INCLUDES INTERNATIONALIZATION FEATURES

ORENIFOOKS

GRAPHICAL USER INTERFACE
PROGRAMMER’S GUIDE

UNIX System Laboratories, Inc.

INCLUDES INTERNATIONALIZATION FEATURES
®
REN X

GRAPHICAL USER INTERFACE
PROGRAMMER’S GUIDE

UNIX System Laboratories, Inc.

Copyright© 1992, 1991 UNIX System Laboratories, Inc.
Copyright© 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
All Rights Reserved

Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omis-
sions or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors, omissions, or statements result from negligence, accident, or any other cause.
USL further assumes no liability arising out of the application or use of any product or system
described herein; nor any liability for incidental or consequential damages arising from the use of this
document. USL disclaims all warranties regarding the information contained herein, whether
expressed, implied or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the
manner described herein will not infringe on existing or future patent rights, nor do the descriptions
contained herein imply the granting of any license to make, use or sell equipment constructed in ac-
cordance with this description.

USL reserves the right to make changes to any products herein without further notice.

ACKNOWLEDGEMENT

Parts of this book are being reproduced with the permission of the Massachusetts Institute of Tech-
nology, O'Reilly and Associates, Inc., Hewlett Packard, and Digital Equipment Corporation.

TRADEMARKS

OPEN LOOK GUI is a registered trademark of UNIX System Laboratories, Inc. in the USA
and other countries
PostScript is a registered trademark of Adobe Systems
UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
The X Window System is a trademark of the Massachusetts Institute of Technology
X11/NeWS is a registered trademark of Sun MicroSystems
XWIN is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries

1098765432

ISBN 0-13-72kL0O5-7

UNIX
PRESS
A Prentice Hall Title

PRENTICE HALL

ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4 documentation, please
call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632

Or call: (201) 461-8441.

ATTENTION GOVERNMENT CUSTOMERS:
For GSA and other pricing information, please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

1 Introduction
Preface 1-1

2 The OPEN LOOK Toolkit

The X Window System and the Xt Intrinsics 2-1
The OPEN LOOK Widgets 2-2
Widget Functions and Applications 2-18
Text Selection Operations 2-50

3 Programming Using the OPEN LOOK

Toolkit

Introduction 3-1
How to Write OPEN LOOK Programs 3-2
Navigating Through the System 3-4
Annotated Sample Programs 3-6
Using Flattened Widgets 3-29
Programming Caveats 3-36

4 X Window System, Version 11,
Conventions for OPEN LOOK

Introduction 41
General Considerations 4-2
Window Properties 4-6
Relationship to Inter-Client Conventions 4-14
Workspace and File Manager Conventions 4-21

Table of Contents i

Table of Contents

Miscellaneous Implementation Issues 4-27
Mouseless Operations

Overview 5-1
Keyboard Traversal 5-2
Keyboard Accelerators 5-5
Mnemonics 5-7
Internationalization

Introduction to Internationalization 6-1
The Internationalization of the OPEN LOOK Toolkit 6-5
Extensive Widget Sampler Program

Design Objectives 7-1
Program Description 7-3
Manual Pages: Introduction

Introduction to the Manual Pages A-1
Introduction to General Resources A-4
Manual Pages: Convenience Routines
Introduction to the Convenience Routines B-1
Convenience Routines B-6

OPEN LOOK GUI Programmer’s Guide

Table of Contents

C Manual Pages: Widgets
Introduction to the Widgets C-1
Widgets C-6

D Manual Pages: Obsolete Routines

Introduction to the Obsolete Routines D-1

Obsolete Routines D-2
G Glossary

Glossary G-1
| Index

Index I-1

Table of Contents iii

Figures and Tables

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 7-1:
Figure C-1:

Sub-Object Traversal within a Container Object

Oblong Button with and without an Accelerator Visual

Oblong Button with and without a Mnemonic Visual

EUC Code Set Representations

EUC and Corresponding 16-bit Wide-character Representation
EUC and Corresponding 32-bit Wide-character Representation
Four kinds of Input Methods

The Open Look Widget Sampler

Sample Manual Page Format

Table of Contents

5-6
5-8
6-2

6-4
6-21
7-2

1 Introduction

Preface

Purpose

Overview

Document Conventions

Table of Contents

Preface

Purpose

The purpose of this manual is to provide a guide for programmers using the
OPEN LOOK® Graphical User Interface (GUI). The book is intended for skilled C
language programmers, intending to develop applications using a ““windowed”
front-end. While the OPEN LOOK GUI toolkit is built on top of the X Window
System™, you do not need to be familiar with that system to be able to make
effective use of the OPEN LOOK toolkit.

The intention of this manual is to guide programmers in the use of the toolkit.
Reference material and manual pages are also found in this manual.

Overview

Chapter 2 of this manual provides an overall description of the OPEN LOOK
toolkit. The description includes background information on the X Window
System toolkit, called the Xt Intrinsics. The Intrinsics provide an opaque inter-
face to the X Window System and some of the Intrinsic functions are necessary
for using the OPEN LOOK toolkit. Of particular importance is the notion of
what a “widget” is.

This provides a basis for describing the specific OPEN LOOK abstractions and a
brief description of each of the OPEN LOOK widgets and important widget
attributes (called “resources”).

Chapter 2 also describes the OPEN LOOK functions and how they are generally
used.

Chapter 3 provides a brief description of how to program using the OPEN
LOOK toolkit; how to lay out a screen; how to create and manage widgets and
“callbacks.” Each of the sample programs that are distributed with the OPEN
LOOK toolkit are presented and described. The applications are presented in
increasing complexity.

Chapter 4 presents conventions for using the OPEN LOOK toolkit so that appli-
cations can co-exist and interoperate.

Chapter 5 discusses mouseless operations.

Introduction 11

Preface

Chapter 6 presents an extensive example program that demonstrates the use of
most of the OPEN LOOK widgets.

Document Conventions

The OPEN LOOK® Graphical User Interface Programmer’s Guide uses certain typo-
graphical conventions, such as boldface and italics, to identify different types of
information. The following conventions apply:

Commands and pathnames that must be typed on the computer exactly as
shown appear in constant width.

Variables to those commands and pathnames appear in italic. For exam-
ple, in the command

xwd -out file
file will be any name that you select as the file name to be entered.

Routines, widget names, and procedure names appear in constant
width.

Structure member names appear in italic.

Computer output such as prompts and messages appear in computer
style type. Text references to parts of a displayed program or routine
also appear in in this type style. Resource names, resource classes, and
widget classes also appear in this constant width style.

OPEN LOOK GUI Programmer’s Guide

2 The OPEN LOOK Toolkit

The X Window System and the Xt

Intrinsics 2-1
The OPEN LOOK Widgets 2-2
Flat Widgets and Gadgets 2-3
m Flat Widgets 2-3
m Gadgets 2-4
Naming Conventions for Widgets 2-5
Resources for Widgets 2-6
Getting and Setting Widget Resources 2-8
Basic Widget Resources 2-9
Specifying Resources for Flattened Widgets 2-12
m Sub-Object Resource Lists 2-13
m Inheriting Resources 2-14
m Ordering Resources in the List 2-14
m Resources for Specifying Sub-Objects in a Flat Widget 2-14
Screen Resolution and Color 2-15
m Low and High End Color 2-15
m Device Resolutions 2-16
Supported Fonts 2-17
m Standard Font 2-17
m Automatic Choice of Font for Resolution 2-17
Widget Functions and Applications 2-18
OPEN LOOK Widget Descriptions 2-19
m Action Widgets 2-19
m Text Control Widgets 2-28
m Container Widgets 2-30
m Popup Choices 2-41

Table of Contents i

Table of Contents

OPEN LOOK Routines 2-44
m Necessary Xt Intrinsic Routines 2-44
m OPEN LOOK Initialization 2-45
m Registering Help 2-46
m Packed Widgets 2-46
m Error Handling Routines 2-46
m Controlling Input Focus 2-47
m Flat Widget Routines 2-48
m Convenience Routines 2-49
Applications with Multiple Base Windows 2-49
Text Selection Operations 250
m Setting Insert Point 2-50
m Wipe-through Selection 2-50
m Adjusted Selection 2-50
m Multi-click Selection 2-51
m Copying Text 2-51
m Cutting Text 2-51
m Pasting Text 2-51
m Selecting Text with the Keyboard 2-51

i OPEN LOOK GUI Programmer’s Guide

The X Window System and the Xt Intrinsics

The X Window System is a comprehensive mechanism for creating and manag-
ing a window environment. Access to the X Window system is usually through
an Application Programmer Interface (API) toolkit, such as the OPEN LOOK
Toolkit. The base level of the X Window System, Xlib, is a collection of C rou-
tines that perform fundamental screen and window management operations.
The application programmer would use Xlib directly, for example, for drawing
lines, arcs, rectangles, and so on.

The API toolkit can be separated into two distinct layers:
m Xt Intrinsics
m Widgets

The fundamental layer of the API toolkit is the Xt Intrinsics (Xt is shorthand for
X Toolkit). The Xt Intrinsics are a set of C routines that monitor events related
to end-user interactions and dispatch the correct code to handle those events.

A major function of the Xt Intrinsics is to provide for the creation and manage-
ment of “Widgets”. A widget is a set of code and data that provides a certain
"look and feel" to an end-user. A widget defines a rectangular area of a screen
that complies with an application interface policy, such as the OPEN LOOK
GUI A widget is a user-interface component combining an X window with the
necessary semantics to form an object. The object provides an intuitive user-
interface abstraction, such as a button or a scrollbar.

The Xt Intrinsics contain facilities to create, customize, organize, and destroy
widgets. They also translate event sequences from the window server into pro-
cedure calls, which the application can then interpret. The intrinsics keep track
of the state of a particular widget and negotiate screen real estate when a
widget changes size or position.

The OPEN LOOK Toolkit 2-1

The OPEN LOOK Widgets

The OPEN LOOK Toolkit provides the application programmer with a defined
set of widgets and other user-interface abstractions. The application program-
mer is not primarily concerned with defining widgets. You are concerned,
rather, with defining the layout of the screen for a particular application and
designing the code to manage specific end-user interactions with the widgets.
The OPEN LOOK API also gives you the ability to customize applications by
defining sub-classes of the OPEN LOOK widgets. This is achieved by giving
you direct access to the underlying C structures that define the widgets.

Widgets have certain attributes, called resources. At the programming interface
level a resource is a named data item, a named component of a structure
definition. For example, some of the resources associated with widgets are the
background color, the parent widget (all widgets have a parent widget, where
the “topmost” parent is the application’s base window), the height and width of
the defined area, and so on.

Some widgets exist only to define an area in which other widgets can be
defined; that is, they are Composite Widgets and exist only as parents to child
widgets. For example, the Bulletin Board widget simply provides a space to
attach other widgets to. A widget with no children is a Primitive Widget.
Primitive widgets are directly associated with an action: they perform a func-
tion, enter data, or output data. They do not contain other widgets.

Each time you specify a widget, you can also register the name of the routine(s)
you have written to process that widget; that is, you pass the routine name(s) to
the Xt Intrinsics. These application registered routines are termed “‘callbacks.”
Callbacks manage the semantics of an end-user interaction. The Xt Intrinsics
also monitor application registered, non-graphical events and dispatch applica-
tion routines to handle them. These features allow application programmers to
use this implementation of an OPEN LOOK Toolkit in database management,
network management, process control, and other applications requiring
response to external events.

The widgets as outlined in this guide, when implemented with the X Toolkit
NoTE | Intrinsics in XwIN Release 4i, meet Level 1 compliance with the OPEN
LOOK specification and some Level 2 features, such as the use of color and
| menus with more than one type of control.

2-2 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

Flat Widgets and Gadgets

The OPEN LOOK Toolkit provides two other abstract interface components:
m Flat Widgets
m Gadgets

These abstractions are very much like widgets. They are designed to enhance
the performance of OPEN LOOK applications by saving time and space. They
minimize the space used by redundant window definitions.

For the most part, the term widget will be used to refer to any of widgets, flat
widgets or gadgets.

Flat Widgets

A Flat Widget is a single widget that maintains a collection of similar user-
interface components (sub-objects). The flat widget gives the appearance and
behavior of many widgets. The sub-objects could be defined as widgets, but,
because they share the same basic characteristics, defining them collectively
results in improved performance. Flattened widgets, for instance, consume only
a fraction of the memory that an equivalent hierarchy of widgets requires.

In this version of OPEN LOOK there are three flat widgets:
1. Flat Exclusives, containing the equivalent of RectButton widgets.
2. Flat NonExclusives, also containing the equivalent of RectButton widgets.

3. Flat Checkboxes, equivalent to a nonexclusives widget populated with
Checkbox widgets.

In general, flat widgets (or flattened widgets) have the following attributes:

m They are container objects, responsible for managing the look and feel of
one or more sub-objects.

m After the container is populated, minimal or no manipulation is done on
the sub-objects.

m Each container is simply a region that contains zero or more sub-objects of
a certain type.

The OPEN LOOK Toolkit 2-3

The OPEN LOOK Widgets

m The sub-objects within the container do not have an associated window or
widget structure.

From the end-user’s perspective, there is no discernible difference between a
flattened widget interface and the same interface defined as a composite widget
with child widgets.

From the application programmer’s perspective, flattened widgets have a dif-
ferent interface than traditional widgets or gadgets. Flattened widgets are more
efficient and easier to deal with, particularly when the sub-objects are regularly
spaced and have similar attributes. A single toolkit request can specify an arbi-
trary number of sub-objects to the flattened widget, thus achieving a substantial
reduction in the lines of code required to produce a complex graphical interface
component. Additionally, there is a single callback routine for all sub-objects of
the flattened widget.

Chapter 3 includes a detailed description of programming using flattened widg-
ets.

Gadgets

A Gadget is a windowless object; that is, it is a widget that uses its parent’s
window. For the most part, there is no difference in the application
programmer’s handling of a gadget and of the same object defined as a widget.
The only difference is in the widget class (for example, an OblongButton Widget
belongs to the OblongButtonWidgetClass while the OblongButton Gadget
belongs to the OblongButtonGadgetClass).

It is important to note that a gadget is a subclass of the RectObj class while a
widget is a subclass of Core, with a gadget having only a subset of the resources
found associated with the Core class. Thus care should be taken to avoid
referencing fields which exist for widgets but not gadgets, both in writing
gadget code or in converting widget code to gadget code in existing applica-
tions.

2-4 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

MenuButton gadgets cannot be parents (that is, cannot be used as the
NOTE | parent parameter when creating a widget or other gadget.

T Gadgets share some core fields. But since they are not subclasses of core,
they do not have all core fields. In particular, they don’t have a name field
or a translation field (so translations cannot be specified/overridden).

Naming Conventions for Widgets

The OPEN LOOK Toolkit programmer may end up dealing with hundreds of
programming particles: widgets, widget resources, Xt intrinsic routines, OPEN
LOOK routines, and so on. A well-defined set of naming conventions has been
adopted to simplify the process of reading and writing applications. The nam-
ing conventions are important, and are essential to effective toolkit program-
ming and debugging.

The names of structure members are lower-case; underscores are used to join
compound words. Examples of these names are tag, display, and id_type.

Type and procedure names begin with upper-case letters. Capitalization is used
to separate the components of compound words. Examples of this style are:

H XtGetValues
XtSetArg
XtSetValues

ArgList

OlInitialize

Because of the object-oriented nature of the toolkit, all data structures and most
data types are type-defined (“typedef-ed”). Further stylization is often accom-
plished using typedefs for derivatives of these private data types.

Additional conventions stipulate that:

m A resource name will have the prefix XtN. Using this convention, the
resource name XtNbackgroundPixmap will associate with a structure
member background_pixmap.

The OPEN LOOK Toolkit 2-5

The OPEN LOOK Widgets

m A resource class will have the prefix XtC. For example, the resource class
Background will be defined as XtCBackground.

Basic widget naming conventions can, therefore, be thought of according to the
following list:

m Intrinsics procedure names begin with “Xt”
m OPEN LOOK routines start with “Ol”

m Resource names begin with “XtN"

m Resource class names begin with “XtC”

These conventions are like those used for X Window’s Xlib

Resources for Widgets

A resource is a named data item. This section describes how default values for
resources are established. The next section describes how these values are set
and obtained after the widget is created. There is a fundamental distinction
between the nature of a widget, or its “Widget Class” (for example, an Oblong-
Button), and a specific widget, or an instance of a widget (for example, This Blue
OblongButton Over Here). Widgets may be defined as sub-classes of other
defined widgets, which are then considered to be their “super-class” widget.

The resource value may be set by a program, specified by a user, or specified as
a default. For example, in the case of the OblongButton widget, some of the
resource items that are specific to a given instant of the widget include fore-
ground color, text font, the label string, and label justification. Some of these
resource elements may come from the widget’s superclass, such as background
color, border color, and border width.

During initialization of the OPEN LOOK Toolkit (through a call to the
OlInitialize routine), the resources are merged from several sources in the
order shown below. During the merge, unrelated resources are simply added to
the complete set, while overlapping resources are replaced with the latest
values. For instance, if the resource XtNforeground is specified in several
sources, the value of XtNforeground from the last source overrides earlier
values.

2-6 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

Resource values may be supplied to an application from the following sources,
in the order given:

1.

Internal defaults - Each object in the toolkit has object-specific defaults for
the resources it uses. These defaults are in effect unless overridden from
another source.

Application defaults - The application-specific resource file name is con-
structed from the class name of the application and points to a site-
specific resource file that usually is installed by the site manager when the
application is installed. On UNIX-based systems, the application resource
file is /usr/X/1ib/app-defaults/class, where class is the application
class name.

Server resource or .Xdefaults file - The next source is the X server’s
RESOURCE_MANAGER property, as returned by the XOpenDisplay routine.
If no such property exists, the .Xdefaults file in the user’s home direc-
tory, if it exists, is loaded in place of the server property.

However, when the OPEN LOOK Workspace Manager (olwsm) is run-
ning, the RESOURCE_MANAGER property always exists, and obtains its
values from the .Xdefaults file. This essentially makes moot the differ-
ences between these alternate sources.

A user can make changes to the .xXdefaults file as long as the
NOTE | olwsm program is not running. Changes made while the Workspace
Manager is running will be lost.

An application can use the olwsm program to store changes to resource
values. The changes are stored immediately in both the .Xdefaults file
and the RESOURCE_MANAGER property.

. XENVIRONMENT or .Xdefaults-host file - The user’s environment variable

XENVIRONMENT provides the name of the file for the next source. If this
environment variable is not set, the file .Xdefaults-host in the user’s
home directory, if present, is used, where host is the name of the user’s
host machine.

Command line options - The next source is the command line, where the
user can give several standard and application-specific options. The
OlInitialize routine has a table of the standard command line options
for adding resources to the resource database, and it takes as a parameter
additional application-specific resource abbreviations. See ““Parsing the

The OPEN LOOK Toolkit 2-7

The OPEN LOOK Widgets

Command Line” in Chapter 4 of the X Toolkit Intrinsics for the format of
this table.

6. Application overriding values - Resource values set within the application
program are the last source. These assignments will override any, and
all, previous assignments. See the next section, “Getting and Setting
Widget Resources”, for details on how the application can set resource
values.

Getting and Setting Widget Resources

The intrinsics provide procedures for obtaining a widget’s current resource
values and assigning values to a widget’s resources. These functions are used
after a widget is created.

The values can be set at initialization time, can be set with a call to -
XtSetValues, can be read with a call to XtGetValues, or can be set in other
ways (see the reference sections of this guide for specific information).

The following table describes the arguments for the XtSetValues and
XtGetValues.

XtSetValues

Widget Specifies the widget.

args Specifies a variable length argument list of the

name/value parts to be modified.

num_args Specifies the number of entries in the argument list.
XtGetValues

Widget Specifies the widget.

args Specifies a variable length argument list of

name/address pairs. The address part is the address
of an object of the type given as name.

num_args Specifies the number of entries in the argument list.

Both functions require the number of arguments (num_args) to be passed as a
parameter. The function XtNumber (array_name) can be used to return the
number of entries in a fixed length array.

2-8 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

Basic Widget Resources

This section describes those widget resources that belong to the Core Widget.
The Core Widget contains the definitions of resources that are common to all
widgets. All widgets are subclasses of Core.

A description of these resources are briefly presented here and in more detail
later in the reference sections of this Guide. These resources are common to all
widgets and you should consult the reference manual before actually using
them.

