Guide

Application Programming in the UNIX System
Environment

This section introduces application programming in a UNIX system environ­
ment. It briefly describes what application programming is and then moves on
to a discussion on UNIX system tools and where you can read about them, and
to languages supported in the UNIX system environment and where you can
read about them.

Programmers working on application programs develop software for the benefit
of other, non programming users. Most large commercial computer applications
involve a team of applications development programmers. They may be
employees of the end-user organization or they may work for a software
development firm. Some of the people working in this environment may be
more in the project management area than working programmers.

Application programming has some of the following characteristics:

• Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in the Programmer's Guide: ANSI C and Programming Support
Tools), change requests, tracking, and so on.

• Applications must be developed more robustly.

- They must be easy to use, implying character or graphical user
interfaces.

- They must check all incoming data for validity (for example,
using the Data Validation Tools described in Chapter 9).

- They should be able to handle large amounts of data.

• Applications must be easy to install and administer

(see Chapter 8, "Application Software Packaging" and Chapter 9, "Modi­
fying the sysadm Interface").

Preface to this Volume vII

Application Programming

UNIX System Tools and Languages

Let's clarify the term ''UNIX system tools." In simple terms, it means an exist­
ing piece of software used as a component in a new task. In a broader context,
the term is used often to refer to elements of the UNIX system that might also
be called features, utilities, programs, filters, commands, languages, functions,
and so on. It gets confusing because any of the things that might be called by
one or more of these names can be, and often are, used simply as components
of the solution to a programming problem. The chapter's aim is to give you
some sense of the situations in which you use these tools, and how the tools fit
together. It refers you to other chapters in this book or to other documents for
more details.

Tools Covered and Not Covered in This Guide

The Integrated Software Development Guide (ISDG) is about tools used in the pro­
cess of creating programs in a UNIX system environment, so let's take a minute
to talk about which tools we mean, which ones are not going to be covered in
this book, and where you might find information about those not covered here.
Actually, the subject of things not covered in the ISDG might be even more
important to you than the things that are. We couldn't possibly cover every­
thing you ever need to know about UNIX system tools in this one volume.

Tools not covered in this text:

• the login procedure

• UNIX system editors and how to use them

• how the file system is organized and how you move around in it

• shell programming

Information about these subjects can be found in the User's Guide and a number
of commercially available texts.

Tools that are covered in this text apply to application software development.
This text also covers tools for packaging application and device driver software
and for customizing the administrative interface.

vIII Integrated Software Development Guide

Application Programming

Programming Tools and Languages in the UNIX
System Environment

In this section we describe a variety of programming tools supported in the
UNIX system environment. By IIprogramming tools" we mean those offered for
use on a computer running a current release of UNIX System V. Since these are
separately purchasable items, not all of them will necessarily be installed on
your machine. On the other hand, you may have programming tools and
languages available on your machine that came from another source and are not
mentioned in this discussion.

The C Language

C is intimately associated with the UNIX system since it was originally
developed for use in recoding the UNIX system kernel. If you need to use a lot
of UNIX system function calls for low-level I/O, memory or device manage­
ment, or interprocess communication, C is a logical first choice. Most programs,
however, don't require such direct interfaces with the operating system, so the
decision to choose C might better be based on one or more of the following
characteristics:

• a variety of data types: characters, integers of various sizes, and floating
point numbers

• low-level constructs (most of the UNIX system kernel is written in C)

• derived data types such as arrays, functions, pointers, structures, and
unions

• multidimensional arrays

• scaled pointers and the ability to do pointer arithmetic

• bitwise operators

• a variety of flow-of-control statements: if, if-else, switch, while,
do-while, and for

• a high degree of portability

Refer to the Programmer's Guide: ANSI C and Programming Support Tools for com­
plete details on C.

Preface to this Volume Ix

Application Programming

It takes fairly concentrated use of the C language over a period of several
months to reach your full potential as a C programmer. If you are a casual pro­
grammer, you might make it easier for yourself if you choose a less demanding
programming facility such as those described below.

Shell

You can use the shell to create programs (new commands). Such programs are
also called shell procedures. Refer to the User's Guide for information on how
to create and execute shell programs using commands, variables, positional
parameters, return codes, and basic programming control structures.

awk

The awk program (its name is an acronym constructed from the initials of its
developers) scans an input file for lines that match pattern(s) described in a
specification file. Upon finding a line that matches a pattern, awk performs
actions also described in the specification. It is not uncommon that an awk pro­
gram can be written in a couple of lines to do functions that would take a cou­
ple of pages to describe in a programming language like FORTRAN or C. For
example, consider a case where you have a set of records that consist of a key
field and a second field that represents a quantity, and the task is to output the
sum of the quantities for each key. The pseudocode for such a program might
look like this:

x

SORT RECORDS
Read the first record into a hold area;
Read additional records until EOF;
{

If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;

If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

At EOF, write out the last record from the hold area.

Integrated Software Development Guide

Application Programming

An awk program to accomplish this task would look like this:

{ qty[$l] += $2 }
END {for (key in qty) print key, qty[key]

This illustrates only one characteristic of a wk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a require­
ment of the pseudoprogram.

For detailed information on awk, see the "awk" chapter in the User's Guide and
awk(1) in the User's Reference Manual.

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lex­
ical analyzer is interested in the vocabulary of a language rather than its gram­
mar, which is a system of rules defining the structure of a language. lex can
produce C language subroutines that recognize regular expressions specified by
the user, take some action when a regular expression is recognized, and pass the
output stream on to the next program.

For detailed information on lex, see the "lex" chapter in the
Programmer's Guide: ANSI C and Programming Support Tools and lex (1) in
the Programmer's Reference Manual.

yacc
yacc (Yet Another Compiler Compiler) is a tool for describing an input
language to a computer program. yacc produces a C language subroutine that
parses an input stream according to rules laid down in a specification file. The
yacc specification file establishes a set of grammatical rules together with
actions to be taken when tokens in the input match the rules. lex may be used
with yacc to control the input process and pass tokens to the parser that
applies the grammatical rules.

For detailed information on yacc, see the "yacc" chapter in the
Programmer's Guide: ANSI C and Programming Support Tools and yacc (1) in
t,he Programmer's Reference Manual.

Preface to this Volume xl

Application Programming

m4
m4 is a macro processor that can be used as a preprocessor for assembly
language and C programs. For details, see the m4 chapter of the Programmer's
Guide: ANSI C and Programming Support Tools and m4(l) in the Programmer's
Reference Manual.

be and de

be enables you to use a computer terminal as you would a programmable cal­
culator. You can edit a file of mathematical computations and call be to execute
them. The be program uses de. You can use de directly, if you want, but it
takes a little getting used to since it works with reverse Polish notation. be and
de are described in Section 1 of the User's Reference Manual.

xII Integrated Software Development Guide

Application Programming

Character User Interfaces

curses
Actually a library of C functions, curses is included in this list because the set
of functions comprise a sublanguage for dealing with terminal screens. If you
are writing programs that include interactive user screens, you will want to
become familiar with this group of functions.

For detailed information on curses, see the Programmer's Guide: Character User
Interface (FMU and ETI)

FMLI

The Form and Menu Language Interpreter (FMLI) is a high-level programming
tool having two main parts:

• The Form and Menu Language, a programming language for writing
scripts that define how an application will be presented to users. The syn­
tax of the Form and Menu Language is very similar to that of the UNIX
system shell programming language, including variable setting and
evaluation, built-in commands and functions, use of and escape from spe­
cial characters, redirection of input and output, conditional statements,
interrupt signal handling, and the ability to set various terminal attributes.
The Form and Menu Language also includes sets of "descriptors," which
are used to define or customize attributes of frames and other objects in
your application .

• The Form and Menu Language Interpreter, fmli, which is a command
interpreter that sets up and controls the video display screen on a termi­
nal, using instructions from your scripts to supplement FMLI's predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
commands and C executables, either in the background or in full screen
mode. The Form and Menu Language Interpreter operates similarly to
the UNIX command interpreter sh. At run time it parses the scripts you
have written, thus giving you the advantages of quick prototyping and
easy maintenance.

FMLI provides a framework for developers to write applications and application
interfaces that use menus and forms. It controls many aspects of screen
management for you. This means that you do not have to be concerned with
the low-level details of creating or placing frames, providing users with a means

Preface to this Volume xiii

Application Programming

of navigating between or within frames, or processing the use of forms and
menus. Nor do you need to worry about on which kind of terminal your appli­
cation will be run. FMLI takes care of all that for you.

For details see the FMLI chapter in the Programmer's Guide: Character User Inter­
face (FMU and ETI)

Ell
The Extended Terminal Interface (ETI) is a set of C library routines that promote
the development of application programs displaying and manipulating win­
dows, panels, menus, and forms and that run under the UNIX system. ETI con­
sists of

• the low-level (curses) library

• the panel library

• the menu library

• the form library

• the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the
standard C library. For example, there's a routine printw that behaves much
like printf and another routine getch that behaves like getc. The automatic
teller program at your bank might use printw to print its menus and getch to
accept your requests for withdrawals (or, better yet, deposits). A visual screen
editor like the UNIX system screen editor vi might also use these and other ETI
routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes
the amount a cursor has to move around a screen to update it. For example, if
you designed a screen editor program with ETI routines and edited the sentence

ETI is a great package for creating forms and menus.

to read

ETI is the best package for creating forms and menus.

the program would change only "the best" in place of "a great." The
other characters would be preserved. Because the amount of data
transmitted-the output-is minimized, cursor optimization is also referred to
as output optimization.

xiv Integrated Software Development Guide

Application Programming

Cursor optimization takes care of updating the screen in a manner appropriate
for the terminal on which an ETI program is run. This means that ETl can do
whatever is required to update many different terminal types. It searches the
terminfo database to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs?
First, it saves you time in describing in a program how you want to update
screens. Second, it saves a user's time when the screen is updated. Third, it
reduces the load on your UNIX system's communication lines when the updat­
ing takes place. Fourth, you don't have to worry about the myriad of terminals
on which your program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to move a
cursor to the middle of a terminal screen and print the character string
BullsEye. For now, just look at their names and you will get an idea of what
each of them does:

Figure 1: A Simple Ell Program

#include <curses.h>

main ()
{

initscr () i

move(LINES/2 - 1, COLS/2 - 4)i
addstr ("Bulls") i
refresh () i
addstr ("Eye") i
refresh () i
endwin ();

For complete information on ETI, refer to the ETI chapter in the Programmer's
Guide: Character User Interface (FMU and ETI).

Preface to this Volume xv

Application Programming

Graphical User Interfaces

XWIN Graphical Windowing System

The XWIN Graphical Windowing System is a network-transparent window sys­
tem. X display servers run on computers with either monochrome or color bit­
map display hardware. The server distributes user input to and accepts output
requests from various application programs (referred to as "clients"). Each
client is located on either the same machine or on another machine in the net­
work.

The clients use Xlib, a C library routine, to interface with the window system
by means of a stream connection.

"Widgets" are a set of code and data that provide the look and feel of a user
interface. The C library routines used for creating and managing widgets are
called the X Intrinsics. They are built on top of the X Window System, monitor
events related to user interactions, and dispatch the correct widget code to han­
dle the display. Widgets can then call application-registered routines (called
callbacks) to handle the specific application semantics of an interaction. The X
Intrinsics also monitor application-registered, nongraphical events and dispatch
application routines to handle them. These features allow programmers to use
this implementation of an OPEN LOOK toolkit in data base management, net­
work management, process control, and other applications requiring response to
external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of
widgets in addition to xlib. Refer to the XWIN Graphical Windowing System for
general information about the design of X. The Xlib-C Language Interface is a
reference guide to the low-level C language interface to the XWIN System pro­
tocol.

OPEN LOOK Graphical User Interface

The OPEN LOOK Graphical User Interface is a software application that creates
a user-friendly graphical environment for the UNIX system. It replaces the trad­
itional UNIX system commands with with graphics that include windows,
menus, icons, and other symbols. Using a hand-held pointing device (a
"mouse"), you manipulate windows by moving them, changing their size and
running them in the background. You can have multiple applications running at
the same time by creating more than one window on your screen.

xvi Integrated Software Development Guide

Application Programming

For more information, refer to the OPEN LOOK Graphical User Interface User's
Guide and the OPEN LOOK Graphical User Interface Programmer's Guide/Reference
Manual.

Preface to this Volume xvII

UNIX System Calls and Libraries

This section describes the UNIX system services supplied by UNIX system calls
and libraries for the C programming language. It introduces such topics as the
process scheduler, virtual memory, interprocess communication, file and record
locking, and symbolic links. The system calls and libraries that programs use to
access these UNIX system services are described in detail later in this book.

File and Device Input/Output

UNIX system applications can do all I/O by reading or writing files, because all
I/O devices, even a user's terminal, are files in the file-system. Each peripheral
device has an entry in the file-system hierarchy, so that device-names have the
same structure as file-names, and the same protection mechanisms apply to
devices as to files. Using the same I/O calls on a tenninal as on any file makes
it easy to redirect the input and output of commands from the terminal to
another file. Besides the traditionally available devices, names exist for disk
devices regarded as physical units outside the file-system, and for absolutely
addressed memory.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent
the sort of error that can occur when two or more users of a file try to update
information at the same time. The classic example is the airlines reservation
system where two ticket agents each assign a passenger to Seat A, Row 5 on the
5 o'clock flight to Detroit. A locking mechanism is designed to prevent such
mishaps by blocking Agent B from even seeing the seat assignment file until
Agent A's transaction is complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified por­
tion of the file is locked. (Remember, in the UNIX system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places
a read lock on a file, other processes can also read the file but all are prevented
from writing to it, that is, changing any of the data. If a process places a write
lock on a file, no other processes can read or write in the file until the lock is
removed. Write locks are also known as exclusive locks. The term shared lock
is sometimes applied to read locks.

xvIII Integrated Software Development Guide

UNIX System Services

Another distinction needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the
system calls that read, write, or create files. This is done through a permission
flag established by the file's owner (or the superuser). Advisory locking means
that the processes that use the file take the responsibility for setting and remov­
ing locks as needed. Thus, mandatory may sound like a simpler and better
deal, but it isn't so. The mandatory locking capability is included in the system
to comply with an agreement with /usr/group, an organization that
represents the interests of UNIX system users. The principal weakness in the
mandatory method is that the lock is in place only while the single system call
is being made. It is extremely common for a single transaction to require a
series of reads and writes before it can be considered complete. In cases like
this, the tenn atomic is used to describe a transaction that must be viewed as an
indivisible unit. The preferred way to manage locking in such a circumstance is
to make certain the lock is in place before any I/O starts, and that it is not
removed until the transaction is done. That calls for locking of the advisory
variety.

Where to Find More Information

Chapter 2 in this book discusses file and device I/O including file and record
locking in detail with a number of examples. There is an example of file and
record locking in the sample application in chapter 4. The manual pages that
specifically address file and record locking are fentl(2), loekf(3), and
ehmod(2) in the Programmer's Reference Manual and fentl(S) in the System Files
and Devices Reference Manual. fentl(2) is the system call for file and record
locking (although it isn't limited to that only) fentl(S) tells you the file control
options. The subroutine loekf(3) can also be used to lock sections of a file or
an entire file. Setting ehmod so that all portions of a file are locked will ensure
that parts of files are not corrupted.

Preface to this Volume xix

UNIX System Services

Memory Management

The UNIX system includes a complete set of memory-mapping mechanisms.
Process address spaces are composed of a vector of memory pages, each of
which can be independently mapped and manipulated. The memory­
management facilities

• unify the system's operations on memory

• provide a set of kernel mechanisms powerful and general enough to sup­
port the implementation of fundamental system services without special­
purpose kernel support

• maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory objects

The system's virtual memory consists of all available physical memory resources
including local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual memory are
referenced though the UNIX file system. However, not all file system objects
are in the virtual memory; devices that the UNIX system cannot treat as storage,
such as terminal and network device files, are not in the virtual memory. Some
virtual memory objects, such as private process memory and shared memory
segments, do not have names.

The Memory Mapping Interface
The applications programmer gains access to the facilities of the virtual memory
system through several sets of system calls.

• mmap establishes a mapping between a process's address space and a vir-
tual memory object.

• mprotect assigns access protection to a block of virtual memory

• munmap removes a memory mapping

• getpagesize returns the system-dependent size of a memory page.

• mincore tells whether mapped memory pages are in primary memory

xx Integrated Software Development Guide

UNIX System Services

Where to Find More Information
Chapter 2 in this book gives a detailed description of the virtual memory sys­
tem. Refer to mmap(2), rnprotect(2), rnunrnap(2), getpagesize(2), and rnin­
core(2) in the Programmer's Reference Manual for these manual pages.

Preface to this Volume xxi

UNIX System Se'rvlces

Process Management and Scheduling

The UNIX system scheduler determines when processes run. It maintains pro­
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically in an attempt to give good response time
to interactive processes and good throughput to CPU-intensive processes.

The scheduler offers a real-time scheduling policy as well as a time-sharing pol­
icy. Real-time scheduling allows users to set fixed priorities- priorities that the
system does not change. The highest priority real-time user process always gets
the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX system environments, the default scheduler configuration works
well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of
their processes. However, for some applications with strict timing constraints,
real-time processes are the only way to guarantee that the application's require­
ments are met.

Where to Find More Information

Chapter 3 in this book gives detailed information on the process scheduler,
along with relevant code examples. See also priocntl(1) in the User's Refer­
ence Manual, priocntl(2) in the Programmer's Reference Manual, and
dispadmin(1M) in the System Administrator's Reference Manual.

xxII Integrated Software Development Guide

UNIX System Services

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
Business applications running on a UNIX system computer, however, often need
more sophisticated methods of communication. In applications, for example,
where fast response is critical, a number of processes may be brought up at the
start of a business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation exam­
ple again for a moment, if a customer calls to reserve a seat on the 5 o'clock
flight to Detroit, you don't want to have to say, "Yes, sir; just hang on a minute
while I start up the reservations program./I In transaction-driven systems, the
normal mode of processing is to have all the components of the application
standing by waiting for some sort of an indication that there is work to do.

To meet requirements of this type, the UNIX system offers a set of nine system
calls and their accompanying header files, all under the umbrella name of inter­
process communications (lPC).

The IPC system calls come in sets of three; one set each for messages, sema­
phores, and shared memory. These three terms define three different styles of
communication between processes:

messages Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con­
tained in an array the size of which is determined by the
system administrator. The default maximum size for
the array is 25.

shared memory Communication takes place through a common area of
main memory. One or more processes can attach a seg­
ment of memory and as a consequence can share what­
ever data is placed there.

Preface to this Volume xxiii

UNIX System Services

The sets of IPC system calls are:

msgget semget shmget
msgctl semctl shmctl
msgop semop shmop

The U get" calls each return to the calling program an identifier for the type of
IPC facility that is being requested.

The U ctl" calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data
structures associated with the identifiers picked up by the" get" calls.

The U op" manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop has calls
that send or receive messages. semop (the only one of the three that is actually
the name of a system call) is used to increment or decrement the value of a
semaphore, among other functions. shmop has calls that attach or detach
shared memory segments.

Where to Find More Information

Chapter 4 in this book gives a detailed description of IPC, with many code
examples that use the IPC system calls. An example of the use of some IPC
features is included in the liber application in chapter 4. The system calls are
described in Section 2 of the Programmer's Reference Manual.

xxiv Integrated Software Development Guide

UNIX System Services

Symbolic Links

A symbolic link is a special type of file that represents another file. The data in
a symbolic link consists of the path name of a file or directory to which the
symbolic link file refers. The link that is fonned is called symbolic to distin­
guish it from a regular (also called a hard) link. A symbolic link differs func­
tionally from a regular link in three major ways.

• Files from different file systems may be linked.

• Directories, as well as regular files, may be symbolically linked by any
user.

• A symbolic link can be created even if the file it represents does not exist.

When a user creates a regular link to a file, a new directory entry is created con­
taining a new file name and the inode number of an existing file. The link
count of the file is incremented.

In contrast, when a user creates a symbolic link, (using the In(1) command with
the -5 option) both a new directory entry and a new inode are created. A data
block is allocated to contain the path name of the file to which the symbolic link
refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For exam­
ple, it frequently happens that a disk partition (such as root) runs out of disk
space. With symbolic links, an administrator can create a link from a directory
on that file system to a directory on another file system. Such a link provides
extra disk space and is, in most cases, transparent to both users and programs.

Symbolic links can also help deal with the built-in path names that appear in
the code of many commands. Changing the path names would require chang­
ing the programs and recompiling them. With symbolic links, the path names
can effectively be changed by making the original files symbolic links that point
to new files.

In a shared resource environment like RFS, symbolic links can be very useful.
For example, if it is important to have a single copy of certain administrative
files, symbolic links can be used to help share them. Symbolic links can also be
used to share resources selectively. Suppose a system administrator wants to do
a remote mount of a directory that contains sharable devices. These devices
must be in / devon the client system, but this system has devices of its own so
the administrator does not want to mount the directory onto / dev. Rather than

Preface to this Volume xxv

UNIX System Services

do this, the administrator can mount the directory at a location other than / dev
and then use symbolic links in the / dev directory to refer to these remote
devices. (This is similar to the problem of built-in path names since it is nor­
mally assumed that devices reside in the / dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file sys­
tem (VFS) architecture. With VFS, new services, such as higher performance
files, network IPC, and FACE servers, may be provided on a file system basis.
Symbolic links can be used to link these services to home directories or to places
that make more sense to the application or user. Thus, you might create a data
base index file in a RAM-based file system type and symbolically link it to the
place where the data base server expects it and manages it.

Where to Find More Information

Chapter 5 in this book discusses symbolic links in detail. Refer to symlink(2)
in the Programmer's Reference Manual for information on creating symbolic links.
See also stat (2), rename (2), link(2), readlink(2), and unlink(2) in the
same manual, and In(1) in the User's Reference Manual.

xxvi Integrated Software Development Guide

Application and Driver Software Packaging

This section gives the software package developer information on the interfaces
provided by SVR4, specifically package software for SVR4 and how to modify
the administrator's interface.

The interface modification tools allow you to generate files to deliver as part of
your package. When these files are installed, your package administration tasks
are added to the interface.

Packaging Application Software

Packaging software that will be installed on a computer running UNIX SVR4
differs from packaging in a pre-SVR4 environment. Pre-SVR4 packages deliver
information to the system through script actions, but an SVR4 package does this
through package information files.

A software package is made up of a group of components that together create
the software. These components naturally include the executables that comprise
the software, but they also include at least two information files and can option­
ally include other information files and scripts.

The contents of a package fall into three categories:

• required components

• optional package information files

• optional package scripts

A packaging tool, the pkgmk command, is provided to help automate package
creation. It gathers the components of a package on the development machine
and copies and formats them onto the installation medium.

The installa~ion tool, the pkgadd command, copies the package from the instal­
lation medium onto a system and performs system housekeeping routines that
concern the package.

Preface to this Volume xxvii

Application Packaging Tools

Where to Find More Information
Chapter 8 in this book gives complete details on packaging application software,
including package installation case studies. For details on a specific tool, refer
to admin(4), compver(4), copyright(4), depend(4), installf(1M),
pkgadd(1M), pkgask(1M), pkgchk(1M), pkginfo(l), pkginfo(4), pkgmap(4),
pkgmk(1), pkgparam(1), pkgproto(1), pkgrm(1M), pkgtrans(1), proto­
type(4), removef(1M), and space(4) manual pages at the end of this volume.

Modifying the sysadm Interface

The UNIX system provides a menu interface to the most common administra­
tive procedures. It is invoked by executing sysadm and is referred to as the
"sysadm interface./I

You can deliver additions or changes to this interface as part of your application
software package. Creating the necessary information for an interface
modification can be done using the tools UNIX provides.

Two commands can be used to modify the interface. edsysadm allows you to
make changes or additions to the interface. It is interactive (much like the
sysadm command itself) and presents a series of prompts for information.
Which prompts appear depend on your response to them. The delsysadm
command deletes menus or tasks from the interface. In addition to these com­
mands, a group of data validation tools are provided to simplify and standard­
ize the programming of administrative interaction.

When you execute edsysadm to define menus and tasks and save those
definitions to be included in your application software package, it creates the
package description file, the menu information file, and a prototype file.

• The package description file contains information used by edsysadm to
change interface modifications already saved for packaging.

• The menu information file contains the menu or task name, where it is
located in the interface structure and, for tasks, what executable to use
when the task is invoked.

• The prototype file created by edsysadm contains entries for all of the
interface modification components that must be packaged with your
software (for example, the menu information file and, for tasks, the exe­
cutables).

xxvIII Integrated Software Development Guide

Application Packaging Tools

You must take a number of steps if you intend to modify the sysadm interface
by adding the administration to your package. You have to

• plan your package administration

• write your administration actions

• write your help messages

• package your interface modifications

Where to Find More Information

Chapter 9 in this book gives complete details on modifying the sysadm inter­
face. For details on a specific tool, refer to the manual pages at the end of this
volume, which includes the manual pages for delsysadm(1M) and
edsysadm(1M). The System Administrator's Guide gives a complete description
of the interface and how to use it. See also the Programmer's Guide: Character
User Interface (FMU and ETI) for complete information on FMLI.

Data Validation Tools

Data validation tools are written to help you write any administrative programs
and routines that are part of your software package (this is known as package
administration). They help standardize the appearance of administration
interaction in the UNIX system environment and also simplify development of
scripts and programs requiring administrator input.

There are two types of data validation tools:

• shell commands (to be used in shell scripts)

• visual tools (to be used in FMLI form definitions)

The shell commands perform a series of tasks; the visual tools perform a subsec­
tion of the full series. These tasks are:

• prompting a user for input

• validating the answer

Preface to this Volume xxix

Application Packaging Tools

• formatting and printing a help message when requested
• formatting and presenting an error message when validation fails

• returning the input if it passes validation

• allowing a user to quit the process

Where to Find More Information

Chapter 9 in this book describes the characteristics of these tools and introduces
you to the available tools for all two types. For details on a specific tool, refer
to the manual pages at the end of this volume, which includes ckda te(1),
ckgid(1), ckint(1), ckkeywd(1), ckpath(1), ckrange(1), ckstr(1), cktime(1),
ckuid(1), ckyorn(1), dispgid(1), and dispuid(1). The visual tools are also
documented in the Section 1 manual pages.

Driver Software Packaging

The final chapter in this section, "Driver Software Packaging", contains the
rules and procedures you need to follow for packaging device driver software
to work on UNIX System V Release 4.0 for the Intel386 microprocessor. As you
may know, writing a device driver carries a lot of responsibility because, as part
of the UNIX operating system kernel, it is assumed to always take the correct
action. "The Trace Driver", presents a pseudo-device, called the "trace driver,"
that allows the UNIX operating system kernel or other device drivers to report
debugging information without the use of console printf's. "A Prototype
Floppy Disk Driver", contains some selected portions of the UNIX System
V /386 Release 4.0 floppy disk device driver source files. "A Sample Driver
Software Package", shows the ID modules needed to install a device driver and
describes the Install and Remove scripts.

Where to Find More Information

Chapter 10 in this book describes the ,characteristics of the Installable Driver (lD)
facility and introduces you to the available tools for the ID facility on UNIX Sys­
tem V /386. For details on a specific tool, refer to the manual pages at the end
of this volume, which includes idbuild(1M), idcheck(1M), idconfig(1M),
idinstall(1M), idmkinit(1M), idmknod(1M), idmkunix(1M), idspace(1M),
idtune(1M), mdevice(4), mfsys(4), mtune(4), sdevice(4), sfsys(4),
stune(4).

xxx Integrated Software Development Guide

1 UNIX System Calls and Libraries

Introduction

Libraries and Header Files
Header Files
How to Use Library Functions
C Library (libc)

• Subsection 3C Routines
• Subsection 3S Routines

Math Library (/ibm)
General Purpose Library (libgen)
Standard I/O Library

• Three Files You Always Have
• Named Files

How C Programs Communicate with the Shell
• Passing Command Line Arguments

System Calls
Input/Output and File System Calls

• File and Device I/O
• Terminal Device Control
• Directories and File Systems

Process and Memory System Calls
• Processes
• Signals
• Basic Interprocess Communication
• Advanced Interprocess Communication
• Memory Management

Miscellaneous System Calls
UNIX System Call Error Handling

Table of Contents

1-1

1-2
1-2
1-4
1-9
1-9
1-12
1-14
1-17
1-19
1-19
1-20
1-22
1-23

1-26
1-27
1-27
1-27
1-28
1-29
1-29
1-30
1-30
1-31
1-32
1-33
1-34

Introduction

The chapter introduces the system calls and other system services you can use
to develop application programs. Each application performs a different func­
tion, but goes through the same basic steps: input, processing, and output. For
the input and output steps, most applications interact with an end user at a ter­
minal. During the processing step, sometimes an application needs access to
special services provided by the operating system (for example, to interact with
the file system, control processes, manage memory, and more). Some of these
services are provided through system calls and some through libraries of func­
tions.

UNIX System Calls and Libraries 1-1

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/output, string handling,
and other high-level operations that are not explicitly provided by the C
language. Header files contain definitions and declarations that your program
will need if it calls a library function. They also contain function-like macros
that you can use in your program as you would a function.

In this part, we'll talk a bit more about header files and show you how to use
library functions in your program. We'll also describe the contents of some of
the more important standard libraries, and tell you where to find them in the
Programmer's Reference Manual. We'll close with a brief discussion of standard
I/O.

Header Files

Header files serve as the interface between your program and the libraries sup­
plied by the C compilation system. Because the functions that perform standard
I/O, for example, very often use the same definitions and declarations, the sys­
tem supplies a common interface to the functions in the header file stdio. h. By
the same token, if you have definitions or declarations that you want to make
available to several source files, you can create a header file with any editor,
store it in a convenient directory, and include it in your program as described in
the first part of this chapter.

Header files traditionally are designated by the suffix .h, and are brought into a
program at compile time. The preprocessor component of the compiler does
this because it interprets the =ll=include statement in your program as a directive.
The two most commonly used directives are =ll=include and =ll=define. As we
have seen, the =ll=include directive is used to call in and process the contents of
the named file. The =ll=define directive is used to define the replacement token
string for an identifier. For example,

=ll=define NULL 0

defines the macro NULL to have the replacement token sequence O. See the sec­
tion on "C Language", in the Programmer's Guide: ANSI C and Programming Sup­
port Tools, for the complete list of preprocessing directives.

1·2 Integrated Software Development Guide

Libraries and Header Flies

Many different . h files are named in the Programmer's Reference Manual. Here
we are going to list a number of them, to illustrate the range of tasks you can
perform with header files and library functions. When you use a library func­
tion in your program, the manual page will tell you which header file, if any,
needs to be included. If a header file is mentioned, it should be included before
you use any of the associated functions or declarations in your program. It's
generally best to put the #include right at the top of a source file.

assert. h assertion checking

ct ype . h character handling

errno . h error conditions

float. h floating point limits

limits.h other data type limits

locale.h program's locale

math. h mathematics

set jmp . h nonlocal jumps

signal. h signal handling

stdarg . h variable arguments

stddef . h common definitions

stdio . h standard input/output

stdlib. h general utilities

string. h string handling

tirne.h date and time

unistd. h system calls

UNIX System Calls and libraries 1-3

libraries and Header Flies

How to Use Library Functions

The manual page for each function describes how you should use the function
in your program. Manual pages follow a common format; although, some
manual pages may omit some sections:

• The NAME section names the component(s) and briefly states its purpose.

• The SYNOPSIS section specifies the C language programming interface(s).

• The DESCRIPTION section details the behavior of the component(s).

• The EXAMPLE section gives examples, caveats and guidance on usage.

• The FILES section gives the file names that are built into the program.

• The SEE ALSO section lists related component interface descriptions.

• The DIAGNOSTICS section outlines return values and error conditions.

The NAME section lists the names of components described in that manual page
with a brief, one-line statement of the nature and purpose of those components.

The SYNOPSIS section summarizes the component interface by compactly
representing the order of any arguments for the component, the type of each
argument (if any) and the type of value the component returns.

The DESCRIPTION section specifies the functionality of components without
stipulating the implementation; it excludes the details of how UNIX System V
implements these components and concentrates on defining the external features
of a standard computing environment instead of the internals of the operating
system, such as the scheduler or memory manager. Portable software should
avoid using any features or side-effects not explicitly defined.

The SEE ALSO section refers the reader to other related manual pages in The
UNIX System V Reference Manual Set as well as other documents. The SEE ALSO
section identifies manual pages by the title which appears in the upper corners
of each page of a manual page.

Some manual pages cover several commands, functions or other UNIX System V
components; thus, components defined along with other related components
share the same manual page title. For example, any references to the function
ealloe cite maIIoe(3) because the function eaIIoe is described with the func­
tion malloe in the manual page entitled maIIoe(3).

1·4 Integrated Software Development Guide

Libraries and Header Flies

As an example manual page, we'll look at the strcmp function, which compares
character strings. The routine is described on the string manual page in Sec­
tion 3, Subsection 3C, of the Programmer's Reference Manual. Related functions
are described there as well, but only the sections relevant to strcmp are shown
in the following figure.

Figure 1-1: Excerpt from strlng(3C) Manual Page

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strok - string operations.

SYNOPSIS
*include <string.h>

int strcmp (canst char *sptrl, canst char *sptr2);

DESCRIPTION

strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as the first argument is lexicographically less than,
equal to, or greater than the second.

As shown, the DESCRIPTION section tells you what the function or macro does.
It's the SYNOPSIS section, though, that contains the critical information about
how you use the function or macro in your program. Note that the first line in
the SYNOPSIS is

*include <string.h>

That means that you should include the header file string. h in your program
because it contains useful definitions or declarations relating to s t rcmp.

UNIX System Calls and Libraries 1-5

Libraries and Header Files

In fact, s t ring. h contains the s t rcmp "function prototype" as follows:

extern int strcmp(const char *, const char *);

A function prototype describes the kinds of arguments expected and returned
by a C language function. Function prototypes afford a greater degree of argu­
ment type checking than old-style function declarations, and reduce the chance
of using the function incorrectly. Including string. h, assures that the C com­
piler checks calls to strcmp against the official interface. You can, of course,
examine s t ring. h in the standard place for header files on your system, usu­
ally the /usr/include directory.

The SYNOPSIS for a C library function closely resembles the C language declara­
tion of the function and its arguments. The SYNOPSIS tells the reader:

• the type of value returned by the function;

• the arguments the function expects to receive when called, if any;

• the argument types.

For example, the SYNOPSIS for the macro feof is:

#include <stdio.h>

int feof(FILE *SW
The SYNOPSIS section for feof shows that:

• The macro feof requires the header file stdio. h

• The macro feof returns a value of type int

• The argument sfp is a pointer to an object of type FILE

To use feof in a program, you need only write the macro call, preceded at
some point by the #include control line, as in the following:

1·6

#include <stdio.h> /* include definitions */

main () {
FILE *infile; /* define a file pointer */

while (!feof(infile)) { /* until end-of-file */
/* operations on the file */

Integrated Software Development Guide

Libraries and Header Flies

By way of further illustration, let's look at how you might use strcmp in your
own code. The following figure shows a program fragment that will find the
bird of your choice in an array of birds.

Figure 1-2: How strcmp Is Used in a Program

#include <string.h>

/* birds must be in alphabetical order */
char *birds[] = ("albatross", "canary", "cardinal", "ostrich", "penguin" \;

/* Return the index of the bird in the array. */
/* If the bird is not in the array, return -1 */

int is_bird(const char *string)

int low, high, midpoint;
int CIl'p_value;

/* use a binary search to find the bird */
low = 0;
high = sizeof(birds)/sizeof(char *) - 1;
while(low <= high)
{

midpoint = (low + high)/2;
emp_value = stremp(string, birds[midpoint]);
if (emp_value < 0)

high = midpoint - 1;
else if (emp_value > 0)

low = midpoint + 1;
else /* found a match */

return midpoint;

return -1;

UNIX System Calls and Libraries 1-7

Libraries and Header Flies

The format of a SYNOPSIS section only resembles, but does not duplicate, the
format of C language declarations. To show that some components take varying
numbers of arguments, the SYNOPSIS section uses additional conventions not
found in actual C function declarations:

• Text in courier represents source-code typed just as it appears.

• Text in italic usually represents substitutable argument prototypes.

• Square brackets [] around arguments indicate optional arguments.

• Ellipses ... indicate that the previous arguments may repeat.

• If the type of an argument may vary, the SYNOPSIS omits the type.

For example, the SYNOPSIS for the function printf is:

#include <stdio.h>

int printf (char *fmt [, arg •••])

The SYNOPSIS section for printf shows that the argument arg is optional,
may be repeated and is not always of the same data type. The DESCRIPTION
section of the manual page provides any remaining information about the func­
tion printf and the arguments to it.

The DIAGNOSTICS section specifies return values and possible error conditions.
The text in the DIAGNOSTICS takes a conventional form which describes the
return value in case of successful completion followed by the consequences of
an unsuccessful completion, as in the following example:

On success, lseek returns the value of the resulting file-offset, as
measured in bytes from the beginning of the file.

On failure, lseek returns -I, it does not change the file-offset, and
errno equals:

EBADF if fildes is not a valid open file-descriptor.

EINVAL if whence is not SEEK_SET, SEEK_CUR or SEEK_END.

ESPIPE if fildes denotes a pipe or FIFO.

The <errno. h> header file defines symbolic names for error conditions which
are described in intro(2) of the Programmer's Reference Manual. For more infor­
mation on error conditions, see the section entitled "UNIX System Call Error
Handling" in this chapter.

1·8 Integrated Software Development Guide

Libraries and Header Flies

C Library (libe)

In this section, we describe some of the more important routines in the standard
C library. As we indicated in the first part of this chapter, libc contains the
system calls described in Section 2 of the Programmer's Reference Manual, and the
C language functions described in Section 3, Subsections 3C and 3S. We'll
explain what each of these subsections contains below. We'll look at system
calls at the end of the section.

Subsection 3C Routines

Subsection 3C of the Programmer's Reference Manual contains functions and mac­
ros that perform a variety of tasks:

• string manipulation

• character classification

• character conversion

Figure 1-3 lists string-handling functions that appear on the string page in
Subsection 3C of the Programmer's Reference Manual. Programs that use these
functions should include the header file string. h.

Figure 1-3: String Operations

strcat Append a copy of one string to the end of another.

strncat Append no more than a given number of characters from one
string to the end of another.

strcmp

strncmp

Compare two strings. Returns an integer less than, greater
than, or equal to 0 to show that one is lexicographically less
than, greater than, or equal to the other.

Compare no more than a given number of characters from the
two strings. Results are otherwise identical to s t rcmp.

UNIX System Calls'and Libraries 1-9

Libraries and Header Flies

Figure 1·3: String Operations (continued)

strcpy

strncpy

strdup

strchr

strrchr

strlen

strpbrk

strspn

strcspn

strstr

strtok

1·10

Copy a string.

Copy a given number of characters from one string to another.
The destination string will be truncated if it is longer than the
given number of characters, or padded with null characters if it
is shorter.

Return a pointer to a newly allocated string that is a duplicate
of a string pointed to.

Return a pointer to the first occurrence of a character in a
string, or a null pointer if the character is not in the string.

Return a pointer to the last occurrence of a character in a
string, or a null pointer if the character is not in the string.

Return the number of characters in a string.

Return a pointer to the first occurrence in one string of any
character from the second, or a null pointer if no character
from the second occurs in the first.

Return the length of the initial segment of one string that con­
sists entirely of characters from the second string.

Return the length of the initial segment of one string that con­
sists entirely of characters not from the second string.

Return a pointer to the first occurrence of the second string in
the first string, or a null pointer if the second string is not
found.

Break up the first string into a sequence of tokens, each of
which is delimited by one or more characters from the second
string. Return a pointer to the token, or a null pointer if no
token is found.

Integrated Software Development Guide

Libraries and Header Flies

Figure 1-4 lists functions and macros that classify 8-bit character-coded integer
values. These routines appear on the conv(3) and ctype(3) pages in Subsection
3C of the Programmer's Reference Manual. Programs that use these routines
should include the header file ctype. h.

Figure 1-4: Classifying 8-Bit Character-Coded Integer Values

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

toupper

_toupper

tolower

tolower

toascii

Is c a letter?

Is c an uppercase letter?

Is c a lowercase letter?

Is c a digit [O-9]?

Is c a hexadecimal digit [0-9], [A-F], or [a-f)?

Is c alphanumeric (a letter or digit)?

Is c a space, horizontal tab, vertical tab, new-line, form-feed, or
carriage return?

Is c a punctuation character (neither control nor
alphanumeric)?

Is c a printing character?

Same as isprint except false for a space.

Is c a control character or a delete character?

Is c an ASCII character?

Change lower case to upper case.

Macro version of toupper.

Change upper case to lower case.

Macro version of tolower.

Tum off all bits that are not part of a standard ASCII character;
intended for compatibility with other systems.

UNIX System Calls and Libraries 1-11

Libraries and Header Flies

Figure 1-5 lists functions and macros in Subsection 3C of the Programmer's Refer­
ence Manual that are used to convert characters, integers, or strings from one
representation to another. The left-hand column contains the name that appears
at the top of the manual page; the other names in the same row are related
functions or macros described on the same manual page. Programs that use
these routines should include the header file stdlib. h.

Figure 1-5: Converting Characters, Integers, or Strings

a641 164a Convert between long integer and base-64
ASCII string.

ecvt fcvt gcvt Convert floating point number to string.

13tol lto13 Convert between 3-byte packed integer and
long integer.

strtod atof Convert string to double-precision number.

strtol atol atoi Convert string to integer.

strtoul Convert string to unsigned long.

Subsection 3S Routines

Subsection 3S of the Programmer's Reference Manual contains the so-called stan­
dard I/O library for C programs. Frequently, one manual page describes
several related functions or macros. In Figure 1-6, the left-hand column contains
the name that appears at the top of the manual page; the other names in the
same row are related functions or macros described on the same manual page.
Programs that use these routines should include the header file stdio. h. We'll
talk a bit more about standard I/O in the last subsection of this chapter.

1-12 Integrated Software Development Guide

Libraries and Header Files

Figure 1-6: Standard 110 Functions and Macros

fclose fflush Close or flush a stream.

ferror feof clearerr fileno Stream status inquiries.

fopen freopen fdopen Open a stream.

fread fwrite Input/ output.

fseek rewind ftell Reposition a file pointer in a
stream.

getc getchar fgetc getw Get a character or word from a
stream.

gets fgets Get a string from a stream.

popen pclose Begin or end a pipe to/from a
process.

printf fprintf sprintf Print formatted output.

putc put char fputc putw Put a character or word on a
stream.

puts fputs Put a string on a stream.

scanf fscanf sscanf Convert formatted input.

setbuf setvbuf Assign buffering to a stream.

system Issue a command through the
shell.

tmpfile Create a temporary file.

tmpnam tempnam Create a name for a temporary
file.

ungetc Push character back into input
stream.

vprintf vfprintf vsprintf Print formatted output of a
varargs argument list.

UNIX System Calls and Libraries 1-13

Libraries and Header Flies

Math Library (libm)

The math library, libm, contains the mathematics functions supplied by the C
compilation system. These appear in Subsection 3M of the Programmer's Refer­
ence Manual. Here we describe some of the major functions, organized by the
manual page on which they appear. Note that functions whose names end with
the letter f are single-precision versions, which means that their argument and
return types are float. Programs that use math functions should include the
header file math. h.

Figure 1-7: Math Functions

erf(3M)

erf

erfc

exp(3M)

exp expf

cbrt

log logf

loglO loglOf

pow powf

sqrt sqrtf

1-14

compute the error function of x, defined as

_~ J e-
t2

dt.
"'J1t 0

Compute 1.0 - erf (x) , which is used because
of the extreme loss of relative accuracy if erf
is called for large x and the result subtracted
from 1.0 (e.g., for x = 5, 12 places are lost).

Compute eX.

Compute the cube root of x.

Compute the natural logarithm of x.
The value of x must be positive.

Compute the base-ten logarithm of x.
The value of x must be positive.

Compute xY•

If x is zero, y must be positive.
If x is negative, y must be an integer.

Compute the non-negative square root of x.
The value of x must be non-negative.

Integrated Software Development Guide

libraries and Header Files

Figure 1-7: Math Functions (continued)

floor(3M)

floor floorf Compute the largest integer not greater than x.

ceil ceilf Compute the smallest integer not less than x.

copysign Compute x but with the sign of y.

fmod fmodf Compute the floating point remainder of the
division of x by y: x if y is zero, otherwise the
number f with same sign as x, such that x = iy
+ f for some integer i, and I f I < I y I .

fabs fabsf Compute I x I, the absolute value of x.

rint Compute as a double-precision floating point
number the integer value nearest the double-
precision floating point argument x, and
rounds the return value according to the
currently set machine rounding mode.

remainder Compute the floating point remainder of the
division of x by y: NaN if y is zero, otherwise
the value r = x - yn, where n is the integer
value nearest the exact value of x/y, and n is
even whenever In - x/y I = 1/2.

gamma(3M)

gamma 19amma Compute In(I r(x) I), where r(x) is defined as
x

J e-ft x - 1 dt.
0

hypot(3M)

hypot Compute sqrt(x * X + Y * y), taking precau-
tions against overflows.

matherr(3M)

matherr Error handling.

UNIX System Calls and Libraries 1-15

Libraries and Header Flies

Figure 1-7: Math Functions (continued)

trig(3M)

sin

cos

tan

asin

acos

atan

atan2

sinh(3M)

sinh

cosh

tanh

asinh

acosh

atanh

1-16

sinf

cosf

tanf

asinf

acosf

atanf

atan2f

sinhf

coshf

tanhf

Compute the sine of x, measured in radians.

Compute the cosine of x, measured in radians.

Compute the tangent of x, measured in radi­
ans.

Compute the arcsine of x, in the range
[-1t/2, +1t/2].

Compute the arccosine of x, in the range
[O,+1t].

Compute the arctangent of x, in the range
(-1t/2, +1t/2).

Compute the arctangent of y/x, in the range
(-1t, +1t], using the signs of both arguments to
determine the quadrant of the return value.

Compute the hyperbolic sine of x.

Compute the hyperbolic cosine of x.

Compute the hyperbolic tangent of x.

Compute the inverse hyperbolic sine of x.

Compute the inverse hyperbolic cosine of x.

Compute the inverse hyperbolic tangent of x.

Integrated Software Development Guide

Libraries and Header Flies

General Purpose Library (libgen)

1 ibgen contains general purpose functions, and functions designed to facilitate
internationalization. These appear in Subsection 3G of the Programmer's Refer­
ence Manual. Figure 1-8 describes functions in libgen. The header files
libgen. h and, occasionally, regexp. h should be included in programs that
use these functions.

Figure 1-8: libgen Functions

advance step

basename

bgets

bufsplit

compile

copylist

dirname

eaccess

Execute a regular expression on a string.

Return a pointer to the last element of a path
name.

Read a specified number of characters into a .
buffer from a stream until a specified character
is reached.

Split the buffer into fields delimited by tabs
and new-lines.

Return a pointer to a compiled regular expres­
sion that uses the same syntax as ed.

Copy a file into a block of memory, replacing
new-lines with null characters. It returns a
pointer to the copy.

Return a pointer to the parent directory name
of the file path name.

Determine if the effective user ID has the
appropriate permissions on a file.

gmatch Check if name matches shell file name pattern.

isencrypt Use heuristics to determine if contents of a
character buffer are encrypted.

UNIX System Calls and Libraries 1-17

Libraries and Header Flies

Figure 1-8: libgen Functions (continued)

mkdirp

p20pen p2close

pathfind

regcmp

regex

rmdirp

strccpy strcadd

strecpy

strfind

strrspn

1-18

Create a directory and its parents.

p2 open is similar to popen(3S). It establishes
a two-way connection between the parent and
the child. p2close closes the pipe.

Search the directories in a given path for a
named file with given mode characteristics. If
the file is found, a pointer is returned to a
string that corresponds to the path name of the
file. A null pointer is returned if no file is
found.

Compile a regular expression and return a
pointer to the compiled form.

Compare a compiled regular expression against
a subject string.

Remove the directories in the specified path.

strccpy copies the input string to the output
string, compressing any C-like escape
sequences to the real character. strcadd is a
similar function that returns the address of the
null byte at the end of the output string.

Copy the input string to the output string,
expanding any non-graphic characters with the
C escape sequence. Characters in a third argu­
ment are not expanded.

Return the offset of the first occurrence of the
second string in the first string. -1 is returned
if the second string does not occur in the first.
Trim trailing characters from a string. It
returns a pointer to the last character in the
string not in a list of trailing characters.

Integrated Software Development Guide

Libraries and Header Flies

Figure 1-8: libgen Functions (continued)

strtrns

Standard 1/0 Library

Return a pointer to the string that results from
replacing any character found in two strings
with a character from a third string. This func­
tion is similar to the t r command.

The functions in Subsection 3S of the Programmer's Reference Manual constitute
the standard I/O library for C programs. In this section, we want to discuss
standard I/O in a bit more detail. First, let's briefly define what I/O involves.
It has to do with

• reading information from a file or device to your program;

• writing information from your program to a file or device;

= opening and closing files that your program reads from or writes to.

Three Files You Always Have

Programs automatically start off with three open files: standard input, standard
output, and standard error. These files with their associated buffering are called
streams, and are designated stdin, stdout, and stderr, respectively. The
shell associates all three files with your terminal by default.

This means that you can use functions and macros that deal with stdin,
stdout, or stderr without having to open or close files. gets, for example,
reads a string from stdin; puts writes a string to stdout. Other functions
and macros read from or write to files in different ways: character at a time,
getc and putc; formatted, scanf and printf; and so on. You can specify
that output be directed to stderr by using a function such as fprintf.
fprintf works the same way as printf except that it delivers its formatted
output to a named stream, such as stderr.

UNIX System Calls and libraries 1-19

Libraries and Header Flies

Named Files

Any file other than standard input, standard output, and standard error must be
explicitly opened by you before your program can read from or write· to the file.
You open a file with the standard library function fopen. fopen takes a path
name, asks the system to keep track of the connection between your program
and the file, and returns a pointer that you can then use in functions that per­
form other I/O operations.

The pointer is to a structure called FILE, defined in stdio. h, that contains
information about the file: the location of its buffer, the current character posi­
tion in the buffer, and so on. In your program, then, you need to have a declara­
tion such as

FILE *fin;

which says that fin is a pOinter to a FILE. The statement

fin = fopen("filename", "r");

associates a FILE structure with filename, the path name of the file to open,
and returns a pointer to it. The" r" means that the file is to be opened for
reading. This argument is known as the mode. There are modes for reading,
writing, and both reading and writing.

In practice, the file open function is often included in an if statement:

if «fin = fopen ("filename", "r")) == NULL)
(void)fprintf(stderr,"Cannot open input file %s\n",

"filename");

which takes advantage of the fact that f open returns a NULL pointer if it cannot
open the file. To avoid falling into the immediately following code on failure,
you can call exit, which causes your program to quit:

1-20

if «fin = fopen ("filename", "r")) == NULL)
(void)fprintf(stderr,"Cannot open input file %s\n",

"filename");
exit(l);

Integrated Software Development Guide

Libraries and Header Flies

Once you have opened the file, you use the pointer f in in functions or macros
to refer to the stream associated with the opened file:

int Ci

C = getc(fin)i

brings in one character from the stream into an integer variable called c. The
variable c is declared as an integer even though we are reading characters
because getc returns an integer. Getting a character is often incorporated in
some flow-of-control mechanism such as

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc are all defined in stdio. h. getc and other macros in the standard I/O
package keep advancing a pointer through the buffer associated with the
stream; the UNIX system and the standard I/O functions are responsible for
seeing that the buffer is refilled if you are reading the file, or written to the out­
put file if you are producing output, when the pointer reaches the end of the
buffer.

Your program may have multiple files open simultaneously, 20 or more depend­
ing on system configuration. If, subsequently, your program needs to open
more files than it is permitted to have open simultaneously, you can use the
standard library function fclose to break the connection between the FILE
structure in stdio. h and the path names of the files your program has opened.
Pointers to FILE may then be associated with other files by subsequent calls to
fopen. For output files, an fclose call makes sure that all output has been
sent from the output buffer before disconnecting the file. exit closes all open
files for you, but it also gets you completely out of your process, so you should
use it only when you are sure you are finished.

UNIX System Calls and Libraries 1-21

Libraries and Header Files

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on·
the command line, which is to say, by the shell. When you execute a C pro­
gram, command line arguments are made available to the function main in two
parameters, an argument count, conventionally called argc, and an argument
vector, conventionally called argv. (Every C program is required to have an
entry pOint named main.) argc is the number of arguments with which the
program was invoked. a rgv is an array of pointers to character strings that
contain the arguments, one per string. Since the command name itself is con­
sidered to be the first argument, or argv [0], the count is always at least one.
Here is the declaration for main:

int
main(int argc, char *argv[])

For two examples of how you might use run-time parameters in your program,
see the last subsection of this chapter.

The shell, which makes arguments available to your program, considers an
argument to be any sequence of non-blank characters. Characters enclosed in
single quotes (, abc def') or double quotes ("abc def") are passed to the
program as one argument even if blanks or tabs are among the characters. You
are responsible for error checking and otherwise making sure that the argument
received is what your program expects it to be.

In addition to argc and argv, you can use a third argument: envp is an array
of pointers to environment variables. You can find more information on envp
in the Programmer's Reference Manual under exec in Section 2 and in the System
Files and Devices Reference Manual under environ in Section 5.

C programs exit voluntarily, returning control to the operating system, by
returning from main or by calling the exit function. That is, a return (n)

from main is equivalent to the call exit (n) • (Remember that main has type
"function returning int.") Your program should return a value to say whether
it completed successfully or not. The value gets passed to the shell, where it
becomes the value of the $? shell variable if you executed your program in the
foreground. By convention, a return value of zero denotes success, a non-zero
return value means some sort of error occurred. You can use the macros
EXIT_SUCCESS and EXIT_FAILURE, defined in the header file stdlib. h, as
return values from rna in or argument values for exit.

1-22 Integrated Software Development Guide

Libraries and Header Flies

Passing Command Line Arguments
As described above, information or control data can be passed to a C program
as an argument on the command line. When you execute the program, com­
mand line arguments are made available to the function main in two parame­
ters, an argument count, conventionally called argc, and an argument vector,
conventionally called argv. argc is the number of arguments with which the
program was invoked. argv is an array of pointers to characters strings that
contain the arguments, one per string. Since the command name itself is con­
sidered to be the first argument, or argv [0], the count is always at least one.

If you plan to accept run-time parameters in your program, you need to include
code to deal with the information. Figures 1-9 and 1-10 show program frag­
ments that illustrate two common uses of run-time parameters:

• Figure 1-9 shows how you provide a variable file name to a program,
such that a command of the form

$ prog filename

will cause prog to attempt to open the specified file .

• Figure 1-10 shows how you set internal flags that control the operation of
a program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options
specified. The getopt function used in the example is the most common
way to process arguments in UNIX system programs. getopt is
described in Subsection 3C of the Programmer's Reference Manual.

UNIX System Calls and Libraries 1-23

Libraries and Header Flies

Figure 1-9: Using argir[l] to Pass a File Name

1-24

.include <stdio.h>

int
main(int argc, char *argv[])
{

FILE *fin;
int ch;

switch (argc)
{

case 2:
if «fin = fopen(argv[1], IOrIO)) == NULL)

break;
case 1:

/* First string (%s) is program name (argv[O]). */
/* Second string (%s) is name of file that could */
/* not be opened (argv[1)). */

(void) fprintf (stderr, "%s: Cannot open input file %s\n",
argv[O), argv[1]);

return (2) ;

fin = stdin;
break;

defauJ,t:
(void)fprintf(stderr, "Usage: %s [file]\n", argv[O]);
return(2);

while «ch = getc (fin)) ! = EOF)
(void)putchar(ch);

return (0);

Integrated Software Development Guide

Libraries and Header Flies

Figure 1-10: Using Command Line Arguments to Set Flags

.include <stdio.h>

.include <stdlib.h>

int
main(int argc, char *argv[])
{

int oflag = 0;
int pflag = 0;
int rflag = 0;
int chi

j* Function flags *j

while ((ch = getopt (argc, argv, "apr")) != -1)
{

/* For options present, set flag to 1. */
j* If unknown options present, print error message. */

switch (ch)
{

case 'a' :
oflag = I;
break;

case 'p' :
pflag = I;
break;

case 'r' :
rflag = I;
break;

default:
(void)fprintf(stderr, "Usage: %s [-opr]\n", argv[O]);
retum(2);

/* Do other processing controlled by of lag, pflag, rflag. */
return(O);

UNIX System Calls and Libraries 1-25

System Calls

UNIX system calls are the interface between the kernel and the user programs
that run on top of it. The UNIX system kernel is the software on which every­
thing else in the UNIX operating system depends. The kernel manages system
resources, maintains file-systems and supports system-calls. read, write and
the other system calls in Section 2 of the Programmer's Reference Manual define
what the UNIX system is. Everything else is built on their foundation. Strictly
speaking, they are the only way to access such facilities as the file system, inter­
process communication primitives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are writing a C program, for example, you can
use the library functions described in Section 3 of the Programmer's Reference
Manual. When you use these functions, the details of their implementation on
the UNIX system are transparent to the program, for example, that the system
call read underlies the f read implementation in the standard C library. In
other words, the program will generally be portable to any system, UNIX or
not, with a conforming C implementation. (See Chapter 2 of the Programmer's
Guide: ANSI C and Programming Support Tools for a discussion of the standard C
library.)

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read in a pro­
gram that performed a simple input/output operation. Other operations, how­
ever, including most multitasking mechanisms, do require direct interaction
with the UNIX system kernel. These operations are the subject of the first part
of this book. This chapter lists the system calls in functional groups, and
includes brief discussions of error handling. For details on individual system
calls, see Section 2 of the Program1!ler's Reference Manual.

AC program is automatically linked with the system calls you have invoked
when you compile the program. The procedure may be different for programs
written in other languages. Check the Programmer's Guide: ANSI C and Program­
ming Support Tools for details on the language you are using.

1-26 Integrated Software Development Guide

System Calls

Input/Output and File System Calls

File and Device 1/0

These system calls perform basic input/output operations on UNIX system files.

Figure 1-11: File and Device I/O Functions

open

creat

close

read

getmsg
lseek

fentl

ioctl

write

putmsg

Terminal Device Control

open a file for reading or writing
create a new file or rewrite an existing one
close a file descriptor
transfer data from/onto a file or device
get/put message from/onto a stream
move file I/O pointer
file I/O control
device I/O control

These system calls deal with a general terminal interface for the control of asyn­
chronous communications ports.

Figure 1-12: Terminal Device Control Functions

tegetattr

tedrain

tcflow

cfgetispeed

efsetispeed

tegetsid

tegetpgrp

tesetpgrp

tesetattr

tcflush

tcsendbreak

efgetospeed

cfsetospeed

UNIX System Calls and libraries·

get and set terminal attributes
line control functions
line control functions
get baud rate functions
set baud rate functions
get terminal session ID
get terminal foreground process group ID
set terminal foreground process group ID

1-27

System Calls

Directories and File Systems
These system calls allow creation of new directories (and other types of files),
linking to existing files, obtaining or modifying file status information, and
allow you to control various aspects of the file system.

Figure 1-13: Directory and File System Functions

link

access

mknod

chmod fchmod

chown fchown

utime

stat fstat

pathconf fpathconf

getdents

mkdir

readlink

rename

rmdir

symlink

unlink

ustat

sync

mount umount

statfs fstatfs

sysfs

1-28

lchown

lstat

link to a file
determine accessibility of a file
make a directory, special, or regular file
change mode of file
change owner and group of a file
set file access and modification times
get file status
get configurable path name variables
read directory entries and put in file system­
independent format
make a directory
read the value of a symbolic link
change the name of a file
remove a directory
make a symbolic link to a file
remove directory entry
get file system statistics
update super block
mount/ unmount a file system
get file system information
get file system type information

Integrated Software Development Guide

System Calls

Process and Memory System Calls

Processes
. These system calls control user processes.

Figure 1-14: Process Management Functions

fork

execl

execv

exit

wait

setuid

getpgrp

chdir

chroot

nice

get context

getgroups

getpid

getuid

getgid

pause

priocntl

setpgid

setsid

kill

execle

execve

exit

waitpid

setgid

setpgrp

fchdir

set context

set groups

getppid

geteuid

getegid

UNIX System Calls and Libraries

create a new process
execlp execute a file with a list of arguments
execvp execute a file with a variable list

termina te process
waitid wait for child process to change state

set user and group IDs
get and set process group 10
change working directory
change root directory
change priority of a process
get and set current user context
get or set supplementary group IDs

getpgid get process and parent process IDs
get real user and effective user
get real group and effective group
suspend process until signal
process scheduler control
set process group 10
set session 10
send a signal to a process or group of
processes

1-29

System Calls

Signals
Signals are messages passed by the UNIX system to running processes.

Figure 1-15: Signal Functions

sigaction

sigaltstack

sigignore

sighold

sigset

sigpending

sigprocmask

sigsuspend

sigsend

sigpause

sigrelse

signal

sigsendset

detailed signal management
set I get signal alternate stack context
simplified signal management
simplified signal management
simplified signal management
examine blocked and pending signals
change or examine signal mask
install a signal mask and suspend process
send a signal to a process or group of
processes

Basic Interprocess Communication
These system calls connect processes so they can communicate. pipe is the sys­
tem call for creating an interprocess channel. dup is the call for duplicating an
open file descriptor. (These IPe mechanisms are not applicable for processes on
separate hosts.)

Figure 1-16: Basic Interprocess Communication Functions

1-30

pipe

dup

open file-descriptors for a pipe
duplicate an open file-descriptor

Integrated Software Development Guide

System Calls

Advanced Interprocess Communication
These system calls support interprocess messages, semaphores, and shared
memory and are effective in data base management. (These IPC mechanisms
are also not applicable for processes on separate hosts.)

Figure 1-17: Advanced Interprocess Communication Functions

msgget

msgctl

msgop

semget

semctl

semop

shmget

shmctl

shmop

UNIX System Calls and Libraries

get message queue
message control operations
message operations
get set of semaphores
semaphore control operations
semaphore operations
get shared memory segment identifier
shared memory control operations
shared memory operations

1-31

System Calls

Memory Management
These system calls give you access to virtual memory facilities.

Figure 1·18: Memory Management Functions

getpagesize

memcntl

mmap

mprotect

munmap

plock

brk

1·32

sbrk

get system page size
memory management control
map pages of memory
set protection of memory mapping
unmap pages of memory
lock process, text, or data in memory
dynamically allocate memory space

Integrated Software Development Guide

System Calls

Miscellaneous System Calls

These are system calls for such things as administration, timing, and other mis­
cellaneous purposes.

Figure 1-19: Miscellaneous System Functions

ulimit

alarm

getrlimit

uname

profil

sysconf

uadmin

time

get and set user limits
set a process alarm clock

setrlimit control maximum system resource consump­
tion
get/set name of current UNIX system
execution time profile
method for application's determination of
value for system configuration
administrative control

stime get/set time
acct enable or disable process accounting
sysi86 machine-specific functions

UNIX System Calls and Libraries 1-33

System Calls

UNIX System Call Error Handling

UNIX system calls that fail to complete successfully almost always return a
value of -1 to your program. (If you look through the system calls in Section 2,
you will see that there are a few calls for which no return value is defined, but
they are the exceptions.) In addition to the -1 returned to the program, the
unsuccessful system call places an integer in an externally declared variable,
errno. In a C program, you can determine the value in errno if your program
contains the statement

#include <errno.h>

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno. The value in errno is not cleared on
successful calls, so your program should check it only if the system call returned
a -1 indicating an error. The following list identifies the error numbers and
symbolic names defined in the <errno. h> header file, and described in
intro(2) of the Programmer's Reference Manual.

1-34 Integrated Software Development Guide

Error

Number

2

3

4

5

6

7

8

EPERM

ENOENT

ESRCH

EINTR

EIO

ENXIO

E2BIG

Symbolic

Name

ENOEXEC

UNIX System Calls and Libraries

System Calls

Description

Not super-user
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or the super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

No such file or directory
A file name is specified and the file should exist but fails
to, or one of the directories in a path name fails to exist.

No such process
No process can be found corresponding to the that
specified by PID in the kill or ptrace routine.

Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system ser­
vice routine. If execution is resumed after processing the
signal, it will appear as if the interrupted routine call
returned this error condition.

110 error
Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it
actually applies.

No such device or address
I/O on a special file refers to a subdevice which does not
exist, or exists beyond the limit of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

Arg list too long
An argument list longer than ARG _MAX bytes is presented
to a member of the exec family of routines. The argument
list limit is sum of the size of the argument list plus the
size of the environment's exported shell variables.

Exec format error
A request is made to execute a file which, although it has
the appropriate permissions, does not start with a valid for­
mat (see a. out(4».

1-35

System Calls

Error

Number

9

10

11

12

13

14

1-36

EBADF

Symbolic

Name

ECHILD

EAGAIN

ENOMEM

EACCES

EFAULT

Description

Bad file number
Either a file descriptor refers to no open file, or a read
[respectively, write] request is made to a file that is open
only for writing (respectively, reading).

No child processes
A wait routine was executed by a process that had no
eXisting or unwaited-for child processes.

No more processes
For example, the fork routine failed because the system's
process table is full or the user is not allowed to create any
more processes. Or a system call failed because of
insufficient memory or swap space.

Not enough space
During execution of an exec, brk, or sbrk routine, a pro­
gram asks for more space than the system is able to supply.
This is not a temporary condition; the maximum size is a
system parameter. The error may also occur if the arrange­
ment of text, data, and stack segments requires too many
segmentation registers, or if there is not enough swap space
during the fork routine. If this error occurs on a resource
associated with Remote File Sharing (RFS), it indicates a
memory depletion which may be temporary, dependent on
system activity at the time the call was invoked.

Permission denied
An attempt was made to access a file in a way forbidden
by the protection system.

Bad address
The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno poten­
tially may be set to EF AULT any time a routine that takes a
pointer argument is passed an invalid address, if the sys­
tem can detect the condition. Because systems will differ in
their ability to reliably detect a bad address, on some
implementations passing a bad address to a routine will
result in undefined behavior.

Integrated Software Development Guide

Error

Number

15

16

17

18

19

20

21

22

23

Symbolic

Name

ENOTBLK

EBUSY

EEXIST

EXDEV

ENODEV

ENOTDIR

EISDIR

EINVAL

ENFILE

UNIX System Calls and Libraries

System Calls

Description

Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the mount routine).

Device busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if
an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

File exists
An existing file was mentioned in an inappropriate context
(e.g., call to the 1 ink routine).

Cross-device link
A link to a file on another device was attempted.

No such device
An attempt was made to apply an inappropriate operation
to a device (e.g., read a write-only deVice).

Not a directory
A non-directory was specified where a directory is required
(e.g., in a path prefix or as an argument to the chdir rou­
tine).

Is a directory
An attempt was made to write on a directory.

Invalid argument
An invalid argument was specified (e.g., unmounting a
non-mounted device, mentioning an undefined signal in a
call to the signal or kill routine. Also set by the func­
tions described in the math package (3M).

File table overflow
The system file table is full (Le., SYS _OPEN files are open,
and temporarily no more files can be opened).

1-37

System Calls

Error
Number

24

25

26

27

28

29

30

31

32

1-38

Symbolic

Name

EMFILE

ENOTTY

ETXTBSY

EFBIG

ENOSPC

ESPIPE

EROFS

EMLINK

EPIPE

Description

Too many open files
No process may have more than OPEN_MAX file descriptors
open at a time.

Not a typewriter
A call was made to the ioet 1 routine specifying a file that
is not a special character device.

Text file busy
An attempt was made to execute a pure-procedure pro­
gram that is currently open for writing. Also an attempt to
open for writing or to remove a pure-procedure program
that is being executed.

File too large
The size of a file exceeded the maximum file size,
FCHR_MAX (see getrlimit).

No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device. In the fen t 1 rou­
tine, the setting or removing of record locks on a file can­
not be accomplished because there are no more record
entries left on the system.

Illegal seek
A call to the 1 seek routine was issued to a pipe.

Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

Too many links
An attempt to make more than the maximum number of
links, LINK_MAX, to a file.

Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error
is returned if the signal is ignored.

Integrated Software Development Guide

Error
Number

33

34

35

36

37

38

39

40

41

42

43

44

45

46

EDOM

Symbolic
Name

ERANGE

ENOMSG

EIDRM

ECHRNG

EL2NSYNC

EL3HLT

EL3RST

ELNRNG

EUNATCH

ENOCSI

EL2HLT

EDEADLK

ENOLCK

UNIX System Calls and Libraries

System Calls

Description

Math argument out of domain of func
The argument of a function in the math package (3M) is
out of the domain of the function.

Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

No message of desired type
An attempt was made to receive a message of a type not
existing on the specified message queue (see msgop(2».

Identifier removed
This error is returned to processes that resume execution
due to the removal of an identifier from the file system's
name space (see msgct 1(2), semct 1(2), and shmct 1(2».

Channel number out of range

Level 2 not synchronized

Level 3 halted

Level 3 reset

Link number out of range

Protocol driver not attached

No CSI structure available

Level 2 halted

Deadlock condition
A deadlock situation was detected and avoided. This error
pertains to file and record locking.

No record locks available
There are no more locks available. The system lock table is
full (see fcnt1(2».

1·39

System Calls

Error

Number

60

61

62

63

64

65

66

67

1·40

Symbolic

Name

ENOSTR

ENODATA

ETIME

ENOSR

ENONET

ENOPKG

EREMOTE

ENOL INK

Description

Device not a stream
A putmsg or getmsg system call was attempted on a file
descriptor that is not a STREAMS device.

No data available

Timer expired
The timer set for a STREAMS ioct 1 call has expired. The
cause of this error is device specific and could indicate
either a hardware or software failure, or perhaps a timeout
value that is too short for the specific operation. The status
of the ioctl operation is indeterminate.

Out of stream resources
During a STREAMS open, either no STREAMS queues or
no STREAMS head data structures were available. This is
a temporary condition; one may recover from it if other
processes release resources.

Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs
when users try to advertise, unadvertise, mount, or
unmount remote resources while the machine has not done
the proper startup to connect to the network.

Package not installed
This error occurs when users attempt to use a system call
from a package which has not been installed.

Object is remote
This error is RFS specific. It occurs when users try to
advertise a resource which is not on the local machine, or
try to mount/unmount a device (or pathname) that is on a
remote machine.

Link has been severed
This error is RFS specific. It occurs when the link (virtual
circuit) connecting to a remote machine is gone.

Integrated Software Development Guide

Error

Number

68

69

70

71

74

76

77

EADV

Symbolic

Name

ESRMNT

ECOMM

EPROTO

EMULTIHOP

EDOTDOT

EBADMSG

UNIX System Calls and Libraries

System Calls

Description

Advertise error
This error is RFS specific. It occurs when users try to
advertise a resource which has been advertised already, or
try to stop the RFS while there are resources still adver­
tised, or try to force unmount a resource when it is still
advertised.

Srmoun terror
This error is RFS specific. It occurs when an attempt is
made to stop RFS while resources are still mounted by
remote machines, or when a resource is readvertised with a
client list that does not include a remote machine that
currently has the resource mounted.

Communication error on send
This error is RFS specific. It occurs when the current pro­
cess is waiting for a message from a remote machine, and
the virtual circuit fails.

Protocol error
Some protocol error occurred. This error is device specific,
but is generally not related to a hardware failure.

Multihop attempted
This error is RFS specific. It occurs when users try to
access remote resources which are not directly accessible.

Error 76
This error is RFS specific. A way for the server to tell the
client that a process has transferred back from mount point.

Not a data message
During a read, getmsg, or ioctl I_RECVFD system call
to a STREAMS device, something has come to the head of
the queue that can't be processed. That something depends
on the system call:

read: control information or a passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

1·41

System Calls

Error

Number

78

79

80

81

82

83

84

85

86

1-42

Symbolic

Name

ENAMETOOLONG

EOVERFLOW

ENOTUNIQ

EBADFD

EREMCHG

ELIBACC

ELIBBAD

ELIBSCN

ELIBMAX

Description

File name too long
The length of the path argument exceeds PATH_MAX, or the
length of a path component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect; see limits(4).

Error 79
Value too large to be stored in data type.

Name not unique on network
Given log name not unique.

File descriptor in bad state
Either a file descriptor refers to no open file or a read
request was made to a file that is open only for writing.

Remote address changed

Cannot access a needed shared library
Trying to exec an a. out that requires a shared library
and the shared library doesn't exist or the user doesn't
have permission to use it.

Accessing a corrupted shared library
Trying to exec an a. out that requires a shared library (to
be linked in) and exec could not load the shared library.
The shared library is probably corrupted .

. lib section in f4a.out corrupted
Trying to exec an a. out that requires a shared library (to
be linked in) and there was erroneous data in the . 1 ib sec­
tion of the a. out. The .lib section tells exec what
shared libraries are needed. The a. out is probably cor­
rupted.

Attempting to link in more shared libraries than system
limit
Trying to exec an a. out that requires more static shared
libraries than is allowed on the current configuration of the
system. See the System Administrator's Guide.

Integrated Software Development Guide

Error

Number

87

88

89

90

91

92

93

94

95

96

97

98

99

Symbolic

Name

ELIBEXEC

EILSEQ

ENOSYS

ELOOP

ERESTART

ESTRPIPE

ENOTEMPTY

EUSERS

ENOTSOCK

EDESTADDRREQ

EMSGSIZE

EPROTOTYPE

ENOPROTOOPT

UNIX System Calls and Libraries

System Calls

Description

Cannot exec a shared library directly
Attempting to exec a shared library directly.

Error 88
Illegal byte sequence. Handle multiple characters as a sin­
gle character.

Operation not applicable

Number of symbolic links encountered during path name
traversal exceeds MAXSYMLINKS

Error 91
Interrupted system call should be restarted.

Error 92
Streams pipe error (not externally visible).

Directory not empty

Too many users
Too many users.

Socket operation on non-socket
Self-explanatory.

Destination address required
A required address was omitted from an operation on a
transport endpoint. Destination address required.

Message too long
A message sent on a transport provider was larger than the
internal message buffer or some other network limit.

Protocol wrong type for socket
A protocol was specified that does not support the seman­
tics of the socket type requested.

Protocol not available
A bad option or level was specified when getting or setting
options for a protocol.

1-43

System Calls

Error

Number

120

121

122

123

124

125

126

127

128

129

130

1·44

Symbolic

Name

EPROTONOSUPPORT

ESOCKTNOSUPPORT

EOPNOTSUPP

EPFNOSUPPORT

EAFNOSUPPORT

EADDRINUSE

EADDRNOTAVAIL

ENETDOWN

ENETUNREACH

ENETRESET

ECONNABORTED

Description

Protocol not supported
The protocol has not been configured into the system or no
implementation for it exists.

Socket type not supported
The support for the socket type has not been configured
into the system or no implementation for it exists.

Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram
transport endpoint.

Protocol family not supported
The protocol family has not been configured into the sys­
tem or no implementation for it exists. Used for the Inter­
net protocols.

Address family not supported by protocol family
An address incompatible with the requested protocol was
used.

Address aiready in use
User attempted to use an address already in use, and the
protocol does not allow this.

Cannot assign requested address
Results from an attempt to create a transport endpoint with
an address not on the current machine.

Network is down
Operation encountered a dead network.

Network is unreachable
Operation was attempted to an unreachable network.

Network dropped connection because of reset
The host you were connected to crashed and rebooted.

Software caused connection abort
A connection abort was caused internal to your host
machine.

Integrated Software Development Guide

Error

Number

131

132

133

134

143

144

145

146

147

Symbolic
Name

ECONNRESET

ENOBUFS

EISCONN

ENOTCONN

ESHUTDOWN

ETOOMANYREFS

ETlMEDOUT

ECONNREFUSED

EHOSTDOWN

UNIX System Calls and Libraries

System Calls

Description

Connection reset by peer
A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote host
due to a timeout or a reboot.

No buffer space available
An operation on a transport endpoint or pipe was not per­
formed because the system lacked sufficient buffer space or
because a queue was full.

Transport endpoint is already connected
A connect request was made on an already connected tran­
sport endpoint; or, a sendto or sendmsg request on a con­
nected transport endpoint specified a destination when
already connected.

Transport endpoint is not connected
A request to send or receive data was disallowed because
the transport endpoint is not connected and (when sending
a datagram> no address was supplied.

Cannot send after transport endpoint shutdown
A request to send data was disallowed because the tran­
sport endpoint had already been shut down.

Too many references: cannot splice

Connection timed out
A connect or send request failed because the connected
party did not properly respond after a period of time. (The
timeout period is dependent on the communication proto­
col.)

Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to con­
nect to a service that is inactive on the remote host.

Host is down
A transport provider operation failed because the destina­
tion host was down.

1-45

System Calls

Error Symbolic
Number Name Description

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an
unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that
already had an operation in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect) was attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

1-46 Integrated Software Development Guide

2 File and Device Input/Output

Input/Output System Calls 2-1
File Descriptors 2-2
Reading and Writing Files 2-3
Opening, Creating and Closing Files 2-5
Random Access - Iseek 2-8

File and Record Locking 2-10
Terminology 2-10
File Protection 2-12

• Opening a File for Record Locking 2-12
• Setting a File Lock 2-13
• Setting and Removing Record Locks 2-16
• Getting Lock Information 2-20
• Deadlock Handling 2-23

Selecting Advisory or Mandatory Locking 2-23
• Caveat Emptor-Mandatory Locking 2-25

Record Locking and Future Releases of the UNIX System 2-25

Memory Management 2-26
Memory Management Facilities 2-26

• Virtual Memory, Address Spaces and Mapping 2-26
• Networking, Heterogeneity and Integrity 2-27

Memory Management Interfaces 2-28
• Creating and Using Mappings 2-29
• Removing Mappings 2-34
• Cache Control 2-35
• Other Mapping Functions 2-38

Address Space Layout 2-39

Table of Contents

Input/Output System Calls

The lowest level of I/O in UNIX System V provides no buffering or other such
services, but it offers the most control over what happens. System-calls that
represent direct entries into the UNIX System V kernel control all user I/O.
UNIX System V keeps the system-calls that do I/O simple, uniform and regular
to eliminate differences between files, devices and styles of access. The same
read and write system-calls apply to ordinary disk-files and I/O devices such as
terminals, tape-drives and line-printers. They do not distinguish between "ran­
dom" and "sequential" I/O, nor do they impose any logical record size on files.
Thus, a single, uniform interface handles all communication between programs
and peripheral devices, and programmers can defer specifying devices from
program-development until program-execution time.

All I/O is done by reading or writing files, because all peripheral I/O devices,
even a user's terminal, are files in the file-system. Each supported device has an
entry in the file-system hierarchy, so that device-names have the same structure
as file-names, and the same protection mechanisms work on both devices and
files.

A file is an ordered set of bytes of data on a I/O-device. The size of the file on
input is determined by an end-of-file condition dependent on device-specific
characteristics. The size of a regular-file is determined by the position and
number of bytes written on it, no predetermination of the size of a file is neces­
sary or possible.

Besides the traditionally available devices, names exist for disk devices regarded
as physical units outside the file-system, and for absolutely addressed memory.
The most important device in practice is the user's terminal. Treating a
communication-device in the same way as any file by using the same I/O calls
make it easy to redirect the input and output of commands from the terminal to
another file; although, some differences are inevitable. For example, UNIX Sys­
tem V ordinarily treats terminal input in units of lines because character-erase
and line-delete processing cannot be completed until a full line is typed. Pro­
grams trying to read some large number of bytes from a terminal must wait
until a full line is typed, and then may be notified that some smaller number of
bytes were actually read. All programs must prepare for this eventuality in any
case, because a read from any disk-file returns fewer bytes than requested when
it reaches the end of the file. Ordinarily, reads from a terminal are fully compa­
tible with reads from a disk-file.

File and Device Input/Output 2·1

Input/Output System Calls

File Descriptors

UNIX System V File and Device I/O functions denote a file by a small positive
integer called a file-descriptor and declared as follows:

int fildes

where fildes represents the file-descriptor, and the file-descriptor denotes an
open file from which data are read or onto which data are written. UNIX Sys­
tem V maintains all information about an open file; the user program refers to
the file only by the file-descriptor. Any I/O on the file uses the file-descriptor
instead of the file-name to denote the file.

Multiple file-descriptors may denote the same file, and each file-descriptor has
associated with it information used to do I/O on the file:

• a file-offset that shows which byte in the file to read or write next;

• file-status and access-modes (e.g., read, write, read/write) [see open(2}];

• the 'close-on-exec' flag [see fcntl(2)].

Doing I/O on the user's terminal occurs commonly enough that special arrange­
ments make this convenient. When the command interpreter (the "shell") runs
a program, it opens three files, called the standard input, the standard output and
the standard error output, with file-descriptors 0, 1 and 2. All of these are nor­
mally connected to the terminal; thus, a program reading file-descriptor 0 and
writing file-descriptors 1 and 2, can do terminal I/O without opening the files.
If 1/ a is redirected to and from files with < and >, as in:

prog <infile >outfile

the shell changes the default assignments for file-descriptors 0 and 1 from the
terminal to the named files. Similar conventions hold for I/O on a pipe. Nor­
mally file-descriptor 2 remains attached to the terminal, so error messages can
go there. In all cases, the shell changes the file assignments, the program does
not. The program can ignore where its output goes, as long as it uses file­
descriptor 0 for input and 1 and 2 for output.

2-2 Integrated Software Development Guide

Input/Output System Calls

Reading and Writing Files

The functions read and write do I/O on files. For both, the first argument is a
file-descriptor, the second argument is a buffer in the user program where the
data comes from or goes to and the third argument is the number of bytes of
data to transfer. Each call returns a count of the number of bytes actually
transferred. These calls look like:

n = read(fildes, buffer, count);

n = write (fildes, buffer, count);

Up to count bytes are transferred between the file denoted by fildes and the
byte array pointed to by buffer. The returned value n is the number of bytes
actually transferred.

For writing, the returned value is the number of bytes actually written; it is gen­
erallyan error if this fails to equal the number of bytes requested. In the write
case, n is the same as count except under exceptional conditions, such as I/O
errors or end of physical medium on special files; in a read, however, n may
without error be less than count.

For reading, the number of bytes returned may be less than the number
requested, because fewer than count bytes remained to be read. If the file-offset
is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transferred to reach the end of the file,
also, typewriter-like terminals never return more than one line of input. (When
the file is a terminal, read normally reads only up to the next new-line, which is
generally less than what was requested.)

When a read ~all returns with n equal to zero, the end of the file has been
reached. For disk-files this occurs when the file-offset equals the current size of
the file. It is possible to generate an end-of-file from a terminal by use of an
escape sequence that depends on the device used. The function read returns 0
to signify end-of-file, and returns -1 to signify an error.

The number of bytes to be read or written is quite arbitrary. The two most
common values are I, which means one character at a time ("unbuffered"), and
512, which corresponds to a physical block size on many peripheral devices.
This latter size is most efficient, but even character at a time I/O is not overly
expensive. Bytes written affect only those parts of a file implied by the position
of the file-offset and the count; no other part of the file is changed. If the last
byte lies beyond the end of the file, the file grows as needed.

File and Device Input/Output 2·3

Input/Output System Calls

A simple program using the read and write functions to copy its input to its
output can copy anything, since the input and output can be redirected to any
file or device.

*define BUFSIZE 512

main() /* copy input to output */
{

char buf[BUFSIZE]i
int ni

while ((n = read (0, buf, BUFSIZE)) > 0)
write(1, buf, n)i

exit(O)i

If the file size is not a multiple of BUFSIZE, some read will return a smaller
number of bytes to be written by write: the next call to read after that will
return zero indicating end-of-file.

To see how read and write can be used to construct higher level functions like
getchar and putchar, here is an example of getchar which does unbuffered
input:

define CMASK 0377 / for making char's> 0 */

getchar() /* unbuffered single character input */

(

char Ci

return((read(O, &c, 1) > 0) ? c & CMASK : EOF)i

The variable c must be declared char, because read accepts a character pointer.
The character returned must be masked with 0377 to ensure that it is positive;
otherwise, sign extension may make it negative.

2-4 Integrated Software Development Guide

Input/Output System Calls

The second version of getchar does input in big chunks, and hands out the
characters one at a time.

Hdefine CMASK 0377 /* for making char's> 0 */
Hdefine BUFSIZE 512

getchar() /* buffered version */
{

static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n == 0) { /* buffer is empty */
n = read(O, buf, BUFSIZE);
bufp = but;

return((--n >= 0) ? *butp++ & CMASK : EOF);

Opening, Creating and Closing Files

Other than the default standard input, output and error files, you must expli­
citly open files in order to read or write them. The two functions that do this
are: open and creat [see open(2) and creat(2) in the Programmer's Reference
Manual]. To read or write a file assumed to exist already, it must be opened by
the following call:

fildes = open(name, of lag) ;

The argument name is a character string that represents a UNIX System V file­
system path-name. The of lag argument indicates whether the file is to be
read, written, or "updated", that is, read and written simultaneously. The
returned value fildes is a file-descriptor used to denote the file in subsequent
calls that read, write or otherwise manipulate the file.

File and Device Input/Output 2-5

Input/Output System Calls

The function open resembles the function fopen in the Standard I/O Library,
except that instead of returning a pointer to FILE, open returns a file-descriptor
which is just an int [see fopen(3S) and stdio(3S) in the Programmer's Reference
Manual]. Moreover, the values for the access mode argument of lag are dif­
ferent (the flags are found in /usr/include/fcntl.h):

o RDONLY for read access.

O_WRONLY for write access.

o RDWR for read and write access.

The function open returns -1 if any error occurs; otherwise it returns a valid
open file-descriptor.

Trying to open a file that does not exist causes an error; hence, creat is used
to create new files, or to re-write old ones. The creat system-call creates the
given file if it does not exist, or truncates it to zero length if it does exist; creat
also opens the new file for writing and, like open, returns a file-descriptor. Cal­
ling creat as follows:

fildes = creat(name, pmode);

returns a file-descriptor if it created the file called name, and -1 if it did not.
Trying to creat a file that already exists does not cause an error, but if the file
already exists, creat truncates it to zero length.

If the file is brand new, creat creates it with the protection mode specified by
the pmode argument. The UNIX System V file-system associates nine bits of
protection information with a file, controlling read, write and execute permission
for the owner of the file, for the owner's group, and for any other users. Thus, a
three-digit octal number specifies the permissions most conveniently. For exam­
ple, 0755 specifies read, write and execute permission for the owner, and read and
execute permission for the group and all other users.

2·6 Integrated Software Development Guide

Input/Output System Calls

A simplified version of the UNIX System V utility cp (a program which copies
one file to another) illustrates this:

Figure 2·1: simplified version of cp

'define NULL 0
'define BUFSIZE 512
'define PMODE 0644 /* RW owner, R group & others */

main(argc, argv)
int argc;
char *argv [];

/* cp: copy f1 to f2 */

int fl, f2, n;
char buf[BUFSIZE];

if (argc !- 3)
error ("Usage: cp from to", NULL);

if ((f1 a open(argv[l], 0» -- -1)
error ("cp: can't open %s", argv[l]);

if ((f2 - creat(argv[2], PMDDE» -- -1)
error ("cp: can't create %s", argv[2]);

while ((n - read(f1, buf, BUFSIZE» > 0)
if (write (f2, buf, n) ! .. n)

error ("cp: write error", NULL);

exit (0) ;

error (sl, s2) /* print error message and die */
char *sl, *s2;

printf (sl, s2);
printf ("\n") ;

exit (1);

The main simplification is that this version copies only one file, and does not
permit the second argument to be a directory.

File and Device Input/Output 2·7

Input/Output System Calls

As stated earlier, there is a limit, OPEN_MAX, on the number of files which a pro­
cess may have open simultaneously. Accordingly, any program which intends
to process many files must be prepared to re-use file-descriptors. The function
close breaks the connection between a file-descriptor and an open file, and
frees the file-descriptor for use with some other file. Termination of a program
via exit or return from the main program closes all open files.

Random Access - Iseek

Normally, file I/O is sequential: each read or write proceeds from the point
in the file right after the previous one. This means that if a particular byte in
the file was the last byte written (or read), the next I/O call implicitly refers to
the immediately following byte. For each open file, UNIX System V maintains a
file-offset that indicates the next byte to be read or written. If n bytes are read
or written, the file-offset advances by n bytes. When necessary, however, a file
can be read or written in any arbitrary order using lseek to move around in a
file without actually reading or writing.

To do random (direct-access) I/O it is only necessary to move the file-offset to
the appropriate location in the file with a call to lseek. Calling lseek as fol­
lows:

lseek(fildes, offset, whence);

or as follows:

location = lseek(fildes, offset, whence);

forces the current position in the file denoted by file-descriptor f ildes to move
to position offset as specified by whence. Subsequent reading or writing
begins at the new position. The file-offset associated with fildes is moved to
a position offset bytes from the beginning of the file, from the current posi­
tion of the file-offset or from the end of the file, depending on whence; offset
may be negative. For some devices (e.g., paper tape and terminals) lseek calls
are ignored. The value of location equals the actual offset from the beginning
of the file to which the file-offset was moved. The argument offset is of type
off_t defined by the header file <types. h> as a long; fildes and whence
are int's.

2-8 Integrated Software Development Guide

Input/Output System Calls

The argument whence can be SEEK_SET, SEEK_CUR or SEEK_END to specify
that offset is to be measured from the beginning, from the current position, or
from the end of the file respectively. For example, to append a file, seek to the
end before writing:

lseek(fildes, OL, SEEK_END);

To get back to the beginning ("rewind"),

lseek(fildes, OL, SEEK_SET);

Notice the OL argument; it could also be written as (long) o.
With lseek, you can treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of
bytes from any arbitrary point in a file:

get(fd, p, buf, n) /* read n bytes from position p */
int fd, ni
long Pi
char *bufi

Iseek(fd, p, SEEK_SET)i /* move to p */
return(read(fd, buf, nIl;

File and Device Input/Output 2-9

File and Record Locking

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a syn­
chronization mechanism for programs accessing the same stores of data simul­
taneously. Such processing is characteristic of many multiuser applications, and
the need for a standard method of dealing with the problem has been recog­
nized by standards advocates like /usr/group, an organization of UNIX sys­
tem users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Miscon­
ceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism,
not a security mechanism.

The manual pages for the fentl(2) system call, the loekf(3) library function,
and fentl(S) data structures and commands are referred to throughout this
section. You should read them before continuing.

Terminology

Before discussing how to use record locking, let us first define a few terms.

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the pro­
grams that use the files.

Cooperating Processes

2-10

Processes that work together in some well-defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care­
fully set to restrict noncooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

Integrated Software Development Guide

File and Record Locking

Read (Share) Locks
These are used to gain limited access to sections of files. When a read
lock is put on a record, other processes may also read lock that record,
in whole or in part. No other process, however, may have or obtain a
write lock on an overlapping section of the file. If a process holds a
read lock it may assume that no other process will be writing or updat­
ing that record at the same time. This access method also lets many
processes read the given record. This might be necessary when search­
ing a file, without the contention involved if a write or exclusive lock
were used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a
write lock is put on a record, no other process may read or write lock
that record, in whole or in part. If a process holds a write lock it may
assume that no other process will be reading or writing that record at
the same time.

Advisory Locking
A form of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creat(2), open(2),
read(2), or write(2). The control over records is accomplished by
requiring an appropriate record lock request before I/O operations. If
appropriate requests are always made by all processes accessing the file,
then the accessibility of the file will be controlled by the interaction of
these requests. Advisory locking depends on the individual processes
to enforce the record locking protocol; it does not require an accessibil­
ity check at the time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat, open, read, and
wr i te(2) system calls. If a record is locked, then access of that record
by any other process is restricted according to the type of lock on the
record. The control over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations, but an
additional check is made by the system before each I/O operation to
ensure the record locking protocol is being honored. Mandatory locking
offers an extra synchronization check, but at the cost of some additional
system overhead.

File and Device Input/Output 2-11

File and Record Locking

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by the superuser. The permissions of the directory in which
the file resides can also affect the ultimate disposition of a file. Note that if the
directory permissions allow anyone to write in it, then files within the directory
may be removed, even if those files do not have read, write or execute permis­
sion for that user. Any information that is worth protecting, is worth protecting
properly. If your application warrants the use of record locking, make sure that
the permissions on your files and directories are set properly. A record lock,
even a mandatory record lock, will only protect the portions of the files that are
locked. Other parts of these files might be corrupted if proper precautions are
not taken.

Only a known set of programs and/or administrators should be able to read or
write a data base. This can be done easily by setting the set-group-ID bit of the
data base accessing programs; see chmod(1). The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of
such file protection, although re,cord locking is not used, is the mail(1) com­
mand. In that command only the particular user and the mail command can
read and write in the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. The file must be opened with at least read accessibility if
read locks are to be done, and with write accessibility for write locks.

~ Mapped files cannot be locked: if a file has been mapped, any attempt to y use file or record locking on the file fails. See mmap(2).

For our example we will open our file for both read and write access:

2-12 Integrated Software Development Guide

File and Record Locking

.include <stdio.h>
'include <errno.h>
'include <fcntl.h>

int fd:
char *filename:

rna in (argc, argv)
int argc:
char *argv (] ;
{

/* file descriptor */

extern void exit(), perror();

/* qet data base file name from command line and open the
* file for read and write access.
*/

if (argc < 2) {

(void) fprintf (stderr, "usage: %s filename\n", argv[O]):
exit (2):

}

filename - argv[l]:
fd = open(filename, O_RDWR):
if (fd < 0) {

perror(filename):
exit (2):
}

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods
depend on how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given
here, one using the fcnt1(2) system call, the other using the /usr/group stan­
dards compatible lockf library function call.

File and Device Input/Output 2-13

File and Record Locking

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero (0) until the end of the maximum file size. This
point extends beyond any real end of the file so that no lock can be placed on
this file beyond this point. To do this the value of the size of the lock is set to
zero. The code using the fen t 1 system call is as follows:

.include <fcntl.h>
'define MAX_TRY 10
int try;
struct flock lck;

try '" 0;

/* set up the record locking structure, the address of which
* is passed to the fcntl system call.
*/

lck.l_type - F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lCk.l_start = OL;

/* until the end of the file address space */

/* Attempt locking MAX_TRY times before giving up.
*/

while (fcntl(fd, F_SETLK, &lck) < 0) {
if (errno == EAGAIN I I errno == EACCES) {

/* there might be other errors cases in which
* you might try again.
*/

if (++try < MAX_TRY) {
(void) sleep(2);
continue;

(void) fprintf (stderr,"File busy try again later! \n");
return;

perror("fcntl");
exit (2);

This portion of code tries to lock a file. This is attempted several times until
one of the following things happens:

2-14 Integrated Software Development Guide

File and Record Locking

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf function, the code is as follows:

iinclude <unistd.h>
'define MAX_TRY 10
int try;
try = 0;

/* make sure the file pointer
* is at the beginning of the file.
*/

lseek (fd, OL, 0);

/* Attempt locking MAX_TRY times before giving up.
*/

while (lockf(fd, F_TLOCK, OL) < 0) {
if (errno == EAGAIN I I errno == EACCES) {

/* there might be other errors cases in which
* you might try again.
*/

if (++try < MAX_TRY)
sleep(2);
continue;

(void) fprintf (stderr, "File busy try again later! \n");
return;

perror("lockf");
exit (2) ;

It should be noted that the lockf example appears to be simpler, but the
fcntl(2) example exhibits additional flexibility. Using the fcntl(2) method, it
is possible to set the type and start of the lock request simply by setting a few
structure variables. lockf merely sets write (exclusive) locks; an additional sys­
tem call, lseek, is required to specify the start of the lock.

File and Device Input/Output 2-15

File and Record Locking

Setting and Removing Record Locks
Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting
and real problem. There are two records (these records may be in the same or
different file) that must be updated simultaneously so that other processes get a
consistent view of this information. (This type of problem comes up, for exam­
ple, when updating the interrecord pointers in a doubly linked list.) To do this
you must decide the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain
all the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is
to be inserted has a read lock on it already. The lock on this record must be
changed or promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of the
file, the lock promotion succeeds and the other (sleeping) locks wait. Promoting
(or demoting) a write lock to a read lock carries no restrictions. In either case,
the lock is merely reset with the new lock type. Because the /usr / group
lockf function does not have read locks, lock promotion is not applicable to
that call. An example of record locking with lock promotion follows:

2-16 Integrated Software Development Guide

File and Record Locking

struct record

/* data portion of record */

long prev;
long next;

/* index to previous record in the list */

/* index to next record in the list */
} ;

/* Lock promotion using fcntl(2)
* When this routine is entered it is assumed that there are read
* locks on "here" and "next".
* If write locks on "here" and "next" are obtained:

Set a write lock on "this".
Return index to "this" record.

* If any write lock is not obtained:

*/
long

Restore read locks on "here" and "next".
Remove all other locks.
Return a -1.

set310ck (this, here, next)
long this, here, next;
(

struct flock lck;·

lck .1_ type = F _ WRI.CK;
lck.l_whence = 0;
lck.l_start = here;

/* setting a write lock */

/* offset I_start from beginning of file */

lCk.l_len = sizeof(struct record);

/* promote lock on "here" to write lock */

if (fcntl(fd, F_SETLKW, &lck) < 0) {
return (-1);

/* lock "this" with write lock */

lCk.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0)

/* Lock on "this" failed;
* demote lock on "here" to read lock.
*/

lck.l_type = F_RDLCKi
lck.l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);

/* promote lock on "next" to write lock */

File and Device Input/Output

(continued on next page)

2-17

File and Record Locking

lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* Lock on "next" failed;
* demote lock on "here" to read lock,
*/
lck.l_type = F_RDLCK;

lck.l_start a here;
(void) fcntl(fd, F_SETLK, &lck);
/* and remove lock on "this".
*/

lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl (fd, F_SETLK, &lck);
return (-1);/* cannot set lock, try again or quit */

return (this);

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW com­
mand. If the F_SETLK command was used instead, the fcntl system calls
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error return sections.

Let us now look at a similar example using the lockf function. Since there are
no read locks, all (write) locks will be referenced generically as locks.

2-18 Integrated Software Development Guide

File and Record Locking

/* Lock promotion using lockf(3)
* When this routine is entered it is assumed that there are
* no locks on "here" and "next".
* If locks are obtained:

Set a lock on "this".
Return index to "this" record.

* If any lock is not obtained:

*/

Renove all other locks.
Return a -1.

.include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

/* lock "here" * /
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) (

return (-1);

/* lock "this" */

(void) lseek(fd, this, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) (

/* Lock on "this" failed.
* Clear lock on "here".
*/

(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

/* lock "next" */

(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) (

/* Lock on "next" failed.
* Clear lock on "here",
*/

(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));

(continued on next page)

File and Device Input/Output 2-19

File and Record Locking

1* and remove lock on "this".
*1

(void) lseek(fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);1* cannot set lock, try again or quit *1

return (this);

Locks are removed in the same manner as they are set, only the lock type is dif­
ferent (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another pro­
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by 1ck. It is pos­
sible to unlock or change the type of lock on a subsection of a previously set
lock. This may cause an additional lock (two locks for one system call) to be
used by the operating system. This occurs if the subsection is from the middle
of the previously set lock.

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is
set up as in the previous examples and the F _ GETLK command is used in the
fcnt1 call. If the lock passed to fcnt1 would be blocked, the first blocking
lock is returned to the process through the structure passed to fcntl. That is,
the lock data passed to fcnt1 is overwritten by blocking lock information. This
information includes two pieces of data that have not been discussed yet, l_pid
and l_sysid, that are only used by F_GETLK. (For systems that do not sup­
port a distributed architecture the value in l_sysid should be ignored.) These
,fields uniquely identify the process holding the lock.

If a lock passed to fcnt1 using the F_GETLK command would not be blocked
by another process's lock, then the I_type field is changed to F _ UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to
print all the segments locked by other processes. Note that if there are several
read locks over the same segment only one of these will be found.

2-20 Integrated Software Development Guide

File and Record Locking

struct flock lck;

/* Find and print "write lock" blocked segments of this file. */
(void) printf ("sysid pid type start length\n");
lck.l_whence - 0;
lck.l_start = OL;
lck.l_len = OL;
do {

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {

(void) printf ("%5d %5d %c %8d %8d\n",
lck.l_sysid,
lck.lyid,
(lck.l_type == F_WRLCK) ? 'W' 'R' ,
lck.l_start,
lck.l_len) ;

/* if this lock goes to the end of the address
* space, no need to look further, so break out.
*/

if (lck.l_len == 0)
break;

/* otherwise, look for new lock after the one
* just found.
*/

lck.l_start += lck.l_len;

fcntl with the F _ GETLK command will always return correctly (that is, it will
not sleep or fail) if the values pt;lssed to it as arguments are valid.

The lockf function with the F TEST command can also be used to test if there
is a process blocking a lock. This function does not, however, return the infor­
mation about where the lock actually is and which process owns the lock. A
routine using lockf to test for a lock on a file follows:

File and Device Input/Output 2-21

File and Record Locking

/* find a blocked record. */

/* seek to beginning of file */
(void) lseek(fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*/

if (lockf(fd, F_TEST, OL) < 0) {
switch (errno) {

case EACCES:
case EAGAIN:
(void) printf ("file is locked by another process\n");
break;
case EBADF:
/* bad argument passed to lockf */
perror ("lockf") ;
break;
default:
(void) printf ("lockf: unknown error <%d>\n", errno);
break;

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for
each file. If the parent were to seek to a point in the file, the child's file pointer
would also be at that location. This feature has important implications when
using record locking. The current value of the file pointer is used as the refer­
ence for the offset of the beginning of the lock, as described by I_start, when
using a I_whence value of 1. If both the parent and child process set locks on
the same file, there is a possibility that a lock will be set using a file pointer that
was reset by the other process. This problem appears in the lockf(3) function
call as well and is a result of the /usr/group requirements for record locking.
If forking is used in a record locking program, the child process should close
and reopen the file if either locking method is used. This will result in the crea­
tion of a new and separate file pointer that can be manipulated without this
problem occurring. Another solution is to use the fcntl system call with a
I_whence value of 0 or 2. This makes the locking function atomic, so that even
processes sharing file pointers can be locked without difficulty.

2-22 Integrated Software Development Guide

File and Record Locking

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record
locking facility. This deadlock handling provides the same level of protection
granted by the /usr/group standard lockf call. This deadlock detection is
only valid for processes that are locking files or records on a single system.
Deadlocks can only potentially occur when the system is about to put a record
locking system call to sleep. A search is made for constraint loops of processes
that would cause the system call to sleep indefinitely. If such a situation is
found, the locking system call will fail and set errno to the deadlock error
number. If a process wishes to avoid the use of the systems deadlock detection
it should set its locks using F_GETLK instead of F_GETLKW.

Selecting AdviSOry or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the
I/O system calls is determined at the time the calls are made by the permissions
on the file; see chmod(2). For locks to be under mandatory enforcement, the file
must be a regular file with the set-group-ID bit on and the group execute per­
mission off. If either condition fails, all record locks are advisory. Mandatory
enforcement can be assured by the following code:

File and Device Input/Output 2·23

File and Record Locking

#include <sys/types.h>
.include <sys/stat.h>

int mode;
struct stat buf;

if (stat (filename, &buf) < 0)
perror ("program") ;
exit (2);

/* get currently set mode */

mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= -(S_IEXEC»3);
/* set 'set group id bit' in mode */

mode 1- S_ISGID;
if· (chmod (filename, mode) < 0)

perror ("program") ;
exit (2) ;

Files that are to be record locked should never have any type of execute pennis­
sion set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory
locking. This can be done with the command:

chmod + 1 file

The ls(1) command shows this setting when you ask for the long listing format:

is -1 file

causes the following to be printed:

-rw---l--- 1 user group size mod time file

2-24 Integrated Software Development Guide

File and Record Locking

Caveat Emptor-Mandatory Locking

• Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
norm:al UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this
way.

• As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system
environment. In such an environment the system on which the locking process
resides may be remote from the system on which the file and record locks
reside. In this way multiple processes on different systems may put locks upon
a single file that resides on one of these or yet another system. The record locks
for a file reside on the system that maintains the file. It is also important to
note that deadlock detection/avoidance is only determined by the record locks
being held by and for a single system. Therefore, it is necessary that a process
only hold record locks on a single system at any given time for the deadlock
mechanism to be effective. If a process needs to maintain locks over several sys­
tems, it is suggested that the process avoid the sleep-when-blocked features of
fcntl or lockf and that the process maintain its own deadlock detection. If
the process uses the sleep-when-blocked feature, then a timeout mechanism
should be provided by the process so that it does not hang waiting for a lock to
be cleared.

File and Device Input/Output 2-25

Memory Management

Memory Management Facilities

The UNIX system provides a complete set of memory management mechanisms,
providing applications complete control over the construction of their address
space and permitting a wide variety of operations on both process address
spaces and the variety of memory objects in the system. Process address spaces
are composed of a vector of memory pages, each of which can be independently
mapped and manipulated. Typically, the system presents the user with map­
pings that simulate the traditional UNIX process memory environment, but
other views of memory are useful as well.

The UNIX memory-management facilities:

• Unify the system's operations on memory.

• Provide a set of kernel mechanisms powerful and general enough to sup­
port the implementation of fundamental system services without special­
purpose kernel support.

• Maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory
objects.

Virtual Memory, Address Spaces and Mapping
The system's virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the
virtual memory are referenced though the UNIX file system. However, not all
file system objects are in the virtual memory; devices that cannot be treated as
storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
shared memory segments, do not have names.

A process's address space is defined by mappings onto objects in the system's
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is execut­
ing. Each page may be mapped (or not) independently. Only process addresses
which are mapped to some system object are valid, for there is no memory asso­
ciated with processes themselves-all memory is represented by objects in the
system's virtual memory.

2-26 Integrated Software Development Guide

Memory Management

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The virtual memory's associated
physical storage is thus accessed by transforming process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important charac­
teristic of a mapping is that the object to which the mapping is made is not
affected by the mere existence of the mapping. Thus, it cannot, in general, be
expected that an object has an "awareness" of having been mapped, or of which
portions of its address space are accessed by mappings; in particular, the notion
of a "page" is not a property of the object. Establishing a mapping to an object
simply provides the potential for a process to access or change the object's con­
tents.

The establishment of mappings provides an access method that renders an
object directly addressable by a process. Applications may find it advantageous
to access the storage resources they use directly rather than indirectly through
read and write. Potential advantages include efficiency (elimination of
unnecessary data copying) and reduced complexity <single-step updates rather
than the read, modify buffer, write cycle). The ability to access an object and
have it retain its identity over the course of the access is unique to this access
method, and facilitates the sharing of common code and data.

Networking, Heterogeneity and Integrity
VM is designed to fit well with the larger UNIX heterogeneous environment.
This environment makes extens'ive use of networking to access file systems-file
systems that are now part of the system's virtual memory. Networks are not
constrained to consist of similar hardware or to be based upon a common
operating system; in fact, the opposite is encouraged, for such constraints create
serious barriers to accommodating heterogeneity. While a given set of processes
may apply a set of mechanisms to establish and maintain the properties of vari­
ous system objects-properties such as page sizes and the ability of objects to
synchronize their own use-a given operating system should not impose such
mechanisms on the rest of the network.

File and Device Input/Output 2-27

Memory Management

As it stands, the access method view of a virtual memory maintains the poten­
tial for a given object (say a text file) to be mapped by systems running the
UNIX memory management system and also to be accessed by systems for
which virtual memory and storage management techniques such as paging are
totally foreign, such as PC-DOS .. Such systems can continue to share access to
the object, each using and providing its programs with the access method
appropriate to that system. The unacceptable alternative would be to prohibit
access to the object by less capable systems.

Another consideration arises when applications use an object as a communica­
tions channel, or otherwise try to access it simultaneously. In both cases, the
object is shared; thus, applications must use some synchronization mechanism to
maintain the integrity of their actions on it. The scope and nature of the syn­
chronization mechanism depends on the application. For example, file access on
systems which do not support virtual memory access methods must be indirect,
by way of read and write. Applications sharing files on such systems must
coordinate their access using semaphores, file locking, or some application­
specific protocols. What is required in an environment where mapping replaces
read and write as the access method is an operation, such as fsync, that
supports atomic update operations.

The nature and scope of synchronization over shared objects must remain
application-defined. If the system tried to impose automatic semantics for shar­
ing, it might prohibit other useful forms of mapped access that have nothing to
do with communication or sharing. By providing the mechanism to support
integrity, and leaving it to cooperating applications to apply the mechanism, the
needs of applications are met without eliminating diversity. Note that this
design does not prohibit the creation of libraries that provide abstractions for
common application needs. Not all abstractions on which an application builds
need be supplied by the "operating system."

Memory Management Interfaces

The applications programmer gains access to VM facilities through several sets
of system calls. The next sections summarize these calls, and provide examples
of their use. For details, see the Programmer's Reference Manual.

2-28 Integrated Software Development Guide

Memory Management

Creating and Using Mappings

caddr_t
mrnap(caddr_t addr, size_t len, int prot, int flags, int fd, off_t off);

mmap establishes a mapping between a process's address space and an object in
the system's virtual memory. All other system functions that contribute to the
definition of an address space are built from mmap, the system's most funda­
mental function for defining the contents of an address space. The format of an
mmap call is:

r
(paddr = mrnap(addr, len, prot, flags, fd, off);

~

mmap establishes a mapping from the process's address space at address paddr
for len bytes to the object specified by fd at offset off for len bytes. A successful
call to mmap returns paddr as its result, which is an implementation-dependent
function of the parameter addr and the setting of the MAP_FIXED bit of flags, as
described below. The address range [paddr, paddr + len) must be valid for the
address space of the process and the range [off, off + len) must be valid for the
virtual memory object. (The notation [start, end) denotes the interval from start
to end, including start but excluding end.)

~ The mapping established by rrunap replaces any previous mappings for the y process's pages in the range lpaddr, paddr + len).

The parameter prot determines whether read, execute, write or some combina­
tion of accesses are permitted to the pages being mapped. To deny all access,
set prot to PROT_NONE. Otherwise, specify permissions by an OR of
PROT_READ, PROT_EXECUTE, and PROT_WRITE.

File alid Device Input/Output 2-29

Memory Management

A write access must fail if PROT_WRITE has not been set, though the behavior
of the write can be influenced by setting MAP _PRIVATE in the flags parameter,
which provides other information about the handling of mapped pages, as
described below:

• MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of
store operations made by this process into the address range defined by
the mapping operation. If MAP_SHARED is specified, write references will
modify the mapped object. No further operations on the object are neces­
sary to effect a change - the act of storing into a MAP_SHARED mapping
is equivalent to doing a write system call.

2-30

The private copy is not created until the first write; until then, other
users who have the object mapped MAP_SHARED can change the
object. That is, if one user has an object mapped MAP_PRIVATE and
another user has the same object mapped MAP_SHARED, and the
MAP SHARED user changes the object before the MAP PRIVATE user
doesthe first write, then the changes appear in the MAP_PRIVATE
user's copy that the system makes on the first write. If an application
needs isolation from changes made by other processes, it should use
read to make a copy of the data it wishes to keep isolated.

On the other hand, if MAP _PRIVATE is specified, an initial write reference
to a page in the mapped area will create a copy of that page and redirect
the initial and successive write references to that copy. This operation is
sometimes referred to as copy-on-write and occurs invisibly to the process
causing the store. Only pages actually modified have copies made in this
manner. MAP_PRIVATE mappings are used by system functions such as
exec(2) when mapping files containing programs for execution. This per­
mits operations by programs such as debuggers to modify the "text"
(code) of the program without affecting the file from which the program
is obtained.

The mapping type is retained across a fork.

Integrated Software Development Guide

Memory Management

• MAP _FIXED informs the system that the value returned by mmap must be
addr, exactly. The use of MAP _FIXED is discouraged, as it may prevent an
implementation from making the most effective use of system resources.
When MAP_FIXED is not set, the system uses addr as a hint to arrive at
paddr. The paddr so chosen is an area of the address space that the system
deems suitable for a mapping of len bytes to the specified object. An addr
value of zero grants the system complete freedom in selecting paddr, sub­
ject to constraints described below. A non-zero value of addr is taken as a
suggestion of a process address near which the mapping should be
placed. When the system selects a value for paddr, it never places a map­
ping at address 0, nor replaces any extant mapping, nor maps into areas
considered part of the potential data or stack "segments." The system
strives to choose alignments for mappings that maximize the performance
of the its hard ware resources.

The file descriptor used in a mmap call need not be kept open after the mapping
is established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses occupied
by this mapping; or until the mapping is removed either by process termination
or a call to munmap. Although the mapping endures independent of the
existence of a file descriptor, changes to the file can influence accesses to the
mapped area, even if they do not affect the mapping itself. For instance, should
a file be shortened by a call to truncate, such that the mapping now
"overhangs" the end of the file, then accesses to that area of the file which
"does not exist" will result in SIGBUS signals. It is possible to create the map­
ping in the first place such that it "overhangs" the end of the file - the only
requirement when creating a mapping is that the addresses, lengths, and offsets
specified in the operation be possible (i.e., within the range permitted for the
object in question), not that they exist at the time the mapping is created (or
subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how
it has been mapped (for instance, by attempting a store operation into a map­
ping that was established with only PROT_READ access), then a S IGSEGV signal
will result. SIGSEGV signals will also result on any attempt to reference an
address not defined by any mapping.

File and Device Input/Output 2-31

Memory Management

In general, if a program makes a reference to an address that is inconsistent
with the mapping (or lack of a mapping) established at that address, the system
will respond with a S IGSEGV violation. However, if a program makes a refer­
ence to an address consistent with how the address is mapped, but that address
does not evaluate at the time of the access to allocated storage in the object
being mapped, then the system will respond with a S IGBUS violation. In this
manner a program (or user) can distinguish between whether it is the mapping
or the object that is inconsistent with the access, and take appropriate remedial
action.

Using mmap to access system memory objects can simplify programs in a variety
of ways. Keeping in mind that mmap can really be viewed as just a means to
access memory objects, it is possible to program using mmap in many cases
where you might program with read or write. However, it is important to
realize that mmap can only be used to gain access to memory objects - those
objects that can be thought of as randomly accessible storage. Thus, terminals
and network connections cannot be accessed with mmap because they are not
"memory./I Magnetic tapes, even though they are memory devices, can not be
accessed with mmap because storage locations on the tape can only be addressed
sequentially. Some examples of situations which can be thought of as candi­
dates for use of mmap over more traditional methods of file access include:

• Random access operations - either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is vari­
able, create "windows" of mappings to the object.

• Efficiency - even in situations where access is sequential, if the object
being accessed can be accessed via mmap, an efficiency gain may be
obtained by avoiding the copying operations inherent in accesses via
read or write.

• Structured storage - if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to
the file is treated just as though the tables were in memory. Previously,
programs could not simply alter storage or tables in memory and save
them for access in subsequent runs; however, when the addresses of a
table are defined by mappings to a file, then changes to that storage are
changes to the file, and are thus automatically recorded in it.

2-32 Integrated Software Development Guide

Memory Management

• Scattered storage - if a program requires scattered regions of storage,
such as multiple heaps or stack areas, such areas can be defined by map­
ping operations during program operation.

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Mapping / dev / zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mrnap. /dev/zero is a special
device, that responds to read as an infinite source of bytes with the value 0, but
when mapped creates an unnamed object to back the mapped region of
memory. The following code fragment demonstrates a use of this to create a
block of scratch storage in a program, at an address of the system's choosing.

/*
* Function to allocate a block of zeroed storage. Parameter
* is the number of bytes desired. The storage is mapped as
* MAP_SHARED, so that if a fork occurs, the child process
* will be 'able to access and modify the storage. If we wished
* to cause the child's modifications (as well as those by the
* parent) to be invisible to the ancestry of processes, we
* would use MAP_PRIVATE.
*/

get_zero_storage(int len);
{

int fd;
caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);'

result = mmap(O, len, PROT_READ I PROT_WRITE, MAP_SHARED, fd, O)i
(void) close(fd);
return (result);

As written, this function permits a hierarchy of processes to use the area of allo­
cated storage as a region of communication (for implicit interprocess communi­
cation purposes). Later in this chapter we will describe a set of system facilities
that provide a similar function packaged for accomplishing the same purpose
without requiring that the processes be in a parent-child hierarchy.

File and Device Input/Output 2·33

Memory Management

In some cases, devices or files are only useful if accessed via mapping. An
example of this is frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate ran­
domly on the addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define
multiple pages of an address space, there is absolutely no restriction that subse­
quent operations on those addresses must operate on the same number of
pages. For instance, an mrnap operation defining ten pages of an address space
may be followed by subsequent munmap (see below) operations that remove
every other page from the address space, leaving five mapped pages each fol­
lowed by an unmapped page. Those unmapped pages may subsequently be
mapped to different locations in the same or different objects, or the whole
range of pages (or any partition, superset, or subset of the pages) used in other
mmap or other memory management operations. Further, it must be noted that
any mapping operation that operates on more than a single page can "partially
succeed" in that some parts of the address range can be affected even though
the call returns a failure. Thus, an mrnap operation that replaces another map­
ping, if it fails, may have deleted the previous mapping and failed to replace it.
Similarly, other operations (unless specifically stated otherwise) may process
some pages in the range successfully before operating on a page where the
operation fails.

Not all device drivers support memory mapping. mrnap fails if you try to map a
device that does not support mapping.

Removing Mappings

int
munmap(caddr_t addr, size_t len);

munmap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process. It is not an error to remove mappings
from addresses that do not have them, and any mapping, no matter how it was
established, can be removed with munmap. munmap does not in any way affect
the objects that were mapped at those addresses.

2-34 Integrated Software Development Guide

Memory Management

Cache Control

The UNIX memory management system can be thought of as a form of "cache
management", in which a processor's primary memory is used as a cache for
pages from objects from the system's virtual memory. Thus, there are a number
of operations which control or interrogate the status of this "cache", as
described in this section.

Memory Cache Control

int
memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg, int attr, int mask);

memcn t 1 provides several control operations over mappings in the range [addr,
addr + len), including locking pages into physical memory, unlocking them, and
writing pages to secondary storage. The functions described in the rest of this
section offer simplified interfaces to the memcntl operations.

Memory Page Locking

int
mlock(caddr_t addr, size_t len);

int
munlock(caddr_t addr, size_t len);

mlock causes the pages referenced by the mapping in the range [addr, addr +
len) to be locked in physical memory. References to those pages (through other
mappings in this or other processes) will not result in page faults that require an
I/O operation to obtain the data needed to satisfy the reference. Because this
operation ties up physical system resources, and has the potential to disrupt
normal system operation, use of this facility is restricted to the superuser. The
system prohibits more than a configuration-dependent limit of pages to be
locked in memory simultaneously, the call to mlock will fail if this limit is
exceeded.

File and Device Input/Output 2-35

Memory Management

munloek releases the locks on physical pages. If multiple mloek calls are
made through the same mapping, only a single munloek call will be required
to release the locks (in other words, locks on a given mapping do not nest.)
However, if different mappings to the same pages are processed with mloek,
then the pages will stay locked until the locks on all the mappings are released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap operation or removed explicitly with munmap. A lock
will be transferred between pages on the "copy-an-write" event associated with
a MAP _PRIVATE mapping, thus locks on an address range that includes
MAP _PRIVATE mappings will be retained transparently along with the copy­
on-write redirection (see mmap above for a discussion of this redirection).

Address Space Locking

int
mlockall(int flags);

int
munlockall(void);

mIoekal1 and munIoekall are similar in purpose and restriction to mloek
and munloek, except that they operate on entire address spaces. mIoekal1
accepts a flags argument built as a bit-field of values from the set:

MCL CURRENT Current mappings
MCL FUTURE Future mappings

If flags is MCL _CURRENT, the lock is to affect everything currently in the address
space. If flags is MCL _FUTURE, the lock is to affect everything added in the
future. If flags is (MCL_CURRENT I MCL_FUTURE), the lock is to affect both
current and future mappings.

munIoekal1 removes all locks on all pages in the address space, whether esta­
blished by mloek or mIoekall.

2-36 Integrated Software Development Guide

Memory Management

Memory Cache Synchronization

int
msync(caddr_t addr, s1ze_t len, 1nt flags);

msync supports applications which require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent com­
munications in a distributed environment. msync causes all modified copies of
pages over the range [addr, addr + len) to be flushed to the objects mapped by
those addresses. In the cache analogy discussed previously, msync is the cache
"write-back," or flush, operation. It is similar in purpose to the fsync opera­
tion for files.

msync optionally invalidates such cache entries so that further references to the
pages cause the system to obtain them from their permanent storage locations.

The flags argument provides a bit-field of values that influences the behavior of
msync. The bit names and their interpretations are:

MS SYNC synchronized write
MS ASYNC return immediately
MS INVALIDATE invalidate caches

MS_SYNC causes msync to return only after all I/O operations are complete.
MS_ASYNC causes msync to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be reobtained from the object's
storage upon the next reference.

File and Device Input/Output 2-37

Memory Management

Memory Page Residency

int
mincore(caddr_t addr, size_t len, char *vec);

mincore determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). Using the "cache concept"
described earlier, this function can be viewed as an operation that interrogates
the status of the cache, and returns an indication of what is currently resident in
the cache. The status is returned as a char-per-page in the character array refer­
enced by *vec (which the system assumes to be large enough to encompass all
the pages in the address range). Each character contains either a "l" (indicating
that the page is resident in the system's primary storage), or a liD" (indicating
that the page is not resident in primary storage.) Other bits in the character are
reserved for possible future expansion - therefore, programs testing residency
should test only the least significant bit of each character.

mincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this infor­
mation may quickly be outdated. Only locked pages are guaranteed to remain
in memory.

Other Mapping Functions

)
sysconf returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of sysconf to obtain that information. Note that it is
not unusual for page sizes to vary even among implementations of the same
instruction set, increasing the importance of using this function for portability.

2-38 Integrated Software Development Guide

Memory Management

int
mprotect(caddr_t addr, size_t len, int prot);

mproteet has the effect of assigning protection prot to all pages in the range
[addr, addr + len). The protection assigned can not exceed the permissions
allowed on the underlying object. For instance, a read-only mapping to a file
that was opened for read-only access can not be set to be writable with mpro­
teet (unless the mapping is of the MAP _PRIVATE type, in which case the write
access is permitted since the writes will modify copies of pages from the object,
and not the object itself).

Address Space Layout

Traditionally, the address space of a UNIX process has consisted of exactly three
segments: one each for write-protected program code (text), a heap of dynami­
cally allocated storage (data), and the process's stack. Text is read-only and
shared, while the data and stack segments are private to the process.

System V Release 4 still uses text, data, and stack segments, though these should
be thought of as constructs provided by the programming environment rather
than by the operating system. As such, it is possible to construct processes that
have multiple segments of each "type," or of types of arbitrary semantic value
- no longer are programs restricted to being built only from objects the system
was capable of representing directly. For instance, a process's address space
may contain multiple text and data segments, some belonging to specific pro­
grams and some shared among multiple programs. Text segments from shared
libraries, for example, typically appear in the address spaces of many processes.
A process's address space is simply a vector of pages, and there is no necessary
division between different address-space segments. Process text and data spaces
are simply groups of pages mapped in ways appropriate to the function they
provide the program.

File and Device Input/Output 2-39

Memory Management

While the system may have multiple areas that can be considered "data" seg­
ments, for programming convenience the system maintains operations to
operate on an area of storage associated with a process's initial ''heap storage
area." A process can manipulate this area by calling brk and sbrk:

caddr_t
brk(caddr_t addr);

caddr_t
sbrk (int incr);

brk sets the system's idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system's page size).

sbrk, the alternate function, adds incr bytes to the caller's data space and
returns a pointer to the start of the new data area.

A process's address space is usually sparsely populated, with data and text
pages intenningled. The precise mechanics of the management of stack space is
machine-dependent. By convention, page 0 is not used. Process address spaces
are often constructed through dynamic linking when a program is exec' ed.
Operations such as exec and dynamic linking build upon the mapping opera­
tions described previously. Dynamic linking is described further in the
Programmer's Guide: ANSI C and Programming Support Tools.

2-40 Integrated Software Development Guide

3 Process Management

Introduction 3-1

Program Execution & Process Creation 3-3
Program Execution - execl and execv 3-3
Process Creation - fork 3-5
Control of Processes - fork and wait 3-8
Process Termination 3-9

The Process Scheduler 3-11
How the Process Scheduler Works 3-13

• Time-Sharing Class 3-14
• System Class 3-15
• Real-Time Class 3-15

Scheduler Commands and Function Calls 3-16
• The priocntl command 3-19
• The priocntl system call 3-23
• The priocntlset system call 3-35

Scheduler Interaction with Other Functions 3-38
• Kernel Processes 3-38
• fork, exec 3-38
• nice 3-38
• init 3-38

Scheduler Performance 3-39
• Process State Transition 3-40
• Software Latencies 3-42

Table of Contents

Table of Contents

Signals 3-44
Protecting Critical Sections 3-45
Signal Types 3-46
Signal Handlers 3-47
Sending Signals 3-52
Signal Stacks 3-53

Basic Interprocess Communication -
Pipes 3-54

II Integrated Software Development Guide

Introduction

A process is the execution of a program; most UNIX System V commands exe­
cute as separate processes. Each process is a distinct entity, able to execute and
terminate independently of all other processes. Each user can have many
processes in the system simultaneously. In fact, it is not always necessary for
the user to be logged into the system while those processes are executing.

Whenever you execute a command in the UNIX system you are initiating a pro­
cess that is numbered and tracked by the operating system. A flexible feature of
the UNIX system is that processes can be generated by other processes. This
happens more than you might ever be aware of. For example, when you log in
to your system you are running a process, very probably the shell. If you then
use an editor such as vi, take the option of invoking the shell from vi, and exe­
cute the ps command, you will see a display something like the one in the fol­
lowing figure (which shows the results of a ps -f command):

As you can see, user abc (who went through the steps described above) now
has four processes active. It is an interesting exercise to trace the chain that is
shown in the Process 10 (PID) and Parent Process 10 (PPID) columns. The shell
that was started when user abc logged on is process 24210; its parent is the ini­
tialization process (process 10 1). Process 24210 is the parent of process 24631,
and so on.

The four processes in the example above are all UNIX system shell-level com­
mands, but you can spawn new processes from your own program. You might
think, ''Well, it's one thing to switch from one program to another when I'm at
my terminal working interactively with the computer; but why would a pro­
gram want to run other programs, and if one does, why wouldn't I just put
everything together into one big executable module?"

Process Management 3-1

Introduction

Overlooking the case where your program is itself an interactive application
with diverse choices for the user, your program may need to run one or more
other programs based on conditions it encounters in its own processing. (If it's
the end of the month, go do a trial balance, for example.) The usual reasons
why it might not be practical to create one large executable are:

• The load module may get too big to fit in the maximum process size for
your system.

• You may not have control over the object code of all the other modules
you want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes
might need to be done. There are two ways to do it:

• exec(2)-stop this process and start another

• fork(2)-start an additional copy of this process

3-2 Integrated Software Development Guide

Program Execution & Process Creation

Program Execution - execl and execv

Overlays, performed by the family of exec system-calls, can change the execut­
ing program, but can not create new processes. Processes are created (or
spawned) by the system-call fork, which is discussed later.

exec is the name of a family of functions that includes execl, execv, execle,
execve, execlp, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide dif­
ferent ways of pulling together and presenting the arguments of the function.
An example of one version (execl) might be:

execl("/usr/bin/prog2", "prog", progargl, progarg2, (char *)0);

For execl the argument list is

/usr/bin/prog2 path name of the new process file

prog

progargl,
progarg2

(char *) 0

the name the new process gets in its argv [0]

arguments to prog2 as char*'s

a null char pointer to mark the end of the arguments

Check the exec(2) manual page in the Programmer's Reference Manual for the
rest of the details. The key point of the exec family is that there is no return
from a successful execution: the new process overlays the process that makes
the exec system call. The new process also takes over the Process 1D and other
attributes of the old process. If the call to exec is unsuccessful, control is
returned to your program with a return value of -1. You can check errno to
learn why it failed.

The system-call execl executes another program, without returning; thus, to
print the date as the last action of a running program, use:

execl("/bin/date", "date", NULL);

The first argument to execl is the file-name of the command; you have to know
where it is found in the file-system. The second argument is conventionally the
program name (that is, the last component of the file-name), but this is seldom
used except as a place-holder. If the command takes arguments, they are strung
out after this; the end of the list is marked by a NULL argument.

Process Management 3-3

Program Execution & Process Creation

The execl call overlays the existing program with the new one, runs that, then
exits, without returning to the original program.

More realistically, a program might fall into two or more phases that communi­
cate only through temporary files. Here it is natural to make the second pass
simply an execl call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can't be found or is not
executable. If you don't know where date is located, say:

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
printf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance
how many arguments there are going to be. The call is:

execv(filename, argp);

Where a rgp is an array of pointers to the arguments; the last pointer in the
array must be NULL so execv can tell where the list ends. As with execl,
filename is the file in which the program is found, and argp [0] is the name
of the program. (This arrangement is identical to the a rgv array for C program
arguments.)

Neither of these functions provides the niceties of nonnal command execution.
There is no automatic search of multiple directories - you have to know pre­
cisely where the command is located. Nor do you get the expansion of meta­
characters like 1/<", 1/>", 1/*", I/?" and" []" in the argument list. If you want
these, use execl to invoke the shell sh, which then does all the work. Con­
struct a string cmdline that contains the complete command as it would have
been typed at the terminal, then say:

execl("/bin/sh", "sh", "-c", cmdline, NULL);

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to
treat the next argument as a whole command line, so it does just what you
want. The only problem is in constructing the right infonnation in cmdline.

3-4 Integrated Software Development Guide

Program Execution & Process Creation

Unless we can regain control after running a program with execl or execv,
what we've talked about so far isn't really all that useful. Any process may
exec (cause execution of) a file. Doing an exec does not change the process-id;
the process that did the exec persists, but after the exec it is executing a dif­
ferent program. Files that were open before the exec remain open afterwards.
If a program (for example, the first pass of a compiler) wishes to overlay itself
with another program (for example, the second pass), then it simply execs the
second program. This is analogous to a "goto" in programming.

Process Creation - fork

If a process wishes to regain control after exec-ing a second program, it should
fork a child-process, have the child exec the second program, and the parent
wait for the child. This is analogous to a "call." The following figure depicts
what is involved in executing a program with a typical fork as the first step:

Figure 3-2: Process Primitives

Process 1
(Parent)

Process 2
(Child)

Program A

fork

Program A
exec ..

B

wait
I ~(asleep) ~: I

Program B

I
ex it

Because the exec functions simply overlay the new program on the old one, to
save the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new overlaying program to finish.

Process Management 3-5

Program Execution & Process Creation

The system-call fork does the splitting as in the following call:

proc_id = fork();

The newly created process, known as the "child-process," is a copy of the image
of the original process, called the uparent-process." The system-call fork splits
the program into two copies, both of which continue to run, and which differ
only in the value of the "process-id" kept in proc_id. In the child-process,
proc _ id equals zero; in the parent-process, proc _ id equals a non-zero value
that is the process number of the child-process. Thus, the basic way to call, and
return from, another program is:

if (for k () == 0) /* in child */
execl("/bin/sh", "sh", "-c", cmd, NULL);

And in fact, except for handling errors, this is sufficient. The fork is zero, so it
calls execl which does the cmd and then dies. In the parent, fork returns
non-zero so it skips the execl. (If there is any error, fork returns -1).

A child inherits its parent's permissions, working-directory, root-directory, open
files, etc. This mechanism permits processes to share common input streams in
various ways. Files that were open before the fork are shared after the fork.
The processes are informed through the return value of fork as to which is the
parent and which is the child. In any case the child and parent differ in three
important ways:

• The child has a different process-id.

• The child has a different parent-process-id.

• All accounting variables are reset to appropriate values in the child.

The fork system-call creates a child-process with code and data copied from
the parent-process that created the child-process. Once the copying is com­
pleted, the new (child) process is placed on the runnable queue to be scheduled.
Each child-process executes independently of its parent-process, although the
parent may explicitly wait for the termination of that child or any of its chil­
dren. Usually the parent waits for the death of its child at some point, since
this wait call is used to free the process-table entry used by the child. See the
discussion under "Process Termination" for more detail.

3-6 Integrated Software Development Guide

Program Execution & Process Creation

Calling fork creates a new process that is an exact copy of the calling process.
If the idea of having two identical processes seems a little funny, consider this:

• Because the return value is different between the child-process and the
parent, the program can contain the logic to determine different paths.

• The child-process could say, "Okay, I'm the child; I'm supposed to issue
an exec for an entirely different program."

• The parent-process could say, "My child is going to exec a new program;
I'll issue a wait until I get word that the new process is finished."

Your code might include statements like the following:

Figure 3-3: Example of fork

iinclude <errno.h>

pid_t chyid;
int ch_stat, status;
char *p_argl, *p_arg2;
void exit () ;
extern int errno;

if ((chyid = fork ()) < 0) {
/*
* Could not fork ••• check ermo
*/

else if (chyid == 0) /* child */
(void)execl(l/usr/bin/prog2", "prog", p_argl, p_arg2, (char *)NULL);
exit(2); /* execl() failed */

else /* parent */
while ((status = wait (&ch_stat)) != ch_pid)

if (status < 0 && errno == ECHILD)
break;

errno = 0;

Process Management 3-7

Program Execution & Process Creation

Because the new exec'd process takes over the child-process ID, the parent
knows the ID. What this boils down to is a way of leaving one program to run
another, returning to the point in the first program where processing left off.

Keep in mind that the fragment of code above includes minimal checking for
error conditions, and has potential for confusion about open files and which
program is writing to a file. Leaving out the possibility of named files, the new
process created by the fork or exec has the three standard files that are
automatically opened: stdin, stdout, and stderr. If the parent has buffered
output that should appear before output from the child, the buffers must be
flushed before the fork. Also, if the parent and the child-process both read
input from a stream, whatever is read by one process will be lost to the other.
That is, once something has been delivered from the input buffer to a process
the pointer has moved on.

Process-creation is essential to the basic operation of UNIX System V because
each command run by the Shell executes in its own process. In fact, execution
of a Shell command or Shell procedure involves both a fork and an overlay.
This scheme makes a number services easy to provide. I/O redirection, for
example, is basically a simple operation; it is performed entirely in the child­
process that executes the command, and thus no memory in the Shell parent­
process is required to rescind the change in standard input and output. Back­
ground processes likewise require no new mechanism; the Shell merely refrains
from waiting for commands executing in the background to complete. Finally,
recursive use of the Shell to interpret a sequence of commands stored in a file is
in no way a special operation.

Control of Processes - fork and wait

A parent-process can suspend its execution to wait for termination of a child­
process with wait or waitpid. More often, the parent wants to wait for the
child to terminate before continuing itself as follows:

3-8

int status;

if (for k () == 0)
execl (...);

wait(&status);

Integrated Software Development Guide

Program Execution & Process Creation

The previous code fragment avoids handling any abnormal conditions, such as a
failure of the execl or fork, or the possibility that there might be more than
one child running simultaneously. (The function wait returns the process-id of
the terminated child, which can be checked against the value returned by
fork.) In addition, this fragment avoids dealing with any funny behavior on
the part of the child (which is reported in status).

The low-order eight bits of the value returned by wait encodes the termination
status of the child-process; a signifies normal termination and non-zero to sig­
nify various kinds of abnormalities. The next higher eight bits are taken from
the argument of the call to exit which caused a normal termination of the
child-process. It is good coding practice for all programs to return meaningful
status.

When a program is called by the shell, the three file-descriptors are available for
use. When this program calls another one, correct etiquette suggest making
sure the same conditions hold. Neither fork nor the exec calls affects open
files in any way. If the parent is buffering output that must come out before
output from the child, the parent must flush its buffers before the execl. Con­
versely, if a caller buffers an input stream, the called program loses any infor­
mation that has been read by the caller.

Process Termination

Processes terminate in one of two ways:

• Normal Termination occurs by a return from main or when requested by
an explicit call to exit or _ exi t .

• Abnormal Termination occurs as the default action of a signal or when
requested by abort.

On receiving a signal, a process looks for a signal-handling function. Failure to
find a signal-handling function forces the process to call exit, and therefore to
terminate. The functions _exit, exit and abort terminate a process with the
same effects except that abort makes available to wait or waitpid the status
of a process terminated by the signal SIGABRT [see exit(2) and abort(2)].

Process Management 3-9

Program Execution & Process Creation

As a process terminates, it can set an eight-bit exit status code available to its
parent. Usually, this code indicates success (zero) or failure (non-zero), but it
can be used in any manner the user wishes. If a signal terminated the process,
the system first tries to dump an image of core, then modifies the exit code to
indicate which signal terminated the process and whether core was dumped.
Next, all signals are set to be ignored, and resources owned by the process are
released, including open files and the working directory. The terminating pro­
cess is now a "zombie" process, with only its process-table entry remaining; and
that is unavailable for use until the process has finally terminated. Next, the
process-table is searched for any child or zombie processes belonging to the ter­
minating process. Those children are then adopted by ini t by changing their
parent-process-id to 1). This is necessary since there must be a parent to record
the death of the child. The last actions of exit are to record the accounting
infonnation and exit code for the tenninated process in the zombie process-table
entry and to send the parent the death-of-child signal, S IGCHLD.

If the parent wants to wait until a child terminates before continuing execution,
the parent can call wait, which causes the parent to sleep until a child zombie
is found (meaning the child terminated). When the child terminates, the death­
of-child signal is sent to the parent although the parent normally ignores this
signal. The search for child zombies continues until the terminated child is
found; at which time, the child's exit status and accounting infonnation is
reported to the parent (remember the call to exit in the child put this infonna­
tion in the child's process-table entry) and the zombie process-table entry is
freed. Now the parent can wake up and continue executing.

3-10 Integrated Software Development Guide

The Process Scheduler

The UNIX system scheduler determines when processes run. It maintains pro­
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

UNIX System V Release 4 gives users absolute control over the order in which
certain processes run and the amount of time each process may use the CPU
before another process gets a chance.

By default, the Release 4 scheduler uses a time-sharing policy like the policy
used in previous releases. A time-sharing policy adjusts process priorities
dynamically in an attempt to provide good response time to interactive
processes and good throughput to processes that use a lot of CPU time.

The UNIX System V Release 4 scheduler offers a real-time scheduling policy as
well as a time-sharing policy. Real-time scheduling allows users to set fixed
priorities on a per-process basis. The highest-priority real-time user process
always gets the CPU as soon as it is runnable, even if system processes are run­
nable. An application can therefore specify the exact order in which processes
run. An application may also be written so that its real-time processes have a
guaranteed response time from the system.

For most UNIX environments, the default scheduler configuration works well
and no real-time processes are needed: administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for an application include
strict timing constraints, real-time processes sometimes provide the only way to
satisfy those constraints.

~ Real-time processes used carelessly can have a dramatic negative effect on 9 the performance of time-sharing processes.

This chapter is addressed to programmers who need more control over order of
process execution than they get using default scheduler parameters.

Process Management 3-11

The Process Scheduler

Because changes in scheduler administration can affect scheduler behavior, pro­
grammers may also need to know something about scheduler administration.
For administrative information on the scheduler, see the System Administrator's
Guide. There are also a few reference manual entries with information on
scheduler administration:

• dispadmin (lM) tells how to change scheduler configuration in a running
system.

• ts_dptbl(4) and rt_dptbl(4) describe the time-sharing and real-time
parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows:

• "How the Process Scheduler Works" tells what the scheduler does and
how it does it. It also introduces scheduler classes.

• "Commands and Function Calls" describes and gives examples of the
priocntl(1) command and the priocntl(2) and priocntlset (2) sys­
tem calls, the user interface to scheduler services. The priocntl func­
tions allow you to retrieve scheduler configuration information and to get
or set scheduler parameters for a process or a set of processes.

• "Interaction with Other Functions" describes the interactions between the
scheduler and related functions.

• "Performance" discusses scheduler latencies that some applications must
be aware of and mentions some considerations other than the scheduler
that application designers must take into account to ensure that their
requirements are met.

3-12 Integrated Software Development Guide

The Process Scheduler

How the Process Scheduler Works

The following figure shows how the UNIX System V Release 4 process
scheduler works:

Figure 3-4: The UNIX System V Release 4 Process Scheduler

Global
Priority

Scheduling Class-Specific Scheduler
Order Priorities Classes

Highest First

Lowest Last

Real-Time
Priorities

System
Priorities

Time-Sharing
Priorities

Process
Queues

When a process is created, it inherits its scheduler parameters, including
scheduler class and a priority within that class. A process changes class only as
a result of a user request. The system manages the priority of a process based
on user requests and a policy associated with the scheduler class of the process.

Process Management 3-13

The Process Scheduler

In the default configuration, the initialization process belongs to the time­
sharing class. Because processes inherit their scheduler parameters, all user
login shells begin as time-sharing processes in the default configuration.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs-the scheduler always runs the
runnable process with highest global priority. Numerically higher priorities run
first. Once the scheduler assigns a process to the CPU, the process runs until it
uses up its time slice, sleeps, or is preempted by a higher-priority process.
Processes with the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
may assign per-process time slices to real-time processes.

You can display the global priority of a process with the -c1 options of the
ps(1) command. You can display configuration information about class-specific
priorities with the priocnt1(1) command and the dispadmin(1M) command.

By default, all real-time processes have higher priorities than any kernel process,
and all kernel processes have higher priorities than any time-sharing process.

~ As long as there is a runnable real-time process, no kernel process and no y time-sharing process runs.

The next sections describe scheduling policies of three default classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to interac­
tive processes and good throughput to CPU-bound processes. The scheduler
switches CPU allocation frequently enough to provide good response time, but
not so frequently that it spends too much time doing the switching. Time slices
are typically on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of
different lengths. The scheduler raises the priority of a process that sleeps after
only a little CPU use (a process sleeps, for example, when it starts an 110 opera­
tion such as a terminal read or a disk read); frequent sleeps are characteristic of
interactive tasks such as editing and running simple shell commands. On the
other hand, the· time-sharing policy lowers the priority of a process that uses the
CPU for long periods without sleeping.

