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Introduction 

This document, Device Driver Programming, provides information and procedures 
for developing, installing, and testing UNIX® System V device drivers. The intro­
ductory chapter of this guide is intended primarily for programmers writing 
device drivers that use the traditional UNIX system block and character driver 
interfaces. The remaining chapters describe system features and programming 
procedures used by all driver writers, regardless of the kind of interface used 
(block, character, STREAMS, or Portable Device Interface). 

Since the common material in Device Driver Programming does not appear in the 
other two titles in the device driver programming documentation set- STREAMS 
Modules and Drivers and Portable Device Interface (PDI)- readers of the guides for 
these alternate interfaces should also read this guide. 

Contents 

This guide contains four chapters: 

• Chapter 1, "Introduction to Device Drivers" , introduces many of the basic 
concepts a programmer should understand before attempting to write a 
UNIX System V device driver. 

• Chapter 2, "Loadable Modules" , discusses Dynamically Loadable Modules 
(DLM), a feature that allows you to add a device driver to a running system 
without rebooting the system or rebuilding the kernel. The first part pro­
vides an overview of the DLM feature from the driver writer's perspective. 
The second part explains how to convert your non-loadable driver to be 
loadable. 

• Chapter 3, "Driver Installation and Tuning", explains how to install and 
configure device drivers using Installable Driver Tools (also known as 
idtools) and Driver Software Packages (DSPs). Information on tuning 
device drivers is also provided. 

• Chapter 4, "Driver Testing and Debugging", describes the tools that are 
available for testing and debugging a device driver, and discusses some of 
the common errors and some of the symptoms that might identify each. 

A glossary of common UNIX system device driver programming terms and abbre­
viations is also provided. 
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Changes since Previous Release 

Device Driver Programming is a new title that covers many of the topics addressed 
by the "Device Drivers" chapter of the Integrated Software Development Guide 
(ISDG) in previous releases. For Release 4.2, a few sections that formerly 
appeared in this ISDG chapter have been updated and reused. However, the 
majority of the material in Device Driver Programming is entirely new material. 
The most Significant technical changes for Release 4.2 are documented in Chapter 
2, "Loadable Modules", and Chapter 3, "Driver Installation and Tuning". 

References 

The following UNIX System V reference manuals are a recommended supplement 
to this guide: 

• Command Reference (Section 1) 

• Operating System API Reference (Sections 2 and 3) 

• Windowing System API Reference (Section 3 windowing functions) 

• System Files and Devices Reference (Section 4, 5, and 7) 

• Device Driver Reference (Sections Dl - D5) 

These books contain the manual pages for the various commands, system calls, 
library functions, file contents, and devices. Within each book, manual pages are 
grouped numerically by section numbers. Within a section, the pages are sorted 
alphabetically, without regard to the letter that follows the section number. For 
example, the manual pages for Sections 3C, 3E, 31, 3M, 3N, 35, 3W, and 3X are all 
sorted together within Section 3 in the Operating System API Reference. 

Notation Conventions 

The following conventions are observed in this guide: 

• Computer input and output appear in constant width type. This includes 
program code, specific file names and contents, and commands. 

• Substitutable values, such as file or device names that you set and variables, 
appear in italic type. 

Following is an example demonstrating how both constant width font and italics 
are used throughout this guide. 
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Master files contain lines of the form: 

$version version-number 
$entry entry-point-list 
$depend module-name-list 
$modtype loadable-module-type-name 
module-name prefix characteristics order bmaj cmaj 

Chapter Overview 

The remainder of this chapter introduces many of the basic concepts a program­
mer should understand before attempting to write a UNIX System V device 
driver. The chapter gives an experienced C programmer an overview of how to 
write a device driver, by showing 

• how device drivers resemble and differ from application programs 

• different types of device drivers, and what they have in common with each 
other 

• some of the standard driver-to-kernel and driver-to-hardware interface rou-
tines, and where to find additional information about these interfaces 

• the structures used by the system to provide driver entry points 

• methods used to differentiate between devices and subdevices 

• an example driver that illustrates the main components of most drivers and 
what those components typically do 

• some guidelines for developing a driver 
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What Is a Device Driver? 

The UNIX operating system kernel can be divided into two parts: the first part 
manages the file systems and processes, and the second part manages physical 
devices, such as terminals, disks, tape drives, and network media. To simplify the 
terminology, this chapter refers to the first part as "the kernel" (although strictly 
speaking, drivers are part of the kernel too), and refers to the second part, which 
contains the drivers, as "the I/O subsystem." 

Associated with each physical device is a piece of code, called a device driver, 
which manages the device hardware. The device driver brings the device into and 
out of service, sets hardware parameters in the device, transmits data from the 
kernel to the device, receives data from the device and passes it back to the kernel, 
and handles device errors. 

To most application programmers using UNIX System V, a device driver is simply 
part of the operating system. The application programmer is usually concerned 
only with opening and closing files and reading and writing data. These functions 
are accomplished through standard system calls from a high-level language. The 
system call gives the application program access to the kernel, which identifies the 
device containing the file and the type of 1/ 0 request. The kernel then executes 
the device driver routine provided to perform that function. 

Device drivers isolate low-level, device-specific details from the system calls, 
which can remain general and uncomplicated. Because there are so many details 
for each device, it is impractical to design the kernel to handle all possible devices. 
Instead, a device driver is included for each configured device. When a new 
device or capability is added to the system, a new driver must be installed. 

Figure 1-1 shows how a driver provides a link between the user level and the 
hardware level. By issuing system calls from the user level, a program accesses 
the file and process control subsystems, which, in turn, access the device driver. 
The driver provides and manages a path for the data to or from the hardware 
device, and services interrupts issued by the device's controller. 
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Figure 1-1: Driver Placement in the Kernel 

User Level 

I 
I System Call Interface 
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,-------------T-------------
I I Process Control 
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Subsystem I I 
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I Device Drivers 
~---------------------------
I 
I Hardware Control 
I 

Hardware Level 

Every device on a UNIX system looks like a file. In fact, the user-level interface to 
the device is called a "special file." The device special files reside in the /dev 
directory, and a simple 18 will tell you quite a bit about the device. For example, 
the command 18 -1 /dev/1p yields the following information 

crw-rw-rw- 1 root root 4, 0 Ju1 26 12:45 /dev/1p 

This says that the 1p (line printer) is a character type device (the first letter of the 
file mode field is c) and that major number 4, minor number 0 is assigned to the 
device. More will be said about device types, and both major and minor numbers, 
later in this chapter. 

What Is a Device Driver? 1-5 



Application Programs Versus Drivers 

Most applications and drivers are written in the C programming language. How­
ever, there are some major differences between writing a device driver and writ­
ing a program designed to execute at the user level. This section reviews some of 
those differences and introduces some of the system facilities used in driver 
development. 

Structure 

The most striking difference between a driver and a user-level program is its 
structure. An application program is compiled into a single, executable image 
whose top-level structure is determined by a main routine. Subordinate routines 
are called in the sequence controlled by the main routine. 

A driver, on the other hand, has no main routine. Rather, it is a collection of rou­
tines installed as part of the kernel. But if there is no main routine to impose struc­
ture, how do the driver's routines get called and executed? 

Driver routines are called, as needed, in response to system calls or other require­
ments. System data structures, called switch tables, contain the starting addresses 
for the principal routines included in all drivers. In a switch table, there is one 
row for each driver, and one column for each standard routine. The standard rou­
tines are called entry-point routines, referring to the memory address where the 
routine is entered. The kernel translates the arguments of the system call into a 
value used as an index into the switch table. 

For example, when a user process issues a system call to open a file on a device 
that has a driver, the request is directed to the switch table entry for an open of the 
device driver containing the file (see Figure 1-2). This routine is then executed, 
giving the process access to the file. 
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Figure 1-2: How Driver Routines Are Called 
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C 
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Parallel Execution 

When an application program is running, the statements making up the program 
are executed one at a time, in sequential order. Program control structures (loops 
and branches) repeat statements and may branch to alternative sections of code, 
but the important point is that at any given instant only one statement and one 
routine is being executed. This is true even of different instances of a program 
being run by two users at the same time (for example, a text editor). As each pro­
cess is assigned a scheduled slice of CPU time, the statements are executed in the 
order maintained for that invocation of the program. 

Drivers, however, are part of the kernel and must be ready to run as needed at the 
request of many processes. A driver may receive a request to write data to a disk 
while waiting for a previous request to complete. The driver code must be 
designed specifically to respond to numerous requests without being able to 
create a separate executable image for each request (as a text editor does). The 
driver does not create a new version of itself (and its data structures) for each pro­
cess, so it must anticipate and handle contention problems resulting from overlap­
ping 1/ 0 requests. 
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Interrupts 

For the most part, the real work of a device driver is moving data between user 
address space and a hardware device, such as a disk drive or a terminal. Because 
devices are typically very slow compared to the CPU, the data transfer may take a 
relatively long time. To overcome this, the driver normally suspends execution of 
the process until the transfer is complete, freeing the CPU to attend to other 
processes. Then, when the data transfer is complete, the device sends an interrupt, 
which tells the original process that it may resume execution. 

The processing needed to handle hardware interrupts is another of the major 
differences between drivers and application programs. 

Driver As Part of the Kernel 

Application programs, executing at the user level, are limited in the ways they can 
have an adverse impact upon the system. Performance and efficiency considera­
tions are mostly confined to the program itself. An application program can con­
st1lJ1e excessive disk space, but it cannot raise its own priority level to use exces­
sive amounts of processing time, nor does it have access to sensitive areas of the 
kernel or other processes. 

But drivers can and do have much greater impact on the kernel. Inefficient driver 
code can severely degrade overall performance, and driver errors can corrupt or 
bring down the system. For this reason, testing and debugging driver code is par­
ticularly challenging, and must be done carefully. Chapter 4 discusses the facili­
ties available for finding driver errors, as well as some of the special problems that 
are encountered when testing driver code. 

Also, while an application program writer is free (within reasonable limits) to 
declare and use data structures and to use system services, a driver writer is con­
strained in several ways. 

1-8 

• Kernel functions called by the driver generally do not verify the validity of 
passed arguments. Therefore, it is the responsibility of the driver developer 
to check the validity of arguments before passing them to kernel functions. 

• A number of header files, used to declare data types, initialize constants, 
and define system structures, must be included in the driver source code. 
The exact list of header files varies from driver to driver; some of the 
commonly-used header files are described later in this chapter. 
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• Various structure members and device registers must be read or written, 
and usually some system buffering structure must be used. Many of the 
functions defined in the UNIX system Device Driver Interface/Driver­
Kernel Interface (DDI/DKI) are designed to be used with these structures. 
These structures are explained in Section D4, "Kernel Data Structures", of 
the DDI/DKI portion of the Device Driver Reference. 

• Drivers have no access to standard C library routines; however, the routines 
included in the DDI/DKI represent a kind of library and provide some 
functions similar to those found in the standard C library. On the other 
hand, the DDI/DKI also provides many functions that are unlike standard 
C library functions. See Section D3, "Kernel Utility Routines", of the 
DDI/DKI portion of the Device Driver Reference for complete explanations of 
the driver interface routines. 

~ 
Some of the DDI/DKI functions [such as rmalloc(D3DK)] are similar to 

NOTE standard library functions [in this case, malloc(3C)], but have different 
arguments. Serious errors could result if the driver writer does not pay 
attention to such differences. 

• Drivers are invoked by the kernel using a set of system tables and the stan­
dard C function-calling mechanism. Every member of one of these tables is 
a structure containing pointers to the driver's entry point routines. The 
entry point routines make the connection between the calling process and 
the device driver. The entry points, in turn, call the driver functions to ser­
vice the caller's requests. See Section D2, "Driver Entry Point Routines" , of 
the DDI/DKI portion of the Device Driver Reference for complete explana­
tions of the driver entry point routines. 

'_, • Drivers cannot use floating point arithmetic . 

./ 

/ 
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Types of Devices 

So far, interactive terminals and disk drives have been mentioned as two kinds of 
devices that need drivers. These two kinds of devices use very different types of 
drivers. On any UNIX system processor, there are two kinds of devices: hardware 
devices and software, or pseudo-devices. 

Hardware Devices 

Hardware devices include familiar peripherals such as disk drives, tape drives, 
printers, ASCII terminals, and graphics terminals. The list could also include opti­
cal scanners, analog-to-digital converters, robotic devices, and networks. But, in 
reality, a driver never talks to the actual piece of hardware, but to its controller 
board. From the point of view of the driver, the device is usually a controller. 

In some cases, a controller may have only one device connected to it. More often, 
several devices are connected to a single board (for example, eight terminals could 
be connected to a terminal controller). A single driver is used to control that 
board and all similar terminal controllers configured into the system. 

Software Devices 

The "device" driven by a software driver is usually a portion of memory and is 
sometimes called a pseudo-device. The driver's function may be to provide access 
to system structures unavailable at the user level. 

For example, a software device might be a RAM disk, which provides very fast 
access to files by using a part of memory for mass storage. A RAM disk driver is, 
in many ways, similar to a driver for an actual disk drive, but does not have to 
handle the complications introduced by actual hardware. The sample driver 
(shown later in this chapter) is a RAM disk driver. 
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Types of Device Driver Interfaces 

A device driver interface is the set of structures, routines, and optional functions 
used to implement a device driver. UNIX System V Release 4.2 provides three 
device driver interfaces, all of which are based upon a single specification, the 
Device Driver Interface/Driver Kernel Interface (DDI/DKI). 

Block and Character Interface 

Block and character are the two traditional UNIX system device driver interfaces, 
and they correspond to the two basic ways drivers move data. Block drivers, 
using the system buffer cache, are normally written for random-access devices 
such as disk drives and any mass storage devices capable of handling data in 
independently addressable blocks. Character drivers, the typical choice for 
interactive terminals, are normally written for devices that send and receive infor­
mation one character at a time. 

It is the individual device and goal of the implementation, not the device type, 
that determines whether a driver should be the block or character type. For exam­
ple, one driver developer may want to implement a driver for a 9-track tape con­
troller such that file system images on the tape would be mountable, even though 
performance of the tape controller for random block accesses would not be good. 
Another driver developer may choose to view the tape as a device that can only be 
used for sequential storage and retrieval of data, and hence write only a character 
driver. 

Furthermore, one device may have more than one interface. A disk drive, for 
example, may have both a block and character interface. 

The manual pages for the block and character interfaces can be found in the 
DDI/DKI sections of the Device Driver Reference. 

STREAMS Interface 

In some early UNIX system releases, the increasing number of network drivers 
demonstrated one of the major weaknesses of the block and character interface: its 
inability to divide a network's protocols into layered modules. The solution, first 
introduced in UNIX System V Release 3, is called the STREAMS interface. 
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A stream is a structure made up of linked modules, each of which processes the 
transmitted information and passes it to the next module. One of these queues of 
modules connects the user process to the device, and the other provides a data 
path from "'the device to the process. 

The layered structure allows protocols to be stacked and also increases the flexibil­
ity of the interface, making it more likely that modules can be used by more than 
one driver. 

In UNIX System V Release 4 the character-based TTY subsystem was reimple­
mented using STREAMS, and the character-based TTY subsystem is now sup­
ported only for compatibility (its interfaces are not part of the DOI/DKI 
specification). 

For information about STREAMS drivers, refer to the guide STREAMS Modules 
and Drivers. 

The manual pages for the STREAMS interface can be found in the DOI/DKI sec­
tions of the Device Driver Reference. 

Portable Device Interface (POI) 

With Release 4.2, UNIX System V provides an architecture for the development of 
- '> block-oriented device drivers called the Portable Device Interface (PDI). The PDI 

emphasizes the separation of hardware-dependent and hardware-independent 
parts of drivers. It consists of a collection of driver routines, kernel functions, and 
data structures that complement, and are based upon, the DDI/DKI interfaces. 
Included in the PDI is an interface (called SCSI Driver Interface or SDI) for writing 
target drivers to access Small Computer System Interface (SCSI) devices. 

For information about the POI, refer to the guide Portable Device Interface (PDI). 

The manual pages for the Portable Device Interface can be found in the PDI sec­
tions of the Device Driver Reference. 
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Major and Minor Numbers 

Before the operating system can provide access to a device, the driver must be 
installed and a special device file must be created in /dev. 

The special device file contains the major and minor device numbers. 

Major Numbers 

The major number identifies the device class or group, such as a controller for 
several terminals (for example, it tells the kernel which driver's open routine to 
call). The major number is assigned, sequentially, to each device driver by the 

. ';. Installable Driver Tools (idtools) during driver installation. Assignment is made 
by creating an entry in one of the driver's system configuration files, the Master 
file, which is described later in this chapter. 

Character major numbers and block major numbers are assigned separately for 
devices that are exclusively block or character. This means that two separate spe­
cial files for two different device drivers may appear to have the same number 
assigned to them. A device that supports both block and character access (for 
example, the floppy driver), may have different major numbers for the character 
and block device files. 

Minor Numbers 

The minor number identifies a specific device, such as a single terminal. Minor 
numbers are assigned to special files by the driver writer in another system 
configuration file called the Node file (see the Node(4) manual page). 