Resource Set

Name Class Type Access
XtNancestorSensitive | XtCSensitive Boolean G*
XtNbackground XtCBackground Pixel SGI
XtNbackgroundPixmap XtCPixmap Pixmap SGI
XtNborderColor XtCBorderColor Pixel SGI
XtNborderPixmap XtCPixmap Pixmap SGI
XtNborderWidth XtCBorderWidth Dimension SGI
XtNdepth XtCDhepth Cardinal SG
XtNdestroyCallback XtCCallback XtCallbackList ST
XtNheight XtCHeight Dimension SGI
XtNmappedWhenManaged XtCMappedwWwhenManaged Boolean SGI
XtNsensitive XtCSensitive Boolean GI*
XtNtranslations XtCTranslations XtTranslations | G
XtNwidth XtCwidth Dimension SGI
XtNx XtCPosition Position SGI
XtNy XtCPosition Position SGI

The OPEN LOOK Toolkit 2-9

The OPEN LOOK Widgets

The Access column is interpreted as follows:
S Value can be set by XtSetValues
G Value can be read by XtGetValues
I Value can be set at initialization

* Value set in other ways

XtNancestorSensitive

Range of Values:
TRUE
FALSE

This argument specifies whether the immediate parent of the widget will receive
input events.

XtNbackground

Range of Values:
Any pixel value valid for the current display

This resource specifies the background color of the widget.

XtNbackgroundPixmap

The application can specify a pixmap to be used for tiling the background. This
takes precedence over XtNbackground.

XtNborderColor

Range of Values:
Any pixel valid for the current display

This resource specifies the color of the border.
XtNborderPixmap

The application can specify a pixmap to be used for tiling the border. This
takes precedence over XtNborderColor.

2-10 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

XtNborderwidth

Range of Values:
0 <= XtNborderWidth <= min (XtNwidth, XtNheight) / 2

This resource sets the width of the border for a widget. A width of zero means
no border will show.

XtNdepth

Range of Values:
0 or (any value supported by the current display)

Determines how many bits should be used for each pixel in the widget’s win-
dow. The value of this resource is used by the Xt Intrinsics to set the depth of
the widget’s window when it is created.

XtNdestroyCallback

This is a pointer to a callback list containing routines to be called when the
widget is destroyed.

XtNheight

Range of Values:
0 <= XtNheight

This resource contains the height of the widget’s window (in pixels), not count-
ing the border area.

XtNmappedWwhenManaged

Range of Values:
TRUE
FALSE

If set to TRUE, the widget will be mapped (made visible) as soon as it is both
realized and managed. If set to FALSE, the application program is responsible
for mapping and unmapping the widget. If the value is changed from TRUE to
FALSE after the widget has been realized and managed, the widget is
unmapped.

The OPEN LOOK Toolkit 2-11

The OPEN LOOK Widgets

XtNsensitive

Range of Values:
TRUE
FALSE

This resource determines whether a widget will receive input events. Note that
in the table this resource is marked *. In order to set this resource, you should
use the function XtSetSensitive. This is because this resource affects the
status of any child widgets and the XtSetSensitive function will propagate the
new value to all children.

XtNwidth

Range of Values:
0 <= XtNwidth

This resource contains the width of the widget’s window in pixels, not including
the border area.

XtNtranslations

This resource should not be set by an application.

XtNx, XtNy

These resources contain the x-coordinate and y-coordinate of the widget’s upper
left hand corner, excluding the border, relative to its parent widget.

Specifying Resources for Flattened Widgets

A flattened widget has three kinds of resources:

m Resources that affect the container object; for example, XtNcontainerType
or XtNgravity, specifying how the sub-objects in this container are posi-
tioned within another container.

2-12 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

m Resources that must be specified for each sub-object; for example,
XtNlabel, specifying the label that goes inside the button or checkbox.

m Resources that may be applied to every sub-object or may be applied indi-
vidually to each sub-object; for example, height, width, font, background
color, and so on.

This means that resource specification must allow for variation in the number of
specified resources (that is, where the number of specifications is a function of
the number of sub-objects) and also allow for variation in specifying which
resources will be defined for the container and which will be defined for the
sub-objects. This variation is determined by using resource lists for the
specification.

Sub-Object Resource Lists

The resources for the sub-objects of a flat container are specified in 1ist for-
mat. This allows the programmer to determine which container resources will
be inherited by the sub-objects and which will be specified individually.

Each list is an array of application-defined records (typically, in a ““C” structure
format or as an array), where each record describes a particular sub-object. The
items to be entered on the list are determined by the application programmer.
In the same application, different flat containers can have different lists. For a
given flat container all items on the list are specified in the same format. That
is, for efficiency reasons, each record in the array must have the same form as
the other records in the array; each structure in the list has identical fields.

Every different flat container widget may have a different set of fields for each
record in its sub-object resource list. For example, if an application wanted to
specify an “unselect” callback procedure for one group of exclusives but not for
another, the application would specify an XtNunselectProc field as an element
field for the first list but not for the second list. For data alignment and parsing
reasons, the fields of each record must use the XtArgvVal type (see the code
example in Chapter 3).

The OPEN LOOK Toolkit 2-13

The OPEN LOOK Widgets

Inheriting Resources

Since all sub-object resources are part of a container (parent), sub-objects inherit
any non-specified resource from the parent container. For example, if the appli-
cation requires a particular font color for all sub-objects, you do not have to
specify the XtNfontColor resource for each sub-object; you simply set the font
color resource on the parent container and all sub-objects will use that font
color.

Though sub-object resources are part of its container’s resource set, none of the
sub-object resources have any direct effect on the container.

Ordering Resources in the List

Since the “form” of the sub-object record is defined within the application’s
domain, the container must be given a hint about the record’s form so that it
can parse the supplied list. A resource name list is the key to unlocking the
application’s sub-object list. While the ordering of fields in each record is not
important, the application must give the resource names in the same sequence
that their associated values appear in the record.

For example, if the records specifying sub-objects of a flat exclusives container
had a “XtNlabel” field followed by the “XtNselectProc” callback field, the
application must supply the container with the XtNlabel resource name fol-
lowed by the XtNselectProc resource name. Inconsistent ordering of the fields
will result in undefined behavior when the sub-objects are instantiated.

Resources for Specifying Sub-Objects in a Flat Widget

Five common resources are used by each container class to describe the neces-
sary sub-object information:

2-14 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

Resource Set

Name Class Type Access
XtNitems XtCItems XtPointer | SGI
XtNnumItems XtCNumItems Cardinal SGI
XtNitemFields XtCItemFields String * SGI
XtNnumItemFields | XtCNumItemFields | Cardinal SGI
XtNitemsTouched XtCItemsTouched Boolean SG
XtNitems This is the list of sub-object items.
XtNnumItems Specifies the number of sub-object items in the list.
XtNitemFields Contains the list of resource names used to parse the
records in the XtNitems list.
XtNnumItemFields Specifies the number of resource names in XtNitem-
Fields.
XtNitemsTouched Values are TRUE or FALSE (the default). Whenever

you modify an item list directly, you must set this as
TRUE to the flat widget container so that it can update
the visual.

Screen Resolution and Color

Low and High End Color

This implementation of an OPEN LOOK toolkit supports the low and high end
color representation, that is, the primary colors, as well as the fine shadings.

If you wish to fine-tune your color choices, you can edit the color resources in
your .Xdefaults file. Note that you should only do so when OPEN LOOK is
not currently running.

The OPEN LOOK Toolkit 2-15

The OPEN LOOK Widgets

RESOURCE AFFECTS
*Background windows and widget background
*TextBackground TextEdit, xterm
*TextFontColor TextEdit, TextField, ScrollingList, xterm
*inputFocusColor cursor, traversal, highlighting
*inputWindowHeader | header of window with input focus
olwsm.workspace workspace color
*foreground window title, window menu label, buttons, scrollbars sliders
*borderColor border of widgets and windows
*FontColor TextEdit, TextField and ScrollingList widgets and xterm

Refer to the resource sets of widgets in the “Manual Pages: Widgets”
NOTE | appendix of this guide.

Device Resolutions

The table below presents the screen formats that are supported with this toolkit.
Assuming 11 inch diagonal and 13 inch diagonal (nominal) monitors are used,
the table also shows the corresponding pixel densities. The numbers are given
in pixels per inch horizontally by pixels per inch vertically.

Adapter Type Format 11" Monitor | 13" Monitor
EGA 640 x 350 76 x 55 66 x 48
EGA (AT&T Extended) | 640 x 400 76 x 63 66 x 55
VGA 640 x 480 76 x 76 66 x 66
Enhanced VGA 800 x 600 95 x 95 83 x 83

On screens that meet these resolutions, the visuals presented by the toolkit
adhere to the 12-point size visuals required by the OPEN LOOK specification.
However, the toolkit will work with any resolution. On low resolution screens,
such as the CGA format, the visuals will be larger than 12 points; on higher
resolutions, the visuals will be smaller than 12 points.

2-16 OPEN LOOK GUI Programmer’s Guide

The OPEN LOOK Widgets

Supported Fonts

Standard Font

The defined OPEN LOOK font “Lucida” is used in labels for all labeled controls
and as the default font in text widgets.

Automatic Choice of Font for Resolution

The toolkit automatically selects the correct default font to match the resolution
of the device. The application can override the font selection, but then the
toolkit does not automatically adjust the font to accommodate a change in
screen resolution.

Note that fonts must be cached on a per screen basis.

The OPEN LOOK Toolkit 2-17

Widget Functions and Applications

This section describes the OPEN LOOK widgets and processing routines. The
widgets defined for the OPEN LOOK GUI are listed below:

2-18

Action Widgets

OblongButton
RectButton
CheckBox

MenuButton (was: ButtonStack)

AbbrevMenuButton (was: AbbrevStack)

Slider
Scrollbar
Stub

Text Control Widgets

StaticText
Text
TextField

Container Widgets

BulletinBoard
ControlArea
Form

Caption
FooterPanel
Exclusives
Nonexclusives
FlatCheckbox
FlatExclusives
FlatNonExlusives
Scrolledwindow
ScrollingList

Popup Choices

Notice
PopupWindow
Menu

OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

OPEN LOOK Widget Descriptions

A reference to a widget class is formed by using the lower case widget
NoTE | name followed by “WidgetClass,” such as menuButtonWidgetclass and
menuWidgetClass.

Action Widgets

OblongButton Widget and Gadget

The OblongButton widget is a primitive widget consisting of a label sur-
rounded by a rounded oblong border (Figure 1).

cc

Label

TN C ey

Border OblongButton Widget

Figure 1. Oblong Button Widgets

In a series of Buttons, the default choice is indicated by a double border. The
OblongButton provides a single-action control for the end-user. The user ini-
tiates an action each time the Button is selected, unless the Button is marked as
“busy” or “inactive”.

The OPEN LOOK Toolkit 2-19

Widget Functions and Applications

The oblongButton is typically incorporated into a Menu, ControlArea, or other
composite widget as part of a set of controls. Because of this, we recommend
you use an OblongButton Gadget instead. This saves both time and space.

RectButton

The RectButton is a primitive widget consisting of a label surrounded by a rec-
tangular border. Figure 2 illustrates Rectangular Buttons under several possible
conditions, and using different borders to indicate the condition. While a
RectButton may be used alone, it is generally used as a component child of an
Exclusives or Nonexclusives composite widget. The RectButton is used to
indicate a choice (for example, to set or reset a switch value) in the application.

Value Default Value

Current Value

Current Value

Figure 2. Rectangular Button Widgets

2-20 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

CheckBox

The CheckBox widget consists of a label followed by a check box. The widget
acts as a toggle switch. The first time it is selected a check mark is drawn in the
box. Selecting it again removes the check mark. If it is initially set, the first
time it is selected it will be un-set.

CheckBox widgets may be used alone or as part of another composite, but they
are almost always used as children of the Nonexclusive composite widget. The
Nonexclusives widget manages the appearance of the CheckBox. These widg-
ets provide the end-user with a way to make one or more selections from a list
of choices in a form that looks like items being checked off a list.

Figure 3 illustrates a CheckBox and specifies each of its components.

Label
Check Box

Choice #1 f——— Check Mark

CheckBox Widget

Figure 3. CheckBox Widget

The OPEN LOOK Toolkit 2-21

Widget Functions and Applications

MenuButton Widget and Gadget

The MenuButton (ButtonStack in Release 1.0) is a composite widget that pro-
vides the look of a regular OblongButton, or “‘stack” of OblongButtons. The
stack of buttons acts as a visual representation for a menu. It has all the
features that the Menu has and also provides quick access to the menu defaults,
both for selection and previewing.

Figure 4 illustrates a MenuButton. The inverted triangle (also known as a Menu
mark) visually distinguishes a MenuButton from a primitive Button.

The MenuButton is normally defined as a Gadget for more efficient perfor-
mance.

Menu Mark Region

'

Label -————{ Sample Stack

Border

MenuButton Widget

Figure 4. MenuButton Widget

2-22 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

AbbrevMenuButton

The AbbrevMenuButton (AbbrevStack in Release 1.0) composite widget is simi-
lar to the MenuButton control. It appears on the screen without a label, taking
up less screen space. The AbbrevMenuButton widget can be used with other
widgets to allow the end user to add new items to the menu.

Figure 5 illustrates an AbbrevMenuButton widget next to a Current Selection
Widget. The Current Selection widget is independently created by the applica-
tion. Typically, you would place both widgets side by side in a composite
widget. The AbbrevMenuButton widget only automatically previews the default
selection in the selection widget; the application is responsible for showing any
other selections.

Abbreviated Menu Button

Current Selection Widget

prerasaaataaasy
[T T TN

. o A

AbbrevMenuButton Widget
Figure 5. AbbrevMenuButton Widget

The OPEN LOOK Toolkit 2-23

Widget Functions and Applications

Slider

The slider widget provides the graphical equivalent of an analog control,
allowing the end-user to move a slider element to a position that represents a
value along a continuum.

The application specifies the minimum and maximum values as well as the
granularity. Figures 6A and 6B illustrate both a horizontal and vertical Slider
widget and labels each of its components.

Left Anchor Drag Box Right Anchor
G [)
Shaded Bar Bar
Slider Widget

Figure 6A. Slider Widget (Horizontal)

2-24 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

~&———— Slider Widget

_"————' Bar

4——— Drag Box

Shaded Bar

. _]<#——— Bottom Anchor

Figure 6B. Slider Widget (Vertical)

The OPEN LOOK Toolkit 2-25

Widget Functions and Applications

Scrollbar

The Scrollbar widget has no intrinsic function; it is always associated with an
adjoining window, that contains the ““Content” to be scrolled.

The Content is composed of units of data (for example, lines of text), that typi-
cally exceed the size of its window (called a window pane). The end-user
scrolls through the Content by selecting and moving the Scrollbar. In appear-
ance, the Scrollbar looks like an elevator or a cable car that moves back and
forth (or up and down) on a cable. The Content moves through the pane pro-
portionately to the movement of the Scrollbar. Figures 7A and 7B illustrate
different aspects of Scrollbars, showing their components and illustrating fully
extended Scrollbars, both horizontal and vertical. Scrollbars can also be
abbreviated (when they are attached to a small window, for example). In this
case the cable component is eliminated.

Drag Area i
Left Anchor Left g Right Right Anchor
Arrow Arrow

Cable Elevator Cable

ScrollBar Widget
Proportion Indicator

Figure 7A. Scrollbar Widget (Horizontal)

2-26 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

I

l___“ 4 F—IIIIIIIIIIHHIIIIIIIIIIIIIIIIIIIIIlIIlIID

Figure 7B. Scrollbar Widget: Elevator and Proportion Indicator at Left/Top Limits

The Scrollbar does not provide semantics for scrolling through any particular
content, but provides an interface for an application or another widget, such as
the ScrolledWindow and widgets, to implement a scrollable window pane.

Stub

The stub widget is designed to give you increased flexibility in controlling the
screen during execution. It allows you to specify procedures at creation and/or
XtSetValues time that are normally restricted to a widget’s class part. Most of
the class part procedures have been attached to the instance part.

This allows you to use Stub widgets to build local widgets (that is, to design
application-specific widgets). The Stub is particularly useful for drawing
graphics.

The OPEN LOOK Toolkit 2-27

Widget Functions and Applications

Text Control Widgets

StaticText

The staticText widget implements the OPEN LOOK Message control to pro-
vide an uneditable display. The application has some flexibility in laying out
the text within the StaticText widget.

Figure 8 illustrates a typical StaticText widget, showing the resources used to
control the display coloration.

XtNfontColor

The quick brown fox jumped
over the lazy widget.

e e

i
§
]
| SO

N

XtNborderColor XtNbackground
(XtNborderPixmap) (XtNbackgroundPixmap)

Figure 8. StaticText Widget

TextEdit

The TextEdit widget provides an interface for the end user to enter and edit
text. It provides a basic set of editing controls, including selection control for
text, copy, move, and cut and paste.

TextEdit widgets are often used in conjunction with ScrolledWindows and
Scrollbars to manage text that cannot fit within the provided window frame.

2-28 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

TextField

The TextField widget provides a one-line text field, with an application-set
width, for letting the end user enter and edit text. Controls are included for
scrolling long text left and right within the field. Figure 9 illustrates a Text-
Field widget with various controls and those resources used to control the
coloration. The left and right arrows are used to indicate the direction of text
overflow; the vertical triangle is the editing cursor.

Input Field

Input Caret

TextField Widget

Figure 9. TextField Widget

The OPEN LOOK Toolkit 2-29

Widget Functions and Applications

Container Widgets

BulletinBoard

The BulletinBoard is a composite widget; that is, it contains and manages
other widgets (which may themselves be composites). The BulletinBoard
widget provides minimal management of its widget children, simply providing
a space into which they can be placed. It allows the application to configure the
overall size of the "bounding box" around the child widgets, but does not pro-
vide facilities for ordering the widgets. When defining a BulletinBoard you
can specify that it have a fixed screen size, that it have a minimal size (just large
enough to hold its children), or that it grow to meet its children’s needs.

Figure 10 illustrates a BulletinBoard and shows the coloration resources.

XtNborderColor XtNbackground
(XtNborderPixmap) (XtNbackgroundPixmap)

(Child Widgets Colored Independently)

Figure 10. BulletinBoard Widget (Coloration)

2-30 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

ControlArea

The ControlArea is a composite widget that manages the layout of its children
on the screen. It allows the controls to be laid out in one of four patterns and
provides column or row alignment. The four patterns are:

m Fixed number of rows in the control area
m Fixed number of columns

m Fixed overall width of the control area

m Fixed overall height

The child widgets are automatically laid out left to right and then top to bottom
in the order that they are added to the ControlArea composite widget. Typical
layouts, coloration and representative resources are illustrated in Figures 11A
and 11B.

XtNborderColor XtNbackground
(XtNborderPixmap) (XtNbackgroundPixmap)

i
P el [T T T T ep———
: P Y ;
i Pt 4 i i
H P [‘
S . R
f 2t Frmmres-e——— + Frems s ——— 1
! - b 1
i [} i i
i i ' 13 1 1
e R D i
""""""" Fom=s=s==s=== [ttt |
? E P !
i i] ' i i
: P - :
[[LS !

(Child Widgets Colored Independently)

Figure 11A. ControlArea Widget (Coloration)

The OPEN LOOK Toolkit 2-31

Widget Functions and Applications

XtNmeasure
(OL_FIXEDWIDTH)

A
\

Line Rectangle

XtNmeasure
(OL_FIXEDHEIGHT)

Circle

Figure 11B. ControlArea Widget (Height and Width Control)

2-32 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

Form

The Form composite widget provides more sophisticated management of other
widgets than the BulletinBoard composite. It allows the application to specify
the layout of the widgets, so that their position relative to each other remains
consistent in the face of window resizing done by the end user. A Form widget
is illustrated in Figure 12.

XtNborderColor XtNbackground
(XtNborderPixmap) (XtNbackgroundPixmap)

(Child Widgets Colored Independently)

Figure 12. Form Widget (Coloration)

The OPEN LOOK Toolkit 2-33

Widget Functions and Applications

Caption

The caption widget provides a convenient way to label other controls. It
allows the application to choose the placement of a text label next to one
widget. The Caption widget is illustrated in Figure 13. Some OPEN LOOK
composite widgets recognize the Caption widgets and will align them specially.