3-14 Integrated Software Development Guide

The Process Scheduler

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the CPU,
it gets a bigger chunk of time. If a higher-priority process becomes runnable
during a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters in
the time-sharing parameter table ts_dptbl. This table contains information
specific to the time-sharing class.

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging demon. The system class is
reserved for use by the kernel; users may neither add nor remove a process
from the system class. Priorities for system class processes are set up in the ker­
nel code for those processes; once established, the priorities of system processes
do not change. (User processes running in kernel mode are not in the system
class.)

Real-Time Class

The real-time class uses a fixed-priority scheduling policy so that critical
processes can run in predetermined order. Real-time priorities never change
except when a user requests a change. Contrast this fixed-priority policy with
the time-sharing policy, in which the system changes priorities in order to pro­
vide good interactive response time.

Privileged users can use the priocntl command or the priocntl system call
to assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in the
real-time parameter table rt_dptbl. This table contains information specific to
the real-time class.

Process Management 3·15

The Process Scheduler

Scheduler Commands and Function Calls

Here is a programmer's view of default process priorities:

Figure 3-5: Process Priorities (Programmer View)

Global
Priority

Highest

Lowest

Scheduling Class-Specific Scheduler
Order Priorities Classes

First

Last

RTmax o

o 0
o

+ TS max
o

- TS max

o
o

o

Real-Time
Class

System
Class

Time-Sharing
Class

From a user or programmer's point of view, a process priority has meaning
only in the context of a scheduler class. You specify a process priority by speci­
fying a class and a class-specific priority value. The class and class-specific
value are mapped by the system into a global priority that the system uses to
schedule processes.

3-16 Integrated Software Development Guide

The Process Scheduler

• Real-time priorities run from zero to a configuration-dependent max­
imum. The system maps them directly into global priorities. They never
change except when a user changes them.

• System priorities are controlled entirely in the kernel. Users cannot affect
them.

• Time-sharing priorities have a user-controlled component (the "user prior­
ity") and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process
basis in order to provide good overall system performance; users cannot
affect the system-controlled component. The scheduler combines these
two components to get the process global priority.

The user priority runs from the negative of a configuration-dependent
maximum to the positive of that maximum. A process inherits its user
priority. Zero is the default initial user priority.

The "user priority limit" is the configuration-dependent maximum value
of the user priority. You may set a user priority to any value below the
user priority limit. With appropriate permission, you may raise the user
priority limit. Zero is the default user priority limit.

You may lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user prior­
ity to get better service. Because you cannot set the user priority above
the user priority limit, you must raise the user priority limit before you
raise the user priority if both have their default values of zero.

An administrator configures the maximum user priority independent of
global time-sharing priorities. In the default configuration, for example, a
user may set a user priority only in the range from -20 to +20, but 60
time-sharing global priorities are configured.

A system administrator's view of priorities is different from that of a user or
programmer. When configuring scheduler classes, an administrator deals
directly with global priorities. The system maps priorities supplied by users
into these global priorities. See the System Administrator's Guide.

Process Management 3-17

The Process Scheduler

The ps -eel command reports global priorities for all active processes. The
prioentl command reports the class-specific priorities that users and program­
mers use.

~ Global process priorities and user-supplied priorities are in ascending order: y numerically higher priorities run first.

The prioentl(1) command and the prioentl(2) and prioentlset (2) system
calls set Or retrieve scheduler parameters for processes. The basic idea for set­
ting priorities is the same for all three functions:

• Specify the target processes.

• Specify the scheduler parameters you want for those processes.

• Do the command or system call to set the parameters for the processes.

You specify the target processes using an ID type and an ID. The ID type tells
how to interpret the ID. [This concept of a set of processes applies to signals as
well as to the scheduler; see s igsend(2).] The following table lists the valid ID
types that you may specify.

prioentl ID types

process ID
parent-process ID
process group ID
session ID
class ID
effective user ID
effective group ID
all processes

These IDs are basic properties of UNIX processes. [See intro(2).] The class ID
refers to the scheduler class of the process. prioentl works only for the time­
sharing and the real-time classes, not for the system class. Processes in the sys­
tem class have fixed priorities assigned when they are started by the kernel.

3-18 Integrated Software Development Guide

The Process Scheduler

The priocntl command

The priocnt1 command comes in four forms:

• priocnt1 -1 displays configuration information.

• priocnt1 -d displays the scheduler parameters of processes.

• priocnt1 -5 sets the scheduler parameters of processes.

• priocnt1 -e executes a command with the specified scheduler parame­
ters.

1. Here is the output of the -1 option for the default configuration.

$ priocntl -1
CONFIGURED CLASSES

SYS (system Class)

TS (Time Sharing)
Configured TS User.Priority Range: -20 through 20

RT (Real Time)
Maximum Configured RT Priority: 59

2. The -d option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

priocnt1 -d -i idtype idlist

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding 10 types in
idlist:

Process Management 3-19

The Process Scheduler

idtype
pid
ppid
pgid
sid
class
uid
gid
all

idlist
process IDs
parent-process IDs
process group IDs
session IDs
class names (TS or RT)
effective user IDs
effective group IDs

Here are some examples of the -d option of priocntl:

$ * display info on all processes
$ priocntl -d -i all

$ * display info on all time-sharing processes:
$ priocntl -d -i class TS

$ * display info on all processes with user ID 103 or 6626
$ priocntl -d -i uid 103 6626

3. The -s option sets scheduler parameters for a process or a set of processes.
The syntax for this option is

priocntl -s -c class class_options -i idtype id lis t

idtype and idlist are the same as for the -d option described above.

class is TS for time-sharing or RT for real-time. You must be superuser to
create a real-time process, to raise a time-sharing user priority above a per­
process limit, or to raise the per-process limit above zero. Class options are
class-specific:

3-20 Integrated Software Development Guide

The Process Scheduler

Class-specific options for priocnt1

class -c class options meaning
real-time RT -p pri priority

-t tslc time slice
-r res resolution

time-sharing TS -p upri user priori ty
-m uprilim user priority limit

For a real-time process you may assign a priority and a time slice.

• The priority is a number from 0 to the real-time maximum as reported by
priocnt1 -1; the default maximum is 59.

• You specify the time slice as a number of clock intervals and the resolu­
tion of the interval. Resolution is specified in intervals per second. The
time slice, therefore, is tslc/res seconds. To specify a time slice of one­
tenth of a second, for example, you could specify a tslc of 1 and a res of
10. If you specify a time slice without specifying a resolution, millisecond
resolution (a res of 1000) is assumed.

If you change a time-sharing process into a real-time process, it gets a default
priority and time slice if you don't specify one. If you wish to change only the
priority of a real-time process and leave its time slice unchanged, omit the -t
option. If you wish to change only the time slice of a real-time process and
leave its priority unchanged, omit the -p option.

For a time-sharing process you may assign a user priority and a user priority
limit.

• The user priority is the user-controlled component of a time-sharing prior­
ity. The scheduler calculates the global priority of a time-sharing process
by combining this user priority with a system-controlled component that
depends on process behavior. The user priority has the same effect as a
value set by nice (except that nice uses higher numbers for lower prior­
ity).

• The user priority limit is the maximum user priority a process may set for
itself without being superuser. By default, the user priority limit is 0; you
must be superuser to set a user priority limit above O.

Process Management 3-21

The Process Scheduler

Both the user priority and the user priority limit must be within the user prior­
ity range reported by the priocnt1 -1 command. The default range is -20 to
+20.

A process may lower and raise its user priority as often as it wishes, as long as
the value is below its user priority limit. It is a courtesy to other users to lower
your user priority for big chunks of low-priority work. On the other hand, if
you lower your user priority limit, you must be superuser to raise it. A typical
use of the user priority limit is to reduce permanently the priority of child­
processes or of some other set of low-priority processes.

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the
new user priority limit. If you attempt to set the user priority above the user
priority limit, the user priority is set to the user priority limit.

Here are some examples of the -5 option of priocnt1:

i i make process with ID 24668 a real-time process with default parameters:
i priocntl -s -c RT -i pid 24668

* * make 3608 RT with priority 55 and a one-fifth second time slice:
priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

i * change all processes into time-sharing processes:
i priocntl -s -c TS -i all

* * for uid 1122, reduce TS user priority and user priority limit to -10:
* priocntl -s -c TS -p -10 -m -10 -i uid 1122

4. The -e option sets scheduler parameters for a specified command and exe­
cutes the command. The syntax for this option is

priocnt1 -e -c class class_options command [command arguments]

The class and class options are the same as for the -5 option described above.

3-22 Integrated Software Development Guide

The Process Scheduler

* * start a real-time shell with default real-time priority:
* priocntl -e -c RT /bin/sh

$ * run make with a time-sharing user priority of -10:
$ priocntl -e -c TS -p -10 make bigprog

The priocntl command subsumes the function of nice, which continues to
work as in previous releases. nice works only on time-sharing processes and
uses higher numbers to assign lower priorities. The final example above is
equivalent to using nice to set an lIincrement" of 10:

nice -10 make bigprog

The priocntl system call

#include
#include
#include
#include
#include

<sys/types.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntl(idtype_t idtype, id tid, int cmd,
cmd_struct arg);

The priocntl system call gets or sets scheduler parameters of a set of
processes. The input arguments:

• idtype is the type of ID you are specifying.

• id is the ID.

• cmd specifies which priocntl function to perform. The functions are
listed in the table below.

• arg is a pointer to a structure that depends on cmd.

Process Management 3-23

The Process Scheduler

Here are the valid values for idtype, which are defined in priocntl. h, and
their corresponding ID types in id:

idtype

P PID
P PPID
P PGID
P SID
P CID
P UID
P GID
PALL

Interpretation of id

process ID (of a single process)
parent-process ID
process group ID
session ID
class ID
effective user ID
effective group ID
all processes

Here are the valid values for crnd, their meanings, and the type of arg:

priocntl Commands
crnd arg Type Function

PC GETCID pcinfo_t get class ID and attributes
PC GETCLINFO pcinfo_t get class name and attributes
PC SETPARMS pcparrns_t set class and scheduling parameters
PC GETPARMS pcparrns_t get class and scheduling parameters

Here are the values priocntl returns on success:

• The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

• PC SETPARMS returns o.
• PC _ GETPARMS returns the process ID of the process whose scheduler pro­

perties it is returning.

On failure, priocntl returns -1 and sets errno to indicate the reason for the
failure. See priocntl(2) for the complete list of error conditions.

3-24 Integrated Software Development Guide

The Process Scheduler

PC _ GETCID, PC _ GETCLINFO

The PC _ GETCID and PC _ GETCLINFO commands retrieve scheduler parameters
for a class based on the class ID or class name. Both commands use the pcinfo
structure to send arguments and receive return values:

typedef struct pcinfo {

id t pc_ cid; /* class id */
char pc_ clname[PC_CLNMSZ]i /* class name */
long pc_ clinfo[PC_CLINFOSZ]; /* class information

pcinfo_ti

The PC_GETCID command gets scheduler class ID and parameters given the
class name. The class ID is used in some of the other priocntl commands to
specify a scheduler class. The valid class names are TS for time-sharing and RT
for real-time.

For the real-time class, pc_clinfo contains an rtinfo structure, which holds
rt_maxpri, the maximum valid real-time priority; in the default configuration,
this is the highest priority any process can have. The minimum valid real-time
priority is zero. rt_maxpri is a configurable value; the System Administrator's
Guide tells how to configure process priorities.

typedef struct rtinfo
short rt_maxpri; /* maximum real-time priority */

} rtinfo_ti

For the time-sharing class, pc_clinfo contains a tsinfo structure, which
holds ts_maxupri, the maximum time-sharing user priority. The minimum
time-sharing user priority is - ts_maxupri. ts_maxupri is also a
configurable value.

typedef struct tsinfo

*/

short ts_maxuprii /* limits of user priority range */
} tsinfo_ti

The following program is a cheap substitute for priocntl -1; it gets and
prints the range of valid priorities for the time-sharing and real-time scheduler
classes.

Process Management 3-25

The Process Scheduler

3-26

/*
* Get scheduler class IDs and priority ranges.
*/

#include <sys/types.h>
#include <sys/priocntl.h>
Hnclude
#include
#include
llinclude
#include
llinclude

main ()

<sys/rtpriocntl.h>
<sys/tspriocntl.h>
<stdio.h>
<string.h>
<stdlib.h>
<errno.h>

pcinfo_t
tsinfo_t
rtinfo_t
short

pcinfo;
*tsinfop;
*rtinfop;
maxtsupri, maxrtpri;

/* time sharing */
(void) strcpy (pcinfo.pc clname, "TS");
if (priocntl (OL, OL, PC_GETCID, &pcinfo) == -lL) {

perror ("PC_GETCID failed for time-sharing class");
exit (1);

tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;
maxtsupri = tsinfop->ts_maxupri;
(void) printf ("Time sharing: ID %ld, priority range -%d through %d\n",

pcinfo.pc_cid, maxtsupri, maxtsupri);

/* real time */
(void) strcpy(pcinfo.pc_clname, "RT");
if (priocntl (OL, OL, PC_GETCID, &pcinfo) == -lL) {

perror ("PC_GETCID failed for real-time class");
exit (2);

rtinfop = (struct rtinfo *) pcinfo.pc_clinfo;
maxrtpri = rtinfop->rt_maxpri;
(void) printf ("Real time: ID %ld, priority range 0 through %d\n",

pcinfo.pc_cid, maxrtpri);
return (0);

Integrated Software Development Guide

The Process Scheduler

The following screen shows the output of this program, called getcid in this
example.

$ getc1d
Time sharing: 10 1, priority range -20 through 20
Real time: 10 2, priority range 0 through 59

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class 10 and maximum priority in the class.

~ All the following examples omit the lines that include header files. The 9 examples compile with the same header files as in the first example above.

Process Management 3-27

The Process Scheduler

/*
* Return class ID and maximum priority.
* Input argument name is class name.
* Maximum priority is returned in *maxpri.
*/

id_t
schedinfo (name, maxpri)

char *name;
short *maxpri;

pcinfo_t
tsinfo_t
rtinfo_t

info;
*tsinfop;
*rtinfop;

(void) strcpy(info.pc_clname, name);
if (priocntl (OL, OL, PC_GETCID, &info) == -lL) {

return (-1);

if (strcmp(name, "TS") = 0) {
tsinfop - (struct tsinfo *) info.pc_clinfo;
*maxpri = tsinfop->ts_maxupri;

else if (strcmp (name, "RT") == 0) {

else {

rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

return (-1);

return (info.pc_cid);

The PC_GETCLINFO command gets a scheduler class name and parameters
given the class ID. This command makes it easy to write applications that make
no assumptions about what classes are configured.

The following program uses PC_GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID, which retrieves the class ID of a process given the process ID; this
function is given in the following section.

3-28 Integrated Software Development Guide

/* Get scheduler class name given process 10. */

main (argc,. argv)
int argc;
char *argv[);

pcinfo_t
id_t
id_t

pcinfo;
pid, classID;
getclassID () ;

if «pid = atoi(argv[l)) <= 0)
perror ("bad pid");
exit (1);

)

if «classID - getclassIO(pid» -- -1)
perror ("unknown class 10");
exit (2);

pcinfo.pc_cid - classID;

The Process Scheduler

if (priocntl (OL, OL, PC_GETCLINFO, &pcinfo) -- -lL) {
perror ("PC_GETCLINFO failed");
exit (3);

(void) printf ("process ID \d, class \s\n", pid, pcinfo.pc_clname);

PC_GETPARMS, PC_SETPARMS

The PC_GETPARMS command gets and the PC_SETPARMS command sets
scheduler parameters for processes. Both commands use the pcparms structure
to send arguments or receive return values:

typedef struct pcparms
id t pc_cid;
long pc_clparms[PC_CLPARMSZ];

/* process class */
/* class specific */

Ignoring class-specific information for the moment, we can write a simple func­
tion for returning the scheduler class 10 of a process, as promised in the previ­
ous section.

Process Management 3-29

The Process Scheduler

/*
* Return scheduler class IO of process with IO pid.
*/

getclassIO (pid)
id_t pid;

pcparms_t pcparms;

pcparms.pc_cid ~ PC_CLNULL;
if (priocntl(P_PIO, pid, PC_GETPARMS, &pcparms) -- -1) {

return (-1);

return (pcparms.pc_cid);

For the real-time class, pc_clparms contains an rtparms structure. rtparms
holds scheduler parameters specific to the real-time class:

typedef struct rtparms
short rtyrii
ulong rt_tqsecsi
long rt_tqnsecsi

rtparms_ti

{

/* real-time priority */
/* seconds in time quantum */
/* additional nsecs in quantum */

rtyri is the real-time priority; rt_tqsecs is the number of seconds and
rt _ tqnsecs is the number of additional nanoseconds in a time slice. That is,
rt_tqsecs seconds plus rt __ tqnsecs nanoseconds is the interval a process
may use the CPU without sleeping before the scheduler gives another process a
chance at the CPU.

For the time-sharing class, pc_clparms contains a tsparms structure.
tsparms holds the scheduler parameter specific to the time-sharing class:

3-30

typedef struct tsparms
short ts_uprilimi
short ts_uprii

tsparms_ti

/* user priority limit */
/* user priority */

Integrated Software Development Guide

The Process Scheduler

ts_upri is the user priority, the user-controlled component of a time-sharing
priority. ts_upri1im is the user priority limit, the maximum user priority a
process may set for itself without being superuser. These values are described
above in the discussion of the -s option of the priocnt1 command. Both the
user priority and the user priority limit must be within the range reported by
the priocnt1 -1 command; this range is also reported by the PC_GETCID and
PC_GETCLINFO commands to the priocnt1 system call.

The PC_GETPARMS command gets the scheduler class and parameters of a sin­
gle process. The return value of the priocntl is the process ID of the process
whose parameters are returned in the pcparms structure. The process chosen
depends on the idtype and id arguments to priocnt1 and on the value of
pcparms .pc_cid, which contains PC_CLNULL or a class ID returned by
PC GETCID:

Figure 3-6: What Gets Returned by PC_GETPARMS

Number of Processes pc_cid
Selected by

idt ype and id RT class ID TS class ID PC CLNULL

RT parameters TS parameters class and
1 of process of process parameters of

selected selected process selected

RT parameters TS parameters
More than 1 of highest- of process with (error)

priority RT pro- highest user
cess priority

If idtype and id select a single process and pc_cid does not conflict with the
class of that process, priocnt1 returns the scheduler parameters of the process.
If they select more than one process of a single scheduler class, priocnt1
returns parameters using class-specific criteria as shown in the table. priocnt1
returns an error in the following cases:

• idtype and id select one or more processes and none is in the class
specified by pc_cid.

Process Management 3-31

The Process Scheduler

• idtype and id select more than one process process and pc_cid is
PC CLNULL .

• idtype and id select no processes.

The following program takes a process 10 as its input and prints the scheduler
class and class-specific parameters of that process:

3·32

/*
* Get scheduler class and parameters of
* process whose pid is input argument.
*/

main (argc, argv)
int argc;
char *argv[);

pcpanns_t
rtparms_t
tsparms_t
id_t
id_t
short
ulong
long

pepanns;
*rtpannsp;
*tsparmsp;
pid, rtID, tsID;
schedinfo () ;
priority, tsmaxpri,
secs;
nsecs;

pcparms.pc_cid = PC_CLNULL;

rtmaxpri;

rtparmsp = (rtparms_t *) pcparms.pc_clparms;
tsparmsp = (tsparms_t *) pcparms.pc_clparms;
if ((pid = atoi(argv[l)) <= 0) {

perror ("bad pid");
exit (1);

/* get scheduler properties for this pid */
if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {

perror ("GETPARMS failed");
exit (2);

/* get class IDs and maximum priorities for TS and RT */
if ((tsID = schedinfo ("TS", &tsmaxpri» = -1) {

perror ("schedinfo failed for TS");
exit (3);

(continued on next page)

Integrated Software Development Guide

The Process Scheduler

if «rtID = schedinfo ("RT", &rtmaxpri)) == -1)
perror ("schedinfo failed for RT");
exit (4);

/* print results */
if (pcparms.pc_cid -- rtID)

priority = rtparmsp->rt-pri;
secs = rtparmsp->rt_tqsecs;
nsecs = rtparmsp->rt_tqnsecs;
(void) printf ("process %d: RT priority %d\n",

pid, priority);
(void) printf (" time slice Ud secs, %ld nsecs\n",

secs, nsecs);
else if (pcparms.pc_cid == tsID) {

priority = tsparmsp->ts_upri;

I else

(void) printf ("process %d: TS priority %d\n",
pid, priority);

printf (IIUnknown scheduler class %d\n",
pcparms.pc_cid);

exit (5);

return (0);

//

The PC_SETPARMS command sets the scheduler class and parameters of a set of
processes. The idtype and id input arguments specify the processes to be
changed. The pcparms structure contains the new parameters: pc_cid con­
tains the ID of the scheduler class to which the processes are to be assigned, as
returned by PC_GETCID; pc_clparms contains the class-specific parameters:

• If pc_cid is the real-time class ID, pc_clparms contains an rtparms
structure in which rtyri contains the real-time priority and
rt_tqsecs plus rt_tqnsecs contains the time slice to be assigned to
the processes .

• If pc_cid is the time-sharing class ID, pc_clparms contains a tsparms
structur~ in which ts_uprilim contains the user priority limit and
ts_upri contains the user priority to be assigned to the processes.

Process Management 3-33

The Process Scheduler

The following program takes a process ID as input, makes the process a real­
time process with the highest valid priority minus 1, and gives it the default
time slice for that priority. The program calls the schedinfo function listed
above to get the real-time class ID and maximum priority.

3-34

/*
* Input arg is proc ID. Make process a real-time
* process with highest priority minus 1.
*/

main (argc, argv)
int argc;
char *argv [] ;

pcparms_t
rtparms_t
id t

id t

short

pcparms;
*rtparmsp;
pid, rtID;
schedinfo () ;
maxrtpri;

if ((pid = atoi(argv[l]» <= 0)
perror ("bad pid");
exit (1);

/* Get highest valid RT priority. */
if ((rtID = schedinfo ("RT", &maxrtpri» = -1)

perror ("schedinfo failed for RT");
exit (2);

/* Change proc to RT, highest prio - 1, default time slice */
pcparms.pc_cid = rtID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rtyri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_TQDEF;

if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1) {
perror ("PC_SETPARMS failed");
exit (3);

Integrated Software Development Guide

The Process Scheduler

The following table lists the special values rt_tqnsecs can take when
PC_SETPARMS is used on real-time processes. When any of these is used,
rt_tqsecs is ignored. These values are defined in the header file
rtpriocntl.h:

rt_tqnsecs

RT_TQINF
RT_TQDEF
RT NO CHANGE

Time Slice
infinite
default
unchanged

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time
slice configured for the real-time priority being set with the SETP ARMS call.
RT _ NOCHANGE specifies no change from the current time slice; this value is use­
ful, for example, when you change process priority but do not wish to change
the time slice. (You can also use RT_NOCHANGE in the rtyri field to change a
time slice without changing the priority.)

The priocntlset system call

#include
#include
#include
#include
#include
#include

<sys/types.h>
<sys/signal.h>
<sys/procset.h>
<sys/priocntl.h>
<sys/rtpriocntl.h>
<sys/tspriocntl.h>

long priocntlset(procset_t *psp, int cmd,
cmd_struct arg);

The priocntlset system call changes scheduler parameters of a set of
processes, just like priocntl. priocntlset has the same command set as
priocntl; the cmd and arg input arguments are the same. But while
priocntl applies to a set of processes specified by a single idtype/ id pair,
priocntlset applies to a set of processes that results from a logical combina­
tion of two idtype/ id pairs. The input argument psp points to a procset
structure that specifies the two idtype/ id pairs and the logical operation to
perform. This structure is defined in procset. h:

Process Management 3-35

The Process Scheduler

typedef struct procset {

idop_t p_op; /* operator connecting */
/* left and right sets */

/* left set: */
idtype_t p_lidtype; /* left 10 type */
id t p_lid; /* left 10 */

/* right set: */
idtype_t p_ridtype; /* right 10 type */
id_t p_rid; /* right 10 */

procset_t;

p_lidtype and p_lid specify the ID type and ID of one ("left") set of
processes; p_ridtype and p_rid specify the ID type and ID of a second
("right") set of processes. p _ op specifies the operation to perform on the two
sets of processes to get the set of processes to operate on. The valid values for
p _ op and the processes they specify are:

• POP_DIFF: set difference-processes in left set and not in right set

• POP _AND: set intersection-processes in both left and right sets

• POP_OR: set union-processes in either left or right sets or both

• POP _ XOR: set exclusive-or-processes in left or right set but not in both

The following macro, also defined in procset . h, offers a convenient way to
initialize a procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp).->p_op (op); \
(psp)->p_lidtype (ltype); \
(psp)->p_lid (lid); \
(psp)->p_ridtype (rtype); \
(psp) ->p_rid (rid) ;

Here is a situation where priocntlset would be useful: suppose an applica­
tion had both real-time and time-sharing processes that ran under a single user
ID. If the application wanted to change the priority of only its real-time
processes without changing the time-sharing processes to real-time processes, it
could do so as follows. (This example uses the function schedinfo, which is
defined above in the section on PC_GETCID.)

3-36 Integrated Software Development Guide

/*
* Change real-time priorities of this uid
* to highest real-time priority minus 1.
*/

main (argc, argv)
int argc;
char *argv[];

procset_t
pcparms_t
struct rtparms
id_t
id_t
short

procset;
pcparms;
*rtparmsp;
rtclassID;
schedinfo();
maxrtpri;

/* left set: select processes with same uid as this process */
procset.p_lidtype = P_UID;
procset.p_lid = getuid();

/* get info on real-time class */
if «rtclassID = schedinfo ("RT", &maxrtpri» == -1) {

perror ("schedinfo failed");
exit (1);

/* right set: select real-time processes */
procset.p_ridtype = P_CID;
procset.p_rid = rtclassID;

/* select only my RT processes */
procset.p_op = POP_AND;

/* specify new scheduler parameters */
pcparms.pc_cid = rtclassID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rtyri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_NOCHANGE;
if (priocntlset (&procset, PC_SETPARMS, &pcparms) == -1) {

perror ("priocntlset failed");
exit (2);

The Process Scheduler

priocntl offers a simple scheduler interface that is adequate for many applica­
tions; applications that need a more powerful way to specify sets of processes
can use priocntlset.

Process Management 3-37

The Process Scheduler

Scheduler Interaction with Other Functions

Kernel Processes

The kernel assigns its demon and housekeeping processes to the system
scheduler class. Users may neither add processes to nor remove processes from
this class, nor may they change the priorities of these processes. The command
ps -eel lists the scheduler class of all processes. Processes in the system class
are identified by a SYS entry in the CLS column.

If the workload on a machine contains real-time processes that use too much
CPU, they can lock out system processes, which can lead to all sorts of trouble.
Real-time applications must ensure that they leave some CPU time for system
and other processes.

fork, exec

Scheduler class, priority, and other scheduler parameters are inherited across the
fork(2) and exec(2) system calls.

nice

The nice (1) command and the nice (2) system call work as in previous ver­
sions of the UNIX system. They allow you to change the priority of only a
time-sharing process. You still use use lower numeric values to assign higher
time-sharing priorities with these functions.

To change the scheduler class of a process or to specify a real-time priority, you
must use one of the priocntl functions. You use higher numeric values to
assign higher priorities with the priocntl functions.

init

The init process is treated as a special case by the scheduler. To change the
scheduler properties of ini t, ini t must be the only process specified by
idtype and id or by the procset structure.

3-38 Integrated Software Development Guide

The Process Scheduler

Scheduler Performance

Because the scheduler determines when and for how long processes run, it has
an overriding importance in the performance and perceived performance of a
system.

By default, all processes are time-sharing processes. A process changes class
only as a result of one of the priocntl functions.

In the default configuration, all real-time process priorities are above any time­
sharing process priority. This implies that as long as any real-time process is
runnable, no time-sharing process or system process ever runs. So if a real-time
application is not written carefully, it can completely lock out users and essen­
tial kernel housekeeping.

Besides controlling process class and priorities, a real-time application must also
control several other factors that influence its performance. The most important
factors in performance are CPU power, amount of primary memory, and I/O
throughput. These factors interact in complex ways. For more information, see
the chapter on performance management in the System Administrator's Guide. In
particular, the sar(1) command has options for reporting on all the factors dis­
cussed in this section.

Process Management 3-39

The Process Scheduler

Process State Transition
Applications that have strict real-time constraints may need to prevent processes
from being swapped or paged out to secondary memory. Here's a simplified
overview of UNIX process states and the transitions between states:

Figure 3-7: Process State Transition Diagram

running

assign CPU preempt

swap in swap out swap out

An active process is nonnally in one of the five states in the diagram. The
arrows show how it changes states .

• A process is running if it is assigned to a CPU. A process is preempted­
that is, removed from the running state-by the scheduler if a process
with a higher priority becomes runnable. A process is also preempted if it
consumes its entire time slice and a process of equal priority is runnable.

• A process is runnable in memory if it is in primary memory and ready to
run, but is not assigned to a CPU.

3-40 Integrated Software Development Guide

The Process Scheduler

• A process is sleeping in memory if it is in primary memory but is waiting
for a specific event before it can continue execution. For example, a pro­
cess is sleeping if it is waiting for an I/O operation to complete, for a
locked resource to be unlocked, or for a timer to expire. When the event
occurs, the process is sent a wakeup; if the reason for its sleep is gone, the
process becomes runnable.

• A process is runnable and swapped if it is not waiting for a specific event
but has had its whole address space written to secondary memory to
make room in primary memory for other processes.

• A process is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to
make room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory:

• When the system is short of primary memory, it writes individual pages
of some processes to secondary memory but still leaves those processes
runnable. When a process runs, if it accesses those pages, it must sleep
while the pages are read back into primary memory.

!! When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes to secondary memory and marks
those processes as swapped. Such processes get back into a schedulable
state only by being chosen by the system scheduler demon process, then
read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a
process is ready to run again. For processes that have strict timing require­
ments, this delay can be unacceptable. To avoid swapping delays, real-time
processes are never swapped, though parts of them may be paged. An applica­
tion can prevent paging and swapping by locking its text and data into primary
memory. For more information see memcntl(2) in the Programmer's Reference
Manual. Of course, how much can be locked is limited by how much memory
is configured. Also, locking too much can cause intolerable delays to processes
that do not have their text and data locked into memory. Tradeoffs between
performance of real-time processes and performance of other processes depend
on local needs. On some systems, process locking may be required to guarantee
the necessary real-time response.

Process Management 3-41

The Process Scheduler

Software Latencies

Designers of some real-time applications must have information on software
latencies to analyze the performance characteristics of their applications and to
predict whether performance constraints can be met. These latencies depend on
kernel implementation and on system hardware, so it is not practical to list the
latencies. It is useful, however, to describe some of the most important laten­
cies. Consider the following time-line:

PI P2 PI P2 calls PI PI returns from
sleeps runs awakened scheduler runs system call
-t- I .. time

t1 t2 t3 t4 t5 t6

PI and P2 represent processes; t1 through t6 represent points in time. Suppose
that PI has a higher priority than all other active processes, including P2. PI
runs and does a system call that causes it to sleep at time tl, waiting for I/O.
P2 runs. The I/O device interrupts, resulting in a wakeup at time t3 that makes
PI runnable. If P2 is running in user mode at time t3, it is preempted immedi­
ately and the interval (t4 - t3) is, for practical purposes, zero. If P2 is running
in kernel mode at time t3, it is preempted as soon as it gets to a kernel preemp­
tion point, a point in kernel code where data structures are in a consistent state
and where the state of the current process (P2 in this example) may be saved
and a different process run. Therefore, if P2 is running in kernel mode at time
t3, the interval (t4 - t3) depends on kernel preemption points, which are spread
throughout the.kernel. It is useful to know both a typical time to preemption
and a maximum time to preemption; these times depend on kernel implementa­
tion and on hardware. Eventually, the scheduler runs (at time t4), finds that a
higher-priority process PI is runnable, and runs it. We refer to the interval (t5
- t4) as the software switch latency of the system. This latency is, for practical
purposes, a constant; again it is an implementation-dependent value. At time
t6, PI returns to the user program from the system call that put it to sleep at
time t1. For simplicity, suppose that the program is getting only a few bytes of
data from the I/O device. In this simple case, the interval (t6 - t5) consists basi­
cally of the overhead of getting out of the system call. We refer to the interval
(t6 - t3) as the software wakeup latency of the system; this is the interval from
the I/O device interrupt until the user process returns to application level to
deal with the interrupt (assuming that it is the highest priority process). So the

3-42 Integrated Software Development Guide

The Process Scheduler

software wakeup latency is composed of a preemption latency, context-switch
time, and a part of system call overhead. Of course, the latency increases as the
system call asks for more data.

This discussion of latencies assumes that the text and data of the processes are
in primary memory. An application may have to use process locking to guaran­
tee that its processes do not get swapped or paged out of primary memory. See
the discussion in the previous section.

Process Management 3-43

Signals

A signal is an asynchronous notification of an event, and is the most frequently
used means for one process to indicate the occurrence of some event that may
have an impact on another process. Process signalling involves two specific
functions:

• the function kill which sends a signal.

• the function sigaction which establishes how to handle a signal.

A signal is said to be "generated for" (or "sent to") a process when the event
that causes the signal first occurs. Examples of such events include hardware­
faults, timer-expiration and terminal-activity as well as any call to kill [see
kill(2) in the Programmer's Reference Manual]. In some circumstances, the same
event generates signals for multiple processes.

There are two categories of signals, those generated externally, such as a break
from a terminal, and those generated internally (a process fault). Both types are
treated identically. There are several ways a signal can be generated, some of
which are:

• A user-mode attempting to write into protected memory.

• An error during a system-call.

• Some condition raised at the controlling-terminal of a process (such as
break or hangup).

• An explicit system-call to kill.

• Expiration of the alarm clock timer or the generation of the trap signal
during process tracing.

Signals interrupt the normal flow of control in a process. Signals do not directly
affect the execution of a process; but rather, request that the process take some
action. Each process has established actions to take in response to signals [see
"Signal Actions" in siginfo(5)].

A signal is said to be "delivered" to a process when the process receives the sig­
nal and takes the action established for it. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is normally blocked from further
occurrence, the current process context is saved, and a new one is built. A pro­
cess may specify the handler to which a signal is delivered, or specify that the
signal is to be blocked or ignored. A process may also specify that a default
action is to be taken when signals occur.

3-44 Integrated Software Development Guide

Signals

Some signals will cause a process to exit when they are not caught. This may
be accompanied by creation of a core image file, containing the current
memory image of the process for use in post-mortem debugging. A process
may choose to have signals delivered on a special stack, so that sophisticated
software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultane­
ously, the order in which they are delivered to a process is implementation
specific. Signal routines nonnally execute with the signal that caused their invo­
cation to be blocked, but other signals may yet occur. Mechanisms are provided
whereby critical sections of code may protect themselves against the occurrence
of specified signals.

Protecting Critical Sections

To block a section of code against one or more signals, a sigprocmask call
may be used to add a set of signals to the existing mask, and return the old
mask:

sigprocmask(SIG_BLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

The old mask can then be restored later with sigprocmask,

sigprocmask(SIG_UNBLOCK, mask, omask);
sigset_t *mask;
sigset_t *omask;

The sigprocmask call can be used to read the current mask without changing
it'by specifying null pointer as its second argument.

It is possible to check conditions with some signals blocked, and then to pause
waiting for a signal and restoring the mask, by using:

sigsuspend(mask);
sigset_t *mask;

Process Management 3-45

Signals

Signal Types

The signals defined by the system fall into one of five classes: hardware condi­
tions, software conditions, input/output notification, process control, or resource
control. The file /usr/include/signal.h defines the set of signals that may
be delivered to a process.

Hardware signals are derived from exceptional conditions which may occur
during execution. Such signals include S IGFPE representing floating point and
other arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV
for addresses outside the currently assigned area of memory or for accesses that
violate memory protection constraints and SIGBUS for accesses that result in
hardware related errors. Other, more CPU-specific hardware signals exist, such
as SIGABRT, SIGEMT, and SIGTRAP.

Software signals reflect interrupts generated by user request: S IGINT for the
normal interrupt signal; SIGQUIT for the more powerful quit signal, that nor­
mally causes a core image to be generated; S IGHUP and S IGTERM that cause
graceful process termination, either because a user has hung up, or by user or
program request; and SIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous
events using S IGUSRl and S IGUSR2. Other software signals (S IGALRM,
SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a S IGPOLL signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A pro­
cess may request to receive a SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The SIGSTOP signal is a powerful stop signal, because it cannot be
caught. Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when a
user request, input request, or output request respectively is the reason for stop­
ping the process. A SIGCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with a S IGCHLD signal
when a child-process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. S IGXCPU occurs
when a process nears its CPU time limit and SIGXFSZ warns that the limit on
file size creation has been reached.

3·46 Integrated Software Development Guide

Signals

Signal Handlers

For each signal, the <signal. h> header file establishes the default signal-action
to be one of the following:

Abort On receipt of the signal, the receiving-process terminates
abnormally with all the consequences outlined in exit.

Exit On receipt of the signal, the receiving-process terminates
normally with all the consequences outlined in exit.

On receipt of the signal, the receiving-process stops. Stop

Ignore On receipt of the signal, the receiving-process ignores it.

As the default action for a signal typically is to terminate a process, a process
must use sigaction to alter the default action for a signal and to prearrange
how it will handle the signal. The function sigaction takes three arguments:

• the first argument specifies the signal.

• the second argument specifies how to handle it.

• the third argument returns the previous signal-action.

The first argument to sigaction is just an integer code number that represents
a signal. The second and third arguments designate one of three types of
actions that can be established for a signal:

1. to take the default action for the signal- SIG_DFL

2. to ignore the signal - S IG _ IGN

3. to catch the signal by calling a function - a pointer to a signal-action

The <signal. h> header file defines the special values used to request that the
default action for the signal be taken (SIG_DFL) or that the signal be ignored
(SIG_IGN) as well as the structure sigaction used to specify a signal­
handling function. The second and third arguments to the function sigaction
are pointers to the structure sigaction defined by the <signal. h> header
file. The <signal. h> header file also defines symbolic names for the signal­
numbers and must always be included when signals are used.

Process Management 3-47

Signals

To control the way a signal is delivered, a process calls sigaction to associate
a handler with that signal. The call

#include <signal.h>

struct si"gaction
void
sigset_t
int

} ;

(*sa_handler) ();
sa_mask;
sa_flags;

sigaction(signo, sa, osa)
int signo;
struct sigaction *sa;
struct sigaction *osa;

assigns interrupt handler address sa_handler to signal signo. If osa is
nonzero, the previous signal action is returned.

Each handler address specifies either an interrupt routine for the signal, that the
signal is to be ignored, or that a default action (usually process termination) is
to occur if the signal occurs. The constants SIG_IGN and SIG_DFL used as
values for sa_handler cause ignoring or defaulting of a condition.

~
There are two things that must be done to reset a signal handler from within

NOTE. a signal handler. Resetting the routine that catche. s the signal [signal (n,
SIG_DFL) ;] is only the first. It's also necessary to unblock the blocked sig­
nal, which is done with sigprocmask.

sa_mask specifies the set of signals to be masked when the handler is invoked;
it implicitly includes the signal which invoked the handler. Five operations are
permitted on signal sets.

1. A call to sigemptyset empties a set.

2. A call to sigfillset fills a set with every signal currently supported.

3. A call to sigaddset adds specified signals to a set.

4. A call to sigdelset deletes specified signals from a set.

S. A call to .sigismernber tests membership in a set.

3-48 Integrated Software Development Guide

Signals

Signals sets should always be initialized with a call to sigemptyset or sig­
fillset.

sa_flags specifies special properties of the signal, such as whether system
calls should be restarted if the signal handler returns, if the signal action should
be reset to SIG_DFL when it is caught, and whether the handler should operate
on the normal run-time stack or a special signal stack (see "Signal Stacks"
below).

When a signal condition arises for a process, the signal is added to a set of sig­
nals pending for the process. If the signal is not currently blocked by the pro­
cess then it will be delivered. The process of signal delivery adds the signal to
be delivered and those signals specified in the associated signal handler's
sa_mask to a set of those masked for the process, saves the current process
context, and places the process in the context of the signal handling routine.
The call is arranged so that if the signal handling routine exits normally the sig­
nal mask will be restored and the process will resume execution in the original
context. If the process wishes to resume in a different context, then it must
arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for delays. It delays the
delivery of signals much as a raised hardware interrupt priority level delays
hardware interrupts. Preventing an interrupt from occurring by changing the
handler is analogous to disabling a device from further interrupts.

The signal handling routine sa_handler is called by a C call of the form

(*sa_handler) (signo, infop, ucp);
int signo;
siginfo_t *infop;
ucontext_t *ucp;

signo gives the number of the signal that occurred. infop is either equal to 0,
or points to a structure that contains information detailing the reason why the
signal was generated. This information must be explicitly asked for when the
signal's action is specified. The ucp parameter is a pointer to a structure con­
taining the process's context prior to the delivery of the signal, and will be used
to restore the process's context upon return from the signal handler.

Process Management 3·49

Signals

In the following example, the first call to s igact ion causes interrupts to be
ignored; while the second call to sigaction restores the default action for
interrupts, which is to terminate the process:

main () {
#include <signal.h>
struct sigaction new_act, old_act;

new_act.sa_handler = SIG_IGN;
sigaction(SIGINT, &new_act, &old_act);

new_act.sa_handler = SIG_DFL;
sigaction(SIGINT, &new_act, &old_act);

In both cases, sigaction returns the previous signal-action in the final argu­
ment sig_act.

Initially, all signals are set to SIG_DFL or SIG_IGN prior to entry of the func­
tion main [see exec(2) in the Programmer's Reference Manual]. Once an action is
established for a specific signal, it usually remains established until another
action is explicitly established by a call to either signal, sigset, sigignore
or sigaction, or until the process execs [see signal(2), sigset(2) and
sigaction(2) as well as exec(2) in the Programmer's Reference Manual]. When
a process execs, all signals set to catch the signal are reset to SIG_DFL. Alter­
natively, a process may request that the action for a signal automatically be
reset to SIG_DFL after catching it [see sigaction(2)].

Instead of the special values SIG_IGN or SIG_DFL, the second argument to
sigaction may specify a signal-handling function; in which case, the specified
function is called when the signal occurs. Most commonly this facility is used to
allow the program to clean up unfinished business before terminating, for exam­
ple to delete a temporary file, as in the following example:

3·50 Integrated Software Development Guide

Figure 3-8: Signal programming example

#include <signal.h>

main 0 (
struct sigaction new_act, old_act;
void on_intr 0 ;

new_act.sa_handler - SIG_IGN;
sigaction(SIGINT, & new_act , &old_act);
if (old_act. sa_handler != SIG_IGN) (

new_act.sa_handler = on_intr;
sigaction(SIGINT, & new_a ct, &old_act);

/* do processing */

exit (0);

void on_intrO (
unlink(tempfile);
exit (1) ;

Signals

Before establishing on_intr as the signal-handling function for the interrupt
signal SIGINT, the program tests the state of interrupt handling, and continues
to ignore interrupts if they are already being ignored. This is needed because
signals like interrupt are sent to all processes started from a specific terminal.
Accordingly, when a program runs as a background-process, without any
interaction (started by &), the shell turns off interrupts for it so it won't be
stopped by interrupts intended for foreground-processes. If this program began
by announcing that all interrupts be caught by the function on_intr regardless,
that would undo the shell's efforts to protect it when run in the background.

The solution, shown above, is to call sigaction for SIGINT first to get the
signal-action currently established for the interrupt signal, which is returned in
the third argument to sigaction. If interrupt signals were already being
ignored, the process should continue to ignore them; otherwise, they should be
caught. In that case, the second call to sigaction for SIGINT establishes a
new signal-action which specifies on_intr as the signal-handling function.

Process Management 3-51

Signals

Sending Signals

A signal may be sent to a process by another process, from the terminal or by
the system itself. For most signals, a process can arrange to be terminated on
receipt of a signal, to ignore it completely or to catch it and act on it in some
way defined by the user-process. For example, an INTERRUPT signal may be sent
by depressing an appropriate key on the terminal (delete, break or rubout). The
action taken depends on the requirements of the-'specific program being exe­
cuted. For example:

• The shell invokes most commands in such a way that they stop executing
immediately (die) when an interrupt is received. For example, the pr
(print> command normally dies, allowing the user to stop unwanted out­
put.

• The shell itself ignores interrupts when reading from the terminal because
the shell should continue execution even when the user terminates a com­
mand like pr.

• The editor ed chooses to catch interrupts so that it can halt its current
action (especially printing) without allowing itself to be terminated.

A process can send a signal to another process or group of processes with the
calls:

kill (pid, signa);
int pid, signa;

sigsend(idtype, id, signa);
idtype_t idtype;
id_t id;

Unless the process sending the signal is privileged, its real or effective user ID
must be equal to the receiving process's real or saved user ID.

Signals can also be sent from from a terminal device to the process group or ses­
sion leader associated with the terminal. See termia(7).

3-52 Integrated Software Development Guide

Signals

Each type of signal is represented by a specific integer value; for example, the
value 1 represents the hangup signal. The signal-number indexes the signal­
array of the receiving-process. For each type of signal, the signal-array contains
the address of a signal-handling function defined in the user-process. If no
function has been defined, the entry is 0 or 1. If the value is 1, the signal is set
to be ignored; and if 0, the signal is set to take the default action.

A child-process inherits the actions of the parent for the defaulted and ignored
signals. Caught signals are reset to the default action in the child-process. This
is necessary since the address linkage for signal-handling functions specified in
the parent are no longer appropriate in the child.

Signal Stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigaltstack {
caddr t SS_SPi

int ss_sizei
int ss_flags;

} ;

sigaltstack(ss, oss)
struct sigaltstack *ss;
struct sigaltstack *oss;

to provide the system with a stack based at ss_sp of size ss_size for delivery
of signals. The system automatically adjusts for direction of stack growth.
ss_flags indicates whether the process is currently on the signal stack, and
whether the signal stack is disabled.

When a signal is to be delivered and the process has requested that it be
delivered on the alternate stack (see sigaction above), the system checks
whether the process is on a signal stack. If it is not, then the process is switched
to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run
code from the signal stack that uses a different stack, a sigaltstack call
should be used to reset the signal stack.

Process Management 3-53

Basic Interprocess Communication - Pipes

The system-call pipe creates a pipe, a type of unnamed FIFO (First In First Out)
file used as an I/O channel between two cooperating processes: one process
writes onto the pipe, while the other reads from it. Most pipes are created by
the shell, as in:

Is I pr

which connects the standard output of Is to the standard input of pr. Some­
times, however, it is most convenient for a process to set up its own plumbing;
this section illustrates how to establish and use the pipe connection.

Since a pipe is both for reading and writing, pipe returns two file-descriptors
as follows:

int fd[2];

stat = pipe(fd);
if (stat == -1)

/* there was an error ... */

where fd is an array of two file-descriptors, with fd [0] for the read end of the
pipe and fd [1] for the write end of the pipe. These may be used in read,
write and close calls just like any other file-descriptors.

Implementation of pipes consists of implied lseek operations before each read
or write in order to implement first-in-first-out. The system looks after buffer­
ing the data and synchronizing the two processes to prevent the writer from
grossly out-producing the reader and to prevent the reader from overtaking the
writer. If a process reads a pipe which is empty, it will wait until data arrive; if
a process writes into a pipe which is full, it will wait until the pipe empties
somewhat. If the write end of the pipe is closed, a subsequent read will
encounter end-of-file.

To illustrate the use of pipes in a realistic setting, consider a function
popen (cmd, mode), which creates a process cmd, and returns a file-descriptor
that will either read or write that process, according to mode; thus, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent write calls using
the file-descriptor fout send data to that process through the pipe.

3-54 Integrated Software Development Guide

Basic Interprocess Communication - Pipes

Figure 3-9: popan

Hinclude <stdio.h>

Hdefine READ 0
Hdefine WRITE 1
Menne tst (a, b) (mode == READ ? (b) (a))
static int popen-pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2];

if (pipe(p) < 0)
return(NULL);

if ((popen-pid = fork()) == 0) (
close(tst(p[WRITE], p[READ]));
close(tst(O, 1));
dup(tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl("/bin/sh", "sh", "-C", cmd, 0);
_exit (1) /* disaster occurred if we got here */

if (popen-pid == -1)
return (NULL) ;

close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));

The function popen first calls pipe to create a pipe, then calls fork to create
two copies of itself. The child decides whether it is supposed to read or write,
closes the other end of the pipe, then calls the shell (via execl) to run the
desired process. The parent likewise closes the end of the pipe it does not use.
These close operations are necessary to make end-of-file tests work properly.
For example, if a child that intends to read fails to close the write end of the
pipe, it will never encounter the end-of-file on the pipe, just because there is one
writer potentially active. The sequence of close operations in the child is a bit
tricky. Suppose that the task is to create a child-process that will read data
from the parent. Then the first close closes the write end of the pipe, leaving
the read end open.

Process Management 3-55

Basic Interprocess Communication - Pipes

To associate a pipe with the standard input of the child, use the following:

close(tst(O, 1»;
dup(tst(p[READ] , p[WRITE]»;

The close call closes file-descriptor 0, the standard input, then the dup call
returns a duplicate of the open file-descriptor. File-descriptors are assigned in
increasing order and dup returns the first available one, so the dup call effec­
tively copies the file-descriptor for the pipe (read end) to file-descriptor 0 mak­
ing the read end of the pipe the standard input. (This may seem a bit tricky,
but it's a standard idiom.) Finally, the old read end of the pipe is closed. A
similar sequence of operations takes place when the child-process must write to
the parent-process instead of reading from it.

To finish the job we need a function pclose to close a pipe created by popen.

Figure 3·10: pcloSQ

3·56

*include <signal.h>

pclose(fd) /* close pipe descriptor */

int fd;

struct sigaction o_act, h_act, i_act, q_act;
extern pid_t popen-pid;
pid_t c_pid;
int c_stat;

close (fd);

sigaction(SIGINT, SIG_IGN, &i_act);
sigaction(SIGQUIT, SIG_IGN, &q_act);
sigaction(SIGHUP, SIG_IGN, &~act);

while ((c_pid=wait(&c_stat)) !=-1 && c_pid!=popen_pid);
if (c-pid = -1)

c_stat = -1;

sigaction(SIGINT, &i_act, &o_act);
sigaction(SIGQUIT, &q_act, &o_act);
sigaction(SIGHUP, &h_act, &o_act);

return(c_stat);

Integrated Software Development Guide

Basic Interprocess Communication - Pipes

The main reason for using a separate function rather than close is that it is
desirable to wait for the tennination of the child-process. First, the return value
from pclose indicates whether the process succeeded. Equally important when
a process creates several children is that only a bounded number of unwaited­
for children can exist, even if some of them have tenninated; performing the
wait lays the ~hild to rest. The calls to sigaction make sure that no inter­
rupts, etc., interfere with the waiting process [see sigaction(2)].

The routine as written has the limitation that only one pipe may be open at
once, because of the single shared variable popen yid; it really should be an
array indexed by file-descriptor. A popen function, with slightly different argu­
ments and return value is available as part of the Standard I/O Library [see
stdio(3S)].

Process Management 3-57

4 Interprocess Communication

Introduction

Messages
Using Messages
Getting Message Queues

• Using msgget
• Example Program

Controlling Message Queues
• Using msgetl
• Example Program

Operations for Messages
• Using msgop
• Example Program

Semaphores
Using Semaphores
Getting Semaphores

• Using semget
• Example Program

Controlling Semaphores
• Using semetl
• Example Program

Operations on Semaphores
• Using semop
• Example Program

Table of Contents

4-1

4-3
4-4
4-8
4-8
4-11
4-14
4-15
4-16
4-21
4-21
4-24

4-33
4-35
4-39
4-39
4-42
4-46
4-46
4-48
4-57
4-57
4-59

Table of Contents ______________________ _

II

Shared Memory
Using Shared Memory
Getting Shared Memory Segments

• Using shmget
• Example Program

Controlling Shared Memory
• Using shmctl
• Example Program

Operations for Shared Memory
• Using shmop
• Example Program

IPC Programming Example

4-64
4-65
4-68
4-68
4-71
4-74
4-75
4-76
4-82
4-82
4-84

4-89

Integrated Software Development Guide

Introduction

UNIX System V Release 4.0 provides several mechanisms that allow processes to
exchange data and synchronize execution. The simpler of these mechanisms are
pipes, named pipes, and signals. These are limited, however, in what they can
do. For instance,

• Pipes do not allow unrelated processes to communicate.

• Named pipes allow unrelated processes to communicate, but they cannot
provide private channels for pairs of communicating processes; that is,
any process with appropriate permission may read from or write to a
named pipe.

• Sending signals, via the kill system call, allows arbitrary processes to
communicate, but the message consists only of the signal number.

Release 4.0 also provides an InterProcess Communication OPC) package that
supports three, more versatile types of interprocess communication. For exam­
ple,

• Messages allow processes to send formatted data streams to arbitrary
processes.

• Semaphores allow processes to synchronize execution.

• Shared memory allows processes to share parts of their virtual address
space.

When implemented as a unit, these three mechanisms share common properties
such as

• each mechanism contains a "get" system call to create a new entry or
retrieve an existing one

• each mechanism contains a "control" system call to query the status of an
entry, to set status information, or to remove the entry from the system

• each mechanism contains an "operations" system call to perform various
operations on an entry

This chapter describes the system calls for each of these three forms of IPC.

Interprocess Communication 4·1

Introduction

This information is for programmers who write multiprocess applications. These
programmers should have a general understanding of what semaphores are and
how they are used.

Information from other sources would also be helpful. See the ipcs(1) and
ipcrm(1) manual pages in the User's Reference Manual and the following manual
pages in the Programmer's Reference Manual:

intro(2)
msgget(2)
serrget(2)
shrrget(2)

msgctl(2)
semctl(2)
shmctl(2)

msgop(2)
semop(2)
shmop(2)

Included in this chapter are several example programs that show the use of
these IPe system calls. Since there are many ways to accomplish the same task
or requirement, keep in mind that the example programs were written for clar­
ity and not for program efficiency. Usually, system calls are embedded within a
larger user-written program that makes use of a particular function provided by
the calls.

4-2 Integrated Software Development Guide

Messages

The message type of IPC allows processes (executing programs) to communicate
through the exchange of data stored in buffers. This data is transmitted
between processes in discrete portions called messages. Processes using this
type of IPC can send and receive messages.

Before a process can send or receive a message, it must have the UNIX operat­
ing system generate the necessary software mechanisms to handle these opera­
tions. A process does this using the msgget system call. In doing this, the pro­
cess becomes the owner/creator of a message queue and specifies the initial
operation permissions for all processes, including itself. Subsequently, the
owner / creator can relinquish ownership or change the operation permissions
using the msgctl system call. However, the creator reinains the creator as long
as the facility exists. Other processes with permission can use msgctl to per­
fonn various other control functions.

Processes which have permission and are attempting to send or receive a mes­
sage can suspend execution if they are unsuccessful at performing their opera­
tion. That is, a process which is attempting to send a message can wait until it
becomes possible to post the message to the specified message queue; the receiv­
ing process isn't involved (except indirectly, e.g., if the consumer isn't consum­
ing, the queue space will eventually be exhausted) and vice versa. A process
which specifies that execution is to be suspended is performing a ''blocking
message operation." A process which does not allow its execution to be
suspended is performing a "nonblocking message operation."

A process performing a blocking message operation can be suspended until one
of three conditions occurs:

• It is successful.

• It receives a signal.

• The message queue is removed from the system.

System calls make these message capabilities available to processes. The calling
process passes arguments to a system call, and the system call either success­
fully or unsuccessfully performs its function. If the system call is successful, it
performs its function and returns applicable information. Otherwise, a known
error code (-1) is returned to the process, and an external error number vari­
able, errno, is set accordingly.

Interprocess Communication 4-3

Messages

Using Messages

Before a message can be sent or received, a uniquely identified message queue
and data structure must be created. The unique identifier is called the message
queue identifier (msqid); it is used to identify or refer to the associated message
queue and data structure.

The message queue is used to store (header) information about each message
being sent or received. This information, which is for internal use by the sys­
tem, includes the following for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message
queue. This data structure contains the following information related to the
message queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

4-4 Integrated Software Development Guide

Messages

~ All include. files discussed in this chapter are located in the lusr/include
~ or /usr/include/sys directories.

The structure definition for the associated data structure is as follows:

struct msqid_ds
{

struct ipc-perm msg-perm; /* operation permission struct */
/* ptr to first message on q */
/* ptr to last message on q */

} ;

struct msg *msg_first;
struct msg
ulong
ulong
ulong
pid_t
pid_t
time_t
long
time_t
long
time_t
long
long

*msg_last;
msg_cbytes;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg-pad1 ;
msg_rtime;

/* current * bytes on q */
/* * of messages on q */
/* max j of bytes on q */
/* pid of last msgsnd */
/* pid of last msgrcv */
/* last msgsnd time */
/* reserved for time_t expansion */

/* last msgrcv time */
msg-pad2; /* time_t expansion */
msg_ctime; /* last change time */
msg-pad3; /* time expansion */
msg-pad4[4); /* reserve area*/

It is located in the <sys/msg. h> header file. Note that the msg_perm member
of this structure uses ipcyerm as a template. Figure 4-1 shows the breakout
for the operation permissions data structure.

The definition of the ipcyerm data structure is as follows:

Interprocess Communication 4-5

Messages

Figure 4-1: ipc...,.Perm Data Structure

struct ipcyerm
{

} ;

uid_t
gid_t
uid t
gid_t
mode t
ulong
key_t
long

uid; /* owner's user id */
gid; /* owner's group id */
cuid; /* creator's user id */
cgid; /* creator's group id */
mode; /* access modes */
seq; /* slot usage sequence number */
key; /* key */

pad [4] ; /*reserve area * /

It is located in the <sys/ ipc. h> header file and is common to all IPC facilities.

The msgget system call is used to perform one of two tasks:

• to get a new message queue identifier and create an associated message
queue and data structure for it

• to return an existing message queue identifier that already has an associ­
ated message queue and data structure

Both tasks require a key argument passed to the msgget system call. For the
first task, if the key is not already in use for an existing message queue
identifier, a new identifier is returned with an associated message queue and
data structure created for the key. This occurs as l~ng as no system-tunable
parameters would be exceeded and a control command IPC _ CREAT is specified
in the msgf 19 argument passed in the system call.

There is also a provision for specifying a key of value zero, known as the
private key (IPC_PRIVATE). When specified, a new identifier is always
returned with an associated message queue and data structure created for it
unless a system-tunable parameter would be exceeded. The ipcs command
will show the KEY field for the msqid as all zeros.

For the second task, if a message queue identifier exists for the key specified,
the value of the existing identifier is returned. If you do not want to have an
existing message queue identifier returned, a control command (IPC_EXCL) can

4-6 Integrated Software Development Guide

Messages

be specified (set) in the msgf 19 argument passed to the system call. ("Using
msgget" describes how to use this system call.)

When performing the first task, the process that calls msgget becomes the
owner / creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains
the creator. The message queue creator also determines the initial operation
permissions for it.

Once a uniquely identified message queue and data structure are created,
msgop (message operations) and msgctl (message control) can be used.

Message operations, as mentioned before, consist of sending and receiving mes­
sages. The msgsnd and msgrcv system calls are provided for each of these
operations. See "Operations for Messages" for msgsnd and msgrcv system
call details.

The msgctl system call permits you to control the message facility in the fol­
lowing ways:

• by retrieving the data structure associated with a message queue identifier
(IPC_STAT)

• by changing operation permissions for a message queue (IPC_SET)

• by changing the size (msg_ qbytes) of the message queue for a particular
message queue identifier (IPC_SET)

• by removing a particular message queue identifier from the UNIX operat­
ing system along with its associated message queue and data structure
(IPC_RMID)

See "Controlling Message Queues" for msgctl system call details.

Interprocess Communication 4-7

Messages

Getting Message Queues

This section describes how to use the msgget system call. The accompanying
program illustrates its use.

Using msgget
The synopsis found in the msgget(2) entry in the Programmer's Reference Manual
is as follows:

iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

All of these include files are located in the /usr / include/ sys directory of
the UNIX operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget is a function with two fonnal arguments that returns
an integer-type value. The next two lines:

key_t key;
int msgflg;

declare the types of the formal arguments. key_t is defined by a typedet" in
the <sys /types . h> header file to be an integral type.

The integer returned from this function upon successful completion is the mes­
sage queue identifier that was discussed earlier. Upon failure, the external vari­
able errno is set to indicate the reason for failure, and the value -1 (which is
not a valid msqid) is returned.

4-8 Integrated Software Development Guide

Messages

As declared, the process calling the msgget system call must supply two argu­
ments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided
if either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and the control command IPC_CREAT is specified
in the msgflg argument.

The value passed to the msgf 19 argument must be an integer-type value that
will specify the following:

• operations permissions

• control fields (commands)

Operation permissions determine the operations that processes are permitted to
perform on the associated message queue. "Read" permission is necessary for
receiving messages or for determining queue status by means of a msgctl
IPC_STAT operation. "Write" permission is necessary for sending messages.
Figure 4-2 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 4-2: Operation Permissions Codes

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific value is derived by adding or bitwise ORing the octal values for the
operation permissions wanted. That is, if read by user and read/write by others
is desired, the code value would be 00406 (00400 plus 00006). There are con­
stants located in the <sys/msg. h> header file which can be used for the user

Interprocess Communication 4-9

Messages

operations permissions. They are as follows:

MSG W 0200 /* write permissions by owner */

MSG R 0400 /* read permissions by owner */

Control flags are predefined constants (represented by all uppercase letters).
The flags which apply to the msgget system call are IPC_CREAT and
IPC_EXCL and are defined in the <sys/ipc.h> header file.

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This is accom­
plished by adding or bitwise ~Ring (I) them with the operation permissions;
the bit positions and values for the control commands in relation to those of the
operation permissions make this possible.

The msgflg value can easily be set by using the flag names in conjunction with
the octal operation permissions value:

msqid msgget (key, (IPC_CREAT 0400»;

msqid msgget (key, (IPC_CREAT IPC EXCL I 0400»;

As specified by the msgget(2) page in the Programmer's Reference Manual, suc­
cess or failure of this system call depends upon the argument values for key
and msgf 19 or system-tunable parameters. The system call will attempt to
return a new message queue identifier if one of the following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a message queue identifier associated with it
and (msgflg and IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

msqid = msgget (IPC_PRIVATE, msgflg);

The system call will always be attempted. Exceeding the MSGMNI system­
tunable parameter always causes a failure. The MSGMNI system-tunable param­
eter determines the systemwide number of unique message queues that may be
in use at any given time.

4-10 Integrated Software Development Guide

Messages

IPC_EXCL is another control command used in conjunction with IPC_CREAT.
It will cause the system call to return an error if a ·message queue identifier
already exists for the specified key. This is necessary to prevent the process
from thinking that it has received a new identifier when it has not. In other
words, when both IPC _ CREAT and IPC _ EXCL are specified, a new message
queue identifier is returned if the system call is successful.

Refer to the msgget(2) page in the Programmer's Reference Manual for specific,
associated data structure initialization for successful completion. The specific
failure conditions and their error names are contained there also.

Example Program
Figure 4-3 is a menu-driven program. It allows all possible combinations of
using the msgget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) entry in the Programmer's Reference Manual. Note
that the <sys / errno . h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These
names make the programs more readable are perfectly legal since they are local
to the program. The variables declared for this program and what they are
used for are as follows:

key

opperm

flags

opperm_flags

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used to store the combination from the logical DRing of the
opperm and flags variables; it is then used in the system
call to pass the msgflg argument

Interprocess Communication 4-11

Messages

msqid used for returning the message queue identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags)
which are selected from a menu (lines 15-32). All possible combinations are
allowed even though they might not be viable. This allows errors to be
observed for illegal combinations.

Next, the menu selection for the flags is combined with the operation permis­
sions, and the result is stored in the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored in the msqid variable (line
53).

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals
-1, a message indicates that an error resulted, and the external errno variable
is displayed (line 57).

If no error occurred, the returned message queue identifier is displayed (line
61).

The example program for the msgget system call follows. We suggest you
name the program file msgget. c and the executable file msgget.

4-12 Integrated Software Development Guide

Figure 4-3: msgget System Call Example

/*This is a program to illustrate
**the message get, msgget(),
**system call capabilities.*/

Hnclude <stdio.h>
It include <sys/types.h>
Hnclude <sys/ ipc. h>
#include <sys/msg.h>
Unclude <errno.h>

/*Start of main C language program*/
main ()
{

key_t key;
int opperm, flags;
int msqid, opperm_flags;
/*Enter the desired key*/
printf ("Enter the desired key in hex ") ;
scanf("%x", &key);

/*Enter the desired octal operation
permissions.*/

printf (lI\nEnter the operation\n");
printf ("permissions in octal = ");
scanf("%o", &opperm);

/*Set the desired flags.*/
printf("\nEnter corresponding number to\n");
printf ("set the desired flags:\n");
printf ("No flags
printf (" lPC_CREAT
printf (" lPC_EXCL
printf (" lPC_CREAT and lPC_EXCL
printf (" Flags

/*Get the flag(s) to be set.*/
scanf("%d", &flags);

/*Check the values.*/

O\n");
l\n");
2\n");
3\n");
") ;

printf (lI\nkey =Ox%x, opperm = 0%0, flags = O%o\n",
key, opperm, flags);

/*lncorporate the control fields (flags) with
the operation permissions*/

Messages

(continued on next page)

Interprocess Communication 4-13

Messages

Figure 4-3: msgget System Call Example (continued)

switch (flags)
{

case 0: /*No flags are to be set.*/
opperm_flags = (opperm I 0);
break;

case 1: /*Set the IPC_CREAT flag.*/
opperm_flags - (opperm I IPC_CREAT);
break;

case 2: /*Set the IPC_EXCL flag.*/
oppe~flags = (opperm I IPC_EXCL);
break;

case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
opperm_flags = (opperm I IPC_CREAT I IPC_EXCL);

/*Cal1 the msgget system call.*/
msqid = msgget (key, opperm_flags);

/*Perform the following if the call is unsuccessful.*/
if (msqid ~= -1)
{

printf ("\nThe msgget call failed, error number = %d\n", errno);

/*Return the msqid upon successful completion.*/
else

printf ("\nThe msqid = %d\n", msqid);
exit (0) ;

Controlling Message Queues

This section describes how to use the msgctl system call. The accompanying
program illustrates its use.

4-14 Integrated Software Development Guide

Messages

Using msgctl

The synopsis found in the msgctl(2) entry in the Programmer's Reference Manual
is as follows:

iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

The msgctl system call requires three arguments to be passed to it; it returns
an integer-type value.

When successful, it returns a zero value; when unsuccessful, it returns a -l.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The cmd argument can be anyone of the following values:

IPC STAT

IPC SET

IPC RMID

return the status information contained in the associated data
structure for the specified message queue identifier, and
place it in the data structure pointed to by the buf pointer in
the user memory area.

for the specified message queue identifier, set the effective
user and group identification, operation permissions, and the
number of bytes for the message queue to the values con­
tained in the data structure pointed to by the buf pointer in
the user memory area.

remove the specified message queue identifier along with its
associated message queue and data structure.

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IPC_SET or IPC.:....RMID control command. Read per­
mission is required to perform the IPC _STAT control command.

Interprocess Communication 4-15

Messages

The details of this system call are discussed in the following example program.
If you need more information on the logic manipulations in this program, read
the msgget(2) section of the Programmer's Reference Manual; it goes into more
detail than would be practical for this document.

Example Program
Figure 4-4 is a menu-driven program. It allows all possible combinations of
using the msgctl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgctl(2) entry in the Programmer's Reference Manual. Note in
this program that errno is declared as an external variable, and therefore, the
<sys / errno . h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self explanatory.
These names make the program more readable and are perfectly legal since they
are local to the program. The variables declared for this program and what
they are used for are as follows:

uid

gid

mode

bytes

rtrn

msqid

4-16

used to store the IPC SET value for the effective user
identification

used to store the IPC _SET value for the effective group
identification

used to store the IPC _SET value for the operation permis­
sions

used to store the IPC _SET value for the number of bytes in
the message queue (msg_qbytes)

used to store the return integer value from the system call

used to store and pass the message queue identifier to the
system call

Integrated Software Development Guide

command

choice

buf

Messages

used to store the code for the desired control command so
that subsequent processing can be performed on it

used to determine which member is to be changed for the
IPC SET control command

used to receive the specified message queue identifier's data
structure when an IPC_STAT control command is performed

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con­
trol command is to place its return values or where the
IPC_SET command gets the values to set

Note that the msqid_ds data structure in this program (line 16) uses the data
structure, located in the <sys/msg.h> header file of the same name, as a tem­
plate for its declaration.

The next important thing to observe is that although the buf pointer is declared
to be a pointer to a data structure of the msqid _ ds type, it must also be initial­
ized to contain the address of the user memory area data structure (line 17).
Now that all of the required declarations have been explained for this program,
this is how it works.

First, the program prompts for a valid message queue identifier which is stored
in the msqid variable (lines 19, 20). This is required for every msgctl system
call.

Then the code for the desired control command must be entered (lines 21-27)
and stored in the command variable. The code is tested to determine the con­
trol command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is per­
formed (lines 37, 38) and the status information returned is printed out (lines
39-46); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful (line 106), the status information of the last
successful call is printed out. In addition, an error message is displayed and the
errno variable is printed out (line 108). If the system call is successful, a mes­
sage indicates this along with the message queue identifier used (lines 110-113).

If the IPC_SET control command is selected (code 2), the first thing is to get the
current status information for the message queue identifier specified (lines 50-
52). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an

Interprocess Communication 4·17

Messages

invalid value happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command until
corrected. The next thing the program does is to prompt for a code correspond­
ing to the member to be changed (lines 53-59). This code is stored in the choice
variable (line 60). Now, depending upon the member picked, the program
prompts for the new value (lines 66-95). The value is placed into the appropri­
ate member in the user memory area data structure, and the system call is made
(lines 96-98). Depending upon success or failure, the program returns the same
messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per­
formed (lines 100-103), and the msqid along with its associated message queue
and data structure are removed from the UNIX operating system. Note that the
buf pointer is ignored in performing this control command, and its value can
be zero or NULL. Depending upon the success or failure, the program returns
the same messages as for the other control commands.

The example program for the msgct 1 system call follows. We suggest that you
name the source program file msgctl. c and the executable file msgctl.

Figure 4-4: msgctl System Call Example

1 /*This is a program to illustrate
2 **the message control, msgctl(),
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 *include <stdio.h>
7 *include <sys/types.h>
8 *include <sys/ipc.h>
9 *include <sys/msg.h>

10 /*Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 int uid, gid, mode, bytes;
15 int rtrn, msqid, command, choice;
16 struct msqid_ds msqid_ds, *buf;
17 buf = &msqid_ds;

(continued on next page)

4-18 Integrated Software Development Guide

Figure 4-4: msgctl System Call Example (continued)

18 /*Get the msqid, and command.*/
19 printf (IIEnter the msqid = ");
20 scanf ("'d", &msqid);
21 printf ("\nEnter the number for\n");
22 printf (lithe desired command:\n");
23 printf("IPC_STAT l\n");
24 printf (" IPC_SET 2\n");
25 printf(IIIPC_RMID 3\n");
26 printf ("Entry ");
27 scanf("%d", &corrmand);

28 /*Check the va1ues.*/
29 printf ("\nmsqid =%d, command %d\n",
30 msqid, command);

31 switch (command)
32 {
33 case 1: /*Use msgct1() to duplicate
34 the data structure for
35 msqid in the msqid_ds area pointed
36 to by buf and then print it out.*/
37 rtrn = msgctl(msqid, IPC_STAT,
38 buf);
39 printf ("\nThe USER ID = %d\n",
40 buf->msg-perm.uid);
41 printf (liThe GROUP ID = %d\n",
42 buf->msg_perm.gid);
43 printf (liThe operation permissions = O%o\n",
44 buf->msg_perm.mode);
45 printf (liThe msg_qbytes = %d\n",
46 buf->msg_qbytes);
47 break;
48 case 2: /*Select and change the desired
49 member(s) of the data structure.*/
50 /*Get the original data for this msqid
51 data structure first.*/
52 rtrn = msgctl(msqid, I PC_STAT, buf);
53 printf ("\nEnter the number for the\n");
54 printf ("member to be changed:\n");
55 printf("msg_perm.uid l\n");
56
57
58

printf ("msg_perm.gid
printf("msg_perm.mode
printf (IImsg_ qbytes

2\n");
3\n");
4\n");

Messages

(continued on next page)

Interprocess Communication 4-19

Messages

Figure 4-4: msgctl System Call Example (continued)

4-20

59

60
61
62
63

64

65

66
67
68
69
70
71
72
73

74
75
76
77

78
79

80
81
82
83
84
85
86
87
88
89
90

91
92
93

94
95

96
97

98
99

printf ("Entry 1: ..);

scanf ("!!sd", &choice);
/*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

msqid_ds is updated with
IPC_STAT.*/

switch (choice) {
case 1:

printf ("\nEnter USER ID = ");
scanf ("SUd", &uid);
buf->msg~rm.uid =(uid_t)uid;
printf ("\nUSER ID = %d\n",

buf->msg-perm.uid);
break;

case 2:
printf (lI\nEnter GROUP ID ");
scanf("%d", &gid);
buf->msg~rm.gid = gid;
printf ("\nGROUP ID = %d\n",

buf->msg-perm.gid);
break;

case 3:
printf (lI\nEnter MODE = ");
scanf ("%0", &mode);
buf->msg_perm.mode = mode;
printf("\nMODE = O%o\n",

buf->msg-perm.mode);
break;

case 4:
printf ("\nEnter msq_bytes ");
scanf("%d", &bytesl;
buf->msg_qbytes = bytes;
printf("\nmsg_qbytes = %d\n",

buf->msg_qbytes);
break;

/*Do the change.*/
rtrn = msgctl(msqid, IPC_SET,

buf) ;
break;

(continued on next page)

Integrated Software Development Guide

Figure 4-4: msgctl System Call Example (continued)

case 3: /*Remove the msqid along with its
associated message queue
and data structure.*/

100
101
102
103
104

rtrn = msgctl(msqid, IPC_RMID, (struct msqid_ds *) NULL);

105 /*Perforrn the following if the call is unsuccessful.*/
106 if(rtrn == -1)
107 {
108 printf ("\nThe msgctl call failed, error number = %d\n", errno);
109
110 /*Return the msqid upon successful completion.*/
111 else
112 printf ("\nMsgctl was successful for msqid = %d\n",
113 msqid);
114 exit (0);
115

Operations for Messages

Messages

This section describes how to use the msgsnd and msgrcv system calls. The
accompanying program illustrates their use.

Using msgop
The synopsis found in the msgop(2) entry in the Programmer's Reference Manual
is as follows:

Interprocess Communication 4-21

Messages

*include <sys/types.h>
*include <sys/ipc.h>
*include <sys/rnsg.h>

int rnsgsnd (rnsqid, rnsgp, rnsgsz, rnsgflg)
int rnsqid;
struct rnsgbuf *rnsgp;
int rnsgsz, rnsgflg;

int rnsgrcv (rnsqid, rnsgp, rnsgsz, rnsgtyp, rnsgflg)
int rnsqid;
struct rnsgbuf *msgp;
int rnsgsz;
long rnsgtyp;
int rnsgflg;

Sending a Message
The msgsnd system call requires four arguments to be passed to it. It returns
an integer value.

When successful, it returns a zero value; when unsuccessful, msgsnd returns a
-1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

The msgs z argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message.
The maximum size of this array is determined by the MSGMAX system-tunable
parameter.

The msgflg argument allows the "blocking message operation" to be per­
formed if the IPC_NOWAIT flag is not set «msgflg and IPC_NOWAIT)= = 0);
the operation would block if the total number of bytes allowed on the specified
message queue.are in use (msg_ qbytes or MSGMNB), or the total system-wide
number of messages on all queues is equal to the system- imposed limit
(MSGTQL). If the IPC_NOWAIT flag is set, the system call will fail and return a
-1.

4-22 Integrated Software Development Guide

Messages

The msg_qbytes data structure member can be lowered from MSGMNB by
using the msgctl IPC_SET control command, but only the superuser can raise
it afterwards.

Further details of this system call are discussed in the following program. If
you need more information on the logic manipulations in this program, read
"Using msgget". It goes into more detail than would be practical for every
system call.

Receiving Messages
The msgrcv system call requires five arguments to be passed to it; it returns an
integer value.

When successful, it returns a value equal to the number of bytes received; when
unsuccessful it returns a -l.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget system call.

The msgp argument is a pointer to a structure in the user memory area that will
recei ve the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired
(see the msgflg argument below).

The msgtyp argument is used to pick the first message on the message queue
of the particular type specified. If it is equal to zero, the first message on the
queue is received; if it is greater than zero, the first message of the same type is
received; if it is less than zero, the lowest type that is less than or equal to its
absolute value is received.

The msgf 19 argument allows the "blocking message operation" to be per­
formed if the IPC_NOWAIT flag is not set «msgflg and IPC_NOWAIT) == 0);
the operation would block if there is not a message on the message queue of the
desired type (msgtyp) to be received. If the IPC_NOWAIT flag is set, the system
call will fail immediately when there is not a message of the desired type on the
queue. msgflg can also specify that the system call fail if the message is longer
than the size to be received; this is done by not setting the MSG_NOERROR flag
in the msgf 19 argument «msgf 19 and MSG _NOERROR» == 0). If the
MSG_NOERROR flag is set, the message is truncated to the length specified by the
msgs z argument of msgrcv.

Interprocess Communication 4-23

Messages

Further details of this system call are discussed in the following program. If
you need more information on the logic manipulations in thi's program read
"Using msgget". It goes into more detail than would be practical for every
system call.

Example Program
Figure 4-5 is a menu-driven program. It allows all possible combinations of
using the msgsnd and msgrcv system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the Programmer's Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/ errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. The variables declared for this program and what they are used
for are as follows:

sndbuf

rcvbuf

~24

used as a buffer to contain a message to be sent (line 13); it
uses the msgbufl data structure as a template (lines 10-13).
The msgbufl structure (lines 10-13) is a duplicate of the
msgbuf structure contained in the <sys /msg. h> header
file, except that the size of the character array for mtext is
tailored to fit this application. The msgbuf structure should
not be used directly because mtext has only one element
that would limit the size of each message to one character.
Instead, declare your own structure. It should be identical to
msgbuf except that the size of the mtext array should fit
your application.

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

Integrated Software Development Guide

msgp

i

c

flag

flags

choice

rtrn

msqid

msgsz

msgflg

msgtyp

Messages

used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers

used as a counter for inputting characters from the keyboard,
storing them in the array, and keeping track of the message
length for the msgsnd system call; it is also used as a
counter to output the received message for the msgrcv sys­
tem call

used to receive the input character from the getchar func­
tion (line 50)

used to store the code of IPC _ NOWAIT for the msgsnd sys­
tem call (line 61)

used to store the code of the IPC NOWAIT or MSG NOERROR - -
flags for the msgrcv system call (line 117)

used to store the code for sending or receiving (line 30)

used to store the return values from all system calls

used to store and pass the desired message queue identifier
for both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of
flags for receiving

used for specifying the message type for sending or for pick­
ing a. message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer initialized to point to it (line 22); this will allow the data structure
members affected by message operations to be observed. They are observed by
using the msgctl (IPC_STAT) system call to get them for the program to print
them out (lines 80-92 and lines 160-167).

The first thing the program prompts for is whether to send or receive a mes­
sage. A corresponding code must be entered for the desired operation; it is
stored in the choice variable (lines 23-30). Depending upon the code, the pro­
gram proceeds as in the following msgsnd or msgrcv sections.

Interprocess Communication 4-25

Messages

msgsnd
When the code is to send a message, the msgp pointer is initialized (line 33) to
the address of the send data structure, sndbuf. Next, a message type must be
entered for the messagei it is stored in the variable msgtyp (line 42), and then
(line 43) it is put into the mtype member of the data structure pointed to by
msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure
(lines 48-51). This will continue until an end-of-file is recognized which, for the
getchar function, is a control-D (C1RL-D) immediately following a carriage
return «CR».

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1 be
entered for yes or anything else for no (lines 57-65). It is stored in the flag vari­
able. If a 1 is entered, IPC_NOWAIT is logically ORed with msgflgi otherwise,
msgf 19 is set to zero.

The msgsnd system call is performed (line 69). If it is unsuccessful, a failure
message is displayed along with the error number (lines 70-72). If it is success­
ful, the returned value is printed and should be zero (lines 73-76).

Every time a message is successfully sent, three members of the associated data
structure are updated. They are:

msg_lspid

msg_stime

represents the total number of messages on the message
queue; it is incremented by one.

contains the process identification (PID) number of the last
process sending a message; it is set accordingly.

contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message senti it is set accord­
ingly.

These members are displayed after every successful message send operation
(lines 79-92).

4-26 Integrated Software Development Guide

Messages

msgrcv
When the code is to receive a message, the program continues execution as in
the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested; it is stored in msqid (lines 100-103).

The message type is requested; it is stored in msgt yp (lines 104-107).

The code for the desired combination of control flags is requested next; it is
stored in flags (lines 108-117). Depending upon the selected combination,
msgflg is set accordingly (lines 118-131).

Finally, the number of bytes to be received is requested; it is stored in msgsz
(lines 132-135).

The msgrcv system call is performed (line 142). If it is unsuccessful, a message
and error number is displayed (lines 143-145). If successful, a message indicates
so, and the number of bytes returned and the msg type returned (because the
value returned may be different from the value requested) is displayed followed
by the received message (lines 150-156).

When a message is successfully received, three members of the associated data
structure are updated. They are:

contains the number of messages on the message queue; it is
decremented by one.

contains the PID of the last process receiving a message; it is
set accordingly.

contains the time in seconds since January I, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it
is set accordingly.

Figure 4-5 shows the msgop system calls. We suggest that you put the program
into a source file called msgop . c and then compile it into an executable file
called msgop.

Interprocess Commun lcatlon 4-27

Messages

Figure 4-5: msgop System Call Example

4-28

/*This is a program to illustrate
**the message operations, msgop(),
**system call capabilities.
*/

/*Include necessary header files.*/
finclude <stdio.h>
Unclude
Unclude
Unclude

<sys/types.h>
<sys/ipc.h>
<sys/msg.h>

struct msgbufl {
long mtype;
char mtext[B192);

sndbuf, rcvbuf, *msgp;

/*Start of main C language program*/
main()
{

extern int errno;
int i, c, flag, flags, choice;
int rtrn, msqid, msgsz, msgflg;
long mtype, msgtyp;
struct msqid_ds msqid_ds, *buf;
buf - &msqid_ds;

/*Select the desired operation.*/
printf("Enter the corresponding\n");
printf ("code to send or\n");
printf("receive a message:\n");
printf("Send l\n");
printf (IIReceive
printf ("Entry
scanf("%d", &choice);

2\n");
") ;

if(choice == 1) /*Send a message.*/
{

msgp = &sndbuf; /*Point to user send structure.*/

printf ("\nEnter the msqid of\n");
printf (lithe message queue to\n");
printf ("handle the message = ");

scanf ("%d", &msqid);

(continued on next page)

Integrated Software Development Guide

Figure 4-5: msgop System Call Example (continued).

/*Set the message type.*/
printf ("\nEnter a positive integer\n") i
printf (llmessage type (long) for the\n") i
printf ("message - ") i
scanf ("Ud", &msgtyp);
msgp->mtype = msgtypi

/*Enter the message to send.*/
printf("\nEnter a message: \n");

/*A control-d (Ad) terminates as
EOF.*/

/*Get each character of the message
and put it in the mtext array.*/

for(i = 0; «c = getchar(» != EOF); i++)
sndbuf.mtext[i] = c;

/*Determine the message size.*/
msgsz - i;

/*Echo the message to send.*/
for(i = 0; i < msgsz; i++)

putchar(sndbuf.mteXt[i]);

/*Set the IPC_NOWAIT flag if
desired.*/

printf ("\nEnter a 1 if you want \n");
printf("the IPC_NOWAIT flag set: ");
scanf("%d", &flag);
if (flag == 1)

msgflg = IPC_NOWAIT;
else

msgflg = 0;

/*Check the msgflg.*/
printf (lI\nmsgflg = O%o\n", msgflg);

/wSend the message. w/
rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if (rtrn == -1)
printf ("\nMsgsnd failed. Error = %d\n",

errno) ;
else {

Messages

(continued on next page)

Interprocess Communication 4-29

Messages

Figure 4-5: msgop System Call Example (continued)

4-30

/*Print the value of test which
should be zero for successful.*/

printf ("\nValue returned = %d\n", rtrn);

/*Print the size of the message
sent.*/

printf (II\nMsgsz = %d\n", msgsz);

/*Check the data structure update.*/
msgctl(msqid, IPC_STAT, buf);

/*Print out the affected mernbers.*/

/*Print the incremented number of
messages on the queue.*/

printf ("\nThe rnsg_qnurn = %d\n",
buf->rnsg_ qnum) ;

/*Print the process id of the last sender.*/
printf (liThe msg_lspid = %d\n",

buf->rnsg_lspid);
/*Print the last send time.*/
printf (liThe msg_stime = %d\n",

buf->rnsg_stirne) ;

if(choice == 2) /*Receive a message.*/
{

/*Initialize the message pointer
to the receive buffer.*/

msgp = &rcvbuf;

/*specify the message queue which contains
the desired message.*/

printf ("\nEnter the msqid = ");

scanf("%d", &rnsqid);

/*Specify the specific message on the queue
by using its type.*/

printf ("\nEnter the msgtyp = ");

scanf("%ld", &rnsgtyp);

/*Configure the control flags for the
desired actions.*/

(continued on next page)

Integrated Software Development Guide

Figure 4-5: ffiSgOp System Call Example (continued)

110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135

136
137
138
139
140

141
142

143
144
145
146
147
148

printf ("\nEnter the corresponding code\n");
printf("to select the desired flags: \n");
printf ("No flags O\n") ;
printf ("MSG_NOERROR 1 \n") ;
printf("IPC_NOWAIT 2\n");
printf ("MSG_NOERROR and IPC NOWAIT 3\n");
printf (" Flags ") ;
scanf("%d", &flags);

switch (flags) {
case 0:

msgflg = 0;
break;

case 1:
msgflg = MSG_NOERROR;
break;

case 2:
msgflg IPC_NOWAIT;
break;

case 3:
msgflg = MSG NOERROR IPC_NOWAIT;
break;

/*Specify the number of bytes to receive.*/
printf ("\nEnter the number of bytes\n");
printf (lito receive (msgsz) = ");

scanf("%d", &msgsz);

/*Check the values for the arguments.*/
printf (lI\nmsqid =%d\n", msqid);
printf (lI\nms~yp = %ld\n", msgtyp);
printf ("\nmsgsz = %d\n", msgsz);
printf ("\nmsgflg = O%o\n", msgflg);

/*Call msgrcv to receive the message.*/
rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if (rtm == -1)
printf (1I\nMsgrcv failed., Error %d\n", ermo);

else {
printf ("\nMsgctl was successful \n") ;
printf (" for msqid = %d\n",

Messages

(continued on next page)

Interprocess Commun ication 4-31

Messages

Figure 4-5: msgQP System Call Example (continued)

4-32

149

150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167

msqid) ;

/*Print the number of bytes received,
it is equal to the return
value.*/

printf ("Bytes received = %d\n", rtrn);

/*Print the received message.*/
for(i = 0; i<rtrn; i++)

putchar(rcvbuf.mtext[i);

/*Check the associated data structure.*/
msgctl(msqid, I PC_STAT, buf);
/*Print the decremented number of messages.*/
printf ("\nThe msg_qnum - %d\n", buf->msg_qnum);
/*Print the process id of the last receiver.*/
printf("The msg_lrpid = %d\n", buf->msg_lrpid);
/*Print the last message receive time*/
printf("The msg_rtime = %d\n", buf->msg_rtime);

Integrated Software Development Guide

Semaphores

The semaphore type of IPe allows processes (executing programs) to communi­
cate through the exchange of semaphore values. Since many applications
require the use of more than one semaphore, the UNIX operating system has
the ability to create sets or arrays of semaphores. A semaphore set can contain
one or more semaphores up to a limit set by the system administrator. The tun­
able parameter, SEMMSL, has a default value of 25. Semaphore sets are created
by using the semget (semaphore get) system call.

The process performing the semget system call becomes the owner/creator,
determines how many semaphores are in the set, and sets the initial operation
permissions for all processes, including itself. This process can subsequently
relinquish ownership of the set or change the operation permissions using the
semctl(semaphore control) system call. The creating process always remains
the creator as long as the facility exists. Other processes with permission can
use semctl to perform other control functions.

Any process can manipulate the semaphore(s) if the owner of the semaphore
grants permission. Each semaphore within a set can be incremented and decre­
mented with the semop(2) system call (documented in the Programmer's Refer­
ence Manual).

To increment a semaphore, an integer value of the desired magnitude is passed
to the semop system call. To decrement a semaphore, a minus (-) value of the
desired magnitude is passed.

The UNIX operating system ensures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed sequen­
tially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the
process is successful, then the semaphore value is greater than that certain
value. Otherwise, the semaphore value is not. While doing this, the process
can have its execution suspended (IPC _ NOWAIT flag not set) until the sema­
phore value would permit the operation (other processes increment the sema­
phore), or the semaphore facility is removed.

The ability to suspend execution is called a "blocking semaphore operation."
This ability is also available for a process which is testing for a semaphore equal
to zero; only read permission is required for this test; it is accomplished by
passing a value of zero to the semop (semaphore operation) system call.

Interprocess Communication 4-33

Semaphores

On the other hand, if the process is not successful and did not request to have
its execution suspended, it is called a "nonblocking semaphore operation." In
this case, the process is returned a known error code (-1), and the external
errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on
the values of semaphores at different points in time. Remember also that IPe
facilities remain in the UNIX operating system until removed by a permitted
process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop system call.

When a set of semaphores is created, the first semaphore in the set is semaphore
number zero. The last semaphore number in the set is numbered one less than
the total in the set.

A single system call can be used to perform a sequence of these
"blocking/nonblocking operations" on a set of semaphores. When performing a
sequence of operations, the blocking/nonblocking operations can be applied to
any or all of the semaphores in the set. Also, the operations can be applied in
any order of semaphore number. However, no operations are done until they
can all be done successfully. For example, if the first three of six operations on
a set of ten semaphores could be completed successfully, but the fourth opera­
tion would be blocked, no changes are made to the set until all six operations
can be performed without blocking. Either the operations are successful and the
semaphores are changed, or one ("nonblocking") operation is unsuccessful and
none are changed. In short, the operations are "atomically performed."

Remember, any unsuccessful nonblocking operation for a single semaphore or a
set of semaphores causes immediate return with no operations performed at all.
When this occurs, an error code (-1) is returned to the process, and the external
variable errno. is set accordingly.

System calls (documented in the Programmer's Reference Manual) make these
semaphore capabilities available to processes. The calling process passes argu­
ments to a system call, and the system call either successfully or unsuccessfully
performs its function. If the system call is successful, it performs its function
and returns the appropriate information. Otherwise, a known error code (-1) is
returned to the process, and the external variable errno is set accordingly.

4-34 Integrated Software Development Guide

Semaphores

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely identified
data structure and semaphore set (array) must be created. The unique identifier
is called the semaphore set identifier (semid); it is used to identify or refer to a
particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in
a semaphore set is user selectable. The following members are in each structure
within a semaphore set:

• semaphore value

• PID performing last operation

• number of processes waiting for the semaphore value to become greater
than its current value

• number of processes waiting for the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains the following information related to the semaphore
set:

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

Interprocess Communication 4-35

Semaphores

The C programming language data structure definition for the semaphore set
(array member) is as follows:

struct sem

} ;

ushort semval;
pid_t sempid;

.ushort semncnt;
ushort semzcnt;

/* semaphore value */
/* pid of last operation */
/* * awaiting semval > eval */
/* * awaiting semval = 0 */

It is located in the <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data structure is
as follows:

struct semid_ds
{

} ;

struct ipc ~rm sem yerm; 1* operation permission struct */
1* ptr to first semaphore in set */ struct sem *sem_base;

ushort sem_nsems; /* * of semaphores in set */
time t
long
time t
long
long

sem_otime; /* last semop time */
semyadl; /* reserved for time_t expansion */
sem_ctime; /* last change time */
semyad2; /*time_t expansion */
sem_pad3[4]; 1* reserve area */

It is also located in the <sys / sem. h> header file. Note that the semyerm
member of this structure uses ipcyerm as a template. Figure 4-1 shows the
breakout for the operation permissions data structure.

The ipcyerm data structure is the same for all IPC facilities; it is located in the
<sys/ ipc. h> header file and is shown in the "Messages" section.

4-36 Integrated Software Development Guide

Semaphores

The semget system call is used to perform two tasks:

• to get a new semaphore set identifier and create an associated data struc­
ture and semaphore set for it

• to return an existing semaphore set identifier that already has an associ­
ated data structure and semaphore set

The task performed is determined by the value of the key argument passed to
the semget system call. For the first task, if the key is not already in use for
an existing semid and the IPC_CREAT flag is set, a new semid is returned
with an associated data structure and semaphore set created for it provided no
system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0), which is known
as the private key (IPC_PRIVATE). When specified, a new identifier is always
returned with an associated data structure and semaphore set created for it,
unless a system-tunable parameter would be exceeded .. The ipcs command
will show the key field for the semid as all zeros.

When performing the first task, the process which calls semget becomes the
owner / creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Semaphores"). The creator of the semaphore set
also determines the initial operation permissions for the facility.

For the second task, if a semaphore set identifier exists for the key specified, the
value of the existing identifier is returned. If you do not want to have an exist­
ing semaphore set identifier returned, a control command (IPC _ EXCL) can be
specified (set) in the semflg argument passed to the system call. The system
call will fail if it is passed a value for the number of semaphores (nsems) that is
greater than the number actually in the set; if you do not know how many
semaphores are in the set, use 0 for nsems. ("Using semget" describes how to
use this system call.)

Once a uniquely identified semaphore set and data structure are created, semop
(semaphore operations) and semctl (semaphore control) can be used.

Semaphore operations consist of incrementing, decrementing, and testing for
zero. The semop system call is used to perform these operations. See "Opera­
tions on Semaphores" for semop system call details.

Interprocess Communication 4·37

Semaphores

The semctl system call permits you to control the semaphore facility in the fol­
lowing ways:

• by returning the value of a semaphore (GETVAL)

• by setting the value of a semaphore (SETVAL)

• by returning the PID of the last process performing an operation on a
semaphore set (GETPID)

• by returning the number of processes waiting for a semaphore value to
become greater than its current value (GETNCNT)

• by returning the number of processes waiting for a semaphore value to
equal zero (GETZCNT)

• by getting all semaphore values in a set and placing them in an array in
user memory (GETALL)

• by setting all semaphore values in a semaphore set from an array of
values in user memory (SETALL)

• by retrieving the data structure associated with a semaphore set
(IPC_STAT)

• by changing operation permissions for a semaphore set (IPC_SET)

• by removing a particular semaphore set identifier from the UNIX operat­
ing system along with its associated data structure and semaphore set
(IPC_RMID)

See "Controlling Semaphores" for semctl system call details.

4-38 Integrated Software Development Guide

Semaphores

Getting Semaphores

This section describes how to use the semget system call. The accompanying
program illustrates its use.

Using semget

The synopsis found in the semget(2) entry in the Programmer's Reference Manual
is as follows:

finclude <sys/types.h>
finclude <sys/ipc.h>
finclude <sys/sem.h>

int semget (key, nsems, semflag)
key_t key;
int nsems, semflag;

The following line in the synopsis:

int semget (key, nsems, semflg)

informs you that semget is a function with three formal arguments that returns
an integer-type value. The next two lines:

key_t keYi
int nsems, semflgi

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types .h> header file to be an integer.

The integer returned from this system call upon successful completion is the
semaphore set identifier that was discussed above.

The process calling the semget system call must supply three actual arguments
to be passed to the formal key, nsems, and semflg arguments.

Interprocess Commun lcation 4-39

Semaphores

A new semid with an associated semaphore set and data structure is created if
either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and semflg ANDed with IPC_CREAT is "true."

The value passed to the semf 19 argument must be an integer that will specify
the following:

• operation permissions
• control fields (commands)

Figure 4-6 reflects the numeric values (expressed in octal notation) for the valid
operation permissions codes.

Figure 4-6: Operation Permissions Codes

Operation Permissions Octal Value
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

00400
00200
00040
00020
00004
00002

A specific value is derived by adding or bitwise ORing the values for the opera­
tion permissions wanted. That is, if read by user and read/alter by others is
desired, the code value would be 00406 (00400 plus 00006). There are constants
#define'd in the <sys/sem.h> header file which can be used for the user
(OWNER). They are as follows:

SEM A
SEM R

0200
0400

/* alter permission by owner */
/* read permission by owner */

Control flags are predefined constants (represented by all uppercase letters).
The flags that apply to the semget system call are IPC _ CREAT and IPC _ EXCL

and are defined in the <sys / ipc . h> header file.

4-40 Integrated Software Development Guide

Semaphores

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This specification is
accomplished by adding or bitwise ~Ring (I) them with the operation permis­
sions; the bit positions and values for the control commands in relation to those
of the operation permissions make this possible.

The semflg value can easily be set by using the flag names in conjunction with
the octal operation permissions value:

semid semget (key, nsems, (IPC_CREAT 0400)) ;

semid = semget (key, nsems, (IPC_CREAT IPC EXCL I 0400));

As specified by the semget(2) entry in the Programmer's Reference Manual, suc­
cess or failure of this system call depends upon the actual argument values for
key, nsems, and semf 19, and system-tunable parameters. The system call will
attempt to return a new semaphore set identifier if one of the following condi­
tions is true:

• key is equal to IPC_PRIVATE

• key does not already have a semaphore set identifier associated with it
and (semflg & IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC _PRIVATE like this:

semid = semget(IPC_PRIVATE, nsems, semflg);

Exceeding the SEMMNI, SEMMNS, or SEMMSL system-tunable parameters will
always cause a failure. The SEMMNI system-tunable parameter determines the
maximum number of unique semaphore sets (semid's) that may be in use at
any given time. The SEMMNS system-tunable parameter determines the max­
imum number of semaphores in all semaphore sets system wide. The SEMMSL
system-tunable parameter determines the maximum number of semaphores in
each semaphore set.

IPC _ EXCL is another control command used in conjunction with IPC _ CREAT.
It will cause the system call to return an error if a semaphore set identifier
already exists for the specified key provided. This is necessary to prevent the
process from thinking that it has received a new (unique) identifier when it has
not. In other words, when both IPC _ CREAT and IPC _ EXCL are specified, a
new semaphore set identifier is returned if the system call is successful. Any

Interprocess Communication 4-41

Semaphores

value for semflg returns a new identifier if the key equals zero
(IPC_PRIVATE) and no system- tunable parameters are exceeded.

Refer to the semget(2) manual page in the Programmer's Reference Manual for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

Example Program
Figure 4-7 is a menu-driven program. It allows all possible combinations of
using the semget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the semget(2) entry in the Programmer's Reference Manual. Note
that the <sys/errno.h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self explanatory. These names make the pro­
gram more readable and are perfectly legal since they are local to the program.
The variables declared for this program and what they are used for are as fol­
lows:

key

opperm

flags

opperm_flags

semid

4-42

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used to store the combination from the logical ~Ring of the
opperm and flags variables; it is then used in the system
call to pass the semf 19 argument

used for returning the semaphore set identification number
for a successful system call or the error code (-1) for an
unsuccessful one.

Integrated Software Development Guide

Semaphores

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags) which are
selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation permis­
sions; the result is stored in opperm_flags (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57); its value
is stored in nsems.

The system call is made next; the result is stored in the semid (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the
error code (-1), it is tested to see if an error occurred (line 63). If semid equals
-1, a message indicates that an error resulted and the external errno variable
is displayed (line 65). Remember that the external errno variable is only set
when a system call fails; it should only be examined immediately following sys­
tem calls.

If no error occurred, the returned semaphore set identifier is displayed (line 69).

The example program for the semget system call follows. We suggest that you
name the source program file semget. c and the executable file semget.

Interprocess Communication 4-43

Semaphores

Figure 4-7: semget System Call Example

4-44

/*This is a program to illustrate
**the semaphore get, semgetO,
**system call capabilities.*/

iinclude
iinclude
iinclude
iinclude
Hnclude

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>
<errno.h>

/~Start of main C language program*/
main ()
{

key_t key; /*declare as long integer*/
int opperm, flags, nsems;
int semid, opperm_flags;

/*Enter the desired key*/
printf ("\nEnter the desired key in hex = ");
scanf("%x", &key);

/*Enter the desired octal operation
permissions.*/

printf("\nEnter the operation\n");
printf("permissions in octal = ");
scanf ("%0", &opperm);

/*Set the desired flags.*/
printf ("\nEnter corresponding number to\n"):
printf("set the desired flags:\n"):
printf("No flags = O\n"):
printf (" IPC_CREAT = 1 \n"):
printf(IIIPC_EXCL = 2\n"):
printf("IPC_CREAT and IPC EXCL
printf (" Flags
/*Get the flags to be set.*/
scanf("%d", &flags):

/*Error checking (debugging)*/

= 3\n"):
= ");

printf (II\nkey =Ox%x, opperm = 0%0, flags = %d\n",
key, opperm, flags):

/*Incorporate the control fields (flags) with
the operation permissions.*/

switch (flags)

(continued on next page)

Integrated Software Development Guide

Figure 4-7: serrget System Call Example (continued)

case 0: /*No flags are to be set.*/
opperm_flags = (opperm I 0);
break;

case 1: /*Set the IPC_CREAT flag.*/
opperm_flags = (opperm I IPC_CREAT);
break;

case 2: /*Set the IPC_EXCL flag.*/
opperm_flags = (opperm I IPC_EXCL);
break;

case 3: /*Set the IPC_CREAT and IPC_EXCL
flags.*/

opperm_flags = (opperm I IPC_CREAT IPC_EXCL);

/*Get the number of semaphores for this set.*/
printf ("\nEnter the number of\n");
printf ("desired semaphores for\n");
printf {"this set (25 max) = ");

scanf ("%d", &nsems);

/*Check the.entry.*/
printf ("\nNsems = %d\n", nsems);

/*Call the semget system call.*/
semid = semget(key, nsems, opperm_flags);

/*Perform the following if the call is unsuccessful.*/
if (semid = -1)
{

printf (liThe semget call failed, error number = %d\n", errno);

/*Return the sernid upon successful completion.*/
else

printf ("\nThe sernid = %d\n", semid);
exit{O);

Interprocess Commun lcation

Semaphores

4-45

Semaphores

Controlling Semaphores

This section describes how to use the semctl system call. The accompanying
program illustrates its use.

USing semetl
The synopsis found in the semctl(2) entry in the Programmer's Reference Manual
is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun

int val;
struct semid_ds *buf;
ushort *array;

} arg;

The semctl system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semget system call.

The semnum argument is used to select a semaphore by its number. This relates
to sequences of operations (atomically performed) on the set. When a set of
semaphores is created, the first semaphore is number 0, and the last semaphore
is numbered one less than the total in the set.

The cmd argument can be replaced by one of the following values:

GETVAL return the value of a single semaphore within a semaphore
set

4-46 Integrated Software Development Guide

SETVAL

GETPID

GETNCNT

GETZCNT

GETALL

SETALL

IPC STAT

IPC SET

IPC RMID

Semaphores

set the value of a single semaphore within a semaphore set

return the PID of the process that performed the last opera­
tion on the semaphore within a semaphore set

return the number of processes waiting for the value of a
particular semaphore to become greater than its current
value

return the number of processes waiting for the value of a
particular semaphore to be equal to zero

return the value for all semaphores in a semaphore set

set all semaphore values in a semaphore set

return the status information contained in the associated data
structure for the specified semid, and place it in the data
structure pointed to by the buf pointer in the user memory
area; arg .buf is the union member that contains pointer

for the specified semaphore set (semid), set the effective
user / group identification and operation permissions

remove the specified semaphore set (semid) along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IPC_SET or IPC_RMID control command. Read/alter
permission is required as applicable for the other control commands.

The arg argument is used to pass the system call the appropriate union
member for the control command to be performed. For some of the control
commands, the a rg argument is not required and is simply ignored.

• arg. val required: SETVAL

• arg. buf required: IPC_STAT, IPC_SET

• arg. array required: GETALL, SETALL

• argignored:GETVAL, GETPID, GETNCNT, GETZCNT, IPC RMID

Interprocess Commun lcatlon 4-47

Semaphores

The details of this system call are discussed in the following program. If you
need more information on the logic manipulations in this program, read "Using
semget". It goes into more detail than would be practical to do for every sys­
tem call.

Example Program
Figure 4-8 is a menu-driven program. It allows all possible combinations of
using the semctl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore the
<sys/errno.h> header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. Those declared for this program and what they are used for are
as follows:

semid ds

c

i

length

uid

4-48

used to receive the specified semaphore set identifier's data
structure when an IPC_STAT control command is performed

used to receive the input values from the scanf function
(line 119) when performing a SETALL control command

used as a counter to increment through the union
arg. array when displaying the semaphore values for a
GETALL (lines 98-100) control command, and when initializ­
ing the arg. array when performing a SETALL (lines 117-
121) control command

used as a variable to test for the number of semaphores in a
set against the i counter variable (lines 98, 117)

used to store the IPC SET value for the user identification

Integrated Software Development Guide

gid

mode

retrn

semid

sernnum

cmd

choice

semvals[]

arg.val

arg.buf

arg.array

Semaphores

used to store the IPC_SET value for the group identification

used to store the IPC _SET value for the operation permis­
sions

used to store the return value from the system call

used to store and pass the semaphore set identifier to the
system call

used to store and pass the semaphore number to the system
call

used to store the code for the desired control command so
that subsequent processing can be performed on it

used to determine which member (uid, gid, mode) for the
IPC_SET control command is to be changed

used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL)

used to pass the system call a value to set, or to store a value
returned from the system call, for a single semaphore (union
member)

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con­
trol command is to place its return values, or where the
IPC_SET command gets the values to set (union member)

a pointer passed to the system call which locates the array in
the user memory where the GETALL control command is to
place its return values, or when the SETALL command gets
the values to set (union member)

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the <sys / sem. h> header file of the same name as a tem­
plate for its declaration.

Note that the semvals array is declared to have 25 elements (0 through 24).
This number corresponds to the maximum number of semaphores allowed per
set (SEMMSL), a system-tunable parameter.

Interprocess Communication 4·49

Semaphores

Now that all of the required declarations have been presented for this program,
this is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored
in the semid variable (lines 24-26). This is required for all semctl system
calls.

Then, the code for the desired control command must be entered (lines 17-42),
and the code is stored in the cmd variable. The code is tested to determine the
control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting for a
semaphore number is displayed (lines 48, 49). When it is entered, it is stored in
the semnum variable (line 50). Then, the system call is performed, and the
semaphore value is displayed (lines 51-54). Note that the arg argument is not
required in this case, and the system call will simply ignore it. If the system call
is successful, a message indicates this along with the semaphore set identifier
used (lines 197, 198); if the system call is unsuccessful, an error message is
displayed along with the value of the external errno variable (lines 194, 195).

If the SETVAL control command is selected (code 2), a message prompting for a
semaphore number is displayed (lines 55, 56). When it is entered, it is stored in
the semnum variable (line 57). Next, a message prompts for the value to which
the semaphore is to be set; it is stored as the arg. val member of the union
(lines 58, 59). Then, the system call is performed (lines 60, 62). Depending
upon success or failure, the program returns the same messages as for GETVAL

above.

If the GETP ID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 63-66), and the PID
of the process performing the last operation is displayed. Note that the arg
argument is not required in this case, and the system call will simply ignore it.
Depending upon success or failure, the program returns the same messages as
for GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting for
a semaphore number is displayed (lines 67-71). When entered, it is stored in the
semnum variable (line 73). Then, the system call is performed and the number
of processes waiting for the semaphore to become greater than its current value
is displayed (lines 73-76). Note that the arg argument is not required in this
case, and the system call will simply ignore it. Depending upon success or
failure, the program returns the same messages as for GETVAL above.

4-50 Integrated Software Development Guide

Semaphores

If the GETZCNT control command is selected (code 5), a message prompting for
a semaphore number is displayed (lines 77-80). When it is entered, it is stored
in the semnum variable (line 81). Then the system call is performed and the
number of processes waiting for the semaphore value to become equal to zero is
displayed (lines 82-85). Depending upon success or failure, the program returns
the same messages as for GE TVAL above.

If the GETALL control command is selected (code 6), the program first performs
an IPC_STAT control command to determine the number of semaphores in the
set (lines 87-93). The length variable is set to the number of semaphores in the
set (line 93). The arg. array union member is set to point to the semvals
array where the system call is to store the values of the semaphore set (line 96).
Now, a loop is entered which displays each element of the arg. array from
zero to one less than the value of length (lines 98-104). The semaphores in the
set are displayed on a single line, separated by a space. Depending upon suc­
cess or failure, the program returns the same messages as for GETVAL above.

If the SETALL control command is selected (code 7), the program first performs
an IPC_STAT control command to determine the number of semaphores in the
set (lines 107-110). The length variable is set to the number of semaphores in
the set (line 113). Next, the program prompts for the values to be set and enters
a loop which takes values from the keyboard and initializes the semvals array
to contain the desired values of the semaphore set (lines 115-121). The loop
puts the first entry into the array position for semaphore number zero and ends
when the semaphore number that is filled in the array equals one less than the
value of length. The arg. array union member is set to point to the semvals
array from which the system call is to obtain the semaphore values. The system
call is then made (lines 122-125). Depending upon success or failure, the pro­
gram returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is per­
formed (line 129), and the status information returned is printed out (lines 130-
141); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful, the status information of the last success­
ful one is printed out. In addition, an error message is displayed, and the
errno variable is printed out (line 194).

If the IPC~SET control command is selected (code 9), the program gets the
current status information for the semaphore set identifier specified (lines 145-
149). This is necessary because this example program provides for changing
only one member at a time, and the semctl system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for one

Interprocess Communication 4-51

Semaphores

of these members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a code
corresponding to the member to be changed (lines 150-156). This code is stored
in the choice variable (line 157). Now, depending upon the member picked,
the program prompts for the new value (lines 158-181). The value is placed into
the appropriate member in the user memory area data structure, and the system
call is made (line 184). Depending upon success or failure, the program returns
the same messages as for GETVAL above.

If the IPC _ RMID control command (code 10) is selected, the system call is per­
formed (lines 186-188). The semaphore set identifier along with its associated
data structure and semaphore set is removed from the UNIX operating system.
Depending upon success or failure, the program returns the same messages as
for the other control commands.

The example program for the semctl system call follows. We suggest that you
name the source program file semctl. c and the executable file semctl.

Figure 4-8: semctl System Call Example

1 /*This is a program to illustrate
2 **the semaphore contrOl, semctl(),
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/sem.h>

10 /*Start of main C language program*/
11 main ()
12 {
13 extern int errno;
14 ~truct semid_ds semid_ds;
15 int c, i, length;
16 int uid, gid, mode;
17 int retrn, semid, semnum, cmd, choice;
18 ushort semvals[25];
19 union semun {
20 int val;

(continued on next page)

4-52 Integrated Software Development Guide

Figure 4-8: semctl System Call Example (continued)

struct semid_ds *bu!;
ushort *array;

arg;

/*Enter the semaphore 10.*/
print! (IIEnter the semid = ");

scanf ("%d", &semid);

/*Choose the desired command.*/
printf ("\nEnter the number for\n");
printf (lithe desired crnd: \n");
printf ("GETVAL 1 \n");
print! ("SETVAL
print! ("GETPID
print! ("GETNCNT
print! ("GETZCNT
printf ("GETALL
print f (" SETALL
print! (" 1PC_STAT
printf (" I PC_SET
print! (II1PC_RMID
print! ("Entry
scan! ("%d", &crnd);

/*Check entries.*/

2\n") ;
3\n");
4\n") ;

= 5\n");
6\n");
7\n") ;

= 8\n");
9\n");

= 10\n");
I: II);

printf (lI\nsemid =%d, crnd %d\n\n",
semid, crnd);

/*Set the command and do the call.*/
switch (crnd)

case 1: /*Get a specified value.*/
print! ("\nEnter the sernnum = ");
scanf (" %d ", & sernnum) ;
/*Do the system call.*/
retrn = semctl (semid, sernnum, GETVAL, arg);
printf("\nThe semval = %d", retrn);
break;

case 2: /*Set a specified value.*/
printf("\nEnter the sernnum = ");
scanf ("%d", &sernnum);
printf ("\nEnter the value = ");
scanf("%d", &arg.val);

Semaphores

(continued on next page)

Interprocess Communication 4-53

Semaphores

Figure 4-8: semctl System Call Example (continued)

4-54

/*Do the system call.*/
retrn = semctl(semid, semnum, SETVAL, arg):
break:

case 3: /*Get the process ID.*/
retrn = semctl(semid, 0, GETPID, arg):
printf("\nThe sempid = %d", retrn);
break;

case 4: /*Get the number of processes
waiting for the semaphore to
become greater than its current
value.*/
printf (lI\nEnter the semnum = "):

scanf ("%d ", & semnum) :
/*Do the system call.*/
retrn = semctl(semid, semnum, GETNCNT, arg);
printf ("\nThe semncnt = %d", retrn):
break;

case 5: /*Get the number of processes
waiting for the semaphore
value to become zero.*/
printf ("\nEnter the semnum = "):

scanf ("%d ", & semnum) ;
/*Do the system call.*/
retrn = semctl(semid, semnum, GETZCNT, arg):
printf ("\nThe semzcnt = %d", retrn):
break:

case 6: /*Get all of the semaphores.*/
/*Get the number of semaphores in

the semaphore set.*/
arg.buf = &semid_ds:
retrn = semctl(semid, 0, IPC_STAT, arg);
if (retrn == -1)

goto ERROR:
length = arg.buf->sem_nsems;
/*Get and print all semaphores in the

specified set. * /
arg.array = semvals;
retrn = semctl(semid, 0, GETALL, arg):
for (1 = 0: i < length: 1++)
{

printf ("%d", semvals [1]):
/*Separate each

(continued on next page)

Integrated Software Development Guide

Figure 4-8: semctl System Call Example (continued)

102
103
104

semaphore. */
printf (" "):

105 break;

106 case 7: /*Set all semaphores in the set.*/
107 /*Get the number of semaphores in
lOB the set.*/
109 arg.buf = &semid_ds;
110 retrn = semctl(semid, 0, I PC_STAT, arg);
111 if(retrn == -1)
112 goto ERROR;
113 length = arg.buf->sem_nsems:
114 printf ("Length = %d\n", length):
115 /*Set the semaphore set values.*/
116 printf("\nEnter each value:\n");
117 forti = 0; i < length; i++)
11B {
119 scanf ("%d", &c);
120 semvals[il = c;
121
122 /*Do the system call.*/
123 arg.array = semvals:
124 retrn = semctl(semid, 0, SETALL, arg):
125 break:

126 case 8: /*Get the status for the semaphore set.*/
127 /*Get and print the current status values.*/
128 arg.buf = &semid_ds:
129 retrn = semctl(semid, 0, I PC_STAT, arg):
130 printf ("\nThe USER ID = %d\n",
131 arg.buf->sem-perm.uid):
132 printf (liThe GROUP ID = %d\n" I
133 arg.buf->sem-perm.gid):
134 printf (liThe operation permissions = O%o\n",
135 arg.buf->sem-perm.mode):
136 printf (liThe number of semaphores in set = %d\n",
137 arg.buf->sem_nsems):
13B printf (liThe last semop time = %d\n",
139 arg.buf->sem_otime):
140 printf (liThe last change time = %d\n",
141 arg.buf->sem_ctime):
142 break:

Semaphores

(continued on next page)

Interprocess Communication 4-55

Semaphores

Figure 4-8: sernetl System Call Example (continued)

4-56

case 9: /*Select and change the desired
member of the data structure.*/

/*Get the current status values.*/
arg.buf = &sernid_ds;
retrn = sernctl(sernid, 0, 1PC_STAT, arg.buf);
if (retrn =~ -1)

goto ERROR;
/*Select the member to change.*/
printf ("\nEnter the number for the\n");
printf ("member to be changed: \n") ;
printf (llsernyerrn. uid = 1 \n") ;
printf(lIsernyerrn.gid = 2\n");
printf(lIsernyerrn.mode - 3\n");
printf ("Entry = ");

scanf("%d", &choice);
switch (choice) {

case 1: /*Change the user 1D.*/
printf (II\nEnter USER ID :: ");
scanf ("%d", &uid);
arg.buf->sernyerm.uid = uid;
printf ("\nUSER ID = %d\n",

arg.buf->sernyerrn.uid);
break;

case 2: /*Change the group 1D.*/
printf ("\nEnter GROUP ID = ");

scanf("%d", &gid);
arg.buf->sernyerm.gid = gid;
printf ("\nGROUP ID = %d\n",

arg.buf->sern_perrn.gid);
break;

case 3: /*Change the mode portion of
the operation

perrnissions.*/
printf ("\nEnter MODE in octal ");
scanf("%o", &mode);
arg.buf->sernyerm.mode = mode;
printf ("\nMODE = O%o\n",

arg.buf->sernyerm.mode);
break;

/*Do the change.*/

(continued on next page)

Integrated Software Development Guide

Semaphores

Figure 4-8: semctl System Call Example (continued)

184 retrn = semctl(semid, 0, IPC_SET, arg);
185 break;
186 case 10: /*Remove the semid along with its
187 data structure.*/
188 retrn = semctl(semid, 0, IPC_RMID, arg);
189
190 /*Perform the following if the call is unsuccessful.*/
1911 if (retrn == -1)
192 I
193 ERROR:
194 printf ("\nThe semctl call failed!, error number = %d\n", errno);
195 exit(O);
196
197 printf ("\n\nThe semctl system call was successful \n");
198 printf (llfor semid = %d\n", semid);
199 exit (0);
200

Operations on Semaphores

This section describes how to use the semop system call. The accompanying
program illustrates its use.

Using semop
The synopsis found in the semop(2) entry in the Programmer's Reference Manual
is as follows:

Interprocess Communication 4-57

Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf *sops;
unsigned nsops;

The semop system call requires three arguments to be passed to it and returns
an integer value which will be zero for successful completion or -1 otherwise.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget system call.

The sops argument points to an array of structures in the user memory area
that contains the following for each semaphore to be changed:

• the semaphore number (sem_num)

• the operation to be performed (sem _ op)

• the control flags (sem_fIg)

The *sops declaration means that either an array name (which is the address of
the first element of the array) or a pointer to the array can be used. sembuf is
the tag name of the data structure used as the template for the structure
members in the array; it is located in the <sys / sem. h> header file.

The nsops argument specifies the length of the array (the number of structures
in the array). The maximum size of this array is determined by the SEMOPM

system-tunable parameter. Therefore, a maximum of SEMOPM operations can be
performed for each semop system call.

The semaphore number (sem_num) determines the particular semaphore within
the set on which the operation is to be performed.

The operation to be performed is determined by the following:

4-58 Integrated Software Development Guide

Semaphores

• if sem _ op is positive, the semaphore value is .incremented by the value of
sem_op

• if sem_op is negative, the semaphore value is decremented by the abso­
lute value of sem_op

• if sem _ op is zero, the semaphore value is tested for equality to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT-this operation command can be set for any operations in
the array. The system call will return unsuccessfully without changing
any semaphore values at all if any operation for which IPC _ NOWAIT is set
cannot be performed successfully. The system call will be unsuccessful
when trying to decrement a semaphore more than its current value, or
when testing for a semaphore to be equal to zero when it is not.

• SEM _UNDO-this operation command is used to tell the system to undo
the process's semaphore changes automatically when the process exits; it
allows processes to avoid deadlock problems. To implement this feature,
the system maintains a table with an entry for every process in the sys­
tem. Each entry points to a set of undo structures, one for each semaphore
used by the process. The system records the net change.

Example Program

Figure 4-9 is a menu-driven program. It allows all possible combinations of
using the semop system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requiremen.ts are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys / errno • h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since the declarations
are local to the program. The variables declared for this program and what
they are used for are as follows:

Interprocess Communication 4-59

Semaphores

sembuf[10]

sops

string[8]

rtrn

flags

sem num

i

semid

nsops

used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten is the standard value of the tun­
able parameter SEMOPM, the maximum number of operations
on a semaphore set for each semop system call

used as a pointer (line 14) to the sembuf array for the sys­
tem call and for accessing the structure members within the
array

used as a character buffer to hold a number entered by the
user

used to store the return value from the system call

used to store the code of the IPC NOWAIT or SEM UNDO - -
flags for the semop system call (line 59)

used to store the semaphore number entered by the user for
each semaphore operation in the array

used as a counter (iine 31) for initializing the structure
members in the array, and used to print out each structure in
the array (line 78)

used to store the desired semaphore set identifier for the sys­
tem call

used to specify the number of semaphore operations for the
system call; must be less than or equal to SEMOPM

First, the program prompts for a semaphore set identifier that the system call is
to perform operations on (lines 18-21). semid is stored in the semid variable
(line 22).

A message is displayed requesting the number of operations to be performed on
this set (lines 24-26). The number of operations is stored in the nsops variable
(line 27).

Next, a loop is entered to initialize the array of structures (lines 29-76). The
semaphore number, operation, and operation command (flags) are entered for
each structure in the array. The number of structures equals the number of
semaphore operations (nsops) to be performed for the. system call, so nsops is
tested against the i counter for loop control. Note that sops is used as a
pointer to each element (structure) in the array, and sops is incremented just
like i. sops is then used to point to each member in the structure for setting

4-60 Integrated Software Development Guide

Semaphores

them.

After the array is initialized, all of its elements are printed out for feedback
(lines 77-84).

The sops pointer is set to the address of the array (lines 85, 86). sernbuf could
be used directly, if desired, instead of sops in the system call.

The system call is made (line 88), and depending upon success or failure, a
corresponding message is displayed. The results of the operation(s) can be
viewed by using the semctl GETALL control command.

The example program for the semop system call follows. We suggest that you
name the source program file semop. c and the executable file semop.

Figure 4-9: semop System Call Example

/*This is a program to illustrate
2 **the semaphore operations, semop(),
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7

8

9

10
11
12
13
14
15
16
17

18
19
20
21
22
23

24

#include
#include

<sys/types.h>
<sys/ipc.h>

#include <sys/sem.h>
/*Start of main C language program*/
main ()
{

extern int errno;
struct sembuf sembuf[101, *sops;
char string[8)i
int retrn, flags, sem_num, i, semid;
unsigned nsops;

/*Enter the semaphore ID.*/
printf (lI\nEnter the semid of\n");
printf (lithe semaphore set to\n");
printf ("be operated on = ");

scanf("%d", &semid);
printf (lI\nsemid = %d", semid);

/*Enter the number of operations.*/

Interprocess Communication

(continued on next page)

4-61

Semaphores

Figure 4-9: semop System Call Example (continued)

4-62

printf ("\nEnter the number of semaphore\n");
printf("operations for this set = ");

scanf("%d", &nsops);
printf ("\nsops = %d", nsops);

/*Initialize the array for the
number of operations to be performed.*/

for(i = 0, sops = sernbuf; i < nsops; i++, sops++)
{

/*This determines the semaphore in
the semaphore set.*/

printf ("\nEnter the semaphore\n");
printf("number (sem_nurn) = ");

scanf ("%d", &sem_num);
sops->sem_nurn = sem_nurn;
printf("\nThe sem_nurn = %d", sops->sem_nurn);

/*Enter a (-)number to decrement,
an unsigned number (no +) to increment,
or zero to test for zero. These values
are entered into a string and converted
to integer values.*/

printf ("\nEnter the operation for\n");
printf (lithe semaphore (sem_op) = ");

scanf ("%5", string);
sops->sem_op = atoi(string);
printf (lI\nsem_op = %d\n", sops->sem_op);

/*Specify the desired flags.*/
printf ("\nEnter the corresponding\n");
printf (" number for the desired\n");
printf(lIflags:\n");
printf ("No flags
print f (" IPC _NOWAIT
printf (IISEM_UNDO
print! (" IPCYOWAIT and SEM UNDO

O\n");
l\n");
2\n");
3\n");

printf (" Flags ");
scanf ("%d", &flags);

switch (flags)
{

case 0:
sops->sem_flg 0;

(continued on next page)

Integrated Software Development Guide

Figure 4-9: serrop System Call Example (continued)

break;
case 1:

sops->sem_flg = IPC_NOWAIT;
break;

case 2:
sops->sem_flg = SEM_UNDO;
break;

case 3:
sops->sem_flg - IPC_NOWAIT SEM_UNDO;
break;

printf("\nFlags = O%o\n", sops->sem_flg)i

/*Print out each structure in the array.*/
for(i = 0i i < nsops; i++)
{

printf(lI\nsem_num = %d\n", sembuf[i].sem_num);
printf(lIsem_op = %d\n", sembuf[i] .sem_op);
printf (lIsem_flg = O%o\n", sembuf[iJ.sem_flg);
printf(" ");

sops = sembuf; /*Reset the pointer to
sembuf[O].*/

/*Do the semop system call.*/
retrn = semop(semid, sops, nsops);
if(retrn == -1) {

printf ("\nSemop failed, error = %d\n", errno);

else {
printf ("\nSemop was successful\n");
printf("for semid = %d\n", semid);

printf (IIValue returned = %d\n", retrn);

Interprocess Communication

Semaphores

4-63

Shared Memory

The shared memory type of IPC allows two or more processes (executing pro­
grams) to share memory and, consequently, the data contained there. This is
done by allowing processes to set up access to a common virtual memory
address space. This sharing occurs on a segment basis, which is memory
management hardware-dependent.

This sharing of memory provides the fastest means of exchanging data between
processes. However, processes that reference a shared memory segment must
reside on one processor. Consequently, processes running on different proces­
sors (such as in an Remote File Sharing (RFS) network or a multiprocessing
environment) may not be able to use shared memory segments.

A process initially creates a shared memory segment facility using the shmget
system call. Upon creation, this process sets the overall operation permissions
for the shared memory segment facility, sets its size in bytes, and can specify
that the shared memory segment is for reference only (read-only) upon attach­
ment. If the memory segment is not specified to be for reference only, all other
processes with appropriate operation permissions can read from or write to the
memory segment.

shmat (shared.memory attach) and shmdt (shared memory detach) can be per­
formed on a shared memory segment.

shmat allows processes to associate themselves with the shared memory seg­
ment if they have permission. They can then read or write as allowed.

shmdt allows processes to disassociate themselves from a shared memory seg­
ment. Therefore, they lose the ability to read from or write to the shared
memory segment.

The original owner/creator of a shared memory segment can relinquish owner­
ship to another process using the shmctl system call. However, the creating
process remains the creator until the facility is removed or the system is reini­
tialized. Other processes with permission can perform other functions on the
shared memory segment using the shmctl system call.

4-64 Integrated Software Development Guide

Shared Memory

System calls (documented in the Programmer's Reference Manual) make these
shared memory capabilities available to processes. The calling process passes
arguments to a system call, and the system call either successfully or unsuccess­
fully performs its function. If the system call is successful, it performs its func­
tion and returns the appropriate information. Otherwise, a known error code
(-1) is returned to the process, and the external variable errno is set accord­
ingly.

Using Shared Memory

Sharing memory between processes occurs on a virtual segment basis. There is
only one copy of each individual shared memory segment existing in the UNIX
operating system at any point in time.

Before sharing of memory can be realized, a uniquely identified shared memory
segment and data structure must be created. The unique identifier created is
called the shared memory identifier (shmid); it is used to identify or refer to the
associated data structure. The data structure includes the following for each
shared memory segment:

• operation permissions

• segment size

• segment descriptor (for internal system use only)

• PID performing last operation

• PID of creator

• current number of processes attached

• last attach time

• last detach time

• last change time

The C programming language data structure definition for the shared memory
segment data structure is located in the <sys/ shm. h> header file. It is as fol­
lows:

Interprocess Communication 4-65

Shared Memory

/*
** There is a shared mem id data structure for

each segment in the system.
*/

struct shmid _ ds
struct ipcyerm
int

} ;

struct region
char
pid_t
pid_t
ushort
ushort
time t
time_t
time_t

shmyerm;
shm_segsz;
*shm_reg;
pad[4)i
shm_lpid;
shm_cpid;
shm_nattch;
shm_cnattch;
shm_atime;
shm_dtime;
shm_ctime;

/* operation permission struct */
/* segment size */
/* ptr to region structure */
/* for swap compatibility */
/* pid of last shmop */
/* pid of creator */
/* used only for shminfo */
/* used only for shminfo */
/* last shmat time */
/* last shmdt time */
/* last change time */

Note that the shmyerm member of this structure uses ipcyerm as a tem­
plate.

The ipc yerm data structure is the same for all IPe facilities; is it located in the
<sys / ipc . h> header file and shown in Figure 4-1.

The shmget system call performs two tasks:

• it gets a new shared memory identifier and creates an associated shared
memory segment data structure for it

• it returns an existing shared memory identifier that already has an associ­
ated shared memory segment data structure

The task performed is determined by the value of the key argument passed to
the shmget system call. For the first task, if the key is not already in use for
an existing shared memory identifier and the IPC_CREAT flag is set in shmflg,
a new identifier is returned with an associated shared memory segment data
structure created for it provided no system-tunable parameters would be
exceeded.

4-66 Integrated Software Development Guide

Shared Memory

There is also a provision for specifying a key of value zero which is known as
the private key (IPC_PRIVATE); when specified, a new shmid is always
returned with an associated shared memory segment data structure created for
it unless a system-tunable parameter would be exceeded. The ipcs command
will show the key field for the shmid as all zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command (IPC_EXCL) can be specified (set) in the shmflg
argument passed to the system call. "Using shmget" discusses how to use this
system call.

When performing the first task, the process that calls shmget becomes the
owner / creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator (see "Controlling Shared Memory"). The creator of the shared
memory segment also determines the initial operation permissions for it.

Once a uniquely identified shared memory segment data structure is created,
shmop (shared memory segment operations) and shmctl (shared memory con­
trol) can be used.

Shared memory segment operations consist of attaching and detaching shared
memory segments. shmat and shmdt are provided for each of these opera­
tions. See "Operations for Shared Memory" for shmat and shmdt system call
details.

The shmctl system call permits you to control the shared memory facility in
the following ways:

• by retrieving the data structure associated with a shared memory segment
(IPC_STAT)

• by changing operation permissions for a shared memory segment
(IPC_SET)

• by removing a particular shared memory segment from the UNIX operat­
ing system along with its associated shared memory segment data struc­
ture (IPC_RMID)

• by locking a shared memory segment in memory (SHM_LOCK)

Interprocess Communication 4-67

Shared Memory

• by unlocking a shared memory segment (SHM_ UNLOCK)

See "Controlling Shared Memory" for shmctl system call details.

Getting Shared Memory Segments

This section describes how to use the shmget system call. The accompanying
program illustrates its use.

Using shmget

The synopsis found in the shmget(2) entry in the Programmer's Reference Manual
is as follows:

'include <sys/types.h>
'include <sys/ipc.h>
'include <sys/shm.h>

int shmget (key, size, shmflg)

int size, shmflg;

All of these include files are located in the /usr / include/ sys directory of the
UNIX operating system. The following line in the synopsis:

int shmget (key, size, shmflg)

informs you that shmget is a fuhction with three formal arguments that returns
an integer-type value. The next two lines:

key_t key;
int size, shmflg;

declare the types of the formal arguments. key_t is defined by a typedef in
the <sys/types. h> header file to be an integer.

The integer returned from this function (upon successful completion) is the
shared memory identifier (shmid) that was discussed earlier.

4-68 Integrated Software Development Guide

Shared Memory

As declared, the process calling the shmget system call must supply three argu­
ments to be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is provided if
either

• key is equal to IPC_PRIVATE,

or

• key is a unique integer and shmflg ANDed with IPC_CREAT is "true"
(not zero).

The value passed to the shmflg argument must be an integer-type value and
will specify the following:

• operations permissions

• control fields (commands)

Access permissions determine the read/write attributes and modes determine
the user/group/other attributes of the shmflg argument. They are collectively
referred to as "operation permissions." Figure 4-10 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

Figure 4·10: Operation Permissions Codes

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Octal Value
00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding or bitwise ORing the octal values for
the operation permissions desired. That is, if read by user and read/write by
others is desired, the code value would be 00406 (00400 plus 0(006). There are
constants located in the <sys / shm. h> header file which can be used for the
user (OWNER). They are:

Interprocess Communication 4-69

Shared Memory

SHM R 0400
SHM W 0200

Control flags are predefined constants (represented by all uppercase letters).
The flags that apply to the shmget system call are IPC _ CREAT and IPC _ EXCL
and are defined in the <sys/ ipc. h> header file.

The value for shmf1g is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions
as previously described, the desired flag(s) can be specified. This is accom­
plished by adding or bitwise GRing (I) them with the operation permissions;
the bit positions and values for the control commands in relation to those of the
operation permissions make this possible.

The shmf1g value can easily be set by using the names of the flags in conjunc­
tion with the octal operation permissions value:

shmid shmget (key, size, (IPC_CREAT 0400));

shmid shmget (key, size, (IPC_CREAT IPC EXCL I 0400));

As specified by the shmget(2) entry in the Programmer's Reference Manual, suc­
cess or failure of this system call depends upon the argument values for key,
size, and shmflg, and system-tunable parameters. The system call will
attempt to return a new shmid if one of the following conditions is true:

• key is equal to IPC_PRIVATE .

• key does not already have a shmid associated with it and (shmf 19 &
IPC _ CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE like this:

shmid = shmget(IPC_PRIVATE, size, shmf1g);

The SHMMNI system-tunable parameter determines the maximum number of
unique shared memory segments (shmids) that may be in use at any given
time. If the maximum number of shared memory segments is already in use, an
attempt to create an additional segment will fail.

IPC _ EXCL is another control command used in conjunction with IPC _ CREAT .

It will cause the system call to retrieve an error if a shared memory identifier
exists for the specified key provided. This is necessary to prevent the process

4-70 Integrated Software Development Guide

Shared Memory

from thinking that it-has received a new (unique) ~hmid when it has not. In
other words, when both PC_CREAT and IPC_EXCL are specified, a unique
shared memory identifier is returned if the system call is successful. Any value
for shmflg returns a new identifier if the key equals zero (IPC_PRIVATE) and
no system-tunable parameters are exceeded.

The system call will fail if the value for the size argument is less than SHMMIN
or greater than SHMMAX. These tunable parameters specify the minimum and
maximum shared memory segment sizes.

Refer to the shmget(2) manual page in the Programmer's Reference Manual for
specific associated data structure initialization for successful completion. The
specific failure conditions and their error names are contained there also.

Example Program

Figure 4-11 is a menu-driven program. It allows all possible combinations of
using the shmget system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 4-7) by including the required header files as
specified by the shmget(2) entry in the Programmer's Reference Manual. Note
that the <sys/errno .h> header file is included as opposed to declaring errno
as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self explanatory. These
names make the program more readable and are perfectly legal since they are
local to the program. The variables declared for this program and what they
are used for are as follows:

key

opperm

flags

shmid

used to pass the value for the desired key

used to store the desired operation permissions

used to store the desired control commands (flags)

used for returning the message queue identification
number for a successful system call or the error code (-1)
for an unsuccessful one

Interprocess Commun lcatlon 4-71

Shared Memory

size used to specify the shared memory segment size

opperm_flags used to store the combination from the logical DRing of
the opperm and flags variables; it is then used in the
system call to pass the shmflg argument

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags)
which are selected from a menu (lines 14-31). All possible combinations are
allowed even though they might not be viable. This allows observing the errors
for illegal combinations.

Next, the menu selection for the flags is combined with the operation permis­
sions; the result is stored in the opperm_flags variable (lines 35-50).

A display then prompts for the size of the shared memory segment; it is stored
in the size variable (lines 51-54).

The system call is made next; the result is stored in the shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals
-1, a message indicates that an error resulted and the external errno variable
is displayed (line 60).

If no error occurred, the returned shared memory segment identifier is
displayed (line 64).

The example program for the shmget system call follows. We suggest that you
name the source program file shmget. c and the executable file shmget.

4-72 Integrated Software Development Guide

Figure 4-11: shmget System Call Example

!*This is a program to illustrate
**the shared memory get, shmget(),
**system call capabilities.*!

iinclude <sys!types.h>
tinclude <sys/ipc.h>
iinclude <sys/shm.h>
tinclude <errno.h>

/*Start of main C language program*!
main ()
{

key_t key; /*declare as long integer*/
int opperm, flags;
int shmid, size, opperrn_flags;
/*Enter the desired key*/
printf (IIEnter the desired key in hex ") ;
scanf("%x", &key);

/*Enter the desired octal operation
permissions.*/

printf (lI\nEnter the operation\n");
printf ("permissions in octal = ");
scanf("%o", &opperm);

/*Set the desired flags.*/
printf (II\nEnter corresponding number to\n");
printf("set the desired flags:\n");
printf ("No flags O\n") ;
printf (IIIPC_CREAT 1 \n");
printf (" IPC_EXCL 2\n");
printf (IIIPC_CREAT and IPC EXCL 3\n");
printf (" Flags ") ;

/*Get the flag(s) to be set.*/
scanf("%d", &flags);

/*Check the values.*/
printf ("\nkey =Ox%x, opperm = 0%0, flags = %d\n",

key, opperm, flags);

/*Incorporate the control fields (flags) with
the operation permissions*/

switch (flags)
{

case 0: /*No flags are to be set.*/
opperrn_flags = (opperm I 0);
break;

case 1: /*Set the IPC CREAT flag.*/

Shared Memory

(continued on next page)

Interprocess Communication 4-73

Shared Memory

Figure 4-11: shmget System Call Example (continued)

opperm_flaqs = (opperm I IPC_CREAT);
break;

case 2: /*Set the IPC_EXCL flaq.*/
opperm_flaqs - (opperm I IPC_EXCL);
break;

case 3: /*Set the IPC_CREAT and IPC_EXCL flaqs.*/
opperm_flaqs = (opperm I IPC_CREAT I IPC_EXCL);

/*Get the size of the segment in bytes.*/
printf ("\nEnter the segment");
printf ("\nsize in bytes = ");

scanf ("%d", &size);

/*Call the shmqet system call.*/
shmid ~ shmqet (key, size, opperm_flaqs);

/*Perform the followinq if the call is unsuccessful.*/
if (shmid == -1)
{

printf ("\nThe shmqet call failed, error number = %d\n", errno);

/*Return the shmid upon successful completion.*/
else

printf ("\nThe shmid = %d\n", shmid);
exit (D);

Controlling Shared Memory

This section describes how to use the shmctl system call. The accompanying
program illustrates its use.

4-74 Integrated Software Development Guide

Shared Memory

Using shmctl

The synopsis found in the shmctl(2) entry in the Programmer's Reference Manual
is as follows:

iinclude <sys/types.h>
iinclude <sys/ipc.h>
iinclude <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

The shmctl system call requires three arguments to be passed to it. It returns
an integer value which will be zero for successful completion or -1 otherwise.

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The cmd argument can be replaced by one of following values:

IPC STAT

IPC SET

IPC RMID

SHM LOCK

SHM LOCK

return the status information contained in the associated data
structure for the specified shmid and place it in the data
structure pointed to by the buf pointer in the user memory
area

for the specified shmid, set the effective user and group
identification, and operation permissions

remove the specified shmid with its associated shared
memory segment data structure

lock the specified shared memory segment in memory; must
be superuser to perform this operation

lock the shared memory segment from memory; must be
superuser to perform this operation

A process must have an effective user identification of OWNER/CREATOR or
superuser to perform an IPC _SET or IPC _RMID control command. Only the
superuser can perform a SHM_LOCK or SHM_UNLOCK control command. A pro­
cess must have read permission to perform the IPC_STAT control command.

Interprocess Communication 4-75

Shared Memory

The details of this system call are discussed in the example program. If you
need more information on the logic manipulations in this program, read "Using
shmget". It goes into more detail than what would be practical for every sys­
tem call.

Example Program
Figure 4-12 is a menu-driven program. It allows all possible combinations of
using the shmctl system call to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmctl(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore,
the <sys/errno. h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self explanatory.
These names make the program more readable and are perfectly legal since they
are local to the program. The variables declared for this program and what
they are used for are as follows:

uid

gid

mode

rtrn

shmid

command

choice

4-76

used to store the IPC SET value for the user identification

used to store the IPC _SET value for the group identification

used to store the IPC_SET value for the operation permis­
sions

used to store the return integer value from the system call

used to store and pass the shared memory segment identifier
to the system call

used to store the code for the desired control command so
that subsequent processing can be performed on it

used to determine which member for the IPC SET control
command is to be changed

Integrated Software Development Guide

shmid ds

buf

Shared Memory

used to receive the specified shared memory segment
identifier's data structure when an IPC_STAT control com­
mand is perfonned

a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con­
trol command is to place its return values or where the
IPC_SET command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the data
structure of the same name located in the <sys/ shm. h> header file as a tem­
plate for its declaration.

The next important thing to observe is that although the buf pointer is declared
to be a pointer to a data structure of the shmid _ ds type, it must also be initial­
ized to contain the address of the user memory area data structure (line 17).

Now that all of the required declarations have been explained for this program,
this is how it works.

First, the program prompts for a valid shared memory segment identifier which
is stored in the shmid variable (lines 18-20). This is required for every shmctl
system call.