Minor numbers are typically used to distinguish su~c!evices, but they can aJso be 
used to convey other information. For example, consider a floppy disk controller 
that can read and write data from floppies in several formats, and can also manage ( 
.two floppy drives. When a special file associated with the floppy driver is opened, ( 
the minor number used to open the file must tell the floppy driver both which \ 

) drive to access, and what format to assume for the I/O operation. In this particu- / 
lar case, the least significant bit of the minor numb~r could be us~d to identify the 
drive, and the remaining bits used to indicate the format. 
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Driver Entry Points and Kernel Utilities 

Entry Points 

Drivers are accessed in three ways 

• through system initialization 

• through system calls from user programs 

• through device interrupts 

When the system is initialized, several tables are created so that the system can 
activate the correct driver routine. Because the system uses these tables to deter­
mine the appropriate driver routines to enter, the routines themselves are some­
times referred to as driver entry points. 

Each table is associated with a specific set of entry-point routines. Initialization 
tables are associated with either init(D2D) or start(D2DK) routines. System 
calls use a pair of switch tables whose entry points include open(D2DK), 
close(D2DK), read(D2DK), write(D2DK), and ioctl(D2DK) routines (for char­
acter drivers), and open, close, and strategy(D2DK) routines (for block drivers). 
STREAMS drivers are entered initially through the character switch table, but 
their open, close, put(D2DK), and srv(D2DK) routines are accessed indirectly 
through a chain of pointers to other structures. Device interrupts are associated 
with their appropriate interrupt handling routine through an interrupt vector 
table. The entry point is the intr(D2D) routine. 

This section discusses these system tables and their associated entry points in 
greater detail. 

Initialization Entry Points 

Boths kinds of driver initialization routines (init and start) are executed during 
system initialization, in a different order each time the system is configured. The 
system uses the routines and information from the driver's configuration files to 
initialize the drivers. Information such as the major/minor numbers, important 
when accessing driver switch table entry points, is not used to initialize a driver. 
The system does not differentiate between character- and block-access drivers 
when running the initialization routines. 

The system initialization program first creates two internal tables, io_init and 
io~start, which it uses to list the routines that must be executed. After the sys­
tem is initialized, the io_init and io_start tables are not accessed again. Not 
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all drivers need initialization routines. A driver that does not have an init or 
start routine has no entry in the io_init or io_start table. 

Switch Table Entry Points 

Two operating system switch tables, cdevsw and bdevsw, hold the entry-point 
routines for character and block drivers, respectively. These routines are activated 
by I/O system calls (Figure 1-3). 

Figure 1-3: Switch Table Entry Points and System Calls 
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The process of calling the appropriate driver routine can be summarized as fol­
lows 

1. The I/O system call (open and read, for example) is directed to a special 
device file. 
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2. The special device file includes the major number for the driver that con­
trols the device. 

3. If the special device file is for block access, the system uses the major 
number as an index into the bdevsw table to find the appropriate routine. 

For character access, the operating system looks in the cdevsw table, using 
the same method. 

4. The operating system calls the appropriate routine. 

Whenever the character (or block) entry points are being used, the other entry 
points are inaccessible. When the driver does a character-access read or write 
operation on a device that supports both block and character access, it calls the 
strategy routine. The driver calls the strategy routine, however, as a subordi­
nate routine to read or write, not as the bdevsw entry point. 

STREAMS drivers, although they use the cdevsw table, do not use the usual entry 
points. Instead, a STREAMS driver is recognized by a non-null value in the d_str 
field of cdevsw, which is a pointer to a streamtab(D4DK) structure. The stream­
tab structure contains pointers to other structures which eventually point to 
STREAMS entry points. 

Although the bdevsw and cdevsw tables have places for all possible driver rou­
tines, not all routines are appropriate for all devices. For instance, a printer driver 
does not need a read routine. The operating system provides place holders in the 
switch tables for routines that are not included in the driver. The place holder 
routines are named nulldev and nod.ev. nulldev is an empty routine that is 
called when the routine it represents is not needed (for example, a halt routine 
for a printer driver would not be needed because it would have no work to do). 
nodev is a routine that returns an error code when the routine it represents is 
called (for example, a read routine for a printer driver would create an error con­
dition). 

Interrupt Entry Points 

The operating system must handle many kinds of system interrupts (such as clock 
and software interrupts), system exceptions (such as page faults), and interrupts 
from peripheral devices controlled by drivers. Interrupts cause the processor to 
stop its current process and to immediately begin to service the interrupt. Peri­
pheral devices generate interrupts when an I/O transfer encounters an error or 
completes successfully. 

When an interrupt is received from a hardware device, the kernel determines the 
interrupt vector number of the device and passes control to the appropriate 
driver's interrupt handling routine(s). It does this by accessing the interrupt vec­
tor table, populated during system initialization. The interrupt handler must 
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identify the reason for the interrupt (device connect, write acknowledge, data 
available) and set or clear device state bits as appropriate. It can also awaken 
processes that are sleeping, waiting for an event corresponding to the interrupt. 

Kernel Utility Routines 

UNIX system device drivers call kernel utility routines to perform system-level 
functions. The following sections describe some of the routines typically used in 
the development of device drivers. 

Note that in many cases, routines can be classified under several categories. For 
example, biodone wakes up processes and releases buffers when I/O is complete, 
therefore falling into the "Event Synchronization Routine," "Buffer Usage Rou­
tine," and "I/O Control Routine" categories. 

Buffer Usage Routines 

A feature common to most drivers is the use of buffers, which are used for han­
dling data. Drivers can use three types of buffers: 

KMA buffers Kernel Memory Allocator (KMA) buffers are "borrowed" by 
the driver from a common memory pool used by all parts of 
the kernel. All types of drivers may use them. When drivers 
allocate their own data areas or independent buffer pools, this 
increases the size of the driver, and thus the size of the kernel. 

STREAMS message buffers 

System buffers 

STREAMS messages are for use by drivers written to use the 
STREAMS interface. They are allocated for the driver through 
the kernel utilities, so the driver need not allocate a pool for its 
own messages. 

System buffers are the size of a file system block, the size of 
which depends on the type of file system and can vary from 
1K to 16K. This buffer pool primarily supports disk I/O 
operations. 

UNIX System V provides a set of buffers that are normally 
used for file system I/O, but they can be ''borrowed'' by 
drivers if the driver includes the header file sys/buf.h and 
the buffer size if 1024 bytes. 
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Drivers should be written with the finite nature of the machine in mind; high 
buffer use by a driver can reduce the performance of other drivers or require more 
memory to be devoted to buffers. When more memory or space is allocated to 
buffers, the memory or space available for user processes is correspondingly 
decreased. 

Following are some common buffer usage routines. For information about 
STREAMS buffers, however, refer to STREAMS Modules and Drivers. 

Table 1-1: Buffer Usage Routines 

Call 
brelse 
clrbuf 
freerbuf 
geteblk 
get error 
getrbuf 
kmem_alloc 
kmem_free 
ngeteblk 

Description 
Release buffer 
Clear buffer contents 
Release buffer from getrbuf 
Allocate 1024 byte buffer, return pointer 
Return buffer error number 
Allocate buffer header only 
Allocate space from kernel memory 
Free allocated kernel memory 
Allocate n-byte buffer, return pointer 

For more information about these and other calls and functions, refer to the 
DDI/DKI portion of the Device Driver Reference. 

Data Transfer Routines 

Whenever a user program issues a read(2) or write(2) system call, the operation 
interacts with data storage areas in the user data space. The driver then moves the 
data between user space and the device inane of three ways 

• directly between user space and the device 

• indirectly using local data space in the driver 

• indirectly using buffers in kernel memory 

Choosing the appropriate data transfer method for your driver depends on the 
type of the device the driver is supporting, how much intelligence the device sup­
ports, and the system utilities that will access it. Many transfers of data between 
user space and the device require an intermediate transfer of the data into kernel 
memory. 
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Table 1-2: Data Transfer Routines 

Call Description 
bcopy 
clrbuf 
copyin 
copyout 
nnalloc 
nninit 
nnsetwant 
rmfree 

Copy data from one place to another within kernel address space 
Clear data in buffer 
Copy data from user space to buffer 
Copy data from buffer to user space 
Allocate space from a memory map 
Initialize a private memory map 
Wait for a free buffer 
Release map entries 

For more information about these and other calls and functions, refer to the 
DDI/DKI portion of the Device Driver Reference. 

Event Synchronization Routines 

An important aspect of driver development concerns how drivers wait for and 
respond to certain hardware or software events. Driver functions used to suspend 
the execution of the current process are called under the following circumstances: 

• waiting for a hardware action to be accomplished (such as transferring data 
between a computer and a disk driver) 

• waiting for a software action to occur (such as a buffer to be freed for use) 

• waiting in a stopwatch mode until a specified number of time units have 
elapsed 

Table 1-3: Event Synchronization Routines 

Call 
biodone 
biowait 
delay 
sleep 
spl 
timeout 
untimeout 
wakeup 

Description 
Block 1/ 0 wake up 
Block 1/ 0 sleep 
Stop current process for a specified time period 
Suspend execution until a particular event occurs 
Set priority level 
Timeout function 
Cancel timeout count 
Resume suspended execution 
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For more information about these and other calls and functions, refer to the 
DDI/DKI portion of the Device Driver Reference. 

Interrupt Handling Routines 

An interrupt is any service request that causes the CPU to stop its currently exe­
cuting process and execute instructions to service the request. The driver inter­
rupt routine is responsible for determining the reason for the interrupt, servicing 
the interrupt, and waking up any base-level driver processes sleeping on the inter­
rupt completion. 

Following are a few of the routines commonly used for interrupt handling. 

Table 1-4: Interrupt Handling Routines 

Call Description 
biodone 
intr 
spl 

Release buffer after block I/O and wake up process 
Process a device interrupt 
Block/ allow interrupts on a processor 

For more information about these and other calls and functions, refer to the 
DDI/DKI portion of the Device Driver Reference. 

Input/Output Control Routines 

1/ 0 control commands can be used to do many things, including 

• implement terminal settings passed from getty(lM) and stty(l) 

• format disk devices 

• implement a trace driver from debugging 

• clean up character queues 

To implement I/O control commands for a driver, two steps are required. 

1. Define the 1/ 0 control commands and the associated value in the driver's 
header file 

2. Code the driver ioctl routine to define the functionality for each I/O con­
trol command in the header file 

Following are a few of the routines commonly used in 1/ 0 control. 
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Table 1-5: 1/0 Control Routines 

Call 
biodone 
biowait 
physiock 
repinsb 
repoutsb 

Description 
Release buffer after block I/O 
Suspend 1/ 0 process, pending completion of block 1/ 0 
Validate and issue raw 1/ 0 request 
Read bytes from 1/ 0 port to buffer 
Write bytes from I/O port to buffer 

For more information about these and other calls and functions, refer to the 
DDI/DKI portion of the Device Driver Reference. 

Error Handling Routines 

Error handling is one of the most important functions required in a device driver. 
Drivers must handle any error condition, or the consequences might be severe. 
For example, a stray interrupt should be a trivial event, but could panic the system 
if the driver is not prepared to handle it. A system panic can cause data corrup­
tion and physically damage the system. 

When an error occurs, the driver can do one or more of the following: 

• Write the error condition to a structure so the driver knows about it. Usu­
ally, at base level, the error is recorded in the b_error member of the 
buf(D4DK) structure. 

• Retry the process. The error might be a transient problem. Some hardware 
device boards have retry capabilities; let these boards perform the retry. 
However, if the error is software related, the driver must decide how many 
times to retry. 

• Report the error to a system error log. If the error is severe, take the faulty 
hardware out of service to minimize the damage and keep the system run­
ning normally. 

• Report the error to the system administrator, either by printing it on the sys­
tem console or by writing it to putbuf (to be reviewed with the crash(lM) 
utility). 

• Send a signal to the user process. 

• Panic the operating system. 
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In the following table are a few of the common error handling routines. 

Table 1-6: Error Handling Routines 

Call 
cmn_error 
get error 
psignal 

Description 
Write error message to console, prtbuf, or both 
Retrieve error number from buffer header 
Send signal to a single process 

For more information about these and other calls and functions, refer to the 
DDI/DKI portion of the Device Driver Reference. 
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Driver Environment 

Installation and Configuration 

For a driver to be recognized as part of the UNIX system, information about what 
type of driver it is, where its object code resides, what its interrupt priority level 
will be, and so on must added to the system and stored in the appropriate system 
configuration files. 

A device driver is added to a working UNIX system in four basic steps. 

Configuration Preparation Requires the driver writer to prepare a Driver 
Software Package (DSP), which includes the 
Driver. 0 object module (providing the actual driver 
code), package installation and removal scripts (both 
written by the driver writer), and various com­
ponents (such as the driver's Master and System file 
definitions) used for system shutdown, 
configuration, and initialization. 

Installation Installs the driver's DSP, updates the system 
configuration files, and prepares for generating a 
new kernel. 

Configuration Invoked by shutting down and rebooting the system. 

Initialization 

Driver Environment 

During the reboot, the system uses information from 
the modified system configuration files to create spe­
cial files in /dev, and the entries for the new driver 
in the system initialization tables, switch tables, and 
interrupt vector tables. 

Loadable drivers can be configured into the 
kernel while the system is running, without 
rebooting the system and rebuilding the ker­
nel. See Chapter 2, "Loadable Drivers", for 
a description of the loadable driver installa­
tion and configuration procedures. 

The driver itself is then initialized as part of the ker­
nel when the system is reinitialized. 
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Drivers are installed and configured using a set of utilities called the Installable 
Driver Tools (idtools). Chapter 3, "Driver Installation and Tuning", gives details 
about how to install and configure drivers, and how the system is initialized. 

Master and System Fi les 

Two files are the source of some of the more important configuration information 
needed to make a driver part of a running system: the Master and System files. 

Master File 

A driver's Master file describes all of the devices supported by the driver than can 
possibly be configured into the system. Once the driver is installed, its Master file 
resides in the directory/etc/conf/mdevice.d. 'This directory contains a separate 
Master file for each installed device driver. 

Configuration data defined in the Master file includes Jhe names of the driver's 
entry point routines, and an alphanumeric prefix (assigned by the driver writer) 
that is prepended to the names of the driver's routines in the system tables. The 
prefix enables the kernel to distinguish one driver's routine names (and other vari­
ables) from another's, thereby avoiding conflict with other variables in the system 
with the same name. For example, a RAM disk driver may have been given a 
prefix of ram-J which would result in routines named ram_open, ram_init and so 
on. For more information, see the prefix(DIDK) manual page. 

The Master file may also contain the driver's major number, and various flags that 
define the specific characteristics of that driver (for example, whether it is a char­
acter or block driver). During installation, the idtools will assign a major number 

. if the driver's Master file doesn't specify one. For more information, see the Mas­
ter(4) manual page. 

System File 

A driver's System file provides information needed to (xmfigure one or more 
devices supported by the driver into the next kernel to be built. Once the driver is 
installed, its System file resides in the directory /etc/conf/sdevice.d. This 
directory contains a separate System file for each installed device driver. 

Configuration data defined in the System file includes a flag that indicates 
whether or not the driver ought to be incorporated into the kernel, and various 
values used by the kernel to interact with the driver's interrupt handler. For more 
information, see the System(4) manual page. 
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Driver Header Files 

Driver source code must contain some standard" include" files that allow the 
driver access to system utilities and data structures used to return information to 
the kernel. 

The description of each kernel utility function in the DDI/DKI manual pages indi­
cates which header files must be included in a driver that uses that function. The 
list below identifies a few of the more commonly used include files 

<sys/types.h> 

<sys/param.h> 

<sys/signal.h> 

<sys/conf.h> 

<sys/file.h> 

</sys/buf.h> 

<sys/kmem.h> 

<sys/ddi.h> 

<sys/ddi.i386at.h> 

Driver Environment 

Defines basic system data types. 

Defines fundamental system parameters. 

Defines system signals. 

If the driver sends signals to user processes, it must 
include this file. 

Defines device switch tables. 

This file is needed for the driver to define its devflag 
value. 

Defines file structures. 

This file is needed if the driver uses control flags such as 
"no delay" (FNDELAY). 

Defines the huf (system buffer) structure. 

This file is needed if the driver uses the system buffer 
pool. 

Defines the Kernel Memory Allocator. 

This file is needed if the driver allocates memory for 
buffers out of the common memory pool. 

Defines Device Driver Interface (DDI) routines. 

This header file is required and must come last in the list 
of included header files (see exception below). 

Defines functions and symbols specific to the UNIX sys­
tem for the Intel 386 architecture. If this platform­
specific include file is used, it must come last in the list 
of included header files, after the ddi . h header file. 
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Sample Block Driver 

The example driver described in this section is similar, in most of its parts, to all 
block drivers. It is a RAM disk driver (a software driver), which uses an area of 
memory for mass storage, but has no hardware to control. Consequently, it 
doesn't have to recognize or respond to interrupts (a major complication). 