Label Child Widget
P R M,
i Caption:
Caption Widget

Figure 13. Caption Widget

FooterPanel

The FooterPanel composite widget provides a convenient way of getting a
footer at the bottom of an OPEN LOOK window. It allows the application to
use any widget best suited for the content of the footer and handles the resize
management of the footer and the pane above it.

2-34 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

Exclusives

The Exclusives is a composite widget that allows the end-user to select one,
and only one, of a series of choices. The Exclusives composite is only used
together with RectButton primitive widgets as children (Figure 14).

The Exclusives widget provides the layout and selection control of the
RectButton widgets, ensuring that the controls align in columns and/or rows,
that only one (or none) of the buttons is set at one time, and that dimmed but-
tons are reset if a choice is made.

Exclusives can also be defined as Flattened Widgets. When defined in this
way its children will not be treated as individual widgets. For the most part,
you should use the Flattened Widget definition to improve overall performance.

Strawberry Pear

Apple Plum

Watermelon Blueberry

Figure 14. Exclusives Widget Example

The OPEN LOOK Toolkit 2-35

Widget Functions and Applications

Nonexclusives

The Nonexclusives is a composite widget that allows the end-user to select one
or more of a series of choices. The Nonexclusive widget can manage either
RectButton or CheckBox primitive widgets.

The Nonexclusives widget provides the layout and selection control of the
RectButton or CheckBox widgets, ensuring that the controls align in columns
and/or rows.

When the container will be populated with RectButtons, the Nonexclusives can
also be defined as Flattened Widgets. When defined in this way its children
will not be treated as individual widgets. Use the Flattened Widget definition
to improve overall performance.

Flat CheckBox

The FlatCheckBox widget is equivalent to a NonExclusives widget that is
populated entirely by CheckBoxes. The advantages of using this flattened
widget definition is that only a single widget is defined and that resource values
of the container can be inherited by each of the sub-objects.

2-36 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

ScrolledWindow

The ScrolledWindow widget can be used as the basis for implementing a scroll-
able pane, for example, for a TextEdit widget. However, it has no innate text
or graphics semantics; it must be combined with other widgets for this.

To use the ScrolledWindow you create a widget capable of displaying the entire
Content as a child of the ScrolledWwindow widget. The Scrolledwindow
widget positions the child "within" the view of the Content and creates scroll
bars for the horizontal and vertical overflow as needed.

Figure 15 illustrates a ScrolledWindow widget, showing the content (which
does not appear on the screen) and the View of the Content (which does). The
vertical and horizontal ScrollBar widgets are separately defined and are
attached to the Scrolledwindow widget.

- V
% :
'

'

= ~®—Vertical Scrolibar !

View of the Content ———————J

View Border—gms{

| Horizontal Scrollbar
|

'
Content —— E '

Figure 15. Scrolled Window Widget

The OPEN LOOK Toolkit 2-37

Widget Functions and Applications

ScrollingList

The ScrollingList widget is another kind of window pane, where the end-
user manipulates the list with a Scollbar. The list consists of identifiable items;
that is, there is a "current item" that the end-user selects that is highlighted in
the pane. The list is completely under the control of the application. You can
turn selected items into Exclusives or NonExclusives. You can define
selected items to be editable text. You can add, change or delete items from the
list. You use the callback routines to determine what action, if any, to take with
the current item. Figure 16A illustrates common components of a "typical"
ScrollingList widget and Figure 16B shows the same widget configured to

add a new component to the List.

Current Item Border
Surrounding
Current Item

Y

Edit

View — Draw
Spreadsheet

Calendar

Items

:

~g— Scrollbar

Figure 16A. Common ScrollingList Widget Components

2-38

OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

L1

y N

Edit v
Draw %
Editable =
Text Field - =
-
Spreadsheet s

-

Figure 16B. Adding an Element to a ScrollingList

Attaching a Menu to a ScrollingList

A menu can be added to a ScrollingList Widget but it requires some work
on the part of the application. The code required by the application to create a
menu is shown below:

/* Create Menu */

cnt = 0;

XtSetArg(args[cnt], XtNmenuAugment, False); cnt++;

menu = XtCreatePopupShell("menu”, menuShellWidgetClass, list_widget, args, cnt);

/* Add callback to catch MENU button */
XtAddCallback(list_widget, XtNconsumeEvent, PopupMenuCB, menu);

/* Get Menu Pane */
XtSetArg(args[0], XtNmenuPane, &menuPane);
XtGetValues (menu, args, 1);

/* Add buttons to menu pane */

cnt = 0;

XtSetArg(args[cnt], XtNaccelerator, "Ctrl<c>"); cnt++;
XtSetArg(args[cnt], XtNmnemonic, ’c’); cnt++;

The OPEN LOOK Toolkit 2-39

Widget Functions and Applications

change = XtCreateManagedwWidget ("change", oblongButtonGadgetClass,
menuPane, args, cnt);
XtAddCallback(change, XtNselect, EditCB, NULL);

cnt = 0;

XtSetArg(args[cnt], XtNaccelerator, "Ctrl<d>"); cnt++;

XtSetArg(args[cnt], XtNmnemonic, ’‘d’); cnt++;

delete = XtCreateManagedWidget ("delete", oblongButtonGadgetClass,
menuPane, args, cnt);

XtAddCallback(delete, XtNselect, DeleteCB, NULL);

static void

PopupMenuCB(w, closure, call_data)
Widget w;
XtPointer closure, call_data;

{
OlvVirtualEvent ve = (OlvirtualEvent)call data;
Position X, ¥;
/* Use OlMenuPopup(w, state, setpos, X, y, pos_proc) */
/* to pop-up menu. See manual page for more details. */
switch(ve->virtual_ name)
{
case OL_MENU :
ve->consumed = True;

/* Let Menu determine (x,y) */
OlMenuPopup ((Widget)closure, OL_PRESS_DRAG MENU, False, 0, 0, NULL);
break;

case OL_MENUKEY :
ve->consumed = True;

/* calculate (x,y) here */

OlMenuPopup ((Widget)closure, OL_PRESS_DRAG MENU, True, X, y, NULL):
break;
}
}

2-40 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

Popup Choices

Notice

The Notice widget implements a high-priority pop-up window. Once a Notice
is popped up the end-user must respond to it before they can continue on in
that application (though they can exercise other applications that may be shar-
ing the screen). Notices are usually used for messages such as ““Are you sure
you want to do that?”’, coupled to Yes/No buttons (see Figure 17).

The Notice widget automatically handles the window-level creation and
management. It also provides a text widget interface for registering the text to
present to the end user and a control area widget for attaching the buttons the
user needs to dispatch the Notice.

Text Area Contro] Area

Default Button

Notice widget
Figure 17. Notice Widget

The OPEN LOOK Toolkit 2-41

Widget Functions and Applications

PopupWindow

The PopupWindow widget is used to allow you to create Command and Property
windows. A Command Window is a popup window that allows you to solicit
parameters for a command. A Property Window is a popup window that is
typically used to allow the end-user to specify overall properties of some aspect
of an application. This widget handles the window-level creation and manage-
ment, leaving the application to populate the interior of the window with con-
trols. Figure 18 shows the various components of a PopupWindow widget.

Pushpin Header
F'—$ l at

A3 Edit: Load

: R U :

! :

! ;

! File !

) i

| ! ,é

‘
pmm D IIIIIIIIZIIII I I I I IIIIIIIIpIIIIIIIIIIIIL \--222l Sl
i Can'tfind the file \ :
.......... b S NSRS NUUUUTURUUUIN W4

—f—] e,
T Lower Upper
Footer Control Area Control Area Window

Resize Corner

(one of four) Border

Figure 18. PopupWindow Widget

2-42 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

Menu

The Menu composite widget manages a set of widgets that comprise the items in
the menu. It arranges for the proper response of the menu items to user-
generated events like press or click SELECT as opposed to press or click MENU,
and oversees the setting of new defaults by the end user. This widget also
arranges to automatically "pop up" on the screen when the user presses or clicks
MENU on the parent widget, by augmenting the way events are handled for its
parent widget.

A Menu consists of a set of items presented to the end-user for selection. One of
the items is always considered to be the Default item. Menus have a Title, a
Separator, separating the title from the items, a Border and a Pushpin. The
Pushpin is used by the end-user to control whether the menu stays up after it is
used (if the Pushpin is set) or if it pops back down again. Figure 19 illustrates a
typical Menu widget.

Border pyghpin Title

T

Default Item \L

Title Separator.

Back D

Locate Owner

Drop Shadow

Figure 19. Menu Widget

The OPEN LOOK Toolkit 2-43

Widget Functions and Applications

OPEN LOOK Routines

In addition to a widget set, the OPEN LOOK toolkit provides a number of rou-
tines to support you in using the widgets and managing your application. The
OPEN LOOK initialization routine is mandatory; the remainder provide addi-
tional control, flexibility and convenience in developing applications.

This section presents those routines; it simply presents the function name and
describes its functionality. The reference manual describes its parameters and
usage.

The first part of this section reviews those Xt Intrinsics routines that are neces-
sary within the OPEN LOOK toolkit.

Necessary Xt Intrinsic Routines

This section presents a minimal set of Xt Intrinsic routines that are necessary to
develop OPEN LOOK applications. There are a significant number of other rou-
tines that are essential for developing applications that create graphic images or
sophisticated text, varying text fonts and sizes. These are not described here,
though a few of them are used in the program “’s_sampler” presented in
Appendix A.

XtSetArg

Many intrinsic routines need to be passed pairs of resource names and values.
These are passed as an argument list. This function specifies which pair in the
list to set and what the name and value are.

XtNumber
This function is used to get the number of elements in a fixed array (such as the
size of a resource table).

XtCreateWidget
XtCreateManagedwidget
XtCreatePopupShell

These are the functions used to create specific entities on the screen. The call
gives the class of the widget (that is, the kind of widget), its label, and so on.

2-44 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

XtDisplay
XtPopup

These functions are used to control the display of widgets on the screen.

XtDestroyWidget

Used to destroy a temporarily created widget.

XtaddCallback

This function is used to register a callback routine with the intrinsics and to
associate that callback with a specific widget.

XtRealizeWidget

XtMainLoop

These are generally the last two statements of your main program. All of the
XtCreate. . . and XtSet. . . functions merely get the widgets ready.

Nothing actually appears on the screen until the widgets are made real via the
XtRealize widget function.

The last statement of your program is XtMainLoop. This turns control over to
the X Window System to manage the end-user’s interactions with the screen.
The MainLoop manages interactions and dispatches your callback routines as
requested by the end-user.

OPEN LOOK Initialization

The following routine must be used in an application in order for the applica-
tion programmer’s interface to function properly.

OlInitialize

This routine sets initial values needed by other routines and the widgets, and
registers any resource converters used by the application programmer’s inter-
face.

The OPEN LOOK Toolkit 2-45

Widget Functions and Applications

Registering Help
OlRegisterHelp

This routine associates help information with either a specific widget, or a
widget class.

You can supply specific Help text with the call; you can name a file containing
the Help text; or you can specify an application defined routine that can imple-
ment a more elaborate help procedure.

Packed Widgets
OlCreatePackedWidget

This routine lets the application programmer create a related tree of widgets in
a single call. Child-Parent relationships are handled automatically.

Error Handling Routines

OlError

OlWarning

OlvaDisplayErrorMsg
OlvaDisplayWarningMsg
OlSetErrorHandler
OlSetWarningHandler
OlSetVaDisplayErrorMsgHandler
OlsetVaDisplayWarningMsgHandler

See the error(3W) manual page in the “Manual Pages: Convenience Rou-
NOTE | tines” appendix of this guide.

|

Because of the non-procedural aspects of “widget programming’”’, there are no
convenient error returns that an application can check. Currently, the default

routines used are OlError and OlWarning. These print messages to the UNIX
standard error channel to convey error conditions.

You can override the default messages by registering your own custom error
messages. The OlSet. . . routines are used to do that.

2-46 OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

The widgets attempt to continue running whenever they can. This allows you
to discover multiple errors in a single run. They cannot recover from bad
pointers, but when they encounter illegally set resource values, they use the
default value and report on their actions. When unrecoverable errors occur, the
widgets generate an error message and terminate the process.

Controlling Input Focus

These routines allow the application programmer to determine which widget is
receiving input focus and which widget is next to receive input focus. The rou-
tines are:

OlCallAcceptFocus
OlGetCurrentFocusWidget
OlMoveFocus
OlCanAcceptFocus
OlSetInputFocus
OlHasFocus

The O1HasFocus routine returns true or false depending upon whether the
designated widget currently has the input focus. The OlCanAcceptFocus deter-
mines whether a particular widget is able to be designated to get the input
focus.

The 0lCallAcceptFocus routine determines whether the widget can accept
input focus and, if it can, moves the focus to it.

The 01MoveFocus routine shifts the focus to the next widget in a specified direc-
tion (current, next or previous).

Please see the Input_Focus manual page in the “Manual Pages: Conveni-
NoTE | ence Routines” chapter of this guide.

The OPEN LOOK Toolkit 2-47

Widget Functions and Applications

Flat Widget Routines

These two routines are the equivalent of XtGetValues and XtSetValues for
flattened widgets. The only distinction between the Xt routines and the Ol rou-
tines is that the index of the sub-object must be specified. These routines are
illustrated in Chapter 3. The routines are:

NOTE

2-48

OlFlatGetValues
OlFlatSetValues
OlvaFlatGetVvalues
OlvaFlatSetvalues
OlFlatCallAcceptFocus
OlFlatGetFocusItem
OlFlatGetItemIndex
OlFlatGetItemGeometry

See the Flattened Widget Utilities(3W) manual page for more infor-
mation.

OPEN LOOK GUI Programmer’s Guide

Widget Functions and Applications

Convenience Routines

The following routines are not a necessary functional part of the application
programmer’s interface, but they make it easier to get certain features:

OlMMToPixel
0Ol_MMToPixel
OlPointToPixel
0l_PointToPixel
OlScreenMMToPixel
0l_ScreenMMToPixel
OlScreenPointToPixel
0l_ScreenPointToPixel
OlPixelToMM
0l_PixelToMM
OlrPixelToPoint
0Ol_PixelToPoint
OlScreenPixelToMM
0l1_ScreenPixelToMM
OlScreenPixelToPoint
0l1_ScreenPixelToPoint

The first set provides screen independence for sizing and layout of controls, giv-
ing conversions between millimeters and pixels, and points and pixels. The
latter converts from virtual OPEN LOOK translations to standard X Toolkit
Intrinsics translations.

Applications with Multiple Base Windows

Every application has a single base window, automatically created by the 01In-
itialize call that initializes the toolkit. If your application needs additional
base windows, they are created with a call to XtCreateApplicationShell. The
widget class pointers that can be used here are transientShellwidgetClass or
applicationShellwidgetClass.

The OPEN LOOK Toolkit 2-49

Text Selection Operations

The StaticText, TextEdit, and TextField widgets use the following opera-
tions to copy and move text.

Setting Insert Point

Clicking SELECT sets the insert point at the boundary between two characters
or spaces nearest the pointer. This makes an inactive caret active and highlights
the header of the main window (base window or pop-up window) containing
the specific text widget, to show which window has the input focus. Any active
selection on the screen is deselected.

Wipe-through Selection

Pressing and dragging SELECT marks the bounds of a new selection and
highlights it, and deselects any other active selection on the screen. While
SELECT is pressed, the active or inactive caret that marks the insert point is
invisible, but when SELECT is released, the insert point is left at the position of
the release. This does not make the insert point (caret) active if it isn’t already
active.

The selection starts with the character where SELECT is pressed and extends to
the character where SELECT is released. If the pointer moves outside the
widget and the widget can scroll in that direction (that is, there is a scrollbar for
that direction), the widget scrolls additional text into the widget and adds it to
the selection. The rate at which text scrolls into the widget is the same rate at
which pressing SELECT on the arrows of the Scrollbar scrolls the widget.

Deletion of the new selection is pending: new text entered from the keyboard or
pasted from the clipboard replaces the selection.

Adjusted Selection

Clicking SELECT, moving the pointer, and clicking ADJUST marks the bounds
of a selection and highlights it. A subsequent click of ADJUST changes the end
bound of the selection. The ADJUST may also follow a wipe-through selection.
The selection starts with the character where SELECT was clicked and extends
to the character where ADJUST is clicked. The insert point is moved to the
position of the ADJUST. As above, deletion of the new selection is pending.

2-50 OPEN LOOK GUI Programmer’s Guide

Text Selection Operations

Multi-click Selection

Double-clicking SELECT selects the word nearest the pointer. In case of a tie,
the word to the left is selected. Triple-clicking SELECT selects the entire line,
and quadruple-clicking selects the entire content. The selection is highlighted
and the insert point is left at the position of the multi-click.

Multi-Click Selection does not work with mouseless operations. Please see
NoTe | Chapter 7 in the OPEN LOOK User’s Guide for more information about CUT,
COPY, and PASTE using the keyboard.

Copying Text
Using COPY copies any selected text to the clipboard and deselects it.

Cutting Text

Using CUT moves any selected text to the clipboard and deletes it from the
Input Field.

Pasting Text

After setting the insert point, using PASTE copies text from the clipboard as
though it were typed in, leaving the insert point at the end of the pasted text.
This will replace any text currently selected in the widget. Note that the data
on the clipboard may have come from outside the Input Field, but it must be
text. If the clipboard is empty, the system beeps.

Selecting Text with the Keyboard

The keyboard can be used to select and adjust text. The SELCHARFWD key
adjusts the selection one character to the right of the insert point and moves the
insert point one character to the right. The SELWORDFWD key adjusts the
selection one word to the right of the insert point and moves the insert point to
the end of the word. The SELLINEFWD key adjusts the selection from the
insert point to the end of the line. The insert point moves to after the last char-
acter in the line but before the newline.

The OPEN LOOK Toolkit 2-51

Text Selection Operations

Similar keys adjust the selection backwards. The SELCHARBACK key adjusts
the selection one character to the left of the insert point and moves the insert
point one character to the left. The SELWORDBACK key adjusts the selection
one word to the left of the insert point and moves the insert point to the begin-
ning of the word. The SELLINEBACK key adjusts the selection from the insert
point to the beginning of the line. The insert point moves to before the first
character in the line.

The key SELLINE adjusts the selection to include the entire line in which the
insert pointer is set. The insert pointer is positioned to the right of the last char-
acter in the line.

The SELFLIPENDS key moves the insert pointer from one end of the selection
to the other without adjusting the selection.

2-52 OPEN LOOK GUI Programmer’s Guide

3 Programming Using the OPEN

LOOK Toolkit
Introduction 3-1
How to Write OPEN LOOK Programs 3-2
Object Oriented Programming 3-2
Navigating Through the System 3-4
Include File Directories 3-4
Libraries 3-4
Compilation Command 3-4
Public and Private Include Files 3-5
Annotated Sample Programs 3-6
Creating a Button Widget 3-7
m Program Description 3-8
Creating a Composite Widget 3-10
m Program Description 3-10
Creating a Menu 3-14
m Program Description 3-14
Excerpted Programming Examples from s_sampler 3-20
m Entering Data 3-20
m Using a Slider Widget 3-22
m Defining and Using a Stub Widget 3-24
m Using a Form Widget 3-26

Table of Contents i

Table of Contents

Using Flattened Widgets 3-29
Specifying the Container Setting 3-29
Callbacks and Flat Widgets 3-30
Setting the State of a Sub-Object 3-31
Getting the State of a Sub-Object 3-34
Obtaining Help on a Sub-Object 3-34
Programming Caveats 3-36
Naming Conventions 3-36
Macro Alerts 3-36
Callback Restrictions 3-36
Global Name Space Restrictions 3-37
Debugging Hints 3-37

OPEN LOOK GUI Programmer’s Guide

Introduction

This chapter provides a practical introduction to how to develop programs
using the OPEN LOOK Toolkit. It consists of five sections:

m How to Write OPEN LOOK programs
m Navigating Through the System
m Annotated Sample Programs
m Using Flattened Widgets
®m Programming Caveats
The fundamental assumption of this chapter is that you are a competent

C Programmer, though not necessarily familiar with programming for the X
Window System or Object Oriented programming.

The “How to Write OPEN LOOK Programs” section offers a brief walk-through
of the steps necessary to get started.

The section on “Navigating Through the System” simply lays out the necessary
#include file structure and the library structure for using the OPEN LOOK
Toolkit.