Then, the code for the desired control command must be entered (lines 21-29); it
is stored in the command variable. The code is tested to detennine the control
command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is per­
fonned (lines 39, 40) and the status information returned is printed out (lines
41-71). Note that if the system call is unsuccessful (line 139), the status informa­
tion of the last successful call is printed out. In addition, an error message is
displayed and the errno variable is printed out (lines 141). If the system call is
successful, a message indicates this along with the shared memory segment
identifier used (lines 143~ 147).

If the IPC_SET control command is selected (code 2), the first thing done is to
get the current status information for the shared memory identifier specified
(lines 88-90). This is necessary because this example program provides for
changing only one member at a time, and the system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for one
of these members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a code

Interprocess Communication 4-77

Shared Memory

corresponding to the member to be changed (lines 91-96). This code is stored in
the choice variable (line 97). Now, depending upon the member picked, the
program prompts for the new value (lines 98-120). The value is plac~d in the
appropriate memb~r in the user memory area data structure, and the system call
is made (lines 121-128). Depending upon success or failure, the program returns
the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per­
formed (lines 125-128), and the shmid along with its associated message queue
and data structure are removed from the UNIX operating system. Note that the
buf pointer is ignored in performing this control command and its value can be
zero or NULL. Depending upon the success or failure, the program returns the
same m~ssages as for the other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is per­
formed (lines 130,131). Depending upon the: success or failure, the program
returns the same messages as for the· other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call is per­
formed (lines 133-135). Depending lIPon the success or failure, the program
returns the same messages· as for the other control commands.

The example program for the shmctl system call follows. We suggest that you
name the source program file shmctl. c and the executable file shmctl.

4-78 Integrated Software Development Guide

Figure 4-12: shmctl System Call Example

1 /*This is a program to illustrate
2 **the shared memory control, shmctl(},
3 **system call capabilities.

*/

6

7
8

9

10
11
12
13
14
15
16
17

18
19
20
21
22

23
24
25
26
27
28

/*Inc1ude necessary header files.*/
*inc1ude <stdio.h>
*inc1ude <sys/types.h>
* include <sys/ipc.h>
*include <sys/shm.h>

/*Start of main C language program*/
main ()
I

extern int errno;
int uid, gid, mode;
int rtrn, shmid, command, choice;
struct shmid_ds shmid_ds, *buf;
buf ~ &shmid_ds;

/*Get the shmid, and command.*/
printf (IIEnter the shmid ~ ");
scanf("\d", &shmid};
printf ("\nEnter the number for\n");
printf (lithe desired command:\n");

printf("IPC_STAT
printf (" IPC_SET
printf (IIIPC_RMID
printf (IISHM_LOCK
printf (IISHM_UNLOCK
printf ("Entry

l\n");
2\n"};
3\n"};
4\n"} ;
5\n"};
"} ;

29 scanf ("\d", &command);

30 /*Check the values.*/
31 printf ("\nshmid =\d, command = \d\n",
32 shmid, command);

33 switch (command)
34 {

35

36
37
38

case 1: /*Use shmctl(} to get
the data structure for
shmid in the shmid_ds area pointed
to by buf and then print it out.*/

Shared Memory

(continued on next page)

Interprocess Communication 4-79

Shared Memory

Figure 4-12: shmctl System Call Example (continued)

4-80

39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63

64
65
66
67
68
69
70

86
87

88

89
90

91

92

rtrn = shmct1(shmid, IPC_STAT,
buf) ;

printf ("\nThe USER ID = %d\n",
buf->shm~rm.uid);

printf (liThe GROUP ID = %d\n",
buf->shm_perm.gid);

printf (liThe creator's ID = %d\n",
buf->shm~rm.cuid);

printf (liThe creator's group ID = %d\n",
buf->s~perm.cgid);

printf (liThe operation permissions = O%o\n",
buf->shm~rm.mode);

printf (liThe slot usage sequence\n");
printf ("number = O%x\n",

buf->shm~rm.seq);

printf (liThe key= O%x\n",
buf->shm_perm.key);

printf (liThe segment size = %d\n",
buf->shm_segsz) ;

printf (liThe pid of last shmop = %d\n",
buf->shm_lpid);

printf (liThe pid of creator = %d\n",
buf->shm_cpid) ;

printf (liThe current # attached = %d\n",
buf->shm_nattch);

printf (liThe last shmat time = Ud\n",
buf->shm_atime);

printf (liThe last shmdt time = Ud\n",
buf->shm_dtime) ;

printf (liThe last change time = %ld\n",
buf->shm_ctime);

break;

/* Lines 71 - 85 deleted */

case 2: /*Select and change the desired
member(s) of the data structure.*/

/*Get the original data for this shmid
data structure first.*/

rtrn = shmctl(shmid, IPC_STAT, buf);

printf ("\nEnter the number for the\n");
printf ("member to be changed:\n");

(continued on next page)

Integrated Software Development Guide

Figure 4-12: shmctl System Call Example (continued)

93
94
95
96
97

98
99

100
101
102
103
104
105

106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124

125

printf("shmyerm.uid = l\n");
printf ("shmyerm.gid = 2\n");
printf (IIshmyerm.mode - 3\n");
printf (IIEntry = ");

scanf("\d", &choice);

switch (choice) {
case 1:

printf (II\nEnter USER ID = ");

scanf ("%d", &uid);
buf->shmyerm.uid = uid;
printf ("\nUSER ID .. %d\n",

buf->shm-P9rm.uid);
break;

case 2:
printf ("\nEnter GROUP ID = ");

scanf ("\d", &gid);
buf->shmyerm.gid = gid;
printf ("\nGROUP ID - %d\n",

buf->shm-P9rm.gid);
break;

case 3:
printf ("\nEnter MODE in octal ") ;
scanf (11%0", &mode):
buf->shmyerm.mode = mode;
printf ("\nMODE = O%o\n",

buf->shm-P9rm.mode);
break;

/*00 the change.*/
rtrn = shmctl(shmid, IPC_SET,

buf):
break:

case 3: /*Remove the shmid along with its
126 associated
127 data structure.*/
128 rtrn = shmctl(shmid, IPC_RMID, (struct shmid_ds *) NULL);
129 break;

130 case 4: /*Lock the shared memory segment*/
131 rtrn = shmctl (shmid, SHM_LOCK, (struct shmid_ds *) NULL);

Shared Memory

(continued on next page)

Interprocess Communication 4-81

Shared Memory

Figure 4-12: shrnctl System Call Example (continued)

132 break;
133 case 5: /*Unlock the shared memory
134 segment.*/
135 rtrn ~ shmctl (shmid, SHM_UNLOCK, (struct shm1d_ds *) NULL);
136 break;
137
138 /*Perform the following if the call is unsuccessful.*/
139 if(rtrn -= -1)
140 {
41 printf ("\nThe shmctl call failed, error number = %d\n", errno);
142
143 /*Return the shmid upon successful completion.*/
144 else
145 printf ("\nShmctl was successful for shmid = %d\n",
146 shmid);
147 exit (0);
148

Operations for Shared Memory

This section describes how to use the shmat and shmdt system calls. The
accompanying program illustrates their use.

Using shmop
The synopsis found in the shmop(2) entry in the Programmer's Reference Manual
is as follows:

4-82 Integrated Software Development Guide

Shared Memory

#include <sys/types.h>
#include <sys/ipc.h>
finclude <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

Attaching a Shared Memory Segment
The shmat system call requires three arguments to be passed to it. It returns a
character pointer value. Upon successful completion, this value will be the
address in memory where the process is attached to the shared memory seg­
ment and when unsuccessful the value will be -l.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the
shmat system call. If it is zero, the UNIX operating system picks the address
where the shared memory segment will be attached. If it is user supplied, the
address must be a valid address that the UNIX operating system would pick.
The following illustrates some typical address ranges.

OxcOOcOOOO
OxcOOeOOOO
Oxc01OOOOO
Oxc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. It would be
wise to let the operating system pick addresses so as to improve portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY flags to
the s hma t system call.

Interprocess Communication 4-83

Shared Memory

Detaching Shared Memory Segments
The shmdt system call requires one argument to be passed to it. It returns an
integer value which will be zero for successful completion or -1 otherwise.

Further details on shmat and shmdt are discussed in the example program. If
you need more information on the logic manipulations in this program, read
/lUsing shmget". It goes into more detail than would be practical to do for
every system call.

Example Program

Figure 4-13 is a menu-driven program. It allows all possible combinations of
using the shmat and shmdt system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual. Note that
in this program errno is declared as an external variable; therefore, the
<sys/errno.h> header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self explanatory. These names
make the program more readable and are perfectly legal since they are local to
the program. The variables declared for this program and what they are used
for are as follows:

addr

laddr

flags

i

4-84

used to store the address of the shared memory segment for
the shmat and shmdt system calls and to receive the return
value from the shmat system call

used to store the desired attach/detach address entered by
the user

used to store the codes of the SHM_RND or SHM_RDONLY flags
for the shmat system call

used as a loop counter for attaching and detaching

Integrated Software Development Guide

attach

shmid

shmflg

retrn

detach

Shared Memory

used to store the desired number of attach operations

used to store and pass the desired shared memory segment
identifier

used to pass the value of flags to the shmat system call

used to store the return values from the shmdt system call

used to store the desired number of detach operations

This example program combines both the shmat and shmdt system calls. The
program prompts for the number of attachments and enters a loop until they
are done for the specified shared memory identifiers. Then, the program
prompts for the number of detachments to be performed and enters a loop until
they are done for the specified shared memory segment addresses.

shmat

The program prompts for the number of attachments to be performed, and the
value is stored at the address of the attach variable (lines 19-23).

A loop is entered using the attach variable and the i counter (lines 23-72) to
perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines
26-29); it is stored in the shmid variable (line 30). Next, the program prompts
for the address where the segment is to be attached (lines 32-36); it is stored in
the laddr variable (line 37) and converted to a pointer (line 39). Then, the pro­
gram prompts for the desired flags to be used for the attachment (lines 40-47),
and the code representing the flags is stored in the f lags variable (line 48).
The flags variable is tested to determine the code to be stored for the shmflg
variable used to pass them to the shmat system call (lines 49-60). The system
call is executed (line 63). If successful, a message stating so is displayed along
with the attach address (lines 68-70). If unsuccessful, a message stating so is
displayed and "the error code is displayed (line 65). The loop then continues
until it finishes.

shmdt

After the attach loop completes, the program prompts for the number of detach
operations to be performed (lines 73-77) and the value is stored in the detach
variable (line 76).

Interprocess Communication 4-85

Shared Memory

A loop is entered using the detach variable and the i counter (lines 80-98) to
perfonn the specified number of detachments.

In this loop, the program prompts for the address of the shared memory seg­
ment to be detached (lines 81-85); it is stored in the laddr variable (line 86) and
converted to a pointer (line 88). Then, the shmdt system call is performed (line
89). If successful, a message stating so is displayed along with the address that
the segment was detached from (lines 95, 96). If unsuccessful, the error number
is displayed (line 92). The loop continues until it finishes.

The example program for the shmop system calls follows. We suggest that you
name the source program file shmop. c and the executable file shmop.

Figure 4-13: shmop System Call Example

1 /*This is a program to illustrate
2 **the shared memory operations, shmop(),
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 .include <stdio.h>
7 .include <sys/types.h>
8 'include <sys/ipc.h>
9 .include <sys/shm.h>

10 /*Start of main C language program*/
11 mainO
12 {
13 extern int errno;
14 char *addr;
15 long laddr;
16 int flags, i, attach;
17 int shmid, shmflg, retrn, detach;

18 /*Loop for attachments by this process.*/
19 printf ("Enter the number of\n");
20 printf (llattachments for this\n");
21 printf("process (1-4). \n");
22 printf (" Attachments = ");

23 scanf ("%d", &attach);
24 printf("Number of attaches = %d\n", attach);

~ ~
(continued on next page)

4-86 Integrated Software Development Guide

Figure 4-13: shmop System Call Example (continued)

25
26

27
28
29
30
31

32
33

34
35
36

37
38
39

40

41
422
43
44
45
46
47
48

49

50
51
52
53
54
55
56
57

58
59
60

61

62

63

forti - 1; i <= attach; i++) {
I*Enter the shared memory 10.*1
printf ("\nEnter the shmid of\n");
printf (lithe shared memory segment to\n");
printf("be operated on = ");
scanf("%d", &shmid);
printf (II\nshmid - %d\n", shmid);

I*Enter the value for shmaddr.*1
printf ("\nEnter the value for\n");
printf("the shared memory address\n");
printf ("in hexadecimal:\n");
printf(" Shmaddr - ");
scanf("%lx", &laddr);
addr = (char*) laddr;
printf("The desired address = Ox%lx\n", (long)addr);

I*Specify the desired flags.*1
printf("\nEnter the corresponding\n");
printf(IInumber for the desired\n");

printf(lIflags:\n") ;
printf ("SHM_RND

printf (IISHM_RDONLY

1\n");
2\n");

printf (IISHM_RND and SHM_RDONLY = 3\n");
printf (" Flags ");
scanf("%d", &flags);

switch (flags)
{

case 1:
shmflg = SHM_RND;

break;
case 2:

shmflg = SHM_RDONLY;

break;
case 3:

shmflg = SHM RND SHM_RDONLY;

break;

printf ("\nFlags = O%o\n", shmflg);

1*00 the shmat system call.*1
addr = shmat(shmid, addr, shmflg);

Shared Memory

(continued on next page)

Interprocess Communication 4-87

Shared Memory

Figure 4-13: shmop System Call Example (continued)

64
65
66
67
68
69
70
71
72

73
74
75
76
77

78
79
80

81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98
99

~

4-88

if(addr == (char*) -1) {
print! ("\nShrnat failed, error = %d\n", errno);

else {
print! ("\nShrnat was successful\n");
print! (llfor shmid = %d\n", shmid);
printf (liThe address = OX%lx\n", (long) addr);

I*Loop for detachments by this process.*1
printf("Enter the number of\n");
printf("detachments for this\n");
printf ("process (1-4). \n") ;
printf (" Detachments = ");

scanf("%d", &detach);
printf("Nurnber of attaches - %d\n", detach);
for(i = 1; i <= detach; i++) {

I*Enter the value for shmaddr.*1
printf ("\nEnter the value for\n");
printf (lithe shared memory address\n");
printf ("in hexadecimal:\n");
printf (" Shmaddr = ");

scanf ("%lx", &laddr);
addr - (char*)laddr;
printf (liThe desired address Ox%lx\n", (long) addr);

I*Do the shmdt system call.*1
retrn = shmdt(addr);
if(retrn == -1) {

printf (IIError = %d\n", errno);

else {
printf ("\nShmdt was successful\n");
printf (" for address = Ox%lx\n", (long) addr);

Integrated Software Development Guide

IPC Programming Example

To illustrate the use of UNIX system programming tools in the development of
an application, we are going to pretend we are engaged in the development of a
computer system for a library. The system is known as liber. The early
stages of system development, we assume, have already been completed; feasi­
bility studies have been done, the preliminary design is described in the coming
paragraphs. We are going to stop short of producing a complete detailed
design and module specifications for our system. You will have to accept that
these exist. In using portions of the system for examples of the topics covered
in this chapter, we will work from these virtual specifications.

We make no claim as to the efficacy of this design. It is the way it is only in
order to provide some passably realistic examples of UNIX system program­
ming tools in use. It is not an application, but rather is code fragments only.

liber is a system for keeping track of the books in a library. The hardware
consists of a single computer with terminals throughout the library. One termi­
nal is used for adding new books to the data base. Others are used for checking
out books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning of the
day and remain running while the library is in operation. Associated with each
terminal is a program specific to the function of that terminal, each running as a
separate UNIX process. The system has one master index that contains the
unique identifier of each title in the library. When the system is running the
index is mapped into the address space of each process. Semaphores are used
to synchronize access to the index. In the pages that follow fragments of some
of the system's programs are shown to illustrate the way they work together.
The startup program performs the system initialization; opening the semaphores
and the index file; mapping the index file into memory; and kicking off the
other programs. The id numbers for the semaphores (wrtsem, and rdsem) are
written to a file during initialization, this file is then read by all the subsidiary
programs so that all use the same semaphores.

All the programs share access to the index file. They gain access to it with the
following code:

Interprocess Communication 4-89

IPC Programming Example

/*
* Gain access to the index file, map it in.
* After mapping, free the file descriptor so
* that it will be available for other uses -­
* the mapping will remain until the program
* exits, or until the mapping is removed either
* by munrnap() or by mapping over top of this one
* with another call to rnmap(). Note the use of
* the read/write open mode -- all programs but
* "add-books" should open ::lust for read-only.
*/
if «index_fd = open("index.file", O_RDWR)) == -1)
{

/*

(void) fprintf(stderr, "index open failed: %d\n", errno);
exit (1);

* Establish the mapping. As with the call to
* open (), all programs but "add-books" should
* map with PROT_READ for read-only access.
*/

if «int) (index = (INDEX *)mrnap(O, sizeof (INDEX), PROT_READ I PROT_WRITE,
MAP_SHARED, index_fd, 0) == -1)

(void) fprintf(stderr, "shrnat failed: %d\n", errno);
exit (1) ;

(void) close(index_fd);

The preceding code fragment establishes a mapping to the index file in the
address space of the program. Access to the addresses at which the file is
mapped affect the file directly, no further file operations are required. For
instance, if the access deposits data at the accessed address, then the file will be
modified by operation. If the access examines data, then the file will be
accessed. In either case, the portion of the file containing the information will
be obtained or restored to secondary storage automatically by the system and
transparently to the application.

Of the programs shown, add-books is the only one that alters the index. The
semaphores are used to ensure that no other programs will try to read the index
while add-books is altering it. The checkout program locks the file record for
the book, so that each copy being checked out is recorded separately and the
book cannot be checked out at two different checkout stations at the same time.

4-90 Integrated Software Development Guide

IPC Programming Example

The program fragments do not provide any details on the structure of the index
or the book records in the data base.

1* liber.h - header file for the
library system.

*1
typedef ••• INDEX;
typedef struct {

1* data structure for book file index *1
1* type of records in book file */

char title[30];
char author[30];

BOOK;
int index_fd;
int wrtsem;
int rdsem;
INDEX *index;

int book_file;
BOOK book _ buf;

1* startup program *1

1*
* 1. Open index file and map it in.
* 2. Open two semaphores for providing exclusive write access to index.
* 3. Stash id's for shared memory segment and semaphores in a file

where they can be accessed by the programs.
* 4. Start programs: add-books, card-catalog, and checkout running

on the various terminals throughout the library.
*1

Hnclude <stdio.h>
Hnclude <sys/types.h>
Hnclude <sys/ipc.h>
Hnclude <sys/shm.h>
Hnclude <sys/sem.h>
Hnclude "liber.h"

void exit () ;
extern int errno;

key_t key;
int shmid;
int wrtsem;

Interprocess Communication

(continued on next page)

4·91

IPC Programming Example

4-92

int rdsem;
FILE *ipc_file;

main ()
{

/*
* Open index file and map it.
*/

/* See previous example */

/*
* Get the read/write semaphores.
*/

if ((wrtsem = semget(key, 1, IPC_CREAT I 0666» == -1)
(

(void) fprintf(stderr, "startup: semqet failed: errno-%d\n", errno);
exit (1);

if ((rdsem = semget(key, 1, IPC_CREAT I 0666» == -1)
{

(void) fprintf (stderr, "startup: semget failed: errno=%d\n", errno);
exit (1) ;

(void) fprintf(ipc_file, "%d\n%d\n", wrtsem, rdsem);

/*
* Start the add-books program running on the terminal in the
* basement. Start the checkout and card-catalog programs
* running on the various other terminals throughout the library.
*/

/* card-catalog program*/

/*

* 1. Read screen for author and title.
* 2. Use semaphores to prevent reading index while it is being written.
* 3. Use index to get position of book record in book file.

(continued on next page)

Integrated Software Development Guide

IPC Programming Example

* 4. Print book record on screen or indicate book was not found.
* 5. Go to l.
*/

#include
#include
#include
#include
#include
Hnclude

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

<fcntl.h>
"liber.h"

void exit () ;
extern int errno;
struct sembuf sop[I];

main ()

while (1)
{

/*
* Read author/title/subject information from screen.
*/

/*
* Wait for write semaphore to reach 0 (index not being written) •
*/

sop[O].sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)
{

(void) fprintf (stderr, "semop failed: %d\n", errno);
exit (1) ;

/*
* Increment read semaphore so potential writer will wait
* for us to finish reading the index.
*/

sop[O].sem_op = 0;
if (semop(rdsem, sop, 1) == -1)
{

(void) fprintf(stderr, "semop failed: %d\n", errno);
exit (1) ;

(continued on next page)

Interprocess Communication 4-93

IPC Programming Example

4-94

/* Use index to find file pointer(s) for book(s) */

/* Decrement read semaphore */
sop[O].sem_op = -1;
if (semop(rdsem, sop, 1) == -1)
I

/*

(void) fprintf (stderr, "semop failed: %d\n", errno);
exit (1) ;

* Now we use the file pointers found in the index to
* read the book file. Then we print the information
* on the book(s) to the screen.
*/

1*
* Note design alternatives for this portion of the
* the code: the book file could be accessed by
* lseek()s to the portion of the file containing
* the record, and then read() could be used to
* obtain the file information. Alternatively, the
* entire book file could be mapped into memory, and the
* the record accessed directly without further
* file operations, or the area of the file containing
* the book record could just be mapped and then unmapped
* when the access is complete.
*/

} /* while */

/* checkout program */

/*

* 1. Read screen for Dewey Decimal number of book to be checked out.
* 2. Use semaphores to prevent reading index while it is being written.
* 3. Use index to get position of book record in book file.
* 4. If book not found print message on screen, otherwise lock

book record and read.
* 5. If book already checked out print message on screen, otherwise

mark record "checked out" and write back to book file.
* 6. Unlock book record.
* 7. Go to 1.

(continued on next page)

Integrated Software Development Guide

IPC Programming Example

*/

Jlinclude
#include
Jlinclude
finclude
finclude
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

<fcntl.h>
"liber.h"

void exit () ;
long lseek () ;
extern int errno;
struct flock flk;
struct sembuf sop[I];
long bookpos;

main ()
{

while (1)
{

/*
* Read Dewey Decimal number from screen.
*/

/*
* Wait for write semaphore to reach 0 (index not being written) •
*/

sop[Oj.sem_flg = 0;
sop[Oj.sem_op = 0;
.if (semop(wrtsem, sop, 1) == -1)
{

(void) fprintf(stderr, "semop failed: %d\n", ermo);
exit (1) ;

/*
* Increment read semaphore so potential writer will wait
* for us to finish reading the index.
*/

sop[Oj .sem_op = 1;
if (semop(rdsem, sop, 1) == -1)
{

(void) fprintf (stderr, "semop failed: %d\n", ermo);
exit (1);

(continued on next page)

Interprocess Communication 4-95

IPC Programming Example

4-96

/*
* Now we can use the index to find the book's record position.
* Assign this value to "bookpos".
*/

/* Decrement read semaphore */

sop[O).sem_op = -1:
if (sernop(rdsern, sop, 1) == -1)
{

(void) fprintf (stderr, "semop failed: %d\n", errno):
exit (1):

/*
* Lock the book's record in book file, read the record.
* Here again we have the design option of deciding to
* access and update the database through the use of
* seeks, read()s and write()s: or file mapping can
* be used to access the file. File mapping has the
* disadvantage that it does not interact well with
* enforcement-mode locking, although semaphores
* could be used as an alternative synchronization
* mechanism to file locking. File mapping would have
* potential efficiency advantages, eliminating the need
* for repetitive file access operations and attendant
* data copying. For this example, however, we choose
* not to use mapping to demonstrate the use of other
* system facilities.
*/

flk.l_type = F_WRLCK:
flk.l_whence = 0:
flk.l_start = bookpos:
flk.I_len = sizeof(BOOK);
if (fcntl(book_file, F_SETLKW, &flk) -1)

(void) fprintf (stderr, "trouble locking: %d\n", errno):
exit (1):

if (lseek(book_file, bookpos, 0) == -1)
{

(Error processing for lseek);

if (read (book_file, &book_buf, sizeof(BOOK» == -1)

(continued on next page)

Integrated Software Development Guide

IPC Programming Example

(Error processing for read);

/*
* If the book is checked out inform the client, otherwise
* mark the book's record as checked out and write it
* back into the book file.
*/

/* Unlock the book's record in book file. */

flk.l_type - F_UNLCK;
if (fcntl(book_file, F_SETLK, &flk) -~ -1)
{

(void) fprintf (stderr, "trouble unlocking: %d\n", errno);
exit (1);

} /* while */

/* add-books program*/

/*
* 1. Read a new book entry from screen.
* 2. Insert book in book file.
* 3. Use semaphore "wrtsem" to block new readers.
* 4. Wait for semaphore "rdsem" to reach O.
* 5. Insert book into index.
* 6. Decrement wrtsem.
* 7. Go to 1.
*/

iinclude <stdio.h>
Jlinclude
Unclude
Unclude
Unclude

<sys/types.h>
<sys/ipc.h>
<sys/sem.h>
"liber.h"

void exit 0;
extern int errno;
struct sembuf sop(I];
BOOK bookbuf;

main()
{

Interprocess Communication

(continued on next page)

4-97

IPC Programming Example

4-98

for (;;)

/*
* Read information on new book from screen.
*/

addscr(&bookbuf);

/* write new record at the end of the bookfile.
* Code not shown, but
* addscr() returns a 1 if title information has
* been entered, 0 if not.
*/

1*
* Increment write semaphore, blocking new readers from
* accessing the index.
*/

sop[O).sem_flg - 0;
sop[O).sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)
{

(void) fprintf(stderr, "semop failed: %d\n", errno);
exit (1) ;

1*
* Wait for read semaphore to reach 0 (all readers to finish
* using the index).
*/

sop[O].sem_op = 0;
if (semop(rdsem, sop, 1) == -1)
{

(void) fprintf (stderr, "semop failed: %d\n", errno);
exit(1);

/*
* Now that we have exclusive access to the index we
* insert our new book with its file pointer.
*1

1* Decrement write semaphore, permitting readers to read index. *1
sop[O] .sem_op = -1;

(continued on next page)

Integrated Software Development Guide

IPC Programming Example

if (semop(wrtsern, sop, 1) == -1)
{

} /* for */

(void) fprintf (stderr, "sernop failed: %d\n", errno);
exit (1);

The example following, addscr, illustrates two significant points about curses
screens:

1. Information read in from a curses window can be stored in fields that
are part of a structure defined in the header file for the application.

2. The address of the structure can be passed from another function where
the record is processed.

Interprocess Communication 4·99

IPC Programming Example

4-100

finclude <curses.h>

WINDOW *cmdwin;

addscr(bb)
struct BOOK *bb;

int c;

initscr 0;
nonl ();
noecho ();
cbreak ();

/* addscr is called from add-books.
* The user is prompted for title

information.
*/

cmdwin = newwin (6, 40, 3, 20);
mvprintw(O, 0, "This screen is for adding titles to the data base");
mvprintw(l, 0, "Enter a to add; q to quit: ");
refresh 0;
for (;;)

refresh 0;
c = getch ();
switch (c) {

case 'a':
werase (andwin) ;
box (cmdwin, , I', , -') ;
mvwprintw(cmdwin, 1, 1, "Enter title: ");
wmove(cmdwin, 2, 1);
echo ();
wrefresh(cmdwin);
wgetstr(cmdwin, bb->title);
noecho ();
werase (andwin);
box (cmdwin, , I', , -') ;
mvwprintw (cmdwin, 1, 1, "Enter author: ");
wmove(cmdwin, 2, 1);
echo ();
wrefresh(cmdwin);
wgetstr(cmdwin, bb->author);
noecho ();
werase (andwin);
wrefresh(cmdwin);

(continued on next page)

Integrated Software Development Guide

case 'q':

endwin ();
return (1);

erase 0 ;
endwin () ;
return (0) ;

* Makefile for liber library system

*
CC ~ cc
CFLAGS = -0
all: startup add-books checkout card-catalog

startup: liber.h startup.c
S(CC) S(CFLAGS) -0 startup startup.c

add-books: add-books.o addscr.o
S(CC) S(CFLAGS) -0 add-books add-books.o addscr.o

add-books.o: liber.h

checkout: liber.h checkout.c
S(CC) S(CFLAGS) -0 checkout checkout.c

card-catalog: liber.h card-catalog.c
S(CC) S(CFLAGS) -0 card-catalog card-catalog.c

Interprocess Communication

IPC Programming Example

4-101

5 Directory and File Management

Introduction

Structure of the File System
Types of Files

• Regular Files
• Directory Files
• Special Files

Organization of Files
File Naming
Path Names

• Full Path Names
• Relative Path Names

File Types
File Protection

• File Permissions
• Setting Default Permissions
• How to Determine Existing Permissions
• How to Change Existing Permissions
• A Note on Permissions and Directories
• An Alternative Method

Symbolic Links
Properties of Symbolic Links
Using Symbolic Links

• Creating Symbolic Links
• Removing Symbolic Links
• Accessing Symbolic Links
• Copying Symbolic Links
• Linking Symbolic Links
• Moving Symbolic Links

Table of Contents

5-1

5-2
5-2
5-2
5-2
5-3
5-4
5-6
5-7
5-7
5-10
5-14
5-16
5-16
5-18
5-19
5-22
5-24
5-24

5-25
5-27
5-29
5-29
5-31
5-31
5-31
5-32
5-33

Table of Contents

• File Ownership and Permissions
Using Symbolic Links with RFS
Archiving Commands

Summary of UNIX System Files &
Directories
UNIX System Directories
Directories and Files
Directory and File Relocations

• Directories in root
• Directories in letc
• Files in letc
• Directories in lusr
• Files in lusr
• Directories in Ivar
• Files in Ivar

5-34
5-34
5-37

5-38
5-39
5-40
5-41
5-46
5-48
5-51
5-58
5-60
5-62
5-65

II Integrated Software Development Guide

Introduction

UNIX System V File System functions create and remove files and directories,
and inspect and modify their characteristics. Processes use these functions to
access files and directories for subsequent I/O operations. One of the most
important services provided by an operating system is to maintain a consistent,
orderly and easily accessed file-system. The UNIX System V file-system con­
tains directories of files arranged in a tree-like structure. The UNIX System V
file-system is simple in structure; nevertheless, it is more powerful and general
than those often found even in considerably larger operating systems.

All UNIX System V files have a consistent structure to conceal physical proper­
ties of the device storing the file, such as the size of a disk track. It is not neces­
sary, nor even possible, to preallocate space for a file. The size of a file is the
number of bytes in it, with the last byte determined by the high-water mark of
writes to the file. UNIX System V presents each file as a featureless, randomly
addressable sequence of bytes arranged as a one-dimensional array of bytes
ending with EOF.

The UNIX System V file-system organizes files and directories into a tree-like
structure of directories with files attached anywhere (and possibly multiply) into
this hierarchy of directories. Files can be accessed by a "full-path-name" or
"relative-path-name", have independent protection modes, are automatically
allocated and de-allocated, and can be linked across directories.

In the hierarchically arranged directory tree-structure, each directory contains a
list of names (character strings) and the associated file index, which implicitly
refers to the same device as does the directory. Because directories are them­
selves files, the naming structure is potentially an arbitrary directed graph.
Administrative rules restrict it to have the form of a tree, except that non­
directory-files may have several names (entries in various directories).

The same non-directory-file may appear in several directories under possibly
different names. This feature is called linking; a directory-entry for a file is
sometimes called a link. UNIX System V differs from other systems in which
linking is permitted in that all links to a file have equal status. That is, a file
does not exist within a particular directory; the directory-entry for a file consists
merely of its name and a pointer to the information actually describing the file.
Thus, a file exists independently of any directory-entry, although in practice a
file is removed along with the last link to it.

Directory and File Management 5-1

Structure of the File System

Types of Fi les

From the point of view of the user, there are three types of files:

1. regular-files.

2. directory-files.

3. special-files.

The user and user application programs access all three types of files simply as
a string of bytes, and must interpret the file appropriately. In UNIX System V,
files normally reside on a disk.

Regular Files
Regular-files contain whatever information users write onto them (e.g., character
data, source programs or binary objects). Any file other than a special-file or a
directory-file is a regular-file. Every file is a (one-dimensional) array of bytes;
UNIX System V imposes no further structure on the contents of files. A file of
text consists simply of a string of characters, with the new-line character delimit­
ing lines. Binary files are sequences of words as they appear in memory when
the file executes. Some programs operate on files with more structure; for
example, the assembler generates, and the loader expects, object files in a
specific format. The programs that use files dictate their structure, not the sys­
tem.

Directory Files

Directory-files (also called "directories") provide the mapping (paths) between
the names of files and the files themselves. Directories induce a tree-like struc­
ture on the file-system as a whole to create a hierarchical system of files with
directories as the nodes in the hierarchy. A directory is a file that catalogs the
files, including directories (sub-directories), directly beneath it in the hierarchy.

Each user owns a directory of files, and may also create sub-directories to con­
tain groups of files conveniently treated together. A directory behaves exactly
like a regular-file except that only the operating system can write onto it. UNIX
System V controls the contents of directories; however, users with permission
may read a directory just like any other file.

5-2 Integrated Software Development Guide .

Structure of the File System

The operating system maintains several directories for its own use. One of
these is the root-directory. Each file in the file-system can be found by tracing a
path from the root-directory through a chain of directories until the desired file
is reached. Other system directories contain any programs provided for general
use; that is, all commands; however, it is by no means necessary that a program
reside in one of these directories for it to be executed.

Entries in a directory-file are called links. A link associates a file-identifier with
a file-name. Each directory has at least two links, 1/ • " (dot) and 1/ •• " (dot-dot).
The link dot refers to the directory itself; while dot-dot refers to the parent of the
directory in which dot-dot appears. Programs may read the current-directory
using 1/ • " without knowing its complete path-name.

The root-directory, which is the top-most node of the hierarchy, has itself as its
parent-directory; thus, 1/ /" is the path-name of both the root-directory and the
parent-directory of the root-directory.

The directory structure is constrained to have the form of a rooted tree. Except
for the special entries " . " and 1/ •• ", each directory must appear as an entry in
exactly one other directory, which is its parent. The reason for this is to sim­
plify the writing of programs that visit sub-trees of the directory structure, and
more important, to avoid the separation of portions of the hierarchy. If arbi­
trary links to directories were permitted, it would be quite difficult to detect
when the last connection from the root-directory to a directory was severed.

Special Files

Special files constitute the most unusual feature of the UNIX System V file­
system. Each supported I/O device is associated with at least one special file.
Special files are read and written just like regular-files, but requests to read or
write result in activation of the associated device-handler (driver) rather than
the normal file mechanism.

An entry for each special-file resides under the directory II /dev", although a
link may be made to one of these files just as it may to a regular-file. For exam­
ple, to write on magnetic tape one may write on the file" /dev/mt". Special
files exist for peripheral devices such as terminal ports, communication links,
disk drives, tape drives and for physical main memory. Of course, the active
disks and memory special-files are protected from indiscriminate access by
appropriate read and write pennissions.

Directory and File Management 5-3

Structure of the File System

There are several advantages to treating I/O devices this way:

• file and device I/O are as similar as possible; all I/O is treated uniformly,
and the same system calls work on all types of files.

• file and device names have the same syntax and meaning, so that a pro­
gram expecting a file-name as a parameter can be passed a device name.

• the same protection mechanism works on special-files, directory-files and
regular-files.

Organization of Files

The file system is made up of a set of regular files, special files, symbolic links,
and directories. These components provide a way to organize, retrieve, and
manage information electronically. Chapter 2 on "File and Device
Input/Output" introduced some of the properties of directories and files; this
section will review them briefly before discussing how to use them.

• A regular file is a collection of characters stored on a disk. It may contain
text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A symbolic link is a file that points to another file.

• A directory is a collection of files and other directories (sometimes called
subdirectories). Use directories to group files together on the basis of any
criteria you choose. For example, you might· create a directory for each
product that your company sells or for each of your student's records~

The set of all the directories and files is organized into a tree shaped structure.
Figure 5-1 shows a sample file structure with a directory called root (/) as its
source. By moving down the branches extending from root, you can reach
several other major system directories. By branching down from these, you can,
in turn, reach all the directories and files in the file system.

5·4 Integrated Software Development Guide

Figure 5-1: A Sample File System

o = Directories

D = Regular Files

\l = Special Files

= Branch

Directory and File Management

Structure of the File System

5-5

Structure of the File System

In this hierarchy, files and directories that are subordinate to a directory have
what is called a parent/child relationship. This type of relationship is possible
for many layers of files and directories. In fact, there is no limit to the number
of files and directories you may create in any directory that you own. Neither
is there a limit to the number of layers of directories that you may create. Thus
you have the capability to organize your files in a variety of ways, as shown in
the preceding figure.

File Naming

Strings of 1 to {NAME_MAX} characters may be used to name a regular-file,
directory-file or special-file. {NAME_MAX} must be at least 14, and the characters
may be any from the set of all character values excluding null and slash, " /".
The following are examples of legal directory or file names:

memo MEMO section2 ref:list
file.d chap3+4 iteml-10 outline

A regular-file, special-file or directory may have any name that conforms to the
following rules:

5·6

• All characters other than / are legal.

• Non-printing characters including space, tab and backspace, are best
avoided. If you use a space or tab in a directory or file-name, you must
enclose the name in quotation-marks on the command-line.

• Note that it is genenilly unwise to use " * ", I/?", " ! ", /I [" or "] " as
part of file-names because of the special meaning given these characters
for file-name expansion by the command interpreter [see system(2)].
Other characters to avoid are the hyphen, /I <", /I>", backslash, single and
double quotes, accent grave, vertical bar, caret, curly braces and
parentheses.

• Avoid using a +, - or . as the first character in a file-name.

• Upper case and lower case characters are distinct to the UNIX system.
For example, the system considers a directory (or file) named draft to be
different from one named DRAFT.

Integrated Software Development Guide

Structure of the File System

Path Names

The name of a file may take the form of a path-name, which is a sequence of
directory names separated from one another by " /" and ending in a file-name.
In a program, a path-name is a null-terminated character-string starting with an
optional slash, " / ", followed by zero or more directory-names separated by
slashes and optionally followed by a file-name.

More precisely, a path-name is a null-terminated character-string as follows:

<path_name> ::=<file_name> I <path_prefix><file_name> 1/ I . I ..
<path_prefix> ::= <rtprefix> I / <rtprefix> I empty
<rtprefix> ::= <dirname> / I <rtprefix><dirname> /

where <file_name> is a string of 1 to {NAME_MAX} significant characters (other
than slash and null), and <dirname> is a string of 1 to {NAME_MAX} significant
characters (other than slash and null) that names a directory. The result of
names not produced by the grammar are undefined. A null string is undefined
and may be considered an error. As a limiting case, the path-name /I /" refers
to the root-directory itself. An attempt to create or delete the path-name slash
by itself is undefined and may be considered an error. The meanings of " . "
and" .. " are defined earlier under the heading "Directory Files".

The sequence of directories preceding the file-name is called a path-prefix, and if
the path-prefix begins with a slash, the search begins in the root-directory. This
is called a full-path-name.

Full Path Names

A full path name (sometimes called an "absolute path name") starts in the root
directory and leads down through a unique sequence of directories to a particu­
lar directory or file. Because a full path name always starts at the root of the
file system, its leading character is always a / (slash). The final name in a full
path name can be either a file name or a directory name. All other names in the
path must be directories. You can use a full path name to reach any file or
directory in the UNIX system in which you are working.

To understand how a full path name is constructed and how it directs you, con­
sider the following example. Suppose you are working in the starship direc­
tory, located in /home. You issue the pwd command and the system responds
by printing the full path name of your working directory: /home/ starship.

Directory and File Management 5-7

Structure of the File System

The following figure and key diagrams the elements of this path name:

Figure 5-2: Diagram of a Full Path-Name

/ (leading) = the slash that appears as the first character
in the path name is the root of the file system

home = system directory one level below root in the
hierarchy to which root points or branches

/ (subsequent) = the next slash separates or delimits the
directory names home and starship

starship = current working directory

root

system
directory

delimiter

nl~
/home/starship

home
directory

The following path-name:

/usr/bin/send

causes a search of the root-directory for directory" usr", then a search of
" us r" for "bin 1/, finally to find "send II in "bin". The file " send" may be a
directory, regular or special-file. A null-prefix (or for that matter, any path­
prefix without an initial" / ") causes the search to begin in the current-directory
of the user. Thus, the simplest form of path-name, "alpha ", refers to a file
found in the current-directory, and the path-name" alpha/beta II specifies the
file named "beta 1/ in sub-directory" alpha II of the current-directory. This
relative-path-name allows a user to quickly specify a sub-directory without need­
ing to know (or input) the full-path-name.

5-8 Integrated Software Development Guide

Structure of the File System

The dashed lines in Figure 5-3 trace the full path to /home/ starship.

Figure 5-3: Full Path-Name of the /horne/ starship Directory

o = Directories

o = Regular Files

V = Special Files

= Branch

Directory and File Management 5-9

Structure of the File System

Relative Path Names

A relative path name gives directions that start in your current working direc­
tory and lead you up or down through a series of directories to a particular file
or directory. By moving down from your current directory, you can access files
and directories you own.

For example, suppose you are in the directory starship in the sample system
and starship contains directories named draft, letters, and bin and a file
named mbox. The relative path name to any of these is simply its name, such as
draft or mbox. Figure 5-4 traces the relative path from starship to draft.

Figure 5-4: Relative Path-Name of the draft Directory

5-10

o = Directories

D = Regular Files

Integrated Software Development Guide

Structure of the File System

The draft directory belonging to starship contains the files outline and
table. The relative path name from starship to the file outline is
draft/ outline.

Figure 5-5 traces this relative path. Notice that the slash in this path name
separates the directory named draft from the file named outline. Here, the
slash is a delimiter showing that outline is subordinate to draft; that is,
outline is a child of its parent, draft.

Figure 5-5: Relative Path-Name from starship to outline

" " "
" "

" " "

" " "

e ~~

8~~
o = Directories

D = Regular Files

Directory and File Management 5-11

Structure of the File System

So far, the discussion of relative path-names has covered how to specify names
of files and directories that belong to, or are children of, the current directory.
You can move down the system hierarchy level by level until you reach your
destination. You can also, however, ascend the levels in the system structure or
ascend and subsequently descend into other files and directories.

By moving up from your current directory, you pass through layers of parent
directories to the grandparent of all system directories, root. From there you
can move anywhere in the file system.

The relative-path-name is just one of the mechanisms built into the file-system
to alleviate the need to use full-path-names. By convention, the path-prefix
II •• " refers to the parent-directory (Le., the directory containing the current­
directory), and the path-prefix /I • " refers to the current-directory.

A relative path-name begins with one of the following: a directory or file name;
a " . " (prollounced dot), which is a shorthand notation for your current direc­
tory; or a 1/ •• " (pronounced dot do!), which is a shorthand notation for the
directory immediately above your current directory in the file system hierarchy.
The directory represented by II •• " (dot dot) is called the parent directory of .
(your current directory). .

To ascend to the parent of your current directory, you can use the II •• " nota­
tion. This means that if you are in the directory named II draft" in the sample
file system, /I • ~ " is the path-name to /I starship", and 1/ •• / •• " is the path­
name to 1/ starship"'s parent directory, "home".

From 1/ draft", you can also trace a path to the file /I sanders" by using the
path name /I •• /letters/sanders". The" .. " brings you up to "starship".
Then the names 1/ letters" and 1/ sanders" take you down through the
/I letters" directory to the /I sanders" file.

Keep in mind that you can always use a full path-name in place of a relative
one.

Figure 5-6 shows some examples of full and relative path names.

5-12 Integrated Software Development Guide

Structure of the File System

Figure 5-6: Example Path-Names

Path Name Meaning

/ full path name of the root directory

/usr/bin full path name of the bin directory that
belongs to the usr directory that belongs to
root (contains most executable programs and
utilities)

/home/ starship/bin/tools full path name of the tools directory belong­
ing to the bin directory that belongs to the
starship directory belonging to home that
belongs to root

bin/tools relative path name to the file or directory
tools in the directory bin

tools

If the current directory is /, then the UNIX sys­
tem searches for /usr/bin/tools. However,
if the current directory is starship, then the
system searches the full path
/home/starship/bin/tools.

relative path name of a file or directory tools
in the current directory.

Moving files to the directory" . " moves them into the current-directory. In
addition, files can be linked across directories. Linking a file to the current­
directory obviates the need to supply a path-prefix when accessing the file.
When created, a process has one current-directory and one root-directory associ­
ated with it, which can differ for other processes. See the chapter entitled "Pro­
cess Management" for more detail on processes.

Directory and File Management 5-13

Structure of the File System

File Types

When the Is -1 command displays the contents of a directory, the first column
of output describes the "mode" of the file. This information tells you not only
what type of file it is, but who has permission to access it. This first field is 10
characters long. The first character defines the file type and can be one of the
following types:

Figure 5-7: File Types

Type Symbol

Text, programs, etc.
Directories d
Character special c
Block special b
FIFO (named pipe) special p
Symbolic links 1

Using this key to interpret the previous screen, you can see that the starship
directory contains three directories and two regular disk files.

The next several characters, which are either letters or hyphens, identify who
has permission to read and use the file or directory. (Permissions are discussed
in the description of the clunod function under "Accessing and Manipulating
Files" later in this chapter.)

The following number is the link count. For a file, this equals the number of
users linked to that file. For a directory, this number shows the number of
directories immediately tinder it plus two (for the directory itself and its parent
directory).

Next, the login name of the file's owner appears (here it is starship), followed
by the group name of the file or directory (project).

The following number shows the length of the file or directory entry measured
in units of information (or memory) called bytes. The month, day, and time
that the file was last modified is given next. Finally, the last column shows the
name of the directory or file.

5-14 Integrated Software Development Guide

Structure of the File System

Figure 5-8 identifies each column in the rows of output from the Is -1
command.

Figure 5·8: Description of Output Produced by the 18 -1 Command

number of
blocks used

owner
name

length of
file in bytes

number
of links

group
name name

total 30

~
rwxr-xr-x 3

File d rwxr-xr-x 2
type ~ d rwxr-xr-x 2

- rwx------ 2
- rw------- 1

~

i
permissions

Directory and File Management

starship proj
starship proj
starship proj
starship proj
starship proj

96 Oct 27 08:16 bin
64 Nov 1 14:19 draft
80 Nov 8 08:41 letters

12301 Nov 2 10:15 list
40 Oct 27 10: 00 rnbox

~

t
time/date last

modified

5·15

Structure of the File System

File Protection

Because the UNIX operating system is a multi-user system, you usually do not
work alone in the file system. System users can follow pathnames to various
directories and read and use files belonging to one another, as long as they have
permission to do so.

lf you own a file, you can decide who has the right to read it, write in it (make
changes to it), or, if it is a program, to execute it. You can also restrict permis­
sions for directories. When you grant execute permission for a directory, you
allow the specified users to change directory to it and list its contents with the
15(1) command. Only the owner or a privileged user can define the following:

• which users have permission to access data

• which types of permission they have (that is, how they are allowed to use
the data)

This section introduces access-permissions for files and discusses file protection.

File Permissions

UNIX System V defines access-control and privilege mechanisms to allow for
extended-security-controls that implement security policies different from those
in UNIX System V, but which avoid altering or overriding the defined semantics
of any functions in UNIX System V. Although quite simple, the access-control
scheme has some unusual features. Each UNIX System V user has a unique
user-identification (user-id) number, as well as a shared group-identification
(group-id) number. A file is tagged with the user-id and group-id of its owner,
and a set of access-permission-bits when created by open, creat, mkdir and
mkfifo [see open(2), creat(2), mkdir(2) and mkfifo(2)]. UNIX System V file­
access-control uses the access-permission-bits to specify independent read, write
and execute permissions for the owner of the file, for any members of the owner's
group and for any other users. For directories, execute permission means search
permission. These access-permission-bits are changed by chmod, and are read
by stat and fstat [see chmod(2), stat(2) and fstat(2)].

When a process requests file-access-permission for read, write or execute/search,
access is determined as follows:

5-16 Integrated Software Development Guide

Structure of the File System

1. If the effective-user-id of the process is a user with appropriate access­
permissions (such as a super-user).

a. If read, write or directory search permission is requested, access is
granted.

b. If execute permission is requested, access is granted if execute per­
mission is granted to at least one user by the file-permission-bits
or by an alternate-access-control mechanism; otherwise, access is
denied.

2. Otherwise:

a. The read, write and execute/search access-permissions on a file are
granted to a process if one or more of the following are true [see
chmod(2)]:

• The appropriate access-permission-bit of the owner por­
tion of the file-mode is set and the effective-user-id of
the process matches the user-id of the owner of the file

• The appropriate access-permission-bit of the group por­
tion of the file-mode is set, the effective-group-id of the
process matches the group-id of the file and the
effective-user-id of the process fails to match the user-id
of the owner of the file.

• The appropriate access-permission-bit of the other por­
tion of the file-mode is set, the effective-group-id of the
process fails to match the group-id of the file and the
effective-user-id of the process fails to match the user-id
of the owner of the file.

Otherwise, the corresponding access-permissions on a file are
denied to the process.

b. Access is granted if an altemate-access-control mechanism is not
enabled and the requested access-permission-bit is set for the
class to which the process belongs, or if an altemate-access­
control mechanism is enabled and it allows the requested access;
otherwise, access is denied.

Directory and File Management 5-17

Structure of the File System

Implementations may provide additional-file-access-control or alternate-file­
access-control mechanisms, or both. An additional-access-control mechanism
only further restricts the file-access-permissions defined by the file-permission­
bits. An alternate-access-control mechanism shall:

1. specify file-permission-bits for the file-owner-class, file-group-class and
file-other-class of the file, corresponding to the access-permissions, that
stat and fstat return.

2. Be enabled only by explicit user action, on a per-file basis by the file­
owner or a user with the appropriate-privilege.

3. Be disabled for a file after the file-permission-bits are changed for that file
with chmod. The disabling of the alternate mechanism need not disable
any additional mechanisms defined by an implementation.

UNIX System V recognizes one particular user-id, the "super-user", as exempt
from the usual constraints on file access; thus, for example, programs may be
written to dump and reload the file-system without unwanted interference from
the protection system. A process is recognized as a super-user process and is
granted special privileges if its effective-user-id is O.

Setting Default Permissions

When a file is created its default permissions are set. These default settings may
be changed by placing an appropriate umask command in the system profile
(/ etc/profile).

Figure 5·9: umask(1) Settings for Different Security Levels

Level of Security urnask Disallows

Permissive 0002 w for others
Moderate 0027 w for group, rwx for others
Severe 0077 rwx for group and others

5·18 Integrated Software Development Guide

Structure of the File System

How to Determine Existing Permissions
You can determine what permissions are currently in effect on a file or a direc­
tory by using ls -1 to produce a long listing of a directory's contents.

In the first field of the ls -1 output, the next nine characters are interpreted as
three sets of three bits each. The first set refers to the owner's permissions; the
next to permissions of members in the file's group; and the last to all others.
Within each set, the three characters show permission to read, to write, and to
execute the file as a program, respectively. For a directory, "execute" permis­
sion is interpreted to mean permission to search the directory for a specified file.
For example, typing ls -1 while in the directory named starship/bin in the
sample file-system produces the following output:

$ Is -1
total 35
-rwxr-xr-x 1 starship
-rw-r-r--· 1 starship
drwx--x--x 2 starship
$

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

Permissions for the display and list files and the tools directory are shown
on the left of the screen under the line total 35, and appear in this format:

-rwxr-xr-x (for the display file)
-rw-r--r-- (for the list file»
drwx--x--x (for the tools directory)

After the initial character, which describes the file type (for example, a - (dash)
symbolizes a regular file and a d a directory), the other nine characters that set
the permissions comprise three sets of three characters. The first set refers to
permissions for the owner, the second set to permissions for group members, and
the last set to permissions for all other system users. Within each set of charac­
ters, the r, w, and x show the permissions currently granted to each category. If
a dash appears instead of an r, w, or x, permission to read, write, or execute is
denied.

Directory and File Management 5-19

Structure of the File System

The following diagram summarizes this breakdown for the file named
display.

~
rwxr-xr-x

1 \~ Permission to write to
\ " the file denied to

group and other

read write execute

As you can see, the owner has r, w, and x permissions and members of the
group and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally the letter s or
the letter 1 may appear in the permissions line, instead of an r, w or x. The
letter s (short for set user ID or set group ID) represents a special type of per­
mission to execute a file. It appears where you normally see an x (or -) for the
user or group (the first and second sets of permissions). From a user's point of
view it is equivalent to an x in the same position; it implies that execute permis­
sion exists. It is significant only for programmers and system administrators.
(See the Systenz"Administrator's Guide for details about Setting the user or group
ID.) The letter 1 indicates that locking will occur when the file is accessed. It
does not mean that the file has been locked.

5·20 Integrated Software Development Guide

Structure of the File System

The permissions are as follows:

Figure 5-10: File Access Permissions

Symbol Explanation

r The file is readable.
w The file is writable.
x The file is executable.

This permission is not granted.
1 Mandatory locking will occur during access.

(The set-group-ID bit is on and the group
execution bit is off.)

s The set-user-ID or set-group-ID bit is on,
and the corresponding user or group
execution bit is also on.

S The set-user-ID bit is on and the user
execution bit is off.

t The sticky and the execution bits for other are on.
T The sticky bit is turned on, and the execution

bit for other is off.

Figure 5-11: Directory Access Permissions

Symbol Explanation

r The directory is readable.
w The directory may be altered

(files may be added or removed).
x The directory may be searched. (This permission

is required to cd to the directory.)
t File removal from a writable directory is limited to

the owner of the directory or file unless the file
is writable.

Directory and File Management 5-21

Structure of the File System

How to Change Existing Permissions
After you have detennined what permissions are in effect, you can change them
by calling the chmod command in the following fonnat:

chmod who+pennission file(s)

or

chmod who=pennission fi1e(s)

The following list defines each component of this cOllUl)and line.

chmod

who

name of the program

one of three user groups (u, g, or 0)
u = user
g = group
0= others

+ or - instruction that grants (+) or denies (-) pennission

pennission any combination of three authorizations (r, w, and x)
r = read
w = write
x = execute

fi1e(s) file (or directory) name(s) listed; assumed to be
branches from your current directory, unless you use
full pathnames.

The chmod command will not work if you type a space(s) between who, the
instruction that gives (+) or denies (-) permission, and the permission.

The following examples show a few possible ways to use the chmod command.
As the owner of display, you can read, write, and run this executable file.
You can protect the file against being accidentally changed by denying yourself
write (w) permission. To do this, type the command line:

chmod u-w display

After receiving the prompt, type Is -1 and press the RETURN key to verify
that this pennission has been changed, as shown in the following screen.

5-22 Integrated Software Development Guide

Structure of the File System

$ chmod u-w display
$ Is -1
total 35
-r-xr-xr-x 1 starship
rw-r--r-- 1 starship
drwx--x--x 2 starship
$

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

As you can see, you no longer have permission to write changes into the file.
You will not be able to change this file until you restore write permission for
yourself.

Now consider another example. Notice that permission to write into the file
display has been denied to members of your group and other system users.
However, they do have read permission. This means they can copy the file into
their own directories and then make changes to it. To prevent all system users
from copying this file, you can deny them read permission by typing:

chmod go-r display

The g and 0 stand for group members and all other system users, respectively,
and the - r denies them permission to read or copy the file. Check the results
with the Is -1 command.

$ chmod go-r display
$ Is -1
total 35
-rwx--x--x 1 starship
rw-r--r-- 1 starship
drwx--x--x 2 starship
$

project.
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

For more information, refer to Is (1) and chmod(1) in the User's Reference
Manual.

Directory and File Management 5-23

Structure of the File System

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission for directories as
well as files. Simply specify a directory name instead of a file name on the com­
mand line.

However, consider the impact on various system users of changing permissions
for directories. For example, suppose you grant read permission for a directory
to yourself (u), members of your group (g), and other system users (0). Every
user who has access to the system will be able to read the names of the files
contained in that directory by running the Is -1 command. Similarly, granting
write permission allows the designated users to create new files in the directory
and remove existing ones. Granting permission to execute the directory allows
designated users to move to that directory (and make it their current directory)
by using the cd command.

An Alternative Method

There are two methods by which the chmod command can be executed. The
method described above, in which symbols such as r, w, and x are used to
specify permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to specify
permissions using three octal numbers, ranging from 0 to 7. (The octal number
system is different from the decimal system that we typically use on a day-to­
day basis.) To learn how to use the octal method, see the chmod(l) entry in the
User's Reference Manual.

5-24 Integrated Software Development Guide

Symbolic Links

A symbolic link is a special type of file that represents another file. The data in
a symbolic link consists of the path name of a file or directory to which the
symbolic link file is linked. The link that is formed is called symbolic to distin­
guish it from a regular (also called a hard) link such as can be created by using
the In(1) command. A symbolic link differs functionally from a regular link in
three major ways: files from different file systems may be linked together; direc­
tories as well as regular files may be symbolically linked by any user; and a
symbolic link can be created even if the file it represents does not exist.

In order to understand how a symbolic link works, it is necessary to understand
how the UNIX operating system views files. (The following description pertains
to files that belong to the standard System V file system type.) The internal
representation of a file is contained in an inode, which contains a description of
the layout of the file data on disk as well as information about the file, such as
the file owner, the access permissions, and the access times. Every file has one
inode, but a file may have several names, all of which point to the inode. Each
name is called a regular (or hard) link.

When a file is created, an inode is allocated for it, the file contents are stored in
data blocks, and an entry is created in a directory. A directory is a file whose
data is a sequence of entries, each consisting of an inode number and the name
of a file. The inode initially has a link count of one, which means that this file
has one name (or one link to it).

We are now in a position to understand the difference between the creation of a
regular and a symbolic link. When a user creates a regular link to a file with
the In(1) command, a new directory entry is created containing a new file name
and the inode number of an existing file. The link count of the file is incre­
mented.

In contrast, when a user creates a symbolic link both a new directory entry and
a new inode are created. A data block is allocated to contain the path name of
the file to which the symbolic link refers. The link count of the referenced file is
not incremented.

Symbolic links can be used to solve a variety of common problems. For exam­
ple, it frequently happens that a disk partition (such as root) runs out of disk
space. With symbolic links, an administrator can create a link from a directory
on that file system to a directory on another file system. Such a link provides
extra disk space and is, in most cases, transparent to both users and programs.

Directory and File Management 5-25

Symbolic Links

Symbolic links can also help deal with the built-in path names that appear in
the code of many commands. Changing the path names would require chang­
ing the programs and recompiling them. With symbolic links, the path names
can effectively be changed by making the original files symbolic links that pOint
to new files.

In a shared resource environment like RFS, symbolic links can be very useful.
For example, if it is important to have a single copy of certain administrative
files, symbolic links can be used to help share them. Symbolic links can also be
used to share resources selectively. Suppose a system administrator wants/to do
a remote mount of a directory that contains sharable devices. These devices
must be in / devon the client system, but this system has devices of its own so
the administrator does not want to mount the directory onto / dev. Rather than
do this, the administrator can mount the directory at a location other than / dev
and then use symbolic links in the / dev directory to refer to these remote
devices. (This is similar to the problem of built-in path names since it is nor­
mally assumed that devices reside in the / dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file sys­
tem (VFS) architecture. With VFS new services, such as higher perfonnance
files, events, and network IPC, may be provided on a file system basis. Sym­
bolic links can be used to link these services to home directories or to places
that make more sense to the application or user. Thus one might create a data­
base index file in a RAM-based file system type and symbolically link it to the
place where the database server expects it and manages it.

5-26

The phrases "following symbolic links" and "not following symbolic links" as
they are used in this document refer to the evaluation of the last component
of a path name. In the evaluation of a path name, if any component other
than the last is a symbolic link, the symbolic link is followed and the refer­
enced file is used in the path name evaluation. However, if the last com­
ponent of a path name is a symbolic link, the link mayor may not be fol­
lowed.

Integrated Software Development Guide

Symbolic Links

Properties of Symbolic Links

As we have seen above, a symbolic link is a new type of file that represents
another file. The file to which it refers may be of any type; a regular file, a
directory, a character-special, block-special, or FIFO-special file, or another sym­
bolic link. The file may be on the local system or on a remote system. In fact,
the file to which a symbolic link refers does not even have to exist. In particu­
lar, the file does not have to exist when the symbolic link is created or when it
is removed.

Creation and removal of a symbolic link follow the same rules that apply to any
file. To do either, the user must have write permission in the directory that con­
tains the symbolic link. The ownership and the access permissions (mode) of
the symbolic link are ignored for all accesses of the symbolic link. It is the own­
ership and access permissions of the referenced file that are used. A symbolic
link cannot be opened or closed and its contents cannot be changed once it has
been created.

If /usr/ jan/ junk is a symbolic link to the file /etc/passwd, in effect the file
name /etc/passwd is substituted for junk so that when the user executes

cat /usr/jan/junk

it is the contents of the file /etc/passwd that are printed.

Similarly, if /usr/jan/junk is a symbolic link to the file .. /junk2, executing

cat /usr/jan/junk

is the same as executing

cat /usr/jan/ .. /junk2

or

cat /usr/junk2

When a symbolic link is followed and brings a user to a different part of the file
tree, we may distinguish between where the user really is (the physical path)
and how the user got there (the virtual path). The behavior of /usr/bin/pwd,
the shell built-in pwd, and. . are all based on the physical path. In practical
terms this means that there is no way for the user to retrace the path which
brought the user to the current position in the file tree.

Directory and File Management 5·27

Symbolic Links

y Other shells may use the virtual path. For example, by default the Korn
shell pwd uses the virtual path, though there is an option allowing the
user to make it use the physical path.

Figure 5-12: File Tree with Symbolic Link

/

usr

src include

uts sys

=> /usr/src/uts/sys

sys

Consider the case shown in Figure 5-12 where /usr/ include/ sys is a sym­
bolic link to /usr/src/uts/sys. Here if a user enters

cd /usr/include/sys

and then enters pwd, the result is

/usr/src/uts/sys

If the user then enters cd .. followed by pwd, the result is

/usr/src/uts

5-28 Integrated Software Development Guide

Using Symbolic Links

Creating Symbolic Links

Syntax and Semantics

Symbolic Links

To create a symbolic link, the new system call symlink(2) is used and the
owner must have write permission in the directory where the link will reside.
The file is created with the user's user-id and group-id but these are subse­
quently ignored. The mode of the file is created as 0777. Y No checking is done when a symbolic link is create .. d. There .is nothing to

stop a user from creating a symbolic link that refers to itself or to an
ancestor of itself or several links that loop around among themselves.
Therefore, when evaluating a path name, it is important to put a limit on
the number of symbolic links that may be encountered in case the evalua­
tion encounters a loop. The variable MAXSYMLINKS is used to force the
error ELOOP after MAXSYMLINKS symbolic links have been encountered.
The value of MAXSYMLINKS should be at least 20.

To create a symbolic link, the In(1) command is used with the -s option. If the
- s option is not used and a user tries to create a link to a file on another file
system, a symbolic link will not be created and the command will fail.

The syntax for creating symbolic links is as follows:

ln -s sourcefilel [sourcefile2 ...] target

With two arguments:

• sourcefilel may be any path name and need not exist.

• target may be an existing directory or a non-existent file.

• If target is an existing directory, a file is created in directory target whose
name is the last component of sourcefilel ('basename sourcefilel I). This file
is a symbolic link that references sourcefilel.

• If target does not exist, a file with name target is created and it is a sym­
bolic link that references sourcefilel.

• If target already exists and is not a directory, an error is returned.

• sourcefilel and target may reside on different file systems.

Directory and File Management 5-29

Symbolic Links

With more than two arguments:

• For each sourcefile, a file is created in target whose name is sourcefile or its
last component ('basename sourcefile') and is a symbolic link to sourcefile.

• If target is not an existing directory, an error is returned.

• Each sourcefile and target may reside on different file systems.

Examples
The following examples show how symbolic links may be creat~d.

In -s /usr/sre/uts/sys /usr/inelude/sys

In this example /usr / include is an existing directory. But file sys does not
exist so it will be created as a symbolic link that refers to /usr/sre/uts/sys.
The result is that when file /usr/inelude/sys/x is accessed, the file
/usr/sre/uts/sys/x will actually be accessed.

This kind of symbolic link may be used when files exist in the directory
/usr/sre/uts/sys but programs often refer to files in /usr/inelude/sys.
Rather than creating corresponding files in /usr / inelude/ sys that are hard
links to files in / u s r / s re / u t s / s y s, one symbolic link can be used to link the
two directories. In this example /usr/inelude/sys becomes a symbolic link
that links the former /usr/inelude/sys directory to the /usr/sre/uts/sys
directory.

In -s jete/group

In this example the target is a directory (the current directory), so a file called
group ('basename / ete/ group') is created in the current directory that is a
symbolic link to jete/group.

In -s /fsl/jan/abe /var/spool/abe

In this example we imagine that / f s 1 / jan / abc does not exist at the time the
command is issued. Nevertheless, the file /var / spool/ abc is created as a
symbolic link to /fsl/jan/abe. Later, /fsl/jan/abe may be created as a
directory, regular file, or any other file type.

The following example illustrates the use of more than two arguments:

In -s jete/group /ete/passwd

5-30 Integrated Software Development Guide

Symbolic Links

The user would like to have the group and passwd files in the current direc­
tory but cannot use hard links because / etc is a different file system. When
more than two arguments are used, the last argument must be a directory; here
it is the current directory. Two files, group and passwd, are created in the
current directory, each a symbolic link to the associated file in / et c.

Removing Symbolic Links

Normally, when accessing a symbolic link, one follows the link and actually
accesses the referenced file. However, this is not the case when one attempts to
remove a symbolic link. When the rm(1) command is executed and the argu­
ment is a symbolic link, it is the symbolic link that is removed; the referenced
file is not touched.

Accessing Symbolic Links

Suppose abc is a symbolic link to file de f. When a user accesses the symbolic
link abc, it is the file permissions (ownership and access) of file def that are
actually used; the permissions of abc are always ignored. If file def is not
accessible (i.e., either it does not exist or it exists but is not accessible to the user
because of access permissions) and a user tries to access the symbolic link abc,
the error message will refer to abc, not file def.

Copying Symbolic Links

This section describes the behavior of the cp(1) command when one or more
arguments are symbolic links. With the cp(1) command, if any argument is a
symbolic link, that link is followed. Then the semantics of the command are as
described in the User's Reference Manual. Suppose the command line is

cp sym file3

where sym is a symbolic link that references a regular file test1 and file3 is
a regular file. After execution of the command, file3 gets overwritten with
the contents of the file test 1.

If the last argument is a symbolic link that references a directory, then files are
copied to that directory. Suppose the command line is

cp file1 sym symd

where file1 is a regular file, sym is a symbolic link that references a regular
file test 1, and symd is a symbolic link that references a directory DIR. After

Directory and File Management 5-31

Symbolic Links

execution of the command, there will be two new files, DIR/filel and
DIR/ sym that have the same contents as f ilel and test 1.

Linking Symbolic Links

This section describes the behavior of the In(1) command when one or more
arguments are symbolic links. To understand the difference in behavior
between this and the cp(1) command, it is useful to think of a copy operation as
dealing with the contents of a file while the link operation deals with the name
of a file.

If the first argument to In(1) is a symbolic link it is not followed, and a hard
link is made to the symbolic link. With the last argument, a stat(2) is done to
see if it is a directory; if it is, files are linked in that directory. Otherwise, if the
last argument is an existing file, it is overwritten. This means that if the last
argument is a symbolic link to a directory, it is followed but if it is a symbolic
link to a regular file, the symbolic link is overwritten.

For example, if the command line is

In sym filel

where syrn is a symbolic link that references a regular file foo, and filel is a
regular file, filel is overwritten and hard-linked to syrn, i.e., filel becomes a
symbolic link that references foo. Thus a hard link has been created to a sym­
bolic link.

If the command is

In filel syrn

where the files are the same as in the first example, syrn is overwritten and
hard-linked to filel.

When the last argument is a directory as in

In filel syrn syrnd

where syrnd is a symbolic link to a directory DIR, the file DIR/filel is hard­
linked to filel and DIR/ syrn is hard-linked to syrn.

5·32 Integrated Software Development Guide

Symbolic Links

Moving Symbolic Links

This section describes the behavior of the mv(1) command. Like the In(1) com­
mand, mv(1) deals with file names rather than file contents. With two argu­
ments, a user invokes the mv(1) command to rename a file. Therefore, one
would not want to follow the first argument if it is a symbolic link because it is
the name of the file that is to be changed rather than the file contents. Suppose
that sym is a symbolic link to /etc/passwd and abc is a regular file. If the
command

mv sym abc

is executed, the file sym is renamed abc and is still a symbolic link to
/ etc/passwd. If abc existed (as a regular file or a symbolic link to a regular
file) before the command was executed, it is overwritten.

Suppose the command is

mv syml filel symd

where syml is a symbolic link to a regular file foo, filel is a regular file, and
syrnd is a symbolic link that references a directory DIR. When the command is
executed, the files syml and filel are moved from the current directory to the
DIR directory so that there are two new files, DIR/ syml, which is still a sym­
bolic link to foo, and DIR/filel.

In SVR4.0, the rename(2) system call will be used by the mv(1) command. If the
first argument to rename(2) is a symbolic link, rename(2) does not follow it;
instead it renames the symbolic link itself. Prior to SVR4.0 a file was moved
using the link(2) system call followed by the unlink(2) system call. Since
link(2) and unlink(2) do not follow symbolic links, the result of those two
operations is the same as the result of a call to rename(2).

Directory and File Management 5-33

Symbolic Links

File Ownership and Permissions

The system-calls chmod and chown are used to change the mode and ownership
of a file. If the argument to chmod or chown is a symbolic link, the mode and
ownership of the referenced file rather than of the symbolic link itself will be
changed. (See the section on "Symbolic Links" that follows in this chapter). In
such cases, the link is followed.

Once a symbolic link has been created, its permissions cannot be changed. By
default, the chown(1) and chgrp(1) commands change the owner and group of
the referenced file. However, a new - h option enables the user to change the
owner and group of the symbolic link itself. This is useful for removing files
from sticky directories.

Using Symbolic Links with RFS Y To use symbolic links on two systems running RFS, both systems must
be running SVR4.0. In cases where the server is an SVR4.0 system but
the client is not, errors will be generated when the client encounters a
symbolic link.

When using symbolic links in an RFS environment, it is important to under­
stand how pathnames are evaluated. The rule by which evaluations are per­
formed is Simple. Symbolic links that a client encounters on the server are
interpreted in accordance with the client's view of the file tree.

Users on a server system must keep this rule in mind when they create sym­
bolic links in order to avoid problems. The examples that follow illustrate situa­
tions in which failure to consider the client's view of the file tree can lead to
problems.

5·34 Integrated Software Development Guide

Symbolic Links

Figure 5-13: Symbolic Links with RFS: Example 1

CLIENT SERVER

/ /

I I
usr ----------------------~~ usr

~
src include

uts

I

sys_> /usr/src/uts/sys

or
-> .. /src/uts/sys

sys

vnode.h

In the example shown in Figure 5-13, the server advertises its /usr file system
as USR. If the server creates the symbolic link /usr/include/sys as an abso­
lute pathname to /usr/src/uts/sys, evaluation of the link will work as
intended as long as a client mounts USR as /usr. Another way of saying this
is that if the file tree naming conventions are the same on the client and the
server, things will work as intended. However, if the client mounts USR as
/mnt/usr, when the symbolic link /usr/src/uts/sys is evaluated, the
evaluation will be done with respect to the client's view of the file tree and will
not cross the mount point back to the server but will remain on the client. Thus
the client will not access the file intended. In this situation the server should
create the symbolic link as a relative path name, .. /src/uts/sys, so that
evaluation will produce the desired results regardless of where the client
mounts USR.

Directory and File Management 5-35

Symbolic Links

Figure 5-14: Symbolic Links with RFS: Example 2

CLIENT SERVER

/

I f ------- 3b2
------,: ... ,. usr _______ usr

~
usr

I
src

src include

I
uts

or I
sys

I

uts

I
sys

sys_> /usr/src/uts/sys

-> .. /src/uts/sys

~
vnode. h new....b /3b2/usr/src/uts/sys/new.h

new.h

Figure 5-14 shows another potential problem situation in which the server
advertises its /usr file system as USR. But in this case the server has a sym­
bolic link from /usr/ src/uts/ sys/new. h to
/ 3b2 / us r / s rc / u t s / s ys / new. h. Because the referenced file,
/3b2/usr/src/uts/sys/new.h, is outside of the advertised resource, users
on the server can access this file but users on the client cannot. In this example,
it would make no difference if the symbolic link was a relative rather than an
absolute pathname, because the directory /3b2 on the server is not part of the
client's name space. When the system evaluates the symbolic link, it will look
for the file on the client and will not follow the link as intended.

5-36 Integrated Software Development Guide

Symbolic Links

Archiving Commands

The cpio(1) command copies file archives usually to or from a storage medium
such as tape, disk, or diskette. By default, cpio does not follow symbolic links.
However, a new -L option used with the -0 and -p options indicates that sym­
bolic links should be followed. This option is not valid with the - i option.

Normally, a user invokes the f ind(l) command to produce a list of filenames
and pipes this into the cpio(l) command to create an archive of the files listed.
The find(1) command also has a new option -follow to indicate that symbolic
links should be followed. If a user invokes find(1) with the -follow option,
then cpio(1) must also be invoked with its new option -L to indicate that it too
should follow symbolic links.

Whether symbolic links are followed makes a difference in evaluating the out­
put of find(l) only on encountering a symbolic link to a directory. For exam­
ple, if /usr/jan/syrnd is a symbolic link to the directory .. /joe/test and
files testl and test2 are in directory /usr/ joe/test, the output of a find
starting from /usr/jan includes the file /usr/jan/symd if symbolic links are
not followed, but includes /usr/jan/symd as well as /usr/jan/syrnd/testl
and /usr/ jan/ syd/test2 if symbolic links are followed.

If the user wants to preserve the structure of the directories being archived, it is
recommended that symbolic links not be followed on both commands. (This is
the default.) When this is done symbolic links will be preserved and the direc­
tory hierarchy will be duplicated as it was.

If the user is more concerned that the contents of the files be saved, then the
user should use the -L option to cpio(1) and the -:-follow option to find(l) to
follow symbolic links. y The user should take care not to mix modes, tha. t is, the user should

. either follow or not follow symbolic links for both epio(1) and find(1). If
modes are mixed, an archive will be created but the resulting hierarchy
created by epio -i may exhibit unexpected and undesirable results.

Copying in using the -i option to cpio(1) copies symbolic links as is. If a user
is creating an archive to be read in on a pre-SVR4.0 system, it may be more use­
ful to follow symbolic links because systems prior to SVR4.0 do not understand
symbolic links and the result of copying in a symbolic link will be a regular file
whose contents are the path name of the referenced file.

Directory and File Management 5-37

Summary of UNIX System Files & Directories

UNIX system files are organized in a hierarchy; their structure is often described
as an inverted tree. At the top of this tree is the root directory, the source of the
entire file system. It is designated by a / (slash). All other directories and files
descend and branch out from root,as shown in the following figure:

Figure 5-15: Directory Tree from root

o = Directories

D = Regular Files

'\l = Special Files

= Branch

The following section provides brief descriptions of the root directory and the
system directories under it, as shown in earlier figure.

5-38 Integrated Software Development Guide

Summary of UNIX System Files & Directories

UNIX System Directories

/

/stand

/sbin

/dev

/etc

/home

/tmp

/var

/usr

/usr/bin

/usr/lib

the source of the file system (called the root directory)

contains programs and data files used in the booting process

contains essential executables used in the booting process
and in manual system recovery

contains special files that represent peripheral devices, such
as:

console
lp
term/*
dsk/*

console
line printer
user terminal(s)
disks

contains machine-specific administrative configuration files
and system administration databases

the root of a subtree for user directories

contains temporary files, such as the buffers created for edit­
ing a file

the root of a subtree for varying files such as log files

contains other directories, including lib and bin

contains many executable programs and utilities, including
the following:

cat
date
login
grep
mkdir
who

contains libraries for programs and languages

Directory and File Management 5-39

Summary of UNIX System Files & Directories

Directories and Files

This section describes:

• Directories and files that are important for administering a system

• Directories that are new for this software release

• The reorganization of the directory structure introduced in this release

• The new organization of the root file system, and significant directories
mounted on root

Q To maintain a secure environment, do not change the file or directory per-9 missions from those assigned at the lime of installation.

5-40 Integrated Software Development Guide

Summary of UNIX System Flies & Directories

Directory and File Relocations

For this software release, many commands and directories have been relocated.
This section lists the commands that have been moved, the locations of these
commands in UNIX System V Release 4, and the locations of the same com­
mands in earlier releases of the UNIX system. UNIX System V Release 4.0 pro­
vides symbolic links between the old and new locations. However, in future
software releases, these links may be removed. The asterisk (*) means that all
files in the directory indicated have been moved to the new location.

Pre-Release 4 Location

/bin/*

/ete/beheekre
/ete/ehroot
/ete/ekbupsed
/ete/erash
/ete/eron
/ete/deopy
/ete/devnm
/ete/dfsek
jete/disks
/ete/drvinstall
/ete/editsa
/ete/edittbl
/ete/errdump
/ete/ff
jete/fine
/ete/fmtflop
/ete/fmthard
jete/free
/ete/fsek
/ete/fscib
/ete/fsstat
/ete/fstyp
/ete/fuser

Directory and File Management

Release 4 Location

/usr/bin/*

/sbin/beheekre
/usr/sbin/ehroot
/usr/sbin/ekbupsed
/usr/sbin/erash
/usr/sbin/eron
/usr/sbin/deopy
/usr/sbin/devnm
/usr/sbin/dfsek
/sbin/disks
/usr/sbin/drvinstall
/usr/sbin/editsa
/usr/sbin/edittbl
/usr/sbin/errdump
/usr/sbin/ff
/usr/sbin/fine
/usr/sbin/fmtflop
/sbin/fmthard
/usr/sbin/free
/sbin/fsek
/sbin/fscib
/sbin/fsstat
/sbin/fstyp
/usr/sbin/fuser

5·41

Summary of UNIX System Flies & Directories

Pre-Release 4 Location

/ete/getmajor
jete/getty
/ete/grpek
/ete/hdeadd
/ete/hdefix
/ete/hdelogger
/ete/init
jete/install
/ete/killall
/ete/labelit
/ete/ldsysdump
jete/led
jete/link
/ete/log/*
/ete/mkboot
/ete/mkfs·
/ete/mknod
jete/mount
/ete/mountall
/ete/mvdir
/ete/neheek
/ete/npump
jete/ports
/ete/prfde
/ete/prfld
/ete/prfpr
/ete/prfsnap
/ete/prfstat
/ete/prteonf
/ete/prtvtoe
jete/pump
/ete/pwek
jete/reO
/ete/rel
/ete/re2

5-42

Release 4 Location

/usr/sbin/getmajor
/usr/lib/saf/ttymon
/usr/sbin/grpek
/usr/sbin/hdeadd
/sbin/hdefix
/usr/sbin/hdelogger
/sbin/init
/usr/sbin/install
/usr/sbin/killall
/sbin/labelit
/usr/sbin/ldsysdump
/sbin/led
/usr/sbin/link
/var/adm/log/*
/usr/sbin/mkboot
/sbin/mkfs
/sbin/mknod
/sbin/mount
/sbin/mountall
/usr/sbin/mvdir
/usr/sbin/neheek
/sbin/npump
/sbin/ports
/usr/sbin/prfde
/usr/sbin/prfld
/usr/sbin/prfpr
/usr/sbin/prfsnap
/usr/sbin/prfstat
/usr/sbin/prteonf
/sbin/prtvtoe
/sbin/pump
/usr/sbin/pwek
/sbin/reO
/sbin/rel
/sbin/re2

Integrated Software Development Guide

Pre-Release 4 Location

/ete/re3
/ete/re6
/ete/rmount
/ete/rmountall
/ete/rumountall
/ete/saveepio
/ete/setelk
/ete/setmnt
fete/shutdown
fete/swap
/ete/sysdef
fete/system
/ete/telinit
/ete/termeap
/ete/uadmin
/ete/umount
/ete/umountall
fete/unlink
/ete/utmp
/ete/voleopy
fete/wall
/ete/whodo
/ete/wtmp

/ lib/*

/shlib/*

/unix

/usr/adm/*
/usr/bin/fumount
/usr/bin/fusage
/usr/bin/mountfsys

Directory and File Management

Summary of UNIX System Flies & Directories

Release 4 Location

/sbin/re3
/sbin/re6
/usr/sbin/rmount
/usr/sbin/rmountall
/usr/sbin/rumountall
/usr/sbin/saveepio
/sbin/setelk
/sbin/setmnt
/sbin/shutdown
/usr/sbin/swap
/usr/sbin/sysdef
/stand/system
/sbin/init
/usr/share/lib/termeap
/sbin/uadmin
/sbin/umount
/sbin/umountall
/usr/sbin/unlink
/var/adm/utmp
/usr/sbin/vo!eopy
/usr/sbin/wall
/usr/sbin/whodo
/var/adm/wtmp

/usr/lib/*

/usr/lib/*

/stand/unix

/var/adm/*
/usr/sbin/fumount
/usr/sbin/fusage
/usr/sbin/mountfsys

5-43

Summary of UNIX System Flies & Directories

Pre-Release 4 Location

/usr/bin/nlsadmin
/usr/bin/powerdown
/usr/bin/sadp
/usr/bin/strace
/usr/bin/strclean
/usr/bin/strerr
/usr/bin/urnountfsys

/usr/lib/cron/.proto
/usr/lib/cron/at.allow
/usr/lib/cron/cron.allow
/usr/lib/cron/logchecker
/usr/lib/cron/queuedefs
/usr/lib/font/*
/uer / lib/ lex/*
tusr/lib/rnacros/*
/usr/lib/spell/spellhist
/usr/lib/spell/cornpress
/usr/lib/spell/hlista
/usr/lib/spell/hlistb
/usr/lib/spell/hstop
/usr/share/lib/terrninfo/*
/usr/lib/trnac/*
/usr/lib/uucp/Devconfig
/usr/lib/uucp/Devices
/usr/lib/uucp/Dialcodes
/usr/lib/uucp/Dialers
/usr/lib/uucp/Perrnissions
/usr/lib/uucp/Poll
/usr/lib/uucp/Sysfiles
/usr/lib/uucp/Systerns
/usr/rnail/*
/usr/rnan/*
/usr/net/nls/dbfconv
/usr/net/nls/listen

5·44

Release 4 Location

/usr/sbin/nlsadmin
/usr/sbin/powerdown
/usr/sbin/sadp
/usr/sbin/strace
/usr/sbin/strclean
/usr/sbin/strerr
/usr/sbin/urnountfsys

/etc/cron.d/.proto
/etc/cron.d/at.allow
/etc/cron.d/cron.allow
/etc/cron.d/logchecker
/etc/cron.d/queuedefs
/usr/share/lib/font/*
/usr/ccs/lib/lex/*
/usr/share/lib/rnacros/*
/var/adm/spellhist
/usr/share/lib/spell/cornpress
/usr/share/lib/spell/hlista
/usr/share/lib/spell/hlistb
/usr/share/lib/spell/hstop
/usr/share/lib/terrninfo/*
/usr/share/lib/trnac/*
/etc/uucp/Devconfig
/etc/uucp/Devices
/etc/uucp/Dialcodes
/etc/uucp/Dialers
/etc/uucp/Perrnissions
/etc/uucp/Poll
/etc/uucp/Sysfiles
/etc/uucp/Systerns
/var/rnail/*
/usr/share/rnan/*
/usr/lib/saf/dbfconv
/usr/lib/saf/listen

Integrated Software Development Guide

Summary of UNIX System Flies & Directories

Pre-Release 4 Location

/usr/nserve/*
/usr/nserve/nserve
/usr/nserve/rfudaemon
/usr/nserve/TPnserve
/usr/pub/*
/usr/spool/*
/usr/tmp/*

Release 4 Location

/etc/rfs/*
/usr/lib/rfs/nserve
/usr/lib/rfs/rfudaemon
/usr/lib/rfs/TPnserve
/usr/share/lib/*
/var/spool/*
/var/tmp/*

There are some additional directories in root that did not appear in previous
software releases. These directories are:

/export
/home

/opt /sbin /stand /var
/proc

The root directories are explained in the next section. Important administrative
files and subdirectories are explained later.

Directory and Fjle Management 5-45

Summary of UNIX System Flies & Directories

Directories in root
The / (root) file system contains executables and other files necessary to boot
and run the system. The directories of the root file system are explained next.

/bck

The /bck directory is used to mount a backup file system for restoring files.

/boot

The /boot direCtory contains configurable object files created by the
/usr / sbin/mkboot program (see mkboot(1M».

/config

The / conf ig directory contains files needed and produced by the user-level
configuration program cunix (see cunix(1M».

/dev

The / dev directory contains block and character special files that are usually
associated with hardware devices or STREAMS drivers.

/dgn

The / dgn directory contains diagnostic programs.

/etc

The / etc directory contains machine-specific configuration files and system
administration databases.

/export

The / expo rt directory contains the default root of the exported file system
tree.

/home

The /home directory contains user directories.

/install

The / install directory is used by the sysadm command to mount utilities
packages for installation and removal (f install file system).

5-46 Integrated Software Development Guide

Summary of UNIX System Flies & Directories

/lost+found

The / lost+found directory is used by fsck to save disconnected files and
directories.

/ront

The /ront directory is used to mount file systems for temporary use.

/opt

The / opt directory is the mount point from which add-on application packages
are installed.

/proc

The /proc directory is the mount point of the proc file system which provides
information on the system's processes.

/save

The / save directory is used by sysadm for saving data on floppy diskettes.

/sbin

The / sbin directory contains executables used in the booting process and in
manual recovery from a system failure.

/stand

The / stand directory is used as the mount point for the boot file system, which
contains the standalone (boatable) programs and data files necessary for the sys­
tem boot procedure.

/tmp

The / tmp directory contains temporary files.

/usr

The /usr directory is the mount point of the usr file system.

/var

The /var directory is the mount point of the var file system. It contains those
files and directories that vary from machine to machine, such as tmp, spool,
and mail. The /var file system also contains administrative directories such as
/var/adm and /var/opt, the latter is installed by application packages.

Directory and File Management 5-47

Summary of UNIX System Flies & Directories

Directories in letc
This section describes the directories under the / etc directory, which contain
machine-specific configuration files and system administration databases.

/ete/bkup

This directory contains machine-specific files and directories for backup and
restore operations. Also contained here are files and directories that allow
restore operations to be performed from single-user mode (system state 1).

/ete/bkup/method

This directory contains files that describe all backup and restore methods
currently used on your computer.

/ete/eron.d

This directory contains administrative files for controlling and monitoring eron
activities.

fete/default

This directory contains files that assign default values to certain system parame­
ters.

/ete/init.d

This directory contains executable files used in upward and downward transi­
tions to all system states. These files are linked to files beginning with S (start)
or K (stop) in / et e / ren . d, where n is the appropriate system state. Files are
executed from the / ete/ ren. d directories.

/ete/lp

This directory contains the configuration files and interface programs for the LP
print service.

fete/mail

This directory contains files used in administering the electronic mail system.

fete/mail/lists

This directory contains files, each of which contains a mail alias. The name of
each file is the name of the mail alias that it contains. (See the mailx(1) com­
mand for a description of the mail alias format.)

5-48 Integrated Software Development Guide

Summary of UNIX System Files & Directories

/ete/master.d

This directory contains files that define the configuration of hardware devices,
software drivers, system parameters, and aliases. The files are used by
/usr/sbin/mkboot to obtain device information for the generation of device
driver and configurable module files. The /usr / sbin/ sysdef program uses
the master. d files to get the names of supported devices. The first step in
reconfiguring the system to run with different tunable parameters is to edit the
appropriate files in the / etc/master. d directory. (See master(4) in the Sys­
tem Files and Devices Reference Manual.}

/ete/re.d

This directory contains executable files that perform the various functions
needed to initialize the system to system state 2. The files are executed when
/usr/sbin/re2 is run. (Files contained in this directory before UNIX System
V Release 3.0 were moved to / ete/ re2 . d. This directory is maintained only
for compatibility reasons.)

/ete/reO.d

This directory contains files executed by Ius r / sbin/ reO for transitions to sys­
tem states 0, 5, and 6. Files in this directory are linked from the /ete/init.d
directory, and begin with either a K or an S. K shows processes that are
stopped, and S shows processes that are started when entering system states 0,
5, or 6.

/ete/rel.d

This directory contains files executed by /usr/sbin/rel for transitions to sys­
tem state 1. Files in this directory are linked from the /ete/init.d directory,
and begin with either a K or an S. K shows processes that should be stopped,
and S shows processes that should be started when entering system state 1.

/ete/re2.d

This directory contains files executed by /usr / sbin/ re2 for transitions to sys­
tem state 2. Files in this directory are linked from the / et e / in it. d directory,
and begin with either a K or an S. K shows processes that should be stopped,
and S shows processes that should be started when entering system state 2.

Directory and File Management 5-49

Summary of UNIX System Flies & Directories

/etc/rc3.d

This directory contains files executed by /usr / sbin/ rc3 for transitions to sys­
tem state 3 (multi-user mode). Files in this directory are linked from the
/etc/init.d directory, and begin with either a K or an S. K shows processes
that should be stopped, and S shows processes that should be started when
entering system state 3.

/etc/saf

This directory contains files and subdirectories used by the Service Access Facil­
ity. The following commands in /usr / sbin use / etc/ saf subdirectories for
data storage and retrieval: nlsadrnin, pmadrn, and sacadrn. The following files
are included:

sactab

_sysconfig

/etc/save.d

A list of port monitors to be started by the Service
Access Controller (SAC). Each port monitor listed in
this table has a ymtab file in the /etc/saf/pmtag
directory, where pmtag is the tag of this port monitor
(such as /etc/saf/starlan for the starlan port
monitor).

The configuration script used to modify the environ­
ment for the Service Access Facility.

This directory contains files used by the sysadrn command for backing up data
on floppy diskettes. The following files are included:

except

timestamp/ .

/etc/shutdown.d

A list of the directories and files that should not be
copied as part of a backup is maintained in this file.

The date and time of the last backup (volume or incre­
mental) is maintained for each file system in the
/ etc/ save. d/timestamp directory.

This directory is maintained only for compatibility reasons. The files contained
in this directory prior to UNIX System V Release 3.0 were executable files that
invoked the various functions required during the transition to the single-user
mode (system states 1, s, or S). These files are now located in /etc/rcO .d.

5-50 Integrated Software Development Guide

Summary of UNIX System Files & Directories

Files in lete

The following files are used in machine-specific configuration and system
administration databases.

/ete/bkup/bkexeept.tab

This file contains a list of files to be excluded from an incremental backup.

/ete/bkup/bkhist.tab

This file contains infonnation about the success of all backup attempts.

/ete/bkup/bkreg.tab

This file contains instructions to the system for perfonning backup operations
on your computer.

/ete/bkup/bkstatus.tab

This file contains the status of backup operations currently taking place.

/ete/bkup/rsmethod.tab

This file contains descriptions of the types of objects that may be restored using
the full or partial restore method.

/ete/bkup/rsnotify.tab

This file contains the electronic mail address of the operator to be notified when­
ever restore requests require operator intervention.

/ete/bkup/rsstatus.tab

This file contains a list of all restore requests made by users of your computer.

/ete/bkup/rsstrat.tab

This file specifies a strategy for selecting archives when handling restore
requests. In completing restore operations for these requests, the backup history
log is used to navigate through the backup tape to find the desired files and or
directories.

jete/boot_tab

This file contains a list of the file systems mounted during the configuring of a
new bootable operating system (system configuration). It is used by the
/ sbin/buildsys script, along with the / ete/vfstab file, to mount necessary
file systems. You should not need to change this file.

Directory and File Management 5·51

Summary of UNIX System Flies & Directories

/ete/dyasswd

This file contains a list of programs that will require dial-up passwords when
run from login. Each line in the file is formatted as

program: encrypted yassword :

where program is the full path to any programs into which a user can log in and
run. The password referred to in the encrypted yassword is the one that will be
used by the dial-up password program. This password must be entered before
the user is given the login prompt. It is used in conjunction with the file
/ete/dialups.

/ete/default/eron

This file contains the default status (enable or disable) for the CRONLOG
operation.

fete/default/login

This file may contain the following parameters that define a user's login
environment:

ALTSHELL

CONSOLE

HZ

IDLEWEEKS

PASSREQ

PATH

SUPATH

TIMEOUT

TIMEZONE

ULIMIT

UMASK

5-52

Alternate shell status available to users (yes or no).

Root login allowed only at the console terminal.

Number of clock ticks per second.

Number of weeks a password may remain unchanged
before the user is denied access to the system.

Password requirement on logins (yes or no).

User's default PATH.

Root's default PATH.

Number of seconds allowed for logging in before a
timeout occurs.

Time zone used within the user's environment.

File size limit (ulimit).

User's value for umask.

Integrated Software Development Guide

Summary of UNIX System Files & Directories

/etc/default/passwd

This file contains the following information about "the length and aging of user
passwords:

MINWEEKS

MAXWEEKS

PASSLENGTH

WARNWEEKS

/etc/default/su

Minimum number of weeks before a password can be
changed.

Maximum number of weeks a password can be
unchanged..

Minimum number of characters in a password.

Number of weeks before a password expires that the user
is to be warned.

This file contains values for the following parameters affecting the work of
super users:

SULOG

CONSOLE

PATH

SUPATH

/etc/device.tab

A pathname that identifies a file in which a log of all s u
attempts may be created.

Pathnames of the console on which are broadcast mes­
sages notifying you whenever someone attempts to su
root.

PATH used for su users.

PATH used for su root users.

This file is the device table. It lists the device alias, path to the vnode, and spe­
cial attributes of every device connected to the computer.

/etc/devlock.tab

This file is created at run time and lists the reserved (locked) devices. Device
reservations do not remain intact across system reboots.

Directory and File Management 5-53

Summary of UNIX System Files & Directories

/etc/saf/pmtag/ _config

This file contains a configuration script used to customize the environment for
the port monitor tagged as pmtag (such as /etc/saf/starlan/ _config for
the starian port monitor). Port monitor configuration scripts are optional.

/etc/dgroup.tab

This file lists the group or groups to which a device belongs.

/etc/dialups

This file contains a list of terminal devices that cannot be accessed without a
dial-up password. It is used in conjunction with the file /etc/dyasswd.

/etc/group

This file describes each user group to the system. An entry is added for each
new group with the groupadd command.

/etc/inittab

This file contains instructions for the / sbin / ini t command. The instructions
define the processes created or stopped for each initialization state. Initializa­
tion states are called system states or run states. By convention, system state 1
(or S or s) is single-user mode; system states 2 and 3 are multi-user modes. (See
ini t tab(4) in the System Files and Devices Reference Manual for additional infor­
mation.)

/etc/mail/mailcnfg

This file permits per-site customizing of the mail subsystem. See the
mailcnfg(4) manual page in the System Files and Devices Reference Manual and
/I Administering the Mail Subsystem" in this guide.

/etc/mail/m~ilsurr

This file lists actions to be taken when mail containing particular patterns is pro­
cessed by mail. This can include routing translations and logging. See the
mailsurr(4) manual page in the System Files and Devices Reference Manual.

/etc/mail/mailx.rc

This file contains defaults for the mailx program. It may be added by the sys­
tem administrator. See mailx(1).

5-54 Integrated Software Development Guide

Summary of UNIX System Files & Directories

/ete/mail/notifyand /ete/mail/notify. sys

These files are used by the notify program to determine the location of users
in a networked environment and to establish systems to use in case of file error.

/ete/motd
This file contains the message of the day. The message of the day is displayed
on a user's screen after that user has successfully logged in. (The commands
that produce this output on the screen are in the fete/profile file.) This
message should be kept short and to the point. The /var/news files should be
used for lengthy messages.

/ete/passwd
This file identifies each user to the system. An entry is automatically added for
each new user with the useradd command, removed with the userdel com­
mand, and modified with the usermod command.

fete/profile
This file contains the default profile for all users. The standard (default)
environment for all users is established by the instructions in the
fete/profile file. The system administrator can change this file to set
options for the root login. For example, the six lines of code shown in Figure
5-16 can be added to the fete/profile. This code defines the erase character,
automatically identifies the terminal type, and sets the TERM variable when the
login ID is root.

Figure 5-16: Excerpt from jete/profile

1 if [$ {LOGNAME} = root 1
2 then
3 stty echoe
4
6 fi

echo "Terminal: 5

Directory and File Management

export TERM

5-55

Summary of UNIX System Flies & Directories

/etc/rfs/rmnttab

This file is created by the rmount(1M) command. This file contains a listing of
unsuccessfully mounted resources or disconnected resources. These resources
are polled by the rmnttry(1M) cron entry.

/etc/dfs/dfstab

This file specifies the Remote File Sharing resources from your machine that are
automatically shared to remote machines when entering RFS mode (system state
3). Each entry in this file should be a share(1M) command line.

/etc/saf/pmtag/ ymtab

This is the administrative file for the port monitor tagged as pmtag. It contains
an entry for each service available through the pmtag port monitor.

/etc/saf/_sactab

This file contains information about all port monitors for which the Service
Access Controller (SAC) is responsible.

/etc/saf/_sysconfig

This file contains a configuration script to customize the environments for all
port monitors on the system. This per-system configuration file is optional.

/etc/TIMEZONE

This file sets the time zone shell variable TZ. The TZ variable is initially esta­
blished for the system via the sysadm setup command. The TZ variable in
the TIMEZONE file is changed by the sysadm timezone command. The TZ
variable can be redefined on a user (login) basis by setting the variable in the
associated . profile. The TIMEZONE file is executed by /usr / sbin/ rc2.
(See timezone(4) in the System Files and Devices Reference Manual for more
information.)

/etc/ttydefs

This file contains information used by ttymon port monitor to set the terminal
modes and baud rate for a 1TY port.

5-56 Integrated Software Development Guide

Summary of UNIX System Flies & Directories

/etc/vfstab

This file provides default values for file systems and remote resources. The fol­
lowing information can be stored in this file:

• The block and character devices on which file systems reside

• The resource name

• The location where a file system is usually mounted

• The file system type

• Information on special mounting procedures

These defaults do not override command line arguments that have been entered
manually. (See mountall(1M) in the System Administrator's Reference Manual for
additional information.) Figure 5-17 shows a sample of this file.

Figure 5-17: Sample /etc/vfstab File

1 'special fsckdev mountp fstype fsckpass automnt mntflags
2 /dev/SA/diskettel /dev/rdi~kette /install 55 no
3 /dev/diskette /dev/rdiskette, /install 55 no
4 /dev/dsk/cldOs3
5 /dev/dsk/cldOsB
6 /dev/dsk/cldls2
7 /dev/dsk/cldlsB
B /dev/root
9 /proc

/dev/rdsk/cldOs3 /stand
/dev/rdsk/cldOsB /usr2
/dev/rdsk/cldls2 /usr
/dev/rdsk/cldlsB /home
/dev/root

/proc

Directory and File Management

bfs 1 yes
55 1 yes
55 1 yes
55 1 yes
55 no
proc no

5-57

Summary of UNIX System Flies & Directories

Directories in /usr

This section describes the directories in the /usr file system. The /usr file sys­
tem contains architecture-dependent and architecture-independent files and sys­
tem administration databases that can be shared.

/usr/bin

This directory contains public commands and system utilities.

/usr/include

This directory contains public header files for C programs.

/usr/lib

This directory contains public libraries, daemons, and architecture dependent
databases.

/usr/lib/lp

This directory contains the directories and files used in processing requests to
the LP print service.

/usr/lib/mail

This directory contains directories and files used in processing mail.

/usr/lib/mail/surrcmd

This directory contains programs necessary for mail surrogate processing.

/usr/sadrn/bkup

This directory contains executables for the backup and restore services.

/usr/sbin

This directory contains executables used for system administration.

/usr/share

This directory contains architecture independent files that can be shared.

/usr/share/lib

This directory contains architecture independent databases.

5-58 Integrated Software Development Guide

Summary of UNIX System Flies & Directories

/usr/sadrn/skel

This directory contains the files and directories built when using the useradd
command with the -m argument. All directories and files under this location
are built under the $HOME location for the new user.

/usr/ucb

This directory contains binaries from the BSD Compatibility Package.

/usr/ucbinclude

This directory contains header files from the BSD Compatibility Package.

/usr/ucblib

This directory ~ontains libraries from the BSD Compatibility Package.

Directory and File Management 5·59

Summary of UNIX System Flies & Directories

Files in lusr
This section describes the files in the / Us r directories, which contain
architecture-dependent and architecture-independent files and system adminis­
trative databases that can be shared.

/usr/sbin/rcO

This file contains a shell script executed by /usr/sbin/shutdown for transi­
tions to single-user state, and by / sbin/ init for transitions to system states 0,
5, and 6. Files in the /etc/shutdown.d and /etc/rcO.d directories are exe­
cuted when /usr/sbin/rcO is run. The file KOOANNOUNCE in /etc/rcO.d
prints the message System services are now being stopped. Any task
that you want executed when the system is taken to system states 0, s, 5, or 6 is
done by adding a file to the /etc/rcO.d directory.

/usr/sbin/rcl
This file contains a shell script executed by / sbin/ init for transitions to sys­
tem state 1 (single-user state). Executable files in the / etc/ rc . d directory and
any executable files beginning with S or K in the /etc/rcl.d directories are
executed when./usr/sbin/rcl is run. All files in rcl.d are linked from files
in the /etc/init.d directory. Other files may be added to the /etc/rcl.d
directory as a function of adding hardware or software to the system.

/usr/sbin/rc2
This file contains a shell script executed by / sbin/ ini t for transitions to sys­
tem state 2 (multi-user state). Executable files in the / etc/ rc. d directory and
any executable files beginning with S or K in the / etc/ rc2 . d directories are
executed when /usr/sbin/rc2 is run. All files in rc2.d are linked from files
in the /etc/init.d directory. Other files may be added to the /etc/rc2.d
directory as a function of adding hardware or software to the system.

/usr/sbin/rc3
This file is executed by / sbin/ init. It executes the shell scripts in
/etc/rc3.d for transitions to RFS mode (system state 3).

/usr/sbin/rc6

This shell script is run for transitions to system state 6 (for example, using
shutdown -i6). If the kernel needs reconfiguring, the / sbin/buildsys
script is run. If reconfiguration succeeds, /usr/sbin/rc6 reboots without run­
ning diagnostics. If reconfiguration fails, it spawns a shell.

5-60 Integrated Software Development Guide

Summary of UNIX System Flies & Directories

/usr/sbin/shutdown
This file contains a shell script to shut down the system gracefully in prepara­
tion for a system backup or scheduled downtime. After stopping all nonessen­
tial processes, the shutdown script executes files in the / etc/ shutdown. d
directory by calling /usr / sbin/ rcO for transitions to system state 1 (single­
user state). For transitions to other system states, the shutdown script calls
/ sbin/ init.

/usr/share/lib/rnailx/rnailx.helpand
/usr/share/lib/rnailx/rnailx.help.
Help files for rnailx. The file rnailx. help contains help messages for
rna i lx's tilde commands. See rna i Ix(1) in the User's Reference Manual.

Directory and File Management 5-61

Summary of UNIX System Flies & Directories

Directories in /var
This section describes the directories of the /var directory, which contain files
and directories that vary from machine to machine.

/var/adm

This directory contains system logging and accounting files.

/var/cron

This directory contains the cron log file.

/var/lp

This directory contains log files for the LP print service.

/var/mail

This directory contains subdirectories and mail files that users access with the
mail(1) and mailx(1) commands.

/var/mail/:saved

This directory contains temporary storage for mail messages while mail is run­
ning. Files are named with the user's ID while they are in /var /mail.

/var/news

This directory contains news files. The file names are descriptive of the contents
of the files; they are analogous to headlines. When a user reads the news, using
the news command, an empty file named . news_time is created in his or her
login directory. The date (time) of this file is used by the news command to
determine if a user has read the latest news file(s).

/var/opt

This directory is created and used by application packages.

/var/options

This directory contains a file (or symbolic link to a file) that identifies each util­
ity installed on the system. This directory also contains information created and
used by application packages (such as temporary files and logs).

5-62 Integrated Software Development Guide

Summary of UNIX System Files & Directories

/var/preserve

This directory contains backup files for vi and ex.

/var/sadm

This directory contains logging and accounting files for the backup and restore
services, software installation utilities, and package management facilities.

/var/sadm/pkg

This directory contains data directories for installed software packages.

/var/saf

This directory contains log files for the Service Access Facility.

/var/spool

This directory contains temporary spool files.

/var/spool/cron/crontabs

This directory contains crontab files for the adm, root, and sys logins. Users
whose login IDs are in the /etc/cron.d/cron.allow file can establish their
own crontab file using the crontab command. If the cron. allow file does
not exist, the / etc/ cron. d/ cron. deny file is checked to determine if the user
should be denied the uSe of the crontab command.

As root, you can use the crontab command to make the desired entries.
Revisions to the file take effect at the next reboot. The file entries support the
calendar reminder service and the Basic Networking Utilities. Remember, you
can use the cron function to decrease the number of tasks you perfonn with
the sysadm command; include recurring and habitual tasks in your crontab
file. (See crontab(1) in the User's Reference Manual for additional information.)

/var/spool/lp

This directory contains temporary print job files.

/var/spool/smtpq

This directory contains Simple Mail Transfer Protocol (SMTP) directories and log
files. Directories named host contain messages spooled to be sent to that host.
Files named LOG. n contain the logs from the past seven days (Sunday's log is
called log. 0). The current day's log is simply LOG.

Directory and File Management 5-63

Summary of UNIX System Files & Directories

/var/spool/uucp

This directory contains files to be sent by uucp.

/var/spool/uucppublic

This directory contains files received by uucp.

/var/tmp

This directory contains temporary files.

/var/uucp

This directory contains logging and accounting files for uucp.

5-64 Integrated Software Development Guide

Summary of UNIX System Flies & Directories

Files in /var
This section describes the files in the /var directories, which contain informa­
tion that varies from machine to machine.

/var/adm/spellhist

If the Spell Utility is installed, this file contains a history of all words that the
spell command fails to match. Periodically, this file should be reviewed for
words that you can add to the dictionary. Clear the spellhist file after
reviewing it. (Refer to spell(1) in the User's Reference Manual for information
on adding words to the dictionary, cleaning up the spellhist file, and other
commands that can be used with the Spell Utility.)

/var/adm/utmp

This file contains information on the current system state. This information is
accessed with the who command.

/var/adm/utmpx

This file contains information similar to that in the /var / adm/utmp file, along
with a record of the remote host.

/var/adm/wtmp

This file contains a history of system logins. The owner and group of this file
must be adm, and the access permissions must be 664. Each time login is run
this file is updated. As the system is accessed, this file increases in size. Period­
ically, this file should be cleared or truncated. The command line
>/var/adm/wtmp when executed by root creates the file with nothing in it.
The following command lines limit the size of the /var/adm/wtmp file to the
last 3600 characters in the file:

tail -3600c /var/adm/wtmp > /var/tmp/wtmp
mv /var/tmp/wtmp /var/adm/wtmp

The /usr/sbin/cron, /usr/sbin/rcO, or /usr/sbin/rc2 command can be
used to clean up the wtmp file. You can add the appropriate command lines to
the /var / spool/ cron/ crontabs / root file or add shell command lines to
directories such as /etc/rc2 .d, /etc/rc3 .d, and so on.

Directory and File Management 5-65

Summary of UNIX System Flies & Directories

/var/adm/wtmpx

This file contains information similar to that in the /var / adm/wtmp file, along
with a record of the remote host.

/var/adm/loginlog

If this file exists, it is a text file that contains one entry for each group of five
consecutive unsuccessful attempts to log in to the system.

/var/adm/sulog

This file contains a history of substitute user (su) command usage. As a secu­
rity measure, this file should not be readable by others. The
/var/adm/sulog file should be truncated periodically to keep the size of the
file within a reasonable limit. The /usr/sbin/cron, the /usr/sbin/rcO, or
the /usr/sbin/rc2 command can be used to clean up the sulog file. You
can add the appropriate command lines to the
/var/spool/cron/crontabs/root file or add shell command lines to direc­
tories such as /etc/rc2 .d, /etc/rc3 .d, and so on. The following command
lines limit the size of the log file to the last 100 lines in the file:

tail -100 /var/adm/sulog > /var/tmp/sulog
mv /var/tmp/sulog /var/adm/sulog

/var/cron/log

This file contains a history of all actions taken by /usr/sbin/cron. The
/var/cron/log file should be truncated periodically to keep the size of the file
within a reasonable limit. The /usr/sbin/cron, /usr/sbin/rcO, or
/usr/sbin/rc2 command can be used to clean up the /var/cron/log file.
You can add the appropriate command lines to the
/var/spool/cron/crontabs/root file or add shell command lines in the
following directories (as applicable): /etc/rc2.d, /etc/rc3.d, (and so on). The
following command lines limit the size of the log file to the last 100 lines in the
file:

5·66

tail -100 /var/cron/log > /var/tmp/log
mv /var/tmp/log /var/cron/log

Integrated Software Development Guide

Summary of UNIX System Files & Directories

/var/sadm/bkup/logs/bklog

This file contains a process log used when troubleshooting a backup operation.

/var/sadm/bkup/logs/bkrs

This file contains a process log used when troubleshooting a backup or restore
operation for which a method was not specified.

/var/sadm/bkup/logs/rslog

This file contains a process log used when troubleshooting a restore operation.

/var/sadm/bkup/toc

This file contains table of contents entries created by a backup method.

Directory and File Management 5-67

6 Keyboard and Display
Input/Output

Introduction 6-1

Overview of Video Display Programming 6-3
Text Mode and Graphics Mode 6-3

• Text Mode 6-3
• Graphics Mode 6-5

Video Adapter Boards 6-6
• Determining the Adapter 6-7
• Getting and Setting the Mode 6-10

Memory 6-12
Registers 6-12

Programming in Text Mode 6-13
How Text is Stored 6-13
Character Sets 6-13
Selecting the Text Mode 6-14
Escape Sequences 6-14
Example of Text Mode Programming 6-16
Text Programming Memory Management 6-17

• Memory Layout 6-18

Programming Access to Video Memory 6-23
• Getting the Physical Address 6-23
• Mapping the Video Memory 6-24
• Mapping Example 6-25
• Relationship to MAPCONS 6-26

Table of Contents

Table of Contents ______________________ _

Graphics Mode 6-27
Addressing Graphics Mode Video Memory 6-27

• Addressing Video Memory in EGA Graphics Modes 6-32
• VGA Only Addressing Modes 6-33
• Mode Switching 6-34

Accessing Video Controller Registers 6-35
• Using Registers for Efficiency 6-37
• Register Programming Example 6-37

Using Virtual Terminals 6-41
Introduction 6-41
Use of Virtual Terminals 6-42
Programming Features 6-43

• VT Modes of Operation 6-44
Writing Well-Behaved Programs 6-44

• Example of a Well-Behaved Graphics Application 6-46
Programming to Manage Virtual Terminal Use 6-51
Virtual Terminal Creation and Application 6-54
Determining VT State 6-58
Virtual Terminal Control 6-61

Miscellaneous Capabilities 6-67
Setting Borders 6-67
Keyboard Operations 6-67
Sou nd Effects 6-67
Font Operations 6-68

• Replacing the Entire Font 6-68
• Replacing Characters Within a Font 6-69

Programming the Mouse 6-69

II Integrated Software Development Guide

_____________________ Table of Contents

Comprehensive Video Programming
Example 6-75

Graphics Modes 6-88
SW BG320 6-88
SW CG320 6-88
SW-BG640 6-89
SW CG320 D 6-89 - -
SW CG640 E 6-90 - -
SW CG640x350 6-91
SW-ENH CG640 6-91 - -
SW VGA640x480C 6-92
SW VGA640x480E 6-92
SW VGA320x200 6-93
SW AIT640 6-93
SW VDC800x600E 6-94
SW - VDC640x400V 6-94

Text and Graphics Mode IOCTLs 6-95
Text Mode Selection IOCTLs 6-95
Graphics Mode Selection IOCTLs 6-96
display(7) loctl Summary 6-97

Table of Contents III

Introduction

This chapter describes how to manage text and graphics output on UNIX Sys­
tem V Release 4 for the Intel386 and compatible architectures. Most of the con­
tent is also applicable to Release 3.2.

This chapter is intended primarily for programmers concerned with developing
low-level graphics applications. The aim of the chapter is to enable you to get
at the internal hardware controls necessary to make effective use of the video
adapters; it is not concerned with higher level graphics concerns such as shad­
ing or rotating images.

While it would be useful to have some familiarity with the PC AT architecture
and understand the basics of video programming, it is not necessary. You
should, however, be knowledgeable of UNIX System V Release 4 for the
Intel386 Architecture and the C programming language, since all examples are
written in C.

The chapter is divided into several distinct sections. The first sections present
both a conceptual and technical overview of developing programs that make
full use of the text and graphics facilities. The next sections present the same
material from a more specific technical viewpoint and provide annotated pro­
gramming examples. They describe the specific requirements for text mode pro­
gramming, the use of video memory, and graphics mode programming, includ­
ing specific requirements for programming the video control registers.

One of the significant features of the video interface is its Virtual Terminal
Capability. This capability extends the notion of windowing to the next level
and allows for controlling several independent windowing applications. After
presenting the initial view of graphics programming, there is an extensive sec­
tion that describes the Virtual Terminal Capability and provides extensive pro­
gramming examples of how to make effective use of that capability.

The last sections present various miscellaneous features, including Setting Bord­
ers, Keyboard Operations, Sound Control, Font Operations and Programming
the Mouse. The final sections provide useful supplementary information such
as tables that s:ummarize the various graphics and text modes.

This chapter should be viewed as a supplement to the reference manual. It is
not a tutorial; rather it summarizes and organizes the most common and fre­
quently used technical information and provides extensive examples demon­
strating the use of the video capabilities of the video interface.

Keyboard and Display Input/Output 6-1

Introduction

The primary source of information on programming the video interface is:

• The display(7) and keyboard(7) man pages, either on-line or in the
UNIX System V /386 Release 4 Administrator's Reference Manual.

The display(7) manual page describes both text and graphics control of the
display. For text output, the manual pages present the effect of different output
character sequences on the display. For graphic control, the manual pages
describe the function call details of the ioctl system routine [see ioctl(2) in
the Programmer's Reference Manual] that provides the graphics interface to the
display and to the keyboard/display (kd) driver known as the kd driver.
Both the display(7) and keyboard(7) man pages (in the System Administrtor's
Reference Manual) include necessary information for using and controlling Vir­
tual Terminals.

You should refer to the manuals that come with the video board you are using
for information on the hardware layout, the differences among different video
boards, the memory maps, and video registers.

6·2 Integrated Software Development Guide

Overview of Video Display Programming

Before you start you will need to become familiar with the ioctl(2) system call
and the header file, /usr/include/sys/kd.h. The header file defines the
display vocabulary (Le. the complete set of #defines) that you need in order to
use the ioctl(2) system call. It also contains the definitions of those structures
that allow you to read and write the control registers.

The other #include files that you will require are /usr/include/sys/types.h
and /usr/include/sys/at_ansi.h.

Aside from normal design considerations, the two most important decisions you
must make before you start are:

• Will I be in text mode or graphics mode?

• What board should I program for; more specifically, what resolution
should I program for?

Text Mode and Graphics Mode

A critical aspect to video display programming is the distinction between text
mode and graphics mode. The two modes are mutually exclusive; an adapter
can only be in one of those two modes, not both. Thus, a programmer can pro­
duce either a graphics display or a text display, but not both at the same time.

Text Mode

Under text mode, you can specify the text format and character set; you can
display foreground and background colors; you can control cursor movement
and can even control character mapping. In text mode, the display resolution is
considered in terms of characters; for example an 80 x 25 resolution screen can
hold 80 characters across the width of the screen and 25 lines down the screen.
Text mode is the default mode.

There are several different character sets to choose from. Some of these sets
provide "graphic" characters, for example arrows, lines, corners, etc. Because
text mode is both faster and easier to use than graphics mode, you should con­
sider whether it makes sense to do your application entirely in text mode.

Keyboard and Display Input/Output 6-3

Overview of Video Display Programming

There are three kinds of output possible in text mode. These can be loosely
characterized as "standard character output", "non-standard character output"
and "escape code sequences".

• In standard output you "see what you say"; that is, the characters "xyz"
appear on the display if a program says printf (UXYZU) ;

• Non-standard output describes what happens when you output the non­
printing characters such as LF, FF, CR, BEL, etc. The display(7) manual
pages describe the action that occurs when each of these characters is out­
put. For example, outputting FF will clear the screen and put the cursor
at line 1, column 1.

• Escape sequences allow you to control the cursor movement, perfonn
screen editing, assign values to function keys, and specify attributes of
each character. Escape sequences also let you manage screen input as well
as output. For example, you can program the effect of function keys on
the display, lock and unlock the keyboard, etc. The Escape sequences are
also described in detail in the display(7) manual page. Several of the
Escape sequences are used as examples in the next section.

For a program to run in text mode, you must take the following steps:

• Create a set of #defines for the escape sequences you will use. This is
not a programming requirement, but it is good programming practice and
results in more readable and maintainable code.

• Open the kd driver.

• Determine which adapter board is attached.

• Establish the text mode, if you do not intend to use the default mode.

• Clear the screen (output the sequence ESCc, i.e., printf (u\033cU) ;).

• Output the text.

There are two general ways to output text. The first is by using straight­
forward output functions, such as printf. In this mode, the escape sequences
are used to control foreground and background color as well as other text attri­
butes, such as blink or underscore.

The second is by writing directly to the video memory. You can actually work
with several screenloads at once. The amount of memory available to the video
adapter is a multiple of 16K bytes, depending on which adapter is used. The
amount used for a text screen is either 2K or 4K, depending on the mode

6-4 Integrated Software Development Guide

Overview of Video Display Programming

selected. This means that there can be at least 4 to 8 text screens stored simul­
taneously. You control which of those screens is currently displayed and you
can switch the displays instantaneously (at least from the viewpoint of the end­
user).

Graphics Mode

In graphics mqde, the display is viewed as consisting of addressable points
called picture elements (or pixels). The combination of the adapter board and
the display mode establish a screen resolution and color capability. You can
address each pixel of the display and specify the color of each display pixel.

In both text and graphics mode, you can read and set video hardware registers,
and create Virtual Terminals.

The adapters respond to additional commands that allow you to read and set
the keyboard LEOs, generate sounds and tones, and perform other miscellane­
ous functions.

In order to be effective in using graphics mode, you must develop a basic
library of primitive routines. All graphics programming is a function of writing
to memory and mapping the memory to the display screen.

The getting started steps are the same for graphics mode as for text mode and
consist of:

• Open the kd driver.

• Determine the adapter board.

• Establish the Graphic Mode (a combination of number of colors and reso­
lution).

• Clear the screen.

This consists of writing the appropriate foreground/background pixel
value into all of video memory. The actual value written depends on the
background attribute.

• Get to work.

The section entitled "Comprehensive Video Programming Example" at the end
of this chapter presents a complete graphics programming example.

Keyboard and Display Input/Output 6-5

Overview of Video Display Programming

Video Adapter Boards

The video display is physically controlled by hardware boards called video
adapters. The video adapters essentially determine the resolution and color
possibilities of the display image in both text and graphics modes. Adapters
will differ in the number of colors that are possible and the maximum possible
screen resolution.

The first step in video display programming, then, is to determine the specific
adapter board (sometimes called an adapter card) that is being used. It is possi­
ble to develop programs for the lowest level board, in which case this step is
not necessary. In most cases, however, you would want to make use of the
maximum capabilities of the board, to have the highest possible screen resolu­
tion, in which case it is essential that you know the board you are using.

There are many standard video adapters widely used in the PC marketplace.
These include:

• The MDA (Monochrome Display Adapter) is a basic 2 color display, i.e.
black and one other. It has a resolution of 720 pixels across by 350 pixels
down.

• The CGA (Color Graphics Adapter) provides 4 colors, with a 320 x 200
resolution, or 2 colors, with a 640 x 200 resolution.

• The EGA (Enhanced Graphics Adapter) provides 16 colors and 640 x 350
pixel resolution.

• The VGA (Video Graphics Adapter) provides 16 colors, with 640 x 480
pixel resolution and 256 colors at 320 x 200 pixel resolution.

You may also use a Hercules monochrome graphics adapter and other com­
monly available graphics adapters. Each controller/adapter has different capa­
bilities, registers, and memory mapping. The section entitled "Graphics Modes"
at the end of this chapter summarizes the characteristics of each of the graphics
modes that are available.

6-6 Integrated Software Development Guide

Overview of Video Display Programming

Determining the Adapter

Accessing the VDC requires two programming steps:

• Opening the Device

• Getting the Adapter Infonnation

Like all devices in Release 4.0 Version 1.0, the adapter is opened as if it were a
file. A specific statement to use is:

disp = open("/dev/video", O_RDWR);

The expectation in opening /dev/video is that the controlling tty is a Virtual
Tenninal. The open will fail if the device is connected via a serial terminal
port. If the device cannot be opened, the error return is a negative number.
The ioctl(2) system call is used to gather information, set modes, issue miscel­
laneous commands, etc. Because of the historical evolution of UNIX System V,
there are several different versions of the ioctl(2) system call that either can be
used or have to be used, depending on the specific information required. The
techniques used in the examples are recommended. They provide a cleaner
interface to the driver code and are essential for the effective use of Virtual Ter­
minals. These calls and variations are:

• ioctl(fd, KIOCINFO, 0);

This call is used to determine if the file description given by fd is for a
device that can be controlled by the kd driver. If it is, the return will be
('k'«8 I'd').

• ioctl(disp, KDVDCTYFE, &disp_info);

The argument, &disp _info, is the address of a structure that is filled by
the called routine. For example, it may be defined by:

struct kd_vdctype

On return from the ioctl routine, the structure will contain the con­
troller type and the display type. The mnemonics used are defined in
/usr/include/sys/kd.h.

Keyboard and Display Input/Output 6-7

Overview of Video Display Programming

Return values for the controller field are:

Return

KD MONO
KD HERCULES
KD CGA
KD EGA
KD VGA
KD VDC400

KD VDC750
KD VDC600

Adapter Type

IBM monochrome display adapter.
Hercules monochrome adapter
IBM colorgraphics adapter
IBM enhanced graphics adapter
IBM video graphics adapter
AT&T VDC 400 adapter
AT&T VDC 750 adapter
AT&T VDC 600 adapter

And the standard returns for the monitor type are:

Return

KD UNKNOWN
KD STAND M - -
KD STAND C - -
KD MULTI M - -
KD MULTI C

Monitor Type

Unknown monitor type
Standard monochrome monitor
Standard color monitor
Multi-mode monochrome monitor
Multi-mode color monitor

If the ioctl(2) system call function returns a value of -1, a data transfer error
occurred.

6-8 Integrated Software Development Guide

Overview of Video Display Programming

The following code fragment illustrates how to find the adapter type:

struct kd_vdctype vdcinfo;

'''issue the ioctl to get the VDC type .. ,
if (ioctl(disp, KDVDCTYPE, &vdcinfo) < 0)

fprintf (stderr, "KDVDCTYPE failed");
exit (1) ;

}

, .. LOOK AT THE ADAPTER TYPE .. ,
switch· (vdcinfo.cntlr) I /* switch on the adapter type */
case KD_EGA:

printf ("EGA Compatible Adapter Unit \n");
break;

case KD_VGA:
printf ("VGA Compatible Adapter Unit \n");
break;

default:

}

printf("This application will only run on systems\n");
printf ("configured with EGA or VGA compatible controllers\n");
exit (1);

, .. LOOK AT TIlE MONITOR TYPE .. ,
switch (vdcinfo.disply) I /* switch on monitor type */
case KD_STAND_M:
case KD_MULTI_M:

printf ("Warning: This application requires a color\n");
printf("monitor for some of the options. \n");
break;

case KD_STAND_C:
case KD_MULTI_C:

printf ("Color Monitor \n");
break;

default:
printf("Warning: Unknown monitor type.\n");
break;

Keyboard and Display Input/Output 6-9

Overview of Video Display Programming

Getting and Setting the Mode

The mnemonics for setting the adapter mode are of the form SW _type, where
"type" indicates the combination of adapter and mode. For example,
SW _ C80x25 is used to set the mode to CGA text, 80 x 25 while
SW _ VDC64Ox400V selects the 640 x 400 graphics mode.

The mode is set by calling the routine:

ioctl(disp, SW_type, 0);

A negative return indicates an error.

The CONS_GET routine is used to determine the current adapter mode. It
returns the mode using the mnemonic DM _type, where "type" is as above. The
mode is obtained by calling:

ioctl(disp, CONS_GET, 0);

The return is the current mode setting, or a value less than zero if there was an
error.

The relationship between the mode as gotten and the mode to be set is:

SW_type = DM_type I MODESWITCHi

That is, the value used to set the mode can be obtained by or-ing a previously
gotten and saved mode value with MODESWITCH.

A call to ioctl (disp, KDSETMODE, KD_TEXT) i sets the adapter from what­
ever its current mode is to the default text mode and also clears the screen.

One reason for having to save and restore adapter modes is that a video appli­
cation may be invoked within other video applications, such as OPEN LOOK.

The example below illustrates the operation just described. The code fragment
opens the device in one mode; gets and saves that mode; switches modes and
then restores the original mode. Prudent programming will also catch all catch­
able signals in order to restore the initial settings.

6-10 Integrated Software Development Guide

Overview of Video Display Programming

include <stdio.h>
include <fcntl.h>
include <sys/kd.h>

include <errno.h>
main ()
{

int disp, save_mode;

if ((disp '" open (II/dev/video ll , O_RDWR» < 0) {
fprintf(stderr, "Cannot open /dev/video, ermo %d\n", errno);
exit (1) ;

, .. set the mode to wide text and print something out .. ,
if (ioctl(disp, SW_C40x25, 0) < 0) {

fprintf (stderr, "SW_C40x25 ioctl failed\n");
exit (1);

printf ("Testing SW_C40x25 ioctl \n");
sleep(2);

, .. Save that mode .. ,

if ((save_mode = ioctl(disp, CONS_GET, 0» < 0) {
fprintf (stderr, "CONS_GET failed");
exit (1) ;

}

, .. Clear the screen and reset the display back to the default text mode: .. ,

if (ioctl(disp, KDSETMODE, KD_TEXT) < 0) {
fprintf(stderr, "Unable to reset display, error: %d\n", errno);
exit (1) ;

, .. Show normal text .. ,
printf("Now in normal narrow text mode ");
sleep(2);
, .. Return to wide text .. ,
if (ioctl(disp, MODESWITCH I save_mode, 0) < 0) {

fprintf(stderr, "Unable to reset display, mode: %x\n", save_mode);
exit(l);

exit (0);

Keyboard and Display Input/Output 6·11

Overview of Video Display Programming

Memory

All access to physical hardware is regulated by the UNIX system kernel and
device drivers. In the case of the console video graphics controller, the kd
display driver is charged with this responsibility.

To provide a reasonable level of protection, most of the common controller
operations are supported via the ioct 1(2) UNIX system call interface. Exam­
ples of such operations include: video mode selects, controller status, I/O opera­
tions to the controller, and get/set screen attributes. In addition to these opera­
tions for interacting with the controller, one additional important feature is pro­
vided; the ability to map video memory into your address space.

From a programmer's viewpoint, the adapter card can be considered to be
directly linked to memory locations within the computer. Changing the con­
tents of the memory immediately changes the content of the display. An essen­
tial element of programming the video display, then, is understanding exactly
how the memory corresponds to the output. The specific way in which memory
must be laid out is a function of the adapter card and the mode with which that
adapter is being used. The specific layout and mapping of memory are
described in subsequent sections.

Registers

The actual operation of the adapter is controlled by certain registers on the
adapter.

In the UNIX System V Release 4, the kd driver does all the basic video register
setup at the time you select the graphics mode. The driver has been designed to
provide good performance while maintaining a safe user level interface. The
driver does not fully protect you against programming mistakes. On the con­
trary, you are specifically allowed to read and write the video hardware regis­
ters directly. Some of these registers should not be directly written unless you
are fully aware of the consequences and have taken steps to ensure the correct­
ness of the operation.

6-12 Integrated Software Development Guide

Programming in Text Mode

How Text is Stored

In text mod~, each character is stored in memory as two data bytes. The first
one is for the character itself and the second one is for its attributes. A
character's attributes specify the foreground and background colors, as well as
whether that character is to be highlighted, underlined, or blinking. These
characteristics differ somewhat, depending on the video mode and the adapter,
and also on whether the display screen is monochrome or color.

Bits 0 - 3 affect the Foreground Color; bits 4 - 7 affect the Background Color.

Character Sets

The adapters provide alternate character sets. We recommend that you run a
simple program that exercises the different character set options. The following
code fragment is illustrative:

NOTE: Escape (ESO is octal 33

/* Clear the screen and select 1st a1t char set. */

printf ("\033c\033 [l1m");
for (i = 0; i < 255; i++)

printf ("%c", (char) i);

/* Select 2nd alt char set. */
printf ("\n\n\033 [12m");
for (i = 0; i < 255; i++)

printf ("%C", (char) i) ;

/* Restore the primary character set. */

printf ("\033 [10m") ;

Many video display controllers allow additional character sets or text fonts to be
created locally by an application programmer. For example, some VDCs allow
16 such fonts and others may allow 8 such fonts. Each character set is stored in
a fixed section of memory and is selected by setting the Expanded Character
Select Register. Register programming will be described in a subsequent sec­
tion.

Keyboard and Display Input/Output 6-13

Programming In Text Mode

Selecting the Text Mode

Each of the adapters allows several possible text modes.

• One approach to selecting a mode is to choose the highest resolution
mode available on the adapter.

• If compatibility is an issue, select the mode that will work on the lowest
common adapter that the application will run on.

Assuming an 80 column width, the difference between text modes on the same
adapter is that the actual characters can be displayed with different resolutions.
For example, a VDC that can operate compatibly with CGA, EGA or VGA
applications can display characters in 3 different 80 x 25 character modes.

• VGA mode 2 displays characters in a 9 x 16 box (144 pixels),

• EGA mode 2 displays characters in an 8 x 14 box (112 pixels).

• CGA mode 2 displays characters in an 8 x 8 box (64 pixels).

The VGA and EGA's higher resolutions produce characters that are crisper and
easier to read.

The section entitled "Text and Graphics IOCTLs" summarizes all text and
graphics modes. It lists the defined mnemonic used in the ioctl(2) system call
and the adapter type it can work on.

Escape Sequences

Escape sequences are used for three purposes:

• To change the characteristics of the text to be displayed.

These characteristics can also be altered by directly addressing the
video memory. This aspect of video programming is discussed in
the next sub-section.

• To program some of the Video Registers and affect the overall display.

6-14

For example, Escape sequences can modify those registers that select
the character set, move the cursor, erase all or part of the screen, etc.

Integrated Software Development Guide

Programming In Text Mode

• To issue some miscellaneous commands.

For example, you can issue an escape sequence (ESC [lk) that pro­
duces a "click" each time the user presses a key. The sequence
ESC [Ok disables that feature.

The Escape sequences can be issued at the command level; in particular, they
can be embedded in shell scripts that are integral to an application system. For
example, including the following within a user's . prof ile displays the pri­
mary prompt as the machine name in cyan:

UNAME='uname'
PS1='echo "\033 [36m$UNAME: \033 [37m'"

The Escape sequences adhere to the ANSI X3.64 standard for ASCII terminals,
with a few extensions for color and enabling the key-click feature. The complete
list of escape commands is included in the display(7) documentation.

The following C program displays the characters of the alphabet in different
foreground and background colors:

main ()

int i, j;
char *string = "abcdefghijklmnopqrstuvwxyz"
for (i = 30; i < 38; i++)

for (j = 40; j < 48; j++)
printf ("\033 [%d;%dm%s\n", i, j, string);

, .. Restore the default white on black display colors: .. ,
printf("\033[Om\n");

Keyboard and Display Input/Output 6-15

Programming In Text Mode

Example of Text Mode Programming

The following program opens the video adapter and displays the printable char­
acter set under whatever text modes are valid on that adapter. Note that not all
monitors will support all modes .

6-16

• include <stdio.h>
'include <fcntl.h>
.include <sys/types.h>
.include <sys/at_ansi.h>
.include <sys/kd.h>
'include <errno.h>

struct {

} modes[]

} ;

rvain ()
{

unchar m_name [20];
int m_value;
= {

{ "SW_B40x25",
{ "SW_C40x25",
{ "SW_BBOx25",
{ "SW_CBOx25",
{ "SW_ENHB40x25",
{ "SW_ENHC40x25",
{ "SW_ENHBBOx25",
{ "SW_ENHCBOx25",
{ "SW_EGAMONOBOx25",
{ "SW_ENHBBOx43",
{ "SW_ENHCBOx43",
{ "SW_VGAC40x25",
{ "SW _ VGACBOx25" ,
{ "SW _ VGAMONOBOx25" ,

int i, j;
int disp;

/* ioctl name * /
/* ioetl value * /

SW_B40x25 },

SW_C40x25 },

SW_BBOx25 },

SW_CBOx25 },
SW_ENHB40x25 },
SW_ENHC40x25 },

SW_ENHBBOx25 },

SW_ENHCBOx25 },

SW EGAMONOBOx25 },

SW_ENHBBOx43 },

SW_ENHCBOx43 },

SW_VGAC40x25 },

SW_VGACBOx25 },
SW _VGAMONOBOx25

,.. Standard form for opening the driver. If the open is
successful, the controlling tty is, in fad, a valid
display device. ..,

if «disp= open ("/dev/vldeo", O_RDWR)) < 0)
fprintf(stderr, "Cannot open /dev/video, error: %d\n",

errno);
exit (1);

(continued on next page)

Integrated Software Development Guide

Programming In Text Mode

I"'Try to set every possible text mode. Only the valid modes will work. "'1

for (i = 0; i < 14; 1++) {

}

if (ioctl(disp, modes[ij.m_value, 0) < 0) {

} else {

sleep(1);

printf("\033c\s not supported.", modes[ij.m_name);
fflush (stdout) ;

I'" For every valid mode, output every printable character. "'1

printf(I\033c%s\n", modes[ij.m_name);
for (j = Ox21; j < Ox7f; j++) {

printf("%c", j);
if (! ((j - Ox20) % 24»

printf ("\n");

fflush (stdout) ;

I'" Clear the screen and reset the display back to the default text mode: "'1
if (ioctl(disp, KDSETMODE, KD_TEXT) < 0) {

fprintf (stderr, "Unable to reset display, error: %d\n",
errno) ;

exit(1);

Text Programming Memory Management

The ability to access video memory is a necessary feature for developing high
performance graphics applications. The information that appears on the screen
is directly correlated to a block of memory. Writing to memory directly is faster
than going through intermediate routines. And changing video memory pro­
duces instant change on the screen.

In text mode you can store several screen loads in video memory at the same
time. This gives you the ability to write to one screen without disturbing what
the end user sees and then switching to a new, full screen's worth of data.
There is a tradeoff in using this particular technique. Its downside is that using
memory switching bypasses the kd driver control which means that switching
Virtual Terminals may not be effective. This means you would have to seize the

Keyboard and Display Input/Output 6-17

Programming In Text Mode

screen during the operation (by entering VT_PROCESS mode, which is
described later).

Memory Layout
The specific layout of video memory is a function of the type of display and the
video mode that is being used. The combination of the video mode and the
display controller type determine both the amount of memory that needs to be
mapped as well as where within video memory a particular screen's display
data exists.

The table below describes the various video text modes and identifies the
adapters that support each mode. The list is not exhaustive in that EGA and
VGA adapters do support variations of the CGA modes. As an example, the
mode 0 text mode for a VGA adapter has the ability to support the 40x25 char­
acter set in higher resolution (320 x 350 and 320 x 400) as opposed to the CGA's
320 x 200 pixel resolution.

Video Text Modes for CGA/EGA/VGA

Video Start Cont
Mode Type Resolution Colors Address Type

0 Text 40 x 25 16 grey OxB8000 eGA
1 Text 40 x 25 16f, 8b OxB8000 eGA
2 Text 80 x 25 16 grey OxB8000 eGA
3 Text 80 x 25 16f, 8b OxB8000 eGA
7 Text 80 x 25 b/w OxBOOOO MDA

Addressing of video memory in text mode is identical for all standard video
systems (CGA, EGA, VGA). Two bytes of data are required for each character
represented on the display screen. The first byte contains the ASCII character to
be displayed and the second byte contains the attributes of that character.

For example, the memory required to display a single screen's data for a CGA
80 x 25 color adapter (mode 3) would be 25 rows * 80 lines * 2 bytes or 4000
bytes.

6-18 Integrated Software Development Guide

Programming In Text Mode

The attribute byte indicates the foreground/background colors, intensity, and
underline. Consider the following memory dump for a single page:

Contents of Memory
displayed

0 1 2 3 4 5 6 7 8 9 A B C D E F Data
OxB8000 30 07 31 07 32 07 33 07 34 07 35 07 36 07 37 07 01234567
OxB8010 38 07 39 07 3a 07 3b 07 3c 07 3d 07 3e 07 3f 07 89:;<=>?
OxB8020 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
OxB8F90 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07

Actual Screen display

Column 10 20 30 40 80
1 1 1 1 1

1234567890123456789012345678901234567890 1234567890

Row
1 10123456789:;<=>?
2 1

3 1

4 1

5 1

6 1

25

display
. Screen

The even-numbered bytes hold the character representation and the odd­
numbered bytes hold the attributes. The attribute bytes (in this case the "07"s)
are not displayed; rather these are used by the controller to determine how to
display the data. In this case the attribute being called for is simply white on a
black background.

Keyboard and Display Input/Output 6-19

Programming in Text Mode

The layout of the attribute byte is a function of the adapter. In this case, mode
3, the layout is:

Color Attribute (mode 3)

Bit

7 Blinking foreground component
6 Red background component
5 Green background component
4 Blue background component
3 Intensity
2 Red foreground component
1 Green foreground component
0 Blue foreground component

Since (in this case) only 4000 characters are needed to represent an entire screen
within memory, then the video memory within a CGA compatible controller is
not being fully used. The remaining memory however, need not be wasted. It
is possible to make use of the remaining video buffer for storing more than one
screen's data at a time. This feature allows a programmer to switch what is
currently displayed on the screen quickly simply by redirecting where the con­
troller begins addressing. Writing an entire screen of data into video memory is
much slower than redirecting the controller's address register.

~
if you are doing this, you are bypassing the kd driver control. Because of

NOTE this, SWitChing. Virtual Terminals may not be effective. To ensure that it is
you need to enter VT _PROCESS mode (described later in the chapter on
Virtual Terminals).

Because the CGA controller supports 16K RAM (16384 bytes), there is the possi­
bility of storing 4 screens of data in video mode 3 (8 in video modes 0 and 1).
With a screen using 4000 bytes however, four screens of memory will consume
only 16000 bytes of the 16384 available. Each screen of data is aligned on a 4K
(4096) byte boundary and thus there are 96 bytes at the end of each screen of
video memory that is not used. See the following diagram:

6-20 Integrated Software Development Guide

OxBOOOO

OxBOFAO

OxB1000

OxB1FAO

4000 Bytes

96 Bytes
unused

4000 Bytes

96 Bytes
unused

etc

Programming In Text Mode

PAGE 0

OxBOF9F

OxBOFFF
PAGE 1

OxB1F9F

OxB1FFF

The following formula provides one method of directly associating a byte posi­
tion on the screen with an address in video memory:

video buffer address = video_memory _start + 2 * (80 * row + column)

The video _memory _start is the start of the video buffer for the video mode we
are using. The factor of two is necessary because of the attribute byte associated
with each screen location. As ~n example, if we are using video mode 3 and
wish to access the data and attribute for screen location row = 3, column = 30,
then the video buffer address would be

OxBOOOO + 2 * (80 * 3 + 30) = OxB021C

B021C would be the address for the data byte and B021D would correspond to
~he attribute byte for location 3, 30 in page O. If on the other hand we wished
to address row 3, column 30 in page I, Oxl000 would be added to this value
producing OxBI21C. The same types of calculations are applicable to other
video text modes. The above calculations are based on the assumption that the
upper left corner of the screen, i.e., the origin, is (0, 0) and not (1, 1).

Keyboard and Display Input/Output 6-21

Programming In Text Mode

High speed interactions with the end-user can be accomplished:

• Read the current cursor position by reading the high/low cursor registers
(see the section on Register Programming).

• Read the data at the cursor position by reading memory.

• Write data to the cursor position by writing memory.

• Use Escape Sequences to reposition the cursor.

These four capabilities allow you to develop completely interactive full screen
sessions.

6-22 Integrated Software Development Guide

Programming Access to Video Memory

Gaining access to video memory is identical in both text and graphics mode. It
is essentially a three-step process:

1. Open the kd driver. The kd driver is opened as the file /dev/video.

2. Get the physical address of the display in memory.

3. Map the display memory into an area of your program's address space.

Getting the Physical Address

Use the KDDISPTYPE ioctl to retrieve the display memory start address.
The way to use this ioctl(2) system call is to define a structure that the driver
will fill. In using KDDISPTYPE, the argument passed in the call is a pointer to
the structure. The structure used by KDDISPTYPE is:

struct kd_disparam {
long type; /* display type */
char *physaddr; /* display memory address */
ushort ioaddr[MKDIOADDRj; /* valid I/O addresses */

} ;

The structure element type becomes the type of display (CGA, EGA, VGA, ...).

~
While this call works on all adapters and modes, not all display types are

NOTE returned. The return types are limited to KD MONO, KD HERCULES,
KD _ CGA, KD _EGA and KD _ VGA. - -

The desired physical address is returned in physaddr (e.g. OxB8000 for CGA).

The third element is an array of I/O addresses that the driver will allow opera­
tions on. These addresses are I/O port addresses on the video display con­
troller. Some possible values that one might find here are Ox3B4, Ox3B5, Ox3D4
and Ox3D5.