The RAM driver example illustrates the general structure of real disk drivers at 
only one level, called the base level. The base level includes the routines responsi­
ble for servicing the I/O request from the user process. The other level, called the 
interrupt level, responds only to requests for servicing hardware (non-existent for 
a RAM disk). 

The work of the base level of a RAM disk driver is to open a file system, provide 
access to it, and close it when necessary. The entry-point routines required for 
these activities are open(D2DK), strategy(D2DK) and close(D2DK). The only 
other part of the RAM disk driver is the initialization routine init(D2D). 

Each routine is illustrated (with pseudo-code) in the pages that follow. After the 
pseudo-code is a brief discussion of every line of the pseudo-program. The 
numbers in parentheses (before the lines of pseudo-code) are referenced by the 
section headers below, to indicate which line is being explained in that section. In 
the four sections that follow, code fragments from a working driver are included 
to help illustrate the concepts being described. 

Initialization 

Not all drivers have init(D2D) routines; some have nothing to initialize and oth­
ers defer initialization to the open(D2DK) routine. In most cases, it doesn't matter 
if variables are zeroed in an init or an open routine. On the other hand, the sys­
tem should be informed at the time of initialization if, for example, a disk drive is 
off-line. 

Software drivers typically have little to initialize because no hardware is involved. 
In fact, some software drivers have completely empty init routines. Memory 
may be allocated as a simple two-dimensional array in the open routine. But even 
if no init routine is needed, the driver must have an entry point routine in the 
switch table. In the following pseudo-code for a software driver (Figure 1-4), 
required initialization processing is minimal. Some memory must be allocated 
and initialized, and a warning must be issued if the allocation fails. 
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Figure 1-4: Pseudo-code for init Routine 

(1) include header files 

init(dev) 

(2) if (memory can be allocated) 
allocate memory 

initialize memory 
(3) print informational message 

else 

print warning message 

Driver Header Files (1) 

The first file in the list of header files included in driver code should be 
sys/types. h because many of the other header files use the type definitions it 
contains. In the init routine, the device number passed in as an argument is 
declared to have the type dev_t, which is an alias for a unsigned long integer. 
Simple data types are abstracted to these types to enhance driver portability. 

Most drivers will need to include a minimum of 5 to 10 header files and some may 
have more than 20. 

Memory Allocation (2) 

The function used to allocate memory is kmem_alloc(D3DK). kmem_alloc 
accepts as an argument the number of bytes to be allocated and a flag that indi­
cates whether the caller is willing to sleep waiting for the memory to be allocated. 
The kmem_alloc manual page also tells you what conditions must exist for the 
allocation to succeed, how different types of failures are handled, and which 
header files must be used. 

Messages (3) 

Another useful library function is CIOn_err(D3DK). The printf(3S) library func­
tion cannot be used in driver code; instead, the function CIOn_err is used for all 
types of messages, from the merely informational to those reporting severe errors. 
The first argument to this function is a constant used to indicate the severity level, 
the second is the formatted message string, and the third is an optional set of argu­
ments passed with the message being displayed. For example, the following state­
ment could be used to report why the initialization failed. 
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cmn_err(CE_WARN, "prefixinit: kmem_alloc cannot allocate ~od buffers", BUFS); 

The cmn_err function can also be used to shutdown or panic the system when 
serious errors are detected. For example, if a hardware driver is unable to allocate 
private buffer space there is probably sufficient reason to halt system initialization. 
When this condition is detected, the next statement should be 

cmn_err(CE_PANIC, "prefixinit: Buffer space unavailable"); 

Other init Responsibilities 

A working driver for a hardware device (for example, a disk drive) does not have 
an init routine as simple as the one shown earlier. The additional processing 
required may include some of the following 

• Check to see if the devices under the control of the driver are actually on­
line. 

• Check for the correct number of subdevices. 

• Set each device's interrupt vector to correspond to the system's interrupt 
vector table. 

• Set the virtual-to-physical address translation. 

• Set device-specific parameters to default values. These parameters include 
values for the number of tracks, cylinders and sectors. 

Base-Level Operation 

The base-level, entry-point routines do most of the work of the driver. These are 
the routines that respond to user I/O requests, expressed as system calls. The ker­
nel then interprets the system call, and, in turn, calls one of the driver's entry­
point routines. 

There is not a one-to-one correspondence between system calls and driver rou­
tines. For example, on a multiuser system more than one user process may have 
opened a device. The kernel calls the driver close routine only when the last of 
these user processes issues the close system call. A user's read or write request 
results in a call to the block driver's strategy routine. 
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The open Routi ne 

When a user process issues an open(2) system call, the file to be opened is most 
often a regular file, which is generally opened to read or write text or data. How­
ever, the driver open(D2DK) routine is opening the device, which looks like a file 
on a UNIX system . 

• The special device file identifies which switch table (block or character) to 
look in for the driver open routine. 

• After the correct switch table is identified, the major number is used to find 
the corresponding open routine. 

Finally, when the open routine is called (Figure 1-5), it is passed a pointer to the 
device number and the flags indicating the type of open (read only, create new 
file, and so on). 

Figure 1-5: Pseudo-code for open Routine 

open(device number, flags, type, credentials) 

if (minor device number is invalid) 
return ENXIO 

else 
set up buffer to read the superblock 
call strategy 

Each of the following sections covers the issues involved in implementing the pro­
cessing represented by a line of pseudo-code. Most sections will also give an 
actual code sample (in the C language) to illustrate typical driver coding style. 

Validating the Minor Device Number 

The device number contains both the major number (identifying the driver) and 
the minor number (identifying the sub-device). The major number has already 
been used as an index into the switch table to call the driver, so there is usually no 
need to check its value. If the driver is using the multiple major number feature 
(described later in the guide), it should verify that the number is within the range 
the driver expects to use. The major number can be extracted from the device 
number via the getmajor(D3DK) function. 
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The minor number can be extracted via the getminor(D3DK) function. In the 
example below, the minor number is checked against a driver-defined constant 
MAXDEV If the minor number is not a simple unit number, but also contains com­
ponents (a high-order bit, for example) that define the type of access to the physi­
cal device, the driver open routine should extract each component and verify that 
the unit number is valid and the type of access is appropriate. Sometimes physical 
access to the device will be needed to verify its actual presence on the bus. The 
open routine should return an error number if the open should not be permitted. 

if (getminor(dev» > MAXDEV) 

return (ENXIO); /* No such device */ 

Returning Errors to the Calling User Process 

When a driver needs to report an error to the user process that caused the call to a 
driver entry point, the usual method is to return an error number as the return 
value of the driver entry point. If there is no error to return, the value 0 should be 
returned. In the example above, when the minor number passed to the driver 
open routine was out of range (greater than the driver-defined MAXDEV), the value 
ENXIO is returned. 

Driver error numbers are defined in the header file sys/errno.h, and are 
described in errnos(D5DK). The general algorithm for the driver entry points 
that correspond to system calls (namely read, write, open, close, ioctl, poll) is 

1* verify arguments and perform entry point processing *1 

if (error condition or invalid arguments) ( 
1* see entry point-specific documentation for appropriate 
* error numbers 
*1 

return (error number); 

return (0) 

Setting Up a Buffer 

The kernel buffer cache is a linked list of buffers used to minimize the number of 
times a block-type device must be accessed. A block driver does not read or write 
directly to the disk, but rather to the buffer cache. 
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The section "The strategy Routine" below explains how the driver reads and 
writes blocks. This section introduces the buffer header, that part of the buffer 
structure used to identify where the data came from. The structure is called 
buf(D4DK) and is defined in the file buf . h. 

The Buffer Header 

The buffer header is the structure used by the kernel's file system and virtual 
memory subsystems to pass I/O requests to disk drivers. These subsystems set 
the following fields in the buf structure to tell the driver what to do 

The device number. This is a composite value, made up of both 
the major and minor number. It is used to identify the RAM 
device. 

The number of bytes to be transferred. This number can vary in 
value, so the driver writer must never assume a standard value 
for this field. 

The block number to access on the device specified by b_dev. 
Note that this is a logical number; if a physical disk is split into 
two logical sub-devices (each logical part has its own minor 
number), the block number refers to the block within the particu­
lar logical sub-device, not the physical block on the disk. 

The block size is given by the constant NBPSCTR in sys/param.h 
and has nothing to do with the block size being used for a particu­
lar file system (s51K versus s52K, for example). 

Should be initialized to 0 by the driver and set to an error number 
if there is a failure or if the request is invalid. The flag B_ERROR in 
b_flags (see below) should also be turned on. 

Values are OR'ed into this member (allowing more than one value 
to be on at a time). In particular, the driver will want to check 
whether the flag B_READ is set. If not set, then the I/O request is a 
write operation. 

For more information, see the buf(D4DK) manual page. 

Other open Routine Responsibilities 

Like the init routine, the open routine for a RAM disk driver is simpler than for a 
hardware device. Other functions a hardware open routine may perform are 
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• initialize error logging 

• initialize the disk defect table 

• read the volume table of contents (VTOC) and the defect table 

• read the physical description sector 

For more information, see the open(D2DK) manual page. 

The strategy Routine 

The strategy(D2DK) routine may be called from the open routine to read state 
information (such as the VTOC) from the disk (Figure 1-6). More often, strategy 
is called in response to a system I/O request. This is the main work of a block 
device driver, and strategy is the routine that does it. To transfer data, the stra­
tegy routine is passed a pointer to a buffer header. 

Figure 1-6: Pseudo-code for strategy Routine 

include header files 

strategy(bp) 

(1) if (block number is out of range) 
write error to buf structure and set B_ERROR 
return 

(2) if (I/O request is for read) 
read block of data 

else 
write block of data 

(3) call biodone 
return 

For more information, see the strategy(D2DK) manual page. 
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Check for Valid Block (1) 

As part of the kernel, the RAM disk driver has access to any part of memory, and 
so it is very important to make sure that reading and writing of data is confined to 
the area allocated for the RAM disk. The most basic checking uses the b_blkno 
member of the buffer structure to make sure the requested block is within range. 
(RAMBLKS is the number of blocks in the RAM disk. Because the first block number 
is 0, the block number equal to RAMBLKS can be calculated as the number of blocks 
in the RAM disk plus one.) 

if (bp->b_blkno < 0 1 1 bp->b_blkno+l > RAMBLKS) 

bioerror(bp, ENXIO) 

If the I/O request is for a block beyond the end of the disk, the driver must further 
check to see if a read or a write is requested. For a read, the number of unread 
bytes is reported by assigning the value of b_bcount to b_resid, which is passed 
by the system as a return value to the read system call. 

if (bp->b_blkno > RAMBLKS && bp->b_flags & B_READ) 
bp->b_resid = bp->b_count; 

The read status is tested by logically ANDing the b_flags member with the value 
B_READ. If the test fails, the I/O request is assumed to be a write. Any attempt to 
write beyond the end of the RAM disk must be denied, and an error reported. 

bp->b_error = ENXIO; 
bp->b_flags 1= B_ERROR; 

Reading and Writing Data (2) 

Several different functions are available for moving data. Transfer can be between 
user space and the driver (with copyin and copyout). But the RAM disk and the 
driver buf header are both in kernel space, so the bcopy(D3DK) function is used. 
The three arguments to the function are the source of the data, the destination, and 
the number of bytes transferred. 

if (bp->bflags & B_READ) 
bcopy(disk_addr, b_un.b_addr, bp->b_bcount); 

else 
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The biodone Function (3) 

When the data transfer is complete, the strategy routine calls the 
biodone(D3DK) function. Hardware drivers use biodone to awaken sleeping 
processes. (This is not required for pseudo-devices.) The RAM driver uses this 
function to release the buffer block and to set the b_flags member to B_DONE. 
The biodone function is called with a single argument, the pointer to the buffer 
header. 

biodone (bp) ; 

For more information, see the biodone(D3DK) manual page. 

The close Routine 

Many drivers (even some hardware drivers) will have empty close(D2DK) rou­
tines. Even though it does nothing, the address of the empty routine is entered 
into the switch table. 

close ( ) 
{ 

} 

If not empty, a close routine may be responsible for unlocking the device (if 
locked by the open(D2DK) routine), flushing buffers, making sure the device does 
not contain a mounted file system, and reinitializing its data structures. 

Because more than one process may have opened the device, the close routine is 
not called if any process still has the device open. The way in which a file was 
opened may affect how it should be closed, so one of the arguments to the close 
routine is taken from the file structure (declared in file.h). 

For more information, see the close(D2DK) manual page. 
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Driver Development 

The rest of this chapter reviews a variety of steps and guidelines programmers 
should keep in mind when planning and developing device drivers. 

Basic Steps for Creating a Driver 

Device driver development requires more up-front planning than most applica­
tion programming projects. At the very least, testing and debugging are more 
involved, and more knowledge about hardware is required. The following steps 
can be used as a general guide to driver development. 

Preparation 

• Learn about the hardware. Most of the information you need can be found 
in the documentation for the device, and should include 

o how the device sends interrupts 

o the range of addresses of the hardware board 

o return codes and software protocols recognized by the device 

o how the device reports hardware failures 

• Test the hardware to make sure it is functioning. This is especially impor­
tant for a newly-developed device. 

• Design the software. Even though the overall structure of a driver is not the 
same as an application program, good structured design remains important. 
Data flow diagrams, functional specifications, and structure charts are all 
useful tools in driver development. Design documents should cover not 
only the driver contents, but also the contents of any utility programs that 
will be used with the driver. 

• Select a software maintenance and tracking utility, such as the source code 
control system (SeeS) described in the sees(l) manual page. 
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Implementation 

• Write and install a minimal driver. It is very helpful to test driver code from 
the earliest stages, and to verify that it can be installed. A minimal driver 
might be one that simply uses the cmn_err function to send a "hello, 
world" message to the system console. See Chapter 3 for a detailed guide 
to driver installation. 

• Write base-level routines before interrupt-level routines. 

• If applicable to the device, write and test any associated firmware. 

• Develop utilities such as disk formatting, network administration, and diag­
nostic programs at the same time as the driver. 

Follow-up 

• As much as possible, use the testing phase to create error conditions that 
exercise the driver's ability to handle them. 

• Evaluate the driver's performance both in isolation and in a production 
environment where other drivers are installed. Regression testing should be 
performed to ensure that a new device driver does not affect other system 
functionality. 

• Make sure documents affected by the creation of the driver are updated. 
These may include operator and diagnostic manuals and sales or ordering 
information. If the driver is to be installed by a customer, write and test ins­
tallation and de-installation packages, as described in Chapter 3. 

Commenting Driver Code 

Good practice in commenting driver code is the same as for any type of program­
ming. Because driver code can be extremely difficult to maintain without ade­
quate comments, these guidelines are included here. 

• Each file should have a comment block at the beginning, describing the type 
of file functions and the services they perform. List the functions that call 
them and the functions they call. For a hardware driver, describe the 
hardware, including version numbers and hardware strapping values. 

• Describe each global data structure or type declared, including its possible 
range of values. Describe the protocol, if any, used to access it (such as 
flag-setting). If it is useful, describe the functions that access structures, 
including those that are in other files. 
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• Each routine should have a comment block at the beginning describing 
what it does, how it does it (what are the algorithms or strategy), assump­
tions about the environment when it is called (processor interrupt priority 
level, outstanding I/O jobs, and so forth), and what global variables are 
used. 

• Each line that declares an argument to the routine should have a comment. 

• Every local variable should be explained. 

• Each loop or if test should have a comment to explain the exit condition. 

Layered Structure 

Hardware drivers will be easier to port and maintain if structured in layers. 

• Separate the higher-level protocol functionality from the low-level, 
machine-dependent routines. The high-level sections can be readily ported, 
leaving only the low-level sections to be rewritten. If machine-specific code 
is not isolated, all code may need to be rewritten to run on another proces­
sor. 

• When your driver accesses system structures such as the system buffer 
structures, use the standard functions included in the DDI/DKI. Using 
non-standard functions with standard structures can degrade the perfor­
mance of other drivers on the system and will impact portability and for­
ward compatibility. 

Driver Functions 

A device driver is made up of entry-point routines that call standard DDI/DKI 
functions and subordinate routines written for the driver. Here are some things to 
consider when using these functions and routines 

• Standard functions, especially for timing and data allocation, are less likely 
to degrade system stability and performance than similar routines coded in 
the driver. 

• When subordinate routines must be written, declare them static to 
prevent name conflicts with other drivers. In general, define as few global 
names (both functions and names) as possible. To make the driver easier to 
maintain, use the driver prefix when naming subordinate routines, even 
though the static declaration makes this step unnecessary. 

Driver Development 1-37 



Utilize Board Intelligence 

Many peripheral devices are intelligent, meaning that they contain their own 
microprocessor that can hold driver code. For optimal performance and portabil­
ity, take full advantage of the board's intelligence by writing a firmware driver 
that provides the basic functionality of the board, then accesses the firmware 
driver from within the UNIX system driver. 

With intelligent devices, some of the control for a device or controller may be in 
code running on the controller board rather than in the driver running in kernel 
memory. The code for the controller board may be in firmware or may be down­
loaded to controller RAM, for example, at system boot time. 

