UNIX® SYSTEM V RELEASE 4

INCLUDES MULTIPROCESSING

INTEGRATE
SofrwaRre
Development

Guide

o
for Intel Processors
<

UNIX® SYSTEM V RELEASE 4

INTeGRATEd
SofrwaRe
Development

Guide

1%
- for Intel Processors
<

A

Copyright© 1992, 1991 UNIX System Laboratories, Inc.
Copyright© 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
All Rights Reserved

Printed in USA

Published by Prentice Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omis-
sions or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors, omissions, or statements result from negligence, accident, or any other cause.
USL further assumes no liability arising out of the application or use of any product or system
described herein; nor any liability for incidental or consequential damages arising from the use of this
document. USL disclaims all warranties regarding the information contained herein, whether
expressed, implied or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the
manner described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting of any license to make, use or sell equipment constructed in ac-
cordance with this description. '

USL reserves the right to make changes to any products herein without further notice.

TRADEMARK

Intel386 is a registered trademark of Intel Corporation.

OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

10987654321

ISBN 0-13-879479-0

UNIX
PRESS
A Prentice Hall Title

P R ENTI CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632

Or call: (201) 461-8441

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

Preface to this Volume

Introduction i
Application Programming in the UNIX System Environment vii
UNIX System Calis and Libraries Xviii
Application and Driver Software Packaging XXvii

1 UNIX System Calls and Libraries

Introduction 1-1
Libraries and Header Files 1-2
System Calls 1-26

2 File and Device Input/Output

Input/Qutput System Calls 2-1
File and Record Locking 2-10
Memory Management 2-26
3 Process Management
Introduction 3-1
Program Execution & Process Creation 3-3
The Process Scheduler 3-11
Signals 3-44
Basic Interprocess Communication — Pipes 3-54

Table of Contents i

Table of Contents

Interprocess Communication

Introduction 4-1
Messages 4-3
Semaphores 4-33
Shared Memory 4-64
IPC Programming Example 4-89
Directory and File Management

Introduction 5-1
Structure of the File System 5-2
Symbolic Links 5-25
Summary of UNIX System Files & Directories 5-38
Keyboard and Display Input/Output

Introduction 6-1
Overview of Video Display Programming 6-3
Programming in Text Mode 6-13
Programming Access to Video Memory 6-23
Graphics Mode 6-27
Accessing Video Controller Registers 6-35
Using Virtual Terminals 6-41
Miscellaneous Capabilities 6-67
Comprehensive Video Programming Example 6-75
Graphics Modes 6-88
Text and Graphics Mode IOCTLs 6-95
Driver Software Development

Introduction 7-1
What Is a Device Driver? 7-3

Integrated Software Development Guide

Table of Contents

The Structure of Driver Source Files 7-6
Driver Activities and Responsibilities 7-11
Driver Entry Point Routines 7-23
Kernel Utility Routines 7-29
Driver Debugging Techniques 7-51
Kernel Debugger 7-55
, Converting XENIX System V/386 Drivers to UNIX System

V/386 Release 4 7-63

Driver Programming Examples 7-67

8 Application Software Packaging

An Overview of Software Packaging 8-1

The Packaging Tools 8-4

The Installation Tools 8-10
The Package Information Files 8-11
The Installation Scripts 8-21
Basic Steps of Packaging 8-35
Package Installation Case Studies 8-53

9 Modifying the sysadm Interface

Overview of sysadm Modification 9-1

Planning Your Interface Modifications 9-6

Writing Your Administration Actions 9-11
Writing Your Help Messages 9-12
Packaging Your Interface Modifications 9-21
Deleting Interface Modifications 9-33
Data Validation Tools 9-34

1 0 Driver Software Packaging
Installable Driver (ID) Implementation 10-1
User Interface 10-2

Table of Contents fii

Table of Contents

Modifications for ID 10-3

Commands for Installing Drivers and Rebuilding the Kernel 10-8

The Driver Software Package (DSP) 10-10
Base System Drivers 10-19
Update Driver Software Package (UDSP) 10-21
Installation/Removal Summary 10-22
Tunable System Parameters 10-24
Device Driver Development Methodology 10-26

I\ Manual Pages
Manual Pages A-1

| Index
Permuted Index
Subject Index

v Integrated Software Development Guide

Figures and Tables

Figure 1: A Simple ETI Program

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Flgure 1-8:
Figure 1-9:

Figure 1-10:
Figure 1-11:
Figure 1-12:
Figure 1-13;
Figure 1-14:
Figure 1-15:
Figure 1-16:
Figure 1-17:
Figure 1-18:
Figure 1-19:

Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:

Excerpt from string(3C) Manual Page
How strecmp Is Used in a Program
String Operations
Classifying 8-Bit Character-Coded Integer Valuss
Converting Characters, Integers, or Strings
Standard 1/O Functions and Macros
Math Functions
libgaen Functions
Using argv([1] to Pass a File Name
Using Command Line Arguments to Set Flags
File and Device I/O Functions
Terminal Device Control Functions
Directory and File System Functions
Process Management Functions
Signal Functions
Basic Interprocess Communication Functions
Advanced Interprocess Communication Functions
Memory Management Functions
Miscellaneous System Functions
simplified version of cp
Process Status
Process Primitives
Example of fork
The UNIX System V Release 4 Process Scheduler
Process Priorities (Programmer View)
What Gets Returned by PC_GETPARMS
Process State Transition Diagram
Signal programming example
popen
pclose
ipc_perm Data Structure
Operation Permissions Ccdes
msgget System Call Example
msgctl System Call Example

Table of Contents

3-13
3-16
3-31
3-40
3-51
3-55
3-56
4-6

49

4-13
4-18

Table of Contents

Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

msgop System Call Example
Operation Permissions Codes
semget System Call Example
semctl System Call Example
semop System Call Example

Figure 4-10: Operation Permissions Codes
Figure 4-11: shmget System Call Example
Figure 4-12: shmctl Systam Call Example
Figure 4-13: shmop System Call Example

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:

Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:

vi

A Sample File System
Diagram of a Full Path-Name
Full Path-Name of the /home/starship Directory
Relative Path-Name of the draft Directory
Relative Path-Name from starship to cutline
Example Path-Names
File Types
Description of Output Produced by the 1s -1 Command
umask(1) Settings for Different Security Levels

File Access Permissions

Directory Access Permissions

File Tree with Symbolic Link

Symbolic Links with RFS: Example 1

Symbolic Links with RFS: Example 2

Directory Tree from root

Excerpt from /etc/profile

Sample /etc/vistab File
Intei386 Trace Driver Program Example — Space.c File
Intel386 Trace Driver Program Example — Program Code
Intel386 Trace Driver Program Example — trsav Command
Intel386 Trace Driver Program Example — Header File
Intel386 Trace Driver Program Example — trfmt Command
Floppy Disk Driver Program Example
Floppy Disk Driver Program Example
Mutltithreaded Hard Disk Driver Program Example
Sample #1 prototype File
Sample #2 prototype File
Sample pkginfo File
Sample compver File
Sample depend File
Sample space File

4-28
4-40
4-44
4-52
4-61
4-69
4-73
4-79
4-86
55

5-8

5-10
5-11
5-13
5-14
5-15
5-18
5-21
5-21
5-28
5-35
5-36
5-38
5-55
5-57
7-70
7-71
7-75
7-77
7-78
7-82
7-93
7-109

8-9

8-12
8-14
8-16
8-18

Integrated Software Development Guide

Figure 8-7: Sample copyright File

Figure 8-8: Placing Parameters into the Installation Environment

Figure 8-9: sed Script Format

Figure 8-10:
Figure 8-11:
Figure 8-12:
Flgure 8-13:
Figure 8-14:
Figure 8-15:
Flgure 8-16:
Figure 8-17:
Figure 8-18:
Flgure 8-19:
Figure 8-20:
Figure 8-21:
Figure 8-22:
Figure 8-23:
Figure 8-24:
Figure 8-25:
Figure 8-26:
Figure 8-27:
Figure 8-28:
Figure 8-29:
Figure 8-30:
Figure 8-31:
Figure 8-32:
Figure 8-33:
Figure 8-34:
Figure 8-35:
Figure 8-36:
Figure 8-37:
Figure 8-38:
Figure 8-39:
Figure 8-40:
Figure 8-41:
Figure 8-42:
Figure 8-43:
Figure 8-44:

awk Script Format

Case #1 pkginfo File

Case #1 prototype File

Case Study #1 Request Script

Case #2 prototype File

Case #2 pkginfo File

Case #2 Request Script

Case #2 Postinstall Script

Case #3 pkginfo File

Case #3 prototype File

Case #3 space File

Case #3 Installation Class Action Script (i.admin)
Case #3 Removal Class Action Script (r.cfgdata)
Case #4 pkginfo File

Case #4 copyright File

Case #4 compver File

Case #4 depend File

Case #5a pkginfo File

Case #5a prototype File

Case #5a sed Script (/sbin/inittab)

Case #5a Postinstall Script

Case #5b pkginfo File

Case #5b prototype File

Case #5b Installation Class Action Script (i.inittab)
Case #5b Removal Class Action Script (r.inittab)
Case #5b inittab File

Case #5¢ pkginfo File

Case #5¢ prototype File

Case #5¢ build Script (/sbin/init)

Case #3 pkginfo File

Case #6 prototype File

Case #6 Installation Class Action Script (i.cron)
Case #6 Removal Class Action Script (r.cron)

Case #6 Root crontab File (delivered with package)
Case #6 Sys crontab File (delivered with package)

Figure 9-1: Iltem Help File for One Form
Figure 9-2: Item Help File for Multiple Forms

Table of Contents

Table of Contents

8-19
8-25
8-31
8-32
8-56
8-56
8-57
8-61
8-61
8-62
8-63
8-66
8-66
8-67
8-68
8-69
8-71
8-71
8-71
8-72
8-74
8-74
8-75
8-75
8-77
8-78
8-78
8-79
8-79
8-81
8-81
8-82
8-84
8-85
8-85
8-86
8-86
8-87
9-18
9-19

vil

Table of Contents

Figure 9-3: The Shell Commands

Figure 9-4: The Visual Tools

Figure 10-1: The postinstall script for trace driver
Figure 10-2: The preremovae script for trace driver
Figure 10-3: The pkginfo file for trace driver

Figure 10-4: The prototypea file for trace driver
Figure 10-5: The Master file for trace driver

Figure 10-6: The Systanm file for trace driver

Figure 10-7: The Neda file for trace driver

Table 10-1: Components of Driver Software Package (DSP)
Table 10-2: Base System Driver Definitions

9-39

9-42

10-34
10-36
10-38
10-39
10-40
10-40
10-40
10-11
10-19

viii Integrated Software Development Guide

Preface to this Volume

Introduction i
Audience and Prerequisite Knowledge i
Related Documentation i

Organization iii
The C Connection iv
Hardware/Software Dependencies iv
Information in the Examples iv
Notation Conventions v
Manual Page References vi

Application Programming in the UNIX

System Environment vii
UNIX System Tools and Languages viii
m Tools Covered and Not Covered in This Guide viii
Programming Tools and Languages in the UNIX System
Environment ix
s The C Language ix
= Shell X
m awk X
m lex Xi
m yacc Xi
= m4 Xii
m bc and dc Xii
Character User Interfaces xiii
m curses xiii
m FMLI xiii
m ETI xiv
Graphical User Interfaces XVi
m XWIN Graphical Windowing System XVi
m OPEN LOOK Graphical User Interface xvi

Table of Contents i

Table of Content_s

UNIX System Calls and Libraries xvii
File and Device Input/Output xviii
m File and Record Locking xviii
m Where to Find More Information xix
Memory Management XX
m The Memory Mapping Interface XX
m Where to Find More Information xxi
Process Management and Scheduling xxii
m Where to Find More Information XXii
Interprocess Communications xxiii
m Where to Find More Information XXiv
Symbolic Links XXV
m Where to Find More Information XXVi

Application and Driver Software Packaging xxvii

Packaging Application Software xxvii
m Where to Find More Information Xxviii
Modifying the sysadm Interface xxviii
m Where to Find More Information XXiX
Data Validation Tools XXixX
m Where to Find More Information XXX
Driver Software Packaging XXX
m Where to Find More Information XXX

i Integrated Software Development Guide

Introduction

This book, the Integrated Software Development Guide (ISDG), concentrates on an
application programmer’s view of how to develop and package application
software under UNIX System V, using the system services provided by the
UNIX operating system kernel. The ISDG is designed to give you information
about application programming in a UNIX system environment. It does not
attempt to teach you how to write programs. Rather, it is intended to supple-
ment texts on programming by concentrating on the other elements that are part
of getting application programs into operation. The ISDG supplies information
on how to write application software and installable drivers for new hardware
additions to UNIX System V Release 4.0 for the Intel386 microprocessor.

Throughout this chapter and the rest of the ISDG, you will find pointers and
references to other guides and manuals where information is described in detail.
In particular, you will find numerous references to the Programmer’s Guide: ANSI
C and Programming Support Tools.

The Programmer’s Guide: ANSI C and Programming Support Tools describes the C
programming environment, libraries, compiler, link editor, and file formats. It
also describes the tools provided in the UNIX System/C environment for build-
ing, analyzing, debugging, and maintaining programs. The Programmer’s Guide:
ANSI C and Programming Support Tools and the Integrated Software Development
Guide are closely connected. Much of the information from both used to be in
the Release 3.2 version of the Programmer’s Guide. For Release 4.0 of UNIX Sys-
tem V, the information has been made into a series of guides.

If you are unsure of which book to reference, check the Product Overview and
Master Index. It explains how the document set is organized and where to find
specific information.

Audience and Prerequisite Knowledge

The Integrated Software Development Guide (ISDG) is intended for the Indepen-
dent Software Vendor (ISV) who develops UNIX System software applications
to run on Intel386 microprocessor-based computer systems.

As the title suggests, we are addressing software developers. No special level of
programming involvement is assumed. We hope the book will be useful to peo-
ple who work on or manage large application development projects.

Preface to this Volume i

Introduction

Programmers in the expert class, or those engaged in developing system
software, may find the ISDG lacks the depth of information they need. For
them we recommend the Programmer’s Reference Manual.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory/file structure is assumed. If you feel shaky about your mastery of
these basic tools, you might want to look over the User’s Guide before tackling
this one.

Related Documentation

A variety of documents support the UNIX System V/386. Refer to the Product
Overview and Master Index to help you get acquainted with the documents you
can use with UNIX System V /386 Release 4.0 for the Intel386 microprocessor.

The Master Index helps you to understand general relationships among the docu-
ments and to identify which documents you want to order.

Throughout the ISDG, references are made to certain specific documents listed
in the Product Overview and Master Index. Rather than list the complete title each
time the document is referenced, the following convention is used:

m The UNIX System V386 Release 4 Programmer’s Guide is referred to as the
Programmer’s Guide.

m The UNIX System V/386 Release 4 User’s Reference Manual is referred to as
the User’s Reference Manual.

m The UNIX System V/386 Release 4 System Administrator’s Reference Manual is
referred to as the System Administrator’s Reference Manual.

m The UNIX System V/386 Release 4 Programmer’s Reference Manual is referred
to as the Programmer’s Reference Manual.

m The UNIX System V[386 Release 4 System Files and Devices Reference Manual
is referred to as the System Files and Devices Reference Manual.

m The UNIX System V/386 Release 4 Device Driver Interface/Driver-Kernel Inter-
face (DDI/DKI) Reference Manual, is referred to as the Device Driver Refer-
ence Manual or as the DDI/DKI Reference Manual.

i Integrated Software Development Guide

Introduction

Organization

The material in the ISDG is organized into the following sections and chapters:
m Preface — Application Programming in the UNIX System Environment

Briefly describes what application programming is, introduces program-
ming tools and languages supported in the UNIX system environment
and other UNIX system services you can use to develop and package
application programs, and indicates where to read about them.

m Chapters 1 through 7 — Application and Driver Software Development

This section begins by introducing the UNIX system calls and libraries
you can use to develop application programs, then goes on to provide
detailed information about the use of many of the UNIX system services.
It includes with a sample application that pulls together a lot of the tech-
niques from the preceding chapters. The section concludes with a chapter
on device driver software development which includes two samples of
device driver implementations.

m Chapters 8 through 10 — Application and Driver Software Packaging

This section includes detailed descriptions and case studies about the use
of tools for building application and driver software packages. It outlines
the procedure you use to install the UNIX System software and provides
the details necessary to create a software installation floppy disk set for
your computer. Some broad guidelines are also presented for installing
and removing UNIX programs, as well as examples of installing and
removing scripts. The final chapter, “Driver Software Packaging’’, con-
tains the rules and procedures you need to follow for packaging device
driver software to work on UNIX System V Release 4.0 for the Intel386
microprocessor.

Following all the chapters in the ISDG is an appendix of manual pages unique
to Application and Driver Software Packaging.

An index is included at the end of the ISDG.

Preface to this Volume il

Introduction

The C Connection

The UNIX system supports many programming languages, and C compilers are
available on many different operating systems. Nevertheless, the relationship
between the UNIX operating system and C has always been and remains very
close. Most of the code in the UNIX operating system is written in the C
language, and over the years many organizations using the UNIX system have
come to use C for an increasing portion of their application code. Thus, while
the ISDG is intended to be useful to you no matter what language(s) you are
using, you will find that, unless there is a specific language-dependent point to
be made, the examples assume you are programming in C. The Programmer’s
Guide: ANSI C and Programming Support Tools gives you detailed information
about C language programming in the UNIX environment.

Hardware/Software Dependencies

Nearly all the text in this book is accurate for any computer running UNIX Sys-
tem V Release 4.0, with the exception of hardware-specific information such as
addresses.

If you find commands that work a little differently in your UNIX system
environment, it may be because you are running under a different release of the
software. If some commands just don’t seem to exist at all, they may be
members of packages not installed on your system. If you do find yourself try-
ing to execute a non-existent command, talk to the administrators of your sys-
tem to find out what you have available.

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly
different output. Some displays depend on a particular machine configuration
that may differ from yours. Changes between releases of the UNIX system
software may cause small differences in what appears on your terminal.

iv Integrated Software Development Guide

Introduction

Where complete code samples are shown, we have tried to make sure they com-
pile and work as represented. Where code fragments are shown, while we can’t
say that they have been compiled, we have attempted to maintain the same
standards of coding accuracy for them.