Keyboard and Display Input/Output 6-23

Programming Access to Video Memory

Mapping the Video Memory

To access the video buffer you must request that the physical memory obtained
by calling KDDISPTYPE be mapped into your address space. This is accom­
plished with the display driver ioctl(2) system call, KDMAPDISP. In using
KDMAPDISP, the argument passed in the call is a pointer to the structure:

struct kd~emloc {
char *vaddr;
char *physaddr;
long length;
long ioflg;

} ;

1* virtual address to map to *1
1* physical address to map from *1
1* size in bytes to map *1
1* enable i/o addresses if set *1

The first element of the array, vaddr, must be a page aligned pointer to a phy­
sical area of memory. This will point to the area of memory within your
address space where the video buffer will be made accessible to you. You must
use malloc, or another allocation routine to obtain this memory space.

The physical address, physaddr, is passed as input to KDMAPDISP. This is
the address returned by the previous call to KDDISPTYPE.

6-24 Integrated Software Development Guide

Programming Access to Video Memory

Mapping Example

To illustrate the mapping concept, consider the following code fragment:

, .. The assumption here is that vaddr is a pointer to an array alleast
.. 4096 bytes larger than needed to hold the mapped data. The reason
.. for this is to ensure that when the pointer is page allgned that
.. the entire mapped area is addressable. NOTE: The desired area
.. could also be allocated using the allocO functions. ..,

char scrmem[16384 + 4096];

map_memory ()

/* define the memory array */

{

struct kd_disparam parm_area, *kdp;
struct kd_memloc map;
char *vaddr;
int disp;

kdp = &parm_area;
vaddr = scrmem;

if«disp = open("/dev/video", O_RDWR I O_NDEIAY» < 0) {
fprintf(stderr,"driver open failed, errno = %d\n, errno);
exit (-1);

if(ioctl(disp, KD_DISPTYPE, kdp) < 0) {
fprintf(stderr,"KD_DISPTYPE failed, errno = %d\n", errno)i
exit(1);

map.physaddr = kdp->addr;
vaddr = (vaddr + 4095) &
map.vaddr = vaddr;
map. length = 16384;
map. ioflg = 1;

/* set the video address */
4095; /* page align the address */

/* set the address */
/* set the screen size */
/* enable io addresses */

if(ioctl(disp, KDMAPDISP, &map) < 0)
{

fprintf (stderr, "KDMAPDISP failed, errno = %d\n", errno) ;
exit(-1);

Upon return from KDMAPDISP, vaddr points to an area of the mapped video
buffer. Reads and writes to the memory at vaddr directly affect the informa­
tion displayed on the screen.

Keyboard and Display Input/Output 6-25

Programming Access to Video Memory

To unmap the display buffer from user memory, the KDUNMAPDISP ioctl is
provided. There are no arguments to KDUNMAPDISP and it may be called as
follows:

if(ioctl(disp, KDUNMAPDISP, 0) < 0) (
fprintf (stderr, "KDUNMAPDISP failed, errno = %d\n",

errno);
exit (-1);

The section entitled "Comprehensive Video Programming Example" at the end
of this chapter contains additional examples of accessing video memory. The
routine get_display_info illustrates the use of KDDISP1YPE. The routine
map_video_screen similarly illustrates the use of KDMAPDISP.

Relationship to MAPCONS

An investigation of the list of ioctl(2) system calls show several alternative
ways to do a number of the functions. Some of the calls exist to allow compati­
bility with programs previously written for XENIX. A specific question may
arise here regarding the use of the MAPCONS call (i.e. ioctl (disp, MAP­
CONS, 0);). The MAPCONS call establishes a direct pointer to video memory
and seems easier to use than the method described here which requires allocat­
ing the memory in your own program space.

However, the use of MAPCONS locks the Virtual Terminals and the end-user
cannot switch Virtual Terminals until you specifically exit your application and
free up the terminal.

Using KDMAPDISP in conjunction with process mode (see following sections),
keeps your application well-behaved in a Virtual Terminal environment.

6·26 Integrated Software Development Guide

Graphics Mode

Addressing Graphics Mode Video Memory

Memory allocation for each of the adapters, when used in graphics mode, is
displayed in the following table:

Video Modes for CGA/EGA/VGA

4 Graphics 320 x 200 4 OxB8000 eGA
5 Graphics 320 x 200 4 grey OxB8000 eGA
6 Graphics 640 x 200 2 OxB8000 eGA
D Graphics 320 x 200 16 OxAOOOO EGA
E Graphics 640 x 200 16 OxAOOOO EGA
F Graphics 640 x 350 2 OxAOOOO EGA
10 Graphics 640 x 350 4 OxAOOOO EGA
10 Graphics 640 x 350 16 OxAOOOO VGA
11 Graphics 640 x 480 2 OxAOOOO VGA
12 Graphics 640 x 480 16 OxAOOOO VGA
13 Graphics 320 x 200 256 OxAOOOO VGA

Accessing the video buffer when in graphics modes differs significantly from the
mechanism used in text mode. In text mode characters displayed on the screen
are stored in the video buffer as a data byte and an associated attribute byte;
two bytes correspond to a single fixed screen position. Accessing this informa­
tion is fairly simple.

Graphics modes do not operate on a character level, but on a pixel level.
Graphics screen addressability is on a row/column basis; however, the row and
column correspond to the pixel coordinates on the displayed screen. As an
example, consider a resolution of 320x200. This resolution implies that there are
200 rows of 320 columns.

Keyboard and Display Input/Output 6·27

Graphics Mode

column
o 319

o

row display screen

199 ~ ______________________________ ~

Accessing a pixel within the video RAM is not as straight forward as characters
in text modes. As graphics modes vary, so do the ways that the information is
stored within memory. A four color graphics mode requires two bits to store
the four discrete color values. The remaining six bits within a byte are available
to store pixel values for other screen locations. In this way, a single byte can
store four pixel's worth of data in four color graphics modes. As the number of
available colors increases, so does the memory required to store the additional
information.

Pixel o 1 2 3

1\ 1\ 1\ 1\
Byte 7 6 5 4 3 2 1 0

Bit positions

A programmer needs to be concerned not only with pixel addressing within a
byte, but also with which screen row is being addressed. In eGA graphics
modes for instance, even rows (scan lines) are within one area of memory
(OxB8000) and odd scan lines start at OxB8000 + Ox2000, or OxBAOOO.

6·28 Integrated Software Development Guide

Putting both concepts together, the following address map results:

display
addr

OxB8000

OxB8050

OxB9EAO

OxB9EFO

OxB9F40

OxBAOOO

OxBA050

OxBBEAO

OxBBEFO

OxBBF40

t Pixels (0 1 2 3)

I······ .. · ····· L~ne 0 1
................... LJ.ne 2

.................. Line 196

.................. Line 198··············

Unused Space 192 bytes
(OxB9F40 - OxB9FFE)

.................. Line 1

.................. Line 3

.................. Line 197

.................. Line 199

Unused Space 192 bytes
(OxBBF40 - OxBBFFE)

Graphics Mode

The above map shows that there is an area of memory at OxB9f40 and OxBAF40
that is unused. This is because only 8000 bytes are needed to represent 100
scans lines (80 bytes per row * 100 rows). Because 0x2000 bytes are allocated for
this area (8192 bytes), this leaves 8192 - 8000 = 192 bytes of unused space.

Keyboard and Display Input/Output 6-29

Graphics Mode

To properly access a particular byte within mapped memory (for modes 4 & 5),
the following formula could be used:

address = OxB8000 + 0x2000 * row % 2 + row 12 * Ox50 + column I 4

It is important to note that this discussion is limited to eGA modes 4 and 5.
After this section we will give examples for EGA addressing. These should
give you a sufficient basis for developing your own memory addressing algo­
rithms.

To access the last pixel within the last row of the above display (row = 199,
column = 319) the formula above would yield

OxB8000 + Ox2000 * OxC7 % 2 + OxC7 I 2 * Ox50 + Ox13F I 4 = OxBAOOO +
OxlEFO + Ox4F = OxBBF3F

Since the pixel is embedded within the byte at OxBBF3F an additional step is
necessary to extract the value. This could be accomplished by masking out the
required bits within the byte. One method for accomplishing this would be as
follows:

value = byte & (OxAO » (column % 4) * 2)

In the above case, the formula would yield

value = byte & (OxAO » (319 % 4) * 2)

or

value = byte & (OxAO »6) = byte & Ox3

This is exactly what we want since column 319 should be in the lower two bits
of the byte at OxBBF3F.

The following programming example illustrates one method of writing a pixel
of information. It accepts arguments: row, col and color. It is assumed that the
driver has already been opened and that screen is a page aligned pointer to
an already mapped video buffer.

6-30 Integrated Software Development Guide

'''' mask and shift defines. These are needed to place the color
.. Information into the correct place within the written byte.
""

unsigned int bmask[4] = {Oxff3f, Oxffcf, Oxfff3, Oxfffc};
int color_shift [4] = {6, 4, 2, 01;

int write-pixel(row, col, color)
int row, col, color;
{

int index; /* screen byte index */
unsigned int mask;
char *sptr; /* screen memory pointer

sptr = screen; /* set pointer to screen

, .. Find the correct position in the screen memory
.. The video memory is set up with odd/even

*1

area *1

.. rows residing at different (non)contiguous memory addresses.
'" Because of this, we need to ensure that the starting address
.. of the byte we need to access is indeed correct. .. ,
index = row * 40 + co1/4;

, .. Now decide whether the row was even or odd. If the row
It is odd, use (OxB8000 + index + 8152). If the row
It is even, use (OxB8000 + index). This means
.. that the first odd row starts at (OxB8000 + 40 + 8152 = OxBAOOO)
It In short, the calculations ensure that the 8192 byte offset
.. between Oxb8000 and OxBAOOO is handled correctly .
.. ,
if (row % 2)

index += 8152; /* bank 2 if odd *1

color «= color_shift[col % 4];
mask = bmask[col % 4];

1* shift color information *1
1* select the right mask *1
1* buffer write *1

* (sptr + index) = color I * (sptr + index) & mask;

return(SUCCESS);

Keyboard and Display InpuUOutput

Graphics Mode

6-31

Graphics Mode

Addressing Video Memory in EGA Graphics Modes

EGA supports additional modes with higher resolution than those of eGA. To
support the additional modes more video memory is needed to store the pixel
values. An EGA video controller supports up to 256KB of video buffer. (This is
also the case for the VGA). This buffer is physically addressable within the
address spectrum as a single 64KB block of physical memory. This is accom­
plished by overlaying the four 64KB blocks (planes) of memory at the same
physical address. Selection of a plane is controlled by registers within the video
controller.

As an example, consider a resolution of 320 x 200 with 16 colors. This would
require 64Kb * 4bits or 32KB of RAM. The pixels are situated within a byte
such that each physical pixel location on the screen maps to one bit within an
addressed byte. This however, would only allow two colors to be displayed.
To support 16 colors, four bits are needed. All four bits are mapped to the
same location in a different plane. One way to access all four bits of color data
for a selected pixel location might be to read the same location in video memory
four consecutive times while selecting the appropriate plane within the video
controller (using the ''Read Map Select Register" command). A graphic exam­
ple is provided below:

\ ~
3 210 I

4 bit color
value

6-32

~ plane 3

~ plane 2

~ plane 1

~
plane 0

f--

-

-

All 4 planes'
physical start
address is at
OxAOOOO

Integrated Software Development Guide

Graphics Mode

The above 4 bit color value would be used by the video controller hardware to
represent the 16 colors for a selected pixel.

Mode F (640x350, two color) requires two bits to store a single pixel's worth of
data. The first bit is the video bit (on/off) and the second bit is really an attri­
bute (intensity). This information is stored in two memory planes; plane 0 and
2. As with all native EGA modes, pixels are stored consecutively within
memory in a manner similar to alphanumeric modes for eGA. To access the
pixel data for a particular xly coordinate, the offset is a linear index from the
start of the video buffer.

As an example, consider y = 0, x = 30. The index from the start of video RAM
for this would be OxA0003. This is computed by taking the start of the video
buffer (OxAOOOO), adding the row displacement (80 bytes per row - here it is 0)
and finally adding the x coordinate divided by the number of bits per byte.

This can be summarized by the following computation:

OxAOOOO + y * BYTES PER LINE + BYTES OFF_SET_WITHIN_LINE

or

OxAOOOO + y * 80 + (30 Bytes/8 Bits Per byte)

or

OxAOOOO + 0 + 3 = OxA0003

Two things to remember are that the x coordinate in this example after the divi­
sion is the integer value 3. The remainder (6) is the bit offset within the
addressed byte. This implies a masking operation to extract the desired bit.
The second thing to remember is that the intensity bit still needs to be retrieved
from bit plane number 2 (at the same address).

VGA Only Addressing Modes

Modes D, E and Fare VGA only modes. Addressing of video memory in these
modes differs only because of the hardware differences in the video controller.
The driver interface to VGA video hardware is identical to that for eGA and
EGA. Rather than duplicate what has already been described for eGA and
EGA, the reader is referred to readily available VGA reference manuals for
information specific to VGA addressing and operation.

Keyboard and Display Input/Output 6·33

Graphics Mode

Mode Switching

Changing from text mode to graphics mode is a simple ioctl(2) system call.
For example, the following will change the display from text mode to 320
columns x 200 rows eGA graphics Mode 5:

if ((disp = open("/dev/video", O_RDWR)) < 0) (
fprintf(stderr, "Cannot open /dev/video, errno: %d\n", errna);
exit (1)

if (ioct1(disp, SW_CG320, 0) != 1) (
fprintf("stderr, "Unable to select SW_CG320 graphics mode, \

errno: %d\n",errno);
exit (1)

The video display buffer is accessed by opening /dev/video.

Use the KDSETMODE ioctl to reset the display back to text mode when
done:

if (ioctl (disp, KDSETMODE, KD_TEXT) < 0)
fprintf(stderr, "KDSETMODE failed, errno: %d\n",errno);

6·34 Integrated Software Development Guide

Accessing Video Controller Registers

Control Register programming is valuable in both text and graphics modes. In
text mode, for example, it allows you to select alterrtate character sets.

To access the CRT controller registers, a two step procedure is needed. During
the first step, an I/O location is written with a value corresponding to the con­
troller register desired. For example, Ox3D4 is one of these 'key' I/O locations.
Some VDCs have more than one such location and the location to use may
differ for monochrome and color adapters. Because of this, you should use the
Qutb function call to access the register. The step of writing to this location
tells the controller hardware which register's contents to make ready. To read
the desired controller register, a second I/O operation (read) is directed to
another location, typically Ox3D5. The byte of data returned is the value of the
register requested. The following table lists some of the registers and the values
that are used to select them. The example below (and the more extensive exam­
ple in the section entitled uComprehensive Video Programming Example" at the
end of this chapter) illustrates performing such an operation.

Note that in conditions in which a VGA card is doing monochrome emulation,
use of the 3d4/3d5 registers should be replaced by 3b4/3b5. An application can
determine whether to use 3d or 3b with the following code:

int regbase = Ox3bO; /* default to 3bO */
if (inb(Ox3cc)&OxOl)

regbase = Ox3dOi /* 3cc is CRT status byte. The */

/* least significant bit is set if VGA */

/* is in color mode and not mono- */

/* chrome emulation */

Keyboard and Display Input/Output 6·35

Accessing Video Controller Registers

6·36

VGA CRT CONTROLLER REGISTERS

Register

OxOO
OxOl
Ox02
Ox03
Ox04
OxOS
Ox06
Ox07
Ox08
Ox09
OxOA
OxOB
OxOC
OxOD
OxOE
OxOF
OxlO
Oxll
Ox12
Ox13
Ox14
OxlS
Ox16
Ox17
Ox18

Register Name

Horizontal Total
Horizontal displayed End
Start Horizontal Blank
End Horizontal Blank
Start Horizontal Retrace
End Horizontal Retrace
Vertical Total
Overflow
Preset Row Scan
Maximum Scan Line Address
Cursor Start
Cursor End
Start High Address
Start Low Address
Cursor Location High
Cursor Location Low
Vertical Retrace Start
Vertical Retrace Low
Vertical display End
Offset
Underline Location
Start Vertical Blanking
End Vertical Blanking
Mode Control
Line Compare

All of the registers above are read/write in a VGA based video system. In
EGA and eGA systems, not all registers are both read and write; refer to a
video technical reference manual for details.

Integrated Software Development Guide

Accessing Video Controller Registers

Using Registers for Efficiency

Many applications will need more efficient ways of quickly filling the video
buffer than the byte by byte method used in the examples. These applications
will use the most efficient hardware read and write modes when updating the
display. Doing so requires setting up certain hardware registers described in
the Hardware Technical Reference Manual. Before these hardware registers
may be accessed, an internal I/O flag must be set. One way is to set the ioflg
variable of a kd _ memloc structure to 1 before mapping the display using
KDMAPDISP. An equivalent way is to explicitly set the I/O enable flag via the
KDENABIO ioctl(2) system call. Once the flag is set, data may be moved in
and out of the registers a byte at a time by using the inb and outb subrou­
tines defined in the header file /usr/include/sys/inline .h. The first
argument of the call is the hardware register address. The second is the data
byte to be moved into or out of the register.

To prevent errant or malicious programs from leaving a shared display in an
inconsistent state upon exit, the KDDELIO ioctl is provided. It restricts
access to the specified hardware registers by removing them from an internal
list of valid register port addresses. It is ordinarily used by the system adminis­
trator and requires superuser privileges. These registers may later be restored
to the list by using the KDADDIO ioctl.

Register Programming Example

The following code fragment demonstrates how to make use of the ioctl(2)
system call interface to change the shape of the cursor. This example is only
illustrative; you can change the cursor shape simply by issuing an escape
sequence: ESC [cO changes the shape to an underscore; ESC [c1 changes it to a
block.

Keyboard and Display Input/Output 6·37

Accessing Video Controller Registers

6-38

ltinclude <stdio.h>
*include <fcntl.h>
Hnclude <sys/types.h>
Hnclude <sys/at_ansLh>
Hnclude <sys/kd.h>
Hnclude <sys/inline. h>
Hnclude <errno.h>

int disp;

, .. This program tests the KDENABIO and KDDISABIO ioct1(2) system call.
In order to have an easUy visible result, the test changes the cursor.
Depending on the current cursor type, the cursor will shift between an
underscore and a block. This test should only be run on an EGA or VGA
controller ... ,

main ()
{

struct kd_vdctype vdcinfo;
unchar cur_start, cur_end, new_val;
int regbase = Ox3bO;

printf ("\033c") ;
fflush (stdout);

if (ioctl (a, KIOCINFO, 0) != (('k' «B) I'd'» (
fprintf(stderr, "These tests are meaningless if run on");
fprintf (stderr, "a TTY other than a graphics display! ! \n");
exit(l);

if ((disp = open ("/dev/video", O_RDWR» < 0) (
fprintf(stderr, "Cannot open /dev/video, ermo %d\n\n",

errno) ;
exit (1);

if" (ioct! (disp, KDENABIO, 0) < 0) (
fprintf(stderr, "KDENABIO failed: errno %d\n\n", errno);
exit (1) ;

if (ioctl(disp, KDVDCTYPE, &vdcinfo) < 0) {
/* code for error processing */

if (vdcinfo.cntlr == KD_VGA I I (inb(Ox3cc)&Ox01»
regbase = Ox3dO;

, .. Inform the adapter that you will read register OxOa (Cursor Start) .. ,
outb(regbaset4, OxOa);

, .. And read it .. ,
cur_start = inb(regbaset5);

(continued on next page)

Integrated Software Development Guide

Accessing Video Controller Registers

'''' Similarly, read Cursor End ""
outb(regbase+4, OxOb);
cur_end = inb(regbase+5);

if (cur_start == (cur_end - 1» /* line cursor */

printf (liThe cursor is an under-score ");
fflush (stdout);

/* set value for block */

else
printf("The cursor is a block ");
fflush (stdout) ;

/* assume block */

new_val = cur_end - 1; /* and set value for line */

sleep(5);
printf("\nChanging the cursor now ");
fflush (stdout) ;

'''' Change the Cursor Shape ""
outb(regbase+4, OxOa);
outb (regbase+5, new_val) ;
sleep(5);
outb (regbase+4, OxOa) ;
outb (regbase+5, cur_start) ;
errno = 0;
if (ioctl (disp, KDDISABIO, 0) < 0) (

fprintf(stderr, "KDDISABIO failed: errno %d\n\n", errno);
exit (1);

printf ("\n\nThis test fails if the cursor did not change. \n");
exit(O);

The example illustrates the sequence of steps necessary to access video con­
troller registers. Such an example may be extended to include access to other
registers within the video controller. The section entitled "Comprehensive
Video Programming Example" at the end of this chapter presents a more com­
plete example in terms of how an actual program might be structured.

The ioct 1 ,command KDENABIO tells ~he driver to allow the user program to
do I/O to the video controller; KDDISABIO tells the driver to disable this I/O
capability. Two more ioctl commands, KDADDIO and KDDELIO, are pro­
vided for adding and deleting video controller addresses from the allowable
I/O list maintained within the driver. The first one adds an address to the
allowable I/O port list and the second removes an address. For instance, these

Keyboard and Display Input/Output 6-39

Accessing Video Controller Registers

commands could be used to add/delete I/O addresses Ox3C4 and Ox3CS, which
correspond to the EGA/VGA sequencer registers. Once a user program adds
these addresses, it can use them to access the 6 sequencer registers. The follow­
ing example illustrates how to use the KDADDIO and KDDELIO ioct 1s.

extern int disp: /* driver file descriptor */

H(ioctl(disp, KDADDIO, (unsigned short) Ox3C4) < 0) (
fprintf(stderr,"KDADDIO failed, errno = %d\n, errno):
exit (-1);

H(ioctl(disp, KDADDIO, (unsigned short) Ox3C5) < 0) {
fprintf (stderr, "KDADDIO failed, errno = %d\n, errno);
exit (-1):

Deletion of addressable ports is similar and is demonstrated below:

6-40

extern int disp: /* driver file descriptor */

H(ioctl(disp, KDDELIO, (unsigned short) Ox3C4) < 0) (
fprintf(stderr,"KDDELIO failed, errno = %d\n, errno):
exit (-1):

if(ioctl(disp, KDDELIO, (unsigned short) Ox3C5) < 0) {
fprintf (stderr, "KDDELIO failed, errno = %d\n, errno):
exit (-1);

Integrated Software Development Guide

Using Virtual Terminals

Introduction

Virtual Terminals (VTs) are designed to enhance the interfacing capabilities of
UNIX System V /386. They represent the next evolutionary step in the use of
terminals for graphics applications. The first advance was allowing a single
user to develop a graphics application. Over the last few years, windowing sys­
tems have become widely available. In these systems, several users can develop
graphics applications under the control of a windowing system such as AT&T's
OPEN LOOK. The UNIX System V Release 4 allows several windowing sys­
tems to operate simultaneously. It is not necessary to stop one application
before another starts.

In this respect the Virtual Terminal capability of the UNIX System V Release 4
analogous to your television set; changing Virtual Terminals is like switching
channels. The programs continue on the other channels and you tune in to
them. The analogy breaks down in several very important aspects:

• In a VT environment, a program that is switched away can put itself to
sleep so that nothing happens until it is again activated (i.e., there is no
chance that the user can miss any output).

• A program can hog the system and insist that it not be switched away.

e An application program can create and manage Virtual Terminals
independent of the end-user. That is, the application can switch terminals
based on purely functional requirements.

This section describes how to use Virtual Terminals in these respects:

• Use by End-Users.

• Writing Graphics Applications that are "aware" of VTs and are well­
behaved.

• Writing VT management applications.

Keyboard and Display Input/Output 6-41

Using Virtual Terminals

Use of Virtual Terminals

New virtual terminals are created by a particular ''hot key" sequence once
vtlmgr has been specifically invoked [see vtlmgr(1M) in the User's Reference
Manual]:

ALT - SYS-REQ key

where key is either a function key whose number corresponds to the number of
the VT to switch into (Fl, F2, ...) or, if virtual terminals have already been
created with vtlmgr or newvt; one of the following letters [see newvt(1M) in
the User's Reference Manual].

Key Interpretation

h home VT
n next VT
p previous VT
f force a switch to a VT

The f key is used only when a user discovers that the current VT is essentially
locked up or stuck in graphics mode. This will cause the kd driver to reset the
VT to a sane text state and kill all processes associated with the VT.

The user can control how many VTs are available by setting a parameter in the
file jete/default/workstations. VT 0 - 8 are configured by default and
the default keyboard map makes up to 13 VTs available (i.e., the user can
readily define an additional 4 VTs within the default settings). The default VTs
are the home terminal and one corresponding to each function key. An applica­
tion can make two more available to the end-user (by reprogramming the key­
board map), or can reserve the last two for programmatic use only, making 15
VTs in all.

The end-user also needs to be aware that processes that are no longer visible
may still be running. Standard output is directed to the current VT screen. For
example, a user can issue a eat command on one VT and then switch to
another VT to start an application. A third VT can be opened to do an edit.
The eat output can be lost unless the user initially redirects that output to a
file (if the virtual terminal scrolls the data off the screen).

6-42 Integrated Software Development Guide

Using Virtual Terminals

Programming Features

VTs are a kernel maintained resource. The kernel keeps all VTs for a particular
terminal on a circular queue. The zeroth VT is special and is activated if all
other VTs on that device are closed. Any process desiring Virtual Terminals
must compete with all other processes using a Virtual Terminal associated with
the same minor device.

Programs that use VTs must include the header file
/usr/include/sys/vt .h. The kd driver supports the Virtual Terminal
feature in the following ways:

• It allows switching between open Virtual Terminals.

• It maintains the file / dev / vtmon for signalling user requests for VT
activation,

• It responds to a series of controlling ioctl commands.

The ioctl commands used to control VT operation are:

Command Function

VT SETMODE Sets the VT mode to automatic or process controlled.
VT GETMODE Gets the current VT mode.
VT RELDISP Releases, refuses to release, or acquires the display.
VT WAITACTIVE Waits until the specified VT becomes active. -
VT_OPENQRY Returns the number of the next available VT;
VT ACTIVATE Activates the specified VT.
VT GETSTATE Returns the active VT number and list of open VTs, -
VT SENDSIG Sends a specified signal to open VTs owned by the process.

The first four commands are required for the development of well-behaved
graphics applications. The remaining four commands are only required when
you want to develop an application that manages multiple VTs.

Keyboard and Display Input/Output 6-43

Using Virtual Terminals

~ ioctls done in the background on a VT may cause the process to block.

y
VT Modes of Operation
There are two modes of operation for Virtual Tenninals. The first mode is the
automatic mode (VT _AUTO) of operation. This is the simplest case and the
default case. In automatic mode the application is not made aware of the end­
user's requests to switch away from or back to the current VT. This means that
any output in process while the user is switched away may be lost. The only
option at your disposal is to issue the VT _ W AITACfIVE command before every
output statement. This command causes the program to suspend operation
until it is using the currently active VT. This is, at best, tedious.

The second mode is the process control mode, or process mode, VT_PROCESS.
This mode allows you to synchronize your application with other processes that
are using VTs. When you set the mode to VT _PROCESS you assume the
responsibility of accepting and relinquishing use of the VT.

Writing Well-Behaved Programs

The most common circumstance is that you want to develop a graphics applica­
tion that will run in a VT environment. You want to be responsible for its run­
ning in that environment and you want to take minimal responsibility for that
aspect of your program.

This is how to set-up your program to run in this manner:

1. Make sure you use the KDMAPDISP command to manage your use of
display memory.

2. When you are ready to initiate the use of the terminal, issue a

6-44

VT _ GETMODE command. This command passes a structure to the
driver. The driver fills the structure with information, but you are only
interested in the current mode. If the mode is already VT _PROCESS,
there is an error condition. You cannot go into process mode from pro­
cess mode.

Integrated Software Development Guide

Using Virtual Terminals

3. Assuming you can continue, issue a VT _ SETMODE command. This com­
mand passes the mode structure into the driver. The VT _ SETMODE com­
mand accomplishes three things:

• It establishes VT _PROCESS mode.

• It defines the signal to be received when the end-user requests to
switch to another VT.

• Normally, when your VT is not active your program can con­
tinue to execute. You can specify in this command that even
though your program can continue to execute, it will not per­
form any output until the VT is again active. That is, it will
hang when it encounters an output instruction.

4. Write signal processing routines to process each of the signals defined by
VT SETMODE.

• Relinquishing Control

Once a request to switch out of your VT has been issued, you
must respond within ten seconds. The VT_RELDISP command
is the response vehicle. If you issue the command with an argu­
ment of zero, you are refusing to give up control (and the end­
user will get a ''beep'' at the terminal). A non-zero argument
says "okay to switch now." Before you authorize the switch,
you need to save the display mode (unless you explicitly know
it), restore the adapter to the default text mode, and save the
status of any registers you have explicitly changed. You also
issue a KDUNMAPDISP to cut the linkage between the video
memory and your memory. The last thing you do is issue the
VT RELDISP command.

• Regaining Control

When the signal indicates that you have regained control you do
the opposite tasks; you first issue the VT _RELDISP command
with an argument of VT _ ACKACQ (ACKnowledge ACQuisition);
then reinitialize the adapter mode; re-modify any specially set
registers and re-establish the connection between your memory
and the video memory.

Keyboard and Display Input/Output 6·45

Using Virtual Terminals

Example of a Well-Behaved Graphics Application
The example that follows illustrates the techniques to develop a well-behaved
graphics application.

6-46

/* mode name */

/* ioctl value */

/* memory layout */
/* count for drawing */
/* length of memory to map * /

Integrated Software Development Guide

Using Virtual Terminals

,.
This routine .lUIs the saeen with a simple pattern. eGA mode was chosen
because it is common to all of the color adapters. .,
redraw_scrn ()
I

,.

int cnt1;
if (!Modes.m_layout)

return(O);
errno = 0;

for (cnt1 = 0; cnt1 < Modes.m_cnt; cnt1++) I
* (Display + cnt1) - Oxa5 /* Oxa5 is random pattern */
* (Display + 8192 + cnt1) = Oxa5;

This routine is entered when the user terminates the session. It unmaps the
display and resets the mode before exiting . . ,
sigintr ()
I

if (ioctl (disp, KDUNMAPDISP, 0) == -1) I
fprintf(stderr, "KDUNMAPDISP failed, errno %d\n", errno);
exit (1);

if (ioctl (disp, KDSETMODE, KD_TEXT) == -1) I

exit(O);

fprintf (stderr, "KDSETMODE failed, errno %d\n", errno);
exit (1);

Keyboard and Display Input/Output 6-47

Using Virtual Terminals

6-48

/'t This routine is entered when there is a request to switch to another Virtual Terminal.
The process is to unmap the display, restore the adapter to text mode and then allow the switch ... ,

sigusrl ()
(

if (ioetl (disp, KDUNMAPDISP, 0) =- -1) (
fprintf(stderr, "KDUNMAPDISP failed, errno %d\n", errno);
return (0) ;

if (ioetl (disp, KDSETMODE, KD_TEXT) == -1)
fprintf (stderr, "KDSETMODE failed, errno %d\n", errno);
return (0) ;

if (ioetl (disp, VT_RELDISP, 1) == -1) (
fprintf(stderr, "VT_RELDISP failed, errno %d\n", errno);
return (0) ;

sigrelse(SIGUSRl);

, .. This routine is entered when the user re-activates this VT. The RELDISP is
issued first, to acknowledge that the program is back. You then set graphics
mode and re-map display memol)' ... ,

sigusr2 ()
(

if (ioetl (disp, VT_RELDISP, VT_ACKACQ) == -1) (
fprintf (stderr, "VT RELDISP aek failed, errno %d\n", errno);
return (0);

if (ioetl (disp, SW_CG320, 0) == -1) (
fprintf (stderr, "SW_CG320 failed, errno %d\n", errno);
return(O);

if (ioetl(disp, KDMAPDISP, &memloe) < 0) (
fprintf(stderr, "KDMAPDISP failed, errno %d\n", errno);
return (0) ;

redraw_sern ();
sigrelse(SIGUSR2);

Integrated Software Development Guide

Using Virtual Terminals

'''The main program sets up the interrupt signal routines and draws the
initial saeen. '"

main ()
{

int
struct vt_mode

cnt, ch, mask - 0;
vtmode;

if (ioctl(O, KIOCINFO, 0) < 0) {
fprintf (stderr, "These tests are meaningless if run on");
fprintf (stderr, "a TTY other than a graphics display! !\n");
exit (1);

I
if «disp ~ open ("/dev/video", O_RDWR» < 0) {

fprintf (stderr, "Cannot open /dev/video, errno %d\n\n",
errno);

exit(l);

fprintf (stdout, "This VT will be put into graphics mode, \n");
fprintf(stdout,"a picture will be drawn. We also put the VT\n");
fprintf (stdout, "in process mode, so you can VT switch to other\n");
fprintf(stdout,"VTs. Upon switching back, the screen should\n");
fprintf (stdout, "be repainted. This tests VT_SETMODE, KDDISPTYPE, \n");
fprintf(stdout, "KDMAP/UNMAP/DISP,VT_RELDISP,SW_320CG graphics mode.\n");
fprintf (stdout, II and text mode\n\nThis test should fail if you\n");
fprintf(stdout,"do not have a CGA/EGA/VGA adapter\n\n");
fprintf (stdout, "Hit [DELl to quit. \n\n");
sleep(10);

'" Make sure allocated memory is page-aligned. '"
Tdisplay = (unchar *)malloc(64 * 1024 + 4096);
Display = (unsigned char *) «unsigned) (Tdisplay + 4095) & 4095);

'" Make sure we are not already in process mode. '"
if (ioctl(disp, VT_GETMODE, &vtmode) < 0) {

fprintf (stderr, "VT _ GETMODE failed: errno %d\n", errno);
exit (1);

if (vtmode.mode == VT_PROCESS) {

I

fprintf (stderr, "VT is already in VT_PROCESS mode\n");
exit (1);

'" Set up process mode and set up the interrupt handling structure.
In this case, forced switch behavior will be the same as normal

(continued on next page)

Keyboard and Display Input/Output 6-49

Using Virtual Terminals

6-50

release behavior. *'
vtmode.mode = VT_PROCESS;
vtmode.relsig = SIGUSR1;
vtmode.frsig = SIGUSR1;
vtmode.acqsig - SIGUSR2;
if (ioctl(disp, VT_SETMODE, &vtmode) < 0) {

}

fprintf(stderr, "VT_SETMODE failed: errno %d\n", errno);
exit (1);

/'t Set the display type to eGA for widest applicability ... ,
if (ioctl (disp, SW_CG320, 0) == -1) {

fprintf(stderr, "SW_CG320 failed, errno %d\n", errno);
return(O);

}

1* Get the memory address of the display. *'
errno = 0;
if (ioctl(disp, KDDISPTYPE, &kd-param) == -1) {

fprintf(stderr, "KDDISPTYPE failed, errno %d\n", errno);
return(O);

}

1* Set up the structure for the KDMAPDISP command ... ,
memloc.vaddr = (char *)Display;
memloc.physaddr = kd-param.addr;
memloc.length = Modes.m_len;
memloc.ioflg = 1;

'* Map the Display. *'
if (ioctl(disp, KDMAPDISP, &memloc) < 0) {

fprintf (stderr, "KDMAPDISP failed, errno %d\n", errno);
return (0);

1* Draw the screen. Set up the signals and waiL .. ,
redraw_scrn 0;
sigset(SIGUSR1,sigusr1);
sigset(SIGUSR2,sigusr2);
sigset(SIGINT,sigintr);

1* User must hit break <e.g., 'DEL') to interrupt the infinite loop. *'
while (1)

Integrated Software Development Guide

Using Virtual Terminals

Programming to Manage Virtual Terminal Use

The next sub-sections illustrate different aspects of a single process managing
other processes that use VTs.

Suppose a process needs to respond to given events in an indetenninate fashion.
By choosing a Virtual Tenninal the process can handle just about any I/O
requirements. By setting VT_PROCESS and spawning event handling processes
attached to the VTs that are waiting upon VT activation (either because they
issued a VT _WAIT ACTIV ATE command or because they issued a
VT_SETMODE requesting a hangup on output), the server process can act as an
event gateway relinquishing access to the VT to the associated event handling
client and regaining access when it is through.

The following is a simple shell level command that kills all of the active
processes associated with the Virtual Tenninals. The program examines the Vir­
tual Terminals and based on their state, individually sends a SIGKILL to each
open VT. It illustrates the use of the ioctl request VT_SENDSIG.

VT _ SENDSIG allows a process to send a particular signal to any combination of
Virtual Terminals. This is a powerful feature extending the standard UNIX
operating System's signal handling capabilities, creating a user definable Virtual
Tenninal group that can collectively or selectively act upon any given signal. A
controlling process can exploit this during initialization, error recovery and syn­
chronization.

Keyboard and Display Input/Output 6-51

Using Virtual Terminals

6·52

fHnclude <stdio.h>
iHnclude <string.h>
iHnclude <sys/types;h>
fHnclude <signal.h>
iHnclude <fcntl.h>
iHnclude <sys/at_ansi.h>
fHnclude <sys/kd.h>
iHnclude <sys/vt.h>
fHnclude <sys/termio.h>
fHnclude <sys/ stat. h>

iHnclude <errno.h>
iHnclude <varargs.h>

#define KD_DRIVER Ox6b64
#define FOS_DRIVER Ox73
#define EQUAL 0

/* "kd" */
/* Fiber Optic Station driver */

char vtname [20];

main (argc, argv)
int argc;
char **argv;

int i, disp, ttype, activeVTs, vtActive;
struct vt_stat vtinfo;

'''Determine what type of terminal we are on. This must be
a graphics terminal such as the console ... ,

ttype = ioctl(O, KICCINFO, 0);

if «ttype != KD_DRIVER) && «ttype & OxffOO) »8) != FOS_DRIVER) {
fprintf (stderr, "Must be run on a graphics display. \n");
exit (1);

, .. Open the driver ... ,

if «disp = open ("/dev/video", O_RDWR)) < 0) (
printf("Cannot open /dev/video\n");
exit (1);

, .. Get the state information from the driver. This will tell us
.. which VT is the active one as well as the signal states and
.. allocated VTs ... ,

ioctl(disp, VT_GETSTATE, &vtinfo);
activeVTs = vtinfo.v_state;
vtinfo.v_signal = SIGKILL; /* select kill signal */

(continued on next page)

Integrated Software Development Guide

Using Virtual Terminals

,. Now check the state of all VTs and only kill those
• that are truly active •• ,

for (i = 0; i < 15; i++)
printf (" /dev/vt%.2d ", i);

,. Note that a single bit within "v_state" is
• being set for the iodI(VT_SENDSIG). This
• is acceptable since we have saved the active VT
• valu,e in "activeVTs" •• ,

if (vtinfo.v_state ~ activeVTs & (1 « i»
if (i =~ vtinfo.v_active)

else

,.. The physically active VT will be
• killed last; therefore save the
• VT number in vtActive. .,

printf ("will be killed last. \n") ;
vtActi ve = i;
continue;

,. This VT is allocated; therefore, send
• it a kill signal. This has been selected
• by setting the signal type in the structure
• pointed to by vtlnfo .• ,

printf (II ••• killing. \n");
ioct1(disp, VT_SENDSIG, &vtinfo);

printf("not in use.\n");

,. Now we need to kill the physically active VT,
• the number of which has been saved in "vtActive" •• ,

if (vtActive) /* not the console */

exit (0) ;

printf ("\t/dev/vt%.2d will be killed now", vtActive);
sleep(3);
vtinfo.v_state = activeVTs & (1 « vtActive);
ioct1(disp, VT_SENDSIG, &vtinfo);

Keyboard and Display Input/Output 6-53

Using Virtual Terminals

Virtual Terminal Creation and Application

The following example is a program to create new Virtual Tenninal shells.
When executed, the program spawns a new process which then becomes
another instance of the user's login session. Once such a session is established,
the user may switch between the different shells using the keyboard driver
CTL-ALT-SYSREQ key sequences. This would allow a user to have multiple
login sessions active on a single physical tenninal (system console). Because the
functionality of Virtual Tenninals is part of the keyboard driver, this functional­
ity is not supported on remote terminals.

The kd ioctls used within the application are: KIOCINFO, VT_OPENQRY
and VT_ACTIV ATE. KIOCINFO is used to ensure that the controlling driver
for the tenninal is the keyboard driver. Such a test is necessary because remote
terminal drivers do not possess Virtual Terminal capability.

VT _ OPENQRY is used to ask the driver for an available VT slot. This slot
allows the kd driver to associate a virtual screen with a process. All screen
input and output from a process must be directed to an area of memory within
the driver until that screen's contents are mapped to the physical display tenni­
nal. VT _ OPENQRY returns a slot number that also corresponds to the VT id
used to build the pathname for the terminal special device (i.e. / dev / vt 01,
/ dev / vt 0 2, ...).

VT_ACTIV ATE, allows you to specify the VT to be mapped to the physical
display device. The VT number to be mapped is passed as an argument in the
VT_ACTIVATE ioctl. This is one way to have the application control which
screen to switch to. This functionality could be embedded as a menu item
within a screen menu for instance.

6-54 Integrated Software Development Guide

Using Virtual Terminals

extern int errno;

main(argc, argv)
int argc;
char *argv [j ;

int fd, disp;
long
char
char
ushort
struct

vtno;
prompt [111 ;
vtname[VTNAMESZj;

ttype;
termio term;

/* Virtual Terminal id */
/* prompt string */
/* vt name character string */

/* driver identification */
/* termio terminal parameters * /

t· Open the controlling terminal for the device. .. ,

if ((fd = open ("/dev/video", O_RDONLY» == -1)
exit (1);

, .. Determine the special device name for the terminal
.. The returned value should be "kd" for keyboard driver. This is
.. to ensure that the user is executing on the console and not on
.. a remote terminal ... ,

if((ttype = ioctl(fd, KIOCINFO, 0» == (ushort)-l) {
fprintf (stderr, "KIOCINFO failed, errno = %d\n", errno) ;
exit(l);

if(ttype != Ox6b64) /* "kd" */
fprintf (stderr, "cannot execute %s on remote terminals",

argv[OI) ;
exit(l);

, .. Get the terminal parameters for this terminal. see termio(7) .. ,

(continued on next page)

Keyboard and Display Input/Output 6-55

Using Virtual Terminals

6·56

if(ioctl(fd, TCGETA, &term) < 0) {
fprintf (stderr, "TCGETA failed, errno = %d\n", errno);
exit (1);

}

, .. The VT_OPENQRY iodl will ask the driver for the next
.. available VirtuaI Terminal port, i.e., (00, 01, 02, ...)i .. ,

if(ioctl(fd, VT_OPENQRY, &vtno) < 0) {
fprintf (stderr, "VT_OPENQRY failed, errno - %d\n", errno);
exit (1);

if (vtno < 0) {
fprintf (stderr, "No vts available, errno = %d\n", errno);
exit (1);

sprintf (vtname, "/dev/vt%02d", vtno); 1* setup vt path */

close (fd);
close (2); /* close stderr */
close (1); /* close stdout */
close (0); /* close stdin * /

, .. Now the program will fork a child. The child process will
.. inherit the new Virtual Terminal. Once the fork succeeds,
.. the parent program can terminate since its job is done. The
.. child will continue with its environment setup. ..,

if (fork ())
exit (0); 1* parent exits */

setpgrp() ; 1* set group id to uid */

, .. Now open the Virtual Terminal as stderr. The Virtual Terminal
.. name will correspond to one of the spedal device files:

.. 'dev'vtOl, 'devlvto2,,

if (open (vt name , O_RDWR) == -1)
exit (1);

ioctl(O, TCSETA, &term); /* restore terminal parameters */

(continued on next page)

Integrated Software Development Guide

Using Virtual Terminals

,. Re-establish stdout, stderr. .,

dup(O) ;
dup(O);
if ((disp - open ("/dev/video", O_RDWR» -- -1)

exit (1) ;

,. Set Virtual Terminal's prompt variable PSt to make easier identification
• for the user •• ,

sprintf (prompt, "PS1=VT %d> ", vtno);
put env (prompt) ;

,. Clear the screen •• ,

fputs(" 33c", stdout);

signal (SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);

/* ignore interrupts */
/* ignore quit */

~ The following ioctl will activate the new vt so that the display
• will be refreshed with the new VT's virtual screen •• ,

if(ioctl(disp, VT_ACTIVATE, vtno) < 0) {
fprintf (stderr, "VT_ACTlVATE failed\n");
,. Continue (this should not happen but is not fatal) .,

I
,. This will spawn a new shell for the Virtual Terminal In some

It applications this could be an exec of application program. It,
if (execl("/bin/sh", "sh", 0) == -1)

fprintf (stderr, "exec of /bin/sh failed, errno = %d\n",
errno) ;

,It Should only get here if the execl fails. In this case sleep 5 seconds
It to let the user see the error on the new Virtual Terminal. It,

sleep(5);
exit(l);

Keyboard and Display Input/Output 6·57

Using Virtual Terminals

Determining VT State

An interesting aspect of the VT feature is that you can gain access to the state
infonnation of active VT sessions. For instance, you may wish to know which
VTs are allocated and which VT is currently controlling the display screen. The
following example demonstrates the use of the VT_GETSTATE ioctl and the
infonnation it returns.

The example provided first opens the controlling tty to return a file descriptor
for the console driver. This implies that the command can only run from the
console in its current incarnation. Once a connection to the driver has been
established, the VT_GETSTATE ioctl is invoked and a structure containing
three items is populated by the console driver. The remainder of the program
then individually examines each bit in the v_state element to determine the
state of each of the 15 possible VTs.

6-58 Integrated Software Development Guide

Using Virtual Terminals

'include <stdio.h>
'include <fcntl.h>
.include <sys/types.h>
.include <sys/at_ansi.h>
.include <sys/kd.h>
'include <sys/vt.h>
.include <errno.h>

int disp;

main(argc, arqv)
int argc;
char *arqv[);

int cnt;
struct v.t_stat vtinfo; /* structure for VT_GETSTATE */

j't Open the controlling terminal. If this is successful, the device
- is automatically a proper controlling tty. -,

if((disp = open("/dev/video", O_RDONLY)) < 0) {
fprintf (stderr, "Cannot open /dev/video, errno %d\n",

errno) ;
exit(l);

, .. Get the video state information. -,

if (ioctl(disp, VT_GETSTATE, &vtinfo) < 0) {
fprintf(stderr, "VT_GETSTATE failed: errno %d\n", errno);
exit(l);

Keyboard and Display Input/Output 6-59

Using Virtual Terminals

6·60

.. Print the contents of the vtinfo structure. v_active

.. is the number of the active Virtual Terminal. v_signal

.. is the signal state of the process controlling the

.. terminal and v_state is the a bit field where each of the
It lower 16 bits correspond to 16 possible combinations of
It terminals. The following is the bit layout of v_state:

*/

1-------------1-----------1-----------1---------1
I 15 14 13 12 I 11 10 9 8 I 7 6 5 6 4 I 3 2 1 0 I

1-------------1-----------1-----------1---------1

1 1

1 VT 0
1

1- VT 1

printf (liThe active vt is %x\n", vtinfo. v_active);
printf (liThe signal state is %x\n", vtinfo. v_signal);
printf("The vt state is %x\n", vtinfo.v_state);

,It Now let's print out the state of all the Virtual Terminals •
.. This can be accomplished by looking at the v_state and
.. v_active structure elements ... ,

for (cnt = 0; ent < 15; ent++)

exit (0);

printf (" /dev/vt%. 2d is ", cnt);
if (ent == vtinfo.v_aetive)

printf("active. \n");
else if (vtinfo.v_state & (1 « cnt))

printf ("open. \n") ;
else

printf("not in use.\n");

Integrated Software Development Guide

Using Virtual Terminals

Virtual Terminal Control

In the section on writing well-behaved programs, the commands
VT_GETMODE, VT_SETMODE and VT_RELDISP were used to synchronize a
program with the end-user's VT switching activity. In this section we use the
same commands to coordinate VT usage at the application-controlled level.

VT_GETMODE and VT_SETMODE are used to enable/disable the way the
switching of the VTs takes place. The default action is to have the driver per­
form the switching function upon receipt of the appropriate keyboard sequence.

VT _ GETMODE returns a structure of type "vt_ mode". This structure defines
the current VT switching state (VT _AUTO or VT _PROCESS) as well as signal
and control information. Recall that VT AUTO is the default mode and that
VT _PROCESS allows you to take responsibility for managing the switching pro­
cess and to take additional control of the switching mechanism.

The example provides two programs to demonstrate the functionality provided
when a process chooses to manage VT switching.

The first program requests that a particular VT be activated. This is accom­
plished when the program executes the VT_ACTIVATE ioctl.
VT _ ACTIV ATE informs kd that a program wishes to make a new VT be the
active VT. This is the same as an end-user executing a hot-key sequence.

Before performing the switch, the driver sends a signal to the program that
currently owns the active VT to request that it relinquish control. When the
controlling VT receives the signal, it should execute the VT _ RELDISP ioct 1 to
inform the driver to proceed. Once this takes place, the driver performs the
actual VT switch.

This provides a mechanism for cooperation between the various programs con­
trolling their VTs. Not only can a controlling display agree to relinquish the
active VT slot, but it can also refuse (by using a 0 argument in the
VT_RELDI5P ioctl). In this example, the programs cooperate.

The test program is implemented by initiating two new virtual terminals manu­
ally (VTl and VT2). Next, the "acquire I" command is invoked on VTl.
Immediately (within 10 seconds), the user should manually switch to VT2 and
execute the "release" program. The reason for this contortion is once the release
program is executed on VT2, the user's ability to make use of the automatic
(VT _AUTO) VT switching capability is disabled. So, the release program starts
first and sleeps to give the user time to manually switch VTs to VT2.

Keyboard and Display Input/Output 6-61

Using Virtual Terminals

The following diagram illustrate~ the sequence of steps necessary to run the pro­
gram.

VTl User Operation VT2 Result

release 1 VTl program sleeps 10 secs

switch to VT2 VT2 displayed

acquire VT2 program waits for
release request from VTl

signal sent VTl "acquire" program
to VT2 by releases the active slot;
"release" Driver does the switch.
program

VTl is th~ actively
displayed VT. VT2
program continues
execu tion after handling
the release signal. VTl
"release" terminates.

The result of the above efforts are that VT2 will be switched backed to VTl as a
result of program control instead of a manual keystroke.

6·62 Integrated Software Development Guide

Using Virtual Terminals

, .. .
.. release allows the Virtual Terminal to be manually
• released under program control. It is used in conjunction
• with "acquire" to demonstrate the VT_PROCESS VT mode. ... ,

/#include <stdio.h>
#include <fcntl.h>
Hnclude <sys/types.h>
#include <signal.h>
IHnclude <sys/at_ansLh>
IHnclude <sys/kd.h>
/#include <sys/vt.h>
Hnclude <errno.h>

int disPi

main ()
{

int cnt, i;
int releaseO, acquire()i

vtinfoi struct vt _stat
struct vt_mode vtmodei /* structure for VT_GETMODE */

,. Open the controlling terminal. If successful, the device is an
• appropriat,e Virtual Terminal. ,.,

if«disp = open(lI/dev/video ll
, O_RDONLY)) < 0) {

fprintf(stderr, "Cannot open /dev/video, errno %d\n",
errno) i

exit(l)i

,,. Get the video mode information. .,

if (ioctl(disp, VT_GETMODE, &vtmode) < 0) {
fprintf (stderr, "VT_GE'IMODE failed: errno %d\n",

errno) i
exit (1) i

printf("mode is %x\n", vtmode.mode); /* VT_AUTO or VT_PROCESS */
printf("waitv is %x\n", vtmode.waitv)i /* Hang on writes */

printf("relsig is \x\n", vtmode.relsig)i /* release signal type */
printf("acqsig is \x\n", vtmode.acqsig); /* acquire signal type */
printf("frsig is %x\n", vtmode.frsig)i /* forced signal type */
,,. Now that we have acquired the vt_ mode structure,
,. let's change the way we switch VTs.
,. Instead of having it done automatically by the driver,
,. we can request to do this within the application program.

(continued on next page)

Keyboard and Display Input/Output 6-63

Using Virtual Terminals

6·64

release ()
{

, ..

.. The release and acquire signals are by default set

.. to SIGUSRI and SIGUSR2; we will not change them ... ,
vtmode.mode = VT_PROCESS; /* select application process control */

if (ioctl(disp, VT_SETMODE, &vtmode) < 0) {

}

fprintf(stderr, "VT_SETMODE failed: errno %d\n", errno);
exit (1);

, .. Set up to catch SIGUSRI and SIGUSR2 .. ,
signal(SIGUSR1, release);
signal(SIGUSR2, acquire);
,"'For simplicity, assume that we are on vt02 and this is the active session •
.. Furthermore we wish to now handle requests from other processes that
.. want to activate VTs other than our active session "vt02" •

.. The release happens when our process receives a SIGUSRI. When this

.. occurs, we know that some other process has made a request to the

.. driver to activate a VT. releaseO will get control and do an

.. ioctl to the driver to give up control. The driver will then switch
"VTs'"

while (1) /* loop forever */
sleep(5); /* sleep 5 seconds */
fprintf(stderr,"Alive message #I %d\n",i++);

signal(SIGUSR1, release);

if(ioctl(disp, VT_RELDISP, 1) < 0) {
fprintf (stderr, "VT_RELDISP (1) failed, errno %d\n",

errno);
exit (1) ;

.. Provided for completeness; however, this function will not be

.. called. It is used in combination with the waitv structure element

.. in combination with VT _ GETMODE for additional process handshaking • .. ,
acquire ()
{

signal(SIGUSR2, acquire);

if(ioctl(disp, VT_RELDISP, VT_ACKACQ) < 0) {

(continued on next page)

Integrated Software Development Guide

Using Virtual Terminals

fprintf (stderr, "VT_RELDISP (VT_ACKACQ) failed, errno ~ %d\n",
errno) ;

exit (1);

,
.. This is the acquire command. It is used to request a particular
.. VT be made active. Its syntax is

acquire VT_NUMBER .. ,
iinclude <stdio.h>
iinclude <fcntl.h>
iinclude <sys/types.h>
iinclude <signal.h>
tinclude <sys/at_ansi.h>
iinclude <sys/kd.h>
iinclude <sys/vt.h>
iinclude <errno.h>

int disp;

main (argc, argv)
int argc;
char *argv[);

il)t
struct vt stat

if(argc \= 2) {

cnt, nuvt, i;
vtinfo;

fprintf (stderr, "usage: %s vt_num\n", argv[O]);
exit (1);

nuvt = atoi(argv[l));

if «nuvt < 1) II (nuvt > 16)) (
fprintf(stderr, "usage: %s vt_num\n", argv[O));
exit (1);

}

I" Wait for the process on the other VT to be manually started. "I
sleep(lO);
I" Open Idev/video. "I
if«disp = open("/dev/video", O_RDONLY)) < 0) (

fprintf(stderr, "Cannot open /dev/video, errno %d\n",
errno) ;

exit(l);

(continued on next page)

Keyboard and Display Input/Output 6-65

Using Virtual Terminals

if (ioctl(disp, VT_ACTIVATE, nuvt) < 0) {
fprintf (stderr, "VT_ACTIVATE failed: errno %d\n",

errno);
exit (1);

sleep(5); /* sleep 5 seconds */

6-66 Integrated Software Development Guide

Miscellaneous Capabilities

Setting Borders

An application may set an EGA or VGA monitor to one of 63 different border
colors by using the KDSBORDER ioctl. Bits 0 - 5 of the argument correspond
to the colors blue, green, red, secondary blue, secondary green, and secondary
red. These colors may be combined to generate different shades. An argument
of 0 will tum off the border.

Keyboard Operations

The KDGKBTYPE ioctl can be used to determine the type of keyboard
attached to the system. The return value of this ioctl specifies whether an 84
key, 101 key, or unknown keyboard is attached.

The application can set and read the current "Num Lock", "Caps Lock" and
"Scroll Lock" LED settings on the keyboard by using the KDSETLED and
KDGETLED ioctls. Note that setting the "Num Lock" and "Caps Lock"
LEDs via the KDSETLED ioctl will have exactly the same effect as if you had
depressed those keys manually. That is not the case when setting the "Scroll
Lock" LED via software. Doing so will not suspend output to the screen as
might be expected.

Sound Effects

Use the KIOCSOUND and KDMKTONE ioctls to add sound effects to an
application. KIOCSOUND generates the same tone until called again either
with a new argument for a new tone or a zero argument to tum off the tone
altogether. KDMKTONE is similar except that the argument specifies the tone
frequency as well as its duration.

Keyboard and Display Input/Output 6·67

Miscellaneous Capabilities

Font Operations

Applications can change the displayed text font. The default font information is
stored in ROM and does not consume system memory. Modifications to the
font, therefore, cannot be overlaid but rather require use of kernel memory
resources. For this reason, changing the font information is a capability that
should be used only when necessary since storing a new font consumes addi­
tional system resources. A well-behaved application will restore the font infor­
mation to its original state before exiting.

There are two different font programming interfaces. Both change the font not
only for the active Virtual Terminal but for the other VTs as well. The first
interface replaces the entire font, while the second interface allows particular
characters within a font to be modified. In both cases, access is through an open
file descriptor to /dev/video. Use of one interface to change the font infor­
mation undoes the changes made by use of the other interface, so the two inter­
faces cannot be used together.

Replacing the Entire Font

The first interface uses the PIO_FONT8x8, PIO_FONT8x14, PIO_FONT8x16,
GIO_FONT8x8, GIO_FONT8x14 and GIO_FONT8x16 ioctls. The GIO_
ioctls obtain the current font information from the KD driver, and the PIO_
ioctls download the new font information to the video adapter.

Each of the GIO_ and PIO_ ioctl requests apply to a specific character box
size (8x8, 8x14 and 8x16). The character box size is related to the current
CGA/EGA/VGA text mode. To display a character in an 8x14 font requires 14
bytes of information. Each byte corresponds to one horizontal line of the font.
Each bit within the byte corresponds to a pixel on that line, and the value of the
bit is the pixel's on/off state. There are 256 characters per font, so an 8x14 font
requires 14*256 = 3,584 bytes of storage. Similar logic applies to 8x16 and 8x8
fonts.

For both the PIO_ and GIO_ ioctls, the arg should be a pointer to an array
of unsigned characters, the size of which is dependent on the character box size.
The font information obtained by the GIO_ ioctls or downloaded by the
PIO_ ioctls is of the same format as is used by the vidi command [see
vidi(lM) in the System Administrator's Reference Manual]. If a NULL pointer is
supplied as the argument to the PIO ioctls, the font is reset to the default
system font.

6-68 Integrated Software Development Guide

Miscellaneous Capabilities

Replacing Characters Within a Font

The second interface consists of one ioct 1: WS P IO ROMFONT. It is used to
change the font information for any number of characters but does not require
replacing the entire font. Rather, the changes are overlaid on top of the font
information in the ROM. This interface is also different from the interface above
in that changing the font information for a character cannot be done for just one
character box size. Instead, the font information is supplied for each character
box size: 8x8, 8x14, 8x16 and 9x16 (essentially the same as 8x16). The argument
of the ioct1 is a pointer to a rom_font_t structure (defined in
/usr/inc1ude/sys/kd.h). This structure contains the number of font entries
being changed and the font information for each entry. An argument value of
NULL restores the font information to the ROM font.

Programming the Mouse

Most graphics applications assume that the end-user is using a mouse to move
through the screen. The UNIX System V /386 Release 4 Mouse Driver Package
provides the system and command-level support for the operation of three types
of mice. Information about how to install and configure support for mice is
documented in the System Administrator's Guide, and programming information
beyond what is discussed here is available in the mouse(7) manual page (in the
System Administrator's Reference Manual).

An application program's access to the mouse is the same regardless of the type
of mouse (although a particular mouse may have special commands available to
it). For most applications, interacting with a mouse involves:

• opening the mouse

• receiving mouse inputs for motion and button presses

• updating the screen to reflect the change in mouse state (including the
display of the mouse cursor on the screen)

• repeating the previous two steps until the application is ready to release
access to the mouse

• closing the mouse

Keyboard and Display Input/Output 6·69

Miscellaneous Capabilities

The mouse is opened by opening the special file / dev /mouse. If an error
value is returned, there are three possible reasons:

1. The mouse is not attached or is not working.

2. The mouse has not been configured in the system and assigned a display
terminal [see mouseadmin(1M)].

3. The controlling TTY of the process opening the mouse is not a virtual ter-
minal to which a mouse has been assigned.

As was the case with the special file /dev/video, access to /dev/mouse
requires that the controlling TTY of the process be a Virtual Terminal.

Using the ioctl command MOUSEIOCREAD, ioctl(2) will obtain the
current mouse state, The system fills in a mouseinfo structure with the current
mouse status information. The value of MOUSEIOCREAD and the definition of
the mouseinfo structure are both in the file /usr / include/ sys/mouse. h,
which should be included by applications using the mouse.

~ The read(2) and write(2) system calls are meaningless on the file y /dev/mouse.

The mouseinfo structure is defined as follows:

struct mouseinfo {
unsigned char status;
char xmotion, ymotion;

} ;

status contains the information about the current button state. Bit 0 (least
significant> is 1 if mouse button 3 is depressed. Bits 1 and 2 similarly relate the
button state of buttons 2 and I, respectively. The x and y motion members
reflect the change in movement that occurred since the last MOUSEIOCTREAD
ioct l, not the absolute x,y coordinates. The units of motion are 200 per inch.
It is the program's responsibility to scale the change in mouse movement to a
visual change in the mouse cursor's location on the screen. Larger scales
require less mouse motion to traverse the screen but reduce the granularity of
pointing.

6-70 Integrated Software Development Guide

Miscellaneous Capabilities

In a Virtual Terminal environment, it is important that the application cease
using MOUSEIOCREAD to process mouse events while its Virtual Terminal is
not active. Otherwise, mouse events are potentially "stolen" from an applica­
tion that is running in the active Virtual Tenninal.

The following application uses the MOUSEIOCREAD ioctl to track mouse
movement and also prints the current button status. It also uses the
VT_SETMODE ioctl to put the Virtual Terminal in process mode, and
demonstrates how to appropriately share the mouse in a virtual terminal
environment. Screen control is done by using libcurses routines (see the
Programmer's Guide: Character User Interface for a description of libcurses):

'include <fcntl.h>
'include <sys/kd.h>
'include <sys/vt.h>
'include <errno.h>
'include <signal.h>
'include <curses.h>
'include <sys/mouse.h>

extern int errno;

int xscale = 10;
int yscale = 10;

int disp; /* video file descriptor */
int mouse_is_on = 0; /* should we MOUSEIOCREAD or not? */

cleanup () {

,rt

endwin ();
exit 0;

rt VT release signal handler. Tum mouse off as part of releasing VT
rt,

sigusr1 ()
{

if (ioctl (disp, VT_RELDISP, 1) == -1) {
fprintf (stderr, "VT_REIDISP failed, errno %d\n",

errno) ;
return(O);

(continued on next page)

Keyboard and Display Input/Output 6-71

Miscellaneous Capabilities

6-72

} ,.
sigrelse(SIGUSR1);

It VT acquire signal handler. Turn mouse on as part of acquiring VT
It,

sigusr2 ()
{

} ,.

if (ioctl (disp, VT_RELDISP, VT_ACKACQ) == -1) {
fprintf (stderr, "VT_RELDISP ack failed, errno \d\n",

errno);
return (0) ;

mouse_is_on = 1;
sigrelse(SIGUSR2);

It invoke as mtracld <Dumber>.
It Mouse motions and button presses will be tracked.
It,

main (ac, av)
int ac;
char *av[];
{

int msefd, x, y, sx, sy, old_sx, old_sy, sleep_time;
struct mouseinfo mi
struct vt~ode vtmode;

if (ac != 2) {
fprintf (stderr, "Usage: %s <sleep_time>\n", av[O]);
exit (1);

sleep_time = atoi (av[O]);

if «disp = open("/dev/video",O_RDWR» < 0) {
fprintf (stderr, lOtS: can't open /dev/video; errno = %d\n",

av[O], errno);
exit (1);

/'+ set signal handlers for VT process mode .. ,
signal (SIGINT, cleanup);
signal (SIGUSRl, sigusr1);
signal (SIGUSR2, sigusr2);

, .. set up for VT_SETMODE iodl .. ,

(continued on next page)

Integrated Software Development Guide

Miscellaneous Capabilities

vtmode.mode = VT_PROCESS;
vtmode.relsig = SIGUSRl;
vtmode.acqsig = SIGUSR2;
vtmode.frsig - SIGUSR1; /* treat forced release same as release */

vtmode.waitv - 0;
errno .. 0;

,. go into process mode .,
if (ioctl(disp, VT_SETMODE, &vtmode) < 0) {

fprintf (stderr, "VT_SE'IMODE failed: errno %d\n", errno);
exit (1);

,. open the mouse .,
if «(msefd = open ("/dev/mouse", O_RDONLY» < 0) {

fprintf (stderr, "%s: can't open /dev/mouse; ermo = %d\n",
av[Ol, errno);

exit (1);

,. initialize screen output using curses(3x) routines .,
initscr ();
mvaddstr(LINES - 1, 0, "Mouse tracking with ioctl'S");
refresh();

,. set scale and initialize mouse positions .,
old_sx = sx = old_sy = sy = 0;
x = COLS / 2 * xscale;
y = LINES / 2 * yscale;

'·loop doing MOUSEIOCREAD ioctl. VT_WAITACTIVE ioctl will
• cause the process to sleep until its VT becomes active
• again. Whether the VT is active or not is controlled by
• mouse_is_on -,

while (1) {
if (sleep_time> 0)

sleep(sleep_time);
if (!mouse_is_on && (ioctl(disp,VT_WAITACTIVE,O) < 0» {

fprintf (stderr, "%s: can't VT_WAITACTIVE; errno = %d\n",
av[Ol, errno);

refresh ();
exit (1);

I
if {ioctl (msefd, MOUSEIOCREAD, &m) == -1) {

fprintf (stderr, "can't ioetl; errno = %d\n",

(continued on next page)

Keyboard and Display Input/Output 6-73

Miscellaneous Capabilities

6-74

av[O), errno};
refresh ();
exit (I);

/'t update mouse cursor position *'
x += m.xmotion;
y += m.ymotion;

'* erase current CUl'Sor *'
mvaddch (old_sy, old_sx, (int) , ');

'* com put new x,y location *'
if ((sx = x / xscale) < O}

x =- sx = 0;
else if (sx >- COLS)

x = (sx = COLS - I) * xscale;
if ((sy = y / yscale) < O}

y =- sy = 0;
else if (sy >= LINES - I)

y = (sy = LINES - 2) * yscale;

'* draw new mouse CUl'Sor *'
mvaddch (sy, sx, (1nt) 'M');

old_sy = sy;
old_sx = SXi

'* display button status. Defines are in mouse.h *'
mvprintw (0, 0, "Status: %02X\n", m.status);
pr1ntw ("Buttons: 1 %s 2 %s 3 %s",

m.status & BUTISTAT "DN"
m.status & BUT2STAT
m.status & BUT3STAT

"DN"
"DN"

'* beep if the button state changed *'
if (m.status & BUTCHNGMASK)

beep ();
refresh ();

"UP",
"UP",
"UP"};

Integrated Software Development Guide

Comprehensive Video Programming Example

------------------------- main.c -------------------------------

.include <stdio.h>

.include <fcntl.h>

.include <sys/types.h>

.include <sys/at_ansi.h>

.include <sys/kd.h>

.include <sys/signal.h>
Unclude "vutil.h"

extern FILE
extern char

logfp; 1 logfile pointer *1

extern struct kd_disparam
extern struct kd_rnemloc
extern char
extern char
extern int
extern int
extern int

main (argc,argv)
int argc;
char *argv [);

void
void
int
int
extern long int
int fd;

*disptypes [);
parms;
map;
scrmem[);
*screen;
disp;
errno;
save_mode;

*signal ();
sigtrap ();
i;
indata;
end;

/'t Open the kd driver
if(open_driver() != SUCCESS)

vreset ();
exit (1);

, .. Catch program termination signals and clean up .. ,
signal (SIGHUP,sigtrap); 1* 01 hang up *1
signa1(SIGINT,sigtrap); 1* 02 interrupt *1
signal (SIGBUS,sigtrap);
signal(SIGSEGV,sigtrap);

/* 10 bus error *1
1* 11 seg violation *1

, .. Set the video mode to CGA 320x200 .. ,
if(set_video~ode(disp, SW_CG320) != SUCCESS)

vreset ();

Keyboard and Display Input/Output

(continued on next page)

6·75

Comprehensive Video Programming Example

6·76

exit(l):

pt Retrieve the current display type, video memory
address,etc It,

if (get_display_info (&parms) != SUCCESS) {
vreset ():
exit(l):

if (print_display_info (&parms) != SUCCESS) {
vreset ():
exit(l);

,It Map the display area into user address space. It,
if(map_video_screen(C~SCREEN_SIZE, 1) != SUCCESS)

vreset () ;
exit(l):

,It Paint the entire screen with given color It,
'loadmem(screen, (unsigned char) OxOO,CGA_SCREEN_SIZE); l*black*1
sleep(2); 1* let the user see it *1
loadmem(screen, (unsigned char) Ox55,CGA_SCREEN_SIZE): l*cyan*1
sleep(2);
loadmem(screen, (unsigned char) Oxaa,CGA_SCREEN_SIZE): l*magenta*1
sleep(2):
loadmem(screen, (unsigned char) Oxff,CGA_SCREEN_SIZE): l*white*1
sleep(2):

line (0, 0, 100, 100, Ox2):
box (120, 120, 190, 190, Ox2):
shade_box (120, 120, 190, 190, Ox2):
circle(70, 220, 50, Ox01):
shade_circle (70, 220, 50, Ox01):

1* clear the display

1* draw a line *1
1* draw a box *1
1* fill it in *1

1* draw a circle *1
1* fill it in *1

,It Dump the screen buffer to the file "memdump" It,
disp_dump(screen, CGA_SCREEN_SIZE):
sleep(2):

,It Note that it is ESSENTIAL to unmap and reset the display prior to
It exiting the program. OthelWise the display is left in an
It unusable state. It,

vreset ():

*1

(continued on next page)

Integrated Software Development Guide

Comprehensive Video Programming Example

/*------------------------- util.c -------------------------------*/

*include <stdio.h>
*include <fcntl.h>
*include <sys/types.h>
*include <sys/at_ansi.h>
*include <sys/kd.h>
*include <sys/signal.h>

*define VGA_SCREEN_SIZE
'define EGA_SCREEN_SIZE
*define CGA_SCREEN_SIZE

*define SUCCESS
.define FAIL
*define YES
*define NO

o
1
o

(1024 * 64)
(1024 * 32)

(1024 * 16)

int save_mode;
struct kd_disparam
char

parms;
*screen, *Tscreen;

int Vinit = NO; /* initialization flag *1
int map_flag = 0;
int disp;

*logfp;
errno;

/* console file descriptor */
FILE
extern

log (format,arg)
char *format;
int arg;
{

fprintf(logfp,format,arg);
fflush (logfp) ;
return(SUCCESS);

, .. sigtrapO is to protect against a signal terminating the process
.. and leaving the video display in an inconsistent state . .. ,

void sigtrap(sig)
int sig;
{

log ("Trapped signal = %x, exiting ••• 0, sig) ;
vre.set ();
fclose (logfp) ;
exit(O);

Keyboard and Display Input/Output

(continued on next page)

6·77

Comprehensive Video Programming Example

6-78

vreset ()
{

,.

if (map_flag) (

}

if (unmap_video_screen() != SUCCESS) {
log ("ERROR: Unmap_video_screen () failed\n");
vreset ();
return(FAIL);

if (save mode) /* Reset to original display mode: */

if (ioctl(disp, MODESWITCH I save_mode, 0) < 0)
log("ERROR: Unable to reset, mode: %x\n",

save_mode);
return (FAIL) ;

else /* Reset to default text mode: */
if (ioctl(disp, KDSETMODE, KD_TEXT) < 0) (

return(SUCCESS);

log ("Unable to reset display to text mode\n");
return (FAIL) ;

• This subroutine will open the log file and console driver and will save
• the current display mode settings for later reset It must be
• executed before attempting any access of the video driver functions . . ,

open _ dd ver ()
{

Vinit = 1; /* set the initialization flag */

if ((logfp = fopen ("video_log", "w+"» < 0) (
log ("ERROR: could not open logfile\n");
exit(l);

log("Opened logfile\n");

if((disp = open("/dev/console", (O_RDWR I O_NDEIAY») < 0) {
log ("ERROR: open (dev/console) failed, errno = $%d\n",

errno);
return (FAIL);

if ((save_mode = ioctl(disp, CONS_GET, 0» < 0) {
log ("CONS_GET failed\n");
return (FAIL) ;

(continued on next page)

Integrated Software Development Guide

Comprehensive Video Programming Example

return(SUCCESS);

Itt
tt This routine will retrieve display parameters from the video driver.
tt Specifically, the display type, video memory address and valid 110 addresses.
ttl

get_display_info(kdp)
struct kd_disparam *kdp;
{Itt

tt ioctl(KDDISPTYPE) will return a structure populated with
tt the type of display, the physical memory location of the
tt screen memory and valid 110 port addresses.

tt struct kd_disparam {
long type;
char ttaddr,
ushort ioadddMKDIOADDR);

if(ioctl(disp, KDDISPTYPE, kdp) < 0) {
log ("ERROR: ioctl (KDDISPTYPE) failed, errno = $%d\n",

errno);
return (FAIL);

return(SUCCESS);

Itt This function will print the kd_disparam structure contents to the logfile.
tt Cali get_display_infoO first.
ttl

print_display_info(kdp)
struct kd_disparam *kdp;

int i;
char *type;

switch (kdp->type)
case KD_MONO:
case KD_HERCULES:
case KD_CGA:
case KD_EGA:
case KD_VGA:
default:

type="MONOCHRCME"; break;
type="HERCULES"; break;
type="CGA"; break;
type="EGA" ; break;
type="VGA"; break;
type="Invalid type" ;break;

log("display type = %s\n", type);
log ("Video Address = Ox%lx\n", kdp->addr);

(continued on next page)

Keyboard and Display Input/Output 6-79

Comprehensive Video Programming Example

6-80

}

for (i = 0; i < MKDBASEIO; i++) {
log(IOx%.3x\n",kdp->ioaddr[i]);

return(SUCCESS);

/'t set_video_modeO will accept a passed argument and set the video mode accordingly . . /
set_video_mode(fd,mode)
int fd;
int mode;
(

if(ioctl(fd, mode) < 0) {
log ("ERROR: set_video_mode: ioct! (%x) failed, errno $%d\n",

mode, errno);
return (FAIL);

return(SUCCESS);

/.

• map_video_screenO will map the video memory into thee user's address space.
• The arguments to this function are:
• Length of memory to map, - 16K for eGA mode 5
• 110 address enable flag. - Needed to do iop/outp
./

map_video_screen(length,ioflg)
long length;
long ioflg;
{

struct kd_disparam
struct kd_memloc

Tscreen = (char *)mall~c(length + 4096);
screen = (char *) «unsigned) (Tscreen + 4095) & 4095);

if (ioctl(disp, KDDISPTYFE, &kd-param) == -1)
log("KDDISPTYPE failed, errno: %d\n", errno);
return (FAIL) ;

map.physaddr = kd-param.addr; /* set the video address */
map.vaddr = screen; /* set the virtual address
map. length = length; /* set the screen size */
map.ioflg = ioflg; /* enable i/o addresses */

if(ioctl(disp, KDMAPDISP, &map) < 0) (
log (" ERROR: KDMAPDISP failed, errno = %d\n",errno);

*/

(continued on next page)

Integrated Software Development Guide

Comprehensive Video Programming Example

return (FAIL) ;

map_flag .. 1;
return(SUCCESS);

/'t

• unmap_video_screenO will release the mapped memory. This should
• be called before exit by the program that called map_video_screenO.
• It releases the video screen so that other programs can map it • . ,

unmap_video_screen()
(

if (map_flag)

} else

if(ioctl(disp, KDUNMAPDISP) < 0) {
log ("ERROR: ioctl (KDUNMAPDISP) failed, errno = %d\n",

errno);
return (FAIL);

log ("ERROR: unmap_video_screen: display not mapped. \n");
return (FAIL) ;

map_flag = 0;
ret.urn (SUCCESS) ;

,.
• disp_dump will dump the rontents of the video saeen to disk in a file called
• "memdump". Useful for debugging • . ,

disp_dump (addr, dsize)
char *addr;
int dsize;
(

,.

int fd;
H«fd = open("memdump",O_CREAT O_WRONLY, 0644» < 0) {

log ("ERROR: open (memdump) failed, errno = %d\n", errno) ;
ret urn (FAIL) ;

if (write (fd, addr, dsize) < 0) {
log ("ERROR: write (memdump) failed, errno = %d\n", errno) ;
return (FAIL) ;

close(fd);

• 10admemO will clear the screen to a seleded color attribute based on

(continued on next page)

Keyboard and Display Input/Output 6·81

Comprehensive Video Programming Example

6-82

It the passed in variable color.
It,

loadmem(ptr, color, count)
char *ptr;
unsigned char color;
int count;
{

,It

int i;

for(i 0; i<count; i++)
*ptr++ - color;

return (SUCCESS);

It This function does a clear of the entire screen.
It It sets the allor to background (black).
It,

clearmem(ptr,count)
char *ptr;
int count;
{

,It

loadmem(ptr, (unsigned char) OxOO,count);
return(SUCCESS);

It This routine will write one screen point in 320x200 color
It mode. The bit layout for video memoty in this mode is
It

byte

It 76543210

pixel

It 00 11 22 33 <- byte 0
It 44 55 66 77 <- byte 1

It Start Address = OxB8oo0 for even rows

It Start Address = OxB80oo + 8192 = BAOOO for odd rows

It Each byte of screen memoty holds 4 screen points worth of data. There
It are 2 bits per screen pixel to allow color representation (00,01,10,11).

(continued on next page)

Integrated Software Development Guide

Comprehensive Video Programming Example

.. The video memory is segmented into segments where the even rows

.. start at address OxB8000 and the odd rows at OxB8000 + 8192. Therefore

.. to write the first 4 pixels on the screen, it would be necessary to

.. write the first byte at OxB8000. To write to the next 4 points on the

.. first line, the first byte at OxB8000 + 1 would have to be written •

.. To write the first 4 pixels on the 2nd screen line, the address to

.. be wriHen must be (OxBSOOO + 8192 = OxBAOOO) •

.. This function is specific to eGA but can be modified to work with

.. EGA and VGA • .. ,
unsigned int bmask(4) = (Oxff3f, Oxffcf, Oxfff3, Oxfffcj;
int color_shift (4) = (6, 4, 2, OJ;

int write_pixel (row,col,color)
int row, col, color;
{

int index;
unsigned int mask;
char *sptr;

/* screen byte index */

/* screen memory pointer */

sptr = screen; /* set pointer to screen area */

color «= color_shift[col % 4];
mask = bmask[col % 4]; , ..

.. Find the correct position in the screen memory •

.. The video memory is set up with odd'even rows residing at different

.. (non)contiguoUs memory addresses •

.. Because of this, we need to ensure that the starting address of the

.. byte we need to access is indeed correct. .. ,
index = row * 40 + col/4;

'" .. Now decide whether the row was even or odd. H the row
.. is odd, use (BSOOO + index + 8152). H the row
.. is even, use (B8000 + index). This means
.. that the first odd row starts at (BSOOO + 40 + 8152 = BAOOO) .. ,

if(row % 2) index += 8152; /* bank 2 if odd */

* (sptr + index) = color I * (sptr + index) & mask;

(continued on next page)

Keyboard and Display Input/Output 6-83

Comprehensive Video Programming Example

6·84

return(SUCCESS);

,.
• This function will draw a line in a specified color . . ,
line (start_row, start_col, end_row, end_col, color)
int start_row,

,.

start_col,
end_row,
end_col,
color;

register int

int

i,
length;
ydiff,
xdiff,
inc_row,
inc_col;

• Determine which way the line is sloping and the appropriate directional
• increment.

• Now determine the row and column increment value .,
if «ydiff = end_row - start_row) > 0)

inc_row = 1;
else if(ydiff == 0)

inc_row = 0;
else

if«xdiff = end_col - start_col) > 0)
inc_col = 1;

else if(xdiff == 0)
inc_col = 0;

else

• Determine which length is greater .,

,.

if (abs(ydiff) > abs(xdiff)
length = abs(ydiff);

else
length = abs(xdiff);

• Now draw the line.

(continued on next page)

Integrated Software Development Guide

Comprehensive Video Programming Example

/'t

for(i - 0; i<- length; i++) I
write-pixel(start_row, start_col, color);
start_row += inc_row;
start_col += inc_col;

return(SUCCESS);

It This function will draw a box. It makes use of lineO which
It then makes use of write -pixel().
It,

box (start_row, start_col, end_row, end_col, color)
int start_row,

,It

start_col,
end_row,
end_col,
color;

if(line(start_row, start col, end_row, start_col, color) != SUCCESS)
return (FAIL) ;

if(line(start_row, start_col, start_row, end_col, color) != SUCCESS)
return (FAIL) ;

if(line(start_row, end_col, end_row, end_col, color) != SUCCESS)
return (FAIL);

if(line(end_row, start_col, end_row, end_col, color) != SUCCESS)
return (FAIL);

return(SUCCESS);

It This function will shade a box. This is another function being provided
It to demonstrate the graphics capabilities that could be implemented
It with this iJ:lterface. It works by using lineO to shade in the
It previously created box.
It,

shade_box (start_row, start_col, end_row, end_col, color)
int start_row,

start_col,
end_row,
end_col,
color;

register int i,
start,
end;

Keyboard and Display Input/Output

(continued on next page)

6-85

Comprehensive Video Programming Example

6-86

, ..

if(start_row < end_row) {
start = start_row;
end = end_row;

else
start = end_row;
end = start_row;

for(i - start; i <- end; i++)
if(line(i, start_col, i, end_col, color) != SUCCESS)

return (FAIL) ;

return(SUCCESS);

.. This routine will draw a circle

.. ,
circle(xlocus, ylocus, radius, color)
int xlocus,

ylocus,
radius,
color;

register int x, diff;

diff = radius/2;

for (x = 0; x < radius; x++)
write-pixel(radius +

{

xlocus,
write_pixel (xlocus - radius,
write_pixel (radius + xlocus,
write_pixel(xlocus - radius,

x + ylocus,
x + ylocus,
ylocus - x,
ylocus - x,

write_pixel (x + xlocus, radius + ylocus,
write-pixel(xlocus - x, radius + ylocus,
write_pixel(x + xlocus, ylocus - radius,
write-pixel(xlocus - x, ylocus - radius,

if (diff < 0)
diff += radius-- - x;

else
diff -= x;

if (radius) {

color) ;
color);
color) ;
color) ;

color);
color);
color);
color);

write-pixel(radius + xlocus, x + ylocus, color);
write-pixel(xlocus - radius, x + ylocus, color);

(continued on next page)

Integrated Software Development Guide

Comprehensive Video Programming Example

write-pixel(radius + xlocus, ylocus - x, color);
write-pixel(xlocus - radius, ylocus - x, color);

.write-pixel(x + xlocus, radius + ylocus, color);
write-pixel(xlocus - x, radius + ylocus, color);
write-pixel(x + xlocus, ylocus - radius, color);
write-pixel(xlocus - x, ylocus - radius, color);

return(SUCCESS);

/'t

It this will fUl in a drcle by calling drcleO repeatedly
It with smaller drcle values.
It,

shade_circle(a, b, c, d)
int a, b, c, d;
(

while (c--)
circle(a,b,c,d);

return(SUCCESS);

r:------- vtutil.h ________ It /

#define VGA_SCREEN_SIZE (1024 * 64)
.define EGA_SCREEN_SIZE (1024 * 32)
'define CGA_SCREEN_SIZE (1024 * 16)

#define SUCCESS 1
#define FAIL 0
'define YES 1
#define NO 0

Keyboard and Display Input/Output 6-87

Graphics Modes

SW BG320

Description: 320x200 Black & White Graphics Mode
Mode: CGA Mode 4
Memory requirements: BK per page (2 pages)
Map 0: B8000 - B9F3F
Pixel layout: One bit per pixel

SW CG320

Description: 320x200, 4 Color
Mode: CGA Mode 5
Memory map requirements: 16K per page (2 pages)
Map 0: B8000, B8002, ... B9F3E (even scans); BAOOO, BA002, ... BBF3E (odd scans)
Map 1: B8001, B8003, ... B9F3F (even scans); BA001, BA003, ... BBF3F (odd scans)
Pixel layout: 2 bits per pixel as follows:

PO Pl· P2 P3

7 6 5 432 1 0

Pixel byte mapping alternates between Map 0 and Map 1. Byte B8000 contains
first 4 pixels in upper left hand corner of display. Byte B800l contains the next
4 in that first row, etc. Addresses B8000 - B9F3F map all the pixels in the even
scan lines, while addresses BAOOO - BBF3F map all the pixels in the odd scan
lines.

Color selection:

00 : Black

6·88

o 1 : Light Cyan
1 0 : Light Magenta
1 1 : Intense White

Integrated Software Development Guide

SW BG640

Description: 640x200, 2 Color
Mode: CGA Mode 6
Memory map requirements: 16K per page (2 pages)

Graphics Modes

This mode has the same mapping and addressing scheme as SW _ CG320 above,
except the data format layout is 1 bit per pixel as follows:

I PO I Pl I P2 I P3 I P4 I P5 I P6 I P7 I

7

Color selection:

o : Black

6 5

1 : Intense White

SW CG320 D

4

Description: 320 x 200, 16 Color
Mode: EGA Mode D

3 2

Memory requirements: 8K per page (8 pages)
Map 0: AOOOO - A1F3F, blue bit plane (CO)
Map 1: AOOOO - A1F3F, green bit plane (Cl)
Map 2: AOOOO - A1F3F, red bit plane (C2)
Map 3: AOOOO - A1F3F, intensity bit plane (C3)
Pixel layout: 4 bits per pixel as follows:

C3: POm I P1[311 P2[311 P3[311 P4[311 PS[3) I P6[3) I P7[311
C2: PO[211 P1[211 P2[211 P3[211 P4[211 PS[211 P6[211 P7[211
C1: PO[1) I P1[111 P2[111 P3[111 P4[111 PS[111 P6[111 P7[1) I
CO: PO[oll P1[OII P2[OII P3[OII P4[OII PS[oll P6[OII P7[OII

765 432 1 0

1

Each of the 4 maps provide one bit of a pixel's color.

Keyboard and Display Input/Output

o

6-89

Graphics Modes

Color selection:

C3 C2 C1 CO

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

SW CG640 E

Description: 640 x 200, 16 Color
Mode: EGA Mode E

Color

Black
Blue
Green
Cyan
Red
Magenta
Brown
White
Dark Gray
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
Intense White

Memory requirements: 16K per page (4 pages)
Map 0: ADOOO - A3E7F, blue bit plane (CO)
Map 1: ADOOO - A3E7F, green bit plane (CO)
Map 2: ADOOO - A3E7F, red bit plane (CO)
Map 3: ADOOO - A3E7F, intensity bit plane (CO)
Pixel layout and color selection are identical to that of SW _ CG320 _ D.

6·90 Integrated Software Development Guide

Graphics Modes

SW CG640x350

Description: 64D x 35D, 4 Color (Valid only for EGA systems with 64K video RAM)
Mode: EGA Mode 1D
Memory requirements: 32K per page (2 pages)
Map 0: ADDOD - A6D5F, blue bit plane (CO)
Map 1: ADOOD - A6D5F, green bit plane (Cl)
Map 2: ADOOD - A6D5F, red bit plane (C2)
Map 3: ADOOD - A6D5F, intensity bit plane (C3)
Pixel layout and color selection are identical to that of SW_CG32D_D except that
Maps D and 2 are chained together to provide a 4 bit color code for pixels at
even addresses, and Maps 1 and 3 are chained together to provide 4 bit color
codes for pixels at odd addresses.

SW ENH CG640

Description: 640 x 350 16 Color (Valid only for EGA systems with 128K video RAM)
Mode: EGA Mode 10*
Memory requirements: 128K
Map 0: ADOOD - A6D5F, blue bit plane (CO)
Map 1: AOOOO - A6D5F, green blue bit plane (Cl)
Map 2: ADOOD - A6D5F, red bit plane (C2)
Map 3: ADOOD - A6D5F, intensity bit plane (C3)
Pixel layout and color selection are identical to that of SW _ CG32D _D.

This ioctl (2) system call is the same as SW_CG64Dx35D, except it is used for
systems configured with a mininum of 128K bytes of video memory.

Keyboard and Display Input/Output 6·91

Graphics Modes

SW VGA640x480C

Description: 640 x 480, 2 color
Mode: VGA Mode 11
Memory requirements: 64K per page (1 page)
Map 0: ADOOO - A95FF
Pixel layout:

I PO I Pl I P2 I P3 I P4 I PS I P6 I P71

7

Color selection:

0: Black

6 5

1 : Intense White

SW VGA640x480E

4 3

Description: 640 x 480, 16 Color from 256K
Mode: VGA Mode 12
Memory requirements: 64K - 1 page
Map 0: ADOOO - A95FF, blue bit plane (CO)
Map 1: ADOOO - A95FF, green bit plane (Cl)
Map 2: ADOOO - A95FF, red bit plane (C2)

2

Map 3: ADOOO - A95FF, intensity bit plane (C3)

1 o

Pixel layout and color selection are identical to that of SW _ CG320 _ D.

6·92 Integrated Software Development Guide

_______________________ Graphics Modes

SW VGA320x200

Description: 320x200, 256 colors
Mode: VGA Mode 13
Memory requirements: 64K - 1 page
Map 0: AOOOO, A0004, A0008, ... AF9FC
Map 1: A0001, A0005, A0009, ... AF9FD
Map 2: A0002, A0006, AOOOA, ... AF9FE
Map 3: A0003, A0007, AOOOB,... AF9FF
Pixel layout: 8 bits per pixel (1 pixel per byte)

Color selection:

8 bits select one out of a possible 256 color registers. Each color register has 3
components, corresponding to a value for RED, GREEN and BLUE. Each com­
ponent is represented by 6 bits:

6 bits 6 bits 6 bits

RED GREEN BLUE

SW ATT640

Description: AT&T Enhancement - 640 x 400, 16 colors
Mode: AT&T enhancement
Memory requirements: 64K
Map 0: AOOOO - A7DFF, blue bit plane (CO)
Map 1: AOOOO - A7DFF, blue bit plane (Cl)
Map 2: AOOOO - A7DFF, blue bit plane (C2)
Map 3: AOOOO - A7DFF, blue bit plane (C3)
Pixel layout and color layout identical to SW _ C6320 _D.

Keyboard and Display Input/Output

Color Register

6-93

Graphics Modes

SW VDC800x600E

Description: AT&T enhancement- 800 x 600, 16 colors from 256K
Mode: EGA Mode 12
Memory requirements: 64K
Map 0: AOOOO - AEA5F, blue bit plane (CO)
Map 1: AOOOO - AEA5F, green bit plane (Cl)
Map 2: AOOOO - AEA5F, red bit plane (C2)
Map 3: AOOOO - AEA5F, intensity bit plane (C3)
Pixellay04t and color selection are identical to that of SW_C6320_D.

SW VDC640x400V

Description: AT&T Enhancement - 640 x 400,256 colors from 256K
Mode: AT&T enhancement
Memory Requirements:
64K
Map 0: ADOOa - AF9FF(lst Quadrant)
Map 1: AOOOO - AF9FF(2nd Quadrant)
Map 2: AOOOO - AF9FF(3rd Quadrant)
Map 3: AOOOO - AF9FF(4th Quadrant>
Pixel layout and color selection are identical to that of SW _ VGA32Ox200

6-94 Integrated Software Development Guide

Text and Graphics Mode IOCTLs

Text Mode Selection IOCTLs

Description Note Adapter IOCfL

40x25 B&W VGA, EGA & CGA SW B40x25

40x25 Color CGA Mode 1 SW C40x25

80x25 B&W SW B8Ox25

80x25 Color CGA Mode 3 SW CBOx25

40x25 B&W VGA & EGA SW ENHB40x25

40x25 Color EGA Mode 0,1 SW ENHC40x25

80x25 B&W SW ENHB80x25

80x25 Color EGA Mode 2,3 SW ENHC8Ox25

80x25 Mono EGA Mode 7 SW EGAMON080x25

80x43 B&W EGA only SW ENHB8Ox43

80x43 Color EGA only SW ENHC80x43

40x25 Color VGA Mode 0,1 VGA only SW VGAC40x25

80x25 Color VGA Mode 2,3 SW VGAC80x25

80x25 Mono VGA Mode 7 SW VGAMON08Ox25

Keyboard and Display Input/Output 6-95

Text and Graphics Mode IOCTLs

Graphics Mode Selection IOCTLs

Description Note Adapter IOCfL

320x200 B&W CGA Mode 4 VGA, EGA & CGA SW BG320

320x200 4 Color CGA Mode 5 SW CG320

640x200 B&W CGA Mode 6 SW BG640

320x200 16 Color EGA Mode D VGA & EGA SW CG320 D - -
640x200 16 Color EGA Mode E SW CG640 E - -
640x350 Mono EGA Mode F SW EGAMONOAPA

640x350 Mono EGA Mode F* SW_ENH_MONOAPA2

640x350 4 Color EGA Mode 10 SW CG640x350

640x350 16 Color EGA Mode 10* SW ENH CG640

640x480 2 Color VGA Mode 11 VGA only SW VGA640x480C

640x480 16 Color VGA Mode 12 SW VGA640x480E

320x200 256 Color VGA Mode 13 SW VGA320x200

640x400 16 Color AT&T VDC 750, 600 SW ATT640

800x600 16 Color AT&TVDC600 SW VDC800x600E

600x400 256 Color AT&T VDC 600 SW VDC640x400V

6-96 Integrated Software Development Guide

Text and Graphics Mode IOCTLs

display(7) loctl Summary

loctl Description Arguments Return Value

ItKIOCINFO Identifies none if KD driver, returns «'k' <<8) I'd')

driver

KDDISPTYPE Display info (struct struct kd_disparam {

kd_disparam *) long type;

arg char *addr;
ushort ioaddr[MKDIOADDR];

}

Valid values for type field
KD_MONO

KD_HERCULES
KD CGA

KD_EGA
KD VGA

KDVDCTYPE Adapter info (struct struct kd_vdctype {

kd_vdctype *) long cntlr;
arg long disply;

long rsrvd;

}

Valid Valid

Cntrlr Values Display Values

KD MONO KD UNKNOWN

KD HERCULES KD STAND M - -
KD CGA KD STAND C - -
KD EGA KD MULTI M - -
KD VGA KD MULTI C - -
KD VDC400

KD VDC750

KD VDC600

Keyboard and Display Input/Output 6·97

Text and Graphics Mode IOCTLs

loctl Description Arguments Return Value

KDGKBTYPE Keyboard (char *) KD 84 /*84 Key Keyboard*/

type arg KD 101 /*101 Key Keyboard*/

KB OTHER

KDGETMODE Display (int *) KD TEXT /*clear screen*/

mode arg KD TEXT1 /*don't clear*/

KD GRAPHICS /*Graphics mode*/

KDSETMODE Set mode (int) arg

CONS GET Get mode none decode for specific mode,e.g.
SW_CG320, SW_ENHC80x25, ...

GIO ATIR Get attributes none decode for FG and BG color

KDSBORDER Set border (char) arg

KDMAPDISP Maps (struct struct kd memloc {

memory kd memloc *) char *vaddr; /*map TO*/

arg char *physaddr; /*FROM*/

long length; /* # to map*/

long ioflg; /*enable 1/0*/

}

KDUNMAPDISP Unmap none
memory

KDENABIO Enable none
Video I/O

KDDISABIO Disable none
Video I/O

KDADDIO Add I/O port (unsigned short) arg

KDDELIO Delete I/O port (unsigned short) arg

6-98 Integrated Software Development Guide

Text and Graphics Mode IOCTLs

loctl Descri ption Arguments Return Value

KDQUEMODE Enable/disable (struct struct kd_quemode {

queue kd_quemode *) int qsize; /* # in q*/

arg int signa; /*sig to send*/

char *qaddr; /*vaddr of q*/

}

KDGETLED Get LED (char *) arg LED_SCR

status LED CAP

LED NUM

KDSETLED Set LED (char *) arg

status

KIOCSOUND Generate (int) arg

sound

KDMKTONE Generate (int) arg

tone

"VT _ OPENQRY Find VT (long *) arg first available VT #

VT_GETMODE Get VT mode (struct struct vt mode {

vt mode *) char mode;

arg char waitv;

short relsig;

short acqsig;

short frsig;

}

mode field values
VT AUTO /*auto switch*/ -
VT PROCESS /*process switch*/

VT_SETMODE Set VTmode (struct

vt mode *)

arg

Keyboard and Display Input/Output 6·99

Text and Graphics Mode IOCTLs

loctl Description Arguments Return Value

VT_RELDISP Release (int) arg

status

VT ACfIVATE Make VT active (int) arg

VT _ WAIT ACTIVE Wait until none

VT active

Entries marked by "*" are not applicable when the application opens

6-100

I dev Iv ideo. For these ioctls, use a file descriptor to the Virtual Terminal
itself.

Integrated Software Development Guide

7 Driver Software Development

Introduction 7-1
Multiprocessor Enhancements to UNIX System V 7-2
Target Audience 7-2

What Is a Device Driver? 7-3
Special Files 7-3
The /dev Directory 7-4
Types of Devices 7-5
Major and Minor Numbers 7-5

The Structure of Driver Source Files 7-6
The Master and System Files 7-6
Include Files 7-6
General System Data Structures 7-7
Driver-Specific Data Structures 7-9

• Naming Conventions 7-9
• Unit Numbers 7-9
• devflag 7-9

Driver Activities and Responsibilities 7-11
Data Transfer Between System and User Space 7-11
Allocating Buffer Space 7-12

• Kernel Memory Allocator Buffers 7 -13
• STREAMS Message Buffers 7 -13
• System Buffer Pool 7-13

Sleeping and Waking Processes 7 -16

Table of Contents

Table of Contents

Synchronous and Interrupt Sections of a Driver 7-17
• Interrupt Processing 7-18
• Critical Sections of the Driver 7-18
• Multiprocessor Critical Sections 7-19

How Data Moves Between the Kernel and the Device 7-20
• Kernel 1/0 Functions 7-20
• DMA Allocation Routines 7 -21