The “Annotated Sample Programs” and “Using Flattened Widgets” sections
present several source programs of increasing complexity that create widgets
and associated callback routines. The intent of this section is to provide coding
models that you can use that will prove to be the base for your own use of the
OPEN LOOK toolkit.

The final section “Programming Caveats” presents tips and warnings.

Programming Using the OPEN LOOK Toolkit 3-1

How to Write OPEN LOOK Programs

Object Oriented Programming

In order to read and write Object Oriented code effectively, you need to be
aware both of the style requirements and the design requirements.

You will notice the programming style differences immediately upon looking at
a listing of OPEN LOOK code: you will be hard pressed to find ints, or longs,
or chars. In Object Oriented Programming things are distinct; a widget is a
Widget; a display is a Display. It is probably a good idea (in general) to look
through the include files and familiarize yourself with the style used to define
and develop the components you work with. After a while the specific typing
of objects will become familiar and you will get over the strangeness and appre-
ciate the increased clarity.

The design requirements are critical. You will need to change how you think
about your application. Object Oriented Programs are not sequential. They are
not well-ordered. The program flow is not a function of the input data stream;
rather, it is entirely a function of the end-user’s choosing.

Object Oriented programs are usually “event driven.” Control is given to a
routine as a function of an event, usually associated with an action taken by the
end-user. In the case of an OPEN LOOK application, the event is a combination
of a particular mouse (or key) action on a particular screen widget. Usually, it
is the selection of a particular option, though the end-user may have requested
help on that widget, may have requested a menu, and so on. Routines are ini-
tiated as a combination of a specific action on a specific object.

You need to know that it might not be a sensible action; not necessarily the
correct next-thing-to-do. And you need to program for that. You must also be
aware that because the actions are essentially asynchronous, it may be very hard
to determine when errors have occurred. You will have to think about debug-
ging your application taking this form of flow and usage into consideration.

In another way, programming is actually much easier. The notion of object
orientation gives rise to small, relatively stand-alone routines. They can be writ-
ten and tested outside of the full application system.

In the simplest sense applications are divided into two distinct parts: laying out
the screen and programming the proper response to specific events. The first
part consists of creating widgets; the second part consists of programming call-
backs. Laying out the screen is completely separate from developing the call-
back routines. A useful way to proceed is to write your program using dummy

3-2 OPEN LOOK GUI Programmer’s Guide

How to Write OPEN LOOK Programs

callbacks that do nothing but return. Once you are satisfied with the screen lay-
out and have tested and debugged the screen management you can add the call-
backs one at a time.

In the examples, the order of the code is:
m Include Files
m Necessary Global Data Definitions
m Callback Routines
® The Main Routine that Creates the Widgets
m Realizing the Widgets and Exiting to the Xt Main Loop

It was done this way for clarity of presentation. You should probably put the
screen layout section in a separate routine and thereby keep the code that much
cleaner. It also means that the exposition is a bit backwards; the event driven
actions are described before the objects of the event are created.

Programming Using the OPEN LOOK Toolkit 3-3

Navigating Through the System

Include File Directories

The XWIN implementation of the OPEN LOOK Toolkit places all #include files
and libraries in the following directories:

/usr/X/include/Xol holds all include files for the OPEN LOOK widgets
/usr/X/include/X11 holds all include files for the X Toolkit Intrinsics
/usr/X/1ibl holds all object libraries.

The names of the actual public and private include files for the OPEN LOOK
widgets are listed at the end of this section.

Libraries

The names of the object libraries are:

Object libraries:
/usr/X/1ib/X11l.a
/usr/X/1ib/1ibXt.a
/usr/X/1ib/1libXol.a

Shared libraries:
/usr/X/1lib/X11l.s0
/usr/X/1ib/1ibXt.so
/usr/X/1ib/1ibXol.so

Compilation Command

The prototypical command for compiling an application built with the XWVIN
implementation of the OPEN LOOK GUI is the following for UNIX System V
Release 4:

cc -I/usr/X/include -I/usr/X/include/Xol -I/usr/X/include/X1l1l -c ...

cc -0 ... -L/usr/X/1lib -1Xol -1Xt -1Xmu -1X11 -1lnsl -1d1 -1lw

3-4 OPEN LOOK GUI Programmer’s Guide

Navigating Through the System

There is a dependency upon 1ibw -1w from the MNLS package for Release
NoTE| 4. Compilation will not work for pre-Release 4 releases because there is no
MNLS.

For UNIX System V Release 4, it is necessary to set the following flags
as part of the compilation line:

-DUSG -Datt -DSYSV
for Release 4 an additional flag must be added:

-DSVR4_0 -D__ TIMEVAL___

Note that the order of linking the libraries is important.

Public and Private Include Files

Include file names are limited to ten characters. For private include files the
character before the “.h” is always “P”. The private files give you access to the
internal widget class definitions used in the Toolkit. By having access to the
underlying C structure definitions, you can extend the widget definitions and
define customized, application-specific widgets.

In order to develop OPEN LOOK applications you need to include the
appropriate widget class definition files and the basic Xt Intrinsics and OPEN
LOCK files. The three fundamental files are:

/usr/X/include/X11/Intrinsic.h
/usr/X/include/X11/StringDefs.h
/usr/X/include/Xol/OpenLook.h

For the names of the OPEN LOOK GUI public and private include files, see the

widget manual page in the “Manual Pages: Widgets”” appendix of this guide.
Include files are listed at the top of the page.

Programming Using the OPEN LOOK Toolkit 3-5

Annotated Sample Programs

This section presents and analyzes source code that makes use of the OPEN
LOOK Toolkit. It includes three stand-alone programs, and four excerpts from
a comprehensive example, s_sampler. In each of these examples, we specify
where and how you can choose between defining an object as a widget and
defining the same object as a gadget.

The three stand-alone programs describe the creation and use of:
— a button widget (named s_button.c)
— a composite widget (s_composite.c)
— and a menu widget (s_menu.c)

Chapter 6 contains of the code for s_sampler, that illustrates all of the objects in
the OPEN LOOK toolkit. This chapter includes four excerpts from that example
that describe the creation and use of:

- entering data using a textfield widget

- a slider widget

- using a stub widget for drawing

- and defining and placing objects on a form widget

Each program is preceded by a brief explanation. The source code then follows
on the right-hand page with explanations of the source code appearing on the
corresponding left-hand page.

The four stand-alone programs are also available on-line with OPEN LOOK.
The programs are stored in the directory /usr/X/1lib/tutorial/Xol. To com-
pile one of these programs, such as s_button.c, enter that directory and exe-
cute the following commands for Release 4:

cc -I/usr/X/include -I/usr/X/include/Xol -I/usr/X/include/X11 -c¢ s_button.c
cc -o s_button s_button.o /usr/X/lib/libXol.so /usr/X/lib/libXt.so
/usr/X/1lib/1libX1l.s0 -1lnsl -lc

3-6 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

Creating a Button Widget
The first program introduced here is the easiest of the three programs. It

creates a single Button, labeled Quit. When the end-user presses the button, the
program terminates.

Programming Using the OPEN LOOK Toolkit 3-7

Annotated Sample Programs

Program Description

Lines 1-4 include the header files required by this program. Every program that
uses the OPEN LOOK interface requires the first two general header files, plus a
specific header file (in this case, OblongButt.h) for each widget class used.

Lines 5-11 implement a callback function that is associated with the
OblongButton widget (line 26) and is invoked when the user selects the oblong
button. For consistency, all callback functions define the same set of parameters,
even though, as in this example, they are not always used. This particular call-
back function simply causes the application program to exit. All cleanup of
OPEN LOOK resources is handled automatically by the system and the associ-
ated screen image is deleted.

Lines 12-16 are the standard declarations for a C program and lines 17-19
declare the data objects used. The args array will be used to contain argument
lists to widget creation functions (line 22). Its size is arbitrary, but should be
large enough to hold the largest argument list used in the program and should
allow for possible future growth of argument lists.

Line 20 initializes the system and creates a toplevel shell widget. This widget
does not have a visible image on the screen. It serves as a root for the widget
hierarchy about to be created.

Line 22 generates the argument list to be used in creating the OblongButton
widget. The array args stores the argument list, which consists of name-value
pairs. The variable 7 is used to count the number of arguments present. In this
program, the name of the argument is XtNlabel, and its value is the string
Quit. The syntax shown in these lines is a widely used standard for creating
argument lists. In this example, all arguments other than the button label
assume standard default values.

Lines 23-25 create the OblongButton widget, make it a child of the toplevel
shell widget, and assign it to the widget variable quitButton.

Line 26 adds the callback function defined above to the (previously NULL) list
of functions to be called whenever the quitButton widget is selected by the
user.

Line 27 takes the widget hierarchy defined above, with toplevel as its root, and
creates the associated windows and displays the image on the screen.

Line 28 invokes the main event loop, which processes events, such as user
inputs through the mouse and keyboard, and invokes the appropriate callback
functions.

3-8 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

#include <X11/Intrinsic.h>
#include <X11l/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/OblongButt.h>

Lo S

void

QuitCallback(widget, clientData, callData)
wWidget widget;

caddr_t clientData, callData;

{

10 exit(0);

11 }

W w0 unm

12 int

13 main(argc, argv)
14 int argc;

15 char **argv;

16 {

17 Widget toplevel, quitButton;

18 Arg args[10];

19 int n;

20 toplevel = OlInitialize("top", "Top", NULL, 0, &argc, argv);
21 n=0;

22 XtSetArg(args[n], XtNlabel, "Quit"): n++;

23 quitButton = XtCreateManagedWidget ("button",

24 oblongButtonWidgetClass,
25 toplevel, args, n);

26 XtAddCallback (quitButton, XtNselect, QuitCallback, NULL);
27 XtRealizeWidget (toplevel) ;

28 XtMainLoop() ;

29 }

Programming Using the OPEN LOOK Toolkit 3-9

Annotated Sample Programs

Creating a Composite Widget

This program is a relatively easy program, although it’s slightly more complex
than the previous Quit Button widget program. It introduces the composite
ControlArea widget and puts two Button children in it. The commentary
describes how to modify the program to use gadgets instead of widgets.

The first child Button is the Quit button from the previous program. The
second child Button changes its label when pressed, demonstrating the use of
XtSetValues on an existing widget.

Program Description

Lines 1-5 include the header files required by this program. This program uses
two widget classes, oblong button and control area, and has a header file for
each.

Lines 6-25 implement a callback function, which will be associated with the tog-
gle button widget and will be invoked when the user selects the toggle button.

Lines 8-9 define the standard callback parameters, although only one of them
(widget) will be used.

Line 11 declares an array that will contain an argument list (limited to 1 argu-
ment).

Lines 15-23 implement a switch statement that chooses a new label for the
widget and updates the variable containing the toggle value based on the
current value of the counter. A switch statement is used so that the program
can be easily extended to cycle among more than the two states currently imple-
mented.

Line 24 updates the label field of the specified widget based on the value set in
the argument list in the switch statement above. The updated label is reflected
in the screen image of the widget (in this example, the toggle button).

Lines 26-32 implement the same callback function described in the previous pro-
gram.

3-10 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/OblongButt.h>
#include <Xol/ControlAre.h>

(S VAR S o

6 void

7 ToggleCallback(widget, clientData, callData)
8 Widget widget;

9 caddr_t clientData, callData;

10 |

11 Arg args([1];

12 static int value = 1;

13 int n;

14 n=0;

15 switch (value) {

16 case 1:

17 XtSetArg(args[n], XtNlabel, "Two"); n++;
18 value++;

19 break;

20 case 2:

21 XtSetArg(args[n], XtNlabel, "One"):; n++;
22 value--;

23 }

24 XtSetValues (widget, args, n);

25 }

26 void

27 QuitCallback(widget, clientData, callData)
28 widget widget;

29 caddr t clientData, callData;

30 {

31 exit(0);

32}

Programming Using the OPEN LOOK Toolkit 3-11

Annotated Sample Programs

Line 37 declares and names the widgets that are used in this application.

Line 40 initializes the OPEN LOOK Graphical User Interface and creates the
toplevel shell widget.

Lines 41-46 create a control area widget as a child of the toplevel widget. The
argument lists in lines 42 and 43 specify that child widgets placed in the control
area will have a layout consisting of a fixed number of columns, and that the
number of columns (XtNmeasure) will be 1. By default, the widgets placed in
this column will have the same size.

Lines 47-52 create an oblong button widget (quitButton) as a child of the con-
trol area widget and add the QuitcCallback function to the quitButton
widget’s list of callback functions. This is the same widget that was presented
in the previous program example.

Lines 53-57 create a second oblong button widget (toggleButton) as a child of
the control area widget and add the ToggleCallback function to
toggleButton’s list of callback functions. Based on the definition of the control
area widget above, this button will be placed under the quitButton, forming a
single column, and both buttons will have the same size.

To transform the two button widgets into button gadgets, you simply change
lines 50 and 56 to read ““oblongButtonGadgetClass’’. This results in the but-
tons using the control area window and not needing the code required to main-
tain their own windows. This is more efficient in both time and space.

Line 59 takes the widget hierarchy defined above, with toplevel as its root,
creates the associated windows, and displays the image on the screen.

Line 60 invokes the main event loop, which processes events, such as user
inputs through the mouse and keyboard, and invokes the appropriate callback
functions.

3-12 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

33 int main(argc, argv)
34 int argc;
35 char **argv;

36 {

37
38
39

40

41
42
43
44
45
46

47
48
49
50
51

52

53
54
55
56
57

58
59

60
61 }

widget toplevel, control, toggleButton, quitButton;
Arg args[10];
int n;

toplevel = OlInitialize("top", "Top", NULL, 0, &argc, argv);

n = 0;
XtSetArg(args[n], XtNlayoutType, OL_FIXEDCOLS); n++;
XtSetArg(args([n], XtNmeasure, 1); n++;

control = XtCreateManagedWidget("control",
controlAreaWidgetClass,
toplevel, args, n);

n = 0;
XtSetArg(args[n], XtNlabel, "Quit"); n++;
quitButton = XtCreateManagedwWidget ("gbutton",

oblongButtonWidgetClass,
control, args, n);

XtAddCallback(quitButton, XtNselect, QuitCallback, NULL);

n=20;
XtSetArg(args[n], XtNlabel, "One"):;: n++;
toggleButton = XtCreateManagedWidget ("tbutton",

oblongButtonWidgetClass,
control, args, n);

XtAddCallback(toggleButton, XtNselect, ToggleCallback, NULL);

XtRealizeWidget (toplevel) ;
XtMainLoop() ;

Programming Using the OPEN LOOK Toolkit 3-13

Annotated Sample Programs

Creating a Menu

This program creates an automatic popup widget, using the MenuButton
widget. The menu has three children, one of which is the Quit Button used in
the previous two programs. The two remaining children share the same two
select and unselect callback functions, but pass different numbers to the func-
tions.

Program Description

Lines 1-7 include the header files required by this program. This program uses
four widget classes and contains a specific header file for each.

Lines 8-14 define the QuitCallback function from the previous examples.

Lines 15-21 define a callback function that will print a message to the client’s
standard out when it is invoked. This function is associated with the selection
event of multiple widgets. The clientData parameter will contain a pointer to
an integer value (typecast to caddr._t) identifying which widget invoked it.

Lines 22-28 define a callback function that is similar to the preceding function,
except that it is associated with an unselect event, that is, the clearing of a previ-
ous selection.

3-14 OPEN LOOK GUI Programmer’s Guide

Nou bk wih PR

©

10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27
28

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/MenuButton.h>
#include <Xol/Menu.h>
#include <Xol/Exclusives.h>
#include <Xol/RectButton.h>

void
QuitCallback(widget, clientData, callData)
Widget widget;
caddr_t clientData, callbData;
{
exit (0);

void
SelectCallback(widget, clientData, callData)
Widget widget;
caddr_t clientData, callData;
{
printf ("Button %d selected\n", *clientData);

void
UnselectCallback(widget, clientData, callData)
Widget widget;
caddr_t clientData, callData;
{
printf ("Button %d unselected\n", *clientData);

Programming Using the OPEN LOOK Toolkit

Annotated Sample Programs

3-15

Annotated Sample Programs

Lines 34-38 declare the widgets and the argument list for this application.

Line 39 initializes the OPEN LOOK Graphical User Interface and creates a top
level shell widget called toplevel.

Lines 40-42 create a menuButton widget as a child of toplevel, and the menu-
Button widget creates a composite child widget where menu items can be
attached.

Lines 43-45 obtain the widget ID of the menuButton’s composite child widget
and store this id into the menupane variable.

3-16 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37
38

39

40
41
42

43
44
45

void
UnselectCallback(widget, clientData, callData)
widget widget;
caddr_t clientData, callData;
{
printf ("Button %d unselected0, *clientData):

void
main(argc, argv)
int argc;
char **argv;
{
Widget toplevel,MenuButton;
Widget menupane,exclusives,buttonl,button2,button3;

Arg args[10];
int n;
int ni1, n2;

toplevel = OlInitialize("top", "Top", NULL, 0, &argc, argv);

MenuButton = XtCreateManagedWidget ("MenuButton",
MenuButtonWidgetClass,
toplevel, NULL, 0);

n=0;
XtSetArg(args[n], XtNmenuPane, &menupane); n++;
XtGetValues (MenuButton, args, n);

Programming Using the OPEN LOOK Toolkit 3-17

Annotated Sample Programs

Lines 47-52 create an exclusives widget as a child of menupane. This exclusives
widget will appear when the mouse menu button is clicked on the menuButton
created above. The argument list specifies that child widgets placed in the con-
trol area will have a layout consisting of a fixed number of columns, and that
the number of columns (XtNmeasure) will be 1.

Lines 53-68 create three rectangular button widgets as children of the exclusives
widget. These rectButton widgets provide the user-selectable choices in the
pop-up menu of the menuButton.

Lines 53-58 create a rectangular button with the label “ONE” and associate two
callback functions with it. The first, SelectCallback, is invoked when the
associated button is selected. The second, UnselectCallback, is invoked when
the button is unselected, that is, the selection is cleared. Both functions are
passed a value for the callData parameter that identifies the call as being asso-
ciated with button 1.

Lines 59-64 are similar to lines 52-56, except the new rectangular button has the
label “TWO,” and its callback function is passed a value for callData identify-
ing button 2.

Line 69 takes the widget hierarchy under toplevel and creates the associated
windows and displays the image on the screen.

Line 70 begins the main event loop.

3-18 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

46
47
48
49

50
51
52

53
54
55
56
57
58

59
60
61
62
63
64

65
66
67
68

69
70

71}

n=0;

XtSetArg(args[n],XtNlayout, OL_FIXEDCOLS) ; N++;

XtSetArg(args[n],XtNmeasure, 1); n++;

XtSetArg(args[n], XtNrecomputeSize, (XtArgval) TRUE); n++;

exclusives= XtCreateManagedWidget ("exclusives",
exclusivesWidgetClass,
menupane, args,n) ;

nl = 1;

buttonl = XtCreateManagedwWidget("ONE",
rectButtonWidgetClass,
exclusives, NULL, 0);
XtAddCallback (buttonl, XtNselect, SelectCallback, &nl);
XtAddCallback(buttonl, XtNunselect, UnselectCallback, &nl);

n2 = 2;
button2 = XtCreateManagedWidget("TWO",
rectButtonWidgetClass,
exclusives, NULL, 0);
XtAddCallback (button2, XtNselect, SelectCallback, &n2);
XtAddCallback (button2, XtNunselect, UnselectCallback, &n2);

button3 = XtCreateManagedwidget("EXIT",
rectButtonWidgetClass,
exclusives, NULL, 0);
XtAddCallback(button3, XtNselect, QuitCallback, NULL);

XtRealizeWidget (toplevel) ;
XtMainLoop() ;

Programming Using the OPEN LOOK Toolkit 3-19

Annotated Sample Programs

Excerpted Programming Examples from s sampler

This section presents four code pieces selected from the comprehensive pro-
gramming example, s_sampler, that appears in Chapter 6. The line numbers
used in the excerpts match those in the appendix so that you can refer to the
program as a whole.

The example in the appendix illustrates all widgets, gadgets, and flats that
comprise the OPEN LOOK Toolkit. The code can be used as a model for
developing OPEN LOOK applications. It is worth mentioning that, with a com-
ment density in excess of 25%, the application sampler takes less than 2000 lines
of code.

