
. PRO G·. R A ~ M MIN .G
, - - ~ ~.. - .

DEVICE
DRIVER
PROGRAMMING
UNIX® SVR4.2

~.~ • UNIX
PRESS

Edited by Robert M. Hines and Spence Wilcox

DEVICE DRIVER
PROGRAMMING

UNIX SVR4.2

Edited by Robert M. Hines and Spence Wilcox

• • UNIX
Press'

Copyright© 1992, 1991 UNIX System Laboratories, Inc.
Copyright© 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means--graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all Information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions, whether
such errors, omissions, or statements result from negligence, accident, or any other cause. USL furth­
er assumes no liability arising out of the application or use of any product or system described herein;
nor any liability for incidental or consequential damages arising from the use of this document. USL
disclaims all warranties regarding the information contained herein, whether expressed, implied
or statutory, including implied warranties of merchantability or fitness for a particular purpose.
USL makes no representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein imply the grant­
ing of any license to make, use or sell equipment constructed in accordance with this deSCription.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARKS

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
Intel386 and Intel486 are trademarks of Intel Corp.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-042623-7

UNIX
PRESS

A Prentice Hall Title

PRENTICE HALL

ORDERING INFORMATION

UNIX@ SYSTEM V RELEASE 4.2 DOCUMENTATION

To order single copies of UNIX@ SYSTEM V Release 4.2 documentation, please
call (515) 284-6761.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales Department
PTR Prentice Hall
113 Sylvan Avenue
Englewood Cliffs, N.J. 07632

or

Phone: (201) 592-2863
FAX: (201) 592-2249

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 461-7107.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

1

2

3

Contents

Introduction to Device Drivers
Introduction
What Is a Device Driver?
Application Programs Versus Drivers
Types of Devices
Types of Device Driver Interfaces
Major and Minor Numbers
Driver Entry Points and Kernel Utilities
Driver Environment
Sample Block Driver
Driver Development

Loadable Modules
Introduction
The DLM Mechanism
Making Modules Loadable

Driver Installation and Tuning
Introduction
Using idtools
The Driver Software Package (DSP)
Typical DSP Installation and Removal Scenarios
DSP Commands and Procedures
Device Driver Tuning
Device Driver Configuration

Table of Contents

1-1
1-4
1-6
1-10
1-11
1-13
1-14
1-23
1-26
1-35

2-1
2-2
2-6

3-1
3-2
3-10
3-30
3-31
3-38
3-40

4

GL

IN

ii

Driver Testing and Debugging
Introduction
Preparing a Driver for Debugging
Common Driver Problems
Testing the Hardware
Using crash to Debug a Driver
Debugging STREAMS Drivers
Driver Debugging Techniques
Kernel Debugger

Glossary
Glossary

Index
Index

4-1
4-2
4-7
4-11
4-12
4-18
4-21
4-24

GL-1

IN-1

Table of Contents

Figures and Tables

Figure 1-1: Driver Placement in the Kernel
Figure 1-2: How Driver Routines Are Called
Figure 1-3: Switch Table Entry Points and System Calls
Figure 1-4: Pseudo-code for init Routine
Figure 1-5: Pseudo-code for open Routine
Figure 1-6: Pseudo-code for strategy Routine
Figure 2-1: Device Driver Wrapper Coding Example
Figure 2-2: Host Bus Adapter Driver Wrapper Coding Example
Figure 2-3: STREAMS Module Wrapper Coding Example
Figure 2-4: File System Module Wrapper Coding Example
Figure 2-5: Miscellaneous Module Wrapper Coding Example
Figure 3-1: The Contents of a Package
Figure 4-1: Error and Trace Logging
Table 1-1: Buffer Usage Routines
Table 1-2: Data Transfer Routines
Table 1-3: Event Synchronization Routines
Table 1-4: Interrupt Handling Routines
Table 1-5: 1/0 Control Routines
Table 1-6: Error Handling Routines
Table 3-1: Components of Driver Software Package (DSP)

Table of Contents

1-5
1-7
1-15
1-27
1-29
1-32
2-9
2-10
2-11
2-12
2-13
3-11
4-20
1-18
1-19
1-19
1-20
1-21
1-22
3-14

iii

1 Introduction to Device Drivers

Introduction 1-1
Contents 1-1
Changes since Previous Release 1-2
References 1-2
Notation Conventions 1-2
Chapter Overview 1-3

What Is a Device Driver? 1-4

Application Programs Versus Drivers 1-6
Structure 1-6
Parallel Execution 1-7
Interrupts 1-8
Driver As Part of the Kernel 1-8

Types of Devices 1-10
Hardware Devices 1-10
Software Devices 1-10

Types of Device Driver Interfaces 1-11
Block and Character Interface 1-11
STREAMS Interface 1-11
Portable Device Interface (POI) 1-12

Table of Contents

Major and Minor Numbers 1-13
Major Numbers 1-13
Minor Numbers 1-13

Driver Entry Points and Kernel Utilities 1-14
Entry Points 1-14

• Initialization Entry Points 1-14
• Switch Table Entry Points 1-15
• Interrupt Entry Points 1-16

Kernel Utility Routines 1-17
• Buffer Usage Routines 1-17
• Data Transfer Routines 1-18
• Event Synchronization Routines 1-19
• Interrupt Handling Routines 1-20
• Input/Output Control Routines 1-20
• Error Handling Routines 1-21

Driver Environment 1-23
Installation and Configuration 1-23
Master and System Files 1-24

• Master File 1-24
• System File 1-24

Driver Header Files 1-25

Sample Block Driver 1-26
Initialization 1-26

• Driver Header Files (1) 1-27
• Memory Allocation (2) 1-27
• Messages (3) 1-27
• Other init Responsibilities 1-28

Base-Level Operation 1-28
The open Routine 1-29

• Validating the Minor Device Number 1-29
• Returning Errors to the Calling User Process 1-30
• Setting Up a Buffer 1-30
• The Buffer Header 1-31

ii Table of Contents

• Other open Routine Responsibilities
The strategy Routine

• Check for Valid Block (1)
• Reading and Writing Data (2)
• The biodone Function (3)

The close Routine

Driver Development
Basic Steps for Creating a Driver

• Preparation
• Implementation
• Follow-up

Commenting Driver Code
Layered Structure
Driver Functions
Utilize Board Intelligence

Table of Contents

1-31
1-32
1-33
1-33
1-34
1-34

1-35
1-35
1-35
1-36
1-36
1-36
1-37
1-37
1-38

iii

Introduction

This document, Device Driver Programming, provides information and procedures
for developing, installing, and testing UNIX® System V device drivers. The intro­
ductory chapter of this guide is intended primarily for programmers writing
device drivers that use the traditional UNIX system block and character driver
interfaces. The remaining chapters describe system features and programming
procedures used by all driver writers, regardless of the kind of interface used
(block, character, STREAMS, or Portable Device Interface).

Since the common material in Device Driver Programming does not appear in the
other two titles in the device driver programming documentation set- STREAMS
Modules and Drivers and Portable Device Interface (PDI)- readers of the guides for
these alternate interfaces should also read this guide.

Contents

This guide contains four chapters:

• Chapter 1, "Introduction to Device Drivers" , introduces many of the basic
concepts a programmer should understand before attempting to write a
UNIX System V device driver.

• Chapter 2, "Loadable Modules" , discusses Dynamically Loadable Modules
(DLM), a feature that allows you to add a device driver to a running system
without rebooting the system or rebuilding the kernel. The first part pro­
vides an overview of the DLM feature from the driver writer's perspective.
The second part explains how to convert your non-loadable driver to be
loadable.

• Chapter 3, "Driver Installation and Tuning", explains how to install and
configure device drivers using Installable Driver Tools (also known as
idtools) and Driver Software Packages (DSPs). Information on tuning
device drivers is also provided.

• Chapter 4, "Driver Testing and Debugging", describes the tools that are
available for testing and debugging a device driver, and discusses some of
the common errors and some of the symptoms that might identify each.

A glossary of common UNIX system device driver programming terms and abbre­
viations is also provided.

Introduction 1-1

Changes since Previous Release

Device Driver Programming is a new title that covers many of the topics addressed
by the "Device Drivers" chapter of the Integrated Software Development Guide
(ISDG) in previous releases. For Release 4.2, a few sections that formerly
appeared in this ISDG chapter have been updated and reused. However, the
majority of the material in Device Driver Programming is entirely new material.
The most Significant technical changes for Release 4.2 are documented in Chapter
2, "Loadable Modules", and Chapter 3, "Driver Installation and Tuning".

References

The following UNIX System V reference manuals are a recommended supplement
to this guide:

• Command Reference (Section 1)

• Operating System API Reference (Sections 2 and 3)

• Windowing System API Reference (Section 3 windowing functions)

• System Files and Devices Reference (Section 4, 5, and 7)

• Device Driver Reference (Sections Dl - D5)

These books contain the manual pages for the various commands, system calls,
library functions, file contents, and devices. Within each book, manual pages are
grouped numerically by section numbers. Within a section, the pages are sorted
alphabetically, without regard to the letter that follows the section number. For
example, the manual pages for Sections 3C, 3E, 31, 3M, 3N, 35, 3W, and 3X are all
sorted together within Section 3 in the Operating System API Reference.

Notation Conventions

The following conventions are observed in this guide:

• Computer input and output appear in constant width type. This includes
program code, specific file names and contents, and commands.

• Substitutable values, such as file or device names that you set and variables,
appear in italic type.

Following is an example demonstrating how both constant width font and italics
are used throughout this guide.

1·2 Introduction to Device Drivers

Master files contain lines of the form:

$version version-number
$entry entry-point-list
$depend module-name-list
$modtype loadable-module-type-name
module-name prefix characteristics order bmaj cmaj

Chapter Overview

The remainder of this chapter introduces many of the basic concepts a program­
mer should understand before attempting to write a UNIX System V device
driver. The chapter gives an experienced C programmer an overview of how to
write a device driver, by showing

• how device drivers resemble and differ from application programs

• different types of device drivers, and what they have in common with each
other

• some of the standard driver-to-kernel and driver-to-hardware interface rou-
tines, and where to find additional information about these interfaces

• the structures used by the system to provide driver entry points

• methods used to differentiate between devices and subdevices

• an example driver that illustrates the main components of most drivers and
what those components typically do

• some guidelines for developing a driver

Introduction 1-3

What Is a Device Driver?

The UNIX operating system kernel can be divided into two parts: the first part
manages the file systems and processes, and the second part manages physical
devices, such as terminals, disks, tape drives, and network media. To simplify the
terminology, this chapter refers to the first part as "the kernel" (although strictly
speaking, drivers are part of the kernel too), and refers to the second part, which
contains the drivers, as "the I/O subsystem."

Associated with each physical device is a piece of code, called a device driver,
which manages the device hardware. The device driver brings the device into and
out of service, sets hardware parameters in the device, transmits data from the
kernel to the device, receives data from the device and passes it back to the kernel,
and handles device errors.

To most application programmers using UNIX System V, a device driver is simply
part of the operating system. The application programmer is usually concerned
only with opening and closing files and reading and writing data. These functions
are accomplished through standard system calls from a high-level language. The
system call gives the application program access to the kernel, which identifies the
device containing the file and the type of 1/ 0 request. The kernel then executes
the device driver routine provided to perform that function.

Device drivers isolate low-level, device-specific details from the system calls,
which can remain general and uncomplicated. Because there are so many details
for each device, it is impractical to design the kernel to handle all possible devices.
Instead, a device driver is included for each configured device. When a new
device or capability is added to the system, a new driver must be installed.

Figure 1-1 shows how a driver provides a link between the user level and the
hardware level. By issuing system calls from the user level, a program accesses
the file and process control subsystems, which, in turn, access the device driver.
The driver provides and manages a path for the data to or from the hardware
device, and services interrupts issued by the device's controller.

1-4 Introduction to Device Drivers

Figure 1-1: Driver Placement in the Kernel

User Level

I
I System Call Interface
I
,-------------T-------------
I I Process Control
I File Subsystem I

Subsystem I I

Kernel Level ~-------------~-------------
I I/O Subsystem I
I Device Drivers
~---------------------------
I
I Hardware Control
I

Hardware Level

Every device on a UNIX system looks like a file. In fact, the user-level interface to
the device is called a "special file." The device special files reside in the /dev
directory, and a simple 18 will tell you quite a bit about the device. For example,
the command 18 -1 /dev/1p yields the following information

crw-rw-rw- 1 root root 4, 0 Ju1 26 12:45 /dev/1p

This says that the 1p (line printer) is a character type device (the first letter of the
file mode field is c) and that major number 4, minor number 0 is assigned to the
device. More will be said about device types, and both major and minor numbers,
later in this chapter.

What Is a Device Driver? 1-5

Application Programs Versus Drivers

Most applications and drivers are written in the C programming language. How­
ever, there are some major differences between writing a device driver and writ­
ing a program designed to execute at the user level. This section reviews some of
those differences and introduces some of the system facilities used in driver
development.

Structure

The most striking difference between a driver and a user-level program is its
structure. An application program is compiled into a single, executable image
whose top-level structure is determined by a main routine. Subordinate routines
are called in the sequence controlled by the main routine.

A driver, on the other hand, has no main routine. Rather, it is a collection of rou­
tines installed as part of the kernel. But if there is no main routine to impose struc­
ture, how do the driver's routines get called and executed?

Driver routines are called, as needed, in response to system calls or other require­
ments. System data structures, called switch tables, contain the starting addresses
for the principal routines included in all drivers. In a switch table, there is one
row for each driver, and one column for each standard routine. The standard rou­
tines are called entry-point routines, referring to the memory address where the
routine is entered. The kernel translates the arguments of the system call into a
value used as an index into the switch table.

For example, when a user process issues a system call to open a file on a device
that has a driver, the request is directed to the switch table entry for an open of the
device driver containing the file (see Figure 1-2). This routine is then executed,
giving the process access to the file.

1·6 Introduction to Device Drivers

Figure 1-2: How Driver Routines Are Called

Switch Table

User Issues open close ...
System Call To

A
Device A I

Open Device open close ...

I
I open I close ...

B
Driver B Device B J open Routine

C

~II op~~iR~u~ne HI Device C II

Parallel Execution

When an application program is running, the statements making up the program
are executed one at a time, in sequential order. Program control structures (loops
and branches) repeat statements and may branch to alternative sections of code,
but the important point is that at any given instant only one statement and one
routine is being executed. This is true even of different instances of a program
being run by two users at the same time (for example, a text editor). As each pro­
cess is assigned a scheduled slice of CPU time, the statements are executed in the
order maintained for that invocation of the program.

Drivers, however, are part of the kernel and must be ready to run as needed at the
request of many processes. A driver may receive a request to write data to a disk
while waiting for a previous request to complete. The driver code must be
designed specifically to respond to numerous requests without being able to
create a separate executable image for each request (as a text editor does). The
driver does not create a new version of itself (and its data structures) for each pro­
cess, so it must anticipate and handle contention problems resulting from overlap­
ping 1/ 0 requests.

Application Programs Versus Drivers 1-7

Interrupts

For the most part, the real work of a device driver is moving data between user
address space and a hardware device, such as a disk drive or a terminal. Because
devices are typically very slow compared to the CPU, the data transfer may take a
relatively long time. To overcome this, the driver normally suspends execution of
the process until the transfer is complete, freeing the CPU to attend to other
processes. Then, when the data transfer is complete, the device sends an interrupt,
which tells the original process that it may resume execution.

The processing needed to handle hardware interrupts is another of the major
differences between drivers and application programs.

Driver As Part of the Kernel

Application programs, executing at the user level, are limited in the ways they can
have an adverse impact upon the system. Performance and efficiency considera­
tions are mostly confined to the program itself. An application program can con­
st1lJ1e excessive disk space, but it cannot raise its own priority level to use exces­
sive amounts of processing time, nor does it have access to sensitive areas of the
kernel or other processes.

But drivers can and do have much greater impact on the kernel. Inefficient driver
code can severely degrade overall performance, and driver errors can corrupt or
bring down the system. For this reason, testing and debugging driver code is par­
ticularly challenging, and must be done carefully. Chapter 4 discusses the facili­
ties available for finding driver errors, as well as some of the special problems that
are encountered when testing driver code.

Also, while an application program writer is free (within reasonable limits) to
declare and use data structures and to use system services, a driver writer is con­
strained in several ways.

1-8

• Kernel functions called by the driver generally do not verify the validity of
passed arguments. Therefore, it is the responsibility of the driver developer
to check the validity of arguments before passing them to kernel functions.

• A number of header files, used to declare data types, initialize constants,
and define system structures, must be included in the driver source code.
The exact list of header files varies from driver to driver; some of the
commonly-used header files are described later in this chapter.

Introduction to Device Drivers

• Various structure members and device registers must be read or written,
and usually some system buffering structure must be used. Many of the
functions defined in the UNIX system Device Driver Interface/Driver­
Kernel Interface (DDI/DKI) are designed to be used with these structures.
These structures are explained in Section D4, "Kernel Data Structures", of
the DDI/DKI portion of the Device Driver Reference.

• Drivers have no access to standard C library routines; however, the routines
included in the DDI/DKI represent a kind of library and provide some
functions similar to those found in the standard C library. On the other
hand, the DDI/DKI also provides many functions that are unlike standard
C library functions. See Section D3, "Kernel Utility Routines", of the
DDI/DKI portion of the Device Driver Reference for complete explanations of
the driver interface routines.

~
Some of the DDI/DKI functions [such as rmalloc(D3DK)] are similar to

NOTE standard library functions [in this case, malloc(3C)], but have different
arguments. Serious errors could result if the driver writer does not pay
attention to such differences.

• Drivers are invoked by the kernel using a set of system tables and the stan­
dard C function-calling mechanism. Every member of one of these tables is
a structure containing pointers to the driver's entry point routines. The
entry point routines make the connection between the calling process and
the device driver. The entry points, in turn, call the driver functions to ser­
vice the caller's requests. See Section D2, "Driver Entry Point Routines" , of
the DDI/DKI portion of the Device Driver Reference for complete explana­
tions of the driver entry point routines.

'_, • Drivers cannot use floating point arithmetic .

./

/

Application Programs Versus Drivers 1-9

Types of Devices

So far, interactive terminals and disk drives have been mentioned as two kinds of
devices that need drivers. These two kinds of devices use very different types of
drivers. On any UNIX system processor, there are two kinds of devices: hardware
devices and software, or pseudo-devices.

Hardware Devices

Hardware devices include familiar peripherals such as disk drives, tape drives,
printers, ASCII terminals, and graphics terminals. The list could also include opti­
cal scanners, analog-to-digital converters, robotic devices, and networks. But, in
reality, a driver never talks to the actual piece of hardware, but to its controller
board. From the point of view of the driver, the device is usually a controller.

In some cases, a controller may have only one device connected to it. More often,
several devices are connected to a single board (for example, eight terminals could
be connected to a terminal controller). A single driver is used to control that
board and all similar terminal controllers configured into the system.

Software Devices

The "device" driven by a software driver is usually a portion of memory and is
sometimes called a pseudo-device. The driver's function may be to provide access
to system structures unavailable at the user level.

For example, a software device might be a RAM disk, which provides very fast
access to files by using a part of memory for mass storage. A RAM disk driver is,
in many ways, similar to a driver for an actual disk drive, but does not have to
handle the complications introduced by actual hardware. The sample driver
(shown later in this chapter) is a RAM disk driver.

1-10 Introduction to Device Drivers

Types of Device Driver Interfaces

A device driver interface is the set of structures, routines, and optional functions
used to implement a device driver. UNIX System V Release 4.2 provides three
device driver interfaces, all of which are based upon a single specification, the
Device Driver Interface/Driver Kernel Interface (DDI/DKI).

Block and Character Interface

Block and character are the two traditional UNIX system device driver interfaces,
and they correspond to the two basic ways drivers move data. Block drivers,
using the system buffer cache, are normally written for random-access devices
such as disk drives and any mass storage devices capable of handling data in
independently addressable blocks. Character drivers, the typical choice for
interactive terminals, are normally written for devices that send and receive infor­
mation one character at a time.

It is the individual device and goal of the implementation, not the device type,
that determines whether a driver should be the block or character type. For exam­
ple, one driver developer may want to implement a driver for a 9-track tape con­
troller such that file system images on the tape would be mountable, even though
performance of the tape controller for random block accesses would not be good.
Another driver developer may choose to view the tape as a device that can only be
used for sequential storage and retrieval of data, and hence write only a character
driver.

Furthermore, one device may have more than one interface. A disk drive, for
example, may have both a block and character interface.

The manual pages for the block and character interfaces can be found in the
DDI/DKI sections of the Device Driver Reference.

STREAMS Interface

In some early UNIX system releases, the increasing number of network drivers
demonstrated one of the major weaknesses of the block and character interface: its
inability to divide a network's protocols into layered modules. The solution, first
introduced in UNIX System V Release 3, is called the STREAMS interface.

Types of Device Driver Interfaces 1-11

A stream is a structure made up of linked modules, each of which processes the
transmitted information and passes it to the next module. One of these queues of
modules connects the user process to the device, and the other provides a data
path from "'the device to the process.

The layered structure allows protocols to be stacked and also increases the flexibil­
ity of the interface, making it more likely that modules can be used by more than
one driver.

In UNIX System V Release 4 the character-based TTY subsystem was reimple­
mented using STREAMS, and the character-based TTY subsystem is now sup­
ported only for compatibility (its interfaces are not part of the DOI/DKI
specification).

For information about STREAMS drivers, refer to the guide STREAMS Modules
and Drivers.

The manual pages for the STREAMS interface can be found in the DOI/DKI sec­
tions of the Device Driver Reference.

Portable Device Interface (POI)

With Release 4.2, UNIX System V provides an architecture for the development of
- '> block-oriented device drivers called the Portable Device Interface (PDI). The PDI

emphasizes the separation of hardware-dependent and hardware-independent
parts of drivers. It consists of a collection of driver routines, kernel functions, and
data structures that complement, and are based upon, the DDI/DKI interfaces.
Included in the PDI is an interface (called SCSI Driver Interface or SDI) for writing
target drivers to access Small Computer System Interface (SCSI) devices.

For information about the POI, refer to the guide Portable Device Interface (PDI).

The manual pages for the Portable Device Interface can be found in the PDI sec­
tions of the Device Driver Reference.

1·12 Introduction to Device Drivers

Major and Minor Numbers

Before the operating system can provide access to a device, the driver must be
installed and a special device file must be created in /dev.

The special device file contains the major and minor device numbers.

Major Numbers

The major number identifies the device class or group, such as a controller for
several terminals (for example, it tells the kernel which driver's open routine to
call). The major number is assigned, sequentially, to each device driver by the

. ';. Installable Driver Tools (idtools) during driver installation. Assignment is made
by creating an entry in one of the driver's system configuration files, the Master
file, which is described later in this chapter.

Character major numbers and block major numbers are assigned separately for
devices that are exclusively block or character. This means that two separate spe­
cial files for two different device drivers may appear to have the same number
assigned to them. A device that supports both block and character access (for
example, the floppy driver), may have different major numbers for the character
and block device files.

Minor Numbers

The minor number identifies a specific device, such as a single terminal. Minor
numbers are assigned to special files by the driver writer in another system
configuration file called the Node file (see the Node(4) manual page).

Minor numbers are typically used to distinguish su~c!evices, but they can aJso be
used to convey other information. For example, consider a floppy disk controller
that can read and write data from floppies in several formats, and can also manage (
.two floppy drives. When a special file associated with the floppy driver is opened, (
the minor number used to open the file must tell the floppy driver both which \

) drive to access, and what format to assume for the I/O operation. In this particu- /
lar case, the least significant bit of the minor numb~r could be us~d to identify the
drive, and the remaining bits used to indicate the format.

Major and Minor Numbers 1-13

Driver Entry Points and Kernel Utilities

Entry Points

Drivers are accessed in three ways

• through system initialization

• through system calls from user programs

• through device interrupts

When the system is initialized, several tables are created so that the system can
activate the correct driver routine. Because the system uses these tables to deter­
mine the appropriate driver routines to enter, the routines themselves are some­
times referred to as driver entry points.

Each table is associated with a specific set of entry-point routines. Initialization
tables are associated with either init(D2D) or start(D2DK) routines. System
calls use a pair of switch tables whose entry points include open(D2DK),
close(D2DK), read(D2DK), write(D2DK), and ioctl(D2DK) routines (for char­
acter drivers), and open, close, and strategy(D2DK) routines (for block drivers).
STREAMS drivers are entered initially through the character switch table, but
their open, close, put(D2DK), and srv(D2DK) routines are accessed indirectly
through a chain of pointers to other structures. Device interrupts are associated
with their appropriate interrupt handling routine through an interrupt vector
table. The entry point is the intr(D2D) routine.

This section discusses these system tables and their associated entry points in
greater detail.

Initialization Entry Points

Boths kinds of driver initialization routines (init and start) are executed during
system initialization, in a different order each time the system is configured. The
system uses the routines and information from the driver's configuration files to
initialize the drivers. Information such as the major/minor numbers, important
when accessing driver switch table entry points, is not used to initialize a driver.
The system does not differentiate between character- and block-access drivers
when running the initialization routines.

The system initialization program first creates two internal tables, io_init and
io~start, which it uses to list the routines that must be executed. After the sys­
tem is initialized, the io_init and io_start tables are not accessed again. Not

1-14 Introduction to Device Drivers

all drivers need initialization routines. A driver that does not have an init or
start routine has no entry in the io_init or io_start table.