If the device never needs to work in a non-UNIX system (firmware) mode, it is not 
necessary to use firmware for anything more than diagnostics. You may also want 
to include in firmware a basic subset of the protocol necessary to talk to the host 
processor directly, such as the memory management protocol. Proper use of 
firmware can enhance the features, portability, and performance of your device. 
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Introduction 

UNIX System V Release 4.2 supports Dynamically Loadable Modules (DLM). This 
feature allows you to add a device driver to a running system without rebooting 
the system or rebuilding the kernel. 

The DLM feature 

• reduces time spent on driver development by streamlining the driver instal­
lation process 

• makes it easier for users to install drivers from other vendors 

• improves system availability by allowing drivers to be configured into the 
kernel while the system is running 

• conserves system resources by unloading infrequently used drivers when 
they are not needed (when needed in the system, DLM loads the drivers 
from disk) 

• gives users the ability to load and unload drivers on demand 

• gives the kernel the ability to load and unload drivers automatically 

• requires drivers that are going to be configured into the system as loadable 
modules to be converted to loadable form 

The discussion of DLM that follows contains two parts. 

The first part provides an overview of the DLM feature from the driver writer's 
perspective. Among other things, this part explains how DLM creates a kernel 
that is different from the statically configured kernel you may be accustomed to 
working with. It also describes the different ways loadable modules can be loaded 
and unloaded, and provides an overview of how the DLM loading and unloading 
mechanism works. This background information should prove useful to you 
when you have to perform tasks such as debugging your loadable driver. 

The second part explains how to convert your non-loadable driver to be a loadable 
driver. This part presents information you will need to write the initialization 
code that lets DLM dynamically connect your loadable driver to the rest of the 
kernel. It also tells you how to install your driver as a loadable driver, how to 
configure your loadable driver into a running system, and to how load it. Infor­
mation about debugging a loadable driver is also provided. 
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The DLM Mechanism 

Loadable Module Types 

Since this book is about device drivers, this chapter focuses on loadable device 
drivers. However, you should be aware that the DLM feature supports loading 
and unloading of a variety of kernel module types. 

Types of modules that can be loaded include 

• device drivers (block, character, STREAMS and pseudo) 

• Host Bus Adapter (HBA) drivers 

• Direct Coupled Device (DCD) controller drivers 

• STREAMS modules 

• file systems 

• miscellaneous modules-for example, modules containing code for support 
routines shared among multiple loadable modules which are not needed in 
the statically configured kernel 

Although the discussion focuses on device drivers, the information being 
presented in this chapter applies-in a general way-to allioadable module types. 

The Difference between Static Modules and Loadable 
Modules 

In previous releases, all kernel modules were maintained in individual object files 
( • 0 files) so they could be conditionally included or excluded from the kernel, 
depending on whether or not the features they supported were required in the 
system. The conditional nature of this arrangement meant that when you wanted 
to add a new module or remove an existing module, you had to relink the entire 
kernel and reboot the system to cause your new kernel configuration to take effect. 

With DLM, some modules continue to be linked to the kernel in the traditional 
manner. Kernel modules that are configured this way are called static modules. 
A static module is, by definition, non-Ioadable. That is, the module remains 
linked into the kernel at all times because either it is always required in the system 
(like the boot hard disk driver), or it is used so frequently or consumes so few 
resources (like the user terminal pseudo-device driver) that it makes sense to keep 
the module continuously configured. 
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Other modules-modules that are not required, are used infrequently, or consume 
large amounts of resources-can be configured so they can be included or 
excluded from the kernel dynamically, without a system shutdown and reboot. 
These modules are called load able modules. 

Loadable modules are also maintained as individual object files, but they are not 
statically linked to the kernel. Instead, they are linked into the kernel when they 
are needed and unlinked when they are no longer in-use. Floppy disk drivers and 
mouse drivers are two examples of kernel modules that are typically configured 
as loadable modules. 

Overview of the Load Process 

When a loadable module needs to be added to the system, the DLM mechanism 
reads the module's object file on disk and copies the module into dynamically 
allocated kernel memory. 

Once the module is in memory, DLM relocates the module's symbols and resolves 
any references the module makes to external symbols. DLM then executes special 
code in the module (called "wrapper" code) that enables the module to initialize 
itself dynamically. 

When module initialization is complete, DLM executes code specific to the load­
able module type. This code logically connects the module to the rest of the ker­
nel. 

Overview of the Unload Process 

The unload process undoes what was done during the load process. 

First, the DLM mechanism executes code specific to the loadable module type that 
logically disconnects the module from the rest of the kernel. Once in the module 
is disconnected, DLM then executes the module-supplied wrapper code that 
enables the module to clean up for termination. When clean-up is complete, DLM 
releases the memory allocated for the module. 
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The Difference between a Demand Load and an Auto 
Load 

Two types of events can cause a module to be loaded or unloaded by the DLM 
mechanism: a demand-load/unload request or an auto-load/unload event. 

Demand Load 

A demand load is a user request, made using the modadmin(lM) command, to add 
a loadable module to the running system. 

If the module depends on other loadable modules and these modules are not 
currently loaded, DLM will automatically load these modules during the load pro­
cess. 

For the initial release of the DLM feature, loadable DCD controller drivers can­
not be demand loaded. They must be auto loaded by the kernel as they are 
needed. 

Note also that if the DCD module is a loadable module, all configured DCD 
controllers must be also be loadable. Conversely, if the DCD module is a 
static module, all configured DCD controllers must be also be static. 

Demand Unload 

A demand unload is a user request, made using the modadmin(lM) command, to 
remove a loadable module from the running system. 

If the module is not being used when the request is made, and if no other loaded 
module depends on the module, DLM will unload it. If the module is being used, 
or if another loaded module references symbols defined in the module, DLM does 
not unload the module. Instead, DLM adds the module to a list of modules that 
are candidates for the next auto unload. 

Auto Load 

An auto load occurs when the kernel determines that the functionality provided 
by a particular module is required to perform some task. For example, the kernel 
would call DLM to auto load a loadable device driver on the first open of any of 
the driver's configured devices. A loadable STREAMS module would be auto 
loaded on the first I_PUSH of the module. During an auto load, DLM also loads 
any modules that the module being loaded depends upon, as it does during a 
demand load. 
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For the initial release of the DLM feature, load able HBA drivers cannot be 
auto loaded. HBA drivers can, however, be demand loaded using the modad­
min command, or demand loaded by init(1 M) via the idmodload(1 M) com­
mand during a system reboot. 

Note also that, once loaded, an HBA driver remains loaded until the next sys­
tem reboot (no DLM unload mechanism exists for HBA drivers). 

Auto Unload 

An auto unload can occur when the kernel determines that the amount of memory 
available to it is low. To deal with this shortage, the kernel calls DLM to attempt 
to unload any modules that have become candidates for unloading. Modules 
become candidates for auto unloading when they are inactive, they have not been 
accessed for some predetermined amount of time, and no other loadable modules 
depend on them. 

For example, a loadable device driver would become a candidate for auto unload­
ing on the last close of all its configured devices, and a loadable STREAMS 
module would become a candidate for auto unloading on its last I_POP. The 
amount of time that must elapse before inactive modules are considered candi­
dates for auto unloading is controlled by the value of the global tunable parameter 
DEF_UNLOAD_DELAY in /etc/conf/mtune.d/kernel. Individual modules can 
override the value of the global auto-unload delay by specifying their own auto­
unload delay value in their Mtune(4) files. 

~ On a demand unload request, the auto-unload delay parameter value is 

L ";J ;9nored. 

If the attempt to auto unload a module is successful, the memory allocated for the 
module is reclaimed. Unloading continues until the amount of available memory 
reaches a predetermined high-water mark or the list of unloadable candidates is 
exhausted. 

r~: I Modules that are demand loaded cannot be auto unloaded. If a demand­
NOTE loaded module is no longer needed in the system, it must be demand 

unloaded. 
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Making Modules Loadable 

The following sections explain how to convert your non-Ioadable driver to be a 
loadable driver. 

Coding a Wrapper 

The first step in converting a non-Ioadable driver to a loadable driver is writing 
some special initialization code called a "wrapper." 

Each loadable module is required to supply the DLM mechanism with a wrapper. 
The wrapper "wraps" a module's initialization and termination routines with spe­
cial code that enables DLM to logically connect and disconnect the module to and 
from the kernel "on the fly" while the system is running. 

The wrapper consists of function definitions and initialized data structures. 

Wrapper Functions 

For a device driver, the wrapper functions can include 

prefix_load The _load entry point is called by the DLM mechanism once 
the driver has been loaded into memory and link edited into 
the kernel. The _load routine handles any initialization tasks 
the driver must perform prior to being logically connected to 
the kernel. Typical initialization tasks performed from _load 
include acquiring private memory for the driver, initializing 
devices and data structures, and installing device interrupts. 
This entry point is optional, and is described on the 
_load(D2D) manual page. 

prefix_unload _ 

2·6 

The _unload entry point is called by the DLM mechanism 
once the driver has been logically disconnected from the ker­
nel. The _unload routine handles any clean-up tasks the 
driver must perform prior to being removed from the system. 
Typical clean-up performed from _unload include releasing 
private memory acquired by the driver and removing device 
interrupts. This entry point is optional, and is described on 
the _unload(D2D) manual page. 
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prefixinit 

prefixstart 

prefixhalt 

The init entry point is called by the driver's _load routine to 
perform any setup and initialization the driver must do before 
interrupts are enabled. If you are converting a non-loadable 
driver to make it loadable, you will probably find that you 
can use your static driver's init routine in the loadable ver­
sion of the driver. This entry point is optional, and is 
described on the init(D2D) manual page. 

The start entry point is called by the driver's _load routine 
to perform any setup and initialization the driver must do 
after interrupts are enabled. If you are converting a non­
loadable driver to make it loadable, you will probably find 
that you can use your static driver's start routine in the 
loadable version of the driver. This entry point is optional, 
and is described on the start(D2DK) manual page. 

The halt entry point is called by the DLM mechanism. If the 
driver is loaded at the time the system is shut down, DLM 
will call the driver's halt routine to shut down the driver 
when the halt routines for the statically configured kernel 
modules are called. If you are converting a static driver to 
make it loadable, you will probably find that you can use 
your static driver's halt routine in the loadable version of the 
driver. This entry point is optional, and is described on the 
halt(D2DK) manual page. 

The mod_drvattach routine is called by the driver's _load 
routine to add the driver's interrupts to the running system. 
Since interrupts are enabled upon return from 
mod_drvattach, you should make sure your driver's _load 
routine calls its init routine prior to calling mod_drvattach, 
and calls its start routine after calling mod_drvattach. This 
routine is optional, and is described on the 
mod_drvattach(D3DK) manual page. 

The mod_d~~ach routine is called by the driver's _unload 
routine to disable and remove the driver's interrupts from the 
running system. This routine is optional, and is described on 
the mod_drvdetach(D3DK) manual page. 
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Wrapper Data Structures 

C The wrapper data structures are initialized by the DLM mechanism using values 
taken from your driver's configuration files. These structures provide information 
needed during loading and unloading-such as the values needed to populate 
your driver's bdevsw or cdevsw switch table entries for the major device numbers 
it supports. 

Note that your driver does not need to use any of the wrapper data structures 
directly, and your driver's wrapper needs only to point to these structures. How­
ever, if your driver requires interrupts to be added and removed, it will need to 
reference the attach_info structure in its mod_drvattach and mod_drvdetach 
wrapper routines. This structure contains the name of your driver's interrupt 
handler, and other related information. Although the attach_info structure is 
initialized by DLM using information taken from your driver's configuration files, 
as is done for the wrapper data structures, the attach_info structure is not 
linked to the wrapper data structures themselves. 

Wrapper Macros 

To aid you in generating a wrapper for your loadable driver (or other loadable 
module type), DLM provides a set of macros in /sys/moddefs .h. The macros are 
of the form 

type (prefix, load, unload, halt, description) ; 

The keyword type identifies the type of wrapper to be generated. Valid types are 

MOD_STR_WRAPPER 

MOD_FS_WRAPPER 

MOD_MISe_WRAPPER 

generates wrappers for device drivers, including block 
drivers, character drivers, STREAMS drivers and pseudo 
drivers 

generates wrappers for Host Bus Adapter drivers, and 
any other driver type that does not require switch table 
entries, but does need to attach and detach interrupts 

generates wrappers for STREAMS modules 

generates wrappers for file systems 

generates wrappers for miscellaneous modules 

The keyword prefix specifies the driver's prefix, as defined in the driver's Mas­
ter(4) file, and described on the prefix(DIDK) manual page. The keywords load, 
unload and halt specify the names of the driver's _load routine, _unload routine, 
and (if the driver has one) its halt routine. 
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t:::l For non-driver modules, the keyword halt is omitted from the wrapper macro 

I ;OTE~ cod;ng. 

The keyword description supplies a character string used to identify the driver. 

Sample Wrapper Code 

The following coding examples show some typical wrappers for the different 
loadable module types. Note that allioadable modules must include 
sys/moddefs.h in their wrapper definitions. 

Figure 2-1 shows a sample wrapper for a device driver. 

Figure 2-1: Device Driver Wrapper Coding Example 

#include <sys/mod/moddefs.h> 

extern int fdloaded; /* in fdbuf */ 

#define 

STATIC int 

STATIC int 
fd_load() 
{ 

DRVNAME "fd - Floppy disk driver" 

fdinit() ; 
mod_drvattach(&fd_attach_info); 
fdstart(); 

return(O); 

STATIC int 
fd_unload ( ) 
{ 

mod_drvdetach(&fd_attach_info); 
fdloaded = 0; 

return(O) ; 
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Figure 2-2 shows a sample wrapper for a Host Bus Adapter driver. Notice that, 
since HBA drivers cannot be unloaded, the _unload routine in the example sim­
ply returns the error number EBUSY. 

Figure 2-2: Host Bus Adapter Driver Wrapper Coding Example 

2-10 

#include <sys/mod/moddefs.h> 

#define DRVNAME "adsc - Adaptec SCSI HBA driver" 

STATIC int 
int adscinit{); 

void adscstart ( ) ; 

static int 

STATIC int 
adsc_load{c) 
int c; 

if{ adscinit{» { 
return ( ENODEV ); 

mod_drvattach{ &adsc_attach_info ); 
adscstart ( ) ; 
return{O); 

STATIC int 
adsc_unload ( ) 
{ 

return (EBUSY) ; 
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Figure 2-3 shows a sample wrapper for a STREAMS module. Notice that the 
macro definitions for this non-driver module do not include a keyword for a halt 
routine name. 

Figure 2-3: STREAMS Module Wrapper Coding Example 

#include <sys/mod/moddefs.h> 

int isocdevflag = D_OLD; 

int 
isoc_load(void) 
( 

/* MOdule specific load processing .•• */ 
int 
isoc_load(void) 
( 

/* MOdule specific load processing ••. */ 
=_e=(CE_NOTE, "!MOD: in isoc_load()"); 
return(O); 

int 
isoc_unload(void) 
( 

/* MOdule specific unload processing ... */ 
=_e=(CE_NOTE, "!MOD: in isoc_unload()"); 
return(O); 
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Figure 2-4 shows a sample wrapper for a file system module. Notice that this file 
system module doesn't need to do any clean-up when it is unloaded, so its 
wrapper defines a NULL _unload routine. 

Figure 2-4: File System Module Wrapper Coding Example 
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#inc1ude <sys/mod/moddefs .h> 

STATIC int s5_1oad(void); 

MOD_FS_WRAPPER(s5, s5_1oad, NULL, "Loadab1e s5 FS Type"); 

STATIC int 
s5_1oad(void) 
{ 

inoinit(); 

bzero«caddr_t)&s5fshead, sizeof(s5fshead»; 
s5fshead.f_free1ist = &s5ifree1ist; 
s5fshead.f_inode_c1eanup = sS_c1eanup; 
sSfshead.f_maxpages = 1; 
s5fshead.f_isize = sizeof (struct inode); 
s5fshead.f_max = ninode; 

fs_ipoo1init(&s5fshead); 
return Oi 
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Figure 2-5 shows a sample wrapper for a miscellaneous module. Notice that, once 
loaded, this module wants to remain loaded, so its _unload routine always 
returns EBUSY. 

Figure 2-5: Miscellaneous Module Wrapper Coding Example 

#include <sys/mod/moddefs .h> 

STATIC int 

static int 

STATIC int 
clis_load() 
{ 

cinit() ; 
return(O); 

STATIC int 
clis_unload( ) 
{ 

/* 
* This module can not be unloaded. 
*/ 

return(EBUSY) ; 

Packaging a Loadable Module for Installation 

Once you have written a wrapper for your loadable driver (or other loadable 
module type), you compile your driver in the normal way. Once you compile, 
you are ready to package the driver's object file for installation in its loadable 
form. 