Entering Data

This section describes how to develop a textfield widget that permits the end-
user to enter data. This may be the most common end-user operation and so is
a critical example.

Lines 587 - 601 define the textfield widget callback routine. The callback routine
is invoked whenever the end user completes the entry, which is indicated by
pressing RETURN.

In this case, the callback simply outputs the text that was entered. The value
here is to see how the text is referenced. In the same way, you can capture the
text, convert it (in case it were numeric), and store it for use by other routines.

Lines 763 - 776 create the labeled data entry field. Defining the size and posi-
tion of the field is done elsewhere in the example.

3-20 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

587 static void
588 textfieldCB(widget,clientData,callData)

589 Widget widget;

590 XtPointer clientData,callData;

591 {

592 OlTextFieldVerify *tfv = (OlTextFieldVerify *) callData;
593 char buf [MAXBUF] ;

594 Arg arg;

595

596 sprintf (buf, "Footerpanel: TEXTFIELD User Input: %s0,
597 tfv->string);

598 FooterMessage (footer_text,buf);

599 XtSetArg (arg,XtNstring, (XtArgval) "");

600 XtSetValues (widget, &arg, 1) ;

601 }

763 /*

764 * Make a caption as a label/prompt for the TEXTFIELD.

765 */

766 i=0;

767 XtSetArg(arg[i],XtNlabel,

768 (XtArgvVal) "Textfield: type & type <return> :"); i++;
769 widget = XtCreateManagedWidget ("caption",

770 captionWidgetClass, popupcall,arg,i);

771 widget = XtCreateManagedWidget ("textfield",

772 textFieldwidgetClass,widget,NULL,0);

773 /*

774 * Callback to "read" user input when <return> typed.

775 */

776 XtAaddCallback (widget,XtNverification, textfieldCB, NULL) ;

Programming Using the OPEN LOOK Toolkit 3-21

Annotated Sample Programs

Using a Slider Widget
This section describes how to develop and use a slider widget.

The use of the slider widget here is both simple and dramatic. The slider is cali-
brated to return an integer value over the range of colors for the hardware.

This value is returned to the callback as “callbata.” It is used in the XtSet-
Values call to set the background color of a stub widget that had been defined
to sit physically above the slider widget on the screen. The effect, therefore, is
to change the color of the stub widget as the end-user moves the slider. The
result is a pretty demonstration of the use of color in graphic applications.

Line 583 accesses the color value established by the slider. Lines 584 and 585
change the value of the background color resource.

Lines 1236 - 1263 define the resources for the slider and associate the callback
with its movement.

The position of the slider on the form is defined elsewhere in the application.

574 static void
575 sliderCB(widget,clientData,callData)

576 wWidget widget;

577 XtPointer clientData,callData;
578 {

579 Arg arg;

580 /*

581 * Slider returns current value.

582 */

583 arg.value = (XtArgvVal) *callData;
584 XtSetArg(arg, XtNbackground, arg.value) ;
585 XtSetValues (stub, &arg, 1) ;

586 }

3-22 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

1236 {
1237
1238
1239
1240

1241

1242
1243
1244

1245

1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263 }

Display *display = XtDisplay(toplevel);
int screen = XDefaultScreen(display);
int n, ncolors=2;

Widget w;

n= XDefaultDepth(display, screen);

for(i=1; i<n; i++) {
ncolors= ncolors*2;

ncolors = ncolors -1 ;

i=0;

XtSetArg(arg[i],XtNposition, (XtArgVal) OL TOP); i++;

XtSetArg(arg[i],XtNalignment, (XtArgVal) OL_CENTER); i++;

XtSetArg(arg[i],XtNlabel, (XtArgVal) "Slider"); i++;

slider_caption = XtCreateManagedWidget ("slider_caption",
captionWidgetClass, form,arg,i);

i=0;
XtSetArg(arg[i], XtNwidth, (XtArgVal) N200_HE_PIXELS); i++;
XtSetArg(arg[i],XtNorientation, (XtArgVal) OL_HORIZONTAL); i++;
XtSetArg(arg[il,XtNsliderMax, (XtArgVal) ncolors); i++;
XtSetArg(arg[i],XtNgranularity, (XtArgvVal) 1); i++;
XtSetArg(argl[i]l, XtNticks, (XtArgval) 1); i++;
XtSetArg(arg[i], XtNtickUnit, (XtArgVal) OL_SLIDERVALUE); i++;
XtSetArg(arg[i], XtNdragCBType, (XtArgVal) OL_RELEASE); i++;
w = XtCreateManagedWidget ("slider",

sliderWidgetClass, slider_caption,arg,i);
XtAddCallback (w, XtNsliderMoved, sliderCB, NULL) ;

Programming Using the OPEN LOOK Toolkit 3-23

Annotated Sample Programs

Defining and Using a Stub Widget
This section describes how to develop and use a stub widget.

The stub widget provides the application programmer with the flexibility of cus-
tomizing a widget’s visual appearance and semantics. In this application, select-
ing the caption button “RAINBOW” paints the stub widget window by calling
the function, DrawAndPrint. The stub widget itself refreshes the current con-
tents of its window when necessary. Lines 1017-1034 illustrate the creation of
the stub widget. Line 1027 registers the function DrawAndPrint, to repaint the
widget when it is exposed. Lines 1033-1034 add an event handler to monitor
the pointer entering and leaving the widget’s window. Lines 345-365 present
the function, StubEventHandler. The stub widget also has its own cursor,
which is set with the function, SetStubCursor in lines 331-341. Other related
sections of code are DrawAndPrint (lines 143-223) and GetColors (lines 238-
276). Please see Chapter 6.

1017 /*
1018 * First two arguments scale widget to resolution of screen.
1019 */

1020 i=o0;

1021 XtSetArg(arg[i],XtNheight, (XtArgVal) N100_V_PIXELS); i++;

1022 XtSetArg(arg[i],XtNwidth, (XtArgVal) N100_H_PIXELS); i++;

1023 XtSetArg(arg[i],XtNbackground, skyblue pixel); i++;

1024 /*

1025 * DrawAndPrint() will be called with an Expose event;

1026 */

1027 XtSetArg(arg[i],XtNexpose, DrawAndPrint); i++;

1028 stub = XtCreateManagedWidget ("stub", stubWidgetClass, form,arg,i);

1029 /*
1030 * Add an eventhandler to track when the pointer
1031 * enters and leaves the stub widget window.

1032 */
1033 XtAddEventHandler (stub, EnterWindowMask | LeaveWindowMask,
1034 FALSE, StubEventHandler, (XtPointer)NULL);

3-24 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

345
346
347
348
349
350
351

352
353
354

355
356
357
358

359
360
361
362
363
364
365

331
332
333
334
335

336
337
338

339
340
341

static void

StubEventHandler (widget,clientData, event)
Widget widget;
XtPointer clientData;
XEvent *event;

XCrossingEvent *xce;

/*
* The xce pointer allows referencing to event specifics - see Xlib.h
*/

if (event->type==EnterNotify || event->type==LeaveNotify)
xce = (XCrossingEvent *) &(event->xcrossing);
else
return;

if (event->type ==EnterNotify)
FooterMessage (footer_text,
"Footerpanel: Pointer entered STUB widget");
else
FooterMessage (footer_text,
"Footerpanel: Pointer left STUB widget"):;

static void
SetStubCursor (widget)
Widget widget;

static Cursor cursor;

/*
* See OlCorsor.c for other cursor possibilities.
*/
cursor = GetOlQuestionCursor (XtScreen(widget));
XDefineCursor (XtDisplay (widget) , XtWindow(widget), cursor) ;
}

Programming Using the OPEN LOOK Toolkit 3-25

Annotated Sample Programs

Using a Form Widget

This last example shows how to create a form widget and how to position other
widgets on the form. The form is a useful “backdrop” widget; it provides an
empty area on which to position other widgets.

Lines 110 - 117 define some of the constraint resources used to position widgets
on the form. These resources are specified for each widget and are later used to
support positioning the widgets relative to each other. Both XtNxOffset and
XtNyOoffset are defined later in the application as a specific number of pixels.
The xtNxOffset indicates that a child widget will be positioned a specific
number of pixels to the right of a reference widget, defined by XtNxRefName.
The XtNyoffset indicates that a child widget will be positioned a specific
number of pixels below a reference widget, defined by XtNyRefName.

While xtNxRefWidget and XtNyRefWidget are also form constraint resources,
XtNxRefName and XtNyRefName are used since they allow specifying the relative
positions of widgets before any of the widgets are created.

The XtNxAddwidth and XtNyAddHeight resources determine whether the refer-
ence widget’s width or height, that is, XtNxRefWidget’s width or
XtNyRefWidget’s height, should be added to the offset.

110 static Arg genericARGS[] = {

111 { XtNxRefName, NULL },

112 { XtNyRefName, NULL },

113 { XtNxOffset, (XtArgval) 0 }, /* to be initialized below */
114 { XtNyoffset, (XtArgval) 0 }, /* to be initialized below */
115 { XtNxAddwidth, (XtArgval) TRUE },

116 { XtNyAddHeight, (XtArgVal) TRUE },

117 };

3-26 OPEN LOOK GUI Programmer’s Guide

Annotated Sample Programs

The SetPosition routine sets the resource values in the current widget that
will be used by the Form widget to place the current widget relative to other
widgets already placed on the Form. The way to read the definition of SetPo-
sition is “position widget with its upper left hand corner to the right of the
upper left hand corner of xwidget and below the upper left hand corner of
ywidget.” How much to the right is determined by XtNxOffset (perhaps plus
xwidget’s width) and how much below is determined by XtNyoffset (perhaps
plus ywidget’s height). The figure below illustrates the effects of the
XtNxAddwidth and XtNyAddHeight resources on placing NEW widget when both
xwidget and ywidget are the same reference widget:

Both = True XtNxAddwidth = FALSE
reference reference
widget | —= XOFFSET widget
UOFFSET
Original Form [NEE] @ Original Form

XtNyAddHeight = FALSE Both = FALSE

reference @ @

widget

reference widget

Original Form Original Form

Programming Using the OPEN LOOK Toolkit 3-27

Annotated Sample Programs

Lines 1470-1473 position the stub on left of the form below the caption.

287 static void

288 SetPosition(widget, xwidget, ywidget)
289 Widget widget;

290 char *xwidget, *ywidget;

291 {

292 static int nargs;

293 if (nargs == 0)
294 nargs = XtNumber (genericARGS);

1470 genericARGS[2] .value
1471 genericARGS[3] .value

(XtArgval) N10_H PIXELS;
(XtArgVal) N10_V_PIXELS;

1472 SetPosition(caption, "form", "ca_caption");
1473 SetPosition(stub, "form", "caption");

3-28 OPEN LOOK GUI Programmer’s Guide

Using Flattened Widgets

This section presents pieces of code that will serve as examples of how to set-
up, create and use Flattened Widgets.

Specifying the Container Setting

The following code fragment illustrates how to create a flat exclusives widget
setting.

In this example, each of the button sub-objects has the same client data

(“test case”) for the select callback procedure. Because of this, the
XtNclientData resource can be specified for the container only. This allows
each sub-object to inherit this value. If each sub-object wanted a different client
data, the XtNclientData resource would be added to the other sub-object
resources. This would automatically disable the inheriting of the container’s
client data value.

To improve the readability of this example, required type casts of the fields in
the FlatExclusives structure initialization have been deliberately omitted.

/* Application Defined Structure */
typedef struct {

XtArgVal label; /* pointer to a string */
} FlatExclusives;

Notice that all the fields in the application-defined structure, FlatExclusives,
NoTE | have the type XtArgval. An alternate form for specifying the FlatEx-
clusives type is:

typedef XtArgVal FlatExclusives|[#];

where '# is the number fields per record.

Programming Using the OPEN LOOK Toolkit 3-29

Using Flattened Widgets

String
exc_fields[] = { XtNlabel };

static void
cb()
{ /* This is the callback procedure...
something interesting should go in here */ }

CreateObjects (parent)
Widget parent;
{
Arg args[6];

static FlatExclusives exc_items[] = { /* label for each button */
{ "Choice 1" },
{ "Choice 2" },
{ "Choice 3" }

};

XtSetArg(args[0], XtNitems, exc_items);
XtSetArg(args[1l], XtNnumItems, XtNumber (exc_items));
XtSetArg(args[2], XtNitemFields, exc_fields);
XtSetArg(args[3], XtNnumItemFields, XtNumber (exc_fields));
XtSetArg(args([4], XtNselectProc, cb,);
XtSetArg(args([5], XtNclientData, "test case");

XtCreateManagedWidget ("exclusives", flatExclusivesWidgetClass,
parent, args, 6);
} /* END OF CreateObjects() */

Callbacks and Flat Widgets

There are two differences in the way callbacks are handled for flat widgets as
opposed to traditional widgets. The first difference is that sub-objects do not
use XtCallback lists; instead, they use a single XtCallbackProc procedure.

Secondly, since the sub-objects of flattened widget containers are not true
widget instances, the widget argument supplied to an application’s callback pro-
cedure indicates the flat container widget that is ultimately responsible for
managing the sub-object. For example, the flatExclusivesWidget id would
be supplied as the widget id to the callback procedure for all sub-objects within
the flat exclusives container. By maintaining this rule, the application always
has the correct widget handy in the event that the application wishes to modify
the item or its list from within the callback procedure.

3-30 OPEN LOOK GUI Programmer’s Guide

Using Flattened Widgets

The value of the XtNclientData resource is supplied as the client_data field to
the callback procedure.

The call_data field is a pointer to a structure that the application can use to
determine information about the sub-object associated with the current callback.
The new structure is as follows:

typedef struct {

Cardinal item index; /* sub-object initiating callback */
XtPointer items; /* Sub-object list head */
Cardinal num_items; /* number of items */
String * item fields; /* key of fields for list */
Cardinal num item fields; /* number of fields per item */

} OlFlatCallData;

where:
item index The index of the item (that is, the specific sub-object)
responsible for initiating this invocation of the callback.
items The head of item list that contains the sub-object ini-
tiating the callback
num_items The total number of items in the sub-object list
item fields The list of resource names used to parse the records in

the sub-objects list.

num item fields The number of resource names contained in ifem_fields.

Setting the State of a Sub-Object

The application can use two methods to change the state of an item: use the
OlFlatSetValues procedure to modify one or more attributes of a sub-object,
or directly modify the item list that the container and the application share.

The first approach is very similar to doing an XtSetValues request on a widget,
except that the OlFlatSetValues routine requires the item index as well as the
widget id, args and num_args. The routine is defined as:

Programming Using the OPEN LOOK Toolkit 3-31

Using Flattened Widgets

OlFlatSetValues (widget, item index, args, num_args)

Widget widget; /* flat widget id */
Cardinal item_index; /* item to modify */
ArgList args; /* new resources */
Cardinal num_args; /* number of new resources */

The following code example uses this routine and illustrates how to change an
item’s label from within a callback procedure. The example assumes the new
label was specified as the client data.

Callback(widget, client_data, call_data)

Widget widget; /* FlatExclusives Widget id */
caddr_t client_data; /* the new static label */
caddr_t call_data; /* OlFlatCallData structure pointer */

OlFlatCallData * fcp = (OlFlatCallbData *)call_data;
Arg args[1];

/* Set the label to be the new one passed in
* with the client data field. */

XtSetArg(args[0], XtNlabel, client_data);
OlFlatSetValues (widget, fcp->item index, args, 1);

} /* END OF Callback() */

Notice that the callback procedure did not have to know the number or the
order of the item fields. The only requirement was that the XtNlabel resource
is among the application-specified item fields, because if it were not, the above
request would be ignored.

If the application does not use the above approach and modifies the item list
directly, the application must ensure that all items within the list have valid
states, since the container literally treats this type of modification as if the con-
tainer were given a new list. For example, if an application wished to change a
currently-set exclusive item, the application would have to unset the currently-
set item and set the new item. If the application only set the new item, the con-
tainer would generate a warning since the item list contains more than one set
item.

3-32 OPEN LOOK GUI Programmer’s Guide

Using Flattened Widgets

The following example shows how a callback procedure changes the set item by

modifying the item list. This example makes the first item be the set item

whenever the last item is selected. Notice that once the list has been touched,
the application must “inform’ the container of the modification. Also notice that

in this example the callback needs to know the structure of the application to
directly change its contents.

/* Application Defined Structure from previous example */

typedef struct {

XtArgVallabel; /* pointer to a string */
XtArgValselect_proc; /* pointer to a callback procedure */
XtArgValset; /* this item is currently set */
XtArgValsensitive; /* this item is sensitive */

} FlatExclusives;

Callback(widget, client_data, call_data)
Widget widget; /* FlatExclusives Widget id */
XtPointer client_data; /* application’s client data */
XtPointer call data; /* OlFlatCallData structure pointer */

OlFlatCallbData * fcp = (OlFlatCallData *) call_data;
if (fcp->num items == (fcp->item index + 1))

{
FlatExclusives * fexc items = (FlatExclusives *) fcp->items;

Arg args[1];
/* Unset this item and
* get the first one */
fexc_items[fcp->item index].set = FALSE;
fexc_items[0].set = TRUE;
/* Inform the container that the list
* was modified */

XtSetArg(args[0], XtNitemsTouched, TRUE);
XtSetValues (widget, args, 1);
}
} /* END OF Callback() */

Programming Using the OPEN LOOK Toolkit

3-33

Using Flattened Widgets

Getting the State of a Sub-Object

Obtaining the state of a sub-object can also be achieved in two ways. The first
is by using the O1FlatGetValues routine, specifying the index of the item to be
queried.

OlFlatGetValues (widget, item index, args, num args)

Widget widget; /* flat widget id */
Cardinal item index; /* item to query */
ArgList args; /* query resources */
Cardinal num_args; /* number of query resources */

If this approach is used, the application can query any sub-object resource even
though it does not appear in the item fields. Take the initial example for
instance, the application can query the XtNfontColor resource from any sub-
object even though it does not appear in the FlatExclusives structure.

The second method for getting the state of a sub-object is by looking directly
into the sub-object list since both the application and flat container share the
same instance of the sub-object description.

Obtaining Help on a Sub-Object

The application can specify a unique help message for each sub-object in a simi-
lar fashion as help is registered for widgets, that is, through the O1Re-
gisterHelp routine. Since sub-objects are not real widgets, but are extensions
of the flat widget container, the help registration routine has a complex id:

typedef struct {
Widget widget; /* Flat Widget id */
Cardinal item index; /* item to register help on */
} OlFlatHelpld; ‘

The following example registers help on the eighth sub-object in the flat widget:

3-34 OPEN LOOK GUI Programmer’s Guide

Using Flattened Widgets

static String tag = "Item 8";
static String source = "Item 8’s help";
OlFlatHelpId help id;

flat_widget;
7:

help id.widget
help_id.item index

OlRegisterHelp (OL_FLAT HELP, (XtPointer) &help_id,
tag, OL_STRING_SOURCE, source);

Programming Using the OPEN LOOK Toolkit 3-35

Programming Caveats

Naming Conventions

This may belabor the obvious - but you must pay attention to the naming con-
ventions or you will quickly get lost inside your own code.

Notice that each of the examples related the callback name to the widget name
in an organized way. You will find it pays dividends to establish those kinds of
conventions for yourself. For example, if you define a Quit OblongButton
widget, you may find it useful to define the callback routine ““QuitCallback’ or
“QuitCB”.

Macro Alerts

Do not use auto-increment or auto-decrement in any intrinsic or OPEN LOOK
function calls.

For example, use
XtSetArg(argl[il,....): i++;
rather than

XtSetArg(argli++],...);

Callback Restrictions

Be careful not to use a “long jump”’ (setjmp(3C)) within a callback function. A
long jump is used to bypass the normal function return structure (usually when
an error condition occurs). This will not work from callbacks. The widget
requires a return from the callback to complete updates to internal state tables,
and using a “long jump” skips this return, causing the widget to have incorrect
state information. This, in turn, causes incorrect visuals or program failures.

3-36 OPEN LOOK GUI Programmer’s Guide

Programming Caveats

Global Name Space Restrictions

The OPEN LOOK widget library uses a particular convention when naming
external C procedures, variables, and structure. It will always begin with “Ol1”
and may be optionally preceded by an underscore ““_ .” Similarly, preprocessor
symbols (#define’s) will begin with “Ol”” or “OL” and may be optionally pre-
ceded by an underscore. The global name space is therefore restricted in this
way and you should not choose external names which begin with these prefixes.