Notation Conventions

Whenever the text includes examples of output from the computer and/or com-
mands entered by you, we follow the standard notation scheme that is common
throughout UNIX System V documentation:

All computer input and output is shown in a constant-width font.
Commands that you type in from your terminal are shown in constant-
width type. Text that is printed on your terminal by the computer is
shown in constant-width type.

Comments added to a display to show that part of the display has been
omitted are shown in italic type and are indented to separate them from
the text that represents computer output or input. Comments that explain
the input or.output are shown in the same type font as the rest of the
display. An italic font is used to show substitutable text elements, such as
the word “filename’’ for example.

Because you are expected to press the key after entering a
command or menu choice, the key is not explicitly shown in
these cases. If, however, during an interactive session, you are expected
to press without having typed any text, the notation is shown.

Control characters are shown by the string ““CTRL-" followed by the
appropriate character, such as “D” (this is known as “CTRL-D”). To
enter a control character, hold down the key marked " (or
") and press the (D] key.

The standard default prompt signs for an ordinary user and root are the
dollar sign ($) and the pound sign (#).

When the # prompt is used in an example, the command illustrated may
be executed only by root.

Preface to this Volume i v

Introduction

Manual Page References

When software components are mentioned in a section of the text for the first
time, a reference to the manual section where the software component is for-
mally described is included in parentheses: component_name(section_number).
The numbered sections are located in the following manuals:

Sections (1), (1C), (1G) User’s Reference Manual

Sections (1), (1M) System Administrator’s Reference Manual
Sections (2), (3) Programmer’s Reference Manual

Sections (4), (5), (7), (8) System Files and Devices Reference Manual

Note that Section 1 is listed for both the User’s Reference Manual and the System
Administrator’s Reference Manual. These manuals describe commands appropri-
ate for general users and system administrators as well as for programmers.

vi Integrated Software Development Guide

Application Programming in the UNIX System
Environment

This section introduces application programming in a UNIX system environ-
ment. It briefly describes what application programming is and then moves on
to a discussion on UNIX system tools and where you can read about them, and
to languages supported in the UNIX system environment and where you can
read about them.

Programmers working on application programs develop software for the benefit
of other, nonprogramming users. Most large commercial computer applications
involve a team of applications development programmers. They may be
employees of the end-user organization or they may work for a software
development firm. Some of the people working in this environment may be
more in the project management area than working programmers.

Application programming has some of the following characteristics:

m Applications are often large and are developed by a team of people who
write requirements, designs, tests, and end-user documents. This implies
use of a project management methodology, including version control
(described in the Programmer’s Guide: ANSI C and Programming Support
Tools), change requests, tracking, and so on.

m Applications must be developed more robustly.

— They must be easy to use, implying character or graphical user
interfaces.

- They must check all incoming data for validity (for example,
using the Data Validation Tools described in Chapter 9).

— They should be able to handle large amounts of data.

m Applications must be easy to install and administer

(see Chapter 8, “Application Software Packaging” and Chapter 9, “Modi-
fying the sysadm Interface”).

Preface to this Volume vii

Application Programming

UNIX System Tools and Languages

Let's clarify the term “UNIX system tools.” In simple terms, it means an exist-
ing piece of software used as a component in a new task. In a broader context,
the term is used often to refer to elements of the UNIX system that might also
be called features, utilities, programs, filters, commands, languages, functions,
and so on. It gets confusing because any of the things that might be called by
one or more of these names can be, and often are, used simply as components
of the solution to a programming problem. The chapter’s aim is to give you
some sense of the situations in which you use these tools, and how the tools fit
together. It refers you to other chapters in this book or to other documents for
more details.

Tools Covered and Not Covered in This Guide

The Integrated Software Development Guide (ISDG) is about tools used in the pro-
cess of creating programs in a UNIX system environment, so let’s take a minute
to talk about which tools we mean, which ones are not going to be covered in
this book, and where you might find information about those not covered here.
Actually, the subject of things not covered in the ISDG might be even more
important to you than the things that are. We couldn’t possibly cover every-
thing you ever need to know about UNIX system tools in this one volume.

Tools not covered in this text:

m the login procedure

m UNIX system editors and how to use them

m how the file system is organized and how you move around in it

m shell programming
Information about these subjects can be found in the User’s Guide and a number
of commercially available texts.

Tools that are covered in this text apply to application software development.
This text also covers tools for packaging application and device driver software
and for customizing the administrative interface.

viil Integrated Software Development Guide

Application Programming

Programming Tools and Languages in the UNIX
System Environment

In this section we describe a variety of programming tools supported in the
UNIX system environment. By “programming tools”” we mean those offered for
use on a computer running a current release of UNIX System V. Since these are
separately purchasable items, not all of them will necessarily be installed on
your machine. On the other hand, you may have programming tools and
languages available on your machine that came from another source and are not
mentioned in this discussion.

The C Language

C is intimately associated with the UNIX systemn since it was originally
developed for use in recoding the UNIX system kernel. If you need to use a lot
of UNIX system function calls for low-level I/O, memory or device manage-
ment, or interprocess communication, C is a logical first choice. Most programs,
however, don’t require such direct interfaces with the operating system, so the
decision to choose C might better be based on one or more of the following
characteristics:

m a variety of data types: characters, integers of various sizes, and floating
point numbers

m low-level constructs (most of the UNIX system kernel is written in C)

m derived data types such as arrays, functions, pointers, structures, and
unions

multidimensional arrays
scaled pointers and the ability to do pointer arithmetic

bitwise operators

a variety of flow-of-control statements: if, if-else, switch, while,
do-while, and for

m a high degree of portability

Refer to the Programmer’s Guide: ANSI C and Programming Support Tools for com-
plete details on C.

Preface to this Volume Ix

Application Programming

It takes fairly concentrated use of the C language over a period of several
months to reach your full potential as a C programmer. If you are a casual pro-
grammer, you might make it easier for yourself if you choose a less demanding
programming facility such as those described below.

Shell

You can use the shell to create programs (new commands). Such programs are
also called shell procedures. Refer to the User’s Guide for information on how
to create and execute shell programs using commands, variables, positional
parameters, return codes, and basic programming control structures.

awk

The awk program (its name is an acronym constructed from the initials of its
developers) scans an input file for lines that match pattern(s) described in a
specification file. Upon finding a line that matches a pattern, awk performs
actions also described in the specification. It is not uncommon that an awk pro-
gram can be written in a couple of lines to do functions that would take a cou-
ple of pages to describe in a programming language like FORTRAN or C. For
example, consider a case where you have a set of records that consist of a key
field and a second field that represents a quantity, and the task is to output the
sum of the quantities for each key. The pseudocode for such a program might
look like this:

- N

SORT RECORDS
Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}
At EOF, write out the last record from the hold area.

N\ . J

X Integrated Software Development Guide

Application Programming

An awk program to accomplish this task would look like this:

{ qty[$1] += $2 }
END { for (key in gty) print key, qtylkey] 1}

This illustrates only one characteristic of awk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a require-
ment of the pseudoprogram.

For detailed information on awk, see the “awk’ chapter in the User’s Guide and
awk(1) in the User’s Reference Manual.

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lex-
ical analyzer is interested in the vocabulary of a language rather than its gram-
mar, which is a system of rules defining the structure of a language. lex can
produce C language subroutines that recognize regular expressions specified by
the user, take some action when a regular expression is recognized, and pass the
output stream on to the next program.

For detailed information on lex, see the ““lex’’ chapter in the
Programmer’s Guide: ANSI C and Programming Support Tools and lex (1) in
the Programmer’s Reference Manual .

yacc

vacc (Yet Another Compiler Compiler) is a tool for describing an input
language to a computer program. yacc produces a C language subroutine that
parses an input stream according to rules laid down in a specification file. The
yacc specification file establishes a set of grammatical rules together with
actions to be taken when tokens in the input match the rules. lex may be used
with yacc to control the input process and pass tokens to the parser that
applies the grammatical rules.

For detailed information on yacc, see the “yacc’’ chapter in the
Programmer’s Guide: ANSI C and Programming Support Tools and yacc (1) in
the Programmer’s Reference Manual .

Preface to this Volume xi

Application Programming

ma

m4 is a macro processor that can be used as a preprocessor for assembly
language and C programs. For details, see the m4 chapter of the Programmer’s
Guide: ANSI C and Programming Support Tools and m4(1) in the Programmer’s
Reference Manual.

bc and dc

bc enables you to use a computer terminal as you would a programmable cal-
culator. You can edit a file of mathematical computations and call bc to execute
them. The bc program uses de. You can use dc directly, if you want, but it
takes a little getting used to since it works with reverse Polish notation. bc and
dc are described in Section 1 of the User’s Reference Manual.

xil Integrated Software Development Guide

Application Programming

Character User Interfaces

curses

Actually a library of C functions, curses is included in this list because the set
of functions comprise a sublanguage for dealing with terminal screens. If you
are writing programs that include interactive user screens, you will want to
become familiar with this group of functions.

For detailed information on curses, see the Programmer’s Guide: Character User
Interface (FMLI and ETI)

FMLI

The Form and Menu Language Interpreter (FMLI) is a high-level programming
tool having two main parts:

m The Form and Menu Language, a programming language for writing
scripts that define how an application will be presented to users. The syn-
tax of the Form and Menu Language is very similar to that of the UNIX
system shell programming language, including variable setting and
evaluation, built-in commands and functions, use of and escape from spe-
cial characters, redirection of input and output, conditional statements,
interrupt signal handling, and the ability to set various terminal attributes.
The Form and Menu Language also includes sets of “descriptors,” which
are used to define or customize attributes of frames and other objects in
your application.

m The Form and Menu Language Interpreter, fmli, which is a command
interpreter that sets up and controls the video display screen on a termi-
nal, using instructions from your scripts to supplement FMLI’s predefined
screen control mechanisms. FMLI scripts can also invoke UNIX system
commands and C executables, either in the background or in full screen
mode. The Form and Menu Language Interpreter operates similarly to
the UNIX command interpreter sh. At run time it parses the scripts you
have written, thus giving you the advantages of quick prototyping and
easy maintenance.

FMLI provides a framework for developers to write applications and application
interfaces that use menus and forms. It controls many aspects of screen
management for you. This means that you do not have to be concerned with
the low-level details of creating or placing frames, providing users with a means

Preface to this Volume Xiii

Application Programming

of navigating between or within frames, or processing the use of forms and
menus. Nor do you need to worry about on which kind of terminal your appli-
cation will be run. FMLI takes care of all that for you.

For details see the FMLI chapter in the Programmer’s Guide: Character User Inter-
face (FMLI and ETI)

ETI

The Extended Terminal Interface (ETI) is a set of C library routines that promote
the development of application programs displaying and manipulating win-
dows, panels, menus, and forms and that run under the UNIX system. ETI con-
sists of

m the low-level (curses) library
m the panel library

m the menu library

m the form library

m the TAM Transition library

The routines are C functions and macros; many of them resemble routines in the
standard C library. For example, there’s a routine printw that behaves much
like print £ and another routine getch that behaves like getc. The automatic
teller program at your bank might use printw to print its menus and getch to
accept your requests for withdrawals (or, better yet, deposits). A visual screen
editor like the UNIX system screen editor vi might also use these and other ETI
routines.

A major feature of ETI is cursor optimization. Cursor optimization minimizes
the amount a cursor has to move around a screen to update it. For example, if
you designed a screen editor program with ETI routines and edited the sentence

ETI is a great package for creating forms and menus.
to read
ETI is the best package for creating forms and menus.

the program would change only “the best” in place of “a great.” The
other characters would be preserved. Because the amount of data
transmitted—the output—is minimized, cursor optimization is also referred to
as output optimization.

xiv Integrated Software Development Guide

Application Programming

Cursor optimization takes care of updating the screen in a manner appropriate
for the terminal on which an ETI program is run. This means that ETI can do

whatever is required to update many different terminal types. It searches the

terminfo database to find the correct description for a terminal.

How does cursor optimization help you and those who use your programs?
First, it saves you time in describing in a program how you want to update
screens. Second, it saves a user’s time when the screen is updated. Third, it
reduces the load on your UNIX system’s communication lines when the updat-
ing takes place. Fourth, you don’t have to worry about the myriad of terminals
on which your program might be run.

Here’s a simple ETI program. It uses some of the basic ETI routines to move a
cursor to the middle of a terminal screen and print the character string
BullsEye. For now, just look at their names and you will get an idea of what
each of them does:

Figure 1: A Simple ETI Program

s | 3

#include <curses.h>

main()

{
initscr();

move (LINES/2 - 1, COLS/2 - 4);
addstr ("Bulls");

refresh();

addstr ("Eye") ;

refresh();

endwin();

}

N\ J

For complete information on ETI, refer to the ETI chapter in the Programmer’s
Guide: Character User Interface (FMLI and ETI).

Preface to this Volume Xv

Application Programming

Graphical User Interfaces

XWIN Graphical Windowing System

The XWIN Graphical Windowing System is a network-transparent window sys-
tem. X display servers run on computers with either monochrome or color bit-
map display hardware. The server distributes user input to and accepts output
requests from various application programs (referred to as “clients”). Each
client is located on either the same machine or on another machine in the net-
work.

The clients use X1ib, a C library routine, to interface with the window system
by means of a stream connection.

“Widgets” are a set of code and data that provide the look and feel of a user
interface. The C library routines used for creating and managing widgets are
called the X Intrinsics. They are built on top of the X Window System, monitor
events related to user interactions, and dispatch the correct widget code to han-
dle the display. Widgets can then call application-registered routines (called
callbacks) to handle the specific application semantics of an interaction. The X
Intrinsics also monitor application-registered, nongraphical events and dispatch
application routines to handle them. These features allow programmers to use
this implementation of an OPEN LOOK toolkit in data base management, net-
work management, process control, and other applications requiring response to
external events.

Clients sometimes use a higher level library of the X Intrinsics and a set of
widgets in addition to x1ib. Refer to the XWIN Graphical Windowing System for
general information about the design of X. The Xlib—C Language Interface is a
reference guide to the low-level C language interface to the XWIN System pro-
tocol.

OPEN LOOK Graphical User Interface

The OPEN LOOK Graphical User Interface is a software application that creates
a user-friendly graphical environment for the UNIX system. It replaces the trad-
itional UNIX system commands with with graphics that include windows,
menus, icons, and other symbols. Using a hand-held pointing device (a
“mouse”’), you manipulate windows by moving them, changing their size and
running them in the background. You can have multiple applications running at
the same time by creating more than one window on your screen.

xvi Integrated Software Development Guide

Application Programming

For more information, refer to the OPEN LOOK Graphical User Interface User’s
Guide and the OPEN LOOK Graphical User Interface Programmer’s Guide/Reference
Manual.

Preface to this Volume xvii

UNIX System Calls and Libraries

This section describes the UNIX system services supplied by UNIX system calls

and libraries for the C programming language. It introduces such topics as the

process scheduler, virtual memory, interprocess communication, file and record

locking, and symbolic links. The system calls and libraries that programs use to
access these UNIX system services are described in detail later in this book.

File and Device Input/Output

UNIX system applications can do all I/O by reading or writing files, because all
I/0 devices, even a user’s terminal, are files in the file-system. Each peripheral
device has an entry in the file-system hierarchy, so that device-names have the
same structure as file-names, and the same protection mechanisms apply to
devices as to files. Using the same I/O calls on a terminal as on any file makes
it easy to redirect the input and output of commands from the terminal to
another file. Besides the traditionally available devices, names exist for disk
devices regarded as physical units outside the file-system, and for absolutely
addressed memory.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent
the sort of error that can occur when two or more users of a file try to update
information at the same time. The classic example is the airlines reservation
system where two ticket agents each assign a passenger to Seat A, Row 5 on the
5 o’clock flight to Detroit. A locking mechanism is designed to prevent such
mishaps by blocking Agent B from even seeing the seat assignment file until
Agent A’s transaction is complete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified por-
tion of the file is locked. (Remember, in the UNIX system, file structure is
undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places
a read lock on a file, other processes can also read the file but all are prevented
from writing to it, that is, changing any of the data. If a process places a write
lock on a file, no other processes can read or write in the file until the lock is
removed. Write locks are also known as exclusive locks. The term shared lock
is sometimes applied to read locks.

xviii Integrated Software Development Guide

UNIX System Services

Another distinction needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the
system calls that read, write, or create files. This is done through a permission
flag established by the file’s owner (or the superuser). Advisory locking means
that the processes that use the file take the responsibility for setting and remov-
ing locks as needed. Thus, mandatory may sound like a simpler and better
deal, but it isn’t so. The mandatory locking capability is included in the system
to comply with an agreement with /usr/group, an organization that
represents the interests of UNIX system users. The principal weakness in the
mandatory method is that the lock is in place only while the single system call
is being made. It is extremely common for a single transaction to require a
series of reads and writes before it can be considered complete. In cases like
this, the term atomic is used to describe a transaction that must be viewed as an
indivisible unit. The preferred way to manage locking in such a circumstance is
to make certain the lock is in place before any I/0O starts, and that it is not
removed until the transaction is done. That calls for locking of the advisory
variety.

Where to Find More Information

Chapter 2 in this book discusses file and device I/O including file and record
locking in detail with a number of examples. There is an example of file and
record locking in the sample application in chapter 4. The manual pages that
specifically address file and record locking are £cnt1(2), lock£(3), and
chmod(2) in the Programmer’s Reference Manual and £cnt1(5) in the System Files
and Devices Reference Manual. f£cnt1(2) is the system call for file and record
locking (although it isn’t limited to that only) £cnt1(5) tells you the file control
options. The subroutine lock£(3) can also be used to lock sections of a file or
an entire file. Setting chmod so that all portions of a file are locked will ensure
that parts of files are not corrupted.

Preface to this Volume Xix

UNIX System Services

Memory Management

The UNIX system includes a complete set of memory-mapping mechanisms.
Process address spaces are composed of a vector of memory pages, each of
which can be independently mapped and manipulated. The memory-
management facilities

m unify the system’s operations on memory

m provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without special-
purpose kernel support

® maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory objects

The system’s virtual memory consists of all available physical memory resources
including local and remote file systems, processor primary memory, swap space,
and other random-access devices. Named objects in the virtual memory are
referenced though the UNIX file system. However, not all file system objects
are in the virtual memory; devices that the UNIX system cannot treat as storage,
such as terminal and network device files, are not in the virtual memory. Some
virtual memory objects, such as private process memory and shared memory
segments, do not have names.