Switch Table Entry Points

Two operating system switch tables, cdevsw and bdevsw, hold the entry-point
routines for character and block drivers, respectively. These routines are activated
by I/O system calls (Figure 1-3).

Figure 1-3: Switch Table Entry Points and System Calls

open close

System! open close read write ioctl mount unmount read write

Calls l

File
Subsystem

I

Character Device Switch Table

I I I
I

I Driver I

I I
I I

I
buffer cache

calis

I
Block Device Switch Table

I
I I

open close read write ioctl open close strategy

Driver Entry
Driver Driver

Points

t f
I Interrupt Handler

t

f
t

Device I

The process of calling the appropriate driver routine can be summarized as fol­
lows

1. The I/O system call (open and read, for example) is directed to a special
device file.

Driver Entry Points and Kernel Utilities 1-15

2. The special device file includes the major number for the driver that con­
trols the device.

3. If the special device file is for block access, the system uses the major
number as an index into the bdevsw table to find the appropriate routine.

For character access, the operating system looks in the cdevsw table, using
the same method.

4. The operating system calls the appropriate routine.

Whenever the character (or block) entry points are being used, the other entry
points are inaccessible. When the driver does a character-access read or write
operation on a device that supports both block and character access, it calls the
strategy routine. The driver calls the strategy routine, however, as a subordi­
nate routine to read or write, not as the bdevsw entry point.

STREAMS drivers, although they use the cdevsw table, do not use the usual entry
points. Instead, a STREAMS driver is recognized by a non-null value in the d_str
field of cdevsw, which is a pointer to a streamtab(D4DK) structure. The stream­
tab structure contains pointers to other structures which eventually point to
STREAMS entry points.

Although the bdevsw and cdevsw tables have places for all possible driver rou­
tines, not all routines are appropriate for all devices. For instance, a printer driver
does not need a read routine. The operating system provides place holders in the
switch tables for routines that are not included in the driver. The place holder
routines are named nulldev and nod.ev. nulldev is an empty routine that is
called when the routine it represents is not needed (for example, a halt routine
for a printer driver would not be needed because it would have no work to do).
nodev is a routine that returns an error code when the routine it represents is
called (for example, a read routine for a printer driver would create an error con­
dition).

Interrupt Entry Points

The operating system must handle many kinds of system interrupts (such as clock
and software interrupts), system exceptions (such as page faults), and interrupts
from peripheral devices controlled by drivers. Interrupts cause the processor to
stop its current process and to immediately begin to service the interrupt. Peri­
pheral devices generate interrupts when an I/O transfer encounters an error or
completes successfully.

When an interrupt is received from a hardware device, the kernel determines the
interrupt vector number of the device and passes control to the appropriate
driver's interrupt handling routine(s). It does this by accessing the interrupt vec­
tor table, populated during system initialization. The interrupt handler must

1-16 Introduction to Device Drivers

identify the reason for the interrupt (device connect, write acknowledge, data
available) and set or clear device state bits as appropriate. It can also awaken
processes that are sleeping, waiting for an event corresponding to the interrupt.

Kernel Utility Routines

UNIX system device drivers call kernel utility routines to perform system-level
functions. The following sections describe some of the routines typically used in
the development of device drivers.

Note that in many cases, routines can be classified under several categories. For
example, biodone wakes up processes and releases buffers when I/O is complete,
therefore falling into the "Event Synchronization Routine," "Buffer Usage Rou­
tine," and "I/O Control Routine" categories.

Buffer Usage Routines

A feature common to most drivers is the use of buffers, which are used for han­
dling data. Drivers can use three types of buffers:

KMA buffers Kernel Memory Allocator (KMA) buffers are "borrowed" by
the driver from a common memory pool used by all parts of
the kernel. All types of drivers may use them. When drivers
allocate their own data areas or independent buffer pools, this
increases the size of the driver, and thus the size of the kernel.

STREAMS message buffers

System buffers

STREAMS messages are for use by drivers written to use the
STREAMS interface. They are allocated for the driver through
the kernel utilities, so the driver need not allocate a pool for its
own messages.

System buffers are the size of a file system block, the size of
which depends on the type of file system and can vary from
1K to 16K. This buffer pool primarily supports disk I/O
operations.

UNIX System V provides a set of buffers that are normally
used for file system I/O, but they can be ''borrowed'' by
drivers if the driver includes the header file sys/buf.h and
the buffer size if 1024 bytes.

Driver Entry Points and Kernel Utilities 1·17

Drivers should be written with the finite nature of the machine in mind; high
buffer use by a driver can reduce the performance of other drivers or require more
memory to be devoted to buffers. When more memory or space is allocated to
buffers, the memory or space available for user processes is correspondingly
decreased.

Following are some common buffer usage routines. For information about
STREAMS buffers, however, refer to STREAMS Modules and Drivers.

Table 1-1: Buffer Usage Routines

Call
brelse
clrbuf
freerbuf
geteblk
get error
getrbuf
kmem_alloc
kmem_free
ngeteblk

Description
Release buffer
Clear buffer contents
Release buffer from getrbuf
Allocate 1024 byte buffer, return pointer
Return buffer error number
Allocate buffer header only
Allocate space from kernel memory
Free allocated kernel memory
Allocate n-byte buffer, return pointer

For more information about these and other calls and functions, refer to the
DDI/DKI portion of the Device Driver Reference.

Data Transfer Routines

Whenever a user program issues a read(2) or write(2) system call, the operation
interacts with data storage areas in the user data space. The driver then moves the
data between user space and the device inane of three ways

• directly between user space and the device

• indirectly using local data space in the driver

• indirectly using buffers in kernel memory

Choosing the appropriate data transfer method for your driver depends on the
type of the device the driver is supporting, how much intelligence the device sup­
ports, and the system utilities that will access it. Many transfers of data between
user space and the device require an intermediate transfer of the data into kernel
memory.

1-18 Introduction to Device Drivers

Table 1-2: Data Transfer Routines

Call Description
bcopy
clrbuf
copyin
copyout
nnalloc
nninit
nnsetwant
rmfree

Copy data from one place to another within kernel address space
Clear data in buffer
Copy data from user space to buffer
Copy data from buffer to user space
Allocate space from a memory map
Initialize a private memory map
Wait for a free buffer
Release map entries

For more information about these and other calls and functions, refer to the
DDI/DKI portion of the Device Driver Reference.

Event Synchronization Routines

An important aspect of driver development concerns how drivers wait for and
respond to certain hardware or software events. Driver functions used to suspend
the execution of the current process are called under the following circumstances:

• waiting for a hardware action to be accomplished (such as transferring data
between a computer and a disk driver)

• waiting for a software action to occur (such as a buffer to be freed for use)

• waiting in a stopwatch mode until a specified number of time units have
elapsed

Table 1-3: Event Synchronization Routines

Call
biodone
biowait
delay
sleep
spl
timeout
untimeout
wakeup

Description
Block 1/ 0 wake up
Block 1/ 0 sleep
Stop current process for a specified time period
Suspend execution until a particular event occurs
Set priority level
Timeout function
Cancel timeout count
Resume suspended execution

Driver Entry Points and Kernel Utilities 1-19

For more information about these and other calls and functions, refer to the
DDI/DKI portion of the Device Driver Reference.

Interrupt Handling Routines

An interrupt is any service request that causes the CPU to stop its currently exe­
cuting process and execute instructions to service the request. The driver inter­
rupt routine is responsible for determining the reason for the interrupt, servicing
the interrupt, and waking up any base-level driver processes sleeping on the inter­
rupt completion.

Following are a few of the routines commonly used for interrupt handling.

Table 1-4: Interrupt Handling Routines

Call Description
biodone
intr
spl

Release buffer after block I/O and wake up process
Process a device interrupt
Block/ allow interrupts on a processor

For more information about these and other calls and functions, refer to the
DDI/DKI portion of the Device Driver Reference.

Input/Output Control Routines

1/ 0 control commands can be used to do many things, including

• implement terminal settings passed from getty(lM) and stty(l)

• format disk devices

• implement a trace driver from debugging

• clean up character queues

To implement I/O control commands for a driver, two steps are required.

1. Define the 1/ 0 control commands and the associated value in the driver's
header file

2. Code the driver ioctl routine to define the functionality for each I/O con­
trol command in the header file

Following are a few of the routines commonly used in 1/ 0 control.

1-20 Introduction to Device Drivers

Table 1-5: 1/0 Control Routines

Call
biodone
biowait
physiock
repinsb
repoutsb

Description
Release buffer after block I/O
Suspend 1/ 0 process, pending completion of block 1/ 0
Validate and issue raw 1/ 0 request
Read bytes from 1/ 0 port to buffer
Write bytes from I/O port to buffer

For more information about these and other calls and functions, refer to the
DDI/DKI portion of the Device Driver Reference.

Error Handling Routines

Error handling is one of the most important functions required in a device driver.
Drivers must handle any error condition, or the consequences might be severe.
For example, a stray interrupt should be a trivial event, but could panic the system
if the driver is not prepared to handle it. A system panic can cause data corrup­
tion and physically damage the system.

When an error occurs, the driver can do one or more of the following:

• Write the error condition to a structure so the driver knows about it. Usu­
ally, at base level, the error is recorded in the b_error member of the
buf(D4DK) structure.

• Retry the process. The error might be a transient problem. Some hardware
device boards have retry capabilities; let these boards perform the retry.
However, if the error is software related, the driver must decide how many
times to retry.

• Report the error to a system error log. If the error is severe, take the faulty
hardware out of service to minimize the damage and keep the system run­
ning normally.

• Report the error to the system administrator, either by printing it on the sys­
tem console or by writing it to putbuf (to be reviewed with the crash(lM)
utility).

• Send a signal to the user process.

• Panic the operating system.

Driver Entry Points and Kernel Utilities 1-21

In the following table are a few of the common error handling routines.

Table 1-6: Error Handling Routines

Call
cmn_error
get error
psignal

Description
Write error message to console, prtbuf, or both
Retrieve error number from buffer header
Send signal to a single process

For more information about these and other calls and functions, refer to the
DDI/DKI portion of the Device Driver Reference.

1-22 Introduction to Device Drivers

Driver Environment

Installation and Configuration

For a driver to be recognized as part of the UNIX system, information about what
type of driver it is, where its object code resides, what its interrupt priority level
will be, and so on must added to the system and stored in the appropriate system
configuration files.

A device driver is added to a working UNIX system in four basic steps.

Configuration Preparation Requires the driver writer to prepare a Driver
Software Package (DSP), which includes the
Driver. 0 object module (providing the actual driver
code), package installation and removal scripts (both
written by the driver writer), and various com­
ponents (such as the driver's Master and System file
definitions) used for system shutdown,
configuration, and initialization.

Installation Installs the driver's DSP, updates the system
configuration files, and prepares for generating a
new kernel.

Configuration Invoked by shutting down and rebooting the system.

Initialization

Driver Environment

During the reboot, the system uses information from
the modified system configuration files to create spe­
cial files in /dev, and the entries for the new driver
in the system initialization tables, switch tables, and
interrupt vector tables.

Loadable drivers can be configured into the
kernel while the system is running, without
rebooting the system and rebuilding the ker­
nel. See Chapter 2, "Loadable Drivers", for
a description of the loadable driver installa­
tion and configuration procedures.

The driver itself is then initialized as part of the ker­
nel when the system is reinitialized.

1-23

Drivers are installed and configured using a set of utilities called the Installable
Driver Tools (idtools). Chapter 3, "Driver Installation and Tuning", gives details
about how to install and configure drivers, and how the system is initialized.

Master and System Fi les

Two files are the source of some of the more important configuration information
needed to make a driver part of a running system: the Master and System files.

Master File

A driver's Master file describes all of the devices supported by the driver than can
possibly be configured into the system. Once the driver is installed, its Master file
resides in the directory/etc/conf/mdevice.d. 'This directory contains a separate
Master file for each installed device driver.

Configuration data defined in the Master file includes Jhe names of the driver's
entry point routines, and an alphanumeric prefix (assigned by the driver writer)
that is prepended to the names of the driver's routines in the system tables. The
prefix enables the kernel to distinguish one driver's routine names (and other vari­
ables) from another's, thereby avoiding conflict with other variables in the system
with the same name. For example, a RAM disk driver may have been given a
prefix of ram-J which would result in routines named ram_open, ram_init and so
on. For more information, see the prefix(DIDK) manual page.

The Master file may also contain the driver's major number, and various flags that
define the specific characteristics of that driver (for example, whether it is a char­
acter or block driver). During installation, the idtools will assign a major number

. if the driver's Master file doesn't specify one. For more information, see the Mas­
ter(4) manual page.

System File

A driver's System file provides information needed to (xmfigure one or more
devices supported by the driver into the next kernel to be built. Once the driver is
installed, its System file resides in the directory /etc/conf/sdevice.d. This
directory contains a separate System file for each installed device driver.

Configuration data defined in the System file includes a flag that indicates
whether or not the driver ought to be incorporated into the kernel, and various
values used by the kernel to interact with the driver's interrupt handler. For more
information, see the System(4) manual page.

1-24 Introduction to Device Drivers

Driver Header Files

Driver source code must contain some standard" include" files that allow the
driver access to system utilities and data structures used to return information to
the kernel.

The description of each kernel utility function in the DDI/DKI manual pages indi­
cates which header files must be included in a driver that uses that function. The
list below identifies a few of the more commonly used include files

<sys/types.h>

<sys/param.h>

<sys/signal.h>

<sys/conf.h>

<sys/file.h>

</sys/buf.h>

<sys/kmem.h>

<sys/ddi.h>

<sys/ddi.i386at.h>

Driver Environment

Defines basic system data types.

Defines fundamental system parameters.

Defines system signals.

If the driver sends signals to user processes, it must
include this file.

Defines device switch tables.

This file is needed for the driver to define its devflag
value.

Defines file structures.

This file is needed if the driver uses control flags such as
"no delay" (FNDELAY).

Defines the huf (system buffer) structure.

This file is needed if the driver uses the system buffer
pool.

Defines the Kernel Memory Allocator.

This file is needed if the driver allocates memory for
buffers out of the common memory pool.

Defines Device Driver Interface (DDI) routines.

This header file is required and must come last in the list
of included header files (see exception below).

Defines functions and symbols specific to the UNIX sys­
tem for the Intel 386 architecture. If this platform­
specific include file is used, it must come last in the list
of included header files, after the ddi . h header file.

1-25

Sample Block Driver

The example driver described in this section is similar, in most of its parts, to all
block drivers. It is a RAM disk driver (a software driver), which uses an area of
memory for mass storage, but has no hardware to control. Consequently, it
doesn't have to recognize or respond to interrupts (a major complication).

The RAM driver example illustrates the general structure of real disk drivers at
only one level, called the base level. The base level includes the routines responsi­
ble for servicing the I/O request from the user process. The other level, called the
interrupt level, responds only to requests for servicing hardware (non-existent for
a RAM disk).

The work of the base level of a RAM disk driver is to open a file system, provide
access to it, and close it when necessary. The entry-point routines required for
these activities are open(D2DK), strategy(D2DK) and close(D2DK). The only
other part of the RAM disk driver is the initialization routine init(D2D).

Each routine is illustrated (with pseudo-code) in the pages that follow. After the
pseudo-code is a brief discussion of every line of the pseudo-program. The
numbers in parentheses (before the lines of pseudo-code) are referenced by the
section headers below, to indicate which line is being explained in that section. In
the four sections that follow, code fragments from a working driver are included
to help illustrate the concepts being described.

Initialization

Not all drivers have init(D2D) routines; some have nothing to initialize and oth­
ers defer initialization to the open(D2DK) routine. In most cases, it doesn't matter
if variables are zeroed in an init or an open routine. On the other hand, the sys­
tem should be informed at the time of initialization if, for example, a disk drive is
off-line.

Software drivers typically have little to initialize because no hardware is involved.
In fact, some software drivers have completely empty init routines. Memory
may be allocated as a simple two-dimensional array in the open routine. But even
if no init routine is needed, the driver must have an entry point routine in the
switch table. In the following pseudo-code for a software driver (Figure 1-4),
required initialization processing is minimal. Some memory must be allocated
and initialized, and a warning must be issued if the allocation fails.

1-26 Introduction to Device Drivers

Figure 1-4: Pseudo-code for init Routine

(1) include header files

init(dev)

(2) if (memory can be allocated)
allocate memory

initialize memory
(3) print informational message

else

print warning message

Driver Header Files (1)

The first file in the list of header files included in driver code should be
sys/types. h because many of the other header files use the type definitions it
contains. In the init routine, the device number passed in as an argument is
declared to have the type dev_t, which is an alias for a unsigned long integer.
Simple data types are abstracted to these types to enhance driver portability.

Most drivers will need to include a minimum of 5 to 10 header files and some may
have more than 20.

Memory Allocation (2)

The function used to allocate memory is kmem_alloc(D3DK). kmem_alloc
accepts as an argument the number of bytes to be allocated and a flag that indi­
cates whether the caller is willing to sleep waiting for the memory to be allocated.
The kmem_alloc manual page also tells you what conditions must exist for the
allocation to succeed, how different types of failures are handled, and which
header files must be used.

Messages (3)

Another useful library function is CIOn_err(D3DK). The printf(3S) library func­
tion cannot be used in driver code; instead, the function CIOn_err is used for all
types of messages, from the merely informational to those reporting severe errors.
The first argument to this function is a constant used to indicate the severity level,
the second is the formatted message string, and the third is an optional set of argu­
ments passed with the message being displayed. For example, the following state­
ment could be used to report why the initialization failed.

Sample Block Driver 1-27

cmn_err(CE_WARN, "prefixinit: kmem_alloc cannot allocate ~od buffers", BUFS);

The cmn_err function can also be used to shutdown or panic the system when
serious errors are detected. For example, if a hardware driver is unable to allocate
private buffer space there is probably sufficient reason to halt system initialization.
When this condition is detected, the next statement should be

cmn_err(CE_PANIC, "prefixinit: Buffer space unavailable");

Other init Responsibilities

A working driver for a hardware device (for example, a disk drive) does not have
an init routine as simple as the one shown earlier. The additional processing
required may include some of the following

• Check to see if the devices under the control of the driver are actually on­
line.

• Check for the correct number of subdevices.

• Set each device's interrupt vector to correspond to the system's interrupt
vector table.

• Set the virtual-to-physical address translation.

• Set device-specific parameters to default values. These parameters include
values for the number of tracks, cylinders and sectors.

Base-Level Operation

The base-level, entry-point routines do most of the work of the driver. These are
the routines that respond to user I/O requests, expressed as system calls. The ker­
nel then interprets the system call, and, in turn, calls one of the driver's entry­
point routines.

There is not a one-to-one correspondence between system calls and driver rou­
tines. For example, on a multiuser system more than one user process may have
opened a device. The kernel calls the driver close routine only when the last of
these user processes issues the close system call. A user's read or write request
results in a call to the block driver's strategy routine.

1-28 Introduction to Device Drivers

The open Routi ne

When a user process issues an open(2) system call, the file to be opened is most
often a regular file, which is generally opened to read or write text or data. How­
ever, the driver open(D2DK) routine is opening the device, which looks like a file
on a UNIX system .

• The special device file identifies which switch table (block or character) to
look in for the driver open routine.

• After the correct switch table is identified, the major number is used to find
the corresponding open routine.

Finally, when the open routine is called (Figure 1-5), it is passed a pointer to the
device number and the flags indicating the type of open (read only, create new
file, and so on).

Figure 1-5: Pseudo-code for open Routine

open(device number, flags, type, credentials)

if (minor device number is invalid)
return ENXIO

else
set up buffer to read the superblock
call strategy

Each of the following sections covers the issues involved in implementing the pro­
cessing represented by a line of pseudo-code. Most sections will also give an
actual code sample (in the C language) to illustrate typical driver coding style.

Validating the Minor Device Number

The device number contains both the major number (identifying the driver) and
the minor number (identifying the sub-device). The major number has already
been used as an index into the switch table to call the driver, so there is usually no
need to check its value. If the driver is using the multiple major number feature
(described later in the guide), it should verify that the number is within the range
the driver expects to use. The major number can be extracted from the device
number via the getmajor(D3DK) function.

Sample Block Driver 1-29

The minor number can be extracted via the getminor(D3DK) function. In the
example below, the minor number is checked against a driver-defined constant
MAXDEV If the minor number is not a simple unit number, but also contains com­
ponents (a high-order bit, for example) that define the type of access to the physi­
cal device, the driver open routine should extract each component and verify that
the unit number is valid and the type of access is appropriate. Sometimes physical
access to the device will be needed to verify its actual presence on the bus. The
open routine should return an error number if the open should not be permitted.

if (getminor(dev» > MAXDEV)

return (ENXIO); /* No such device */

Returning Errors to the Calling User Process

When a driver needs to report an error to the user process that caused the call to a
driver entry point, the usual method is to return an error number as the return
value of the driver entry point. If there is no error to return, the value 0 should be
returned. In the example above, when the minor number passed to the driver
open routine was out of range (greater than the driver-defined MAXDEV), the value
ENXIO is returned.

Driver error numbers are defined in the header file sys/errno.h, and are
described in errnos(D5DK). The general algorithm for the driver entry points
that correspond to system calls (namely read, write, open, close, ioctl, poll) is

1* verify arguments and perform entry point processing *1

if (error condition or invalid arguments) (
1* see entry point-specific documentation for appropriate
* error numbers
*1

return (error number);

return (0)

Setting Up a Buffer

The kernel buffer cache is a linked list of buffers used to minimize the number of
times a block-type device must be accessed. A block driver does not read or write
directly to the disk, but rather to the buffer cache.

1·30 Introduction to Device Drivers

The section "The strategy Routine" below explains how the driver reads and
writes blocks. This section introduces the buffer header, that part of the buffer
structure used to identify where the data came from. The structure is called
buf(D4DK) and is defined in the file buf . h.

The Buffer Header

The buffer header is the structure used by the kernel's file system and virtual
memory subsystems to pass I/O requests to disk drivers. These subsystems set
the following fields in the buf structure to tell the driver what to do

The device number. This is a composite value, made up of both
the major and minor number. It is used to identify the RAM
device.

The number of bytes to be transferred. This number can vary in
value, so the driver writer must never assume a standard value
for this field.

The block number to access on the device specified by b_dev.
Note that this is a logical number; if a physical disk is split into
two logical sub-devices (each logical part has its own minor
number), the block number refers to the block within the particu­
lar logical sub-device, not the physical block on the disk.

The block size is given by the constant NBPSCTR in sys/param.h
and has nothing to do with the block size being used for a particu­
lar file system (s51K versus s52K, for example).

Should be initialized to 0 by the driver and set to an error number
if there is a failure or if the request is invalid. The flag B_ERROR in
b_flags (see below) should also be turned on.

Values are OR'ed into this member (allowing more than one value
to be on at a time). In particular, the driver will want to check
whether the flag B_READ is set. If not set, then the I/O request is a
write operation.

For more information, see the buf(D4DK) manual page.

Other open Routine Responsibilities

Like the init routine, the open routine for a RAM disk driver is simpler than for a
hardware device. Other functions a hardware open routine may perform are

Sample Block Driver 1-31

• initialize error logging

• initialize the disk defect table

• read the volume table of contents (VTOC) and the defect table

• read the physical description sector

For more information, see the open(D2DK) manual page.

The strategy Routine

The strategy(D2DK) routine may be called from the open routine to read state
information (such as the VTOC) from the disk (Figure 1-6). More often, strategy
is called in response to a system I/O request. This is the main work of a block
device driver, and strategy is the routine that does it. To transfer data, the stra­
tegy routine is passed a pointer to a buffer header.

Figure 1-6: Pseudo-code for strategy Routine

include header files

strategy(bp)

(1) if (block number is out of range)
write error to buf structure and set B_ERROR
return

(2) if (I/O request is for read)
read block of data

else
write block of data

(3) call biodone
return

For more information, see the strategy(D2DK) manual page.

1-32 Introduction to Device Drivers

Check for Valid Block (1)

As part of the kernel, the RAM disk driver has access to any part of memory, and
so it is very important to make sure that reading and writing of data is confined to
the area allocated for the RAM disk. The most basic checking uses the b_blkno
member of the buffer structure to make sure the requested block is within range.
(RAMBLKS is the number of blocks in the RAM disk. Because the first block number
is 0, the block number equal to RAMBLKS can be calculated as the number of blocks
in the RAM disk plus one.)

if (bp->b_blkno < 0 1 1 bp->b_blkno+l > RAMBLKS)

bioerror(bp, ENXIO)

If the I/O request is for a block beyond the end of the disk, the driver must further
check to see if a read or a write is requested. For a read, the number of unread
bytes is reported by assigning the value of b_bcount to b_resid, which is passed
by the system as a return value to the read system call.

if (bp->b_blkno > RAMBLKS && bp->b_flags & B_READ)
bp->b_resid = bp->b_count;

The read status is tested by logically ANDing the b_flags member with the value
B_READ. If the test fails, the I/O request is assumed to be a write. Any attempt to
write beyond the end of the RAM disk must be denied, and an error reported.

bp->b_error = ENXIO;
bp->b_flags 1= B_ERROR;

Reading and Writing Data (2)

Several different functions are available for moving data. Transfer can be between
user space and the driver (with copyin and copyout). But the RAM disk and the
driver buf header are both in kernel space, so the bcopy(D3DK) function is used.
The three arguments to the function are the source of the data, the destination, and
the number of bytes transferred.

if (bp->bflags & B_READ)
bcopy(disk_addr, b_un.b_addr, bp->b_bcount);

else

Sample Block Driver 1-33

The biodone Function (3)

When the data transfer is complete, the strategy routine calls the
biodone(D3DK) function. Hardware drivers use biodone to awaken sleeping
processes. (This is not required for pseudo-devices.) The RAM driver uses this
function to release the buffer block and to set the b_flags member to B_DONE.
The biodone function is called with a single argument, the pointer to the buffer
header.

biodone (bp) ;

For more information, see the biodone(D3DK) manual page.