Debugging Hints

Use the OPEN LOOK® Graphical User Interface Style Guide. The cleaner and
more user-oriented the screen layout is, the easier it will be to debug.

You can consider developing applications in one of these ways:
m One Object at a Time

First place the object, then check out the callback routine. The advantage
of this is that it is very simple; one step at a time. The difficulty is that
often one callback is really a function of other on-screen activities.

m Place All Objects

First, place all objects on the screen, then debug the callbacks. The advan-
tage of this approach is that placement and callback functions are easily
separable functions and that placement is often a developmental check-
point. Also, the end-user interface is both logically and functionally dis-
tinct from the actual application.

m One Grouping at a Time

Develop a composite and all its constituents, including placement and
callbacks. The advantage of this is that it often corresponds to a func-
tional module of the application and, therefore, resembles the “tradi-
tional” style of modular development.

In any case, creating a modular development style is probably the single most
valuable aid to program debugging.

Programming Using the OPEN LOOK Toolkit 3-37

4 X Window System, Version 11,
Conventions for OPEN LOOK

Introduction 4-1
General Considerations 4-2
Methods of Communication 4-2
m Properties 4-2
m Events 4-2
Restrictions 4-3
Nomenclature 4-3
Protocol Notes 4-4
m Extensibility 4-4
m Efficiency 4-4
Property Notation 4-4
Window Properties 4-6
Window Decorations 4-6
Standard Decorations 4-6
Customizing Decorations 4-8
The Pin State 4-10
Window Colors 4-11
Busy Windows 4-12
Focus Warping 4-13

Relationship to Inter-Client Conventions 4-14

WM _NORMAL_HINTS 4-14
WM _HINTS 4-15
WM _PROTOCOLS 4-15

m WM _SAVE YOURSELF 4-15

Table of Contents i

Table of Contents

= WM _DELETE_WINDOW 4-15
m WM_TAKE_FOCUS 4-16
Window Groups 4-16
Input Focus 4-19

Workspace and File Manager Conventions 421

Miscellaneous Implementation Issues 4-27
Pinnable Menus and Override-Redirect 4-27
Full Size Window 4-27

ii OPEN LOOK GUI Programmer’s Guide

Introduction

The OPEN LOOK graphical user interface specifies the behavior and appearance
of the entire system. The X Window System, version 11 (X11) is composed of a
server and several clients. Some clients are dedicated to performing particular
tasks, such as window management, while others are application programs.
Therefore, the responsibility for implementing OPEN LOOK under X11 must be
shared among several different clients. This chapter specifies how X11 clients
must cooperate in order to implement OPEN LOOK.

The X11 protocol was designed using the principle of mechanism, not policy.
The protocol provides only the tools with which to build an environment, but it
doesn’t determine how these tools are to be used. If there were no policy
governing the use of the X11 protocol, applications that worked correctly in iso-
lation may fail to work when they share an environment with other applica-
tions. Therefore, conventions are necessary so that applications can coexist and
interoperate. The standard conventions are described in the X11 Inter-Client
Communication Conventions Manual (ICCCM). All X11 clients are required to
conform to these conventions in order to guarantee interoperability.

An OPEN LOOK environment requires the existence of an additional set of con-
ventions beyond those described in the ICCCM. The purpose of this chapter,
then, is to detail the conventions necessary to guarantee that OPEN LOOK
applications written by different vendors, using different toolkits and languages,
will interoperate. This is a private set of conventions that must be supported
only by OPEN LOOK applications. OPEN LOOK applications must support the
conventions of the ICCCM as well as those outlined in this chapter.

X Window System, Version 11, Conventions for OPEN LOOK 4-1

General Considerations

Methods of Communication

The X11 protocol provides two principal means by which clients can communi-
cate with each other: properties and events. Both mechanisms are described in
the X11 protocol as having uninterpreted data, that is, data that is transmitted
along with but not interpreted by the protocol. Clients use the uninterpreted
data fields in properties and events to communicate amongst themselves.

Properties

Properties are uninterpreted data that are named, typed, and associated with a
window. Properties are thus useful for storing pieces of a window’s state. For
communication between an application and a window manager, the properties
will be placed on the application’s top-level window(s). Unless otherwise
specified, all properties will have format 32. This is necessary in order to avoid
byte-order and structure-packing problems.

In X11, any client can write to any property. However, multiple clients writing
to the same property raises the possibility of race conditions. Therefore, this
chapter will usually designate a client that is the owner of each property. Only
the owner of a property will be allowed to write to it.

Events

Events are typically generated by the server to notify a client that user input has
occurred. However, there is a facility whereby clients may generate events and
cause them to be sent to other clients. Events generated in this manner are
called synthetic events because they were synthesized by a client, not necessarily
in response to any real user action.

A special type of event called a Client Message is never created by the server; it
can be synthesized only by a client. Client Messages have enough room for a
small amount of uninterpreted data and are thus useful for sending datagram-
like messages between clients. Client Messages are typically used for
notification that an event has occurred; they are not used to transmit state infor-
mation.

4-2 OPEN LOOK GUI Programmer’s Guide

General Considerations

Restrictions

The rules for using properties and Client Messages as described in this chapter
define a mini-protocol that exists entirely within the X11 protocol. When trying
to communicate with other clients, any client can assume that all other clients
understand the X11 protocol. However, OPEN LOOK clients cannot assume
that other clients will understand the OPEN LOOK mini-protocol. OPEN LOOK
clients must be prepared to deal with this situation. This principle has been
embedded into the design of the mini-protocol by allowing the mini-protocol to
fail gracefully if one of the communicating parties doesn’t understand it.

This case may arise if an OPEN LOOK window manager is managing a non-
OPEN LOOK application, or if an OPEN LOOK application is being managed
by a non-OPEN LOOK window manager. OPEN LOOK applications must be
able to operate (perhaps with reduced, but acceptable functionality) without the
presence of an OPEN LOOK window manager. By the same token, an OPEN
LOOK window manager must not depend on all of its applications implement-
ing this protocol. This restriction precludes a style of transaction where, for
example, an application sends a message to the window manager and waits for
a reply. If the window manager doesn’t implement the OPEN LOOK Interface,
the application will never receive this reply. The transactions under this proto-
col must be completely asynchronous.

Nomenclature

All properties and Client Message types are named by X11 atoms. The X11 Pro-
tocol document (X Windows System Protocol, Release 4, Predefined Atoms) states
that atom names private to a particular vendor or organization should have
unique prefixes that begin with an underscore (“_"). Using the prefix
_OPEN_LOOK_ is the obvious choice, but it makes all of the atoms too long.
Therefore, all atoms unique to the OPEN LOOK interface are prefixed with

OL .

Several terms in this chapter are used in specific ways that don’t necessarily
correspond to usage elsewhere. A manager is a dedicated client that manages a
shared resource. Typically there should be exactly one manager of each type.
In this chapter, the term client typically means any ordinary client that is not a
manager. Each client is further divided into two parts, the toolkit and the
application.

X Window System, Version 11, Conventions for OPEN LOOK 4-3

General Considerations

The terms window manager and session manager are used as defined in the
ICCCM. (Note that the window and session managers might be two separate
clients or merged into a single client.) A workspace manager is OPEN LOOK
usage, and is equivalent to a session manager. The file manager is an OPEN
LOOK-specific application that provides a graphic view of the file system.

Protocol Notes
Extensibility

This protocol is designed for extensibility. Atoms are used in fields wherever
possible so that the range of values is not limited. Lists of atoms are preferred
to bitmasks for specifying options. The _OL_PROTOCOLS property is a list of
atoms that indicates which sub-protocols the client supports. This list is extensi-
ble.

Efficiency

Each X11 protocol request can update only one property at a time. Further-
more, each time a property is changed, the server generates a PropertyNotify
event. As more properties are added, correspondingly more requests are
required to update them and more events are generated. Therefore, adding a
new property to the conventions is a very expensive step. If additional data is
necessary, it should be added to existing properties (in an upwardly-compatible
way) in preference to adding new properties.

Property Notation

The Name, Type, and Format headings are self-explanatory. The Owner head-
ing indicates which party is responsible for maintaining the contents of the pro-
perty. The Reader heading indicates who is responsible for reading and acting
on the property. The Effect heading indicates when changes to this property
take effect. Typical values are immediate, which means that the reader should
track changes at all times; and exit Withdrawn, which means that the window
manager reads the property only when the window leaves the Withdrawn state.

4-4 OPEN LOOK GUI Programmer’s Guide

General Considerations

The names of fields within the property are used only for reference purposes
within this chapter. They have no relevance to the X11 protocol. The Default
for a particular field indicates what the reader should assume if the field isn’t
present or if the entire property is absent.

X Window System, Version 11, Conventions for OPEN LOOK 4-5

Window Properties

Window Decorations

These properties are used to communicate between clients and the window
manager about how the clients’ top-level windows should be decorated. In
addition, the window manager sets some properties to inform the client of cer-
tain pieces of state, such as the pushpin, that are under the user’s control.
OPEN LOOK currently specifies that there be no window background next to a
scroll bar, if the application has one. There currently is no method for a client
to tell a window manager where its scroll bar is.

See the discussion on the OPEN LOOK VendorShell in Appendix A: Introduc-
NOTE | tion to General Resources for more convenient ways of accessing window pro-
perties.

Standard Decorations

The client sets _OL_WIN_ATTR property on each top-level window to tell the
window manager the window’s type, along with other decoration options.

_OL_WIN ATTR

Type: _OL_WIN ATTR Owner: client
Format: 32 Reader: window manager
Length: 5 Effect: immediate

4-6 OPEN LOOK GUI Programmer’s Guide

Window Properties

Field Type Value Default Description
1 = win_type this is a bitmask
2 = menu_type that indicates
flags CARD32 = — . .
& 4 = pin_state which fields are
8 = cancel present.
_OL_WT BASE base window
_OL_WT_CMD command window
win_type XA _ATOM _OL WT_HELP _OL_WT_BASE help window
_OL_WT_NOTICE notice window!"!
_OL_WT_OTHER client—speciﬁedlz]
_OL_MENU_FULL full menu
menu type XA _ATOM _OL_ MENU_LIMITED 3] limited menu
_OL_NONE no menu
. 0 in is out
pin_state CARD32 0 pin s ¢
- 1 pin is in
0 dismiss
cancel CARD32 0 !
1 cancel

[1] This protocol allows the window manager to support notice frames as
ordinary windows. Toolkits aren’t required to use window manager win-
dows for their notices. For example, a toolkit might choose to implement
notices by grabbing the server and mapping an override-redirect window.
The window manager doesn’t have to know about these at all.

[2] If the win_type field contains _OL_WT OTHER, the window manager will
provide no decorations by default. The application can add decorations as
it wishes by specifying them in the _OL_DECOR_ADD property (see below).

[3] The default menu type is implied by the window type. For base windows,
the default menu is a full menu. For pop-ups, the default is a limited
menu. For _OL_WT OTHER, the default is no menu at all.

The following table indicates the default decorations that occur on a window
depending on its type.

X Window System, Version 11, Conventions for OPEN LOOK 4-7

Window Properties

window type header close pin resize menu
_OL_WT_BASE X X X Full
_OL_WT_CMD- X X X Limited
_OL_WT_NOTICE None
_OL_WT_HELP X X Limited
_OL_WT_OTHER None

An “X” indicates the presence of the decoration;
no “X” indicates its absence.

A full menu contains the following entries: Close, Full Size, Properties, Back,
Refresh, Move, Resize, and Quit. A limited menu contains the following entries:
Dismiss/Cancel, Back, Refresh, Move, Resize, and Owner?. The Dismiss menu
item changes to Cancel if the client has requested it in the cancel field.

Clients should take care not to make gross changes to decorations while the
window is mapped, such as changing a base window into a notice, because this
would result in flickering that users would likely find objectionable. If a client
really needs to reuse a window for a different purpose, it should unmap the
window, make the changes, and then remap the window.

Customizing Decorations

There are certain cases where the client requires different decorations from those
provided by default. To add or delete decorations from the default set provided
for a window, the client can create one or both of the _OL_DECOR_ADD and
_OL_DECOR_DEL properties. The type of each property should be ATOM. Each
property is a variable-length list of atoms that indicates which decorations
should be added to (in the case of _OL_DECOR_ADD) or deleted from
(_OL_DECOR_DEL) the default set of decorations on this window.

For example, resize corners are present by default on most windows. An appli-
cation could request that a window not be resizable by putting the
_OL_DECOR_RESIZE atom in the _OL_DECOR_DEL property on that window.

4-8 OPEN LOOK GUI Programmer’s Guide

You must use the Xlib function, XChangeProperty, in order to place a pro-
perty on a window and to change the value of a property on a window.

_OL_DECOR_ADD and _OL_DECOR_DEL

_OL_DECOR_RESIZE
_OL_DECOR_HEADER

Type: ATOM Owner: client
Format: 32 Reader: window manager
Length: variable Effect: immediate

Atom Description
_OL_DECOR_CLOSE close box

resize corners
window header

Window Properties

_OL_DECOR_PIN pushpin

The preferred implementation of footers is for the client to manage the footer
itself. A typical implementation of a window footer would make it be a small
pane at the very bottom of a stack of panes inside the client’s top-level window.
The advantage of this method is that it allows the client maximum flexibility in
managing the footer. For example, the client could make the footer scrollable or
be several lines high.

Clients that implement footers should take care not to select input on any of the
mouse buttons in this window, because this area is logically part of the window
background. Mouse events should be allowed to fall through to be handled by
the window manager.

In certain cases, the application may wish to specify exactly what decorations
occur on a window. To do this, it would specify a window type of
_OL_WT_OTHER in the win_type field of the _OL_WIN_ATTR property, and put the
appropriate decoration atoms in the _OL_DECOR_ADD property.

If the application puts the same atom into both the _OI._DECOR_ADD and
_OL_DECOR_DEL properties, the behavior is undefined. The behavior is also
undefined if the application requests a combination of decorations that doesn’t
make sense, such as a closed box and a pushpin.

X Window System, Version 11, Conventions for OPEN LOOK 4-9

Window Properties

The Pin State

If the current window has a pushpin, the window manager will create and
maintain the property called _OL_PIN_STATE. The window manager is respon-
sible for updating this property to reflect the state of the pin whenever the user
changes it. The initial contents of this property are taken from
_OL_WIN_ATTR.pin_state, if it exists.

_OL_PIN STATE
Type: INTEGER Owner: window manager
Format: 32 Reader: client
Length: 1 Effect: immediate
Value Description
0 pin is out
1 pin is in

The client should inspect the state of the pin whenever the user clicks in a but-
ton on a pop-up window. If the window is not pinned, the client should with-
draw the window after completing the function successfully. The client doesn’t
have to withdraw the window if the operation wasn’t successful. The client
should not inspect the state of the pin upon receipt of WM_DELETE_WINDOW.

The client shouldn't set this property to try to move the pin itself. It should
instead change the _OL_WIN_ATTR.pin_state field. The window manager should
respond by changing _OL_PIN STATE.

If the client has requested a pin, but the _OL_PIN_STATE property does not
exist, the client can use whatever state it last requested for the pin. For exam-
ple, suppose the client requested the pin’s initial state be in by setting
_OL_WIN_ATTR.pin_state appropriately. If a non-OPEN LOOK window manager
is running, it will not set the _OL_PIN STATE property. If this is the case, the
client can make the decision to withdraw the window based on the pin state
that it last requested.

4-10 OPEN LOOK GUI Programmer’s Guide

Window Properties

In the case where the client requested to have the window pinned, there
NoTE | would be no way to unpin the window. It might be argued that this is a seri-
ous problem, because the window could never be removed. This is not the
| case. The foreign window manager would presumably have its own user

interface for closing (iconifying) or deleting (with wM_DELETE WINDOW) the
window. These operations are independent of the state of the pin, so they
will work as expected.

Window Colors

The client can specify different colors for the window background, foreground,
and border. The foreground consists of the header text and window mark. The
border consists of the inside border of the decorator (the one that thickens for
selection highlighting) and the resize corners. The client specifies these colors as
RGB triples in the _OL_WIN_COLORS property.

Border is ignored for this property only.
NOTE

_OL_WIN_COLORS

Type: _OL_WIN COLORS Owner: client
Format: 32 Reader: window manager
Length: 10 Effect: immediate

X Window System, Version 11, Conventions for OPEN LOOK 4-11

Window Properties

Field Type Value Description
1 = foreground This is a bitmask that
flags CARD32 2 = background indicates which fields
4 = border are present.
fg red CARD32

fg green CARD32 Reserved for future use.
fg_blue CARD32

bg_red CARD32
bg green CARD32 Reserved for future use.
bg blue CARD32

bd_red CARD32 .
bd_green CARD32 RGB values for border (ignored

bd blue carpsz P this property)

Busy Windows

When it wants to put a window in the busy state, the client should set the
_OL_WIN_BUSY property on that window. If this property is not present, the
window manager will assume that the window is not busy.

_OL_WIN BUSY

Type: INTEGER Owner: client

Format: 32 Reader: window manager
Length: 1 Effect: immediate
Value Description
0 window is not busy
1 window is busy

4-12 OPEN LOOK GUI Programmer’s Guide

Window Properties

When a window becomes busy, the window manager should gray out the win-
dow header. The window manager does not trap all keyboard and mouse input
to the window. This is the responsibility of the application that owns that win-
dow. The window should beep in response to any input. (It can do this with
one of the flavors of a grab or by mapping an Input Only window.) When a
client is about to become unbusy, it should synchronize with the server and
flush all input immediately prior to setting this property. This will help ensure
that OPEN LOOK clients running in a non-OPEN LOOK environment will
ignore input while they are busy.

Focus Warping

When an application brings up a pop-up window that is eligible for keyboard
input, such as command window or property sheet, the OPEN LOOK Interface
requires that the input focus be transferred there. This is the responsibility of
the window manager.

The window manager should first determine whether the window is eligible to
receive the input focus by checking which focus model the client has chosen for
this window. Clearly, windows using the No Input model should not have the
focus transferred to them. For the other models, the window manager should
then query and save away the window that currently has the input focus. The
window manager should then manipulate the focus as if the user had clicked
SELECT on the window background. This action will be some combination of
sending a WM_TAKE_FOCUS message or setting the focus to that window, depend-
ing on the focus model.

When the pop-up goes away, the window manager should attempt to restore
the input focus to its previous location, again using the same focus action it
would take as if the user had clicked SELECT on the window background.

X Window System, Version 11, Conventions for OPEN LOOK 4-13

Relationship to Inter-Client Conventions

All X11 clients should conform to the X11 inter-client conventions. These con-
ventions are quite flexible in how window managers are required to deal with
requests from clients. In particular, most of the window manager properties are
called hints because the window manager is free to ignore them as it sees fit.
For most of OPEN LOOK, however, it makes sense for window managers to
honor application hints.

Refer to the X11 Inter-Client Communication Conventions Manual for the detailed
formats of WM_NORMAIL_HINTS, WM_HINTS, and WM_PROTOCOLS described below.

WM NORMAL HINTS

The window manager should honor the size of the window as created by the
application.

If the USPosition flag is set, use the initial position of the window. If the USPo-
sition flag is not set, the window manager should disregard the initial position
of the window, instead positioning the window according to the standard win-
dow layout specified by OPEN LOOK.

The window manager should use the OPEN LOOK standard window layout
policy even if the PPosition flag is set. The rationale for doing this is that quite
a few programs always set the PPosition flag.

The window manager should attempt to honor the minimum, maximum, base,
and incremental sizes. The maximum size, if present, should be used when the
user zooms the window with the Full Size menu item. The base and incremen-
tal sizes will be used when the window manager needs to calculate the size of
the window in rows and columns, such as on the window property sheet.

4-14 OPEN LOOK GUI Programmer’s Guide

Relationship to Inter-Client Conventions

WM _HINTS

Window managers should use the icon window, if one is provided by the client.
If none is provided, then the manager should use the icon pixmap and mask, if
they are provided.

The window manager should honor the icon position, if it is provided. If it
isn’t, the window manager should position the icon using OPEN LOOK’s
default icon positioning strategy. Clients should generally not set the icon posi-
tion fields except under certain circumstances, such as when the user gives
command-line options for positioning.