The Memory Mapping Interface

The applications programmer gains access to the facilities of the virtual memory
system through several sets of system calls.

m mmap establishes a mapping between a process’s address space and a vir-
tual memory object.

mprotect assigns access protection to a block of virtual memory
munmap removes a memory mapping

getpagesize returns the system-dependent size of a memory page.

mincore tells whether mapped memory pages are in primary memory

XX Integrated Software Development Guide

UNIX System Services

Where to Find More Information

Chapter 2 in this book gives a detailed description of the virtual memory sys-
tem. Refer to mmap(2), mprotect(2), munmap(2), getpagesize(2), and min-
core(2) in the Programmer’s Reference Manual for these manual pages.

Preface to this Volume xxi

UNIX System Services

Process Management and Scheduling

The UNIX system scheduler determines when processes run. It maintains pro-
cess priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

Scheduler functions give users absolute control over the order in which certain
processes run and the amount of time each process may use the CPU before
another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically in an attempt to give good response time
to interactive processes and good throughput to CPU-intensive processes.

The scheduler offers a real-time scheduling policy as well as a time-sharing pol-
icy. Real-time scheduling allows users to set fixed priorities— priorities that the
system does not change. The highest priority real-time user process always gets
the CPU as soon as it is runnable, even if system processes are runnable. An
application can therefore specify the exact order in which processes run. An
application may also be written so that its real-time processes have a guaranteed
response time from the system.

For most UNIX system environments, the default scheduler configuration works
well and no real-time processes are needed: administrators need not change
configuration parameters and users need not change scheduler properties of
their processes. However, for some applications with strict timing constraints,
real-time processes are the only way to guarantee that the application’s require-
ments are met.

Where to Find More Information

Chapter 3 in this book gives detailed information on the process scheduler,
along with relevant code examples. See also priocnt1(1) in the User’s Refer-
ence Manual, priocnt1(2) in the Programmer’s Reference Manual, and
dispadmin(1M) in the System Administrator’s Reference Manual.

xxii Integrated Software Development Guide

UNIX System Services

Interprocess Communications

Pipes, named pipes, and signals are all forms of interprocess communication.
Business applications running on a UNIX system computer, however, often need
more sophisticated methods of communication. In applications, for example,
where fast response is critical, a number of processes may be brought up at the
start of a business day to be constantly available to handle transactions on
demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation exam-
ple again for a moment, if a customer calls to reserve a seat on the 5 o’clock
flight to Detroit, you don’t want to have to say, ““Yes, sir; just hang on a minute
while I start up the reservations program.” In transaction-driven systems, the
normal mode of processing is to have all the components of the application
standing by waiting for some sort of an indication that there is work to do.

To meet requirements of this type, the UNIX system offers a set of nine system
calls and their accompanying header files, all under the umbrella name of inter-
process communications (IPC).

The IPC system calls come in sets of three; one set each for messages, sema-
phores, and shared memory. These three terms define three different styles of
communication between processes:

messages Communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores Communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con-
tained in an array the size of which is determined by the
system administrator. The default maximum size for
the array is 25.

shared memory Communication takes place through a common area of
main memory. One or more processes can attach a seg-
ment of memory and as a consequence can share what-
ever data is placed there.

Preface to this Volume xxiii

UNIX System Services

The sets of IPC system calls are:

msgget semget shmget
msgctl semctl shmctl
msgop semop shmop

The ““get " calls each return to the calling program an identifier for the type of
IPC facility that is being requested.

The ““ct1” calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data
structures associated with the identifiers picked up by the “ get " calls.

The “op” manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop has calls
that send or receive messages. semop (the only one of the three that is actually
the name of a system call) is used to increment or decrement the value of a
semaphore, among other functions. shmop has calls that attach or detach
shared memory segments.

Where to Find More Information

Chapter 4 in this book gives a detailed description of IPC, with many code
examples that use the IPC system calls. An example of the use of some IPC
features is included in the liber application in chapter 4. The system calls are
described in Section 2 of the Programmer’s Reference Manual.

xxiv Integrated Software Development Guide

UNIX System Services

Symbolic Links

A symbolic link is a special type of file that represents another file. The data in
a symbolic link consists of the path name of a file or directory to which the
symbolic link file refers. The link that is formed is called symbolic to distin-
guish it from a regular (also called a hard) link. A symbolic link differs func-
tionally from a regular link in three major ways.

m Files from different file systems may be linked.

® Directories, as well as regular files, may be symbolically linked by any
user.

m A symbolic link can be created even if the file it represents does not exist.

When a user creates a regular link to a file, a new directory entry is created con-
taining a new file name and the inode number of an existing file. The link
count of the file is incremented.

In contrast, when a user creates a symbolic link, (using the 1n(1) command with
the —s option) both a new directory entry and a new inode are created. A data
block is allocated to contain the path name of the file to which the symbolic link
refers. The link count of the referenced file is not incremented.

Symbolic links can be used to solve a variety of common problems. For exam-
ple, it frequently happens that a disk partition (such as root) runs out of disk
space. With symbolic links, an administrator can create a link from a directory
on that file system to a directory on another file system. Such a link provides

extra disk space and is, in most cases, transparent to both users and programs.

Symbolic links can also help deal with the built-in path names that appear in
the code of many commands. Changing the path names would require chang-
ing the programs and recompiling them. With symbolic links, the path names
can effectively be changed by making the original files symbolic links that point
to new files.

In a shared resource environment like RFS, symbolic links can be very useful.
For example, if it is important to have a single copy of certain administrative
files, symbolic links can be used to help share them. Symbolic links can also be
used to share resources selectively. Suppose a system administrator wants to do
a remote mount of a directory that contains sharable devices. These devices
must be in /dev on the client system, but this system has devices of its own so
the administrator does not want to mount the directory onto /dev. Rather than

Preface to this Volume XXV

UNIX System Services

do this, the administrator can mount the directory at a location other than /dev
and then use symbolic links in the /dev directory to refer to these remote
devices. (This is similar to the problem of built-in path names since it is nor-
mally assumed that devices reside in the /dev directory.)

Finally, symbolic links can be valuable within the context of the virtual file sys-
tem (VFS) architecture. With VFS, new services, such as higher performance
files, network IPC, and FACE servers, may be provided on a file system basis.
Symbolic links can be used to link these services to home directories or to places
that make more sense to the application or user. Thus, you might create a data
base index file in a RAM-based file system type and symbolically link it to the
place where the data base server expects it and manages it.

Where to Find More Information

Chapter 5 in this book discusses symbolic links in detail. Refer to symlink(2)
in the Programmer’s Reference Manual for information on creating symbolic links.
See also stat (2), rename(2), 1ink(2), readlink(2), and unlink(2) in the
same manual, and 1n(1) in the User’s Reference Manual.

xxvi Integrated Software Development Guide

Application and Driver Software Packaging

This section gives the software package developer information on the interfaces
provided by SVR4, specifically package software for SVR4 and how to modify
the administrator’s interface.

The interface modification tools allow you to generate files to deliver as part of
your package. When these files are installed, your package administration tasks
are added to the interface.

Packaging Application Software

Packaging software that will be installed on a computer running UNIX SVR4
differs from packaging in a pre-SVR4 environment. Pre-SVR4 packages deliver
information to the system through script actions, but an SVR4 package does this
through package information files.

A software package is made up of a group of components that together create
the software. These components naturally include the executables that comprise
the software, but they also include at least two information files and can optlon—
ally include other information files and scripts.

The contents of a package fall into three categories:
m required components
m optional package information files
m optional package scripts

A packaging tool, the pkgmk command, is provided to help automate package
creation. It gathers the components of a package on the development machine
and copies and formats them onto the installation medium.

The installation tool, the pkgadd command, copies the package from the instal-
lation medium onto a system and performs system housekeeping routines that
concern the package.

Preface to this Volume xxvii

Application Packaging Tools

Where to Find More Information

Chapter 8 in this book gives complete details on packaging application software,
including package installation case studies. For details on a specific tool, refer
to admin(4), compver(4), copyright(4), depend(4), installf(1M),
pkgadd(1M), pkgask(1IM), pkgchk(1M), pkginfo(1), pkginfo(4), pkgmap(4),
pkamk(1), pkgparam(l), pkgproto(l), pkgrm(1M), pkgtrans(l), proto-
type(d), remove£f(1M), and space(4) manual pages at the end of this volume.

Modifying the sysadm Interface

The UNIX system provides a menu interface to the most common administra-
tive procedures. It is invoked by executing sysadm and is referred to as the
“sysadm interface.”

You can deliver additions or changes to this interface as part of your application
software package. Creating the necessary information for an interface
modification can be done using the tools UNIX provides.

Two commands can be used to modify the interface. edsysadm allows you to
make changes or additions to the interface. It is interactive (much like the
sysadm command itself) and presents a series of prompts for information.
Which prompts appear depend on your response to them. The delsysadm
command deletes menus or tasks from the interface. In addition to these com-
mands, a group of data validation tools are provided to simplify and standard-
ize the programming of administrative interaction.

When you execute edsysadm to define menus and tasks and save those
definitions to be included in your application software package, it creates the
package description file, the menu information file, and a prototype file.

m The package description file contains information used by edsysadm to
change interface modifications already saved for packaging.

m The menu information file contains the menu or task name, where it is
located in the interface structure and, for tasks, what executable to use
when the task is invoked.

m The prototype file created by edsysadm contains entries for all of the
interface modification components that must be packaged with your
software (for example, the menu information file and, for tasks, the exe-
cutables).

xxviil Integrated Software Development Guide

Application Packaging Tools

You must take a number of steps if you intend to modify the sysadm interface
by adding the administration to your package. You have to

m plan your package administration
m write your administration actions
m write your help messages

m package your interface modifications

Where to Find More Information

Chapter 9 in this book gives complete details on modifying the sysadm inter-
face. For details on a specific tool, refer to the manual pages at the end of this
volume, which includes the manual pages for delsysadm(1M) and
edsysadm(1M). The System Administrator’s Guide gives a complete description
of the interface and how to use it. See also the Programmer’s Guide: Character
User Interface (FMLI and ETI) for complete information on FMLIL

Data Validation Tools

Data validation tools are written to help you write any administrative programs
and routines that are part of your software package (this is known as package
administration). They help standardize the appearance of administration
interaction in the UNIX system environment and also simplify development of
scripts and programs requiring administrator input.

There are two types of data validation tools:

® shell commands (to be used in shell scripts)
m visual tools (to be used in FMLI form definitions)

The shell commands perform a series of tasks; the visual tools perform a subsec-
tion of the full series. These tasks are:

m prompting a user for input
m validating the answer

Preface to this Volume XXix

Application Packaging Tools

m formatting and printing a help message when requested

m formatting and presenting an error message when validation fails
m returning the input if it passes validation

m allowing a user to quit the process

Where to Find More Information

Chapter 9 in this book describes the characteristics of these tools and introduces
you to the available tools for all two types. For details on a specific tool, refer
to the manual pages at the end of this volume, which includes ckdate(1),
ckgid(1), ckint(1), ckkeywd(1), ckpath(l), ckrange(l), ckstz(l), ckt ime(1),
ckuid(1), ckyorn(l), dispgid(l), and dispuid(1). The visual tools are also
documented in the Section 1 manual pages.

Driver Software Packaging

The final chapter in this section, “Driver Software Packaging’’, contains the
rules and procedures you need to follow for packaging device driver software
to work on UNIX System V Release 4.0 for the Intel386 microprocessor. As you
may know, writing a device driver carries a lot of responsibility because, as part
of the UNIX operating system kernel, it is assumed to always take the correct
action. “The Trace Driver”, presents a pseudo-device, called the “trace driver,”
that allows the UNIX operating system kernel or other device drivers to report
debugging information without the use of console printf’s. “A Prototype
Floppy Disk Driver”, contains some selected portions of the UNIX System

V /386 Release 4.0 floppy disk device driver source files. “A Sample Driver
Software Package”, shows the ID modules needed to install a device driver and
describes the Install and Remove scripts.

Where to Find More Information

Chapter 10 in this book describes the .characteristics of the Installable Driver (ID)
facility and introduces you to the available tools for the ID facility on UNIX Sys-
tem V/386. For details on a specific tool, refer to the manual pages at the end
of this volume, which includes idbuild(1M), idcheck(1M), idconfig(1M),
idinstall(1M), idmkinit(IM), idmknod(1M), idmkunix(1M), idspace(1M),
idtune(1M), mdevice(), mfsys(4), mtune(d), sdevice(d), sfsys4),
stune(d).

XXX Integrated Software Development Guide

1 UNIX System Calls and Libraries

Introduction 1-1
Libraries and Header Files 12
Header Files 1-2
How to Use Library Functions 1-4
C Library (libc) 1-9
m Subsection 3C Routines 1-9
m Subsection 3S Routines 1-12
Math Library (libm) 1-14
General Purpose Library (libgen) 1-17
Standard /O Library 1-19
m Three Files You Always Have 1-19
m Named Files 1-20
How C Programs Communicate with the Shell 1-22
m Passing Command Line Arguments 1-23
System Calls 1-26
Input/Output and File System Calls 1-27
m File and Device /O 1-27
m Terminal Device Control 1-27
m Directories and File Systems 1-28
Process and Memory System Calls 1-29
m Processes 1-29
m Signals 1-30
m Basic Interprocess Communication 1-30
m Advanced Interprocess Communication 1-31
= Memory Management 1-32
Miscellaneous System Calls 1-33
UNIX System Call Error Handling 1-34

Table of Contents |

Introduction

The chapter introduces the system calls and other system services you can use
to develop application programs. Each application performs a different func-
tion, but goes through the same basic steps: input, processing, and output. For
the input and output steps, most applications interact with an end user at a ter-
minal. During the processing step, sometimes an application needs access to
special services provided by the operating system (for example, to interact with
the file system, control processes, manage memory, and more). Some of these
services are provided through system calls and some through libraries of func-
tions.

UNIX System Calls and Libraries 11

Libraries and Header Files

The standard libraries supplied by the C compilation system contain functions
that you can use in your program to perform input/output, string handling,
and other high-level operations that are not explicitly provided by the C
language. Header files contain definitions and declarations that your program
will need if it calls a library function. They also contain function-like macros
that you can use in your program as you would a function.

In this part, we'll talk a bit more about header files and show you how to use
library functions in your program. We'll also describe the contents of some of
the more important standard libraries, and tell you where to find them in the

Programmer’s Reference Manual. We'll close with a brief discussion of standard
1/0.

Header Files

Header files serve as the interface between your program and the libraries sup-
plied by the C compilation system. Because the functions that perform standard
I/0, for example, very often use the same definitions and declarations, the sys-
tem supplies a common interface to the functions in the header file stdio.h. By
the same token, if you have definitions or declarations that you want to make
available to several source files, you can create a header file with any editor,
store it in a convenient directory, and include it in your program as described in
the first part of this chapter.

Header files traditionally are designated by the suffix .h, and are brought into a
program at compile time. The preprocessor component of the compiler does
this because it interprets the #include statement in your program as a directive.
The two most commonly used directives are #include and #define. As we
have seen, the #include directive is used to call in and process the contents of
the named file. The #define directive is used to define the replacement token
string for an identifier. For example,

#define NULL O

defines the macro NULL to have the replacement token sequence 0. See the sec-
tion on ““C Language”, in the Programmer’s Guide: ANSI C and Programming Sup-
port Tools, for the complete list of preprocessing directives.

1-2 Integrated Software Development Guide

Librarles and Header Files

Many different .h files are named in the Programmer’s Reference Manual. Here
we are going to list a number of them, to illustrate the range of tasks you can
perform with header files and library functions. When you use a library func-
tion in your program, the manual page will tell you which header file, if any,
needs to be included. If a header file is mentioned, it should be included before
you use any of the associated functions or declarations in your program. It's
generally best to put the #include right at the top of a source file.

assert.h assertion checking

ctype.h character handling

errno.h error conditions

float.h floating point limits

limits.h other data type limits

locale.h program’s locale

math.h mathematics

setjmp.h nonlocal jumps

signal.h signal handling

stdarg.h variable arguments

stddef.h common definitions

stdio.h standard input/output

stdlib.h general utilities

string.h string handling

time.h date and time

unistd.h system calls

UNIX System Calls and Libraries 1-3

Libraries and Header Files

How to Use Library Functions

The manual page for each function describes how you should use the function
in your program. Manual pages follow a common format; although, some
manual pages may omit some sections:

m The NAME section names the component(s) and briefly states its purpose.
m The SYNOPSIS section specifies the C language programming interface(s).
The DESCRIPTION section details the behavior of the component(s).

The EXAMPLE section gives examples, caveats and guidance on usage.
The FILES section gives the file names that are built into the program.

The SEE ALSO section lists related component interface descriptions.

The DIAGNOSTICS section outlines return values and error conditions.

The NAME section lists the names of components described in that manual page
with a brief, one-line statement of the nature and purpose of those components.

The SYNOPSIS section summarizes the component interface by compactly
representing the order of any arguments for the component, the type of each
argument (if any) and the type of value the component returns.

The DESCRIPTION section specifies the functionality of components without
stipulating the implementation; it excludes the details of how UNIX System V
implements these components and concentrates on defining the external features
of a standard computing environment instead of the internals of the operating
system, such as the scheduler or memory manager. Portable software should
avoid using any features or side-effects not explicitly defined.

The SEE ALSO section refers the reader to other related manual pages in The
UNIX System V Reference Manual Set as well as other documents. The SEE ALSO
section identifies manual pages by the title which appears in the upper corners
of each page of a manual page.

Some manual pages cover several commands, functions or other UNIX System V
components; thus, components defined along with other related components
share the same manual page title. For example, any references to the function
calloc cite malloc(3) because the function calloc is described with the func-
tion malloc in the manual page entitled malloc(3).

1-4 Integrated Software Development Guide

Librarles and Header Files

As an example manual page, we'll look at the strcmp function, which compares
character strings. The routine is described on the string manual page in Sec-
tion 3, Subsection 3C, of the Programmer’s Reference Manual. Related functions
are described there as well, but only the sections relevant to strcmp are shown
in the following figure.

Figure 1-1: Excerpt from string(3C) Manual Page

a |)

NAME

string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strok - string operations.