The close Routine

Many drivers (even some hardware drivers) will have empty close(D2DK) rou­
tines. Even though it does nothing, the address of the empty routine is entered
into the switch table.

close ()
{

}

If not empty, a close routine may be responsible for unlocking the device (if
locked by the open(D2DK) routine), flushing buffers, making sure the device does
not contain a mounted file system, and reinitializing its data structures.

Because more than one process may have opened the device, the close routine is
not called if any process still has the device open. The way in which a file was
opened may affect how it should be closed, so one of the arguments to the close
routine is taken from the file structure (declared in file.h).

For more information, see the close(D2DK) manual page.

1-34 Introduction to Device Drivers

Driver Development

The rest of this chapter reviews a variety of steps and guidelines programmers
should keep in mind when planning and developing device drivers.

Basic Steps for Creating a Driver

Device driver development requires more up-front planning than most applica­
tion programming projects. At the very least, testing and debugging are more
involved, and more knowledge about hardware is required. The following steps
can be used as a general guide to driver development.

Preparation

• Learn about the hardware. Most of the information you need can be found
in the documentation for the device, and should include

o how the device sends interrupts

o the range of addresses of the hardware board

o return codes and software protocols recognized by the device

o how the device reports hardware failures

• Test the hardware to make sure it is functioning. This is especially impor­
tant for a newly-developed device.

• Design the software. Even though the overall structure of a driver is not the
same as an application program, good structured design remains important.
Data flow diagrams, functional specifications, and structure charts are all
useful tools in driver development. Design documents should cover not
only the driver contents, but also the contents of any utility programs that
will be used with the driver.

• Select a software maintenance and tracking utility, such as the source code
control system (SeeS) described in the sees(l) manual page.

Driver Development 1-35

Implementation

• Write and install a minimal driver. It is very helpful to test driver code from
the earliest stages, and to verify that it can be installed. A minimal driver
might be one that simply uses the cmn_err function to send a "hello,
world" message to the system console. See Chapter 3 for a detailed guide
to driver installation.

• Write base-level routines before interrupt-level routines.

• If applicable to the device, write and test any associated firmware.

• Develop utilities such as disk formatting, network administration, and diag­
nostic programs at the same time as the driver.

Follow-up

• As much as possible, use the testing phase to create error conditions that
exercise the driver's ability to handle them.

• Evaluate the driver's performance both in isolation and in a production
environment where other drivers are installed. Regression testing should be
performed to ensure that a new device driver does not affect other system
functionality.

• Make sure documents affected by the creation of the driver are updated.
These may include operator and diagnostic manuals and sales or ordering
information. If the driver is to be installed by a customer, write and test ins­
tallation and de-installation packages, as described in Chapter 3.

Commenting Driver Code

Good practice in commenting driver code is the same as for any type of program­
ming. Because driver code can be extremely difficult to maintain without ade­
quate comments, these guidelines are included here.

• Each file should have a comment block at the beginning, describing the type
of file functions and the services they perform. List the functions that call
them and the functions they call. For a hardware driver, describe the
hardware, including version numbers and hardware strapping values.

• Describe each global data structure or type declared, including its possible
range of values. Describe the protocol, if any, used to access it (such as
flag-setting). If it is useful, describe the functions that access structures,
including those that are in other files.

1-36 Introduction to Device Drivers

• Each routine should have a comment block at the beginning describing
what it does, how it does it (what are the algorithms or strategy), assump­
tions about the environment when it is called (processor interrupt priority
level, outstanding I/O jobs, and so forth), and what global variables are
used.

• Each line that declares an argument to the routine should have a comment.

• Every local variable should be explained.

• Each loop or if test should have a comment to explain the exit condition.

Layered Structure

Hardware drivers will be easier to port and maintain if structured in layers.

• Separate the higher-level protocol functionality from the low-level,
machine-dependent routines. The high-level sections can be readily ported,
leaving only the low-level sections to be rewritten. If machine-specific code
is not isolated, all code may need to be rewritten to run on another proces­
sor.

• When your driver accesses system structures such as the system buffer
structures, use the standard functions included in the DDI/DKI. Using
non-standard functions with standard structures can degrade the perfor­
mance of other drivers on the system and will impact portability and for­
ward compatibility.

Driver Functions

A device driver is made up of entry-point routines that call standard DDI/DKI
functions and subordinate routines written for the driver. Here are some things to
consider when using these functions and routines

• Standard functions, especially for timing and data allocation, are less likely
to degrade system stability and performance than similar routines coded in
the driver.

• When subordinate routines must be written, declare them static to
prevent name conflicts with other drivers. In general, define as few global
names (both functions and names) as possible. To make the driver easier to
maintain, use the driver prefix when naming subordinate routines, even
though the static declaration makes this step unnecessary.

Driver Development 1-37

Utilize Board Intelligence

Many peripheral devices are intelligent, meaning that they contain their own
microprocessor that can hold driver code. For optimal performance and portabil­
ity, take full advantage of the board's intelligence by writing a firmware driver
that provides the basic functionality of the board, then accesses the firmware
driver from within the UNIX system driver.

With intelligent devices, some of the control for a device or controller may be in
code running on the controller board rather than in the driver running in kernel
memory. The code for the controller board may be in firmware or may be down­
loaded to controller RAM, for example, at system boot time.

If the device never needs to work in a non-UNIX system (firmware) mode, it is not
necessary to use firmware for anything more than diagnostics. You may also want
to include in firmware a basic subset of the protocol necessary to talk to the host
processor directly, such as the memory management protocol. Proper use of
firmware can enhance the features, portability, and performance of your device.

1-38 Introduction to Device Drivers

2 Loadable Modules

Introduction 2-1

The DLM Mechanism 2-2
Loadable Module Types 2-2
The Difference between Static Modules and Loadable

Modules 2-2
Overview of the Load Process 2-3
Overview of the Unload Process 2-3
The Difference between a Demand Load and an Auto Load 2-4

• Demand Load 2-4
• Demand Unload 2-4
• Auto Load 2-4
• Auto Unload 2-5

Making Modules Loadable 2-6
Coding a Wrapper 2-6

• Wrapper Functions 2-6
• Wrapper Data Structures 2-8
• Wrapper Macros 2-8
• Sample Wrapper Code 2-9

Packaging a Loadable Module for Installation 2-13
• Master File Definitions for Loadable Modules 2-14
• System File Definitions for Loadable Modules 2-14
• Mtune File Definitions for Loadable Modules 2-15

Checking the Configured Loadable Modules before
Installation 2-15

Installing a Loadable Module 2-16
Removing a Loadable Module 2-16
Tuning a Loadable Module 2-16

Table of Contents

ii

Configuring a Loadable Module
Loading and Unloading a Loadable Module

• Loading the Module
• Querying the Module's Status
• Modifying the DLM Search Path
• Unloading the Module

Debugging a Loadable Module
• DLM Error Messages
• Dynamic Symbols and kdb

2-17
2-18
2-18
2-18
2-18
2-19
2-19
2-19
2-20

Table of Contents

Introduction

UNIX System V Release 4.2 supports Dynamically Loadable Modules (DLM). This
feature allows you to add a device driver to a running system without rebooting
the system or rebuilding the kernel.

The DLM feature

• reduces time spent on driver development by streamlining the driver instal­
lation process

• makes it easier for users to install drivers from other vendors

• improves system availability by allowing drivers to be configured into the
kernel while the system is running

• conserves system resources by unloading infrequently used drivers when
they are not needed (when needed in the system, DLM loads the drivers
from disk)

• gives users the ability to load and unload drivers on demand

• gives the kernel the ability to load and unload drivers automatically

• requires drivers that are going to be configured into the system as loadable
modules to be converted to loadable form

The discussion of DLM that follows contains two parts.

The first part provides an overview of the DLM feature from the driver writer's
perspective. Among other things, this part explains how DLM creates a kernel
that is different from the statically configured kernel you may be accustomed to
working with. It also describes the different ways loadable modules can be loaded
and unloaded, and provides an overview of how the DLM loading and unloading
mechanism works. This background information should prove useful to you
when you have to perform tasks such as debugging your loadable driver.

The second part explains how to convert your non-loadable driver to be a loadable
driver. This part presents information you will need to write the initialization
code that lets DLM dynamically connect your loadable driver to the rest of the
kernel. It also tells you how to install your driver as a loadable driver, how to
configure your loadable driver into a running system, and to how load it. Infor­
mation about debugging a loadable driver is also provided.

Introduction 2-1

The DLM Mechanism

Loadable Module Types

Since this book is about device drivers, this chapter focuses on loadable device
drivers. However, you should be aware that the DLM feature supports loading
and unloading of a variety of kernel module types.

Types of modules that can be loaded include

• device drivers (block, character, STREAMS and pseudo)

• Host Bus Adapter (HBA) drivers

• Direct Coupled Device (DCD) controller drivers

• STREAMS modules

• file systems

• miscellaneous modules-for example, modules containing code for support
routines shared among multiple loadable modules which are not needed in
the statically configured kernel

Although the discussion focuses on device drivers, the information being
presented in this chapter applies-in a general way-to allioadable module types.

The Difference between Static Modules and Loadable
Modules

In previous releases, all kernel modules were maintained in individual object files
(• 0 files) so they could be conditionally included or excluded from the kernel,
depending on whether or not the features they supported were required in the
system. The conditional nature of this arrangement meant that when you wanted
to add a new module or remove an existing module, you had to relink the entire
kernel and reboot the system to cause your new kernel configuration to take effect.

With DLM, some modules continue to be linked to the kernel in the traditional
manner. Kernel modules that are configured this way are called static modules.
A static module is, by definition, non-Ioadable. That is, the module remains
linked into the kernel at all times because either it is always required in the system
(like the boot hard disk driver), or it is used so frequently or consumes so few
resources (like the user terminal pseudo-device driver) that it makes sense to keep
the module continuously configured.

2-2 Loadable Modules

Other modules-modules that are not required, are used infrequently, or consume
large amounts of resources-can be configured so they can be included or
excluded from the kernel dynamically, without a system shutdown and reboot.
These modules are called load able modules.

Loadable modules are also maintained as individual object files, but they are not
statically linked to the kernel. Instead, they are linked into the kernel when they
are needed and unlinked when they are no longer in-use. Floppy disk drivers and
mouse drivers are two examples of kernel modules that are typically configured
as loadable modules.

Overview of the Load Process

When a loadable module needs to be added to the system, the DLM mechanism
reads the module's object file on disk and copies the module into dynamically
allocated kernel memory.

Once the module is in memory, DLM relocates the module's symbols and resolves
any references the module makes to external symbols. DLM then executes special
code in the module (called "wrapper" code) that enables the module to initialize
itself dynamically.

When module initialization is complete, DLM executes code specific to the load­
able module type. This code logically connects the module to the rest of the ker­
nel.

Overview of the Unload Process

The unload process undoes what was done during the load process.

First, the DLM mechanism executes code specific to the loadable module type that
logically disconnects the module from the rest of the kernel. Once in the module
is disconnected, DLM then executes the module-supplied wrapper code that
enables the module to clean up for termination. When clean-up is complete, DLM
releases the memory allocated for the module.

The DLM Mechanism 2-3

The Difference between a Demand Load and an Auto
Load

Two types of events can cause a module to be loaded or unloaded by the DLM
mechanism: a demand-load/unload request or an auto-load/unload event.

Demand Load

A demand load is a user request, made using the modadmin(lM) command, to add
a loadable module to the running system.

If the module depends on other loadable modules and these modules are not
currently loaded, DLM will automatically load these modules during the load pro­
cess.

For the initial release of the DLM feature, loadable DCD controller drivers can­
not be demand loaded. They must be auto loaded by the kernel as they are
needed.

Note also that if the DCD module is a loadable module, all configured DCD
controllers must be also be loadable. Conversely, if the DCD module is a
static module, all configured DCD controllers must be also be static.

Demand Unload

A demand unload is a user request, made using the modadmin(lM) command, to
remove a loadable module from the running system.

If the module is not being used when the request is made, and if no other loaded
module depends on the module, DLM will unload it. If the module is being used,
or if another loaded module references symbols defined in the module, DLM does
not unload the module. Instead, DLM adds the module to a list of modules that
are candidates for the next auto unload.

Auto Load

An auto load occurs when the kernel determines that the functionality provided
by a particular module is required to perform some task. For example, the kernel
would call DLM to auto load a loadable device driver on the first open of any of
the driver's configured devices. A loadable STREAMS module would be auto
loaded on the first I_PUSH of the module. During an auto load, DLM also loads
any modules that the module being loaded depends upon, as it does during a
demand load.

2-4 Loadable Modules

For the initial release of the DLM feature, load able HBA drivers cannot be
auto loaded. HBA drivers can, however, be demand loaded using the modad­
min command, or demand loaded by init(1 M) via the idmodload(1 M) com­
mand during a system reboot.

Note also that, once loaded, an HBA driver remains loaded until the next sys­
tem reboot (no DLM unload mechanism exists for HBA drivers).

Auto Unload

An auto unload can occur when the kernel determines that the amount of memory
available to it is low. To deal with this shortage, the kernel calls DLM to attempt
to unload any modules that have become candidates for unloading. Modules
become candidates for auto unloading when they are inactive, they have not been
accessed for some predetermined amount of time, and no other loadable modules
depend on them.

For example, a loadable device driver would become a candidate for auto unload­
ing on the last close of all its configured devices, and a loadable STREAMS
module would become a candidate for auto unloading on its last I_POP. The
amount of time that must elapse before inactive modules are considered candi­
dates for auto unloading is controlled by the value of the global tunable parameter
DEF_UNLOAD_DELAY in /etc/conf/mtune.d/kernel. Individual modules can
override the value of the global auto-unload delay by specifying their own auto­
unload delay value in their Mtune(4) files.

~ On a demand unload request, the auto-unload delay parameter value is

L ";J ;9nored.

If the attempt to auto unload a module is successful, the memory allocated for the
module is reclaimed. Unloading continues until the amount of available memory
reaches a predetermined high-water mark or the list of unloadable candidates is
exhausted.

r~: I Modules that are demand loaded cannot be auto unloaded. If a demand­
NOTE loaded module is no longer needed in the system, it must be demand

unloaded.

The DLM Mechanism 2-5

Making Modules Loadable

The following sections explain how to convert your non-Ioadable driver to be a
loadable driver.

Coding a Wrapper

The first step in converting a non-Ioadable driver to a loadable driver is writing
some special initialization code called a "wrapper."

Each loadable module is required to supply the DLM mechanism with a wrapper.
The wrapper "wraps" a module's initialization and termination routines with spe­
cial code that enables DLM to logically connect and disconnect the module to and
from the kernel "on the fly" while the system is running.

The wrapper consists of function definitions and initialized data structures.

Wrapper Functions

For a device driver, the wrapper functions can include

prefix_load The _load entry point is called by the DLM mechanism once
the driver has been loaded into memory and link edited into
the kernel. The _load routine handles any initialization tasks
the driver must perform prior to being logically connected to
the kernel. Typical initialization tasks performed from _load
include acquiring private memory for the driver, initializing
devices and data structures, and installing device interrupts.
This entry point is optional, and is described on the
_load(D2D) manual page.

prefix_unload _

2·6

The _unload entry point is called by the DLM mechanism
once the driver has been logically disconnected from the ker­
nel. The _unload routine handles any clean-up tasks the
driver must perform prior to being removed from the system.
Typical clean-up performed from _unload include releasing
private memory acquired by the driver and removing device
interrupts. This entry point is optional, and is described on
the _unload(D2D) manual page.

Loadable Modules

prefixinit

prefixstart

prefixhalt

The init entry point is called by the driver's _load routine to
perform any setup and initialization the driver must do before
interrupts are enabled. If you are converting a non-loadable
driver to make it loadable, you will probably find that you
can use your static driver's init routine in the loadable ver­
sion of the driver. This entry point is optional, and is
described on the init(D2D) manual page.

The start entry point is called by the driver's _load routine
to perform any setup and initialization the driver must do
after interrupts are enabled. If you are converting a non­
loadable driver to make it loadable, you will probably find
that you can use your static driver's start routine in the
loadable version of the driver. This entry point is optional,
and is described on the start(D2DK) manual page.

The halt entry point is called by the DLM mechanism. If the
driver is loaded at the time the system is shut down, DLM
will call the driver's halt routine to shut down the driver
when the halt routines for the statically configured kernel
modules are called. If you are converting a static driver to
make it loadable, you will probably find that you can use
your static driver's halt routine in the loadable version of the
driver. This entry point is optional, and is described on the
halt(D2DK) manual page.

The mod_drvattach routine is called by the driver's _load
routine to add the driver's interrupts to the running system.
Since interrupts are enabled upon return from
mod_drvattach, you should make sure your driver's _load
routine calls its init routine prior to calling mod_drvattach,
and calls its start routine after calling mod_drvattach. This
routine is optional, and is described on the
mod_drvattach(D3DK) manual page.

The mod_d~~ach routine is called by the driver's _unload
routine to disable and remove the driver's interrupts from the
running system. This routine is optional, and is described on
the mod_drvdetach(D3DK) manual page.

Making Modules Loadable 2-7

Wrapper Data Structures

C The wrapper data structures are initialized by the DLM mechanism using values
taken from your driver's configuration files. These structures provide information
needed during loading and unloading-such as the values needed to populate
your driver's bdevsw or cdevsw switch table entries for the major device numbers
it supports.

Note that your driver does not need to use any of the wrapper data structures
directly, and your driver's wrapper needs only to point to these structures. How­
ever, if your driver requires interrupts to be added and removed, it will need to
reference the attach_info structure in its mod_drvattach and mod_drvdetach
wrapper routines. This structure contains the name of your driver's interrupt
handler, and other related information. Although the attach_info structure is
initialized by DLM using information taken from your driver's configuration files,
as is done for the wrapper data structures, the attach_info structure is not
linked to the wrapper data structures themselves.

Wrapper Macros

To aid you in generating a wrapper for your loadable driver (or other loadable
module type), DLM provides a set of macros in /sys/moddefs .h. The macros are
of the form

type (prefix, load, unload, halt, description) ;

The keyword type identifies the type of wrapper to be generated. Valid types are

MOD_STR_WRAPPER

MOD_FS_WRAPPER

MOD_MISe_WRAPPER

generates wrappers for device drivers, including block
drivers, character drivers, STREAMS drivers and pseudo
drivers

generates wrappers for Host Bus Adapter drivers, and
any other driver type that does not require switch table
entries, but does need to attach and detach interrupts

generates wrappers for STREAMS modules

generates wrappers for file systems

generates wrappers for miscellaneous modules

The keyword prefix specifies the driver's prefix, as defined in the driver's Mas­
ter(4) file, and described on the prefix(DIDK) manual page. The keywords load,
unload and halt specify the names of the driver's _load routine, _unload routine,
and (if the driver has one) its halt routine.

2-8 Loadable Modules

t:::l For non-driver modules, the keyword halt is omitted from the wrapper macro

I ;OTE~ cod;ng.

The keyword description supplies a character string used to identify the driver.

Sample Wrapper Code

The following coding examples show some typical wrappers for the different
loadable module types. Note that allioadable modules must include
sys/moddefs.h in their wrapper definitions.

Figure 2-1 shows a sample wrapper for a device driver.

Figure 2-1: Device Driver Wrapper Coding Example

#include <sys/mod/moddefs.h>

extern int fdloaded; /* in fdbuf */

#define

STATIC int

STATIC int
fd_load()
{

DRVNAME "fd - Floppy disk driver"

fdinit() ;
mod_drvattach(&fd_attach_info);
fdstart();

return(O);

STATIC int
fd_unload ()
{

mod_drvdetach(&fd_attach_info);
fdloaded = 0;

return(O) ;

Making Modules Loadable 2-9

Figure 2-2 shows a sample wrapper for a Host Bus Adapter driver. Notice that,
since HBA drivers cannot be unloaded, the _unload routine in the example sim­
ply returns the error number EBUSY.

Figure 2-2: Host Bus Adapter Driver Wrapper Coding Example

2-10

#include <sys/mod/moddefs.h>

#define DRVNAME "adsc - Adaptec SCSI HBA driver"

STATIC int
int adscinit{);

void adscstart () ;

static int

STATIC int
adsc_load{c)
int c;

if{ adscinit{» {
return (ENODEV);

mod_drvattach{ &adsc_attach_info);
adscstart () ;
return{O);

STATIC int
adsc_unload ()
{

return (EBUSY) ;

Loadable Modules

Figure 2-3 shows a sample wrapper for a STREAMS module. Notice that the
macro definitions for this non-driver module do not include a keyword for a halt
routine name.

Figure 2-3: STREAMS Module Wrapper Coding Example

#include <sys/mod/moddefs.h>

int isocdevflag = D_OLD;

int
isoc_load(void)
(

/* MOdule specific load processing .•• */
int
isoc_load(void)
(

/* MOdule specific load processing ••. */
=_e=(CE_NOTE, "!MOD: in isoc_load()");
return(O);

int
isoc_unload(void)
(

/* MOdule specific unload processing ... */
=_e=(CE_NOTE, "!MOD: in isoc_unload()");
return(O);

Making Modules Loadable 2-11

Figure 2-4 shows a sample wrapper for a file system module. Notice that this file
system module doesn't need to do any clean-up when it is unloaded, so its
wrapper defines a NULL _unload routine.

Figure 2-4: File System Module Wrapper Coding Example

2-12

#inc1ude <sys/mod/moddefs .h>

STATIC int s5_1oad(void);

MOD_FS_WRAPPER(s5, s5_1oad, NULL, "Loadab1e s5 FS Type");

STATIC int
s5_1oad(void)
{

inoinit();

bzero«caddr_t)&s5fshead, sizeof(s5fshead»;
s5fshead.f_free1ist = &s5ifree1ist;
s5fshead.f_inode_c1eanup = sS_c1eanup;
sSfshead.f_maxpages = 1;
s5fshead.f_isize = sizeof (struct inode);
s5fshead.f_max = ninode;

fs_ipoo1init(&s5fshead);
return Oi

Loadable Modules

Figure 2-5 shows a sample wrapper for a miscellaneous module. Notice that, once
loaded, this module wants to remain loaded, so its _unload routine always
returns EBUSY.

Figure 2-5: Miscellaneous Module Wrapper Coding Example

#include <sys/mod/moddefs .h>

STATIC int

static int

STATIC int
clis_load()
{

cinit() ;
return(O);

STATIC int
clis_unload()
{

/*
* This module can not be unloaded.
*/

return(EBUSY) ;

Packaging a Loadable Module for Installation

Once you have written a wrapper for your loadable driver (or other loadable
module type), you compile your driver in the normal way. Once you compile,
you are ready to package the driver's object file for installation in its loadable
form.

This section-and the sections on installation and configuration that follow­
describe procedures that are specific to loadable modules. For information about
the installation tools and procedures for both loadable modules and static
modules, refer to the chapter "Installation and Tuning".

Making Modules Loadable 2-13

Master File Definitions for Loadable Modules

Loadable drivers can define two optional lines of configuration data in the Master
componen~ of their Driver Software Package (DSP):

$depend

$modtype

specifies the loadable modules on which the driver depends

defines a character string that identifies the driver type in error
messages

If your loadable driver references symbols defined in other loadable modules, you
must supply DLM with the names of these modules so it knows to load them
when it loads your driver. You define the modules to DLM by listing them on the
$depend. line of your driver's Master file. You can specify all of the module
names (separated by white space) on a single $depend line. You can also specify
them individually, on multiple $depend lines.

The $modtype line in the Master file lets you define a character string that helps
identify a driver that is loaded as a miscellaneous module type in DLM error mes­
sages. This string can be a maximum of 40 characters long, including all white
spaces.

For a description of the Master file format, refer to the Master(4) manual page.

System File Definitions for Loadable Modules

To get themselves configured into a running system, allioadable drivers must
identify themselves as loadable drivers in the System component of their DSP.
Two types of System file entries are required for loadable drivers:

$loadable

configure

instructs the idbuild(lM) command to configure the driver into
the system as a loadable driver

instructs idbuild to configure a specific device supported by this
loadable driver into the system

If you want to configure your driver as a loadable driver, you must first define a
$loadable line in the driver's System file that specifies the name of your driver.
This line identifies your driver as a loadable driver type.

Next, you set a flag in the configure field (the second field) of the System file entry
for each major device number supported by your driver. This flag indicates (Yor
N) whether the device is to be configured into the system. Note that the configure
field can be used to configure both loadable devices and static devices.

2-14 Loadable Modules

Note also that, in the future, if you want to statically link your loadable driver into
the kernel, you will need to comment out the driver's $loadable line by inserting
the character # in column one.

For a description of the System file format, refer to the System(4) manual page.

Mtune File Definitions for loadable Modules

Loadable drivers can override the kernel's global auto-unload delay parameter
values by supplying their own values in the Mtune component of their DSPs.