This section-and the sections on installation and configuration that follow­
describe procedures that are specific to loadable modules. For information about 
the installation tools and procedures for both loadable modules and static 
modules, refer to the chapter "Installation and Tuning". 
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Master File Definitions for Loadable Modules 

Loadable drivers can define two optional lines of configuration data in the Master 
componen~ of their Driver Software Package (DSP): 

$depend 

$modtype 

specifies the loadable modules on which the driver depends 

defines a character string that identifies the driver type in error 
messages 

If your loadable driver references symbols defined in other loadable modules, you 
must supply DLM with the names of these modules so it knows to load them 
when it loads your driver. You define the modules to DLM by listing them on the 
$depend. line of your driver's Master file. You can specify all of the module 
names (separated by white space) on a single $depend line. You can also specify 
them individually, on multiple $depend lines. 

The $modtype line in the Master file lets you define a character string that helps 
identify a driver that is loaded as a miscellaneous module type in DLM error mes­
sages. This string can be a maximum of 40 characters long, including all white 
spaces. 

For a description of the Master file format, refer to the Master(4) manual page. 

System File Definitions for Loadable Modules 

To get themselves configured into a running system, allioadable drivers must 
identify themselves as loadable drivers in the System component of their DSP. 
Two types of System file entries are required for loadable drivers: 

$loadable 

configure 

instructs the idbuild(lM) command to configure the driver into 
the system as a loadable driver 

instructs idbuild to configure a specific device supported by this 
loadable driver into the system 

If you want to configure your driver as a loadable driver, you must first define a 
$loadable line in the driver's System file that specifies the name of your driver. 
This line identifies your driver as a loadable driver type. 

Next, you set a flag in the configure field (the second field) of the System file entry 
for each major device number supported by your driver. This flag indicates (Yor 
N) whether the device is to be configured into the system. Note that the configure 
field can be used to configure both loadable devices and static devices. 
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Note also that, in the future, if you want to statically link your loadable driver into 
the kernel, you will need to comment out the driver's $loadable line by inserting 
the character # in column one. 

For a description of the System file format, refer to the System(4) manual page. 

Mtune File Definitions for loadable Modules 

Loadable drivers can override the kernel's global auto-unload delay parameter 
values by supplying their own values in the Mtune component of their DSPs. 

The global auto-unload delay values are defined in /etc/conf/mtune.d/kernel 
as 

delay min max 

This says that, by default, any loadable module becomes a candidate for auto 
unloading when the module has not been accessed during the previous delay 
seconds. It also says that if your loadable driver wants to override the kernel's 
default auto-load delay value, you must specify a DEF _UNLOAD_VALUE that is 
greater than or equal to min seconds, and less than or equal to max seconds, in 
your driver's Mtune component. 

The symbolic name of the driver's Mtune file delay variable must begin with the 
driver's PREFIX in full caps. 

Checking the Configured Loadable Modules before 
Installation 

DSP installation scripts often use the idcheck(lM) command to acquire informa­
tion about the system into which a package is going to be installed. Most of the 
checks performed by the idcheck command return information about kernel 
modules that are installed. If you need information about the modules that are 
configured into the kernel when you are installing your loadable driver, you can 
use two idcheck options to inquire about the configured modules. 

The -y option checks whether a named DSP is configured into the next kernel to 
be built by examining the configure field(s) of its System file entries. The -p option 
checks whether a named DSP was configured into the last kernel to be built by 
examining /stand/unix. 

For more information, see the idcheck(lM) manual page. 
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Installing a Loadable Module 

Loadable drivers are installed using the idinstall(lM) command with the -a 
option (add DSP components), the -u option (update DSP components), or the -M 

option (add or update out-of-date DSP components only). You use the idinstall 
command to install a loadable driver the same way you would use it to install a 
static driver; there are no special options or procedures for loadable modules. 

For more information, see the idinstall(lM) manual page. 

Removing a Loadable Module 

Loadable drivers are removed using the idinstall command with the -d option, 
in the same manner as static drivers are removed. 

However, once you have removed your loadable driver, you must remember to 
issue the idbuild(lM) command with no options. This way, idbuild can per­
form a deferred rebuild that adjusts any tunables affected by your removed 
module. The rebuild will occur later, on the next system reboot. 

For more information about using idbuild with loadable modules, see the section 
"Configuring a Loadable Module" below. 

Tuning a Loadable Module 

If your loadable driver needs to modify any tunable parameter values, you must 
make these changes using the idtune(lM) command. 

By default, parameters tuned using idtune do not take effect until the entire ker­
nel is rebuilt and rebooted. When installing a DSP for a loadable driver that 
modifies the values of its existing tunable parameters in / etc/mtune. d, you prob­
ably want the driver's new parameter values to take effect immediately. To make 
the new values effective at the time you configure the driver into the running sys­
tem (rather than at boot time), you can use the idtune command with the -c 
option. 

Since the -c option modifies tunable parameters for loadable modules already 
configured into the kernel-in addition to modifying parameters for any loadable 
modules that will be subsequently configured-this option should be used with 
caution. You should take care to avoid introducing any inconsistencies between 
the tunables for the running kernel and those for your new loadable driver. 
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For more information, see the idtune(lM) manual page. 

Configuring a Loadable Module 

Once your loadable driver is installed, the next step is to configure it into the sys­
tem using the idbuild(lM) command. 

There are two ways you can configure your loadable driver using idbuild: a 
deferred build and an immediate build. If you don't want to configure your 
driver into the system that is currently running, you can invoke idbuild with no 
options, and your driver will be configured on the next reboot. If you do want to 
configure your loadable driver into the running system, you invoke idbuild with 
the -M option. This option configures your driver into the system immediately, 
without a reboot. 

When no options are given, the idbuild command does not rebuild the kernel. It 
simply sets a rebuild flag and exits. The next time the system is rebooted, the 
reboot process checks this flag. Finding the flag set, the reboot process invokes 
idbuild with the -B option to rebuild the kernel and reconfigure all modules 
flagged as loadable in /etc/conf/sdevice.d. The new loadable modules are 
saved in / etc/ conf /modnew. d instead of / etc/ conf /mod. d and the new kernel 
is placed in /etc/conf/cf .d/unix. If the rebuild is successful, idbuild invokes 
the system shutdown and reboot process. During the reboot, the new kernel 
replaces the old kernel in /stand/unix, the directory /etc/conf/mod.d is 
removed, and /etc/conf/modnew.d is renamed to /etc/conf/mod.d. 

With the -M option, idbuild configures your loadable driver into the running sys­
tem immediately, so you don't have to wait for a reboot to be able to load it. Some 
of the tasks the -M option performs to configure your loadable driver include plac­
ing the driver's loadable image in the /etc/conf/mod.d directory, and creating 
the necessary nodes in the /dev directory. If your DSP contains an Init com­
ponent, idbuild adds and activates your driver's inittab entries. When these 
tasks are complete, idbuild registers your driver with the kernel to make it avail­
able to the rest of the system. 

For more information, see the idbuild(lM) manual page. 
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Loading and Unloading a Loadable Module 

Loading the Module 

Once your loadable driver is configured into the kernel, you are ready to load it 
using the modadmin(lM) command. 

The -1 option instructs modadmin to load a loadable module into the running sys­
tem. For example, the command 

modadmin -1 1p 

loads a line printer driver named 1p. 

If the 1p driver references symbols in other loadable modules (as defined in the 
$depend line in its Master file), and some or all of these modules are not already 
loaded, modadmin loads them along with the 1p driver. When loading completes, 
modadmin prints (on stdout) an integer module-id used to identify driver 1p. 

Querying the Module's Status 

Once you have loaded your driver, you can view status information about the 
driver using the -Q or the -q option. For example, the command 

modadmin -Q 1p 

requests status for the 1p driver by specifying its module name, and the command 

modadmin -q module-id 

requests status for the 1p driver by specifying the module-id returned by the -1 
option. 

Information returned by the -Q and -q options includes the driver's auto-unload 
delay value, its reference count (the number of kernel modules currently accessing 
the driver), its dependent count (the number of loadable modules upon which the 
driver depends), and the pathname to its object file on disk. 

Modifying the DLM Search Path 

If you have placed your driver's object file somewhere other than in the default 
directory /etc/conf/mod.d, you need to give DLM the pathname to this location 
using the modadmin command with the -d option before you attempt to load your 
driver with the -1 option. 

For example, if you had installed the 1p driver on a remote server in a directory 
named /nfs/mod.d, you would first use the command 

modadmin -d /nfs/mod.d 
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to add the directory /nfs/mod.d to the search path DLM uses to locate loadable 
modules on disk. 

Unloading the Module 

The -u and -u options instruct modadmin to unload a module from the running 
system. For example, the command 

modadmin -u 1p 

unloads the 1p driver by specifying its module name, and the command 

modadmin -u module-id 

unloads the 1p driver by specifying the module-id returned by the -1 option. 

If 1p is currently in-use (that is, its reference count is not equal to 0), or if another 
loaded module references symbols in 1p (that is, its dependent count is not equal 
to 0), the request to unload the 1p driver will fail. If this occurs, DLM adds 1p to a 
list of candidates for a subsequent kernel auto unload. 

For a complete description of the modadmin command line options, refer to the 
modadmin(lM) manual page. 

Debugging a Loadable Module 

DlM Error Messages 

DLM error messages are written to the kernel's putbuf message buffer. When a 
module fails to load, you can often determine the cause of the error by printing the 
messages in this buffer. 

For example, if a demand load of a module fails with the error number ERELOC 

(indicating symbol referencing errors during relocation), the messages in putbuf 
give you the ability to identify the particular symbols that are causing the prob­
lem. This buffer can be examined while in the kernel debugger kdb by dumping 
its contents. For example, the command 

putbuf 100 dump 

dumps the first 256 bytes (100 hex) in the buffer. During normal system operation, 
DLM error messages can also be read from the / dev / osm node. 

For information about kdb, refer to the kdb(lM) manual page. 
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Dynamic Symbols and kdb 

As a consequence of the DLM feature, a dynamic symbol table is now maintained 
in kernel address space. The dynamic symbol table contains all global symbols 
defined in the static kernel-plus all global symbols defined in all currently loaded 
modules. The contents of the dynamic symbol table change as modules are loaded 
and unloaded; when a module is loaded, its symbolic information is added to the 
table, and when the module is unloaded, its symbolic information is deleted. 

Note that the symbols defined in loadable modules are not known to kdb until 
they have been successfully relocated and resolved during loading. When debug­
ging routines called during a DLM load operation (such as _load, init or start), 
it is useful to have access to the module's symbols as soon as possible. 

The best way to do this in kdb is to break upon return from the DLM routine 
mod_obj_load () in modld (), and then single step until the symbol availability 
flag is set (about 10 instructions). Once available, the loadable module's symbols 
can be accessed in the same manner as you would access any other kernel symbol. 

For information about the dynamic symbol table, refer to the getksym(2) manual 
page. 
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Introduction 

For device driver writers, installation means different things. If you are installing 
a driver for a piece of hardware, for example, you'll have some hardware-related 
installation procedures to follow. When you install the driver you've written on 
your computer for the first time, you probably will be installing the driver without 
the installation scripts recommended for customer use. When you do create the 
device driver package for customers, called a Driver Software Package (DSP), ins­
tallation will take on a different meaning. 

This chapter discusses how to install device drivers using Installable Driver Tools 
(also known as idtools) and DSPs. Tuning and configuring, as it pertains to device 
drivers, is also covered, concentrating mainly on those details specific to device 
drivers, and on features new for this release of the UNIX system. This chapter 
also describes the idtools and tunable parameter commands that are used with 
device drivers. 

For more information about software packaging, refer to the UNIX Software 
Development Tools. 
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Using idtools 

Device drivers (and other types of kernel modules) are packaged, installed, and 
configured into the system using a collection of configuration files, commands, 
and scripts known as the Installable Driver Tools, or idtools. (They have also been 
known as the Installable Driver I Tunable Parameter (ID ITP) scheme and as the 
Installable Device Tools.) 

It is important to note that the latest release of idtools has automated much of 
what used to be manual editing of driver configuration files. There are several 
benefits to automating this process, among them being decreased chances of total 
system failure because a single file has been lost or corrupted, fewer problems 
when installing a new driver, and a much simpler process for removing installed 
drivers. 

Although you might create the configuration file without using idtools, once the 
file becomes part of a device driver, everything you do with the file from then 
on-from installing it, to rebuilding the UNIX system kernel, to removing the 
driver from the system-should all be done using idtools. 

Detailed information on each of the idtools commands can be found in the Section 
1M manual pages in the Command Reference. 

idtools Enhancements for This Release 

For UNIX System V Release 4.2, idtools has many enhancements that you need to 
know about, particularly if you have used idtools in previous releases, or if you 
are going to be installing or reworking DSPs created for previous releases. 

Here's an overview of how the new idtools are going to affect you; we'll cover the 
details later. 

r-:::l Even if you are familiar with idtools, you should read the list below. idtools 
I N7EJ has changed In design and lunc!lonahty In this release 01 the UNIX system . 

3-2 

• Once idtools installs your DSP components in /etc/conf, you should not 
edit the configuration files in this directory directly, the way you may have 
done so in the past. If you need to access files in /etc/conf, you should use 
the commands idinstall(lM), idcheck(lM), and idtune(lM). 
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• Each driver now has its own individual configuration files. For example, 
instead of using one large mdevice file containing definitions for every 
driver, there's now a directory, /etc/conf/mdevice.d, that contains a Mas­
ter file for each driver, with file names that match the names of the indivi­
dual drivers. 

• The Master(4), System(4), and other file formats have changed. You should 
read the latest versions of the Section 4 manual pages on device driver 
configuration file formats. 

• Mtune used to be a single file containing tunable parameters. Now, it has 
become the mtune. d directory, although the files in the directory have the 
same format that mtune used to. 

• If you attempt to install a DSP containing a Master or System, component 
that is in the old-style format, idtools will automatically convert the file to 
the new-style format (except for the exec type) during the installation pro­
cess. However, the conversion code will be removed eventually, so if you're 
creating a new DSP, you should use the new-style file formats. 

• The mfsys and sfsys files (now obsolete) will be converted into Master and 
System files. However, this conversion code eventually will be removed, as 
well, so you should use the new format. 

• The UNIX system kernel is now located in / stand/unix, instead of /unix. 
This change was made to get the kernel out of the root directory, and also to 
speed up the process of booting the system, because / stand is a bfs file sys­
tem. This change was made with the UNIX System V Release 4.0. 

• idtools supports installation and configuration of loadable modules without 
a system shutdown and reboot (see the chapter "Loadable Modules"). 

idtools Utilities and Commands 

In the DSP, the postinstall script executes idcheck, idinstall, and idbuild 
to install the package and rebuild the UNIX system kernel. Manual pages for 
these commands are provided in the Command Reference. Details about the DSP 
component files (such as the post install script, Driver .0, Master, and so on) 
are covered later in this chapter. 
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idbuild 

idbuild builds a UNIX system base kernel and/ or configures loadable kernel 
modules using the current system configuration in $ROOT /$MACH/etc/conf. 

Building a UNIX system kernel consists of three steps. 

1. Configuration tables and symbols, and module lists are generated from the 
configuration data files. 

2. Configuration-dependent files are compiled, and then are linked together 
with all of the configured kernel and device driver object modules. 

3. If the loadable kernel module feature or a kernel debugger is enabled, ker­
nel symbol table information is attached to the kernel. 

The kernel is, by default, placed in $ROOT /$MACH/etc/conf/cf .d/unix. 

If the kernel build is successful and $ROOT is null or " / ," idbuild sets a flag to 
instruct the system shutdown/reboot sequence to replace the standard kernel in 
/stand/unix with the new kernel. Then, another flag will be set to cause the 
environment (device special files, /etc/inittab and so on) to be reconfigured 
accordingly. 

If one or more loadable kernel modules are specified with the -M option, idbuild 
will configure only the specified loadable kernel modules and put them into the 
$ROOT /$MACH/etc/conf/mod.d directory. Otherwise a UNIX system base 
kernel is rebuilt with all the loadable modules reconfigured into the 
$ROOT /$MACH/etc/conf/roodnew.d directory, which will be changed to 
/etc/conf/mod.d at the next system reboot if $ROOT is null or II /" [see 
modadmin(lM)]. 

If a loadable module has already been loaded, but to another major number range, 
you can either unload the module and then use idbuild with the -M option, or 
use idbuild without the -M option and reboot the system. (This assumes that 
$ROOT is null or " / .") If you attempt to use the -M option for a module already 
loaded at another major number range, idbuild will fail with error ENXIO. 

When loadable kernel modules are configured with the -M option, idbuild also 
creates the necessary nodes in the /dev directory, adding and activating 
/etc/inittab entries if any Init file is associated with the modules, and register­
ing the modules to the running kernel. This makes them available for dynamic 
loading without requiring a system reboot. 