WM _PROTOCOLS

WM _SAVE YOURSELF

OPEN LOOK clients should elect for the WM_SAVE_YOURSELF protocol. In
response to this message, they should behave exactly as the ICCCM specifies;
that is, they should write a WM_COMMAND property and go into a quiescent state.
Clients should not attempt user interaction in response to a WM_SAVE_YOURSELF
message. Clients should also not exit of their own accord after receipt of the
WM_SAVE YOURSELF message.

WM _DELETE WINDOW

Assuming the client has elected to receive WM_DELETE_WINDOW messages, the
window manager should send this message when one of the following situa-
tions occurs:

m The user selects the Quit item on any base window menu.
m The user selects the Dismiss/Cancel item on a pop-up window menu.
m The user removes the pin from a pop-up window.

For clients that do not request WM_DELETE_WINDOW, the window manager should
issue a Kill Client when the user selects Quit from the window menu. If a client
requests a pop-up window but not Wi_DELETE_WINDOW, the window manager
should simply unmap the window when the user pulls the pin or selects the
Dismiss menu item.

X Window System, Version 11, Conventions for OPEN LOOK 4-15

Relationship to Inter-Client Conventions

OPEN LOOK clients should elect to participate in the WM_DELETE_WINDOW proto-
col if they need to intercept or ask for user confirmation when the user requests
to dismiss a window or quit an application. If a client receives
WM_DELETE_WINDOW on a pop-up window, the client should withdraw the win-
dow. If a client receives WM_DELETE_WINDOW on a base window, the client
should withdraw the base window and its pop-ups (perhaps after requesting
confirmation). It is up to the application whether to exit entirely or just with-
draw the base window family in this situation.

WM TAKE FOCUS

OPEN LOOK clients that require keyboard input should participate in the
WM_TAKE_FOCUS protocol. This is explained further on in the section on input
focus.

Window Groups

OPEN LOOK applications should always fill in the window_group field of the
WM_HINTS property on each window that they expect to be managed by an
OPEN LOOK window manager. Base windows should be designated as group
leaders; that is, they should have their own window ID in the window_group
field. Pop-ups (command windows, property sheets, help windows) should
belong to the window group of the base window with which they are associ-
ated.

Notice Widgets, PopupWindows and Menus set their own window group so, in
these cases, the application does not have to set the window group.

Windows (both group leaders and followers) can be in one of three states,
according to the Inter-Client Conventions: Withdrawn, Iconic, and Normal.

Two sources can instigate transitions between these states: the user (via the win-
dow manager) and the client. The OPEN LOOK Interface specifies that pop-up
windows follow the state transitions of their associated base window. That is, if
you close and reopen a base window, its pop-up windows disappear and re-
appear along with the base window. The OPEN LOOK interface further
specifies that a pop-up window cannot appear on the screen unless its base win-
dow is also visible.

4-16 OPEN LOOK GUI Programmer’s Guide

Relationship to Inter-Client Conventions

The following table lists the permitted combinations of base window (group
leader) and pop-up window (follower) states:

leader is in followers can be in
Withdrawn only Withdrawn
Iconic Iconic or Withdrawn
Normal Normal or Withdrawn

The basic idea is that windows stay in Withdrawn until the client moves them
to another state. The Withdrawn state means that the client never wants the
window to be displayed unless it is explicitly moved out of the Withdrawn
state. While a group leader is not in Withdrawn, all followers that aren’t in
Withdrawn track the state transitions of the group leader.

When a group leader is not in the Withdrawn state, its followers must be in the
same state or in Withdrawn. When the leader is in Normal, the followers can
either be in Normal (present on the screen) or in Withdrawn (not present).
When a group leader is in Iconic, all of its followers must either be in Iconic or
Withdrawn. Only one icon is displayed for the entire group: the group leader’s.
All followers are invisible to the user, regardless of whether they are in Iconic
or Withdrawn. The significance of a follower being in Iconic (as opposed to
Withdrawn) is that it will reappear on the screen — in the Normal state —
when its leader is moved to the Normal state, whereas the Withdrawn followers
remain Withdrawn.

In order to simplify things, it is convenient to disallow certain state transitions
on group follower windows (pop-ups) when the base window is in certain
states. The following table shows state transitions that the window manager
should perform on the group follower windows when the group leader window
undergoes a transition.

X Window System, Version 11, Conventions for OPEN LOOK 4-17

Relationship to Inter-Client Conventions

Leader changed Followers
from to that were change to
Withdrawn Normal [11 Withdrawn
Withdrawn Iconic [1] Withdrawn
Normal Withdrawn | (any) Withdrawn
Iconic Withdrawn | (any) Withdrawn
Normal Iconic
Normal Iconic Withdrawn Withdrawn
Iconic [2]
Iconic Normal
Iconic Normal Withdrawn Withdrawn
Normal [3]
[1] If the leader was in Withdrawn, all followers must have been in

Withdrawn. Moving the leader out of Withdrawn leaves the fol-
lowers as they were. The window manager will never implicitly
move any window from the Withdrawn state; the client must do so

explicitly.
[2] If the leader was in Normal, no follower could have been in Iconic.
[3] If the leader was in Iconic, no follower could have been in Normal.

If a client attempts a state transition on a follower that would result in an illegal
combination, the window manager should ignore the request. For example,
suppose a client attempts to change a follower from Normal to Iconic without
changing the leader. This request should be ignored. The group leader must be
in Normal because the follower was in Normal. Changing the follower to Iconic
isn’t allowed unless the leader changes to Iconic simultaneously. To do that, the
client should request the transition on the leader, not the follower.

These state transitions can be initiated either by the window manager or the
client. However, the burden of maintaining the states consistently lies on the
window manager. For example, if the client iconifies its base window, the win-
dow manager is responsible for moving all Normal pop-up windows into Iconic.
Similarly, if the user iconifies a base window, the window manager is again
responsible for iconifying the pop-ups.

4-18 OPEN LOOK GUI Programmer’s Guide

Relationship to Inter-Client Conventions

Input Focus

The OPEN LOOK Interface specifies that focus is transferred with mouse clicks.
Since arbitrary windows (not just top-level windows) may have the input focus,
it is impossible for the window manager to do all the focus management itself.
Therefore, OPEN LOOK clients should use the Globally Active model of input
focus described in the Inter-Client Conventions document. This model
corresponds to WM_HINTS.input having the value False and the presence of the
WM_TAKE_FOCUS atom in the WM_PROTOCOLS property.

Window managers in general, not just OPEN LOOK window managers, will
send a WM_TAKE_FOCUS message to the client when they think the client should
take the input focus. OPEN LOOK clients should respond by setting the input
focus to the last subwindow that had the focus. If no subwindow ever had the
focus, the client should set the focus to the default focus location. In addition,
when the user clicks the SELECT mouse button in a client’s subwindow, the
client should set the input focus to that window.

The timestamp of the event that caused the focus change should be passed
NoTE | to the client in the wM_PROTOCOLS client message.

OPEN LOOK applications will generally not want to use the Locally Active
model of focus, because this leads to unnecessary transfers of focus. In the
Locally Active model, the window manager assigns the focus to the window,
after which the application is free to move the focus around within its subwin-
dows. Under this model, clicking in a scroll bar might transfer the focus. This
is incorrect.

In rare cases, an OPEN LOOK application might want to use the Passive model.
In this model, only the top-level window is allowed to have the focus. The win-
dow manager will assign the focus to this window as appropriate. If an OPEN
LOOK application has only one top-level window, the application can use this
model. However, most OPEN LOOK applications will want to have more than
one window eligible to receive the focus, or their focus window will not be the
top-level window, so the Passive model will be unsuitable for them.

X Window System, Version 11, Conventions for OPEN LOOK 4-19

Relationship to Inter-Client Conventions

If an OPEN LOOK application doesn’t handle keyboard input, it should choose
the No Input model of input focus. This corresponds to WM_HINTS.input having
the value False and the absence of the WM_TAKE FOCUS atom in WM_PROTOCOLS.

If the window that has the focus disappears (is dismissed or iconified) and the
window manager does not restore the focus to its previous location (either
because the window manager wasn’t able to or wasn’t supposed to), the input
focus will likely end up as None. In this case, window manager should set the
input focus to somewhere known (perhaps a root window) and beep whenever
a keystroke occurs. (This is required by the OPEN LOOK specification.) The
window manager can detect when this situation occurs by keeping track of
which window has the input focus (by selecting for Focus In and Focus Out
messages).

4-20 : OPEN LOOK GUI Programmer’s Guide

Workspace and File Manager Conventions

The following OPEN LOOK Communications Conventions have been esta-
blished for the OPEN LOOK Workspace Manager and OPEN LOOK File
Manager when communicating with the OPEN LOOK Window Manager and
other OPEN LOOK clients.

To initiate the execution of a process, or other action by the Workspace
Manager, an appropriately formatted request is appended to the _OL_WSM_QUEUE
property of the Root Window. If the request is for process execution, then the
success or failure of the request is reported by the setting of the _OL_WSM REPLY
property on the window specified in the request. Similarly, the _OL_FM_QUEUE
and _OL_FM REPLY properties are used to communicate file service requests and
replies. The QUEUE properties may have multiple requests appended; how-
ever, the REPLY properties will contain only a single reply at any given time.

The enqueue routine should add requests to the queue using PropModeAppend.
This way, new requests are added to the end of the queue without disturbing
any prior contents.

On the first request, the dequeue routine should allot buffer space for the queue,
move the entire contents of the queue into the buffer, specify True for the delete
argument to XGetWindowProperty, and return the first request in the queue.
For subsequent requests, the dequeue routine should parcel out requests from
its buffer until the buffer is empty. At that time, the dequeue routine would
again read the entire contents of the queue and continue request processing.

Property Format

_OL_WSM_QUEUE <type><window>:<serial>:<sysname>:<nodename>:<uid>:<gid>:
<applname>:<command>:<atoms>:

_OL_WSM_REPLY <type><serial>:<sysname>:<nodename>:<errno| pid>:

_OL_FM_QUEUE <type><window>:<serial>:<sysname>:<nodename>:<uid>:<gid>:
<applname>:<windowgroup>:<directory>:<pattern>:<label>:
<atoms>:

_OL_FM_REPLY <type><serial>:<sysname>:<nodename>:<path| message>:

X Window System, Version 11, Conventions for OPEN LOOK 4-21

Workspace and File Manager Conventions

The _OL_WSM_QUEUE and _OL_FM QUEUE formats are each a single long
NOTE | sequence. In the table above, they were split across two lines due to their
length.

The format of each of the requests and replies is an ASCII character sequence
containing a fixed number of fields. The first field, <type>, is a fixed length one
character field. The remaining fields are variable length character sequences
separated by the ASCII unit separator (0x1f), which is represented in the table
above by a colon. If the field is numeric, then the characters in the field are all
ASCII digits. '

The next several paragraphs define valid values for the fype field for both
Workspace Manager and File Manager requests. The remainder of this section
then describes the other fields that are present in the various request and reply
formats.

Field: <type>

The <type> field contains a binary numeric value identifying the type of the
message. Valid values are given in the following two tables.

Message Value Meaning

WSM_EXECUTE
WSM_TERMINATE
WSM_SAVE_YOURSELF
WSM_EXIT
WSM_MERGE_RESOURCES
WSM_DELETE_RESOURCES
WSM_SUCCESS
WSM_FORK_FAILURE
WSM_EXEC_FAILURE

_OL_WSM_QUEUE

_OL_WSM_REPLY

W INNRONOTER WON -

4-22 OPEN LOOK GUI Programmer’s Guide

Workspace and File Manager Conventions

The properties are specified in the command field of _OL_WSM_QUEUE as described
below:

WSM_EXECUTE is used by a client to request that a program be executed.
These are the only requests that receive a reply.

WSM_TERMINATE and WSM_SAVE_YOURSELF are used by the Window
Manager to request that a window and its associated program(s) be ter-
minated; the second form is used if the SaveYourselfMessage bit is set.

WSM_EXIT is used by the Window Manager to denote the end of a
sequence of WSM_TERMINATEs and WSM_SAVE_YOURSELFs at session termi-
nation.

WSM_MERGE_RESOURCES and WSM_DELETE_RESOURCES are used by a client
to request that properties be merged into, or deleted from, the .Xde-
faults file.

WSM_SUCCESS indicates that the request was carried out successfully,
while WSM_FORK_FAILURE and WSM_EXEC FAILURE indicate failures that
occurred in attempting to fork or execute the specified process.

Message Value Meaning
1 FM _ACTIVATE
FM_BROWSE
3 FM_COPY
4 FM_MOVE
_OL_FM REPLY 9 FM CANCEL
10 FM_ACCEPT
11 FM_INVALID

_OL_FM QUEUE

FM_ACTIVATE is used by the Workspace Manager to request a stand-alone
File Manager window, while FM_BROWSE is used by other clients to
request a File Manager window in client service mode. All requests
receive a reply.

FM_COPY and FM_MOVE are used in drop mode to indicate that the user
requested a copy or a move operation.

FM_CANCEL is used in client service mode to indicate that a user has
selected the cancel button.

X Window System, Version 11, Conventions for OPEN LOOK 4-23

Workspace and File Manager Conventions

— FM_ACCEPT is used in client service mode to indicate that the request was
accepted and acted upon.

— FM_INVALID is used to indicate that the corresponding request was
invalid.

Field: <window>

The <window> field contains the window id of the window whose
_OL_WSM_REPLY or _OL_FM REPLY property should be set in response to the
current request.

Field: <serial>

The <serial> field contains a unique serial number that is supplied by the
requesting routine for each request it appends. The same serial number is
returned in the subsequent reply so that the reply may be associated with its
corresponding request.

Fields: <sysname> and <nodename>

The <sysname> and <nodename> fields contain the system and node (as given by
the uname(1) command) of the machine originating the request or reply.

Fields: <uid> and <gid>

The <uid> and <gid> fields are reserved for future use.

Field: <applname>

The <applname> field contains the name of the application making the request.

Field: <command>

For WSM_EXECUTE, the <command> field specifies a command to be executed by
/bin/sh.

4-24 OPEN LOOK GUI Programmer’s Guide

Workspace and File Manager Conventions

For WSM_MERGE_RESOURCES and WSM_DELETE_RESOURCES, the
<command> field specifies the resource settings as

name:value\n. . .name:value\n

where name is the name of the resource, : is the ASCII colon character, value is
the value assigned to the resource, \n is the ASCII new-line character, and . . .
indicates that there may be one or more occurrences of name-value pairs in this
field.

For WSM_DELETE_RESOURCES, value can be null (that is, 0 characters). For types
other than WSM_MERGE RESOURCES and WSM_DELETE_RESOURCES, this field is
ignored.

Field: <atom>

The <atoms> field is reserved for future use and is currently ignored.

Field: <errno| pid>

The <errno| pid> field contains an error number from the fork(2) or exec(2) sys-
tem calls if the the call failed, and the process id of the shell process if it suc-
ceeded.

Field: <windowgroup>

The <windowgroup> field contains the window group id associated with the win-
dow specified in the window field.

Field: <directory>

The <directory> field contains the full or relative pathname of a file system direc-
tory. It may contain shell patterns.

Field: <pattern>

The <pattern> field contains a file name or shell pattern that translates into one
or more file names.

Field: <label>

The <label> field contains the label that will be used for the top button of the file
menu.

X Window System, Version 11, Conventions for OPEN LOOK 4-25

Workspace and File Manager Conventions

Field: <path| message>

If the request succeeded, the <path| message> field contains a list of file names of
the form dirname filename . . . filename, where dirname is the full path name of the
directory and filename . . . filename is a list of blank-separated file names within
the directory. If the request failed, the field contains an error message.

4-26 OPEN LOOK GUI Programmer’s Guide

Miscellaneous Implementation Issues

Pinnable Menus and Override-Redirect

Currently, the X11 protocol has a deficiency where a window manager cannot
tell when an application has changed the override-redirect window attribute.
This situation comes up in the obvious implementation of pinned menus. Typi-
cally, a menu is manipulated with override-redirect set to True. However, when
the menu is pinned, the owner of the menu would like the window manager to
start managing the window. The obvious way to do this is for the client to sim-
ply set override-redirect to False. Unfortunately, the X11 protocol doesn’t pro-
vide for automatic notification of the window manager in this case. A similar
situation occurs when override-redirect is turned on. In this case, the window
manager will simply stop receiving Request events on this window. Typical
window managers will still have resources allocated for this window; these
should be reclaimed.

In both of these situations, we need clients to explicitly tell the window
manager that override-redirect has changed. One possible solution is to have
the client unmap the window before changing override-redirect and map the
window again afterwards. This will always work with all window managers.
However, it forces the client to repaint a window that, from the user’s point of
view, should have stayed on the screen.

Another approach might be for the client to use synthetic Map Notify and
UnmapNotify events to notify the window manager after the client has
modified override-redirect. Unfortunately, this technique doesn’t work well
visually. Therefore, clients should unmap the window before changing its
override-redirect attribute.

Full Size Window

When the user selects Full Size from the window menu, the window manager
should use the max_width and max_height entries from the WM_NORMAL_HINTS
properties. As per the OPEN LOOK specification, the origin of the window
may have to be moved so that as much as possible of the resized window fits
on the screen. If the client has not provided the maximum size fields, or if it
hasn’t provided the WM_NORMAL_HINTS property, the window manager should
set its own policy for determining the dimensions of a full-sized window. Typi-
cally, on a large monitor with a landscape-style aspect ratio, the full height
should be the height of the screen, and the width should stay unchanged from

X Window System, Version 11, Conventions for OPEN LOOK 4-27

Miscellaneous Implementation Issues

the current window width. On smaller monitors, the dimensions should be the
full height and width of the screen.

When the user selects Restore Size from the window menu, the window manager
should return the window to the size and location it had before the user
selected Full Size.

4-28 OPEN LOOK GUI Programmer’s Guide

Mouseless Operations

Overview 5-1
Keyboard Traversal 5-2
Keyboard Accelerators 5-5
Overview 5-5
m Examples 5-5
m Side Effects 5-5
Visual Appearance 5-6
Mnemonics 5-7
Overview 5-7
m Mnemonic Modifier Prefix 5-7
m Visual Appearance 5-7
Widget Activation/Association 5-8
m Widget Activation 5-8
m Widget Association 5-9

Table of Contents

Overview

Mouseless operations is a generic term which encompasses all features at the

user’s and programmer’s disposal for operating an OPEN LOOK application in
an environment without a mouse. There are four major areas in mouseless
operations:

m Keyboard Traversal

m Keyboard Accelerators

m Keyboard Mnemonics

m Widget Activation and Association

In addition to the above areas, the mouseless operation within the toolkit
depends heavily on the widget’s classing scheme and the event handling
mechanism.

Each of the areas are discussed separately in the following sections.

NOTE

Throughout this section words that are capitalized and begin with “OL " are
toolkit tokens used to represent OPEN LOOK commands. For example,
OL_NEXT_FIELD is the toolkit token equivalent of the functional specification
for the NextField command.

Mouseless Operations

5-1

Keyboard Traversal

Keyboard traversal is the ability to use the key sequences to move the keyboard
input focus visual to any control or text-input widget within a top level window
or to move input focus from one top level window to another. Under normal
conditions, there is one top level window on the screen which takes input focus.
This window easily is identified as the window with its header colored with the
input-window color. Within the input focus window, one of the controls or text
widgets will have the input focus. If a control has input focus, the entire control
is highlighted with the input-focus color; or if a text widget has focus, the text
widget’s caret is colored with the input focus color and is blinking.

Once input focus is within a top level window, traversal between controls and
text widgets is achieved with the OL_NEXT FIELD and OL_PREV_FIELD keyboard
commands. By default, these commands are bound to the TAB (and Ctrl-TAB)
and Shift-TAB keys (and Ctrl-Shift-TAB), respectively. As these keys are
pressed, the input focus visual moves to the next control or text widget which
will to accept it.

Most read-only text areas such as captions do not accept focus.
NOTE

After traversing to a desired control, the user can activate that control by press-
ing the OL_SELECTKEY command (which is typically bound to the Spacebar).
Activating the control with the OL_SELECTKEY command yields the same results
as if the user had activated the control with a OL._SELECT mouse button click on
the control.