Driver Entry Point Routines 7-23
Function Naming Conventions 7-23

• poll 7-23
Interrupt Handler 7-24

• Sharing Interrupts and DMA Channels 7-25
• Controller Interface Basics 7 -26

Kernel Utility Routines 7-29
Setting Processor Priority Levels 7-30

• Setting Priority Levels in Uniprocessor Releases 7-30
• Interrupt Priority Level 7-31
• Setting Priority Levels in Multiprocessor Releases 7 -32

~~~ 7~ 
• Basic Locks 7-33 
• ReadIWrite Locks 7-34 
• Sleep Locks 7 -36 
• Multiple Locks 7-36 

Sleeping and Waking 7-37 
• sleep/wakeup 7-37 
• SV WAIT and SV WAIT SIG 7-39 - --
• Synchronization Variables 7-41 
• Sleep Priorities 7 -42 
• biowait/biodone - Block Driver Event Synchronization 7-45 

Kernel Timers 7-46 
• timeout - Uniprocessor Kernel Timers 7-46 
• itimeout - Multiprocessor Kernel Timer 7 -47 
• delay 7-49 

II Integrated Software Development Guide 



Table of Contents 

Error Reporting 7-50 

Driver Debugging Techniques 7-51 
Kernel Print Statements 7-51 
The Trace Driver 7-52 
System Panics 7-52 
Taking a System Dump 7-53 

Kernel Debugger 7-55 
Debugging Crashed Drivers 7-56 

• Crashed Driver Example 7-56 
Debugging Active Drivers 7-58 

• Active Driver Examples 7-59 
Multi-Processor kdb Features 7-61 
kdb Macros and User-Defined Variables 7-61 
Analyzing Crash Dumps with kdb 7-62 

Converting XENIX System V/386 Drivers to 
UNIX System V/386 Release 4 7-63 

Driver Programming Examples 7-67 
The Trace Driver Implementation 7-68 
A Prototype Floppy Disk Driver 7-81 
Multithreading Hard Disk Drivers 7-101 

• Introduction 7-101 
• Handling I/O Requests 7-101 
• Multithreading the Hard Disk Driver 7-102 
• Summary of Locking Strategy 7-104 
• The Design 7-104 
• Use of Locks 7-108 

Table of Contents III 



Table of Contents ________________________ _ 

Iv 

• The Results 
• Hard Disk Driver Program Example 

7-108 
7-109 

Integrated Software Development Guide 



Introduction 

This chapter defines procedures for writing and packaging a device driver for 
Release 4.0 of UNIX System V /386, the implementation of UNIX System V for 
the Intel386 and compatible processor architectures. It contains general informa­
tion common to device drivers for UNIX System V Release 4.0 implementations 
on any hardware platform as well as information specific to UNIX System V for 
the Intel386 and compatible architectures. Also described is the Installable 
Driver (ID) scheme for Release 4.0 of UNIX System V /386. ID allows users to 
add peripheral devices using a floppy diskette or cartridge tape containing a 
Driver Software Package (DSP). Users will install and remove DSPs by using 
the pkgadd and pkgnn commands. Additional DSP reference material can be 
found in the UNIX System V /386 Release 4.0 System Administrator's Reference 
Manual and System Files and Devices Reference Manual. 

This chapter also provides the implementation-dependent information for UNIX 
System V Release 4.0 for Intel386 and compatible processor architectures, includ­
ing UNIX System V Release 4.0 Multi-Processor enhancements. The UNIX Sys­
tem V Release 4.0 Multi-Processor operating system extends the UNIX System V 
Release 4.0 operating system functionality from a uniprocessor environment to 
multiprocessor environments. Users upgrading to Release 4.0 Multi-Processor 
should read this chapter for a description of new device driver related features 
added to support multiprocessor environments. Additional device driver refer­
ence material can be found in the UNIX System V /386 Release 4.0 Device Driver 
Interface/Driver-Kernel Interface (DDI/DKl) Reference Manual. 

In this chapter, the phrase "uniprocessor releases" refers to releases of UNIX 
System V which run only on uniprocessor systems; while the phrase "multipro­
cessor releases~' refers to UNIX System V Release 4.0 Multi-Processor, which can 
run on either uniprocessor or multiprocessor systems. While UNIX System 
V /386 Release 4.0 Multi-Processor (MP) maintains all pr~MP DDI/DKI routines 
for compatibility, some of them are obsolete on multiprocessors and should be 
avoided. The text uses the phrase "in uniprocessor releases" to identify device 
driver interfaces and behavior that is obsolete in UNIX System V Release 4.0 
Multi-Processor. The text uses the phrase "multiprocessor releases" to identify 
new device driver interfaces and behavior which UNIX System V Release 4.0 
Multi-Processor introduces and which earlier uniprocessor releases never imple­
mented. Describing device driver interfaces and behavior both for uniprocessor 
releases and for multiprocessor releases should help programmers to migrate 
existing driver software to the new multiprocessor relases as well as to develop 
new driver software that works equally well on uniprocessor and multiproces­
sor systems. 

Driver Software Development 7-1 



Introduction 

Multiprocessor Enhancements to UNIX System V 

Several features have been added or modified for the multiprocessor version of 
the UNIX System V Release 4.0 operating system. These include: 

• Locking mechanisms - Release 4.0 Multi-Processor enhances the Device 
Driver Interface/Driver-Kernel Interface (DDI/DKI) to support device 
drivers in multiprocessor environments. Because more than one processor 
at a time can access the same driver data, locking functions must be used 
to serialize access to data structures. For this purpose, Release 4.0 Multi­
Processor adds locking primitives to the DDI/DKI. The three locking 
mechanisms: the basic lock, the read/write lock, and the sleep lock, 
ensure that only one processor operates on a set of data at anyone time. 

• Synchronization variables - Release 4.0 Multi-Processor adds a synchroni­
zation variable (SV) mechanism to coordinate driver activities with events. 
The "sv_" functions SV_ALLOC, SV_DEALLOC, SV_BROADCAST, 

SV_SIGNAL, SV_WAIT and SV_WAIT_SIG replace the sleep and wakeup 
mechanisms used in uniprocessor releases of UNIX System V. 

• itimeout routine - Release 4.0 Multi-Processor replaces timeout with 
itimeout, which executes a function after a given length of time. 

• Kernel Debugger - Release 4.0 Multi-Processor adds a new multiprocessor 
kernel debugger that allows memory examination and modification, 
disassembly of instructions, program downloading and execution, break­
point setting and single-step instruction execution in a multiprocessor 
environment. The new multiprocessor kernel debugger works on all 
online processors in real-time. 

Target Audience 

It is assumed that the reader has user-level experience with the UNIX system, 
some general knowledge of UNIX system concepts, and the ability to write 
sophisticated C language programs. Writing a device driver carries a heavy 
responsibility. As part of the UNIX operating system kernel, a device driver is 
assumed to always take the correct action. Few limits are placed on the driver 
by the other parts of the kernel, and the driver must be written to never 
compromise the system's stability. 

7-2 Integrated Software Development Guide 



What Is a Device Driver? 

The UNIX operating system kernel can be divided into two parts: the first part 
manages the file system and processes, and the second part manages physical 
devices, such as terminals, disks, tape drives, and network media. To simplify 
the terminology, this chapter refers to the first part as "the kernel", (although 
strictly speaking, drivers are part of the kernel too), and refers to the second 
part, which contains the drivers, as "the I/O subsystem". 

Associated with each physical device is a piece of code, called the device driver, 
which manages the device hardware. The device driver brings the device into 
and out of service, sets hardware parameters in the device, transmits data from 
the kernel to the device, receives data from the device and passes it back to the 
kernel, and handies device errors. 

Although device drivers are normally associated with hardware devices, some 
drivers may have no hardware counterpart. These devices are often referred to 
as pseudo-devices. For example, a trace driver may log certain classes of events. 
User programs write to the driver to record the events and read from the driver 
to recall the information. A trace driver has internal mechanisms for fonnatting 
and storing the data. No hardware is associated with the driver, and the driver 
interfaces with software only. The section entitled "A Trace Driver Implementa­
tion" contains a sample trace driver as a device driver model. You may actu­
ally use this driver to help debug the driver you are developing. 

One strength of the UNIX system is the ease with which new hardware can be 
integrated with existing software. The integration process is simple because the 
operating system architecture provides a unifonn software interface to every 
device. Processes use the same model when communicating with disks, tenni­
nals, printers or even "pseudo" devices that exist only in software; Every 
device on a UNIX system looks like a file. In fact, the user-level interface to the 
device is called a "special file". 

Special Files 

The UNIX system treats a device as if it were a file; that is, when a user pro­
gram wishes to access a device, it accesses the file associated with that device. 
These special files are also called nodes or device nodes. The system calls open, 
close, read, write, and ioctl that access regular UNIX system files (such as 
/etc/passwd) are the same calls that access devices (such as /dev/console). 
The section "Driver Entry Point Routines" later in this chapter describes in 
detail the system calls at the driver level. 

Driver Software Development 7·3 



What Is a Device Driver? 

The Idev Directory 

A device file may exist anywhere in the file system, but by convention, all 
device files are contained in the directory / dev. The names of the files are gen­
erally derived from the names of the hardware, a convention that allows users 
to know what the device is by looking at the file-name. Part of the name of the 
device file usually corresponds to the unit number of the device to be accessed 
via the file or, specifically, the minor number. (For example, it would be confus­
ing if the file /dev/tty were a disk.) 

The device special files reside in the / dev directory, and a simple ls will tell 
you quite a bit about the device. For example, the coriunand II ls -1 / dev / 1p " 
yields the following on UNIX System V Release 4.0: 

crw-rw-rw 1 root root 7, 1 Nov 26 12:33 1p 

This says that the 1I1p" (line printer) is a character type device (the first letter 
of the file mode field is "c ") and that major number 7, minor device 1 is 
assigned to the device. More will be said about device types, and both major 
arid minor numbers, later. 

A new convention of Release 4.0 of UNIX System V across all processor archi­
tectures is that / dev can contain subdirectories that hold the nodes for all the 
subdevices of a particular type. This reduces the clutter in the /dev directory. 
For example, /dev/dsk contains all the ''block special" files for the floppy and 
hard disks; /dev/rdsk contains all the "character special" files for the diskette 
and hard disks. 

The device file may exist in the file system even though the device is not 
configured in the running system. If a user attempts to access the device, or 
more specifically, the file, an error results on the system call. Conversely, the 
device may be configured into the running operating system without the device 
file in the file system (in which case, the device is inaccessible). 

7-4 Integrated Software Development Guide 



What Is a Device Driver? 

Types of Devices 

There are two classes of devices: block and character. Block devices are 
addressable, and as the term implies, the data on the device are formatted and 
addressed in ''blocks''. The term "character device" is a misnomer that should 
be "raw device," implying that the data being read are raw or unformatted; the 
device drivers and user programs, not the file system, assign semantics to the 
data. A device can be both a block and character device in a system 
configuration, implying that the system can access the device in two ways. 

Major and Minor Numbers 

Major numbers are used by the system to determine which device driver to exe­
cute when a user reads or writes from/to the special file. The system maintains 
two tables for mapping I/O requests to the drivers: one table for "character spe­
cial" and the other for ''block special". There are two sets of major numbers, 
one for character devices and one for block devices. Both start at zero and are 
numbered up to the last used major number (with an upper limit of 64 for char­
acter devices and a limit of 32 block devices for UNIX System V /386 Release 4.0 
and Release 4.0 Multi-Processor). If you do an "Is -1 /dev", you may find 
that two very different devices have the same major number. One is probably a 
''block special" device, using the block major number, and the other is a "char­
acter special" device, using the character major number. For those drivers that 
are both block and character devices, such as the floppy driver, one major 
number of each type must be assigned. In this case, the actual numbers may be 
different and, in fact, often are different. 

Minor numbers are entirely under control of the driver writer and usually refer 
to "subdevices" of the device. These subdevices may be separate units attached 
to a controller. A disk device driver, for example, may talk to a hardware con­
troller (the device) to which several disk drives (subdevices) may be attached. 
The UNIX system accesses different subdevices using different minor numbers. 

In traditional UNIX systems, major numbers were assigned by the driver writer 
or the system administrator. The mknod command was then used to create the 
files (or nodes) to be associated with the device. In contrast, the UNIX System 
V /386 Release 4.0 Installable Driver (ID) feature assigns the major number when 
the DSP is loaded by the user. . 

Driver Software Development 7-5 



The Structure of Driver Source Files 

The Master and System Files 

Associated with device drivers are two device configuration files: the master 
file and the system file (also known as the dfile). The device driver portions 
of the traditional master file are in a file named rrdevice for Release 4.0 of 
UNIX System V /386. The device driver portions of the system files are in a file 
called sdevice. See the UNIX System V /386 Release 4.0 System Administrator's 
Reference Manual and mdevice(4) and sdevice(4) in the UNIX System V /386 
Release 4.0 System Files and Devices Reference Manual for information describing 
the m::ievice and sdevice file format. 

The mdevice file contains the device name (15 characters or less), the definition 
of the functions the device supports (second column has an 1/ r" if read is 
implemented, a "W" if write is implemented, and so forth), the block and/or 
character major number, and other descriptive information about the driver. 

The sdevice file contains information on how the device is installed in the sys­
tem, that is, the number of units (subdevices), interrupt vector number (IVN) 
used, and other local information. 

Include Files 

Every file in the operating system source code includes header files containing 
declarations of global data structures. The source code for device drivers need 
not be contained in a single file; therefore, programmers should subdivide the 
driver among several files if it is large. Even if the driver is contained in a sin­
gle file, programmers should follow convention and declare the driver data 
structures in new driver-specific header (" . h") files. The definition of the data 
structures (the place in the source code where the compiler allocates memory 
storage) should be of the form extern, in a 1/ • c" file, usually the driver source 
file. The only data structures that should be defined outside the driver are 
those that are configuration-dependent; that is, if the driver needs to allocate 
storage for each subdevice, a method is needed to allocate based on the number 
configured. The file Space. c is used to allocate configuration-dependent data 
for use by device drivers in Release 4.0 of UNIX System V /386. 

7-6 Integrated Software Development Guide 



The Structure of Driver Source Files 

For instance, if a system is configured for four trace devices, the file Space. c 
includes a line as follows: 

struct trace tr_data[TR_UNITS]i 

and the include file for the trace driver contains the declaration of the trace 
structure. The configuration process that ID executes sets TR _UNITS equal to 4 
based on the unit parameter (column 3) of the System file. 

The driver source code file should 1/ include" the new header files. Driver file 
names conventionally contain the device name as part of their names. 

As an example, consider a driver for a new networking device called nnet. 
Assume the driver consists of two" . c" files, nnet. c and nnetprot. c, and 
one header file, nnet .h. The names suggest that the files are associated with 
the new nnet device and that the nnetprot. c file contains a protocol for the 
device. The header file may contain a declaration such as 

struct nnet { 
char nn_state; 
char nn_flags; 
int nnJXlrt; 
int nn_chan; 
struct nn_queue *nn_qptr; 

I; 

and the " . c" files should contain the line 

#include "sys/nnet.h" 

General System Data Structures 

Driver programmers must not change standard system header files, such as the 
proc file, the user file, or the inode file. Since the drivers are a separate part 
of the system, it is unacceptable to introduce new data structures and new 
''hooks'' into standard system data structures to accommodate a private driver. 
In addition, changing system data structures can cause user-level programs to 
work incorrectly if they rely on the system data structure. For example, changes 
to the process table usually require recompilation of the ps command. Driver 
programmers should likewise refrain from tampering with kernel source files. 

Driver Software Development 7-7 



The Structure of Driver Source Flies 

Usually, driver source code must contain some standard" include" files that 
allow the driver access to system utilities and data structures commonly used to 
return information to the kernel. The description of each kernel utility function 
in the DDI/DKI indicates which header files must be included in a driver that 
uses that function. 

The list below identifies a few of the more commonly used include files: 

7-8 

• /usr/include/sys/types.h - basic system data types 

• /usr/include/sys/param.h - fundamental system parameters 

• /usr/ include/ sys/ signal. h - system signals 

If the driver sends signals to user processes, it must include this file. 

• /usr / include/ sys/ conf . h - device switch tables 

This file is needed for the driver to define its devf lag value. 

• /usr/include/sys/file.h - file structures 

This file is needed if the driver uses control flags such as "no delay" (­
FNDELAY). 

• /usr / include/ sys/buf . h - the buf (system buffer) structure 

This file is needed if the driver uses the system buffer pool (see the sec­
tion "Buffer Pool" later in this chapter). 

• /usr/include/sys/kmem.h - the Kernel Memory Allocator 

This file is needed if the driver allocates memory for buffers out of the 
common memory pool. 

• /usr / include/ sys/ksynch. h - kernel synchronization structures 
(locks). 

This file is needed if the driver uses the multiprocessor locks described in 
the section "Kernel Utility Routines" later in this chapter. 

• /usr/include/sys/ddi.h - Device Driver Interface (001) routines. 

Note that this header file must come last in the list of included header 
files. 

Integrated Software Development Guide 



The Structure of Driver Source Flies 

Driver-Specific Data Structures 

Naming Conventions 

The names of driver data structures and variables should have the driver name 
in the prefix to ease program readability and debugging and to avoid conflict 
with other variables in the system with the same name. For example, in the sec­
tion entitled "A Trace Driver Implementation", the trace driver contains the 
variable tr_cnt and the data structure tr_data. Both names are private to 
the trace driver, and the prefix" tr_" identifies them as part of the trace driver. 

Unit Numbers 

A single driver may often "drive" several hardware units. One terminal driver 
can "drive" many terminals; each terminal has a unit number corresponding to 
the minor number of the device file. Many drivers use a data structure with a 
flag field to record the device status, such as open, sleeping, waiting for data to 
drain, and so forth. Apart from a flag field, the data structure is device­
dependent, so no recommendation can be made. However, there should be one 
entry per unit, defined in the driver file and declared in the header file. Each 
nnet device should have one of the nnet data structures described earlier. 

devflag 

Each driver should define a devflag variable so that the kernel knows the 
characteristics of the driver. For the nnet device, the devf lag declaration is: 

int nnetdevflag = va~ 

val may be a combination of flags. Each flag defines a special feature of the 
driver. For example, D _DMA should be set if the driver does DMA. If no flags 
are needed, val should be O. The different flag values are identified on the 
manual page devflag(DlD) in the UNIX System V /386 Release 4.0 Device 
Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual. 

To maintain compatibility with existing SVR3.2-based or older drivers, ID 
assumes by default that all drivers are "old-style" drivers that use the SVR3.2 
block and character device driver interfaces. Drivers written to use the new 
device driver interfaces defined in the UNIX System V Release 4.0 Device Driver 
Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual must include an "f" 
in the "characteristic field" (third field) of the mdevice entry to identify it as a 
"new-style" driver. This convention is new for ID in SVR4.0, and signifies that 

Driver Software Development 7·9 



The Structure of Driver Source Files 

the driver defined a devflag variable. The d_flag field for older type block 
devices is set by ID to point to a kernel defined integer variable nodevflag, 
which the kernel initializes as D _OLD. Failing to include an "f /I will not 
prevent a new-style driver from being successfully linked into the kernel, but 
may result in the driver operating incorrectly. 

7-10 Integrated Software Development Guide 



Driver Activities and Responsibilities 

A user process runs in a space isolated from critical system data and other pro­
grams, protecting the system and other programs from its mistakes. In contrast, 
a driver executes in kernel mode, placing few limits on its freedom of action; the 
driver is simply assumed to be correct and responsible. 

This level of responsibility and reliability cannot be avoided. A driver must be 
part of the kernel to service interrupts and access device hardware. The 
existence of the driver is one of the major factors that permits the kernel to 
present a uniform interface for all devices and to protect processes from some 
kinds of errors. 

The importance of reliable driver code is clear. The driver must not make mis­
takes that hurt any portion of the system, and should process interrupts 
efficiently to preserve the scheduler's ability to balance demands on the system. 
For instance, the driver should use system buffers responsibly to avoid degrad­
ing system performance or requiring that more space be devoted to buffers than 
is really needed. 

The following subsection provides a broad overview of what device drivers do 
inside the kernel. The specific details are provided later. The purpose of this 
overview is to introduce issues of significance and establish a common language 
for further discussion. Experienced driver developers will be familiar with 
much of the information, but those new to UNIX system device drivers may 
find the implications of a multitasking environment more complex than 
expected. 

Data Transfer Between System and User Space 

The kernel instruction and data spaces are strictly segregated from those of user 
processes. The need for the kernel to protect itself is obvious. This protection 
creates the need for a way to transfer information from user space to kernel 
space and back. 

Several routines transfer data across the user/system boundary. Some transfer 
bytes, some transfer words, and others transfer arbitrary size buffers. Each type 
of operation implies a pair of routines: one for transfers from user space to sys­
tem space and one for those in the opposite direction. 

Driver Software Development 7-11 



Driver Activities and Responsibilities 

Consider a representative I/O operation and the infonnation transfer across the 
user /kernel boundary it generates. As an example, take a request from a pro­
cess to write a buffer on the disk. The function write takes the file descriptor, 
the buffer address in user space, and the length of the data in the buffer as 
parameters. 

The system caU causes the processor to transfer from user to kernel mode, and 
to execute the write routine in the generic file interface. When write realizes 
that the file is "special" (a device), it uses the appropriate switch table (defined 
in the section "Major and Minor Numbers") to select the corresponding routine 
associated with the device. 

The device driver's write routine is then faced with a decision. Because the 
disk is a shared resource, the device driver may not find it convenient or possi­
ble to do the requested write just when it is requested. However, when the sys­
tem call returns, the process assumes that the operation is complete and may do 
whatever it wishes with its buffer. If the kernel wishes to defer the write to 
disk, it must take a copy of the infonnation from user space, keeping it in sys­
tem space until the write can be done. 

Allocating Buffer Space 

A feature common to most drivers is their use of buffers. As the discussion on 
the driver read and write routines noted, drivers may require buffers for 
passing data around. A standard UNIX System V Release 4.0 kernel has three 
types of buffers: 

1. Kernel Memory Allocator buffers. 

2. STREAMS message buffers. 

3. system buffers. 

Each buffer differs greatly in size and structure and fulfills different needs. 

All of the above types of buffers are commonly used UNIX system resources. 
Every driver should be written with the finite nature of the machine in mind; 
intense buffer use by a driver can reduce the performance of other drivers or 
require more memory be devoted to buffers. When more memory or space is 
allocated to buffers, the memory or space available for user processes is 
correspondingly decreased. 

7-12 Integrated Software Development Guide 



Driver Activities and Responsibilities 

Kernel Memory Allocator Buffers 

Kernel Memory Allocator (KMA) buffers are "borrowed" by the driver from a 
common memory pool used by all parts of the kernel. All types of drivers may 
use them. When drivers allocate their own data areas or independent buffer 
pools, this increases the size of the driver, and thus the size of the kernel. 

UNIX System V /386 Release 4.0 provides routines to allocate and release kernel 
memory - kmem_alloc and kmem_free - which can be used by drivers. 
Refer to the UNIX System V /386 Release 4.0 Device Driver Interface/Driver-Kernel 
Interface (DDI/DKl) Reference Manual for more information on these kernel 
memory allocator routines. 

STREAMS Message Buffers 

STREAMS messages are for use by drivers written to the STREAMS interface. 
They are allocated for the driver through the kernel utilities, so the driver need 
not allocate a pool of its own messages. 

UNIX System V /386 Release 4.0 allocates and releases buffers that the 
STREAMS I/O mechanism uses to hold the messages that STREAMS modules 
send to one another. Refer to the UNIX System V /386 Release 4.0 Programmer's 
Guide: STREAMS for more information on these STREAMS message buffers. 

System Buffer Pool 

System buffers are the size of a file system block, and the size of the file system 
block depends on the type of the file system. File system sizes can vary any­
where from 1K to 16K depending on the file system type. This buffer pool pri­
marily supports disk I/O operations. 

UNIX System V provides a set of buffers that are normally used for file system 
I/O, but they can be "borrowed" by drivers if they follow the rules outlined 
here. The driver must include the header file sys/buf. h. The size of a buffer 
is 1024 bytes. 

Driver Software Development 7-13 



Driver Activities and Responsibilities 

The functions that drivers may use to manipulate the buffers are as follows: 

1. struct buf *geteblk(void); 

Allocates a buffer big enough to hold 1024 bytes, and returns a pointer to 
a buffer header that, in turn, points to the data buffer. 

2. struct buf *ngeteblk(size_t n); 

Allocates a buffer big enough to hold n bytes and returns a pointer to a 
buffer header that, in turn, points to the data buffer. 

3. brelse(struct buf *bp); 

Releases a previously allocated buffer. 

4. struct buf *getrbuf(long flag); 

Allocates a buffer header only. The caller must supply a data buffer and 
set the data pointer in the buffer header to point to it. 

5. freerbuf(struct fub *bp); 

Releases a buffer that was previously allocated with getrbuf. 

6. biowait(struct Quf *bp); 

Sleeps on the buffer awaiting an event, such as completion of I/O. 

7. biodone(struct buf *bp); 

Awakens a process sleeping via biowait. 

8. bioerror(struct buf *bp, int err); 

Sets the error number associated with a buffer. 

9. geterror(struct buf *bp); 

Returns the error number associated with a buffer. 

10. clrbuf(struct buf *bp); 

7-14 

Clears the contents of the buffer (sets every byte in the buffer to 0) whose 
header is the pointer bp. 

Integrated Software Development Guide 



Driver Activities and Responsibilities 

Here is an example of the use of buffers in a tape driver: 

taperewind(dev, flag) 
{ 

register struct buf *bpi 
register int rcodei 

bp ~ geteblk()i 
if (flag == FNDELAY) 

/* 
* Set iodone function so buffer 
* will be released when done. 
*/ 

bp->b_iodone = brelsei 
bp->b_dev = dev; 
/* 

* tapestrategy recognizes blkno == -1 
* as a request to rewind. 
*/ 

bp->b_blkno = -1; 
tapestrategy(bp); 
if (flag == FNDELAY) 

I else { 

/* Don't wait for completion */ 
rcode - 0; 

/* Wait for completion. */ 
biowait (bp); 
rcode = geterror(bp); 
brelse (bp) ; 

return(rcode); 

Driver Software Development 7·15 



Driver Activities and Responsibilities 

Sleeping and Waking Processes 

A process might have to wait for the requested information to be read or writ­
ten from/to the disk before continuing. Consider a read operation in greater 
detail. When the request is made, the driver has calculations and setup to do. 
After these are complete, the request for the data can be made, but there is a 
short delay before the data are available. The delay, at a minimum, is due to 
the retrieval time for the disk; although, the delay can be longer if other 
requests are queued ahead of this one. 

Because UNIX System V is a multiuser, multitasking operating system, it is pos­
sible that another job is ready to run and waiting for a chance to use the 
machine. One process should not keep the machine idle while another process 
is ready to run, so some way must be found to have the first process wait until 
its information is available. 

In the case of disk access, the read routine in the disk's driver set issues a 
request for the data and puts the process to "sleep". Processes can coordinate 
their actions with events using sleep and wakeup in uniprocessor releases, or 
through the 1/ sv _" (synchronization variable) calls in multiprocessor releases. 
For more infonnation on the sleep and wakeup functions as well as the /1_ 

SV _" functions, see the individual manual pages in the uniprocessor and mul­
tiprocessor parts of the UNIX System V /386 Release 4.0 Device Driver 
Interface/Driver-Kernel Interface (DDI/DKl) Reference Manual and the section enti­
tled IIKernel Utility Routines" in this book. 

A sleeping process regarded as an active process but is kept on a queue of jobs 
whose execution is suspended while they wait for a particular event. When the 
process sleeps, it specifies the event that must occur before it may continue its 
task. This event is represented by the synchronization variable associated with 
the transition. The sleep call in uniprocessor releases and the sv _WAIT call 
in multiprocessor releases each record the process number and the event, then 
place it on the list of sleeping processes. Control then transfers to the highest 
priority runnable process. 

When the data transfer completes, the disk posts an interrupt, which activates 
the interrupt routine in the driver. The interrupt routine does whatever it must 
to service the device properly, and in uniprocessor releases calls wakeup, but in 
multiprocessor releases calls sv _SIGNAL. It must know what synchronization 
variable was used by the process as the sleeping event to wake it. This scenario 
for coordinating asynchronous events appears in many drivers. 

7-16 Integrated Software Development Guide 



Driver Activities and Responsibilities 

This discussion is purely illustrative. In actual practice, block drivers do not 
use SV WAIT, SV WAIT SIG, and SV BROADCAST, but rather biowait 
and biodone. ReTer to «biowait/biodone - Block Driver Event Syn­
chronization" in the section entitled, "Kernel Utility Routines", later in this 
chapter for further information. 

Synchronous and Interrupt Sections of a Driver 

Drivers provide the connection between two frames of reference: the process 
and real-time realms. 

The portion of the driver that deals with real-time events is driven by interrupts 
from devices, and is thus called the interrupt section. The rest of the driver exe­
cutes only when the process talking to the driver is the active process. The exe­
cution of this part of the driver is synchronized with the process it serves and is 
called the synchronous portion of the driver. 

Because the synchronous portion of the driver has the proper process context, it 
is responsible for organizing the information required for the requested opera­
tion and for any transfer of information across the user/system boundary. If 
the request was properly submitted, the synchronous portion of the driver can 
do nothing but wait until the requested operation is complete, so it sleeps. 

The interrupt driven section of the driver responds to the demands of the device 
as they come. The synchronous part must leave enough information in common 
data structures to permit the interrupt routine to figure out what is happening. 

~ The terms "interrupt section," "interrupt portion," and "interrupt driven sec­y tion" are interchangeable. 

The interrupt routine is called as a result of a change in the state of the 
hardware, i.e. completion of a hardware operation, receipt of data, and so forth. 
It is responsible for servicing the device and awakening the process waiting on 
the event. Note that the interrupt routine can be called at any time and in the 
context of any process. It cannot engage in any activity that depends on process 
context. 

Driver Software Development 7-17 



Driver Activities and Responsibilities 

Interrupt Processing 

When a device requests some software service, it generates an "interrupt". 
Each device can interrupt the system at a specific "priority level". If the 
currently executing code has not blocked interrupts at that level, it immediately 
saves its status and "traps" to an interrupt handler. The interrupt routine in the 
driver must determine the cause of the interrupt and take appropriate action. If 
the synchronous portion of the driver is waiting for this event, the interrupt 
routine should issue a call to SV_BROADCAST or SV_SIGNAL in multiprocessor 
releases, or to wakeup in uniprocessor releases. 

Critical Sections of the Driver 

The discussion so far has centered on the case of a single interrupt, occurring in 
isolation. Though helpful, this view is unrealistic and potentially misleading. 
Interrupts from all devices on the system can occur at any time, and the impli­
cations of this are important. The relationship between the synchronous and 
interrupt portions of the driver are affected, as are those between drivers shar­
ing data. 

When two sections of kernel code have a common interest in specific data, they 
must be careful to coordinate their efforts. If an interrupt switches control of 
the system to the interrupt driven portion of the driver, then manipulation of 
the common data may be caught in the midst of its work, rendering the infor­
mation invalid and inconsistent. 

These concerns are grouped under the general heading critical sections. The 
importance of the issue is clear; the integrity and accuracy of the data used by 
drivers is at stake. The word sections refers to the portions of code that manipu­
late the common data, rather than the data itself. Thus, a critical section of code 
is one that manipulates data that is of concern to another piece of code capable 
of interrupting the first. 

A routine in the kernel that has a critical section must protect itself from being 
interrupted when manipulating critical data. A set of subroutines that permit 
code to Set the Priority Level (spl) of the processor solve the problem and are 
described in the section entitled "Setting Processor Priority Levels". A clear 
understanding of the need for these routines can be achieved only by examining 
a detailed scenario. 

7-18 Integrated Software Development Guide 



Driver Activities and Responsibilities 

Imagine a section of code in the synchronous portion of a driver that manipu­
lates status flags. Such flags are frequently used to communicate between the 
synchronous and interrupt portions of a driver. Consider also that the interrupt 
portion has code that manipulates those flags, and that these manipulations do 
not take place in a single machine operation. 

Consider what happens if the synchronous portion of the driver receives a 
request that requires it to manipulate the values of several flags, but in the 
midst of the manipulation, the device gives an interrupt, transferring control to 
the interrupt portion of the driver. The interrupt routine decides that it must 
consult the flag values to make some decision and then set them to new values. 

The flags are in the incorrect state because the synchronous routine has only 
half finished changing them when the interrupt routine took over. This may 
cause the interrupt routine to behave unpredictably, or it may simply make an 
innocuous but incorrect decision. Assume that the interrupt routine simply 
looks at the flags, makes decisions, and changes a couple of flag values. Then, 
when the interrupt returns, the synchronous portion of the code, unaware that it 
was interrupted, finishes the changes it started. 

Whether the data manipulated in a critical section is changed by the interrupt­
ing routine is unimportant. The fact that the interrupting routine uses it is 
sufficient, proving any portion of code that can be interrupted and that also 
manipulates data of interest to the interrupting code is a critical section. When a 
critical section is identified, it can be protected from interruption in uniprocessor 
releases by a call to an spl routine of the appropriate level. 

Multiprocessor Critical Sections 
In a multiprocessor environment, an additional, different type of critical section 
concerns the driver writer. The critical sections mentioned earlier arise when an 
interrupt routine uses the same data structures that are used by code that may 
be interrupted. With multiprocessors, two pieces of code may be using the 
same data structure at the same instant on two different processors. This can 
occur even when no interrupt routines are involved. 

Ordinarily, critical sections are handled by blocking certain interrupts during 
the critical section with one of the spl functions. Multiprocessor critical sec­
tions are handled by using one of the multiprocessor locking functions. The 
simplest of the locking primitives, LOCK, allows only one processor at a time to 
acquire the lock, preventing two or more processors from accessing a data item 
at the same time. A data item that is accessed only while a lock is held is said 

Driver Software Development 7-19 



Driver Activities and Responsibilities 

to be protected by that lock. It is very important to note that every data item 
(other than automatic stack variables) accessed by a multithreaded driver must 
be protected by a lock. For further information, see the section on "Locking" in 
"Kernel Utility Routines", later in this chapter, and the UNIX System V /386 
Release 4.0 Multi-Processor Device Driver Interface/Driver-Kernel Interface 
(DDI/DKl) Reference Manual. 

How Data Moves Between the Kernel and the Device 

The discussions above assume data moves magically between memory accessed 
by the kernel and the device itself. This detail is machine-dependent, but it is 
instructive to examine how this is done. Some machines require the processor 
to execute special I/O instructions to move data between a device register and 
addressable memory or to set up a block transfer between the I/O device and 
memory, a method called Direct Memory Access (DMA). Another scheme, 
known as memory mapped I/O, implements the device interface as one or more 
locations in the memory address space. UNIX System V /386 Release 4.0 uses 
all of these schemes, but most commonly uses I/O instructions. 

Kernel I/O Functions 
UNIX System V provides functions that let drivers transfer data onto and from 
an I/O port or device in a general way. The syntax of these data transfer func­
tions is shown below. Example drivers in this chapter use some of these calls. 

The function inb reads a single byte from and outb writes a single byte on 
port, an I/O address. The functions inwand outw transfer 16-bit words, 
while inl and outl move 32-bit words (" long"s). 

7-20 

uchar_t inb(int port); 

outb(int port, uchar_t data); 

ushort t inw(int port) 

outw(int port, ushort_t data) 

long inl(int port) 

outl(int port, ulong_t data) 

Integrated Software Development Guide 



Driver Activities and Responsibilities 

The functions repinsb, repinswand repinsd input a stream of bytes, 16-
bit and 32-bit words, respectively, from an I/O port to kernel memory. 

repinsb(int port, char *addr, int cnt) 

repinsw(int port, short *addr, int cnt) 

repinsd(int port, long *addr, int cnt) 

The functions repoutsb, repoutswand repoutsd output a stream of bytes, 
16-bit and 32-bit words, respectively, from kernel memory to an I/O port. 

repoutsb(int port, char *addr, int cnt) 

repoutsw(int port, short *addr, int cnt) 

repoutsd(int port, long *addr, int cnt) 

As described earlier, it is the driver's job to copy data between the kernel's 
address space and the user program's address space whenever the user makes a 
read or write system call. 

DMA Allocation Routines 

Direct Memory Access (DMA) controllers are accessed through a collection of 
control registers mapped to I/O (port) addresses. The DMA control registers 
define the DMA start address and word count that the driver must manipulate. 
The number of DMA channels is hardware-dependent. Some channels are 
reserved for invisible housekeeping such as screen refresh and cannot be reallo­
cated. The file dIna. h defines the names of the various channels. (See the sub­
section entitled "DMA Controller Operations" in the section on "Controller 
Interface Basics" later in this chapter for further information.) Your Hardware 
Reference Manual should describe the DMA controller hardware. 

Low-level programming for DMA is done through DMA allocation routines. 
The DMA interface functions and their parameters are described in the UNIX 
System V /386 Release 4.0 Device Driver Interface/Driver-Kernel Interface (DDI/DKI) 
Reference Manual for Intel Processors and for Intel Multi-Processors. Use of the 
DMA routines found in the DDI/DKI allow drivers to be independent of DMA 
procedures. These routines allow DMA usage to be locked against DMA 
requests by other drivers. Not all devices use DMA, but those that do must 
have exclusive access to their DMA channel for the duration of the transfer. 

Driver Software Development 7-21 



Driver Activities and Responsibilities 

The DMA chips on some machines malfunction when more than one allocated 
channel is used simultaneously. To allow installation on these machines, the 
dIna_single flag is set by default. On machines without this deficiency, clear 
the dma_single flag to allow simultaneous DMA on multiple channels. This 
can be done using the idt une(1M) command to set DMAEXCL to 0 (legal 
values are 0 and 1). For more information on using the idtune(1M) command, 
see the UNIX System V /386 Release 4.0 System Administrator's Reference Manual. 

7-22 Integrated Software Development Guide 



Driver Entry Point Routines 

This section describes the functions that form the driver interface to the kernel. 
For a block device, they are init, start, halt, open, close, strategy 
and intr. For a raw (character) device, they are init, start, halt, open, 
close, read, write, ioctl, chpoll and intr. A driver may omit some 
routines if they are irrelevant (a line printer driver usually has no read rou­
tine). If a device is both raw and block, the driver must contain all approriate 
routines. For more information on all driver entry point routines, refer to the 
UNIX System V /386 Release 4.0 Device Driver Interface/Driver-Kernel Interface 
(DDI/DKl) Reference Manual. 

Function Naming Conventions 

The names of the driver init, start, halt, open, close, read, write, 
ioctl, chpoll, strategy and interrupt routines must be prefaced by the 
generic driver name, which is specified in the driver's mdevice file. For exam­
ple, the names of the nnet driver routines are nnetopen, nnetclose, 
nnetread, nnetwrite, nnetioctl and nnetintr. Other functions in the 
driver have no restrictions on names, but it is best to preface the function names 
with the driver name for identification purposes, to avoid mistakenly using a 
function name already defined in other parts of the operating system. 

poll 
The routine poll, if present, is called by the system clock at splhi during 
every clock tick, which is useful for repriming devices that constantly lose inter­
rupts or that do not interrupt at all. 

~ 
The poll entry point is specific to UNIX System V/386 Release 4.0 its use 

NOTE reduces the portability of a device driver, so it should be used only when 
absolutely necessary. poll is not included in the UNIX System V/386 
Release 4.0 Multi-Processor DDI/DKI. 

For the nnet device, the function poll prototype looks like: 

nnetpoll(pl_t ps) 

The parameter ps is an integer that indicates the previous processor priority 
level before it was interrupted by the system clock. 

Driver Software Development 7-23 



Driver Entry Point Routines 

Interrupt Handler 

Hardware interrupts cause the processor to stop its current execution stream 
and to start executing an instruction stream that services the interrupt. The sys­
tem identifies the device causing the interrupt and accesses a table of interrupt 
vectors to transfer control to the interrupt handler for the device. 

The exact mechanism of associating interrupt vectors with interrupt handlers 
varies on different UNIX systems. The discussion here assumes the system 
finds the correct interrupt routine on receipt of the device interrupt, and that the 
system executes the interrupt routine at a processor execution level high enough 
to prevent more interrupts of that type. UNIX System V /386 Release 4.0 has a 
limited number of available interrupts. For more information on this and other 
machine-dependent aspects of the interrupt structure of Release 4.0 of UNIX 
System V /386, see the subsection entitled "Interrupts" in the section on "Con­
troller Interface Basics" later in this chapter. 

The device interrupt handler routines handle device interrupts, which are the 
device responses to data transfers and requests. System software cannot predict 
when a device will interrupt the system. Typically, a system call blocks, that is, 
sleeps on an event, awaiting the device to interrupt. The device interrupt causes 
the system to invoke the interrupt handler which, in turn, awakens the blocked 
system call. For instance, device open routines may block until the device inter­
rupts and "announces" its connection; or device read routines may block until 
the device interrupts and "announces" that data has arrived and can be read 
into the system. 

Upon receipt of the interrupt, the kernel calls the driver interrupt handler. For 
the nnet device, the interrupt handler function prototype looks like: 

nnetintr(int ivn) 

where i vn indicates the interrupt number associated with the interrupt, which 
is determined by the jumper setting on the particular controller board. The vec­
tor field in the sdevice file for that controller board must also contain the 
interrupt vector number. 

If the system is configured with two peripheral interrupt controllers (PICS), 
ivn can be 0, 1, 3 - 15. The values reflect the 15 available interrupt lines on 
the two PICs combined. (Interrupt vector 2 is unavailable because it is used to 
wire the second PIC to the first PIC,) 

7-24 Integrated Software Development Guide 



Driver Entry Point Routines 

The i vn argument can detennine which controller interrupted in cases where 
the driver supports multiple instances of a controller (each controller set at a 
different i vn). 

The interrupt handler must identify the reason for the interrupt (device connect, 
write acknowledge, data available), and set or clear device status bits as 
appropriate. It can also awaken sleeping processes, waiting for the event 
corresponding to the interrupt (see the section entitled "Sleeping and Waking"). 
Interrupt handlers must not call sv _WAIT or any other function that may sleep. 
For further information on sleep functions, see the UNIX System V /386 Release 
4.0 Multi-Processor Device Driver Interface/Driver-Kernel Interface (DDI/DKl) Refer­
ence Manual. 

Sharing Interrupts and DMA Channels 
The Installable Driver (ID) scheme of UNIX System V /386 Release 4.0 allows for 
the sharing of interrupt lines and DMA channels among device drivers. When 
an interrupt occurs, the interrupt handler for each device sharing the interrupt is 
called. Each interrupt routine must first poll its device to see if the interrupt 
belongs to them. If not, they must return immediately with no processing so 
that the correct interrupt routine can execute. The default kernel configuration 
is to disallow devices that share interrupts. This prevents inadvertent re-use of 
interrupts or new drivers from sharing interrupts with old drivers expecting the 
interrupt to themselves. 

To indicate that a device can share its interrupt, column 5 of the sdevice (type 
field) entry must include a "3". All devices sharing this interrupt must also 
have a 1/3" in this field. If it does not, an error results during kernel 
configuration. See the UNIX System V /386 Release 4.0 System Files and Devices 
Reference Manual for the sdevice(4) manual page describing the sdevice file 
format. 

To indicate that a device can share its DMA channel, column 3 of the mdevice 
(the "characteristic field") entry must include a "D" identifier. If they do not, 
an error results during kernel configuration. See the UNIX System V /386 
Release 4.0 System Files and Devices Reference Manual for the mdevice(4) manual 
page describing the mdevice file format. 

Driver Software Development 7-25 



Driver Entry Point Routines 

Controller Interface Basics 

I/O devices connect to controllers that reside either on the Intel386 processor 
motherboard or on a peripheral board. The controller interface generally 
requires 

• An interrupt line designated by an interrupt vector number (IVN). 

• A Direct Memory Access (DMA) channel number (if used by peripheral). 

• An I/O Address (IDA) range for a port through which the processor and 
device can communicate. 

• An optional Controller Memory Address (CMA) range that references 
memory (usually dual-port RAM) on the controller board. 

Interrupts 
Most Intel386 processor-based computer systems are outfitted with two Intel 
8259 peripheral interrupt controllers (PICs), each with eight interrupt lines. The 
16 interrupt ports of the controller are assigned as follows: 

7-26 

interrupt 

number 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

bus 

pin 

IRQ3 

IRQ4 

IRQ5 

IRQ6 

IRQ7 

IRQ8 

IRQ2 

IRQ10 

IRQ11 

IRQ12 

IRQ13 

IRQ14 

IRQ15 

common 

name 

clock 

keyboard 

game port 

com2 

com1 

hard disk 

floppy 

printer 

devices on Intel386 systems 

using interrupt 

1/100 second timer 

keyboard 

expansion PIC (see IVN 9) 

serial port 2 

serial port 1 

not used 

integral floppy controller 

integral parallel port 

real time clock 

not used (wired to IVN 2) 

not used 

not used 

not used 

iAPX387 math co-processor 

integral hard disk controller 

not used 

Integrated Software Development Guide 



Driver Entry Point Routines 

In the above table, IVN 0 through 7 have a "common name" that is derived 
from the PC/XT architecture. Most Intel386 processor-based computer systems 
have a PC/AT architecture with 15 available interrupts. IVN 2 is used to con­
nect the second PIC; however, peripheral boards that use IRQ 2 can still be used 
by configuring the device driver to expect IVN 9. Note that with the expansion 
PIC installed, the hard disk is moved to IRQI4, freeing up IRQ 5 for PC/XT 
add-on devices. 

Most devices that require an interrupt are hardware strappable to two or more 
different interrupts to allow the user some flexibility in installation. 

Number of Installed Drivers 
Due to limited available interrupts, there is a limit to the number of conven­
tional peripheral devices that can be installed on Release 4.0 of UNIX System 
V /386. Additional drivers could, however, be installed for devices not requiring 
interrupts, for software pseudo-devices, or for devices sharing interrupts. (See 
the section entitled IISharing Interrupts and DMA Channels" earlier in this 
chapter.) 

As the table above shows, several AT-type and a few XT-type interrupts are 
available. In that list, IVN3 is assigned to the add-on serial port (COM2), and 
IVN 7 is assigned to the integral parallel port (line printer interface). If you are 
installing hardware/ driver software on a system that does not have a COM2 
interface configured or does not use a line printer, it is possible to unconfigure 
one of those devices, thus freeing the respective IVN. 

I/O Addresses and Controller Memory Addresses 
Each controller requires an lOA and possibly a CMA. These address regions 
must be unique and not overlap with any other device's address regions. Refer 
to your Hardware Technical Reference Manual for the lOA and CMA addresses 
that are permanently assigned to the above list of devices and to some optional 
peripheral devices. If a device on the parent board is not configured into a ker­
nel, the interrupt is freed up, but the lOA and CMA remain assigned to that 
device and should not be used by any new device. 

A quick look at the file /etc/conf/cf .d/sdevice shows assignments for the 
base system. For UNIX System V /386 Release 4.0, the IVN, starting and ending 
lOA and CMA addresses without any added peripheral boards, is as follows 
(lOA and CMA values are in hexadecimal): 

Driver Software Development 7-27 



Driver Entry Point Routines 

Device Prefix IVN SIOA EIOA SCMA ECMA 

Serial ports asy 4 3f8 3ff 0 0 
asy 3 2f8 2ff 0 0 

Floppy Disk fd 6 3fO 3f7 0 0 
Co-processor: fp 13 0 0 0 0 
Hard Disk: hd 14 320 32f 0 0 
Keyboard: kd 1 60 64 0 0 

kd 1 64 64 0 0 
Parallel Port: lp 7 378 37f 0 0 
Real Time Clk.: rtc 8 0 0 0 0 

DMA Controller Operations 
Most Intel386 processor-based computer systems have two Intel 8237 A DMA 
controllers, which provide seven channels to transfer data directly to and from 
memory without CPU involvement. The following table summarizes DMA 
channels and their usage in the Base System. 

Ch 0: spare 
Ch 1 : spare 
Ch 2: floppy 
Ch 3 : spare 
Ch 4: unusable - cascade from chip 1 
Ch 5: spare 
Ch 6 : spare 
Ch 7 : spare 

Examine the file /usr/include/sys/dma.h for additional information on 
control register locations used to initiate DMA. 

7-28 Integrated Software Development Guide 



Kernel Utility Routines 

UNIX system device drivers call kernel utility routines to perform system-level 
functions, many of which were introduced in the section "Driver Activities and 
Responsibilities". The following section describes the syntax and use of these 
kernel functions. 

This section addresses issues relevant to drivers on any UNIX system. 
Throughout this section, references are made to how things work on a "generic" 
or traditional UNIX system, along with some specific details on how UNIX Sys­
tem V Release 4.0 for the Intel386 and compatible architectures is implemented. 
Device interrupts and priority levels in particular are heavily machine­
dependent and reflect the implementation of UNIX System V Release 4.0 for the 
Intel386 and compatible architectures. 

Although UNIX system device drivers for different computer systems have 
many identical characteristics, one driver may be very different from another, 
even on the same machine, because of the wide spectrum of functions that 
drivers perform. The section will first discuss some design issues and examine 
the common features. 

~ 
Not all portions of this section are appropriate for STREAMS drivers and 

NOTE modules. Programmers are encouraged to use the UNIX System V Release 
4.0 Programmer's Guide: STREAMS for Intel Processors as a principal refer­
ence and use only those parts of this section that pertain to machine 
specifics and driver installation. 

Driver Software Development 7·29 



Kernel Utility Routines 

Setting Processor Priority Levels 

As described in the section entitled "Critical Sections of the Driver", if a device 
interrupts the processor, the integrity of driver data structures might be des­
troyed if they are manipulated by an interrupt handler of the interrupted code. 
To prevent such problems, the system has special functions that set the proces­
sor execution level to prohibit interrupts below certain levels. These interfaces 
allow the driver to block certain levels of interrupts during critical sections. 

Setting Priority Levels in Uniprocessor Releases 

The functions used to Set the Priority Level of the processor are the spIN func­
tions, where N ranges between 0 and 7 and corresponds to the priority level in 
the kernel. While splO allows all interrupts to occur; spl7 allows none. Most 
UNIX systems have an splhi function to set the processor execution level to 
the highest value, which is spl7 for UNIX System V /386. 

All spIN functions return the previous priority level. When setting a given 
priority level, the previous level (returned by the spl function) should be 
saved and the splx function should be used to restore the previous level at the 
end of the critical section. When the driver is ready to lower the priority level, 
it should not lower it all the way to 0 but rather to the old priority level. Con­
sider the following code: 

register pl_t pI; 

pI = splhi () ; 
/* 

/* Block interrupts */ 

* Critical section of code that manipulates data that is 
* also referenced or manipulated by the interrupt handler. 
*/ 

(void) splx(pl); /* Allow interrupts */ 

Note that at the end of the critical section the level is lowered to the previous 
level and not below that level. 

In uniproceSsor releases, it is sufficient to block interrupt handlers with the 
spl(D3D) interfaces described in the UNIX System V /386 Release 4.0 Device 
Driver lnterfacejpriver-Kernellnterface (DDljDKl) Reference Manual. Each spl 
function is defined to block a certain type of interrupt along with any interrupts 
that might come in at lower levels, however the total ordering of the levels may 
not be identical on all systems. The DDI/DKI reference manual pages for 

7-30 Integrated Software Development Guide 



Kernel Utility Routines 

multiprocessing releases define a partial ordering of priority levels, and, in 
order to be fully portable, a driver should not depend on any ordering beyond 
what the DOl/OK! defines. 

Interrupt Priority Level 

Another kernel characteristic, Interrupt Priority Level (IPL), interacts with the 
splN functions. Some processor architectures have a hardware priority scheme 
that defines a hierarchy of which devices can interrupt others. Because the 
Intel386 processor lacks such a scheme, UNIX System V /386 Release 4.0 has 
assignable priority levels that simulate hardware priority levels. By defining an 
IPL in the sdevice file, we can protect a driver's critical regions at the 
appropriate level. IPL8 is the highest level and is reserved for the internal 
clock. Drivers at this level cannot be interrupted by other devices (their inter­
rupt routines execute at splhi).A device at IPL6 can be interrupted by a 
device at IPL7 or IPL8. For the Intel386 processor, the base system device 
drivers in UNIX System V Release 4.0 use the following IPL levels: 

DEV 

clock 
asy 
fd 
hd 
kd 
lp 
rtc 

IPL 

8 
7 
6 
5 
6 
3 
5 

Device attached 

UNIX System Clock 
Serial Ports 
Floppy Disk 
Hard Disk 
Keyboard 
Line printer (Parallel Port) 
Real Time Clock 

This shows that the serial ports run at the highest priority to prevent loss of 
data. The line printer is more safely interrupted and is given a low IPL. See 
the section entitled "Controller Interface Basics" for a complete definition of the 
device configuration assignments. 

t? 
Do not overstate the device interrupt priority and be sure to limit the amount 

NOTE of time spent at high levels. For example, if any driver elevates to splhi 
for more than a few milliseconds, loss of UNIX system clock time may result. 

The mapping of IPL to device shown above is an example only, and is 
extremely platform specific. In order to be portable, drivers should not depend 
on IPL mapping, but rather the semantics defined for the spl functions defined 
by the DOl/OK! (for example, in multiprocessing releases spldisk blocks disk 

Driver Software Development 7-31 



Kernel Utility Routines 

interrupts). In addition, drivers should not be dependent on any ordering of 
the splor pI levels beyond those defined by the DDI/DKl, if you want them 
to be widely portable. 

Setting Priority Levels in Multiprocessor Releases 

As discussed in the section "Multi-Processor Critical Sections", blocking inter­
rupts using a spI function may not be sufficient to protect a critical section in a 
multiprocessor driver. Such critical sections must be protected using a locking 
primitive. Oata that may be manipulated at the interrupt level must be pro­
tected by a basic or read/write lock. Both of these types of locks allow the 
caller to specify a processor priority level that will be set at the time the lock is 
acquired. The priority levels that may be set during lock acquisition are the 
same as those that can be set using the spI interface. The valid arguments to 
set the various levels are listed under the LOCK ALLOC(03DK) interface in the 
UNIX System V /386 Release 4.0 Multi-ProcessorDevice Driver Interface/Driver­
Kernel Interface (DDI/DKI) Reference Manual. As with the spI interface, portable 
drivers using basic or read/write locks should not depend on any ordering of 
priority levels beyond those defined by the DOI/OKl. 

When acquiring any basic or read/write lock, the priority level set during lock 
acquisition must be suffIcient to block out any interrupt handler that might 
attempt to acquire the same lock in order to prevent deadlock. In addition, 
potential deadlock problems involving multiple locks must be considered when 
determining the priority level to block while holding a lock. For example, 
assume locks A and B may be held simultaneously and the normal order of 
acquisition is to acquire lock A first, followed by lock B. In this case, the prior­
ity level set when acquiring lock B must always be high enough to block any 
interrupt handler that might attempt to acquire either lock A or lock B. 

As with the spI functions, the previous processor priority level (returned by 
the call to acquire the lock) should be saved and passed to the function called to 
release the lock (for example UNLOCK) so that the previous level is properly 
restored at the end of the critical section. 

7-32 Integrated Software Development Guide 



Kernel Utility Routines 

Locking 

As discussed in the section on "Multi-Processor Critical Sections", a multipro­
cessor environment raises new concerns about more than one processor access­
ing the same data at the same time. To solve these problems, a set of locking 
functions is provided to serialize access to a data structure; that is, to ensure 
that only one processor is operating on a set of data at anyone time. However, 
these functions are closely connected with the new functions to suspend a pro­
cess. In general, the locking primitives should not be thought of as useful only 
on multiprocessor systems, but should be considered as the basic means of 
ensuring data integrity on any system. 

There are three types of locks: basic locks, read/write locks, and sleep locks, 
each with an associated set of functions. The choice of lock depends on the way 
the data is accessed, the contention for the data (that is, how often it is 
accessed), and the duration that the lock must be held. 

Basic Locks 

The first type of lock is the basic lock. The function to acquire a basic lock is 
simply: 

pl_t LOCK(lock_t *lock, pl_t pl) 

The first argument is a pointer to a lock _ t structure, which must have been 
previously allocated by LOCK _ ALLOC. The second argument is a processor 
priority level (see "Setting Processor Priority Levels" below for more details). 
The processor priority level is set to the specified level, and the old processor 
priority level is returned from LOCK. 

The function to release a lock is 

void UNLOCK(lock_t *lock, pl_t pl) 

The first argument is a pointer to lock _ t, which is to be unlocked. The 
second argument is the priority level to be restored, typically the old processor 
priority level that was returned from the LOCK call. 

When LOCK is called, if the lock is available (not held by another processor), the 
lock_t is marked as acquired and the function returns. If the lock is not avail­
able, the processor busy-waits until the lock becomes available. This ensures 
that only one processor is executing the critical section of code between LOCK 
and UNLOCK. 

Driver Software Development 7-33 



Kernel Utility Routines 

As an example, this code fragment searches a table for a slot containing 0, and 
inserts the variable entry into the slot. Without the protection of the lock, two 
processors may both find the same slot to be unused and try to put different 
entries into the same slot. 

s = LOCK(lock, plstr); 
for (i = 0; i < SIZE; i++) 

if (table[i] == 0) 
break; 

if (i >= SIZE) 
goto error; 

table[i] = entry; 
UNLOCK (lock, s); 

It is assumed that the error-handling code at the er:.::or label performs an 
ONLOCR. 

Read/Write Locks 

The second type of lock is the read/write lock. In some cases, a set of data is 
frequently accessed (read), but infrequently modified (written). In this case, a 
read/write lock can be used to allow several processors to read the data at the 
same time, but ensure that only one processor is writing the data at anyone 
time. If a processor is writing the data, no other processors may be reading or 
writing the data. The functions to acquire a read/write lock are 

pl_t RW_RDLOCK(rwlock_t *lock, pl_t pI); 

pl_t RW_WRLOCK(rwlock_t *lock, pl_t pI); 

Unlike the basic LOCK, there are two functions, one to acquire the lock in read 
mode, and one to acquire the lock in write mode. When RW_RDLOCK returns, 
the calling processor has acquired the lock in read mode. Other processors may 
also acquire the lock in read mode, but no other processors may have the lock 
in write mode. When RW _ WRLOCK returns, the calling processor has acquired 
the lock in write mode; no other processors may have the lock in read or write 
mode. 

7-34 Integrated Software Development Guide 



Kernel Utility Routines 

There is a single unlock function: 

void RW_UNLOCK(rwIock_t *Iock, pl_t pI); 

A modification of the previous example shows how read/write locks are used: 

s = RW_RDLOCK(lock, plstr); 
found = 0; 
for (i = 0; i < SIZE; i++) 

if (table[i] == entry) 
found = 1; 
break; 

RW_UNLOCK(lock, s); 

s = RW WRLOCK(lock, plstr); 
for (i = 0; i < SIZE; i++) 

if (table[i] == 0) 
break; 

if (i >= SIZE) 
goto error; 

table[i] = entry; 
RW_UNLOCK(lock, s); 

In this example, the first code fragment merely looks through the table to deter­
mine if a specific value is in the table. Because it does not modify the data 
structure protected by the lock, the lock is acquired in read mode, allowing 
other processors to execute the same section of code at the same time. The 
second fragment is similar to the previous example; it inserts a new value into 
the table. Because it modifies the data structures, the lock is acquired in write 
mode to prevent other processors from reading or writing the data structure 
while the insert operation is in progress. 

In the first code fragment, after the lock is unlocked, the variable found only 
indicates whether the entry was in the table at the time it was searched. As 
soon as the lock is unlocked, another processor is free to modify the table, 
adding or deleting entries. Care must be taken to ensure that a lock protects 
data for the entire duration that the data must remain unchanged. 

Driver Software Development 7-35 



Kernel Utility Routines 

Sleep Locks 

The third type of lock is the sleep lock, which is similar to the basic LOCK. 

However, if the lock is not available when an attempt to acquire it is made, the 
process attempting to acquire it goes to sleep rather than spinning. The process 
wakes up when it acquires the lock. Sleep locks must be acquired from process 
context; they cannot be called from the interrupt level. A held sleep lock is 
associated with a process, while a held basic LOCK or read/write lock is associ­
ated with a processor. 

Multiple Locks 

Sometimes it is useful for a driver to have more than one lock. Suppose there 
are several data structures that are accessed more or less independently. One 
single lock could control access to all of the data structures, but it would be 
more efficient to have a different lock for each data structure. This allows 
several processors to access different data structures at the same time. The 
tradeoff is that more lock/unlock functions are called. 

o If more than one lock exists, it may be desired to acquire more than one lock at 
one time. That is, the driver may wish to acquire a lock, and then acquire 
another lock without unlocking the first lock. This can be done, but there are 
some restrictions. 

First, when a basic or read/write lock is held, sleep locks may not be acquired. 
However, when a basic or read/write lock is held, other basic and read/write 
locks may be acquired. When a sleep lock is held, other sleep, basic, or 
read/write locks may be acquired. 

Second, there must be an ordering to the locks, so that a sequence of locks are 
always acquired in the same order. This ordering is often called a lock hierar­
chy. To see why this is necessary, suppose that two locks, A and B, could be 
acquired in any order. Then, suppose process X acquires lock A and process Y 
acquires lock B. Next, process X attempts to acquire lock B. Because B is held 
by Y, process X spins waiting for process Y to release the lock. If process Y 
attempts to acquire lock A, which is held by process X, the two processes are 
permanently deadlocked, and each is spinning waiting for the other to release a 
lock. The lock hierarchy prevents this type of deadlock by forcing locks to be 
acquired in a specific order. 

7·36 Integrated Software Development Guide 



Kernel Utility Routines 

Sleeping and Waking 

Drivers sometimes must suspend or block their execution to await certain 
events, where an event is a change in the state of system hardware or software. 
Suspending execution of a process is called "sleeping". In uniprocessor 
releases, calling the function sleep puts the driver to sleep. In multiprocessor 
releases, the driver sleeps by calling the SV_WAIT or SV_WAIT_SIG function. 
These sleep functions cause the system to do a context switch and schedule 
another process to run. 

~ 
Block drivers use biowait to sleep instead of sleep or SV WAIT and 

NOTE SV_WAIT_SIG. For further information, refer to the section "b1.owait /­
biodona - Block Driver Event Synchronization". 

A driver that is sleeping remains sleeping until an interrupt handler or another 
process executes a call to wakeup in uniprocessor releases or a call to 
SV_SIGNAL or SV_BROADCAST in multiprocessor releases. This causes the 
sleeping process to become runnable, and as soon as the system schedules it on 
a processor, it resumes running. The act of calling a function to bring a process 
out of the sleeping state is called "waking up" the process. 

sleep/wakeup 
The sleep function takes two parameters: a synchronization variable (an 
address used to signify an event) on which the process sleeps and a priority 
value that is assigned to the process when it is awakened: 

sleep(caddr_t addr, int pri) 

The synchronization variable used for sleeping is an arbitrary address that lacks 
any meaning except to the corresponding wakeup function call. The sleep 
addresses are usually taken from the entry in the device data structure of the 
device the process is accessing to guarantee uniqueness across the system. 
When a process goes to sleep awaiting an event, the driver should set a flag in 
the device data structure indicating the reason to sleep: 

driver.state 1= cond_flg; 
sleep (&driver.state, PRIORITY); 

Later, either an interrupt handler or another process calls wakeup to awaken 
the sleeping process. 

Driver Software Development 7-37 



Kernel Utility Routines 

The code calling wakeup should check for a particular flag bit, indicating the 
reason the process is sleeping. The driver then calls wakeup with one parame­
ter, the address where a process may be sleeping. 

wakeup(caddr_t addr) 

Particularly nasty race conditions can occur if spIN functions are not used with 
the sleep function. For example, the code segment 

while (driver.state & cond_flg) 
sleep (&driver.state, PRIORITY); 

causes the process to sleep if the cond _fIg bit is set in the field 
driver. state. (As processes can sleep on the address for several events, the 
sleep call is enclosed in the while loop so the code, when awakened, again 
checks that cond _fIg is indeed no longer set. This is one reason it is best to 
sleep on different address values for different sleep reasons.) Without using the 
spIN function, the process could check the cond_flg bit, find it set, and try to 
call sleep. But if an interrupt occurred before the process called sleep and 
the interrupt handler checked the cond_flg bit to detennine if a process was 
sleeping, it would assume the process was asleep and call wakeup to awaken it. 
Consider the following code: 

driver.state &= ~cond_flg; 
wakeup(&driver.state); 

By the time the interrupted process calls sleep, it will have missed the 
wakeup call, and another one may never come. By bracketing the calls to 
sleep with spIN function calls, the driver prevents the race condition: 

7-38 

register int oldpri; 

oldpri = spI5(); 
while (driver. state & cond_flg) 

sleep (&driver.state, PRIORITY); 
splx(oldpri); 

Integrated Software Development Guide 



Kernel Utility Routines 

SV WAIT and SV WAIT SIG - --
In multiprocessing releases, the two functions cause a process to sleep: 

• SV WAIT 

• SV WAIT SIG 

The SV _WAIT and SV _WAIT _ S IG functions behave differently if the process 
receives a signal while it is sleeping. ("Signal" refers to UNIX system signals, 
such as SIGINT and SIGHUP, not the SV_SIGNAL function.) 

• If a process sleeps due to SV_WAIT, signals do not cause the process to 
wake up. Signals for the process are saved and may be processed after 
SV_SIGNAL or SV_BROADCAST wakes up the process normally. 

• If a process sleeps due to SV_WAIT_SIG, signals cause the process to 
wake up. Receipt of a signal by the process causes an immediate return 
from the SV_WAIT_SIG call, even if no call to SV_BROADCAST or 
SV SIGNAL occurred. SV WAIT S IG returns zero if it returns due to a - -
signal, and non-zero if it returns due to a normal wakeup. 

The driver usually treats a return due to a signal as an abnormal termination 
and would IIclean up" and return. Typical items that need cleaning up are 
locked data structures that should be unlocked when the system call completes. 
The error number EINTR is often used to indicate that a driver operation was 
aborted by a signal: 

if (SV_WAIT_SIG(sv, pritty, lock) == 0) { 
/* 
* driver state cleanup 
*/ 

return(EINTR)i 

Before calling SV_WAIT or SV_WAIT_SIG, a driver almost always should check 
some condition to see if it is appropriate to sleep. A driver may check a status 
variable to see.if a device controller is ready and sleep if it is not, or may check 
a variable to see if an I/O operation is done and sleep until it is. Because one 
processor can change the condition while another processor checks the condi­
tion, the code that checks the condition is a multiprocessor critical section. To 
protect the multiprocessor critical section, a lock must be released before the 
process goes to sleep, otherwise problems may occur. 

Driver Software Development 7-39 



Kernel Utility Routines 

In the following example, the accesses to driver. state and driver. inuse 
are unprotected: 

while (driver.state != READY I I driver.inuse) { 
.SV_WAIT (driver.cond, ..• ); 

One processor may be manipulating this data at the same time another proces­
sor is examining it. A first attempt to fix this may be the following: 

s = LOCK(driver.lock, pldisk); 
while (driver.state != READY I I driver.inuse) 

UNLOCK (driver. lock, s); 
SV _WAIT (driver. cond, ..• ); 
s = LOCK(driver.lock, pldisk); 

UNLOCK (driver. lock, s); 

Here the driver writer is careful to unlock the lock before calling SV_WAIT, 
because SV_WAIT cannot be called with locks held. If this driver goes to sleep 
with driver .lock locked and another processor tries to lock driver . lock, 
the other processor will spin until this process is rescheduled and unlocks the 
lock. This prevents the spinning processor from doing any useful work for 
what may be a long period of time, which could seriously degrade system per­
formance. 

However, another problem is when some other processor wishes to set 
driver. state to READY immediately after driver .lock is unlocked. It 
may execute this code: 

s = LOCK(driver.lock, pldisk); 
driver.state = READY; 
SV_BROADCAST(driver.lock, 0); 
UNLOCK (driver. lock, s); 

If the other processor executes SV _BROADCAST before the first processor exe­
cutes SV _WAIT, the first processor effectively misses the wakeup unless the 
unlock and the act of going to sleep occur atomically, that is, uninterruptibly, to 
prevent any wakeups occurring between the unlock and the sleep. To achieve 
this, one of the arguments to SV_WAIT and SV_WAIT_SIG is the address of a 
lock which they atomically unlock when they put the process to sleep. 

7-40 Integrated Software Development Guide 



Kernel Utility Routines 

Because the operation of unlocking the lock then putting the process to sleep is 
atomic, the driver writer need not worry that any wakeups might occur 
between the two events, and the driver need not unlock the lock before calling 
SV_WAIT. It merely passes a pointer to the lock into SV_WAIT and the lock 
automatically unlocks before the process sleeps. Thus, the correct code for the 
earlier case becomes the following: 

s = LOCK(driver.lock, pldi~k); 
while (driver.state != READY I I driver.inuse) { 

SV_WAIT(driver.cond, pridisk, driver.lock); 
s = LOCK(driver.lock, pldisk); 

UNLOCK (driver. lock, s); 

Synchronization Variables 

To wake up all processes sleeping on a particular synchronization variable, ena­
bling them to execute when the scheduler chooses them, use wakeup in unipro­
cessor releases and SV_BROADCAST in multiprocessor releases. If no process is 
sleeping on the synchronization variable when a wakeup function such as 
wakeup on uniprocessors or SV_BROADCAST on multiprocessors is called, the 
function returns without bad side-effects. It is best for code readability and for 
efficiency to have a one-to-one correspondence between events and synchroniza­
tion variables avoid using one synchronization variable to sleep on two different 
events. 

When SV_BROADCAST is used, each process that wakes up must usually 
recheck the sleep-condition, in case some other process woke up first and 
changed the sleep-condition. In the example above, the while loop causes the 
sleep-condition to be rechecked. SV _ BROAD CAS T can be an expensive opera­
tion if a large number of processes are sleeping on a synchronization variable. 
In the example above, although all the sleeping processes will wake up and 
check their sleep-condition; only one will proceed while the others go back to 
sleep (sometimes called the "thundering herd" problem). This uses up a large 
amount of processor time. 

When SV_SIGNAL is used, only one of the processes sleeping on a synchroniza­
tion variable wakes up. The driver writer must make sure the other sleeping 
processes are properly awakened, usually by having each process complete the 
work it must do, then call SV_SIGNAL to wake up the next sleeping process. 

Driver Software Development 7-41 



Kernel Utility Routines 

It is invalid to call sleep functions such as SV_WAIT, SV_WAIT_SIG or sleep 
when handling an interrupt because a process independent of the device could 
have been executing when the device interrupted. If the interrupt handler goes 
to sleep, the interrupted process is effectively put to sleep for reasons beyond its 
control. But second and far more important, sleeping in an interrupt handler 
can cause the system to crash in some UNIX system implementations because of 
the interdependency of the process context switch mechanism and interrupt lev­
els. The interrupt handler must, therefore, not invoke any function that could 
lead to a context switch. Such functions are identified in the UNIX System 
V /386 Release 4.0 Multi-Processor Device Driver Interface/Driver-Kernel Interface 
(DDI/DKl) Reference Manual. 

Sleep Priorities 

The second parameter to sleep is a scheduling parameter used when the pro­
cess wakes up. This parameter, called the "sleep priority", takes a value rang­
ing from 0 (highest priority) to the constant PSLEP (lowest system priority, 
usually 39). The sleep priority controls how the sleeping process reacts to sig­
nals. If the value is lower than the manifest constant P ZERO (25 on most sys­
tems), the priority is higher than PZERO (lower value priority levels mean 
higher priority in the UNIX system) and the system will not wake up sleeping 
processes on receipt of a signal, but if the value is higher than PZERO (the 
priority is lower than PZERO), the system can "prematurely" wake up sleeping 
processes on receipt of a signal. 

In uniprocessor releases, sleep calls the longjmp function. Executing 
longjmp bypasses the conventional C function call/return sequence by reset­
ting the program counter, stack pointer, and data registers to the values they 
had when the most recent set jmp call was done, usually at one of the higher 
levels in the system that caused the device driver routine to be invoked. The 
implication for the driver calling sleep is that the sleep call never seems to 
return. For instance, a driver entry point routine will end immediately without 
returning to the code that called sleep if a process receives a signal while 
sleeping in the following sleep call: 

sleep((caddr_t)&tp->t_rawq, PZERO + 5); 

Drivers that allow this behavior must make sure that memory and hardware 
resources allocated by the driver before calling sleep are freed up and made 
available again. 

7-42 Integrated Software Development Guide 



Kernel Utility Routines 

Drivers must occasionally "clean up" on receipt of a signal while sleeping 
before returning to upper levels. Because the longjmp call, as discussed so far, 
takes place directly from the sleep call, the priority parameter to the sleep 
call has additional meaning: if the priority parameter is OR' ed with the mani­
fest constant PCATCH, the sleep call returns 1 if awakened on receipt of a sig­
nal. But if the sleeping process is awakened by an explicit wakeup call rather 
than by a signal, then the sleep call returns O. If the PCATCH bit is clear (not 
set), the process immediately finishes the driver entry point routine, that is, it 
executes a longjmp out of the driver. The following code sequence allows the 
driver to clean up before returning: 

if (sleep (sleep_address, cond_flg 1 PCATCH» { 
/* 
* driver code cleanup 
*/ 

return (EINTR) ; 

Typical items that need cleaning up are locked data structures that should be 
unlocked when the system call completes. 

tp->t_state 1= TLOCK; /* locks the driver unit */ 

tp->t_state 1= TSLEEP; 
if (sleep«caddr_t) &tp->t_state, TPRI 1 PCATCH» {. 

tp->t_state &= ~(TLOCK 1 TSLEEP); 
return(EINTR); 

/* somebody woke up driver ... 
* continue normally here */ 

The functions SV_WAIT and SV_WAIT_SIG also take a priority argument, but 
this is merely a hint to the process scheduler as to what the relative priority of 
the process should be when it wakes up. Use a higher relative priority when 
the caller sleeps waiting for a highly contended resource, or when the caller is 
already holding one or more locks or other kernel resources when it goes to 
sleep. In such cases, it is important to schedule this process to run quickly so 
that it can finish its work and release the resources it is holding. If the process 
is not holding any critical resources, it can be assigned a lower relative priority. 

Driver Software Development 7-43 



Kernel Utility Routines 

The priority values that can be used are listed in the description of SV _WAIT 
and SV_WAIT_SIG in the UNIX System V /386 Release 4.0 Multi-Processor 
Device Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual. 

If a driver must call a sleep function, how should the driver progralllIller deter­
mine the sleep priority? The first decision is whether the process should ignore 
the receipt of signals or not. To ignore signals in uniprocessor releases, a driver 
must sleep at a priority greater than P ZERO (numerically less than P ZERO); to 
ignore signals in multiprocessor releases, a driver must use SV _WAIT instead of 
SV_WAIT_SIG. When deciding whether the process should ignore signals or 
not, the programmer must choose the priority values so as not to affect process 
scheduling adversely. The system should be benchmarked using several sleep 
priority values to tune system performance with the new driver. 

The driver may ignore signals if it puts the process to sleep for an event that is 
"sure" to happen. An example of an event that is "sure" to happen is waiting 
for a locked data structure to be unlocked. The following example uses sleep 
to wait for a locked data structure to be unlocked: 

if (tp->t_state & T_LOCKED) 
sleep (&tp->t_state, PZERO - 5); 

The following example uses SV _WAIT to wait for a locked data structure to be 
unlocked: 

s = LOCK(lock, plstr); 
while (tp->t_state & T_LOCKED) 

SV_WAIT(tp->t_sync, pritty, lock); 
s = LOCK(lock, plstr); 

UNLOCK (lock, S)i 

In both examples, another process locked the data structure, may have gone to 
sleep, but left the data structure locked, thereby blocking changes by other pro­
cesss until it wakes up. Unless the driver has a bug, the first process eventually 
unlocks the data structure then awakens all other processes waiting for the 
T_LOCKED bit (the lock) to clear; therefore, the event announcing the unlock is 
"sure" to happen either through a call to wakeup in uniprocessor releases or 
through a call to SV _BROADCAST in multiprocessor releases. 

7-44 Integrated Software Development Guide 



Kernel Utility Routines 

If the driver puts a process to sleep while it awaits an event that may not hap­
pen, the process must sleep interruptibly. To sleep interruptibly in uniprocessor 
releases, a driver must sleep at a priority less than P ZERO (numerically greater 
than P ZERO); to sleep interruptibly in multiprocessor releases, a driver must use 
SV_WAIT_SIG instead of SV_WAIT. An example of an event that may not hap­
pen is waiting for data to arrive from a remote device. For example, when the 
system reads data from a terminal, the read system call sleeps in the terminal 
driver waiting for data to arrive from the terminal. If data never arrives, the 
read sleeps indefinitely. 

When a user at the terminal presses the interrupt key or disconnects, the termi­
nal driver interrupt handler sends a signal to the reading process that is still 
sleeping, and the signal causes the reading process to wake up and finish the 
system call without reading any data. If the driver sleeps ignoring signals, 
either by sleeping at a priority level that ignores signals in uniprocessor releases 
or by using SV _WAIT in multiprocessor releases, the process can awaken only 
by an explicit call to wakeup in uniprocessor releases or to SV_SIGNAL or 
SV_BROADCAST in multiprocessor releases. If that call never happens (for 
example, if the user disconnects the terminal), then the process sleeps forever, 
clearly an undesirable characteristic. 

biowait/biodone - Block Driver Event Synchronization 

Block-access drivers using the buffer header scheme use the function pair 
biowait /biodone when waiting for an I/O event instead of using synchroni­
zation functions such as sleep/ wakeup in uniprocessor releases or 
SV _WAIT / SV _BROADCAST in multiprocessor releases. 

The biowait function can put a block driver to sleep until the I/O operation is 
complete; biowait sleeps uninterruptibly. Because it operates on an I/O 
buffer header, it is not used by a character device; although it is used by block 
devices doing raw I/O through physio. 

In UNIX System V /386 Release 4.0, biowait does not set b_flags. In addi­
tion, biodone calls brelse, which automatically releases either lK or 2K 
buffers to the free list. 

Driver Software Development 7-45 



Kernel Utility Routines 

Kernel Timers 

Sometimes, a driver arrives at a state where it wishes to re-enter itself after a 
specified time. In uniprocessor releases, the driver uses the timeout function 
for this purpose. In multiprocessor releases, the driver uses the itimeout 
function for this purpose. 

timeout - Uniprocessor Kernel Timers 
In uniprocessor releases, the function timeout is available for a driver to make 
sure that it is awakened after a maximum period, for those situations where a 
limit must be placed on how long a process will sleep. The function timeout 
takes three parameters: 

1. the function to be invoked when the time increment expires. 

2. the value of a parameter with which the function should be called. 

3. the number of clock cycles to wait before the function is called. 

The third argument to timeout is an integer value specifying the period of 
time in "ticks". The function drv_usectohz can convert a period of time in 
microseconds to the equivalent number of ticks. When this period of time has 
passed, the function pointed to by the first argument to timeout is called with 
the second argument as its parameter. 

A sample timeout call is 

timeout(repeat, n, count); 

where n is the parameter to the function repeat, to be called after count 
clock ticks. If count is 100 and if the clock interrupts the processor 100 times a 
second, the system executes the function repeat in one second of real time as 
a result of the above timeout call. 

A driver can ensure that it can resume its execution (even if no call to wakeup 
is made) by first calling timeout and then sleep. This should be done, how­
ever, only if truly necessary, as it carries some heavy processing requirements. 
When the call to timeout is made, it inserts the specified event into the callout 
table, which is a list of events. 

7-46 Integrated Software Development Guide 



Kernel Utility Routines 

If the sleeping process is not awakened before the "timeout" event, the specified 
function will be called. The second argument to the timeout routine could be 
the event the driver was about to sleep on. When the function is called, it can 
use this information to call wakeup to wake the driver. The function called 
from the callout table should also set some internal flag to permit the driver to 
distinguish between the two ways it can be awakened. 

The exact time until the timeout takes effect may not be precise because of the 
interaction of other parts of the system. 

A call to timeout returns a numeric "timeout-ID" which the driver should 
save. A driver uses this timeout-ID when it has scheduled a timeout which it 
later would like to cancel because, for example, it received a normal wakeup 
from sleeping and therefore does not need the timeout event to occur. The ID 
returned by the call to timeout is passed to the function untimeout to 
prevent the timeout from occurring. 

itimeout - Multiprocessor Kernel Timer 

In multiprocessor releases, the function itimeout is available for a driver must 
be sure that it is awakened after a maximum period, for those situations where 
a limit must be placed on how long a process will sleep. itimeout takes four 
parameters: 

1. the function to be invoked when the time increment expires. 

2. the value of a parameter with which the function should be called. 

3. the number of clock cycles to wait before the function is called. 

4. the priority level at which the function should be called. 

The third argument to itimeout is an integer value specifying the period of 
time in "ticks". The function drv_usectohz can convert a period of time in 
microseconds to the equivalent number of ticks. When this period of time has 
passed, the function pointed to by the first argument to itimeout is called 
with the second argument as its parameter. The function is called with the pro­
cessor priority level set to the value specified as the fourth argument to 
itimeout. 

Driver Software Development 7-47 



Kernel Utility Routines 

A sample itimeout call is 

itimeout(repeat, n, count, pldisk); 

where n is the parameter to the function repeat, to be called after count 
clock ticks. The function drv_usectohz can be used to convert a time interval 
expressed in microseconds to the equivalent number of clock ticks. 

A driver can ensure that it can resume its execution (even if no call to 
SV_SIGNAL or SV_BROADCAST is made) by first calling itimeout before 
sleeping. This should be done, however, only if truly necessary, as it carries 
some heavy processing requirements. When the call to itimeout is made, it 
records some information in the callout table, which can be a fairly time­
consuming operation. 

If the sleeping process is not awakened before the "timeout" event, the specified 
function will be called. The second argument to the it imeou t routine could 
be the event the driver was about to sleep on. When the function is called, it 
can use this information to call SV SIGNAL or SV BROADCAST to wake the - -
driver. The function called from the callout table should also set some internal 
flag to permit the driver to distinguish between the two ways it can be awak­
ened. 

The exact time until the timeout takes effect may not be precise because of the 
interaction of other parts of the system. 

itimeout returns an ID value that can later be used in a call to untimeout to 
cancel the timeout before it takes effect. For example, any outstanding timeouts 
should be canceled in a driver's close routine. Otherwise, driver code is exe­
cuted after the driver is closed, possibly resulting in unpredictable results. 

untimeout can be called from an interrupt routine as long as the interrupt 
priority level associated with the interrupt routine is less than or equal to the 
level specified in the itimeout. 

Another type of timeout, dtimeout, may be used to cause a timeout function 
to be run on a specific processor. Otherwise, it is similar to itimeout. This 
timeout is most often used on machine architectures where some processors do 
not have access to some I/O devices. 

7-48 Integrated Software Development Guide 



Kernel Utility Routines 

delay 

This function stops execution of the current process for a given period of time. 
Drivers can use the function delay instead of the time-out functions, timeout 
and itimeout, to instruct the driver to sleep for a specified amount of time 
and then wake up. To use delay, specify the amount of time to wait. In 
uniprocessor releases, delay automatically calls wakeup to resume execution. 

The following piece of code illustrates the use of delay. This code is from a 
driver for a line printer. Before allocating buffers and storing data in them, the 
driver checks the status of the device. If the printer needs to have paper loaded, 
it displays a message on the system console. If the driver called a sleep function 
directly, the operator has to signal when the paper loaded. By using delay, 
the driver waits one minute and tries again. If paper is loaded, processing 
resumes automatically. 

while (rp->status & NOPAPER) /* while printer is out of paper */ 

{ /* display message & ring bell on system console */ 

cmn_err (CE_WARN, "xx_write: NO PAPER in printer \d 07", (dev&Oxf)); 
tiCKS = drv_usectohz(60 * 1000000); 
delay(ticKs); /* wait one minute & try again */ 

/* endwhile * / 

Driver Software Development 7-49 



Kernel Utility Routines 

Error Reporting 

One of the most important aspects of writing a device driver is the correct han­
dling of errors. Driver code must handle any error condition, or the conse­
quences may be severe. For example, a stray interrupt should be a trivial event, 
but could panic the system if the driver is not prepared to handle it. For 
instance the panic could cause data corruption and physically damage the sys­
tem. 

When an error occurs, the driver can do one or more of the following: 

• Write the error condition to a structure so the driver knows about it. At 
base level, the error is stored in a state structure and returned to the 
caller. At the interrupt or base level, errors on block devices can be 
recorded in the b_error member of the buf structure by calling 
bioerror. 

• Retry the process. The error may be a transient problem. Some hardware 
device boards have retry capabilities; let these boards do the retry. But if 
the error is software-related, the driver must decide how many times to 
retry. 

• Report the error to a system error log. If the error is severe, take the 
faulty hardware out of service to minimize the damage and keep the sys­
tem running normally. 

• Report the error to the system administrator, either by printing it on the 
system console, or by writing it to putbuf, or both (see crnn_err in the 
section entitled ''Driver Debugging Techniques"). 

• Send a signal to a user process. 

• Panic the operating system. 

7-50 Integrated Software Development Guide 



Driver Debugging Techniques 

Kernel Print Statements 

There are, of course, limitations in debugging and testing device drivers. In the 
absence of a kernel debugging tool, print statements inside the driver are the 
primary method used. Because the print statements are written by the kernel, 
there is no way to redirect the output to a file or to a remote terminal. Using 
print statements also modifies the timing of driver code execution, which may 
change the behavior of problems you are investigating. Print statements in the 
driver can be made more efficient by using an ioctl to set one or more levels 
of debugging output. This way you can write a simple user program to turn 
the print output on or off as needed. Sometimes kernel print statements scroll 
by too quickly to read. There is a limited kernel buffer called putbuf that 
records all kernel print calls. There are several ways to retrieve this data later: 

1. Use the crash command. 

After executing /etc/crash, try the following command: 

od -a putbuf 2000 

You can examine the crash(1M) manual page in the UNIX System 
V /386 Release 4.0 System Administrator's Reference Manual for more infor­
mation. 

2. Use the built-in kernel console monitor / dev / osm. 

If the base system does not have preconfigured / dev / osm device nodes, 
you should make one by: 

a. Creating a file named / etc/ conf /node. d/ osm that contains 
the following: 

osm osmO c 0 

b. Executing the /etc/conf/bin/icimknod command. 

c. Using cat or tail to examine / dev / osmO. 

Note that cmn_err has the same syntax as printf, but only supports print 
options byte, hexadecimal, character, decimal, unsigned decimal, octal, hexade­
cimal and string (option variables b, c, d, u, 0, x and s). See the UNIX Sys­
tem V /386 Release 4.0 Device Driver Interface/Driver-Kernel Interface (DDI/DKl) 
Reference Manual for more information on cmn err. 

Driver Software Development 7-51 



Driver Debugging Techniques 

In Release 4.0 of UNIX System V /386, CInn_err calls made inside the kernel 
appear on the monitor (/dev/console). The CInn_err has an option of put­
ting the character data only in putbuf and not having the data appear on the 
console at all. This is done by preceding the text string with an exclamation 
mark (" ! "). For example: 

cmn_err(CE_NOTE,"!this driver print statement will only go 
into putbuf, not onto the screen."); 

The Trace Driver 

Another useful way to observe driver behavior is by using a trace driver. Such 
a driver can be called by your driver to log data. A user program can then be 
written to read the trace driver either in real-time or as 'a postmortem analysis. 
The section entitled "A Trace Driver Implementation" provides the source code 
for such a driver which logs data presented to it by trsave calls made from 
other drivers. The trace driver uses clists to save these traces. Although this 
driver isn't delivered with the UNIX System V /386 Release 4.0 base, you can 
compile and link edit the driver into your system from the source code 
presented in the section entitled /I A Trace Driver Implementation". Not only 
will /dev/traceO be useful for your debugging, but it may help you better 
understand how the Installable Driver (lD) facility works before you actually 
write your driver. 

System Panics 

If the programmer expects that the driver could enter a state that is illegal, the 
driver can halt the system by using the cInn_err function with a panic flag set. 
For example, if the driver expects one of three specific cases in a switch state­
ment, the driver can add a fourth default case that calls the cmn_err function. 
The system will dump an image of memory for later analysis. If the error is 
recoverable, the driver should not panic the system. An example of panicking 
using cmn_ err is 

cmn_ err (CE_PANIC, "Your system has panicke,d, DEV NAME error!"); 

7-52 Integrated Software Development Guide 



Driver Debugging Techniques 

Taking a System Dump 

In the event a panic occurs, there may be some value in examining the dump 
produced by the system. Because UNIX System V /386 Release 4.0 uses the 
same physical hard disk partition for both "swap" and "dump", it is important 
that you do not reboot to the multiuser state before examining the dump. If the 
system reaches multiuser state, the dump may be overwritten by system paging. 

To examine the dump, the dump image must be saved. If the root partition 
does not have enough space to save the crash dump, the following message will 
appear: 

Need nnnnK to save crash dump. 
Root has only xxxxK free. 
F - write to floppy disk 
T - write to tape 
S - spawn a shell 
X - skip it 

You may then proceed in whatever manner you prefer. 

~ We recommend thai you write your crash dump to tape. 

L? 
When the system reboots and detects a dump image, it will copy the dump 
image from the swap/dump area to the file crash.MMDD in the /crash 
directory; where MM is the month, and DD is the day. If a crash file already 
exists in the / crash directory, another crash file is created with a .1, .2, 
.3, and so forth appended to the file name. A corresponding symbol file, 
syrn.MMDD is also saved in the /crash directory. 

Before the dump image is saved, the following message appears on the console: 

Saving nnnnK crash dump in crash .MMDD 

where nnnn is the size of the dump in KB. After the dump image is saved, the 
console displays the following message, Done, and the system continues its 
start-up procedure. 

Driver Software Development 7·53 



Driver Debugging Techniques 

You can use the crash command to examine the dump as follows: 

crash -d dumpfile -n symbolfile 

or you can use the kcrash command to examine the dump as follows: 

kcrash dumpfile symbolfile 

Consult the crash(1M) and kcrash(1M) manual pages in the UNIX System 
V /386 Release 4.0 System Administrator's Reference Manual for information on 
how to use crash and kcrash to examine the UNIX operating system kernel 
and user process status at the time of the panic. To retrieve the panic prin­
tout and any other kernel messages that have made their way into putbuf, use 
the following crash command: 

od -a putbuf count 

where count is the length of the putbuf data you wish to examine. 

You could also use the following kcrash command: 

dl putbuf 

Note that the procedures to examine a memory dump only apply to UNIX sys­
tems that have completed the dump sequence, usually in response to a panic. 
The prompt that you may see after an improper shutdown only indicates that 
the system was not properly brought down and a dump may exist. If the sys­
tem is inadvertently powered down or reset, or if your device driver causes the 
kernel to hang or go berserk without ever executing a panic, no dump will 
have been taken. Remember, the system will only do a dump when you have 
properly detected an error and executed the panic function inside your driver 
or when your driver has caused" a system error detected by the kernel or some 
other driver causing it to panic. 

At this point, it might be well to repeat the advice stated in the introduction: 

Writing a device driver carries a heavy responsibility. As part of the UNIX sys­
tem kernel it is assumed to always take the correct action. Few limits are placed 
on the driver by the other parts of the kernel, and the driver must be written to 
never compromise the system's stability. 

7·54 Integrated Software Development Guide 



Kernel Debugger 

An extremely useful tool for debugging device drivers is the multiprocessor ker­
nel debugger (kdb), which allows you to examine and modify memory, 
disassemble instructions, set breakpoints, and single-step instructions on all the 
online processors in the running UNIX kernel. Refer to the kdb(l) manual 
page in the UNIX System V Release 4.0 User's Reference Manual for more detail 
and a complete list of commands for the kdb utility. 

kdb is an extremely powerful tool, and should be used carefully to avoid 
accidental corruption of kernel data structures, which could lead to a system 
crash. kdb has few provisions for preventing programmer error. 

~ The kernel debugger is not meant for debugging user programs. Use an 9 appropriate user-level debugger such as adb(1) or sdb(1) for that purpose. 

kdb must exist in your kernel before you can use it (just like any device driver). 

kdb prints and accepts address inputs symbolically, using kernel procedure and 
variable names instead of hexadecimal numbers, but you must load the 
debugger with the kernel's symbols after the debugger itself has been installed 
into the kernel. You can do this by using the dbsyrn command, which loads 
the symbols into the kernel executable file after building it and before booting it. 
For more information, refer to the dbsyrn(l) manual page in the UNIX System 
V Release 4.0 User's Reference Manual. This has the advantage that you need to 
load the symbols only once per kernel build. 

t? 
The symbols must be loaded before the system panics (or you enter the ker­

NOTE nel debugger for some other reason) for them to be useful. You cannot load 
the kernel symbols while in the debugger. 

The following sections assume that you have both kdb and the symbol table 
loaded into your kernel. 

Driver Software Development 7-55 



Kernel Debugger 

Debugging Crashed Drivers 

kdb, like the crash utility, allows postmortem analysis of system crashes. 
Unlike crash, kdb allows you to examine the failure without having to reboot 
the machine and perform a crash dump. When the system panics, it prints the 
panic message and enters the kernel debugger before dumping the core image. 
This gives you the opportunity to examine the system immediately. 

If you want to continue with the normal crash dump, continue execution with 
the kdb command go. 

You should first investigate where the panic occurred. Panics unrelated to your 
driver should be brought to the attention of your system administrator. 

Sometimes panics occur because of an unexpected fault, and the panic message 
is unhelpful (for example, PANIC: Trap type axE in kernel mode). 
When this happens, you can backtrace the kernel's execution stack to see where 
the panic occurred with the kdb command bt. bt displays the function 
name and an offset into the function where the call occurred followed by the 
arguments with which the procedure was called. kdb allows you to backtrace 
over interrupts and traps as well as normal procedure calls within the kernel. 
Sometimes the backtrace becomes confused by a procedure that does not set up 
a normal C stack frame. You can see what procedure was omitted in the back­
trace by disassembling the call instruction in the calling procedure. 

While backtracing, you should look for procedure calls within your driver or 
addresses of data for which your driver is responsible. When you see one of 
these, you should examine the registers (debugger dr and dR commands) and 
memory (debugger dl and dy commands, for example) to determine the 
nature of the problem within your driver. 

Crashed Driver Example 

The kernel crashes with the message 

PANIC: usrxmemflt: no as allocated: aaaaaaac 
and enters the kernel debugger. 

This message indicates that an attempt was made to access kernel virtual 
memory location axc. This address is invalid in kernel mode. All kernel vir­
tual addresses are above a xC a a a a a a a; all user virtual addresses are below 
OxCOOOOOOO. The most likely cause of this problem is a structure dereference 

7-56 Integrated Software Development Guide 



Kernel Debugger 

from a null pointer. That is, some C code uses a pointer type variable to point 
to some data, the pointer is 0, and the code attempts to dereference the pointer 
anyway. 

To solve this problem, you should change the C code to check for the null 
pointer-case and handle it appropriately. In multiprocessor code, you might 
also want to place locks around the use of the pointer. 

The real problem is finding the right place in the assembler code and recogniz­
ing where that is in the C code. A good course of action would be to do the fol­
lowing: 

1. Backtrace (bt) the kernel stack on the processor that panicked. In this 
specific case, you should see several procedure calls on the stack above 
the actual faulting instruction (for example, cmn _ err, us rxmemf 1 t , 
k_trap, and cmntrap). 

2. Find the first frame that is not part of the fault-handling code (probably 
immediately below cmntrap). 

3. Disassemble the instruction with di at the address printed in the back­
trace. It should be a memory reference instruction, in this case, most 
likely a mov 1 to or from offset OxC from some register (for example, 
movl %eax, C (%edi). Now you know that register %edi, at that 
instruction, is the null pointer to blame. 

4. Disassemble backwards (using the - subcommand of the di command 
to step backward one instruction at a time) to find where the value in 
%edi came from. It was probably set from some global data structure, or 
from an argument to the procedure. It helps to look at the C code and 
match it with the assembler code. 

5. Change the procedure to handle the null pointer-case gracefully, or elim­
inate the race condition that allowed the pointer to be zeroed out on one 
processor and subsequently used on another. 

6. Recompile. 

Driver Software Development 7·57 



Kernel Debugger 

Debugging Active Drivers 

kdb can be invoked at any time during nonnal kernel execution to help identify 
device driver bugs. The ability to debug during run-time is the main advantage 
of using the kernel debugger instead of a post-crash analyzer utility. In addi­
tion to the commands described above, while the kernel is still running nor­
mally you can do the following to help you better understand the nature of a 
driver error: 

• Single-step through your driver (tr and to) 

• Set instruction and chip breakpoints (br and ur) 

• Modify data (ml), instructions (mi), and registers (mr and mR) 

• Read and write I/O ports (in and ou) 

• Call procedures with any arguments and see the return value (call) 

Some guidelines and tips when using kdb commands on an active kernel are as 
follows: 

• Be careful not to damage the kernel and cause a crash. 

• Never set instruction breakpoints in kernel debugger procedures, nor chip 
breakpoints on kernel debugger data. Entering the debugger while 
already in the debugger (breaking this rule, for example, or the call res­
trictions below) may cause it to malfunction. 

• Never modify kernel debugger data. 

• Never modify instructions in procedures the kernel debugger calls. 

• Set breakpoints in procedures after the initial few instructions that create a 
new stack frame, so backtracing will work properly. Do not set them at 
the very beginning of the procedures. 

• Clear breakpoints (bc and uc) when you no longer need them so you do 
not have to keep typing go. 

• Note that reading and writing I/O ports may not function properly on 
some processors, depending on your multiprocessor hardware. 

7-58 Integrated Software Development Guide 



Kernel Debugger 

• Beware of reading I/O ports that change value because they have been 
read. 

• Beware of writing I/O ports that could reset the system. 

• Never call procedures that might sleep or context switch. 

• Never call procedures in which you have set instruction breakpoints, or 
that use data on which you have set chip breakpoints, or that call the 
calldebug macro. 

• Beware of calling procedures that require kernel-level or driver locks to 
be held when called. 

Some typical ways to enter the kernel debugger while the system is running are 
the following: 

• Typing CTL-ALT-D on the console. 

• Using the macro calldebug (in <sys/xdebug. h» in your driver. 

• Hitting a previously set debugger breakpoint. 

You may place a call to the calldebug C macro or set a debugger breakpoint 
at any point in your driver, even in interrupt-level routines. The call or break­
point will enter the debugger and return normally when you resume execution 
using the go command. This allows you to stop the system from running at 
specific points in your driver and examine its state. 

Active Driver Examples 

If your driver has a problem that shows up only intermittently after long 
periods of successful execution, post-panic debugging will reveal corrupted 
driver-global data that caused the actual panic, but you may not know·how the 
data became corrupted. To identify this problem, use the chip breakpoint 
features of the kernel debugger as follows: 

1. Reboot the system. 

2. Enter the kernel debugger by typing CTL-ALT-D on the console. 

3. Verify that the data is currently correct. (If it is not, try placing a 
calldebug statement in your driver's start routine; if the data is 
incorrect even that early, perhaps it is being initialized improperly.) 

Driver Software Development 7-59 



Kernel Debugger 

4. Set a chip breakpoint (ud for a write to the address that becomes cor­
rupted and resume execution. 

Each time the processor writes to that virtual address, it enters the debugger 
and you can backtrace to find the error. 

~ 
1. There may be many such writes, only one of which is writing bad data. 

NOTE 
2. Chip breakpoints are set on only one processor. If another processor 
without the same breakpoints corrupts the data, the breakpoint will not 
trigger. Try setting the same chip breakpoints on all the processors to make 
sure you find the real problem. 

The above example had an easy solution - only use chip breakpoints - because 
it involved driver-global data that is always at the same address. The following 
is an example of the more difficult problem of having data that becomes corrupt 
in a dynamically allocated (see kmem_alloc) data structure. In this example, 
the address is an argument to the function that panicked and is different every 
time the procedure is called. 

• Set breakpoints at all the instructions that write to the field of the struc­
ture that becomes corrupted. For example, 

7-60 

1. Search through your driver code for all the places where the par­
ticular structure field in question is assigned. 

2. Find the corresponding assembly code locations for these sec­
tions in the debugger. 

3. Set breakpoints at those instructions. 

If none of the breakpoints trigger on a write of the bad data, yet the data 
still becomes corrupted, double check all your structure assignments, 
bcopy routine calls, and other places where the data could be implicitly 
written. 

Integrated Software Development Guide 



Kernel Debugger 

Multi-Processor kdb Features 

kdb allows you to control and perform all of the above commands on each 
online processor independently. To see which processors are currently online 
and in the debugger, use the ss debugger command. You can switch from one 
processor to another using the cpu command. Because each processor has its 
own execution stack, registers, and processor private data area, each processor's 
view of the system may be slightly different. It is helpful to backtrace all the 
processors to determine if your multiprocessor driver has a race condition (for 
example by seeing if the processors are sharing some data at a particular 
address). For more information on the kernel debugger, see Chapter 4, "Kernel 
Debugging" and the kdb(1) manual page in UNIX System V Release 4.0 User's 
Reference Manual. 

kdb Macros and User-Defined Variables 

Another kernel debugger feature is the ability to define and execute macros, 
which are essentially programs consisting of debugger commands. Macros are 
very handy for displaying complex data and can very easily improve readability 
over a command, such as the dl command, which just spews hexadecimal 
numbers. Using macros, you can iterate to follow linked-list data structures and 
call other macros to print embedded structures. 

It is possible to define macros directly from the debugger prompt, but as there 
is no editing facility in the debugger, this is tedious. You may, however, define 
macros outside the debugger and load them into the debugger similar to the 
same way you load kernel symbols into the debugger, using the dbcmd. For 
more information, refer to the dbcmd(1) manual page in the UNIX System V 
Release 4.0 User's Reference Manual. 

Two shell scripts accompany the kernel debugger to ease macro development. 
One compiles symbolic kernel debugger macros into pure macros, which you 
may then load into the debugger. This allows you to use structure field names 
instead of offsets, for example. The other creates symbolic macros from C 
header files, so you can create instant macros for data structures directly from 
their C definitions. 

Driver Software Development 7-61 



Kernel Debugger 

The debugger also supports user-defined variables, which are variables internal 
to the debugger only and not accessible by the system at all. They are espe­
cially useful in conjunction with macros for maintaining state information, and 
also for assigning a symbolic name to an otherwise unmemorable piece of data. 
For example, instead of trying to remember that the address DI02E7B0 points to 
some driver data, you could assign it the name badpt r. 

Analyzing Crash Dumps with kdb 

The kernel debugger is also available as a postmortem crash dump analyzer 
utility. For more informatIon, see the kcrash(1M) manual page in the UNIX 
System V Release 4.0 System Administrator's Reference Manual. kcrash uses 
exactly the same commands and syntax, and provides much the same func­
tionality as the kernel debugger, including macros, (except for execution control 
commands and breakpoints, among others.) 

7·62 Integrated Software Development Guide 



Converting XENIX System V/386 Drivers to 
UNIX System V/386 Release 4 

This section describes how to convert XENIX System V /386 device drivers to 
work on Release 4.0 of UNIX System V /386. 

In Release 4.0 of UNIX System V /386, the COFF and x. au t 286 binaries are 
supported by the /bin/i286ernul and /bin/x286ernul user-level emulators. 
i286ernul and x28 6ernul trap system calls issued by an Intel286 program and 
either handle the system calls internally or perform necessary argument conver­
sions before issuing an Intel386 system call. Therefore, the XENIX System 
V /386 device driver code that was used to support system calls from a 286 
binary is no longer necessary. 

9 
In Release 3.2 of UNIX System V/386, the kernel supports routines available 

NOTE for device drivers handling 286 system calls (for example, Idtalloc, 
Idtfree, cvtoint, and cvtoacidr) are provided as stubs to help facili­
tate compilation. Version 1.0 of UNIX System V/386 Release 4.0 provides 
these stubs, but they will be removed in a future version of UNIX System 
V/386 Release 4.0. 

Programmers should keep the following infonnation in mind when converting 
XENIX System V /386 device drivers to work on UNIX System V /386. 

• All XENIX System V /386 include lines that use the fonn 

#include " .. /h/<[ile> " 

must be changed to 

#include "sys/<file>" 

• The UNIX System V /386 Release 4.0 Software Generation System (SGS) 
does not define the M_I8086, M_I286, or M_I386 symbols. Instead, the 
i8086, i286, and i386 symbols can be used for native development. 

• UNIX System V /386 Release 4.0 does not support the near and far 
keywords; thus, all references to near and far should be removed. 

• UNIX System V /386 Release 4.0 replaces the b_paddr field with the 
b _un. b _ addr field, which stores an address as a kernel virtual address. 
In XENIX System V /386, the b_paddr field of the buf structure stores 
an address as a physical address. All references to b yaddr should be 
changed to b_un.b_addr. Where appropriate, the ktap macro should 
be used to convert the address stored in b _un. b _ addr to a physical 
address. 

Driver Software Development 7-63 



Converting XENIX System V/386 Drivers to UNIX System V/386 Release 4 

• In UNIX Syste~ V /386 Release 4.0, the b_blkno field of the buf struc­
ture stores block numbers in units of 512 bytes; while in XENIX System 
V /386, b _ blkno stores blocks in units of 1024 bytes. Be sure to examine 
and convert all references of b_blkno to the units expected by your 
device driver. 

• In UNIX System V /386 Release 4.0, all block devices must have a xx­
print routine. The following example shows a xxprint routine for a 
floppy diskette device driver: 

flprint (dev, str) 
dev_t dev; 
char *str; 

crnm_err (CE_NOTE, "\s on floppy diskette unit \d, 
minor \d", str, unitbits (dev), minor (dev)); 

• In UNIX System V /386 Release 4.0, the user structure no longer contains 
the u _ cpu field; instead, a new field in the user structure, u _ ren V, con­
tains the same information as u_cpu in bits 16-23. 

• UNIX System V /386 Release 4.0 calls the open, close, read, write 
and ioctl routines with the entire device number. XENIX System 
V /386 calls these routines with the minor device number. When convert­
ing XENIX System V /386 device drivers, be sure to mask off the major 
portion of the device number only if the minor number is desired. This 
can be done with the minor macro. 

• After all device driver halt routines are called (those defined in the 
array io_halt []), interrupts may be turned on again. In UNIX System 
V /386 Release 4.0, if the device driver is used to control hardware, its 
ha 1 t routine should ensure that no interrupt is pending. 

• In UNIX System V /386 Release 4.0, the disksort routine uses the 
b_sector field of the buf structure to sort requests. In XENIX System 
V /386, disksort uses the b_cylin field of the buf structure to sort 
requests. By using the b_sector field (which is a 32-bit field) better 
resolution can be obtained over the b_cylin field (which is a 16-bit 
field). 

7-64 Integrated Software Development Guide 



Converting XENIX System V/386 Drivers to UNIX System V/386 Release 4 

• All XENIX System V /386 device driver references to the cmos. h include 
file should be changed to sys/cram.h . 

• The use of the physio routine in UNIX System V /386 Release 4.0 is 
slightly different than in XENIX System V /386. In UNIX System V /386 
Release 4.0, the read and write routines first call the phyck routine to 
validate the requested transfer; physio is then called with a pointer to 
the device driver's xxbreakup routine. xxbreakup then calls the system 
breakup routine (either dma _breakup or pia_breakup) with a pointer 
to the device driver's xxstrategy routine. In XENIX System V /386, a 
driver's read and write routines call the physio routine with a 
pointer to the driver's strategy routine (possibly with B_TAPE set). 

The following example illustrates the UNIX system calling convention. 
Please note that this code uses a Release 3.2 style driver interface, not the 
Release 4.0 interfaces defined in the Device Driver Interface/Driver-Kernel 
Interface (DDI/DKI). 

flbreakup (bp) 
struct buf *bp; 

int flstrategy; 

dma_breakup(flstrategy, bp); 

flread (dev) 
dev_t dev; 
{ 

register int size; 

size = flblktosec(flsize[sizeindx(dev)]); 
/* size in sectors */ 
if (physck(size, B_READ» 

physio(flbreakup, NULL, dev, B_READ); 

Driver Software Development 7·65 



Converting XENIX System V/386 Drivers to UNIX System V/386 Release 4 

• UNIX System V /386 Release 4.0 does not support the XENIX System 

7-66 

V /386 mapptov routine. Instead, the mappages routine should be used. 
The mappages interface is shown below: 

mappages (begmapaddr, length, begphysaddr) 
caddr_t begmapaddri 
int length; 
paddr_t begphysaddri 

Often, XENIX system programmers did not use thektop macro to convert 
virtual addresses to physical addresses (for example, in the first call to 
copyio, which expects a physical address) because in the XENIX system 
physical addresses are equivalent to virtual addresses. In UNIX System 
V/3a6 Release 4.0, programmers cannot make this assumption; they must 
use a physical or virtual address where needed, using the proper conversion 
macro, where appropriate. 

Integrated Software Development Guide 



Driver Programming Examples 

This section presents examples that illustrate the techniques for programming 
and packaging device driver software discussed in the preceding sections of this 
chapter. Real examples provide the kind of information that explanation alone 
never adequately conveys. The following examples of device driver program­
ming should help complete your understanding of how to develop installable 
driver software for UNIX System V Release 4.0 on the Intel386 processor and 
compatible architectures: 

• The Trace Driver Implementation 

• A Prototype Floppy Disk Driver 

• A Multithreaded Hard Disk Driver 

Driver Software Development 7-67 



Driver Programming Exa-mples 

The Trace Driver Implementation 

The trace driver is a pseudo-device that allows the UNIX System V kernel or 
other device drivers to report debugging information without using console 
printfs. The basic mechanism uses trsave calls to the trace driver to store 
short bursts of trace data in system character buffers (clists). These data 
items are retrieved from the clists and are reported to a user process by 
reading /dev/traceO. This driver uses some additional calls common to 
other drivers, specifically, sleep, wakeup, and the clist handling routines. 

In addition to providing the driver source code, other files needed to actually 
compile and use the trace device are provided: 

Space. c - The DSP's memory allocation file 
trace. c - The driver source code 
trace. h - The driver header file 
t r s a v . c - A user program to read the trace device and redirect 

output to a disk file 
trfmt. c - A user program to print the trace information 

If you wish to key this source code into your system, you can make use of this 
trace driver to debug a driver that you are writing. 

7-68 Integrated Software Development Guide 



Driver Programming Examples 

The following notes help explain some of the driver source (trace. c) code: 

• Lines 1-121: 
Represent the inclusion of system header files and define the open, 
close, and ioctl functions. The code is self-explanatory. 

• Lines 122-149: 
The trace driver read routine. The driver blocks (waits) until data is 
available via the sleep function call. The read will block until the Ker­
nel or some other driver issues a cali to trsave. When a trsave call is 
made, trace data is put into a clist and a wakeup is issued. The read 
awakens and transfers the trace data to the user process executing the 
read and releases the clist. Note the use of the internal trace driver 
address as the sleep event (&try->tr_rcnt). 

Since trsave calls can be done at interrupt level by other drivers, and 
since the trsave function and the trread function both manipulate the 
queue of clists, the read function surrounds its manipulation of the 
clist structures with splN calls. 

• lines 150-179: 
Data from other drivers is put into clists. Note that trsave accesses 
the system time counter (lbolt), which represents time in ticks (l/100th 
of a second on the 386 System) since the system was booted. This places 
a time stamp on the trace event. 

Driver Software Development 7-69 



Driver Programming Examples 

Figure 7-1: Intel386 Trace Driver Program Example - Space. c File 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1* Copyright (c) 1987 AT&T 
1* Copyright (c) 1991 UNIX System Laboratories, Inc. 
1* All Rights Reserved 
1* 
1* 
1* 

Space.c file for 386unix trace driver. 

1* The trace structure defined here provides storage on a 
1* per-subdevice basis. That is, one trace structure will be 
1* allocated for each sub-device. The variable TR_UNITS 
1* is a #define created by the idconfig program. It represents 
1* the number of trace subdevices for the trace driver. It is 
1* derived from field 3 of the "System" entry for the device. 
1* 
1* To locate TR_UNITS, this file should include config.h. This 
1* header file is created by the reconfiguration process and 
1* resides in the local directory of the reconfiguration 
1* process (note use of double quotes around config.h). 
1* 
#include "sys/types.h" 

20 *include "sys/tty.h" 
21 Hnclude "sys/trace.h" 
22 Hnclude "config.h" 
23 
24 struct trace tr_data[TR_UNITS)i 
25 int tr_cnt=TR_UN1TSi 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

7-70 Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-2: Intel386 Trace Driver Program Example - Program Code 

Copyright (c) 1987 AT&T */ 26 
27 
28 
29 

/* 
/* 
/* 
/* 

copyright (c) 1991 UNIX System Laboratories, Inc.*/ 
All Rights Reserved */ 

386unix Trace Driver 
30 
31 * The trace driver is a pseudo-device that allows 
32 * the UNIX Kernel or other device drivers to report debugging 
33 * information without the use of console printf's. 
34 * The basic mechanism used is that calls to the trace driver 
35 * (via trsave()) will store short bursts of trace data in system 
36 * character buffers (clists). These data items are retrieved from the 
37 * clists and are reported to a user process by reading /dev/trace. 
38 
39 */ 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

"sys/types.h" 
"sys/signal.h" 
"sys/errno.h" 
"sys/param.h" 
"sys/dir.h" 
"sys/user.h" 
"sys/page.h" 
"sys/systm.h" 
"sys/tty.h" 
"sys/sysmacros.h" 
"sys/trace.h" 

53 #define OPEN 01 
54 #define TRSLEEP 
55 #define TRQMAX 
56 #define NIL 0377 
57 #define TRPRI (PZERO + 3) 
58 
59 extern int tr_cnti 
60 extern struct trace tr_data[ )i 
61 
62 tropen (dev) 
63 { 
64 int chani 
65 register struct trace *tr_Pi 
66 
67 
68 
69 

chan~inor(dev)i 

if (chan >= tr_cnt) 
u.u_error = ENXIOi 

Driver Software Development 

04 
1024 

(continued on next page) 

7-71 



Driver Programming Examples 

Figure 7-2: Intel386 Trace Driver Program Example - Program Code (continued) 

7-72 

return; 

tr-p = &tr_data[chan); 
if (tr-p->tr_state&OPEN) 

u.u_error = EACCES; 
return; 

tr_p->tr_chno = NIL; 
tr-p->tr_state 1= OPEN; 

trioctl(dev, crnd, arg, mode) 
( 

trclose (dev) 
( 

register struct trace *tr-p; 
int chan; 

chan=minor(dev); 
tr-p = &tr_data[chan); 
switch (crnd) { 
case TRACRCO: 

tr_p->tr_chbits 1= (Ol«(int)arg); 
return; 

case TRAGETC: 
arg = tr-p->tr_chbits; 
return; 

case TRASETC: 
tr_p->tr_chbits 1= arg; 
return; 

case TRACLRC: 
tr-p->tr_chbits &= -(short)arg; 
return; 

default: 
u.u_error = EINVAL; 
return; 

register struct trace *tr-p; 
int chan; 

chan=minor(dev); 
tr-p = &tr_data[chan); 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-2: Intel386 Trace Driver Program Example - Program Code (continued) 

114 
115 
116 
117 
118 
119 
120 
121 
122 trread(dev) 
123 { 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 

. 143 
144 
145 
146 
147 
148 
149 

tr-p->tr_chbits D 0; 
tr-p->tr_ct .. 0; 
tr-p->tr_chno .. 0; 
tr-p->tr_rcnt - 0; 
while (getc(&tr-p->tr_outq»=O); 
tr-p->tr_state .. 0; 

register struct trace *tr-p; 
int chan; 

chan-minor(dev); 
tr-p .. &tr_data[chan); 
splS (); 
tr-p->tr_state I- TRSLEEP; 
while (tr-p->tr_rcnt == 0) 

sleep«caddr_t)&tr-p->tr_rcnt, TRPRI); 
splO (); 
while (u.u_count && tr-p->tr_rcnt) { 

if (tr-p->tr_chno == NIL) { 
tr-p->tr_chno .. getc(&tr-p->tr_outq); 
tr-p->tr_ct = getc(&tr-p->tr_outq); 

return; 
passc(tr-p->tr_chno); 
passc(tr-p->tr_ct); 
while (tr-p->tr_ct--) 

passc(getc(&tr_p->tr_outq)); 
tr-p->tr_chno = NIL; 
tr-p->tr_rcnt--; 

150 trsave(dev, chno, buf, ct) 
151 int dev, chno, ct; 
152 char *buf; 
153 
154 
155 
156 
157 

register struct trace *tr-p; 
register int n; 
register char *cpt; 

Driver Software Development 

(continued on next page) 

7-73 



Driver Programming Examples 

Figure 7-2: Intel386 Trace Driver Program Example - Program Code (continued) 

7-74 

158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

if (dev >= tr_cnt) 
return; 

tr-p = &tr_data[dev); 
ct &= 0377; 
if ((tr-p->tr_chbits&(l«chno)) == 0) 

return; 
if ((tr-p->tr_outq.c_cc + ct + 2 + sizeof(lbolt)) >TRQMAX) 

return; 
putc(chno, &tr_p->tr_outq); 
putc(ct + sizeof(lbolt), &tr-p->tr_outq); 
cpt = (char *)&lbolt; 
for (n = 0; n < sizeof(lbolt); ++n) 

putc(*cpt++, &tr-p->tr_outq); 
for (n=O;n<ct;n++) 

putc(buf[n), &tr-p->tr_outq); 
tr-p->tr_rcnt++; 
if (tr-p->tr_state&TRSLEEP) { 

tr-p->tr_state &= -TRSLEEP; 
wakeup((caddr_t)&tr-p->tr_rcnt); 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7·3: Intel386 Trace Driver Program Example - trsav Command 

180 /* Copyright (c) 1985 AT&T 
181 /* Copyright (c) 1991 UNIX System Laboratories, Inc. 
182 /* All Rights Reserved 
184 /* 

trsav - save 386unix event traces 

*/ 

*/ 
*/ 

*/ 
*/ 

*/ 
185 /* 
185 /* 
186 /* 
187 /* 
188 /* 
189 /* 
190 /* 
191 /* 

usage: trsav mask device */ 
*/ 

Invoking trsav opens the minor device of the trace driver specified */ 
by "device," enables the channels specified by "mask" (octal), and */ 
then reads event records and writes them to its standard output */ 
(unformatted) until killed. Bit 0 of mask enables channel zero, */ 

192 /* bit 1 channel one, and so forth 
193 /* 
194 /* 
195 /* 
196 /* 
197 /* 

For example, to enable saving of trace channel 0 from minor 
device 0 of the trace driver and save the output in a file in 
use the following command: trsav 1 /dev/traceO > /tmp/temp.file 

199 #include <stdio.h> 
200 Hnclude "sys/types.h" 
201 Hnclude "sys/tty.h" 
202 Hnclude "sys/trace.h" 
203 
204 char ev[512]; 
205 main(argc, argv) 
206 char *argv[ ]; 
207 
208 
209 
210 
211 
212 
213 

214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 

int fd, n, k, seqno, chbits: 
if (argc != 3) { 

fprintf (stderr, "Incorrect mrrnber of argumentsO); 
fprintf (stderr, "Usage: trsav mask deviceO); 
exit(l): 

if ((fd = open (argv[2], 2» < 0) 
perror("trsavopen:"); 
exit(2): 

setbuf(stdout, NULL); 
sscanf(argv[l], "%60", &chbits): 
if ((k = ioctl(fd, TRASETC, chbits» < 0) { 

perror ("trsav ioctl: "); 
exit (3); 

seqno = 1; 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

(continued on next page) 

Driver Software Development 7·75 



Driver Programming Examples 

Intel386 Trace Driver Program Example - traav Command (continued) 

for (;;) 

7-76 

if «n = read(fd, ev, 512)) < 0) 
perror("trsav read:"); 
exit (4); 

if (write (1, ev, n) < 0) { 
perror ("trsav write:"); 
exit (5); 

Integrated Software Development Guide 



Driver Programming Examples 

Driver Software Development 7-77 



Driver Programming Examples 

Figure 7-5: Intel386 Trace Driver Program Example - trfmt Command 

7-78 

/* Copyright (c) 1987 AT&T 
/* Copyright (c) 1991 UNIX System Laboratories, Inc. 
/* All Rights Reserved 
/* 
/* 
/* 

trfmt - print 386unix event traces 

/* Trfmt reads its standard input, which it assumes was 
/* generated by trsav, and prints it (formatted) to 
/* standard output until killed. Trfmt can read a file 
/* written by trsav or except pipe output as follows: 
/* 

/* 
/* 
/* 
/* 

trfmt < /tmp/temp.file 
or 

trsav mask device I trfmt 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

/* This version will format and print predefined lines of text */ 
/* for only a few types of typical driver traces: 0 is "open," */ 
/* C is "close," etc. If you wish to use other trace points in */ 
/* your driver, define your own trace identifiers and add them */ 
/* to the case statement below. */ 
/* 
/* 

#include <stdio.h> 

#define 
#define 

struct event 

lev; 

MASK16 
SSTOL(x, y) 

unsigned short 
unsigned short 
unsigned short 
unsigned char 
unsigned char 
unsigned short 
unsigned short 

main (argc, argv) 
char *argv[ ); 

extern int optind; 

0177777 

*/ 
*/ 

((((long)x)«16) I (((long)y)&MASK16)) 

lbolt1; 
lbolt2; 
seq; 
typ; 
dev; 
wd1; 
wd2; 

int x, fd, k, n, seqno, con; 
char *type; 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-5: Intel386 Trace Driver Program Example - trfmt Command (continued) 

long timel; 
char XXX; 

setbuf(stdout,NULL); 
seqno - 1; 
for (ii) 

Driver Software Development 

X a get char 0 ; 
n = get char 0 ; 
if «k=fread«char *)&ev, sizeof(xxx), n, stdin))< 0) { 

perrorO; 
exit (3); 

I 
if (k a_ 0) { 

clearerr(stdin); 
sleep(l); 
continue; 

if (ev.seq != seqno) 
printf("**\d event records lost**O, 

ev.seq - seqno); 
seqno = ev.seq + 1; 
if (k == 12) { 

timel = SSTOL(ev.lbolt2, ev.lboltl); 
printf(" %10lu\6d", timel, ev.seq); 
switch«int)ev.typ) { 
case 'W': 

type = "write"; 
printf(" \-8s \20\60\60", type, ev.dev, 
ev.wdl, ev.wd2); 

case'R': 

case '0': 

case 'e': 

break; 

type = "read"; 
printf(" \-8s \20\60\60", type, ev.dev, 
ev.wdl, ev.wd2); 
break; 

type = "open"; 
printf(" \-8s \20\60\60", type, ev.dev, 
ev.wdl, ev.wd2); 
break; 

type = "close"; 
printf(" \-85 \20\60\60", type, ev.dev, 
ev.wdl, ev.wd2); 

// 
(continued on next page) 

7-79 



Driver Programming Examples 

Figure 7-5: Intel386 Trace Driver Program Example - trfmt Command (continued) 

7-80 

case 'I': 

/* 
case'?' : 

break; 

type = "ioctl"; 
printf(" %-8s %2o%7o%7o",type,ev.dev, 
ev.wdl, ev.wd2); 
break; 

* Place custom driver reports here. 
* Drivers or Kernel functions which call 
* trsave() can use any type definitions 
* and/or print formats deemed appropriate. 
*/ 

default: 
printf (" %-lOc%2o%7o%6o", ev. typ, 
ev.dev, ev.wdl, ev.wd2); 

printf ("\n") ; 

Integrated Software Development Guide 



Driver Programming Examples 

A Prototype Floppy Disk Driver 

The attached source code presents some selected portions of a prototype PC 
floppy disk device driver. This is not the entire source file, and some aspects of 
this driver are not representative of more general drivers. For example, since 
the floppy driver contains many data structures that are similar or identical to a 
companion hard disk driver, some common data structures are shared by the 
two device drivers, and the block major device number is used to access the 
floppy and hard disk portions of those data structures. Additionally, some of 
the function calls made inside the floppy driver are to functions that have been 
deleted for brevity or are functions defined in other source files. Despite these 
restrictions, the floppy device driver is a good example of a rather complex 
driver. 

This driver also shows how a driver can implement both block and character 
(raw) device I/O. As a block device driver, the UNIX File System accesses the 
device through the driver strategy routine (see pef_strategy on line 211). 
Since the floppy driver also acts as a character device, the IIraw" I/O driver 
entry points (pef_read on line 369 and pef_write on line 390) are also pro­
vided. You can see that the pef read and pef write routines make use of - -
physio, which, in tum, calls the floppy strategy routine. 

Driver Software Development 7-81 



Driver Programming Examples 

Figure 7·6: Floppy Disk Driver Program Example 

7·82 

/* Copyright (c) 1987 AT&T 
Copyright (c) 1991 UNIX System Laboratories, Inc. 

* All Rights Reserved 

These procedures define portions of a Prototype PC floppy disk driver: 

NOTE: THIS IS NOT THE COMPLETE DRIVER SOURCE CODE; ONLY REPRESENTATIVE 
SECTIONS ARE INCLUDED AS EXAMPLES. 

PCf_open: Opens a unit by setting flags, initializing variables and structures 
PCf_close: Closes a unit by resetting flags or flushing buffers or queues 
PCf_strategy: Validates requests, queues it on device queue, tries to start I/O 
PCf_intr: Handles interrupts such as access completion, seek end, and others 
PCf_read: Performs raw read (uses physio routine) 
PCf_write: Performs raw write (uses physio routine) 

16 * PCf_ioetl: Special functions - format, etc. 
17 
18 Internal routines: 
19 

PCf_init: Internal routine to initialize device at boot time 

(Other internal routines have been deleted for brevity) 
*/ 

Hnclude <sys/signal.h> 
Hnclude <sys/types.h> 
Hnclude <sys/sysmacros.h> 
Hnclude <sys/param.h> 
Hnclude <sys/systm.h> 
Hnclude <sys/buf.h> 
Hnclude <sys/iobuf.h> 
#include <sys/conf.h> 
Hnclude <sys/dir.h> 
tinclude <sys/user.h> 
#include <sys/errno.h> 
Hnclude <sys/elog.h> 
#include <sys/open.h> 
Hnclude <sys/file.h> 
Hnclude Isys/PCf_disk.h" 

#define FMAJ 1 

char S5fraw-puf[512); 
long Fmt_sec; 

/* MAJOR DEVICE-used in minor device macros */ 
/* Floppy assigned Block Major~1; needed since */ 
/* floppy and wini(hard disk) share data structures */ 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7·6: Floppy Disk Driver Program Example (continued) 

45 long physaddr(): 
46 extern struct PCd_dev PCf_dev(): /* device-data-structures */ 
47 extern struct iobuf PCf_tab(): /* buffer header */ 
48 extern struct PCd_dev *PCf_i_tab(): /* intr -> device mapping */ 
49 extern struct buf PCf_rbuf(): /* raw buffer header */ 
50 extern struct PCd_cdrt PCdf[F_NDRTAB1: /* drtabs */ 
51 extern struct fparm_tab ibmf512[1: /* floppy disk parameter table */ 
52 extern struct PCd_minor PCd_major() (F_MAXMINOR1: /* major/minor number bit map */ 
53 extern int fcntr_state: /* current state of controller*/ 
54 extern int activefloppy: /* active floppy I/O */ 
55 extern long ftransvector: /* base address of memory transfer area */ 
56 extern int ftrans_cnt: /* f of sectors being transferred */ 
57 extern int fsec_cnt: /* total * sectors transferred so */ 

58 struct iotime 
59 extern char 
60 extern char 
61 

/* far for a buf structure */ 
PCfstat(F_NPER_CONTR): 
Flastdev(F_NPER_CONTR1: 
Ftryflop(F_NPER_CONTR1: 

62 PCf_tmout () 
63 { 
64 /* Stub for timeout routine */ 
65 
66 
67 /* 
68 * PCf_init 
69 Call at boot time to init device. 
70 This routine sets up the rnrnu and intr tables for the ROM based 
71 disk routines. Recalibration will be done by boot strap loader. 
72 */ 
73 PCf_init () 
74 { 
75 int i: 
76 struct iobuf *iobuf: 
77 char arg: 
78 
79 
80 
81 
82 
83 
84 

/* Initialize data structure constants */ 
for(i=O: i < F~PER_CONTR: i++) { 
PCf_dev(i).d_state.s_bufh = &PCf_tab(i): 
PCf_dev[i).d_state.s_devcode = i: 
PCf_dev[i).d_state.s_Ievel = F_INTLVL: 
PCf_dev[i).d_state.s_active 10_IDLE: 

85 fcntr_state = 10_IDLE: 
86 iobuf = &PCf_tab[i): 
87 iobuf->b_forw = (struct buf *)iobuf: 

Driver Software Development 

/* buffer header */ 
/* device code */ 
/* local copy */ 
/*active flag */ 

/* initialize buffer */ 

(continued on next page) 

7-83 



Driver Programming Examples 

Figure 7-6: Floppy Disk Driver Program Example (continued) 

7-84 

88 
89 
90 
91 
92 
93 
94 

iobuf->b_back = (struct buf *)iobuf; 
iobuf->b_actf = (struct buf *)iobuf: 
iobuf->b_actl = (struct buf *)iobuf: 
Flastdev[i] - F96DEV:' 
Ftryflop[O] = 0: 
Ftryflop[1] = 0: 
I 

95 timeout (PCf_trnout,&arg,3*HZ): 
96 
97 
98 /* 
99 * PCf_open 
100 * Open a unit. 
101 * 
102 * Sets up given partition as open. 
103 */ 
104 PCf_open(dev, flag, otyp) 
105 dev_t dev: 
106 int flag: 
107 unsigned otyp; 
108 { 
109 register struct PCd_dev *dd; 
110 register struct iobuf*bufh; 
111 register struct buf *bp: 
112 register unsigned board; 
113 unsigned unit, x; 
114 static int firsttirne = 1; 
115 char *dp: 
116 int i, fret: 
117 
118 if (getrninor(dev) > F_MAXMINOR) { 
119 u.u_error = ENXIO: 
120 return; 
121 
122 /* 

/* headers as in 310 */ 

123 * if this is the first open ever then initialize 
124 */ 
125 if (firsttirne) { 
126 firsttirne--; 
127 PCf_init (): 

board = UNIT(FMAJ,dev): 
dd = &PCf_dev(board)i 
bufh = dd->d_state.s_bufh: 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-6: Floppy Disk Driver Program Example (continued) 

/* 

if ((dd->d_state.s_flags & SF_OPEN) -- 0) 
bp = &PCf_rbuf[UNIT(FMAJ,dev)]; 
x = spl5 (); 
while (bp->b_flags&B_BUSY) { 

bp->b_flags 1= B_WANl'EO; 
sleep ( (caddr _ t) bp, PRlBIO) ; 

bp->b_flags - B_BUSY 1 B_READ; 
splx(x); 
if ((dd->d_state.s_flags & SF_OPEN) == 0) { 

dd->d_state.s_flags = SF_OPEN 1 SF_READY RESETING; 
bufh->b_active = IO_BUSY; 
u.u_error = PCf_sweep(dd, dev, flag, bp); 
bp->b_flags &= -(B_BUSY 1 B_READ); 
if (bp->b_flags&B_WANl'EO) 

wakeup((caddr_t)bp); 
if (u.u_error == 0) 

dd->d_state.s_flags = SF_OPENISF_READY; 
else { 

dd->d_state.s_flags - 0; 
return; 

for ( i=O; i<OTYPCNT; i++ ) 
dd->d_state.s-popen[i] = 0; 

PCf_start (dd); 

dp = &dd->d_state.s-popen[O]; 
if ( otyp == OTYP_LYR ) 

++dp[OTYP_LYR] ; 
else if ( otyp < OTYPCNT ) 

dp[otyp] 1= (1 « PARTITION(FMAJ,dev)); 

* PCf_close 
* Close a unit. 

169 * 
170 * Called on last close of a partition; thus, "close" the partition. 
171 * If this was last partition, make the unit closed & not-ready. 
172 * In this case, next open will re-initialize. 
173 */ 
174 PCf_close(dev, flag, otyp) 
175 register dev_t dev; 

Driver Software Development 

(continued on next page) 

7-85 



Driver Programming Examples 

Figure 7-6: Floppy Disk Driver Program Example (continued) 

7-86 

int flag; 
unsigned otyp: 
{ 

register struct PCd_dev 
extern 
struct buf 
char *dp: 
int ii 

if (dev == rootdev) 

*dd: 
rootdev: 
*bufh: 

return; /* never close rootdev */ 

/* 

dd = ~PCf_dev[UNIT(FMAJ,dev)): 
/* 
* Close the partition. If last partition, close the unit. 
*/ 

dp = &dd->d_state.s-popen[O); 
if ( otyp == OTYP_LYR ) 

--dp [OTYP _ LYR) : 
else if ( otyp < OTYPCNT ) 

dp[otyp) &- -(1 « PARTITION(FMAJ,dev))i 
for ( i=O; i<OTYPCNT && dp[i)==O; i++ ); 
if ( i == OTYPCNT ) /* only close if closed for all types of open */ 

dd->d_state.s_flags = 0: 

* PCf_strategy 
* Queue an I/O Request, and start it if not busy already. 

204 * 
205 * Check legality, and adjust for partitions. 
206 * Reject request if unit is not-ready. 
207 * Note: The partition-check algorithm insists that requests must not cross 
208 a sector boundary. If partition size is not a multiple of BSIZE, 
209 * the last few sectors in the partition are not accessible. 

*/ 

PCf _strategy (bp) 
register struct buf *bp; 
{ 

register struct PCd_dev *dd: 
register struct PCd_drtab *dr: 
register struct PCd_cdrt *cdr: 
register struct PCd-part *p; 
struct iobuf *bufh; 
struct buf *ap: 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-6: Floppy Disk Driver Program Example (continued) 

daddr_t 
unsigned 
char drive; 

secno; 
x; 

drive = UNIT(FMAJ,bp->b_dev); 
dd = &PCf_dev[drive); 
dr ~ &dd->d_drtab; 
p = &dr->dr~art[PARTITION(FMAJ,bp->b_dev)); 
PCfstat[drivej .io-pcnt += btoc(bp->b_bcount); 
bp->b_start - lbolt; 
/* 

* Figure "secno" from b_blkno. Check if ready, 
and see if fits in partition. 

* Adjust sector # for partition. 

* Note: if format, b_blkno is already the correct sector number. 
*/ 

secno = bp->b_blkno; 
if ( Ftryflop[drivej ) { 

if ( secno >= p->p_nsec I I 
(secno+(bp->b_bcount+dr->dr_secsiz-l)/dr->dr_secsiz) > p->p_nsec) { 

if ( Flastdev[drivej == F96DEV) { 
cdr = &PCdf[F4BDEVj; 
Flastdev[drivej = F4BDEV; 

else ( 
cdr = &PCdf[F96DEVj; 

Flastdev[drive) = F96DEV; 

dr->dr_ncyl = cdr->cdr_ncyl; 
dr->dr_nhead = cdr->cdr_nhead; 
dr->dr_nsec = cdr->cdr_nsec; 
dr->dr_spc = dr->dr_nhead * dr->dr_nsec; 
dr->dr_secsiz = cdr->cdr_secsiz; 
dr->dr~art = cdr->cdr~rt; 
p = &dr->dr_part[PARTITION(FMAJ,bp->b_dev)); 

if {«dd->d state.s_flags & SF_READY) 0) 
1 1 (seeno > p->p _ nsee)) { 

/* not ready or off end */ 

bp->b_flags 1= B_ERROR; 
bp->b_error = ENXIO; /* bad block */ 

(continued on next page) 

Driver Software Development 7-87 



Driver Programming Examples 

Figure 7·6: Floppy Disk Driver Program Example (continued) 

7·88 

263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 

301 
302 

x = sp15 (); 
biodone(bp); 
splx(x); 
return; 

/* return buffer */ 

if (secno == p->p_nsec) 
if (bp->b_flags & B_READ) 

bp->b_resid = bp->b_bcount; 
else { 

bp->b_error - ENXIO; 
bp->b_flags 1= B_ERROR; 

x = splS (); 
biodone (bp); 
splx(x); 
return; 

if ((secno+(bp->b_bcount+dr->dr_secsiz-1)/dr->dr_secsiz) > p->p_nsec) 
/* just asked to read last one. Send EOF */ 
bp->b_resid = bp->b_bcount; 
x = splS 0; 
biodone (bp); 
splx(x); 
return; 

secno += p->p_fsec; 
bp->b_resid = p->p_fsec/dr->dr_spc;/* starting cylinder of slice */ 
/* 
* Add request to queue, & (maybe) start it •. 
*/ 

x = sp15 (); 
bufh = dd->d_state.s bufh; 
ap = bufh->b_forw; 
/* 
* find right place to put this buffer in the list by cylinder number 
*/ 

while (ap != bufh->b_back) { 
if( 

< 

break; 
else 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-6: Floppy Disk Driver Program Example (continued) 

ap - ap->av_forw; 
} 

if ap -- (struct buf *)bufh ) 
/* no list currently exists - start one */ 
bufh->b_actf = bpi 
bufh->b_forw - bpi 
bufh->b_back - bpi 
bp->av_forw D bPi 
bp->av_back - bPi 

else if ( ap == bufh->b_back ) { 
if( 

< 
(ap->b_blkno+(ap->b_resid*dr->dr_spc)) 
{ 

else 

else { 

bp->av_back = ap->av_back; 
ap->av_back->av_forw = bpi 
bp->av_forw = ap; 
ap->av_back = bpi 
if ( bufh->b_forw == ap ) 

bufh->b_forw - bPi 

ap->av_forw->av_back - bPi 
bp->av_forw = ap->av_forw; 
ap->av_forw = bPi 
bp->av_back = api 
bufh->b_back = bPi 

bp->av_back = ap->av_backi 
ap->av_back->av_forw = bPi 
bp->av_forw = ap; 
ap->av_back = bPi 
if ( bufh->b_forw == ap ) 
bufh->b_forw = bPi 

if (fcntr_state =- IO_IDLE) 
pef_start (dd,x); 

splx(x); 

Driver Software Development 

(continued on next page) 

7·89 



Driver Programm Ing Examples 

Figure 7-6: Floppy Disk Driver Program Example (continued) 

7-90 

343 PCf_intr(dev) 
344 int dev; 
345 { 
346 extern char seek_status; 
347 register struct PCd_dev *dd; 
348 st~uct iobuf *bufh; 
349 unsigned int x; 
350 static int save_state=O; 
351 
352 seek_status 1= Ox80; 
353 dd = &PCf_dev[activefloppy]; 
354 bufh = dd->d_state.s_bufh;/* get buf-header, too */ 
355 if(dd->d_state.s_active == IO_BUSY) 
356 /* call SIOS Hardware Interrupt service routine */ 
357 flpy_hwintr(): 
358 else 
359 save_state=dd->d_state.s active; 
360 
361 
362 /* 
363 * PCf_read 
364 * "Raw" read. Use physio () • 
365 
366 * Calls: 
367 * pef_strategy (indirectly, thru physio) 
368 */ 
369 PCf~ead(dev) 
370 dev_t dev; 
371 { 
372 register struct PCd_dev *dd: 
373 register struct PCd_drtab *dr; 
374 register struct PCd-part *p; 
375 
376 dd = &PCf_dev[UNIT(FMAJ,dev)]; 
377 dr = &dd->d_drtab; 
378 p = &dr->dr-part[PARTITION(FMAJ,dev)]; 
379 if ( physck (p->p_nsec,B_READ) ) 
380 physio(PCf_strategy, &PCf_rbuf[UNIT(FMAJ,dev)], dev, B_READ); 
381 
382 
383 /* 
384 * PCf write 
385 * "Raw" write. Use physio 0 . 
386 * 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7·6: Floppy Disk Driver Program Example (continued) 

387 * Calls: 
388 * PCf_strategy (indirectly, thru physie) 
389 */ 
390 PCf_write(dev) 
391 dev_t dey; 
392 
393 register struct PCd_dev *dd; 
394 register struct PCd_drtab *dr; 
395 register struct PCd-part *p; 
396 
397 dd = &PCf_dev[UNIT(FMAJ,dev)]; 
398 dr = &dd->d_drtab; 
399 p = &dr->dr-part[PARTITION(FMAJ,dev)]; 
400 if ( physck(p->p_nsec,B_WRITE) ) 
401 physie(PCf_strategy, &PCf_rbuf[UNIT(FMAJ,dev)], dey, B_WRITE); 
402 
403 
404 /* 
405 * PCt_iectl 
406 */ 
407 PCf_iectl(dev, cmd, cmdarg, flag) 
408 dev_t dey; 
409 int cmd; 
410 char *cmdarg; 
411 int flag; 

{ 

register struct buf *bp; 
register struct PCd_dev *dd; 
register struct PCd_drtab *dr; 
register struct PCd-part *p; 
unsigned X; 
char j, k, *tblptr; 
int *cmdint; 

dd = &PCf_dev [UNIT (FMAJ,dev) ]; 
dr = &dd->d_drtab; 
bp = &PCf_rbut[UNIT(FMAJ,dev)]; 
p = &dr->dr-part[PARTITION(FMAJ,dev)]; 

switch (cmd) { 
case FMTFLPY: 

/* 
Specific iectl cede deleted 

(continued on next page) 

Driver Software Development 7·91 



Driver Programming Examples 

Figure 7-6: Floppy' Disk Driver Program Example (continued) 

case •••• 

default: 

7-92 

break; 

• ••• Specific ioctl code deleted 

break;*/ 

u.u_error = ENXIO; 
return; 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example 

443 
444 /* 
445 /* 
446 /* 
447 
448 
449 /* 
450 
451 /* 

copyright (c) 1984 AT&T 
Copyright (c) 1991 UNIX System Laboratories, Inc. 

All Rights Reserved 

@ (iI) 1.3.1.6*/ 

452 * disk.h 
453 */ 
454 Hnclude "sys/open.h" 
455 
456 /**********************************************/ 

457 /******** MCS ADDED FOR VTOC STUFF*******/ 
458 ildefine MAXBAD99 
459 ildefine UNIXOS99/* system indicator for UNIX partition */ 
460 ildefineALTMGK10x55 
461 ildefine ALTMGK20xAA 
462 
463 /*** DEFINES TO SUPPORT THE VARIABLE SIZE OF ALTERNATE TRACKS ***/ 

*/ 
*/ 
*/ 

464 ildefine MAXUPT040 64 /* Max' of bad tracks for disks of 40 MB or less */ 
465 #define MAXOVER40 99 /* Max' of bad tracks for disks greater than 40 MB */ 
466 ildefine NSEClNA40 85000 /* Number of sectors in a 40 MB disk */ 
467 /* 83385 sectors for a 40MB with 981 cyl & 5 heads */ 
468 /* 83640 sectors for a 40MB with 820 cyl & 6 heads */ 
469 /** FLAGS FOR PCw_io ROUTINES ***************/ 
470 
471 'define B_FMTBAD 
472 ildefine B_FMTTRK 
473 ildefine B_RECOVR 
474 #define B_FMTMSK 
475 

020000 
030000 
060000 
070000 

/* must NOT overlap see buf.h! */ 
/* must NOT overlap see buf.h! */ 
/* as above - used for recovery'io */ 
/* mask for above */ 

476 /*** DEFINES FOR CASE STATEMENTS IN IOCTL ROUTINES ************/ 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 

ildefine RDDPARM 
ildefine" FMTBAD 
'define FMTVERIFY 
ildefine FMTFLPY 
ildefine RDPARTBL 
#define WRPARTBL 
'define WRALTBL 
#define WRBOOT 
ildefine DOFMT 

Driver Software Development 

0 
1 
2 
3 
4 
5 
6 
7 
8 

(continued on next page) 

7-93 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example (continued) 

7-94 

487 .define DOVRFY 
488 'define W_RECOVER 
489 'define RDALTBL 
490 'define FMTEND 
491 

9 

10 
11 
-1 

492 1*** DEFINES FOR WINI VTOC *********************1 
493 
494 
495 
496 
497 
498 
499 
500 

'define VSANITY OxAA55 
'define VVERSION 1 
'define WSECSIZ 512 
'define SEC_TRK 17 
'define VNOWRITE 0 
'define VNORM 1 

1**********************************************1 501 
502 
503 
504 
505 

'define FDUALDEV 2 1* drtab of either 96 or 48tpi 
#define F48DEV 4 1* drtab for 48tpl, 9 secltrk 
IIdefine F96DEV 3 1* drtab for 96tpi, 15 secltrk 

506 'define F_NDRTAB 5 
507 'define F_NPART 2 

floppy 
*1 

*1 

508 'define F NPER CONTR 2 1* number of drivers per controller *1 
509 'define F_MAXMINOR F_NDRTAB*F_NPART*F_NPER_CONTR 
510 1* maximum minor • for fioppy driver *1 
511 'define W_NDRTAB 1 
512 'define W~PART 5 
513 'define W_NPER_CONTR 2 1* number of drivers per controller *1 
514 'define W_MAXMINOR F_MAXMINOR 1* maximum minor. for wini driver *1 
515 1* assumes more or equal floppy devs.*1 
516 'define FBADSPEED Ox0200 1* wrong floppy speed error return *1 
517 'define FCMDERROR Ox0100 1* wrong floppy type error return *1 
518 'define FWRPROT Ox0300 1* write protect floppy error return *1 
519 'define WBADTRK OxOBOO 1* Wini bad track *1 
520 'define WUNERR Ox1000 1* Wini unrecoverable error *1 
521 'define WADRMRK 
522 IIdefine WECCERR 
523 'define WSEEKERR 
524 'defirie DOS SLICE 
525 'define S5WRETRY 
526 'define S5FRETRY 
527 'define F_INTLVL 
528 'define W_INTLVL 
529 
530 structPCd_minor 

Ox0200 
Ox1100 
Ox4000 

4 

25 
6 
5 

1* Wini address mark not found *1 
1* corrected ecc error *1 
1* seek error *1 
1* Major Minor of E drive *1 
1* wini retry count *1 
1* floppy retry count *1 
1* floppy interrupt level *1 
1* wini interrupt level *1 

*1 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example (continued) 

} ; 

unsigned partition: 4; 
unsigned drtab:4; 
unsigned unit: 4; 

/* partition number */ 

/* alternate drtab's *1 
/* unit number */ 

'define 
/* 

'define 
1* 

.define 

UNIT (maj,dev) (PCd_major[maj) [getminor(dev»).unit) 
dev -> unitt map 1003 *1 

DRTAB(maj,dev) (PCd_major[maj] [getminor(dev)].drtab) 
dev -> drtab-index map 1003 */ 

PARTITION (maj,dev) (PCd_major[maj) [getminor(dev»).partition) 
1* dev -> partition-index map 1003 *1 

'define SSD_MINOR (unum, drnum,panum) ((unum«B) I (drnum«4) Ipanum) 
1* 1003 used in c21S.c *1 

'define LHWORD(secnum) (LOW(secnum),HIGH(secnum» 
/* 1004 c order problem fix for user ease in c21S.c *1 

'define LCM (x) ( (x) &OxFF) 1* "low" byte *1 
'define HIGH (x) (( (x) »8) &OxFF) /* "high" byte * / 

1* Gives offset and selector for a pointer dab *1 
'define SELECTOR (x) ((unsigned int) (( (long) (x»» 16) ) 
'define OFFSET (x) ((unsigned int) ( ( (long) (x» &Oxffff) ) 

1* Whole disk partition table */ 
struct PCpart { 

} ; 

/* 

unsigned char bootind; 
unsigned char bhead; 
unsigned char b-psec; 
unsigned char b-pcyl; 
unsigned char sysind; 
unsigned char ehead; 
unsigned char e-psec; 
unsigned char e-pcyl; 
long relsec; 
long numsec; 

* Winchester Drive Parameter Table 
*1 

struct wparm_tab 
unsigned char cyls1; 

Driver Software Development 

/* number of cylinders *1 

(continued on next page) 

7-95 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example (continued) 

7-96 

575 unsigned char cyls2; 
576 
577 

char heads; 
char write2_cur; 

578 char write1_cur; 
579 char precomp1; 
580 char precomp2; 
581 
582 
583 
584 
585 

char ecc_len; 
char control_byte; 
char timeout; 
char fmt_timeout; 
char drvdiag_timeout; 

586 long zzj; 
587 I; 
588 
589 /* 

/* number of heads */ 

/* reduced write current */ 

/* write precompensation */ 

/* max. ecc burst length */ 

/* enable retry, enable ecc, 70 usec steps */ 

/* standard timeout */ 

/* timeout for format drive */ 
/* timeout for test drive ready */ 

590 * Floppy Drive Parameter Table 
591 */ 
592 
593 struct fparm_tab 
594 char spec1; /* first spec byte */ 

595 char spec2; /* second spec byte * / 

596 char optim; /* wait after opn til motor off */ 

597 char bps; /* bytes per sector */ 

598 char gap; /* gap length * / 

599 char dtl; /* DTL */ 

600 char gapformat; /* gap length for format */ 

601 char fillbyte; /* fill byte for format */ 

602 char hdsettle; /* head settle time */ 

603 char motorstime; /* motor start time */ 

604 I; 
605 
606 /* 
607 * Floppy Drive Parameter Table 
608 */ 

609 
610 /* 
611 * Partition structure. One per floppy drtab[) entry. 
612 */ 
613 
614 struct 
615 ushort 
616 daddr t 
617 daddr t 
618 I; 

PCdyart 
p_flag; 
p_fsec; 
p_nsec; 

/* permission flag */ 

/* first sector */ 

/* number sectors */ 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7·7: Floppy Disk Driver Program Example (continued) 

643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 

~ 

1* 
* VTOC structure for hard disk - one per wini drtab[) entry. 
*1 

struct PCd_vtoc I 
ushort v_sanity; 
ushort v_version; 
char v_volume[8); 
ushort v_sectorsz; 
ushort v_nparts; 
unsigned long v_reserved[lO); 
struct PCd...,.Part pw[W_NPART); 

} ; 
1* 

* Per-board configuration. 
*1 

1* 
* Per-board driver "dynamic" data. 
*1 

struct 
char 

char 
char 
char 

PCd_state I 
s_active; 

s_state; 
s_level; 
s_flags; 

char s-POpen(OTYPCNT]; 
char s_init; 
char s_devcode; 
struct iobuf *s_bufh;-
unsigned s_hcyli 

) ; 

1* 
* State Flags. 
*1 

#define SF OPEN OxOl 
#define SF READY Ox02 
#define RESETING Ox04 
#define STATUSCK Ox08 
#define INDIRECT OxlO 

1* magic to verify vtoc *1 
1* layout version *1 
1* volume name *1 
1* sector size *1 
1* number of partitions per volume *1 
1* free space *1 
1* wini partitions *1 

1* the state of the controller *1 
1* - IDLE or BUSY *1 
1* what just finished (for interrupt) *1 
1* what interrupt level (for PCd_io) *1 
1* flags per spindle; see below *1 
1* bit[i] ==> partition[i] open *1 
1* status from init operation *1 
1* device-code *1 
1* -> buffer header *1 
1* hold cylinder # during restore */ 

1* unit is open *1 
1* unit is ready; reset by media-change 
1* unit is resettir.g *1 
1* checking status of disk operation *1 
1* indirect disk operation (data copied 

*1 

*1 

~ 
(continued on next page) 

Driver Software Development 7·97 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example (continued) 

/* to/from low memory) */ 

/* 
* Macros to make things easier to read/code/maintain/etc ••• 
*/ 

#defineIO_OP(bp) ((bp->b_flags&B_READ) ? DSK_READ : 
((bp->b_flags&B_FORMAT) ? DSK_FORMAT DSK_WRITE» 

/* ALTERNATE TRACKING TABLE * / 
struct alt_tbl { /* needs to be defined */ 

ushort a_numbad; /* 
ushort a_fstalt; /* 
ushort a_lstalt; /* 
ushort a_maxbad; /* 
struct alt { 

ushort a_btrk; 
ushort a_gtrk; 

a_alt[MAXBADJ; 
} ; 

number of bad tracks 
first track of alternate area 
last track of alternate area 
total number of allowable bad tracks 

/* packed bad track 
/* packed good track 

struct PCd_drtab { 

I; 

unsigned dr_ncyl; 
char dr_nhead; 

/* cylinders */ 
/* heads */ 

char dr_nsec; /* sectors per track */ 
struct alt tbl *dr_altptr; /* alternate track table pointer */ 

/* if floppy, O==FM, l==MFM */ 
unsigned dr_spc; /* actual sectors/cylinder */ 
unsigned dr_spb; /* sectors/block */ 
unsigned dr_secsiz; /* sector-size (bytes) */ 
struct PCd_part * dr_part; /* partition table pointer */ 

struct PCd cdrt { 

unsigned cdr_ncyl; /* cylinders */ 
char cdr_nhead; /* heads */ 
char cdr_nsec; /* sectors per track */ 
unsigned cdr_secsiz; /* sector-size */ 
struct PCd~rt *cdr_part; /* partition table pointer */ 

I; 

/* 

* Device-Data. One per board (declared in driver) • 

*/ 
*/ 

*/ 
*/ 

*/ 

*/ 

(continued on next page) 

7-98 Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example (continued) 

705 *1 
706 
707 struct 
70B 
709 
710 }; 
711 
712 1* 

struct 
struct 

PCd_dev { 
PCd_state 
PCd_drtab 

d_state; 
d_drtab; 

713 * Values of buffer-header b_active, used for mutual-exclusion of 
714 * opens and other 10 requests. 
715 *1 
716 
717 #define 
71B 4fdefine 
719 IIdefine 
720 4fdefine 
721 
722 1* 

IO_OPEN_WAIT 
IO_BUSY 

o 
1 

2 

3 

1* idle -- anything goes 
1* open waiting *1 
1* something going on *1 
1* waiting for the device 

723 * Values of PCd_state.s_devcode, internal driver state. 
724 *1 
725 IIdefine FLPY 
726 4fdefine WIN I 
727 
728 1* 

OxOO 
OxOO 

1* BIOS floppy disk selector *1 
1* BIOS winchester selector *1 

729 * Floppy FM/MFM codes for drtab[*J.nalt. 
730 *1 
731 

4fdefine 
IIdefine 

IIdefine 

FLPY_FM 
FLPY_MFM 

FDESCR 

732 
733 
734 
735 
736 
737 
738 
739 
740 

IIdefine WDESCR 

IIdefine NWCONFIG 

1* 

0 

1 

8 

9 

32 

1* FM -- single density *1 
1* MFM -- double density *1 

1* Floppy workspace descriptor *1 
1* Wini workspace descriptor *1 

1* number of Wini parameter tables *1 

*1 

*1 

741 ******************************************************************************* 
742 * Parameters common to Fdisk.c and Format.c in regard to the whole disk 
743 * partition table 
744 ******************************************************************************** 
745 *1 
746 
747 4fdefine PARENT 1* Number of entries within the partition table *1 
748 1* maximum four entries on whole disk *1 

(continued on next page) 

Driver Software Development 7-99 



Driver Programming Examples 

Figure 7-7: Floppy Disk Driver Program Example (continued) 

7-100 

754 #define EMPTY 
755 'define MIN_USIZ 
756 'define MAXDOS 
757 

1* UNIX + DOS (merged) partition *1 
1* DOS only partition */ 
/* DOS only partition (16-bit FAT) *1 
1* DOS-DATA partition *1 
1* Current partition is active *1 
1* (only 1 per drive is allowed) *1 

100 1* No partition (partition slot unoccupied) *1 
19 /* Min size (cylinders) for UNIX partition */ 

65535L /* Max size (sectors) for a DOS partition */ 

758 /*******************************************************************************/ 

Integrated Software Development Guide 



Driver Programming Examples 

Multithreading Hard Disk Drivers 

Introduction 

This section describes how the AT hard disk driver was multithreaded for UNIX 
System V Release 4 Multi-Processor for Intel Processors. It contains 
multiprocessor-specific information on how the AT driver splits the handling of 
I/O requests. 

As part of the UNIX operating system kernel, the hard disk driver splits the 
handling of I/O requests. The multithreaded hard disk driver must allow some 
processors to queue disk requests while the other processors are busy process­
ing requests at the front of the queue. To this end, three locks have been imple­
mented to multithread the AT hard disk driver. These are the hardware lock, 
the queue lock, and the active lock, which are described in this chapter, ''Mul­
tithreading Hard Disk Drivers." 

Like the rest of this manual, it is assumed that the reader has user-level experi­
ence with the UNIX system, some general knowledge of UNIX system concepts, 
and the ability to write sophisticated C language programs. 

Handling 1/0 Requests 

The AT hard disk driver splits the handling of I/O requests into two parts: 
queuing a request, and processing the request on the front of the queue. A mul­
tithreaded hard disk driver allows some processors to queue disk requests while 
others are busy processing requests on the front of the queue. This minimizes 
the amount of processor time wasted waiting for ownership of the hard disk 
controller. 

With only one hard disk controller it is not possible for more than one processor 
to perform physical I/O transfers at the same time. Commands to the disk con­
troller consist of sequences of I/O reads and writes (inb and Qutb instruc­
tions) that the multithreaded driver serializes to ensure controller integrity. The 
multithreaded driver uses a single lock to protect the controller. This controller 
lock serializes programming the controller and maintains the data structures 
associated with the controller. 

Because each request queue requires one lock, one processor can queue a 
request while another deals with the controller, although two processors can not 
queue requests on the same queue at exactly the same time. Queuing requests 
insures that no processor waits for the queue lock for a long time. 

Driver Software Development 7-101 



Driver Programming Examples 

Multithreading the Hard Disk Driver 

Each AT driver supports one controller and two drives, with one lock proving 
sufficient for all the hardware. Because each drive owns its own queue, each 
drive can own its own lock. However, this method does not prove optimal for 
the driver mechanism. The driver maintains many other data structures parallel 
with the request queue, some of which are not drive-specific. 

There is a high degree of recursion within the driver. The hdstrategy routine 
is an entry point from the kernel for block device transfers. It is also called 
indirectly from the hdread, hdwrite, hdopen, and hdioctl routines. The 
hdstrategy routine calls _hdstrategy, which takes an extra argument indi­
cating whether or not it should perform locking. Calls from within the driver 
were changed to call _hdstrategy, with the new argument indicating that it 
should not perform locking. 