SYNOPSIS
#include <string.h>

int stremp(const char *spirl, const char *sptr2);

DESCRIPTION

strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as the first argument is lexicographically less than,
equal to, or greater than the second.

L - y

As shown, the DESCRIPTION section tells you what the function or macro does.
It’s the SYNOPSIS section, though, that contains the critical information about

how you use the function or macro in your program. Note that the first line in
the SYNOPSIS is

#include <string.h>

That means that you should include the header file st ring.h in your program
because it contains useful definitions or declarations relating to st rcmp.

UNIX System Calls and Libraries 1-5

Libraries and Header Files

In fact, string.h contains the strcmp “function prototype” as follows:
extern int strcmp(const char *, const char *);

A function prototype describes the kinds of arguments expected and returned
by a C language function. Function prototypes afford a greater degree of argu-
ment type checking than old-style function declarations, and reduce the chance
of using the function incorrectly. Including string.h, assures that the C com-
piler checks calls to st rcmp against the official interface. You can, of course,
examine string.h in the standard place for header files on your system, usu-
ally the /usr/include directory.

The SYNOPSIS for a C library function closely resembles the C language declara-
tion of the function and its arguments. The SYNOPSIS tells the reader:

m the type of value returned by the function;
m the arguments the function expects to receive when called, if any;
m the argument types.
For example, the SYNOPSIS for the macro feof is:
#include <stdio.h>
int feof(FILE *sfp)
The SYNOPSIS section for feof shows that:
® The macro feof requires the header file stdio.h
m The macro feof returns a value of type int
m The argument sfp is a pointer to an object of type FILE

To use feof in a program, you need only write the macro call, preceded at
some point by the #include control line, as in the following:

#include <stdio.h> /* include definitions */

main() {
FILE *infile; /* define a file pointer */

while (!feof (infile)) { /* until end-of-file */
/* operations on the file */

}

1-6 Integrated Software Development Guide

Libraries and Header Files

By way of further illustration, let’s look at how you might use strcmp in your
own code. The following figure shows a program fragment that will find the

bird of your choice in an array of birds.

Figure 1-2: How strcmp Is Used in a Program

-

#include <string.h>

/* birds must be in alphabetical order */

/* Return the index of the bird in the array. */
/* If the bird is not in the array, return -1 #*/

int is_bird{(const char *string)
{
int low, high, midpoint;
int cmp value;

/* use a bilnary search to find the bird */
low = 0;
high = slzeof (birds)/sizeof (char *) - 1;
while (low <= high)
{

midpoint = (low + high)/2;

1f (cmp_value < Q)
high = midpeint - 1;
else 1f (cmp value > 0)
low = midpoint + 1;
else /* found a match */
return midpoint;
}

return -1;

char *pbirds[] = { "albatross", "canary", "“cardinal", "ostrich", "penguin" };

cmp_value = strcmp(string, birds([midpoint]);

\

UNIX System Calls and Libraries

Libraries and Header Files

The format of a SYNOPSIS section only resembles, but does not duplicate, the
format of C language declarations. To show that some components take varying
numbers of arguments, the SYNOPSIS section uses additional conventions not
found in actual C function declarations:

m Text in courier represents source-code typed just as it appears.
m Text in italic usually represents substitutable argument prototypes.
m Square brackets [] around arguments indicate optional arguments.
m Ellipses ... indicate that the previous arguments may repeat.
m If the type of an argument may vary, the SYNOPSIS omits the type.
For example, the SYNOPSIS for the function printf£ is:
#include <stdio.h>
int printf(char *fmt [, arg ..1)

The SYNOPSIS section for printf shows that the argument arg is optional,
may be repeated and is not always of the same data type. The DESCRIPTION
section of the manual page provides any remaining information about the func-
tion printf and the arguments to it.

The DIAGNOSTICS section specifies return values and possible error conditions.
The text in the DIAGNOSTICS takes a conventional form which describes the
return value in case of successful completion followed by the consequences of
an unsuccessful completion, as in the following example:

On success, 1seek returns the value of the resulting file-offset, as
measured in bytes from the beginning of the file.

On failure, 1seek returns -1, it does not change the file-offset, and
errno equals:
EBADF if £ildes is not a valid open file-descriptor.
EINVAL if whence is not SEEK_SET, SEEK_CUR or SEEK_END.
ESPIPE if £ildes denotes a pipe or FIFO.
The <errno.h> header file defines symbolic names for error conditions which
are described in intro(2) of the Programmer’s Reference Manual. For more infor-

mation on error conditions, see the section entitled “UNIX System Call Error
Handling” in this chapter.

1-8 Integrated Software Development Guide

Libraries and Header Files

C Library (libc)

In this section, we describe some of the more important routines in the standard
C library. As we indicated in the first part of this chapter, 1ibc contains the
system calls described in Section 2 of the Programmer’s Reference Manual, and the
C language functions described in Section 3, Subsections 3C and 35. We'll
explain what each of these subsections contains below. We'll look at system
calls at the end of the section.

Subsection 3C Routines

Subsection 3C of the Programmer’s Reference Manual contains functions and mac-
ros that perform a variety of tasks:

m string manipulation
m character classification
m character conversion
Figure 1-3 lists string-handling functions that appear on the string page in

Subsection 3C of the Programmer’s Reference Manual. Programs that use these
functions should include the header file string.h.

Figure 1-3: String Operations

strcat Append a copy of one string to the end of another.

strncat Append no more than a given number of characters from one
string to the end of another.

strcmp Compare two strings. Returns an integer less than, greater
than, or equal to 0 to show that one is lexicographically less
than, greater than, or equal to the other.

strncmp Compare no more than a given number of characters from the
two strings. Results are otherwise identical to strcmp.

UNIX System Calls'and Libraries 1-9

Libraries and Header Files

Figure 1-3: String Operations (continued)

strcpy Copy a string,.

strncpy Copy a given number of characters from one string to another.
The destination string will be truncated if it is longer than the
given number of characters, or padded with null characters if it
is shorter.

strdup Return a pointer to a newly allocated string that is a duplicate
of a string pointed to.

strchr Return a pointer to the first occurrence of a character in a
string, or a null pointer if the character is not in the string.

strrchr Return a pointer to the last occurrence of a character in a
string, or a null pointer if the character is not in the string.

strlen Return the number of characters in a string.

strpbrk Return a pointer to the first occurrence in one string of any
character from the second, or a null pointer if no character
from the second occurs in the first.

strspn Return the length of the initial segment of one string that con-
sists entirely of characters from the second string.

strcspn Return the length of the initial segment of one string that con-
sists entirely of characters not from the second string.

strstr Return a pointer to the first occurrence of the second string in
the first string, or a null pointer if the second string is not
found.

strtok Break up the first string into a sequence of tokens, each of
which is delimited by one or more characters from the second
string. Return a pointer to the token, or a null pointer if no
token is found.

1-10 Integrated Software Development Guide

Librarles and Header Flles

Figure 1-4 lists functions and macros that classify 8-bit character-coded integer
values. These routines appear on the conv(3) and ctype(3) pages in Subsection
3C of the Programmer’s Reference Manual. Programs that use these routines
should include the header file ctype.h.

Figure 1-4: Classifying 8-Bit Character-Coded Integer Values

isalpha Is ¢ a letter?

isupper Is ¢ an uppercase letter?

islower Is ¢ a lowercase letter?

isdigit Is c a digit [0-9]?

isxdigit Is ¢ a hexadecimal digit [0-9], [A-F], or [a-f]?

isalnum Is ¢ alphanumeric (a letter or digit)?

isspace Is ¢ a space, horizontal tab, vertical tab, new-line, form-feed, or
carriage return?

ispunct Is ¢ a punctuation character (neither control nor
alphanumeric)?

isprint Is ¢ a printing character?

isgraph Same as isprint except false for a space.

iscntrl Is ¢ a control character or a delete character?

isascii Is ¢ an ASCII character?

toupper Change lower case to upper case.

_toupper Macro version of toupper.

tolower Change upper case to lower case.

_tolower Macro version of tolower.

toascii Turn off all bits that are not part of a standard ASCII character;

intended for compatibility with other systems.

UNIX System Calls and Libraries 1-11

Libraries and Header Files

Figure 1-5 lists functions and macros in Subsection 3C of the Programmer’s Refer-
ence Manual that are used to convert characters, integers, or strings from one
representation to another. The left-hand column contains the name that appears
at the top of the manual page; the other names in the same row are related
functions or macros described on the same manual page. Programs that use
these routines should include the header file stdlib.h.

Figure 1-5: Converting Characters, Integers, or Strings

a64l 164a Convert between long integer and base-64
ASCII string.

ecvt fevt gevt | Convert floating point number to string.

13tol 1tol3 Convert between 3-byte packed integer and
long integer.

strtod atof Convert string to double-precision number.

strtol atol atoi | Convert string to integer.

strtoul Convert string to unsigned long,.

Subsection 3S Routines

Subsection 35 of the Programmer’s Reference Manual contains the so-called stan-
dard I/0 library for C programs. Frequently, one manual page describes
several related functions or macros. In Figure 1-6, the left-hand column contains
the name that appears at the top of the manual page; the other names in the
same row are related functions or macros described on the same manual page.
Programs that use these routines should include the header file stdio.h. We'll
talk a bit more about standard I/O in the last subsection of this chapter.

1-12 Integrated Software Development Guide

Libraries and Header Files

Figure 1-6: Standard /O Functlons and Macros

fclose fflush

ferror feof clearerr
fopen freopen fdopen
fread fwrite

fseek rewind ftell
getc getchar fgetc
gets fgets

popen pclose

printf fprintf sprintf
putc putchar fputc
puts fputs

scanf fscanf sscanf
setbuf setvbuf

system

tmpfile

tmpnam tempnam

ungetc

vprintf vfprintf vsprintf

fileno

getw

putw

Close or flush a stream.
Stream status inquiries.
Open a stream.
Input/output.

Reposition a file pointer in a
stream.

Get a character or word from a
stream.

Get a string from a stream.

Begin or end a pipe to/from a
process.

Print formatted output.

Put a character or word on a
stream.

Put a string on a stream.
Convert formatted input.
Assign buffering to a stream.

Issue a command through the
shell.

Create a temporary file.

Create a name for a temporary
file.

Push character back into input
stream.

Print formatted output of a
varargs argument list.

UNIX System Calls and Libraries

1-13

Libraries and Header Files

Math Library (libm)

The math library, 1ibm, contains the mathematics functions supplied by the C
compilation system. These appear in Subsection 3M of the Programmer’s Refer-
ence Manual. Here we describe some of the major functions, organized by the
manual page on which they appear. Note that functions whose names end with
the letter £ are single-precision versions, which means that their argument and
return types are £loat. Programs that use math functions should include the
header file math.h.

Figure 1-7: Math Functions

erf(3M)
erf Com;pute the error function of x, defined as
2 J‘ ~t?
— e ' dt.
Vm
erfc Compute 1.0 - er£ (x), which is used because
of the extreme loss of relative accuracy if erf
is called for large x and the result subtracted
from 1.0 (e.g., for x = 5, 12 places are lost).
exp(3M)
exp expf Compute e*.
cbrt Compute the cube root of x.
log logf Compute the natural logarithm of x.
The value of x must be positive.
loglo0 loglOf Compute the base-ten logarithm of x.
The value of x must be positive.
pow powf Compute x¥.
If x is zero, y must be positive.
If x is negative, y must be an integer.
sqrt sqrtf Compute the non-negative square root of x.
The value of x must be non-negative.

1-14 Integrated Software Development Guide

Libraries and Header Files

Figure 1-7: Math Functions (continued)

floor(3M)

floor floorf Compute the largest integer not greater than x.

ceil ceilf Compute the smallest integer not less than x.

copysign Compute x but with the sign of y.

fmod fmodf Compute the floating point remainder of the
division of x by y: x if y is zero, otherwise the
number f with same sign as x, such that x = iy
+ f for some integer i, and | f| < |y 1.

fabs fabsf Compute | x|, the absolute value of x.

rint Compute as a double-precision floating point
number the integer value nearest the double-
precision floating point argument x, and
rounds the return value according to the
currently set machine rounding mode.

remainder Compute the floating point remainder of the
division of x by y: NaN if y is zero, otherwise
the value r = x - yn, where n is the integer
value nearest the exact value of x/y, and n is
even whenever |n-xfy| = 1/2.

gamma(3M)

gamma lgamma Compute In(| I'(x) |), where I'(x) is defined as
X
et 1at.
0

hypot(3M)

hypot Compute sqrt(x * x + y * y), taking precau-
tions against overflows.

matherr(3M)

matherr Error handling.

UNIX System Calls and Libraries 1-15

Libraries and Header Files

Figure 1-7: Math Functions (continued)

trig(3M)

sin sinf Compute the sine of x, measured in radians.

cos cosf Compute the cosine of x, measured in radians.

tan tanf Compute the tangent of x, measured in radi-
ans.

asin asinf Compute the arcsine of x, in the range
[-rn/2, +m/2].

acos acost Compute the arccosine of x, in the range
[0,+m].

atan atanf Compute the arctangent of x, in the range
(-n/2, +1/2).

atan2 atan2f Compute the arctangent of y/x, in the range
(-m, +7], using the signs of both arguments to
determine the quadrant of the return value.

sinh(3M)

sinh sinhf Compute the hyperbolic sine of x.

cosh coshf Compute the hyperbolic cosine of x.

tanh tanhf Compute the hyperbolic tangent of x.

asinh Compute the inverse hyperbolic sine of x.

acosh Compute the inverse hyperbolic cosine of x.

atanh Compute the inverse hyperbolic tangent of x.

1-16 Integrated Software Development Guide

Libraries and Header Files

General Purpose Library (libgen)

libgen contains general purpose functions, and functions designed to facilitate
internationalization. These appear in Subsection 3G of the Programmer’s Refer-
ence Manual. Figure 1-8 describes functions in 1ibgen. The header files
libgen.h and, occasionally, regexp.h should be included in programs that
use these functions.

Figure 1-8: libgen Functions

advance step Execute a regular expression on a string.

basename Return a pointer to the last element of a path
name.

bgets Read a specified number of characters into a-
buffer from a stream until a specified character
is reached.

bufsplit Split the buffer into fields delimited by tabs

and new-lines.

compile Return a pointer to a compiled regular expres-
sion that uses the same syntax as ed.

copylist Copy a file into a block of memory, replacing
new-lines with null characters. It returns a
pointer to the copy.

dirname Return a pointer to the parent directory name
of the file path name.

eaccess Determine if the effective user ID has the
appropriate permissions on a file.

gmatch Check if name matches shell file name pattern.

isencrypt Use heuristics to determine if contents of a
character buffer are encrypted.

UNIX System Calls and Libraries 1-17

Libraries and Header Files

Figure 1-8: libgen Functions (continued)

mkdirp

p2open p2close

pathfind

regcmp

regex

rmdirp

strccpy strcadd

strecpy

strfind

strrspn

1-18

Create a directory and its parents.

p2open is similar to popen(3S). It establishes
a two-way connection between the parent and
the child. p2close closes the pipe.

Search the directories in a given path for a
named file with given mode characteristics. If
the file is found, a pointer is returned to a
string that corresponds to the path name of the
file. A null pointer is returned if no file is
found.

Compile a regular expression and return a
pointer to the compiled form.

Compare a compiled regular expression against
a subject string.

Remove the directories in the specified path.

strccpy copies the input string to the output
string, compressing any C-like escape
sequences to the real character. strcaddisa
similar function that returns the address of the
null byte at the end of the output string,.

Copy the input string to the output string,
expanding any non-graphic characters with the
C escape sequence. Characters in a third argu-
ment are not expanded.

Return the offset of the first occurrence of the
second string in the first string. —1 is returned
if the second string does not occur in the first.

Trim trailing characters from a string. It
returns a pointer to the last character in the
string not in a list of trailing characters.

Integrated Software Development Guide

Libraries and Header Files

Figure 1-8: libgen Functions (continued)

strtrns Return a pointer to the string that results from
replacing any character found in two strings
with a character from a third string. This func-
tion is similar to the tr command.

Standard I/O Library

The functions in Subsection 3S of the Programmer’s Reference Manual constitute
the standard I/O library for C programs. In this section, we want to discuss
standard I/O in a bit more detail. First, let’s briefly define what I/O involves.
It has to do with

m reading information from a file or device to your program;
m writing information from your program to a file or device;

& opening and closing files that your program reads from or writes to.

Three Files You Always Have

Programs automatically start off with three open files: standard input, standard
output, and standard error. These files with their associated buffering are called
streams, and are designated stdin, stdout, and stderr, respectively. The
shell associates all three files with your terminal by default.

This means that you can use functions and macros that deal with stdin,
stdout, or stderr without having to open or close files. gets, for example,
reads a string from stdin; puts writes a string to stdout. Other functions
and macros read from or write to files in different ways: character at a time,
getc and putc; formatted, scanf and printf; and so on. You can specify
that output be directed to stderr by using a function such as fprintf.
fprintf works the same way as printf except that it delivers its formatted
output to a named stream, such as stderr.

UNIX System Calls and Libraries 1-19

Libraries and Header Files

Named Files

Any file other than standard input, standard output, and standard error must be
explicitly opened by you before your program can read from or write to the file.
You open a file with the standard library function fopen. fopen takes a path
name, asks the system to keep track of the connection between your program
and the file, and returns a pointer that you can then use in functions that per-
form other I/O operations.

The pointer is to a structure called FILE, defined in stdio.h, that contains
information about the file: the location of its buffer, the current character posi-
tion in the buffer, and so on. In your program, then, you need to have a declara-
tion such as

FILE *fin;
which says that £in is a pointer to a FILE. The statement
fin = fopen("filename", "x");

associates a FILE structure with f£ilename, the path name of the file to open,
and returns a pointer to it. The "r" means that the file is to be opened for
reading. This argument is known as the mode. There are modes for reading,
writing, and both reading and writing.