The global auto-unload delay values are defined in /etc/conf/mtune.d/kernel
as

delay min max

This says that, by default, any loadable module becomes a candidate for auto
unloading when the module has not been accessed during the previous delay
seconds. It also says that if your loadable driver wants to override the kernel's
default auto-load delay value, you must specify a DEF _UNLOAD_VALUE that is
greater than or equal to min seconds, and less than or equal to max seconds, in
your driver's Mtune component.

The symbolic name of the driver's Mtune file delay variable must begin with the
driver's PREFIX in full caps.

Checking the Configured Loadable Modules before
Installation

DSP installation scripts often use the idcheck(lM) command to acquire informa­
tion about the system into which a package is going to be installed. Most of the
checks performed by the idcheck command return information about kernel
modules that are installed. If you need information about the modules that are
configured into the kernel when you are installing your loadable driver, you can
use two idcheck options to inquire about the configured modules.

The -y option checks whether a named DSP is configured into the next kernel to
be built by examining the configure field(s) of its System file entries. The -p option
checks whether a named DSP was configured into the last kernel to be built by
examining /stand/unix.

For more information, see the idcheck(lM) manual page.

Making Modules Loadable 2-15

Installing a Loadable Module

Loadable drivers are installed using the idinstall(lM) command with the -a
option (add DSP components), the -u option (update DSP components), or the -M

option (add or update out-of-date DSP components only). You use the idinstall
command to install a loadable driver the same way you would use it to install a
static driver; there are no special options or procedures for loadable modules.

For more information, see the idinstall(lM) manual page.

Removing a Loadable Module

Loadable drivers are removed using the idinstall command with the -d option,
in the same manner as static drivers are removed.

However, once you have removed your loadable driver, you must remember to
issue the idbuild(lM) command with no options. This way, idbuild can per­
form a deferred rebuild that adjusts any tunables affected by your removed
module. The rebuild will occur later, on the next system reboot.

For more information about using idbuild with loadable modules, see the section
"Configuring a Loadable Module" below.

Tuning a Loadable Module

If your loadable driver needs to modify any tunable parameter values, you must
make these changes using the idtune(lM) command.

By default, parameters tuned using idtune do not take effect until the entire ker­
nel is rebuilt and rebooted. When installing a DSP for a loadable driver that
modifies the values of its existing tunable parameters in / etc/mtune. d, you prob­
ably want the driver's new parameter values to take effect immediately. To make
the new values effective at the time you configure the driver into the running sys­
tem (rather than at boot time), you can use the idtune command with the -c
option.

Since the -c option modifies tunable parameters for loadable modules already
configured into the kernel-in addition to modifying parameters for any loadable
modules that will be subsequently configured-this option should be used with
caution. You should take care to avoid introducing any inconsistencies between
the tunables for the running kernel and those for your new loadable driver.

2-16 Loadable Modules

For more information, see the idtune(lM) manual page.

Configuring a Loadable Module

Once your loadable driver is installed, the next step is to configure it into the sys­
tem using the idbuild(lM) command.

There are two ways you can configure your loadable driver using idbuild: a
deferred build and an immediate build. If you don't want to configure your
driver into the system that is currently running, you can invoke idbuild with no
options, and your driver will be configured on the next reboot. If you do want to
configure your loadable driver into the running system, you invoke idbuild with
the -M option. This option configures your driver into the system immediately,
without a reboot.

When no options are given, the idbuild command does not rebuild the kernel. It
simply sets a rebuild flag and exits. The next time the system is rebooted, the
reboot process checks this flag. Finding the flag set, the reboot process invokes
idbuild with the -B option to rebuild the kernel and reconfigure all modules
flagged as loadable in /etc/conf/sdevice.d. The new loadable modules are
saved in / etc/ conf /modnew. d instead of / etc/ conf /mod. d and the new kernel
is placed in /etc/conf/cf .d/unix. If the rebuild is successful, idbuild invokes
the system shutdown and reboot process. During the reboot, the new kernel
replaces the old kernel in /stand/unix, the directory /etc/conf/mod.d is
removed, and /etc/conf/modnew.d is renamed to /etc/conf/mod.d.

With the -M option, idbuild configures your loadable driver into the running sys­
tem immediately, so you don't have to wait for a reboot to be able to load it. Some
of the tasks the -M option performs to configure your loadable driver include plac­
ing the driver's loadable image in the /etc/conf/mod.d directory, and creating
the necessary nodes in the /dev directory. If your DSP contains an Init com­
ponent, idbuild adds and activates your driver's inittab entries. When these
tasks are complete, idbuild registers your driver with the kernel to make it avail­
able to the rest of the system.

For more information, see the idbuild(lM) manual page.

Making Modules Loadable 2-17

Loading and Unloading a Loadable Module

Loading the Module

Once your loadable driver is configured into the kernel, you are ready to load it
using the modadmin(lM) command.

The -1 option instructs modadmin to load a loadable module into the running sys­
tem. For example, the command

modadmin -1 1p

loads a line printer driver named 1p.

If the 1p driver references symbols in other loadable modules (as defined in the
$depend line in its Master file), and some or all of these modules are not already
loaded, modadmin loads them along with the 1p driver. When loading completes,
modadmin prints (on stdout) an integer module-id used to identify driver 1p.

Querying the Module's Status

Once you have loaded your driver, you can view status information about the
driver using the -Q or the -q option. For example, the command

modadmin -Q 1p

requests status for the 1p driver by specifying its module name, and the command

modadmin -q module-id

requests status for the 1p driver by specifying the module-id returned by the -1
option.

Information returned by the -Q and -q options includes the driver's auto-unload
delay value, its reference count (the number of kernel modules currently accessing
the driver), its dependent count (the number of loadable modules upon which the
driver depends), and the pathname to its object file on disk.

Modifying the DLM Search Path

If you have placed your driver's object file somewhere other than in the default
directory /etc/conf/mod.d, you need to give DLM the pathname to this location
using the modadmin command with the -d option before you attempt to load your
driver with the -1 option.

For example, if you had installed the 1p driver on a remote server in a directory
named /nfs/mod.d, you would first use the command

modadmin -d /nfs/mod.d

2-18 Loadable Modules

to add the directory /nfs/mod.d to the search path DLM uses to locate loadable
modules on disk.

Unloading the Module

The -u and -u options instruct modadmin to unload a module from the running
system. For example, the command

modadmin -u 1p

unloads the 1p driver by specifying its module name, and the command

modadmin -u module-id

unloads the 1p driver by specifying the module-id returned by the -1 option.

If 1p is currently in-use (that is, its reference count is not equal to 0), or if another
loaded module references symbols in 1p (that is, its dependent count is not equal
to 0), the request to unload the 1p driver will fail. If this occurs, DLM adds 1p to a
list of candidates for a subsequent kernel auto unload.

For a complete description of the modadmin command line options, refer to the
modadmin(lM) manual page.

Debugging a Loadable Module

DlM Error Messages

DLM error messages are written to the kernel's putbuf message buffer. When a
module fails to load, you can often determine the cause of the error by printing the
messages in this buffer.

For example, if a demand load of a module fails with the error number ERELOC

(indicating symbol referencing errors during relocation), the messages in putbuf
give you the ability to identify the particular symbols that are causing the prob­
lem. This buffer can be examined while in the kernel debugger kdb by dumping
its contents. For example, the command

putbuf 100 dump

dumps the first 256 bytes (100 hex) in the buffer. During normal system operation,
DLM error messages can also be read from the / dev / osm node.

For information about kdb, refer to the kdb(lM) manual page.

Making Modules Loadable 2-19

Dynamic Symbols and kdb

As a consequence of the DLM feature, a dynamic symbol table is now maintained
in kernel address space. The dynamic symbol table contains all global symbols
defined in the static kernel-plus all global symbols defined in all currently loaded
modules. The contents of the dynamic symbol table change as modules are loaded
and unloaded; when a module is loaded, its symbolic information is added to the
table, and when the module is unloaded, its symbolic information is deleted.

Note that the symbols defined in loadable modules are not known to kdb until
they have been successfully relocated and resolved during loading. When debug­
ging routines called during a DLM load operation (such as _load, init or start),
it is useful to have access to the module's symbols as soon as possible.

The best way to do this in kdb is to break upon return from the DLM routine
mod_obj_load () in modld (), and then single step until the symbol availability
flag is set (about 10 instructions). Once available, the loadable module's symbols
can be accessed in the same manner as you would access any other kernel symbol.

For information about the dynamic symbol table, refer to the getksym(2) manual
page.

2-20 Loadable Modules

3 Driver Installation and Tuning

Introduction

Using idtools
idtools Enhancements for This Release
idtools Utilities and Commands

• idbuild
• idcheck
• idinstall
• idmkinit
• idmknod
• idspace
• idtune

The Driver Software Package (DSP)
What Is a DSP?
DSP Component Files

• Required Components
• Optional Package Information Files
• Optional Installation Scripts

Device Driver Packages
Overview of DSP Components

• prototype
• pkginfo
• postinstall
• preremove
• Driver.o
• Master
• System
• Init
• Mtune

Table of Contents

3-1

3-2
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7

3-10
3-10
3-11
3-11
3-12
3-13
3-13
3-15
3-15
3-16
3-17
3-18
3-19
3-19
3-20
3-21
3-22

.N~e ~~

• Rc 3-24
• Sassign 3-25
• Sd 3-25
• Space.c 3-26
• Stubs.c 3-27
• Modstub.o 3-28

Packaging the Driver 3-28

Typical DSP Installation and Removal
Scenarios 3-30
Installing a DSP 3-30
Removing a DSP 3-30

DSP Commands and Procedures 3-31
Checking the System Configuration 3-31
Installing a DSP 3-32
Updating a DSP 3-33
Removing a DSP 3-33
Building a New Kernel 3-34
Rebooting the System with the New Kernel 3-35

• Emergency Recovery (New Kernel Will Not Boot) 3-35
Documenting Your Driver Installation 3-37

Device Driver Tuning 3-38
Modifying a Kernel Parameter 3-38

Device Driver Configuration 3-40
Loadable Module Administration 3-40

ii Table of Contents

Introduction

For device driver writers, installation means different things. If you are installing
a driver for a piece of hardware, for example, you'll have some hardware-related
installation procedures to follow. When you install the driver you've written on
your computer for the first time, you probably will be installing the driver without
the installation scripts recommended for customer use. When you do create the
device driver package for customers, called a Driver Software Package (DSP), ins­
tallation will take on a different meaning.

This chapter discusses how to install device drivers using Installable Driver Tools
(also known as idtools) and DSPs. Tuning and configuring, as it pertains to device
drivers, is also covered, concentrating mainly on those details specific to device
drivers, and on features new for this release of the UNIX system. This chapter
also describes the idtools and tunable parameter commands that are used with
device drivers.

For more information about software packaging, refer to the UNIX Software
Development Tools.

Introduction 3-1

Using idtools

Device drivers (and other types of kernel modules) are packaged, installed, and
configured into the system using a collection of configuration files, commands,
and scripts known as the Installable Driver Tools, or idtools. (They have also been
known as the Installable Driver I Tunable Parameter (ID ITP) scheme and as the
Installable Device Tools.)

It is important to note that the latest release of idtools has automated much of
what used to be manual editing of driver configuration files. There are several
benefits to automating this process, among them being decreased chances of total
system failure because a single file has been lost or corrupted, fewer problems
when installing a new driver, and a much simpler process for removing installed
drivers.

Although you might create the configuration file without using idtools, once the
file becomes part of a device driver, everything you do with the file from then
on-from installing it, to rebuilding the UNIX system kernel, to removing the
driver from the system-should all be done using idtools.

Detailed information on each of the idtools commands can be found in the Section
1M manual pages in the Command Reference.

idtools Enhancements for This Release

For UNIX System V Release 4.2, idtools has many enhancements that you need to
know about, particularly if you have used idtools in previous releases, or if you
are going to be installing or reworking DSPs created for previous releases.

Here's an overview of how the new idtools are going to affect you; we'll cover the
details later.

r-:::l Even if you are familiar with idtools, you should read the list below. idtools
I N7EJ has changed In design and lunc!lonahty In this release 01 the UNIX system .

3-2

• Once idtools installs your DSP components in /etc/conf, you should not
edit the configuration files in this directory directly, the way you may have
done so in the past. If you need to access files in /etc/conf, you should use
the commands idinstall(lM), idcheck(lM), and idtune(lM).

Driver Installation and Tuning

• Each driver now has its own individual configuration files. For example,
instead of using one large mdevice file containing definitions for every
driver, there's now a directory, /etc/conf/mdevice.d, that contains a Mas­
ter file for each driver, with file names that match the names of the indivi­
dual drivers.

• The Master(4), System(4), and other file formats have changed. You should
read the latest versions of the Section 4 manual pages on device driver
configuration file formats.

• Mtune used to be a single file containing tunable parameters. Now, it has
become the mtune. d directory, although the files in the directory have the
same format that mtune used to.

• If you attempt to install a DSP containing a Master or System, component
that is in the old-style format, idtools will automatically convert the file to
the new-style format (except for the exec type) during the installation pro­
cess. However, the conversion code will be removed eventually, so if you're
creating a new DSP, you should use the new-style file formats.

• The mfsys and sfsys files (now obsolete) will be converted into Master and
System files. However, this conversion code eventually will be removed, as
well, so you should use the new format.

• The UNIX system kernel is now located in / stand/unix, instead of /unix.
This change was made to get the kernel out of the root directory, and also to
speed up the process of booting the system, because / stand is a bfs file sys­
tem. This change was made with the UNIX System V Release 4.0.

• idtools supports installation and configuration of loadable modules without
a system shutdown and reboot (see the chapter "Loadable Modules").

idtools Utilities and Commands

In the DSP, the postinstall script executes idcheck, idinstall, and idbuild
to install the package and rebuild the UNIX system kernel. Manual pages for
these commands are provided in the Command Reference. Details about the DSP
component files (such as the post install script, Driver .0, Master, and so on)
are covered later in this chapter.

Using idtools 3-3

idbuild

idbuild builds a UNIX system base kernel and/ or configures loadable kernel
modules using the current system configuration in $ROOT /$MACH/etc/conf.

Building a UNIX system kernel consists of three steps.

1. Configuration tables and symbols, and module lists are generated from the
configuration data files.

2. Configuration-dependent files are compiled, and then are linked together
with all of the configured kernel and device driver object modules.

3. If the loadable kernel module feature or a kernel debugger is enabled, ker­
nel symbol table information is attached to the kernel.

The kernel is, by default, placed in $ROOT /$MACH/etc/conf/cf .d/unix.

If the kernel build is successful and $ROOT is null or " / ," idbuild sets a flag to
instruct the system shutdown/reboot sequence to replace the standard kernel in
/stand/unix with the new kernel. Then, another flag will be set to cause the
environment (device special files, /etc/inittab and so on) to be reconfigured
accordingly.

If one or more loadable kernel modules are specified with the -M option, idbuild
will configure only the specified loadable kernel modules and put them into the
$ROOT /$MACH/etc/conf/mod.d directory. Otherwise a UNIX system base
kernel is rebuilt with all the loadable modules reconfigured into the
$ROOT /$MACH/etc/conf/roodnew.d directory, which will be changed to
/etc/conf/mod.d at the next system reboot if $ROOT is null or II /" [see
modadmin(lM)].

If a loadable module has already been loaded, but to another major number range,
you can either unload the module and then use idbuild with the -M option, or
use idbuild without the -M option and reboot the system. (This assumes that
$ROOT is null or " / .") If you attempt to use the -M option for a module already
loaded at another major number range, idbuild will fail with error ENXIO.

When loadable kernel modules are configured with the -M option, idbuild also
creates the necessary nodes in the /dev directory, adding and activating
/etc/inittab entries if any Init file is associated with the modules, and register­
ing the modules to the running kernel. This makes them available for dynamic
loading without requiring a system reboot.

Base kernel rebuilds are usually needed after a statically linked kernel module is
installed, when any static module is removed, or when system tunable parameters
are modified. If you execute idbuild without any options and if the environment
variable $ROOT is null or " / ," a flag is set and the kernel rebuild is deferred to
next system reboot.

3-4 Driver Installation and Tuning

idcheck

The idcheck command is used to obtain selected information about the system
configuration. The idcheck command is designed to help driver writers deter­
mine whether a particular driver package is already installed or to test for inter­
rupt vectors, device addresses, or DMA controllers already in use. The idcheck
command is used in postinstall scripts that test for usable IVN, lOA, and CMA
values and then instruct the user to set particular switches or straps on the con­
troller board.

idinstall

The idinstall command is used by the DSP's postinstall and preremove
scripts, and its function is to install, remove, or update a DSP.

idinstall is called by a DSP installation script or removal script to add (-a),
delete (-d), update (-u), or get (-g or -G) device driver /kernel module
configuration data. It can also be run from a kernel source makefile to make (-M)
driver/module configuration data.

idinstall expects to find driver/module component files in the current direc­
tory. When components are installed or updated with -a or -u option, they are
copied into subdirectories of the /etc/conf directory and then deleted from the
current directory, unless the -k flag is used to keep them.

In the simplest case of installing a new DSP, the command syntax used by the
DSP's Install script should be /etc/conf/bin/idinstall-a module-name. In this
case the command requires and installs the DSP Driver .0, Master, and System
components, and optionally installs the Space. c, Stubs. c, Node, Init, Rc, Sd,
Modstub.o, Sassign, and Mtune components if those files are present in the
current directory.

The Driver. 0, Modstub. 0, Space. c, and Stubs. c components are moved to a
directory named /etc/conf/pack.d/module-name. The remaining components
are stored in directories under /etc/conf, which are organized by component
type, in files named module-name. For example, the Node file would be moved to
/etc/conf/node.d/module-name, the Master file moved to
/etc/conf/mdevice.d/module-name, and the System file moved to
/ etc / conf / sdevice . d/ module-name.

idinstall -a requires that the module specified is not currently installed.

idinstall -u module-name performs an Update DSP (that is, one that replaces an
existing device driver component) to be installed. It overlays the files of the old
DSP with the files of the new DSP. idinstall -u requires that the module
specified is currently installed.

Using idtools 3-5

idinstall -M module-name works whether or not the module is currently
installed. It copies into the configuration directories any component files which
are not yet installed or are newer than the installed versions. In any case, the files
in the current directory are not removed.

When the -a or -u options are used, unless the -e option is used as well, idin­
stall attempts to verify that enough free disk space is available to start the
reconfiguration process. This is done by calling the idspace command. idin­
stall will fail if there is not enough space and will exit with a non-zero return
code.

idmkinit

idmkini t reconstructs / etc/ ini ttab from the Ini t files in / etc/ conf / ini t . d.
The new inittab is normally placed in the /etc/conf/cf.d directory, although
this can be changed through the -0 option.

In the sysinit state during the next system reboot after a kernel reconfiguration,
the idmkinit command is called automatically (by idmkenv) to establish the
correct /etc/inittab for the running (newly-built) kernel. idmkinit is also
called by idbuild when loadable kernel module configuration is requested.
idmkinit can be executed as a user level command to test a modification of init­
tab before a DSP is actually built. It is also useful in installation scripts that do not
reconfigure the kernel, but which need to create inittab entries. In this case, the
inittab generated by idmkinit must be copied to /etc/inittab, and an init q

command must be run for the new entry to take effect.

idmknod

idmknod reconstructs nodes (block and character special device files) in /devand
its subdirectories, based on the Node files for currently configured modules (those
with at least one Yin their System files). Any nodes for devices with an 'r' flag set
in the characteristics fields of their Master file are left unchanged. All other nodes
will be removed or created as needed to exactly match the configured Node files.

Any needed subdirectories are created automatically. Subdirectories which
become empty as a result of node removal are removed as well.

All other files in the /dev directory tree are left unchanged, including symbolic
links.

On the next system reboot after a kernel reconfiguration, in sysinit state, the
idmknod command is run automatically (by idmkenv) to establish the correct
representation of device nodes in the /dev directory tree for the running kernel.
idmknod (with the -M option) is also called by idbuild when loadable kernel
module configuration is requested. idmknod can be executed as a user level com­
mand to test modification of the /dev directory before a Driver Software Package

3-6 Driver Installation and Tuning

(DSP) is actually built. It is also useful in installation scripts that do not
reconfigure the kernel, but which need to create Idev entries.

idspace

idspace checks whether sufficient free space exists to perform a kernel
reconfiguration (see idbuild). By default, idspace checks the number of avail­
able disk blocks and inodes in three file systems: II I" and, if they exist, lusr and
Itmp.

The default tests performed by idspace are

• Verify that the root file system (" 1") has 400 blocks more than the size of the
current I stand/unix. This verifies that a device driver being added to the
current Istand/unix can be built and placed in the root file system.
idspace also checks to ensure that 100 inodes exist in the root directory.

• Determine whether a lusr file system exists. If it does exist, idspace
checks whether 400 free blocks and 100 inodes are available in the lusr file
system. If the file system does not exist, idspace does not report an error,
however, because files created in lusr by the reconfiguration process will
be created in the parent root file system, and space requirements are
covered by the idspace test of the root file system.

• Determine whether a Itmp file system exists. If it does exist, idspace
checks whether 400 free blocks and 100 inodes are available in the Itmp file
system. As with the test for the lusr file system, if the Itmp file system
does not exist, idspace does not report an error, because files created in
Itmp by the reconfiguration process will be created in the root file system,
and space requirements are covered by the idspace test of the root file sys­
tem.

Note that this function checks whether there is enough space to perform a
reconfiguration, not whether there are enough free blocks and inodes to copy the
DSP files from the installation media to the hard disk. To do this in your postin­
stall script, you should use the df(lM) command.

idtune

idtune sets or gets the value of an existing tunable parameter. idtune is called by
a DSP installation or removal script; it can also be invoked directly as a user-level
command. New tunable parameters must be installed using idinstall(lM) and
a DSP Mtune file before they can be accessed using idtune.

Using idtools 3-7

Note that existing tunable parameter values must be modified using the idtune
command.

The first form of the idtune command, with no options or with -f or -m, is used
to change the value of a parameter. The tunable parameter to be changed is indi­
cated by parm, and the desired value for the tunable parameter is value.

By default, if the parameter has already been tuned previously, you are asked to
confirm the change with the message

TUnable Parameter parm is currently set to old value in
leto/conf/cf.d/stune

Is it OK to change it to value? (yIn)

If you answer "y," the change is made. Otherwise, the tunable parameter will not
be changed, and the following message is displayed

parm left at old_value.

However, if you use the -f (force) option, the change is always made and no mes­
sages are reported.

If you use the -m (minimum) option, and the current value is greater than the
desired value, no change is made and no messages are reported.

If you use the -0 (current) option of the idtune command, the change applies to
both stune and stune. current; otherwise, only the tunable parameter in stune
is affected. stune. current contains the values currently being used by the run­
ning kernel; stune contains the values which will be used the next time the system
is rebooted and the kernel rebuilt. Since any change made to the atune. current
file will affect all the loadable kernel modules configured thereafter, it is very easy
to introduce inconsistencies between the currently running kernel and the new
loadable kernel modules. Therefore, you should be extremely careful when using
the -c option.

If you are modifying system tunable parameters as part of a device driver or
application add-on package, you may want to change parameter values without
prompting the user for confirmation. Your DSP postinatall script could over­
ride the existing value using the -f or -m options. However, you must be careful
not to invalidate a tunable parameter modified earlier by the user or another add­
on package.

Any attempt to set a parameter to a value outside the valid minimum/maximum
(as given in the Mtune file) range will be reported as an error, even when using the
-f or -m options.

3·8 Driver Installation and Tuning

The UNIX system kernel must be rebuilt (using idbuild) and the system rebooted
for any changes to tunable parameter values to take effect.

Using idtools 3-9

The Driver Software Package (DSP)

A DSP, from the users' perspective, is a software package they install on their sys­
tem, usually so they can operate a piece of hardware, such as a network interface
card or a disk drive, for example.

Users use the pkgadd(l) and pkgrm(l) command to install or remove the device
drivers in DSPs. The pkgadd command installs a DSP from tape or floppy disk
onto the system and initiates automatic procedures to reconfigure the kernel and
to configure any loadable modules. The pkgrm command allows the user to select
a package to delete from the system, removing the DSP and reconfiguring the ker­
nel without the removed driver(s) or load able module(s).

The pkginfo(l) command displays all the software packages the user has
installed. DSPs are treated the same way as other SVR4.2 software packages.
Device drivers pre-installed on the system by the Foundation Set are not
displayed by this command.

What Is a DSP?

A Driver Software Package (DSP) consists of a driver object module, installation
and removal scripts, and device-specific system configuration, initialization, and
shutdown files. (Some of these files are optional and are not included in every
DSP.)

The DSP is usually on a tape, or one or more floppy disks. To install the DSP, the
user inserts the DSP media in the drive and runs the pkgadd command. This exe­
cutes a script file in the DSP, which performs all the operations needed to copy all
the object and configuration files from the installation media to the hard disk of
the system. Then, the UNIX system kernel is reconfigured and built, and the user
reboots the system to complete the installation.

What this means to you, as the device driver programmer, is that writing the
driver is only part of the job. You also need to create the configuration files and
write the installation and removal scripts. The DSP will also need to be tested, to
make sure it can be installed and removed, as well as to ensure that it operates
correctly when installed.

Once all the components have been created, copy them to the /tmp directory and
use pkg:mk(l) to create the DSP.

3-10 Driver Installation and Tuning

DSP Component Files

A software package is made up of a group of components that together create the
software. These components naturally include the executables that comprise the
software, but they also include at least two information files and can optionally
include other information files and scripts.