The first step is to find all the places that touch the hardware disk controller 
directly using inbs and outbs. Although ownership of the hardware lock is 
necessary during these sections, it is not necessarily sufficient. Sequences of 
controller commands must be serialized, as well as consistent. 

The scope of the lock was expanded bottom-up to cover all the code that 
assumed consistency in the uniprocessor driver. For example, acquiring the lock 
just before calling ATout (which calls inb directly) is certainly possible, but it 
is not early enough to ensure consistency within the driver. hdintr reads the 
controller status using ATstatus and then decides what action is necessary. 
Eventually, it may call ATout, but doing so is not correct unless the state of the 
controller is what hdintr expects it to be-hence hdintr must hold the 
hardware lock for the duration. 

Most of the driver must execute while holding the hardware lock, simply to 
ensure consistency. It is possible to minimize the driver's scope by splitting the 
locking of pieces of structures. Data structures are treated as single objects, 
always using the same lock for all the elements. Some benefit is gained by 
investigating the locking requirements of each structure element, including 
whether it is worthwhile to use shared and exclusive locks instead of purely 
exclusive locks, and using the appropriate lock in each case. 

Once the hardware lock has stabilized, the scope of the hard disk queue lock 
can be investigated top-down. The queue lock must be held during direct mani­
pulation of the queue (hdutab [] .b_actf). It is also convenient to use the 
queue lock for other data structures modified at the same time, such as 
hddrvinfo [] . hd_latest and all of hdstat []. 

7-102 Integrated Software Development Guide 



Driver Programming Examples 

However, several data structures (hddrvinfo [] . hd_geom, hdpartinfo [] [], 
and hdwholedisk [] []) are used in the scopes of both hardware and queue 
locks. It is important to determine which lock should protect the data struc­
tures. Using the queue lock would require much of the controller programming 
and bad block mapping to hold the queue lock, contrary to the goal of simul­
taneous queuing and request processing. Using the hardware lock necessitates 
acquiring the hardware lock while queuing a request. Because the hardware 
lock can be held for relatively long periods, this would effectively eliminate 
most of the advantages of multithreading the driver. By determining when the 
data structures changed, and what the effects would be of only partially locking 
them, it was found that they were modified in only a few well-defined and 
rarely-used places (opens and ioct Is for instance). In these cases, it was 
acceptable to degrade driver performance in favor of streamlining the heavily­
used paths (hdstrategy). Therefore, both locks are used to lock these data 
structures, creating a shared and exclusive lock out of two separate locks. In the 
normal case, the information is only read and not modified, while holding either 
lock is sufficient to protect data from changing. In rare cases, when information 
is actually modified, both locks are acquired and entirely lock all other proces­
sors out of the driver while changing these widely-used data structures. 

It is necessary to acquire the hardware lock in hdstrategy before checking 
hdcst .hd_active and calling hdstart. By that point, the request has been 
queued and the queue lock has been released, although the processor still must 
lock the hardware lock to check if it has to call hdstart to initiate the transfer. 
Because the hardware lock can be held for long periods, spinning on that lock in 
hdstrategy would waste large quantities of processor time. To remedy this, a 
third lock, the active lock, was invented to protect just that one variable in the 
driver. Therefore, after the request has been queued, hdstrategy needs to 
acquire only a low-contention lock to see if it must call hdstart; if it does, 
only then does it acquire the hardware lock. 

Driver Software Development 7-103 



Driver Programming Examples 

Summary of Locking Strategy 

Only three locks were used to multithread the AT driver. This minimal number 
of locks was used for several reasons. 

• There was no appreciable gain from using more than three locks. More 
processors could have been executing more of the code simultaneously 
while the amount of code protected by each lock would have been 
extremely minimal. 

• Retaining a tracking mechanism for locks in a driver of such complexity 
would have been extremely difficult. Locking hierarchies must be 
adhered to. Switching frequently from the protection of one lock to 
another for the sole purpose of reading one variable would degrade the 
driver's performance. 

• Locking cannot be separated from the structure of the driver code and 
since so much of the driver assumes consistency with other parts called 
much later on, large-scope locks are necessary to preserve the correct 
behavior. 

• Absorbing lightly-used variables into the rules for a lock that is already 
held during other operations is more convenient than creating a new lock. 

The Design 
The following table lists the three types of locks and which functions they lock. 
Note that all three locks are exclusive, meaning that the lock can be acquired 
and held by only one process at a time. 

Lock 
hd lck 
hd<Llck 
hda lck 

Type 
spin, exclusive 
spin, exclusive 
spin, exclusive 

Functions Locked 
controller and associated data 
queues and convenient data 
controller-active flag 

The following table lists data objects the hard disk driver uses and which lock 
protects them. 

7-104 Integrated Software Development Guide 



Driver Programming Examples 

Type Data Structure Locks 
char* hdb_msg[] (static) 
struct hdbadhnd hdbad hd 1ck 
char * bbh_trkmap [] hd 1ck 
char * bth_trkmap [] hd lck 
unsigned in t prev_mapsize hd 1ck 
struct hdcstat hdcst (split) 

.hd active hda lck 
(all else) hd 1ck 

struct hddrvinfo hddrvinfo[] (split) 
.hd latest hd'Llck 
.hd_geom hd 1ck + hd'L1ck 
(all else) hd c1k 

struct partition hdpartinfo [] [] hd lck + hd'Llck 
struct partition hdwho1edisk [] hd 1ck + hd'Llck 
char hd_c1osing [] [] hd 1ck 
struct a1t info hda1tinfo[]i hd 1ck 
struct iotime hdstat [] hd'L1ck 
struct iobuf hdutab [] (split) 

actf hd'L1ck 
(all else) hd'Llck 

char * ATerrmsg [] (static) 
char itab1e [] hd lck 
int fmtvfyreq hd'Llck 
char fmtvfywait hd'Llck 
time t vfytime hd 1ck 
unsigned short vfystatus hd 1ck 
int hddebug none 
struct buf rda1ts_buf [] hd 1ck 
int write fault hd 1ck 
int hddev1fag none 
struct cur_req cur_req hd 1ck 
int Hd timeout hd 1ck 
struct AT cmd AT cmd hd 1ck 

Driver Software Development 7-105 



Driver Programming Examples 

The following table lists the routines the hard disk driver uses and designates 
which locks are already held when the routine is called and/or which locks are 
acquired from within the routine. 

Function Notes Locks Held Locks Acquired 
When Called 

hdinit (entry point) hd_lck, hdCLlck 
hdsetcont hardware hd_lck, hdCLlck none 
hdgetblock new hd_lck, hdCLlck 
hdputblock none none 
hdputblock new hd_lck, hdCLlck none 
rdagetblocks hd_lck, hdCLlck none 
rdarerelease hd_lck, hdCLlck none 
hdopen (entry point) hd_lck, hdg_lck 
hdclose (entry point) hd_lck, hdCLlck 
hdstrategy (entry point) hd_lck, hdCLlck 
_hdstrategy new hd_lck? hdCLlck? hd lck? hdCLlck? 

hda lck 
hdbreakup none none 
hdread (entry point) none 
hdwrite (entry point) none 
hdstart hd lck hdCLlck? hda lck 
hdio hd lck none 
hdxfer hd lck hd_lck, hdCLlck 
hdintr hardware (entry point) hd_lck, hdCLlck[ 
hdioctl (entry point) hd_lck, hdCLlck, 

hda lck 
hddone hd lck none 
hderror hd lck none 
hderrmsg hd lck none 
hdprint (entry point) none 
ATdocmd hardware hd lck none 
ATiocmd hardware hd lck none 
ATxcmd hardware hd lck none 
ATfmtcmd hardware hd lck none 
ATcmd hardware hd lck none 
ATstatus hardware hd lck none 
ATwait hardware hd lck none 

7-106 Integrated Software Development Guide 



Driver Programming Examples 

Function Notes Locks Held Locks Acquired 
When Called 

ATout hardware hd lck none 
ATin hardware hd lck none 
hdb inunix hd lck none 
hdb sacred hd lck none 
hdb_nospar hd lck none 
hdb_verify hd lck none 
hdb_b2vfy hd lck none 
hdb_retry hd lck none 
hdb_contvfy hd lck none 
hdb_mapblk hd lck none 
hdb_blktyp hd lck none 
hdb_updtbl hd lck none 
hdb wrttbl hd lck none 
hdb_cleanup hd lck none 
hdb wrtsrc hd lck none 
hdb_mapbad hd lck none 
hdb err hd lck none 
hdb_Omrgflg hd lck none 
hdb_Obadflg hd lck none 
hdsize (entry point) hd_lck, hd'L-lck 
hdtimeout hardware hd lck hd lck 

Driver Software Development 7·107 



Driver Programming Examples 

Use of Locks 
In general use, the hard disk queue lock exclusively protects only the drive 
queues, one queue-sorting variable, the array of statistics, and (shared) drive 
and partition information. Enqueuing and dequeuing disk requests is a rela­
tively quick procedure. Most of this locking is done in _hdstrategy, 
hdstart, hdintr, and hddone. In unusual use, the queue lock protects 
(exclusively, in conjunction with the hardware lock) the drive and partition 
information, and some state variables. 

In general use, the hard disk hardware lock protects (exclusively) all of the bad­
block mapping data structures, controller status structure, miscellaneous vari­
ables, and (shared) drive and partition information. In unusual use, the 
hardware lock exclusively protects, in conjunction with the queue lock, the drive 
and partition information. 

The active lock (exclusively) protects only one variable. 

There are a few places in the driver where strict locking would have eliminated 
much of the parallel execution within the driver. These are, for example, 
hdread and hdwrite, both of which examine a partition table and pass the 
data to physio routines, which eventually call hdstrategy. Technically, 
either the hardware or the queue lock should be held. However, this would 
cause hierarchy problems and severely limit parallelism and throughput. 
Because the partition table information rarely changes, the lock is not held at all 
until inside hdstrategy. 

The Results 

Stress tests indicate that all three locks have moderate to low contention, and 
that hda _lck and hd~ lck execute short to average spin times. (Processors 
do not waste time spinning on the lock when another processor is holding it.) 
The hardware lock hd _lck has high spin times but extremely low contention. 

These results are exactly as desired. The disk queue grows long, but more pro­
cessor time is available to run other processors instead of being wasted spinning 
on hard disk locks. And under disk-intensive loads, the hard disk controller is 
busy nearly 100% of the time; there are no periods during which there are 
requests queued and the disk is idle. 

7-108 Integrated Software Development Guide 



Driver Programming Examples 

Hard Disk Driver Program Example 

The following figure shows how a hard disk driver can be multithreaded: 

Figure 7-8: Multithreaded Hard Disk Driver Program Example 

/* random id number */ 
/* 

* hd lck locks the hard disk hardware and bad block mapping variables 
*/ 

mutex_t hd_lck; 
lockinfo_t hd_lkinfo; 
#define hd_lock(spxlfunc) 
#define hd_unlock(splev) 
#define hd_is_mine() 
/* 

* hd~lck locks the hard disk queue 
*/ 

mutex_t hdq_lck; 
Lockinfo_t hd~lkinfo; 
#define hdq_lock(splfunc) 
#define hdq_unlock(splev) 
#define hdq_is_mine() 
/* 

mutex_lock(&hd_lck, L_EXCL, splfunc) 
mutex_unxlock(&hd_lck, splev) 

mutex_is~ine(&hd_lck, L_EXCL) 

mutex_lock(&hdq_lck, L_EXCL, splfunc) 
mutex_unlock(hdq_lck, splev) 

mutex_is_mine(&hd~lck, L_EXCL) 

* both hd lck and hdq_lck lock hddrvinfo, hdpartinfo, and hdwholedisk; that 
* is, both must be held in order to change it, so holding either lock 
* guarantees consistency 

* hda lck locks the hard-disk active flag (hdcst.hd_active) 
*/ 

mutex_t hdq_lck: 

lockinfo t hdq_lkinfo; 
/* 

* Process interrupts. There are three cases: 

*/ 

1) Restore has completed. Retry if there was an error, otherwise do 
the transfer. 

2) Format has completed. No error reporting is supported. 
3) Read/write has completed. Check for errors and retry command if 

error wasn't write fault. Issue a notice if an error was corrected 
by the ECC algorithm, which may indicate that that sector should be 
or a command involving bad block mapping, or if we're finished call 
hddone. 

(continued on next page) 

Driver Software Development 7-109 



Driver Programming Examples 

Figure 7-8: Multithreaded Hard Disk Driver Program Example (continued) 

7-110 

hdintrO 
{ 

iif 

#endif 

register struct buf *bp; 
register struct hddrvinfo *hdi; 
int stat low, stathigh, status; 
int errval, altstatus, errcnt; 
int track, i; 
daddr_t block; 
ushort curdrv, blktyp; 

(void) hd_lock(splnull); 

bp = hdutab[hdcst.hd_curdrv] .b_actf; 
hdi = &hddrvinfo[hdcst.hd_curdrv]; 
status = ATstatus(hdcst.hd_curdrv); 

if (! (hdi->hd_state & (HDyO_RSTIHD_DOJMTI HD_DO_VFY))) 
/* Read or write command has completed */ 

else if (hdi->hd_state & HD_DO_VFY) /* Verify command completed */ 

drv_getparm(LBOLT, &vfytime); 
if (status & ERROR) 

vfystatus = inb(HDO+HD_ERROR); 
hdi->hd_state &= -HD_DO_VFY; 
wakeup (itable) ; 

else if (hdi->hd_state & HD_DO_RST) /* Restore command has completed */ 

if (status & ERROR) 
hderror(bp, RETRY); 

else 

hdi->hd_state &= -HD_DO_RST; 
hdxfer (bp) ; 

else /* hdi->hd_state & HD DO FMT */ /* Format command completed */ 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7·8: Multithreaded Hard Disk Driver Program Example (continued) 

Hf 

jendif 

/* 

hdi->hd_state &= -HD_DO_FMT; 
wakeup (itable) ; 

hd_unlock(NULLSPL); 

return(O); 

* Queue an I/O request, and start if not busy. 
*/ 

hdstrategy (bp) 
struct buf *bp; 
{ 

return _hdstrategy(bp, 1); 

_hdst rat egy (bp, do_locking) 
register struct buf *bp; 
int do_locking; 
/* 

* do locking tells whether to grab & release hdq_Ick and hd_Ick when their 
* times come (we could be called with or without them held, and this tells 
* which) • 
*/ 

fif 

jendif 

register struct partition *hdp; 
register struct hddrvinfo *hdi; 
register struct iotime *hdit; 
register struct buf *curbp, *nextbp; 
struct iobuf *hdu; 
int oldpri; 
unsigned unit; 

if (do_locking) 
oldpri = hd~lock(spI5); 

/* If a format is waiting, block all other I/O until it's done */ 
while (fmtvfyreq) 

sleep((char *)&fmtvfyreq, PRIBIO); 

/* If the requested count to be transferred is zero, we're done. */ 

(continued on next page) 

Driver Software Development 7·111 



Driver Programming Examples 

Figure 7-8: Multithreaded Hard Disk Driver Program Example (continued) 

Hf 

lIendif 

II if 

lIendif 

II if 

'endif 

7-112 

if (bp->b_bcount == 0) { 

I· 

if (do_locking) 
hdq_unlock(oldpri); 

iodone (bp) ; 
return (0); 

unit = UNIT(bp->b_edev); 
hdi = &hddrvinfo[unit]; 
if (ISABSDEV(bp->b_edev)) 

hdp - &hdwholedisk[unit]; 
else 

hdp = &hdpartinfo[unit] [PARTITION(bp->b_edev)); 

* Check if partition is valid, and for trying to write to a 
* read-only partition if not root. 
*/ 

if (! (hdp->p_flag & V_VALID) I I 
! (bp->b_flags & B_READ) && (hdp->p_flag & V_RONLY) &&drv-priv(u.u_cred)) 

if (do_locking) 
hdq_unlock(oldpri); 

bp->b_flags 1= B_ERROR; 
bp->b_error = ENXIO; 
iodone (bp) ; 
return (0); 

if (bp->b_blkno < 0) { 

if (do_locking) 
hdq_unlock(oldpri); 

bp->b_flags 1= B_ERROR; 
bp->b_error = ENXIO; 
iodone (bp) ; 
return (0); 

if (bp->b_blkno >= hdp->p_size) { 
if (bp->b_blkno> hdp->p_size II! (bp->b_flags & B_READ)) 

(continued on next page) 

Integrated Software Development Guide 



Driver Programming Examples 

Figure 7-8: Multithreaded Hard Disk Driver Program Example (continued) 

#if 

#endif 

#if -

#endif 

/* if request is off the end or we're not reading */ 
bp->b_flags la B_ERROR; 
bp->b_error = ENXIO; 

if (do_locking) 
hdq_unlock(oldpri); 

/* reading last block is allowed: it indicates EOF */ 
bp->b_resid - bp->b_bcount; 
iodone (bp) ; 
return(O); 

/* must not exceed maximum transfer allowed by the controller */ 
if (bp->b_bcount > MAXXFER « SCTRSHFT ) { 

if (do_locking) 
hdq_unlock(oldpri); 

bp->b_flags 1= B_ERROR; 
bp->b_error = ENXIO; 
iodone(bp); 
return(O); 

/* Calculate the physical cylinder number of the request. */ 
* ((ushort *)&bp->cylin) (bp->b_blkno + hdp->p_start) / 

(daddr_t) (hdi->hd_nsecs * hdi->hd_nhds); 
bp->av_forw = NULL; 
drv_getparm(LBOLT, &bp->b_start)i /* time in 1/60 sec. since boot */ 
/* 

* Update I/O count statistics 
*/ 

hdit = &hdstat [unit) i 
hdit->io_cnt++i 
hdit->io_bcnt += (bp->b_bcount + NBPSCTR - 1) » SCTRSHFTi 

/* Put the buffer onto the queue using an elevator algorithm. */ 
h~u = &hdutab[unit)i 
if (hdu->b_actf == NULL) 

hdu->b_actf = bpi 
else if (hdi->hd_latest && 

(ushort)hdi->hd_latest->cylin == (ushort)bp->cylin) { 

(continued on next page) 

Driver Software Development 7-113 



Driver Programming Examples 

Figure 7-8: Multithreaded Hard Disk Driver Program Example (continued) 

ill! 

lIendif 

7-114 

} else { 

bp->av_forw = hdi->hd_latest->av_forw; 
hdi->hd_latest->av_forw ~ bpi 

int sl, s2; 

for (curbp = hdu->b_actf; nextbp=curbp->av_forw; curbp = nextbp) 
if ((51 = (ushort)curbp->cylin - (ushort)bp->cylin) <0) 

sl = -sl; 
if ((s2 = (ushort)curbp->cylin- (ushort)nextbp->cylin) <0) 

s2 = -s2; 
if (sl < s2) 

break; 

bp->av_forw = nextbp; 
curbp->av_forw = bpi 

hdi->hd_latest = bPi 

if (do_locking) 
hdq_unlock(NULLSPL); 

/* 

* If no requests are in progress, start this one. 
*/ 

hda _lock () ; 
if (hdcst.hd_active == 0) 

hdcst.hd_active = 1; 
hda_unlock () ; 
if (do_locking) 

(void) hd_lock(splnull); 
hdstart(do_locking); 
if (do_locking) 

hd_unlock(NULLSPL); 
} else 

hda_unlock(); 
if (do_locking) 

splx(oldpri); 

return (0); 

Integrated Software Development Guide 



8 Application Software Packaging 

An Overview of Software Packaging 8-1 
Contents of a Package 8-2 
The Structural Life Cycle of a Package 8-2 

The Packaging Tools 8-4 
The pkgmk Command 8-4 
The pkgtrans Command 8-5 
The pkgproto Command 8-5 
The prototype File 8-5 

• The Description Lines 8-6 
• The Command Lines 8-8 

The Installation Tools 8-10 

The Package Information Files 8-11 
The pkginfo File 8-12 
The pkgmap File 8-13 
The compver File 8-14 
The depend File 8-15 
The space File 8-17 
The copyright File 8-19 
The request File 8-20 

Table of Contents 



Table of Contents 

The Installation Scripts 
Script Processing 
Installation Parameters 
Getting Package Information for a Script 
Exit Codes for Scripts 
The Request Script 

• Request Script Naming Conventions 
• Request Script Usage Rules 

The Class Action Script 
• Class Action Script Naming Conventions 
• Class Action Script Usage Rules 
• Insta"ation of Classes 
• Removal of Classes 

The Special System Classes 
• The sed Class Script 
• The awk Class Script 
• The build Class Script 

The Procedure Script 
• Naming Conventions for Procedure Scripts 
• Procedure Script Usage Rules 

Basic Steps of Packaging 
Step 1. Assigning a Package Abbreviation 
Step 2. Defining a Package Instance 

• Identifying a Package Instance 
• Accessing the Instance Identifier in Your Scripts 

Step 3. Placing Objects into Classes 
Step 4. Making Package Objects Relocatable 

• Defining Co"ectively Relocatable Objects 
• Defining Individua"y Relocatable Objects 

Step 5. Writing Your Installation Scripts 
Step 6. Defining Package Dependencies 
Step 7. Writing a Copyright Message 
Step 8. Creating the pkginfo File 

8-21 
8-22 
8-23 
8-24 
8-24 
8-25 
8-25 
8-26 
8-26 
8-27 
8-27 
8-28 
8-29 
8-30 
8-30 
8-31 
8-32 
8-33 
8-33 
8-33 

8-35 
8-36 
8-36 
8-36 
8-38 
8-38 
8-39 
8-40 
8-41 
8-41 
8-42 
8-42 
8-43 

II Application and Driver Software Packaging 



Table of Contents 

Step 9. Creating the prototype File 8-44 
• Creating the File Manually 8-44 
• Creating the File Using pkgproto 8-46 

Step 10. Distributing Packages over Multiple Volumes 8-49 
Step 11. Creating a Package with pkgmk 8-49 

• Creating a Package Instance for pkgmk 8-S0 
• Helping pkgmk Locate Package Contents 8-S0 

Step 12. Creating a Package with pkgtrans 8-S1 
• Creating a Datastream Package 8-S1 
• Translating a Package Instance 8-S2 

Package Installation Case Studies 8-S3 
Case #1 8-S4 

• Techniques 8-S4 
• Approach 8-S4 
• Sample Files 8-S6 

Case #2 8-S9 
• Techniques 8-S9 
• Approach 8-S9 
• Sample Files 8-61 

Case #3 8-64 
• Techniques 8-64 
.~~~ ~4 
• Sample Files 8-66 

Case #4 8-70 
• Techniques 8-70 
• Approach 8-70 
• Sample Files 8-70 

Case #5a 8-73 
• Techniques 8-73 
• Approach 8-73 
• Sample Files 8-74 

Case#5b 8q6 
• Techniques 8-76 
• Approach 8-76 
• Sample Files 8-77 

Case #5c 8-80 
• Techniques 8-80 

Table of Contents iii 



Table of Contents 

• Approach 
• Sample Files 

Case #6 
• Techniques 
• Approach 
• Sample Files 

Iv 

8-80 
8-81 
8-83 
8-83 
8-83 
8-84 

Application and Driver Software Packaging 



An Overview of Software Packaging 

This chapter describes how to package software that will be installed on a com­
puter running UNIX System V Release 4.0 for the Intel386 and compatible archi­
tectures. The approach to packaging in such an environment differs from 
approach used previously. Pre-UNIX System V Release 4.0 packages deliver 
information to the system through script actions, but a UNIX System V Release 
4.0 package for the Intel386 and compatible architectures does this through 
package information files. A packaging tool, the pkgmk command, is provided 
to help automate package creation. It gathers the components of a package on 
the development machine, copies them onto the installation medium, and places 
them into a structure that pkgadd recognizes. 

This chapter also describes the installation tool, the pkgadd command, which 
copies the package from the installation medium onto a system and performs 
system housekeeping routines that concern the package. This tool is primarily 
for the installer but is described here to give you some background on the 
environment into which your packages will be placed and to help you test­
install your packages. 

The next two sections describe what a package consists of and gives an over­
view of the structural life cycle of a package (how its structure on your develop­
ment machine relates to its structure on the installation medium and on the ins­
tallation machine). 

The remaining sections familiarize you with all of the tools, files, and scripts 
involved in creating a package, provide suggestions for how to approach 
software packaging, and describe some specific procedures. At the end of this 
chapter, you should study the section entitled ''Package Installation Case Stu­
dies" , which provides case studies using the tools and techniques described in 
this chapter. 

All of the commands, files, and functions mentioned in this chapter have 
manual pages in the Administrator's Reference Manual. 

Application Software Packaging 8-1 



An Overview of Software Packaging 

Contents of a Package 

A software package is made up of a group of components that together create 
the software. These components naturally include the executables that compose 
the software, but they also include at least two information files and can option­
ally include other information files and scripts. 

A package's contents fall into three categories: 

• required information files(i.e., the pkginfo file, the prototype file, pack­
age objects) 

• optional package information files (i.e., the compver file, the depend file, 
the space file, and the copyright file). The prototype file is not part of 
the package, but is used to create it. 

• optional packaging scripts (Le., the request script, the class action script, 
and the procedure script) 

The Structural Life Cycle of a Package 

The material covered in this chapter talks about package object pathnames. 
While reading, keep in mind that a package object resides in three places while 
being packaged and installed. To help you avoid confusion, consider which of 
the three possible locations are being discussed: 

8-2 

• On a development machine 

Packages originate on a development machine. They can be in the same 
directory structure on your machine as they will be placed on the installa­
tion machine. Or pkgmkcan locate components on the development 
machine and give them different pathnames on the installation machine. 

• On the installation media 

When pkgmk copies the package components from the development 
machine to the installation medium, it places them into the structure you 
have defined in your prototype file and a format that pkgadd recognizes. 

Integrated Software Development Guide 



An Overview of Software Packaging 

• On the installation machine 

pkgadd copies a package from the installation medium and places it in the 
structure defined in your pkgmap file. Package objects can be defined as 
relocatable, meaning the installer can define the actual location of these 
package objects on the installation machine during installation. Objects 
with fixed locations are copied to their predefined path. 

Application Software Packaging 8·3 



The Packaging Tools 

The packaging tools are provided to automate package creation and to remove 
the burden of packaging from the developer. There are three packaging tools: 
the pkgmk command, the pkgtrans command, and the pkgproto command. 
Each of these commands is described in the following text and has a manual 
page in the Administrator's Reference Manual. 

The pkgmk Command 

This command takes all of the package objects residing on the development 
machine, and copies them onto removable media or a directory structure in a 
hard disk. You are not required to know the details of the fixed directory struc­
ture since pkgmk takes care of the formatting. 

Files can be unstructured on the development machine and pkgmk will structure 
them correctly on the medium based on information supplied in the prototype 
file. The installation medium onto which a package is formatted can be what is 
typically thought of as a medium (a diskette, for example) or it can be a direc­
tory on a machine. 

pkgmk requires the presence of two information files on the development 
machine, the prototype and the pkginfo file (other package information files 
may be present). These will be discussed in the "Package Information Files" 
section in this chapter. 

pkgmk creates the pkgmap file, which is the package contents file on the installa­
tion medium, by processing the prototype file and then adding three fields to 
each entry. 

pkgmk follows these steps when processing a package: 

8-4 

1. Processes all of the command lines in the input prototype file. 

2. Copies the objects of a package onto the installation medium, using the 
prototype file as a listing of contents. 

3. Puts the package objects into the proper format. 

4. Divides a package into pieces and distributes those pieces on multiple 
volumes, if necessary. 

Integrated Software Development Guide 



The Packaging Tools 

5. Creates the pkgmap file. It is similar to the prototype file except that all 
command lines are processed, and the volno, size, CkSUIn, and modtirne 
fields are added to each entry. 

The pkgtrans Command 

This command provides a way to translate the file system to a data stream for­
mat for floppy diskettes or cartridge tape. When packages are created with 
pkgmk the default format for the package is a file system format. It can make 
the following translations: 

• a fixed directory structure to a datastream 

• a datastream to a fixed directory structure 

Note that a package in a fixed directory structure can be in a directory on disk 
(for example, irt a spooling directory) or on a removable device such as a 
diskette. A datastream can be on any device; for example, on a diskette or a 
tape. A thing to note is, fixed directory structure is not supported on cartridge 
tape. 

The pkgproto Command 

This command generates a prototype file. It scans the paths specified on the 
command line and creates description line entries for these paths. If the path­
name is a directory, an entry for each object in the directory is generated. You 
can use the -c option of the pkgproto command to place objects into classes. 

The prototype File 

This required package information file contains a list of the package contents. 
The pkgmk command uses the prototype file to identify the contents of a pack­
age and their location on the development machine when building the package. 
This file is used during package creation and installation and is never seen by 
the end user of the package. 

Application Software Packaging 8·5 



The Packaging Tools 

~ All packa.ge components, including the pkginfo file, must be listed in the y prototype file. 

You can create this file in two ways. As with all the package information files, 
you can use an editor to create a file named prototype. It should contain 
entries following the description given later in this chapter. You can also use 
the pkgproto command to automatically generate the file. To make use of the 
second method, you must have a copy of your package on your development 
machine that is structured exactly as you want it structured on the installation 
machine and all modes and permissions must be correct. If you are not going 
to use pkgproto, you do not need a structured copy of your package. 

There are two types of entries in the prototype file: description lines and com­
mand lines. 

The Description Lines 

You must create one description line for each deliverable object that consists of 
several fields describing the object. This entry describes such information as 
mode, owner, and group for the object. You can also use this entry to accom­
plish the tasks listed below. 

8-6 

• You can override pkgmk'S placement of an object on a multiple-part pack­
age. (Refer to the section entitled "Distributing Packages over Multiple 
Vol umesfJ for more details.) 

• You can place objects into classes. (Refer to the section entitled "Placing 
Your Objects into Classes" for details.) 

• You can tell pkgmk where to find an object in your development directory 
structure and map that name to the correct placement on the installation 
machine. (Refer to the section entitled "Mapping Development Path­
names to Installation Pathnames" for details.) 

• You can define an object as relocatable. (Refer to the section entitled "Set­
ting Package Objects as Relocatable" for details.) 

• You can define links. (Refer to the section entitled "Creating the proto­
type File" for details.) 

Integrated Software Development Guide 



The Packaging Tools 

The generic format of the descriptive line is: 

[part1 ttype class pathname [major minor1 [mode owner group1 

Definitions for each field are as follows: 

part 

ftype 

class 

pathname 

major/minor 

Designates the part in which an object should be placed. A 
package can be divided into a number of parts. A part is a col­
lection of files and is the atomic unit by which a package is 
processed. A developer can choose the criteria for grouping 
files into a part (for example, by class). If not defined, pkgmk 

decides in which part the object will be placed. 

Designates the file type of an object. Example file types are f 
(a standard executable or data file), d (a directory), 1 (a linked 
file), and i (a package information file). (Refer to the proto­
type manual page in the Administrator's Reference Manual for a 
complete list of file types.) 

Defines the class to which an object belongs. All objects must 
belong to a class. If the object belongs to no special class, this 
field should be defined as none. 

Defines the pathname which an object should have on the ins­
tallation machine. If you do not begin this name with a slash, 
the object is considered to be relocatable. You can use the 
form pathl=path2 to map the location of an object on your 
development machine to the pathname it should have on the 
installation machine. 

Defines the major and minor numbers for a block or character 
special device. 

mode/owner/group 
Defines the mode, owner, and group for an object. If not 

_ defined, the defaults defined with the default command are 
assigned. If not defined and there are not defaults, the values 
644 root other are used. 

Figure 8-1 shows an example of this file with only description lines. 

Application Software Packaging 8-7 



The Packaging Tools 

Figure 8-1: Sample #1 prototype File 

i pkginfo 
i request 
d bin ncmpbin 0755 root other 
f bin ncmpbin/dired=/usr/ncmp/bin/dired 0755 root other 
f bin ncmpbin/less=lusr/ncmp/bin/less 0755 root other 
f bin ncmpbin/ttype=/usr/ncmp/bin/ttype 0755 root other 

The Command Lines 
There are four types of commands that can be embedded in the prototype file. 
They are: 

search pathnames Specifies a list of directories (separated by white space) in 
which pkgmk should search when looking for package 
objects. pathnames is prepended to the basename of each 
object in the prototype file until the object is located. 

include filename Specifies the pathname of another prototype file that 
should be merged into this one during processing. (Note 
that search requests do not span include files. Each 
prototype file should have its own search command 
defined, if one is needed.) 

default mode owner group 

param=value 

8-8 

Defines the default mode owner group that should be used if 
this information is not supplied in a prototype entry that 
requires the information. (The defaults do not apply to 
entries in any include files. Each prototype should 
have its own default command defined, if one is needed.) 

Places the indicated parameter in the packaging environ­
ment. This allows you to expand a variable pathname so 
that pkgmk can locate the object without changing the 
actual object pathname. (This assignment will not be avail­
able in the installation environment.) 

Integrated Software Development Guide 



The Packaging Tools 

A command line must always begin with an exclamation point (!). Commands 
may have variable substitutions embedded within them. 

Figure 8-2 shows an example prototype file with both description and com­
mand lines. 

Figure 8-2: Sample #2 prototype File 

!PROJDIR=/usr/myname 
!search /usr/myname/bin /usr/myname/src /usr/myname/hdrs 
!include $PROJDIR/src/prototype 
i pkginfo 
i request 
d bin ncmpbin 0755 root other 
f bin ncmpbin/dired=/usr/ncmp/bin/dired 0755 root other 
f bin ncmpbin/less=/usr/ncmp/bin/less 0755 root other 
f bin ncmpbin/ttype=/usr/ncmp/bin/ttype 0755 root other 
!default 755 root bin 

Application Software Packaging 8-9 



The Installation Tools 

The IT tools are introduced to you here so that you can understand the environ­
ment into which your package will be placed. The installation tools are: 

• pkgadd installs a package. 

~ 
The major and minor device numbers for block and character special 

NOTE file designations in pkgmap and prototype will be ignored by 
pkgadd. On AT-based machines, these numbers are generated for 
each device by the IDITP tools. 

• pkgrm removes a package. 

• pkgask creates a file that contains an installer's response to prompts in 
the request script. This file is named on the pkgadd command line when 
a package is installed in noninteractive mode. It replaces the output of 
the request script. 

• pkgchk checks the content and attribute information for an installed 
package to ensure that it was not corrupted during installation. 

• pkginfo and pkgparam display information about packages. 

The system administrator can set parameters that control various aspects of ins­
tallation in an administration file called the admin file. Refer to the manual 
pages in the Administrator's Reference Manual for more information on these com­
mands and on the admin file. 

8-10 Integrated Software Development Guide 



The Package Information Files 

pkgmap and pkginfo are the only two package files that are required in a 
package. The remaining package files are optional and are necessary only if the 
package developer wants to take full advantage of the flexibility of the installa­
tion tools. Each of the package information files will be described in the follow­
ing pages. All of these files can be created using any editor. File formats are 
described in the following text and in full detail in the Administrator's Reference 
Manual. 

The package information files are: 

• the pkginfo file 

• the pkgma p file 

• the cornpver file 

• the depend file 

• the space file 

• the copyright file 

• the request file 

Application Software Packaging 8·11 



The Package Information Files 

The pkginfo File 

This required package information file defines parameter values that describe 
characteristics of the package, such as the package abbreviation, full package 
name, package version, and package architecture. This file is used during pack­
age creation and installation and is never seen by the end user of the package. 

Each entry in the file uses the following format to establish the value of a 
parameter: 

PARAM="value" 

Figure 8-3 shows an example pkginfo file. 

Figure 8-3: Sample pkginfo File 

PKG="pkgA" 
NAME="My Package A" 
ARCH="i386" 
RELEASE="4.0" 
VERSION="2" 
, VENDOR="MYCOMPANY" 
HOTLINE="1-800-677-BUGS" 
VSTOCK="0122c3f5566" 
CATEGORY="application" 
ISTATES="S 2" 
RSTATES="S 2" 

The pkginfo and pkgparam commands can be used to access information in a 
pkginfo file. 

~
' Before defining the PKG, ARCH, and VERSION parameters, you need to know 

NOTE how pkgadd defines a package instance and the rules associated with nam­
ing a package. Refer to the section entitled "Defining a Package Instance" 
before assigning values to these parameters. 

8-12 Integrated Software Development Guide 



The Package Information Flies 

The pkgmap File 

This required package information file provides a complete listing of the pack­
age content. The pkgmk command creates the pkgmap file when it processes 
the prototype file. This new file contains all the information in the proto­
type file plus three new fields for each entry. These fields are size (file size in 
bytes), cksum (checksum of file), and modtime (last time of modification). All 
command lines defined in the prototype file are executed as pkgmk creates the 
pkgmap file. pkgmap is an ASCII file used to specify information required to 
install object files on a target machine. Each entry in the pkgmap describes a 
single deliverable object file. A "deliverable object file" includes shell scripts, 
executables objects, data files, directories, etc. The pkgmap file is placed on the 
installation medium. The prototype file is not. Refer to the pkgmap manual 
page in the Administrator's Reference Manual for more details about this file. 

Application Software Packaging 8·13 



The Package Information Flies 

The compver File 

This package information file is an optional file that defines previous (or future) 
versions of the package that are compatible with this version. compver. is gen­
erated by an application developer. Each line in the file consists of a string 
defining a version of the package with which the current version is upward 
compatible. Since some packages may require installation of a particular ver­
sion of another software package, compatibility information is extremely crucial. 
If a package "A" requires version 1/1.0" of application "B" as a prerequisite, but 
the customer installing "A" has a new and improved version of "1.3" of "B", 
the compver file for "B" must indicate that the new version is compatible with 
version 1/1.0" in order for the customer to install package "A". The string must 
match the definition of the VERSION parameter in the pkginfo file of the pack­
age considered to be compatible. Figure 8-4 shows an example of this file. 

Figure 8-4: Sample compver File 

8-14 Integrated Software Development Guide 



The Package Information Flies 

The depend File 

This package information file is an optional file that defines software dependen­
cies associated with the package. 

The generic format of a line in this file is: 

type pkg name 
(arch) version 
(arch) version 

Definitions for each field are as follows: 

type 

pkg 

name 

P - indicates a prerequisite for installation, i.e referenced 
package/version(s) must be installed. 

I - indicates existence of indicated package/version(s) 
implies an incompatibility exists. 

R - indicates a reverse type of dependency. Instead of indi­
cating the package's own dependencies, this designates a 
package that depends on the present package. It should be 
used only when an old package does not have a depend file 
but relies on the newer package nontheless. The present 
package should not be removed if the designated old pack­
age is still on the system. If it is removed, the old package 
will break. 

Indicates the package abbreviation for the package. 

Specifies the full package name (used for display purposes 
only). 

(arch) version Defines a particular instance of a package by defining the 
architecture and version, and is completely optional. If 
(arch) version is not supplied, it means the entry refers 
to any version or architecture of the package. 

Figure 8-5 shows an example of this file. 

Application Software Packaging 8-15 



The Package Information Files 

8-16 Integrated Software Development Guide 



The Package Information Flies 

The space File 

This package information file is an optional file that defines disk space require­
ments for the target environment beyond that which is used by objects defined 
in the prototype file - for example, files that will be dynamically created at 
installation time. space is generated by application developer. It should define 
the maximum amount of additional space that a package will require. This 
differs from the pre-UNIX System V 4.0 size file, which reported the total space 
required for the root and usr file systems. 

The generic format of a line in this file is: 

pathname blocks inodes 

Definitions for each field are as follows: 

name 

blocks 

Names a directory in which there are objects that will require addi­
tional space. The name may be the mount point for a filesystem. 
Names that do not begin with a slash U) indicate relocatable direc­
tories. 

Defines the number of 512 byte disk blocks required for installation 
of the files and directory entries contained in the pathname. (Do 
not include file system dependent disk usage.) 

inodes Defines the number of inodes required for installation of the files 
and directory entries contained in name. 

Numbers of blocks or inodes can be negative to indicate that the package will 
ultimately (after processing by scripts, etc.) take up less space than the installa­
tion tool would calculate. 

Figure 8-6 shows an example of this file. 

Application Software Packaging 8·17 



The Package Information Flies 

Figure 8-6: Sample space File 

8-18 

# extra space required by con fig data which is 
# dynamically loaded onto the system 
data 500 1 

Integrated Software Development Guide 



The Package Information Flies 

The copyright File 

This package infonnation file is an optional file that contains the text of a copy­
right message that will be printed on the terminal at the time of package instal­
lation or removal. The display is exactly as shown in the file. Figure 8-7 shows 
an example of this file. 

Figure 8-7: Sample copyright File 

Copyright (c) 1989 AT&T 
All Rights Reserved. 

THIS PACKAGE CONTAINS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T. 

The copyright notice above does not evidence any 
actual or intended publication of such source code. 

Application Software Packaging 8-19 



The Package Information Flies 

The request File 

This package information file is an optional file that contains interactive scripts 
for package installation. The request file contains a procedure script for situa­
tions that the Installation Tools do not handle. This request script will be 
described in the "Installation Scripts" section of this chapter. 

8-20 Integrated Software Development Guide 



The Installation Scripts 

The pkgadd command automatically perfonns all of the actions necessary to 
install a package, using the package infonnation files as input. As a result, you 
do not have to supply any packaging scripts. However, if you want to custom­
ize the installation procedures for your package needs, the following three types 
of scripts can be used: 

request script 

class action scripts 

procedure scripts 

Solicits administrator interaction during package instal­
lation for the purpose of assigning or redefining 
environment parameter assignments. 

Define an action or set of actions that should be 
applied to a class of files during installation or remo­
val. You define your own classes or you can use one 
of three standard classes (sed, awk, and build). See 
the ''Placing Objects into Classes" section for details on 
how to define a class. 

Specifies a procedure to be invoked before or after the 
installation or removal of a package. The four pro­
cedure scripts are preinstall, post install, 
preremove, and post remove. 

Scripts provide flexibility for add-on packages that previously used Install and 
Remove files on UNIX System V Release 4.0 for the Intel386 and compati­
ble architectures. The procedure scripts can be used before or after installa­
tion or removal of packages to execute code that was previously included in 
the Install and Remove files. 

You decide which type of script to use based on when you want the script to 
execute. To help you with this assessment, script processing is discussed next, 
followed by a description of parameters available to packaging scripts, how to 
get infonnation about a package for your scripts, and script exit codes. After 
that, each type of script is described in detail. 

~ All installation scripts must be executable by sh (for example, a shell script y or a program executable). 

Application Software Packaging 8-21 



The Installation Scripts 

Script Processing 

You can customize the actions taken during installation by delivering installa­
tion scripts with your package. The decision on which type of script to use to 
meet a need depends upon when the action of the script is needed during the 
installation process. As a package is installed, pkgadd performs the following 
steps: 

• Executes the request script. 

This is the only point at which your package can solicit input from the 
installer. 

• Executes the preinstall script. 

• Installs the package objects. 

Installation occurs class-by-class and class action scripts are executed 
accordingly. The list of classes operated upon and the order in which 
they should be installed is initially defined with the CLASSES parameter 
in your pkginfo file. However, your request script can change the value 
of CLASSES. 

• Executes the post install script. 

When a package is being removed, pkgrm performs these steps: 

• Executes the preremove script. 

• Executes the removal class action scripts. 

Removal also occurs class-by-class. As with the installation class action 
scripts, if more than one removal script exists, they are processed in the 
reverse order in which the classes were listed in the CLASSES parameter 
at the time of installation. 

• Executes the postremove script. 

The request script is not processed at the time of package removal. However, 
its output (a list of parameter values) is saved and so is available to removal 
scripts. 

8-22 Integrated Software Development Guide 



The Installation Scripts 

Installation Parameters 

These following four groups of parameters are available to all installation 
scripts. Some of the parameters can be modified by a request script, others can­
not be modified at all. 

• The four system parameters that are part of the installation software (see 
below for a description of these). None of these parameters can be 
modified by a package. 

• The 20 standard installation parameters defined in the pkginfo file. Of 
these, a package can only modify the CLASSES parameter. (The standard 
installation parameters are described in detail on the pkginfo manual 
page in the Administrator's Reference Manual.) 

• You can define your own installation parameters by assigning a value to 
them in the pkginfo file. Such a parameter must be alphanumeric with 
an initial capital letter. Any of these parameters can be changed by a 
request script. 

• Your request script can define new parameters by assigning values to 
them and placing them into the installation environment, as shown in Fig­
ure 8-8. 

The four installation parameters that can be accessed by installation scripts are 
described below: 

PATH Specifies the search list used by sh to find commands; is set to 
/sbin:/usr/sbin:/usr/bin:/usr/sadm/install/bin 
upon script invocation. 

UPDATE Indicates that the current installation is intended to update the 
system. Automatically set to t rue if the package being 
installed is overwriting a version of itself. 

PKGINST Specifies the instance identifier of the package being installed. 
If another instance of the package is not already installed, the 
value will be the package abbreviation. Otherwise, it is the 
package abbreviation followed by a suffix, such as pkg. 1. 

(Multiple variations of the same package can reside simultane­
ously on the installation medium, as well as on the installation 

Application Software Packaging 8·23 



The Installation Scripts 

PKGSAV 

machine. Each variation is known as a package instance and 
assigned an instance identifier. See "Defining a Package 
Instance" for more details.} 

Specifies the directory where files can be saved for use by 
removal scripts or where previously saved files may be found. 

Getting Package Information for a Script 

There are two commands that can be used from your scripts to solicit informa­
tion about a package. 

The pkginfo command returns information about software packages, such as 
the instance identifier and package name. 

The pkgparam command returns values only for the parameters requested. 

The pkginfo and pkgparam [(1) and (4)] manual pages in the Administrator's 
Reference Manual give details for these tools. 

Exit Codes for Scripts 

Each script must exit with one of the following exit codes: 

o Successful completion of script. 

1 Fatal error. Installation process is terminated at this point. 

2 Warning or possible error condition. Installation will continue. A 
warning message will be displayed at the time of completion. 

3 Script was interrupted and possibly left unfinished. Installation ter­
minates at this point. 

10 System should be rebooted when installation of all selected packages 
is completed. (This value should be added to one of the single-digit 
exit codes described above.) 

20 The system should be rebooted immediately upon completing instal­
lation of the current package. (This value should be added to one of 
the single-digit exit codes described above.) 

8-24 Integrated Software Development Guide 



The Installation Scripts 

See the Case Studies for examples of exit codes in installation scripts. 

The Request Script 

The request script solicits interaction during installation and is the only place 
where your package can interact directly with the installer. It can be used, for 
example, to ask the installer if optional pieces of a package should be installed. 

The output of a request script must be a list of parameters and their values. 
This list can include any of the parameters you created in the pkginfo file and 
the CLASSES parameter. The list can also introduce parameters that have not 
been defined elsewhere. 

When your request script assigns values to a parameter, it must then make 
those values available to the installation environment for use by pkgadd and 
also by other packaging scripts. The following example shows a request script 
segment that performs this task for the four parameters CLASSES, NCMPBIN, 
EMACS, and NCMPMAN. 

Figure 8-8: Placing Parameters Into the Installation Environment 

* make parameters available to installation service 
I and any other packaging script we might have 
cat >$1 «~I 

CLASSES='$CLASSES' 
NCMPBIN='$NCMPBIN' 
EMACS='$EMACS' 
NCMPMAN=' $NCMPMAN' 

Request Script Naming Conventions 
There can only be one request script per package and it must be named 
request. 

Application Software Packaging 8-25 



The Installation Scripts 

Request Script Usage Rules 
1. The request script can not modify any files. It is intended only to interact 

with users and to create a list of parameter assignments based upon that 
interaction. (To enforce this restriction, the request script is executed as 
the nonprivileged user install.) 

2. pkgadd calls the request script with one argument that names the file to 
which the output of this script will be written. 

3. The parameter assignments should be added to the installation environ­
ment for use by pkgadd and other packaging scripts (as shown in Figure 
8-8). 

4. System parameters and standard installation parameters, except for the 
CLASSES parameter, cannot be modified by a request script. Any of the 
other parameters available can be changed. 

5. The format of the output list should be Parameter = "value". For 
example: 

CLASSES="none classl" 

6. The list should be written to the file named as the argument to the 
request script. 

7. The user's terminal is defined as standard input to the request script. 

8. The request script is not executed during package removal. However, the 
parameter values assigned in the script are saved and are available during 
removal. 

The Class Action Script 

The class action script defines a set of actions to be executed during installation 
or removal of a package. The actions are performed on a group of pathnames 
based on their class definition. (See the Case Studies for examples of class 
action scripts.) 

8-26 Integrated Software Development Guide 



The Installation Scripts 

Class Action Script Naming Conventions 

The name of a class action script is based on which class it should operate and 
whether those actions should occur during package installation or removal. The 
two name formats are: 

• i. class (operates on pathnames in the indicated class during package ins­
tallation) 

• r. class (operates on pathnames in the indicated class during package 
removal) 

For example, the name of the installation script for a class named classl 
would be i. classl and the removal script would be named r. classl. 

Class Action Script Usage Rules 

1. Class action scripts are executed as uid=root and gid=other. 

2. If a package spans more than one volume, the class action script will be 
executed once for each volume that contains at least one file belonging to 
the class. Consequently, each script must be "multiply executable." This 
means that executing a script any number of times with the same input 
must produce the same results as executing the script only once. 

~ The installation service relies upon this condition being met. 

y 
3. The script is executed only if there are files in the given class existing on 

the current volume. 

4. pkgadd (and pkgrm) creates a list of all objects listed in the pkgrnap file 
that belong to the class. As a result, a class action script can only act 
upon pathnames defined in the pkgrnap and belonging to a particular 
class. 

5. A class action script should never add, remove, or modify a pathname or 
system attribute that does not appear in the list generated by pkgadd 
unless by use of the installf or removef command. (See the manual 
pages in the Administrator's Reference Manual for details on these two com­
mands and the Case Studies for examples of them in use.) 

Application Software Packaging 8·27 



The Installation Scripts 

6. When the class action script executes for the last time (meaning the input 
pathname is the last path on the last volume containing a file of this 
class), it is executed with the keyword argument ENDOFCLASS. This flag 
allows you to include post-processing actions into your script. 

Installation of Classes 
The following steps outline the system actions that occur when a class is 
installed. The actions are repeated once for each volume of a package as that 
volume is being installed. 

1. pkgadd creates a pathname list. 

8-28 

pkgadd creates a list of pathnames upon which the action script will 
operate. Each line of this list consists of source and destination path­
names, separated by white space. The source pathname indicates where 
the object to be installed resides on the installation volume and the desti­
nation pathname indicates the location on the installation machine where 
the object should be installed. The contents of the list is restricted by the 
following criteria: 

• The list contains only pathnames belonging to the associated 
class. 

• Directories, named pipes, character Iblock devices, and symbolic 
links are included in the list with the source pathname set to 
I dev Inul1. They are automatically created by pkgadd (if not 
already in existence) and given proper attributes (mode, owner, 
group) as defined in the pkgrnap file. 

• Linked files are not included in the list, that is, files where 
ftype is 1. (ftype defines the file type and is defined in the 
prototype file. Links in the given class are created in Step 4.) 

• If a pathname already exists on the target machine and its con­
tents are no different from the one being installed, the pathname 
will not be included in the list. 

To determine this, pkgadd compares the cksum, modt ime, and 
size fields in the installation software database with the values 
for those fields in your pkgrnap file. If they are the same, it then 
checks the actual file on the installation machine to be certain it 
really has those values. If the field values are the same and are 

Integrated Software Development Guide 



The Installation Scripts 

correct, the pathname for this object will not be included in the 
list. 

2. If no class action script is provided for installation of a particular class, 
the pathnames in the generated list will simply be copied from the 
volume to the appropriate target location. 

3. If there is a class action script, the script is executed. 

The class action script is invoked with standard input containing the list 
generated in Step 1. If this is the last volume of the package and there 
are no more objects in this class, the script is executed with the single 
argument of ENDOFCLASS. 

4. pkgadd performs a content and attribute audit and creates links. 

After successfully executing Step 2 or 3, an audit of both content and 
attribute information is performed on the list of pathnames. pkgadd 
creates the links associated with the class automatically. Detected attri­
bute inconsistencies are corrected for all pathnames in the generated list. 

Removal of Classes 
Objects are removed class-by-class. Classes that exist for a package, but are not 
listed in the CLASSES parameter are removed first (for example, an object 
installed with the installf command). Classes that are listed in the CLASSES 
parameter are removed in reverse order. The following steps outline the system 
actions that occur when a class is removed: 

1. pkgrm creates a pathname list. 

pkgrm creates a list of installed pathnames that belong to the indicated 
class. Pathnames referenced by another package are excluded from the 
list unless their ftype is e (meaning the file should be edited upon instal­
lation or removal). 

If a pathname is referenced by another package, it will not be removed 
from the system. However, it may be modified to remove information 
placed in it by the package being removed. 

Application Software Packaging 8-29 



The Installation Scripts 

2. If there is no class action script, the pathnames are removed. 

If your package has no removal class action script for the class, all of the 
pathnames in the list generated by pkgrm will be removed. 

~ 
You should always assign a class for files with an ftype of e (edit­

NOTE able) and have an associated class action script for that class. Oth­
erwise, they will be removed at this point, even if the pathname is 
shared with other packages. 

3. If there is a class action script, the script is executed. 

pkgrm invokes the class action script with standard input containing the 
list generated in Step 1. 

4. pkgrm performs an audit. 

Upon successful execution of the class action script, knowledge of the 
pathnames is removed from the system unless a pathname is referenced 
by another package. 

The Special System Classes 

The system provides three special classes. They are: 

• The sed class (provides a method for using sed instructions to edit files 
upon installation and removal). 

• The awk class (provides a method for using awk instructions to edit files 
upon installation and removal). 

• The build class (provides a method to dynamically construct a file dur­
ing installation). 

The sed Class Script 

The sed installation class provides a method of installing and removing objects 
that require modification to an existing object on the target machine. A sed 
class action script delivers sed instructions in the format shown in Figure 8-9. 
You can give instructions that will be executed during either installation or 
removal. Two commands indicate when instructions· should be executed. sed 
instructions that follow the ! install command are executed during package 

8-30 Integrated Software Development Guide 



The Installation Scripts 

installation and those that follow the ! remove command are executed during 
package removal. It does not matter in which order the commands are used in 
the file. 

The sed class action script executes automatically at installation time if a file 
belonging to class sed exists. The name of the sed class file should be the same 
as the name of the file upon which the instructions will be executed. 

Figure 8-9: sed Script Format 

* comment, which may appear on any line in the file 
! install 
* sed(l) instructions which are to be invoked during 
* installation of the object 
[address [,address]] function [arguments] 

!remove 
* sed(l) instructions to be invoked during the removal process 
[address [,address]] function [arguments] 

address, function, and arguments are as defined on the sed manual page 
in the User's Reference Manual. 

See Case Studies Sa and Sb for examples of sed class action scripts. 

The awk Class Script 

The awk installation class provides a method of installing and removing objects 
that require modification to an existing object on the target machine. 
Modifications are delivered as awk instructions in an awk class action script. 

The awk class action script executes automatically at the time of installation if a 
file belonging to class awk exists. Such a file contains instructions for the awk 
class script in the format shown in Figure 8-10. Two commands indicate when 
instructions should be executed. awk instructions that follow the! install 
command are executed during package installation and those that follow the 

Application Software Packaging 8-31 



The Installation Scripts 

! remove command are executed during package removal. It does not matter in 
which order the commands are used in the file. 

The name of the awk class file should be the same as the name of the file upon 
which the instructions will be executed. 

Figure 8-10: awk Script Format 

* comment, which may appear on any line in the file 
!install 
* awk(l) program to install changes 

••• (awk program) 

!remove 
# awkl(l) program to remove changes 

••• (awk program) 

The file to be modified is used as input to awk and the output of the script ulti­
mately replaces the original object. Parameters may not be passed to a wk using 
this syntax. 

See Case Study Sa for example a wk class action scripts. 

The build Class Script 

The build class installs or removes objects by executing instructions that create 
or modify the object file. These instructions are delivered as a build class 
action script. 

The name of the instruction file should conform to standard UNIX system nam­
ing conventions. 

The build class action script executes automatically at installation time if a file 
belonging to class build exists. 

A build script must be executable by sh. The script's output becomes the new 
version of the file as it is built. 

8-32 Integrated Software Development Guide 



The Installation Scripts 

See Case Study 5c for an example build class action script. 

The Procedure Script 

The procedure script gives a set of instructions that are performed at particular 
points in installation or removal. Four possible procedure scripts are described 
below. (The Case Studies show examples of procedure scripts.) 

Naming Conventions for Procedure Scripts 

The four procedure scripts must use one of the names listed below, depending 
on when these instructions are to be executed. 

• preinst:.all (executes before class installation begins) 

• post install (executes after all volumes have been installed) 

• preremove (executes before class removal begins) 

• postremove (executes after all classes have been removed) 

Procedure Script Usage Rules 

1. Procedure scripts are executed as uid=root and gid=other. 

2. Each installation procedure script must use the installf command to 
notify pkgadd that it will add or modify a pathname. After all additions 
or modifications are complete, this command should be invoked with the 
-f option to indicate all additions and modifications are complete. (See 
the manual page for the installf command in the Administrator's Refer­
ence Manual and the Case Studies for details and examples.) 

3. Each removal procedure script must use the removef command to notify 
pkgrm that it will remove a pathname. After removal is complete, this 
command should be invoked with the -f option to indicate all removals 
have been completed. (See the manual page for the removef command 
in the Administrator's Reference Manual and the Case Studies for details 
and exa~ples.) 

Application Software Packaging 8-33 



The Installation Scripts 

8-34 

The installf and removef commands must be used because procedure 
scripts are not automatically associated with any pathnames listed in the 
pkgmap file. 

Integrated Software Development Guide 



Basic Steps of Packaging 

The steps you take to create a package will vary depending on how customized 
your package will be. Therefore it is difficult to give you a step-by-step guide 
on how to proceed. Your first step should be to plan your packaging. For 
example, you must decide on which package information files and scripts your 
package needs. 

The following list outlines some of the steps you might use in a packaging 
scenario. The remainder of this chapter gives procedural information for each 
step. 

~ 
This list, and the following procedures, are intended only as guidelines. You 

NOTE still need to read the rest of this chapter to learn what options are available 
to your package, and do your own individualized planning. 

1. Assign a package abbreviation. 

2. Define a package instance. 

3. Place your objects into classes. 

4. Set up a package and its objects as relocatable. 

5. Decide which installation scripts your package needs. 

6. Define package dependencies 

7. Write a copyright message. 

8. Create the pkginfo file. 

You must create a pkginfo file before executing pkgrnk. 

9. Create the prototype file. 

This file is required and must be created before you can execute pkgrnk. 

10. Distribute packages over multiple volumes. 

You msut decide if you want to leave those calculations up to pkgmk or 
customize package placement on multiple volumes. 

11. Create the package using the pkgrnk command. 

Application Software Packaging 8-35 



Basic Steps of Packaging 

This is always the last step of packaging, unless you want to create a 
datastream structure for your package. If so, you must execute 
pkgtrans after creating a package with pkgmk. 

Step 1. Assigning a Package Abbreviation 

Each package installed on UNIX System V Release 4.0 for the Intel386 and com­
patible architectures must have a package abbreviation assigned to it. This 
abbreviation is defined with the PKG parameter in the pkginfo file. 

A valid package abbreviation must meet the criteria defined below: 

• It must start with an alphabetic character. 

• Additional characters may be alphanumeric and contain the two special 
characters + and -. 

• It cannot be longer than nine characters. 

• Reserved names are install, new, and all. 

Step 2. Defining a Package Instance 

The same software package can differ by version or architecture or both. Multi­
ple variations of the same package can reside simultaneously on the same 
machine. Each variation is known as a package instance. pkgadd assigns a 
package identifier to each package instance at the time of installation. The pack­
age identifier is the package abbreviation with a numerical suffix. This 
identifier distinguishes an instance from any other package, including other 
instances of the same package. 

Identifying a Package Instance 

Three parameters defined in the pkginfo file combine to uniquely identify each 
instance. You cannot assign identical values for all three parameters for two 
instances of the. same package installed in the same target environment. These 
parameters are: 

8-36 Integrated Software Development Guide 



Basic Steps of Packaging 

• PKG (defines the software package abbreviation and remains constant for 
every instance of a package) 

• VERSION (defines the software package version) 

• ARCH (defines the software package architecture) 

For example, you might identify two identical versions of a package that run on 
different hardware as: 

Instance #1 

PKG="abbr" 
VERSION="release 1" 
ARCH="AT386" 

Instance #2 

PKG="abbr" 
VERSION="release 1" 
ARCH="AT386" 

Two different versions of a package that run on the same hardware might be 
identified as: 

Instance #1 

PKG="abbr" 
VERSION="release 1" 
ARCH="i386" 

Instance #2 

PKG="abbr" 
VERSION="release 2" 
ARCH="i386" 

The instance identifier, assigned by pkgadd, maps the three pieces of informa­
tion that identify an instance to one name consisting of the package abbreviation 
plus a suffix. The first instance of a package installed on a system does not 
have a suffix and so its instance identifier will be the package abbreviation. 
Subsequent instances receive a suffix, beginning with. 2. An instance is given 
the lowest integer extension available and so may not correspond to the order in 
which a package was installed. For example, if mypkg . 2 was deleted after 
mypkg . 3 was installed, the next instance to be added will be named mypkg. 2. 
Because the number of instances of a particular package can vary from machine 
to machine, the instance identifier can also vary. 

~ 
pkgmk also assigns an instance identifier to a package as it places it on the 

NOTE installation medium if one or more i.nstances of a package already eXists .. 
That identifier bears no relationship to the identifier assigned to the same 
package on the installation machine. 

Application Software Packaging 8-37 



Basic Steps of Packaging 

Accessing the Instance Identifier in Your Scripts 

Because the instance identifier is assigned at the time of installation and will 
differ from machine to machine, you should use the PKGINST system parameter 
to reference your package in your installation scripts. 

Step 3. Placing Objects into Classes 

Installation classes allow a series of actions to be performed on a group of pack­
age objects at the time of their installation or removal. You place objects into a 
class in the prototype file. All package objects must be given a class, although 
the class of none may be used for objects that require no special action. 

The installation parameter CLASSES, defined in the pkginfo file, is a list of 
classes to be installed (including the none class). Objects defined in the proto­
type file that belong to a class not listed in this parameter will not be installed. 
The actions to be performed on a class (other than simply copying the com­
ponents to the installation machine) are defined in a class action script. These 
scripts are named after the class itself. 

For example, to define and install a group of objects belonging to a class named 
classl, follow these steps: 

1. Define the objects belonging to classl as such in their prototype file 
entry. For example, 

f classl /usr/src/myfile 
f classl /usr/src/myfile2 

2. Ensure that the CLASSES parameter in the pkginfo file has an entry for 
classl. For example, 

CLASSES="classl class2 none" 

8-38 Integrated Software Development Guide 



Basic Steps of Packaging 

~ Package objects cannot be removed by class. 

y 
3. Ensure that a class action script exists for this class. An installation script 

for a class named classl would be named i. classl and a removal 
script would be named r. classl. 

If you define a class but do not deliver a class action script, the only 
action taken for that class will be to copy components from the installa­
tion medium to the installation machine. 

In addition to the classes that you can define, the system provides three stan­
dard classes for your use. The sed class provides a method for using sed 
instructions to .edit files upon package installation and removal. The awk class 
provides a method for using a wk instructions to edit files upon package installa­
tion and removal. The build class provides a method to dynamically construct 
a file during package installation. 

Step 4. Making Package Objects Relocatable 

Package objects can be delivered either with fixed locations, meaning that their 
location on the installation machine is defined by the package and cannot be 
changed, or as relocatable, meaning that they have no absolute location require­
ments on the installation machine. The location for relocatable package objects 
is determined during the installation process. 

You can define two types of relocatable objects: collectively relocatable and 
individually relocatable. All collectively relocatable objects are placed relative to 
the same directory once the relocatable root directory is established. Individu­
ally relocatable objects are not restricted to the same directory location as collec­
tively relocatable objects. 

Application Software Packaging 8-39 



Basic Steps of Packaging 

Defining Collectively Relocatable Objects 

Follow these steps to define package objects as collectively relocatable: 

1. Define a value for the BASEDIR parameter. 

Put a definition for the BASEDIR parameter in your pkginfo file. This 
parameter names a directory where relocatable objects will be placed by 
default. If you supply no value for BASEDIR, no package objects will be 
considered as collectively relocatable. 

2. Define objects as collectively relocatable in the prototype file. 

An object is defined as collectively relocatable by using a relative path­
name in its entry in the prototype file. A relative pathname does not 
begin with a slash. For example, src/myfile is a relative pathname, 
while / src/myfile is a fixed pathname. 

~ A package can deliver some objects with relocatable locations and y others with fixed locations. 

All objects defined as collectively relocatable will be put under the same root 
directory on the installation machine. The root directory value will be one of 
the following (and in this order): 

• the installer's response to pkgadd when asked where relocatable objects 
should be installed 

• the value of BASEDIR as it is defined in the installer's admin file (the 
BASEDIR value assigned in the admin file overrides the value in the 
pkginfo file) 

• the value of BASEDIR as it is defined in your pkginfo file (this value is 
used only as a default in case the other two possibilities have not supplied 
a value) 

8-40 Integrated Software Development Guide 



Basic Steps of Packaging 

Defining Individually Relocatable Objects 

A package object is defined as individually relocatable by using a variable in its 
pathname definition in the prototype file. Your request script must query the 
installer on where such an object should be placed and assign the response 
value to the variable. pkgadd will expand the pathname based on the output of 
your request script at the time of installation. Case Study 1 shows an example 
of the use of variable pathnames and the request script needed to solicit a value 
for the base directory. 

Step 5. Writing Your Installation Scripts 

You should read the section entitled "The Installation Scripts" to learn what 
types of scripts you can write and how to write them. You can also look at the 
Case Studies to see how the various scripts can be utilized and to see examples. 

Remember, you are not required to write any installation scripts for a UNIX 
System V Release 4.0 package for the Intel386 and compatible architectures. The 
pkgadd command performs all of the actions necessary to install your package, 
using the information you supply with the package information files. Any ins­
tallation script that you write will be used to perform customized actions 
beyond those executed by pkgadd. 

~ Be certain that every installation script being delivered with your package y has an entry in the prototype file. The file type should be i. 

pkgadd assures that there is enough disk space to install your package, based 
on the object definitions in the pkgma p file. However, sometimes your package 
will require additional disk space beyond that needed by the objects defined in 
the pkgmap file. For example, your package might create a file during installa­
tion. pkgadd checks for additional space when you deliver a space file with 
your package. Refer to the section entitled "The space File" earlier in this 
chapter or the space manual page in the Administrator's Reference Manual for 
details on the format of this file. 

Application Software Packaging 8·41 



Basic Steps of Packaging 

Step 6. Defining Package Dependencies 

Package dependencies and incompatibilities can be defined with two of the 
optional package information files. Delivering a compver file lets you name 
versions of your package that are compatible with the one being installed. 
Delivering a depend file lets you define three types of dependencies associated 
with your package. These dependency types are: 

• a prerequisi te package (meaning your package depends on the existence 
of another package) 

• a reverse dependency (meaning another package depends on the existence 
of your package) 

t? 
This type should only be used when a pre-UNIX System V Release 

NOTE 4.0 package for the Intel386 and comatible architectures cannot 
deliver a depend file but relies on the newer package. 

• an incompatible package (meaning your package is incompatible with this 
one) 

Refer to the sections entitled "The depend File" and "The compver File" ear­
lier in this chapter, or the manual pages depend and compver in the 
Administrator's Reference Manual, for details on the formats of these files. 

~ Be certain that your depend and compver files have entries in the proto­y type file. The file type should be i (for package information file). 

Step 7. Writing a Copyright Message 

To deliver a copyright message, you must create a copyright file named copy­
r igh t. The message will be displayed exactly as it appears in the file (no for­
matting) as the package is being installed and as it is being removed. Refer to 
the section entitled "The copyright File" earlier in this chapter or the copy­
right manual page in the Administrator's Reference Manual for more detail. 

8-42 Integrated Software Development Guide 



Basic Steps of Packaging 

Be certain that your copyright file has an entry"in the prototype file. Its 
file type should be i (for package information file). 

Step 8. Creating the pkginfo File 

The pkginfo file establishes values for parameters that describe the package 
and is a required package component. The format for an entry in this file is: 

PARAM="value" 

PARAM can be any of the 19 standard parameters described on the pkginfo 
manual page in the Administrator's Reference Manual. You can also create your 
own package parameters simply by assigning a value to them in this file. Your 
parameter names must begin with a capital letter followed by either upper or 
lowercase letters. 

The following five parameters are required: 

• PKG (package abbreviation) 

!!!!I NAME (full package name) 

• ARCH (package architecture) 

• VERS ION (package version) 

• CATEGORY (package category) 

The CLASSES parameter dictates which classes are installed and the order of 
installation. Although the parameter is not required, no classes will be installed 
without it. Even if you have no class action scripts, the none class must be 
defined in the CLASSES parameter before objects belonging to that class will be 
installed. 

Application Software Packaging 8-43 



Basic Steps of Packaging 

You can choose to define the value of CLASSES with a request script and 
not to deliver a value in the pkginfo file. 

Step 9. Creating the prototype File 

The prototype file is a list of package contents and is a required package com­
ponent. 

You can create the prototype file by using any editor and following the for­
mat described in the section entitled "The prototype File" and on the proto­
type manual page in the Administrator's Reference Manual. You can also use the 
pkgproto command to create one automatically. 

Creating the File Manually 

While creating the prototype file, you must at the very least supply the fol­
lowing three pieces of information about an object: 

• The object's type 

All of the possible object types are defined on the prototype manual 
page in the Administrator's Reference Manual. f (for a data file), 1 (for a 
linked file), and d (for a directory) are examples of object types. 

• The object's class 

All objects must be assigned a class. If no special handling is required, 
you can assign the class none. 

• The object's pathname 

8-44 

The pathname can define a fixed pathname such as 
/mypkg/src/filename, a collectively relocatable pathname such as 
src/filename, and an individually relocatable pathname such as 
$BIN/filename or /opt/$PKGINST/filename. 

Integrated Software Development Guide 



Basic Steps of Packaging 

Creating Links 

To define links you must do the following in the prototype entry for the 
linked object: 

1. Define its ftype as 1 (a link) or s (a symbolic link). 

2. Define its pathname with the format pathl=path2 where pathl is the desti­
nation and path2 is the source file. 

Mapping Development Path names to Installation Path names 
If your development area is in a different structure than you want the package 
to be in on the installation machine, you can use the prototype entry to map 
one pathname to the other. You use the pathl=path2 format for the pathname as 
is used to define links. However, if the ftype is not defined as 1 or s, pathl is 
interpreted as the pathname you want the object to have on the installation 
machine, and path2 is interpreted as the pathname the object has on your 
development machine. 

For example, your project might require a development structure that includes a 
project root directory and numerous s rc directories. However, on the installa­
tion machine you might want all files to go under a package root directory and 
for all src files to be in one directory. So, a file on your machine might be 
named /projdir/srcA/filename. If you want that file to be named 
/pkgroot/src/filename on the installation machine; your prototype entry 
for this file might look like this: 

f classl /pkgroot/src/filename=/projdir/srcA/filename 

Defining Objects for pkgadd to Create 

You can use the prototype file to define objects that are not actually delivered 
on the installation medium. pkgadd creates objects with the following ftypes 
if they do not already exist at the time of installation: 

• d (directories) 

• x (exclusive directories) 

• 1 (linked files) 

Application Software Packaging 8-45 



Basic Steps of Packaging 

• s (symbolically linked files) 

• p (named pipes) 

• c (character special device) 

• b (block special device) 

To request that one of these objects be created on the installation machine, you 
should add an entry for it in the prototype file using the appropriate ftype. 

For example, if you want a directory created on the installation machine, but do 
not want to deliver it on the installation medium, an entry for the directory in 
the prototype file is sufficient. An entry such as the one shown below will 
cause the directory to be created on the installation machine, even if it does not 
exist on the installation medium. 

d none /directoryA 644 root other 

Using the Command Lines 
There are four types of commands that you can put into your prototype file. 
They allow you to do the following: 

• Nest prototype files (the include command) 

• Define directories for pkgmk to look in when attempting to locate objects 
as it creates the package (the search command) 

• Set a default value for mode owner group (the default command). If 
all or most of your objects have the same values, using the default com­
mand will keep you from having to define these values for every entry in 
the prototype file. 

• Assign a temporary value for variable pathnames to tell pkgmk where to 
locate these relocatable objects on your machine (with param=value) 

Creating the File Using pkgproto 

The pkgproto command scans your directories and generates a prototype 
file. pkgproto cannot assign ftypes of v (volatile files), e (editable files), or x 
(exclusive directories). You can edit the prototype file and add these ftypes, 
as well as perform any other fine-tuning you require (for example, adding com­
mand lines or classes). 

8-46 Integrated Software Development Guide 



Basic Steps of Packaging 

pkgproto writes its output to the standard output. To create a file, you should 
redirect the output to a file. The examples shown in this section do not perform 
redirection in order to show you what the contents of the file would like. 

Creating a Basic prototype 
The standard format of pkgproto is 

pkgproto path [ ... ] 

where path is the name of one or more paths to be included in the prototype 
file. If path is a directory, then entries are created for the contents of that direc­
tory as well. 

With this form of the command, all objects are placed into the none class and 
are assigned the same mode owner group as exists on your machine. The fol­
lowing example shows pkgproto being executed to create a file for all objects 
in the directory /usr/bin: 

$ pkgproto /usr/bin 
d none /usr/bin 755 bin bin 
f none /usr/bin/filel 755 bin bin 
f none /usr/bin/file2 755 bin bin 
f none /usr/bin/file3 755 bin bin 
f none /usr/bin/file4 755 bin bin 
f none /usr/bin/file5 755 bin bin 
$ 

To create a prototype file that contains the output of the example above, you 
would execute pkgproto /usr/bin > prototype 

~ 
If no pathnames are supplied when executing Pk9P. roto, standard in (stdin) 

NOTE is assumed to be a list of paths. Refer to the pkgproto manual page in the 
Administrator's Reference Manual for details on this usage. 

Assigning Objects to a Class 
Yoti can use the -c class option of pkgproto to assign objects to a class other 
than none. When using this option, you can only name one class. To define 
multiple classes in a prototype file created by pkgproto, you must edit the 
file after its creation. 

Application Software Packaging 8-47 



Basic Steps of Packaging 

The following example is the same as above except the objects have been 
assigned to c 1 ass 1. 

$ pkgproto -c classl /usr/bin 
d classl /usr/bin 755 bin bin 
f classl /usr/bin/filel 755 bin bin 
f classl /usr/bin/file2 755 bin bin 
f classl /usr/bin/file3 755 bin bin 
f classl /usr/bin/file4 755 bin bin 
f classl /usr/bin/file5 755 bin bin 
$ 

Renaming Pathnames with pkgproto 
You can use a pathl=path2 format on the pkgproto command line to give an 
object a different pathname in the prototype file than it has on your machine. 
You can, for example, use this format to define relocatable objects in a proto­
type file created by pkgproto. 

The following example is like the others shown in this section, except that the 
objects are now defined as bin (instead of /usr/bin) and are thus relocatable. 

$ pkgproto -c classl /usr/bin=bin 
d classl bin 755 bin bin 
f classl bin/filel 755 bin bin 
f classl bin/file2 755 bin bin 
f classl bin/file3 755 bin bin 
f classl bin/file4 755 bin bin 
f classl bin/file5 755 bin bin 
$ 

pkgproto and Links 
pkgproto detects linked files and creates entries for them in the prototype 
file. If multiple files are linked together, it considers the first path encountered 
the source of the link. 

8-48 Integrated Software Development Guide 



Basic Steps of Packaging 

If you have symbolic. links established on your machine but want to generate an 
entry for that file with an ftype of f (file), then use the - i option of 
pkgproto. This option creates a file entry for all symbolic links. 

Step 10. Distributing Packages over Multiple Volumes 

As packager, you no longer need to worry about placing package components 
on multiple volumes. pkgmk performs the calculations and actions necessary to 
organize a multiple volume package. As pkgmk creates your package, it will 
prompt you to insert a new volume as often as necessary to distribute the com­
plete package over multiple volumes. 

However, you can use the optional part field in the prototype file to define 
in which part you want an object to be placed. A number in this field overrides 
pkgmk and forces the placement of the component into the part given in the 
field. Note again that there is a one-to-one correspondence between parts and 
volumes for removable media formatted as file systems. 

Step 11. Creating a Package with pkgmk 

To package your software, execute 

pkgmk [-d device] [-f filename] 

You must use the -d option to name the device onto which the package should 
be placed. device can be a directory pathname or the identifier for a disk. The 
default device is the installation spool directory. 

pkgmk looks for a file named prototype. You can use the -f option to specify 
a package contents file named something other than prototype. This file must 
be in the prototype format. 

For example, executing pkgmk -d / dev / disket te creates a package based on 
a file named prototype in your current working directory. The package will 
be formatted and copied to the diskette in the device /dev/diskette. 

Application Software Packaging 8-49 



Basic Steps of Packaging 

Creating a Package Instance for pkgmk 
pkgmk. will create a new instance of a package if one already exists on the 
device to which it is writing. It will assign the package an instance identifier. 
Use the -0 option of pkgmk. to overwrite an existing instance of a package 
rather than to create a new one. 

Helping pkgmk Locate Package Contents 
The following list describes situations that might require supplying pkgmk. with 
extra information and an explanation of how to do so: 

• Your development area is not structured in the same way that you want 
your package structured. 

You should use the pathl=path2 pathname format in your prototype file. 

• You have relocatable objects in your package. 

You can use the pathl=path2 pathname format in your prototype file, 
with pathl as a relocatable name and path2 a full pathname to that object 
on your machine. 

You can use the search command in your prototype file to tell pkgmk. 
where to look for objects. 

You can use the -b basedir option of pkgmk. to define a pathname to 
prepend to relocatable object names while creating the package. For 
example, executing 

pkgmk. -d /dev/diskette -b usr2/myhome/reloc 

would look in the directory /usr2/myhome/reloc for any relocatable 
object in your package. 

• You have variable object names. 

8-50 

You can use the search command in your prototype file to tell pkgmk. 
where to look for objects. 

You can use the param="value" command in your prototype file to give 
pkgmk. a value to use for the object name variables as it creates your pack­
age. 

Integrated Software Development Guide 



Basic Steps of Packaging 

You can use the variable=value option on the pkgmk command line to 
define a temporary value for variable names. 

• The root directory on your machine differs from the root directory 
described in the prototype file (and that will be used on the installation 
machine). 

You can use the - r rootpath option to tell pkgmk to ignore the destination 
pathnames in the prototype file. Instead, pkgmk prepends rootpath to 
the source pathnames in order to find objects on your machine. 

Step 12. Creating a Package with pkgtrans 

To perform one of these translations, execute 

pkgt rans devicel device2 [pkgl [pkg2 [ . . . ]]] 

where devicel is the name of the device where the package currently resides, 
device2 is the name of the device onto which the translated package will be 
placed, and [pkg1[pkg2 [ ... ]]] is one or more package names. If no package 
names are given, all packages residing in devicel will be translated and placed 
on device2. 

~ If more than one instance of a package resides on devicel, you must use an y instance identnier for pkg. 

Creating a Datastream Package 

Creating a datastream package requires two steps: 

1. Create a package using pkgmk. 

Use the default device (the installation spool directory) or name a direc­
tory into which the package should be placed. pkgmk creates a package 
in a fixed directory format. 

2. After the software is formatted in fixed directory format and is residing in 
a spool directory, execute pkgtrans. 

Application Software Packaging 8-51 



Basic Steps of Packaging 

This command translates the fixed directory format to the data stream for­
mat and places the datastream on the specified medium. 

For example, the two steps shown below will create a datastream package. 

1. pkgmk -d spooldir 

(Formats a package into a fixed directory structure and places it in a 
directory named spooldir) 

2. pkgtrans spooldir 9track packagel 

(Translates the fixed directory format of packagel residing in the direc­
tory spooldir into a datastream format. Places the datastream package 
on the medium in a device named 9track.) 

OR 

3. pkgtrans -s spooldir diskette packagel 

(Similar to number 2 above, except that it places the datastream package 
on the medium in a device named diskette.) 

Translating a Package Instance 
When an instance of the package being translated already exists on device2, 
pkgtrans will not perform the translation. You can use the -0 option to tell 
pkgtrans to overwrite any existing instances on the destination device and the 
-n option to tell it to create a new instance if one already exists. 

8-52 Integrated Software Development Guide 



Package Installation Case Studies 

This section presents packaging case study in order to show packaging tech­
niques such as installing objects conditionally, determining at run time how 
many files to create, and how to modify an existing data file during package 
installation and removal. 

Each case begins with a description of the study, followed by a list of the pack­
aging techniques it uses and a narrative description of the approach taken when 
using those techniques. After this material, sample files and scripts associated 
with the case study are shown. 

Application Software Packaging 8-53 



Package Installation Case Studies 

Case #1 

This package has three types of objects. The installer may choose which of the 
three types to install and where to locate the objects on the installation machine. 

Techniques 

This case study shows examples of the following techniques: 

• using variables in object pathnames 

• using the request script to solicit input from the installer 

• setting conditional values for an installation parameter 

Approach 

To set up selective installation, you must: 

• Define a class for each type of object which can be installed. 

In this case study, the three object types are the package executables, the 
manual pages, and the emacs executables. Each type has its own class: 
bin, man, and emacs, respectively. Notice in the prototype file, shown 
in Figure 8-12, that all of the object files belong to one of these three 
classes. 

• Initialize the CLASSES parameter in the pkginfo file as null. 

Normally when you define a class, you want the CLASSES parameter to 
list all classes that will be installed. Otherwise, no objects in that class 
will be installed. For this example, the parameter is initially set to null. 
CLASSES will be given values by the request script, based on the package 
pieces chosen by the installer. This way, CLASSES is set to only those 
object types that the installer wants installed. Figure 8-11 shows the 
pkginfo file associated with this package. Notice that the CLASSES 
parameter is set to null. 

• Define object pathnames in the prototype file with variables. 

8-54 

These variables will be set by the request script to the value which the 
installer provides. pkgadd resolves these variables at installation time 
and so knows where to install the package. 

Integrated Software Development Guide 



Package Installation Case Studies 

The three variables used in this example are: 

o $N<=:MPBIN (defines location for object executables) 

o $NCMPMAN (defines location for manual pages) 

o $EMACS (defines location for emacs executables) 

Look at the example prototype file (Figure 8-12) to see how to define 
the object pathnames with variables . 

• Create a request script to ask the installer which parts of the package 
should be installed and where they should be placed. 

The request script for this package, shown in Figure 8-13, asks two ques­
tions: 

o Should this part of the package be installed? 

When the answer is yes, then the appropriate class name is added to 
the CLASSES parameter. For example, when the question "Should 
the manual pages associated with this package be installed" is 
answered yes, the class man is added to the CLASSES parameter. 

o If so, where should that part of the package be placed? 

The appropriate variable is given the value of the response to this 
question. In the manual page example, the variable $NCMPMAN is set 
to this value. 

These two questions are repeated for each of the three object types. 

At the end of the request script, the parameters are made available to the 
installation environment for pkgadd and any other packaging scripts. In 
the case of this example, no other scripts are provided. 

When looking at the request script for this example, notice that the ques­
tions are generated by the data validation tools ckyorn and ckpath. 

Application Software Packaging 8-55 



Package Installation Case Studies 

Sample Files 

Figure 8-11: Case #1 pkginfo File 

PKG='nanp' 
NAME='NCMP Utilities' 
CATEGORY='applications,tools' 
ARCH='3b2' 
VERSION='Release 1.0, Issue 1.0' 
CLASSES=' , 

Figure 8-12: Case #1 prototype File 

8-56 

i pkginfo 
i request 
x bin $NCMPBIN 0755 root other 
f bin $NCMPBIN/dired=/usr/nanp/bin/dired 0755 root other 
f bin SNCMPBIN/less=/usr/ncmp/bin/less 0755 root other 
f bin SNCMPBIN/ttype=/usr/nanp/bin/ttype 0755 root other 
f emacs $NCMPBIN/emacs=/usr/ncmp/bin/emacs 0755 root other 
x emacs $EMACS 0755 root other 
f emacs $EMACS/ansii=/usr/ncmp/lib/emacs/macros/ansii 0644 root other 
f emacs $EMACS/box=/usr/nanp/lib/emacs/macros/box 0644 root other 
f emacs $EMACS/crypt=/usr/ncmp/lib/emacs/macros/crypt 0644 root other 
f emacs $EMACS/draw=/usr/ncmp/lib/emacs/macros/draw 0644 root other 
f emacs $EMACS/mail=/usr/ncmp/lib/emacs/macros/mail 0644 root other 
f emacs $NCMPMAN/man1/emacs.1=/usr/nanp/man/man1/emacs.1 0644 root other 
d man $NCMPMAN 0755 root other 
d man $NCMPMAN/man1 0755 root other 
f man $NCMPMAN/man1/dired.1=/usr/ncmp/man/man1/dired.1 0644 root other 
f man $NCMPMAN/man1/ttype.1=/usr/ncmp/man/man1/ttype.1 0644 root other 
f man $NCMPMAN/man1/less.1=/usr/ncmp/man/man1/less.1 0644 inixmr other 

Integrated Software Development Guide 



Package Installation Case Studies 

Figure 8-13: Case Study #1 Request Script 

trap 'exit 3' 15 

* determine if and where general executables should be placed 
ans='ckyorn -d y \ 

-p "Should executables included in this package be installed" 
, II exit $? 
if [ "$ans" = y I 
then 

CLASSES="$CLASSES bin" 
NCMPBIN='ckpath -d /usr/ncmp/bin -aoy \ 

-p "Where should executables be installed" 
, II exit $? 

f1 

# determine if emacs editor should be installed, and if it should 
* where should the associated macros be placed 
ans='ckyorn -d y \ 

-p "Should emacs editor included in this package be installed" 
, II exit $o? 
if [ "$ans" = y ) 
then 

CLASSES="$CLASSES emacs" 
EMACS='ckpath -d /usr/ncmp/lib/emacs -aoy \ 

-p "Where should emacs macros be installed" 
, II exit $? 

f1 

* determine if and where manual pages should be installed 
ans='ckyorn \ 

-d Y \ 
-p "Should manual pages associated with this package be installed" 

, II exit $? 
if [ "$ans" = y I 
then 

CLASSES="$CLASSES man" 
NCMPMAN='ckpath -d /usr/ncmp/man -aoy \ 

-p "Where should manual pages be installed" 
, I I exit $? 

fi 

* make parameters available to installation service, 
* and so to any other packaging scripts 
cat >$1 «! 
CLASSES='$CLASSES' 

Application Software Packaging 

(continued on next page) 

8-57 



Package Installation Case Studies 

Figure 8-13: Case Study #1 Request Script (continued) 

8-58 

NCMPBIN='$NCMPBIN' 
EMACS=' $EMACS' 

NCMPMAN=' $NCMPMAN' 
! 

exit 0 

Integrated Software Development Guide 



Package Installation Case Studies 

Case #2 

This package installs a driver. A set of device nodes associated with that driver 
needs to be created, but the installer will decide how many nodes to create. 
After installation, the system needs to be rebooted so that the driver is properly 
configured. 

Techniques 
This case study shows examples of the following techniques: 

• installing a driver with a postinstall script 

• using an exit code to reboot the system 

• allowing the installer to define how many device nodes to create at instal­
lation time 

Approach 
To install a driver at the time of installation, you must: 

• Include the object and master files for the driver in the prototype file. 

In this example, the object file for the driver is a data file named qz . o. 
This is the file on which the standard UNIX driver install command, 
drvinstall, operates. The master. d file is named qz and is used by 
drvinstall to help configure the driver. 

Looking at Figure 8-14 (the prototype file for this example), notice the 
following: 

o Since no special treatment is required for these files, you can put 
them into the standard none class. The CLASSES parameter is set to 
none in the pkginfo file (Figure 8-15). 

o The pathname for qz .0 begins with the variable $BOOTD IR. This 
variable will be set in the request script and allows the administrator 
to decide where the object file should be installed. The default direc­
tory will be /boot. 

Application Software Packaging 8-59 



Package Installation Case Studies 

o There is an entry for the postinstall script (the script that will per­
form the driver installation). 

• Create a request script. 

The request script, shown in Figure 8-16, has two major functions: 

o to determine how many device nodes to create for this driver 

This is accomplished by questioning the installer and then assigning 
the answer to the parameter $NDEVICES. Notice that the data vali­
dation tool ckrange is used and that it limits the response to a 
number between 0 and 32. It sets the default number to 8. 

If the installer chooses not to install any devices, the CLASSES 
parameter is set to null. This means that no classes are defined and 
therefore no objects will be installed. 

o to determine where the installer wants the driver objects to be 
installed 

This is accomplished by questioning the installer and assigning the 
answer to the $BOOTDIR parameter. 

The script ends with a routine to make the three parameters CLASSES, 
NDEVICES, and BOOTDIR available to the installation environment and so 
to the postinstall script. 

• Create a postinstall script. 

8-60 

The postinstall script, shown in Figure 8-17, actually performs the driver 
installation. It is executed after the two files qz and qz . 0 have been 
installed. The postinstall shown for this example performs the following 
actions: 

o checks to see if any devices should be installed (if not, it exits) 

o creates the / dev / qz directory using the installf command (this 
directory could also be created by putting an entry for it in the pro­
totype file) 

o executes the drvinstall command using the two files installed 
with this package (the major number is returned to the script at this 
time) 

Integrated Software Development Guide 



Package Installation Case Studies 

o calculates the minor numbers for installed devices 

o installs the device using installf 

o creates a link for the device also using installf 

o finalizes the installation using installf -f 

• Reboot the system upon installation. 

This is accomplished by exiting from the postinstall script with an exit 
code of 10, meaning that the system should be rebooted upon completing 
an error-free installation. 

Sample Files 

Figure 8-14: Case #2 prototype File 

1 pkginfo 
i request 
i postinstall 
f none $BOOTDIR/qz.o 444 root root 
f none /etc/master.d/qz 444 root root 

Figure 8-15: Case #2 pkginfo File 

PKG='qzdev' 
NAME='qz Devices' 
CATEGORY='system' 
ARCH='3b2' 
VERSION='Software Issue *19' 
ClASSES='none' 

Application Software Packaging 8·61 



Package Installation Case Studies 

Figure 8-16: Case #2 Request Script 

8-62 

trap 'exit 3' 15 

* determine if and where general executables should be placed 
NDEVICES='ckrange -10 -u32 -d 8 \ 

-p "How many qz devices do you want configured" 
, II exit $1 

if user chose to install no devices, don't install anything 
if [ $NDEVICES -eq 0 1 
then 

else 

fi 

CLASSES= 

* determine where driver object should be placed; location 
* must be an absolute pathname which is an existing directory 
BOOTDIR='ckpath -aoy -d /boot \ 

-p "Where do you want driver object installed" 
, II exit $1 

* make parameters available to installation service, * and so to any other packaging scripts 
cat >$1 «! 
CLASSES='$CLASSES' 
NDEVICES='$NDEVICES' 
BOOTDIR='$BOOTDIR' 

exit 0 

Integrated Software Development Guide 



Package Installation Case Studies 

Figure 8-17: Case #2 Postlnstall Script 

PKGINST parameter provided by installation service 
NDEVICES parameter provided by 'request' script 
BOOTDIR parameter provided by 'request' script 

$NDEVICES -eq 0 I && exit 0 

err code=l j an error is considered fatal 

* need to create the /dev/qz directory 
installf $PKGINST /dev/qz d 755 root sys I I 

exit $err_code 

# install the driver object and determine major device number 
majno='/usr/sbin/drvinstall -m /etc/master.d/qz -d $BOOTDIR/qz.o -v1.0' I I 

exit $err_code 

i=OO 
while $i -It $NDEVICES 
do 

done 

for in 0 1 2 3 5 6 7 
do 

done 

* calculate minor number based on loop variables 
minno='expr $i \* 8 + $j' I I exit $err_code 

install character device with appropriate major/minor 
j device numbers and correct permissions (installf will 
# do all of work here - you need only provide the info!) 
installf $PKGINST /dev/qz/$i$j c $majno $minno 644 root sys I I 

exit $err_code 

create a link from /dev/qz/xx to /dev/qzxx 
installf $PKGINST /dev/qz$i$j=/dev/qz/$i$j I I 

exit $err_code 

i='expr $i + l' 

add leading zero if necessary 
[ $i -le 9 I && i="O$i" 

j finalize installation; the installf command will now 
j attempt to create the links that was requested above 
installf -f $PKGINST I I exit $err_code 

exit 10 * requests a reboot from user 

~ ~ 

Application Software Packaging 8-63 



Package Installation Case Studies 

Case #3 

This study creates a database file at the time of installation and saves a copy of 
the database when the package is removed. 

Techniques 
This case study shows examples of the following techniques: 

• using classes and class action scripts to perform special actions on dif­
ferent sets of objects 

• using the space file to inform pkgadd that extra space will be required 
to install this package properly 

• using the installf command 

Approach 
To create a database file at the time of installation and save a copy on removal, 
you must: 

• Create three classes. 

This package requires three classes: 

o the 'standard class of none (contains a set of processes belonging in 
the subdirectory bin) 

o the aclmin class (contains an executable file conf ig and a directory 
containing data files) 

o the cfgdata class (contains a directory) 

• Make the package collectively relocatable. 

Notice in the prototype file (Figure 8-19) that none of the pathnames 
begin with a slash or a variable. This indicates that they are collectively 
relocatable. 

• Calculate the amount of space the database file will require and create a 
space file to deliver with the package. This file notifies pkgadd that this 
package requires extra space and how much extra space. Figure 8-20 
shows the space file for this package. 

8-64 Integrated Software Development Guide 



Package Installation Case Studies 

• Create an installation class action script for the admin class. 

The script, shown in Figure 8-21, initializes a database using the data files 
belonging to the admin class. To perform this task, it: 

o copies the source data file to its proper destination 

o creates an empty file named config .data and assigns it to a class 
of cfgdata 

o executes the binI config command (delivered with the package 
and already installed) to populate the database file config. data 
using the data files belonging to the admin class 

o executes installf -f to finalize installation 

No special action is required for the admin class at removal time so no 
removal class action script is created. This means that all files and direc­
tories in the admin class will simply be removed from the system . 

• Create a removal class action script for the cfgdata class. 

The script, shown in Figure 8-22, makes a copy of the database file before 
it is deleted during package removal. No special action is required for 
this class at installation time, so no installation class action script is 
needed. 

Remember that the input to a removal script is a list of pathnames to 
remove. Pathnames always appear in lexical order with the directories 
appearing first. This script captures directory names so that they can be 
acted upon later and copies any files to a directory named I tmp. When 
all of the pathnames have been processed, the script then goes back and 
removes all directories and files associated with the cfgdata class. 

The outcome of this removal script is to copy config. data to Itmp and 
then remove the config. data file and the data directory. 

Application Software Packaging 8-65 



Package Installa.tion Case Studies 

Sample Files 

Figure 8-18: Case #3 pkginfo File 

PKG='krazy' 
NAME='KrAzY Applications' 
CATEGORY='applications' 
ARCH='3b2' 
VERSION='Version l' 
CLASSES='none cfgdata admin' 

Figure 8-19: Case #3 prototype File 

8-66 

i pkginfo 
i request 
i i.admin 
i r.cfgdata 
d none bin 555 root sys. 
f none bin/processl 555 root other 
f none bin/process2 555 root other 
f none bin/process3 555 root other 
f admin bin/config 500 root sys 
d admin cfg 555 root sys 
f admin cfg/datafilel 444 root sys 
f admin cfg/datafile2 444 root sys 
f admin cfg/datafile3 444 root sys 
f admin cfg/datafile4 444 root sys 
d cfgdata data 555 root sys 

Integrated Software Development Guide 



Figure 8-20: Case #3 space File 

* extra space required by confiq data which is 
* dynamically loaded onto the system 
data 500 1 

Application Software Packaging 

Package Installation Case Studies 

8-67 



Package Installation Case Studies 

Figure 8-21: Case #3 Installation Class Action Script (I.admln) 

8-68 

PKGINST parameter provided by installation service 
BASEDIR parameter provided by installation service 

while read src dest 
do 

done 

the installation service provides '/dev/null' as the 
pathname for directories, pipes, special devices, etc 
which it knows how to create 
"$src" = /dev/null 1 && continue 

cp $src $dest II exit 2 

* if this is the last time this script will 
# be executed during the installation, do additional 
# processing here 
if [ "$1" ~ ENDOFCLASS 1 
then 

fi 
exit 0 

our config process will create a data file based on any changes 
f made by installing files in this class; make sure 
* the data file is in class 'cfgdata' so special rules can apply 
# to it during package removal 
installf -c cfgdata $PKGINST $BASEDIR/data/config.data f 444 root sys I I 

exit 2 
$BASEDIR/bin/config > $BASEDIRIdata/config.data I I 

exit 2 
installf -f -c cfgdata $PKGINST I I 

exit 2 

Integrated Software Development Guide 



Package Install~tlon Case Studies 

Figure 8·22: Case #3 Removal Class Action Script (r.cfgdata) 

* the product manager for this package has suggested that 
* the configuration data is so valuable that it should be 
* backed up to /tmp before it is removed! 

while read path 
do 

done 

pathnames appear in lexical order, thus directories 
will appear first; you can't operate on directories 
until done, so just keep track of names until 

* later 
if [ -d Spath 1 
then 

fi 

dirlist="$dirlist $path" 
continue 

mv Spath /tmp I I exit 2 

if [ -n "$dirlist" 1 
then 

fi 
exit 0 

rm -rf $dirlist I I exit 2 

Application Software Packaging 8-69 



Package Installation Case Studies 

Case #4 

This package uses the optional packaging files to define package compatibilities 
and dependencies and to present a copyright message during installation. 

Techniques 

This case study shows examples of the following techniques: 

• using the copyright file 

• using the compver file 

• using the depend file 

Approach 

To meet the requirements in the description, you must: 

• Create a copyright file. 

A copyright file contains the ASCII text of a copyright message. The 
message shown in Figure 8-24 will be displayed on the screen during 
package installation (and also during package removal). 

• Create a compver file. 

The pkginfo file shown in Figure 8-23 defines this package version as 
version 3.0. The compver file, shown in Figure 8-25, defines version 3.0 
as being compatible with versions 2.3, 2.2, 2.1, 2.1.1, 2.1.3 and 1.7. 

• Create a depend file. 

Files listed in a depend file must already be installed on the system when 
a packagei~ installed. The example shown in Figure 8-26 has 11 packages 
which must already be on the system at installation time. 

Sample Files 

8-70 Integrated Software Development Guide 



Figure 8·23: Case #4 pkginfo File 

PKG=' case4' 
NAME='Case Study #4' 
CATEGORY='application' 
ARCH='3b2' 
VERSION='Version 3.0' 
CLASSES='none' 

Figure 8·24: Case #4 copyright File 

Copyright (c) 1989 AT&T 
All Rights Reserved. 

Package Installation Case Studies 

THIS PACKAGE CONTAINS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T. 

The copyright notice above does not evidence any 
actual or intended publication of such source code. 

Figure 8·25: Case #4 compver File 

Version 2.3 
Version 2.2 
Version 2.1 
Version 2.1.1 
Version 2.1.3 
Version 1.7 

Application Software Packaging 8·71 



Package Installation Case Studies 

8-72 Integrated Software Development Guide 



Package Installation Case Studies 

Case #5a 

This study modifies a file which exists on the installation machine during pack­
age installation. It uses one of three modification methods. The other two 
methods are shown in Cases 5b and 5c. The file modified is / sb in / in itt abo 

Techniques 
This case study shows examples of the following techniques: 

• using the sed class 

• using a postinstall script 

Approach 
To modify /sbin/inittab at the time of installation, you must: 

• Add the sed class script to the prototype file. 

The name of a script must be the name of the file that will be edited. In 
this case, the file to be edited is / sbin/ init tab and so our sed script is 
named / sbin/ ini t tab. There are no requirements for the mode owner 
group of a sed script (represented in the sample prototype by question 
marks). The file type of the sed script must be e (indicating that it is edit­
able). The prototype file for this case study is shown in Figure 8-27. 

• Set the CLASSES parameter to include 4sed. 

In the case of the example shown in Figure 8-28, sed is the only class 
being installed. However, it could be one of any number of classes. 

• Create a sed class action script. 

You cannot deliver a copy of /sbin/inittab that looks the way you 
need for it to, since / sbin/ inittab is a dynamic file and you have no 
way of knowing how it will look at the time of package installation. 
Using a sed script allows us to modify the /sbin/inittab file during 
package installation. 

As already mentioned, the name of a sed script should be the same as the 
name of the file it will edit. A sed script contains sed commands to 
remove and add information to the file. See Figure 8-29 for an example 
sed script. 

Application Software Packaging 8-73 



Package Installation Case Studies 

• Create a postinstall script. 

You need to infonn the system that / sbin/ inittab has been modified 
by executing in it q. The only place you can perfonn that action in this 
example is in a postinstall script. Looking at the example postinstall 
script, shown in Figure 8-30, you will see that its only purpose is to exe­
cute init q. 

This approach to editing /sbin/inittab during installation has two draw­
backs. First of all, you have to deliver a full script (the postinstall script) simply 
to perform init q. In addition to that, the package name at the end of each 
comment line is hardcoded. It would be nice if this value could be based on the 
package instance so that you could distinguish between the entries you add for 
each package. 

Sample Files 

Figure 8-27: Case #5a pkginfo File 

PKG='case5a' 
NAME='Case Study #5a' 
CATEGORY='applications' 
ARCH='3b2' 
VERSION-'Version ld05' 
CLASSES='sed' 

Figure 8-28: Case #5a prototype File 

i pkginfo 
i post install 
e sed /sbin/inittab ? ? ? 

8-74 Integrated Software Development Guide 



Figure 8-29: Case #5a sed Script (/sbin/inittab) 

!remove 
remove all entries from the table that are associated 

j with this package, though not necessarily just 
# with this package instance 
/A(A:]*:(A:]*:[A:]*:(Aj]*#ROBOT$/d 

! install 
j remove any previous entry added to the table 
# for this particular change 
r[A:]*:(A:]*:[A:]*:[Aj]*#ROBOT$/d 

add the needed entry at the end of the table; 
sed(l) does not properly interpret the '$a' 
construct if you previously deleted the last 
line, so the command 

$a\ 
rb:023456:wait:/usr/robot/bin/setup #ROBOT 

will not work here if the file already contained 
the modification. Instead, you will settle for 

j inserting the entry before the last line! 
$i\ 
rb:023456:wait:/usr/robot/bin/setup 'ROBOT 

Figure 8-30: Case #5a Postlnstall Script 

j make init re-read inittab 
/sbin/init q II 

exit 2 
exit 0 

Application Software Packaging 

Package Installation Case Studies 

8-75 



Package Installation Case Studies 

Case #5b 

This study modifies a file which exists on the installation during package instal­
lation. It uses one of three modification methods. The other two methods are 
shown in Cases Sa and 5c. The file modified is / sbin/ ini t tab. 

Techniques 
This case study shows examples of the following techniques: 

• creating classes 

• using installation and removal class action scripts 

Approach 
To modify /sbin/inittab during installation, you must: 

• Create a class. 

Create a class called inittab. You must provide an installation and a 
removal class action script for this class. Define the inittabl class in 
the CLASSES parameter in the pkginfo file (as shown in Figure 8-31). 

• Create an inittab file. 

This file contains the infonnation for the entry that you will add to 
/ sbin/ inittab. Notice in the prototype file (Figure 8-32) that init­
tab is a member of the inittab class and has a file type of e for edit­
able. Figure 8-35 shows what inittab looks like. 

• Create an installation class action script. 

8-76 

Since class action scripts must be multiply executable (meaning you get 
the same results each time they are executed), you can't just add our text 
to the end of the file. The script, shown in Figure 8-33, performs the fol­
lowing procedures: 

o checks to see if this entry has been added before 

o if it has, removes any previous versions of the entry 

Integrated Software Development Guide 



Package Installation Case Studies 

Cl edits the inittab file file and adds the comment lines so you know 
where the entry is from 

Cl moves the temporary file back into / sbin/ inittab 

Cl executes init q when it receives the end-of-class indicator 

Note that init q can be performed by this installation script. A one-line 
postinstall script is not needed by this approach. 

• Create a removal class action script. 

The removal script, shown in Figure 8-34, is very similar to the installation 
script. The information added by the installation script is removed and 
init q is executed. 

This case study resolves the drawbacks to Case Sa. You can support multiple 
package instances since the comment at the end of the inittab entry is now 
based on package instance. Also, you no longer need a one-line postinstall 
script. However, this case has a drawback of its own. You must deliver two 
class action scripts and the inittab file to add one line to a file. Case Sc 
shows a more streamlined approach to editing / sbin/ inittab during installa­
tion. 

Sample Files 

Figure 8-31: Case #5b pkginfo File 

PKG='case5b' 
NAME='Case Study #5b' 
CATEGORY='applications' 
ARCH='3b2' 
VERSION='Version Id05' 
CLASSES='inittab' 

Application Software Packaging a-n 



Package Installation Case Studies 

Figure 8-32: Case #5b prototype File 

i pkginfo 
i i.inittab 
i r.inittab 
e inittab /sbin/inittab ? ? ? 

Figure 8-33: Case #5b Installation Class Action Script (I.lnlttab) 

8-78 

# PKGINST parameter provided by installation service 

while read src dest 
do 

done 

# remove all entries from the table that 
# associated with this PKGINST 
sed -e "I"[":J*:[":J*:[":J*:["#J*#$PKGINST$/d" $dest > /tmp/$$itab I I 

exit 2 

sed -e "s/$/#$PKGINST" $src » /tmp/$$itab I I 
exit 2 

rnv /tmp/$$itab $dest I I 
exit 2 

if [ "$1" = ENDOFCLASS 

then 

fi 
exit 0 

/sbin/init q II 
exit 2 

Integrated Software Development Guide 



Package Installation Case Studies 

Figure 8-34: Case #5b Removal Class Action Script (r.lnittab) 

f PKGINST parameter provided py installation service 

while read src dest 
do 

f remove all entries from the table that 
* are associated with this PKGINST 
sed -e "I"'[":)*:[":)*:[":)*:["f)*#$PKGINST$/d" $dest > /tmp/$$itab II 

exit 2 

mv /tmp/$$itab $dest I I 
exit 2 

done 
/sbin/init q II 

exit 2 
exit 0 

Figure 8-35: Case #5b inittab File 

~rb'023456:wait,/usr/robot/bin/setup 

Application Software Packaging 

J 

8-79 



Package Installation Case Studies 

Case #5c 

This study modifies a file which exists on the installation machine during pack­
age in.stallation. It uses one of three modification methods. The other two 
methods are shown in Cases Sa and 5b. The file modified is /sbin/inittab. 

Techniques 
This case study shows examples of the following technique: 

• using the build class 

Approach 
This approach to modifying / sbin/ inittab uses the build class. A build 
class file is executed as a shell script and its output becomes the new version of 
the file being executed. In other words, the data file inittab that is delivered 
with this package will be executed and the output of that execution will become 
/ sbin/ inittab. 

The build class file is executed during package installation and package remo­
val. The argument install is passed to the file if it is being executed at instal­
lation time. Notice in the sample build file in Figure 8-38 that installation 
actions are defined by testing for this argument. 

To edit /sbin/inittab using the build class, you must: 

• Define the build file in the prototype file. 

The entry for the build file in the prototype file should place it in the 
build clasS and define its file type as e. Be certain that the CLASSES 
parameter in the pkginfo file is defined as build. Figure 8-36 shows 
the pkginfo file for this example and Figure 8-37 shows the prototype 
file. 

• Create the build file. 

8-80 

The build file shown in Figure 8-38 performs the following procedures: 

o Edits / sbin/ inittab to remove any changes already existing for 
this package. Notice that the filename / sbin/ ini t tab is hard­
coded into the sed command. 

Integrated Software Development Guide 



Package Installation Case Studies 

o If the package is being installed, adds the new line to the end of 
/sbin/inittab. A comment tag is included in this new entry to 
remind us from where that entry came. 

o Executes init q. 

This solution addresses the drawbacks in Case Studies Sa and Sb. Only one file 
is needed (beyond the pkginfo and prototype files), that file is short and 
simple, it works with multiple instances of a package since the $PKGINST 
parameter is used, and no postinstall script is required since ini t q can be exe­
cuted from the build file. 

Sample Files 

Figure 8-36: Case #5c pkginfo File 

PKG=' caseSc' 
NAME='Case Study #Sc' 
CATEGORY='applications' 
ARCH='3b2' 
VERSION='Version IdOS' 
CLASSES=' build' 

Figure 8-37: Case #5c prototype File 

i pkginfo 
e build /sbin/inittab ? ? ? 

Application Software Packaging 8-81 



Package Installation Case Studies 

Figure 8-38: Case #5c build Script (lsbin/init) 

8-82 

, PKGINST parameter provided by installation service 

, remove all entries from the existing table that 
* are associated with this PKGINST 
sed -e "1"[":)*:[":)*: [":)*:["')*'$PKGINST$/d" /sbin/inittab II 

exit 2 

if [ "$1" = install 
then 

, add the following entry to the table 

fi 

echo "rb:023456:wait:/usr/robot/bin/setup #$PKGINST" I I 
exit 2 

/sbln/lnlt q I I 
exit 2 

exit 0 

Integrated Software Development Guide 



Package Installation Case Studies 

Case #6 

This case study modifies a number crontab files during package installation. 

Techniques 
This case study shows examples of the following techniques: 

• using classes and class action scripts 

• using the crontab command within a class action script 

Approach 
You could use the build class and follow the approach shown for editing 
/sbin/inittab in case study 5c except that you want to edit more than one 
file. If you used the build class approach, you would need to deliver one for 
each cron file edited. Defining a cron class provides a more general approach. 
To edit a crontab file with this approach, you must: 

• Define the cron files that will be edited in the prototype file. 

Create an entry in the prototype file for each crontab file which will 
be edited. Define their class as cron and their file type as e. Use the 
actual name of the file to be edited, as shown in Figure 8-40. 

• Create the crontab files that will be delivered with the package. 

These files contain the information you want added to the existing cron­
tab files of the same name. See Figures 8-43 and 8-44 for examples of 
what these files look like. 

• Create an installation class action script for the cron class. 

The i. cron script (Figure 8-41) performs the following procedures: 

o Calculates the user id. 

This is done by setting the variable user to the base name of the 
cron class file being processed. That name equates to the user id. 
For example, the basename of /var/spool/cron/crontabs/root 
is root (which is also the user id). 

Application Software Packaging 8-83 



Package Installation Case Studies 

o Executes crontab using the user id and the -1 option. 

Using the -1 options tells crontab to send the standard output the 
contents of the crontab for the defined user. 

o Pipes the output of the crontab command to a sed script that 
removes any previous entries that have been added using this instal­
lation technique. 

o Puts the edited output into a temporary file. 

D Adds the data file for the root user id (that was delivered with the 
package) to the temporary file and adds a tag so that you will know 
from where these entries came. 

o Executes crontab with the same user id and give it the temporary 
file as input. 

• Create a removal class action script for the cron class. 

The removal script, shown in Figure 8-42, is the same as the installation 
script except that there is no procedure to add information to the cron­
tab file. 

These procedures are performed for every file in the cron class. 

Sample Files 

Figure 8-39: Case #3 pkginfo File 

8-84 

PKG=' case6' 
NAME='Case Study #6' 
CATEGORY='application' 
ARCH=' 3b2' 
VERSION='Version 1.0' 
CIASSES='cron' 

Integrated Software Development Guide 



Package Installation Case Studies 

Figure 8-40: Case #6 prototype File 

i pkginfo 
i Lcron 
i r.cron 
e cron /var/spool/cron/crontabs/root ? ? ? 
e cron /var/spool/cron/crontabs/sys ? ? ? 

Figure 8-41: Case #6 Installation Class Action Script (I.cron) 

t PKGINST parameter provided by installation service 

while read src dest 
do 

done 
exit 0 

user-'basename $dest' I I 
exit 2 

(crontab -1 $user 
sed -e "n$PKGINST$/d" > /trrp/$$crontab) I I 

exit 2 

sed -e "s/$/f$PKGINST/" $src » /tmp/$$crontab II 
exit 2 

crontab $user < /tmp/$$crontab I I 
exit 2 

rm -f /tmp/$$crontab 

Application Software Packaging 8-85 



Package Installation Case Studies 

Figure 8-42: Case #6 Removal Class Action Script (r.cron) 

, PKGINST parameter provided by installation service 

while read path 
do 

done 
exit 0 

user='basename $path' I I 
exit 2 

(crontab -1 $user 
sed -e 1/'$PKGINST$/d" > Itmp/$$crontab) I I 

exit 2 

crontab $user < Itmp/$$crontab I I 
exit 2 

rm -f Itmp/$$crontab 

Figure 8-43: Case #6 Root crontab File (delivered with package) 

8-86 

41,1,21 * * * * lusr/11b/uucp/uudemon.hour > Idev/nu11 
45 23 * * * ulimlt 5000; lusr/bin/su uucp -c I/usr/llb/uucp/uudemon.cleanup" > 
Idev/null 2>&1 
11,31,51 * * * * lusr/11b/uucp/uudemon.po1l > Idev/nul1 

Integrated Software Development Guide 



Package Installation Case Studies 

Figure 8-44: Case #6 Sys crontab File (delivered with package) 

o * * * 0-6 /usr/lib/sa/sa1 
20,40 8-17 * * 1-5 /usr/lib/sa/sa1 
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A 

Application Software Packaging 8·87 





9 Modifying the sysadm Interface 

Overview of sysadm Modification 9-1 
Introduction to the Tools 9-1 

• The edsysadm Command 9-2 
• The delsysadm Command 9-2 
• The Data Validation Tools 9-3 

Introduction to the Package Modification Files 9-4 
Overview of the Interface Modification Process 9-5 

Planning Your Interface Modifications 9-6 
Deciding if You Should Modify the Interface 9-6 
Planning the Location of Your Modifications 9-6 

• An Overview of the Interlace Structure 9-6 
• Planning Your Administration Structure 9-8 

Naming Your Interface Modifications 9-9 
• How to Name Your Modifications 9-9 
• Interface Naming Requirements 9-10 
• How the System Handles Naming Collisions 9-10 

Writing Your Administration Actions 9-11 

Writing Your Help Messages 9-12 
The Item Help File 9-12 

• The Menu Item Help Message Format 9-13 
• The Default Title Format 9-14 
• The Field Item Help Message Format 9-14 

The Title Hierarchy 9-16 
Setting Up for Item Help in a FACE Object 9-17 

Table of Contents 



Table of Contents 

Example Item Help Files 9-17 

Packaging Your Interface Modifications 9-21 
Basic Steps for Packaging Your Modifications 9-21 
Creating or Changing the Packaging for a Menu Entry 9-22 

• Creating the Packaging for a Menu Entry 9-22 
• Changing the Packaging for a Menu Entry 9-23 
• Testing Your Menu Changes On-Line 9-25 
• The Menu Definition Form 9-25 

Creating or Changing the Packaging for a Task Entry 9-27 
• Creating the Packaging for a Task Entry 9-27 
• Changing the Packaging for a Task Entry 9-28 
• The Task Definition Form 9-30 

Preparing Your Package 9-32 

Deleting Interface Modifications 9-33 

Data Validation Tools 9-34 
Types of Tools 9-35 
Characteristics of the Tools 9-36 

• The Data Validation Tool Prompts 9-36 
• The Data Validation Tool Help Messages 9-37 
• The Data Validation Tool Error Messages 9-38 
• Message Formatting 9-38 
• The Shell Commands 9-38 
• The Visual Tools 9-41 

II Application and Driver Software Packaging 



Overview of sysadm Modification 

UNIX System V Release 4 provides a menu interface to the most common 
administrative procedures. It is invoked by executing sysadm and so is referred 
to as the sysadm interface. (A complete description of this interface and instruc­
tions on how to use it can be found in the System Administrator's Guide.) 

You can delive"r additions or changes to this interface as part of your application 
software package. Creating the necessary information for an interface 
modification is a simple process due to the tools provided by SVR4. 

This chapter describes these tools, provides all of the needed background infor­
mation, and details the procedures necessary to design and write your package 
administration and to package it so that it will become a part of the administra­
tion interface on the installation machine. 

~ This chapter assumes you are familiar with the material covered in the 9 "Packaging Application Software" chapter. 

Introduction to the Tools 

Two commands can be used to create the files necessary to deliver modifications 
to the sysadm interface as a part of your package . 

• edsysadm creates all of the files needed for your interface modifications to 
be installed along with your package 

• delsysadm deletes menus or tasks from the interface 

This chapter also provides an overview of a group of tools known as the data 
validation tools. You can use them when writing your system administration to 
simplify and standardize the programming of administrative interaction. The 
tools are described in detail in the "Data Validation Tools" section of this 
chapter. 

Modifying the sysadm Interface 9-1 



Overview of sysadm Modification 

The edsysadm Command 

edsysadrn, which allows you to make changes or additions to the interface, is an 
interactive command that functions much like the sysadm command itself. It 
presents a series of prompts for information. (Which prompt appears depends 
on your response to the previous prompt.) 

After you have responded to all the prompts, edsysadm presents a form that 
you must fill in with information describing the menu or task being changed or 
added. This form is called the menu (or task) definition form. If you are chang­
ing an existing menu or task entry, the definition form will already be filled in 
with the current values, which you can edit. If you are adding a new menu or 
task entry, the form will be empty and you will have to fill it in. 

When you follow the procedures in this chapter, edsysadm creates all of the files 
and directories necessary to deliver your interface modifications as a part of 
your package. The section entitled "Introduction to the Package Modification 
Files" describes the three files that edsysadm creates. 

edsysadm builds the directory structure required by the sysadm interface. You 
do not need to know this structure and you are not required to have your work 
directory organized in any predefined way. When you fill in a menu or task 
definition form, you supply filenames (for example, a file containing help mes­
sages) that edsysadm should use when creating the packaging for your interface 
modifications. edsysadm creates a prototype file and builds the interface direc­
tory format by using the pathl =path2 naming convention. path2 defines where 
the files reside on your machine and pathl defines where they should be placed 
on the installation machine. 

The delsysadm Command 

delsysadm removes tasks and menus from the interface. When you deliver 
your modifications as a part of your package, you do not need to use del­
sysadm to remove them. Any time an interface modification is delivered as a 
part of a package, those modifications are automatically removed at the same 
time as the package. This chapter describes the delsysadm command in case 
you need to use it on your own machine, for example to remove modifications 
added for testing. 

9-2 Integrated Software Development Guide 



Overview of sysadm Modification 

delsysadrn checks for dependencies on the entry being removed before deleting 
the entry. (A dependency exists if the menu being removed contains an entry 
placed there by an application package.) If delsysadrn discovers a dependency, 
you are asked whether you want to continue with the removal. (If a depen­
dency is found during an automatic removal, the interface entry is not 
removed.) 

When you delete a menu entry with delsysadm, it must already be empty (con­
tain no other menus or tasks) or you can execute delsysadrn with the -r option. 
This option removes a menu and all its entries at the same time. y Use delsysadm to remove only those menu or task entries that you have 

added to an interface. 

The Data Validation Tools 

The data validation routines help standardize administration interaction in the 
SVR4 environment and also make development easier. The tools are available 
as shell commands and as visual modules to be used in a FACE (Framed Access 
Command Environment) form. The tools perform the following series of tasks: 

• prompt a user for a particular type of input 

• validate the response 

• format and print help and error messages 

• return the input if it passes validation 

The type of validation performed is defined by the tool itself. For example, the 
shell command ckyorn prompts for and validates an affirmative or negative 
response. These tools should be used in your administration programs if they 
are to be added to the sysadrn interface to maintain consistency within the inter­
face. Refer to the section "Data Validation Tools" for full details on these tools 
and their uses. 

Modifying the sysadm Interface 9-3 



Overview of sysadm Modification 

Introduction to the Package Modification Files 

When you execute edsysadm to define menus and tasks and save those 
definitions to be included in your application software package, it creates three 
files: 

• the package description file 

• the menu information file 

• the prototype file 

The package description file contains information edsysadm uses to change 
interface modifications already saved for packaging. When you decide to 
change your modifications after already creating the packaging (meaning the 
menu information and prototype files are already created), the package 
description file provides edsysadm with the information it needs to locate the 
other package modification files and to make the changes. Without this file, 
edsysadm cannot make such a change. You are asked to supply a name for this 
file during the edsysadrn interaction and it is created in your current working 
directory (unless you supply a full pathname to a different directory with the 
name). 

The menu information file contains the menu or task name, where it is located 
in the interface structure, and, for tasks, what executable to use when the task is 
invoked. It tells the interface installation software how to modify the interface 
structures to include the new definitions. The file's name is the hour, minute, 
second, day-of-year, and year that the file was created, followed by an .rni 
suffix. It is created in your current working directory. 

The prototype file created by edsysadm contains entries for all of the interface 
modification components that must be packaged with your software (for exam­
ple, the menu information file and, for tasks, the executables). These entries 
must be incorporated into your package either by reading the edsysadrn-created 
file into your package prototype file or by using the include command inthe 
main prototype file for your package. The prototype file created by edsysadm 
is created in your current working directory with the name of prototype. 

9·4 Integrated Software Development Guide 



Overview of sysadm Modification 

Overview of the Interface Modification Process 

You must take a number of steps to add your package administration to the 
sysadm interface. This chapter explains each step in detail. The following steps 
are covered: 

• planning your package administration (with details on how to decide if 
you should modify the interface and where to place it in the interface 
structure) 

• writing your administration actions (with general information on what 
your executables can be) 

• writing your help message (with a description of the required help mes­
sage file) 

• packaging your interface modifications (with procedural details on execut­
ing edsysadm and what steps must be taken afterwards) 

This chapter also includes instructions on executing delsysadm. 

Modifying the sysadm Interface 9-5 



Planning Your Interface Modifications 

You will need to plan your interface modifications before executing edsysadm. 
Planning begins with deciding if your administration tasks should become a 
part of the sysadm interface. If so, you must decide on where your tasks fit into 
the interface, what to name your tasks, and the full menu structure involved 
with your administrative tasks. 

Deciding if You Should Modify the Interface 

Any type of task can be added to the sysadm interface with the following two 
restrictions: 

• Tasks that can be automated should not be added to the interface (for 
example, procedures that can run automatically as part of system booting 
or as part of your package installation) . 

• Tasks that require the system to be. in firmware mode can be added to the 
interface but it is strongly recommended that they not be. 

Once you have decided to add your administration tasks to the interface, you 
must determine where in the interface you want to locate tasks and menus. 

Planning the Location of Your Modifications 

To plan your modification you must first become familiar with the interface 
organization. Then you must decide how to organize the tasks you want to add 
and how to fit your modifications into the overall structure. 

An Overview of the Interface Structure 
The sysadm interface consists of a hierarchy of menus. At the top of the hierar­
chy is the main menu (labeled System Administration Menu). It appears on 
the screen, immediately after sysadm is invoked, as follows: 

9-6 Integrated Software Development Guide 



applications 
backup_service 
diagnostics. 
file_systems 
machine 
networks 
restore_service 
software 
storage_devices 
system_setup 
users 

Planning Your Interface Modifications 

System Administration Menu 

- Administration for Available Applications 
- Backup Scheduling, Setup, and Control 
- Diagnosing System Problems 
- File System Creation, Checking, and Mounting 
- Machine Configuration Display and Powerdown 
- Network Administration 
- Restore From Backup Data 
- Software Installation and Removal 
- Storage Device Operations and Definitions 
- System Name, Date/Time and Initial Password Setup 
- User Login and Group Administration 

~ The applications menu will not appear on the main sysadm menu until y at least one menu or task has been placed under it. 

The main menu consists of a list of function-specific menus. The lefthand 
column notes the menu names (such as machine) and the right hand column 
gives descriptions of these menus. Each menu offers other menus and/or 
names of tasks. For example, the machine menu, shown below, contains one 
menu (configuration) and five tasks. 

Machine Management 

configuration - System Configuration Display 
firmware - Stop All Running Programs and Enters Firmware Mode 
floppy key - Creates a Floppy Key Removable Diskette 
powerdown - Stops All Running Programs and Turns Off Machine 
reboot 
whos on 

- Stops All Running Programs and Reboots Machine 
- Displays List of Users Logged onto Machine 

Choosing the entry configuration from this screen will cause another menu 
to be presented. Choosing a task entry, such as powerdown, will begin execu­
tion of that task. 

Modifying the sysadm Interface 9-7 



Planning Your Interface Modifications 

Planning Your Administration Structure 

Planning your administration structure requires three steps: 

1. Deciding what tasks to add to the interface. 

You can add any number of tasks. You should have separate entries for 
each task to be performed. For example, if your administration allowed a 
log to be changed, added to, and removed, you should create an entry for 
each task and not combine them into one entry called log administra­
tion. 

2. Deciding under which menu the tasks should be placed. 

You can create new sysadm menus at any level and you can change or 
add to al}.y of the original sysadm menus. You should be aware, how­
ever, that if you make changes to original menus you might cause prob­
lems in the execution of standard sysadm operations. It is therefore 
recommended (though not mandatory) that you create new menus for 
your package administration by placing it under the applications 
menu (located on the main menu) or by creating a new main menu entry. 

3. Organizing your tasks. 

You can organize your tasks under one menu or place them in submenu 
groups. For example, if your package has tasks to be performed daily 
and weekly, you might create a structure such as the following: 

• Under the applications menu on the main menu, add an 
entry for your package called pkgAadmin. 

• Under pkgAadmin, add two submenus called daily and 
weekly. 

• Under the submenu daily, add entries for each of the daily 
tasks. 

• Under the submenu weekly, add entries for each of the weekly 
tasks. 

It is important that you have your full administrative structure planned before 
running edsysadm because you must create a menu entry before placing a task 
or submenu under it. 

9-8 Integrated Software Development Guide 



Planning Your Interface Modifications 

After you have planned your structure, you should decide on the names for 
your menus and tasks. 

Naming Your Interface Modifications 

Naming your interface modifications requires the following three pieces of infor­
mation described below. This section also details the interface naming require­
ments and tells you how the system handles naming collisions. 

How to Name Your Modifications 
When naming your interface modifications, you must decide on these three 
pieces of information: 

Name 

Description 

Location 

The name of the menu or task as it will appear in the left­
hand column of the screen. 

The description of the menu or task as it will appear in the 
righthand column of the screen. 

The location of a menu or task in the sysadrn menu hierar­
chy. This location is a combination, step-by-step, of all the 
menu names that must be chosen to reach the menu or 
task. Each step must already exist when the entry is 
added. For example, when you add a task with a location 
of main: applications :mypkg, you must already have 
created an entry for the menu mypkg. 

All locations begin with rna in. When defining a location in 
the procedures that follow, each step should be separated 
by a colon. For example, the powerdown task is under the 
menu machine, which, in turn, is under the rna in menu. 
Thus, the location of the powerdown task is 
main :machine. 

You will supply these pieces of information on the menu (or task) definition 
form. 

Modifying the sysadm Interface 9·9 



Planning Your Interface Modifications 

Interface Naming Requirements 

A menu or task name should be as short as possible in length but, at the same 
time, be descriptive. It can contain only lower case letters and underscores and 
has a maximum length of 16 characters. 

The description field can contain any character string and has a maximum 
length of 58 characters. This description field text for a menu is also used as the 
title for that menu when it is displayed. Use of standard title capitalization 
rules is recommended. 

How the System Handles Naming Collisions 

A naming collision might occur under two circumstances: 

• When the package being installed is an update to an existing version. 

The administrator will be asked during insta"lation if this is an update, in 
which case the existing menus and tasks will be overwritten. 

• When two packages have created identical interface modifications. 

9-10 

The colliding menu or task will be renamed by adding the first available 
numerical suffix (beginning with 2). For example, if an entry for menuA 
already exists and a package attempts to add an identical entry, the one 
being added will be renamed to menuA2. 

Integrated Software Development Guide 



Writing Your Administration Actions 

When you execute edsysadm to create packaging for a task entry, you will fill 
in a task definition form. One of the fields on that form asks for the name of 
the task action file. The task action file is the executable that will run when 
your task is selected from the interface. Your administrative task can use more 
than one executable, but, if so, you must create one that is called when the task 
is selected and call any other executables associated with the task from within it. 

The task action can be one of two types: 

• Non-interactive 

A non-interactive task action can be any shell executable. 

• Interactive 

An interactive task action must be a FACE form. (Refer to the 
Programmer's Guide: Character User Interface (FMU and ETI) for instructions 
on writing a FACE form.) 

Use the tools described in the section "Data Validation Tools" whenever possi­
ble when writing administrator interaction. 

Modifying the sysadm Interface 9-11 



Writing Your Help Messages 

You must write help messages to be packaged with every interface 
modifications. They are delivered in what is called an item help file. This file 
has text for two types of messages: 

• the help message that will be shown when the user requests help from the 
parent menu 

• the help messages that will be shown for each field when your task action 
is a FACE fDIm 

The format of the item help file allows you to create one item help file for each 
task, combine all of your help messages for multiple tasks into one file, use the 
same message for multiple FACE forms, and to define a title hierarchy for the 
help message screens. 

The Item Help File 

There are no naming restrictions for the item help file that resides on your 
machine. However, within the interface structure, the item help file must 
always be named Help. You can use this name if you want to but it is not 
mandatory since edsysadm uses the pathl=path2 naming convention in the pro­
totype file that it creates to define the directory structure required by the inter­
face. Regardless of what the item help file is named on your machine, pathl in 
the prototype file will have the name Help. This means that you can have 
more than one item help file in your working directory at the same time and 
edsysadrn will handle the details of giving it the correct name. 

There are three types of entries in an item help file: 

• the menu item help 

• the default title (can define both a global default and a form default) 

• the field item help 

A description of each type of entry and its format follows. All of the entries use 
the colon ( :) as the keyword delimiter. 

9-12 Integrated Software Development Guide 



Writing Your Help Messages 

The Menu Item Help Message Format 

The menu item help message will be shown whenever a user requests help on 
an entry from the parent menu. Menu item help must be written for each menu 
and task entry "being delivered as an interface modification. For example, if 
your package administration is adding a menu under main: applications 
and that menu has three tasks under it, you will need to deliver four menu item 
hel p messages. 

The format for the menu item help definition is as follows: 

[task_name:] ABSTRACT: 
TAB Line 1 of message text 
TAB Line 2 of message text 
TAB Line n of message text 

task_name defines the task (or menu) entry to which this help message belongs. 
This name must match the name that you have decided should appear in the 
lefthand column of the menu screen. (Refer back to ''Naming Your Interface 
Modifications" for more details on this name.) task_name is not optional when 
more than one menu item help definition is defined in the same item help file. 
This helps to distinguish to which task or menu the message belongs. 

The message text should be entered beneath the header line. There can be mul­
tiple lines of text with a maximum length of 69 characters per line. Each line 
must begin with a tab character. Blank lines may be included within the mes­
sage as long as they also begin with a tab character. An example menu item 
help definition is shown below. 

taskl:ABSTRACT: 
This is line one of the menu item help message. 
This is a second line of message text. 

The preceding line will appear as a blank line 
when the help message is shown because it begins 
with a tab. 

The title for a menu item help message is always the description text, as it 
appears in the lefthand column of the menu display, prepended by the string 
Help on. 

Modifying the sysadm Interface 9-13 



Writing Your Help Messages 

The Default Title Format 

You can define two types of default titles: 

• a global default title to be used on all of the help messages defined in the 
item help file 

• a form default title to be used on all of the help messages defined for a 
particular form in an item help file with messages defined for numerous 
forms 

Defaults can be overridden, as described in the section "The Title Hierarchy." A 
default title definition is recommended but not required. 

The format for the default title defiffition is as follows: 

[fonnjd: ] TITLE: Title Text 

Jormjd is the name of the form as it is defined with lininfo in your FACE 
form definition. When a fonn_id is supplied; this line defines a form default 
title. When it is not supplied, this line defines a global default title. 

The title text defined after the TITLE keyword will have the string HELP on 
prepended to it when displayed. Keep this in mind when writing the title. 

An example form default title definition is shown below. 

taskl:TITLE:package Administration Taskl 

If taskl had not been added before TITLE, this example would be defining a 
global default title. The title defined by the example above will be displayed as: 

HELP on Package Administration Taskl 

The Field Item Help Message Format 

The field item help message will be shown whenever a user requests help from 
within a FACE form. Each field on the form must have a help message defined 
in the item help file. 

9·14 Integrated Software Development Guide 



Writing Your Help Messages 

The format for the field item help definition is as follows: 

[form_id: ] field_id: [Title Text] 
TAB Line 1 of message text 
TAB Line 2 of message text 
TAB Line n of message text 

fonn_id is the name of the form as it is defined with lininfo in your FACE 
form definition. When one item help file contains messages for multiple tasks 
(and so multiple forms), it is used to distinguish with which form a field 
belongs. It is optional if the file contains messages for only one task. 
field_id is the name of the field as it is defined with lininfo in your FACE 
form definition. Title text defines a title used only with the help message for 
this field. As with the default title, the text defined here will have the string 
HELP on prepended to it when displayed. 

The message text should be entered beneath the header line. There can be mul­
tiple lines of text with a maximum length of 69 characters per line. Each line 
must begin with a tab character. Blank lines may be included within the mes­
sage as long as they also begin with a tab character. An example field item help 
definition is shown below. 

taskl:fldl:the Name Field 
This is the text for a field item help for a name 
field. 

The preceding line will appear as a blank line 
when the help message is shown because it begins 
with a tab. 

The title for this field item help message, as defined above, will be HELP on 
the Name Field 

Modifying the sysadm Interface 9-15 



Writing Your Help Messages 

The Title Hierarchy 

You can define a global default title, a form default title, and a field title in the 
item help file. When all three are defined in the same file, the following rules 
are followed: 

• The global default title is used for any message defined in an item help 
file that does not have a fonn default title or field title. 

• The fonn default title is used for any message defined in an item help file 
and that is associated with the form, unless it has a field title. 

• The field title is used only for the one field item help message for which it 
is defined. 

In summary, if no field title is defined, the fonn default title is used. If no fonn 
default title is defined, the global default title is used. You always want at least 
a global default title defined; otherwise, the string HELP on will be displayed 
with no descriptive text. 

To define a global default title, add a line to your item help file in the following 
format: 

TITLE: Title Text 

where Title Text is the text for the global default title. 

To define a fonn default title, add a line to your item help file in the following 
format: 

form_id: TITLE: Title Text 

where formjd is the name of fonn as it is defined with lininfo in your FACE 
form definition and Title Text is the text for the fonn default title. 

To define a field title, use the following fonnat for the field item help header 
line: 

form _id : field _id : Title Text 

where form_id is the name of the fonn as it is defined with lininfo in your 
FACE fonn definition, field_id is the name of the field as it is defined with 
lininfo in your FACE form definition and Title Text is the text for the field 
title. 

9·16 Integrated Software Development Guide 



Writing Your Help Messages 

In all cases, the text defined as Title Text is always prepended with the string 
HELP on when displayed to a user. 

Setting Up for Item Help in a FACE Object 

To help the interface read your item help file and know with which fonns and 
fields a help message is associated, you must define your help and lininfo 
descriptors in your FACE object definition as follows: 

• The help descriptor must be defined exactly as shown on the line below: 

help=OPEN TEXT $INTFBASE/Text.itemhelp $LININFO 

• The lininfo descriptor for each field must be defined as 

lininfo= [fonn)d: ]field_id 

where fonn _id and field _id are names each no longer than 30 characters. 
The names defined here as form _id and field _id must match exactly those 
used as fonn jd and field _id in the item help file. 

~ 
Since you do not create a FACE form definition for a menu entry, you do not 

NOTE need to take any setup actions. However, you should be certain that the 
task name keyword precedes the ABSTRACT heading line for a menu entry 
help message. 

Example Item Help Files 

This section shows two example item help files. Figure 9-1 shows an item help 
file that defines messages for only one fonn. Figure 9-2 shows an example of 
defining messages for multiple fonns in one item help file. 

Modifying the sysadm Interface 9-17 



Writing Your Help Messages 

Figure 9·1: Item Help File for One Form 

9·18 

ABSTRACT: 
The text defined here will be shown to 
users when they request help while 
viewing the parent menu for this 
task. The task name is "adding users." 

TITLE:Adding Users 

fieldl: 
The text defined here will be shown to 
users when they request help from the 
form and the cursor is positioned at 
fieldl. The title for this message will 
be "HELP on Adding Users" as defined above. 

field2:Field 2 
The text defined here will be shown to 
users when they request help from the 
form and the cursor is positioned at 
field2. The title for this message will 
be "HELP on Field 2". 

Note: The lininfo descriptors in the form definition associated with this 
file should look like this: 

lininfo=fieldl 

lininfo=field2 

Integrated Software Development Guide 



Figure 9-2: Item Help File for Multiple Forms 

add:ABSTRAC.T: 
The text defined here will be shown to 
users when they request help while 
viewing the parent menu for the task 
named add. 

add_user:TITLE:Adding Users 

add_user:fieldl: 
The text defined here will be shown to 
users when they request help from the 
form and the cursor is positioned at 
fieldl. The title for this message will 
be "HELP on Adding Users" as defined above. 

add_user:field2:Field 2 
The text defined here will be shown to 
users when they request help from the 
form and the cursor is positioned at 
field2. The title for this message will 
be "HELP on Field 2". 

delete:ABSTRACT: 
The text defined here will be shown to 
users when they request help while 
viewing the parent menu for the task 
named delete. 

delete_user:TITLE:Deleting Users 

delete_user:fieldl: 
The text defined here will be shown to 
users when they request help from the 
form and the cursor is positioned at 
fieldl. The title for this message will 

Writing Your Help Messages 

be "HELP on Deleting Users" as defined above. 

delete_user:field2:Field 2 
The text defined here will be shown to 
users when they request help from the 
form and the cursor is positioned at 
field2. The title for this message will 
be "HELP on Field 2". 

Modifying the sysadm Interface 

(continued on next page) 

9-19 



Writing Your Help Messages 

Figure 9-2: Item Help File for Multiple Forms (continued) 

9-20 

Note: The lininfo descriptors in the form definition associated with this 
file should look like this: 

lininfo=add_user:fieldl 

lininfo=add_user:field2 

lininfo=delete_user:fieldl 

lininfo=delete_user:field2 

Integrated Software Development Guide 



Packaging Your Interface Modifications 

To prepare your interface modifications for installation, you must create the 
packaging for your menus and tasks by executing edsysadm. The packaging 
created by edsysadm consists of two files, a prototype file and a menu infor­
mation file. This section describes the procedures for creating these files and 
what to do after they have been created. (It also describes how to change the 
packaging after it has been created.) 

~ edsysadm also creates a package description file. edsysadm uses this file y during its execution and is not a part of the packaging. 

Basic Steps for Packaging Your Modifications 

The procedures described next must be repeated for each menu and task entry 
being added. Begin with creating the menu entry (or entries) because you can­
not add tasks or submenus to a menu that does not exist. Be certain that you 
use the same package description file name for all of the entries belonging to a 
package. 

After running edsysadm, be certain to follow the steps described in "Preparing 
Your Package" (at the end of this section) to incorporate the modifications into 
your software package. 

For example, if your administration requires the addition of one menu and four 
tasks, you will need to follow the procedure for creating the packaging for a 
menu entry, then repeat the procedure for creating the packaging for a task 
entry four times. Each time, when asked for a package description file name, 
give the same name to ensure that the packaging created contains all the neces­
sary entries. These procedures will create a menu information file and a proto­
type file with all of the information necessary to include your interface 
modifications in your package. The two remaining steps (described in "Prepar­
ing Your Package") are to include the edsysadm created prototype file in 
your package prototype file and to edit the CLASSES parameter in the 
pkginfo file. 

Modifying the sysadm Interface 9-21 



Packaging Your Interface Modifications 

Creating or Changing the Packaging for a Menu Entry 

The procedures for creating and changing the packaging for a new menu are 
similar and both result in the display of a menu definition form. Each pro­
cedure is described below, followed by a description of the menu definition 
form. 

Creating the Packaging for a Menu Entry 

Before creating the packaging for a new menu entry, you should: 

• Select a name and description for the menu. 

• Select a location for it in the interface. 

• Prepare a help message file for the menu entry (refer to "Writing Your 
Help Messages" presented earlier in this chapter for instructions). 

• know the name of the package description file to which the information 
for this menu should be added (if you are adding multiple menus and 
tasks) 

1. Type edsysadm and press RETURN. 

~ 
If you do not execute this command from the directory in which the 

NOTE help message file resides, supply the full pathname when prompted 
for the name of the help message file. 

2. You are asked to choose between a menu and a task. Choose menu and 
press RETURN. 

3. You are asked to choose between adding a new menu or changing an 
existing one. Choose add and press RETURN. 

4. You are given an empty menu definition form. Fill it in and press SAVE. 
(See liThe Menu Definition Form" for descriptions of the fields on this 
form.) 

5. You are asked if you want to test the changes before actually making 
them. Answer either ye s or no and press SAVE. (If you answer yes, 
refer to the "Testing Your Menu Changes On-Line" section to learn what 
the test involves.) 

9-22 Integrated Software Development Guide 



Packaging Your Interface Modifications 

6. You are asked if you want to install the modifications into the interface 
on your machine or save them for a package. Choose save and press 
SAVE. 

7. You are asked to supply a file name. Enter a name for the package 
description file and press SAVE. 

8. If the file name given for the package description file already exists, you 
are asked if you want to overwrite it or add to its contents. Answer 
overwrite, do not overwrite, or add and press SAVE. 

9. If the file name does not already exist (or after you have completed Step 
8) you will see a message stating that the menu information file and pro­
totype file have been verified and the top-level prototype must be 
edited to include the new prototype file. Press CANCEL to return to 
the menu shown in step 3. Press CONT to return to the form shown in 
step 4. 

Changing the Packaging for a Menu Entry 

Before changing the packaging for a menu entry, you should: 

• Know the name and description of the menu entry. 

• Know its location in the interface. 

• Change the associated help message file, if necessary, or create a new one 
(refer to "Writing Your Help Messages" presented earlier in this chapter 
for instructions). 

• Know the name of the package description file associated with the pack­
age being changed (and know that it is available in your current working 
directory). 

1. Type edsysadm and press RETURN. 

Modifying the sysadm Interface 9-23 



Packaging Your Interface Modifications 

~ 
If you have changed a help message file or created a new one and 

NOTE you do not execute this command from the directory in which th. e help 
message file resides, supply the full pathname when asked for the 
name of the file. 

2. You are asked to choose between a menu and a task. Choose menu and 
press RETURN. 

3. You are asked to choose between adding a new menu and changing an 
existing one. Choose change and press RETURN. 

4. You are asked if your change is for an on-line menu or for a menu that 
has been saved for a package. Choose packaged and press SAVE. 

5. You are asked to supply the package description file name for the pack­
age beinging changed. Fill in the name of a valid package description file 
and press SAVE. 

6. You are given a menu definition form filled in with the current values for 
the menu named above. Make the desired changes and press SAVE. (See 
the liThe Menu Definition Form" for descriptions of the fields on this 
form.) 

7. You are asked if you want to test the changes before actually making 
them. Answer either ye s or no and press SAVE. (If you answer yes, 
refer to the section entitled "Testing Your Menu Changes On-Line" to 
learn what the test involves.) 

8. You are asked if you want to install the modifications into the interface 
on your machine or save them for a package. Choose save and press 
SAVE. 

9. You are asked to supply a file name. Enter a name for the package 
description file and press SAVE. (This must be the same package descrip­
tion file named in Step 5.) 

10. If the file name given for the package description file already exists, you 
are asked if you want to overwrite it or add to its contents. Answer 
overwrite, do not overwrite, or add and press SAVE. 

11. If the file name does not already exist (or after you have completed Step 
10) you will see a message stating that the menu information file and 
prototype file have been verified and the top-level prototype must be 
edited to include the new prototype file. Press CANCEL to return to 

9-24 Integrated Software Development Guide 



Packaging Your Interface Modifications 

the menu shown in step 4. Press CONT to return to the form shown in 
step 5. 

Testing Your Menu Changes On-Line 

Before installing your menu changes, you may want to verify that you've added 
an entry to a menu. The edsysadrn command gives you a chance to do this 
after you fill in the menu definition form. Follow these steps to perform your 
test. 

1. Type yes when edsysadrn presents the following prompt: 

Do you want to test this modification before continuing? 