In practice, the file open function is often included in an if statement:

if ((fin = fopen("filename", "r")) == NULL)
(void) fprintf (stderr, "Cannot open input file %s\n",
"filename");

which takes advantage of the fact that fopen returns a NULL pointer if it cannot
open the file. To avoid falling into the immediately following code on failure,
you can call exit, which causes your program to quit:

if ((fin = fopen("filename", "r")) == NULL) ({
(void) fprint£f (stderr, "Cannot open input file %s\n",
“filename") ;
exit (1);

1-20 Integrated Software Development Guide

Libraries and Header Files

Once you have opened the file, you use the pointer £in in functions or macros
to refer to the stream associated with the opened file:

int c:
¢ = getc(fin);

brings in one character from the stream into an integer variable called c. The
variable c is declared as an integer even though we are reading characters
because getc returns an integer. Getting a character is often incorporated in
some flow-of-control mechanism such as

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc are all defined in stdio.h. getc and other macros in the standard I/0O
package keep advancing a pointer through the buffer associated with the
stream; the UNIX system and the standard I/O functions are responsible for
seeing that the bulffer is refilled if you are reading the file, or written to the out-
put file if you are producing output, when the pointer reaches the end of the
buffer.

Your program may have multiple files open simultaneously, 20 or more depend-
ing on system configuration. If, subsequently, your program needs to open
more files than it is permitted to have open simultaneously, you can use the
standard library function fclose to break the connection between the FILE
structure in stdio.h and the path names of the files your program has opened.
Pointers to FILE may then be associated with other files by subsequent calls to
fopen. For output files, an fclose call makes sure that all output has been
sent from the output buffer before disconnecting the file. exit closes all open
files for you, but it also gets you completely out of your process, so you should
use it only when you are sure you are finished.

UNIX System Calis and Libraries 1-21

Libraries and Header Files

How C Programs Communicate with the Shell

Information or control data can be passed to a C program as an argument on
the command line, which is to say, by the shell. When you execute a C pro-
gram, command line arguments are made available to the function main in two
parameters, an argument count, conventionally called argc, and an argument
vector, conventionally called argv. (Every C program is required to have an
entry point named main.) argc is the number of arguments with which the
program was invoked. argv is an array of pointers to character strings that
contain the arguments, one per string. Since the command name itself is con-
sidered to be the first argument, or argv[0], the count is always at least one.
Here is the declaration for main:

int

main(int argc, char *argv[])
For two examples of how you might use run-time parameters in your program,
see the last subsection of this chapter.

The shell, which makes arguments available to your program, considers an
argument to be any sequence of non-blank characters. Characters enclosed in
single quotes (“ abc def’) or double quotes ("abc def") are passed to the
program as one argument even if blanks or tabs are among the characters. You
are responsible for error checking and otherwise making sure that the argument
received is what your program expects it to be.

In addition to argc and argv, you can use a third argument: envp is an array
of pointers to environment variables. You can find more information on envp
in the Programmer’s Reference Manual under exec in Section 2 and in the System
Files and Devices Reference Manual under environ in Section 5.

C programs exit voluntarily, returning control to the operating system, by
returning from main or by calling the exit function. That is, a return (n)
from main is equivalent to the call exit (n). (Remember that main has type
“function returning int.”) Your program should return a value to say whether
it completed successfully or not. The value gets passed to the shell, where it
becomes the value of the $? shell variable if you executed your program in the
foreground. By convention, a return value of zero denotes success, a non-zero
return value means some sort of error occurred. You can use the macros
EXIT_SUCCESS and EXIT_FAILURE, defined in the header file stdlib.h, as
return values from main or argument values for exit.

1-22 Integrated Software Development Guide

Librarles and Header Files

Passing Command Line Arguments

As described above, information or control data can be passed to a C program
as an argument on the command line. When you execute the program, com-

mand line arguments are made available to the function main in two parame-
ters, an argument count, conventionally called argc, and an argument vector,
conventionally called argv. argc is the number of arguments with which the
program was invoked. argv is an array of pointers to characters strings that

contain the arguments, one per string. Since the command name itself is con-
sidered to be the first argument, or argv[01], the count is always at least one.

If you plan to accept run-time parameters in your program, you need to include
code to deal with the information. Figures 1-9 and 1-10 show program frag-
ments that illustrate two common uses of run-time parameters:

m Figure 1-9 shows how you provide a variable file name to a program,
such that a command of the form

$ prog filename
will cause prog to attempt to open the specified file.

m Figure 1-10 shows how you set internal flags that control the operation of
a program, such that a command of the form

$ prog -opr

will cause prog to set the corresponding variables for each of the options
specified. The getopt function used in the example is the most common
way to process arguments in UNIX system programs. getopt is
described in Subsection 3C of the Programmer’s Reference Manual.

UNIX System Calls and Libraries 1-23

Libraries and Header Files

Figure 1-9: Using argv([1] to Pass a File Name

f

#include <stdio.h>

J

int
main(int argc, char *argv(])
{

FILE *fin;

int ch;

switch (argc)
{
case 2:
if ({fin = fopen(argv[l], "r")) == NULL)
{
/* Flrst string ($s) 1is program name {(argv[0]}. #*/
/* Second string (%s) is name of file that could #*/
/* not be opened (argv(1l]). */

(vold) fprintf (stderr, "$s: Cannot open input file %s\n",
argv([0], argv(l]);
return(2);
}
break;
case 1:
fin = stdin;
break;

default:
(vold) fprintf (stderr, "Usage: %s [file]\n", argv(0]};
return(2);

}

while ({ch = getc(fin)) != EOF)
(vold)putchar(ch);

return (0);

-
L

1-24 Integrated Software Development Guide

Libraries and Header Files

Figure 1-10: Using Command Line Arguments to Set Flags

. 3

#include <stdio.h>
#include <stdlib.h>

int
main{int argc, char *argv[])

{
int oflag = 0;

int pflag = 0; /* Function flags */
int rflag = 0;
int ch;
while ({ch = getopt (argc, argv, "opr")) I= -1)
{
/* For options present, set flag to 1. */

/* If unknown options present, print error message. %/

switch (ch)
{
case ‘o’:
oflag = 1;
break;
case ‘p’:
pflag = 1;
break;
case 'r’:
rflag = 1;
break;
default:
(vold) fprintf (stderr, "Usage: %s [-opr]\n", argv([0]};
return(2);
}
}
/* Do other processing controlled by oflag, pflag, rflag. */
return(0);

}

\s J

UNIX System Calls and Libraries 1-25

System Calls

UNIX system calls are the interface between the kernel and the user programs
that run on top of it. The UNIX system kernel is the software on which every-
thing else in the UNIX operating system depends. The kernel manages system
resources, maintains file-systems and supports system-calls. read, write and
the other system calls in Section 2 of the Programmer’s Reference Manual define
what the UNIX system is. Everything else is built on their foundation. Strictly
speaking, they are the only way to access such facilities as the file system, inter-
process communication primitives, and multitasking mechanisms.

Of course, most programs do not need to invoke system calls directly to gain
access to these facilities. If you are writing a C program, for example, you can
use the library functions described in Section 3 of the Programmer’s Reference
Manual. When you use these functions, the details of their implementation on
the UNIX system are transparent to the program, for example, that the system
call read underlies the fread implementation in the standard C library. In
other words, the program will generally be portable to any system, UNIX or
not, with a conforming C implementation. (See Chapter 2 of the Programmer’s
Guide: ANSI C and Programming Support Tools for a discussion of the standard C
library.)

In contrast, programs that invoke system calls directly are portable only to other
UNIX or UNIX-like systems; for that reason, you would not use read in a pro-
gram that performed a simple input/output operation. Other operations, how-
ever, including most multitasking mechanisms, do require direct interaction
with the UNIX system kernel. These operations are the subject of the first part
of this book. This chapter lists the system calls in functional groups, and
includes brief discussions of error handling. For details on individual system
calls, see Section 2 of the Programmer’s Reference Manual.

A C program is automatically linked with the system calls you have invoked
when you compile the program. The procedure may be different for programs
written in other languages. Check the Programmer’s Guide: ANSI C and Program-
ming Support Tools for details on the language you are using.

1-26 Integrated Software Development Guide

System Calls

Input/Output and File System Calls
File and Device /O

These system calls perform basic input/output operations on UNIX system files.

Figure 1-11: File and Device I/O Functions

open
creat
close
read
getmsg
lseek
fentl
ioctl

write
putmsg

open a file for reading or writing

create a new file or rewrite an existing one
close a file descriptor

transfer data from/onto a file or device
get/put message from/onto a stream
move file I/O pointer

file I/O control

device I/O control

Terminal Device Control

These system calls deal with a general terminal interface for the control of asyn-
chronous communications ports.

Figure 1-12: Terminal Device Control Functions

tcgetattr
tcdrain
tcflow
cfgetispeed
cfsetispeed
tcgetsid
tcgetpgrp
tcsetpgrp

tcsetattr
tcflush
tcsendbreak
cfgetospeed
cfsetospeed

get and set terminal attributes

line control functions

line control functions

get baud rate functions

set baud rate functions

get terminal session ID

get terminal foreground process group ID
set terminal foreground process group ID

UNIX System Calls and Libraries.

1-27

System Calis

Directories and File Systems

These system calls allow creation of new directories (and other types of files),
linking to existing files, obtaining or modifying file status information, and
allow you to control various aspects of the file system.

Figure 1-13: Directory and File System Functions

link link to a file

access determine accessibility of a file

mknod make a directory, special, or regular file

chmod fchmod change mode of file

chown fchown lchown | change owner and group of a file

utime set file access and modification times

stat fstat lstat | get file status

pathconf fpathconf get configurable path name variables

getdents read directory entries and put in file system-
independent format

mkdir make a directory

readlink read the value of a symbolic link

rename change the name of a file

rmdir remove a directory

symlink make a symbolic link to a file

unlink remove directory entry

ustat ‘ get file system statistics

sync update super block

mount umount mount/unmount a file system

statfs fstatfs get file system information

sysfs get file system type information

1-28 Integrated Software Development Guide

System Calls

Process and Memory System Calls

Processes

~ These system calls control user processes.

Flgure 1-14: Process Management Functions

fork
execl
execv
exit

wait
setuid
getpgrp
chdir
chroot
nice
getcontext
getgroups
getpid
getuid
getgid
pause
priocntl
setpgid
setsid
kill

execle
execve
_exit
waitpid
setgid
setpgrp
fchdir

setcontext
setgroups
getppid
geteuid
getegid

execlp
execvp

waitid

getpgid

create a new process

execute a file with a list of arguments
execute a file with a variable list
terminate process

wait for child process to change state
set user and group IDs

get and set process group ID

change working directory

change root directory

change priority of a process

get and set current user context

get or set supplementary group IDs
get process and parent process IDs
get real user and effective user

get real group and effective group
suspend process until signal

process scheduler control

set process group ID

set session ID

send a signal to a process or group of
processes

UNIX System Calls and Libraries

1-29

System Calls

Signals

Signals are messages passed by the UNIX system to running processes.

Figure 1-15: Signal Functions

sigaction
sigaltstack
sigignore
sighold
sigset
sigpending
sigprocmask
sigsuspend
sigsend

sigpause
sigrelse
signal

sigsendset

detailed signal management

set/get signal alternate stack context
simplified signal management

simplified signal management

simplified signal management

examine blocked and pending signals
change or examine signal mask

install a signal mask and suspend process

send a signal to a process or group of
processes

Basic Interprocess Communication

These system calls connect processes so they can communicate. pipe is the sys-
tem call for creating an interprocess channel. dup is the call for duplicating an
open file descriptor. (These IPC mechanisms are not applicable for processes on

separate hosts.)

Figure 1-16: Baslc Interprocess Communication Functions

pipe

dup

open file-descriptors for a pipe
duplicate an open file-descriptor

1-30

Integrated Software Development Guide

System Calls

Advanced Interprocess Communication

These system calls support interprocess messages, semaphores, and shared
memory and are effective in data base management. (These IPC mechanisms
are also not applicable for processes on separate hosts.)

Figure 1-17: Advanced Interprocess Communication Functions

nmsgget
msgctl
msgop
semget
semctl
semop
shmget
shmctl
shmop

get message queue

message control operations

message operations

get set of semaphores

semaphore control operations
semaphore operations

get shared memory segment identifier
shared memory control operations
shared memory operations

UNIX System Calls and Libraries

1-31

System Calls

Memory Management

These system calls give you access to virtual memory facilities.

Figure 1-18: Memory Management Functions

getpagesize get system page size

memcnt 1 memory management control

mmap map pages of memory

mprotect set protection of memory mapping
munmap unmap pages of memory

plock lock process, text, or data in memory

brk sbrk dynamically allocate memory space

1-32 Integrated Software Development Guide

System Calls

Miscellaneous System Calls

These are system calls for such things as administration, timing, and other mis-
cellaneous purposes.

Figure 1-19: Miscellaneous System Functions

ulimit
alarm
getrlimit

uname
profil
sysconf

uadmin
time
acct
sysi8é6

setrlimit

stime

get and set user limits

set a process alarm clock

control maximum system resource consump-
tion

get/set name of current UNIX system
execution time profile

method for application’s determination of
value for system configuration

administrative control

get/set time

enable or disable process accounting
machine-specific functions

UNIX System Calls and Libraries

1-33

System Calls

UNIX System Call Error Handling

UNIX system calls that fail to complete successfully almost always return a
value of -1 to your program. (If you look through the system calls in Section 2,
you will see that there are a few calls for which no return value is defined, but
they are the exceptions.) In addition to the ~1 returned to the program, the
unsuccessful system call places an integer in an externally declared variable,
errno. In a C program, you can determine the value in errno if your program
contains the statement

#include <errno.h>

The C language function perror(3C) can be used to print an error message (on
stderr) based on the value of errno. The value in errno is not cleared on
successful calls, so your program should check it only if the system call returned
a —1 indicating an error. The following list identifies the error numbers and
symbolic names defined in the <errno.h> header file, and described in
intro(2) of the Programmer’s Reference Manual.

1-34 Integrated Software Development Guide

System Calls

Error
Number

Symbolic
Name

Description

1

EPERM

ENOCENT

ESRCH

EINTR

EIO

ENXTIO

E2BIG

ENOEXEC

UNIX System Calls and Libraries

Not super-user

Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or the super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

No such file or directory
A file name is specified and the file should exist but fails
to, or one of the directories in a path name fails to exist.

No such process .
No process can be found corresponding to the that
specified by PID in the ki1l or ptrace routine.

Interrupted system call

An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system ser-
vice routine. If execution is resumed after processing the
signal, it will appear as if the interrupted routine call
returned this error condition.

I/O error

Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it
actually applies.

No such device or address

I/0 on a special file refers to a subdevice which does not
exist, or exists beyond the limit of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

Arg list too long

An argument list longer than ARG_MAX bytes is presented
to a member of the exec family of routines. The argument
list limit is sum of the size of the argument list plus the
size of the environment’s exported shell variables.

Exec format error

A request is made to execute a file which, although it has
the appropriate permissions, does not start with a valid for-
mat (see a.out(4)).

1-35

System Calls

Error
Number

Symbolic
Name

Description

9

10

11

12

13

14

1-36

EBADF

ECHILD

EAGAIN

ENOMEM

EACCES

EFAULT

Bad file number

Either a file descriptor refers to no open file, or a read
[respectively, write] request is made to a file that is open
only for writing (respectively, reading).

No child processes
A wait routine was executed by a process that had no
existing or unwaited-for child processes.

No more processes

For example, the fork routine failed because the system’s
process table is full or the user is not allowed to create any
more processes. Or a system call failed because of
insufficient memory or swap space.

Not enough space

During execution of an exec, brk, or sbrk routine, a pro-
gram asks for more space than the system is able to supply.
This is not a temporary condition; the maximum size is a
system parameter. The error may also occur if the arrange-
ment of text, data, and stack segments requires too many
segmentation registers, or if there is not enough swap space
during the fork routine. If this error occurs on a resource
associated with Remote File Sharing (RFS), it indicates a
memory depletion which may be temporary, dependent on
system activity at the time the call was invoked.

Permission denied
An attempt was made to access a file in a way forbidden
by the protection system.

Bad address

The system encountered a hardware fault in attempting to
use an argument of a routine. For example, errno poten-
tially may be set to EFAULT any time a routine that takes a
pointer argument is passed an invalid address, if the sys-
tem can detect the condition. Because systems will differ in
their ability to reliably detect a bad address, on some
implementations passing a bad address to a routine will
result in undefined behavior.

Integrated Software Development Guide

System Calls

Error Symbolic

Number Name Description

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required (e.g., in a call to the mount routine).

16 EBUSY Device busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if
an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context
(e.g., call to the 1ink routine).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate operation
to a device (e.g., read a write-only device).

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required
(e.g., in a path prefix or as an argument to the chdir rou-
tine).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
An invalid argument was specified (e.g., unmounting a
non-mounted device, mentioning an undefined signal in a
call to the signal or kill routine. Also set by the func-
tions described in the math package (3M).

23 ENFILE File table overflow

UNIX System Calls and Libraries

The system file table is full (i.e.,, SYS_OPEN files are open,
and temporarily no more files can be opened).

1-37

System Calis

Error Symbolic

Number Name Description

24 EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors
open at a time.

25 ENOTTY Not a typewriter
A call was made to the ioct1 routine specifying a file that
is not a special character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure pro-
gram that is currently open for writing. Also an attempt to
open for writing or to remove a pure-procedure program
that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size,
FCHR_MAX (see getrlimit).

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device. In the fcntl rou-
tine, the setting or removing of record locks on a file can-
not be accomplished because there are no more record
entries left on the system.

29 ESPIPE Illegal seek
A call to the 1seek routine was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of
links, LINK_MAX, to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error
is returned if the signal is ignored.

1-38 Integrated Software Development Guide

System Calls

Error Symbolic

Number Name Description

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type not
existing on the specified message queue (see msgop(2)).

36 EIDRM Identifier removed
This error is returned to processes that resume execution
due to the removal of an identifier from the file system'’s
name space (see msgct 1(2), semect 1(2), and shmet 1(2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

4 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error
pertains to file and record locking.

46 ENOLCK No record locks available

UNIX System Calis and Libraries

There are no more locks available. The system lock table is
full (see fcnt 1(2)).

1-39

System Calls

Error
Number

Symbolic
Name

Description

60

61

67

1-40

ENOSTR

ENODATA

ETIME

ENCSR

ENONET

ENOPKG

EREMOTE

ENOLINK

Device not a stream
A putmsg or getmsg system call was attempted on a file
descriptor that is not a STREAMS device.

No data available

Timer expired

The timer set for a STREAMS ioctl call has expired. The
cause of this error is device specific and could indicate
either a hardware or software failure, or perhaps a timeout
value that is too short for the specific operation. The status
of the ioctl operation is indeterminate.