As shown in Figure 3-1, a package's contents fall into three categories:

• required components (the pkginfo file, the prototype file, package objects)

• optional package information files

• optional packaging scripts

Figure 3-1: The Contents of a Package

Optional Package
Information Files

pkginfo prototype

Objects
can be

grouped
into

classes

Required Components

file

P ge acka
Obje cts

file

Optional Packaging
Scripts

At the very least, a package must contain the following components:

• Package Objects

The Driver Software Package (DSP) 3-11

These are the objects that make up the software. They can be files (execut­
able or data), directories, or named pipes. Objects can be manipulated in
groups during installation by placing them into classes. For more informa­
tion about classes, refer to the UNIX Software Development Tools.

• The pkginfo File

The pkginfo file is a required package information file defining parameter
values that describe a package. For example, this file defines values for the
package abbreviation, the full package name, and the package architecture.

• TheprototypeFile

The prototype file is a required package information file that lists the con­
tents of the package. There is one entry for each deliverable object and this
entry consists of several fields of information describing the object. All
package components, including the pkginfo file, must be listed in the pro­
totype file.

The required package information files are described further in this chapter and
on their respective manual pages.

Optional Package Information Files

There are four optional package information files that you can add to your pack­
age:

• The compver File

Defines previous versions of the package that are compatible with this ver­
sion.

• The depend File

Defines any software dependencies associated with this package.

• The space File

Defines disk space requirements for the target environment beyond that
used by objects defined in the prototype file (for example, files that will be
dynamically created at installation time).

• The copyright File

3-12

Defines the text for a copyright message that will be printed on the terminal
at the time of package installation or removal.

Driver Installation and Tuning

Every package information file used must have an entry in the prototype file. All
of these files are described further in their respective manual pages.

Optional Installation Scripts

Your package can use three types of installation scripts, and although no scripts
are required, they are recommended. Many of the tasks which had to be done
manually in a installation script can be accomplished automatically by pkgadd.
However, you may provide scripts with a DSP to perform customized actions. An
installation script must be executable by sh (for example, a shell script or execut­
able program). The three script types are the request script (solicits installer
input), class action script (defines a set of actions to perform on a group of objects),
and the procedure script (defines actions that will occur at particular points dur­
ing installation).

Device Driver Packages

A DSP for a device driver will typically consist of the following components.
Some are reqUired, others are optional; this distinction is noted in Table 3-1.

• The driver module object file, Driver. 0

• The configuration files for Master(4), System(4), Mtune(4), Node(4), Rc(4),
Sassign(4), Sd(4), Space.c(4), and Stubs.c(4)

• Modstub.o for stub-loaded loadable modules.

• A post install script, which is used by the administrative command
pkgadd(1M) to install the DSP

• A preremove script, which is used by the administrative command
pkgrm(1M) to remove the DSP from the system

• A prototype file, which contains information about the contents of the DSP
and which is used by pkgmk to create pkgmap, which contains details about
the files that comprise the DSP

• A pkginfo file, describing characteristics of the DSP

The component files comprising the DSP are summarized in Table 3-1. In this
table, the term module-name refers to a file or directory that takes its name from the
name of the driver being installed. For the format of specific configuration files,
you should refer to the appropriate Section 4 manual page.

The Driver Software Package (DSP) 3-13

Table 3-1: Components of Driver Software Package (DSP)

DSP
Module Purpose

prototype Required OAM package proto­
type module

pkginfo Required OAM package infor­
mation module

post install Optional script to install DSP
package

preremove Optional script to remove DSP
package

Driver. 0 Required driver object file to be
configured into kernel

Master Required generic driver
configuration data

Init Optional inittab entry data
Mtune Optional tunable parameter

definitions
Node Optional Idev device node data
Rc Optional system startup script
Sassign Optional system logical device

name assignments
Sd Optional system shutdown

script
Space. c Optional driver data structure

allocations and initializations
Stubs. c Optional stubs for symbols

defined in a driver that will not
be installed

Modstub.o Optional stub object file for
loadable module

3-14

File Affected in /etc/conf
none

none

none

none

pack. dlmodule-nameIDriver. 0

mdevice. dlmodule-name

init. dlmodule-name
mtune. dlmodule-name

node. dlmodule-name

rc. dlmodule-name
sassign. dlmodule-name

sd. dlmodule-name

pack. dlmodule-namel space. c

pack.dlmodule-namelstubs.c

pack. dlmodule-name lModstub. 0

Driver Installation and Tuning

Overview of DSP Components

Following are each of the components that make up the typical DSP. Where possi­
ble, an example has been included to show you what the component might look
like. Some are generic, while others are specific. The files prototype, postin­
stall, pkginfo, and preremove are only some of the packaging files that can be
used in a software package. Note that very few DSPs include all of the possible
components. It is also possible to have additional components, such as
configuration or other script files.

For the more information on the files and file format described here, refer to the
Section 4 manual pages. For more details about DSP Components, refer to the
UNIX Software Development Tools.

prototype

The prototype file describes the DSP, listing where the files are to be installed
and their characteristics. DSPs differ from a typical package, in that most of their
component files are installed in /tmp for later processing by the idinstall com­
mand, which is called by the post install script.

Following is a generic example of a prototype file.

The Driver Software Package (DSP) 3-15

i pkginfo
i postinstall
i pre:remove

ldefault 644 root eys

d none /tDIp ?
d none /tDIp/xyzzy

? ?

These files are installed b.Y the idinstall command in the postinstall script

v none /tDIp/xyzzy/Driver.o=/etc/canf/pack.d/xyzzy/Driver.o
v none /tDIp/xyzzy/Space.c=/etc/canf/pack.d/xyzzy/space.c
v none /tmp/xyzzy/Master=/etc/canf/mdevice.d/xyzzy
v none /tDIp/xyzzy/9,ystem=/etc/conf/sdevice.d/xyzzy

These files are installed b.Y the post install shell script

v none /tDIp/loadmods=/newdrivers/xyzzy/loadmods
v none /tmp/xyzzy/disk.cfg=/etc/conf/pack.d/xyzzy/disk.cfg

This file is installed b.Y the pkgadd command

f none /usr/include/sys/xyzzy.h

For more information, refer to the prototype(4) manual page.

pkginfo

The pkginfo file describes various attributes for the DSP. For example, it
identifies the name of the package as the value of the PKG variable.

Each entry in the pkginfo file is a line that establishes the value of a parameter in
the following form.

PARAM="value"

There is no required order in which the parameters must be specified within the
file.

Following is a generic example of a pkginfo file.

3-16 Driver Installation and Tuning

CATEGORY=II system'l
CLASSES=lnone"

NAME="XYZZY DRIVER PACKAGE I'
PKG=I'xyzzy"

VEIIDOR="XYZZY Manufacturing C~any"
VERSION="l"

For more information, refer to the pkginfo(4) manual page.

postinstall

post install is a shell script that performs the steps necessary to install the DSP
on the system. post install does the following:

1. Changes directory to /tmp, where the DSP files were installed.

2. Executes idinstall -a and passes it the internal DSP name. This creates
the needed directories and moves the DSP contents to the appropriate loca­
tions. If the idinstall -a fails, the package was already installed.

3. If the DSP has already been installed, idinstall -u command is used to
update the package, using the files from the DSP. Another way to perform
an update is to use the -M option, which updates only those installed files
which are older than those in the DSP.

4. Runs the idbuild command without any options to create a new UNIX sys­
tem kernel when the system is rebooted.

5. removef any /tmp files installed.

When writing a post install script, you should make liberal use of echo and
message commands to tell the user what is going on. You should also make sure
to exit with the appropriate return value based on a successful or unsuccessful ins­
tallation.

Following is an example post install script.

The Driver Software Package (DSP) 3-17

${CONFBIN}/idinstall -a ${1} > ${ERR} 2>&1
RET=$?
if [${RET} != 0 1
then

${CONFBIN}/idinstall -u ${1} > ${ERR} 2>&1
RET=$?

fi

1f [${RET} != 0 1
then

message "The installation cannot be c~leted due to an error in \
the driver installation during the installation of the ${1} module \
of the $ {NAME} • The file ${ERR} contains the errors."

exit ${FAILURE}
fi
cp disk.cfg /etc/conf/pack.d/${l}

FAILURE=l # fatal error
DRIVER=xyzzy
OONFDIR=/etc/conf
CONFBIN=${OONFDIR}/bin
ERR=/tlt\P/err.out

for MODULE in ${DRIVER}
do

cd /tmp/${MODULE}
do_install ${MODULE}

done

cat /tlt\P/loadmods » /etc/loadmods

$ {CONFBIN} /idbuild >/dev/null 2>&1

installf -f $PRGINST

removef ${PKGINST} /tmp/loadmods /tmp/${DRIVER} >/dev/null 2>&1
removef -f ${PKGINST} >/dev/null 2>&1

preremove

The preremove shell script performs the steps to remove a DSP from a system. It
does the following:

1. Uses idcheck to make sure the DSP to be removed exists on the system. If
not, the script exits and displays an error message.

3-18 Driver Installation and Tuning

2. Runs idinstall -d and passes it the internal DSP name. This removes the
DSP modules.

3. Invokes idbuild without any options to cause the kernel to be rebuilt when
the system is rebooted.

Following is an example preremove script.

#ident "@(#)install 43.7"

CONFDIR=/etc/conf
CONFBIN=${CONFDIR}/bin
DRIVER=xyzzy

for MODULE in ${DRIVER}
do

${CONFBIN}/idcheck -p ${MODULE}
RES="$?"
if

["${RES}" -ne "100" -a "${RES}" -ne "0" 1
then

${CONFBIN}/idinstall -d ${MODULE} 2» /tmp/${MODULE}.err
fi

done

${CONFBIN}/idbuild >/dev/null 2>&1

exit 0

Driver.o

A required component, the Driver. 0 component is the driver object module that
is to be configured into the kernel. This object file should be compiled using the C
Programming Language Utilities (CPLU), part of the Software Development Set.

Master

A required component, the Master file describes a kernel module for
configuration into the system. The System file contains the configuration informa­
tion for the individual kernel modules that are actually to be included in the next
UNIX system kernel built [see System(4)].

When the Master component of a module's DSP is installed, idinstall stores the
module's Master file information in /etc/conf/mdevice.d/module-name, where
the file module-name is the name of the driver module being installed.

The Driver Software Package (DSP) 3-19

DSP package scripts should never access Master files directly; they should use the
idinstall and idcheck commands instead.

Master files contain lines of the form:

$version version-number
$entry entry-point-list
$depend module-name-list
$modtype loadable-module-type-name
module-name prefix characteristics order bmaj cmaj

Blank lines and lines beginning with '#' or '*' are considered comments and are
ignored.

Following is an example Master file for the stOl tape driver.

#ident "@(lIl/etc/conf/mdevice.d/stOl.sl 1.2 SVR4.2 02/04/92 34022 USL"
lIident "$Header: $"
$version 1
$entry init open close reed write ioctl
stOl stOl kocr 0 0 22

For complete information about the Master file format, refer to the Master(4)
manual page.

System
A required component, the System file contains information needed to incor­
porate a particular kernel module into the next UNIX system configuration. Gen­
eral configuration information about the module type is described in the Master
file. When the System component of a DSP is installed, idinstall stores the
module's System file information in /etc/conf/sdevice.d/module-name, where
the file module-name is the name of the module being installed.

DSP package scripts should never access Master files directly; they should use the
idinstall and idcheck commands instead.

System files contain lines of the form:

$version version-number
$loadable module-name
module-name configure unit ipl itype ivec sioa eioa scma ecma dmachan

3·20 Driver Installation and Tuning

Blank lines and lines beginning with '#' or '*' are considered comments and are
ignored.

Following is an example System file for the stOl tape driver.

*ident "@(#)/etc/conf/sdevice.d/st01.s1 1.4 SVR4.2 04/09/92 5743 USL"

*ident "$Header: $"
$version 1
$l~dable st01
st01 Y a a a a a a a a -1

For complete information about the System file format, refer to the System(4)
manual page.

Init

An optional component, the Init file contains information used by the idmkinit
command to construct a module's /etc/inittab entry. When the Init com­
ponent of a module's DSP is installed, idinstall stores the module's Init file
information in /etc/conf/init .d/module-name, where the file module-name is the
name of the module being installed.

DSP package scripts should never access Init files directly; they should use the
idinstall command instead. Init files contain line consisting of one of the fol­
lowing three forms:

action: process
rstate:action:process
id:rstate:action:process

All fields are positional and must be separated by colons. Blank lines and line
beginning with '#' or '*' are considered comments and are ignored.

Lines of the first form should be used for most entries. When presented with a
line of this form, idmkinit:

1. Copies the action and process field to the inittab entry.

2. Generates a valid id field value (called a 'tag') and prepends it to the entry.

3. Generates an rstate field with a value of 2, and adds it to the entry, follow-
ing the id field.

Lines of the second form should be used when an rstate value other than 2 must
be specified. When presented with a line of this form, idmkinit generates only
the id field value and prepends it to the entry.

The Driver Software Package (DSP) 3-21

Lines of the third form should be used with caution. When presented with a line
of this form, idmkinit copies the entry to the inittab file ·verbatim. It is recom­
mended that DSPs avoid specifying lines of this form because, if more than one
DSP or add-on application specifies the same id field, idmkinit will create multi­
ple inittab entries containing this id value. When the /etc/init program
attempts to process the inittab entries with the same id, it will fail with an error
condition.

Note that idmkinit determines which of the three forms is being used by search­
ing each line for a valid action keyword. Valid action values are:

boot
bootwait
initdefault
off
once
ondemand
powerfail
powerwait
respawn
systinit
wait

For complete information about the Init file format, refer to the Init(4) manual
page.

Mtune

An optional component, the Mtune file contains definitions of tunable parameters,
including default values, for a kernel module type.

When the Mtune component of a DSP is installed, idinstall stores the module's
Mtune file information in /etc/conf/mtune.d/module-name, where the file
module-name is the name of the module being installed.

DSP package scripts should never access Mtune files directly; they should use the
idinstall and idtune commands instead.

Mtune files contain lines of the form:

parameter-name default-value minimum-value maximum-value

All fields are positional and must be separated by white space. Blank lines and
lines beginning with '#' or '*' are considered comments and are ignored.

3-22 Driver Installation and Tuning

Following is an example Mtune file for kmacct, KMA (Kernel Memory Allocation)
Accounting.

#ident "@(#)/etc/conf/mtune.d/kmacct.sl 1.1 SVR4.2 10/05/91 1640 USL"

#ident "$Header: $"

* KMACCT Tunables -------------------------------

* KMARRAY is the number of entries in the symbol table

KMARRAY 150 50 500

* SDEPTH is the depth of stack to trace hack (no larger than MAXDEPTH

* from sys/kmacct.h)

SDEPTH 5 3 10

* NKMABUF is the number of buffer headers to allocate (one for each

* buffer that has been allocated and not yet returned).

NKMABUF 1000 100 10000

For complete information about the Mtune file format, refer to the Mtune(4)
manual page.

Node

An optional component, the Node file contains definitions used by the
idmknod(lM) command to create the device nodes (block and character special
files) associated with a device driver module. When the Node component of a
module's DSP is installed, idinstall stores the driver's Node file information in
/etc/conf/node.d/module-name, where module-name is the name of the driver
being installed.

DSP package scripts should never access Node files directly; they should use the
idinstall command instead.

Each device node for the driver is specified on a separate line of the form:

module-name node-name type minor user group permissions

All fields are positional and must be separated by white space. The first four
fields are required; the last three fields are optional. Blank lines and lines begin­
ning with '#' or '*' are considered comments and are ignored.

The Driver Software Package (DSP) 3·23

Following is an example Node file for log, the UNIX system event logger.

Rc

#ident "@(#)/etc/conf/node.d/log.sl 1.1 SVR4.2 10/05/91 58071 USL"
#ident "$Header: $"

log
log

log c
conslog c

5
o

o
o

o
o

444
222

An optional component, the Rc file is an optional file that executes when the sys­
tem is booted to initialize an installed kernel module. Normally, this is a shell
script [see sh(l)].

When the Rc component of a module's DSP is installed, idinstall stores the
module's Rc file in letc/conf/rc.d/module-name, where module-name is the name
of the module being installed.

DSP package scripts should never access Rc files directly; they should use the
idinstall command instead.

The contents of the I etcl conf Irc. d directory are linked to I etcl idrc. d when­
ever a new configuration of the kernel is first booted. On this initial reboot, and
on all subsequent reboots, the module's Rc file is invoked upon entering init
level 2 [see init(lM)].

Following is an example Rc file for pts:

3-24

if [-c /dev/ptsOOO 1
then
exit
fi
cd /dev/pts
for i in *
do
NUM='echo $i I awk '{printf("%.3d", $1)}"
In $i /dev/pts${NUM} » /dev/null 2>&1
done

Driver Installation and Tuning

Sassign

An optional component, the Sassign file give system administrators the ability to
assign specific actual devices to logical device names used by the kernel. One
example is rootdev, which is the device that contains the root file system. At
present, Sassign supports only block devices.

If the system administrator wants to assign a different actual device to perform a
function, the administrator remaps the logical device name for that function to
specify configured device in the Sassign file. Note that the kernel must be rebuilt
and rebooted for the new assignment to take effect.

Each logical device name in the Sassign file is specified (in /etc/conf/sassign)
on a separate line of the form:

device-variable-prefix device-module-name minor node-name

All fields are positional and must be separated by white space. Blank lines and
lines beginning with '#' or '*' are considered comments and are ignored. The
node-name field is applicable to swap devices only.

Following is an example Sassign file:

#ident "@(#)/etc/conf/sassign.d/kernel.sl 1.1 BVR4.2 10/05/91 17775 USL"
#ident "$Hea.der: $"

* Device variable assignments for the base kernel.
swap adO 1 2 /dsv/swap
cl1.uIi' adO 1 2
root adO 1 1

For complete information about the Sassign file format, refer to the Sassign(4)
manual page.

Sd

An optional component, Sd is a file that executes when the system is shut down to
perform any cleanup required for an installed kernel module. Normally, this is a
shell script [see sh(l)].

When the Sd component of a module's DSP is installed, idinstall stores the
module's Sd file in /etc/conf/sd.d/module-name, where module-name is the name
of the module being installed.

The Driver Software Package (DSP) 3-25

DSP package scripts should never access Sd files directly; they should use the
idinstall command instead.

The contents of the /etc/conf/sd.d directory are linked to etc/idsd.d when­
ever a new configuration of the kernel is first booted. On this initial reboot, and
on all subsequent reboots, the module's Sd file is invoked upon entering init
level 0, 5, or 6 [see init(lM)J.

Space.c

An optional component, the Space. c file contains storage allocations and initiali­
zations of data structures associated with a kernel module, when the size or initial
value of the data structures depend on configurable parameters, such as the
number of subdevices configured for a particular device or tunable parameter.
For example, the Space. c file gives a driver the ability to allocate storage only for
the sub devices being configured, by referencing symbolic constants defined in the
config.h file. The config.h file is a temporary file created in /etc/conf/cf.d
during the system reconfiguration process.

When the Space.c component of a module's DSP is installed, idinstall stores
the module's Space.c file in /etc/conf/pack.d/module-name/space.c, where
module-name is the name of the module being installed.

DSP package scripts should never access Space. c files directly; they should use
the idinstall command instead.

Following is an example Space.c file for the stOl tape driver.

3-26 Driver Installation and Tuning

#ident "@(#)/etc/conf/pack.d/stOl/space.c.s1 1.3 BVR4.2 06/18/92 59307 USL"
#ident "$Header: $"

#inc1ude <sys/types.h>
#inc1ude <sys/scsi.h>
#inc1ude <sys/conf.h>
#inc1ude <sys/sdi_edt.h>
#inc1ude <sys/sdi.h>
#inc1ude "config .h"

struct deY_spec *stOl_dev_spec[] = {

a
};

struct dev_cfg ST01_dev_cfg[] = {

{ SDI_CLAIMISDIJIDD, Oxffff, Oxff, Oxff, ID_TAPE, 0, '''' },
};

int /* Character major number

int StOl~obs = 20; /* Allocation per LV device */

int /* Flag for reserving tape on open */

*/

For complete information about the Space.c file format, refer to the Space.c(4)
manual page.

Stubs.c

An optional component, a Stubs. c file is a C language source file that can be
installed and compiled into the system as a "placeholder" for a kernel module
that will not be installed in the system at this time. Its purpose is to enable the
kernel to resolve references to the absent module's symbols.

A module's Stubs. c file contains function name and variable definition stubs for
symbols defined in the module that can be referenced by other kernel modules
being configured into the system. At compile time, the definitions in the Stubs. c
file give the kernel the ability to resolve references made to the absent module's
symbols.

When the Stubs. c component of a module's DSP is installed, idinstall stores
the module's Stubs.c file information in /etc/conf/pack.d/module-
name / stubs. c, where module-name is the hame of the module being installed.

The Driver Software Package (DSP) 3-27

The Stubs. c file needs to be handled differently in preremove scripts if it should
be kept even after the DSP is removed. This is done by using idinstall -g.

DSP package scripts should never access Stubs. c files directly; they should use
the idinstall command instead.

Following is an example Stubs. c file for log, the UNIX system event logger.

#ident n@(#)/etc/conf/pack.d/1og/stubs.c.s1 1.2 SVR4.2 01/31/92 21292 USLn

int
strlogO
{

return(O);

}

int
cons1og_set ()
{

return (0);

}

For complete information about the Stubs. c file format, refer to the Stubs. c(4)
manual page.

Modstub.o

An optional component, the Modstub.o file is an object module for stub-loaded
loadable modules. This object file, like the Driver. 0 component, should be com­
piled using the C Programming Language Utilities (CPLU), part of the Software
Development Set.

Packaging the Driver

For complete information on the UNIX system packaging tools, refer to the UNIX
Software Development Tools and the applicable Section 4 manual pages for the DSP
component files. However, following is a brief summary of what is required to
create a DSP, presented here to provide a better context for understanding.

To help create the prototype file, the pkgproto command can take command line
arguments to scan a development directory structure and generate the prototype
file. The prototype file generated by pkgproto, however, lists the components in
the directory structure used on the development machine; therefore, it will be
installed into the same directories on the user's system.

3-28 Driver Installation and Tuning

To package a driver, put all of the component files into the directories specified in
the prototype file and use the pkgmk command. pkgmk uses the prototype and
pkginfo files to create a file called pkgmap(4) and creates the DSP.

The pkgtrans(l) command copies a DSP to the installation media, either tape or
floppy disks.

Each DSP must have two "names." One is the "external name" that the user sees
when the package is installed. The second is an "internal" name that the kernel
uses to identify the device.

The DSP's prototype file should install the component files as class "volatile" in
the /tmp directory. Then, the postinstall script, when executed, should cd to
that directory before executing idinstall to add the DSP to the system.

The Driver Software Package (DSP) 3-29

Typical DSP Installation and Removal
Scenarios

Installing a DSP

A user installing a DSP usually will find the process very simple. From the user
perspective, a typical installation proceeds as follows:

1. The user runs the pkgadd command with the -d device option, where device
specifies the floppy disk or tape drive where the DSP is to be installed from.
For example, device could be diskl.

2. A prompt asks the user to insert the floppy disk or mount the tape.

3. A second prompt appears, asking the user which DSP is to be installed or
whether to install all DSPs on the installation media.

4. The DSP package is installed, a process which may take several minutes or
longer, depending on the DSP. This process usually does not require any
particular user intervention.

S. A message is displayed signaling success or failure of the installation.

6. A prompt asks the user whether another DSP is to be installed. If so, this
process is repeated.

7. When all desired DSPs have been installed, a message is displayed, telling
the user to reboot the system to complete the DSP installation process.

Removing a DSP

As shown above, the installation process is relatively simple and straightforward
from the user's viewpoint. Removing a package is even easier.

1. The user executes the pkgrm command.

2. A prompt asks the user which DSP to remove.

3. The prerem.ove script deletes all the files and commands associated with
the DSP, calling the idinstall -d command.

4. A prompt is displayed, instructing the user to reboot the system to com­
plete the DSP removal.

3-30 Driver Installation and Tuning

DSP Commands and Procedures

The three most important idtools commands for DSPs are idcheck, idinstall,
and idbuild, and every post install and preremove script should use all three
of them.

For example, at bare minimum, the post install script will call idcheck to see
whether the DSP has already been installed. Then, the script runs idinstall,
either with the -a option to install the DSP or with the -u option to update an
existing DSP. Finally, the postinstall calls idbuild to build a new UNIX sys­
tem base kernel and/ or configure loadable modules.

The pre remove script, used to remove a DSP from the system, also uses idcheck
to see whether the DSP exists (there is no point in attempting to remove a DSP
that is not there). Then, the idinstall command is run using the -d option; this
deletes the component files and configuration file entries relating to the DSP.
(Sometimes the Stubs. c needs to be kept; refer to idinstall(lM) to see how to
do this.) Lastly, the script calls the idbuild command to build a new kernel,
without the DSP, and/ or to remove configuration data for loadable modules.

Of the abovementioned commands, idinstall is the one that performs the wid­
est range of functions. It does not just install DSPs, but it can also update or
remove existing DSPs on a system. A DSP installation or removal script calls
idinstall to add (-a), delete (-d), update (-), or get (-g or -G) device driver and
kernel module configuration data. It can also be run from a kernel source
makefile to make (-M) configuration data.

idinstall expects to find DSP component files in the current directory, which,
for DSP installation purposes, should be /tmp. When the components are
installed or updated with the -a or -u option, they are copied into the subdirec­
tories of the /etc/conf directory. Then, the files are deleted from the current
directory, unless the -k option is used, which tells idinstall to keep the files.