Base kernel rebuilds are usually needed after a statically linked kernel module is 
installed, when any static module is removed, or when system tunable parameters 
are modified. If you execute idbuild without any options and if the environment 
variable $ROOT is null or " / ," a flag is set and the kernel rebuild is deferred to 
next system reboot. 
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idcheck 

The idcheck command is used to obtain selected information about the system 
configuration. The idcheck command is designed to help driver writers deter­
mine whether a particular driver package is already installed or to test for inter­
rupt vectors, device addresses, or DMA controllers already in use. The idcheck 
command is used in postinstall scripts that test for usable IVN, lOA, and CMA 
values and then instruct the user to set particular switches or straps on the con­
troller board. 

idinstall 

The idinstall command is used by the DSP's postinstall and preremove 
scripts, and its function is to install, remove, or update a DSP. 

idinstall is called by a DSP installation script or removal script to add (-a), 
delete (-d), update (-u), or get (-g or -G) device driver /kernel module 
configuration data. It can also be run from a kernel source makefile to make (-M) 
driver/module configuration data. 

idinstall expects to find driver/module component files in the current direc­
tory. When components are installed or updated with -a or -u option, they are 
copied into subdirectories of the /etc/conf directory and then deleted from the 
current directory, unless the -k flag is used to keep them. 

In the simplest case of installing a new DSP, the command syntax used by the 
DSP's Install script should be /etc/conf/bin/idinstall-a module-name. In this 
case the command requires and installs the DSP Driver .0, Master, and System 
components, and optionally installs the Space. c, Stubs. c, Node, Init, Rc, Sd, 
Modstub.o, Sassign, and Mtune components if those files are present in the 
current directory. 

The Driver. 0, Modstub. 0, Space. c, and Stubs. c components are moved to a 
directory named /etc/conf/pack.d/module-name. The remaining components 
are stored in directories under /etc/conf, which are organized by component 
type, in files named module-name. For example, the Node file would be moved to 
/etc/conf/node.d/module-name, the Master file moved to 
/etc/conf/mdevice.d/module-name, and the System file moved to 
/ etc / conf / sdevice . d/ module-name. 

idinstall -a requires that the module specified is not currently installed. 

idinstall -u module-name performs an Update DSP (that is, one that replaces an 
existing device driver component) to be installed. It overlays the files of the old 
DSP with the files of the new DSP. idinstall -u requires that the module 
specified is currently installed. 
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idinstall -M module-name works whether or not the module is currently 
installed. It copies into the configuration directories any component files which 
are not yet installed or are newer than the installed versions. In any case, the files 
in the current directory are not removed. 

When the -a or -u options are used, unless the -e option is used as well, idin­
stall attempts to verify that enough free disk space is available to start the 
reconfiguration process. This is done by calling the idspace command. idin­
stall will fail if there is not enough space and will exit with a non-zero return 
code. 

idmkinit 

idmkini t reconstructs / etc/ ini ttab from the Ini t files in / etc/ conf / ini t . d. 
The new inittab is normally placed in the /etc/conf/cf.d directory, although 
this can be changed through the -0 option. 

In the sysinit state during the next system reboot after a kernel reconfiguration, 
the idmkinit command is called automatically (by idmkenv) to establish the 
correct /etc/inittab for the running (newly-built) kernel. idmkinit is also 
called by idbuild when loadable kernel module configuration is requested. 
idmkinit can be executed as a user level command to test a modification of init­
tab before a DSP is actually built. It is also useful in installation scripts that do not 
reconfigure the kernel, but which need to create inittab entries. In this case, the 
inittab generated by idmkinit must be copied to /etc/inittab, and an init q 

command must be run for the new entry to take effect. 

idmknod 

idmknod reconstructs nodes (block and character special device files) in /devand 
its subdirectories, based on the Node files for currently configured modules (those 
with at least one Yin their System files). Any nodes for devices with an 'r' flag set 
in the characteristics fields of their Master file are left unchanged. All other nodes 
will be removed or created as needed to exactly match the configured Node files. 

Any needed subdirectories are created automatically. Subdirectories which 
become empty as a result of node removal are removed as well. 

All other files in the /dev directory tree are left unchanged, including symbolic 
links. 

On the next system reboot after a kernel reconfiguration, in sysinit state, the 
idmknod command is run automatically (by idmkenv) to establish the correct 
representation of device nodes in the /dev directory tree for the running kernel. 
idmknod (with the -M option) is also called by idbuild when loadable kernel 
module configuration is requested. idmknod can be executed as a user level com­
mand to test modification of the /dev directory before a Driver Software Package 
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(DSP) is actually built. It is also useful in installation scripts that do not 
reconfigure the kernel, but which need to create Idev entries. 

idspace 

idspace checks whether sufficient free space exists to perform a kernel 
reconfiguration (see idbuild). By default, idspace checks the number of avail­
able disk blocks and inodes in three file systems: II I" and, if they exist, lusr and 
Itmp. 

The default tests performed by idspace are 

• Verify that the root file system (" 1") has 400 blocks more than the size of the 
current I stand/unix. This verifies that a device driver being added to the 
current Istand/unix can be built and placed in the root file system. 
idspace also checks to ensure that 100 inodes exist in the root directory. 

• Determine whether a lusr file system exists. If it does exist, idspace 
checks whether 400 free blocks and 100 inodes are available in the lusr file 
system. If the file system does not exist, idspace does not report an error, 
however, because files created in lusr by the reconfiguration process will 
be created in the parent root file system, and space requirements are 
covered by the idspace test of the root file system. 

• Determine whether a Itmp file system exists. If it does exist, idspace 
checks whether 400 free blocks and 100 inodes are available in the Itmp file 
system. As with the test for the lusr file system, if the Itmp file system 
does not exist, idspace does not report an error, because files created in 
Itmp by the reconfiguration process will be created in the root file system, 
and space requirements are covered by the idspace test of the root file sys­
tem. 

Note that this function checks whether there is enough space to perform a 
reconfiguration, not whether there are enough free blocks and inodes to copy the 
DSP files from the installation media to the hard disk. To do this in your postin­
stall script, you should use the df(lM) command. 

idtune 

idtune sets or gets the value of an existing tunable parameter. idtune is called by 
a DSP installation or removal script; it can also be invoked directly as a user-level 
command. New tunable parameters must be installed using idinstall(lM) and 
a DSP Mtune file before they can be accessed using idtune. 
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Note that existing tunable parameter values must be modified using the idtune 
command. 

The first form of the idtune command, with no options or with -f or -m, is used 
to change the value of a parameter. The tunable parameter to be changed is indi­
cated by parm, and the desired value for the tunable parameter is value. 

By default, if the parameter has already been tuned previously, you are asked to 
confirm the change with the message 

TUnable Parameter parm is currently set to old value in 
leto/conf/cf.d/stune 

Is it OK to change it to value? (yIn) 

If you answer "y," the change is made. Otherwise, the tunable parameter will not 
be changed, and the following message is displayed 

parm left at old_value. 

However, if you use the -f (force) option, the change is always made and no mes­
sages are reported. 

If you use the -m (minimum) option, and the current value is greater than the 
desired value, no change is made and no messages are reported. 

If you use the -0 (current) option of the idtune command, the change applies to 
both stune and stune. current; otherwise, only the tunable parameter in stune 
is affected. stune. current contains the values currently being used by the run­
ning kernel; stune contains the values which will be used the next time the system 
is rebooted and the kernel rebuilt. Since any change made to the atune. current 
file will affect all the loadable kernel modules configured thereafter, it is very easy 
to introduce inconsistencies between the currently running kernel and the new 
loadable kernel modules. Therefore, you should be extremely careful when using 
the -c option. 

If you are modifying system tunable parameters as part of a device driver or 
application add-on package, you may want to change parameter values without 
prompting the user for confirmation. Your DSP postinatall script could over­
ride the existing value using the -f or -m options. However, you must be careful 
not to invalidate a tunable parameter modified earlier by the user or another add­
on package. 

Any attempt to set a parameter to a value outside the valid minimum/maximum 
(as given in the Mtune file) range will be reported as an error, even when using the 
-f or -m options. 
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The UNIX system kernel must be rebuilt (using idbuild) and the system rebooted 
for any changes to tunable parameter values to take effect. 
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The Driver Software Package (DSP) 

A DSP, from the users' perspective, is a software package they install on their sys­
tem, usually so they can operate a piece of hardware, such as a network interface 
card or a disk drive, for example. 

Users use the pkgadd(l) and pkgrm(l) command to install or remove the device 
drivers in DSPs. The pkgadd command installs a DSP from tape or floppy disk 
onto the system and initiates automatic procedures to reconfigure the kernel and 
to configure any loadable modules. The pkgrm command allows the user to select 
a package to delete from the system, removing the DSP and reconfiguring the ker­
nel without the removed driver(s) or load able module(s). 

The pkginfo(l) command displays all the software packages the user has 
installed. DSPs are treated the same way as other SVR4.2 software packages. 
Device drivers pre-installed on the system by the Foundation Set are not 
displayed by this command. 

What Is a DSP? 

A Driver Software Package (DSP) consists of a driver object module, installation 
and removal scripts, and device-specific system configuration, initialization, and 
shutdown files. (Some of these files are optional and are not included in every 
DSP.) 

The DSP is usually on a tape, or one or more floppy disks. To install the DSP, the 
user inserts the DSP media in the drive and runs the pkgadd command. This exe­
cutes a script file in the DSP, which performs all the operations needed to copy all 
the object and configuration files from the installation media to the hard disk of 
the system. Then, the UNIX system kernel is reconfigured and built, and the user 
reboots the system to complete the installation. 

What this means to you, as the device driver programmer, is that writing the 
driver is only part of the job. You also need to create the configuration files and 
write the installation and removal scripts. The DSP will also need to be tested, to 
make sure it can be installed and removed, as well as to ensure that it operates 
correctly when installed. 

Once all the components have been created, copy them to the /tmp directory and 
use pkg:mk(l) to create the DSP. 
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DSP Component Files 

A software package is made up of a group of components that together create the 
software. These components naturally include the executables that comprise the 
software, but they also include at least two information files and can optionally 
include other information files and scripts. 

As shown in Figure 3-1, a package's contents fall into three categories: 

• required components (the pkginfo file, the prototype file, package objects) 

• optional package information files 

• optional packaging scripts 

Figure 3-1: The Contents of a Package 
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At the very least, a package must contain the following components: 

• Package Objects 
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These are the objects that make up the software. They can be files (execut­
able or data), directories, or named pipes. Objects can be manipulated in 
groups during installation by placing them into classes. For more informa­
tion about classes, refer to the UNIX Software Development Tools. 

• The pkginfo File 

The pkginfo file is a required package information file defining parameter 
values that describe a package. For example, this file defines values for the 
package abbreviation, the full package name, and the package architecture. 

• TheprototypeFile 

The prototype file is a required package information file that lists the con­
tents of the package. There is one entry for each deliverable object and this 
entry consists of several fields of information describing the object. All 
package components, including the pkginfo file, must be listed in the pro­
totype file. 

The required package information files are described further in this chapter and 
on their respective manual pages. 

Optional Package Information Files 

There are four optional package information files that you can add to your pack­
age: 

• The compver File 

Defines previous versions of the package that are compatible with this ver­
sion. 

• The depend File 

Defines any software dependencies associated with this package. 

• The space File 

Defines disk space requirements for the target environment beyond that 
used by objects defined in the prototype file (for example, files that will be 
dynamically created at installation time). 

• The copyright File 
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Defines the text for a copyright message that will be printed on the terminal 
at the time of package installation or removal. 
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Every package information file used must have an entry in the prototype file. All 
of these files are described further in their respective manual pages. 

Optional Installation Scripts 

Your package can use three types of installation scripts, and although no scripts 
are required, they are recommended. Many of the tasks which had to be done 
manually in a installation script can be accomplished automatically by pkgadd. 
However, you may provide scripts with a DSP to perform customized actions. An 
installation script must be executable by sh (for example, a shell script or execut­
able program). The three script types are the request script (solicits installer 
input), class action script (defines a set of actions to perform on a group of objects), 
and the procedure script (defines actions that will occur at particular points dur­
ing installation). 

Device Driver Packages 

A DSP for a device driver will typically consist of the following components. 
Some are reqUired, others are optional; this distinction is noted in Table 3-1. 

• The driver module object file, Driver. 0 

• The configuration files for Master(4), System(4), Mtune(4), Node(4), Rc(4), 
Sassign(4), Sd(4), Space.c(4), and Stubs.c(4) 

• Modstub.o for stub-loaded loadable modules. 

• A post install script, which is used by the administrative command 
pkgadd(1M) to install the DSP 

• A preremove script, which is used by the administrative command 
pkgrm(1M) to remove the DSP from the system 

• A prototype file, which contains information about the contents of the DSP 
and which is used by pkgmk to create pkgmap, which contains details about 
the files that comprise the DSP 

• A pkginfo file, describing characteristics of the DSP 

The component files comprising the DSP are summarized in Table 3-1. In this 
table, the term module-name refers to a file or directory that takes its name from the 
name of the driver being installed. For the format of specific configuration files, 
you should refer to the appropriate Section 4 manual page. 
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Table 3-1: Components of Driver Software Package (DSP) 

DSP 
Module Purpose 

prototype Required OAM package proto­
type module 

pkginfo Required OAM package infor­
mation module 

post install Optional script to install DSP 
package 

preremove Optional script to remove DSP 
package 

Driver. 0 Required driver object file to be 
configured into kernel 

Master Required generic driver 
configuration data 

Init Optional inittab entry data 
Mtune Optional tunable parameter 

definitions 
Node Optional Idev device node data 
Rc Optional system startup script 
Sassign Optional system logical device 

name assignments 
Sd Optional system shutdown 

script 
Space. c Optional driver data structure 

allocations and initializations 
Stubs. c Optional stubs for symbols 

defined in a driver that will not 
be installed 

Modstub.o Optional stub object file for 
loadable module 
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File Affected in /etc/conf 
none 

none 

none 

none 

pack. dlmodule-nameIDriver. 0 

mdevice. dlmodule-name 

init. dlmodule-name 
mtune. dlmodule-name 

node. dlmodule-name 

rc. dlmodule-name 
sassign. dlmodule-name 

sd. dlmodule-name 

pack. dlmodule-namel space. c 

pack.dlmodule-namelstubs.c 

pack. dlmodule-name lModstub. 0 
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Overview of DSP Components 

Following are each of the components that make up the typical DSP. Where possi­
ble, an example has been included to show you what the component might look 
like. Some are generic, while others are specific. The files prototype, postin­
stall, pkginfo, and preremove are only some of the packaging files that can be 
used in a software package. Note that very few DSPs include all of the possible 
components. It is also possible to have additional components, such as 
configuration or other script files. 

For the more information on the files and file format described here, refer to the 
Section 4 manual pages. For more details about DSP Components, refer to the 
UNIX Software Development Tools. 

prototype 

The prototype file describes the DSP, listing where the files are to be installed 
and their characteristics. DSPs differ from a typical package, in that most of their 
component files are installed in /tmp for later processing by the idinstall com­
mand, which is called by the post install script. 

Following is a generic example of a prototype file. 
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i pkginfo 
i postinstall 
i pre:remove 

ldefault 644 root eys 

d none /tDIp ? 
d none /tDIp/xyzzy 

# 

? ? 

# These files are installed b.Y the idinstall command in the postinstall script 
# 
v none /tDIp/xyzzy/Driver.o=/etc/canf/pack.d/xyzzy/Driver.o 
v none /tDIp/xyzzy/Space.c=/etc/canf/pack.d/xyzzy/space.c 
v none /tmp/xyzzy/Master=/etc/canf/mdevice.d/xyzzy 
v none /tDIp/xyzzy/9,ystem=/etc/conf/sdevice.d/xyzzy 

# 
# These files are installed b.Y the post install shell script 
# 
v none /tDIp/loadmods=/newdrivers/xyzzy/loadmods 
v none /tmp/xyzzy/disk.cfg=/etc/conf/pack.d/xyzzy/disk.cfg 

# 
# This file is installed b.Y the pkgadd command 
# 
f none /usr/include/sys/xyzzy.h 

For more information, refer to the prototype(4) manual page. 

pkginfo 

The pkginfo file describes various attributes for the DSP. For example, it 
identifies the name of the package as the value of the PKG variable. 

Each entry in the pkginfo file is a line that establishes the value of a parameter in 
the following form. 

PARAM="value" 

There is no required order in which the parameters must be specified within the 
file. 

Following is a generic example of a pkginfo file. 
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CATEGORY=II system'l 
CLASSES=lnone" 

NAME="XYZZY DRIVER PACKAGE I' 
PKG=I'xyzzy" 

VEIIDOR="XYZZY Manufacturing C~any" 
VERSION="l" 

For more information, refer to the pkginfo(4) manual page. 

postinstall 

post install is a shell script that performs the steps necessary to install the DSP 
on the system. post install does the following: 

1. Changes directory to /tmp, where the DSP files were installed. 

2. Executes idinstall -a and passes it the internal DSP name. This creates 
the needed directories and moves the DSP contents to the appropriate loca­
tions. If the idinstall -a fails, the package was already installed. 

3. If the DSP has already been installed, idinstall -u command is used to 
update the package, using the files from the DSP. Another way to perform 
an update is to use the -M option, which updates only those installed files 
which are older than those in the DSP. 

4. Runs the idbuild command without any options to create a new UNIX sys­
tem kernel when the system is rebooted. 

5. removef any /tmp files installed. 