Out of stream resources

During a STREAMS open, either no STREAMS queues or
no STREAMS head data structures were available. This is
a temporary condition; one may recover from it if other
processes release resources.

Machine is not on the network

This error is Remote File Sharing (RFS) specific. It occurs
when users try to advertise, unadvertise, mount, or
unmount remote resources while the machine has not done
the proper startup to connect to the network.

Package not installed
This error occurs when users attempt to use a system call
from a package which has not been installed.

Object is remate

This error is RFS specific. It occurs when users try to
advertise a resource which is not on the local machine, or
try to mount/unmount a device (or pathname) that is on a
remote machine.

Link has been severed

This error is RFS specific. It occurs when the link (virtual
circuit) connecting to a remote machine is gone.

Integrated Software Development Guide

System Calis

Error
Number

Symbolic
Name

Description

68

69

70

71

74

76

EADV

ESRMNT

ECOMM

EPROTO

EMULTIHOP

EDOTDOT

EBADMSG

UNIX System Calls and Libraries

Advertise error

This error is RFS spedific. It occurs when users try to
advertise a resource which has been advertised already, or
try to stop the RFS while there are resources still adver-
tised, or try to force unmount a resource when it is still
advertised.

Srmount error

This error is RFS specific. It occurs when an attempt is
made to stop RFS while resources are still mounted by
remote machines, or when a resource is readvertised with a
client list that does not include a remote machine that
currently has the resource mounted.

Communication error on send

This error is RFS spedific. It occurs when the current pro-
cess is waiting for a message from a remote machine, and
the virtual circuit fails. '

Protocol error
Some protocol error occurred. This error is device specific,
but is generally not related to a hardware failure.

Multihop attempted
This error is RFS specific. It occurs when users try to
access remote resources which are not directly accessible.

Error 76
This error is RFS specific. A way for the server to tell the
dlient that a process has transferred back from mount point.

Not a data message
During a read, getmsg, or ioctl I_RECVFD system call
to a STREAMS device, something has come to the head of
the queue that can’t be processed. That something depends
on the system call: ’
read: control information or a passed file descriptor.
getmsg: passed file descriptor.
ioctl: control or data information.

1-41

System Calls

Error
Number

Symbeolic
Name

Description

78

79

80

81

82

85

86

1-42

ENAMETOOLONG

EOVERFLOW
ENOTUNIQ

EBADFD

EREMCHG

ELIBACC

ELIBBAD

ELIBSCN

ELIBMAX

File name too long

The length of the path argument exceeds PATH_MAX, or the
length of a path component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect; see 1imit s(4).

Error 79
Value too large to be stored in data type.

Name not unique on network
Given log name not unique.

File descriptor in bad state
Either a file descriptor refers to no open file or a read
request was made to a file that is open only for writing.

Remote address changed

Cannot access a needed shared library

Trying to exec an a.out that requires a shared library
and the shared library doesn’t exist or the user doesn’t
have permission to use it.

Accessing a corrupted shared library

Trying to exec an a.out that requires a shared library (to
be linked in) and exec could not load the shared library.
The shared library is probably corrupted.

.1ib section in f4a.out corrupted

Trying to exec an a.out that requires a shared library (to
be linked in) and there was erroneous data in the .1ib sec-
tion of the a.out. The .1ib section tells exec what
shared libraries are needed. The a.out is probably cor-
rupted.

Attempting to link in more shared libraries than system
limit :

Trying to exec an a.out that requires more static shared
libraries than is allowed on the current configuration of the
system. See the System Administrator’s Guide.

Integrated Software Development Guide

System Calls

Error Symbolic

Number Name Description

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Error 88
Illegal byte sequence. Handle muitiple characters as a sin-
gle character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered duﬂng path name
traversal exceeds MAXSYMLINKS

91 ERESTART Error 91
Interrupted system call should be restarted.

92 ESTRPIPE Error 92
Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users
Too many users.

95 ENOTSOCK Socket operation on non-socket
Self-explanatory.

96 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a
transport endpoint. Destination address required.

97 EMSGSIZE Message too long
A message sent on a transport provider was larger than the
internal message buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the seman-
tics of the socket type requested.

99 ENOPROTCOPT Protocol not available

UNIX System Calls and Libraries

A bad option or level was specified when getting or setting
options for a protocol.

1-43

System Calis

Error Symbolic
Number Name Description

120 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no
implementation for it exists.

121 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured
into the system or no implementation for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram
transport endpoint.

123 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the sys-
tem or no implementation for it exists. Used for the Inter-
net protocols.

124 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was
used.

125 EADDRINUSE Address already in use
User attempted to use an address already in use, and the
protocol does not allow this.

126 EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with
an address not on the current machine.

127 ENETDOWN Network is down
Operation encountered a dead network.

128 ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host
machine,

1-44 Integrated Software Development Guide

System Calls

Error
Number

Symbolic
Name

Description

131

132

133

134

143

144

145

146

147

ECONNRESET

ENOBUF'S

EISCONN

ENOTCONN

ESHUTDOWN

ETOCOMANYREFS

ETIMEDOUT

ECONNREFUSED

EHOSTDOWN

UNIX System Calls and Libraries

Connection reset by peer

A connection was forcibly closed by a peer. This normally
results from a loss of the connection on the remote host
due to a timeout or a reboot.

No buffer space available

An operation on a transport endpoint or pipe was not per-
formed because the system lacked sufficient buffer space or
because a queue was full.

Transport endpoint is already connected

A connect request was made on an already connected tran-
sport endpoint; or, a sendto or sendmsg request on a con-
nected transport endpoint specified a destination when
already connected.

Transport endpaoint is not connected

A request to send or receive data was disallowed because
the transport endpoint is not connected and (when sending
a datagram) no address was supplied.

Cannot send after transport endpoint shutdown
A request to send data was disallowed because the tran-
sport endpoint had already been shut down.

Too many references: cannot splice

Connection timed out

A connect or send request failed because the connected
party did not properly respond after a period of time. (The
timeout period is dependent on the communication proto-
col.)

Connection refused

No connection could be made because the target machine
actively refused it. This usually results from trying to con-
nect to a service that is inactive on the remote host.

Host is down
A transport provider operation failed because the destina-
tion host was down.

1-45

System Calls

Error Symbolic
Number Name Description

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an-
unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that
already had an operation in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a
connect) was attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

1-46 Integrated Software Development Guide

2 File and Device Input/Output

Input/Output System Calls 2-1
File Descriptors 2-2
Reading and Writing Files 2-3
Opening, Creating and Closing Files 2-5
Random Access — Iseek 2-8
File and Record Locking 2-10
Terminology 2-10
File Protection 2-12
m Opening a File for Record Locking 2-12
m Setting a File Lock 2-13
m Setting and Removing Record Locks 2-16
m Getting Lock Information 2-20
= Deadlock Handling 2-23
Selecting Advisory or Mandatory Locking 2-23
m Caveat Emptor—Mandatory Locking 2-25

Record Locking and Future Releases of the UNIX System 2-25

Memory Management 2-26
Memory Management Facilities 2-26
m Virtual Memory, Address Spaces and Mapping 2-26
m Networking, Heterogeneity and Integrity 2-27
Memory Management Interfaces 2-28
m Creating and Using Mappings 2-29
m Removing Mappings 2-34
m Cache Control 2-35
m Other Mapping Functions 2-38
Address Space Layout 2-39

Table of Contents |

Input/Output System Calls

The lowest level of I/O in UNIX System V provides no buffering or other such
services, but it offers the most control over what happens. System-calls that
represent direct entries into the UNIX System V kernel control all user I/0.
UNIX System V keeps the system-calls that do I/O simple, uniform and regular
to eliminate differences between files, devices and styles of access. The same
read and write system-calls apply to ordinary disk-files and I/O devices such as
terminals, tape-drives and line-printers. They do not distinguish between “ran-
dom” and “sequential” 1/O, nor do they impose any logical record size on files.
Thus, a single, uniform interface handles all communication between programs
and peripheral devices, and programmers can defer specifying devices from
program-development until program-execution time.

All I/0 is done by reading or writing files, because all peripheral 1/O devices,
even a user’s terminal, are files in the file-system. Each supported device has an
entry in the file-system hierarchy, so that device-names have the same structure
as file-names, and the same protection mechanisms work on both devices and
files.

A file is an ordered set of bytes of data on a I/O-device. The size of the file on
input is determined by an end-of-file condition dependent on device-specific
characteristics. The size of a regular-file is determined by the position and
number of bytes written on it, no predetermination of the size of a file is neces-
sary or possible.

Besides the traditionally available devices, names exist for disk devices regarded
as physical units outside the file-system, and for absolutely addressed memory.
The most important device in practice is the user’s terminal. Treating a
communication-device in the same way as any file by using the same 1/0O calls
make it easy to redirect the input and output of commands from the terminal to
another file; although, some differences are inevitable. For example, UNIX Sys-
tem V ordinarily treats terminal input in units of lines because character-erase
and line-delete processing cannot be completed until a full line is typed. Pro-
grams trying to read some large number of bytes from a terminal must wait
until a full line is typed, and then may be notified that some smaller number of
bytes were actually read. All programs must prepare for this eventuality in any
case, because a read from any disk-file returns fewer bytes than requested when
it reaches the end of the file. Ordinarily, reads from a terminal are fully compa-
tible with reads from a disk-file.

File and Device input/Output 2-1

Input/Output System Calls

File Descriptors

UNIX System V File and Device I/O functions denote a file by a small positive
integer called a file-descriptor and declared as follows:

int fildes

where f£ildes represents the file-descriptor, and the file-descriptor denotes an
open file from which data are read or onto which data are written. UNIX Sys-
tem V maintains all information about an open file; the user program refers to
the file only by the file-descriptor. Any I/O on the file uses the file-descriptor
instead of the file-name to denote the file.

Multiple file-descriptors may denote the same file, and each file-descriptor has
associated with it information used to do I/O on the file:

m a file-offset that shows which byte in the file to read or write next;
m file-status and access-modes (e.g., read, write, read[write) [see open(2)];

m the ‘close-on-exec’ flag [see £cnt1(2)].

Doing I/O on the user’s terminal occurs commonly enough that special arrange-
ments make this convenient. When the command interpreter (the “shell’”’) runs
a program, it opens three files, called the standard input, the standard output and
the standard error output, with file-descriptors 0, 1 and 2. All of these are nor-
mally connected to the terminal; thus, a program reading file-descriptor 0 and
writing file-descriptors 1 and 2, can do terminal I/O without opening the files.
If I/0 is redirected to and from files with < and >, as in:

prog <infile >outfile

the shell changes the default assignments for file-descriptors 0 and 1 from the
terminal to the named files. Similar conventions hold for I/O on a pipe. Nor-
mally file-descriptor 2 remains attached to the terminal, so error messages can
go there. In all cases, the shell changes the file assignments, the program does
not. The program can ignore where its output goes, as long as it uses file-
descriptor 0 for input and 1 and 2 for output.

2-2 Integrated Software Development Guide

Input/Output System Calls

Reading and Writing Files

The functions read and write do I/O on files. For both, the first argument is a
file-descriptor, the second argument is a buffer in the user program where the
data comes from or goes to and the third argument is the number of bytes of
data to transfer. Each call returns a count of the number of bytes actually
transferred. These calls look like:

n = read(fildes, buffer, count);

n = write(fildes, buffer, count);

Up to count bytes are transferred between the file denoted by fildes and the
byte array pointed to by buffer. The returned value n is the number of bytes
actually transferred.

For writing, the returned value is the number of bytes actually written; it is gen-
erally an error if this fails to equal the number of bytes requested. In the write
case, n is the same as count except under exceptional conditions, such as I/O
errors or end of physical medium on special files; in a read, however, n may
without error be less than count.

For reading, the number of bytes returned may be less than the number
requested, because fewer than count bytes remained to be read. If the file-offset
is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transferred to reach the end of the file,
also, typewriter-like terminals never return more than one line of input. (When
the file is a terminal, read normally reads only up to the next new-line, which is
generally less than what was requested.)

When a read call returns with n equal to zero, the end of the file has been
reached. For disk-files this occurs when the file-offset equals the current size of
the file. It is possible to generate an end-of-file from a terminal by use of an
escape sequence that depends on the device used. The function read returns 0
to signify end-of-file, and returns -1 to signify an error.

The number of bytes to be read or written is quite arbitrary. The two most
common values are 1, which means one character at a time (“unbuffered”), and
512, which corresponds to a physical block size on many peripheral devices.
This latter size is most efficient, but even character at a time I/O is not overly
expensive. Bytes written affect only those parts of a file implied by the position
of the file-offset and the count; no other part of the file is changed. If the last
byte lies beyond the end of the file, the file grows as needed.

File and Device Input/Output 23

Input/Output System Calls

A simple program using the read and write functions to copy its input to its
output can copy anything, since the input and output can be redirected to any
file or device.

5 3

N\ J

#define BUFSIZE 512

main () /* copy input to output */
{

char buf[BUFSI2E];

int n;

while ((n = read (0, buf, BUFSIZE)) > 0}
write(1, buf, n);
exit (0);
}

If the file size is not a multiple of BUFSIZE, some read will return a smaller
number of bytes to be written by write: the next call to read after that will
return zero indicating end-of-file.

To see how read and write can be used to construct higher level functions like
getchar and putchar, here is an example of getchar which does unbuffered
input:

#define CMASK 0377 /* for making char’s > 0 */

getchar() /* unbuffered single character input */
{

char ¢;

return({read (0, &, 1) > 0) ? ¢ & CMASK : EOF};
}

The variable c must be declared char, because read accepts a character pointer.
The character returned must be masked with 0377 to ensure that it is positive;
otherwise, sign extension may make it negative.

Integrated Software Development Guide

Input/Output System Calls

The second version of getchar does input in big chunks, and hands out the
characters one at a time.

7 M)

#define CMASK 0377 /* for making char’s > 0 */
#define BUFSIZE 512

getchar() /* buffered version */
{
static char buf [BUFSIZE];
static char *bufp = buf;
static int n = 07

if (n == 0} { /* buffer is empty */
n = read (0, buf, BUFSIZE);
bufp = buf;

}

return({(--n >= 0) ? *bufp++ & CMASK : EOF); J
}

Opening, Creating and Closing Files

Other than the default standard input, output and error files, you must expli-
citly open files in order to read or write them. The two functions that do this
are: open and creat [see open(2) and creat(2) in the Programmer’s Reference
Manual]. To read or write a file assumed to exist already, it must be opened by
the following call:

fildes = open(name, oflag);

The argument name is a character string that represents a UNIX System V file-
system path-name. The oflag argument indicates whether the file is to be
read, written, or “updated”, that is, read and written simultaneously. The
returned value fildes is a file-descriptor used to denote the file in subsequent
calls that read, write or otherwise manipulate the file.

File and Device Input/Output 2-5

Input/Output System Calis

The function open resembles the function fopen in the Standard 1/0 Library,
except that instead of returning a pointer to FILE, open returns a file-descriptor
which is just an int [see fopen(3S) and stdio(3S) in the Programmer’s Reference
Manual]. Moreover, the values for the access mode argument oflag are dif-
ferent (the flags are found in /usr/include/fcntl.h):

O_RDONLY for read access.
O_WRONLY for write access.

O_RDWR for read and write access.

The function open returns -1 if any error occurs; otherwise it returns a valid
open file-descriptor.

Trying to open a file that does not exist causes an error; hence, creat is used
to create new files, or to re-write old ones. The creat system-call creates the
given file if it does not exist, or truncates it to zero length if it does exist; creat
also opens the new file for writing and, like open, returns a file-descriptor. Cal-
ling creat as follows:

fildes = creat (name, pmode);

returns a file-descriptor if it created the file called name, and -1 if it did not.
Trying to creat a file that already exists does not cause an error, but if the file
already exists, creat truncates it to zero length.

If the file is brand new, creat creates it with the protection mode specified by
the pmode argument. The UNIX System V file-system associates nine bits of
protection information with a file, controlling read, write and execute permission
for the owner of the file, for the owner’s group, and for any other users. Thus, a
three-digit octal number specifies the permissions most conveniently. For exam-
ple, 0755 specifies read, write and execute permission for the owner, and read and
execute permission for the group and all other users.

2-6 Integrated Software Development Guide

Input/Output System Calis

A simplified version of the UNIX System V utility cp (a program which copies
one file to another) illustrates this:

Figure 2-1: simplified version of cp

(e e)

#define BUFSIZE 512
#define PMODE 0644 /* RW owner, R group & others */

main(argc, argv) /* cp: copy fl to £2 */
int argc;
char *argv([];

int f£1, £2, n;
char buf(BUFSIZE];

if (argc != 3)
error ("Usage: cp from to", NULL);

1f ((f1 = openf(argv(l), 0)) == -1)
error(“cp: can’t open %s", argv(l]);

if ((f2 = creat(argv(2], PMODE)) == -1)
error ("cp: can’t create %s", argv[2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) !=n)
error ("cp: write error", NULL);
exit (0);
}
error(sl, s2) /* print error message and die */
char *sl, *s2;
{
printf(sl, s2);
printf ("\n");

exit (1);

}

s J

The main simplification is that this version copies only one file, and does not
permit the second argument to be a directory.

File and Device Input/Output 27

Input/Output System Calls

As stated earlier, there is a limit, OPEN_MAX, on the number of files which a pro-
cess may have open simultaneously. Accordingly, any program which intends
to process many files must be prepared to re-use file-descriptors. The function
close breaks the connection between a file-descriptor and an open file, and
frees the file-descriptor for use with some other file. Termination of a program
via exit or return from the main program closes all open files.

Random Access — Iseek

Normally, file I/O is sequential: each read or write proceeds from the point
in the file right after the previous one. This means that if a particular byte in
the file was the last byte written (or read), the next I/O call implicitly refers to
the immediately following byte. For each open file, UNIX System V maintains a
file-offset that indicates the next byte to be read or written. If n bytes are read
or written, the file-offset advances by n bytes. When necessary, however, a file
can be read or written in any arbitrary order using 1seek to move around in a
file without actually reading or writing.