Checking the System Configuration

The idcheck command returns selected information about the system
configuration. In DSP scripts, it can be used to determine whether a particular
device driver has already installed, and to verify that a particular interrupt vector,
I/O address, or other selected parameter is, in fact, available for use.

DSP Commands and Procedures 3-31

The options available for the idcheck command enable you to select which item
to check for, but it is the -p module-name option which checks for the existence of a
particular DSP's modules. idcheck returns a numeric value depending on which
components it finds, or 0 if no components are found.

Other options check for conflicting devices, interrupt vectors, DMA channels,
address ranges, and other details.

For complete information about the idcheck command, refer to the idcheck(lM)
manual page.

Installing a DSP

To install a DSP, the postinstall script needs to call the idinstall command
with the -a option. An example command for installing a DSP follows:

idinstall -a module-name

In this example, module-name represents the name of the DSP to be installed.
Unless the -e option is also specified, idinstall performs a check to see whether
there is enough free disk space to start the configuration process, calling idspace
to do this. Note that this check for available disk space is different from the one
you should perform in the postinstall script. In the script, you should use
df(lM) to check whether there are enough free blocks and inodes to copy the com­
ponent files from the installation media to the /~ directory.

The idinstall command requires and installs the DSP Driver. 0, Master, and
System components, and, if present, installs the Init, Mtune, Node, Rc, Sassign,
Sd, Space. c, and Stubs. c components, all of which must be in the current direc­
tory.

The Driver. 0, Space. c, and Stubs. c components are moved to a directory
named /etc/conf/pack.d/module-name. The remaining files are stored in direc­
tories under /etc/conf, which are organized by component type, in files named
module-name. For example, the Node file would be moved to
/etc/conf/node.d/module-name.

For complete information about the idinstall command, refer to the
idinstall(lM) manual page.

3-32 Driver Installation and Tuning

Updating a DSP

If a check for the existence of the DSP (using idcheck) turns up positive, a
postinstall script should use the idinstall update option. This is assuming
that it makes sense to update the DSP, and in any event, you should require a
positive verification, or at least give the user the option of aborting, before updat­
ing an existing DSP.

The update can either completely overwrite the existing DSP files on the system,
or overwrite them selectively, based on whether each file in the DSP is newer than
the one on the system.

The following examples update a DSP:

idinstall -u module-name

or

idinstall -M module-name

The first command overwrites all the files of the original DSP with files of the new
DSP, requiring that the module-name specified is currently installed. The
idinstall -u module-name command requires that the module specified is
currently installed.

The second variation, idinstall -M module-name, works whether or not the DSP
is currently installed. It copies into the appropriate configuration directories any
component files which are not yet installed or are newer than the installed ver­
sions. In any case, with idinstall -M, the files in the current directory are not
removed.

For complete information about the idinstall command, refer to the
idinstall(lM) manual page.

Removing a DSP

To remove a DSP from the system, a preremove script needs to call the idinstall
command with the -d option. An example command follows.

idinstall -d module-name

In the example, module-name is the name of the DSP to be removed. Once exe­
cuted, all files and commands associated with the DSP are removed. A reboot is
required to reconfigure the kernel once the DSP has been removed.

DSP Commands and Procedures 3-33

Building a New Kernel

A new kernel needs to be built when installing or removing a DSP, after all of the
DSP component modules (for example, Master, System, Init, and so on) have
been installed or removed from the appropriate locations. It is usually a good
idea to reboot after a DSP update, as well. The idbuild command builds a UNIX
system base kernel and/ or configures loadable kernel modules using the current
system configuration in $ROOT /$MACH/etc/conf.

Base kernel rebuilds are usually needed after a statically linked kernel module is
installed, when any static module is removed, or when system tunable parameters
are modified. If you execute idbuild without any options and if the environment
variable $ROOT is null or II /", a flag is set and the kernel rebuild is deferred to
next system reboot.

When adding or removing a DSP through the post install or preremove scripts,
you may want to use the idbuild -B command to build a new kernel immedi­
ately, although if installing several packages at once, you probably will not want
to rebuild the kernel until after all the DSPs are installed. Then, the system is
rebooted using the new UNIX system kernel in / stand/unix, with the old kernel
saved as unix. old if there is enough disk space available.

When loadable modules are to be added, you use the -M module-name option,
repeating the option on the command line as many times as needed to configure
all the load able modules.

The -B and -M options can be used on the same command line.

Building a UNIX system kernel consists of three steps.

1. Generate configuration tables and symbols, and module lists from the
configuration data files.

2. Compile configuration-dependent files, and then link these together with all
of the configured kernel and device driver object modules.

3. If the load able kernel module feature or a kernel debugger is enabled,
attach the kernel symbol table information to the kernel.

The kernel is, by default, placed in $ROOT /$MACH/etc/conf/cf .d/unix.

If the kernel build is successful and $ROOT is null or "/", idbuild sets a flag to
instruct the system shutdown/reboot sequence to replace the standard kernel in
/stand/unix with the new kernel. Then, another flag will be set to cause the
environment (device special files, /etc/inittab, and so on) to be reconfigured
accordingly.

3-34 Driver Installation and Tuning

If one or more loadable kernel modules are specified with the -M option, idbuild
will configure only the specified loadable kernel modules and put them into the
$ROOT /$MACH/etc/conf/mod.d directory. Otherwise a UNIX system base
kernel is rebuilt with all the loadable modules reconfigured into the
$ROOT /$MACH/etc/conf/modnew.d directory, which will be changed to
/etc/conf/mod.d at the next system reboot, if $ROOT is null or " /" [see
modadmin(lM)] .

When loadable kernel modules are configured with the -M option, idbuild also
creates the necessary nodes in the /dev directory, adding and activating
/etc/inittab entries if any Init file is associated with the modules, and register­
ing the modules to the running kernel [see idmodreg(lM)]. This makes them
available for dynamic loading without requiring a system reboot.

For complete information about the idbuild command, refer to the idbuild(lM)
manual page.

Rebooting the System with the New Kernel

After adding or removing DSPs, the system needs to be rebooted for the changes
to take effect. Once rebooted, modules configured for static installation with the
kernel are initialized, and modules configured for dynamic loading are made
available.

Emergency Recovery (New Kernel Will Not Boot)

It is possible that the kernel will fail to boot if your driver contains a serious bug.
This can be due to a panic call that you put in your driver or some other system
problem. If this happens, you should reset the system and boot the original ker­
nel, which would be saved by idbuild in / stand/unix. old if there was enough
disk space available to make the copy. To do this, reset the system, and when you
see the message

Booting UNIX System ...

quickly press the console keyboard spacebar to interrupt the default boot. When
the boot prompt appears, type" /stand/unix.old" or whatever name you may
have used for a backup copy of the kernel.

If you do not have a working backup copy of the kernel or some other disaster has
occurred, and you cannot recover gracefully, you will need to follow the pro­
cedure listed below to put a bootable / stand/unix back on the hard disk.

DSP Commands and Procedures 3-35

1. Boot the system from the first boot floppy.

2. When the system prompts you to do so, insert the second boot floppy.

3. When prompted, select the non-destructive installation, as if you needed to
overlay the system.

4. After loading the third boot floppy, you will be prompted to select
Automatic or Custom installation. Press DEL to get the interruption screen.
Press DEL again to get a shell prompt.

5. At this time,the hard disk file system tree is mounted on front. You can
either build a new kernel, or mount the first floppy and copy the boot ker­
nel to front/stand/unix.

6. Press the RESET button, or power down and then back up again.

The system should now boot normally with a standard foundation kernel. Your
new driver and any other drivers you had installed on your system will not be
included in the UNIX kernel, even though they may appear in the pkginfo out­
put. To fix this, remove your driver and execute idbuild. If that fails, remove
and reinstall all of the packages.

This procedure can also be useful if other system files are damaged inadvertently
while debugging your driver. There are several reasons why your system may fail
to boot properly or not let you log in after it has booted. For example, a corrupted
password or inittab could prevent console logins.

The contents of the three boot floppy disks are copied to a temporary root file sys­
tem on the hard disk, including a default /etc/passwd, /etc/init,
/etc/inittab, and other critical files. When using the previously listed pro­
cedures, you can copy the default files from the temporary root file system
mounted on" /" to the hard disk root, currently mounted as front. Obviously,
user logins you have added to /etc/passwd and other system changes you have
made since installing the original base system will be lost when you overwrite the
corrupted file with the floppy disk default file. A better solution is to make regu­
lar, scheduled backups of your hard disk, especially for critical system
configuration files.

3-36 Driver Installation and Tuning

Documenting Your Driver Installation

If you are developing a DSP to be installed by users who may not be familiar with
the implications of reconfiguration, some words of caution may be worthwhile.

• Although experience has shown little difficulty in installing and removing a
variety of device drivers, there is the possibility that you may have difficulty
booting the system. The cause of this probably would be due to some fault
in the added driver. If this occurs, you may have to restore the UNIX sys­
tem kernel from the saved version (created by idbuild upon system
reconfiguration, assuming there is enough disk space for the backup).

• Since a reconfiguration often ends with a system reboot, it is not advisable
for other users to be logged in to the system through a remote terminal.

• Users should not press DEL or RESET, power down the system, or in any
way try to interrupt an installation. Although interruption protection is
built into the idtools scheme, total protection against a reboot during an ins­
tallation can never be completely foolproof.

• Use the df command in your script or advise your users to run df to deter­
mine the free disk space before doing the installation. If there is not enough
space to install the DSP, tell the user how much space needs to be freed up.
If you require the users to check for themselves, tell them how many free
blocks are needed to install the DSP.

• Similarly, if your script exits because idspace has revealed that there is not
enough space to reconfigure the kernel, tell the user how many blocks are
needed.

• Advise the user not to have any background processes running that will be
adversely affected by a system reboot or consume free disk space while a
reconfiguration is underway. For example, avoid running uucp during an
installation.

DSP Commands and Procedures 3-37

Device Driver Tuning

The Mtune files contain kernel tunable parameters which can profoundly affect
system performance. Occasionally an add-on device driver or kernel software
module may require you to modify an existing parameter or define a new tunable
parameter that is accessible by other add-on drivers. Note, however, that not all
drivers have or require tunable parameters.

When the Mtune component of a module's DSP is installed, idinatall(lM) stores
the module's Mtune file information in /etc/conf/mtune .d/module-name, where
the file module-name is the name of the module being installed. An Mtune file
defines a default value along with a minimum and maximum value for each tun­
able parameter of a particular driver module.

~ Package scripts should never access /etc/conf/mtune.d files directly; only y the idi~ta11 and idtune commands should be used.

Modifying a Kernel Parameter

The idtune command is used to modify system-tunable parameter entries in the
atune file, from the default value in the Mtune file. Not every system-tunable
parameter is contained in the atune file; only those that are to be set to a value
other than the system default need be entered there. Therefore, if the driver pack­
age you are building requires modifying a parameter value, you should use the
idtune command only. Never modify the atune file directly.

The idtune command takes individual system parameters, verifies that the new
value is within the upper and lower bounds specified in Mtune, searches the stune
file, and modifies an existing value or adds the parameter to stune if not defined.

The stune file (located in /etc/conf/cf .d/stune) file contains tunable parame­
ters for the kernel modules to be configured into the next system to be built (see
idbuild). The parameter settings in the atune file are used to override the
default values specified in the Mtune file.

The contents of the atune file will only affect the next kernel rebuild. Once the
new kernel has been installed to / stand/unix and booted, the stune file is copied
to stune. current. Any change made to the stune. current file using the
idtune command with the -c option will affect all the loadable kernel modules
subsequently configured into the running system.

3-38 Driver Installation and Tuning

The stune and stune. current files contain one line for each parameter to be set.
Each line contains two positional fields separated by white space. parameter-name
new-value

Package scripts should never access / etc/ conf / cf . d/ stune or
/etc/conf/cf .d/stune.current files directly; only the idtune command
should be used.

Device Driver Tuning 3-39

Device Driver Configuration

When installing a device driver, you can specify whether the driver is to be
static-that is, configured into the base kernel-or to be dynamically loadable.

A dynamically loadable module can be loaded upon demand or automatically
whenever the system receives a request requiring the module. Similarly, a load­
able module can be unloaded upon demand, or it can be configured to be
unloaded after a certain amount of time has elapsed since it was last accessed.

To configure a module to be loadable (this is usually done in the post install
script of a DSP):

idbuild -M "module-name"

To statically link a module into the base kernel, comment out the "$loadable"
line in its System file, then use idbuild and reboot.

idbuild -s

Refer to the idbuild(lM) manual page for more information.

Loadable Module Administration

modadmin is the administrative command for loadable kernel modules. It per­
forms the following functions.

• Load a loadable module into a running system

• Unload a loadable module from a running system

• Display the status of a loadable module(s) currently loaded

• Modify the loadable modules search path

The loadable modules feature lets you add a module to a running system without
rebooting the system or rebuilding the kernel. When the module is no longer
needed, this feature also lets you dynamically remove the module, thereby freeing
system resources for other use.

For more information about loadable module administration and how it impacts
device driver programming, refer to Chapter 2, "Loadable Modules" . .

3-40 Driver Installation and Tuning

4 Driver Testing and Debugging

Introduction

Preparing a Driver for Debugging
General Guidelines
Putting Debug Statements in a Driver
Installing a Driver for Testing

• Emergency Recovery (New Kernel Will Not Boot)

Common Driver Problems
Coding Problems
C Optimizer Bugs
Installation Problems
Data Structure Problems
Value of Initialized Global Variables
Timing Errors
Corrupted Interrupt Stack
Accessing Critical Data
Overuse of Local Driver Storage
Incorrect DMA Address Mapping

Testing the Hardware

Table of Contents

4-1

4-2
4-2
4-3
4-5
4-5

4-7
4-7
4-7
4-7
4-8
4-8
4-9
4-9
4-9
4-9
4-10

4-11

ii

Using crash to Debug a Driver
Saving the Core Image of Memory
Initializing crash on the Memory Dump
Using crash Functions
Using crash Commands
The crash Command in STREAMS

Debugging STREAMS Drivers
STREAMS Debugging
STREAMS Error and Trace Logging

Driver Debugging Techniques
Kernel Print Statements
System Panics
Taking a System Dump

Kernel Debugger
Entering kdb from a Driver

4-12
4-12
4-13
4-13
4-14
4-15

4-18
4-18
4-19

4-21
4-21
4-21
4-21

4-24
4-25

Table of Contents

Introduction

Testing a device driver consists of installing the driver on a working system and
attempting to try all of its functions under a variety of operating conditions.
Debugging a driver is largely a process of analyzing the code to determine what
could have caused a given problem. The UNIX system includes some tools that
may help, but because the driver operates at the kernel level, these tools can only
provide limited information.

This chapter describes the tools that are available for testing and debugging the
installed driver and how to use them. This chapter also discusses some of the
common errors in drivers and some of the symptoms that might identify each.

During the first phases of testing, remember that your driver code is probably not
perfect, and that bugs in the driver code may panic or damage the system, even
parts of the system that may seem unrelated to your driver. Testing should be
done when no other users are on the system and all production data files are
backed up. Alternatively, testing could be performed on a restricted-use system
set up specifically for the purpose of testing drivers.

You should test the functionality of the driver as you write it. If you are changing
code from another driver, it is useful to install and test the driver after you have
modified the initialization routines and the read/write or strategy routines.
This testing could involve writing a short program that only reads and writes to
the device to ensure that you can get into the device. When all the routines for the
driver are written, you should install the hardware and perform full functionality
testing.

The UNlX system provides tools to help you, such as crash(lM), which is used
either for a post-mortem analysis after a system failure or for interactive monitor­
ing of the driver.

Introduction 4-1

Preparing a Driver for Debugging

The process of testing driver functionality is piecemeal: you have to take small
pieces of your driver and test them individually, building up to the implementa­
tion of your complete driver.

Driver routines should be written and debugged in the following order:

1. init(D2X), start(D2X)

2. open(D2X), close(D2X)

3. int, intr, or rint/xint interrupt routines

4. ioctl(D2X), read(D2X), write(D2X) and/or strategy(D2X) and
print (D2X)

When the driver seems to be functioning properly under normal conditions, begin
testing the error logs by provoking failures. For instance, take a tape or disk off­
line while a read/write operation is going.

After you are comfortable that both the hardware and software behaves as it
should during error situations, it is time to concentrate on formal performance
testing.

General Guidelines y Before Irying to install or debug Ihe driver. back up .11 files in your lile
system(s). Drivers can cause serious problems with disk sanity should an
unanticipated problem occur.

Compile your driver and produce an up-to-date listing and an object file. The fol­
lowing conventions must be observed:

4-2

• Ensure that all your ClDIl_err(D3X) calls direct output to at least the
putbuf memory array. (putbuf defaults to a maximum size of 10,000
bytes.)

• Compile your driver without the optimizer, with the -g option enabled.

• Use the pr -n(l) command to produce a listing of the source code with line
numbers. Alternatively, list(l) can be used to pull line number informa­
tion out of the driver object file.

Driver Testing and Debugging

• Use dis(l) to produce a disassembly listing. This is useful to have on hand,
even though you get the same information using the crash dis command .

• Use list(l) to produce a listing that correlates the line numbers in the
disassembly listing back to original source file.

Using the instructions described earlier in this chapter, install your driver. If the
UNIX system does not come up, divide your driver into separate sections and
install each part separately until you find the problem. Fix the problem and install
the driver.

After the driver is installed, use idbuild(lM) to create the / stand/unix file.

In single-user mode, run nm(l) on /stand/unix (with the -nef options) to create
a name list for the entire kernel. All addressing is virtual. The name list gives the
starting locations (routine names and starting addresses) of the instructions and
variables.

Putting Debug Statements in a Driver

Use the emIl_err(D3X) function to put debugging comments in the driver code;
when the driver executes, you can use these to tell what part of the driver is exe­
cuting. The emIl_err function is similar to the printf(3S) system call but it exe­
cutes from inside the kernel.

emIl_err statements for debugging should be written to the putbuf where they
can be viewed using crash. Because they are written by the kernel, they cannot
be redirected to a file or to a remote terminal. You can also write emIl_err state­
ments to the console, but massive amounts of statements to the console will
severely slow system speed.

Calculations and emIl_err statements that are for debugging and other testing
should be coded within conditional compiler statements in the driver. This saves
you the task of removing extraneous code when you release the driver for produc­
tion, and makes that debugging code readily available should you need to troub­
leshoot the driver after it is in the field. You can provide separate code for dif­
ferent types of testing to which the driver will be subjected. For instance, you
might use TEST for functionality testing, PERFON for minimal performance test­
ing, and FULLPERF for full performance monitoring. Each of the testing options is
then defined in the code as either 0 (turned off) or 1 (turned on), as illustrated
below.

Preparing a Driver for Debugging 4·3

/* TEST = 1 for functionality testing
*/
#define TEST 1
/*
* PERFON = 1 for minimal performance monitoring
*/
#define PERFON 0
/*
* FULLPERF = 1 for full performance monitoring
*/
#define FULLPERF 1

Note that minimal performance monitoring is turned off, which is appropriate
because full performance monitoring is turned on.

Debug code is then enclosed within #if TEST and #endif. When the code is com­
piled with the -DTEST option, the test code will execute.

The testing procedure can be refined further by using flags within the
conditionally-compiled code. Then, when TEST is turned on, you can specify the
exact sort of testing without recompiling and reinstalling the driver. The flags
should use the driver prefix. For instance, the following code sets three flags for
testing the int(D2X) interrupt routine, the strategy(D2X) routine, and driver
performance:

#if TEST

int xx_intpr, xx_stratpr, xx-perfpr;
#endif

The flags reside as the first words in the .bss section of the driver code. To turn
on one or more flags

4-4

• Get the start address of . bss from the namelist with a command similar to

nm -x /stand/unix I egrep 'xx_intprlxx_stratprlxx-perfpr'

• Write a short program that prompts you for the address of the flag(s) you
want turned on, then specifies location in memory

Driver Testing and Debugging

Installing a Driver for Testing

Many of the steps that follow require you to modify files and directories owned by
root. You must therefore be logged in as root or execute with the appropriate
privileges to develop and debug device drivers.

1. First of all, it would be a good idea to make a copy of your current UNIX
operating system kernel before reconfiguring the system. The backup is
made automatically by the idbuild command saving the kernel as
/stand/unix.old (if there is enough disk space), but it is still a good idea
to have a 'pre-driver test' backup kernel, because the second and subse­
quent executions of idbuild will overwrite the previously saved
/ stand/unix. old.

2. Create the required Master and System files (these are described in
Chapter 3), and put them along with your Driver. a device driver module
into the /tmp directory.

3. You can also create the Mtune, Node, and other optional DSP component
files if needed. However, if possible, you should test your driver first in as
simple an environment as possible.

4. Use the idinstall -a command to install the new driver.

5. Use the idbuild command (with the appropriate options, depending on
whether or not your device driver is to be loadable or static) to rebuild the
UNIX system kernel.

If you get errors, correct them and repeat the above step. If the kernel built
correctly, a new UNIX system image will have been created. Running
shutdown will cause the system to enter init state 2, and the new kernel
will be automatically linked to /stand/unix. On the next boot, if you
specify /stand/unix on the boot: prompt, the new kernel will execute,
and upon entering init state 2, the new device nodes, inittab entries, and
so on, will be installed.

6. When the system comes up, test your driver.

Emergency Recovery (New Kernel Will Not Boot)

There is a possibility that the kernel will fail to boot if your driver contains a seri­
ous bug. This can be due to a panic(D3X) call that you put in your driver or
some other system problem. If this happens, you should reset your system and
boot your original kernel that you hopefully saved as recommended above. To do
this, reset your machine, and when you see the "Booting UNIX System . . . "
message, quickly strike the keyboard space bar to interrupt the default boot.
When the boot prompt appears, type the name of a backup copy of the kernel (for

Preparing a Driver for Debugging 4-5

example, /stand/unix.halt or whatever you named your old kernel}. If you did
not save a copy of your kernel or some other disaster occurred, you can recover
the system using the emergency kernel recovery procedure listed in Chapter 3,
"Driver Installation and Tuning" .

4-6 Driver Testing and Debugging

Common Driver Problems

Following is a discussion of some common drivers bugs, with possible symptoms.
These should be used only as suggestions. Each driver is unique and will have
unique bugs.

Coding Problems

Simple coding problems usually show up when you try to compile the driver. In
general, these are similar to coding problems for any C program, such as failure to
#include necessary header files, define all data structures, or properly delineate
comment lines. Specific coding errors unique to driver code include the following:

• ifdef-related problems, such as not providing for certain combinations

• inadequate handling of error legs

C Optimizer Bugs

The optimizer (-0 option to cc(l» on all CPLU 4 releases can be used on drivers
without causing problems. However, some old versions of the C optimizer cause
problems when used on driver code. For instance, assume a device register is
being set to 0 inside a loop, the register is not accessed anywhere else in the loop,
and that the register must be set to 0 for every iteration of the loop. The optim­
izer pulls the statement that initializes the variable to just before the loop, which
results in a bug in the driver. Disassembly, using either the dis(l) command or
the crash dis command, can identify such problems.

Installation Problems

Installation problems refer to problems that prevent a system boot with your
device configured. If the system won't boot, first try to boot it without the driver
to verify that the driver is the problem. Some driver problems that prevent a sys­
tem boot include:

• Missing information in the Master file. Specifically, external variables that
are not defined in the Master file will not be detected when the driver is
compiled, but will cause the following lboot error message:

Common Driver Problems 4-7

symbol undefined - set to zero

and will probably cause a kernel MMU panic when the variable is refer­
enced .

• Errors in the init or start routine. You can check that the initialization
routine is being entered by inserting an unconditional cmn_err statement
at the beginning of the routine .

• Allocating an array in the Master file, then not declaring it as a global data
structure for the driver or initializing it in an init or start routine. This
will not prevent you from booting the system the first time, but may pre­
clude a reboot from a /stand/unix file.

Data Structure Problems

A driver can corrupt the kernel data structures. If the driver is setting or clearing
the wrong bits in a device register, a write operation may put bad data on the
device and a read operation may put bad data anywhere in the kernel. Such
errors may affect other drivers on the system. Finding this bug involves painstak­
ing walk-throughs of the code. Look for a place where perhaps a pointer is freed
(or never set) before the driver tries to access it, or places where the code forgets to
check a flag before accessing a certain structure.

Value of Initialized Global Variables

The driver should not depend on initialized global variables having the value
assigned them in the driver source file. When the system is booted in absolute
mode (from a /stand/unix file), driver global variables that are not explicitly ini­
tialized will be in .bss and will be O. Global variables with initializers will be in
. data and will have whatever value they had at the time the / stand/unix file
was created.

4·8 Driver Testing and Debugging

Timing Errors

Timing errors occur when the driver code executes too quickly or too slowly for
the device being driven. For instance, the driver might read a status register on a
device too soon after sending the device a command. The device may not have
had time to update the status register, so the status register is perceived by the
driver to be all 0 bits when, in fact, the device may just be slow in posting the
correct status register setting.

When testing the driver, it is useful to verify that a simple, single interrupt is being
handled properly. After this is confirmed, you should check that the interrupt
handler can handle a number of interrupts that happen at almost the same time.