Whenever focus is within a container widget such as an Exclusives or Nonex-
clusives setting or ScrollingList, the OL_MOVERIGHT, OL_MOVELEFT,
OL_MOVEUP and OL_MOVEDOWN commands move focus between the rows and
columns of the contained sub-objects. By default, these commands are bound to
the arrow keys. Similarly, when input focus is within a text widget, the
CHARFWD, CHARBAK, ROWUP and ROWDOWN commands move the input caret among
the characters. By default, these commands also are bound to the arrow keys.
The OL_NEXT_FIELD and OL_PREV_FIELD keys are used to move input focus in
and out of container widgets.

Whenever the last control in a top level window has focus and the
OL_NEXT_FIELD key is pressed or whenever a sub-object located on the con-
tainer widget’s border has focus and the direction of the traversal command
points outside the container, traversal wrapping occurs. For the control in the top

5-2 OPEN LOOK GUI Programmer’s Guide

Keyboard Traversal

level window, traversal wrapping causes focus to move to the first control in the
top level window. For the sub-object located on the border of its container,
focus remains in the container widget but is set to a sub-object in an extreme
row or column opposite the sub-object with focus. The following figure illus-
trates intra-container widget focus traversal for three different exclusives set-
tings. For the following settings, each sub-object displaying an arrow glyph
indicates the new focus location if a move command (OL_MOVERIGHT,
OL_MOVELEFT, OL_MOVEUP or OL_MOVEDOWN) matching the glyph'’s direction is
pressed while the focus is on the start sub-object.

Figure 5-1: Sub-Object Traversal within a Container Object

4
From an interior sub-object
4+ start -
4
start =» ¢+
+)
From an edge sub-object
4+
L 4
T From an edge sub-object

<+ start -

Mouseless Operations 5-3

Keyboard Traversal

Traversal among a large number of sub-objects within a container widget can
become tedious. An example of this scenario is the File Manager’s Directory
Pane that often displays directories containing many files. With many files, the
required number of keystrokes needed to reach an arbitrary set of files is typi-
cally large. To alleviate this problem, accelerated focus movement between
sub-objects is available through the OL_MULTIRIGHT, OL_MULTILEFT,
OL_MULTIDOWN and OL_MULTIUP commands. Pressing one of these keys has the
same effect as pressing one of the OL_MOVERIGHT, OL_MOVELEFT, OL_MOVEDOWN
or OL_MOVEUP multiple times.

Besides moving focus between controls within a top level window, keyboard
traversal also moves focus between top level windows within an application or
to top level windows of other applications. The OL_NEXTWINDOW and
OL_PREVWINDOW commands move focus between windows within an application
while the OL_NEXTAPP and OL_PREVAPP commands move focus between applica-
tions. It should be noted that inter and intra application traversal requires the
OPEN LOOK window manager to be running.

5-4 OPEN LOOK GUI Programmer’s Guide

Keyboard Accelerators

Overview

All controls have the capability of having one or more attached accelerators. An
accelerator is a one keystroke sequence that activates a control, giving the same
result as if the control were visible and the OL_SELECT mouse button were
clicked while the pointer was over that control.

An accelerator for an application can be activated if any window within that
application has input focus, even if the control is not in the window with focus.
Therefore, the main advantage of a keyboard accelerator over using a mouse is
that the control does not have to be visible, allowing the user to limit the
number of steps required to activate a particular control.

Accelerators do not install key passive grabs on any window by default. If a

NOTE | application wants accelerators to install passive grabs, the application must
set the Boolean shell resource XtNacceleratorsDoGrabs to TRUE. If this
resource is set to TRUE, a passive grab for each accelerator is installed on
each shell within the widget’'s window group.

Examples
Here are two examples of how accelerators work:

m The Quit button on a window menu can be activated even though the
window menu is not popped up.

m A top level window having a popup window descendant with a cancel
button can be activated if an accelerator is bound to that button.

Side Effects

Since accelerators are global to an application, they must be unique for the
entire application. If the application attempts to bind more than one control to
the same accelerator key sequence, a warning is generated and the new accelera-
tor is ignored. An application can override any OPEN LOOK standard com-
mand (for example, OL_DEFAULTACTION, OL_CANCEL, and so on) simply by bind-
ing an accelerator to the same key sequence as the OPEN LOOK command.

Mouseless Operations 5-5

Keyboard Accelerators

Visual Appearance

A workspace Miscellaneous Property Sheet setting indicates whether a string
representation of an accelerator key sequence should appear in a control’s label.
When the accelerator text is visible, it appears to the right of the label. The fol-
lowing figure shows a Quit button with and without its accelerator text.

Note that even though the accelerator visual may not be shown (by selecting the
On-Don’t Show setting), the accelerator still functions.

Figure 5-2: Oblong Button with and without an Accelerator Visual

((ouit Alt+F4)

5-6 OPEN LOOK GUI Programmer’s Guide

Mnemonics

Overview

Mnemonics provide a mechanism for traversing to a control and activating it.
Once the control is activated, the control displays the appropriate keyboard
input focus visual since all subsequent keyboard input is directed at that con-
trol.

A single keystroke is used to activate a mnemonic. But unlike accelerators
which can be operated when any top level window has keyboard focus, a
mnemonic’s keystroke only has meaning if keyboard focus is within the top
level window containing the desired control and mnemonic. By restricting
mnemonics to a top level window, different top level windows can reuse
mnemonics provided they are unique to their top level window and that no top
level window has an accelerator with the same key sequence. Any keystrokes
for mnemonics that exist outside the focus top level window are ignored.

Mnemonics never install passive key grabs on any window.
NOTE

Mnemonic Modifier Prefix

A modifier prefix is required for mnemonics when the control is not on a menu.
The modifier prefix is settable from the Workspace Miscellaneous Property
Sheet and has the default binding of Alt. For example, since a property sheet’s
Apply button uses the letter “A” for its mnemonic, the keystroke Alt <a> is
required to activate the mnemonic. But, if a control on a menu had a mnemonic
“A,” the unmodified keystroke <a> activates that menu control. Note that
mnemonics are case insensitive.

Visual Appearance

A workspace Miscellaneous Property Sheet setting indicates the type of the
mnemonic visual feedback:

On-Underline
On-Highlight
On-Don’t Show
Off

Mouseless Operations 5-7

Mnemonics

The figure below and to the left shows two Quit buttons with the mnemonic
visual set to Of£, while the figure on the right shows the same Quit buttons
with the mnemonic visual set to On-Underline. (All the Quit buttons also have
a visible accelerator.)

Figure 5-3: Oblong Button with and without a Mnemonic Visual

(Quit Alt+F4) (Quit Alt+Fe)

If the On-Don’t Show visual preference is selected, the mnemonic visual is not
shown, but the mnemonic keystroke still activates the control.

Widget Activation/Association

Widget Activation

All widgets (and gadgets) in the toolkit support programmatic activation
through a convenience routine, OlActivateWidget. Indirect widget activation
is a fundamental feature of the toolkit’s event handling scheme. In mouseless
operations, an widget’s callbacks often must be activated from the keyboard or
programmatically. In addition to callback activation, many widgets have several
other types of activation. For example, scrollbars have activation types
corresponding to each of its six scrolling operations. See the individual widget
manual pages for their activation types.

Boolean OlActivateWidget (widget, activation type, activation data)

Widget widget;
OlvirtualName activation_type;
XtPointer activation data;

Each widget has a class activation procedure for handling programmatic activa-

tion requests. When a widget receives a valid activation request, its class activa-
tion procedure does the necessary actions and returns TRUE, indicating that the

request was granted. If a widget cannot satisfy the activation request (for

5-8 OPEN LOOK GUI Programmer’s Guide

Mnemonics

example, an activation type or the widget is busy), the widget’s class procedure
returns FALSE. If the returned code is FALSE, OlActivateWidget attempts to
activate any widgets that are associated with the widget that returned FALSE.
This sequence happens recursively until one of the widgets returns TRUE or
there are no more associated widgets.

Widget Association

Widgets are associated with other widgets by calling OlAssociateWidget. A
good example of widget association is that of the ScrolledWindow widget since
it has two child Scrollbar widgets which it associates with itself at creation time.
Since the scrollbars are associated with the ScrolledWindow widget, calling
OlActivateWidget using the scrolled window widget id and the command
OL_PAGERIGHT, causes the contents of the scrolled window to move one pane to
the right.

Also, when the application adds a child widget to the scrolled window widget,
the scrolled window widget associates itself with that child. This means that
calling Ol1ActivateWidget on that child with a scrolling command will cause
the view to scroll since the scrollbars are now indirectly associated with that
child.

Since the association feature is used by the toolkit’s event handling mechanism,
the child of the scrolled window will scroll automatically if the child has focus
and the user presses Alt+].

The leftbracket modified by the Alt key is the default keyboard binding for the
NOTE | OL_SCROLLRIGHT command.

The scrolling occurs because the toolkit receives the keypress event (which
arrived on the scrolled window widget’s child) and attempts to activate that
child by calling OlActivateWidget with the activation type OL_SCROLLRIGHT.
Since the child doesn’t know that activation type, OlActivateWidget attempts
to activate the widgets associated with the child. This happens recursively and
eventually, the scrollbar widget is activated and scrolls the view.

Mouseless Operations 5-9

6 Internationalization

Introduction to Internationalization 6-1
m Extended UNIX Code Set (EUC) 6-1
m Multibyte Processing and Wide Character Format 6-2

The Internationalization of the OPEN

LOOK Toolkit 6-5
Changes to the Toolkit 6-5
Localizing OPEN LOOK Applications 6-6
Internationalizing A Client 6-7
Locale Announcement 6-8
The ol_locale_def File 6-9
m Default Locale Definition File 6-9
m The Example Japanese Locale Definition File 6-10
Dynamic Help Message Retrieval 6-12
m General Message Handling Design 6-12
m The Class Defines 6-13
Internationalizing 6-14
Internationalizing the Strings in an Application 6-15
m Creating the Application app-defaults Files 6-15
m Processing Text within an Application 6-16
Input Method 6-20
m The Localization Package for the Input Method 6-22
m Structures 6-23
m Functions 6-28
Other Changes 6-30
m TextEdit Widget 6-30
m xterm 6-31

Table of Contents i

Introduction to Internationalization

The UNIX operating system has been used extensively in many countries. The
applications developed for it have traditionally provided messages only in
English and have operated using English language conventions.

In order for applications to operate correctly in any language, no assumptions
may be made about language, code set or local conventions. All such informa-
tion about “locale’”” must be stored externally to the application. To do this for
both the UNIX system and the OPEN LOOK interface, library functions had to
be enhanced and new functions provided to support localizing facilities.

UNIX System V Release 3.1 and later has removed the dependency of the UNIX
system on the 7-bit US ASCII code set and includes new extensions which pro-
vide support for applications and commands for the non-English speaking user.

The key international capabilities of OPEN LOOK GUI are the following:

m Support of full 8-bit and mult-byte code sets. Commands can handle code
sets in which all 8 bits are used.

m Support of alternative date and time formats.

m Enhanced support for character classification and conversion- functions
which, for any code set, convert characters from upper to lower case or
classify characters as alphabetic, printable, upper or lower case, and so on.

m ANSI C internationalization enhancements, Extended UNIX Characters
(EUC) and multibyte processing.

m UNIX System commands which support the use of EUC and multibyte
processing.

The OPEN LOOK Release 4i Toolkit provides tools to internationalize applica-
tions that make no assumptions about language, code set or local conventions.

Extended UNIX Code Set (EUC)

To enable the use of languages which require characters with encodings other
than ASCII, Release 4i provides support for up to four code sets concurrently, at
both file and process level.

The external code set represents the set of characters that can be presented to
the computer system. The internal code set scheme is called the “Extended
UNIX Code” or EUC. EUC comprises a primary code set (code set 0), which is
always assigned to the US 7-bit ASCII character set, and three supplementary
code sets. The choice of the supplementary code sets is at the system

Internationalization 6-1

Introduction to Internationalization

administrator’s discretion and EUC can support multiple languages con-
currently. EUC is provided mainly to support the huge number of ideograms
needed for I/O in an Asian Language Environment.

For a given character, its EUC code set is distinguished by the value set of the
most significant bit (MSB) of the EUC representation and by single-shift charac-
ters. The code sets used at any time (that is, within a single process) are deter-
mined by the selected locale. The default locale is the C locale. (See the second
part of this chapter for information about choosing locale.) The primary code
set (code set 0) is always 7-bit US ASCII. Each byte of any character in supple-
mentary codes (code sets 1,2, and 3) has the high-order bit set; code sets 2 and 3
are distinguished from code set 1 and each other by their use of a “special shift”
byte before each character. SS2 is represented in hexadecimal by 0x8e, SS3 by
0x8f.

Figure 6-1: EUC Code Set Representations

Code Set EUC Representation
0 Oxxxxxxx
1 Ixooooxx [Loooxexx [...]1]
2 882 Ixxxxxxx [lxxoooexx [...]1]
3 883 lxxxxxxx [lxoooxx [...]11]

Multibyte Processing and Wide Character Format

To work within the constraints of usual computer architectures, characters are
encoded as sequences of bytes, or “multbyte characters.”” A multibyte character
is character encoded using one or more bytes. An Ascii character is the simplest
example of a multibyte character. Because multibyte characters are of varying
widths, the sequence of bytes needed to encode a character must be self-
identifying: regardless of the supplementary code set used, each byte of a multi-
byte character will have the high-order bit set; if code sets 2 or 3 are used, each
multibyte character will also be preceded by a shift byte.

UNIX System V Release 3.1 introduced a new data type for C programs
(wchar_t) which allows all the characters from different code sets, including the
primary set, to be represented by codes or wide characters of a uniform length.
wchar_t lets you manipulate variable width characters as uniformly sized data

6-2 Programmer’s Guide: OPEN LOOK GUI

Introduction to Internationalization

objects called ““wide characters.” Use of the wchar_t data type often simplifies
code that deals with characters because the code need not concern itself with the
memory width of every character.

For each wide character there is a corresponding multibyte character and vice
versa; the wide character that corresponds to a regular single-byte Ascii charac-
ter is required to have the same value as its single-byte value, including the null
character.

Since there can be thousands or tens of thousands of characters in an Asian-
language set, systems should use a 16-bit or 32-bit sized integral value to hold
all members. Implementations provide corresponding 16-bit and 32-bit libraries
with functions that you can use to manage multibyte and wide characters.

Figure 6-2: EUC and Corresponding 16-bit Wide-character Representation

Code Set | EUC Code Representation Wide-character
Representation
Oxcooooex 00000000000
1 ooooooe 10000000 1xcoomxxx
Ixooooox 1xooooook Lxoooooax 1 XooooaK
2 882 lxooooaxx 00000000 1xcoooex
882 lxoooooxkx lxoooooxx Oxcooooax 1 30000k
3 SS3 lxoooxxx 10000000 0xcccooox
SS3 lxoooox lxoooooxx Lxooooaax 0xooooaas

Internationalization 6-3

Introduction to Internationalization

Figure 6-3: EUC and Corresponding 32-bit Wide-character Representation

Code Set | EUC Code Representation Wide-character
Representation

0 Oxoooooa 0000000000000000000000000xc000ox

1 Lxooooox 0011000000000000000000000xc0000ocx

13000000 1 X000 0011000000000000 003X xXXK

Lxoooooo 1 oo 13000 0011000000 0200000000 aonOm K

2 SS2 Lxoooookx 0001000000000000000000000zc0000x

S$S2 lxooooa1ooooK 000100000000000000xCOCORHAKKRK

SS2 Lxoooooa 1xoooooa Lxoooooes 000100000 00:0000000taOnOK KRN RKXK

3 SS3 Lxoooooox 00100000000000000000000003ccoxxx

SS3 1xooooomk 1 XoOKHKHRX
S83 1xooooox 1 300000 1 300K

001000000000000000200oa0aaaXRXK

0010000000 02O OHRKKR KK KKKKK

Programmer’s Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK
Toolkit

A number of internal changes have been made to the OPEN LOOK Toolkit in
order to make it compatible with internationalization requirements. The Toolkit
uses several UNIX-based facilities and and a multilingual messaging system
which permits all help messages, labels and error messages to be displayed in
the end user’s language. The Toolkit also has many routines that have been
specifically designed to support an OPEN LOOK Input Method. The OPEN
LOOK Input Method permits the use of a traditional keyboard to handle non-
English character requirements.

Internationalization can be divided into two different concepts:

m Internationalization: writing a program that makes no assumptions about
local customs by separating data from the program logic.

m Localization: providing the data specific to a language, cultural conven-
tions, and code sets.

In order to support the former concept the OPEN LOOK Toolkit has been
enhanced to include several routines which retrieve character strings in the end
user’s language. The entire widget set was modified to employ these routines.
In addition, all the code set dependencies, such as the assumption that charac-
ters are always one byte long, were removed. The locale specific data for a par-
ticular language, is to be supplied by the various companies that are localizing
the Toolkit for a particular language group.

Changes to the Toolkit

Several changes or adaptations had to be made to the OPEN LOOK Toolkit in
order to support the concepts of internationalization and localization. They are
as follows:

1. Locale Announcement: The behavior of an X application in an Interna-
tionalized environment is governed by information such as, language,
character code set and so on. In order to operate correctly in a "localized"
environment, an application needs to communicate this information to the
underlying operating system. The OPEN LOOK Toolkit provides a locale
announcement mechanism by which applications can ask the operating sys-
tem to configure the appropriate environment.

Internationalization 6-5

The Internationalization of the OPEN LOOK Toolkit

2. Text Drawing and Font Grouping Facility: Different languages require
different fonts for drawing characters. In addition, a string in certain
languages may contain characters from more than one character set.
More than one font may be needed to draw such strings. Since existing
X11R4 functions are designed to handle strings from one code set only, a
mechanism was designed that allows applications to specify a group of
fonts to facilitate drawing of strings with characters from multiple code
sets.

3. Compound Text Translation Facility for ICCC: The OPEN LOOK Toolkit
provides a mechanism to translate EUC encoded strings to Compound
Text format (and vice versa) for Inter-Client Communication.

4. Implementation of an Input Method: An Input Method enables mapping
of keystrokes to characters, possibly with additional dictionaries or other
linguistic help. The OPEN LOOK Toolkit provides necessary support for
Input Method implementation.

5. Localized Help Messages and Message Switching: The help registration
facility in the OPEN LOOK Toolkit provides a way for an application to
display help messages in the local language. In addition, all references to
strings in the Toolkit and clients are language independent.

6. End User System Clients: The OPEN LOOK clients in particular, the
Work Space Manager, the Window Manager, the File Manager and xterm
have been modified to operate in a localized environment. This involves
Language and Locale Announcement by the Work Space Manager, support-
ing EUC file names in the File Manager and using localized text input
mode in xterm.

Localizing OPEN LOOK Applications

The following section summarizes the changes necessary for localizing the
Toolkit for a particular locale.

1. Translate OPEN LOOK Toolkit messages (for example xol_msgs) to the
locale language.

6-6 Programmer’s Guide: OPEN LOOK GUI

The Internationalization of the OPEN LOOK Toolkit

. Install the message catalogue in the file

/usr/X/1lib/locale/locale_name/messages/xol_msgs.

. Translate all OPEN LOOK client messages files (for example xterm msgs)

to the locale language.

Install the client messages in
/usr/X/1lib/local/locale_name/xterm msgs.

5. Create a locale definition file with resource values for the locale.

Install the locale definition file in
/usr/X/1lib/locale/locale_name/ol_locale_def

. Write an input method library for the locale language (optional).

Install the library in /usr/X/1ib/locale/locale_name/libname.so.

Internationalizing A Client

Use the following steps to internationalize a client:

1.
2.

Replace hardcoded ASCII strings with calls to O1GetMessage.

Create a default message file containing default (English) versions of mes-
sages.

Install default messages under /usr/X/1ib/app-defaults/appname_msgs
(where appname_msgs is the class name used by the client in calls to
OlGetMessage, OlVaDisplayWarningMessage).

. Replace the use of the XFontstruct data type with the O1FontList data

type (see the following sections in this Chapter that describe the
OlFontList data type).

. Replace intrinsic-based text metric and drawing calls with the following

OPEN LOOK Toolkit routines:

Internationalization 6-7

The Internationalization of the OPEN LOOK Toolkit

Intrinsics Routine OPEN LOOK Routine

XTextWidth OlTextWidth
font --> ascent OlIMaxFontInfo
XDrawString OlDrawString

6. Link additional libraries -1w and -1d1 (wide character and dynamic l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>