To do random (direct-access) 1/0 it is only necessary to move the file-offset to
the appropriate location in the file with a call to 1seek. Calling 1seek as fol-
lows:

lseek (fildes, offset, whence);

or as follows:

location = lseek(fildes, offset, whence);

forces the current position in the file denoted by file-descriptor £ildes to move
to position of fset as specified by whence. Subsequent reading or writing
begins at the new position. The file-offset associated with £ildes is moved to
a position offset bytes from the beginning of the file, from the current posi-
tion of the file-offset or from the end of the file, depending on whence; offset
may be negative. For some devices (e.g., paper tape and terminals) 1seek calls
are ignored. The value of location equals the actual offset from the beginning
of the file to which the file-offset was moved. The argument offset is of type
off_t defined by the header file <types.h> as a long; fildes and whence
are int’s.

2-8 Integrated Software Development Guide

Input/Output System Calls

The argument whence can be SEEK_SET, SEEK_CUR or SEEK_END to specify
that of£set is to be measured from the beginning, from the current position, or
from the end of the file respectively. For example, to append a file, seek to the
end before writing:

lseek (fildes, 0L, SEEK_END);

To get back to the beginning (“rewind”),
lseek (fildes, 0L, SEEK_SET);

Notice the 0L argument; it could also be written as (long) 0.

With 1seek, you can treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of
bytes from any arbitrary point in a file:

e 3

get (fd, p, buf, n) /* read n bytes from position p */
int fd, n;
long p;
char *buf;

lseek (fd, p, SEEK SET); /* move to p */
return{read(fd, buf, n));

o

\

File and Device Input/Output 2-9

File and ReCord Locking

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a syn-
chronization mechanism for programs accessing the same stores of data simul-
taneously. Such processing is characteristic of many multiuser applications, and
the need for a standard method of dealing with the problem has been recog-
nized by standards advocates like /usr/group, an organization of UNIX sys-
tem users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system
calls enforce the locking protocol. In this way, at the cost of a little efficiency,
mandatory locking double checks the programs against accessing the data out of
sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Miscon-
ceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism,
not a security mechanism.

The manual pages for the £cnt 1(2) system call, the 1ock£(3) library function,
and fcnt1(5) data structures and commands are referred to throughout this
section. You should read them before continuing.

Terminology

Before discussing how to use record locking, let us first define a few terms.

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the pro-
grams that use the files.

Cooperating Processes
Processes that work together in some well-defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care-
fully set to restrict noncooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

2-10 Integrated Software Development Guide

Flle and Record Locking

Read (Share) Locks
These are used to gain limited access to sections of files. When a read
lock is put on a record, other processes may also read lock that record,
in whole or in part. No other process, however, may have or obtain a
write lock on an overlapping section of the file. If a process holds a
read lock it may assume that no other process will be writing or updat-
ing that record at the same time. This access method also lets many
processes read the given record. This might be necessary when search-
ing a file, without the contention involved if a write or exclusive lock
were used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a
write lock is put on a record, no other process may read or write lock
that record, in whole or in part. If a process holds a write lock it may
assume that no other process will be reading or writing that record at
the same time.

Advisory Locking
A form of record locking that does not interact with the I/O subsystem.
Advisory locking is not enforced, for example, by creat(2), open(2),
read(2), or write(2). The control over records is accomplished by
requiring an appropriate record lock request before 1/O operations. If
appropriate requests are always made by all processes accessing the file,
then the accessibility of the file will be controlled by the interaction of
these requests. Advisory locking depends on the individual processes
to enforce the record locking protocol; it does not require an accessibil-
ity check at the time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat, open, read, and
write(2) system calls. If a record is locked, then access of that record
by any other process is restricted according to the type of lock on the
record. The control over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations, but an
additional check is made by the system before each 1/O operation to
ensure the record locking protocol is being honored. Mandatory locking
offers an extra synchronization check, but at the cost of some additional
system overhead.

File and Device Input/Output 2-11

File and Record Locking

File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by the superuser. The permissions of the directory in which
the file resides can also affect the ultimate disposition of a file. Note that if the
directory permissions allow anyone to write in it, then files within the directory
may be removed, even if those files do not have read, write or execute permis-
sion for that user. Any information that is worth protecting, is worth protecting
properly. If your application warrants the use of record locking, make sure that
the permissions on your files and directories are set properly. A record lock,
even a mandatory record lock, will only protect the portions of the files that are
locked. Other parts of these files might be corrupted if proper precautions are
not taken.

Only a known set of programs and/or administrators should be able to read or
write a data base. This can be done easily by setting the set-group-ID bit of the
data base accessing programs; see chmod(1). The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of
such file protection, although record locking is not used, is the mail(1) com-
mand. In that command only the particular user and the mail command can
read and write in the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. The file must be opened with at least read accessibility if
read locks are to be done, and with write accessibility for write locks.

Mapped files cannot be locked: if a file has been mapped, any attempt to
NoTe | use file or record locking on the file fails. See mmap(2).

I

For our example we will open our file for both read and write access:

2-12 Integrated Software Development Guide

File and Record Locking

#include <stdio.h>

#include <errno.h>
#include <fentl.h>

int £d; /* fille descriptor */
char *filename;

main(arge, argv)
int argc;
char *argv(];
{
extern void exit (), perror();

/* get data base file name from command line and open the
* file for read and write access.

*/

1f (argc < 2) {
(void) fprintf(stderr, "usage: %s filename\n", argv[0]);
exit (2);

}
filename = argv{l];
fd = open(filename, O_RDWR);
if (fd < 0) {
perror (filename);
exit (2);
}

L Y

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods
depend on how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given
here, one using the fcnt1(2) system call, the other using the /usr/group stan-
dards compatible lockf library function call.

File and Device Input/Output 2-13

File and Record Locking

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero (0) until the end of the maximum file size. This
point extends beyond any real end of the file so that no lock can be placed on
this file beyond this point. To do this the value of the size of the lock is set to
zero. The code using the fcntl system call is as follows:

-)

#include <fentl.h>
#define MAX_TRY 10
int try;

struct flock lck;

try = 0;

/* set up the record locking structure, the address of which
* is passed to the fcntl system call.

*/

lck.l_type = F_WRLCK; /* setting a write lock */

lck.1_whence = 0; /* offset 1 start from beginning of file */
lek.1l_start = OL;

lck.1l_len = QOL; /* until the end of the file address space */

/* Attempt locking MAX TRY times before giving up.
*/
while (fcntl(fd, F_SETLK, &lck) < 0) {
if (errno == EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.
*/
1f (++try < MAX TRY) {
(void) sleep(2);
continue;
}
(void) fprintf (stderr,"File busy try again later!\n");
return;
}
perror ("fcntl®) ;
exit (2);

| J

This portion of code tries to lock a file. This is attempted several times until
one of the following things happens:

2-14 Integrated Software Development Guide

Flle and Record Locking

m the file is locked
E an error occurs

m it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lock£ function, the code is as follows:

7 A

#include <unistd.h>
#define MAX TRY 10
int try;

try = 0;

/* make sure the file pointer

* i1s at the beginning of the file.
*/

lseek (fd, OL, 0);

/* Attempt locking MAX TRY times before giving up.
*/
while (lockf(fd, F_TLOCK, OL) < 0) {
1f (errno == EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.

*/

1f (++try < MAX_TRY) {
sleep(2);
continue;

}
(void) fprintf (stderr,"File busy try again later!\n");
return;

}

perror {(*lockf");

exit (2);

__ Y,

It should be noted that the 1lockf example appears to be simpler, but the

fent 1(2) example exhibits additional flexibility. Using the fcnt1(2) method, it
is possible to set the type and start of the lock request simply by setting a few
structure variables. lockf merely sets write (exclusive) locks; an additional sys-
tem call, 1seek, is required to specify the start of the lock.

File and Device Input/Output 2-15

Flle and Record Locking

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting
and real problem. There are two records (these records may be in the same or
different file) that must be updated simultaneously so that other processes get a
consistent view of this information. (This type of problem comes up, for exam-
ple, when updating the interrecord pointers in a doubly linked list.) To do this
you must decide the following questions:

m What do you want to lock?

m For multiple locks, in what order do you want to lock and unlock the
records?

m What do you do if you succeed in getting all the required locks?
m What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if you cannot obtain
all the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

® wait a certain amount of time, and try again
m abort the procedure and warn the user
m let the process sleep until signaled that the lock has been freed

® some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is
to be inserted has a read lock on it already. The lock on this record must be
changed or promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of the
file, the lock promotion succeeds and the other (sleeping) locks wait. Promoting
(or demoting) a write lock to a read lock carries no restrictions. In either case,
the lock is merely reset with the new lock type. Because the /usr/group
lockf function does not have read locks, lock promotion is not applicable to
that call. An example of record locking with lock promotion follows:

2-16 Integrated Software Development Guide

Flle and Record Locking

7

struct record {
. /* data portion of record */

long prev;
long next;

/* index to previous reccrd in the list */
/* index to next record in the list */
}:
/* Lock promotion using fcntl (2)
* When this routine is entered it is assumed that there are read
* locks on "here" and "next".
* If write locks on "here" and "next" are obtained:
* Set a write lock on "“this",
* Return index to "this" record.
* If any write lock is not obtained:
* Restore read locks on "here" and "next™.
* Remove all other locks.
* Return a =-1.
*/
long
set3lock (this, here, next)
long this, here, next;
{
struct flock lck;-

lck.1l type = F_WRICK;
lck.1l_whence = 0;
lck.1l_start = here;
lck.l len = sizeof(struct record);

/* setting a write lock */

/* promote lock on "here" to write
if (fentl(fd, F_SETLKW, &lck) < 0)
return (-1);

lock */

}
/* lock "this" with write lock */
lck.1l start = this;
if (fentl(fd, F_SETLKW, &lck) < 0)
/* Lock on "this" falled;
* demote lock on “here" to
*/
lck.l type = F_RDICK;
lck.l start = here;
(void) fecntl (fd, F_SETLKW, &lck);
return {-1);

read lock.

}

/* promote lock on "next" to write lock */

\

/* offset 1 start from beginning of file

N

J

(continued on next page)

File and Device Input/Output

217

Flle and Record Locking

_J

(lck.1l_start = next;

if (fontl(fd, F_SETLKW, &lck) < 0) {
/* Lock on "next" falled;
* demote lock cn "here" to read lock,
*/
lck.1l_type = F_RDICK;
lck.1l_start = here;
(void) fentl(fd, F_SETIK, &lck);
/* and remove lock on "this".
*/
lck.1l_type = F_UNLCK;
lck.1l_start = this;
(vold) fentl(fd, F_SETLK, &lck);
return (-1);/* cannot set lock, try again or quit */
}

return (this);
})

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW com-
mand. If the F_SETLK command was used instead, the fcnt 1 system calls
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error return sections.

Let us now look at a similar example using the 1lockf function. Since there are
no read locks, all (write) locks will be referenced generically as locks.

2-18 Integrated Software Development Guide

File and Record Locking

s N

/* Lock promotion using lockf (3)

* When this routine is entered it is assumed that there are
* no locks on "here" and "next".

* If locks are obtalned:

* Set a lock on "this".

* Return index to "thls" record.
* If any lock ls not obtained:

* Remove all other locks.

* Return a -1.

*/

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

{

/* lock "here" */
(vold) lseek(fd, here, 0);
1f (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
return (-1);
}
/* lock "this" */
(vold) lseek(fd, this, 0);
1f (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
/* Lock on "this" failed.
* Clear lock on "here".
*/
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof (struct record));
return (-1);

}

/* lock "next" */
(void) lseek(fd, next, 0);
1f (lockf(fd, F_LOCK, sizeof (struct record)) < 0) {

/* Lock on "next" failed.

* Clear lock on "“here",

*/

(vold) 1seek(fd, here, 0);

(vold) lockf(fd, F _ULOCK, sizeof(struct record));

N)

(continued on next page)

File and Device Input/Output 2-19

File and Record Locking

- N

/* and remove lock on "this".

*/

(void) lseek (fd, this, 0);

(vold) lockf(fd, F_ULOCK, slzeof (struct record));
return (-1);/* cannot set lock, try again or quit */

]

return (this);

}

\L J

Locks are removed in the same manner as they are set, only the lock type is dif-
ferent (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another pro-
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by 1ck. It is pos-
sible to unlock or change the type of lock on a subsection of a previously set
lock. This may cause an additional lock (two locks for one system call) to be
used by the operating system. This occurs if the subsection is from the middle
of the previously set lock.

Getting Lock Information

You can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is
set up as in the previous examples and the F_GETLK command is used in the
fentl call. If the lock passed to £cntl would be blocked, the first blocking
lock is returned to the process through the structure passed to fcntl. That is,
the lock data passed to fcntl is overwritten by blocking lock information. This
information includes two pieces of data that have not been discussed yet, 1_pid
and 1_sysid, that are only used by F_GETLK. (For systems that do not sup-
port a distributed architecture the value in 1_sysid should be ignored.) These
fields uniquely identify the process holding the lock.

If a lock passed to fcntl using the F_GETLK command would not be blocked
by another process s lock, then the 1_type field is changed to F_UNLCK and the
remaining fields in the structure are unaffected. Let us use this capablhty to
print all the segments locked by other processes. Note that if there are several
read locks over the same segment only one of these will be found.

2-20 Integrated Software Development Guide

File and Record Locking

- N

struct flock lck;

/* Find and print "write lock" blocked segments of this file. */
(vold) printf("sysid pid type start length\n");
lck.1l_whence = 0;
lck.l_start = 0L;
lck.l_len = OL;
do {
lck.l_type = F_WRICK;
(vold) fentl(fd, F_GETLK, &lck);
1f (lck.l_type != F_UNLCK) {
(void) printf("%5d %5d %c %8d %8d\n",
lck.1l sysid,
lck.l pid,
(lck.l_type == F_WRLCK) ? *W’ : ‘R‘,
lck.l_start,
lck.l _len);
/* {f thls lock goes to the end of the address
* space, no need to look further, so break ocut.
*/
if (lck.1l_len == 0)
break;
/* otherwise, look for new lock after the one
* just found.
*/
lck.l_start += 1lck.l_len;
}

} while (lck.l_type != F_UNLCK); J

fcntl with the F_GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F_TEST command can also be used to test if there
is a process blocking a lock. This function does not, however, return the infor-
mation about where the lock actually is and which process owns the lock. A
routine using lockf to test for a lock on a file follows:

File and Device Input/Output 2-21

File and Record Locking

s 3

/* £find a blocked record. */

/* seek to beginning of file */

(void) lseek(fd, 0, OL);

/* set the size of the test reglon to zero (0)

* to test until the end of the file address space.

*/

1f (lockf(fd, F_TEST, OL) < 0) {

switch (errno) {

case EACCES:
case EAGAIN:
(void) printf("file is locked by another process\n");
break;
case EBADF:
/* bad argument passed to lockf */
perror ("lockf");
break;
default:
(vold) printf("lockf: unknown error <%d>\n", errnc);
break;

\ J

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for
each file. If the parent were to seek to a point in the file, the child’s file pointer
would also be at that location. This feature has important implications when
using record locking. The current value of the file pointer is used as the refer-
ence for the offset of the beginning of the lock, as described by 1_start, when
using a 1_whence value of 1. If both the parent and child process set locks on
the same file, there is a possibility that a lock will be set using a file pointer that
was reset by the other process. This problem appears in the Lock£(3) function
call as well and is a result of the /usr/group requirements for record locking.
If forking is used in a record locking program, the child process should close
and reopen the file if either locking method is used. This will result in the crea-
tion of a new and separate file pointer that can be manipulated without this
problem occurring. Another solution is to use the £cnt1 system call with a
1_whence value of 0 or 2. This makes the locking function atomic, so that even
processes sharing file pointers can be locked without difficulty.

2-22 Integrated Software Development Guide

File and Record Locking

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record
locking facility. This deadlock handling provides the same level of protection
granted by the /usr/group standard lockf call. This deadlock detection is
only valid for processes that are locking files or records on a single system.
Deadlocks can only potentially occur when the system is about to put a record
locking system call to sleep. A search is made for constraint loops of processes
that would cause the system call to sleep indefinitely. If such a situation is
found, the locking system call will fail and set errno to the deadlock error
number. If a process wishes to avoid the use of the systems deadlock detection
it should set its locks using F_GETLK instead of F_GETLKW.

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the
1/0 system calls is determined at the time the calls are made by the permissions
on the file; see chmod(2). For locks to be under mandatory enforcement, the file
must be a regular file with the set-group-ID bit on and the group execute per-
mission off. If either condition fails, all record locks are advisory. Mandatory
enforcement can be assured by the following code:

File and Device Input/Output 2-23

File and Record Locking

= N

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

if (stat(filename, &buf) < 0) {
perror ("program") ;
exit (2);
}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);
/* set ’set group id bit’ in mode */
mode |= S_ISGID;
1f- (chmod (filename, mode) < 0) {
perror ("program") ;
exit(2);

L : y

Files that are to be record locked should never have any type of execute permis-
sion set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory
locking. This can be done with the command:

chmod +1 file

The 1s(1) command shows this setting when you ask for the long listing format:
1s -1 file

causes the following to be printed:

-rw---1l--- 1 user group size mod_time file

2-24 Integrated Software Development Guide

File and Record Locking

Caveat Emptor—Mandatory Locking

m Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

m If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all such pieces before any 1/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this
way.

m As stated earlier, arbitrary programs should not have unrestricted access
permission to files that are important enough to record lock.

m Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system
environment. In such an environment the system on which the locking process
resides may be remote from the system on which the file and record locks
reside. In this way multiple processes on different systems may put locks upon
a single file that resides on one of these or yet another system. The record locks
for a file reside on the system that maintains the file. It is also important to
note that deadlock detection/avoidance is only determined by the record locks
being held by and for a single system. Therefore, it is necessary that a process
only hold record locks on a single system at any given time for the deadlock
mechanism to be effective. If a process needs to maintain locks over several sys-
tems, it is suggested that the process avoid the sleep-when-blocked features of
fcntl or lockf and that the process maintain its own deadlock detection. If
the process uses the sleep-when-blocked feature, then a timeout mechanism
should be provided by the process so that it does not hang waiting for a lock to
be cleared.

File and Device Input/Output 2-25

Memory Management

Memory Management Facilities

The UNIX system provides a complete set of memory management mechanisms,
providing applications complete control over the construction of their address
space and permitting a wide variety of operations on both process address
spaces and the variety of memory objects in the system. Process address spaces
are composed of a vector of memory pages, each of which can be independently
mapped and manipulated. Typically, the system presents the user with map-
pings that simulate the traditional UNIX process memory environment, but
other views of memory are useful as well.