Corrupted Interrupt Stack

If a driver's interrupt handler runs at an execution level lower than the
corresponding IPL for the device, the processing of one interrupt may be inter­
rupted by a second interrupt from the same device. This will seriously corrupt the
interrupt stack, which may cause the system to panic with a stack fault or kernel
MMU fault. Sometimes, however, it will only cause random operational irregular­
ities, which can make this a difficult problem to detect. You can identify this prob­
lem by looking at the interrupt stack in the system dump. If it is corrupted, check
the execution level of the driver's interrupt handling routine.

Accessing Critical Data

Check the driver code for data structures that are accessible to both the base and
interrupt levels of the driver. Ensure that any section of the base-level code that
accesses such structures cannot be interrupted during that access by using the
spln(D3X) function.

Overuse of Local Driver Storage

If the driver routines use large amounts of local storage, they may exceed the
bounds of the kernel stack or the interrupt stack, which in turn will panic the sys­
tem.

Common Driver Problems 4-9

Incorrect DMA Address Mapping

Failure to set up address mapping for DMA transfers correctly is another common
mistake. On a read operation, a bad address map may cause data to be placed in
the wrong location in the main store, overwriting whatever is there including, for
example, a portion of the operating system text.

To check for this, write a simple user program that writes data to all possible
memory locations (including shared memory, stack, and text), then reads it back
and compares the input and output. As soon as anyone of these operations fails,
you should reboot the system immediately to ensure that kernel memory is sane.

4-10 Driver Testing and Debugging

Testing the Hardware

In addition to testing and debugging the driver, you must also test the hardware
device itself. While the area of developing, testing, and debugging the hardware
is beyond the scope of this book, the following guidelines are suggested:

• Very early in the development process, you should get the equipment and
do some basic tests on its integrity, such as ensuring that it can be powered
up without problems and access registers on the peripherals. If the device
does not pass these tests, it can be returned to the vendor for further
development while you write the driver.

• Write a stand-alone board exerciser that runs at the firmware level (not
under the UNIX operating system) to detect hardware bugs. This is an
interactive program that is used to exercise a board under controlled condi­
tions. The device should pass these tests before you attempt to test it with
your driver.

• Test the diagnostics that are hard-coded on the board by corrupting the
hardware and booting the system. Check that the diagnostics detect the
corruption and that the messages are sufficient to indicate the maintenance
that is required. Power-up diagnostics should verify sanity at a gross level.
Demand-phase diagnostics should be used for more extensive checks on the
board, such as identifying marginal or intermittent errors.

To ensure that the kernel-device interface is functioning properly, write a
simplified driver that contains dummy routine calls for the init(D2X),
start(D2X), open(D2X), close(D2X), read(D2X), and write(D2X) routines.
For example:

=--open{)

cnm_err(CE_CONT, "Open routine entered\n ll);

This simplified driver should contain an ioctl(D2X) routine that gives user pro­
gram control to each control bit in the control status register (CSR). This lets you
test each hardware function and ensure that the hardware is performing in the
proper operational sequence. The exact layout of the CSR is specified in the
/usr/include/sys/cc.h file.

Testing the Hardware 4-11

Using crash to Debug a Driver

The crash(lM) utility allows you to analyze how your driver interacts with the
core image of the operating system. It is most frequently used in postmortem
analysis of a system panic, but can also be run on an active system. The output
from crash can help you identify such driver errors as corrupted data structures
and pointers to the wrong address. Its shortcoming as a debugging tool is that it
is difficult to freeze the core image at exactly the point where the error occurred;
even if the error causes a system panic, the core image may be from beyond the
point of actual error. This is especially true when debugging an intelligent board,
because an autonomous intelligent controller continues processing even though
you have halted kernel-level processing on the main memory. Moreover, for intel­
ligent boards, the crash dump cannot get at the onboard data structures.

1-7
, Using the crash command requires a thorough knowledge of assembler, of

NOTE: reading core dumps, and of systems programming concepts. The need to
know assembler cannot be overemphasized. The crash output is displayed
in assembler mnemonics and as strings of hex numbers that must be
translated into address locations, stack frames, and memory offsets.

Saving the Core Image of Memory

To run crash as a postmortem analysis on a panicked system, you must save the
core image of memory before rebooting the system and have a copy of the boat­
able kernel image (lstand/unix file) that was running.

On computers using UNIX System V, the system automatically saves the dump
image when it detects an improper shutdown. The partition used by the system to
store the dump image is also shared by the swap facility used by the system pager
when the computer is in multiuser state. Therefore, do not progress to multiuser
state until after you have saved the memory core image to tape or floppy disk.
However, saving the core image is only useful if you want to use crash to exam­
ine it. Saving the dumped memory image is not required and no system software
will be damaged if you continue on to multiuser state.

4-12 Driver Testing and Debugging

~
If you are familiar with how memory is added to your computer, you can

NOTE remove excess RAM cards before the system crash to reduce the amount of
memory to be copied to disk.

When you try to reboot the system, the following message is displayed automati­
cally.

There may be a system dUJli) memory image on the swap device.
Do you want to save it? (y/n»

Answer y to save the dump file. When given a selection list of what media to use
for the dump, enter the appropriate value for the media you intend to use.

Once booted, you can use the command ldsysd~ to load the dump file from
the tape or disks onto a file system.

Initializing crash on the Memory Dump

To run crash on the core image of memory at the time the system panicked, you
must have saved the core image before rebooting and the file containing the kernel
bootable image (I stand/unix file by default) that was running at the time of the
crash.

If the bootable kernel image is named something other than /stand/unix (either
because it was named something else at the time of the panic or because you
copied it to another name after the panic), use the -n option or the second posi­
tional parameter to specify that file name. If you want the output of crash to be
written to a file rather than your terminal (standard output), use the -woption
with the name of the file. Note that the output of a specific crash command can
be redirected to a file even if you do not use the -w in the crash command line.

Using crash Functions

The crash session begins by reporting the dump file, namelist, and outfile being
used, followed by the crash prompt (». Requests in the crash session have the
following standard format

command [argument . ..]

where command is one of the supported commands of crash and argument
includes any qualifying data relevant to the requested command. Use the q com­
mand to end the crash session.

Using crash to Debug a Driver 4-13

See the crash(lM) manual page for a list of supported commands. Note that,
while most crash commands are common to all computers, each system also has
unique commands that relate to specific devices supported on that machine.

Following is a list of crash commands often useful when debugging a driver.

dis

cd

proc

stack

stat

trace

Disassemble from a starting address. Use this information to trace
code flow. However, you will have to mentally convert the resulting
assembler code to C programming language statements.

List memory. Use this command when you suspect that the stack is
corrupted, or to list the contents of memory at a certain address. If
you are listing the contents of the stack, you will have to manually
find the boundaries of each stack entry, called stack frames. To get the
starting address of the stack, list the registers with the panic com­
mand.

List the process table. Use this information to obtain the process slot
number of the process that panicked the system.

Dump the stack. Use this information to determine the size of the
stack frame. If stack returns information that you suspect is cor­
rupted, use proc to get a list of process table slots and then use
stack on each individual slot entry.

List system statistics. Use this information to display the reason a
panic occurred. The panic command gives the same information as
stat, plus registers, stack, and trace data.

Print kernel stack trace. Use this information to determine which
commands were executed in the stack or in an individual process
table slot entry.

USing crash Commands

When a panic occurs, capture the core memory image and produce a file that you
can use with crash. When crash executes, a ">" command line prompt is
displayed. The following sequence of commands are frequently used to analyze
the problem.

1. stat - list reason for the crash

2. proc -list the process table to see which process initiated the panic

4-14 Driver Testing and Debugging

3. stack or trace - list the last processes on the stack

4. dis - trace the execution of a set of instructions

The crash Command in STREAMS

The following crash functions are related to STREAMS.

linkb1k Print the linkb1k table.

pty Print pseudo ttys now configured. The -1 option gives information
on the line discipline module 1dterm, the -h option provides infor­
mation on the pseudo-tty emulation module ptem, and the -s option
gives information on the packet module pckt.

qrtm Print a list of scheduled queues.

queue Print STREAMS queues.

stream Print the stdata table.

strstat Print STREAMS statistics.

tty Print the tty table. The -1 option prints out details about the line dis-
cipline module.

The crash functions 1inkb1k, queue, and stream take an optional address that
is the address of the data structure. The strstat command gives information
about STREAMS event cells and linkb1ks in addition to message blocks, data
blocks, queues, and Streams. On the output report, the CONFIG column
represents the number of structures currently configured. It may change because
resources are allocated as needed.

The following example illustrates the debugging of a line printer. Knowledge of
the data structures of the driver is needed for debugging. The example starts with
the following data structure of the line printer driver.

struct Ip {

queue_t *lp_qptr; 1* back pointer to write queue *1
};
extern struct Ip Ip_lp[);

Using crash to Debug a Driver 4-15

The first command, nm lp_lp, prints the value and type for the line printer driver
data structure. The second command, rd 40275750 20, prints 20 values starting
from the location 40275750 (note that the function rd is an alias of cd). The third
command, size queue, gives the size of the queue structure. The next two func­
tions again give the 20 values starting at the specified locations in the hexadecimal
format. The command rd -c 4032bf40 32 gives the character representation of
the value in the given location. The option -x gives a value in the hexadecimal
representation and the option -a produces the same in the ASCII format.

4-16 Driver Testing and Debugging

Using crash to Debug a Driver 4-17

Debugging STREAMS Drivers

This section provides some tools to assist in debugging STREAMS-based applica­
tions. For detailed information about STREAMS programming and debugging,
however, refer to the guide, STREAMS Modules and Drivers.

STREAMS modules and drivers can record trace messages using the
strlog(D3X) function. Calls to this function are converted into STREAMS mes­
sages and relayed by log(7), a software driver, to the strace(lM) process. The
log driver is also used to send error messages to the strerr(D3X) process.

Module and driver writers should limit the number of messages sent to either the
error or trace loggers. If a large number of messages are sent some could be lost,
because some parts of this facility do not include flow control.

Also, messages may not be delivered to strace in the same order in which they
were sent. However, every message includes a sequence number field provided to
make it possible to determine the correct message order where necessary.

STREAMS Debugging

The kernel routine ClIIIl_err allows printing of formatted strings on a system con­
sole. It displays a specified message on the console and/ or stores it in the putbuf
that is a circular array in the kernel and contains output from ClIIIl_err. Its format
is:

#include <sys/ClIIIl_err.h>

void ClIIIl_err (int level, char *fmt, int ARGS)

where level can take the following values:

4-18

Use as a simple printf to continue another message or to display
an informative message not associated with an error.

Report system events. It is used to display a message preceded with
NOTICE:. This message is used to report system events that do not
necessarily require user action, but may interest the system adminis­
trator. For example, a sector on a disk needing to be accessed
repeatedly before it can be accessed correctly might be such an
event.

Driver Testing and Debugging

Report system events that require user action. This is used to
display a message preceded with WARNING:. This message is used
to report system events that require immediate attention, such as
those where if an action is not taken, the system may panic. For
example, when a peripheral device does not initialize correctly, this
level should be used.

Panic the system. This is used to display a message preceded with
PANIC:. Drivers should specify this level only under the most
severe conditions. A valid use of this level is when the system can­
not continue to function. If the error is recoverable, not essential to
continued system operation, do not panic the system. This level
halts all processing.

fmt and ARCS are passed to the kernel routine printf, which runs at sp1hi and
should be used sparingly.

Validftnt specifications are %s (string), %u (unsigned decimal), 'Yod (decimal), 'Y00

(octal), and 'YoX (hexadecimal). CIOn_err does not accept length specifications in
conversion specifications. For example, %3d is ignored. If the first character of
ftnt begins with"!" (an exclamation point), output is directed to putbuf.
putbuf can be accessed with the crash(lM) command. If the destination charac­
ter begins with "~,, (a caret), output goes to the console. If no destination charac­
ter is specified, the message is directed to both the putbuf array and the console.
CIOn_err appends eachftnt with "\n," except for the CE_CONT level, even when a
message is sent to the putbuf array.

ARCS specifies a set arguments passed when the message is displayed.

STREAMS Error and Trace Logging

STREAMS error and trace loggers are provided for debugging and for administer­
ing STREAMS modules and drivers. This facility consists of log(7), strace(lM),
strc1ean(lM), strerr(lM), and the str10g function.

Any module or driver in any Stream can call the STREAMS logging function
str1og, described in log(7). When called, str10g sends formatted text to the
error logger strerr(lM), the trace logger strace(lM), or the console logger.

Debugging STREAMS Drivers 4-19

Figure 4·1: Error and Trace Logging

Module
- ~ Driver

Module

strerr is intended to operate as a daemon process initiated at system startup. A
call to strlog requesting an error to be logged causes an M_PROTO message to be
sent to strerr, which formats the contents and places them in a daily file. The
utility strclean(lM) is provided to purge daily log files that have not been
modified for three days.

A call to strlog requesting trace information to be logged causes a similar
M_PROTO message to be sent to strace(lM), which places it in a user designated
file. strace is intended to be initiated by a user. The user can designate the
modules/drivers and severity level of the messages to be accepted for logging by
strace.

A user process can submit its own M_PROTO messages to the log driver for inclu­
sion in the logger of its choice through putmsg(2). The messages must be in the
same format required by the logging processes and will be switched to the
logger(s) requested in the message. /'

The output to the log files is formatted, ASCII text. The files can be processed by
standard system commands such as grep(l) or ed(l), or by developer-provided
routines.

4·20 Driver Testing and Debugging

Driver Debugging Techniques

Kernel Print Statements

There are, of course, limitations in debugging and testing device drivers. If the
kernel debugger, kdb, is not available, print statements inside the driver are the
primary method used. Because the print statements are written by the kernel,
there is no way to redirect the output to a file or to a remote terminal. Using print
statements also modifies the timing of driver code execution, which may change
the behavior of problems you are investigating. Print statements in the driver can
be made more efficient by using an ioctl to set one or more levels of debugging
output. This way you can write a simple user program to turn the print output on
or off as needed.

System Panics

If you expect that the driver could enter a state that is invalid, the driver can halt
the system by using the cmn_err function with a panic flag set. For example, if
the driver expects one of three specific cases in a switch statement, the driver can
add a fourth default case that calls the cmn_err function. The system will dump
an image of memory for later analysis. If the error is recoverable, the driver
should not panic the system. An example of panicking using cmn_err is

CInn_err(CE_PANIC, "Your system has panicked, DEV_NAME error!");

Taking a System Dump

In the event a panic occurs, there may be some value in examining the dump
produced by the system. Because UNIX System V uses the same physical hard
disk partition for both "swap" and "dump," it is important that you do not reboot
to the multiuser state before examining the dump. If the system reaches multiuser
state, the dump may be overwritten by system paging.

To examine the dump, the dump image must be saved. If the root partition does
not have enough space to save the crash dump, the following message will appear.

Driver Debugging Techniques 4-21

Need nnnnK to save crash dump.
Root has only XXXXK free.
F - write to floppy disk
T - write to tape
S - spawn a shell

X - skip it

You may then proceed in whatever manner you prefer.

~ We recommend that you write your crash dump to tape.

y
When the system reboots and detects a dump image, it will copy the dump image
from the swap/d~ area to the file crash.MMDD in the /crash directory;
where MM is the month, and DD is the day. If a crash file already exists in the
/crash directory, another crash file is created with a .1, .2, .3, and so forth
appended to the file name. A corresponding symbol file, sym.MMDD is also
saved in the /crash directory.

Before the dump image is saved, the following message appears on the console.

Saving nnnnK crash d~ in crash.MMDD

where nnnn is the size of the dump in KB. After the dump image is saved, the
console displays the following message, Done, and the system continues its start­
up procedure.

You can use the crash command to examine the dump as follows.

crash -d dump-file -n symbol-file

or you can use the kcrash command to examine the dump as follows.

kcrash dump-file symbol-file

Consult the crash(lM) and kcrash(lM) manual pages in the UNIX System V
Command Reference for information on how to use crash and kcrash to examine
the UNIX operating system kernel and user process status at the time of the
panic.

Note that the procedures to examine a memory dump only apply to systems that
have completed the dump sequence, usually in response to a panic. The prompt
that you may see after an improper shutdown only indicates that the system was
not properly brought down and a dump may exist. If the system is inadvertently
powered down or reset, or if your device driver causes the kernel to hang or go

4·22 Driver Testing and Debugging

berserk without ever executing a panic, no dump will have been taken.
Remember, the system will only do a dump when you have properly detected an
error and executed the panic function inside your driver or when your driver has
caused a system error detected by the kernel or some other driver causing it to
panic.

At this point, it might be well to repeat the advice stated in the introduction:

Writing a device driver carries a heavy responsibility. As part of the UNIX system
kernel, it is assumed to always take the correct action. Few limits are placed on
the driver by the other parts of the kernel, and the driver must be written to never
compromise the system's stability.

Driver Debugging Techniques 4-23

Kernel Debugger

An extremely useful tool for debugging device drivers is the kernel debugger (­
kdb). Refer to the kdb(l) manual page in the Command Reference for more detail
and a complete list of commands for the kdb utility.

kdb can set breakpoints, display kernel stack traces and various kernel structures,
and modify the contents of memory, I/O, and registers. The debugger supports
basic arithmetic operations, conditional execution, variables, and macros. kdb
does conversions from a kernel symbol name to its virtual address, from a virtual
address to the value at that address, and from a virtual address to the name of the
nearest kernel symbol. You have a choice of different numeric bases, address
spaces, and operand sizes.

You can invoke the debugger by using the kdb command or the
sysi86 (SI86TODEMON) system call, or by pressing CTRL-ALT-d (from the console
only) on an AT-bus system, or by typing the interrupt character (from the console
only) on a Multibus system. In addition, kdb is entered automatically under vari­
ous conditions, such as panics and breakpoint traps. Any time the kdb» prompt
appears, you are in the debugger. I/O is performed through the console or a
serial terminal.

To exit the debugger, press CTRL-d or q.

When you exit and re-enter the debugger, its state is preserved, including the con­
tents of the value stack.

kdb is an extremely powerful tool, and should be used carefully to avoid acciden­
tal corruption of kernel data structures, which could lead to a system crash. kdb
has few provisions for preventing programmer error.

r::l The kernel debugger is not meant for debugging user programs. Use an y appropriale user-level debugger, such as sdb(1}, for Ihal purpose.

kdb must exist in your kernel before you can use it Gust like any device driver).

kdb prints and accepts address inputs symbolically, using kernel procedure and
variable names instead of hexadecimal numbers, but you must load the debugger
with the kernel's symbols after the debugger itself has been installed into the ker­
nel. You can do this by using the unixsyms command, which loads the symbols
into the kernel executable file after building it and before booting it. Normally,
this will be done automatically for you by idbuild(lM).

4-24 Driver Testing and Debugging

The symbols must be loaded before the system panics (or you enter the ker­
nel debugger for some other reason) for them to be useful. You cannot load
the kernel symbols while in the debugger.

Entering kdb from a Driver

If you are debugging a device driver or another part of the kernel, you can directly
invoke the kernel debugger by including this code in your driver.

#include <sys/xdebug.h>
(*cdebugger) (DR_OTHER, NO_FRAME);

DR_OTHER tells kdb that the reason for entering is "other." See sys/xdebug. h for
a list of other reason codes.

Note that this mechanism cannot be used for debugging early kernel startup code
or driver init routines, since the debugger cannot be used until its init routine
(kdb_init) has been called.

Kernel Debugger 4-25

GLGlossary

Glossary GL-1

Table of Contents

Glossary

The following is a list of terms used throughout the Device Driver Programming
document set:

alignment

ARP

asmmacro

asynchronous

automatic calling unit (ACU)

base level

block and character interface

block data transfer

Glossary

The position in memory of a unit of data, such
as a word or half-word, on an integral boun­
dary. A data unit is properly aligned if its
address is evenly divisible by the data unit's
size in bytes. For example, a word is correctly
aligned if its address is divisible by four. A
half-word is aligned if its address is divisible
by two.

Address Resolution Protocol

The macro that defines system functions used
to improve driver execution speed. They are
assembler language code sections (instead of C
code).

An event occurring in an unpredictable
fashion. A signal is an example of an asyn­
chronous event. A signal can occur when
something in the system fails, but it is not
known when the failure will occur.

A device that permits processors to dial calls
automatically over the communications net­
work.

The code that synchronously interacts with a
user program. The driver's initialization and
switch table entry point routines constitute the
base leveL Compare interrupt level.

A collection of driver routines, kernel func­
tions, and data structures that provide a stan­
dard interface for writing block and character
drivers.

The method of transferring data in units
(blocks) between a block device such as a mag­
netic tape drive or disk drive and a user pro­
gram.

GL-1

block device switch table

block device

block driver

block I/O

block

boot device

bootable object file

bootstrap

boot

GL-2

The table constructed during automatic
configuration that contains the address of each
block driver entry point routine [for example,
open(D2DK), close(D2DK),
strategy(D2DK)]. This table is called bdevsw
and its structure is defined in conf .h.

A device, such as a magnetic tape drive or
disk drive, that conveys data in blocks
through the buffer management code. Com­
pare character device.

A device driver, such as for a magnetic tape
device or disk drive, that conveys data in
blocks through the buffer management code
(for example, the buf structure). One driver is
written for each major number employed by
block devices.

A data transfer method used by drivers for
block access devices. Block I/O uses the sys­
tem buffer cache as an intermediate data
storage area between user memory and the
device.

The basic unit of data for I/O access. A block
is measured in bytes. The size of a block
differs between computers, file system sizes,
or devices.

The device that stores the self-configuration
and system initialization code and necessary
file systems to start the operating system.

A file that is created and used to build a new
version of the operating system.

The process of bringing up the operating sys­
tem by its own action. The first few instruc­
tions load the rest of the operating system into
the computer.

The process of starting the operating system.
The boot process consists of self-configuration
and system initialization.

Glossary

buffer

cache

called DLS user

calling DLS user

canonical processing

character device

character driver

character 1/ 0

CLNS

Glossary

A staging area for input-output (I/O)
processes where arbitrary-length transactions
are collected into convenient units for system
operations. A buffer consists of two parts: a
memory array that contains data from the disk
and a buffer header that identifies the buffer.

A section of computer memory where the
most recently used buffers, i-nodes, pages, and
so on are stored for quick access.

The DLS user in connection mode that
processes requests for connections from other
DLSusers.

The DLS user in connection mode that initiates
the establishment of a data link connection.

Terminal character processing in which the
erase character, delete, and other commands
are applied to the data received from a termi­
nal before the data is sent to a receiving pro­
gram. Other terms used in this context are
canonical queue, which is a buffer used to
retain information while it is being canonically
processed, and canonical mode, which is the
state where canonical processing takes place.
Compare raw mode.

A device, such as a terminal or printer, that
conveys data character by character. Compare
block device.

The driver that conveys data character by
character between the device and the user pro­
gram. Character drivers are usually written
for use with terminals, printers, and network
devices, although block devices, such as tapes
and disks, also support character access.

The process of reading and writing to/from a
terminal.

Connectionless Network Service, the
datagram version of the OSI network layer

GL-3

clone driver

communication endpoint

connection establishment

connection management stream

connection mode

A software driver used by STREAMS drivers
to select an unused minor device number, so
that the user process does not need to specify
it.

The local communication channel between a
DLS user and DLS provider.

The phase in connection mode that enables
two DLS users to create a data link connection
between them.

A special stream that will receive all incoming
connect indications destined for Data Link
Service Access Point (DLSAP) addresses that
are not bound to any other streams associated
with a particular Physical Point of Attachment
(PPA).

A circuit-oriented mode of transfer in which
data is passed from one user to another over
an established connection in a sequenced
manner.

connection release The phase in connection mode that terminates
a previously established data link connection.

connectionless mode A mode of transfer in which data is passed
from one user to another in self-contained
units with no logical relationship required
among the units.

control and status register (CSR) Memory locations providing communication
between the device and the driver. The driver
sends control information to the CSR, and the
device reports its current status to it.

controller The circuit board that connects a device, such
as a terminal or disk drive, to a computer. A
controller converts software commands from a
driver into hardware commands that the
device understands. For example, on a disk
drive, the controller accepts a request to read a
file and converts the request into hardware
commands to have the reading apparatus
move to the precise location and send the
information until a delimiter is reached.

GL-4 Glossary

critical code

CSMA/CD

cyclic redundancy check (CRC)

data structure

data terminal ready (DTR)

data transfer

DDI/DKI

demand paging

device number

Glossary

A section of code is critical if execution of arbi­
trary interrupt handlers could result in con­
sistency problems. The kernel raises the pro­
cessor execution level to prevent interrupts
during a critical code section.

Carrier Sense Multiple Access/Collision
Detection

A way to check the transfer of information
over a channel. When the message is received,
the computer calculates the remainder and
checks it against the transmitted remainder.

The memory storage area that holds data
types, such as integers and strings, or an array
of integers. The data structures associated
with drivers are used as buffers for holding
data being moved between user data space
and the device, as flags for indicating error
device status, as pointers to link buffers
together, and so on.

The signal that a terminal device sends to a
host computer to indicate that a terminal is
ready to receive data.

The phase in connection and connectionless
modes that supports the transfer of data
between two DLS users.

Device Driver Interface/Device Kernel Inter­
face

A memory management system that allows
unused portions of a program to be stored
temporarily on disk to make room for
urgently needed information in main memory.
With demand paging, the virtual size of a pro­
cess can exceed the amount of physical
memory available in a system.

The value used by the operating system to
name a device. The device number contains
the major number and the minor number.

GL-5

dev t

diagnostic

DLIDU

DLM

DLPI

DLS provider

DLS user

DLS

DLSAP address

DLSAP

DLSDU

downstream

driver entry points

driver routines

GL-6

The C programming language data type
declaration that is used to store the driver
major and the minor device numbers.