When writing a post install script, you should make liberal use of echo and 
message commands to tell the user what is going on. You should also make sure 
to exit with the appropriate return value based on a successful or unsuccessful ins­
tallation. 

Following is an example post install script. 
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${CONFBIN}/idinstall -a ${1} > ${ERR} 2>&1 
RET=$? 
if [ ${RET} != 0 1 
then 

${CONFBIN}/idinstall -u ${1} > ${ERR} 2>&1 
RET=$? 

fi 

1f [ ${RET} != 0 1 
then 

message "The installation cannot be c~leted due to an error in \ 
the driver installation during the installation of the ${1} module \ 
of the $ {NAME} • The file ${ERR} contains the errors." 

exit ${FAILURE} 
fi 
cp disk.cfg /etc/conf/pack.d/${l} 

FAILURE=l # fatal error 
DRIVER=xyzzy 
OONFDIR=/etc/conf 
CONFBIN=${OONFDIR}/bin 
ERR=/tlt\P/err.out 

for MODULE in ${DRIVER} 
do 

cd /tmp/${MODULE} 
do_install ${MODULE} 

done 

cat /tlt\P/loadmods » /etc/loadmods 

$ {CONFBIN} /idbuild >/dev/null 2>&1 

installf -f $PRGINST 

removef ${PKGINST} /tmp/loadmods /tmp/${DRIVER} >/dev/null 2>&1 
removef -f ${PKGINST} >/dev/null 2>&1 

preremove 

The preremove shell script performs the steps to remove a DSP from a system. It 
does the following: 

1. Uses idcheck to make sure the DSP to be removed exists on the system. If 
not, the script exits and displays an error message. 
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2. Runs idinstall -d and passes it the internal DSP name. This removes the 
DSP modules. 

3. Invokes idbuild without any options to cause the kernel to be rebuilt when 
the system is rebooted. 

Following is an example preremove script. 

#ident "@(#)install 43.7" 

CONFDIR=/etc/conf 
CONFBIN=${CONFDIR}/bin 
DRIVER=xyzzy 

for MODULE in ${DRIVER} 
do 

${CONFBIN}/idcheck -p ${MODULE} 
RES="$?" 
if 

[ "${RES}" -ne "100" -a "${RES}" -ne "0" 1 
then 

${CONFBIN}/idinstall -d ${MODULE} 2» /tmp/${MODULE}.err 
fi 

done 

${CONFBIN}/idbuild >/dev/null 2>&1 

exit 0 

Driver.o 

A required component, the Driver. 0 component is the driver object module that 
is to be configured into the kernel. This object file should be compiled using the C 
Programming Language Utilities (CPLU), part of the Software Development Set. 

Master 

A required component, the Master file describes a kernel module for 
configuration into the system. The System file contains the configuration informa­
tion for the individual kernel modules that are actually to be included in the next 
UNIX system kernel built [see System(4)]. 

When the Master component of a module's DSP is installed, idinstall stores the 
module's Master file information in /etc/conf/mdevice.d/module-name, where 
the file module-name is the name of the driver module being installed. 
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DSP package scripts should never access Master files directly; they should use the 
idinstall and idcheck commands instead. 

Master files contain lines of the form: 

$version version-number 
$entry entry-point-list 
$depend module-name-list 
$modtype loadable-module-type-name 
module-name prefix characteristics order bmaj cmaj 

Blank lines and lines beginning with '#' or '*' are considered comments and are 
ignored. 

Following is an example Master file for the stOl tape driver. 

#ident "@(lIl/etc/conf/mdevice.d/stOl.sl 1.2 SVR4.2 02/04/92 34022 USL" 
lIident "$Header: $" 
$version 1 
$entry init open close reed write ioctl 
stOl stOl kocr 0 0 22 

For complete information about the Master file format, refer to the Master(4) 
manual page. 

System 
A required component, the System file contains information needed to incor­
porate a particular kernel module into the next UNIX system configuration. Gen­
eral configuration information about the module type is described in the Master 
file. When the System component of a DSP is installed, idinstall stores the 
module's System file information in /etc/conf/sdevice.d/module-name, where 
the file module-name is the name of the module being installed. 

DSP package scripts should never access Master files directly; they should use the 
idinstall and idcheck commands instead. 

System files contain lines of the form: 

$version version-number 
$loadable module-name 
module-name configure unit ipl itype ivec sioa eioa scma ecma dmachan 
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Blank lines and lines beginning with '#' or '*' are considered comments and are 
ignored. 

Following is an example System file for the stOl tape driver. 

*ident "@(#)/etc/conf/sdevice.d/st01.s1 1.4 SVR4.2 04/09/92 5743 USL" 

*ident "$Header: $" 
$version 1 
$l~dable st01 
st01 Y a a a a a a a a -1 

For complete information about the System file format, refer to the System(4) 
manual page. 

Init 

An optional component, the Init file contains information used by the idmkinit 
command to construct a module's /etc/inittab entry. When the Init com­
ponent of a module's DSP is installed, idinstall stores the module's Init file 
information in /etc/conf/init .d/module-name, where the file module-name is the 
name of the module being installed. 

DSP package scripts should never access Init files directly; they should use the 
idinstall command instead. Init files contain line consisting of one of the fol­
lowing three forms: 

action: process 
rstate:action:process 
id:rstate:action:process 

All fields are positional and must be separated by colons. Blank lines and line 
beginning with '#' or '*' are considered comments and are ignored. 

Lines of the first form should be used for most entries. When presented with a 
line of this form, idmkinit: 

1. Copies the action and process field to the inittab entry. 

2. Generates a valid id field value (called a 'tag') and prepends it to the entry. 

3. Generates an rstate field with a value of 2, and adds it to the entry, follow-
ing the id field. 

Lines of the second form should be used when an rstate value other than 2 must 
be specified. When presented with a line of this form, idmkinit generates only 
the id field value and prepends it to the entry. 
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Lines of the third form should be used with caution. When presented with a line 
of this form, idmkinit copies the entry to the inittab file ·verbatim. It is recom­
mended that DSPs avoid specifying lines of this form because, if more than one 
DSP or add-on application specifies the same id field, idmkinit will create multi­
ple inittab entries containing this id value. When the /etc/init program 
attempts to process the inittab entries with the same id, it will fail with an error 
condition. 

Note that idmkinit determines which of the three forms is being used by search­
ing each line for a valid action keyword. Valid action values are: 

boot 
bootwait 
initdefault 
off 
once 
ondemand 
powerfail 
powerwait 
respawn 
systinit 
wait 

For complete information about the Init file format, refer to the Init(4) manual 
page. 

Mtune 

An optional component, the Mtune file contains definitions of tunable parameters, 
including default values, for a kernel module type. 

When the Mtune component of a DSP is installed, idinstall stores the module's 
Mtune file information in /etc/conf/mtune.d/module-name, where the file 
module-name is the name of the module being installed. 

DSP package scripts should never access Mtune files directly; they should use the 
idinstall and idtune commands instead. 

Mtune files contain lines of the form: 

parameter-name default-value minimum-value maximum-value 

All fields are positional and must be separated by white space. Blank lines and 
lines beginning with '#' or '*' are considered comments and are ignored. 
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Following is an example Mtune file for kmacct, KMA (Kernel Memory Allocation) 
Accounting. 

#ident "@(#)/etc/conf/mtune.d/kmacct.sl 1.1 SVR4.2 10/05/91 1640 USL" 

#ident "$Header: $" 

* KMACCT Tunables -------------------------------

* KMARRAY is the number of entries in the symbol table 

KMARRAY 150 50 500 

* SDEPTH is the depth of stack to trace hack (no larger than MAXDEPTH 

* from sys/kmacct.h) 

SDEPTH 5 3 10 

* NKMABUF is the number of buffer headers to allocate (one for each 

* buffer that has been allocated and not yet returned). 

NKMABUF 1000 100 10000 

For complete information about the Mtune file format, refer to the Mtune(4) 
manual page. 

Node 

An optional component, the Node file contains definitions used by the 
idmknod(lM) command to create the device nodes (block and character special 
files) associated with a device driver module. When the Node component of a 
module's DSP is installed, idinstall stores the driver's Node file information in 
/etc/conf/node.d/module-name, where module-name is the name of the driver 
being installed. 

DSP package scripts should never access Node files directly; they should use the 
idinstall command instead. 

Each device node for the driver is specified on a separate line of the form: 

module-name node-name type minor user group permissions 

All fields are positional and must be separated by white space. The first four 
fields are required; the last three fields are optional. Blank lines and lines begin­
ning with '#' or '*' are considered comments and are ignored. 
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Following is an example Node file for log, the UNIX system event logger. 

Rc 

#ident "@(#)/etc/conf/node.d/log.sl 1.1 SVR4.2 10/05/91 58071 USL" 
#ident "$Header: $" 

log 
log 

log c 
conslog c 

5 
o 

o 
o 

o 
o 

444 
222 

An optional component, the Rc file is an optional file that executes when the sys­
tem is booted to initialize an installed kernel module. Normally, this is a shell 
script [see sh(l)]. 

When the Rc component of a module's DSP is installed, idinstall stores the 
module's Rc file in letc/conf/rc.d/module-name, where module-name is the name 
of the module being installed. 

DSP package scripts should never access Rc files directly; they should use the 
idinstall command instead. 

The contents of the I etcl conf Irc. d directory are linked to I etcl idrc. d when­
ever a new configuration of the kernel is first booted. On this initial reboot, and 
on all subsequent reboots, the module's Rc file is invoked upon entering init 
level 2 [see init(lM)]. 

Following is an example Rc file for pts: 
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if [ -c /dev/ptsOOO 1 
then 
exit 
fi 
cd /dev/pts 
for i in * 
do 
NUM='echo $i I awk '{printf("%.3d", $1)}" 
In $i /dev/pts${NUM} » /dev/null 2>&1 
done 
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Sassign 

An optional component, the Sassign file give system administrators the ability to 
assign specific actual devices to logical device names used by the kernel. One 
example is rootdev, which is the device that contains the root file system. At 
present, Sassign supports only block devices. 

If the system administrator wants to assign a different actual device to perform a 
function, the administrator remaps the logical device name for that function to 
specify configured device in the Sassign file. Note that the kernel must be rebuilt 
and rebooted for the new assignment to take effect. 

Each logical device name in the Sassign file is specified (in /etc/conf/sassign) 
on a separate line of the form: 

device-variable-prefix device-module-name minor node-name 

All fields are positional and must be separated by white space. Blank lines and 
lines beginning with '#' or '*' are considered comments and are ignored. The 
node-name field is applicable to swap devices only. 

Following is an example Sassign file: 

#ident "@(#)/etc/conf/sassign.d/kernel.sl 1.1 BVR4.2 10/05/91 17775 USL" 
#ident "$Hea.der: $" 

* Device variable assignments for the base kernel. 
swap adO 1 2 /dsv/swap 
cl1.uIi' adO 1 2 
root adO 1 1 

For complete information about the Sassign file format, refer to the Sassign(4) 
manual page. 

Sd 

An optional component, Sd is a file that executes when the system is shut down to 
perform any cleanup required for an installed kernel module. Normally, this is a 
shell script [see sh(l)]. 

When the Sd component of a module's DSP is installed, idinstall stores the 
module's Sd file in /etc/conf/sd.d/module-name, where module-name is the name 
of the module being installed. 
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DSP package scripts should never access Sd files directly; they should use the 
idinstall command instead. 

The contents of the /etc/conf/sd.d directory are linked to etc/idsd.d when­
ever a new configuration of the kernel is first booted. On this initial reboot, and 
on all subsequent reboots, the module's Sd file is invoked upon entering init 
level 0, 5, or 6 [see init(lM)J. 

Space.c 

An optional component, the Space. c file contains storage allocations and initiali­
zations of data structures associated with a kernel module, when the size or initial 
value of the data structures depend on configurable parameters, such as the 
number of subdevices configured for a particular device or tunable parameter. 
For example, the Space. c file gives a driver the ability to allocate storage only for 
the sub devices being configured, by referencing symbolic constants defined in the 
config.h file. The config.h file is a temporary file created in /etc/conf/cf.d 
during the system reconfiguration process. 

When the Space.c component of a module's DSP is installed, idinstall stores 
the module's Space.c file in /etc/conf/pack.d/module-name/space.c, where 
module-name is the name of the module being installed. 

DSP package scripts should never access Space. c files directly; they should use 
the idinstall command instead. 

Following is an example Space.c file for the stOl tape driver. 
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#ident "@(#)/etc/conf/pack.d/stOl/space.c.s1 1.3 BVR4.2 06/18/92 59307 USL" 
#ident "$Header: $" 

#inc1ude <sys/types.h> 
#inc1ude <sys/scsi.h> 
#inc1ude <sys/conf.h> 
#inc1ude <sys/sdi_edt.h> 
#inc1ude <sys/sdi.h> 
#inc1ude "config .h" 

struct deY_spec *stOl_dev_spec[] = { 

a 
}; 

struct dev_cfg ST01_dev_cfg[] = { 

{ SDI_CLAIMISDIJIDD, Oxffff, Oxff, Oxff, ID_TAPE, 0, '''' }, 
}; 

int /* Character major number 

int StOl~obs = 20; /* Allocation per LV device */ 

int /* Flag for reserving tape on open */ 

*/ 

For complete information about the Space.c file format, refer to the Space.c(4) 
manual page. 

Stubs.c 

An optional component, a Stubs. c file is a C language source file that can be 
installed and compiled into the system as a "placeholder" for a kernel module 
that will not be installed in the system at this time. Its purpose is to enable the 
kernel to resolve references to the absent module's symbols. 

A module's Stubs. c file contains function name and variable definition stubs for 
symbols defined in the module that can be referenced by other kernel modules 
being configured into the system. At compile time, the definitions in the Stubs. c 
file give the kernel the ability to resolve references made to the absent module's 
symbols. 

When the Stubs. c component of a module's DSP is installed, idinstall stores 
the module's Stubs.c file information in /etc/conf/pack.d/module-
name / stubs. c, where module-name is the hame of the module being installed. 

The Driver Software Package (DSP) 3-27 



The Stubs. c file needs to be handled differently in preremove scripts if it should 
be kept even after the DSP is removed. This is done by using idinstall -g. 

DSP package scripts should never access Stubs. c files directly; they should use 
the idinstall command instead. 

Following is an example Stubs. c file for log, the UNIX system event logger. 

#ident n@(#)/etc/conf/pack.d/1og/stubs.c.s1 1.2 SVR4.2 01/31/92 21292 USLn 

int 
strlogO 
{ 

return(O); 

} 

int 
cons1og_set ( ) 
{ 

return (0); 

} 

For complete information about the Stubs. c file format, refer to the Stubs. c(4) 
manual page. 

Modstub.o 

An optional component, the Modstub.o file is an object module for stub-loaded 
loadable modules. This object file, like the Driver. 0 component, should be com­
piled using the C Programming Language Utilities (CPLU), part of the Software 
Development Set. 

Packaging the Driver 

For complete information on the UNIX system packaging tools, refer to the UNIX 
Software Development Tools and the applicable Section 4 manual pages for the DSP 
component files. However, following is a brief summary of what is required to 
create a DSP, presented here to provide a better context for understanding. 

To help create the prototype file, the pkgproto command can take command line 
arguments to scan a development directory structure and generate the prototype 
file. The prototype file generated by pkgproto, however, lists the components in 
the directory structure used on the development machine; therefore, it will be 
installed into the same directories on the user's system. 
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To package a driver, put all of the component files into the directories specified in 
the prototype file and use the pkgmk command. pkgmk uses the prototype and 
pkginfo files to create a file called pkgmap(4) and creates the DSP. 

The pkgtrans(l) command copies a DSP to the installation media, either tape or 
floppy disks. 

Each DSP must have two "names." One is the "external name" that the user sees 
when the package is installed. The second is an "internal" name that the kernel 
uses to identify the device. 

The DSP's prototype file should install the component files as class "volatile" in 
the /tmp directory. Then, the postinstall script, when executed, should cd to 
that directory before executing idinstall to add the DSP to the system. 
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Typical DSP Installation and Removal 
Scenarios 

Installing a DSP 

A user installing a DSP usually will find the process very simple. From the user 
perspective, a typical installation proceeds as follows: 

1. The user runs the pkgadd command with the -d device option, where device 
specifies the floppy disk or tape drive where the DSP is to be installed from. 
For example, device could be diskl. 

2. A prompt asks the user to insert the floppy disk or mount the tape. 

3. A second prompt appears, asking the user which DSP is to be installed or 
whether to install all DSPs on the installation media. 

4. The DSP package is installed, a process which may take several minutes or 
longer, depending on the DSP. This process usually does not require any 
particular user intervention. 

S. A message is displayed signaling success or failure of the installation. 

6. A prompt asks the user whether another DSP is to be installed. If so, this 
process is repeated. 

7. When all desired DSPs have been installed, a message is displayed, telling 
the user to reboot the system to complete the DSP installation process. 

Removing a DSP 

As shown above, the installation process is relatively simple and straightforward 
from the user's viewpoint. Removing a package is even easier. 