The UNIX memory-management facilities:
m Unify the system’s operations on memory.

m Provide a set of kernel mechanisms powerful and general enough to sup-
port the implementation of fundamental system services without special-
purpose kernel support.

® Maintain consistency with the existing environment, in particular using
the UNIX file system as the name space for named virtual-memory
objects.

Virtual Memory, Address Spaces and Mapping

The system’s virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the
virtual memory are referenced though the UNIX file system. However, not all
file system objects are in the virtual memory; devices that cannot be treated as
storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
shared memory segments, do not have names.

A process’s address space is defined by mappings onto objects in the system’s
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is execut-
ing. Each page may be mapped (or not) independently. Only process addresses
which are mapped to some system object are valid, for there is no memory asso-
ciated with processes themselves—all memory is represented by objects in the
system’s virtual memory.

2-26 Integrated Software Development Guide

Memory Management

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The virtual memory’s associated
physical storage is thus accessed by transforming process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important charac-
teristic of a mapping is that the object to which the mapping is made is not
affected by the mere existence of the mapping. Thus, it cannot, in general, be
expected that an object has an “awareness” of having been mapped, or of which
portions of its address space are accessed by mappings; in particular, the notion
of a ““page” is not a property of the object. Establishing a mapping to an object
simply provides the potential for a process to access or change the object’s con-
tents.

The establishment of mappings provides an access method that renders an
object directly addressable by a process. Applications may find it advantageous
to access the storage resources they use directly rather than indirectly through
read and write. Potential advantages include efficiency (elimination of
unnecessary data copying) and reduced complexity (single-step updates rather
than the read, modify buffer, write cycle). The ability to access an object and
have it retain its identity over the course of the access is unique to this access
method, and facilitates the sharing of common code and data.

Networking, Heterogeneity and Integrity

VM is designed to fit well with the larger UNIX heterogeneous environment.
This environment makes extensive use of networking to access file systems—file
systems that are now part of the system’s virtual memory. Networks are not
constrained to consist of similar hardware or to be based upon a common
operating system; in fact, the opposite is encouraged, for such constraints create
serious barriers to accommodating heterogeneity. While a given set of processes
may apply a set of mechanisms to establish and maintain the properties of vari-
ous system objects—properties such as page sizes and the ability of objects to
synchronize their own use—a given operating system should not impose such
mechanisms on the rest of the network.

File and Device Input/Output 2-27

Memory Management

As it stands, the access method view of a virtual memory maintains the poten-
tial for a given object (say a text file) to be mapped by systems running the
UNIX memory management system and also to be accessed by systems for
which virtual memory and storage management techniques such as paging are
totally foreign, such as PC-DOS. Such systems can continue to share access to
the object, each using and providing its programs with the access method
appropriate to that system. The unacceptable alternative would be to prohibit
access to the object by less capable systems.

Another consideration arises when applications use an object as a communica-
tions channel, or otherwise try to access it simultaneously. In both cases, the
object is shared; thus, applications must use some synchronization mechanism to
maintain the integrity of their actions on it. The scope and nature of the syn-
chronization mechanism depends on the application. For example, file access on
systems which do not support virtual memory access methods must be indirect,
by way of read and write. Applications sharing files on such systems must
coordinate their access using semaphores, file locking, or some application-
specific protocols. What is required in an environment where mapping replaces
read and write as the access method is an operation, such as £sync, that
supports atomic update operations.

The nature and scope of synchronization over shared objects must remain
application-defined. If the system tried to impose automatic semantics for shar-
ing, it might prohibit other useful forms of mapped access that have nothing to
do with communication or sharing. By providing the mechanism to support
integrity, and leaving it to cooperating applications to apply the mechanism, the
needs of applications are met without eliminating diversity. Note that this
design does not prohibit the creation of libraries that provide abstractions for
common application needs. Not all abstractions on which an application builds
need be supplied by the “operating system.”

Memory Management Interfaces
The applications programmer gains access to VM facilities through several sets

of system calls. The next sections summarize these calls, and provide examples
of their use. For details, see the Programmer’s Reference Manual.

2-28 Integrated Software Development Guide

Memory Management

Creating and Using Mappings

caddr_t
mmap (caddr_t addr, size t len, int prot, int flags, int fd, off t off);

mmap establishes a mapping between a process’s address space and an object in
the system’s virtual memory. All other system functions that contribute to the
definition of an address space are built from mmap, the system’s most funda-
mental function for defining the contents of an address space. The format of an
rmap call is:

paddr = mmap({addr, len, prot, flags, fd, off);

mmap establishes a mapping from the process’s address space at address paddr
for len bytes to the object specified by fd at offset off for len bytes. A successful
call to mmap returns paddr as its result, which is an implementation-dependent
function of the parameter addr and the setting of the MAP_FIXED bit of flags, as
described below. The address range [paddr, paddr + len) must be valid for the
address space of the process and the range [off, off + len) must be valid for the
virtual memory object. (The notation [start, end) denotes the interval from start
to end, including start but excluding end.)

The mapping established by mmap replaces any previous mappings for the
NOTE| process'’s pages in the range [paddr, paddr + len).

The parameter prot determines whether read, execute, write or some combina-
tion of accesses are permitted to the pages being mapped. To deny all access,
set prot to PROT_NONE. Otherwise, specify permissions by an OR of
PROT_READ, PROT EXECUTE, and PROT_WRITE.

File and Device Input/Output 2-29

Memory Management

A write access must fail if PROT_WRITE has not been set, though the behavior
of the write can be influenced by setting MAP_PRIVATE in the flags parameter,
which provides other information about the handling of mapped pages, as
described below:

m MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of
store operations made by this process into the address range defined by
the mapping operation. If MAP_SHARED is specified, write references will
modify the mapped object. No further operations on the object are neces-
sary to effect a change — the act of storing into a MAP_ SHARED mapping
is equivalent to doing a write system call.

The private copy is not created until the first write; until then, other
NoTe | users who have the object mapped MAP_SHARED can change the
object. That is, if one user has an object mapped MAP_PRIVATE and
| another user has the same object mapped MAP_SHARED, and the

MAP_SHARED user changes the object before the MAP_PRIVATE user
does the first write, then the changes appear in the MAP_PRIVATE
user’s copy that the system makes on the first write. If an application
needs isolation from changes made by other processes, it should use
read to make a copy of the data it wishes to keep isolated.

On the other hand, if MAP_PRIVATE is specified, an initial write reference
to a page in the mapped area will create a copy of that page and redirect
the initial and successive write references to that copy. This operation is
sometimes referred to as copy-on-write and occurs invisibly to the process
causing the store. Only pages actually modified have copies made in this
manner. MAP_PRIVATE mappings are used by system functions such as
exec(2) when mapping files containing programs for execution. This per-
mits operations by programs such as debuggers to modify the “text”
(code) of the program without affecting the file from which the program
is obtained.

The mapping type is retained across a fork.

2-30 Integrated Software Development Guide

Memory Management

m MAP_FIXED informs the system that the value returned by mmap must be
addr, exactly. The use of MAP_FIXED is discouraged, as it may prevent an
implementation from making the most effective use of system resources.
When MAP_FIXED is not set, the system uses addr as a hint to arrive at
paddr. The paddr so chosen is an area of the address space that the system
deems suitable for a mapping of len bytes to the specified object. An addr
value of zero grants the system complete freedom in selecting paddr, sub-
ject to constraints described below. A non-zero value of addr is taken as a
suggestion of a process address near which the mapping should be
placed. When the system selects a value for paddr, it never places a map-
ping at address 0, nor replaces any extant mapping, nor maps into areas
considered part of the potential data or stack “segments.” The system
strives to choose alignments for mappings that maximize the performance
of the its hardware resources.

The file descriptor used in a mmap call need not be kept open after the mapping
is established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses occupied
by this mapping; or until the mapping is removed either by process termination
or a call to munmap. Although the mapping endures independent of the
existence of a file descriptor, changes to the file can influence accesses to the
mapped area, even if they do not affect the mapping itself. For instance, should
a file be shortened by a call to t runcate, such that the mapping now
“overhangs” the end of the file, then accesses to that area of the file which
“’does not exist’” will result in SIGBUS signals. It is possible to create the map-
ping in the first place such that it “overhangs” the end of the file — the only
requirement when creating a mapping is that the addresses, lengths, and offsets
specified in the operation be possible (i.e., within the range permitted for the
object in question), not that they exist at the time the mapping is created (or
subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how
it has been mapped (for instance, by attempting a store operation into a map-
ping that was established with only PROT_READ access), then a SIGSEGV signal
will result. SIGSEGV signals will also result on any attempt to reference an
address not defined by any mapping.

File and Device Input/Output 2-31

Memory Management

In general, if a program makes a reference to an address that is inconsistent
with the mapping (or lack of a mapping) established at that address, the system
will respond with a SIGSEGV violation. However, if a program makes a refer-
ence to an address consistent with how the address is mapped, but that address
does not evaluate at the time of the access to allocated storage in the object
being mapped, then the system will respond with a SIGBUS violation. In this
manner a program (or user) can distinguish between whether it is the mapping
or the object that is inconsistent with the access, and take appropriate remedial
action.

Using mmap to access system memory objects can simplify programs in a variety
of ways. Keeping in mind that mmap can really be viewed as just a means to
access memory objects, it is possible to program using mmap in many cases
where you might program with read or write. However, it is important to
realize that mmap can only be used to gain access to memory objects — those
objects that can be thought of as randomly accessible storage. Thus, terminals
and network connections cannot be accessed with mmap because they are not
“memory.” Magnetic tapes, even though they are memory devices, can not be
accessed with mmap because storage locations on the tape can only be addressed
sequentially. Some examples of situations which can be thought of as candi-
dates for use of mmap over more traditional methods of file access include:

m Random access operations — either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is vari-
able, create “windows” of mappings to the object.

m Efficiency — even in situations where access is sequential, if the object
being accessed can be accessed via mmap, an efficiency gain may be
obtained by avoiding the copying operations inherent in accesses via
read or write.

m Structured storage — if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to
the file is treated just as though the tables were in memory. Previously,
programs could not simply alter storage or tables in memory and save
them for access in subsequent runs; however, when the addresses of a
table are defined by mappings to a file, then changes to that storage are
changes to the file, and are thus automatically recorded in it.

2-32 Integrated Software Development Guide

Memory Management

m Scattered storage — if a program requires scattered regions of storage,
such as multiple heaps or stack areas, such areas can be defined by map-
ping operations during program operation.

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Mapping /dev/zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap. /dev/zero is a special
device, that responds to read as an infinite source of bytes with the value 0, but
when mapped creates an unnamed object to back the mapped region of
memory. The following code fragment demonstrates a use of this to create a
block of scratch storage in a program, at an address of the system’s choosing.

e)

/*

* Function to allocate a block of zerced storage. Parameter
* 1s the number of bytes desired. The storage ls mapped as
* MAP_SHARED, so that if a fork occurs, the child process
* will be able to access and modify the storage. If we wished
* to cause the child’s modifications (as well as those by the
* parent) to be invisible to the ancestry of processes, we
* would use MAP PRIVATE.
*/
caddr t
get_zero_storage (Int len);
{
int fd;
caddr_t result;

1f ((fd = open("/dev/zero", O RDWR)) == -1)
return ({caddr t)-1);°
result = mmap(0, len, PROT_READ|PROT WRITE, MAP_SHARED, fd, 0);
(void) close(fd);
return (result);

}

|\ J

As written, this function permits a hierarchy of processes to use the area of allo-
cated storage as a region of communication (for implicit interprocess communi-
cation purposes). Later in this chapter we will describe a set of system facilities
that provide a similar function packaged for accomplishing the same purpose
without requiring that the processes be in a parent-child hierarchy.

File and Device Input/Output 2-33

Memory Management

In some cases, devices or files are only useful if accessed via mapping. An
example of this is frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate ran-
domly on the addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define
multiple pages of an address space, there is absolutely no restriction that subse-
quent operations on those addresses must operate on the same number of
pages. For instance, an mmap operation defining ten pages of an address space
may be followed by subsequent munmap (see below) operations that remove
every other page from the address space, leaving five mapped pages each fol-
lowed by an unmapped page. Those unmapped pages may subsequently be
mapped to different locations in the same or different objects, or the whole
range of pages (or any partition, superset, or subset of the pages) used in other
mmap or other memory management operations. Further, it must be noted that
any mapping operation that operates on more than a single page can “partially
succeed” in that some parts of the address range can be affected even though
the call returns a failure. Thus, an mmap operation that replaces another map-
ping, if it fails, may have deleted the previous mapping and failed to replace it.
Similarly, other operations (unless specifically stated otherwise) may process
some pages in the range successfully before operating on a page where the
operation fails.

Not all device drivers support memory mapping. mmap fails if you try to map a
device that does not support mapping.

Removing Mappings

int
munmap (caddr_t addr, size_t len);

munmap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process. It is not an error to remove mappings
from addresses that do not have them, and any mapping, no matter how it was
established, can be removed with munmap. munmap does not in any way affect
the objects that were mapped at those addresses.

2-34 Integrated Software Development Guide

Memory Management

Cache Control

The UNIX memory management system can be thought of as a form of “cache
management”, in which a processor’s primary memory is used as a cache for
pages from objects from the system’s virtual memory. Thus, there are a number
of operations which control or interrogate the status of this “‘cache”, as
described in this section.

Memory Cache Control

int
memcntl (caddr_t addr, size_t len, int cmd, caddr t arg, int attr, int mask);

memcntl provides several control operations over mappings in the range [addr,
addr + len), including locking pages into physical memory, unlocking them, and
writing pages to secondary storage. The functions described in the rest of this
section offer simplified interfaces to the mement1 operations.

Memory Page Locking

int
mlock (caddr_t addr, size t len);

int
munlock (caddr_t addr, size t len);

mlock causes the pages referenced by the mapping in the range [addr, addr +
len) to be locked in physical memory. References to those pages (through other
mappings in this or other processes) will not result in page faults that require an
I/0 operation to obtain the data needed to satisfy the reference. Because this
operation ties up physical system resources, and has the potential to disrupt
normal system operation, use of this facility is restricted to the superuser. The
system prohibits more than a configuration-dependent limit of pages to be
locked in memory simultaneously, the call to mlock will fail if this limit is
exceeded.

File and Device Input/Output 2-35

Memory Management

munlock releases the locks on physical pages. If multiple mlock calls are
made through the same mapping, only a single munlock call will be required
to release the locks (in other words, locks on a given mapping do not nest.)
However, if different mappings to the same pages are processed with mlock,
then the pages will stay locked until the locks on all the mappings are released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap operation or removed explicitly with munmap. A lock
will be transferred between pages on the “copy-on-write”” event associated with
a MAP_PRIVATE mapping, thus locks on an address range that includes
MAP_PRIVATE mappings will be retained transparently along with the copy-
on-write redirection (see mmap above for a discussion of this redirection).

Address Space Locking

int
mlockall (int flags);

int
munlockall (void);

mlockall and munlockall are similar in purpose and restriction to mlock
and munlock, except that they operate on entire address spaces. mlockall
accepts a flags argument built as a bit-field of values from the set:

MCL_CURRENT Current mappings
MCL_FUTURE Future mappings

If flags is MCL_CURRENT, the lock is to affect everything currently in the address
space. If flags is MCL,_FUTURE, the lock is to affect everything added in the
future. If flags is (MCL_CURRENT | MCL_FUTURE), the lock is to affect both
current and future mappings.

munlockall removes all locks on all pages in the address space, whether esta-
blished by mlock or mlockall.

2-36 Integrated Software Development Guide

Memory Management

Memory Cache Synchronization

int
msync (caddr_t addr, size_t len, Int flags);

msync supports applications which require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent com-
munications in a distributed environment. msync causes all modified copies of
pages over the range [addr, addr + len) to be flushed to the objects mapped by
those addresses. In the cache analogy discussed previously, msync is the cache
“‘write-back,” or flush, operation. It is similar in purpose to the £sync opera-
tion for files.

msync optionally invalidates such cache entries so that further references to the
pages cause the system to obtain them from their permanent storage locations.

The flags argument provides a bit-field of values that influences the behavior of
msync. The bit names and their interpretations are:

MS_SYNC synchronized write
MS_ASYNC return immediately
MS_INVALIDATE invalidate caches

MS_SYNC causes msync to return only after all I/O operations are complete.
MS_ASYNC causes msync to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be reobtained from the ob]ect s
storage upon the next reference.

File and Device Input/Output 2-37

Memory Management

Memory Page Residency

int
mincore (caddr_t addr, size t len, char *vec);

mincore determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). Using the “cache concept”
described earlier, this function can be viewed as an operation that interrogates
the status of the cache, and returns an indication of what is currently resident in
the cache. The status is returned as a char-per-page in the character array refer-
enced by *vec (which the system assumes to be large enough to encompass all
the pages in the address range). Each character contains either a ““1”” (indicating
that the page is resident in the system’s primary storage), or a “‘0”’ (indicating
that the page is not resident in primary storage.) Other bits in the character are
reserved for possible future expansion — therefore, programs testing residency
should test only the least significant bit of each character.

mincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this infor-
mation may quickly be outdated. Only locked pages are guaranteed to remain
in memory.

Other Mapping Functions

long
sysconf (PAGESIZE) ;

sysconf returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of sysconf to obtain that information. Note that it is
not unusual for page sizes to vary even among implementations of the same
instruction set, increasing the importance of using this function for portability.

2-38 Integrated Software Development Guide

Memory Management

int
mprotect (caddr_t addr, size_t len, int prot);

mprotect has the effect of assigning protection prot to all pages in the range
[addr, addr + len). The protection assigned can not exceed the permissions
allowed on the underlying object. For instance, a read-only mapping to a file
that was opened for read-only access can not be set to be writable with mpro-
tect (unless the mapping is of the MAP_PRIVATE type, in which case the write
access is permitted since the writes will modify copies of pages from the object,
and not the object itself).

Address Space Layout

Traditionally, the address space of a UNIX process has consisted of exactly three
segments: one each for write-protected program code (text), a heap of dynami-
cally allocated storage (data), and the process’s stack. Text is read-only and
shared, while the data and stack segments are private to the process.

System V Release 4 still uses text, data, and stack segments, though these should
be thought of as constructs provided by the programming environment rather
than