2. The parent menu (on which your addition or change is listed) is 
displayed. Check to make sure your modification has been made 
correctly. 

3. Put the cursor on the new or changed menu entry and press the <HELP> 
key. The text of the help message for that menu entry is displayed so 
you can check it. (Press CANCEL to return to the menu.) 

4. To exit on-line testing, press the CANCEL key. 

S. You are returned to the prompt: 

Do you want to test this modification before continuing? 

If you want to continue executing the change, type no. 

If you want to make additional modifications to the menu definition form, 
press CANCEL. You are returned to the form andean make further 
changes at that time. (Press SAVE when you have finished your editing. 
You can then retest your changes or continue executing the change.) 

The Menu Definition Form 

This form contains four fields in which you must provide: a menu name, a 
menu description, a menu location, and the name of the help message for the 
menu. Below are descriptions of the information you must provide in each 
field. 

Modifying the sysadm Interface 9-25 



Packaging Your Interface Modifications 

Menu Name 

Menu Description 

Menu Location 

Menu Help File 
Name 

The name of the new menu (as it should appear in 
the lefthand column of the screen). This field has a 
maximum length of 16 alphanumeric characters. 

A description of the new menu (as it should appear 
in the righthand column of the screen). This field 
has a maximum length of 58 characters and can 
consist of any alphanumeric character except the at 
sign (@), carat r), tilde r), back grave ('), grave ('), 
and double quotes ("). 

The location of the menu in the menu hierarchy, 
expressed as a menu pathname. The pathname 
should begin with the main menu followed by all 
other menus that· must be traversed (in the order 
they are traversed) to access this menu. Each menu 
name must be separated by colons. For example, 
the menu location for a menu entry being added to 
the Applications menu is main: applications. 
Do not include the menu name in this location 
definition. The complete pathname to this menu 
entry will be the menu location plus the menu 
name defined at the first prompt. 

This is a scrollable field, showing a maximum of 50 
alphanumeric characters at a time. 

Pathname to the item help file for this 
menu entry. If it resides in the directory from 
which you invoked edsysadm, you do not need to 
give a full pathname. If you name an item help file 
that does not exist, you are placed in an editor (as 
defined by $EDITOR) to create one. The new file is 
created in the current directory and named Help. 

The following screen shows a filled-in sample menu definition. 

9-26 Integrated Software Development Guide 



Packaging Your Interface Modifications 

Define A Menu 

Name: rnsvr 
Description: Menu Description 
Location: main: applications 
Help Message: Help 

Creating or Changing the Packaging for a Task Entry 

The procedures for creating and changing the packaging for a new task are 
similar and both result in the display of a task definition form. Each procedure 
is described below, followed by a description of the task definition form. 

Creating the Packaging for a Task Entry 

Before creating the packaging for a task entry, you should: 

• Gather all files that will be associated with this task, such as the help file, 
FACE forms, or other executables. All files should already be prepared. 

• Decide on the task name and description. 

• Decide on its location in the .interface. 

• Create a help file (refer to 'Writing Your Help Messages" presented ear­
lier in this chapter for instructions). 

• Know the name of the package description file to which the information 
for this task should be added (if you are adding multiple menus and 
tasks) 

1. Type edsysadm and press RETURN. 

Modifying the sysadm Interface 9-27 



Packaging Your Interface Modifications 

~ 
If you do not execute this command from the same directory in which 

NOTE the files associated with this task reside, enter full pathnames when 
supplying file names. 

2. You are asked to choose between a menu and a task. Choose task and 
press RETURN. 

3. You are asked to choose between adding a new task or changing an exist­
ing one. Choose add and press RETURN. 

4. You are given an empty task definition form. Fill it in and press SAVE. 
(See "The Task Definition Form" for descriptions of the fields on this 
form. Be aware that, when you name the menu under which you want 
this new task to reside, that menu must already be packaged.) 

5. You are asked if you want to install the modifications into the interface 
on your machine or save them for a package. Choose save and press 
SAVE. 

6. You are asked to supply a file name. Enter a name for the package 
description file and press SAVE. 

7. If the file name given for the package description file already exists, you 
are asked if you want to overwrite it or add to its contents. Answer 
either overwrite, do not overwrite, or add and press SAVE. 

8. If the file name does not already exist (or after you have completed Step 
7) you see a message stating that the menu information file and proto­
type file have been verified and the top-level prototype must be edited 
to include the new prototype file. Press CANCEL to return to the . 
menu shown in step 3. Press CONT to return to the form shown in step 
4. 

Changing the Packaging for a Task Entry 

Before changing the packaging for a task entry, you should: 

• Gather any of the files associated with this task that have been changed or 
are new. All files should already be prepared or changed. 

9-28 Integrated Software Development Guide 



Packaging Your Interface Modifications 

• Know the menu name and description. 

• Know its location in the interface. 

• Change the associated help file, if necessary (refer to "Writing Your Help 
Messages" presented earlier in this chapter for instructions). 

• Know the name of the package description file associated with the pack­
age being changed (and know that it is available in your current working 
directory). 

1. Type edsysadm and press RETURN. 

~ 
If your change requires new files or changes to existing files and you 

NOTE do not execute this command from the directory in which the files 
reside, enter full pathnames when supplying file names. 

2. You are asked to choose between a menu and a task. Choose task and 
press RETURN. 

3. You are asked to choose between adding a new task and changing an 
existing one. Choose change and press RETURN. 

4. You are asked if your change is for an on-line task or for a task that has 
been saved for a package. Choose packaged and press SAVE. 

5. You are asked to supply the package description file name for the pack­
age being changed. Fill in the name of a valid package description file 
and press SAVE. 

6. You are given a task definition form filled in with the current values for 
the task named above. Make the desired changes and press SAVE. (See 
"The Task Definition Form" for descriptions of the fields on this form.) 

7. You are asked if you want to install the modifications into the interface 
on your machine or save them for a package. Choose save and press 
SAVE. 

8. You are asked to supply a file name. Enter a name for the package 
description file and press SAVE. (This must be the same package descrip­
tion file named in Step 5.) 

Modifying the sysadm Interface 9-29 



Packaging Your Interface Modifications 

9. If the file name given for the package description file already exists, you 
are asked if you want to overwrite it or add to its contents. Answer 
either overwrite, do not overwrite, or add and press SAVE. 

10. If the file name does not already exist (or after you have completed Step 
9) you see a message stating that the menu information file and proto­
type file have been verified and the top-level prototype must be edited 
to include the new prototype file. Press CANCEL to return to the 
menu shown in step 4. Press CONT to return to the form shown in step 
5. 

The Task Definition Form 

This form contains six fields in which you must provide: a task name, a task 
description, a task location, the name of a help message for the task, a task 
action file, and the files associated with the task. Below are descriptions of the 
information you must provide in each field. 

Task Name The name of the new task (as it should appear in the left­
hand column of the screen). This field has a maximum 
length of 16 alphanumeric characters. 

Task Description A description of the new task (as it should appear in the 
right hand column of the screen). This field has a max­
imum length of 58 characters and can consist of any 
alphanumeric character except the at sign (@), carat ("), 
tilde (-), back grave ('), grave ('), and double quotes ("). 

Task Location 

9-30 

The location of the task in the menu hierarchy, expressed 
as a pathname. The pathname should begin with the 
main menu followed by all other menus that must be 
traversed (in the order they are traversed) to access this 
task. Each menu name must be separated by colons. For 
example, the task location for a task entry being added to 
the applications menu is main: applications. Do not 
include the task name in this location definition. The com­
plete pathname to this task entry will be the task location 
as well as the task name defined at the first prompt. 

This is a scrollable field, showing a maximum of 50 
alphanumeric characters at a time. 

Integrated Software Development Guide 



Task Help File 
Name 

Task Action 

Task Files 

Packaging Your Interface Modifications 

Pathname to the item help file for this 
task entry. If it resides in the directory from which you 
invoked edsysadm, you do"not need to give a full path-
name. If you name an item help file that does not exist, 
you are placed in an editor (as defined by $EDITOR) to 
create one. The new file is created. in the current direc­
tory and named Help. 

The FACE form name or executable that will be run 
when this task is selected. This is a scrollable field, 
showing a maximum of 58 alphanumeric characters at a 
time. This pathname can be relative to the current direc­
tory as well as absolute. (Refer to the ''Writing Your 
Administration Actions" section for details.) 

Any FACE objects or other executables that support the 
task action listed above and might be called from within 
that action. Do not include the help file name or the task 
action in this list. Pathnames can be relative to the 
current directory as well as absolute. A dot (.) implies 
"all files in the current directory" and includes files in 
subdirectories. 

This is a scrollable field, showing a maximum of 50 
alphanumeric characters at a time. 

The following screen shows a filled-in sample task definition form. 

Define A Task 

Name: rnsvrtask 
Description: Task Description 
Location: rnain:applications:rnsvr 
Help Message: Help 
Action: Forrn.rnsvrtask 
Task Files: Forrn.task2, Text.task2 

Modifying the sysadm Interface 9-31 



Packaging Your Interface Modifications 

Preparing Your Package 

You must perform two steps, after executing edsysadm, to include your inter­
face modification files in your application package. 

1. Include the prototype file 

The prototype file that edsysadm creates must become a part of your 
package prototype file structure. This means that you must either read 
it into another prototype file or use the include command in your pri­
mary prototype file. For example, adding 

!include /myproject/admsrc/prototype 

to a prototype file in the /myproject directory ensures that the pro­
totype file in /myproject/admsrc, and all of the objects it describes, 
will be included when the packaging tool, pkgmk, creates the package. 

2. Change your CLASSES parameter in the pkginfo file 

The components defined in the prototype file that edsysadm creates 
are placed into the two special classes: OAMmif and OAMadmin. You 
must edit the pkginfo file for your package and add these to the 
CLASSES parameter definition. For example, a CLASSES definition before 
the change might look like this: 

CLASSES="classl class2" 

It should be changed to look like this: 

CLASSES="classl class2 OAMmif OAMadmin" 

Your interface modifications are now ready to be included in your package 
when you create your package using pkgmk. (Details on packaging procedures 
are discussed in the "Packaging Application Software" chapter.) 

9-32 Integrated Software Development Guide 



Deleting Interface Modifications 

Interface modifications can be deleted in two ways. When a package is 
removed, the modifications installed with the package are removed automati­
cally. Modifications can also be removed online by executing delsysadm. 

To delete either a menu or task entry online, execute 

delsysadm name 

where name is the location of the task or menu in the interface, followed by the 
menu or task name. For example, to delete a task named my task with the loca­
tion main: application :mymenu, execute 

delsysadm main:application:mymenu:mytask 

Before an entry for a menu can be removed, that menu must be empty (contain 
no submenus or tasks). If it is not, you must use the -r option with del­
sysadm. This option requests that, in addition to the named menu, all sub­
menus and tasks located under that menu be removed. For example, to remove 
main: application :mymenu and all submenus and tasks that reside under it, 
execute 

delsysadm -r main:application:mymenu 

When you use the -r option, delsysadm checks for dependencies before 
removing any subentries. (A dependency exists if the menu being removed con­
tains an entry placed there by an application package.) If a dependency is 
found, you are shown a list of packages that depend on the menu you want to 
delete and asked whether you want to continue. If you answer yes, the menu 
and all of its menus and tasks are removed (even those shown to have depen­
dencies). If you answer no, the menu is not deleted. y Use delsysadrn to remove only those menu or task entries that you have 

added to the interface with edsysadm. 

Modifying the sysadm Interface 9-33 



Data Validation Tools 

The data validation tools are a group of shell level commands that serve two 
purposes: 

• standardize the appearance of administration interaction in the SVR4 
environment regardless of who writes it 

• simplify development of scripts requiring administrator input 

Every tool generates a prompt, validates the answer and returns the response. 
There are no restrictions on when you should use them. It is recommended that 
you use them every time your application interacts with an administrator. 
Using the tools at such a time will make all administrator interaction look alike 
to the user, regardless of the vendor who created the package. You will see, as 
well, that using these tools makes writing scripts with administrator interaction 
much simplier, since the tools do the work based on parameters you provide. 

At the very least, it is recommended that you use them in your request script 
(the packaging script from which you can solicit administrator input) and in the 
executables you deliver when your package administration will be incorporated 
into the sysadm interface. See "Modifying the sysadm Interface" for details 
about writing executables for the sysadm interface and "Packaging Application 
Software" for details on writing a request script. 

This section introduces you to the data validation tools and discusses their 
characteristics. For details on a specific tool, look in the "Reference Manual" 
part of this guide. The shell commands and corresponding visual tools are pro­
vided as Section 1 manual pages. 

9-34 Integrated Software Development Guide 



Data Validation Tools 

Types of Tools 

There are two types of data validation tools. Both perform the same series of 
tasks (described later) but are used in different environments. The two types 
are: 

• Shell Commands 

These tools are invoked from the shell level and used in shell scripts. 

• Visual Tools 

These tools are invoked from within the field definition in an FMLI form 
definition. While the shell commands perform all tasks with one com­
mand, the visual tools are broken into separate commands for defining 
help messages, error messages and performing validation. 

Modifying the sysadm Interface 9-35 



Data Validation Tools 

Characteristics of the Tools 

All of the shell commands perform the same series of tasks (the visual tools 
each perform a subsection of the full series). Those tasks are: 

• Prompt a user for input 

• Validate the answer 

• Format and print a help message when requested 

• Format and present an error message when validation fails 

• Return the input if it passes validation 

• Allow a user to quit the process 

The tool itself defines the type of prompt shown and validation performed is 
defined. For example, the shell command ckyorn prompts for a yes or no 
answer and accepts only a positive or negative response. Some tools allow you 
to supply input during execution to help customize the validation. For exam­
ple, ckrange prompts for and validates an answer within a given range. The 
upper and lower limits of the range can be defined when executing ckrange. 

~. Leading and trailing white space is stripped from the input before validation 9 is performed. 

The Data Validation Tool Prompts 

Each tool has a default prompt that you can use as is, add to, or overwrite. The 
manual page for each tool (see Appendix A) shows the default prompt text. 
You must use the -p option of a shell command before the default can be 
overwri tten. 

For example, executing ckyorn without options produces the following output: 

Yes or No [y,n,?,q]: 

9·36 Integrated Software Development Guide 



Data Validation Tools 

The next example shows the use of the -p option and the output that is pro­
duced. 

$ ckyorn -p "Do you want the manual page files installed?" 
Do you want the manual page files installed? [y,n,?,q]: 

The Data Validation Tool Help Messages 

Each tool has a default help message that you can use as is, add to, or com­
pletely overwrite. The manual page for each tool (see Appendix A) shows the 
default help message text. You must use the -h option of a shell command 
before the default can be overwritten. 

For example, if you executed ckyorn without options and the user requested a 
help message by entering ? at the prompt, the following message would be 
seen: 

To respond in the affirmative, enter y, yes, Y, or YES. 

To respond in the negative, enter n, no, N, or NO. 

The next example shows the use of the -h option when executing ckyorn. 
The text defined after the - h will be shown if the user requests a help message. 

ckyorn -h "Answer yes if you want the manual page files \ 
installed or no if you do not." 

If you insert a tilde (-) at the beginning or end of your definition, the default 
text will be added at that point. For example, 

ckyorn -h "The manual page files will be written to your \ 

system, or not, based on your answer.-" 

will produce the help message: 

The manual page files will be written to your system, or not, 
based on your answer. To respond in the affirmative, enter y, 
yes, Y, or YES. To respond in the negative, enter n, no, N, \ 

or NO. 

Modifying the sysadm Interface 9-37 



Data Validation Tools 

The Data Validation Tool Error Messages 

Each tool has a default error message that you can use as is, add to, or com­
pletely overwrite. The manual page for each tool (see Appendix A) shows the 
default error message text. You must use the -e option of a shell command 
before the default can be overwritten. 

For example, if you executed ckyorn without options, and validation failed, 
the following message would be seen: 

ERROR: Please enter yes or no. 

The next example shows the use of the -e option when executing ckyorn. 
The text defined after the -e will be prepended with ERROR: and shown if 
validation fails. 

ckyorn -e "You did not respond with yes or no." 

If you insert a tilde (-) at the beginning or end of your definition, the default 
text will be added at that point. 

Message Formatting 

All three message types (prompt, error, and help) are limited in length to 78 
characters and are automatically formatted. Regardless of how you define them 
in your code, any white space used (including newline) is stripped during for­
matting. 

You can use the -w option of a shell command (or the ckwidth variable of a 
function) to define the line length to which your messages should be formatted. 

The Shell Commands 

Figure 9-3 lists the shell commands and what they are used for. All of the shell 
commands perform the same series of tasks, as described previously. The 
table's ''Purpose'' column describes the type of prompt and validation with 
which the command deals. Details for each command can be found on the 
respective manual page in Appendix A. 

9-38 Integrated Software Development Guide 



Data Validation Tools 

Figure 9-3: The Shell Commands 

Command 
(and Function) Purpose 

ckdate Prompts for and validates that the answer is a date 
(can define format for date). 

ckgid Prompts for and validates that the answer is a group 
id. 

ckint Prompts for and validates an integer value (can define 
base for input). 

ckitem Builds a menu, prompts for and validates a menu item 
(can define characteristics of the menu). 

ckkeywd Adds keywords to a prompt and validates that the 
return answer matches a keyword. 

ckpath Prompts for and validates a pathname (can define what 
type of validation to perform, such as "pathname must 
be readable") .. 

ckrange Prompts for and validates an integer within a range 
(can define the upper and lower limits of the range). 

ckstr Prompts for and validates that the answer is a string 
(can define a regular expression, in which case the 
string must match the expression). 

cktime Prompts for and validates that the answer is a time 
(can define format for time). 

Modifying the sysadm Interface 9-39 



Data Validation Tools 

Figure 9-3: The Shell Commands (continued) 

Command 
(and Function) 

ckuid 

ckyorn 

dispgid 

dispuid 

9-40 

Purpose 

Prompts for and validates that the answer is a user id. 

Prompts for and validates a yeslno answer. Input 
must be y, yes, Y, YES, n, no, N, or NO. 

Displays a list of all valid group names. 

Displays a list of all valid user names. 

Integrated Software Development Guide 



Data Validation Tools 

The Visual Tools 

The visual tools are invoked from within the field definition of an FMLI form. 
Because of the nature of FMLI form definitions, it is necessary to divide the 
tasks performed by only one shell command into sets. The purpose of a visual 
tool set parallels the purpose of a shell command. For example, ckda te per­
forms a group of tasks for a prompt whose response should be a date. The 
same group of tasks requires three visual tools: 

• errdate (formats and presents an error message) 

• helpdate (formats and presents a help message) 

• valdate (validates the answer to be a date) 

The format and description of each visual tool set is shown on the equivalent 
shell command manual page in Appendix A. For example, the equivalent shell 
command for the set described above is ckdate. Refer to the manual page 
ckdate(1) for details on the three visual tools errdate, helpdate, and val­
date. 

Figure 9-4 lists the visual tool sets and their associated response type. 

Modifying the sysadm Interface 9·41 



Data Validation Tools 

Figure 9·4: The Visual Tools 

Visual Tool Set Response Type 

erryorn, helpyorn, valyorn yes or no 

errint, helpint, valint integer 

errange, helprange, valrange integer in a range 

errstr, helpstr, valstr string (potentially 
matching an expression) 

errpath, helppath, valpath pathname 

erritem, helpitem menu item 

errgid, helpgid, valgid existing group 

errtime, helptime, valtime time of day 

errdate, helpdate, valdate date 

9·42 Integrated Software Development Guide 



Data Validation Tools 

There are two other visual tools. dispuid displays a list of login ids and 
dispgid displays a list of group ids. These two tools can be used with the 
FMLI rmenu keyword to display a list of ids. 

The following example shows a field definition written in FMLI using the visual 
tools: 

name="Do you want to install the manual page files?" 
value=y 
choicemsg='helpyorn' 
invalidmsg=' erryorn -e "-Enter yes to install the manual page files'" 
valid='valyorn $Fl' 
rows-l 
columns=l 

Modifying the sysadm Interface 9-43 





1 0 Driver Software Packaging 

Installable Driver (10) Implementation 10-1 

User Interface 10-2 
User Procedures 10-2 
User Privileges 10-2 
Interactions with Other UNIX System V Processes 10-2 

Modifications for 10 10-3 
Master File 10-3 
System File 10-3 
space.c 10-3 
ID Directory Structure 10-4 
Configuration Process Generated Parameters 10-7 

Commands for Installing Drivers and 
Rebuilding the Kernel 10-8 
idcheck 10-8 
idinstall 10-8 
idbuild 10-8 

The Driver Software Package (OSP) 10-10 
Summary of Modules 10-11 
Driver.o (required) 10-12 

Table of Contents 



Table of Contents _____________________ _ 

Master (required) 10-12 
System (required) 10-13 
Space.c (optional) 10-13 
Node (optional) 10-14 
Init (optional) 10-15 
Rc (optional) 10-15 
Shutdown (optional) 10-15 
Postinstall (required) 10-16 
Preremove (required) 10-18 

Base System Drivers 10-19 

Update Driver Software Package (UDSP) 10-21 

Installation/Removal Summary 10-22 

Tunable System Parameters 10-24 
Modifying An Existing Kernel Parameter 10-24 
Defining a New Kernel Parameter 10-25 
Reconfiguring the Kernel to Enable New Parameters 10-25 

. Device Driver Development Methodology 10-26 
Device Driver Development Procedures 10-27 

• Emergency Recovery (New Kernel Will Not Boot) 10-30 
• The postinstall Script 10-31 
Ii The preremove Script 10-31 

How to Document Your Driver Installation 10-32 

II Application and Driver Software Packaging 



Table of Contents 

A Sample Driver Software Package 10-33 

Table of Contents III 





Installable Driver (10) Implementation 

This section describes the Installable Driver (10) scheme, which allows users to 
add drivers for peripheral devices to Release 4.0 of UNIX System V /386. 

10 provides an automatic method of installing device drivers using the pkgadd 
command delivered in the Base System Package of the UNIX System V /386 
Release 4.0 Foundation Set. Users invoke 10 when adding new driver(s) to their 
system. 10 involves system reconfiguration, which in the past has required 
users to know the internals of many system files (fete/system, fete/master, 
io.mk, spaee.h, the eonfig command, and so forth). As with many other 
UNIX system implementations, ID builds a new UNIX system, then has the user 
reboot the system using the new kernel. 

This section provides an overview of what software developers need to do 
when building an installable device driver package. Driver developers must use 
the C Programming Language Utilities (CPLU) delivered in the UNIX System 
V /386 Release 4.0 Software Development Set to compile their driver and build 
installation scripts for delivery with the device driver software package. The 
section entitled IIDevice Driver Development Methodology" provides step-by­
step procedures on how to write, compile, debug, and finally package the device 
driver. 

ID provides a packaging strategy applicable to vendor-supplied drivers. Driver 
writers must develop an add-on Driver Software Package (DSP) similar to those 
for applications programs. A DSP consists of a driver object module, installa­
tion and removal scripts, and device-specifiC entries for system configuration, 
initialization and shutdown files, as well as space allocation entries normally 
associated with space. h on earlier UNIX systems. 

ID allows replacement of "base" drivers using a special DSP called an Update 
Driver Software Package (UDSP). Base drivers are defined as those drivers 
delivered with the UNIX System V /386 Release 4.0 Base System software pack­
age. 

Driver Software Packaging 10-1 



User Interface 

A user may install or remove device drivers using the pkgadd and pkgrrn com-
mands. . 

~ At this point, we assume a basic knowledge about the layout and implemen-9 tation of OA&M packages. 

User Procedures 

The pkgadd command installs a DSP from tape or floppy diskette onto the sys­
tem and initiates automatic procedures to reconfigure the kernel. The pkgrrn 
command allows the user to select which package to delete. It then removes the 
DSP from the system and reconfigures the kernel without the driver. 

The pkginfo command displays any software packages that the user has 
installed. DSPs are treated identically to other UNIX System V /386 Release 4.0 
software packages. Device drivers that are pre-installed on the system by the 
Foundation Set tapes or floppy diskettes are not displayed by this command. 

User Privileges 

The DSP uses the same installation rules as any other add-on software for UNIX 
System V /386 Release 4.0; therefore, the user needs root permissions. A user 
must be super-user to install DSPs. 

Interactions with Other UNIX System V Processes 

The DSP affects other users or processes no more than installing or removing 
other software with the exception that the final step is to reboot the system. It 
is, therefore, not advisable for another user to be logged on using a remote ter­
minal while installing or removing a DSP. 

10-2 Integrated Software Development Guide 



Modifications for 10 

Master File 

In earlier UNIX systems, the master file contained information about all I/O 
devices that can be configured into a kernel. It also listed tunable parameters 
and their default values. For UNIX System V /386 Release 4.0, the master file 
has been split into 

• rrrlevice - master device file 

• mtune - master tunable parameter file 

The format of rrrlevice and mtune are shown in the manual pages in the UNIX 
System V /386 Release 4.0 System Files and Devices Reference Manual. 

System File 

The system file represents a configuration from which a kernel is configured. 
The system file has been split into 

• sdevice - system device file 

• stune - system tunable parameter file 

• sassign - file specifying pseudo-devices root, pipe, swap and dump. 

The format of sdevice and stune are shown in the manual pages in the UNIX 
System V /386 .Release 4.0 System Files and Devices Reference Manual. 

space.c 

The amount of storage allocated for each driver data structure is dependent on 
the number of subdevices configured for a particular device. Because of the 
need to modularize storage allocation and the fact that space allocation should 
rightly be done in a " . c" file, in UNIX System V /386 Release 4.0, the file 
/usr/include/sys/space.h has become a collection of space.c files kept in 
the /etc/conf/pack.d directory. These space.c files determine how much 
storage is required for the main body of the kernel and each of the added 
drivers. These files are compiled and linked into the kernel during 
reconfiguration. 

Driver Software Packaging 10-3 



Modifications for 10 

10 Directory Structure 

The root directory for the ID software is /etc/conf. All files and directories 
are writable only by root so that users cannot inadvertently modify anything. 
In addition, the / etc/ conf directory may not have symbolic links in it. The ID 
directory contains the following subdirectories: 

• bin - contains all ID commands. 

• cf. d - contains configuration-dependent files. 

10-4 

o stune, sassign, sdevice, rrdevice, mtune - equivalent to the 
master and system files of earlier UNIX systems. The mdevice file 
is built from the Master modules of the installed DSPs. A base 
mdevice file supports corresponding devices in the base system. The 
entries in the Master modules for installed DSPs are added to the 
base mdevice. 

o mfsys, sfsys - file system type information (see the mfsys(4) and 
sfsys(4) manual pages in the UNIX System V /386 Release 4.0 
System Files and Devices Reference Manual). 

o init .base - base system part of /etc/inittab. 

o kerrunap - kernel memory mapping information. 

o Temporary files used by the reconfiguration process: 

conf.c 

config.h 

direct 

fsconf.c 

vector.c 

unix 

Kernel data structures and function definitions 

Kernel #defines for device and system parameters 

Listing of all driver components included in the 
build 

File system type configuration data 

Interrupt vector definition 

The UNIX operating system kernel; eventually to be 
linked to /stand/unix. 

These temporary files are created and used by the ID reconfiguration 
software, and are then deleted. If you run the 
/etc/conf/bin/idconfig command manually, it creates these files 
for your review. 

Integrated Software Development Guide 



Modifications for 10 

• sdevice. d - contains one file for each type of device (that is, controller 
board or pseudo-device). The file-name is the same as the DSP internal 
name. Each file contains all of the system configuration entries pertaining 
to that device. Generally, this file contains a single line entry. (A device 
might have two entries in the system configuration if there were two 
devices of that type installed in the system.) These files are copies of the 
Systems modules of each installed DSP. When concatenated together, 
these files comprise the file /etc/conf/cf .d/sdevice. 

• pack. d - contains one directory for each DSP installed on the system. 
The directory name is the same as the DSP internal name. The directories 
in pack. d contain the Driver. 0 and space. c files for the drivers. This 
directory can also contain a stubs. c file. stubs. c files are often used 
as "place holders" for references the kernel needs to resolve for code that 
has been uninstalled. These files are taken from the Driver.o, Space.c, 
and Stubs.c files of a DSP. Note the change in capitalization for 
Stubs. c and Space. c. A DSP must name these files starting with an 
upper-case letter. The ID tools will install the files into 
/etc/conf/pack.d using the lower-case forms. 

• rc. d - contains startup procedures for each of the installed DSPs. There 
will be one file per device startup procedure, and the file's contents are to 
be taken from the Rc module of the DSP. The names of the files are the 
same as the DSPs internal names. The contents of this directory are 
linked to /etc/idrc.d whenever a newly configured kernel is first 
booted. 

• sd.d - contains shutdown procedures for each of the installed DSPs. 
There will be one file per device shutdown procedure, and the file's con­
tents are to be takeri from the Shutdown module of the DSP. The names 
of the files are the same as the DSPs internal names. The contents of this 
directory are linked to / etc / idsd. d whenever a newly configured kernel 
is first booted. 

• node. d - contains device node definitions (special files in / dev) for each 
of the installed DSPs. There will be one file per device driver, and the 
file's contents are taken from the Node module of the DSP. The file­
names are the same as the DSP internal names. The contents of this direc­
tory are the input to the idmknod command. 

Driver Software Packaging 10-5 



Modifications for 10 

• in it .d - contains /etc/inittab entries for each of the installed DSPs. 
There will be one file per device driver, and the file's contents are taken 
from the Init module of the DSP. The file names will be the same as the 
DSP internal names. The contents of this directory is the input to the 
idrnkinit command. (It should be noted that this directory may also con­
tain /etc/inittab entries other than those associated with DSPs.) 

• rnf sys . d - contains one FS type master data file for each file system type 
add-on. These files are taken from the Mfsys module of a DSP. When 
concatenated together, these files comprise the file 
/etc/conf/cf.d/rnfsys. 

• sfsys.d - contains one FS type system data file for each file system type 
add-on. These files are taken from the Sfsys module of a DSP. When 
concatenated together, these files comprise the file 
/etc/conf/cf.d/sfsys. 

10-6 Integrated Software Development Guide 



Modifications for ID 

Configuration Process Generated Parameters 

The configuration process produces a file config.h that contains device param­
eters in the form of #defines that specify the number of units, interrupt vectors 
used, and other pertinent information. For example, a device driver that con­
trols several subdevices may not know how many subdevices are actually 
installed in the system but can determine the number by including config.h 
and referencing the proper #define. The parameters generated in config.h 
are prefixed with the device handler prefix in all capital letters as shown below: 

Per device defines: 

iidefine PRFX 
iidefine PRFX_CNTLS 
IIdefine PRFX_UNITS 
iidefine PRFX CHAN 
iidefine PRFX_TYPE 
iidefine PRFX_CMAJORS 
iidefine PRFX_CMAJOR_O 

Set to 1 if device is configured. 
Number of entries in System (sdevice) file. 
Number of subdevices (see below) • 
DMA channel used (-1 if none) • 
Interrupt vector type used. 
Number of multiple Major Numbers supported. 
Major Numbers supported. The first major 
is PRFX_CMAJOR_O, the second PRFX_CMAJOR_l, 
and so forth. 

Per controller iidefines (PRFX_O represents the first controller, 
followed by PRFX_l, etc if more than one controller is installed): 

Set to 1 if controller 0 is configured. 
Interrupt vector used (0 through 15). 
Starting Input/Output Address. 
Ending Input/Output Address. 
Starting Controller Memory Address. 
Ending Controller Memory Address. 

It is important to note that since the device driver is delivered as an object 
module (Driver. 0), the #define cannot be referenced therein. The correct 
way to access the value is in the DSPs Space. c file by defining a variable that 
is assigned the value of the #define. The driver object module can then sim­
ply reference the variable. 

Driver Software Packaging 10-7 



Commands for Installing Drivers and 
Rebuilding the Kernel 

The DSP Install script executes idcheck, idinstall, and idbuild. 
Manual pages for these commands are provided in the UNIX System V /386 
Release 4.0 System Administrator's Reference Manual. Sample Install and 
Remove scripts, which use these commands, are provided in the section entitled 
/I A Sample Driver Software Package" . 

idcheck 

The idcheck command is used to obtain selected information about the system 
configuration. The idcheck command is designed to help driver writers deter­
mine if a particular driver package is already installed or to test for interrupt 
vectors, device addresses, or DMA controllers already in use. It is anticipated 
that the idcheck command will be used in Install scripts that test for 
usable IVN, IDA, and CMA values, then will instruct the user to set particular 
switches or straps on the controller board. 

idinstall 

The idinstall command is used by the DSPs post install and 
preremove scripts, and its function is to install, remove, or update a DSP. 

idbuild 

The idbuild command is a shell script that comprises the reconfiguration 
processes. 

• Concatenates the files in /etc/conf/sdevice.d to produce the 
sdevice file. 

• Concatenates the files in /etc/conf/mfsys.d to produce the mfsys 
file. 

• Concatenates the files in /etc/conf/sfsys.d to produce the sfsys 
file. 

10-8 Integrated Software Development Guide 



Commands for Installing Drivers and Rebuilding the Kernel 

• Executes the idconf ig and idmkunix commands . 

• Sets a lock file so that on the next system shutdown, 
/etc/conf/cf .d/unix is linked to /stand/unix. On the next system 
reboot, the same lock file enables the new driver configuration (nodes in 
/dev, /etc/inittab, and so forth) to be installed. 

The ideheek command does not work properly if idbuild has not been 
executed after a DSP has been added, deleted, or updated through the use 
of idinstall. In order to get around this, after executing idinstall, 
re-synchronize the sdeviee file or, execute idbuild. If not desired, 
update the /ete/eonf/ef. d/sdeviee file by doing: 

cat /ete/eonfdeviee.d/* > /ete/eonf/ef.d/sdeviee 
sync 

Driver Software Packaging 10·9 



The Driver Software Package (DSP) 

This section defines the contents of the Driver Software Package (DSP). The sec­
tion entitled "A Sample Driver Software Package" contains an example pack­
age. Each DSP must have two "names". One is the "external name" that the 
user sees when the package is installed. The second is an "internal name" that 
the kernel uses to identify the device. More information is provided about these 
names below and in the section entitled "Device Driver Development Pro­
cedures" . 

The DSP is to be delivered on installation media as described in the chapter on 
"Packaging Application Software" in this book. There you will find general 
descriptions of the files and information on ordering and contents. The driver 
writer must prepare a DSP consisting of the files (termed modules) described in 
the following sections. 

The package should install the following files as class "volatile" in a tmp direc­
tory. Its post install script should cd to that directory before invoking the 
ID commands to add the DSP to the system. An example OA&M prototype is 
as follows: 

10-10 

# packaging files 
i pkginfo 
i postinstall 
i pre remove 

d none /tmp/ foo 755 bin bin 
v none /tmp/foo/Driver.o=/usr/src/pkg/foo/Driver.o ? ? ? 
v none /tmp/foo/Master=/usr/src/pkg/foo/Master ? ? ? 
v none /tmp/foo/System=/usr/src/pkg/foo/System ? ? ? 
v none /tmp/foo/Space.c=/usr/src/pkg/foo/Space.c ? ? ? 
v none /tmp/foo/Rc=/usr/src/pkg/foo/Rc ? ? ? 
v none /tmp/foo/Shutdown=/usr/src/pkg/foo/Shutdown ? ? ? 

# package objects: 
!default 555 bin bin 
d none /usr/lib/foo 755 root sys 
f none /usr/lib/foo/cmd=/usr/src/pkg/foo/cmd 
f none /usr/include/sys/foo.h=/usr/src/pkg/foo/foofblk.h 444 bin bin 

Integrated Software Development Guide 



The Driver Software Package (DSP) 

Summary of Modules 

Table 10-1: Components of Driver Software Package (DSP) 

Module 
preremove 
post install 
Driver.o 
prototype 
Master 
System 
Spaee.e 
Node 
Init 
Re 

Mandatory /Optional Definition 
M Remove DSP 
M Install DSP driver files 
M Driver object file 
M OAM package prototype file 
M Master file entry 
M System file entry 
o Driver space allocation file 
o Special file entries in / dev 
o /ete/ inittab entries 
o Executed when entering init-Ievel 2 

Shutdown 
Mfsys 

o Executed when entering init-Ievel 0, 5, and 6 
o File system type master data 

Sfsys o File system type system data 

Driver Software Packaging 10-11 



The Driver Software Package (DSP) 

Driver.o (required) 

This is the driver object module that is to be configured into the kernel. This 
object module must be compiled using the native C Programming Language 
Utilities (CPLU) delivered in the UNIX System V /386 Release 4.0 Software 
Development Set. The section entitled "Device Driver Development Methodol­
ogy" provides procedures for coding, compiling, and debugging the driver 
object module. 

Master (required) 

This module contains a one-line description of the device being installed. This 
module is added to the ID mdevice file. The syntax of this line appears in the 
mdevice(4) manual page in the UNIX System V /386 Release 4.0 System Files 
and Devices Reference Manual. 

Columns 6 and 7 of the Master entry should be set to zero. These are the 
driver's character and block and character major device numbers. These values 
are set by ID when the Master entry is added to the kernel configuration. If 
the device needs to support more than 256 subdevices, multiple major numbers 
may be specified in either one or both of these fields. 

UNIX System V Release 4.0 for the Intel386 and compatible architectures sup­
ports multiple major numbers per device. In order to support a large number 
of subdevices, a new letter "M" (upper-case "m") is used in the third column of 
the mdevice file. 

An "f" in the third field identifies the driver as "new-style" (based on 
DDI/DK! interfaces described in this book). This applies to STREAMS, block 
and character drivers. If the driver defines devflag then the Master file 
must have an "f" in the third field. 

Iri order to specify the specific major numbers, a "range notation" is used that 
specifies a list of consecutive major numbers to be used. This notation specifies 
the first and last major numbers separated by a dash (for example, the range 3 -
6, is interpreted as four major numbers between 3 and 6, inclusive). The fifth 
and sixth columns of the mdevice file (block and character major device 
numbers, respectively) may contain a range specification of majors. The imple­
mentation is backward-compatible with all other mdevice entries that continue 
to specify a single major number. 

10-12 Integrated Software Development Guide 



The Driver Software Package (DSP) 

Notice the difference in the following example between the specification of sin­
gle majors versus multiple majors. 

Single major: 

Ip Ioc iHcSf Ip 0 7 1 2 -1 

Multiple majors (fictitious device names used): 

ft Iocrwi IHrobcfM ft 1-4 3-6 1 2 -1 
fg Iocrwi IHrbcfM fg 5 20-24 1 2 -1 

The" ft" entry specifies multiple majors for both block and character numbers; 
the" fg" enur specifies a single block major and multiple character majors. 

For devices that require that both the block and character major ranges be the 
same, a "u" ("unique") flag may be specified in the third column of Master. 
Devices that do not specify" u" may be assigned different ranges for block and 
character majors. 

System (required) 

When a DSP is installed, this module is added to the files to be included in the 
kernel the next time the system is rebuilt. During reconfiguration, the system 
modules for each device are concatenated together to form the ID file sdevice. 
The syntax of this line appears in the sdevice(4) manual page in the UNIX 
System V /386 Release 4.0 System Files and Devices Reference Manual. 

Space.c (optional) 

The amount of storage allocated for each driver data structure is dependent on 
the number of subdevices configured for a particular device. For UNIX System 
V /386 Release 4.0, each driver can have its own Space. c file containing 
configuration dependent-data structures. Each driver package brings in its own 
Space. c file for space allocation. 

As an alternative to providing Space. c, the driver writer could preallocate 
data in the driver, eliminating the need for this file. This is useful when 

Driver Software Packaging 10-13 



The Driver Software Package (DSP) 

• the amount of storage required by the driver is static. 

• the difference in storage between the minimum and maximum number of 
subdevices that can be configured for that device is small. 

~ 
If the driver object file is compiled with special #ifdefS turned on, it is 

NOTE important to explicitly turn on these #ifdefS in the space. c file before 
including headers so that the compiled space. c uses the correct definitions 
of structures and types. 

Node (optional) 

This file is used to generate the device's "special files" in the / dev directory on 
the next reboot after the system has been reconfigured. Node contains one line 
for each node that is to be inserted in / dev. The columns can be separated by 
spaces. The syntax of this line is as follows: 

Column 1: DSP internal name 
Column 2: name of node to be inserted 
Column 3: " b" or " c" (block or character device) 

If the device supports multiple majors, a specific major can 
be specified via the following notation b : offset or c : offset, 
where offset is an offset number within the range of majors 
specified in the mdevice(4). This offset starts with" 0 " 
to specify the first number in the range. An offset of "1" 
would specify the second number in the range, and so on. 

Column 4: minor device number 

Example 

10-14 

DSP-internal-name nodeO c 0 
DSP-internal-name node1 c 1 
DSP-internal-name node2 c:O 0 # Selects 1st character major number 
DSP-internal-name node3 c:1 0 # Selects 2nd character major number 

Integrated Software Development Guide 



The Driver Software Package (DSP) 

See the idmknod(1M) manual page in the UNIX System V /386 Release 4.0 
System Administrator's Reference Manual. 

Init (optional) 

Some drivers require entries in /etc/inittab to make them operational. An 
inittab entry is of the following form (see the inittab(4) manual page in 
the UNIX System V /386 Release 4.0 System Files and Devices Reference Manual): 

id:rstate:action:process 

Each line of the ini t module must be of the format /I action: process", or /1_ 

rstate:action:process". The id and rstate field are generated by ID (if your entry 
has an rstate field it will be used; otherwise, U 2 " will be used). The new 
inittab entries are added to /etc/inittab on the next reboot after the sys­
tem has been reconfigured. For more information on the ini t module format, 
see the idmkinit(1M) manual page in the UNIX System V /386 Release 4.0 
System Administrator's Reference Manual. 

Rc (optional) 

This module is an initialization file that is executed when the system is booted. 
The new Rc file is placed in the directory / et c / idrc . d on the next reboot 
after the system has been reconfigured and is invoked on every system reboot 
thereafter upon entering init level 2. (See the init(1M) manual page in the 
UNIX System V /386 Release 4.0 System Administrator's Reference Manual). When 
creating this module, the file permissions must allow execution by root. 

Shutdown (optional) 

This file is executed when the system is shut down. The new shutdown file is 
placed in the directory / etc/ idsd. d on the next reboot after the system has 
been reconfigured and is invoked on every system shutdown thereafter upon 
entering ini t state 0, 5 and 6. When creating this module, the file permissions 
must allow execution by root. 

Driver Software Packaging 10-15 



The Driver Software Package (DSP) 

Postinstall (required) 

This module performs the following: 

• Changes directory to tmp directory where DSP files were installed. 

• Uses idcheck to determine conflicts with the installed drivers. 

• Invokes the ID command idinstall with the -a option and passes it 
one argument, the internal DSP name. This moves the contents of the 
DSP to the proper directories. 

• Invokes the ID command idbuild. 

• removef any /tmp files installed. 

The following is a sample post install script: 

10-16 

trap " 1 2 3 5 15 

* 
• Inte1386 Package Template 

Driver files installed in /tmp/foo. 
* "foo" will be ID package name for the driver 
# 
IMP=/tmp/foo.ierr 
ERROR1=" Errors have been written to the file $IMP." 
rm -f $IMP > /dev/null 2>&1 
PRFX=foo 

cd /tmp/foo 
/etc/conf/bin/idcheck -p ${PRFX} > /dev/null 2>&1 
if [ $? != 0 1 
then 

echo "<PACKAGE NAME> has already been installed." 
exit 1 

fi 

echo "Installing the drivers." 
/etc/conf/bin/idinstall -a ${PRFX} 2» $IMP 
if [ $? != 0 1 
then 

echo n\n\tThe installation cannot be completed due to an error 
. in the <PACKAGE NAME> driver installation. $ERROR1 " 

exit 1 
fi 

(continued on next page) 

Integrated Software Development Guide 



The Driver Software Package (DSP) 

/etc/conf/bin/idbuild 2» STMP 
if [ S? != 0 I 
then 

fi 

echo "The installation cannot be completed due to an error 
in the driver installation. $ERRORl " 

/etc/conf/bin/idinstall -d ${PRFXj 2»/dev/null 
exit 1 

installf $PKGINST /usr/options/SPKG.name 
echo $NAME > /usr/options/$PKG.name 
installf -f $PKGINST 

* Needed so the removef works. 
removef SPKGINST /tmp/foo/* > /dev/null 2>&1 
removef -f SPKGINST 

rm -f $TMP 
exit 10 

Driver Software- Packaging 10-17 



The Driver Software Package (DSP) 

Preremove (required) 

This module does the following: 

• Calls the idinstall command with the -d option and passes it one 
argument, the internal DSP name. This removes the DSP modules . 

• Invokes the ID command idbuild. 

The following is a sample pre remove script: 

10-18 

trap II 1 2 3 5 15 

• Intel386 generic driver pre remove 
ID package prefix is foo 

TMP-/tmp/foo.rerr 
ERROR1="An error was encountered removing the <PACKAGE NAME> package. 

The file $TMP contains errors reported by the system." 
ERROR2="The kernel rebuild failed. However all software dealing with 

the <PACKAGE NAME> has been removed. The file $TMP contains 
errors reported by the system." 

rm -f $TMP > Idev/null 2>&1 

PRFX-foo 
letc/conf/bin/idinstall -d ${PRFX} 2» $TMP 
if [ $? != 0 1 
then 

fi 

echo $ERROR1 
exit 1 

letc/conf/bin/idbuild 2» $TMP 
if [ $? != 0 1 
then 

fi 

echo $ERROR2 
exit 1 

rm -f $'IMP 

exit 10 

Integrated Software Development Guide 



Base System Drivers 

An examination of /etc/conf/cf .d/mdevice shows the installed DSPs on 
UNIX System V Release 4.0 for the Intel386 and compatible architectures. A 
partial list of the Base System device drivers and software modules is as follows: 

Table 10-2: Base System Driver Definitions 

Hardware 
Drivers 

asy 
fd 
hd 
kd 
Ip 
rtc 

Software 
Modules 

ipc 
ldO 
mem 
msg 
prf 
sem 
shm 
sxt 
xt 

Definition 
Serial Ports Driver 
Floppy Disk 
Hard Disk 
Keyboard 
Line printer (Parallel Port) 
Real-Time Clock 

Definition 
Interprocess Communication (IPC) 
TIY Line Disciplines 
Memory driver 
IPC Messages 
Kernel Profiler 
IPC Semaphores 
IPC Shared Memory 
Shell layers 
Layers 

The above list does not include several drivers and software modules being 
packaged as add-ons (such as NFS (Network File System). and RFS (Remote 
File Sharing). Drivers in the base system are installable drivers that have been 
delivered in the Base System Package of the UNIX System V /386 Release 4.0 
Foundation Set, rather than separate DSPs. They are similar to other DSPs 
except that there are no Install or Remove scripts for the base system 
drivers. 

Driver Software Packaging 10-19 



Base System Drivers 

The pkginfo and pkgrm commands do not show these base system drivers, 
not only to reduce clutter in those menus, but because it would be unreasonable 
to remove the base system drivers. Although base drivers cannot be removed, 
they can be replaced with new drivers by installing an Update Driver Software 
Package (UDSP). 

10-20 Integrated Software Development Guide 



Update Driver Software Package (UDSP) 

This package is specifically designed to replace base system drivers. A UDSP 
must contain the following files: 

• Those modules being replaced. Through special options of the ID com­
mands used to install drivers, the old base driver's modules can be over­
laid, removed, or supplemented. Those driver modules that are not 
changed do not have to be redelivered. 

• The post install module. This module follows the same rules as for 
other driver packages except that it calls idinstall with the -u option. 

• The preremove module. This module must print the message 

Can not remove base driver 

and return with an exit code of 1. 

This scheme allows the user to install an UDSP just as any other ID package. 
When the user later uses the pkginfo command, the updated driver will be 
listed as "Device_Name Driver Update Package". The pkgrm menu displays 
the same entry, but if the user tries to select the updated driver, the 
preremove script defined above aborts the removal. If a subsequent update to 
that same driver is ever developed, the requirements for the UDSP are exactly 
the same as those itemized above for the first update. The second update will 
simply be loaded on top of the first. The Name file and the Remove file should 
remain the same in the second update package. This causes the pkgrm and 
pkginfo command results to also remain the same. 

Keep in mind that this update scenario is only for use with base drivers. If an 
add-on driver ever has an update, it is expected that the whole package previ­
ously installed will be removed, and the new version then re-installed. 

Driver Software Packaging 10-21 



Installation/Removal Summary 

The ID commands and the DSPs modules defined above are used together to 
rebuild and execute a new UNIX operating system kernel. The step-by-step 
procedure to install, reconfigure, and execute a new kernel is as follows: 

1. Execute pkgadd. 

pkgadd loads files specified by prototype and executes the 
postinstall script. 

2. postinstall script performs the following: 

a. Optionally prompts to determine hardware (lOA or IVN) strap­
pings. This may include calling idcheck to test the usability of 
the IVN or lOA. 

b. Executes / etc/ conf /bin/ idinstall with the -a option. 
This command 

• Moves the DSP components to target directories 

• Updates the file / etc/ conf / cf . d/mdevice 

c. Executes /etc/conf/bin/idbuild. This command 

• Execu~s /etc/conf/bin/idconfig 

• Executes /etc/conf/bin/idmkunix 

d. Installs any user commands, menus, or files. 

3. Upon completing installation, a message to shut down the system is 
displayed. 

4. After the system reboots, the init program is the first user-level pro­
gram executed; /etc/inittab executes /etc/conf/bin/idmkenv. 
This command tests to determine if this is the first boot of a new kernel. 
If so, the command 

a. Links /etc/conf/rc.d/* to /etc/idrc.d 

b. Links /etc/conf/sd.d/* to /etc/idsd.d 

c. Executes / etc/ conf /bin/ idmkinit 

10·22 Integrated Software Development Guide 



Installation/Removal Summary 

d. Executes / etc/ conf /bin/ idmknod 

e. Continues ini t state initializations 

f. The system boot then continues normally. 

The process of removing a DSP is very similar to this scenario, with the follow­
ing exceptions: 

• In step 1, invoke pkgrm 

• In step 2, the preremove script deletes commands and files 

• The idinstall command is called with the -d option to delete the 
DSP. 

See the UNIX System V /386 Release 4.0 System Administrator's Guide for a 
detailed description of these procedures. 

Driver Software Packaging 10-23 



Tunable System Parameters 

The two files /etc/conf/cf .d/mtune and /etc/conf/cf .d/stune con­
tain kernel tunable parameters, which can profoundly affect system perfor­
mance. Occasionally an add-on device driver or kernel software module may 
require you to modify an existing parameter or define a new tunable parameter 
that is accessible by other add-on drivers. 

The UNIX System V /386 Release 4.0 System Files and Devices Reference Manual 
provides manual pages for mtune(4) and stune(4). As these pages show, the 
mt une file defines a default value along with a minimum and maximum value 
for each kernel parameter. An add-on package should never modify a 
predefined system parameter in the mt une file. 

Modifying An Existing Kernel Parameter 

The stune file is used to modify a system-tunable parameter from its default 
value in the mt une file. Not every system-tunable parameter is contained in 
the stune file; only those that are to be set to a value other than the system 
default need be entered there. Although the UNIX System V /386 Release 4.0 
Base System defines only a few values in stune, other add-on packages may 
have added additional entries to stune. Therefore, if the driver package you 
are building requires modifying a parameter value, you should use the idt une 
command. See the UNIX System V /386 Release 4.0 System Administrator's Refer­
ence Manual for the manual page that describes idt une(1M). This command 
takes individual system parameters, verifies that the new value is within the 
upper and lower bounds specified in mt une, searches the st une file, and 
modifies an existing value or adds the parameter to stune if not defined. 

~ The value selected must always be within the minimum and maximum y values in the mtune file. 

10-24 Integrated Software Development Guide 



Tunable System Parameters 

Defining a New Kernel Parameter 

If the DSP you are developing is part of a group of kernel software components, 
there may be a need to define configurable parameters that other packages can 
reference. If this is the case, the Install script can append new tunable 
parameters to /etc/conf/cf .d/mtune by defining lines in the format shown 
in the mtune(4) manual page in the UNIX System V /386 Release 4.0 System 
Files and Devices Reference Manual. The DSP Remove script must remove these 
entries if the user chooses to remove the package. When modifying mt une, be 
careful that you do not modify or delete other values. 

Reconfiguring the Kernel to Enable New Parameters 

After the stune and/or mtune files are modified, the system must be 
reconfigured using the idbuild command. If you are modifying the parame­
ter as part of adding your DSP, and your Install script already invokes 
idbuild, then, of course, no additional build is required. 

Driver Software Packaging 10-25 



Device Driver Development Methodology 

We have covered many of the kernel architectural and driver design details you 
need to know to write a UNIX device driver. Let's now talk about how you 
actually write the code and compile and package a driver. To accomplish these 
procedures, you must install the C Programming Language Utilities (CPLU) 
delivered in the UNIX System V /386 Release 4.0 Software Development Set. 

As with any C program, you must compile, link edit, and execute the driver. 
Since the driver is part of the kernel, it must be link edited together with the 
kernel and the rest of the device drivers. The following can be used to create a 
driver object module suitable for the ID: 

cc -c Driver.c 

You can call the driver source by any name you want as long as the object 
module is renamed "Driver.o" for later installation. If your driver is com­
posed of several driver source files, you must compile each as shown above, 
combine them using "Id -r", and give the name "Driver.o" to the resul­
tant object module. 

The ID requires that the driver object file be packaged on an installable tape or 
floppy diskette, along with the other modules described earlier. While you are 
initially developing and debugging the driver, it is not necessary to keep writ­
ing the tape or -floppy diskettes and re-installing everything each time you make 
a driver modification. The following section presents a methodology for driver 
development, debugging, and testing without the use of media installation pack­
ages. The trace driver provided in the section entitled "A Trace Driver Imple­
mentation" is used as a model throughout this section. 

10-26 Integrated Software Development Guide 



Device Driver Development Methodology 

Device' Driver Development Procedures 

Many of the steps that follow require you to modify files and directories owned 
by root; therefore, you must be logged in as root or execute as the super­
user to develop and debug device drivers. 

1. Establish a device "internal name". 

This can be up to eight characters long and must start with a letter, but it 
can have digits or underscores after the first letter. It is the name that the 
ID uses to identify the device. For the trace driver, 1/ trace" is the name 
for ID to use. From now on, let's call this DEV _NAME. 

The following name definitions based on the internal name are required 
by the ID implementation in Release 4.0 of UNIX System V /386: 

• Column 1 of the Master file. This must be DEV NAME. 

• Column 4 of the Master file. This is the driver entry point 
(function) prefix. It is also called the "handler" field. It can be 
up to six characters. It is desirable to make this identical to 
column 1 if DEV NAME is four characters or less. For the trace 
driver, "tr" is this prefix. 

• Column 1 of the System file. This must be DEV _NAME. 

• "Special file" names listed in the Node module. These should 
be DEV_NAMEO, DEV_NAME1, and so forth, unless other issues, 
like user perception of the node name, are important. Any 
numbering for subdevices should match the minor device of that 
node. The trace driver package uses traceO, which causes ID 
to generate / dev /traceO, on the first boot of the new kernel. 

• Function names inside your driver. The function names must 
use the device prefix defined above. The trace driver uses 
tropen, trclose, trread and so forth. 

• External variables and internal functions used inside the driver. 
These should use the prefix defined above or a prefix followed 
by an underline. The trace driver uses II t r _". 

Driver Software Packaging 10-27 



Device Driver Development Methodology 

2. Manually create a System entry. 

Go to the / etc/ conf / sdevice. d directory, and create a file of name 
DEV _NAME containing the system information. The trace driver uses the 
following: 

trace Y 1 o o o o o o 0 

3. Manually create an mdevice entry. 

Because the 1D assigns block and/or character major numbers when the 
package is installed, your Master file is required to have zeros in columns 
5 and 6, or I-x, if multiple majors are required to request 1/ x /I major 
numbers. Although you could manually edit 
/etc/conf/cf .d/mdevice and assign block and character major 
numbers, the best approach is to put a file called Master in your local 
directory (say /tmp) and execute the command: 

/etc/conf/bin/idinstall -a -m -k DEV NAME 

This says add (-a) a Master entry (-m). 

~ Watc. h out! The Master .fi1e in your local directory will be removed y by the idinstall command unless you use the -k option. 

The trace driver uses the following: 

trace ocri ioc tr o o 1 1 -1 

Once idinstall adds the Master entry, examine 
/etc/conf/cf .d/mdevice and note the block and/or character major 
number. 

4. Create a file in /etc/conf/node.d to tell the ID to create device special 
files on the next system boot. The file should be named DEV_NAME and 
conform to the Node module format. For the trace driver, the Node 
module is as follows: 

trace traceO c o 

10-28 Integrated Software Development Guide 



Device Driver Development Methodology 

5. Create /etc/conf/init.d, /etc/conf/rc.d,and /etc/conf/sd.d 
entries if appropriate. This step can probably wait until debugging has 
proceeded. 

6. Create a directory called /etc/conf/pack.d/DEV_NAME. Put 
Driver.o and Space. c there (if you need them). 

7. At this point, it would be a good idea to make a copy of your current 
UNIX operating system kernel. Execute the following: 

cp /stand/unix /stand/unix.bak 

8. Manually execute the / etc/ conf /bin/ idbuild shell script. This runs 
a configuration program and tries to link edit your new driver into the 
kernel. You will get an initial message followed either by the message 

UNIX system has been rebuilt 

message or by error messages from the configuration program or link edi­
tor. 

If you get errors, fix them and repeat the above step. If the kernel was 
built correctly, a new UNIX system image will have been created in the 
/ etc/ conf / cf . d directory. You can now shut the system down and 
reboot. Running /etc/shutdown causes the system to enter init state 
0,5 or 6 and the new kernel in /etc/conf/cf.d is automatically linked 
to / stand/unix. On the next boot, if you specify /unix on the 
boot: prompt, the new kernel executes, and upon entering ini t state 2, 
the new device nodes, inittab entries, and so forth, are installed. 

9. When the system comes up, test your driver. 

Driver Software Packaging 10-29 



Device Driver Development Methodology 

Emergency Recovery (New Kernel Will Not Boot) 
The possibility exists that the kernel will fail to boot if your driver contains a 
serious bug. This can be due to a panic call that you put in your driver or 
some other system problem. If this happens, you should reset your system and 
boot your original kernel that you hopefully saved as recommended above. To 
do this, reset y,?ur machine, and when you see the message 

Booting UNIX System ... 

quickly strike the keyboard space bar to interrupt the default boot. When the 
boot prompt appears, type /I / unix. bak" or whatever you named your old 
kernel. If you did not save a copy of your kernel or some disaster occurred, 
you cannot gracefully recover, and must reinstall the system using the following 
emergency procedures to put a bootable /unix image back on the hard disk: 

1. Insert floppy diskette #1 of the Foundation Set and push the RESET but­
ton on the front panel, or power the system down and then back up 
again. Insert second diskette when prompted. 

2. When the following prompt appears: 

Please press RETURN when ready to install the 
UNIX System 

press DEL to exit the installation program. 

You are now executing a floppy-bootable UNIX operating system kernel. 
This is not a standard way to run the system. It should be used for emer­
gency procedures only. 

3. Execute the following commands: 

/etc/fs/bfs/fsck -y /dev/dsk/OslO # check the hard disk 
/etc/fs/bfs/mount /dev/dsk/OslO /mnt # mount the hard disk 
cp /stand/unix /mnt/unix 
umount /mnt 

# copy a hard disk kernel 
# unmount the hard disk 

4. Remove the floppy diskette. 

5. Press the RESET Button or power down and then back up again. 

The system should now boot normally with a standard foundation kernel. Your 
new driver and any other drivers you had installed on your system will not be 
included in /unix even though they may appear in the pkginfo output. 

10-30 Integrated Software Development Guide 



Device Driver Development Methodology 

To fix this, remove your driver and execute /etc/conf/bin/idbuild. If that 
fails, remove and re-install the packages. 

This procedure can also be useful if other system files are damaged inadver­
tently while debugging your driver. There are several reasons your system may 
fail to boot properly or not let you log in after it has booted. For example, a 
corrupted password or inittab file could prevent console logins. 

Because floppy diskette #1 of the Foundation Set software contains a default 
/ etc/passwd, / etc/ init, / etc/ init tab, and other critical files, you can 
copy the default file from the floppy diskette to the root file system of the hard 
disk using the procedures above. Obviously, user logins you have added to 
/etc/passwd or other system changes you have made since installing the ori­
ginal base system will be lost when you overwrite the corrupted file with the 
floppy diskette default file. 

The postinstall Script 
The section entitled /I A Sample Driver Software Package". contains a sample 
script you should review. When writing your script, keep the following rules in 
mind: 

1. Use idcheck to determine whether your package is already installed 
and to verify the usability of IVNs/IOAs your driver and controller board 
use. 

2. Call idinstall and exit appropriately on errors. Use the echo and/or 
message commands to tell the user what failed. 

3. Call idbuild and check the return code. If non-zero, call idinstall 
to remove your package. If the driver fails kernel reconfiguration, don't 
leave it partially installed. 

The preremove Script 
Although there are few reasons a remove operation will fail, the script should 
still remove the ID components and reconfigure the system first, then remove 
the user files. Check the return codes from the ID commands and report to the 
user accordingly. See the section entitled /I A Sample Driver Software Package". 

Driver Software Packaging 10-31 



Device Driver Development Methodology 

How to Document Your Driver Installation 

This section is intended to give you some precautionary advice to pass on to 
your users. If you are developing a DSP that will be installed by users who 
may not be familiar with the implications of system reconfiguration, some 
words of caution may be worthwhile: 

• Although experience has shown little difficulty in installing and removing 
a variety of device drivers, there is the possibility that you may have 
difficulty booting the system. The cause of this would primarily be due to 
some fault in the added driver. If this occurs, you have to reload the Base 
System software package, thus losing all user files. It may therefore be 
advisable to instruct users to back up user files before attempting an ins­
tallation. 

• Since a reconfiguration ends with a system reboot, it is not advisable for 
other users to be logged on to the system through a remote terminal. 

• The user should not press DEL or RESET, power down the system, or in 
any way try to interrupt an installation. Although interruption protection 
is built into the ID scheme, total protection of a reboot during an installa­
tion can never be completely foolproof. 

• Ad vise your users to run df and determine the free disk space before 
even trying an installation. Advise them of the number of free blocks 
needed to install the package. 

• Advise the user not to have any background processes running that will 
be adversely affected by a system reboot, or consume free disk space 
while a reconfiguration is underway. 

For example, avoid running uucp during an installation. 

10-32 Integrated Software Development Guide 



Device Driver Development Methodology 

A Sample Driver Software Package 

This section contains sample files needed to install a device driver that is part of 
an OA&M-style installable software package. The principal files are the 
post install and preremove files. These files contain shell scripts that are 
used to install and remove the device driver. The prototype file is used to 
install any commands or header files. 

The driver package for the trace driver described in the section entitled "A 
Trace Driver Implementation" is provided here as an example. Although the 
driver is a software driver (and hence will not contain hardware-related exam­
ples that are needed for hardware driver installation), most of the content of this 
driver package relates to any device driver. 

The post install script presented here contains a large amount of diagnostic 
and recovery information such as checking if the driver is already installed and 
overwriting the old driver if the user confirms. All errors are redirected to a file 
in /tmp. It is up to the post install script to deal with what errors the user 
should and shouldn't see on the screen. 

Some items to note in the post install script: 

• make liberal use of the echo and message commands to tell the user 
what is going on 

• make sure you exit with the appropriate return value based on successful 
or non-successful installation 

Driver Software Packaging 10-33 



Device Driver Development Methodology 

Figure 10-1: The poatinatall script for trace driver 

10-34 

* Sample OA&M package 'postinstall' script for trace driver. 
* Assumes driver object file and related ID files copied into /tmp/trace. 
* Will only allow driver to be installed on UNIX SVR4.0 system 

FAILURE=1 * fatal error 
SUCCESS=10 success 

TMP=/tmp/trace.err 
ERROR1=" Errors have been written to the file $TMP." 

CONFDIF=${ROOTI/etc/conf 
CONFBIN=${CONFDIFI/bin 
PACK=${CONFDIFI/pack.d 

NOTOOLS="ERROR: The Installable Driver feature has been removed. 
The ${NAMEI cannot be installed." 

PARTINS="WARNING: A TRACE Driver has been partially installed. How completely it is 
installed is unknown. You may continue and overlay it with the ${NAMEI." 

BA.SE1="ERROR: The ${NAMEI is not compatible with this release of the UNIX System V 
operating system and can not be used with this system." 

rm -f $TMP > /dev/null 2>&1 # remove any existing error file 

# determine that ID/TP tools are available 
if [ -x ${CONFBINI/idcheck -a -x ${CONFBINI/idbuild -a -x ${CONFBINI/idinstall I 
then 

else 

fi 

message S{NOTOOLSI 
exit $FAILURE 

cd /tmp/trace 

# verify installation on UNIX System V/386 Release 4 
OSVER='uname -a I cut -d " " -f3' 
case $ {OSVERI in 

esac 

4.*) ;; 
*) message ${BA.SE11; 

exit SFAILURE;; 

(continued on next page) 

Integrated Software Development Guide 



Device Driver Development Methodology 

Figure 10-1: The postinstall script for trace driver (continued) 

${CONFBINI/idcheck -p trace> /dev/null 2>&1 
RETTP=$? 

########H#HHHHHHH#H#HHHHH'HH"HH"'HH#H#H"H.##iHH'HH'H'i'H'H' 
U If RETTP != 0, then an "trace" driver exists on the system U 
#i#iiii#i###'##ii######ii#####ii#########i######i#########i#i# 

WARN="" 
if [ $RETTP != 0 1 
then 

fi 

message -c ${PARTINS} 
if [ "$?" 1= "0" 1 
then 

exit ${FAILURE} 
fi 
idinstall -d trace # remove current copy 

${CONFBIN}/idinstall -a trace 2» $TMP 
if [ $? != 0 1 
then 

fi 

message "The installation cannot be completed due to an error in the 
driver installation. $ERROR1 Please try the installation again. 
If the error occurs again, contact your Trace Service Representative." 

exit ${FAILUREI 

${CONFBIN}/idbuild 2» $TMP 
if [ "$?" -ne "0" 1 
then 

fi 

message "The installation cannot be completed due to an error in the 
kernel reconfiguration. $ERROR1 Please try the installation again. 
If the error occurs again, contact your Trace Service Representative." 

exit ${FAILURE} 

# Needed so the removef works. 
removef $PKGINST /tmp/trace/* >/dev/null 2>&1 
removef -f $PKGINST >/dev/null 2>&1 
rm -f $TMP 1>/dev/null 2>&1 
exit ${SUCCESS} 

Driver Software Packaging 10-35 



Device Driver Development Methodology 

Figure 10-2: The preremove script for trace driver 

10-36 

Sample OA&M package 'preremove' script for trace driver. 

FAILURE=l * fatal error 
SUCCESS-10 

CONFDIR~/etc/conf 

CONFBIN=$CONFDIR/bin 

NarOOLS="ERROR: The Installable Driver feature has been removed. 
The $ {NAME 1 cannot be removed." 

TMP=/tmp/trace.err1 
ERROR1="An an error was encountered removing the $ {NAME I. The file $ {TMP} contains 

errors reported by the system." 
ERROR2="The kernel rebuild failed. However all software dealing with the ${NAME} 

has been removed. The ${NAME} will still appear in the Show Installed 
Software /Remove Installed Software menus because the kernel still has 
the trace driver in it. Please correct the problem and remove the software 
again. The file $TMP contains error reported by the system." 

rm -f $TMP > /dev/null 2>&1 

if [ -x ${CONFBIN}/idcheck -a -x ${CONFBINI/idbuild -a -x ${CONFBIN}/idinstall 1 
then 

else 

fi 

message ${NOTOOLSI 
exit $ {FAILURE} 

${CONFBIN}/idcheck -p trace 
RES="$?" 
if 

then 

fi 

[ "${RES}" -ne "100" -a "${RES}" -ne "0" 1 

${CONFBIN}/idinstall -d trace 2» ${TMP} 
if [ $? != 0 1 
then 

fi 
REBUILD=l 

IDERR=l 

(continued on next page) 

Integrated Software Development Guide 



Device Driver Development Methodology 

Figure 10-2: The preremove script for trace driver (continued) 

if [ $ {IDERR} 1= 0 I 
then 

fi 

RETVAL=O 

if 

then 

fi 

message $ERROR1 
exi t $ {FAILURE} 

[ "${REBUILD}" = "1" I 

# rebuild for changes to take effect 
${CONFBIN}/idbuild 2» $TMP 
if [ $1 \= 0 I 
then 

else 

fi 

message $ERROR2 
exit ${FAILURE} 

RETVAL=${SUCCESS} 

rm -f $TMP l>/dev/null 2>&1 

exit ${RETVAL} 

Driver Software Packaging 10-37 



Device Driver Development Methodology 

Figure 10-3: The pkginfo file for trace driver 

10-38 

Sample OA&M package 'pkginfo' file for trace driver. 

PKG=ltrace" 
CIASSES=lnone" 
NAME="386unix Trace Device Driver Package" 
RELEASE="4.0" 
VERSION=" I " 
VENDOR="AT&T-SF" 
CATEGORY=system 
• ARCH is set to i386 because the trace driver is not specific 
• to a particular 386 architecture 
ARCH="i386" 
• The following allows old displaypkg command to show Trace Driver package as instal lee 
PREDEPEND="trace" 

Integrated Software Development Guide 



Device Driver Development Methodology 

Figure 10-4: The prototype file for trace driver 

Sample OA~ package 'prototype' file for trace driver. 

PACKDIR is where built Driver.o and related ID/TP files are located. 
We use /usr/src/pkg/trace as an example 

!PACKDIR~/usr/src/pkg/trace 

the following files should be in the same directory as the prototype file 

pkginfo 
i post install 
i pre remove 

!PKGINST=trace 
!PKGSAV=/var/sadm/pkg/$PKGINST/save 

j class "v" files are volatile -- allowed to be removed by package installation 

!default 0544 bin bin 
d none /tmp/trace 775binbin 
v none /tmp/trace/Driver.o=$PACKDIR/Driver.o??? 
v none /tmp/trace!Master=$PACKDIR/Master??? 
v none /tmp/trace/System=$PACKDIR/System??? 
v none /tmp/trace/Node=$PACKDIR/Node??? 
v none /tmp/trace/Rc=$PACKDIR/Rc??? 
v none /tmp/trace/Space.c=$PACKDIR/Space.c??? 

directories: default owner=root group=sys mode=0775 

!default 0544 root sys 
d none /usr ?? 
d none /usr/bin ?? 
d none /usr/include ??? 
d none /usr/include/sys ??? 
j assume "t.race" is a command part of the trace driver package 
f none /usr/bin/trace=$PACKDIR/trace 

header files: default owner=bin group=bin mode=0444 
!default 0444 bin bin 
f none /usr/include/sys/trace.h=$PACKDIR/trace.h 

Driver Software Packaging 10-39 



Device Driver Development Methodology 

Figure 10-5: The Master file for trace driver 

trace ocri ioc tr 0 o 1 1 -1 

Figure 10-6: The System file for trace driver 

trace Y 1 0 0 o o o o o 

Figure 10-7: The Node file for trace driver 

trace traceO c 0 

10-40 Integrated Software Development Guide 



A Manual Pages 

Manual Pages A-1 

Table of Contents 





Manual Pages 

The manual pages included in this appendix are unique to the Integrated 
Software Development Guide. Other manual pages may be applicable as well, but 
won't be duplicated here; they may be referred to in the appropriate Reference 
Manual. 

Manual Pages A·1 





Table of Contents 

1. Commands 

ckdate, errdate, helpdate, valdate(1) ............................................ prompt for and validate a date 
ckgid, errgid, helpgid, valgid(1) ........................................... prompt for and validate a group ID 
ckint (1) ........................................................ display a prompt; verify and return an integer value 
ckitem(1) ......................................................... build a menu; prompt for and return a menu item 
ckkeywd(1) ............................................................................... prompt for and validate a keyword 
ckpath(1) ............................................................. display a prompt; verify and return a path name 
ckrange(1) ............... ~ .................................................................. prompt for and validate an integer 
ckstr(1) ......................................................... display a prompt; verify and return a string answer 
cktime(1) .......................................................... display a prompt; verify and return a time of day 
ckuid(l) ....................................................................................... prompt for and validate a user ID 
ckyorn(l) ......................................................................................... prompt for and validate yes/no 
dispgid(1) ........................................................................... displays a list of all valid group names 
dispuid(1) .............................................................................. displays a list of all valid user names 
mouseadmin(l) ................................................................................................. mouse administration 
newvt(l) .......................................................................................................... opens virtual terminals 
pkginfo(1) ............................................................................. display software package information 
pkgmk(1) ........................................................................................... produce an installable package 
pkgparam(1) .............................................................................. displays package parameter values 
pkgproto (1) .................................................................................... ~ ............. generate a prototype file 
pkgtrans(l) ................................................................................................... translate package format 
vtlmgr(l) ................................................................................ monitors and opens virtual terminals 
delsysadm(1M) ......................................................... sysadm interface menu or task removal tool 
edsysadm(1M) ..................................................................................... sysadm interface editing tool 
idbuild (1M) ...................................................................................... build new UNIX System kernel 
idcheck(lM) ........................................................................................... returns selected information 
idconfig(1M) ............................................................................ produce a new kernel configuration 
idinstall(1M) ........ ~ .......................... add, delete, update, or get device driver configuration data 
idmkinit(1 M) ............................................................................. reads files containing specifications 
idmknod(1M) .................................................... removes nodes and reads specifications of nodes 
idmkunix(1 M) .................. ~ .............................................................. build new UNIX System kernel 
idspace(lM) ..................................................................................................... investigates free space 
idtune(1M) ................................................................ attempts to set value of a tunable parameter 
installf(1M) ............................................................ add a file to the software installation database 
pkgadd (1M) ...................................................................... transfer software package to the system 
pkgask(1M) .................................................................................. stores answers to a request script 
pkgchk(1 M) ......................................................................................... check accuracy of installation 
pkgrm(1M) ............................................................................... removes a package from the system 
removef(lM) .......................................................................... remove a file from software database 

Table of Contents 1 



Table of Contents 

4. File Formats 

compver(4) ..................................................................................................... compatible versions file 
copyright (4) ............................................................................................... copyright information file 
depend (4) ................................................................................................ software dependencies files 
mdevice (4) ............................... ........................................................................................... file format 
mfsys (4) .............................................................................................................................. file format 
mtune(4) ................................................................................................................................ file format 
pkginfo (4) ................................................................................................. package characteristics ftle 
pkgmap(4) ..................................................................................... package contents description file 
prototype (4) ................................................................................................. package information file 
sdevice (4) ............................................................................................................................ file format 
sfsys (4) ..................................... ........................................................................................... file forme.t 
space (4) .................................................................................................... disk space requirement file 
stune (4) ............ ........... ........ ..... ........... .......................... ...... ........................ ........ ..... ..... ...... file format 

7. Special Files 

display(7) ........................................................................................................ system console display 
keyboard (7) ................................................................................................. system console keyboard 
mouse(7) .... mouse device driver supporting bus, serial, and PS/2 compatible mouse devices 

2 Integrated Software Development Guide 



ckdate(1 ) ( Essentla I Utilities) ckdate(1 ) 

NAME 
ckdate, errdat;:,e, helpdate, valdate - prompt for and validate a date 

SYNOPSIS 
ckdate [ -Q ] [ -w width] [ -f format] [ -d default ] [ -h help] [ -e error] 

[ -p prompt] [ -k pid [ -s signal] ] 

errdate [ -w width] [ -e error] [ -f format] 

helpdate [ -w width] [ -h help] [ -f format] 

val date [ -f format] input 

DESCRIPTION 

3/91 

ckdate prompts a user and validates the response. It defines, among other 
things, a prompt message whose response should be a date, text for help and 
error messages, and a default value (which is returned if the user responds with a 
RETURN). The user response must match the defined format for a date. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckdate command. They are errdate 
(which formats and displays an error message), helpdate (which formats and 
displays a help message), and valdate (which validates a response). These 
modules should be used in conjunction with FMLI objects. In this instance, the 
FMLI object defines the prompt. When format is defined in the errdate and 
helpdate modules, the messages describe the expected format. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response .. 

-w 
-f 

-d 

Use width as the line length for prompt, help, and error messages. 

Verify input using format. Possible formats and their definitions are: 
%b abbreviated month name 
%B full month name 
%d day of month (01 - 31) 
%D date as %m/%d/%y (the default format) 
%e day of month (1 - 31; single digits are preceded by a blank) 
%h abbreviated month name (for example, jan, feb, mar) 
%m month number (01 - 12) 
%y year within century (for example, 91) 
%Y year as CCYY (for example, 1991) 

The default value is default. The default is not validated and so does not 
have to meet any criteria. 

Page 1 



ckdate(1 ) (Essential Utilities) ckdate(1 ) 

-h The help message is help. 
-e The error message is error. 
-p The prompt message is prompt. 
-k Send process ID pid a signal if the user chooses to abort. 

-s When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against format criteria. 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOP on input 
2 = Usage error 
3 = User termination (quit) 
4 = Garbled format argument 

The default prompt for ckdate is: 

Enter the date [?,q] 

The default error message is: 

ERROR - Please enter a date. Fonnat is format. 
The default help message is: 

Please enter a date. Fonnat is format. 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valdate module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



ckgld(1 ) (Essential Utilities) ckgld(1 ) 

NAME 
ekgid, errgid, helpgid, valgid - prompt for and validate a group 10 

SYNOPSIS 
ekgid [ -Q ] [ -w width] [ -m] [ -d default] [ -h help] [ -e error] [ -p prompt] 

[ -k pid [ -5 signal] ] 

errgid [ -W width] [ -e error] 

helpgid [ -W width] [ -m] [ -h help] 

valgid input 

DESCRIPTION 
ekgid prompts a user and validates the response. It defines, among other things, 
a prompt message whose response should be an existing group 10, text for help 
and error messages, and a default value (which is returned if the user responds 
with a RETURN). 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -W option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ekgid command. They are errgid 
(which formats and displays an error message), helpgid (which formats and 
displays a help message), and valgid (which validates a response). These 
modules should be used in conjunction with FML objects. In this instance, the 
FML object defines the prompt. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-W Use width as the line length for prompt, help, and error messages. 

-m Display a list of all groups when help is requested or when the user 
makes an error. 

-d The default value is default. The default is not validated and so does not 
have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 

-k Send process 10 pid a signal if the user chooses to abort. 

-5 When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against jete/group 

3/91 Page 1 



ckgid (1) (Essential Utilities) ckgid (1) 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 

The default prompt for ckgid is: 

Enter the name of an existing group [?,q] 

The default error message is: 

ERROR - Please enter the name of an existing group. 
(if the -m option of ckgid is used, a list of valid groups is displayed here) 

The default help message is: 
Please enter an existing group name. 
(if the -m option of ckgid is used, a list of valid groups is displayed here) 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valgid module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



cklnt(1 ) (Essential Utilities) cklnt (1) 

NAME 
ckint - display a prompt; verify and return an integer value 

SYNOPSIS 
ckint [ -Q ] [ -w width ] [ -b base ] [ -d default ] [ -h help ] [ -e error] 

[ -p prompt] [ -k pid [ -s signal] ] 

errint [ -w width) [ -b base] [ -e error] 
helpint [ -w width] [ -b base] [ -h help] 

valint [ -b base ] input 

DESCRIPTION 
ckint prompts a user, then validates the response. It defines, among other 
things, a prompt message whose response should be an integer, text for help and 
error messages, and a default value (which is returned if the user responds with a 
RETURN). 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allOWing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckint command. They are errint 
(which formats and displays an error message), helpint (which formats and 
displays a help message), and valint (which validates a response). These 
modules should be used in conjunction with FML objects. In this instance, the 
FML object defines the prompt. When base is defined in the errint and helpint 
modules, the messages includes the expected base of the input. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-b The base for input is base. Must be 2 to 36, default is 10. 

-d The default value is default. The default is not validated and so does not 
have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 

-k Send process 10 pid a signal if the user chooses to abort. 

-s When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against base criterion. 

3/91 Page 1 



cklnt(1 ) (Essential Utilities) cklnt(1 ) 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 

The default base 10 prompt for ckint is: 

Enter an integer [?,q] 

The default base 10 error message is: 

ERROR - Please enter an integer. 

The default base 10 help message is: 

Please enter an integer. 

The messages are changed from "integer" to "base base integer" if the base is 
set to a number other than 10. 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valint module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



ckltem(1) (Essential Utilities) ckltem(1 ) 

NAME 
ckitem - build a menu; prompt for and return a menu item 

SYNOPSIS 
ckitem [ -Q ] [ -w width] [ -uno) [ -f file ) [ -1 label) 

[ [ -i invis ] [ -i invis ) ... ) [ -m max ) [ -d default] [ -h help] [ -e error] 
[ -p prompt) [ -k pid [ -5 signal)] [choicel choice2 ... ) 

erritem [ -w width) [ -e error) [choicel choice2 ... ) 

he1pitem [-w width) [-h help] [choicel choice2 ... ] 

DESCRIPTION 

3/91 

ckitem builds a menu and prompts the user to choose one item from a menu of 
items. It then verifies the response. Options for this command define, among 
other things, a prompt message whose response is a menu item, text for help and 
error messages, and a default value (which is returned if the user responds with a 
RETURN). 
By default, the menu is formatted so that each item is prepended by a number 
and is printed in columns across the terminal. Column length is determined by 
the longest choice. Items are alphabetized. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Two visual tool modules are linked to the ckitem command. They are erritem 
(which formats and displays an error message) and he1pitem (which formats and 
displays a help message). These modules should be used in conjunction with 
FML objects. In this instance, the FML object defines the prompt. When choice is 
defined in these modules, the messages describe the available menu choice (or 
choices). 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-u 

-n 

-0 

-f 

-1 

Display menu items as an unnumbered list. 

Do not display menu items in alphabetical order. 

Return only one menu token. 

file contains a list of menu items to be displayed. [The format of this file 
is: token<.tab>description. Lines beginning with a pound sign (":/t") are com­
ments and are ignored.] 

Print label above the menu. 

Pago 1 



ckltem(1 ) ( Essential Utilities) ckltem(1 ) 

-i invis specifies invisible menu choices (choices not to be printed in the 
menu). Forexample, "all" used as an invisible choice would mean it is a 
valid option but does not appear in the menu. Any number of invisible 
choices may be defined. Invisible choices should be made known to a 
user either in the prompt or in a help message. 

-m The maximum number of menu choices allowed is m. 

-d The default value is default. The default is not validated and so does not 
have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 
-k Send process ID pid a signal if the user chooses to abort. 

-s When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

choice Defines menu items. Items should be separated by white space or new­
line. 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 
4 = No choices from which to choose 

The user may input the number of the menu item if choices are numbered or as 
much of the string required for a unique identification of the item. Long menus 
are paged with 10 items per page. 

When menu entries are defined both in a file (by using the -f option) and also on 
the command line, they are usually combined alphabetically. However, if the -n 
option is used to suppress alphabetical ordering, then the entries defined in the 
file are shown first, followed by the options defmed on the command line. 

The default prompt for ckitem is: 

Enter selection [?,??,q]: 

One question mark gives a help message and then redisplays the prompt. Two 
question marks gives a help message and then redisplays the menu label, the 
menu and the prompt. 

The default error message is: 

ERROR - Does not match an available menu selection. 
Enter one of the following: 
- the number of the menu item you wish to select 
- the token associated withe the menu item, 
- partial string which uniquely identifies the token 

for the menu item 
- ?? to reprint the menu 

3/91 



ckltem(1) (Essential Utilities) ckltem(1 ) 

3/91 

The default help message is: 

Enter one of the following: 
- the number of the menu item you wish to select 
- the token associated with the menu item, 
- partial string which uniquely identifies the token 

for the menu item 
- ?? to reprint the menu 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. 

Page 3 



ckkeywd(1 ) (Essential Utilities) ckkeywd(1 ) 

NAME 
ckkeywd - prompt for and validate a keyword 

SYNOPSIS 
ckkeywd [ -Q ] [ -w width ] [ -d default ] [ -h help ] [ -e error ] [ -p prompt ] 

[ -k pid [ -8 signal] ] [ keyword . .. ] 

DESCRIPTION 
ckkeywd prompts a user and validates the response. It defines, among other 
things, a prompt message whose response should be one of a list of keywords, 
text for help and error messages, and a default value (which is returned if the 
user responds with a RETURN). The answer returned from this command must 
match one of the defined list of keywords. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-d The default value is default. The default is not validated and so does 
not have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 

-k Send process ID pid a signal if the user chooses to abort. 

-8 When quit is chosen, send signal to the process whose pid is specified 
by the -k option. If no signal is specified, use SIGTERM. 

keyword The keyword, or list of keywords, against which the answer is to be 
verified is keyword. 

EXIT CODES 

NOTES 

3/91 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 
4 = No keywords from which to choose 

The default prompt for ckkeywd is: 

Enter appropriate value [keyword[, ... ], ?, q] 

Page 1 



ckkeywd(1 ) (Essential Utilities) ckkeywd(1) 

Page 2 

The default error message is: 

ERROR - Please enter one of the following keywords: 
keyword[, . . . ] 

The default help message is: 

Please enter one of the following keywords: 
keyword[, . . . ] 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. 

3/91 



ckpath (1) (Essential Utilities) ckpath (1) 

NAME 
ckpath - display a prompt; verify and return a pathname 

SYNOPSIS 
ckpath [ -Q ] [ -w width] [ -a I 1 ] [file_options] [ -rtwx ] [ -d default ] 

[ -h help] [ -e error] [ -p prompt] [ -k pid [ -s signal] ] 

errpath [ -w width] [ -a I 1 ] [ file_options ] [ -rtwx ] [ -e error] 

he1ppath [ -w width] [ -a I 1 ] [file_options] [ -rtwx ] [ -h help] 

va1path [ -a I 1 ] [file_options] [ -rtwx ] input 

DESCRIPTION 

3/91 

ckpath prompts a user and validates the response. It defines, among other 
things, a prompt message whose response should be a pathname, text for help 
and error messages, and a default value (which is returned if the user responds 
with a RETURN). . 

The pathname must obey the criteria specified by the first group of options. If no 
criteria are defined, the pathname must be for a normal file that does not yet 
exist. If neither -a (absolute) or -1 (relative) is given, then either is assumed to 
be valid. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing .both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckpath command. They are errpath 
(which formats and displays an error message), he1ppath (which formats and 
displays a help message), and va1path (which validates a response). These 
modules should be used in conjunction with FACE objects. In this instance, the 
FACE object defines the prompt. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w 
-a 

-1 

-r 

-t 

-w 

-x 

Use width as the line length for prompt, help, and error messages. 

Pathname must be an absolute path. 

Pathname must be a relative path. 

Path name must be readable. 

Pathname must be creatable (touchable). Pathname is created if it does 
not already exist. 

Pathname must be writable. 

Pathname must be executable. 

Page 1 



ckpath (1) (Essential Utilities) ckpath(1 ) 

-d The default value is default. The default is not validated and so does not 
have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 
-k Send process ID pid a signal if the user chooses to abort. 

-s When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against validation options. 

file _options are: 

-b Pathname must be a block special file. 

-c Pathname must be a character special file. 

-f Path name must be a regular file. 

-y Pathname must be a directory. 

-n Pathname must not exist (must be new). 

-0 Pathname must exist (must be old). 

-z Pathname must be a file with the size greater than 0 bytes. 

The following file _options are mutually exclusive: -bcfy, -no, -nz, -bz, -cz. 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 
4 = Mutually exclusive options 

The text of the default messages for ckpath depends upon the criteria options 
that hav~ been used. An example default prompt for ckpath (using the -a 
option) is: 

Enter an absolute pathname [?,q] 

An example default error message (using the -a option) is: 

ERROR - Pathname must begin with a slash (I). 

An example default help message is: 

A pathname is a filename, optionally preceded by parent 
directories. The pathname you enter: 
- must contain 1 to NAME MAX characters 
- must not contain a spaces or special characters 

NAME_MAX is a system variable is defined in limits.h. 

3/91 



ckpath(1) (Essential Utilities) ckpath (1) 

3/91 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valpath module does not produce any output. It returns zero for 
success and non';zero for failure. 

Page 3 



ckrange(1) (Essential Utilities) ckrange(1 ) 

NAME 
ckrange - prompt for and validate an integer 

SYNOPSIS 
ckrange [ -Q ] [ -w width ] [ -1 lower] [ -u upper] [ -b base ] [ -d default ] 

[ -h help] [ -e error] [ -p prompt] [ -k pid [ ~s signal] ] 

errange [ -w width] [ -1 lower] [ -u upper] [ -e error] [ -b base] 

he1prange [ -w width] [ -1 lower] [ -u upper] [ -h help] [ -b base ] 

val range [ -1 lower] [ -u upper ] [ -b base] input 

DESCRIPTION 

3/91 

ckrange prompts a user and validates the response. It defines, among other 
things, a prompt message whose response should be an integer in the range 
specified, text for help and error messages, and a default value (which is returned 
if the user responds with a RETURN). 

This command also defines a range for valid input. If either the lower or upper 
limit is left undefined, then the range is bounded on only one end. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckrange command. They are 
errange (which formats and displays an error message), he1prange (which for­
mats and displays a help message), and va1range (which validates a response). 
These modules should be used in conjunction with FACE objects. In this 
instance, the FACE object defines the prompt. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w 
-1 

-u 

-b 

-d 

-h 

Use width as the line length for prompt, help, and error messages. 

The lower limit of the range is lower. Default is the machine's largest 
negative integer or long. 

The upper limit of the range is upper. Default is the machine's largest 
positive integer or long. 

The base for input is base. Must be 2 to 36, default is 10. 

The default value is default. The default is not validated and so does not 
have to meet any criteria. If default is non-numeric, ckrange returns 0 and 
not the alphabetic string. 

The help message is help. 

Page 1 



ckrange (1) (Essential Utilities) ckrange(1 ) 

-e The error message is error. 
-p The prompt message is prompt. 

-k Send process ID pid a signal if the user chooses to abort. 

-s When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against upper and lower limits and base. 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 

The default base 10 prompt for ckrange is: 

Enter an integer between lower and upper [lower- upper, q, ?] 

The default base 10 error message is: 

ERROR - Please enter an integer between lower and upper. 
The default base 10 help message is: 

Please enter an integer between lower and upper. 
The messages are changed from "integer" to "base base integer" if the base is 
set to a number other than 10. 

When the quit option IS chosen (and allowed), q is returned along with the return 
code 3. The valrange module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



ckstr(1 ) (Essential Utilities) ckstr(1 ) 

NAME 
ckstr - display a prompt; verify and return a string answer 

SYNOPSIS 
ckstr [ -Q ] [ -w width] [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length] 

[ -d default] [ -h help] [ -e error] [ -p prompt] [ -k pid [ -s signal] ] 

errstr [ -w width] [ -e error] [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length ] 

he1pstr [ -w width] [ -h help] [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length] 

va1str input [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length] 

DESCRIPTION 

3/91 

ckstr prompts a user and validates the response. It defines, among other things, 
a prompt message whose response should be a string, text for help and error 
messages, and a default value (which is returned if the user responds with a 
RETURN). 

The answer returned from this command must match the defined regular expres­
sion and "be no longer than the length specified. If no regular expression is given, 
valid input must be a string with a length less than or equal to the length defined 
with no internal, leading or trailing white space. If no length is defined, the 
length is not checked. Either a regular expression or a length must be given with 
the command. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckstr command. They are errstr 
(which formats and displays an error message), he1pstr (which formats and 
displays a help message), and va1str (which validates a response). These 
modules should be used in conjunction with FACE objects. In this instance, the 
FACE object defines the prompt. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-r 

-1 

-d 

Validate the input against regular expression regexp. May include white 
space. If multiple expressions are defined, the answer need match only 
one of them. 

The maximum length of the input is length. 

The default value is default. The default is not validated and so does not 
have to meet any criteria. 

Page 1 



ckstr(1 ) (Essential Utilities) ckstr(1 ) 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 

-k Send process IO pid a signal if the user chooses to abort. 

-s When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against format length and/or regular expression cri­
teria. 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 

The default prompt for ckstr is: 

Enter an appropriate value [?,q] 

The default error message is dependent upon the type of validation involved. 
The user is told either that the length or the pattern matching failed. 

The default help message is also dependent upon the type of validation involved. 
If a regular expression has been defined, the message is: 

Please enter a string which matches the following pattern: 
regexp 

Other messages define the length requirement and the definition of a string. 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valstr module does not produce any output. It returns zero for 
success and non-zero for failure. 

Unless a "q" for "quit" is disabled by the -Q option, a single "q" to the following 

ckstr -rq 

is treated as a "quit" and not as a pattern match. 

3/91 



cktlme(1) (Essential Utilities) cktlme(1 ) 

NAME 
cktime - display a prompt; verify and return a time of day 

SYNOPSIS 
cktime [ -Q ] [ -w width] [ -f format] [ -d default] [ -h help] [ -e error] 

[ -p prompt] [ -k pid [ -5 signal]] 

errtime [ -w width ] [ -e error] [ -f format ] 
helptime [ -w width] [ -h help] [ -f format] 

valtime [ -f format] input 

DESCRIPTION 

3/91 

cktime prompts a user and validates the response. It defines, among other 
things, a prompt message whose response should be a time, text for help and 
error messages, and a default value (which is returned if the user responds with a 
RETURN). The user response must match the defined format for the time of day. 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NarES) is displayed. 

Three visual tool modules are linked to the cktime command. They are errtime 
(which formats and displays an error message), helptime (which formats and 
displays a help message), and valtime (which validates a response). These 
modules should be used in conjunction with FMLI objects. In this instance, the 
FMLI object defines the prompt. When format is defined in the errtime and 
helptime modules, the messages describe the expected format. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-f 

-d 

Verify the input against format. Possible formats and their definitions are: 

%H hour (00 - 23) 
%1 hour (00 - 12) 
%M minute (00 - 59) 
%p ante meridian or post meridian 
%r time as %1: %M: %8 %p 
%R time as %H: %M (the default format) 
%8 seconds (00 - 59) 
%T time as %H: %M: %8 

The default value is default. The default is not validated and so does not 
have to meet any criteria. 

Page 1 



cktlme (1) (Essential Utilities) cktlme(1 ) 

-h The help message is help. 
-e The error message is error. 

-p The prompt message is prompt. 
-k pid Send process ID pid a signal if the user chooses to abort. 

-s signal 
When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against format criteria. 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 
4 = Garbled format argument 

The default prompt for cktime is: 

Enter a time of day [?,q] 

The default error message is: 

ERROR - Please enter the time of day. Format is format. 

The default help message is: 

Please enter the time of day. Format is format. 
When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valtime module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



ckuld(1 ) (Essential Utilities) ckuld(1 ) 

NAME 
ckuid - prompt for and validate a user ID 

SYNOPSIS 
ckuid [ -Q ] [ -w width ] [ -m ] [ -d default ] [ -h help ] [ -e error] [ -p prompt ] 

[ -k pid [ -5 signal] ] 

erruid [ -w width ] [ -e error ] 
helpuid [ -w width] [ -m ] [ -h help] 

valuid input 
DESCRIPTION 

ckuid prompts a user and validates the response. It defines, among other things, 
a prompt message whose response should be an existing user ID, text for help 
and error messages, and a default value (which is returned if the user responds 
with a RETURN). 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. When a tilde is placed at the 
beginning or end of a message definition, the default text is inserted at that point, 
allowing both custom text and the default text to be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckuid command. They are erruid 
(which formats and displays an error message), helpuid (which formats and 
displays a help message), and valuid (which validates a response). These 
modules should be used in conjunction with FML objects. In this instance, the 
FML object defines the prompt. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-m Display a list of alllogins when help is requested or when the user makes 
an error. 

-d The default value is default. The default is not validated and so does not 
have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 
-p The prompt message is prompt. 

-k Send process ID pid a signal if the user chooses to abort. 

-5 When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified against /etc/pa55wd. 

3/91 Page 1 



ckuld(1 ) (Essential Utilities) ckuld(1 ) 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 

The default prompt for ckuid is: 

Enter the login name of an existing user [?,q] 

The default error message is: 

ERROR - Please enter the login name of an existing user. 
(If the -m option of ckuid is used, a list of valid users is also displayed.) 

The default help message is: 

Please enter the login name of an existing user. 
(If the -m option of ckuid is used, a list of valid users is also displayed.) 

When the quit option is chosen (and allowed), q is returned along with the return 
code 3. The valuid module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



ckyorn(1 } (Essential Utilities) ckyorn(1} 

NAME 
ckyorn - prompt for and validate yes/no 

SYNOPSIS 
ckyorn [ -Q ] [ -w width] [ -d default] [ -h help] [ -e error] [ -p prompt] 

[ -k pid [ -5 signal] ] 

erryom [ -w width ] [ -e error] 

helpyorn [ -w width] [ -h help] 

val yom input 

DESCRIPTION 
ckyorn prompts a user and validates the response. It defines, among other 
things, a prompt message for a yes or no answer, text for help and error mes­
sages, and a default value (which is returned if the user responds with a 
RETURN). 

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped. 
The -w option cancels the automatic formatting. For the -h and -e options, plac­
ing a tilde at the beginning or end of a message definition causes the default text 
to be inserted at that point. This allows both custom text and the default text to 
be displayed. 

If the prompt, help or error message is not defined, the default message (as 
defined under NOTES) is displayed. 

Three visual tool modules are linked to the ckyom command. They are erryorn 
(which formats and displays an error message), helpyorn (which formats and 
displays a help message), and valyorn (which validates a response). These 
modules should be used in conjunction with FACE objects. In this instance, the 
FACE object defines the prompt. 

The options and arguments for this command are: 

-Q Do not allow quit as a valid response. 

-w Use width as the line length for prompt, help, and error messages. 

-d The default value is default. The default is not validated and so does not 
have to meet any criteria. 

-h The help message is help. 

-e The error message is error. 

-p The prompt message is prompt. 
-k Send process 10 pid a signal if the user chooses to abort. 

-5 When quit is chosen, send signal to the process whose pid is specified by 
the -k option. If no signal is specified, use SIGTERM. 

input Input to be verified as y, yes, Y, Yes, YES or n, no, N, No, NO. 



ckyorn(1) (Essential Utilities) ckyorn(1) 

EXIT CODES 

NOTES 

Page 2 

o = Successful execution 
1 = EOF on input 
2 = Usage error 
3 = User termination (quit) 

The default prompt for ckyorn is: 
Yes or No [y,n,?,q] 

The default error message is: 

ERROR - Please enter yes or no. 

The default help message is: 

Enter y or yes if your answer is yes; 
or no if your answer is no. 

When the quit option is chosen (and aliowed), q is returned along with the return 
code 3. The valyorn module does not produce any output. It returns zero for 
success and non-zero for failure. 

3/91 



dlspgld(1 ) (Essential Utilities) 

NAME 
dispgid - displays a list of all valid group names 

SYNOPSIS 
dispgid 

DESCRIPTION 

dlspgld(1 ) 

dispgid displays a list of all group names on the system (one group per line). 

EXIT CODES 
o = Successful execution 
1 = Cannot read the group file 

3/91 Page 1 



dlspuld(1 ) (Essential Utilities) 

NAME 
dispuid - displays a list of all valid user names 

SYNOPSIS 
dispuid 

DESCRIPTION 

dlspuld (1) 

dispuid displays a list of all user names on the system (one line per name). 

EXIT CODES 
o = Successful execution 
1 = Cannot read the password file 

3/91 Page 1 



mouseadmln (1 ) mouseadmln (1 ) 

NAME 
mouseadmin - mouse administration 

SYNOPSIS 
mouseadmin [ -nbl] [ -d terminal] [ -a terminal mouse] 

DESCRIPTION 
mouseadmin allows any user with system administrator privileges to add or 
delete mouse devices. Users without "superuser" privileges will only be allowed 
to list the current mouse/display assignments. The mouseadmin command issued 
without arguments will execute in menu mode, providing the user with a listing 
of current assignments and a selection menu of operations. 

OPTIONS 

FILES 

The command line arguments are defined as follows: 

-n build mouse/display pair table without downloading to driver. (This 
option should only be used within install scripts.) 

-b do not validate for BUS mouse in system configuration. (This option 
should only be used within install scripts.) 

-1 list mouse/display assignments. 

-d delete terminal assignment. 

-a assign mouse device (PS2, BUS, ttyOO, sOttyO, etc.) to terminal (console, 
sOvtOO, etc.). 

When using the -a option, the mouseadmin command format is: 

mouseadmin -a terminal mouse_device 

For exam pIe: 

mouseadmin 
mouseadmin 
mouseadmin 
mouseadmin 

/usr/bin/mouseadmin 
/usr/lib/mousemgr 

-a 
-a 
-a 
-a 

console PS2 
console BUS 
sOvtOO ttyOO 
sOvtOO ttyOl 

SEE ALSO 
mouse(7) 
Mouse Driver Administrator's Guide 

3/91 Page 1 



newvt(1) (FACE) newvt(1) 

NAME 
newvt - opens virtual terminals. 

SYNOPSIS 
newvt [ -e prog] [-n vt _number] 

DESCRIPTION 
Use the newvt command to open a new virtual terminal. The newly opened vir­
tual terminal will inherit your environment. 

-e Specifies a program (prog) to execute in the new virtual terminal. Without 
the -e option, the program pointed to by the $SHELL environment vari­
able is started in the new virtual terminal. If $SHELL is NULL or points to 
a nonexecutable program, then /bin/ sh is invoked. 

-n Specifies a particular virtual terminal (vt _number) to open. If the -n 
option is not specified, then the next available virtual terminal is opened. 
Close virtual terminals by pressing CTRL-d (control d). Repeat CTRL-d 
until all open virtual terminals are closed. 

DIAGNOSTICS 
The newvt command will fail under the following conditions: 

If an illegal option is specified. 
If the device cannot be opened. 
If newvt is invoked from a remote terminal. 
If no virtual terminals are available (-n option not specified). 
If the requested virtual terminal is not available (-n option specified). 
If the requested virtual terminal cannot be opened. 
If the specified command cannot be executed (-e option specified). 
If the $SHELL program cannot be executed ($SHELL set and -e option 

not specified). 
If /dev/vtmon cannot be opened. 

SEE ALSO 
vtlmgr(1) 
vtgetty(1M) in the System Administrator's Reference Manual 

3/91 Page 1 



pkglnfo(1 ) (Essential Utilities) pkglnfo(1 ) 

NAME 
pkginfo - display software package information 

SYNOPSIS 
pkginfo [-qlxI1] [-pli] [-a arch] [-v version] 

[-c category1, [category2 [, ... ] ]] [pkginst[, pkginst[, ... ]]] 

pkginfo [-d device [-qlxI1] [-a arch] [-v version] 
[-c categoryl, [category2[, ... ] ]] [pkginst[, pkginst[, ... ]]] 

DESCRIPTION 

3/91 

pkginfo displays information about software packages which are installed on the 
system (with the first synopsis) or which reside on a particular device or direc­
tory (with the second synopsis). Only the package name and abbreviation for 
pre-System V Release 4 packages will be included in the display. 

The options for this command are: 

-q 

-x 

-1 

-p 

-i 

-a 

-v 

-c 

pkginst 

-d 

Does not list any information, but can be used from a program to 
check (that is, query) whether or not a package has been installed. 

Designates an extracted listing of package information. It contains the 
package abbreviation, package name, package architecture (if available) 
and package version (if available). 

Designates long format, which includes all available information about 
the designated package(s). 

Designates that information should be presented only for partially 
installed packages. 

Designates that information should be presented only for fully 
installed packages. 

Specifies the architecture of the package as arch. 
Specifies the version of the package as version. All compatible versions 
can be requested by preceding the version name with a tilde ( .... ). The 
list produced by -v will include pre-Release 4 packages (with which 
no version numbers are associated). Multiple white spaces are 
replaced with a single space during version comparison. 

Selects packages to be display based on the category category. 
(Categories are defined in the category field of the pkginfo file.) If 
more than one category is supplied, the package must only match one 
of the list of categories. The match is not case specific. 

Designates a package by its instance. An instance can be the package 
abbreviation or a specific instance (for example, inst.1 or 
inst. beta). All instances of package can be requested by inst. *. 
When using this format, enclose the command line in single quotes to 
prevent the shell from interpreting the * character. 

Defines a device, device, on which the software resides. device can be. a 
full pathname to a directory or the identifiers for tape, floppy disk, 
removable disk, and so on. The special token "spool" may be used to 
indicate the default installation spool directory. 

Page 1 



pkglnfo(1) (Essential Utilities) pkglnfo(1 ) 

NOTES 
Without. options, pkginfo lists the primary category, package instance, and name 
of all completely installed and partially installed packages. One line per package 
selected is produced. 

The -p and -i options are meaningless if used in conjunction with the -d option. 

The options -q, -x, and -1 are mutually exclusive. 

pkginfo cannot tell if a pre-Release 4 package is only partially installed. It is 
assumed that all pre-Release 4 packages are fully installed. 

SEE ALSO 
pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), pkgtrans(1) 

Page 2 3/91 



pkgmk(1) (Essential Utilities) pkgmk(1) 

NAME 
pkgmk - produce an installable package 

SYNOPSIS 
pkgmk [-0] [-d device] [-r rootpath] [-b basedir] [-1 limit] [-a arch] 

[-v version] [-p pstamp] [-f prototype] [variable=value ... ] [pkginst] 

DESCRIPTION 
pkgmk produces an installable package to be used as input to the pkgadd com­
mand. The package contents will be in directory structure format. 

The command uses the package prototype file as input and creates a pkgmap file. 
Th~ contents for each entry in the prototype file is copied to the appropriate 
output location. Information concerning the contents (checksum, file size, 
modification date) is computed and stored in the pkgmap file, along with attribute 
information specified in the prototype file. 
-0 Overwrites the same instance, package instance will be overwrit­

ten if it already exists. 
-d device Creates the package on device. device can be a full pathname to a 

directory or the identifiers for a floppy disk or removable disk 
(for example, /dev/diskette). The default device is the installa­
tion spool directory. 

-r rootpath Ignores destination paths in the prototype file. Instead, uses the 
indicated rootpath with the source pathname appended to locate 
objects on the source machine. 

-b basedir Prepends the indicated basedir to locate relocatable objects on the 
source machine. 

-1 limit Specifies the maximum size in 512 byte blocks of the output 
device as limit. By default, if the output file is a directory or a 
mountable device, pkgmk will employ the df command to 
dynamically calculate the amount of available space on the out­
put device. Useful in conjunction with pkgtrans to create pack­
age with datastream format. 

-a arch Overrides the architecture information provided in the pkginfo 
file with arch. 

-v version Overrides version information provided in the pkginfo file with 
version. 

-p pstamp Overrides the production stamp definition in the pkginfo file 
with pstamp. 

-f prototype Uses the file prototype as input to the command. The default 
name for this file is either Prototype or prototype. 

variable=value Places the indicated variable in the packaging environment. [See 
prototype(4) for definitions of packaging variables.] 

pkginst Specifies the package by its instance. pkgmk will automatically 
create a new instance if the version and/or architecture is dif­
ferent. A user should specify only a package abbreviation; a par­
ticular instance should not be specified unless the user is 
overwriting it. 

3/91 Page 1 



pkgmk(1) (Essential Utilities) pkgmk(1) 

NOTES 
Architecture infonnation is provided on the command line with the -a option or 
in the prototype file. If no architecture information is supplied at all, the output 
of uname -m will be used. 

Version information is provided on the command line with the -v option or in 
the prototype file. If no version information is supplied, a default based on the 
current date will be provided. 

Command line definitions for both architecture and version override the proto­
type definitions. 

SEE ALSO 
pkgparam(1),pkgproto(1),pkgtrans(1) 

Page 2 3/91 



pkgparam (1) (Essential Utilities) pkgparam (1 ) 

NAME 
pkgparam - displays package parameter values 

SYNOPSIS 
pkgparam [-v][ -d device r pkginst [param[ • . • ]] 
pkgparam -f file [-v] [param[ . • .]] 

DESCRIPTION 
pkgparam displays the value associated with the parameter or parameters 
requested on the command line. The values are located in either the pkginfo file 
for pkginst or from the specific file named with the -f option. 

One parameter value is shown per line. Only the value of a parameter is given 
unless the -v option is used. With this option, the output of the command is in 
this format: 

parameterl=' va lue 1 , 
parameter2=' value2' 
parame ter3 = , value3' 

If no parameters are specified on the command line, values for all parameters 
associated with the package are shown. 

Options and arguments for this command are: 

-v Specifies verbose mode. Displays name of parameter and its value. 

-d Specifies the device on which a pkginst is stored. It can be a full path-
name to a directory or the identifiers for tape, floppy disk or removable 
disk (for example, /var/tmp, /dev/dsk/fOt, and /dev/dsk/Os2). The 
default device is the installation spool directory. If no instance name is 
given, parameter information for all packages residing in device is shown. 

-f Requests that the command read file for parameter values. 

pkginst Defines a specific package instance for which parameter values should be 
displayed. The format pkginst.* can be used to indicate all instances of a 
package. When using this format, enclose the command line in single 
quotes to prevent the shell from interpreting the * character. 

param Defines a specific, parameter whose value should be displayed. 

ERRORS 

NOTES 

If parameter information is not available for the indicated package, the command 
exits with a non-zero status. 

The -f synopsis allows you to specify the file from which parameter values 
should be extracted. This file should be in the same format as a pkginfo file. As 
an example, such a file might be created during package development and used 
while testing software during this stage. 

SEE ALSO 
pkgmk(1), pkgparam(3x), pkgproto(1), pgktrans(1) 

3/91 Page 1 



pkgproto (1) (Essential Utilities) pkgproto (1) 

NAME 
pkgproto - generate a prototype file 

SYNOPSIS 
pkgproto [-i] [-c class] [pathl[=path2] ... ] 

DESCRIPTION 

NOTES 

pkgproto scans the indicated paths and generates a prototype file that may be 
used as input to the pkgrnk command. 

-i Ignores symbolic links and records the paths as ftype=f (a file) versus 
ftype=s(symbolic link) 

-c Maps the class of all paths to class. 

pathl Path of directory where objects are located. 

path2 Path that should be substituted on output for pathl. 

If no paths are specified on the command line, standard input is assumed to be a 
list of paths. If the path listed on the command line is a directory, the contents of 
the directory are searched. However, if input is read from stdin, a directory 
specified as a path will not be searched. 

By default, pkgproto creates symbolic link entries for any symbolic link encoun­
tered (ftype=s). When you use the -i option, pkgproto creates a file entry for 
symbolic links (ftype=f). The prototype file would have to be edited to assign 
such file types as v (volatile), e (editable), or x (exclusive directory). pkgproto 
detects linked files. If multiple files are linked together, the first path encoun­
tered is considered the source of the link. 

EXAMPLE 

3/91 

The following two examples show uses of pkgproto and a parial listing of the 
output produced. 

Example 1: 
$ pkgproto /usr/bin=bin /usr/usr/bin=usrbin /etc=ete 
f none bin/sed=/bin/sed 0775 bin bin 
f none bin/sh=/bin/sh 0755 bin daemon 
f none bin/sort=/bin/sort 0755 bin bin 
f none usrbin/sdb=/usr/bin/sdb 0775 bin bin 
f none usrbin/shl=/usr/bin/shl 4755 bin bin 
d none etc/rnaster.d 0755 root daemon 
f none etc/rnaster.d/kernel=/etc/rnaster.d/kernel 0644 root daemon 
f none etc/re=/ete/rc 0744 root daemon 

Example 2: 
$ find / -type d -print I pkgproto 
d none / 755 root root 
d none /usr/bin 755 bin bin 
d none /usr 755 root root 
d none /usr/bin 775 bin bin 
d none fete 755 root root 
d none /tmp 777 root root 

Page 1 



pkgproto (1) (Essential Utilities) pkgproto (1 ) 

SEE ALSO 
pkgmk(1), pkgparam(1), pkgtrans(1). 

Page 2 3/91 



pkgtrans (1 ) (Essential Utilities) pkgtrans (1 ) 

NAME 
pkgtrans - translate package format 

SYNOPSIS 
pkgtrans [-ions] devicel device2 [ pkginstl [ pkginst2 [ ... ] ] ] 

DESCRIPTION 

NOTES 

3/91 

pkgtrans translates an installable package from one format to another. It 
translates: 

a file system format to a datastream 

a datastream to a filesystem format 

a file system format to another filesystem format 

The options and arguments for this command are: 

-i Copies only the pkginfo and pkgmap files. 

-0 

-n 

-s 

devicel 

device2 

pkginst 

Overwrites the same instance on the destination device, package 
instance will be overwritten if it already exists. 

Creates a new instance if any instance of this package already 
exists. 

Indicates that the package should be written to device2 as a data­
stream rather than as a filesystem. The default behavior is to write 
a file system format on devices that support both formats. 

Indicates the source device. The package or packages on this 
device will be translated and placed on device2. 
Indicates the destination device. Translated packages will be 
placed on this device. 

Specifies which package instance or instances on devicel should be 
translated. The token all may be used to indicate all packages. 
pkginst. * can be used to indicate all instances of a package. (When 
using this format, enclose the command line in single quotes to 
prevent the shell from interpreting the * character.) If no packages 
are defined, a prompt shows all packages on the device and asks 
which to translate. 

Device specifications can be either the special node name Udev/diskette) or the 
device alias (diskettel). The device spool indicates the default spool directory. 
Source and destination devices may not be the same. 

By default, pkgtrans will not transfer any instance of a package if any instance 
of that package already exists on the destination device. Use of the -n option 
will create a new instance if an instance of this package already exists. Use of the 
-0 option will overwrite the same instance if it already exists. Neither of these 
options are useful if the destination device is a datastream. 

If you're transferring a package in datastream format to floppies and the package 
spans multiple floppies, use the filesystem format. (The datastream format is not 
supported across multiple floppies.) 

Page 1 



pkgtrans (1 ) (Essential Utilities) pkgtrans (1 ) 

pkgtrans depends on the integrity of the / etc/ device. tab file to determine 
whether a device can support a data stream and/or file system formats. Problems 
in transferring a device in a particular format could mean corruption of 
/ etc/ device. tab. 

EXAMPLE 

FILES 

The following example translates all packages on the floppy drive 
/dev/diskette and places the translations on /trrp. 

pkgtrans /dev/diskette /trrp all 

The next example translates packages pkgl and pkg2 on /tmp and places their 
translations (that is, a datastream) on the 9trackl output device. 

pkgtrans /tmp 9trackl pkgl pkg2 

The next example translates pkgl and pkg2 on tmp and places them on the 
diskette in a data stream format. 

pkgtrans -s /tmp /dev/diskette pkgl pkg2 

/etc/device.tab 

SEE ALSO 

Page 2 

installf(1M), pkgadd(1M), pkgask(1M), pkgin:Eo(1), pkgmk(1), pkgparam(1), 
pkgproto(1), pkgrm(lM), removef(1M). 

3/91 



vtlmgr(1) (FACE) vtlmgr(1) 

NAME 
vtlmgr - monitors and opens virtual terminals. 

SYNOPSIS 
vtlmgr [-k] 

DESCRIPTION 

3/91 

When you invoke the vtlmgr command (usually from within your .profile), it 
places itself in the background and monitors / dev /vtmon for signals from the 
keyboard/ display driver to open new virtual terminals. 

Option: 

-k The -k option sends a SIGHUP signal to all open virtual terminals when 
you log off (by entering CTRL-d from your home virtual terminal). This 
automatically closes, if possible, existing virtual terminals. For virtual ter­
minals that cannot be automatically closed, you are asked if you want to 
close them manually. 

After running vtlmgr, you open new virtual terminals and then switch between 
them by entering a hot-key sequence, specifically: 

ALT - SYS-REQ key 

where key is either a function key whose number corresponds to the number of 
the virtual terminal to switch to, for example, pressing Fl switches you to 
/ dev /vtOl (virtual terminal 01), pressing F2 switches you to / dev /vt02 (virtual 
terminal 02), and so forth, or one of the letters in the following table: 

key Interpretation 
h home virtual terminal Udev /vtOO) 
n next virtual terminal 
p previous virtual terminal 
f force a switch to a virtual terminal 

Use the f key only when the current virtual terminal is essentially locked up or 
stuck in graphies mode. This will cause the virtual terminal to be reset to a sane 
text state and all processes associated with the virtual terminal will be killed. 

When the hot-key sequence is entered, the executable program pointed to by the 
$SHELL variable is executed in the new virtual terminal. If $SHELL is NULL or 
pointing to a program which is not executable, /bin/ sh is executed. The newly 
opened virtual terminal inherits the environment in effect when the vtlmgr com­
mand is invoked. 

You may perform setup on each new virtual terminal as it is created by vtlmgr 
through the . vtlre file. This file should be in your home directory. Its contents 
are a shell script that will be run by /bin/ sh before the shell prompt is 
displayed. In this way it is similar to your .profile file. However, you may 
not set and export environment variables to the shell for the virtual terminal 
because a different shell runs the . vtlre shell script. 

The system administrator can control how many virtual terminals are available by 
setting a parameter in the file fete/default/workstations. Virtual terminals 0 
- 8 are configured by default and the default keyboard map makes up to 13 vir­
tual terminals available (Le., an additional 4 virtual terminals can readily be 

Page 1 



vtlmgr(1 ) (FACE) vtlmgr(1 ) 

defined within the default settings). The default virtual terminals are the home 
terminal and one corresponding to each function key. An application can make 
two more available to the end-user (by reprogramming the keyboard map), or 
can reserve the last two for programmatic use only, making 15 virtual terminals 
available in all. 

Note that processes that are no longer visible may still be continuing. Standard 
output is directed to the current virtual terminal's screen. For example, you can 
issue a cat command on one virtual terminal, switch to another virtual terminal 
to start an application, and then switch to another to do an edit. The cat output 
will be lost if the virtual terminal scrolls the data off the screen unless you ini­
tially redirect the output to a file. 

DIAGNOSTICS 
The vtlmgr command will fail under the following conditions: 

If an illegal option is specified. 
If the device cannot be opened. 
If the command is invoked from a remote terminal. 
If /dev/vtmon cannot be opened. 
If $SHELL is set and is not executable. 
If $SHELL is not set and /bin/sh cannot be invoked. 

SEE ALSO 
newvt (1M) 
vtgetty(1M), keyboard(7) in the System Administrator's Reference Manual 

Page 2 3/91 



delsysadm (1M) (Essential Utilities) delsysadm (1 M) 

NAME 
delsysadm - sysadm interface menu or task removal tool 

SYNOPSIS 
delsysadm task I [-r] menu 

DESCRIPTION 
The delsysadm command deletes a task or menu from the sysadm interface and 
modifies the interface directory structure on the target machine. 

task I menu The logical name and location of the menu or task within the inter­
face menu hierarchy. Begin with the top menu main and proceed to 
where the menu or the task resides, separating each name with 
colons. See EXAMPLES. . 

If the -r option is used, this command will recursively remove all 
sub-menus and tasks for this menu. If the -r option is not used, the 
menu must be empty. 

delsysadm should only be used to remove items added as "on-line" changes with 
the edsysadm command. Such an addition will have a package instance tag of 
ONLINE. If the task or menu (and its sub-menus and tasks) have any package 
instance tags other than ONLINE, you are asked whether to continue with the 
removal or to exit. Under these circumstances, you probably do not want to con­
tinue and you should rely on the package involved to take the necessary actions 
to delete this type of entry. 

The command exits successfully or provides the error code within an error mes­
sage. 

EXAMPLES 
To remove the nfonnat task, execute: 

delsysadm main:applications:ndevices:nformat. 

DIAGNOSTICS 

NOTES 

3/91 

o Successful execution 
2 Invalid syntax 
3 Menu or task does not exist 
4 Menu not empty 
5 Unable to update interface menu structure 

Any menu that was originally a placeholder menu (one that only appears if sub­
menus exist under it) will be returned to placeholder status when a deletion 
leaves it empty. 

When the -r option is used, delsysadm checks for dependencies before removing 
any subentries. (A dependency exists if the menu being removed contains an 
entry placed there by an application package). If a dependency is found, the user 
is shown a list of packages that depend on the menu being deleted and asked 
whether or not to continue. If the answer is yes, the menu and all of its menus 
and tasks are removed (even those shown to have dependencies). If the answer is 
no, the menu is not deleted. 

Page 1 



delsysadm (1 M) (Essential Utilities) delsysadm (1M) 

delsysadm should only be used to remove menu or task entries that have been 
added to the interface with edsysadm. 

SEE ALSO 
edsysadm(1M), sysadm(1M) 

Page 2 3/91 



edsysadm (1M) (Essential Utilities) edsysadm (1 M) 

NAME 
edsysadm - sysadm interface editing tool 

SYNOPSIS 
edsysadm 

DESCRIPTION 

3/91 

edsysadm is an interactive tool that adds or changes either menu and task 
definitions in the sysadm interface. It can be used to make changes directly on­
line on a specific machine or to create changes that will become part of a software 
package. The command creates the administration files necessary to achieve the 
requested changes in the interface and either places them in the appropriate place 
for on-line changes or saves them to be included in a software package. 

edsysadm presents several screens, first prompting for which type of menu item 
you want to change, menu or task, and then for what type of action to take, add 
or change. When you select add, a blank menu or task definition (as described 
below) is provided for you to fill in. When you select change, a series of screens 
is presented to help identify the definition you wish to change. The final screen 
presented is the menu or task definition filled in with its current values, which 
you can then edit. 

The menu definition prompts and their descriptions are: 

Menu Name The name of the new menu (as it should appear in the 
left hand column of the screen). This field has a max­
imum length of 16 alphanumeric characters. 

Menu Description 

Menu Location 

A description of the new menu (as it should appear in 
the righthand column of the screen). This field has a 
maximum length of 58 characters and can consist of 
any alphanumeric character except at sign (@), carat 
C), tilde n, back grave ('), grave ('), and double 
quotes ("). 

The location of the menu in the menu hierarchy, 
expressed as a menu pathname. The pathname 
should begin with the main menu followed by all 
other menus that must be traversed (in the order they 
are traversed) to access this menu. Each menu name 
must be separated by colons. For example, the menu 
location for a menu entry being added to the Applica­
tions menu is main: applications. Do not include 
the menu name in this location definition. The com­
plete pathname to this menu entry will be the menu 
location plus the menu name defined at the first 
prompt. 

This is a scrollable field, showing a maximum of 50 
alphanumeric characters at a time. 

Page 1 



edsysadm(1M) 

Menu Help File Name 

(Essential Utilities) edsysadm (1M) 

Pathname to the item help file for this menu entry. If 
it resides in the directory from which you invoked 
edsysadrn, you do not need to give a full pathname. 
If you name an item help file that does not exist, you 
are placed in an editor (as defined by $EDITOR) to 
create one. The new file is created in the current 
directory and named Help. 

The task definition prompts and their descriptions are: 

Task Name 

Task Description 

Task Location 

Task Help File Name 

Task Action 

Task Files 

Page 2 

The name of the new task (as it should appear in the 
lefthand column of the screen). This field has a max­
imum length of 16 alphanumeric characters. 

A description of the new task (as it should appear in 
the righthand column of the screen). This field has a 
maximum length of 58 characters and can consist of 
any alphanumeric character except at sign (@), carat 
("), tilde (l, back grave (,), grave ('), and double 
quotes ("). 

The location of the task in the menu hierarchy, 
expressed as a pa!hname. The pathname should 
begin with the main menu followed by all other 
menus that must be traversed (in the order they are 
traversed) to access this task. Each menu name must 
be separated by colons. For example, the task loca­
tion for a task entry being added to the applications 
menu is main: applications. Do not include the 
task name in this location definition. The complete 
pathname to this task entry will be the task location 
as well as the task name defined at the first prompt. 

This is a scrollable field, showing a maximum of 50 
alphanumeric characters at a time. 

Pathname to the item help file for this task entry. If it 
resides in the directory from which you invoked 
edsysadm, you do not need to give a full pathname. 
If you name an item help file that does not exist, you 
are placed in an editor (as defined by $EDITOR) to 
create one. The new file is created in the current 
directory and named Help. 

The FACE form name or executable that will be run 
when this task is selected. This is a scrollable field, 
showing a maximum of 58 alphanumeric characters at 
a time. This pathname can be relative to the current 
directory as well as absolute. 

Any FACE objects or other executables that support 
the task action listed above and might be called from 
within that action. Do not include the help file name or 
the task action in this list. Pathnames can be relative to 

3/91 



edsysadm(1M) (Essential Utilities) edsysadm (1 M) 

NOTES 

the current directory as well as absolute. A dot (.) 
implies "all files in the current directory" and includes 
files in subdirectories. 

This is a scrollable field, showing a maximum of 50 
alphanumeric characters at a time. 

Once the menu or task has been defined, screens for installing the menu or task 
or saving them for packaging are presented. The package creation or on-line 
installation is verified and you are informed upon completion. 

For package creation or modification, this command automatically creates a menu 
information file and a prototype file in the current directory (the directory from 
which the command is executed). The menu information file is used during pack­
age installation to modify menus in the menu structure. A prototype file is an 
installation file which gives a listing of package contents. The prototype file 
created by edsysadm lists the files defined under task action and gives them the 
special installation class of "admin". The contents of this prototype file must be 
incorporated in the package prototype file. 

For on-line installation, edsysadm automatically creates a menu information file 
and adds or modifies the interface menu structure directly. 

The item help file must follow the format shown in the Application Programmer's 
Guide in the "Customizing the Administration Interace" chapter or in the System 
Administrator's Guide in the "Customizing the sysadm Interface" appendix. 

SEE ALSO 
delsysadm(1M), pkgmk(1), prototype(4), sysadm(1M) 

3/91 Page 3 



Idbulld (1 M) Idbulld(1M) 

NAME 
idbuild - build new UNIX System kernel 

SYNOPSIS 
/etc/conf/bin/idbuild 

DESCRIPTION 
This script builds a new UNIX System kernel using the current system 
configuration in etc/conf/. Kernel reconfigurations are usually done after a 
device driver is installed, or system tunable parameters are modified. The script 
uses the shell variable ROOT from the user's environment as its starting path. 
Except for the special case of kernel development in a non-root source tree, the 
shell variable ROOT should always be set to null or to "/". idbuild exits with a 
return code of zero on success and non-zero on failure. 

Building a new UNIX System image consists of generating new system 
configuration files, then link-editing the kernel and device driver object modules 
in the etc/conf/pack.d object tree. This is done by idbuild by calling the fol­
lowing commands: 

etc/conf/bin/idconfig 

etc/conf/bin/idmkunix 

To build kernel configuration files. 

To process the configuration files and link-edit a 
new UNIX System image. 

The system configuration files are built by processing the Master and System files 
representing device driver and tunable parameter specifications. For the i386 
UNIX System the files etc/conf/cf.d/mdevice, and etc/conf/cf.d/mtune 
represent the Master information. The files etc/conf/cf .d/stune, and the files 
specified in etc/conf/sdevice.d/* represent the System information. The ker­
nel also has file system type information defined in the files specified by 
etc/conf/sfsys.d/* and etc/conf/mfsys.d/* . 

Once a new UNIX System kernel has been configured, a lock fil~ is s~t in 
etc/ . new_unix which causes the new kernel to replace /unix on the next system 
shutdown (i.e., on the next entry to the init 0 state). Upon the next system boot, 
the new kernel will be executed. 

ERROR MESSAGES 

3/91 

Since idbuild calls other system commands to accomplish system 
reconfiguration and link editing, it will report all errors encountereci by those 
commands, then clean up intermediate files created in the process. In general, the 
exit value 1 indicates an error was encountered by idbuild . 

The errors encountered fall into the following categories: 

Master file error messages. 
System file error messages. 
Tunable file error messages. 
Compiler and Link-editor error messages. 

All error messages are designed to be self-explanatory. 

Page 1 



Idbulld(1M) Idbulld (1M) 

SEE ALSO 
idinstall(1m), idtune(1m). 
m:ievice(4), mfsys(4), mtune(4), sdevice(4), sfsys(4), stune(4) in the 
Programmer's Reference Manual. 

Page 2 3/91 



Idcheck(1M} Idcheck(1M} 

NAME 
idcheck - returns selected information 

SYNOPSIS 
/etc/conf/bin/idcheck 

DESCRIPTION 
This command returns selected information about the system configuration. It is 
useful in add-on device Driver Software Package (DSP) installation scripts to 
determine if a particular device driver has already been installed, or to v~rify that 
a particular interrupt vector, I/O address or other selectable parameter is in fact 
available for use. The various forms are: 

idcheck -pdevice-name [-i dir] [-r] 

idcheck-vvector [-i dir] [-r) 

idcheck-ddma-channel[-i dir] [-r] 

idcheck-a-1lower_address-u upper_address [-i dir] [-r) 

idcheck -c -1 lower _address -u upper_address [-i dir] [-r] 

This command scans the System and Master modules and returns: 

100 if an error occurs. 

o if no conflict exists. 

a positive number greater than 0 and less than 100 if a conflict exists. 

The command line options are: 

-r Report device name of any conflicting device on stdout. 

-p device-name This option checks for the existence of four ciifferent com-
ponents of the DSP. The exit code is the additiori of the return 
codes from the four checks. 

Add 1 to the exit code if the DSP directory under 
/etc/conf/pack.d exists. 

Add 2 to the exit code if the Master module has been installed. 

Add 4 to the exit code if the System module has been installed. 

Add 8 to the exit code if the Kernel was built with the System 
module. 

Add 16 to the exit code if a Driver.o is part of the DSP (vs. a 
stubs. c file). 

-v vector Returns 'type' field of device that is using the vector specified 
(that is, another DSP is already using the vector). 

-d dma-channel Returns 1 if the dma channel specified is being used. 

-a This option checks whether the IDA region bounded by "lower" 
and "upper" conflict with another DSP ("lower" and "upper" are 
specified with the -1 and -u options). The exit code is the 
addition of two different return codes. 



Idcheck(1M) Idcheck(1M) 

-e 

-1 address 

-u address 

-i dir 

Add 1 to the exit code if the IDA region overlaps with another 
device. 

Add 2 to the exit code if the. IDA region overlaps with another 
device and that device has the '0' option specified in the type 
field of the Master module. The '0' option permits a driver to 
overlap the IDA region of another driver. 

Returns 1 if the CMA region bounded by "lower" and "upper" 
conflict with another DSP ("lower" and "upper" are specified 
with the -1 and -u options). 

Lower bound of address range specified in hex. The leading Ox 
is unnecessary. 

Upper bound of address range specified in hex. The leading Ox 
is unnecessary. 

Specifies the directory in which the ID files sdeviee and 
m:ieviee reside. The default directory is /ete/eonf/ef.d . 

ERROR MESSAGES 
There are no error messages or checks for valid arguments to options. idcheek 
interprets these arguments using the rules of seanf(3) and queries the sdeviee 
and mdeviee files. For example, if a letter is used in the place of a digit, 
seanf (3) will translate the letter to O. ideheek will then use this value in its 
query. 

SEE ALSO 
idinsta11(1M) 
m:ieviee(4), sdeviee(4) in the Programmer's Reference Manual 

Page 2 3/91 



Idconflg (1 M) Idconflg (1 M) 

NAME 
idconfig - produce a new kernel configuration 

SYNOPSIS 
/etc/conf/bin/idconfig 

DESCRIPTION 

3/91 

The idconfig command takes as its input a collection of files specifying the 
configuration of the next UNIX System to be built. A collection of output files for 
use by idmkunix is produced. 

The input files expected by idconfig are as follows: 

mdevice 
sdevice 
mtune· 
stune 
mfsys 
sfsys 
sassign 

- Master device specifications 
- System device specifications 
- Master parameter specifications 
- System parameter specifications 
- File system type master data 
- File system type system data 
- Device Assignment File 

The output files produced by idconfig are as follows: 

- Kernel data structures and function definitions 
- Kernel parameter and device definitions 
- Interrupt vector definitions 

conf.c 
config.h 
vector.c 
direct 
fsconf.c 

- Listing of all driver components included in the build 
- File system type configuration data 

The command line options are as follows: 

-0 directory Output files will be created in the directory specified rather than 
/etc/conf/cf.d. 

-i directory Input files that normally reside in /etc/conf/cf.d can be found 
in the directory specified. 

-r directory The directory specified will be used as the ID "root" directory 
rather than /etc/conf. 

-d file Use file name rather than sdevice for input. 

-t file Use file name rather than stune for input. 

-T file Use file name rather than mtune for input. 

-a file Use file name rather than sassign for input. 

-c file Redirect conf. c output to file name. 

-h file Redirect con fig .h output to file name. 

-v file Redirect vector. c output to file name. 

-p file Redirect direct output to file name. 

Page 1 



Idconflg (1M) Idconflg (1 M) 

-D,-m,-s These options are no longer supported. 

Print debugging information. 

This version of UNIX supports multiple major numbers for drivers. idconfig 
generates additional constants (via defines) in the config. h file so that they can 
be used by the driver (as they will get referenced in the space. c file to generate 
appropriate data structures. The information provided by these constants is how 
many major numbers were assigned to the device and what are their values. The 
names of the constants are as follows: 

PRFX CMAJOR X - -
PRFX_BMAJOR_X 

where PRFX stands for device prefix. In case of a SCSI device, it would be a SCSI 
device. The X stands for the list subscript, starting with subscript O. 

In addition, the configuration file conf. c that initializes bdevsw[] and cdevsw[] 
tables will also add entries for each of the major numbers and, as such, the same 
driver entry points will be repeated for each one of the entries. 

ERROR MESSAGES 
An exit value of zero indicates success. If an error i was encountered, idconfig 
will exit with a non-zero value and report an error message. All error messages 
are designed to be self-explanatory. 

SEE ALSO 

Page 2 

dmkunix(1M), idbuild(1M), idinstall(1M), mdevice(4), mtune(4), sdevice(4), 
stune(4) 

3/91 



Idlnstall (1 M) Idlnstall (1 M) 

NAME 
idinsta11 - add, delete, update, or get device driver configuration data 

SYNOPSIS 
/ etc/ conf /bin/ idinsta11 - [adug] [-e] - [msoptnirhc1] dev _ name 

DESCRIPTION 

3/91 

The idinsta11 command is called by a Driver Software Package (DSP) Install 
script or Remove script to Add (-a), Delete (-d), Update (-u), or Get (-g) device 
driver configuration data. idinsta11 expects to find driver component files in 
the current directory. When components are installed or updated, they are 
moved or appended to files in the / etc/ conf directory and then deleted from 
the current directory unless the -k flag is used. The options for the command are 
as follows: 

Action Specifiers: 

-a Add the DSP components 

-d Remove the DSP components 

-u Update the DSP components 

-g Get the DSP components (print to std out, except Master) 

Component Specifiers: (*) 

-m Master component 

-s System component 

-0 Driver.o component 

-p Space.c component 

-t Stubs.c component 

-n Node (special file) component 

-i Inittab component 

-r Device Initialization (rc) component 

-h Device shutdown (sd) component 

-c Mfsys component: file system type config (Master) data 

-1 Sfsys component: file system type local (System) data 

(*) If no component is specified, the default is all except for the -g 
option where a single component must be specified explicitly. 

Miscellaneous: 

-e Disable free disk space check 

-k Keep files (do not remove from current directory) on add or update. 

In the simplest case of installing a new DSP, the command syntax used by the 
DSP's Install script should be idinsta11 -a dev _name. In this case the command 
will require and install a Driver.o, Master and System entry, and optionally install 
the Space.c, Stubs.c, Node, Init, Rc, Shutdown, Mfsys, and Sfsys components if 
those modules are present in the current directory. 

Page 1 



Idlnstall (1 M) Idlnstall (1M) 

The Driver.o, Space.c, and Stubs.c files are moved to a directory in 
/etc/conf/pack.d. The dev_name is passed as an argument, which is used as 
the directory name. The remaining components are stored in the corresponding 
directories under /etc/conf in a file whose name is dev_name. For example, the 
Node file would be moved to /etc/conf/node.d/dev_name. 

The idinstall -m usage provides an interface to the idmaster command which 
will add, delete, and update m:ievice file entries using a Master file from the 
local directory. An interface is provided here so that driver writers have a con­
sistent interface to install any DSP component. 

As stated above, driver writers will generally use only the idinstall -a 
dev _name form of the command. Other options of idinstall are provided to 
allow an Update DSP (Le., one that replaces an existing device driver component) 
to be installed, and to support installation of multiple controller boards of the 
same type. 

If the call to idinstall uses the -u (update) option, it will: 

overlay the files of the old DSP with the files of the new DSP. 

invoke the idmaster command with the 'update' option if a Master module 
is part of the new DSP. 

idinstall also does a verification that enough free disk space is available to 
start the reconfiguration process. This is done by calling the idspace command. 
idinstall will fail if insufficient space exists, and exit with a non-zero return 
code. The -e option bypasses this check. 

This version of UNIX Supports Multiple Major numbers per device. For the case 
of a DSP package where idinstall is invoked by the installation software in the 
DSP, the range specification will be used. The range "3.6" will mean four major 
numbers are being requested. The ID Software will then look for the first four 
available (consecutive) major numbers. 

If a driver supports both block and charcter I/O both block and character majors 
are assigned by idinstall. These major numbers do not have to be the same. 
For SCSI developers who require them to be the same, a new field 'v' has to be 
added to the third field of the master file. 

idinstall makes a record of the' last device installed in a file 
U etc/ .last _ dev _add), and saves all removed files from the last delete operation 
in a directory (letc/ .last_dev_del). These files are recovered by 
/ etc/ conf /bin/ idmkenv whenever it is determined that a system 
reconfiguration was aborted due to a power failure or unexpected system reboot. 

ERROR MESSAGES 

Page 2 

An exit value of zero indicates success. If an error was encountered, idinstall 
will exit with a non-zero value, and report an error message. All error messages 
are designed to be self-explanatory. Typical error message that can be generated 
by idinstall are as follows: 

3/91 



Idlnstall (1M) 

Device package already exists. 
Cannot make the driver package directory. 
Cannot remove driver package directory. 

Idlnstall (1 M) 

Local directory does not contain a Driver object (Driver. 0) file. 
Local directory does not contain a Master file. 
Local directory does not contain a System file. 
Cannot remove driver entry. 

SEE ALSO 
idspace(1M), idcheck(1M) 
mdevice(4), sdevice(4) in the Programmer's Reference Manual 

3/91 Page 3 



Idmklnlt(1M) Idmklnlt(1M) 

NAME 
idmkini t - reads files containing specifications 

SYNOPSIS 
/ete/eonf/bin/idmkinit 

DESCRIPTION 

3/91 

This command reads the files containing specifications of /ete/inittab entries 
from /ete/eonf/init.d and constructs a new inittab file in /ete/eonf/ef. d . 
It returns 0 on success and a positive number on error. 

The files in /ete/eonf/init. d are copies of the Init modules in device Driver 
Software Packages (DSP). There is at most one Init file per DSP. Each file con­
tains one line for each inittab entry to be installed. There may be multiple lines 
(that is, multiple inittab entries) per file. An inittab entry has the form (the id 
field is often called the tag): 

id:rstate:action:process 

The Init module entry must have one of the following forms: 

action:process 
rstate:action:process 

id:rstate:action:process 

When idmkini t encounters an entry of the first type, a valid id field will be gen­
erated, and an rstate field of 2 (indicating run on init state 2) will be generated. 
When an entry of the second type is encountered only the id field is prepended. 
An entry of the third type is incorporated into the new inittab unchanged. 

Since add-on inittabentries specify init state 2 for their rstate field most often, 
an entry of the first type should almost always be used. An entry of the second 
type may be specified if you need to specify other than state 2. DSP's should 
avoid specifying the id field as in the third entry, since other add-on applications 
or DSPs may have already used the id value you have chosen. The /ete/init 
program will encounter serious errors if one or more inittab entries contain the 
same id field. 

idmkinit determines which of the three forms above is being used for the entry 
by requiring each entry to have a valid action keyword. Valid action values are 
as follow.s: 

off 
respawn 
ondemand 
once 
wait 
boot 
bootwait 
powerfail 
powerwait 
initdefault 
sysinit 

Page 1 



Idmklnlt(1M) Idmklnlt(1M) 

The idmkinit command is called automatically upon entering init State 2 on the 
next system reboot after a kernel reconfiguration to establish the correct 
/ete/inittab for the running /unix kernel. idmkinit can be called as a user 
level command t.o test modification of inittab before a DSP is actually built. It 
is also useful in installation scripts that do not reconfigure the kernel, but need to 
create inittab entries. In this case, the inittab generated by idmkinit must be 
copied to /ete/inittab, and a telinit q command must be run to make the 
new entry take affect. 

The command line options are: 

-0 directory inittab will be created in the directory specified rather than 
/ete/eonf/ef.d. 

-i directory The ID file in it .base, which normally resides in 
/ete/eonf/ef .d, can be found in the directory specified. 

-e directory The Init modules that are usually in /ete/eonf/init.d can be 
found in the directory specified. 

-# Print debugging information. 

ERROR MESSAGES 
An exit value of zero indicates success. If an error was encountered, idmkinit 
will exit with a non-zero value and report an error message. All error messages 
are designed to be self-explanatory. 

SEE ALSO 
idbuild(1), idinstall(1M), icimknod(lM), init(1M) 

inittab(4) in the Programmer's Reference Manual 

Page 2 3/91 



Idmknod (1 M) Idmknod (1 M) 

NAME 
idmknod - removes nodes and reads specifications of nodes 

SYNOPSIS 
idmknod [options] 

DESCRIPTION 

3/91 

This command performs the following functions: 
Removes the nodes for non-required devices (those that do not have an r 
in field 3 of the the device's mdevice entry) from /dev. Ordinary files 
will not be removed. If the /dev directory contains subdirectories, those 
subdirectories will be traversed and nodes found for non-required devices 
will be removed as well. If empty subdirectories result due to the remo­
val of nodes, the subdirectories are then removed. 

Reads the specifications of nodes given in the files contained in 
/ etc/ conf / node. d and installs these nodes in / dev . If the node 
specification defines a path containing subdirectories, the subdirectories 
will be made automatically. 

Returns 0 on success and a positive number on error. 

The idmknod.command is run automatically upon entering init state 2 on the next 
system reboot after a kernel reconfiguratiori to establish the correct representation 
of device nodes in the / dev directory for the running /unix kernel. idmknod can 
be called as a user level command to test modification of the / dev directory 
before a Driver Software Package (DSP) is actually built. It is also useful in in­
stallation scripts that do not reconfigure the kernel, but need to create / dev 
entries. 

The files in /etc/conf/node.d are copies of the I. Node modules installed by 
device DSPs. There is at most one file per DSP. Each file contains one line for 
each node that is to be installed. The format of each line is: 

Name of device entry (field 1) in the mdevice file. 
(The mdevice entry will be the line installed by the DSP from its Master 
module.) This field must be from 1 to 8 characters in length. The first char­
acter must be a letter. The others may be letters, digits, or underscores. 

Name of node to be inserted in /dev. 
The first character must be a letter. The others may be letters, digits, or 
underscores. This field can be a path relative to / dev , and idmknod will 
create subdirectories as needed. 

The character b or c. 
A b indicates that the node is a 'block' type device and c indicates 'character' 
type device. 

For devices having multiple major numbers, the following scheme is used to 
specify which device nodes belong to which major. The third field is 
expanded to specify a major number offset as follows: 

"[b/c]: maLoff", where [b/c] refers to either block or character major and 
maLoff refers to an offset number within the major number range in the 

Page 1 



Idmknod(1M) Idmknod (1M) 

m:ievice file. For example, a specification "C:2" refers to a character major 
offset 2, which for a major range of "15-18" would translate to character 
major 17. 

Minor device number. 
If this field is a non-numeric, it is assumed to be a request for a streams clone 
device node, and idmknod will set the minor number to the value of the 
major number of the device specified [see mknod(2) in the Programmer's 
Reference Manual for information on minor device number values]. 

User id. 
The integer value in this field describes the ownership of the node to be 
made. 

Group id. 
The integer value in this field describes the group ownership of the node to 
be created. 

Permission. 
The value expected must be in octal form, in the manner in which permis­
sions are described to the chmod(1) command (i.e. 0777). 

Some example node file entries are as follows: 

asy ttyOO c 1 makes /dev/ttyOO for device asy using minor device 1. 

qt rmt/cOsO c 4 makes /dev/rmt/cOsO for device qt using minor device 
4. 

clone net/nau/clone c nau 
makes /dev/net/nau/clone for device clone. The 
minor device number is set to the major device number of 
device nau. 

scsi ttyl C: 0 5 makes ttyl for device scsi using minor device 1 
major_number offset O. 

The command line options are: 

-0 directory Nodes will be installed in the directory specified rather than /dev. 

-i directory The file mdevice which normally resides in / etc/ conf/ cf . d , can 
be found in the directory specified. 

-e directory The Node modules that normally reside in /etc/conf/node.d can 
be found in the directory specified. 

-s Suppress removing nodes (just add new nodes). 

ERROR MESSAGES 

Page 2 

An exit value of zero indicates success. If an error was encountered due to a syn­
tax or format error in a node entry, an advisory message will be printed to stdout 
and the command will continue. If a serious error is encountered (that is, a 
required file cannot be found), idmknod will exit with a non-zero value and 
report an error message. All error messages are designed to be self-explanatory. 

3/91 



Idmknod (1 M) Idmknod (1 M) 

SEE ALSO 
idinstall(1M), icirnkinit(1M) 
mdevice(4), mknod(2), sdevice(4) in the Programmer's Reference Manual 

3/91 Page 3 



Idmkunlx(1M) Idmkunlx (1 M) 

NAME 
idrnkunix - build new UNIX System kernel 

SYNOPSIS 
/etc/conf/bin/idmkunix 