A software routine for testing, identifying, and
isolating a hardware error. A message is gen­
erated to notify the tester of the results.

Data Link Interface Data Unit. A grouping of
DLS user data that is passed between a DLS
user and the DLS provider across the data link
interface. In connection mode, a DLSDU may
consist of multiple DLIDUs.

Dynamically Loadable Modules

Data Link Provider Interface

The data link layer protocol that provides the
services of the Data Link Provider Interface.

The user-level application or user-level or
kernel-level protocol that accesses the services
of the data link layer.

Data Link Service

An identifier used to differentiate and locate
specific DLS user access points to a DLS pro­
vider.

A point at which a DLS user attaches itself to a
DLS provider to access data link services.

Data Link Service Data Unit. A grouping of
DLS user data whose boundaries are
preserved from one end of a data link connec­
tion to the other.

The direction of STREAMS messages flowing
through a write queue from the user process
to the driver.

Driver routines that provide an interface
between the kernel and the device driver.

See routines.

Glossary

driver

DSAP

EDLIDU

error correction code (ECC)

expedited data transfer

FDDI

function

initialization entry points

interface

interprocess communication (IPC)

interrupt level

Glossary

The set of routines and data structures
installed in the kernel that provide an interface
between the kernel and a device.

Destination Service Access Point

Expedited Data Link Interface Data Unit

A generic term applied to coding schemes that
allow for the correction of errors in one or
more bits of a word of data.

A DLPI service that transfers data subject to
separate flow control than that applying to
normal data transfer. The service is intended
to deliver the data ahead of any DLSDUs that
may be in transit.

Fiber Distributed Data Interface

A kernel utility used in a driver. The term
function is used interchangeably with the term
kernel function. The use of functions in a
driver is analogous to the use of system calls
and library routines in a user-level program.

Driver initialization routines that are executed
during system initialization [for example,
init(D2D), start(D2DK)].

The set of data structures and functions sup­
ported by the UNIX kernel to be used by
device drivers.

A set of software-supported facilities that
enable independent processes, running at the
same time, to share information through mes­
sages, semaphores, or shared memory.

Driver interrupt routines that are started when
an interrupt is received from a hardware
device. The system accesses the interrupt vec­
tor table, determines the major number of the
device, and passes control to the appropriate
interrupt routine.

GL-7

interrupt priority level (IPL)

interrupt vector

IP

ISO

kernel buffer cache

LLC

loadable module

low water mark

MAC

memory management

message block

GL-8

The interrupt priority level at which the
device requests that the CPU call an interrupt
process. This priority can be overridden in the
driver's interrupt routine for critical sections
of code with the spln(D3D) function ..

Interrupts from a device are sent to the
device's interrupt vector, activating the inter­
rupt entry point for the device.

Internet Protocol

International Organization for Standardiza­
tion

A linked list of buffers used to minimize the
number of times a block-type device must be
accessed.

Logical Link Control, a sub-layer of the data
link layer for media independent data link
functions.

A kernel module (such as a device driver) that
can be added to a running system without
rebooting the system or rebuilding the kernel.

The point at which more data is requested
from a terminal because the amount of data
being processed in the character lists has fallen
creating room for more. It also applies to
STREAMS queues regarding flow control.

Media Access Control, a sub-layer of the data
link layer for media specific data link func­
tions.

The memory management scheme of the
UNIX operating system imposes certain res­
trictions on drivers that transfer data between
devices.

A STREAMS message is made up of one or
more message blocks. A message block is
referenced by a pointer to a mblk_t structure,
which in turn points to the data block
(dblk_t) structure and the data buffer.

Glossary

message

MIB

modem

module

panic

PDU

portable device interface (PDI)

PP A identifier

PPA

prefix

Glossary

All information flowing in a stream, including
transferred data, control information, queue
flushing, errors and signals. The information
is referenced by a pointer to a mblk_t struc­
ture.

Management Information Base

A contraction of modulator-demodulator. A
modulator converts digital signals from the
computer into tones that can be transmitted
across phone lines. A demodulator converts
the tones received from the phone lines into
digital signals so that the computer can pro­
cess the data.

A STREAMS module consists of two related
queue structures, one each for upstream and
downstream messages. One or more modules
may be pushed onto a stream between the
stream head and the driver, usually to imple­
ment and isolate a line discipline or a com­
munication protocol. virtual to physical
memory.

The state where an unrecoverable error has
occurred. Usually, when a panic occurs, a
message is displayed on the console to indi­
cate the cause of the problem.

Protocol Data Unit

A collection of driver routines, kernel func­
tions, and data structures that provide a stan­
dard interface for writing block drivers.

An identifier of a particular physical medium
over which communication transpires.

The point at which a system attaches itself to a
physical communications medium.

A character name that uniquely identifies a
driver's routines to the kernel. The prefix
name starts each routine in a driver. For
example, a RAM disk might be given the ramd
prefix. If it is a block driver, the routines are

GL-9

priority message

quality of service (QOS)

queue

rawI/O

raw mode

read queue

routines

SAP

SCSI driver interface (SDI)

GL·10

ramdopen,ramdclose,ramdstrategy, and
ramdprint.

STREAMS messages that must move through
the stream quickly are classified as priority
messages. They are placed at the head of the
queue for processing by the srv(D2DK) rou­
tine.

Characteristics of transmission quality
between two DLS users.

A data structure, the central node of a collec­
tion of structures and routines, which makes
up half of a STREAMS module or driver. Each
module or driver is made up of one queue
each for upstream and downstream messages.
Location: stream.h.

Movement of data directly between user
address spaces and the device. Raw I/O is
used primarily for administrative functions
where the speed of a specific operation is more
important than overall system performance.

The method of transmitting data from a termi­
nal to a user without processing. This mode is
defined in the line discipline modules.

The half of a STREAMS module or driver that
passes messages upstream.

A set of instructions that perform a specific
task for a program. Driver code consists of
entry-point routines and subordinate routines.
Subordinate routines are called by driver
entry-point routines. The entry-point routines
are accessed through system tables.

Service Access Point, conceptually the "point"
at which a layer in the OSI model make its ser­
vices available to the layer above it.

A collection of machine-independent
input/ output controls, functions, and data
structures, that provide a standard interface
for writing Small Computer System Interface
(SCSI) drivers.

Glossary

SDU

semantic processing

Service Data Unit

Semantic processing entails input validation of
the characters received from a character
device.

small computer system interface (SCSI)
The American National Standards Institute
(ANSI) approved interface for supporting
specific peripheral devices.

SNMP Simple Network Management Protocol

Source Code Control System (SCCS)

special device file

SSAP

stream end

stream head

STREAMS

stream

Glossary

A utility for tracking, maintaining, and con­
trolling access to source code files.

The file that identifies the device's access type
(block or character), the external major and
minor numbers of the device, the device name
used by user-level programs, and security con­
trol (owner, group, and access permissions)
for the device.

Source Service Access Point

The stream end is the component of a stream
farthest from the user process, providing the
interface to the device. It contains pointers to
driver (rather than module) routines.

Every stream has a stream head, which is
inserted by the STREAMS subsystem. It is the
component of a stream closest to the user pro­
cess. The stream head processes STREAMS­
related system calls and performs the transfer
of data between user and kernel space.

A kernel subsystem used to build a stream,
which is a modular, full-duplex data path
between a device and a user process.

A linked list of kernel data structures provid­
ing a full-duplex data path between a user
process and a device or pseudo-device.

GL-11

switch table entry points

switch table

Driver routines that are activated through
bdevsw or cdevsw tables.

The operating system that has two switch
tables, cdevsw and bdevsw. These tables hold
the entry point routines for character and
block drivers and are activated by I/O system
calls.

synchronous data link interface (SDU)

system initialization

TCP

upstream

A UN-type circuit board that works subordi­
nately to the input! output accelerator (lOA).
The SDU provides up to eight ports for full­
duplex synchronous data communication.

The routines from the driver code and the
information from the master file that initialize
the system (including device drivers).

Transmission Control Protocol, a connection
oriented transport in the Internet suite

The direction of STREAMS messages flowing
through a read queue from the driver to the
user process.

user space The part of the operating system where pro­
grams that do not have direct access to the
kernel structures and services execute. The
UNIX operating system is divided into two
major areas: the user program and the kernel.
Drivers execute in the kernel, and the user
programs that interact with drivers generally
execute in the user program area. This space
is also referred to as user data area.

volume table of contents (VTOC) Lists the beginning and ending points of the
disk partitions by the system administrator for
a given disk.

write queue The half of a STREAMS module or driver that
passes messages downstream.

GL·12 Glossary

IN Index

Index IN-1

Table of Contents

Index

A
administration loadable modules

3:40
asm macros GL: 1

Asynchronous GL: 1

auto load 2: 4

auto unload 2: 5

B
Base level GL: 1

base-level operation 1: 28

basic steps 1: 35

bci 1: 11
biodone function 1: 34
block and character interface 1: 11
Block and character interface GL: 2

Block device GL: 1

Block device switch table GL: 2

Block driver GL: 2

Boot device GL: 2

Bootable object file GL: 2

buffer header 1: 31
buffer set up 1 : 30
buffer usage routines 1: 17

building a new kernel 3: 34

c
C optimizer bugs 4: 7

Cache GL: 3

calling device driver routines 1: 6

calling user process returning errors
to 1: 30

cannot boot with new kernel 3: 35

cc -0 problems with older versions
4:7

Index

Character access block device GL: 3

Character driver GL: 3

character interface 1: 11
Character I/O schemes GL: 3

check for valid block 1: 33

checking the system configuration
3: 31

Clone driver GL: 3

close routine 1: 34
CIOn_err function debug statements in

a driver 4: 3

coding problems 4: 7

commands DSP 3: 31
commands idtools 3: 3

commands kdb 4: 24

common driver problems 4: 7

components DSP 3: 11

compver 3: 12

configuration checking the system
3: 31

configuration device driver 3: 40
configuring a device driver 1: 23

configuring loadable modules 2: 17

control status register (CSR) 4: 11

Controller GL: 4

copyright 3: 12

core memory saving an image 4: 12

crash 4: 12

crash dis command 4: 3,14
crash driver debugging 4: 12

crash functions 4: 13
crash initializing 4: 13
crash ad command 4: 14
crash proc command 4: 14
crash stack command 4: 14
crash stat command 4: 14
crash STREAMS debugging 4: 15

IN-1

crash trace command 4: 14
Critical code GL: 4

critical code checking 4: 9

o
Data structures GL: 5

data structures problems 4: 8

Data transfer block data GL: 1

data transfer routines 1: 18

debugger kdb 4: 24

debugging drivers 4: 1

debugging drivers accessing critical
data 4: 9

debugging drivers C optimizer bugs
4:7

debugging drivers coding problems
4:7

debugging drivers common problems
4:7

debugging drivers corrupted interrupt
stack 4: 9

debugging drivers data structure prob­
lems 4: 8

debugging drivers general guidelines
4:2

debugging drivers if TEST and endif
statements 4: 4

debugging drivers incorrect DMA
address mapping 4: 10

debugging drivers initializing crash
4: 13

debugging drivers installation prob­
lems 4: 7

debugging drivers order of debugging
by routine 4: 2

debugging drivers overusing local
driver storage 4: 9

debugging drivers preparation 4: 2

debugging drivers STREAMS drivers
4: 18

IN·2

debugging drivers timing errors 4: 9

debugging drivers using cmn_err to
print debug statements 4: 3

debugging drivers using crash 4: 12
debugging loadable modules 2: 19

debugging techniques 4: 21
demand load 2: 4

Demand paging GL: 5

demand unload 2: 4

depend 3: 12
developing a device driver 1: 35

device driver description 1: 4

device drivers accessing critical data
4:9

device drivers basic steps 1: 35

device drivers block and character
1: 11

device drivers common problems 4: 7

device drivers configuration 1: 23,

3:40

device drivers corrupted interrupt
stack 4: 9

device drivers data structure prob­
lems 4: 8

device drivers debugging techniques
4: 21

device drivers development 1: 35

device drivers documenting 3: 37

device drivers entering kdb 4: 25

device drivers environment 1: 23

device drivers functions 1: 37

device drivers guidelines for writing
1: 8

device drivers in kernel 1: 4, 8

device drivers incorrect DMA address
mapping 4: 10

device drivers initialization 1: 26

device drivers installation 1: 23

device drivers installation problems
4:7

device drivers interfaces 1: 11
device drivers layered structure 1: 37

Index

device drivers loadable modules 2: 1

device drivers making modules load­
able 2: 6

device drivers overuse of local driver
storage 4: 9

device drivers packaging 3: 28

device drivers preparing to debug
4:2

device drivers routines 1: 6

device drivers sample wrapper code
2:9

device drivers structure 1: 6

device drivers testing and debugging
4: 1

device drivers timing errors 4: 9

device drivers tuning 3: 38

device drivers types 1: 10

device drivers using board intelli­
gence 1: 38

device drivers using crash to debug
4: 12

device drivers versus application 1: 6

device drivers writing 1: 6

Device number GL: 5

dev t GL: 5

Diagnostics GL: 6

direct memory access (DMA) 4: 10

direct memory access (DMA) incorrect
address mapping 4: 10

dis produce disassembly listing 4: 3

DLM 2: 1

DLM search path modifying 2: 18

documenting driver code 1: 36

documenting drivers 3: 37

Downstream GL: 6

Driver GL: 6

driver code common problems 4: 7

driver code documenting 1: 36

driver debugging techniques 4: 21

driver entry points 1: 14

Driver entry points GL: 6

driver header files 1: 25, 27

Index

driver initialization errors 4: 8

driver installation common problems
4: 7

driver problems 4: 7

Driver routines GL: 6

driver software package 3: 10

driver storage overuse of 4: 9

driver structures corrupted kernel data
structures 4: 8

driver testing and debugging 4: 1

Driver.o 3: 19

DSP 3: 10

DSP commands and procedures 3: 31

DSP component files 3: 11

DSP component overview 3: 15

DSP components 3: 13

DSP installing 3: 30, 32

DSP optional components 3: 12

DSP optional installation scripts 3: 13

DSP removing 3: 30, 33

DSP required components 3: 11

DSP updating 3: 33

dummy driver 4: 11

dynamic symbols 2: 20

dynamically loadable modules 2: 1

E
emergency recovery kernel will not

boot 3: 35

enhancements idtools 3: 2

entry points 1: 14

entry points initialization 1: 14

entry points interrupt 1: 16

entry points switch table 1: 15

Error correction code (ECC) GL: 7

error handling routines 1: 21

error messages loadable modules
2: 19

event synchronization routines 1: 19

IN-3

F
file system module sample wrapper

code 2: 12

function biodone 1: 34

Functions GL: 7

functions panic 4: 21

G
global variables 4: 8

H
hardware devices 1: 10

hardware testing 4: 11

HBA driver sample wrapper code
2: 10

Header files failure to include 4: 7

idbuild 3: 4, 31,34

idcheck 3: 5, 31

idinstall 3: 5, 31-32

id.mkinit 3: 6

idmknod 3: 6

idspace 3: 7

idtools enhancements 3: 2

idtools using 3: 2

idtools utilities and commands 3: 3

idtune 3: 7, 38

Init 3: 21

init responsibilities 1: 28

ini t routine 1: 26

init routine initialization problems
due to errors in 4: 8

ini t routine pseudo-code 1: 26

initialization 1: 26

initialization entry points 1: 14

Initialization entry points GL: 7

IN-4

initialized global variables 4: 8

installaing a DSP 3: 30

installation common problems 4: 7

installation problems 4: 7

installing a device driver 1: 23

installing a driver for testing 4: 5

installing a DSP 3: 32

installing a loadable module 2: 16

Integrated disk file controller (IDFC)
GL: 8

intelligent hardware components
1: 38

Interface GL: 7

interfaces 1: 11

Interprocess communication (IPC)
GL: 7

interrupt entry points 1: 16

interrupt handling routines 1: 20

Interrupt level GL: 7

Interrupt priority level (lPL) GL: 7

interrupt stack if corrupted 4: 9

Interrupt vector GL: 8
interrupts 1: 8, 4: 9

introduction 1: 3

1/ 0 block GL: 2

I/O character GL: 3

1/ 0 control routines 1 : 20

I/O raw GL: 10

1/ 0 subsystem 1: 4

K
kdb 2: 20

kdb 4: 24

kdb entering from a driver 4: 25

kernel 1: 4

Kernel buffer cache GL: 8

kernel debugger 4: 24

kernel parameters modifying 3: 38

kernel print statements 4: 21

kernel rebooting with a new 3: 35

Index

kernel utilities 1: 14

kernel utility routines 1: 17

kewnel building a new 3: 34

L
layered structure 1: 37

load process for DLM 2: 3

loadable drivers 3: 40

loadable modules 2: 1

loadable modules administration
3:40

loadable modules checking before ins-
tallation 2: 15

loadable modules configuring 2: 17

loadable modules debugging 2: 19

loadable modules difference from
static 2: 2

loadable modules error messages
2: 19

loadable modules installing 2: 16

loadable modules load process 2: 3

loadable modules loading 2: 18

loadable modules making modules
loadable 2: 6

loadable modules Master file
definitions 2: 14

loadable modules mechanism 2: 2

load able modules Mtune definitions
2: 15

loadable modules packaging 2: 13

loadable modules querying status
2: 18

loadable modules removing 2: 16

loadable modules System file
definitions 2: 14

loadable modules tuning 2: 16

loadable modules types 2: 2

loadable modules unload process 2: 3

loadable modules unloading 2: 19

loadable modules wrapper code 2: 6

Index

loading a loadable module 2: 18

Low water mark GL: 8

M
major numbers 1: 13

making modules loadable 2: 6

Master 3: 19

Master file 1: 24

Master file definitions for load able
modules 2: 14

Master file missing information 4: 7

mdevice 1: 24

memory allocation 1: 27

Memory management GL: 8

Message block GL: 9

messages 1 : 27

mfsys 3: 3

minor number validating 1: 29

minor numbers 1: 13

miscellaneous module sample
wrapper code 2: 13

modadmin 3: 40

modifying a kernel parameter 3: 38

modifying DLM search path 2: 18

Modstub.o 3: 28

Mtune 3: 22, 38

Mtune definitions loadable modules
2: 15

N
new kernel will not boot 3: 35

Node 3: 23

o
open routine 1: 29

open routine pseudo-code 1: 29

open routine responsibilities 1: 31

IN-S

optional OSP components 3: 12

optional OSP installation scripts 3: 13

overview OSP components 3: 15

p
package objects 3: 11

packaging a driver 3: 28

packaging loadable modules 2: 13

Panic GL: 9

panic analysis 4: 12

panic function 4: 21

panic recovery 4: 12

parallel execution 1: 7

POI 1: 12

performance monitoring 4: 4

pkgadd 3: 10

pkginfo 3: 10, 12, 16

pkgnn 3: 10

Portable Device Interface (POI) 1: 12

Portable device interface (POI) GL: 9

post install 3: 17
preparing a driver for debugging 4: 2

preremove 3: 18

Priority message GL: 10

procedures OSP 3: 31

prototype 3: 12, 15

Q
querying module status 2: 18
queue structure GL: 10

R
Raw I/O GL: 10

Rc 3: 24

read queue GL: 10

read routine problems due to cor­
rupted kernel data structures 4: 8

IN·6

reading and writing data 1: 33

rebooting with a new kernel 3: 35

recovery new kernel will not boot
3:35

removing a OSP 3: 30, 33

removing loadable modules 2: 16

required components OSP 3: 11

returning errors to calling user pro-
cess 1: 30

routine close 1: 34

routine init 1: 26

routine open 1: 29

routine order of writing and debug-
ging 4: 2

routine strategy 1: 32

routines buffer usage 1: 17
routines calling 1: 6

routines data transfer 1: 18
routines error handling 1: 21

routines event synchronization 1: 19

routines interrupt handling 1: 20

routines I/O control 1: 20

s
sample block driver 1: 26

sample Master file 3: 20

sample Mtune file 3: 23

sample Node file 3: 24

sample pkginfo file 3: 16

sample post install script 3: 17
sample preremove script 3: 19

sample prototype file 3: 15

sample Rc script 3: 24

sample Sassign file 3: 25

sample Space. c file 3: 26

sample Stubs. c file 3: 28

sample System file 3: 21

sample wrapper code 2: 9

sample wrapper code device driver
2:9

Index

sample wrapper code file system
module 2: 12

sample wrapper code HBA driver
2: 10

sample wrapper code miscellaneous
module 2: 13

sample wrapper code STREAMS
module 2: 11

Sassign 3: 25

saving the core image of memory
4: 12

SCSI driver interface (SDI) GL: 10

Sd 3: 25

sdevice 1: 24

Semantic processing GL: 11

setting up a buffer 1: 30

sfsys 3: 3
Small Computer System Interface

(SCSI) GL: 11

software devices 1: 10

Source Code Control System (SCCS)
GL: 11

space 3: 12

Space. c 3: 26

special file 1 : 5

stack 4: 14

stack frames 4: 14

stack interrupt 4: 9

start routine initialization problems
due to errors in 4: 8

static drivers 3: 40

static modules 2: 2

strategy routine 1: 32

strategy routine pseudo-code 1: 32

Stream GL: 11

Stream end GL: 11

Stream head GL: 11

STREAMS GL: 11

STREAMS debugging 4: 18

STREAMS debugging crash 4: 15

STREAMS debugging error and trace
logging 4: 19

Index

STREAMS interface 1: 11

STREAMS module sample wrapper
code 2: 11

structure 1: 6

Stubs. c 3: 27

Switch table GL: 11

switch table entry points 1: 15

Switch table entry points GL: 12

System 3: 20

system boot failure due to driver ins-
tallation 4: 7

system configuration checking 3: 31

system dump 4: 21

System file 1: 24

System file definitions for loadable
modules 2: 14

System initialization GL: 12

system panics 4: 21

T
testing drivers 4: 1

testing drivers common problems 4: 7

testing drivers corrupted interrupt
stack 4: 9

testing drivers data structure prob-
lems 4: 8

testing drivers dummy driver 4: 11

testing drivers general guidelines 4: 2

testing drivers installation problems
4:7

testing drivers test options 4: 3

testing drivers timing errors 4: 9

testing installing a driver for 4: 5

testing the hardware 4: 11

timing errors 4: 9

tuning a loadable module 2: 16

tuning device drivers 3: 38

types of device drivers 1: 10

IN-7

u
uninstalling a DSP 3: 3D, 33

unload process for DLM 2: 3

unloading loadable modules 2: 19

updating a DSP 3: 33

Upstream GL: 12

using idf66ls 3: 2

utilities idtools 3: 3

v
valid block check for 1: 33

validating minor device number 1: 29

value of initialized global variables
4:8

Volume table of contents (VTOe)
GL: 12

w
wrapper code for DLM 2: 6

wrapper data structures 2: 8

wrapper functions 2: 6

wrapper macros 2: 8

write routine problems due to cor­
rupted kernel data structures 4: 8

writing data 1: 33

IN-S Index

UNIX® SVR4.2 PUBLISHED BOOKS

----User's Series----

Guide to the UNIX® Desktop
User's Guide

--Administration Series--

Basic System Administration
Advanced System Administration
Network Administration
Audit Trail Administration
PC Interface™ Administration

--Programming Series--

UNIX® Software Development Tools
Programming in Standard C
Programming with UNIX® System Calls
Character User Interface Programming
Graphical User Interface Programming
Network Programming Interfaces
Portable Device Interface (POI)
Device Driver Programming
STREAMS Modules and Drivers

---Reference Series---

Command Reference (a-I)
Command Reference (m-z)
Operating System API Reference
Windowing System API Reference
System Files and Devices Reference
Device Driver Reference

PROGRAMMING

New for UNIX® System V Release 4.2, Device Driver Programming eontains the latest
information for writing, installing, and testing UNIX System V device drivers. This
guide provides an in-depth explanation of new SVR4.2 features such as dynamically
loadable kernel modules, the new device driver installation tools, and the new system
configuration file formats. Topics include:

Basic concepts of writing a UNIX System V device driver

Using the block and character device driver entry points and kernel utility
functions

Learning how to make your device drivers loadable, so you can add your drivers
to a running system without rebuilding the kernel, and without having to bring the system
down to reboot it (includes sample coding for allioadable module types, including
device drivers, STREAMS modules and drivers, and Host Bus Adapter drivers)

Packaging and installing device drivers (and other types of kernel modules)
using the new SVR4.2 driver installation tools

Understanding the new SVR4.2 system configuration file formats used to link
device drivers to the rest of the kernel, and how they differ from those for previous
UNIX System V releases

Testing and debugging device drivers using the crash and kdb commands

This guide is part of the UNIX System V Programming Series. Other driver-related
titles in this series include:

STREAMS Modules and Drivers - Intended for network and system program­
mers, this guide is the definitive source of information for kernel-level STREAMS pro­
gramming-in both uniprocessor and multiprocessor UNIX System V Release 4 envi­
ronments. STREAMS is a general, flexible facility for development of input/ output ser­
vices in UNIX System V.

Portable Device Interface - New for UNIX System V Release 4.2, this guide
explains the PDI, a new programming interface for developing portable block-oriented
device drivers. The guide presents in-depth information on using the POI to organize,
simplify, and standardize the way Host Bus Adapter, SCSI and non-SCSI target drivers
operate in UNIX System V.

UNIX
PRESS

~, ~

. i
A Prentice ~all Title

ISBN 0-13-042623-7