DESCRIPTION 
The idrnkunix command creates a bootable UNIX Operating System kernel in the 
directory /ete/eonf/ef.d. The component kernel "core" files and device driver 
object files contained in subdirectories of / ete/ eonf/pack. d are used as input 
along with device and parameter definition files produced by ideonfig. In brief, 
the required input files are as follows: 

/etc/eonf/cf.d/eonf.c 

/ete/eonf/ef.d/eonfig.h 
/ete/conf/cf.d/vector.c 
/ete/eonf/ef.d/direet 

/ete/eonf/cf.d/fsconf.c 
/ete/eonf/ef.d/vuifi1e 

/ete/eonf/paek.d/*/Driver.0 
/ete/eonf/paek.d/*/spaee.e 
/etc/conf/pack.d/*/stubs.e 

- Kernel data structures and function 
definitions 

- Kernel parameter and device definitions 
- Interrupt vector definitions 
- Listing of all driver components included 

in the build 
- File system type configuration data 
- Memory management definitions for 

the kernel 
- Component kernel object files 
- Component kernel space allocation files 
- Component kernel stubs files 

The command line options are as follows: 

-0 directory The file unix be created in the directory specified rather than 
/ete/conf/ef .d. 

-i directory Input files that normally reside in /ete/eonf/ef.d can be found 
in the directory specified. 

-r directory The directory specified will be used as the ID "root" directory 
rather than / etc/ conf . 

-c, cc, -1, 1d These options are no longer supported. 

-# Print debugging information. 

ERROR MESSAGES 
An exit value of zero indicates success. If an error was encountered, idrnkunix 
will exit with a non-zero value and report an error message. All error messages 
are designed to be self-explanatory. 

SEE ALSO 

3/91 

idbui1d(1M), ideonfig(1M), idinsta11(1M), mdeviee(4), mtune(4), sdevice(4), 
stune(4) 

Page 1 



Idspace(1M) Idspace(1M) 

NAME 
idspace - investigates free space 

SYNOPSIS 
/etc/conf/bin/idspace [ -i in odes ] [ -r blocks] [ -u blocks] 

[ -t blocks ] 

DESCRIPTION 
This command investigates free space in /, /usr, and /tmp file systems to deter­
mine whether sufficient disk blocks and inodes exist in each of potentially 3 file 
systems. The default tests that idspace performs are as follows: 

Verify that the root file system U) has 400 blocks more than the size of 
the current /unix. This verifies that a device driver being added to the 
current /unix can be built and placed in the root directory. A check is 
also made to insure that 100 inodes exist in the root directory. 

Determine whether a /usr file system exists. If it does exist, a test is 
made that 400 free blocks and 100 inodes are available in that file system. 
If the file system does not exist, idspace does not complain since files 
created in /usr by the reconfiguration process will be created in the root 
file system and space requirements are covered by the test in (1.) above. 

Determine whether a /tmp file system exists. If it does exist, a test is 
made that 400 free blocks and 100 inodes are available in that file system. 
If the file system does not exist, idspace does not complain since files 
created in /trrp by the reconfiguration process will be created in the root 
file system and space requirements are covered by the test in (1.) above. 

The command line options are: 

-i inodes This option overrides the default test for 100 inode in all of the 
idspace checks. 

-r blocks This option overrides the default test for /unix size + 400 blocks 
when checking the root U) file system. When the -r option is used, 
the /usr and /tmp file systems are not tested unless explicitly 
specified. 

-u blocks This option overrides the default test for 400 blocks when checking 
the /usr file system. When the -u option is used, the root U) and 
/tmp file systems are not tested unless explicitly specified. If /usr is 
not a separate file system, an error is reported. 

-t blocks This option overrides the default test for 400 blocks when checking 
the /tmp file system. When the -t option is used, the root U) and 
/usr file systems are not tested unless explicitly specified. If /tmp is 
not a separate file system, an error is reported. 



Idspace(1M) Idspace (1 M) 

ERROR MESSAGES 
An exit value of zero indicates success. If insufficient space exists in a file system 
or an error was encountered due to a syntax or f<:>rmat error, idspace will report 
a message. All error messages are designed to be self-explanatory. The specific 
exit values are as follows: 

o success. 

1 command syntax error, or needed file does not exist. 

2 file system has insufficient space or inodes. 

3 requested file system does not exist (-u and -t options only). 

SEE ALSO 
idbuild(lM), idinstall(1M) 

Page 2 3/91 



Idtune(1M) Idtune(1M) 

NAME 
idturie - attempts to set value of a tunable parameter 

SYNOPSIS 
/etc/conf/bin/idtune [-f I -m] name value 

DESCRIPTION 
This script attempts to set the value of a tunable parameter. The tunable parame­
ter to be changed is indicated by name. The desired value for the tunable param­
eter is value. 
If there is already a value for this parameter (in the stune file), the user will nor­
mally be asked to confirm the change with the following message: 

Tunable Parameter name is currently set to old value. 
Is it OK to change it to value? (y/n) -

If the user answers y, the change will be made. Otherwise, the tunable parameter 
will not be changed, and the following message will be displayed: 

name left at old_value. 

However, if the -f (force) option is used, the change will always be made and no 
messages will ever be given. 

If the -m (minimum) option is used and there is an existing value which is greater 
than the desired value, no change will be made and no message will be given. 

If system tunable parameters are being modified as part of a device driver or 
application add-on package, it may not be desirable to prompt the user with the 
above question. The add-on package Install script may chose to override the 
existing value using the -f or -m options. However, care must be taken not to 
invalidate a tunable parameter modified earlier by the user or another add-on 
package. 

In order for the change in parameter to become effective, the UNIX System kernel 
must be rebuilt and the system rebooted. 

DIAGNOSTICS 
The exit status will ne non-zero if errors are encountered. 

SEE ALSO 
idbuild(1). 

mtune(4), stune(4) in the Programmer's Reference Manual. 

3/91 Page 1 



Installf (1 M) (Essential Utilities) Installf (1 M) 

NAME 
installf - add a file to the software installation database 

SYNOPSIS 
installf [-c class] pkginst pathname [ftype [[major minor] 

[mode owner group] ] 

installf [-c class] pkginst -

installf -f [-c class] pkginst 

DESCRIPTION 

3/91 

installf informs the system that a path name not listed in the pkgmap file is 
being created or modified. It should be invoked before any file modifications 
have occurred. 

When the second synopsis is used, the pathname descriptions will be read from 
standard input. These descriptions are the same as would be given in the first 
synopsis but the information is given in the form of a list. (The descriptions 
should be in the form: pathname [ftype [[major minor] [mode owner group] ].) 
After all files have been appropriately created and/or modified, installf should 
be invoked with the -f synopsis to indicate that installation is final. Links will be 
created at this time and, if attribute information for a pathname was not specified 
during the original invocation of installf or was not already stored on the sys­
tem, the current attribute values for the pathname will be stored. Otherwise, 
installf verifies that attribute values match those given on the command line, 
making corrections as necessary. In all cases, the current content information is 
calculated and stored appropriately. 

-c class Class to which installed objects should be associated. Default class is 
none. 

pkginst Name of package instance with which the path name should be associ­
ated. 

pathname Pathname that is being created or modified. 

ftype A one-character field that indicates the file type. Possible file types 
include: 

f 
e 
v 
d 
x 
1 

P 
c 
b 
s 

a standard executable or data file 
a file to be edited upon installation or removal 
volatile file (one whose contents are expected to change) 
directory 
an exclusive directory 
linked file 
named pipe 
character special device 
block special device 
symbolic link 

Page 1 



Installf (1 M) (Essential Utilities) Installf(1M) 

NOTES 

Page 2 

major 

minor 

mode 

owner 

group 

-f 

The major device number. The field is only specified for block or 
character special devices. 

The minor device number. The field is only specified for block or 
character special devices. 

The octal mode of the file (for example, 0664). A question mark (?) 
indicates that the mode will be left unchanged, implying that the file 
already exists on the target machine. This field is not used for linked 
or symbolically linked files. 

The owner of the file (for example, bin or root). The field is limited 
to 14 characters in length. A question mark (?) indicates that the 
owner will be left unchanged, implying that the file already exists on 
the target machine. This field is not used for linked or symbolically 
linked files. 

The group to which the file belongs (for example, bin or sys). The 
field is limited to 14 characters in length. A question mark (?) indi­
cates that the group will be left unchanged, implying that the file 
already exists on the target machine. This field is not used for linked 
or symbolically linked files. 

Indicates that installation is complete. This option is used with the 
final invocation of installf (for all files of a given class). 

When ftype is specified, all applicable fields, as shown below, must be defined: 

ftype 
p x d f v or e 
c or b 

Required Fields 
mode owner group 
major minor mode owner group 

The installf command will create directories, named pipes and special devices 
on the original invocation. Links are created when installf is invoked with the 
-f option to indicate installation is complete. 

Links should be specified as pathl=path2. pathl indicates the destination and 
path2 indicates the source file. 

For symbolically linked files, path2 can be a relative pathname, such as . / or .. /. 
For example, if you enter a line such as 

s /foo/bar/etc/mount= .. /usr/sbin/mount 

path2 (/foo/bar/etc/mount) will be a symbolic link to .. /usr/sbin/mount. 

Files installed with installf will be placed in the class none, unless a class is 
defined with the command. Subsequently, they will be removed when the associ­
ated package is deleted. If this file should not be deleted at the same time as the 
package, be certain to assign it to a class which is ignored at removal time. If 
special action is required for the file before removal, a class must be defined with 
the command and an appropriate class action seri pt delivered with the package. 

3/91 



Installf(1M} (Essential Utilities) Installf(1M} 

When classes are used, installf must be used as follows: 

installf -c classl . . . 
installf -f -c classl . • . 
installf -c class2 . • . 
installf -f -c class2 . . . 

EXAMPLE 
The following example shows the use of installf invoked from an optional 
preinstall or postinstall script: 

#create /dev/xt directory 
#(needs to be done before drvinstall) 
installf $PKGINST /dev/xt d 755 root sys I I 

exit 2 
majno='/usr/sbin/drvinstall -m /etc/master.d/xt 

-d $BASEDIR/data/xt.o -vl.0' I I 
exit 2 

i=OO 
while $i -It $limit 
do 

for j in 0 1 2 3 4 5 6 7 
do 

done 

echo /dev/xt$i$j c $majno 'expr $i * 8 + $j' 
644 root sys I 

echo /dev/xt$i$j=/dev/xt/$i$j 

i='expr $i + I' 
[ $i -Ie 9 ] && i="O$i" #add leading zero 

done I installf $PKGINST - I I exit 2 
# finalized installation, create links 
installf -f $PKGINST I I exit 2 
.ft 1 
in 0 

SEE ALSO 

3/91 

pkgadd(1M), pkgask(1M), pkgchk(1), pkginfo(1), pkgmk(1), pkgparam(1), 
pkgproto(1), pkgtrans(1), pkgrm(1M), removef(1M) 

Page 3 



pkgadd (1M) (Essential Utilities) pkgadd(1M) 

NAME 
pkgadd -: transfer software package to the system 

SYNOPSIS 
/usr/sbin/pkgadd [-d device] [-r response] [-n] [-a admin] [pkginstl 
[pkginst2 [ . . . ]] ] 

/usr/sbin/pkgadd -s spool [-d device] [pkginstl [pkginst2[ ... )]] 
DESCRIPTION 

NOTES 

3/91 

pkgadd transfers the contents of a software package from the distribution 
medium or directory to install it onto the system. Used without the -d option, 
pkgadd looks in the default spool directory for the package (/var/spool/pkg). 
Used with the -s option, it reads the package to a spool directory instead of in­
stalling it. 

-d device Installs or copies a package from device. device can be a full pathname 
to a directory or the identifiers for tape, floppy disk or removable disk 
(for example, /var/tIlp, /dev/rrnt/cOsO, /dev/dsk/fOt or 
/dev/dsk/flt). It can also be the device alias (for example, ctapel 
for the cartridge tape drive). 

-r response 
Identifies a file or directory, response, which contains output from a 
previous pkgask session. This file supplies the interaction responses 
that would be requested by the package in interactive mode. response 
must be a full pathname. 

-n Installation occurs in non-interactive mode. The default mode is 
interactive. 

-a admin Defines an installation administration file, admin, to be used in place of 
the default administration file. The token none overrides the use of 
anyadmin file, and thus forces interaction with the user. Unless a full 
path name is given, pkgadd looks in the /var/sadm/install/admin 
directory for the file. 

pkginst Specifies the package instance or list of instances to be installed. The 
token all may be used to refer to all packages available on the source 
medium. The format pkginst. * can be used to indicate all instances of 
a package. When using this format, enclose the command line in sin­
gle quotes to prevent the shell from interpreting the * character. 

-5 spool Reads the package into the directory spool instead of installing it. 

When executed without options, pkgadd users /var/ spool/pkg (the 
default spool directory). 

When transferring a package to a spool directory, the -r, -n, and -a options can­
not be used. 

The -r option can be used to indicate a directory name as well as a filename. 
The directory can contain numerous response files, each sharing the name of the 
package with which it should be associated. This would be used, for example, 
when adding multiple interactive packages with one invocation of pkgadd. Each 

Page 1 



pkgadd(1M) (Essential Utilities) pkgadd(1M) 

Page 2 

package would need a response file. If you create response files with the same 
name as the package (that is, packagel and package2), then name the directory in 
which these files reside after the -r. 

The -n option will cause the installation to halt if any interaction is needed to 
complete it. 

3/91 



pkgask(1M) (Essential Utilities) pkgask(1M) 

NAME 
pkgask - stores answers to a request script 

SYNOPSIS 
/usr/sbin/pkgask [-d device] -r response [pkginst [pkginst [ ... ]] 

DESCRIPTION 

NOTES 

pkgask allows the administrator to store answers to an interactive package (one 
with a request script). Invoking this command generates a response file that is 
then used as input at installation time. The use of this response file prevents any 
interaction from occurring during installation since the file already contains all of 
the information the package needs. 

-d Runs the request script for a package on device. device can be a full 
path name to a directory or the identifiers for tape, floppy disk or 
removable disk (for example, /var/tmp, /dev/dsk/Os2, and 
/dev/dsk/fOt). The default device is the installation spool directory. 

-r 

pkginst 

Identifies a file or directory, which should be created to contain the 
responses to interaction with the package. The name must be a full 
pathname. The file, or directory of files, can later be used as input to 
the pkgadd command. 

Specifies the package instance or list of instances for which request 
scripts will be created. The token all may be used to refer to all 
packages available on the source medium. The format pkginst. * can 
be used to indicate all instances of a package. When using this format, 
enclose the command line in single quotes to prevent the shell from 
interpreting the * character. 

The -r option can be used to indicate a directory name as well as a filename. 
The directory name is used to create numerous response files, each sharing the 
name of the package with which it should be associated. This would be used, for 
example, when you will be adding multiple interactive packages with one invoca­
tion of pkgadd. Each package would need a response file. To create multiple 
response files with the same name as the package instance, name the directory in 
which the files should be created and supply multiple instance names with the 
pkgask command. When installing the packages, you will be able to identify this 
directory to the pkgadd command. 

SEE ALSO 

3/91 

installf(1M), pkgadd(1M), pkgchk(1), pkgmk(1), pkginfo(1), pkgparam(1), 
pkgproto(1), pkgtrans(1), pkgrm(1M), removef(1M) 

Page 1 



pkgchk(1M) pkgchk(1M) 

NAME 
pkgchk - check accuracy of installation 

SYNOPSIS 
/u.sr/.sbin/pkgchk [-1 I-acfqv] [-rud [-p pathl[, path2 ... ] [-i file] [pkginst ... ] 

/u.sr/.sbin/pkgchk -d device [-1 Iv] [-p pathl[,path2 ... ] [-i file] [pkginst ... ] 

/u.sr/sbin/pkgchk -m pkgmap [-e envfile1 [-ll-acfqv] [-nx] [-i file] 
[-p pathl [, path2 . . . ]] 

DESCRIPTION 

3/91 

pkgchk checks the accuracy of installed files or, by use of the -1 option, displays 
information about package files. The command checks the integrity of directory 
structures and the files. Discrepancies are reported on .stderr along with a 
detailed explanation of the problem. 

The first synopsis defined above is used to list or check the contents and/or attri­
butes of objects that are currently installed on the system. Package names may be 
listed on the command line, or by default the entire contents of a machine will be 
checked. 

The second synopsis is used to list or check the contents of a package which has 
been spooled on the specified device, but not installed. Note that attributes can­
not be checked for spooled packages. 

The third synopsis is used to list or check the contents and/or attributes of 
objects which are described in the indicated pkgmap. 

The option definitions are: 

-1 Lists information on the selected files that make up a package. It is not 
compatible with the a, c, f, g, and v options. 

-a Audits the file attributes only, does not check file contents. Default is to 
check both. 

-c 

-f 

-q 

-v 

-n 

-x 

Audits the file contents only, does not check file attributes. Default is to 
check both. 

Corrects file attributes if possible. When pkgchk is invoked with this 
option it creates directories, named pipes, links and special devices if 
they do not already exist. 

Quiet mode. Does not give messages about missing files. 

Verbose mode. Files are listed as processed. 

Does not check volatile or editable files. This should be used for most 
post-installation checking. 

Searches exclusive directories only, looking for files which exist that are 
not in the installation software database or the indicated pkgmap file. If 
used with the -f option, hidden files are removed; no other checking is 
done. 

Page 1 



pkgchk(1M) pkgchk(1M) 

NOTES 

-p Only checks the accuracy of the pathname or pathnames listed. pathname 
can be one or more pathnames separated by commas (or by white space, 
if the list is quoted). 

-i Reads a list of pathnames from file and compares this list against the in­
stallation software database or the indicated pkgmap file. Pathnames 
which are not contained in inputfile are not checked. 

-d Specifies the device on which a spooled package resides. device can be a 
directory path name or the identifiers for tape, floppy disk or removable 
disk (for example, /var/tmp or /dev/diskette). 

-m Requests that the package be checked against the pkgmap file pkgmap. 
-e Requests that the pkginfo file named as envfile be used to resolve param-

eters noted in the specified pkgmap file. 

pkginst Specifies the package instance or instances to be checked. The format 
pkginst. * can be used to check all instances of a package. When using 
this format, enclose the command line in single quotes to prevent the 
shell from interpreting the * character. The default is to display all 
information about all installed packages. 

To remove hidden files only, use the -f and -x options together. To remove hid­
den files and check attributes and contents of files, use the -f, -x, -c, and -a 
options together. 

SEE ALSO 
pkgadd(1M), pkgask(1M), pkginfo(1), pkgrm(1M), pkgtrans(1) 

Page 2 3/91 



pkgrm(1M) (Essential Utilities) pkgrm(1M) 

NAME 
pkgrm - removes a package from the system 

SYNOPSIS 
pkgrm [-n} [-a admin] [pkginstl [pkginst2[ ... ]} 1 
pkgrm -s spool [pkginstl 

DESCRIPTION 
pkgrm will remove a previously installed or partially installed package from the 
system. A check is made to determine if any other packages depend on the one 
being removed. The action taken if a dependency exists is defined in the admin 
file. 

The default state for the command is interactive mode, meaning that prompt mes­
sages are given during processing to allow the administrator to confirm the 
actions being taken. Non-interactive mode can be requested with the -n option. 

The -s option can be used to specify the directory from which spooled packages 
should be removed. 

The options and arguments for this command are: 

-n 

-a admin 

-s spool 

pkginst 

Non-interactive mode. If there is a need for interaction, the com­
mand will exit. Use of this option requires that at least one pack­
age instance be named upon invocation of the command. 

Defines an installation administration file, admin, to be used in 
place of the default admin file. 

Removes the specified package(s) from the directory spool. 

Specifies the package to be removed. The format pkginst. * can be 
used to remove all instances of a package. When using this format, 
enclose the command line in single quotes to prevent the shell from 
interpreting the * character. 

SEE ALSO 

3/91 

installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1), pkginfo(1), pkgmk(1), 
pkgparam(1), pkgproto(1), pkgtrans(1), removef(1M) 

Page 1 



removef(1M) (Essential Utilities) removef(1M) 

NAME 
removef - remove a file from software database 

SVNOPSIS 
removef pkginst path! [path2 .•. ] 

removef -f pkginst 

DESCRIPTION 
removef informs the system that the user, or software, intends to remove a path­
name. Output from removef is the list of input pathnames that may be safely 
removed (no other packages have a dependency on them). 

After all files have been processed, removef should be invoked with the -f 
option to indicate that the removal phase is complete. 

EXAMPLE 
The following shows the use of removef in an optional pre-install script: 

echo "The following files are no longer part of this package 
and are being removed." 

removef $PKGINST /dev/xt[0-9] [0-9] [0-9] 
while read pathname 
do 

done 

echo "$pathname" 
rm -f $pathname 

removef -f $PKGINST I I exit 2 

SEE ALSO 
installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1), pkginfo(1), pkgmk(1), 
pkgproto(1), pkgtrans(1), pkgparam(3X) 

3/91 Page 1 



compver(4} (Essential Utilities) compver(4} 

NAME 
compver - compatible versions file 

DESCRIPTION 

NOTES 

compver is an ASCII file used to specify previous versions of the associated pack­
age which are upward compatible. It is created by a package developer. 

Each line of the file specifies a previous version of the associated package with 
which the current version is backward compatible. 

Since some packages may require installation of a specific version of another 
software package, compatibility information is extremely crucial. Consider, for 
example, a package called "A" which requires version "1.0" of application "B" as 
a prerequisite for installation. If the customer installing "A" has a newer version 
of "B" (1.3), the compver file for "B" must indicate that "1.3" is compatible with 
version "1.0" in order for the customer to install package "A." 

The comparison of the version string disregards white space and tabs. It is per­
formed on a word-by-word basis. Thus 1.3 Enhanced and 1.3 Enhanced 
would be considered the same. 

EXAMPLE 
A sample compver file is shown below. 

1.3 
1.0 

SEE ALSO 
depend(4) 

3/91 Page 1 



copyright ( 4) (Essential Utilities) copyright (4) 

NAME 
copyright - copyright information file 

DESCRIPTION 

3/91 

copyright is an ASOI file used to provide a copyright notice for a package. The 
text may be in any format. The full file contents (including comment lines) is 
displayed on the terminal at the time of package installation. 

Page 1 



depend (4) (Essential Utilities) depend (4) 

NAME 
depend - software dependencies files 

DESCRIPTION 
depend is an ASCII file used to specify information concerning software depen­
dencies for a particular package. The file is created by a software developer. 

Each entry in the depend file describes a single software package. The instance of 
the package is described after the entry line by giving the package architecture 
and/ or version. The format of each entry and subsequent instance definition is: 

type pkg name 
(arch)version 
(arch)version 

The fields are: 

type Defines the dependency type. Must be one of the following char­
acters: 

P Indicates a prerequisite for installation, for example, the 
referenced package or versions must be installed. 

Implies that the existence of the indicated package or ver­
sion is incompatible. 

R Indicates a reverse dependency. Instead of defining the 
package's own dependencies, this designates that another 
package depends on this one. This type should be used 
only when an old package does not have a depend file but 
it relies on the newer package nonetheless. Therefore, the 
present package should not be removed if the designated 
old package is still on the system since, if it is removed, 
the old package will no longer work. 

pkg Indicates the package abbreviation. 

name Specifies the full package name. 

(arch)version Specifies a particular instance of the software. A version name 
cannot begin with a left parenthesis. The instance specifications, 
both arch and version, are completely optional but each must begin 
on a new line that begins with white space. If no version set is 
specified, any version of the indicated package will match. A ver­
sion preceded by a tilde (-) indicates that any compatible version 
will be a match. [See compver(4).) 

EXAMPLE 

3/91 

Here is a sample depend file: 

I msvr 3B2 Messaging Server 
P ctc Cartridge Tape Utilities 
P dfm Directory and File Management Utilities 
P ed Editing Utilities 
P ipc Inter-Process Communication Utilities 
P lp Line Printer Spooling Utilities 

Page 1 



depend (4) (Essential Utilities) 

P shell Shell Programming Utilities 
P sys System Header Files 

3.0 
P sysadm System Administration Utilities 
P terminf Te~nal Information Utilities 
P usrenv User Environment Utilities 
P bnu Basic Networking Utilities 
P x25 X.25 Network Interface 

1.1 
1.2 

P windowing Layers Windowing Utilities 
(3B2) 1.0 

R cms 3B2 Call Management System 

SEE ALSO 
compver(4) 

Page 2 

depend (4) 

3/91 



mdavlce(4) mdevlca(4) 

NAME 
mdevice - file format 

SYNOPSIS 
mdevice 

DESCRIPTION 

3/91 

The nrlevice file is included in the directory /etc/conf/cf.d. It includes a 
one-line description of each device driver and configurable software module in 
the system to be built [except for file system types, see mfsys(4)]. Each line in 
mdevice represents the Master file component from a Driver Software Package 
(DSP) either delivered with the base system or installed later via idinstall. 

Each line contains several white space-separated fields; they are described below. 
Each field must be supplied with a value or a '-' (dash). See the individual 
driver manual pages for information on the values for specific fields. 

Device name: 

Function list: 

This field is the internal name of the device or module, and may 
be up to 8 characters long. The first character of the name must 
be an alphabetic character; the others may be letters, digits, or 
underscores. . 

This field is a string of characters that identify driver functions 
that are present. Using one of the characters below requires the 
driver to have an entry point (function) of the type indicated. If 
no functions in the following list are supplied, the field should 
contain a dash. 

0 open routine 

c close routine 

r read routine 

w write routine 

i ioctl routine 

s startup routine 

x exit routine 

f fork routine 

e exec routine 

I init routine 

h halt routine 

p poll routine 

E kenter routine 

X kexit routine 

Note that if the device is a 'block' type device (see field 3. 
below), a strategy routine and a print routine are required by 
default. 

Page 1 



mdevlce(4) mdevlce(4) 

Characteristics of driver: 

Handler prefix: 

Page 2 

This field contains a set of characters that indicate the charac­
teristics of the driver. If none of the characters below apply, the 
field should contain a dash. The legal characters for this field 
are: 

i The device driver is installable. 

c The device is a 'character' device. 

b The device is a 'block' device. 

[bl c) For indicating which device nodes belong to which 
major. See idmknod. 

f The device is DDI/DKI conformant. 

t The device is a tty. 

o This device may have only one sdevice entry. 

r This device is required in all configurations of the 
Kernel. This option is intended for drivers 
delivered with the base system only. Device nodes 
(special files in the Idev directory), once made for 
this device, are never removed. See idmknod. 

u This letter accompanying an 'M' would ensure that 
the driver will get major numbers starting at the 
same number for both block and character "multi­
ple majors." 

S This device driver is a STREAMS module. 

H This device driver controls hardware. This option 
distinguishes drivers that support hardware from 
those that are entirely software (pseudo-devices). 

G This device does not use an interrupt though an 
interrupt is specified in the sdevice entry. This is 
used when you wish to associate a device to a 
specific device group. 

D This option indicates that the device driver can 
share its DMA channel. 

M This option indicates that the device requires mul­
tiple major numbers. 

o This option indicates that the IDA range of this 
device may overlap that of another device~ 

This field contains the character string prepended to all the 
externally-known handler routines associated with this driver. 
The string may be up to 4 characters long. 

3/91 



mdevlce(4) mdevlce(4) 

Block Major number: 
This field should be set to zero in a DSP Master file. If the 
device is a 'block' type device, a value will be assigned by idin­
stall during installation. For devices having multiple major 
numbers this field ,is used to specify the "range" of major 
numbers. (For example, range 3-6 is interpreted as four major 
numbers between 3-6 inclusive.) 

Character Major number: 
This field should be set to zero in a DSP Master file. If the 
device is a 'character' type device (or 'STREAMS' type), a value 
will be assigned by idinstall during installation. For devices 
having multiple major numbers this field is used to specify the 
"range" of major numbers. (For example, range 3-6 is inter­
preted as four major numbers between 3-6 inclusive.) 

Minimum units: This field is an integer specifying the minimum number of these 
devices that can be specified in the sdevice file. 

Maximum units: This field specifies the maximum number of these devices that 
may be specified in the sdevice file. It contains an integer. 

DMA channel: This field contains an integer that specifies the DMA channel to 
be used by this device. If the device does not use DMA, place a 
'-1' in this field. Note that more than one device can share a 
DMA channel (previously disallowed). 

SPECIFYING STREAMS DEVICES AND MODULES 
STREAMS modules and drivers are treated in a slightly different way from other 
drivers in all UNIX Systems, and their configuration reflects this difference. To 
specify a STREAMS device driver, its mdevice entry should contain both an '5' 
and a 'c' in the characteristics field (see 3. above). This indicates that it is a 
STREAMS driver and that it requires an entry in the UNIX kernel's cdevsw table, 
where STREAMS drivers are normally configured into the system. 

A STREAMS module that is not a device driver, such as a line discipline module, 
requires an'S' in the characteristics field of its nrlevice file entry, but should not 
include a 'c', as a device driver does. 

SEE ALSO 
mfsys(4), sdevice(4) 
idinstall(1M) in the System Administrator's Reference Manual 

3/91 Page 3 



mfsys(4) mfsys(4) 

NAME 
mfsys - file format 

SYNOPSIS 
mfsys 

DESCRIPTION 
The mfsys file contains configuration information for file system types that are to 
be included in the next system kernel to be built. It is included in the directory 
/etc/conf/cf .d, and includes a one-line description of each file system type. 
The mfsys file is coalesced from component files in the directory 
/etc/cortf/mfsys. d. Each line contains the following whites pace-separated 
fields: 

1. name: This field contains the internal name for the file system type (for 
example, 551K, DUFST). This mime is no more than 32 characters long, and 
by convention is composed of upper-case alphanumeric characters. 

2. prefix: The prefix in this field is the string prepended to the fsfypsw handler 
functions defined for this file system type (for example, sS, du). The prefix 
must be no more that 8 characters long. 

3. flags: The flags field contains a hex number of the form "OxNN" to be used in 
populating the fsinfo data structure table entry for this file system type. 

4. notify flags: The notify flags field contains a hex number of the form "OxNN" 
to be used in population the fsinfo data structure table entry for this file sys­
tem type. 

5. function bitstring: The function bitstring is a string of 28 O's and l's. Each file 
system type potentially defines 28 functions to populate the fstypsw data 
structure table entry for itself. All file system types do not supply all the 
functions in this table, however, and this bitstring is used to indicate which 
of the functions are present and which are absent. A '1' in this string indi­
cates that a function has been supplied, and a '0' indicates that a function 
has not been supplied. Successive characters in the string represent succes­
sive elements of the fstypsw data structure, with the first entry in this data 
structure represented by the rightmost character in the string. 

SEE ALSO 
sfsys(4) 
idinstall(1m), idbuild(1m) in the User'sjSystem Administrator's Reference Manual 

3/91 Page 1 



mtune(4) mtune(4) 

NAME 
mtune - file format 

SYNOPSIS 
mtune 

DESCRIPTION 
The mtune file contains information about all the system tunable parameters. 
Each tunable parameter is specified by a single line in the file, and each line con­
tains the following whites pace-separated set of fields: 

1. parameter name: A character string no more than 20 characters long. It is 
used to construct the preprocessor "#define's" that pass the value to the sys­
tem when it is built. 

2. default value: This is the default value of the tunable parameter. If the value 
is not specified in the stune file, this value will be used when the system is 
built. 

3. minimum value: This is the minimum allowable value for the tunable param­
eter. If the parameter is set in the stune file, the configuration tools will 
verify that the new value is equal to or greater than this value. 

4. maximum value: This is the maximum allowable value for the tunable param­
eter. If the parameter is set in the stune file, the configuration tools will 
check that the new value is equal to or less than this value. 

The file mtune normally resides in /ete/eonf/ef.d. However, a user or an 
add-on package should never directly edit the rntune file to change the setting of 
a system tunable parameter. Instead the idtune command should be used to 
modify or append the tunable parameter to the stune file. 

In order for the new values to become effective the UNIX System kernel must be 
rebuilt and the system must then be rebooted. 

SEE ALSO 
stune(4) 

idbuild(1m), idtune(1m) in the User's/System Administrator's Reference Manual 

3/91 Page 1 



pkglnfo(4) (Essential Utilities) pkglnfo(4) 

NAME 
pkginfo - package characteristics file 

DESCRIPTION 

3/91 

pkginfo is an ASCII file that describes the characteristics of the package along 
with information that helps control the flow of installation. It is created by the 
software package developer. 

Each entry in the pkginfo file is a line that establishes the value of a parameter 
in the following form: 

P ARAM="vaiue" 
There is no required order in which the parameters must be specified within the 
file. Each parameter is described below. Only fields marked with an asterisk are 
mandatory. 

PKG* Abbreviation for the package being installed, generally three 
characters in length (for example, dir or pkg). All characters in 
the abbreviation must be alphanumeric and the first may not be 
numeric. The abbreviation is limited to a maximum length of 
nine characters. install, new, and all are reserved abbrevia­
tions. 

NAME" 

ARCH" 

VERSION" 

CATEGORY" 

DESC 

VENDOR 

HOTLINE 

Text that specifies the package name (maximum length of 256 
ASCII characters). 

A comma-separated list of alphanumeric tokens that indicate the 
architecture (for example, 3B2) associated with the package. 
The pkgmk tool may be used to create or modify this value 
when actually building the package. The maximum length of a 
token is 16 characters and it cannot include a comma. 

Text that specifies the current version associated with the 
software package. The maximum length is 256 ASCII characters 
and the first character cannot be a left parenthesis. The pkgmk 
tool may be used to create or modify this value when actually 
building the package. 

A comma-separated list of categories under which a package 
may be displayed. A package must at least belong to the sys­
tem or application category. Categories are case-insensitive and 
may contain only alphanumerics. Each category is limited in 
length to 16 characters. 

Text that describes the package (maximum length of 256 ASCII 
characters). 

Used to identify the vendor that holds the software copyright 
(maximum length of 256 ASCII characters). 

Phone number and/or mailing address where further informa­
tion may be received or bugs may be reported (maximum 
length of 256 ASCII characters). 

Page 1 



pkglnfo(4) 

EMAIL 

VSTOCK 

CLASSES 

[STATES 

RSTATES 

BASEDIR 

ULIMIT 

ORDER 

MAXINST 

PSTAMP 

INTONLY 

PRE DEPEND 

Page 2 

( Essentla I Ut IIltles) pkglnfo(4) 

An electronic address where further information is available or 
bugs may be reported (maximum length of 256 ASCII charac­
ters). 

The vendor stock number, if any, that identifies this product 
(maximum length of 256 ASCII characters). 

A space-separated list of classes defined for a package. The 
order of the list determines the order in which the classes are 
installed. Classes listed first will be installed first (on a media 
by media basis). This parameter may be modified by the 
request script. 

A list of allowable run states for package installation (for exam­
ple, liS s 1"). 

A list of allowable run states for package removal (for example, 
ItS s 1"). 

The path name to a default directory where "relocatable" files 
may be installed. If blank, the package is not relocatable and 
any files that have relative pathnames will not be installed. An 
administrator can override the default directory. 

If set, this parameter is passed as an argument to the ulimit 
command, which establishes the maximum size of a file during 
installation. 

A list of classes defining the order in which they should be put 
on the medium. Used by pkgmk in creating the package. 
Classes not defined in this field are placed on the medium using 
the'standard ordering procedures. 

The maximum number of package instances that should be 
allowed on a machine at the same time. By default, only one 
instance of a package is allowed. This parameter must be set in 
order to have multiple instances of a package. 

Production stamp used to mark the pkgmap file on the output 
volumes. Provides a means for distinguishing between produc­
tion copies of a version if more than one is in use at a time. If 
PSTAMP is not defined, the default is used. The default consists 
of the UNIX system machine name followed by the string 
"YYMMDDHHMM" (year, month, date, hour, minutes). 

Indicates that the package should only be installed interactively 
when set to any non-NULL value. 

Used to maintain compatibility with pre-SVR4 package depen­
dency checking. Pre-SVR4 dependency checks were based on 
whether or not the name file for the required package existed in 
the /var/options directory. This directory is not maintained 
for SVR4 packages since the depend file is used for checking 
dependencies. However, entries can be created in this directory 
to maintain compatibility. Setting the PREDEPEND parameter to 
y or yes creates a /usr/option entry for the package. 

3/91 



pkglnfo(4) (Essential Utilities) pkglnfo(4) 

(Packages that are new for SVR4 do not need to use this param­
eter.) 

EXAMPLES 

NOTES 

3/91 

Here is a sample pkginfo: 
PKG="oam" 
NAME="OAM Installation Utilities" 
VERSION=" 3 " 
VENDOR="AT&T" 
HOTLINE="1-800-ATT-BUGS" 
EMAIL="attunix!olsen" 
VSTOCK="0122c3f5566" 
CATEGORY=" system. essential" 
ISTATES="S 2" 
RSTATES="S 2" 

Developers may define their own installation parameters by adding a definition 
to this file. A developer-defined parameter must begin with a capital letter, fol­
lowed by lowercase letters. 

Page 3 



pkgmap(4) (Essential Utilities) pkgmap(4) 

NAME 
pkgmap - package contents description file 

DESCRIPTION 

3/91 

pkgmap is an ASOI file that provides a complete listing of the package contents. 
It is automatically generated by pkgrnk(1) using the information in the prototype 
file. 
Each entry in pkgmap describes a single "deliverable object file." A deliverable 
object file includes shell scripts, executable objects, data files, directories, and so 
on. The entry consists of several fields of information, each field separated by a 
space. The fields are described below and must appear in the order shown. 

part An optional field designating the part number in which the object 
resides. A part is a collection of files, and is the atomic unit by which 
a package is processed. A developer can choose the criteria for group­
ing files into a part (for example, based on class). If no value is 
defined in this field, part 1 is assumed. 

jtype A one-character field that indicates the file type. Valid values are: 

f a standard executable or data file 
e a file to be edited upori installation or removal 
v volatile file (one whose contents are expected to change) 
d directory 
x an .exc1usive directory 
1 linked file 
p named pipe 
c character special device 
b block special device 
i installation script or information file 
5 symbolic link 

class The installation class to which the file belongs. This name must con­
tain only alphanumeric characters and be no longer than 12 characters. 
It is not specified if the ftype is i (information file). 

pathname The pathname where the object will reside on the target machine, such 
as /usr/bin/mail. Relative pathnames (those that do not begin with 
a slash) indicate that the file is relocatable. 

For linked files (ftype is either 1 or 5), pathname must be in the form 
of pathl=path2, with pathl specifying the destination of the link and 
path2 specifying the source of the link. 

For symbolically linked files, path2 can be a relative pathname, such as 
. / or .. /. For example, if you enter a line such as 

s/foo/bar/etc/mount= .. /usr/sbin/mount 

path2 (/foo/bar/etc/mount) will be a symbolic link to 
. ./usr/sbin/mount. 

Page 1 



pkgmap(4} ( Essential Utilities) pkgmap(4} 

Page 2 

pathname may contain variables which support relocation of the file. A 
$parameter may be embedded in the pathname structure. $BASEDIR 
can be used to identify the parent directories of the path hierarchy, 
making the entire package easily relocatable. Default values for param­
eter and BASEDIR must be supplied in the pkginfo file and may be 
overridden at installation. 

major The major device number. The field is only specified for block or 
character special devices. 

minor The minor device number. The field is only specified for block or 
character special devices. 

mode The octal mode of the file (for example, 0664). A question mark (?) 
indicates that the mode will be left unchanged, implying that the file 
already exists on the target machine. This field is not used for linked 
files, packaging information files or non-install able files. 

owner The owner of the file (for example, bin or root). The field is limited 
to 14 characters in length. A question mark (?) indicates that the 
owner will be left unchanged, -implying that the file already exists on 
the target machine. This field is not used for linked files or non­
installable files. It is used optionally with a package information file. 
If used, it indicates with what owner an installation script will be exe­
cuted. 

Can be a variable specification in the form of $[A-ZJ. Will be resolved 
at installation time. 

group The group to which the file belongs (for example, "bin" or "sys"). The 
field is limited to 14 characters in length. A question mark (?) indi­
cates that the group will be left unchanged, implying that the file 
already exists on the target machine. This field is not used for linked 
files or non-installable files. It is used optionally with a package infor­
mation file. If used, it indicates with what group an installation script 
will be executed. 

Can be a variable assignment in the form of $ [A-Z 1. Will be resolved 
at installation time. 

size The actual size of the file in bytes. This field is not specified for 
named pipes, special devices, directories or linked files. 

cksum The checksum of the file contents. This field is not specified for 
named pipes, special devices, directories or linked files. 

modtime The time of last modification, as reported by the stat(2) function call. 
This field is not specified for named pipes, special devices, directories 
or linked files. 

Each pkgrnap must have one line that provides information about the number and 
maximum size (in 512-byte blocks) of parts that make up the package. This line 
is in the following format: 

3/91 



pkgmap(4) (Essential Utilities) pkgmap(4) 

: number _ of yarts maximum yart _size 
Lines that begin with "#" are comment lines and are ignored. 

When files are saved during installation before they are overwritten, they are nor­
mally just copied to a temporary pathname. However, for files whose mode 
includes execute permission (but which are not editable), the existing version is 
linked to a temporary pathname and the original file is removed. This allows 
processes which are executing during installation to be overwritten. 

EXAMPLES 

NOTES 

3/91 

The following is an example of a pkgmap file. 

:2 500 
1 i pkginfo 237 1179 541296672 
1 b class1 /dev/diskette 17 134 0644 root other 
1 c class1 /dev/rdiskette 17 134 0644 root other 
1 d none bin 0755 root bin 
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535 
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541 
1 1 none bin/UNINSTALL=bin/REMOVE 
1 f none bin/cmda 0755 root bin 3580 60325 541295567 
1 f none bin/cmdb 0755 root bin 49107 51255 541438368 
1 f class1 bin/erode 0755 root bin 45599 26048 541295599 
1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238 
1 f none bin/cmde 0755 root bin 40501 1264 541295622 
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574 
1 f none bin/cmdg 0755 root bin 41185 47653 541461242 
2 d class2 data 0755 root bin 
2 p class1 data/apipe 0755 root other 
2 d none log 0755 root bin 
2 v none log/logfile 0755 root bin 41815 47563 541461333 
2 d none save 0755 root bin 
2 d none spool 0755 root bin 
2 d none tmp 0755 root bin 

The pkgmap file may contain. only one entry per unique pathname. 

Page 3 



prototype ( 4) (Essential Utilities) prototype (4) 

NAME 
prototype - package information file 

DESCRIPTION 

3/91 

prototype is an ASCII file used to specify package information. Each entry in the 
file describes a single deliverable object. An object may be a data file, directory, 
source file, executable object, and so on. This file is generated by the package 
developer. 

Entries in a prototype file consist of several fields of information separated by 
white space. Comment lines begin with a "#" and are ignored. The fields are 
described below and must appear in the order shown. 

part An optional field designating the part number in which the object 
resides. A part is a collection of files, and is the atomic unit by which 
a package is processed. A developer can choose criteria for groupig 
files into a part (for example, based on class). If this field is not used, 
part 1 is assumed. 

ftype A one-character field which indicates the file type. Valid values are: 

f a standard executable or data file 
e a file to be edited upon installation or removal 
v volatile file (one whose contents are expected to change) 
d directory 
x an exclusive directory 
1 linked file 
p named pipe 
c character special device 
b block special device 
i installation script or information file 
s symbolic link 

class The installation class to which the file belongs. This name must con­
tain only alphanumeric characters arid be no longer than 12 characters. 
The field is not specified for installation scripts. (admin and all classes 
beginning with capital letters are reserved class names.) 

pathname The pathname where the file will reside on the target machine, for 
example, /usr/bin/mail. or bin/rasyroc. Relative pathnames 
(those that do not begin with a slash) indicate that the file is relocat­
able. The form 

pathl=path2 

may be used for two purposes: to define a link and to define local 
pathnames. 

For linked files, pathl indicates the destination of the link and path2 
indicates the source file. (This format is mandatory for linked files.) 

For symbolically linked files, path2 can be a relative pathname, such as 
. / or .. /. For example, if you enter a line such as 

s /foo/bar/etc/mount= .. /usr/sbin/mount 

Page 1 



prototype ( 4 ) (Essential Utilities) prototype ( 4) 

Page 2 

major 

minor 

mode 

owner 

group 

path2 (/foo/bar/etc/mount) will be a symbolic link to 
.. / USf / sbin/ mount. 

For local pathnames, pathl indicates the pathname an object should 
have on the machine where the entry is to be installed and path2 indi­
cates either a relative or fixed path name to a file on the host machine 
which contains the actual contents. 

A pathname may contain a variable specification, which will be 
resolved at the time of installation. This specification should have the 
form $[A-Z]. 

The major device number. The field is only specified fOf block or 
character special devices. 

The minor device number. The field is only specified for block or 
character special devices. 

The octal mode of the file (for example, 0664). A question mark (?) 
indicates that the mode will be left unchanged, implying that the file 
alread y exists on the target machine. This field is not used for linked 
files Of packaging information files. 

The owner of the file (for example, bin or root). The field is limited 
to 14 characters in length. A question mark (?) indicates that the 
owner will be left unchanged, implying that the file already exists on 
the target machine. This field is not used for linked files or packaging 
information files. 

Can be a variable specification in the form of $ [A-Z] . Will be 
resolved at installation time. 

The group to which the file belongs (for example, bin or sys). The 
field is limited to 14 characters in length. A question mark (?) indi­
cates that the group will be left unchanged, implying that the file 
already exists on the target machine. This field is not used for linked 
files or packaging information files. 

Can be a variable specification in the form of $[A-Z]. Will be resolved 
at installation time. 

An exclamation point (!) at the beginning of a line indicates that the line contains 
a command. These commands are used to incorporate files in other directories, 
to locate objects on a host machine, and to set permanent defaults. The following 
commands are available: 

search Specifies a list of directories (separated by white space) to search 
for when looking for file contents on the host machine. The 
basename of the path field is appended to each directory in the 
ordered list until the file is located. 

include Specifies a pathname which points to another prototype file to 
include. Note that search requests do not span include files. 

3/91 



prototype ( 4 ) (Essential Utilities) prototype ( 4 ) 

default Specifies a list of attributes (mode, owner, and group) to be used 
by default if attribute information is not provided for prototype 
entries which require the information. The defaults do not apply 
to entries in include prototype files. 

param=value Places the indicated parameter in the current environment. 

The above commands may have variable substitutions embedded within them, as 
demonstrated in the two example prototype files below. 

Before files are overwritten during installation, they are copied to a temporary 
pathname. The exception to this rule is files whose mode includes execute per­
mission, unless the file is editable (that is, ftype is e). For files which meet this 
exception, the existing version is linked to a temporary pathname, and the origi­
nal file is removed. This allows processes which are executing during installation 
to be overwritten. 

EXAMPLES 

3/91 

Example 1: 

!PROJDIR=/usr/proj 
!BIN=$PROJDIR/bin 
!CFG=$PROJDIR/cfg 
!LIB=$PROJDIR/lib 
!HDRS=$PROJDIR/hdrs 
!search /usr/myname/usr/bin /usr/myname/src /usr/myname/hdrs 
i pkginfo=/usr/myname/wrap/pkginfo 
i depend=/usr/myname/wrap/depend 
i version=/usr/myname/wrap/version 
d none /usr/wrap 0755 root bin 
d none /usr/wrap/usr/bin 0755 root bin 
! search $BIN 
f none /usr/wrap/bin/INSTALL 0755 root bin 
f none /usr/wrap/bin/REMOVE 0755 root bin 
f none /usr/wrap/bin/addpkg 0755 root bin 
!default 755 root bin 
f none /usr/wrap/bin/audit 
f none /usr/wrap/bin/listpkg 
f none /usr/wrap/bin/pkgmk 
# The logfile starts as a zero length file, since the source 
# file has zero length. Later, the size of logfile grows. 
v none /usr/wrap/logfile=/usr/wrap/log/zero_length 0644 root bin 
# the following specifies a link (dest=src) 
1 none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg 
! search $SRC 
!default 644 root other 
f src /usr/wrap/src/INSTALL.sh 
f src /usr/wrap/src/REMOVE.sh 
f src /usr/wrap/src/addpkg.c 
f src /usr/wrap/src/audit.c 
f src /usr/wrap/src/listpkg.c 
f src /usr/wrap/src/pkgmk.c 

Page 3 



prototype ( 4) (Essential Utilities) prototype ( 4) 

d none /usr/wrap/data 0755 root bin 
d none /usr/wrap/save 0755 root bin 
d none /usr/wrap/spool 0755 root bin 
d none /usr/wrap/tmp 0755 root bin 
d src /usr/wrap/src 0755 root bin 

Example 2: 
# this prototype is generated by 'pkgproto' to refer 
# to all prototypes in my src directory 
!PROJDIR=/usr/dew/projx 
!include $PROJDIR/src/cmd/prototype 
!include $PROJDIR/src/cmd/audmerg/protofile 
!include $PROJDIR/src/lib/proto 

SEE ALSO 

NOTES 

Page 4 

pkginfo(4), pkgmk(1) 

Normally, if a file is defined in the prototype file but does not exist, that file is 
created at the time of package installation. Howeverl if the file pathname 
includes a directory that does not existl the file will not be created. For examplel 

if the prototype file has the following entry: 

f none /usr/dev/bin/command 

and that file does not existl it will be created if the directory /usr/dev/bin 
already exists or if the prototype also has an entry defining the directory: 

d none /usr/dev/bin 

3/91 



sdevice(4) sdevice(4) 

NAME 
sdevice - file format 

SYNOPSIS 
sdevice 

DESCRIPTION 

3/91 

The sdevice file contains local system configuration information for each of the 
devices specified in the mdevice file. It contains one or more entries for each 
device specified in nrlevice. sdevice is present in the directory 
/etc/conf/cf. d, and is coalesced from component files in the directory 
/etc/conf/sdevice.d. Files in /etc/conf/sdevice.d are the System file com­
ponents either delivered with the base system or installed later via idinstall. 

Each entry must contain the following whitespace-separated fields: 

1. Device name: This field contains the internal name of the driver. This must 
match one of the names in the first field of an mdevice file entry. 

2. Configure: This field must contain the character 'Y' indicating that the device 
is to be installed in the Kernel. For testing purposes, an 'N' may be entered 
indicating that the device will not be installed. 

3. Unit: This field can be encoded with a device dependent numeric value. It 
is usually used to represent the number of subdevices on a controller or 
psuedo-device. Its value must be within the minimum and maximum 
values specified in fields 7 and 8 of the mdevice entry. 

4. [pI: The ipi field specifies the system ipllevel at which the driver's interrupt 
handler will run in the new system kernel. Legal values are 0 through 8. If 
the driver doesn't have an interrupt handling routine, put a 0 in this field. 

5. Type: This field indicates the type of interrupt scheme required by the 
device. The permissible values are: 

6. 

o The device does not require an interrupt line. 

1 The device requires an interrupt line. If the driver supports more 
than one hardware controller, each controller requires a separate 
interrupt. 

2 The device requires an interrupt line. If the driver supports more 
than one hardware controller, each controller will share the same 
interrupt. 

3 The device requires an interrupt line. If the driver supports more 
than one hard ware controller, each controller will share the same 
interrupt. Multiple device drivers having the same ipllevel can share 
this interrupt. 

Vector: This field contains the interrupt vector number used by the device. 
If the Type field contains a 0 <that is, no interrupt required), this field should 
be encoded with a O. Note that more than one device can share an interrupt 
number. . 

Page 1 



sdevlce(4) sdevlce(4) 

7. SIOA: The SIOA field (Start I/O Address) contains the starting address on 
the I/O bus through which the device communicates. This field must be 
within Oxl and OxFFFE. (If this field is not used, it should be encoded with 
the value zero.) 

8. EIOA: The field (End I/O Address) contains the end address on the I/O bus 
through which the device communicates. This field must be greater than 
the value specified in the seventh field and no greater than OXFFFF. (If this 
field is not used, it should be encoded with the value zero.) 

9. SCMA: The SCMA field (Start Controller Memory Address) is used by con­
trollers that have internal memory. It specifies the starting address of this 
memory. The start address is OXlOOOO. (If this field is not used, it should 
be encoded with the value zero.) 

10. ECMA: The ECMA (End Controller Memory Address) specifies the end of 
the internal memory for the device. Its value must be greater than the value 
of the eighth field. (If this field is not used, it should be encoded with the 
value zero.) 

SEE ALSO 
rrdevice(4) 
idinstall(1m) in the System Administrator's Reference Manual 

Page 2 3/91 



sfsys(4) sfsys(4) 

NAME 
sfsys - file format 

SYNOPSIS 
sfsys 

DESCRIPTION 
The sfsys file contains local system information about each file system type 
specified in the mf sys file. It is present in the directory / etc/ conf / cf . d, and 
contains a one-line entry for each file system type specified in the mf sys file. The 
sfsys file is coalesced from component files in the directory 
/ etc/ conf / sf sys . d Each line in this file is a whites pace-separate set of fields 
that specify: 

1. name: This field contains the internal name of the file system type (for 
example, DUFST, 551K). By convention, this name is up to 32 characters 
long, and is composed of all uppercase alphanumeric characters. 

2. YIN: This field contains either an uppercase 'V' (for "yes") or an uppercase 
'N' (for "no) to indicate whether the named file system type is to be 
configured into the next system kernel to be built. 

SEE ALSO 
mfsys(4) 
idinstall(1m), idbuild(lm) in the User'slSystem Administrator's Reference Manual 

3/91 Page 1 



space (4) (Essential Utilities) space (4) 

NAME 
space - disk space requirement file 

DESCRIPTION 
space is an ASCII file that gives information about disk space requirements for 
the target environment. It defines space needed beyond that which is used by 
objects defined in the prototype file-for example, files which will be installed 
with the installfcommand. It should define the maximum amount of addi­
tional space which a package will require. 

The generic format of a line in this file is: 

pathname blocks inodes 

Definitions for the fields are as follows: 

pathname Specifies a directory name which mayor may not be the mount point 
for a filesystem. Names that do not begin with a slash (/) indicate 
relocatable directories. 

blocks Defines the number of disk blocks required for installation of the files 
and directory entries contained in the pathname (using a 512-byte 
block size). 

inodes Defines the number of inodes required for installation of the files and 
directory entries contained in the pathname. 

EXAMPLE 
# extra space required by config data which is 
# dynamically loaded onto the system 
data 500 1 

SEE ALSO 
installf(1M), prototype(4) 

3/91 Page 1 



stune(4) stune(4) 

NAME 
stune - file format 

SYNOPSIS 
stune 

DESCRIPTION 
The stune file contains local system settings for tunable parameters. The param­
eter settings in this file replace the default values specified in the mtune file, if the 
new values are within the legal range for the parameter specified in mtune. The 
file contains one line for each parameter to be reset. Each line contains two 
whites pace-separated fields: 

1. external name: This is the external name of the tunable parameter used in the 
mtune file. 

2. value: This field contains the new value for the tunable parameter. 

The file stune normally resides in /etc/conf/df .d. However, a user or an 
add-on package should never directly edit the mtune file. Instead the idtune 
command should be used. 

In order for the new values to become effective the UNIX kernel must be rebuilt 
and the system must then be rebooted. 

SEE ALSO 
mtune(4) 
idbuild(1m), idtune(1m) in the User's/System Administrator's Reference Manual 

3/91 Page 1 



dlsplay(7) dlsplay(7) 

NAME 
display - system console display 

DESCRIPTION 

3/91 

The system console (and user's terminal) is composed of two separate pieces: the 
keyboard [see keyboard (7)] and the display. Because of their complexity, and 
because there are three possible display interfaces (monochrome, color graphics, 
and enhanced graphics adapters), they are discussed in separate manual entries. 

The display normally consists of 25 lines of 80 columns each; 40-column lines are 
also supported by the color/graphics adapter, and 43 lines of 80-columns each are 
supported by the enhanced graphics adapter. Writing characters to the console 
or one of its virtual screens (jdev/console or /dev/vtxx) has an effect which 
depends on the characters. All characters written to / dev / console are first pro­
cessed by the terminal interface [see termio (7)]. For example, mapping new-line 
characters to carriage return plus new-line, and expanding tabs to spaces, will be 
done before the following processing: 

x 

BEL 

CR 

LF,VT 

FF 

Where x is not one of the following, displays x. 

Generates a bell (audible tone, no modulation). 

Places the cursor at column 1 of the current line. 

Places the cursor at the same column of the next line (scrolls if the 
the current line is line 25). 

Clears the screen and places the cursor at line 1, column 1. 

BS If the cursor is not at column 1, it is moved to the left one position 
on the same line. If the cursor is at column 1 but not line 1, it is 
moved to column 79 of the previous line. Finally, if the cursor is at 
column 1, line 1, it is not moved. 

The display can be controlled by means of ANSI X3.64 escape sequences, which are 
specific sequences of characters, preceded by the ASCII character ESC. The 
escape sequences, which work on either the monochrome, color graphics, or 
enhanced graphics adapter, are the following: 

ESC c Clears the screen and places the cursor at line 1, column 1. 

ESC Q n 'string' 

ESC[ n @ 

ESC[ n ' 

ESC[ n A 

ESC[ n a 

Defines the function key n with string. The string delimiter' may be 
any character not in string. Function keys are numbered 0 through 
11 (F1 = 0, F2 = 1, and so on.) 

Insert character-inserts n blanks at the current cursor position. 

Horizontal Position Absolute-moves active position to column 
given by n. 

Cursor up-moves the cursor up n lines (default: n=1). 

Horizontal Position Relative-moves active position n characters to 
the right (default: n=1). 

Page 1 



dlsplay(7) 

Page 2 

ESC [ n B 

ESC[ n C 

ESC [ n c 

ESC [ n D 

ESC[ n d 

ESC[ n E 

ESC[ n e 

ESC[ n F 

ESC[ n G 

ESC[ n; m H 

ESC[ n; m f 

ESC[ n J 

ESC[ n K 

ESC[ n L 

ESC[ n M 

ESC [ n P 

ESC[ n S 

ESC[ n T 

ESC[ n X 

ESC[ n Z 

dlsplay(7) 

Cursor down-moves the cursor down n lines (default: n=1). 

Cursor right-moves the cursor right n columns (default: n=l). 

where n is 0 (underline cursor), l(blockcursor), or 2(no cursor). 0 is 
the default value for n. 

Cursor left-moves the cursor left n columns (default: n=1). 

Vertical Position Absolute-moves active position to line given by n. 

Cursor next line-moves the cursor to column 1 of the next line, 
then down n-l lines (default: n=l). 

Vertical Position Relative-moves the active position down n lines 
(default: n=1). 

Cursor previous line-moves the cursor to column 1 of the current 
line, then up n lines (default: n=1). 

Cursor horizontal position-moves the cursor to column n of the 
current line (default: n=1). 

Position cursor-moves the cursor to column m of line n (default: 
n=l, m=l). 

Position cursor-moves the cursor to column m of line n (default: 
n=l, m=l). 

Erase window-erases from the current cursor position to the end of 
the window if n=D, from the beginning of the window to the current 
cursor position if n=l, and the entire window if n=2 (default: n=D). 

Erase line-erases from the current cursor position to the end of the 
line if n=O, from the beginning of the line to the current cursor posi­
tion if n=l, and the entire line if n=2 (default: n=O). 

Insert line-inserts n lines at the current cursor position (default: 
n=1). 

Delete line-deletes n lines starting at the current cursor position 
(default: n=l). 

Delete character-deletes n characters from a line starting at the 
current cursor position (default: n=l). 

Scroll up-scrolls the characters in the current window up n lines. 
The bottom n lines are cleared to blanks (default: n=1). 

Scroll down-scrolls the characters in the current window down n 
lines. The top n lines are cleared to blanks (default: n=1). 

Erase character-erases n character positions starting at the current 
cursor position (default: n=l). 

Cursor Backward Tabulation-moves active position back n tab 
stops. 

3/91 



display (7) display (7) 

3/91 

ESC [ 2 h Locks the keyboard and ignores keyboard input until unlocked. 
Characters are not saved. 

ESC [ 2 i Sends the screen to the host. The current screen display is sent to 
the application. 

ESC [ 2 1 Unlocks the keyboard. Re-enables keyboard input. 

ESC[ Ps ; Ps; m 
Character attributes-each Ps is one of the following characters; 
multiple characters are separated by semicolons. These parameters 
apply to successive characters being displayed, in an additive 
manner (e.g., both bold and underscoring can be selected). Only the 
parameters through 7 apply to the monochrome adapter; all parame­
ters apply to the color/graphics adapter and the enhanced graphics 
adapter. (Default: Ps=O). 

Ps 

o 

1 
4 

5 
6 

7 
30 
31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 

Meaning 

all attributes off (normal display) 
(white foreground with black background) 
bold intensity 
underscore on 
(white foreground with red background on color) 
blink on 
VGA only: if blink (5) is on, turn blink off and back­
ground color to its light equivalent (that is, brown to 
yellow). 
reverse video 
black (gray) foreground 
red (light red) foreground 
green (light green) foreground 
brown (yellow) foreground 
blue (light blue) foreground 
magenta (light magenta) foreground 
cyan (light cyan) foreground 
white (bright white) foreground 
"black (gray) background 
red (light red) background 
green (light green) background 
brown (yellow) background 
blue (light blue) background 
magenta (light magenta) background 
cyan (light cyan) background 
white (bright white) background 

Note that for character attributes 30-37, the color selected for fore­
ground will depend on whether the bold intensity attribute (1) is 
currently on. If not, the first color listed will result; otherwise the 
second color listed will result. 

Page 3 



display (7) display (7) 

Page 4 

Similarly, for character attributes 40-47, the color selected for back­
ground will depend on whether the blink attribute (5) is currently on 
and bright background (6) has been turned on. If blink is not turned 
on or bright background has not been selected, the first listed color 
will result. Otherwise, the second color listed will result. 

ESC [ 8 m sets blank (non-display) 

ESC [ 10m selects the primary font 

ESC [ 11 m selects the first alternate font; lets ASCII characters less than 32 be 
displayed as ROM characters 

ESC [ 12 m selects a second alternate font; toggles high bit of extended ASCII 
code before displaying as ROM characters 

ESC [ 38 m enables underline option; white foreground with white underscore 
(see WARNINGS) 

ESC [ 39 m disables underline option; see WARNINGS 

The following non-ANSI X3.64 escape sequences are supplied: 

ESC [= c A Sets overscan color. 

ESC[= p; dB 
Sets bell parameters (where p is the pitch in Hz and d is the dura­
tion in milliseconds) 

ESC[= 5; e C 
Sets cursor parameters (where 5 is the starting and e is the ending 
scanlines of the cursor). 

ESC [= x D Enables/ disables intensity of background color (where x is 0 for 
enable and 1 for disable). 

I 

ESC[= x E Sets/clears blink vs. bold background (where x is 0 for set and 1 for 
clear). 

ESC[= c F Sets normal foreground color. See GIO_ATTR for the valid values for 
c. 

ESC [= c G Sets normal background color. See GIO ATTR for the valid values 
for c. 

ESC [= n 9 Displays graphic character n. 

ESC [= c H Sets reverse foreground color. See GIO ATTR for the valid values for 
c. 

ESC [= c I Sets reverse background color. See GIO ATTR for the valid values 
for c. 

ESC[= c J Sets graphic foreground color. See GIO ATTR for the valid values 
for c. 

ESC [= c K Sets graphic background color. See GIO ATTR for the valid values 
for c. 

3/91 



dlsplay(7) dlsplay(7) 

3/91 

ESC[ n z 

ESC 7 

ESC 8 

ESC[ 0 k 

ESC[ 1 k 

loctl Calls 

Makes virtual terminal number n active. 

Saves cursor position. 

Restores cursor position to saved value. 

Disables the key-click feature (the default). 

Enables the key-click feature. A tone is produced for each key 
press. 

The following ioctl calls may be used to change the display used for the video 
monitor. If the virtual terminal has not been put in process mode (see the 
VT _ SETMODE ioctl), setting the display mode to a non-text mode will turn off 
VT switching. VT switches will be re-enabled after the display mode has been 
reset to a text mode. 

Note: All of the following ioctls are performed on either a file descriptor to the 
virtual terminals or to the special file /dev/video. ioctls to /dev/video are 
indicated with an asterisk (*). For the ioctls to /dev/video to work, the control­
ling tty for the process must be the virtual terminal on which the operation 'is to 
be performed. If the tty is not a virtual terminal, the return value will be -1 and 
errno will be set to EINVAL. 

SWAPMONO (It) 
This call selects the monochrome adapter as the output device for 
the system console. 

SWAPCGA (It) This call selects the color/graphics adapter as the output device for 
the system console. 

SWAPEGA (It) This call selects the enhanced graphics adapter as the output device 
for the system console. 

SWAPVGA (It) This call selects the video graphics array as the output device for the 
system console. 

The following ioctl call may be used to obtain more information about the 
display adapter currently attached to the video monitor: 

CONS CURRENT (It) 
- This call returns the display adapter type currently attached to the 

video monitor. The return value can be one of: MONO, eGA, or EGA. 

The following ioctl calls may be used to switch display modes on the various 
video adapters: 

SW B40x25 (It) 
- This call selects 40x25 (40 columns by 25 rows) black and white text 

display mode. It is valid only for eGA and EGA devices. 

SW C40x25 (It) 
- This call selects 40x25 (40 columns by 25 rows) color text display 

mode. It is valid only for eGA and EGA devices. 

Page 5 



dlspJay(7) dlspJay(7) 

Page 6 

sw B80x25 (*) 
- This call selects 8Ox25 (80 columns by 25 rows) black and white text 

display mode. It is valid only for eGA and EGA devices. 

SW C80x25 (*) 
- This call selects 80x25 (80 columns by 25 rows) color text display 

mode. It is valid only for eGA and EGA devices. 

SW BG320 (*) 
- This call selects 320x200 black and white graphics display mode. It 

is valid only for eGA and EGA devices. 
SW CG320 (*) 

- This call selects 320x200 color graphics display mode. It is valid 
only for eGA and EGA devices. 

SW BG640 (*) 
- This call selects 640x200 black and white graphics display mode. It 

is valid only for eGA and EGA devices. 
SW CG320 D (*) 

- This call selects EGA support for 320x200 graphics display mode 
(EGA mode D). It is valid only for EGA devices. 

SW CG640 E (*) 
- - This call selects EGA support for 640x200 graphics display mode 

(EGA mode E). It is valid only for EGA devices. 

sw EGAMONOAPA (*) 
- This call selects EGA support for 640x350 graphiCS display mode 

(EGA mode F). It is valid only for EGA devices. 

SW ENH MONOAPA2 (If) 
- - This call selects EGA support for 640x350 graphics display mode 

with extended memory (EGA mode P). It is valid only for EGA 
devices. 

SW CG640x350 (*) 
- This call selects EGA support for 640x350 graphicS display mode 

(EGA mode 10). It is valid only for EGA devices. 

SW ENH CG640 (*) 

- - This call selects E~A support for 640x350 graphics display mode 
with extended memory (EGA mode 10*). It is valid only for EGA 
devices. 

SW EGAMON080x25 (*) 
- This call selects EGA monochrome text display mode (EGA mode 7), 

which emulates support provided by the monochrome adapter. It is 
valid only for EGA devices. 

SW ENHB4 Ox2 5 (*) 

- This call selects enhanced 4Ox25 black and white text display mode. 
It is valid only for EGA devices. 

3/91 



dlsplay(7) dlsplay(7) 

3/91 

SW ENHC40x25 (It) 
- This call selects enhanced 40x25 color text display mode. It is valid 

only for EGA devices. 

SW ENHB80x25 (It) 
- This call selects enhanced 80x25 black and white display mode. It is 

valid only for EGA devices. 

SW ENHC80x25 (It) 
- This call selects enhanced 80x25 color text display mode. It is valid 

only for EGA devices. 

SW ENHB80x43 (It) 
- This call selects enhanced 80x43 black and white text display mode. 

It is valid only for EGA devices. 

SW ENHC80x43 (It) 
- This call selects enhanced 80x43 color text display mode. It is valid 

only for EGA devices. 

SW MCAMODE (It) 
- This call reinitializes the monochrome adapter. It is valid only for 

monochrome adapters. 

SW ATT640 (It) 
- This call selects 640x400 16 colonnode, when an AT&T Super-Vu 

video controller is attached. 

Switching to an invalid display mode for a display device will result in an error. 

The following ioctls may be used to obtain information about the current 
display modes: 

CONS GET (It) 
- This call returns the current display mode setting for whatever 

display adapter is being used. Possible return values include: 

M _ B4Ox25 (0), black and white 40 columns. eGA and EGA only. 

M _ C40x25 0), color 40 columns. eGA and EGA only. 

M _ B80x25 (2), black and white 80 columns. CGA and EGA only. 

M _ C80x25 (3), color 80 columns. CGA and EGA only. 

M_BG320 (4), black and white graphics 320 by 200. eGA and EGA 
only. 

M _ CG320 (5), color graphics 320 by 200. eGA and EGA only. 

M _BG640 (6), black and white graphics 640 by 200 high-resolution. 
CGA and EGA only. 

M _ EGAMON080x25 (7), EGA-mono 80 by 25. EGA only. 

M_CG320_D (13), EGA mode D. 

M_CG64O_E (14), EGA mode E. 

Page 7 



dlspJay(7) dlspJay(7) 

Page 8 

M_EFAMONOAPA (15), EGA mode F. 

M_ CG640x350 (16), EGA mode 10. 

M_ENHMONOAPA2 (17), EGA mode F with extended memory. 

M_ENH_CG640 (18), EGA mode 10*. 

M_ENH_B40x25 (19), EGA enhanced black and white 40 columns. 

M _ ENH _ C40x25 (20), EGA enhanced color 40 columns. 

M_ENH_B80x25 (21), EGA enhanced black and white 80 columns. 

M _ ENH _ C80x25 (22), EGA enhanced color 80 columns. 

M_ENH_B80x43 (Ox70), EGA black and white 80 by 43. 

M_ENH_C80x43 (Ox71), EGA color 80 by 43. 

M_MCA_MODE (Oxff), monochrome adapter mode. 

MCA _GET (*) This call returns the current display mode setting of the mono­
chrome adapter. See CONS_GET for a list of return values. If the 
monochrome adapter is not installed, the call will fail and errno will 
be set to 22 (EINVAL). 

CGA_ GET (*) This call returns the current display mode setting of the 
color/graphics adapter. See CONS_GET for a list of return values. If 
the color graphics adapter is not installed, the call will fail and 
errno will be set to 22 (EINVAL). 

EGA_GET (*) This call returns the current display mode setting of the enhanced 
graphics adapter. See CONS_GET for a list of return values. If the 
enhanced graphics adapter is not installed, the call will fail and 
errno will be set to 22 (EINVAL). 

The following ioctl calls may be used to map the video adapter's memory into 
the user's data space. 

MAPCONS (*) This call maps the display memory of the adapter currently being 
used into the user's data space. 

MAPMONO (*) This call maps the monochrome adapter's display memory into the 
user's data space. 

MAPCGA (*) This call maps the color/graphics adapter's display memory into the 
user's data space. 

MAPEGA (*) This call maps the enhanced graphics adapter's display memory into 
the user's data space. 

MAPVGA (*) This call maps the video graphics array's display memory into the 
user's data space. 

You can use ioctl calls to input a byte from the graphics adapter port or to out­
put a byte to the graphics adapter port. The argument to the ioctl uses the 
port _io _ arg data structure: 

struct port_io_arg { 
struct port_io_struc_args[4]j 

}j 

3/91 



dlsplay(7) dlsplay(7) 

3/91 

As shown in the previous examplel the port_io_arg structure points to an array of 
four port _io _struc data structures. The port Jo _struc has the following format: 

struc port_io_struc { 
char dir; 
unsigned short port; 
char data; 

} i 

/*direction flag (in vs. out)*/ 
/*port address*/ 
/ * byte of data * / 

You can specify onel twol threel or four of the port_io_struc structures in the array 
for one ioctl call. The value of dir can be either IN_ON_PORT (to specify a byte 
being input from the graphicS adapter port) or OUT_ON_PORT (to specify a byte 
being output to the graphics adapter port). Port is an integer specifying the port 
address of the desired graphics adapter port. Data is the byte of data being input 
or output as specified by the call. If you are not using any of the port _io _struc 
structuresl load the port with 01 and leave the unused structures at the end of the 
array. Refer to your hardware manuals for port addresses and functions for the 
various adapters. 

The following ioctl calls may be used to input or output bytes on the graphics 
adapter port: 

MCAIO (*) 

CGAIO (*) 

EGAIO (*) 

VGAIO (*) 

This call inputs or outputs a byte on the monochrome adapter port 
as specified. 

This call inputs or outputs a byte on the color/graphics adapter port 
as specified. 

This call inputs or outputs a byte on the enhanced graphics adapter 
port as specified. 

This call inputs or outputs a byte on the video graphics array port 
as specified. 

To input a byte on any of the graphics adapter portsl load dir with IN_ON_PORT 
and load port with the port address of the graphics adapter. The byte input from 
the graphicS adapter port will be returned in data. 

To output a by tel load dir with OUT _ ON_PORTI load port with the port address 
of the graphics adapterl and load data with the byte you want to output to the 
graphics adapter port .. 

The following ioctls may be used with either the monochromel color graphicsl 
or enhanced graphics adapters: 

GIO FONT8x8 (*) 
- This call gets the current 8x8 font in use. 

GIO FONT8x14 (*) 
- This call gets the current 8x14 font in use. 

GIO FONT8x16 (*) 
- This call gets the current 8x16 font in use. 

KDDISPTYPE (*) 
This call returns display information to the user. The argument 
expected is the buffer address of a structure of type kd _disparam into 
which display information is returned to the user. The kd _disparam 

Page 9 



dlsplay(7) 

structure is defined as follows: 

struct kd_disparam { 
long type; /*display type*/ 

display (7) 

char *addr; /*display memory address*/ 
ushort ioaddr[MKDIOADDR]; /*valid I/O addresses*/ 

Possible values for the type field include: 

KD_MONO (OxOl), for the IBM monochrome display adapter. 

KD HERCULES (Ox02), for the Hercules monochrome graphics 
adapter. 

KD _ CGA (Ox03), for the IBM color graphics adapter. 

KD _EGA (Ox04), for the IBM enhanced graphics adapter. 

KIOCSOUND (It) 
Start sound generation. Turn on sound. The "arg" is the frequency 
desired. A frequency of 0 turns off the sound. 

KDGETLED Get keyboard LED status. The argument is a pointer to a character. 
The character will be filled with a boolean combination of the fol­
lowing values: 

LED SCR OxOl ( flag bit for scroll lock ) 
LED-CAP Ox04 ( flag bit for caps lock) 
LED -NUM Ox02 ( flag bit for num lock) 

KDSETLED Set keyboard LED status. The argument is a character whose value 
is the boolean combination of the values listed under KDGETLED. 

KDMKTONE (It) 

Generate a fixed length tone. The argument is a 32 bit value, with 
the lower 16 bits set to the frequency and the upper 16 bits set to 
the duration (in milliseconds). 

KDGKBTYPE Get keyboard type. The argument is a pointer to a character type. 

KDADDIO (It) 

The character will be returned with one of the following values: 

KB _ 84 OxOl ( 84 key keyboard ) 
KB_lOl Ox02 ( 101 key keyboard) 
KB OTHER Ox03 

Add I/O port address to list of valid video adaptor addresses. 
Argument is an unsigned short type which should contain a valid 
port address for the installed video adaptor. 

KDDELIO (It) Delete I/O port address from list of valid video adaptor addresses. 
Argument is an unsigned short type which should contain a valid 
port address for the installed video adaptor. 

Page 10 3/91 



display (7) dlsplay(7) 

3/91 

KDENABIO (It) 
Enable in's and out's to video adaptor ports. No argument. 

KDDISABIO (*) 
Disable in's and out's to video adaptor ports. No argument. 

KDQUEMODE (It) 
Enable/Disable special queue mode. Queue mode is used by 
AT&T's X-Windows software to establish a shared queue for access 
to keyboard and mouse event information. The argument is a 
pointer to a structure "kd _ quemode". If a NULL pointer is sent as 
an argument, the queue will be closed and the mode disabled. The 
structure "kd _ quemode" is as follows: 

struct kd_quemode { 

KDSBORDER (It) 

int qsize; /* desired # of elements in queue */ 
int signa; /* signal number to send when queue 

goes non-empty */ 
char *qaddr;/* user virtual address of queue (set by 

driver) */ 
} ; 

Set screen color border in EGA text mode. The argument is of type 
character. Each bit position corresponds to a color selection. From 
bit position 0 to bit position 6, the color selections are respectively; 
blue, green, red, secondary blue, secondary green, and secondary 
red. Setting the bit position to a logic one will select the desired 
color or colors. See WARNINGS below. 

KDSETMODE (It) 
Set console in text or graphics mode. The argument is of type 
integer, which should contain one of the following values: 

KD TEXT OxOO ( sets console to text mode ) 
KD-GRAPHICS OxOl ( sets console in graphics mode) 

If the mode is set to KD GRAPHICS and the Virtual Terminal is not 
in process mode (see the VT _ SETMODE ioctl), no virtual terminal 
switches will be possible until the mode is reset to KD _TEXT, 
KD _ TEXTO, or KD _ TEXTI. 

Note, the user is responsible for programming the color/graphics 
adaptor registers for the appropriate graphical state. 

KDGETMOPE (It) 
Get current mode of console. Returns integer argument containing 
either KD TEXT or KD GRAPHICS as defined in the KDSETMODE ioctl 
description. -

KDMAPDISP (It) 
Maps display memory into user process address space. Argument is 
a pointer to structure type "kd_memloc". Structure definition is as 
follows: 

Page 11 



dlsplay(7) dlsplay(7) 

struct kd_memloc { 
char 
char 
long 
long 
} 

*vaddr; 
*physaddr; 
length; 
ioflg; 

/* virtual address to map to */ 
/* physical address to map from */ 
/* size in bytes to map */ 
/* enable i/o addresses if set */ 

KDUNMAPDISP (ot) 
Unmap display memory from user process address space. No argu­
ment required. 

KDVDCTYPE This call returns VDC controller/display information. 
PIO FONT8x8 (ot) 

- This call uses the user supplied 8x8 font. 

PIO FONT8x14 (ot) 
- This call uses the user supplied 8x14 font. 

PIO FONT8x16 (ot) 
- This call uses the user supplied 8x16 font. 

VI' OPENQRY 
- Find an available virtual terminal. The argument is a pointer to a 

long. The long will be filled with the number of the first available 
"VT" that no other process has open or -1 if none are available. 

VI' GETMODE (ot) 
- Determine what mode the active virtual terminal is currently in, 

either VI' _AUTO or VI' _PROCESS. The argument to the ioctl is the 
address of the following type of structure: 

struct vt_mode { 
char 
char 
short 
short 
short 

mode; /* VT mode */ 
waitv; /* if set, hang on writes when not active */ 
relsig;/* signal to use for release request */ 
acqsig;/* signal to use for display acquired */ 
frsig; /* not used set to 0 */ 

#define VT _AUTO OxOO 
#define VT PROCESS 

/* automatic VT switching */ 
OxOl /* process controls switching */ 

The "vt mode" structure will be filled in with the current value for 
each field. 

VI' GETSTATE (ot) 

Page 12 

- The VI' _ GETS TATE ioctl returns global virtual terminal state infor­
mation. It returns the active virtual terminal in the v active field, 
and the number of active virtual terminals and a bit mask of the glo­
bal state in the vt state field, where bit x is the state of vt x (1 indi­
cates that the virtUal terminal is open). 

3/91 



dlsplay(7) dlsplay(7) 

3/91 

VT SETMODE (It) 
- Set the virtual terminal mode. The argument is a pointer to a 

"vt_mode" structure, as defined above. 

VT SENDSIG (It) 
- The VT _ SENDSIG ioctl specifies a signal (in vt _signal) to be sent to 

a bit mask of virtual terminals (in vt_state). 

The data structure used by the VT _ GETSTATE and VT _ SENDSIG ioctls is: 

stroct vt stat { 
/* active vt*/ ushort v active; 

ushort v=signal; 
ushort v_state; 

/* signal to send (VT SENDSIG) */ 
/* vt bit mask (VT SENDSIG and 

VT_GETSTATE)*/ -
} ; 

and is defined in /usr/include/sys/vt.h. 

VT RELDISP (It) 
- Used to tell the virtual terminal manager that the display has or has not 

been released by the process. A non-zero argument indicates that the 
display has been released; a zero argument indicates refusal to release the 
display. 

VT ACTIVATE (It) 
- Makes the virtual terminal number specified in the argument the 

active "VT". The "VT" manager will cause a switch to occur in the 
same manner as if a hotkey sequence had been typed at the key­
board. If the specified "VT" is not open or does not exist, the call 
will fail and errno will be set to ENXIO. 

KIOCINFO This call tells the user what the device is. 
GIO SCRNMAP (It) 

- This call gets the screen mapping table from the kernel. 

GIO ATTR This call returns the current screen attribute. The bits are inter­
preted as follows: 

Bit 0 determines underlining for black and white monitors (1=under­
lining on). 

Bits 0-2, for color monitors only, select the foreground color. The 
following list indicates what colors are selected by the given value: 

The value 0 selects black. 
The value 1 selects red. 
The value 2 selects green. 
The value 3 selects brown. 
The value 4 selects blue. 
The value 5 selects magenta. 
The value 6 selects cyan. 
The value 7 selects white. 

Page 13 



dlsplay(7) dlsplay(7) 

FILES 

Bit 3 is the intensity bit ( l=blink on). 

Bits 4-6, for color monitors only, select the background color. For a 
list of colors and their values, see the list under foreground colors. 

Bit 7 is the blink bit (1=blink on). 

GIO COLOR (*) 
- This call returns a non-zero value if the current display is a color 

display, otherwise, it returns a zero. 

PIO SCRNMAP 
- This call puts the screen mapping table in the kernel. 

The screen mapping table maps extended ASCII (8-bit) characters to ROM charac­
ters. It is an array [256] of char (typedef scrnmap _t) and is indexed by extended 
ASCII values. The value of the elements of the array are the ROM character to 
display. 

For example, the following will change the ASCII character '#' to be displayed as 
an English pOtind sign. 

#include <sys/console.h> 
change JX'und () { 
scrnmap t scrntab; 

. /*~et screen mapping table of standard output*/ 
if (ioctl(O,GIO_SCRNMAP, scrntab) ==-1) 

{ 
perror("screenmap read"); 
exit(-l); 
} 

/*156 is the ROM value of English pound sign and 30 
is the ASCII value of '#'. */ 

scrntab[30] = 156; 
if (ioctl(O, PIO SCRNMAP, scrntab) == -1) 

{ -
perror("screenmap write"); 
exit(-l); 
} 

/dev/console 
/dev/vtOO-n 
/dev/video 
/usr/include/sys/kd.h 

SEE ALSO 

NOTES 

stty(1), console(7), keyboard(7), termio(7) 
ioctl(2) in the Programmer's Reference Manual 

Although it is possible to write character sequences which set arbitrary bits on 
the screen in any of the three graphics modes, this mode of operation is not 
currently supported. 

Page 14 3/91 



dlsplay(7) display (7) 

3/91 

Enable/disable of the underscore option using "ESC[38m" and "ESC[39m" are 
operative only when the AT&T Rite-Vu color/graphics video adaptor is installed, 
or else the underscore option is unsupported as the default for all other 
color/graphics adaptors. Monochrome adaptors support underscore option as 
the default. After "ESC[38m" has enabled underline and until "ESC[39m" has dis­
abled underline all characters with blue attributes will appear as cyan. 

It is currently not possible to access the 6845 start address registers. Thus, it is 
impossible to determine the beginning of the color monitor's screen memory. 

The alternate/background color bit (bit 4) of the color select register does not 
appear to affect background colors in alphanumeric modes. 

KDSBORDER ioctl calls will not work with AT&T's Super-Vu enhanced 
color / graphics video adaptor. It will however, work with the IBM EGA card and 
other EGA compatible video adaptors. 

The low-resolution graphics mode appears to be 80 across by 100 down. 

Page 15 



keyboard (7) keyboard (7) 

NAME 
keyboard - system console keyboard 

DESCRIPTION 
The system console is composed of two separate pieces: the keyboard and the 
display [see display (7)]. 

The keyboard is used to type data, and send certain control· signals to the com­
puter. UNIX software performs terminal emulation on the console screen and 
keyboard, and, in doing so, makes use of several particular keys and key combi­
nations. These keys and key combinations have special names. that are unique to 
the UNIX system, and mayor may not correspond to the key top labels on your 
keyboard. 

When you press a key, one of the following happens: 

- An ASCII value is entered 

- The meaning of another key, or keys, is changed. 

- A string is sent to the computer. 

- A function is initiated. 

When a key is pressed (a keystroke), the keyboard sends a scancode to the com­
puter. This scancode is interpreted by the keyboard driver. The actual code 
sequence delivered to the terminal input routine [see termio (7)] is defined by a 
set of internal tables in the driver. These tables can be modified by software (see 
the discussion of ioctl calls below). In addition, the driver can be instructed not 
to do translations, delivering the keyboard up/down scan codes directly. 

Changing Meanings 
The action performed by a key can be changed by using certain keys in combina­
tion. For example, the SHIFT key changes the ASCII values of the alphanumeric 
keys. Holding down the CTRL key while pressing another key sends a control 
code (such as CTRL-D, CTRL-S, and CTRL-Q). Holding down the ALT key also 
modifies a key's value. The SHIFT, CTRL, and ALT keys can be used in combina­
tion. 

Switching Screens 
To change screens (virtual terminals), first run the vtlmgr command [see 
vtlmgr(1M»). Switch the current screen by typing ALT-SYSREQ (also labelled 
ALT-PRINTSCRN on some systems) followed by a key which identifies the desired 
screen. Any active screen may be selected by following ALT-SYSREQ with Fn, 
where Fn is one of the function keys. Fl refers to the first virtual terminal screen, 
F2 refers to the second virtual terminal screen, and so on. ALT-SYSREQ 'h' refers 
to the main console display U dey / console). The next active screen can be 
selected with ALT-SYSREQ 'n,' and the previous screen can be selected with ALT­
SYSREQ 'p.' 

3/91 

The default screen switch enable sequence (ALT-SYSREQ) is configurable. The 
SYSREQ table entry can be modified by software (see discussion of ioctl calls 
below). 

Page 1 



keyboard (7) keyboard (7) 

Special Keys 

Page 2 

The following table shows which keys on a typical console correspond to UNIX 
system keys. In this table, a hyphen (-) between keys means you must hold 
down the first key while pressing the second. The mapping between characters 
which generate signals and the signal actually generated is set with stty(1), and 
may be changed [see stty(1»). 

3/91 



keyboard (7) 

Name Key top 

INTR DEL 

BACKSPACE ~ 

CTRL-D CTRL-D 

CTRL-H CTRL-H 

CTRL-Q CTRL-Q 

CTRL-S CTRL-S 

CTRL-U CTRL-U 

CTRL-\ CTRL-\ 

ESCAPE ESC 

RETURN (down-left arrow 
or ENTER) 

Fn Fn 

3/91 

keyboard (7) 

Action 

Stops current action and returns to the shell. This 
key is also called the RUB OUT or INTERRUPT key. 

Deletes the first character to the left of the cursor. 
Note that the "cursor left" key also has a left arrow 
(~) on its key top, but you cannot backspace using 
that key. 

Signals the end of input from the keyboard; also 
exits current shell. 

Deletes the first character to the left of the cursor. 
Also called the ERASE key. 

Restarts printing after it has been stopped with 
CTRL-S. 

Suspends printing on the screen (does not stop the 
program). 

Deletes all characters on the current line. Also 
called the KILL key. 

Quits current command and creates a core 
file, if allowed. (Recommended for debugging only.) 

Special code for some programs. For example, 
changes from insert mode to command mode in the 
vi(1) text editor. 

Terminates a command line and initiates an action 
from the shell. 

Function key n. Fl-F12 are un shifted, F13-F24 are 
shifted Fl-F12, F25-F36 are CTRL-Fl through F12, 
and F37-F48 are CTRL-SHIFT-Fl through F12. 

The next Fn keys (F49-F60) are on the number pad 
(unshifted): 

F49 - '7' 
F50 - '8' 
F51 - '9' 
F52 - '-' 
F53 - '4' 
F54 - '5' 

F55 - '6' 
F56 - '+' 
F57 - 'I' 
F58 - '2' 
F59 - '3' 
F60 - '0' 

Page 3 



keyboard (7) keyboard (7) 

Keyboard Map 

Page 4 

The keyboard mapping structure is defined in /usr/include/sys/kd.h. Each 
key can have ·ten states. The first eight states are: 

- BASE - CTRL-SHIFT 
- SHIFT - ALT-SHIFT 
- CTRL - ALT-CTRL 
- ALT - ALT-CTRL-SHIFT 

The two remaining states are indicated by two special bytes. The first byte is a 
"special state" byte whose bits indicate whether the key is "special" in one or 
more of the first eight states. The second byte is one of four codes represented 
by the characters C, N, B, or 0 which indicate how the lock keys affect the partic­
ular key. 

The following table describes the default keyboard mapping. All values, except 
for special keywords (which are described later), are ASCII character values. 

Heading Description 

SCAN CODE This column contains the scan code generated by the keyboard 
hardware when a key is pressed. There are no table entries for 
the scan code generated by releasing a key. 

BASE This column contains the normal value of a key press. 

SHIFT 

LOCK 

This column contains the value of a key press when the SHIFT is 
also being held down. 

This column indicates which lock keys affect that particular key: 

- C indicates CAPSLOCK 
- N indicates NUMLOCK 
- B indicates both 
- 0 indicates locking is off 

The remaining columns are the values of key presses when combinations of the 
CTRL, ALT and SHIFT keys are also held down. 

The SRQTAB column entry is included in this table to provide a simple index of 
the default virtual terminal key selectors to the scan code to which it is assigned. 
The actual SRQTAB table is a stand-alone table which can be read or written via 
the KDGKBENT and KDSKBENT ioctl calls. 

3/91 



keyboard (7) keyboard (7) 

ALT 
SCAN CTRL ALT ALT CTRL 

CODE BASE SHIFT CTRL SHIFT ALT SHIFT CIRL SHIFT LOCK 5RQTAB 

1 esc esc esc esc esc esc esc esc 0 nop 
2 '1' 'I' '1' '1' escn escn nop nop 0 nop 
3 '2' '@' '2' nul escn escn nop nop 0 nop 
4 '3' '#' '3' '3' escn escn nop nop 0 nop 
5 '4' '$' '4' '4' escn escn nop nop 0 nop 
6 '5' '%' '5' '5' escn escn nop nop 0 nop 
7 '6' ,AI '6' rs escn escn nop nop 0 nop 
8 '7' '&' '7' '7' escn escn nop nop 0 nop 
9 '8' '.' '8' '8' escn escn nop nop 0 nop 

10 '9' '(' '9' '9' escn escn nop nop 0 nop 
11 '0' ')' '0' '0' escn escn nop nop 0 nop 
12 ' , , , 

" ns escn escn nop nop 0 nop -
13 '=' '+' '=' 

, , 
escn escn nop nop 0 nop 

14 bs bs bs bs bs bs bs bs 0 nop 
15 ht btab ht btab ht btab ht btab 0 nop 
16 'q' 'Q' del del escn escn nop nop C nop 
17 'w' 'w' etb etb escn escn nop nop C nop 
18 'e' 'E' enq enq escn escn nop nop C nop 
19 'r' 'R' dc2 dc2 escn escn nop nop C nop 
20 't' 'T' dc4 dc4 escn escn nop nop C nop 
21 'y' 'y' em em escn escn nop nop C nop 
22 'u' 'u' nak nak escn escn nop nop C nop 
23 'i' 'I' ht ht escn escn nop nop C nop 
24 '0' '0' si si escn escn nop nop C nop 
25 'p' 'P' dle dle escn escn nop nop C K_PREV 
26 '[' '{' esc nop escn escn nop nop 0 nop 
27 ')' '}' gs nop escn escn nop nop 0 nop 
28 cr cr cr cr cr cr cr cr 0 nop 
29 letrl letrl letrl letrl letrl lctrl letrl letrl 0 nop 
30 'a' 'A' soh soh escn escn nop nop C nop 
31 '5' '5' dc3 dc3 escn escn nop nop C nop 
32 'd' 'D' eot eot escn escn nop nop C nop 
33 'f' 'F' ack ack escn escn nop nop C K_FRCNEXT 
34 'g' 'G' bel bel escn escn nop nop C nop 
35 'h' 'H' bs bs escn escn nop nop C K_VTF 
36 'j' 'J' nl nl escn escn nop nop C nop 
37 'k' 'K' vt vt escn escn nop nop C nop 
38 'I' 'L' np np escn escn nop nop C nop 
39 ',' ',' '.' ',' escn escn nop nop 0 nop , 
40 ,., '''' ,., I ttl escn escn nop nop 0 nop 
41 "' ,-, '" ,-I escn escn nop nop 0 nop 
42 lshift lshift lshift lshift Ishift lshift Ishift lshift 0 nop 
43 '\v 'I' fs 'I' escn escn nop nop 0 nop 

3/91 Page 5 



keyboard (7) keyboard (7) 

ALT 
SCAN CfRL ALT ALT CfRL 
CODE BASE SHIFf CfRL SHIFf ALT SHIFf CfRL SI-llFf LOCK SRQTAB 

44 'z' 'Z' sub sub escn escn nop nop C nop 
45 'x' 'X' can can escn escn nop nop C nop 
46 'c' 'C' etx etx escn escn nop nop C nop 
47 'v' 'V' syn syn escn escn nop nop C nop 
48 'b' 'B' stx stx escn escn nop nop C nop 
49 'n' 'N' so so escn escn nop nop C K_NEXT 
50 'm' 'M' cr cr escn escn nop nop C nop 
51 " '<' " '< escn escn nop nop 0 nop , , 
52 " '>' " '>' escn escn nop nop 0 nop 
53 '/' '7' , I' ns escn escn nop nop 0 nop 
54 rshift rshift rshift rshift rshift rshift rshift rshift 0 nop 
55 '.' 'It' '-' '-' escn escn nop nop 0 nop 
56 lalt lalt lalt lalt lalt lalt lalt lalt 0 nop 
57 " " nul nul escn escn nop nop 0 nop 
58 clock clock clock clock clock clock clock clock 0 nop 
59 Ekeyl Ekey13 Ekey25 Ekey37 Ekeyl Ekey13 Ekey25 Ekey37 0 K_VTF+l 
60 Ekey2 Ekey14 Ekey26 Ekey38 Ekey2 Ekey14 Ekey26 Ekey38 0 K_VTF+2 
61 Ekey3 EkeylS Ekey27 Ekey39 Ekey3 Ekey15 Ekey27 Ekey39 0 K_VTF+3 
62 Ekey4 Ekey16 Ekey28 Ekey40 Ekey4 Ekey16 Ekey28 Ekey40 0 K_VTF+4 
63 Ekey5 Ekey17 Ekey29 Ekey41 EkeyS Ekey17 Ekey29 Ekey41 0 K_VTF+S 
64 Ekey6 Ekey18 £key30 Ekey42 Ekey6 Ekey18 Ekey30 Ekey42 0 K_VTF+6 
65 Ekey7 Ekey19 £key31 Ekey43 Ekey7 Ekey19 Ekey31 Ekey43 0 K_VTF+7 
66 Ekey8 Ekey20 £key32 Ekey44 Ekey8 Ekey20 Ekey32 Ekey44 0 K_VTF+8 
67 Ekey9 Ekey21 £key33 Ekey45 Ekey9 Ekey21 Ekey33 Ekey45 0 K_VTF+9 
68 Ekeyl0 Ekey22 Ekey34 Ekey46 Ekeyl0 Ekey22 £key34 Ekey46 0 K_VTF+I0 
69 nlock nlock nlock nlock nlock nlock nlock nlock 0 
70 slock slock brk brk slock slock brk brk 0 
71 Ekey49 '7' £key49 '7' Ekey49 escn nop nop N 
72 EkeySO '8' EkeySO '8' EkeySO escn nop nop N 
73 Ekey51 '9' £keyS 1 '9' EkeySl escn nop nop N 
74 Ekey52 " £keyS2 " EkeyS2 escn nop nop N 
75 EkeyS3 '4' Ekey53 '4' EkeyS3 escn nop nop N 
76 EkeyS4 '5' Ekey54 '5' Ekey54 escn nop nop N 
77 Ekey55 '6' Ekey55 '6' Ekey55 escn nop nop N 
78 Ekey56 '+' Ekey56 '+' £key56 escn nop nop N 
79 Ekey57 '1' Ekey57 '1' Ekey57 escn nop nop N 
80 Ekey58 '2' £key58 '2' Ekey58 escn nop nop N 
81 Ekey59 '3' £key59 '3' Ekey59 escn nop nop N 
82 Ekey60 '0' Ekey60 '0' Ekey60 escn nop nop N 
83 del " del " del escn rboot nop N 
84 Ekey60 Ekey26 Ekey60 nop sysreq sysreq sysreq sysreq 0 
85 Ekey58 Ekey58 £key58 Ekey58 Ekey58 Ekey58 Ekey58 Ekey58 0 
86 Ekey53 Ekey53 Ekey53 Ekey53 Ekey53 Ekey53 Ekey53 Ekey53 0 

Page 6 3/91 



keyboard (7) keyboard (7) 

ALT 

SCAN CIRL ALT ALT CIRL 
CODE BASE SHIFT CTRL SHIFT ALT SHIFT CIRL SHIFf LOCK SRQTAB 

87 £key11 fkey23 fkey35 fkey47 fkeyll fkey23 fkey35 £key47 0 K_VIF+11 

88 £key 12 fkey24 fkey36 fkey48 fkey12 fkey24 fkey36 £key48 0 K_VIF+12 
89 nop nop nop nop nop nop nop nop 0 K_NOP 
90 nop nop nop nop nop nop nop nop 0 K_NOP 

91 nop nop nop nop nop nop nop nop 0 K_NOP 

92 nop nop nop nop nop nop nop nop 0 K_NOP 
93 nop nop nop nop nop nop nop nop 0 K_NOP 

94 nop no!> nop nop nop nop nop nop 0 K_NOP 

95 nop nop nop nop nop nop nop nop 0 K_NOP 
96 nop nop nop nop nop nop nop nop 0 K_NOP 

97 nop nop nop nop nop nop nop nop 0 K_NOP 

98 nop nop nop nop nop nop nop nop 0 K_NOP 
99 nop nop nop nop nop nop nop nop 0 K_NOP 

100 nop nop nop nop nop nop nop nop 0 K_NOP 

101 nop nop nop nop nop nop nop nop 0 K_NOP 
102 nop nop nop nop nop nop nop nop 0 K_NOP 
103 nop nop nop nop nop nop nop nop 0 K_NOP 
104 nop nop nop nop nop nop nop nop 0 K_NOP 
105 nop nop nop nop nop nop nop nop 0 K_NOP 
106 nop nop nop nop nop nop nop nop 0 K_NOP 
107 £key53 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 £key53 0 
108 nop nop nop nop nop nop nop nop 0 K_NOP 

109 nop nop nop nop nop nop nop nop 0 K_NOP 
110 nop nop nop nop nop nop nop nop 0 K_NOP 
111 fkey51 fkey51 nop nop nop nop nop nop 0 K_NOP 

112 nop nop nop nop nop nop nop nop 0 K_NOP 
113 nop nop nop nop nop nop nop nop 0 K_NOP 
114 ralt ralt ralt ralt ralt ralt ralt ralt 0 K_NOP 

115 rctrl rctrl rctrl rctrl rctrl rctrl rctrl rctrl 0 K_NOP 
116 cr cr cr cr cr cr cr cr 0 K_NOP 
117 '/' 'I' nop nop escn escn nop nop 0 K_NOP 

118 nop nop nop nop nop nop nop nop 0 K_NOP 
119 brk brk brk brk brk brk brk brk 0 K_NOP 
120 £keySO fkey50 nop nop nop nop nop nop 0 K_NOP 

121 del del del del del del del del 0 K_NOP 

122 £key57 fkey57 nop nop nop nop nop nop 0 K_NOP 
123 fkey60 fkey60 nop nop nop nop nop nop 0 K_NOP 

124 nop nop nop nop nop nop nop nop 0 K_NOP 

125 £key55 fkey55 nop nop nop nop nop nop 0 K_NOP 
126 £key59 fkey59 nop nop nop nop nop nop 0 K_NOP 
127 £key49 fkey49 nop nop nop nop nop nop 0 KNOP 

3/91 Page 7 



keyboard (7) keyboard (7) 

Page 8 

The following table lists the value of each of the special keywords used in the 
preceding tables. The keywords are only used in the preceding tables for reada­
bility. In the actual keyboard map, a special keyword is represented by its value 
with the corresponding "special state" bit being set. 

Name Value Meaning 

nop 0 No operation - no action from keypress 
lshift 2 Left-hand shift 
rshift 3 Right-hand shift 
clock 4 Caps lock 
nlock 5 Numeric lock 
slock 6 Scroll lock 
aIt 7 Alt key 
btab 8 Back tab key - generates fixed sequence (ESC[ Z) 
ctrl 9 Control key 
lalt 10 Left-hand alt key 
raIt 11 right-hand aIt key 
letrl 12 Left-hand control key 
rctrl 13 Right-hand control key 
agr 14 ALT-GR key (European keyboards only) 
fkey1 27 Function key #1 

fkey96 122 Function key #96 
sysreq 123 System request 
brk 124 Break key 
escn 125 Generate an ESC N x sequence, where x is the un-alt'ed 

value of the scan code 
esco 126 Generate an ESC 0 x sequence, where x is the un-alt' ed value 

of the scan code 
escl 127 Generate an ESC L x sequence, where x is the un-aIt'ed value 

of the scan code 
rboot 128 Reboot system 
debug 129 Invoke kernel debugger 
NEXT 130 Switch to next virtual terminal on queue 
PREV 131 Switch to previous virtual terminal on queue 
FNEXT 132 Forced switch to next virtual terminal on queue 
FPREV 133 Forced switch to previous virtual terminal on queue 
VTF 134 Virtual Terminal First (VTOO) 

VTL 148 Virtual Terminal Last (VT14) 

3/91 



keyboard (7) keyboard (7) 

3/91 

Name 

MGRF 

MGRL 

Value Meaning 

149 Virtual Terminal Manager First. Allows assigning special 
significance to key sequence for actions by virtual terminal 
layer manager. Used in SRQTAB table. 

179 Virtual Terminal Manager Last. Used in SRQTAB table. 

The following table lists names and decimal values for ASCII characters in the 
preceding table. Names are used in place of numeric constants to make it easier 
to read the scan code table. Only the decimal values are placed in the ioctl 
buffer. These values are taken from ascii(5). 

Name Value Name Value 

nul 0 del 17 
soh 1 dc2 18 
stx 2 dc3 19 
etx 3 dc4 20 
eot 4 nak 21 
enq 5 syn 22 
ack 6 etb 23 
bel 7 can 24 
bs 8 em 25 
ht 9 sub 26 
nl 10 esc 27 
vt 11 fs 28 
np 12 gs 29 
cr 13 rs 30 
so 14 ns 31 
si 15 del 127 
dIe 16 

String Key Mapping 
The string mapping table is an array of 512 bytes (typedef strmap _ t) containing 
null-terminated strings that redefine the function keys. The first null-terminated 
string is assigned to the first function key, the second string is assigned to the 
second function key, and so on. 

There is no limit to the length of any particular string as long as the whole table 
does not exceed 512 bytes, including nulls. To make a string a null, add extra 
null characters. The following table contains default function key values. 

Page 9 



keyboard (7) keyboard (7) 

Default Function Key Values 

Ctrl 
Function Shift Ctrl Shift 

Key # Function Function Function Function 

1 ESCOP ESCOp ESCOP ESCOp 
2 ESCOQ ESCOq ESCOQ ESCOq 
3 ESC OR ESC Or ESC OR ESC Or 
4 ESC OS ESC Os ESC OS ESC Os 
5 ESCOT ESC Ot ESCOT ESC Ot 
6 ESCOU ESCOu ESCOU ESCOu 
7 ESCOV ESCOv ESCOV ESCOv 
8 ESC OW ESC Ow ESC OW ESC Ow 
9 ESC OX ESC Ox ESC OX ESC Ox 

10 ESC OY ESCOy ESCOY ESCOy 
11 ESCOZ ESCOz ESCOZ ESCOz 
12 ESC OA ESC Oa ESCOA ESCOa 

loctl Calls: 
KDGKBMODE 

This call gets the current keyboard mode. It returns one of the following 
values, as defined in /usr/include/sys/kd.h: 

#defineK_RAW OxOO /* Send row scan codes * / 
#defineK_XLATE Ox01 /* Translate to ASCII */ 

KDSKBMODE 
This call sets the keyboard mode. The argument to the call is either K _ RAW 
or K_XLATE. By using raw mode, the program can see the raw up/down 
scan codes from the keyboard. In translate mode, the translation tables 
are used to generate the appropriate character code. 

KDGKBTYTE 
This call gets the keyboard type. It returns one of the following values, as 
defined in /usr/include/sys/kd.h: 

#defineKB 84 OxOO 
#define~101 Ox01 
#defineKB _OTHER Ox03 

/*84 key keyboard * / 
/*101 key keyboard* / 
/*Other type keyboard* / 

KDGKBENT 

Page 10 

This call reads one of the entries in the translation tables. The argument 
to the call is the address of one of the following structures, defined in 
/usr/include/sys/kd.h, with the first two fields filled in: 

struct kbentry { 

} ; 

unchar kb_table; 
unchar kb _index; 
ushort kb_ value; 

/* Table to use */ 
/* Entry in table * / 
/* Value to get/set */ 

3/91 



keyboard (7) keyboard (7) 

3/91 

Valid values for the kb _table field are: 

#defineK_NORMTAB 
#defineK_SHIFTTAB 
#defineK_ALTTAB 
#defineK_ALTSHIFTTAB 
#defineK_SRQTAB 

OxOO 
OxOl 
Ox02 
Ox03 
Ox04 

1* Base *1 
1* Shifted *1 
1* Alt *1 
1* Shifted alt *1 
1* Select sysreq 

table *1 
The ioctl will get the indicated entry from the indicated table and return 
it in the third field. 

The K SRQTAB value for the kb table field allows access to the scancode 
indexed table which allows assignment of a given virtual terminal selector 
(K_VTF-K_VTL) or the virtual terminal layer manager (K_MGRF-K_MGRL) 
"specialkey" assignments. 

The virtual terminal selector (K _ VTF) is normally associated with 
Idev/ttyOO, on which the user login shell is commonly found. The fol­
lowing terminal selectors also are used to select virtual terminals: 

KDSKBENT 

K VTF+l for the 1st virtual terminal Udev/vtOl) 
K=VTF+2 for the 2nd virtual terminal U dev Ivt02) 

K_VTF+12 for the 12th virtual terminal Udev/vt12) 

This call sets an entry in one of the translation tables. It uses the same 
structure as the KDGKBENT ioctl, but with the third field filled in with the 
value that should be placed in the translation table. This can be used to 
partially or completely remap the keyboard. 

The kd driver provides support for virtual terminals. The console minor device, 
I dey Ivtmon, provides virtual terminal key requests from the kd driver to the pro­
cess that has I dey Ivtmon open. Two ioctls are provided for virtual terminal 
support: 

VT GETSTATE 
- The VT _ GETSTATE ioctl returns global virtual terminal state information. 

It returns the active virtual terminal in the v active field, and the number 
of active virtual terminals and a bit mask of the global state in the vt _state 
field, where bit x is the state of vt x (1 indicates that the virtual terminal is 
open). 

VT SENDSIG 
- The VT_SENDSIG ioctl specifies a signal (in vt_signal) to be sent to a bit 

mask of virtual terminals (in vt_state). 

Page 11 



keyboard (7) keyboard (7) 

The data structure used by the VT _ GETSTATE and VT _ SENDSIG ioctls is: 

struct vt_stat { 
ushort v_active; 1* active vt */ 
ushort v_signal; 1* signal to send (VT_SENDSIG) .. / 
ushort v_state; 1* vt bit mask (VT _ SENDSIG and VT _ GETSTATE) .. / 

} ; 

and is defined in /usr/include/sys/vt. h . 

VT OPENQRY 
- The VT _ OPENQRY ioctl is used to get the next available virtual terminal. 

This value is set in the last argument of the ioctl (2) call. 

GIO KEYMAP 
- This call gets the entire keyboard mapping table from the kernel. The 

structure of the argument is given in /usr/include/sys/kd.h. 

PIO KEYMAP 
- This call sets the entire keyboard mapping table. The structure of the 

argument is given in /usr/include/sys/kd.h. 

GIO STRMAP 
- This call gets the string key mapping table from the kernel. The structure 

of the argument is given in /usr/include/sys/kd.h. 

PIO STRMAP 
- This call sets the string key mapping table. The structure of the argument 

is given in /usr/include/sys/kd.h. 

TIOCKBOF 
Extended character codes are disabled. This is the default mode. 

TIOCKBON 
Allows extended characters to be transmitted to the user program. The 
extended characters are transmitted as a null byte followed by a second 
byte containing the character's extended code. When a true null byte is 
sent, it is transmitted as two consecutive null bytes. 

When the keyboard is fully enabled, an 8-bit character code can be obtained by 
holding down the ALT key and entering the 3-digit decimal value of the character 
from the numeric keypad. The character is transmitted when the ALT key is 
released. 

Some keyboard characters have special meaning. Under default operations, 
pressing the DELETE key generates an interrupt signal which is sent to all 
processes designated with the associated control terminal. When the keyboard is 
fully enabled, holding down the ALT key and pressing the 8 key on the home 
keyboard (not on the numeric keypad) returns a null byte followed by Ox7F. This 
will produce the same effect as the DELETE key (Ox7F) unless you have executed 
the stty(1) command with the -isig option. 

KBENABLED 

Page 12 

If the keyboard is fully enabled (TIOCKBON), a non-zero value will be 
returned. If the keyboard is not fully enabled (TIOCKBOF), a value of zero 
will be returned. 

3/91 



keyboard (7) keyboard (7) 

FILES 

GETFKEY 
Obtains the current definition of a function key. The argument to the call 
is the address of one of the following structures defined in 
/usr/include/sys/kd.h: 

struct fkeyarg { 

} ; 

unsigned int keynum; 
char keydef [MAXFK]; 
char flen; 

I*Comes from ioctl.h via comcrt.h* I 

The function key number must be passed in keynum (see arg structure 
above). The string currently assigned to the key will be returned in keydef 
and the length of the string will be returned in flen when the ioctl is per­
formed. 

SETFKEY 
Assigns a given string to a function key. It uses the same structure as the 
GETFKEY ioctl. The function key number must be passed in keynum, the 
string must be passed in keydef, and the length of the string (number of 
characters) must be passed in flen. 

/dev/console 
/dev/vtOO-n 
/usr/include/sys/kd.h 

SEE ALSO 

3/91 

stty(1), console(7), display(7), termio(7) 
ioctl(2), ascii(S) in the Programmer's Reference Manual 
vtlmgr(1M) in the User's Reference Manual 

Page 13 



mouse (7) mouse(7) 

NAME 
mouse - mouse device driver supporting bus, serial, and PS/2 compatible mouse 
devices. 

DESCRIPTION 

3/91 

The Mouse Driver Package, Version 3.0, device driver supports three types of 
mouse devices: 

Logitech bus mouse, which attaches to a plug-in card and is designed 
to be used in an eight-bit card slot. 

Logitech serial type mouse, which plugs directly into a serial port con­
nector. 

PS/2 compatible mouse, which connects to a PS/2 auxiliary port. 

The driver will support multiple mouse applications running in virtual terminal 
screens, both under the UNIX System and MS-DOS via SimulTask. 

Support for a mouse administration is also provided. See mouseadmin(1). 

The following ioctl's are supported: 

MOUSE IOCMON Used exclusively by /usr/lib/mousem;;rr to receive open/close 
commands from / dev /mouse driver. 

MOUSEISOPEN Used exclusively by mouseadmin. Returns 16-byte character 
array indicating which mouse devices are currently open; 1 is 
open, 0 is not open. The array is in the linear order established 
by /usr/bin/mouseadmin in building the display/device map 
pairs. 

MOUSEIOCCONFIG 
Used exclusively by mouseadmin to configure display/mouse 
pairs. The mse _ cfg data structure is used to pass display/device 
mapping and map pair count information to the driver: 

struct mse_cfg { 
struct mousemap *mapping; 
unsigned int count; 

struct mousemap 
dev t 
dev t 

disp_dev; 
mse_dev; 

MOUSEIOCREAD Read mouse position/ status data. The following data structure is 
used to return mouse position information to a user application: 

struct mouseinfo { 
unsigned char status; 
char xmotion: 
char ymotion; 

Page 1 



mouse (7) 

MOUSE320 

Page 2 

mouse(7) 

MOUSEIOCREAD will set errno to EFAULT for failure to return a 
valid mouseinfo structure. The status byte contains the button 
state information according to the following format: 

o Mv Le Me Re L M R 

where: 

Mv: is 1 if the mouse has moved since last MOUSEIOCREAD 

Le: is 1 if Left button has changed state since last 
MOUSE I OCREAD 

Me: is 1 if Middle button has changed state since last 
MOUSEIOCREAD 

Re: is 1 if Right button has changed state since last 
MOUSE I OCREAD 

L: current state of Left button (1 == depressed) 

M: current state of Middle button 

R: current state of Right button 

The Mv bit is required because the total x and y delta since the 
last MOUSEIOCREAD ioctl could be 0 yet the mouse may have been 
moved. The Le, Me, and Re bits are required for a similar reason; 
if a button had been pushed and released since the last 
MOUSEIOCREAD ioctl, the current state bit would be unchanged 
but the application would want to know the button had been 
pushed. 

The xmotion and ymotion fields are signed quantities relative to 
the previous position in the range -128 to 127. Deltas that would 
overflow a signed char have been truncated. 

Used to send commands and receive responses from the PS/2 
compatible mouse devices. Failed MOUSE320 commands will 
return ENXIO as the errno value. The following data structure is 
used to pass commands/status/position information between the 
driver and a user application: 

struet em::l 320 
int emd; 
int argl; 
int arg2; 
int arg3; 

Legal commands for the PS/2 compatible devices are as follows: 

MSERESET reset mouse 

MSERESEND resend last data 

3/91 



mouse (7) mouse (7) 

3/91 

MSESETDEF set default status 

MSEOFF disable mouse 

MSEON enable mouse 

MSESPROMPT set prompt mode 

MSEECHON set echo mode 

MSEECHOFF reset echo mode 

MSESTREAM set stream mode 

MSESETRES set resolution (counts per millimeter) 

MSE SCALE 2 

MSESCALEl 

MSECHGMOD 

legal argl values are as follows: 

00 = 1 count/mm. 
01 = 2 count/mm. 
02 = 4 count/ mm. 
03 = 8 count/mm. 

set 2:1 scaling 

set 1:1 scaling. 

set sampling rate (reports per second) 
legal argl values are as follows: 

OA = 10 reports/sec. 
14 = 20 reports/sec. 
28 = 40 reports/sec. 
3C = 60 reports/sec. 
50 = 80 reports/sec. 
64 = 100 reports/sec. 
C8 = 200 reports/sec. 

MSEGETDEV read device type returns a zero (0) for the PS/2 
compatible mouse. 

MSEREPORT read mouse report returns three-byte 
mouse/button position where bytes two and 
three are 9-bit 2's complement relative motions 
with the 9th bit (sign bit) coming from byte 1. 

Byte 1 
bO - left button (1 == depressed) 
bl - right button 
b2 - middle button 
b3 - always 1 
b4 - X data sign (1 == negative) 
b5 - Y data sign 
b6 - X data overflow 
b7 - Y data overflow 

Byte 2 
X axis position data 

Page 3 



mouse (7) mouse (7) 

NOTE 

FILES 

Byte 3 
Y axis position data 

MSESTATREQ status request returns three-byte report with the 
following format: 

Byte 1 
bO - right button (1 == depressed) 
bl - middle button 
b2 - left button 
b3 - always 0 
b4 - scaling 1:1 = 0, 2:1 = 1 
b5 - disabled(O)/enabled(1) 
b6 - stream(O)/prompt(1) mode 
b7 - always 0 

Byte 2 
bO - 6 current resolution 
b7 - always 0 

Byte 3 
bO - 7 current sampling rate 

The Mouse 3.0 device driver is intended for use with UNIX System V Release 4.0 
or later releases. The version 3.0 mouse also supports queue mode for accessing 
mouse input, both motion and button events; see display(7) for more information 
on KDQUEMODE. 

/dev/mouse 
/usr/lib/mousemgr 
/usr/include/sys/mouse.h 

SEE ALSO 
rrouseadmin(1) 
Mouse Driver Administrator's Guide 

Page 4 3/91 



Permuted Index 

pkgchk check 
installation database installf 

driver configuration/ idinstall 
mouseadmin mouse 

prompt; verify and return a string 
pkgask stores 

parameter idtune 
a menu item ckitem 

idbuild 
idmkunix 

/mouse device driver supporting 
pkginfo package 

pkgchk 
prompt for and validate a date 

prompt for and validate a group 10 
return an in teger value 

return a menu item 
keyword 

return a pathname 
integer 

return a string answer 
return a time of day 

user ID 
yes/no 

supporting bus, serial, and PS/2 
compver 

update, or get device driver 
idconfig produce a new kernel 

display system 
keyboard system 

idmkinit reads files 
pkgmap package 

or get device driver configuration 
a file to the software installation 

removef remove a file from software 
valdate prompt for and validate a 

driver / idinstall add, 
task removal tool 

depend software 
pkgmap package contents 

/ add, delete, update, or get 
serial, and PS/2/ mouse mouse 

serial, and PS/2 compatible mouse 
space 

valid group names 

Permuted Index 

accuracy of installation .................................................. pkgchk(1M) 
add a file to the software ............................................... installf(1M) 
add, delete, update, or get device .............................. idinstall(1M) 
administration ........................................................... mouseadmin(l) 
answer ckstr display a .......................................................... ckstr(l) 
answers to a request script ........................................... pkgask(1M) 
attempts to set value of a tunable ................................. idtune(1M) 
build a menu; prompt for and return .............................. ckitem(1) 
build new UNIX System kernel ................................... idbuild(1M) 
build new UNIX System kernel ............................... idmkun1x(1M) 
bus, serial, and PS/2 compatible/ .................................... mouse(7) 
characteristics file ............................................................... pkginfo(4) 
check accuracy of installation ....... ~ ............................... pkgchk(1M) 
ckdate, errdate, helpdate, valdate ..................................... ckdate(1) 
ckgid, errgid, helpgid, valgid .............................................. ckgid(1) 
ckint display a prompt; verify and ..................................... ckint(1) 
ckitem build a menu; prompt for and ............................. ckitem(1) 
ckkeywd prompt for and validate a ............................ ckkeywd(1) 
ckpath display a prompt; verify and ............................... ckpath(1) 
ckrange prompt for and validate an .............................. ckrange(1) 
ckstr display a prompt; verify and ...................................... ckstr(1) 
cktime display a prompt; verify and ............................... cktime(1) 
ckuid prompt for and validate a ........................................ ckuid(1) 
ckyorn prompt for and validate ....................................... ckyorn(1) 
compatible mouse devices / driver ................................. mouse(7) 
compatible versions file .................................................. compver(4) 
compver compatible versions file ................................. compver(4) 
configuration data /add, delete, ............................... idinstall(1M) 
configuration .................................................................. idconfig(lM) 
console display ................................................................... display(7) 
console keyboard ...... ... ......... ...... ......... ......... .... ...... ........ keyboard(7) 
containing specifications ............................................. idmkinit(1M) 
contents description file ................................................... pkgmap(4) 
data /add, delete, update, .......................................... idinstal1(1M) 
database installf add ...................................................... installf(1M) 
database .......................................................................... removef(lM) 
date ckdate, errdate, helpdate, ......................................... ckdate(1) 
delete, update, or get device ....................................... idinstall(1M) 
delsysadm sysadm interface menu or .................. delsysadm(1M) 
depend software dependendes files ............................... depend(4) 
dependencies files .............................................................. depend(4) 
description file ................................................................... pkgmap(4) 
device driver configuration data ................................ idinstall(1M) 
device driver supporting bus, ........................................... mouse(7) 
devices / driver supporting bus, ...................................... mouse(7) 
disk space requirement file .................................................. space(4) 
dispgid displays a list of all ............................................. dispgid(1) 

1 



Permuted Index 

a pathname ckpath 
a string answer ckstr 
a time of day cktime 

an integer value ckint 
display system console 

information pkginfc 

names dispgid 
names dispuid 

pkgparam 
valid user names 

/ add, delete, update, or get device 
PS/2 compatible/ mouse mouse device 

edsysadm sysadm interface 
tool 

for and validate a date ckdate, 
and validate a group 10 ckgid, 

compver compatible versions 
copyright copyright information 

mdevice 
mfsys 
mtune 

sdevice 
sfsys 
stune 

removef remove a 
pkginfo package characteristics 

pkgmap package contents description 
pkgproto generate a prototype 
prototype package information 

space disk space requirement 
database installf add a 

idmkinit reads 
depend software dependencies 

mdevice file 
mfsys file 
mtune file 

pkgtrans translate package 

2 

sdevice file 
sfsys file 
stune file 

idspace investigates 
pkgproto 

valgid prompt for and validate a 
displays a list of all valid 

validate a date ckdate, errdate, 
validate a group 10 ckgid, errgid, 

display a prompt; verify and return ................................ ckpath(1) 
display a prompt; verify and return ................................... ckstr(1) 
display a prompt; verify and return ................................ cktime(1) 
display a prompt; verify and return ................................... ckint(1) 
display .................................................................................. display(7) 
display soft ... :::rrc p:lck:lgc ................................................. pkginfo(l) 
display system console display ....................................... display(7) 
displays a list of all valid group ..................................... dispgid(1) 
displays a list of all valid user ........................................ dispuid(1) 
displays package parameter values ........................... pkgparam(1) 
dispuid displays a list of all ............................................ dispuid(1) 
driver configuration data ............................................. idinstall(1M) 
driver supporting bus, serial, and ......... ........................... mouse(7) 
editing tool .................................................................. edsysadm(lM) 
edsysadm sysadm interface editing ....................... edsysadm(1M) 
errdate, helpdate, valdate prompt .................................... ckdate(1) 
errgid, helpgid, valgid prompt for ..................................... ckgid(1) 
file ....................................................................................... compver(4) 
file ..................................................................................... copyright(4) 
file format ........................................................................... mdevice(4) 
file format ............................................................................... mfsys(4) 
file format .............................................................................. mtune(4) 
file format ............................................................................ sdevice(4) 
file format ................................................................................. sfsys(4) 
file format ................................................................................ stune(4) 
file from software database ......................................... removef(1M) 
file ......................................................................................... pkginfo(4) 
file ........................................................................................ pkgmap(4) 
file ...................................................................................... pkgproto(l) 
file ..................................................................................... prototype(4) 
file ............................................................................................. space(4) 
file to the software installation ...................................... installf(1M) 
files containing specifications ..................................... idmkinit(1M) 
files ........................................................................................ depend(4) 
format ................................................................................. mdevice(4) 
format ...................................................................................... mfsys(4) 
format ..................................................................................... mtune(4) 
format ................................................................................ pkgtrans(l) 
format ................................................................................... sdevice(4) 
format ........................................................................................ sfsys(4) 
format ....................................................................................... stune(4) 
free space ......................................................................... idspace(lM) 
generate a prototype file ............................................... pkgproto(1) 
group ID ckgid, errgid, helpgid, ....................................... ckgid(l) 
group names dispgid ....................................................... dispgid(1) 
helpdate, valdate prompt for and ..................................... ckdate(1) 
helpgid, valgid prompt for and .......................................... ckgid(1) 

Integrated Software Development Guide 



prompt for and validate a group 
prompt for and validate a user 

kernel 
information 

configuration 
get device driver configuration/ 

specifications 
specifications of nodes 

kernel 

tunable parameter 
copyright copyright 

prototype package 
idcheck returns selected 

pkginfo display software package 
pkgmk produce an 

installf add a file to the software 
pkgchk check accuracy of 

installation database 
ckrange prompt for and validate an 

a prompt; verify and return an 
edsysadm sysadm 

delsysadm sysadm 
idspace 

menu; prompt for and return a menu 
idconfig produce a new 

idbuild build new UNIX System 
idmkunix build new UNIX System 

keyboard system console 

ckkeywd prompt for and validate a 
dispgid displays a 
dispuid displays a 

a menu; prompt for and return a 
delsysadm sysadm interface 

item ckitem build a 

terminals vtlmgr 
mouseadmin 

serial, and PS/2 compatible/ mouse 
bus, serial, and PS/2 compatible 

supporting bus, serial, and PS/2/ 

displays a list of all valid group 
displays a list of all valid user 

Permuted Index 

Permuted Index 

10 ckgid, errgid, helpgid, valgid ....................................... ckgid(1) 
10 ckuid ...... ...... ...... ..................... ...... ......... .................. ......... ckuid(l) 
idbuild build new UNIX System ................................. idbuild(1M) 
idcheck returns selected ................................................ idcheck(1M) 
idconfig produce a new kernel.......... .................. ....... idconfig(1M) 
idinstall add, delete, update, or .................................. idinstall(1M) 
idmkinit reads files containing .................................. idmkinit(1M) 
idmknod removes nodes and reads ......................... idmknod(1M) 
idmkunix build new UNIX System ......................... idmkunix(1M) 
idspace investigates free space .................................... idspace(1M) 
idtune attempts to set value of a ................................... idtune(1M) 
information file ............................................................... copyright(4) 
information file ............................................................... prototype(4) 
information ...................................................................... idcheck(lM) 
information ......................................................................... pkginfo(l) 
installable package .............................................................. pkgmk(l) 
installation database ........................................................ installf(lM) 
installation ....................................................................... pkgchk(lM) 
installf add a file to the software .................................. installf(lM) 
integer .................................................................................. ckrange(l) 
integer value ckint display .................................................. ckint(1) 
interface editing tool ................................................. edsysadm(1M) 
interface menu or task removal tool ..................... delsysadm(1M) 
investigates free space ................................................... idspace(1M) 
item ckitem build a ............................................................ ckitem(l) 
kernel configuration ...................................................... idconfig(1M) 
kernel ................................................................................ idbuild(lM) 
kernel ............................................................................ idmkunix(lM) 
keyboard ............................................ .......... ...... .............. keyboard(7) 
keyboard system console keyboard ............................ keyboard(7) 
keyword ............................................................................ ckkeywd(l) 
list of all valid group names .................................. .......... dispgid(1) 
list of all valid user names ............................................... dispuid(1) 
mdevice file format .......................................................... mdevice(4) 
menu item ckitem build .................................................... ckitem(l) 
menu or task removal tool ..................................... delsysadm(1M) 
menu; prompt for and return a menu ............................. ckitem(1) 
mfsys file format ................................................................... mfsys(4) 
monitors and opens virtual .............. ...... .................. ......... vtlmgr(1) 
mouse administration .............................................. mouseadmin(1) 
mouse device driver supporting bus, .............................. mouse(7) 
mouse devices / driver supporting ................................. mouse(7) 
mouse mouse device driver ............................................... mouse(7) 
mouseadmin mouse administration ...................... mouseadmin(l) 
mtune file format ................................................................. mtune(4) 
names dispgid ................................................................... dispgid(l) 
names dispuid ................................................................... dispuid(l) 

3 



Permuted Index 

4 

nodes idmknod removes 
nodes and reads specifications of 

newvt 
vtlrngr monitors and 

... t-mnf" r··b· .. ·~ 
pkgrnap 

pkgtrans translate 
pkgrrn removes a 

prototype 
pkginfo display software 

pkgparam displays 
pkgmk produce an installable 

pkgadd transfer software 
attempts to set value of a tunable 

pkgparam displays package 
a prompt; verify and return a 

the system 
script 

installation 
information 

file 
file 

package 
values 

system 

idconfig 
pkgmk 

ckitem build a menu; 
ckdate, errdate, helpdate, valdate 

ckgid, errgid, helpgid, valgid 
ckkeywd 

ckuid 
ckrange 
ckyom 

pathnarne ckpath display a 
answer ckstr display a 

day cktime display a 
integer value ckint display a 

pkgproto generate a 

/ driver supporting bus, serial, and 
specifications idrnkinit 

idmknod removes nodes and 
sysadm interface menu or task 

newvt opens virtual terminals ........................................... newvt(1) 
nodes and reads specifications of ............................. idmknod(1M) 
nodes idmknod removes .......................................... idmknod(1M) 
opens virtual terminals ........................................................ newvt(1) 
opens virtual terminals ....................................................... vtlrngr(l) 
package characteristics file ............................................... pkginfo(4) 
package contents description file ................................... pkgrnap(4) 
package format ................................................................. pkgtrans(l) 
package from the system ............................................... pkgrrn(1M) 
package information file ............................................... prototype(4) 
package information ......................................................... pkginfo(l) 
package parameter values ........................................... pkgparam(1) 
package .................................. , ... ...... ... ... ...... ...... ...... ... .... ... ... pkgmk(l) 
package to the system ................................................... pkgadd(1M) 
parameter idtune .............. , .............................................. idtune(lM) 
parameter values ........................................................... pkgpararn(l) 
pathname ckpath display ................................................. ckpath(1) 
pkgadd transfer software package to ......................... pkgadd(1M) 
pkgask stores answers to a request ............................. pkgask(1M) 
pkgchk check accuracy of ............................................. pkgchk(1M) 
pkginfo display software package .................................. pkginfo(1) 
pkginfo package characteristics ...................................... pkginfo(4) 
pkgmap package contents description ......................... pkgmap(4) 
pkgmk produce an installable .......................................... pkgmk(1) 
pkgparam displays package parameter .................... pkgparam(1) 
pkgproto generate a prototype file .............................. pkgproto(1) 
pkgrrn removes a package from the ............................ pkgrrn(1M) 
pkgtrans translate package format ............................... pkgtrans(1) 
produce a new kernel configuration ......................... idconfig(1M) 
produce an installable package ........................................ pkgmk(1) 
prompt for and return a menu item ................................ ckitem(1) 
prompt for and validate a date ......................................... ckdate(1) 
prompt for and validate a group 10 .................................. ckgid(1) 
prompt for and validate a keyword ............................ ckkeywd(1) 
prompt for and validate a user 10 ..................................... ckuid(1) 
prompt for and validate an integer ............................... ckrange(1) 
prompt for and validate yes/no ...................................... ckyorn(1) 
prompt; verify and return a .............................................. ckpath(1) 
prompt; verify and return a string ...................................... ckstr(1) 
prompt; verify and return a time of ................................ cktime(1) 
prompt; verify and return an ............................................... ckint(1) 
prototype file ................................................................... pkgproto(l) 
prototype package information file ............................ prototype(4) 
PS/2 compatible mouse devices ....................................... mouse(7) 
reads files containing ................................................... idmkinit(1M) 
reads specifications of nodes ..................................... idmknod(1M) 
removal tool delsysadm ......................................... delsysadm(1M) 

Integrated Software Development Guide 



database removef 
database 

pkgrm 
specifications of nodes idmknod 

pkgask stores answers to a 
space disk space 

ckitem build a menu; prompt for and 
ckpath display a prompt; verify and 

ckstr display a prompt; verify and 
cktime display a prompt; verify and 

ckint display a prompt; verify and 
idcheck 

pkgask stores answers to a request 

idcheck returns 
/mouse device driver supporting bus, 

idtune attempts to 

removef remove a file from 
depend 

installf add a file to the 
pkginfo display 
pkgadd transfer 

idspace investigates free 
space disk 

idmkinit reads files containing 
idmknod removes nodes and reads 

pkgask 
a prompt; verify and return a 

mouse mouse device driver 
edsysadm 

removal tool delsysadm 
display 

keyboard 
idbuild build new UNIX 

idmkunix build new UNIX 
transfer software package to the 

pkgrm removes a package from the 
delsysadm sysadm interface menu or 

newvt opens virtual 
vtlmgr monitors and opens virtual 

interface menu or task removal 
edsysadm sysadm interface editing 

system pkgadd 
pkgtrans 

Permuted Index 

Permuted Index 

remove a file from software ........................................ removef(1M) 
removef remove a file from software ........................ removef(1M) 
removes a package from the system ............................ pkgrm(1M) 
removes nodes and reads .......................................... idmknod(1M) 
request script ................................................................... pkgask(lM) 
requirement file ...................................................................... space(4) 
return a menu item ............................................................. ckitem(l) 
return a path name ............................................................... ckpath(l) 
return a string answer ........................................................... ckstr(l) 
return a time of day ............................................................ cktime(l) 
return an integer value .......................................................... ckint(l) 
returns selected information ........................................ idcheck(lM) 
script ........ ......... ............ ............... ......... ................... .......... pkgask(lM) 
sdevice file format .............................................................. sdevice(4) 
selected information ...................................................... idcheck(1M) 
serial, and PS/2 compatible mouse/ ............................... mouse(7) 
set value of a tunable parameter ................................... idtune(1M) 
sfsys file format ....................................................................... sfsys(4) 
software database .......................................................... removef(1M) 
software dependencies files .............................................. depend(4) 
software installation database ....................................... installf(1M) 
software package information ......................................... pkginfo(1) 
software package to the system .................................. pkgadd(1M) 
space disk space requirement file ....................................... space(4) 
space ..... ............ ..................... ...... ...... ............ ................... idspace(lM) 
space requirement file ........................................................... space(4) 
specifications ................................................................. idmkinit(lM) 
specifications of nodes ................................................ idmknod(1M) 
stores answers to a request script ................................ pkgask(1M) 
string answer ckstr display .................................................. ckstr(1) 
stune file format ..................................................................... stune(4) 
supporting bus, serial, and PS/2/ .................................... mouse(7) 
sysadm interface editing tool .................................. edsysadm(1M) 
sysadm interface menu or task .............................. delsysadm(1M) 
system console display...................................................... display(7) 
system console keyboard .............................................. keyboard(7) 
System kernel .................................................................. idbuild(lM) 
System kernel .............................................................. idmkunix(lM) 
system pkgadd .............................................................. pkgadd(lM) 
system ................................................................................ pkgrm(lM) 
task removal tool ...................................................... delsysadm(lM) 
terminals ................................................................................. newvt(l) 
terminals ................................................................................ vtlmgr(l) 
tool delsysadm sysadm .......................................... delsysadm(1M) 
tool ................................................................................ edsysadm(lM) 
transfer software package to the ................................. pkgadd(1M) 
translate package format ................................................ pkgtrans(1) 

5 



Permuted Index 

idtune attempts to set value of a 
idbuild build new 

idrnkunix build new 
idinstall add, delete, 

ckuid prompt for and validate a 
displays a list of all valid 

date ckdate, errdate, helpdate, 
group 10 ckgid, errgid, he1pgid, 

dispgid displays a list of all 
dispuid displays a list of all 

helpdate, valdate prompt for and 
helpgid, valgid prompt for and 

ckkeywd prompt for and 
ckuid prompt for and 

ckrange prompt for and 
ckyorn prompt for and 

verify and return an integer 
idtune attempts to set 

pkgparam displays package parameter 
ckpath display a prompt; 

ckstr display a prompt; 
cktirne display a prompt; 

ckint display a prompt; 
compver compatible 

newvt opens 
vtlrngr monitors and opens 

terminals 
ckyorn prompt for and validate 

6 

tunable parameter ............................................................ idtune(lM) 
UNIX System kernel ....................................................... idbuild(1M) 
UNIX System kernel .................................................. idrnkunix(1M) 
update, or get device driver/ ..................................... idinstall(1M) 
user 10 ..................................................................................... ckuid(l) 
user names dispuid ............................................. ............. dispuid(l) 
valdate prompt for and validate a .................................... ckdate(1) 
valgid prompt for and validate a ....................................... ckgid(1) 
valid group names ............................................................. dispgid(l) 
valid user names ................................................................ dispuid(l) 
validate a date ckdate, errdate, ........................................ ckdate(l) 
validate a group 10 ckgid, errgid, .................................... ckgid(1) 
validate a keyword ......................................................... ckkeywd(l) 
validate a user 10 .................................................................. ckuid(l) 
validate an integer ............................................................. ckrange(l) 
validate yes/no .................................................................... ckyorn(l) 
value ckint display a prompt; ............................................. ckint(1) 
value of a tunable parameter ......................................... idtune(1M) 
values .............................................................................. pkgparam(l) 
verify and return a pathname ........................................... ckpath(1) 
verify and return a string answer ........................................ ckstr(1) 
verify and return a time of day ........................................ cktime(1) 
verify and return an integer value ...................................... ckint(1) 
versions file ....................................................................... compver(4) 
virtual terminals ................................................................... newvt(l) 
virtual terminals .................................................................. vtlrngr(l) 
vtlrngr monitors and opens virtual .................................. vtlrngr(1) 
yes/no ................................................................................... ckyorn(l) 

Integrated Software Development Guide 



I Index 

Index 1-1 

Table of Contents 





Index 

. (see current directory) 

.. (see parent directory) 

A 
absolute path-name (see path-name) 
access permission 5: 16 

active lock 7: 101, 103,108 
hda lck 7: 104 

adapter cards 6: 6 

adapter registers 6: 12 
add-books 4: 90 

address space of a process 2: 26,39 
addscr 4: 99 

advisory locking 2: 11 

application packaging xxvii-xxxi 
application programming vii-viii 

applications software installation (see 
package) 

archive commands 5: 37 
argc and argv 1: 22-25 
awk(1) x-xi 

B 
base system device drivers 10: 19 
bc(1) xii 

block device 7: 5, 23 

block driver event synchronization 
7: 45 

brk(2) 2: 40 

BSD Compatibility Package, files 
5: 59 

buffer pool 7: 13 

buffer space, allocating 7: 12 

buffers 

Index 

Kernel Memory Allocator 7: 12 
KMA 7: 13 

STREAMS 7: 13 

STREAMS message 7: 12 
system 7: 12-13 

c 
C language ix- xiii 

C library 
partial contents 1: 9-14 

standard I/O 1: 19-25 

calculator programs xii 
callout table 7: 46, 48 

calls, panic 10: 30 

CGA 6:6 

character classification routines 1: 11 

character conversion routines 1: 12 

character device 7: 5, 23 

child directory 5: 6 

child-process 3:6 
chmod(1) 2: 24 

class, scheduler (see scheduler class) 
class action script 8: 21, 26-33 

classes 
assigning objects to 8: 38-39, 47 

installation of 8: 28 
removal of 8: 29 

system 8: 30 

the awk class 8: 31 

the build class 8: 32 

the sed class 8: 30 

CMA 7: 27 
commands 

idbuild 10: 8 
idcheck 10: 8 
idconfig 10: 9 

1-1 



Index 

idinstall 10: 8 
idmkunix 10: 9 
kdb 7: 55 
pkgadd 10: 1-2 

pkgrm 10: 2 

communication, interprocess ope) 
4: 1-88 

compiler construction (see yacc(1» 
corrpver(4) 8: 14 

controller 
interface requirements 7: 26 

memory addresses 7: 27 
controller interface 7: 26 

controller lock 7: 101 
converting drivers (XENIX to UNIX) 

7: 63-66 

copy, symbolic links 5: 31-32 

copyright messages, write 8: 42 
copyright (4) 8: 19 

crash dumps, analyzing with kdb 
7:62 

current directory 5: 12 
curses(3X) xiii 

D 
data movement between kernel and 

device 7: 20 

data structures 
devflag 7: 9 

driver-specific 7: 9 

general system 7: 7 
naming conventions 7: 9 

unit numbers 7: 9 

data transfer 
routines 7: 11 

system and user 7: 11 

1-2 

data validation tools 
characteristics 9: 36 
error messages 9: 38 

formatting 9: 38 

help messages 9: 37 
list of shell commands 9: 39-40 

list of visual tools 9: 42 
prompts 9: 36 
purpose 9: 34 
types 9: 35 
when to use 9: 34 

dc(1) xii 
deadlock (file and record locking) 

2: 23, 25 

debugger, kdb 7: 55 
debugging active drivers 7: 58 
debugging crashed drivers 7: 56 

default title 
description 9: 14 

example 9: 14 

format 9: 14 

#define 1: 2 

delay function 7: 49 
delsysadm(1M) 9: 1-3 

depend(4) 8: 15-16 

desk calculator programs xii 
/ dev, zero 2: 33 

device #defines 10: 7 

device driver 
activities 7: 11 

critical sections 7: 18 
definition 7: 3 

entry points 7: 23 

generic 7: 29 

interrupt section 7: 17 
object module 10: 12 

source files structure 7: 6 
synchronous section 7: 17 

Integrated Software Development Guide 



device drivers 
base system installed 10: 19 

block type 7: 5 

character type 7: 5 
compiling 10: 26 
development procedures 10: 27-29 

DMA allocation routines 7: 21 
number allowed 7: 27 

packaging 10: 26 
pseudo type 7: 3 

raw type 7: 5 
writing code for 10: 26 

device nodes 7: 3 

direct memory access 7: 20 
directories 

/dev 7: 4 

/ete/eonf 10: 4 
directory 5: 4 

fete 5: 48-50 

list contents of 5: 14-16 

naming rules 5: 6 

root 5: 46-47 

tree structure 5: 4 
/usr 5: 58-59 

/var 5: 62-64 

DMA 7: 20, 26 

DMA allocation routines 7: 21 

DMA controller operations 7: 28 

documentation, related ii 

documenting driver installation 
10:32 

dot 5: 12 

dot dot 5: 12 

driver package contents 10: 10 
driver routine, poll 7: 23 

driver software package 10: 10 

driver software packaging xxx-xxxi 
driver source file 7: 6 

Index 

drivers, installed number of 7: 27 
DSP 7: 1, 10: 1, 10 

DSP module 
driver.o 10: 12 
init 10: 15 
master 10: 12 

node 10: 14 
post install 10: 16 

pre remove 10: 18 
re 10: 15 
shutdown 10: 15 
space. e 10: 13 

system 10: 13 

E 
edsysadrn(1M) 9: 1-2 

EGA 6:6 

emergency recovery procedure 
10: 30-31 

envp 1: 22 

error handling 1: 34-46 

error reporting 7: 50 

Escape codes 6: 4 

Escape sequences 6: 4 

fete 
directories 5: 48- 50 

files 5: 51-57 

ETl xiv-xv 

event synchronization, block driver 
7:45 

exclusive lock 7: 102 
exec(2) 3: 3-5 

executing new kernel 10: 22 
exit(2) 1: 20-21 

Index 

1-3 



Index 

F 
fclose(3S) 1: 21 
fcntl(2) 2: 13, 15,20-22 

field item help message 
description 9: 14 
example 9: 15 
format 9: 15 

file and device input/output 2: 1-9, 
xviii-xix 

file and record locking 2: 10-25, 
xviii-xix 

file mode (see permissions, files) 
FILE structure 1: 20-21 
file system, structure 5: 4-6 38-39 
files ' 

dfile 7: 6 
driver.o 10: 12 
/etc 5: 51-57 
in it 10: 15 
lock xviii- xix 

locking (see locking) 
master 10: 3, 12 
mdevice 7: 6, 10: 3, 12 
memory-mapped (see mapped 

files) 
mtune 10: 3 

naming rules 5: 6 

node 10: 14 
ownership 5: 27, 34 

permissions 5: 16-24 

postinstall 10: 16 

pre remove 10: 18 

protection 5: 16-24 
rc 10: 15 

regular 5: 4 

renamed in Release 4.0 5: 41-45 

sassign 10: 3 

1-4 

sdevice 7: 6,31. 10: 3,13 
security 5: 16-24 

shutdown 10: 15 
space. c 10: 3. 13 
special 5: 4 

stune 10: 3 

system 10: 3 

system 10: 13 
/usr 5: 60-61 
/var 5: 65-67 

FMLI xiii- xiv 

fopen(3S) 1: 20-21 
fork(2) 3: 5-8 

fsync(2) 2: 28 

full p~th-name (see path-name) 
function calls 

data input and output 7: 20 
syntax 7: 20-21 

function naming conventions 7: 23 
function prototypes 1: 6 
functions 

biodone 7: 17. 45 
biowai t 7: 17. 45 
delay 7: 49 
drv_usectohz 7: 46-47 

dtimeout 7: 48 

inb 7: 20 

inl 7: 20 

inw 7: 20 

itimeout 7: 47 

LOCK () 7: 33 

LOCK _ ALLOC ( ) 7: 33 

outb 7: 20 
outl 7: 20 
outw 7: 20 
panic 7: 52 

read 7: 21 

repinsb 7: 21 

Integrated Software Development Guide 



repinsd 7: 21 
repinsw 7: 21 

repoutsb 7: 21 

repoutsd 7: 21 
repoutsw 7: 21 

RW RDLOCK 7: 34 

RW WRLOCK 7: 34 
sleep 7: 16,37,45 

spl 7: 30 
splN 7: 30 

splx 7: 30 

SV 7: 16 
SV_BROADCAST 7: 16, 18,37,40,45,48 

SV_SIGNAL 7: 16, 18,37,48 
SV_WAIT 7: 16,25,37,39-40,45 

SV_WAIT_SIG 7: 37,39-40 

timeout 7: 46 

UNLOCK 7: 34 
untimeout 7: 47-48 
wakeup 7: 18,37,45 

write 7: 12,21 

G 
general system data structures 7: 7 

getc(3S) 1: 21 
getopt(3C) 1: 23,25 

graphics mode 6: 3 

H 
hard link 5: 25, 30 

hardware lock 7: 101-102, 108 

hd lck 7: 104 

hda_lck 7: 104-105,107-108 

hd_lck 7: 104-105, 107-108 

hdc:Llck 7: 104-105,107-108 

Index 

hdstart 7: 103 

hdstrategy 7: 102 
hdstrategy 7: 103 

hdstrategy 7: 108 
header files 1: 2-6 

hel p messages 
setting up in a FACE object 9: 17 
title hierarchy 9: 16 

writing 9: 12 
hooks 7: 7 

ID 7: 1, 25 

implementation 10: 1 
interactions 10: 2 

modifications 10: 3 
overview 10: 1 

ID directories 
bin 10: 4 
cf.d 10:4 

init.d 10: 6 
rnfsys.d 10: 6 
node.d 10: 5 
pack.d 10: 5 
rc.d 10: 5 
sd.d 10: 5 
sdevice. d 10: 5 
sfsys.d 10: 6 

ID directory structure 10: 4 
idbuild command 10: 8 
idcheck command 10: 8 
idinstall command 10: 8 
#include 1: 2-5 

include files 7: 6, 8 

Index 

init(1M), scheduler properties 3: 38 

inode 5: 25 

1-5 



Index 

input/output 1: 12-13,19-25 
installable driver 7: 25 

implementation 10: 1 

overview 10: 1 

installation 
parameters 8:23-24 

tools 8: 10 

installation scripts (package) 8: 21-34 

class action script 8: 26~33 
exit codes 8: 24 

parameters 8: 23 

procedure script 8: 33-34 
processing 8: 22 

request script 8: 25-26 
installed drivers, number of 7: 27 

installf(1M) . 8: 33 
installing new kernel 10: 22 

interface modifications 
naming 9: 9 
naming requirements 9: 10 

planning 9: 6 
planning the location of 9: 6 

planning the structure 9: 8 

writing 9: 11 

interrupt 
handler 7: 24 

priority level 7: 31 
processing 7: 18 
vector number 7: 26 

interrupts 7: 26 

I/O addresses 7: 27 
I/O handling 7: 101 

read requests 7: 101 

write requests 7: 101 

I/O requests 
processing 7: 101 

queuing 7: 101 

lOA 7: 27 

1·6 

ioctl 7: 51 
IPC (interprocess communication) 

4: 1-88, xxiii-xxiv 

IPL 7: 31 
item help file 9: 12 
IVN 7: 26 

K 
kdb 

analyzing crash dumps with 7: 62 

macros 7: 61 
multiprocessor features 7: 61 
user-defined variables 7: 61 

kdb multiprocessor features 7: 61 
kernel, reconfiguring 10: 25 
kernel debugger 7: 55 

kernel memory allocator 7: 13 
Kernel Memory Allocator buffers 

7: 12 

kernel parameters 
defining new 10: 25 

modifying existing 10: 24 

kernel preemption point 3: 42 
kernel print information, retrieving 

7: 51-52 
kernel print statements 7: 51 
kernel timers 7: 46 

multiprocessor 7: 47 

uniprocessor 7: 46 

KMA buffers 7: 13 

L 
languages ix- xiii (see also C 

language) 
languages programming ix-xvii 

Integrated Software Development Guide 



latencies, software 3: 42-43 
1ex(l) xi 
1iber 4: 89 
1iber A Library System 4: 89 
libraries 1: 2- 25 

1ibc 1: 9-14,19-25 
1ibgen 1: 17-19 
1ibm 1: 14-16 

link count 5: 25 
links, create 8: 45 
lock hierarchy 7: 36 
lockf(3C) 2: 13, 15-16, 18, 21-23 

locking 2: 10, 13, 7: 33 
advisory 2: 11, 25 
file and record 2: 10-25 
mandatory 2: 11, 23-25 
permissions 2: 12 
read 2: 11-12, 16 
record 2: 14, 16 
write 2: 11-12, 16 

locks 
basic 7: 33 
multiple 7: 36 
read/ write 7: 34 
sleep 7: 36 

locks (multiprocessing) 
active 7: 101 
exclusive 7: 102 
hardware 7: 101 
queue 7: 101 
shared 7: 102 

logs 
cron 5: 66 

login 5: 66 
spelling 5: 65 
su 5: 66 

system logins 5: 65 
longjmp function 7: 42 

Index 

1s(1) 2: 24 
1seek(2) 2: 15 

M 
m4(1) xii 
mail(1) 2: 12 
main function 1: 22 

major numbers 7: 5 

mandatory locking 2: 11, 23 
mapped files 2: 29-34 

private 2: 30 
shared 2: 30 

master file 7: 6 

master file 10: 3 
math library, partial contents 

1: 14-16 
MDA 6:6 
memcntl(2) 2: 35 

memory, shared (see shared 
memory) 

Index 

memory management 2: 26-40, xx- xxi 
address spaces 2: 26 
address-space layout 2: 39 
concepts 2: 26 
heterogeneity 2: 27 
integrity 2: 27 
mapping 2: 26 
memcntl(2) 2: 35 
mincore(2) 2: 38 
mlock(3C) 2: 35-36 
mlockall(3C) 2: 36 
nnnap(2) 2: 29-34 
mprotect(2) 2: 39 
msync(3C) 2: 37 
munlock(3C) 2: 35-36 
mun1ockall(3C) 2: 36 

1-7 



Index 

munrnap(2) 2: 34 

networking 2: 27 

pagesize 2: 38 

system calls 2: 28 
virtual memm,,! 2: 26 

memory mapped I/O 7: 20 

memory-mapped files (see mapped 
files) 

menus (sysadm) 
changing entries 9: 23 

creating entries 9: 22 

definition form 9: 25 

deleting entries 9: 33 

information file 9: 4 

item help message description 
9: 13 

item help message example 9: 13 

item help message format 9: 13 

locating entries 9: 9 

testing changes 9: 25 

message OPC) 4: 3-32 

blocking 4: 3 

control (msgctl) 4: 15-16 

get (msgget) 4: 8-11 

identifier (msqid) 4: 4-7 

msgctl example program 4: 16-21 
msgget example program 4: 11-14 

msgop example program 4: 24-32 
operations (msgop) 4: 21-24 

permission codes 4: 9-10 

queue data structure 4: 4-7 
receive 4: 23-24 

send 4: 22-23 

usage 4: 4-7 
messages, STREAMS 7: 13 

mincore(2) 2: 38 

minor numbers 7: 5 
mlock(3C) 2: 35-36 

1-8 

mlockall(3C) 2: 36 
mmap(2) 2: 29-34 

mode (file) 5: 16 (see also permis-
sions) 

modules, summaI"! of 10: 11 

mprotect(2) 2: 39 

msgctl(2) 4: 15-21 

example program 4: 16-21 

usage 4: 15-16 
msgget(2) 4: 8-14 

example program 4: 11-14 

usage 4: 8-11 
msgop(2) 4: 21-32 

example program 4: 24-32 

usage 4: 21-24 
msgrcv(2) 4: 23-24 

msgsnd(2) 4: 22-23 

msync(3C) 2: 37 

multiple locks 7: 36 

multiprocessor, critical sections 7: 19 

multiprocessor critical section 7: 39 

multithreading, hard disk drivers 
7: 101-102 

munlock(3C) 2: 35-36 

munlockall(3C) 2: 36 

munrnap(2) 2: 34 

N 
Network File System 10: 19 

new kernel 
executing 10: 22 

installing 10: 22 

reconfiguring 10: 22 

NFS 10: 19 
nice(l) 3: 38 

nice(2) 3: 38 

Integrated Software Development Guide 



o 
OPEN LOOK xvi- xvii 

p 
package 

access in scripts 8: 38 
administration 9: 11 

assign abbreviation 8: 36 

basic steps to 8: 35-36 

contents 8: 2 

copyright message 8: 42 

create 8: 49-51 
create datastream formats 8: 51 

define dependencies 8: 42 
descri ption file 9: 4 

distribute over multiple volumes 
8: 49 

identifier 8: 36 

information files 8: 11-20 

installation 8: 10 
installation scripts 8: 21-34 

instance 8: 36 

life cycle 8: 2 
location 8: 39 

modification file 9: 4 

relocatable objects 8: 39-41 
space requirements 8: 43 

tools 8: 4-9 

packaging 
application xxvii-xxxi 

driver software xxx-xxxi 

panic function 7: 52 

parent directory 5: 6. 12 

parent-process 3: 6 

parsing xi 

path 

Index 

physical 5: 27 
virtual 5: 27 

path-name 5: 7-13 
full 5: 7-9 

Index 

pathname, mapping installation 8: 45 

path-name, relative 5: 10-13 

pathname, rename with pkgproto 
8:46 

PCATCH bit 7: 43 

pc info data structure 3: 25 

pcparms data structure 3: 29 

performance, scheduler effect on 
3: 39-43 

peripheral interrupt controllers 7: 24. 
26 

permissions 5: 16 
change existing 5: 22-23 

display 5: 19-20 
files 5: 16-24,27,31,34 

impact on directories 5: 24 

IPC messages 4: 9-10 

octal 5: 24 
read 5: 19, 22-24 

semaphores 4: 40-41 

shared memory 4: 69-70 
write 5: 19, 22-24 

PIC 7: 26 

pixels 6: 5 
pkgadd(1M) 8: 28 
pkginfo(1) 8: 24 
pkginfo(4) 8: 12, 24 

creating 8: 43 
pkgmap(4) 8: 13 

pkgmk.(1) 8: 4-5, 49-51 

locating package contents 8: 50 

pkgpararn(1) 8: 24 

pkgpararn(4) 8: 24 
pkgproto(1) 8: 5, 46-49 

1-9 



Index 

assign objects to classes 8: 47 

create links 8: 48 

rename pathnames 8: 48 

pkgnn(1M) 8: 29 
pkgtrans(l) 8: 5, 51-52 

poll driver routine 7: 23 

preemption latency 3: 42-43 
preemption point, kernel 3: 42 

preprocessor, m4 xii 

priocntl(1) 3: 19-23 
priocntl(2) 3: 23-35 

priocntlset(2) 3: 35-37 

priority (see process priority) 
procedure scripts 8: 21, 33-34 

post install- 8:33 
postremove 8: 33 
preinstall 8: 33 
preremove 8: 33 

process 
management xxii 

scheduling xxii 

spawning 1: 29 

process address space 2: 26, 39 

process priority 3: 13-14, 16-18 

global 3: 14 

real-time 3: 17 

setting and retrieving 3: 19-37 
system 3: 17 

time-sharing 3: 17 

process scheduler (see scheduler) 
process state transition 3: 40 

processor priority levels, setting 7: 30 

procset data structure 3: 35 

programming 
application vii-viii 

languages ix- xvii 

prototype(4) 8: 5-9, 44-49, 9: 4 

co~mand lines 8: 8, 46 
i 

1-10 

creating manually 8: 44-46 

creating with pkgproto 8: 46-49 

description lines 8: 6 

prototypes (see function prototypes) 

Q 
queue lock 7: 101-102, 108 

hdCLlck 7: 104 

R 
raw device 7: 5, 23 

read lock 2: 11-12, 16, 20 
real-time 

scheduler class 3: 15 

scheduler parameter table 3: 15 

reconfiguring new kernel 10: 22 
records, locking (see locking) 
regular file 5: 4 

regular link 5: 25 

related documentation ii 

relative path-name (see path-name) 
Remote File Sharing 10: 19 
removef(1M) 8: 33 
retrieving kernel information 7: 51 

RFS 10: 19 

root, directories 5: 46-47 

routines 
data transfer 7: 11 

DMA allocation 7: 21 

s 
sbrk (see brk(2» 
scheduler 3: 11, xxii 

Integrated Software Development Guide 



effect on performance 3: 39-43 
real-time policy 3: 15 
system policy 3: 15 
time-sharing policy 3: 14 

scheduler class 3: 13-15 
real-time 3: 15 
system 3: 15 
time-sharing 3: 14 

scheduler data structures 
pc info 3: 25 
pcparms 3: 29 
procset 3: 35 

scripts 
postinstall 10: 31 
preremove 10: 31 

scripts (package) 
class action 8: 21, 26-33 
procedure 8: 21, 33-34 
processing 8: 22 
request 8: 21, 25-26 

security, files 5: 16-24 
semaphore 4: 33-63 

control (semctl) 4: 46-48 
get (semget) 4:39-42 
identifier (semid) 4: 35-38 
operations (semop) 4: 57-59 

permission codes 4: 40-41 
semctl example program 4: 48-57 
semget example program 4: 42-45 
semop example· program 4: 59-63 

set data structure 4: 35-38 
usage 4: 35-38 

semctl(2) 4: 46-57 
example program 4:48-57 

summary 4: 38 
usage 4: 46-48 

semget(2) 4: 39-45 

example program 4: 42-45 

Index 

usage 4: 39-42 
semop(2) 4: 57-63 

example program 4:59-63 
usage 4: 57-59 

setprocset macro 3: 36 

Index 

setting processor priority levels 7: 30 
shared lock 7: 102 
shared memo~ 4:64-88 

control (shmctl) 4: 75-76 
data structure 4: 65-68 
get (shmget) 4: 68-71 
identifier (shmid) 4: 65-68 
operations (shmop) 4: 82-84 
permissions 4: 69-70 
shmctl example program 4: 76-82 
shnruget example program 4: 71-74 
shmop example program 4: 84-88 
usage 4: 65-68 

sharing DMA channels 7: 25 
sharing interrupts 7: 25 
shmat(2) 4: 82-84 
shmctl(2) 4: 75-82 

example program 4: 76-82 
usage 4: 75-76 

shmdt(2) 4: 82-84 
shmget(2) 4: 68-74 

example program 4: 71-74 
usage 4: 68-71 

shmop(2) 4: 82-88 

example program 4:84-88 
usage 4: 82-84 

signals 1: 30, 3: 44-53, 7: 39 

code blocking 3: 45 
handlers 3: 47-51 
sending 3: 52-53 

stacks 3: 53 
types 3: 46 

sleep call 7: 16 

1-11 



Index 

sleep priorities 7: 42 
sleeping processes 7: 16, 37 

software applications packaging (see 
package) 

software latencies 3: 42-43 
space(4) 8: 17-18 

special file 5: 4 
definition 7: 3 

special files 7: 3, 10: 14 
spl 7: 18 

state transitions, process 3: 40 

status flags 7: 19 

stdio . h header file 1: 2, 20 

sticky bit 5: 21 

strcmp function 1: 5-7 

STREAMS buffers 7: 13 

STREAMS message buffers 7: 12-13 
STREAMS messages 7: 13 

string. h 1: 5 (see also header files) 
strings, routines 1: 5-7, 9-10 

subdirectory 5: 4 

symbolic links 5: 4,25, xxv-xxvi 

access 5:31 

and pre-SVR4.0 systems 5: 37 
content of 5: 25 

copy 5: 31-32 

create 5: 27, 29-30 

definition of 5: 25 
examples of creating 5: 30-31 

link 5: 32 

looping with 5: 29 

move 5: 33 
properties of 5: 27- 28 
referenced file 5: 27 

remove 5: 27, 31 

uses of 5: 25-26 

with RFS 5: 34-36 

symlink(2) 5: 29 

1-12 

synchronization 2: 28 
sysadm(1M) 

interface hierarchy 9: 6 

interface modification 9: 1 
system buffers 7: 12-13 

system calls 1: 26-46 

directory and file system 1: 28 
error handling 1: 34-46 

error values 1: 35-46 
file and device 10 1: 27 
IPe 4: 1-88 

list IPe 1: 30 

list memory management 1: 32 

list miscellaneous 1 : 33 

signals 1 : 30 

terminal 10 1: 27 

user processes 1 : 29 
system dump 7: 53 
system file 7: 6, 10: 3 

system panics 7: 52 

system parameters 
enabling tuning 10: 25 
tunable 10: 24 

system scheduler class 3: 15 

T 
task 

action file 9: 11 

change entry 9: 28 

create entry 9: 27 

definition form 9: 30 
delete entry 9: 33 

text mode 6: 3 

ticks, definition 7: 46-47 

time slice, real-time process 3: 30 

time-sharing 

Integrated Software Development Guide 



scheduler class 3: 14 
scheduler parameter table 3: 15 

trace driver 7: 52 

traps 7: 18 
tunable system parameters 

defining 10: 25 
enabling 10: 25 
files containing 10: 24 

modifying 10: 24 

u 
UDSP 10: 20 
umask(1) 5: 18 

UNIX System, files 5: 25 

UNIX system services xviii-xxvi 

update driver software package 
10:21 

user interface 10: 2 

user priority 3: 17 

user privileges 10: 2 

/usr 
directories 5: 58-59 

files 5: 60-61 

v 
/var 

directories 5: 62-64 
files 5: 65-67 

VFS, architecture 5: 26 
VGA 6: 6 

video adapters 6: 6 
video registers 6: 12 
virtual memory xx- xxi 
virtual memory 2: 26-28 (see also 

memory management) 

Index 

VM (virtual memory) (see memory 
management) 

w 
wait(2) 3: 5, 7-8 

wakeup call 7: 16 

waking processes 7: 16, 37 
widget xvi 

write lock 2: 11-12, 16 

X 
XWIN xvi 

y 
yacc(1) xi 

Z 
zero(7) 2:33 

Index 

1-13 





UN I XCI') SYSTEM V RELEASE 4 

INTEGRATEd SoFTWARE 
DEVELoPMENT GuidE 
------<)------
for Intel Processors 
-"--------<)------

The Integrated Software Development GuIde describes, from a programmer's 
perspective, how to develop and package application and device driver software 
under UNIX® System V Release 4. It provides comprehensive information on 
programming using: 

• UNIX System V Release 4 system services and library functions 
• features such as file and record locking, interprocess communication, and 

process scheduling 

• keyboard and display I/ O for Intel processors 
• tools that make it easy to package your application and driver software 

• new multiprocessing features and interfaces used by device drivers 

Use Background Color to Locate 
Your Document Title: 

COLOR 
CODE DOCUMENT TYPE <)-------------<) 

D GENERAL DOCUMENTS 

• USER'S GUIDES 

ISBN 0-13-879479-0 

UNIX 
PRESS 

A Prentice Hall Title 

ADMINISTRATOR'S GUIDES 

D PROGRAMMER'S GUIDES 

• REFERENCE MANUALS 

90000> 

9 7801 798 