1. The user executes the pkgrm command. 

2. A prompt asks the user which DSP to remove. 

3. The prerem.ove script deletes all the files and commands associated with 
the DSP, calling the idinstall -d command. 

4. A prompt is displayed, instructing the user to reboot the system to com­
plete the DSP removal. 
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DSP Commands and Procedures 

The three most important idtools commands for DSPs are idcheck, idinstall, 
and idbuild, and every post install and preremove script should use all three 
of them. 

For example, at bare minimum, the post install script will call idcheck to see 
whether the DSP has already been installed. Then, the script runs idinstall, 
either with the -a option to install the DSP or with the -u option to update an 
existing DSP. Finally, the postinstall calls idbuild to build a new UNIX sys­
tem base kernel and/ or configure loadable modules. 

The pre remove script, used to remove a DSP from the system, also uses idcheck 
to see whether the DSP exists (there is no point in attempting to remove a DSP 
that is not there). Then, the idinstall command is run using the -d option; this 
deletes the component files and configuration file entries relating to the DSP. 
(Sometimes the Stubs. c needs to be kept; refer to idinstall(lM) to see how to 
do this.) Lastly, the script calls the idbuild command to build a new kernel, 
without the DSP, and/ or to remove configuration data for loadable modules. 

Of the abovementioned commands, idinstall is the one that performs the wid­
est range of functions. It does not just install DSPs, but it can also update or 
remove existing DSPs on a system. A DSP installation or removal script calls 
idinstall to add (-a), delete (-d), update (-), or get (-g or -G) device driver and 
kernel module configuration data. It can also be run from a kernel source 
makefile to make (-M) configuration data. 

idinstall expects to find DSP component files in the current directory, which, 
for DSP installation purposes, should be /tmp. When the components are 
installed or updated with the -a or -u option, they are copied into the subdirec­
tories of the /etc/conf directory. Then, the files are deleted from the current 
directory, unless the -k option is used, which tells idinstall to keep the files. 

Checking the System Configuration 

The idcheck command returns selected information about the system 
configuration. In DSP scripts, it can be used to determine whether a particular 
device driver has already installed, and to verify that a particular interrupt vector, 
I/O address, or other selected parameter is, in fact, available for use. 
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The options available for the idcheck command enable you to select which item 
to check for, but it is the -p module-name option which checks for the existence of a 
particular DSP's modules. idcheck returns a numeric value depending on which 
components it finds, or 0 if no components are found. 

Other options check for conflicting devices, interrupt vectors, DMA channels, 
address ranges, and other details. 

For complete information about the idcheck command, refer to the idcheck(lM) 
manual page. 

Installing a DSP 

To install a DSP, the postinstall script needs to call the idinstall command 
with the -a option. An example command for installing a DSP follows: 

idinstall -a module-name 

In this example, module-name represents the name of the DSP to be installed. 
Unless the -e option is also specified, idinstall performs a check to see whether 
there is enough free disk space to start the configuration process, calling idspace 
to do this. Note that this check for available disk space is different from the one 
you should perform in the postinstall script. In the script, you should use 
df(lM) to check whether there are enough free blocks and inodes to copy the com­
ponent files from the installation media to the /~ directory. 

The idinstall command requires and installs the DSP Driver. 0, Master, and 
System components, and, if present, installs the Init, Mtune, Node, Rc, Sassign, 
Sd, Space. c, and Stubs. c components, all of which must be in the current direc­
tory. 

The Driver. 0, Space. c, and Stubs. c components are moved to a directory 
named /etc/conf/pack.d/module-name. The remaining files are stored in direc­
tories under /etc/conf, which are organized by component type, in files named 
module-name. For example, the Node file would be moved to 
/etc/conf/node.d/module-name. 

For complete information about the idinstall command, refer to the 
idinstall(lM) manual page. 
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Updating a DSP 

If a check for the existence of the DSP (using idcheck) turns up positive, a 
postinstall script should use the idinstall update option. This is assuming 
that it makes sense to update the DSP, and in any event, you should require a 
positive verification, or at least give the user the option of aborting, before updat­
ing an existing DSP. 

The update can either completely overwrite the existing DSP files on the system, 
or overwrite them selectively, based on whether each file in the DSP is newer than 
the one on the system. 

The following examples update a DSP: 

idinstall -u module-name 

or 

idinstall -M module-name 

The first command overwrites all the files of the original DSP with files of the new 
DSP, requiring that the module-name specified is currently installed. The 
idinstall -u module-name command requires that the module specified is 
currently installed. 

The second variation, idinstall -M module-name, works whether or not the DSP 
is currently installed. It copies into the appropriate configuration directories any 
component files which are not yet installed or are newer than the installed ver­
sions. In any case, with idinstall -M, the files in the current directory are not 
removed. 

For complete information about the idinstall command, refer to the 
idinstall(lM) manual page. 

Removing a DSP 

To remove a DSP from the system, a preremove script needs to call the idinstall 
command with the -d option. An example command follows. 

idinstall -d module-name 

In the example, module-name is the name of the DSP to be removed. Once exe­
cuted, all files and commands associated with the DSP are removed. A reboot is 
required to reconfigure the kernel once the DSP has been removed. 
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Building a New Kernel 

A new kernel needs to be built when installing or removing a DSP, after all of the 
DSP component modules (for example, Master, System, Init, and so on) have 
been installed or removed from the appropriate locations. It is usually a good 
idea to reboot after a DSP update, as well. The idbuild command builds a UNIX 
system base kernel and/ or configures loadable kernel modules using the current 
system configuration in $ROOT /$MACH/etc/conf. 

Base kernel rebuilds are usually needed after a statically linked kernel module is 
installed, when any static module is removed, or when system tunable parameters 
are modified. If you execute idbuild without any options and if the environment 
variable $ROOT is null or II /", a flag is set and the kernel rebuild is deferred to 
next system reboot. 

When adding or removing a DSP through the post install or preremove scripts, 
you may want to use the idbuild -B command to build a new kernel immedi­
ately, although if installing several packages at once, you probably will not want 
to rebuild the kernel until after all the DSPs are installed. Then, the system is 
rebooted using the new UNIX system kernel in / stand/unix, with the old kernel 
saved as unix. old if there is enough disk space available. 

When loadable modules are to be added, you use the -M module-name option, 
repeating the option on the command line as many times as needed to configure 
all the load able modules. 

The -B and -M options can be used on the same command line. 

Building a UNIX system kernel consists of three steps. 

1. Generate configuration tables and symbols, and module lists from the 
configuration data files. 

2. Compile configuration-dependent files, and then link these together with all 
of the configured kernel and device driver object modules. 

3. If the load able kernel module feature or a kernel debugger is enabled, 
attach the kernel symbol table information to the kernel. 

The kernel is, by default, placed in $ROOT /$MACH/etc/conf/cf .d/unix. 

If the kernel build is successful and $ROOT is null or "/", idbuild sets a flag to 
instruct the system shutdown/reboot sequence to replace the standard kernel in 
/stand/unix with the new kernel. Then, another flag will be set to cause the 
environment (device special files, /etc/inittab, and so on) to be reconfigured 
accordingly. 
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If one or more loadable kernel modules are specified with the -M option, idbuild 
will configure only the specified loadable kernel modules and put them into the 
$ROOT /$MACH/etc/conf/mod.d directory. Otherwise a UNIX system base 
kernel is rebuilt with all the loadable modules reconfigured into the 
$ROOT /$MACH/etc/conf/modnew.d directory, which will be changed to 
/etc/conf/mod.d at the next system reboot, if $ROOT is null or " /" [see 
modadmin(lM)] . 

When loadable kernel modules are configured with the -M option, idbuild also 
creates the necessary nodes in the /dev directory, adding and activating 
/etc/inittab entries if any Init file is associated with the modules, and register­
ing the modules to the running kernel [see idmodreg(lM)]. This makes them 
available for dynamic loading without requiring a system reboot. 

For complete information about the idbuild command, refer to the idbuild(lM) 
manual page. 

Rebooting the System with the New Kernel 

After adding or removing DSPs, the system needs to be rebooted for the changes 
to take effect. Once rebooted, modules configured for static installation with the 
kernel are initialized, and modules configured for dynamic loading are made 
available. 

Emergency Recovery (New Kernel Will Not Boot) 

It is possible that the kernel will fail to boot if your driver contains a serious bug. 
This can be due to a panic call that you put in your driver or some other system 
problem. If this happens, you should reset the system and boot the original ker­
nel, which would be saved by idbuild in / stand/unix. old if there was enough 
disk space available to make the copy. To do this, reset the system, and when you 
see the message 

Booting UNIX System ... 

quickly press the console keyboard spacebar to interrupt the default boot. When 
the boot prompt appears, type" /stand/unix.old" or whatever name you may 
have used for a backup copy of the kernel. 

If you do not have a working backup copy of the kernel or some other disaster has 
occurred, and you cannot recover gracefully, you will need to follow the pro­
cedure listed below to put a bootable / stand/unix back on the hard disk. 
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1. Boot the system from the first boot floppy. 

2. When the system prompts you to do so, insert the second boot floppy. 

3. When prompted, select the non-destructive installation, as if you needed to 
overlay the system. 

4. After loading the third boot floppy, you will be prompted to select 
Automatic or Custom installation. Press DEL to get the interruption screen. 
Press DEL again to get a shell prompt. 

5. At this time,the hard disk file system tree is mounted on front. You can 
either build a new kernel, or mount the first floppy and copy the boot ker­
nel to front/stand/unix. 

6. Press the RESET button, or power down and then back up again. 

The system should now boot normally with a standard foundation kernel. Your 
new driver and any other drivers you had installed on your system will not be 
included in the UNIX kernel, even though they may appear in the pkginfo out­
put. To fix this, remove your driver and execute idbuild. If that fails, remove 
and reinstall all of the packages. 

This procedure can also be useful if other system files are damaged inadvertently 
while debugging your driver. There are several reasons why your system may fail 
to boot properly or not let you log in after it has booted. For example, a corrupted 
password or inittab could prevent console logins. 

The contents of the three boot floppy disks are copied to a temporary root file sys­
tem on the hard disk, including a default /etc/passwd, /etc/init, 
/etc/inittab, and other critical files. When using the previously listed pro­
cedures, you can copy the default files from the temporary root file system 
mounted on" /" to the hard disk root, currently mounted as front. Obviously, 
user logins you have added to /etc/passwd and other system changes you have 
made since installing the original base system will be lost when you overwrite the 
corrupted file with the floppy disk default file. A better solution is to make regu­
lar, scheduled backups of your hard disk, especially for critical system 
configuration files. 
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Documenting Your Driver Installation 

If you are developing a DSP to be installed by users who may not be familiar with 
the implications of reconfiguration, some words of caution may be worthwhile. 

• Although experience has shown little difficulty in installing and removing a 
variety of device drivers, there is the possibility that you may have difficulty 
booting the system. The cause of this probably would be due to some fault 
in the added driver. If this occurs, you may have to restore the UNIX sys­
tem kernel from the saved version (created by idbuild upon system 
reconfiguration, assuming there is enough disk space for the backup). 

• Since a reconfiguration often ends with a system reboot, it is not advisable 
for other users to be logged in to the system through a remote terminal. 

• Users should not press DEL or RESET, power down the system, or in any 
way try to interrupt an installation. Although interruption protection is 
built into the idtools scheme, total protection against a reboot during an ins­
tallation can never be completely foolproof. 

• Use the df command in your script or advise your users to run df to deter­
mine the free disk space before doing the installation. If there is not enough 
space to install the DSP, tell the user how much space needs to be freed up. 
If you require the users to check for themselves, tell them how many free 
blocks are needed to install the DSP. 

• Similarly, if your script exits because idspace has revealed that there is not 
enough space to reconfigure the kernel, tell the user how many blocks are 
needed. 

• Advise the user not to have any background processes running that will be 
adversely affected by a system reboot or consume free disk space while a 
reconfiguration is underway. For example, avoid running uucp during an 
installation. 
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Device Driver Tuning 

The Mtune files contain kernel tunable parameters which can profoundly affect 
system performance. Occasionally an add-on device driver or kernel software 
module may require you to modify an existing parameter or define a new tunable 
parameter that is accessible by other add-on drivers. Note, however, that not all 
drivers have or require tunable parameters. 

When the Mtune component of a module's DSP is installed, idinatall(lM) stores 
the module's Mtune file information in /etc/conf/mtune .d/module-name, where 
the file module-name is the name of the module being installed. An Mtune file 
defines a default value along with a minimum and maximum value for each tun­
able parameter of a particular driver module. 

~ Package scripts should never access /etc/conf/mtune.d files directly; only y the idi~ta11 and idtune commands should be used. 

Modifying a Kernel Parameter 

The idtune command is used to modify system-tunable parameter entries in the 
atune file, from the default value in the Mtune file. Not every system-tunable 
parameter is contained in the atune file; only those that are to be set to a value 
other than the system default need be entered there. Therefore, if the driver pack­
age you are building requires modifying a parameter value, you should use the 
idtune command only. Never modify the atune file directly. 

The idtune command takes individual system parameters, verifies that the new 
value is within the upper and lower bounds specified in Mtune, searches the stune 
file, and modifies an existing value or adds the parameter to stune if not defined. 

The stune file (located in /etc/conf/cf .d/stune) file contains tunable parame­
ters for the kernel modules to be configured into the next system to be built (see 
idbuild). The parameter settings in the atune file are used to override the 
default values specified in the Mtune file. 

The contents of the atune file will only affect the next kernel rebuild. Once the 
new kernel has been installed to / stand/unix and booted, the stune file is copied 
to stune. current. Any change made to the stune. current file using the 
idtune command with the -c option will affect all the loadable kernel modules 
subsequently configured into the running system. 
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The stune and stune. current files contain one line for each parameter to be set. 
Each line contains two positional fields separated by white space. parameter-name 
new-value 

Package scripts should never access / etc/ conf / cf . d/ stune or 
/etc/conf/cf .d/stune.current files directly; only the idtune command 
should be used. 
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Device Driver Configuration 

When installing a device driver, you can specify whether the driver is to be 
static-that is, configured into the base kernel-or to be dynamically loadable. 

A dynamically loadable module can be loaded upon demand or automatically 
whenever the system receives a request requiring the module. Similarly, a load­
able module can be unloaded upon demand, or it can be configured to be 
unloaded after a certain amount of time has elapsed since it was last accessed. 

To configure a module to be loadable (this is usually done in the post install 
script of a DSP): 

idbuild -M "module-name" 

To statically link a module into the base kernel, comment out the "$loadable" 
line in its System file, then use idbuild and reboot. 

idbuild -s 

Refer to the idbuild(lM) manual page for more information. 

Loadable Module Administration 

modadmin is the administrative command for loadable kernel modules. It per­
forms the following functions. 

• Load a loadable module into a running system 

• Unload a loadable module from a running system 

• Display the status of a loadable module(s) currently loaded 

• Modify the loadable modules search path 

The loadable modules feature lets you add a module to a running system without 
rebooting the system or rebuilding the kernel. When the module is no longer 
needed, this feature also lets you dynamically remove the module, thereby freeing 
system resources for other use. 

For more information about loadable module administration and how it impacts 
device driver programming, refer to Chapter 2, "Loadable Modules" . . 
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Introduction 

Testing a device driver consists of installing the driver on a working system and 
attempting to try all of its functions under a variety of operating conditions. 
Debugging a driver is largely a process of analyzing the code to determine what 
could have caused a given problem. The UNIX system includes some tools that 
may help, but because the driver operates at the kernel level, these tools can only 
provide limited information. 

This chapter describes the tools that are available for testing and debugging the 
installed driver and how to use them. This chapter also discusses some of the 
common errors in drivers and some of the symptoms that might identify each. 

During the first phases of testing, remember that your driver code is probably not 
perfect, and that bugs in the driver code may panic or damage the system, even 
parts of the system that may seem unrelated to your driver. Testing should be 
done when no other users are on the system and all production data files are 
backed up. Alternatively, testing could be performed on a restricted-use system 
set up specifically for the purpose of testing drivers. 

You should test the functionality of the driver as you write it. If you are changing 
code from another driver, it is useful to install and test the driver after you have 
modified the initialization routines and the read/write or strategy routines. 
This testing could involve writing a short program that only reads and writes to 
the device to ensure that you can get into the device. When all the routines for the 
driver are written, you should install the hardware and perform full functionality 
testing. 

The UNlX system provides tools to help you, such as crash(lM), which is used 
either for a post-mortem analysis after a system failure or for interactive monitor­
ing of the driver. 
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Preparing a Driver for Debugging 

The process of testing driver functionality is piecemeal: you have to take small 
pieces of your driver and test them individually, building up to the implementa­
tion of your complete driver. 

Driver routines should be written and debugged in the following order: 

1. init(D2X), start(D2X) 

2. open(D2X), close(D2X) 

3. int, intr, or rint/xint interrupt routines 

4. ioctl(D2X), read(D2X), write(D2X) and/or strategy(D2X) and 
print (D2X) 

When the driver seems to be functioning properly under normal conditions, begin 
testing the error logs by provoking failures. For instance, take a tape or disk off­
line while a read/write operation is going. 

After you are comfortable that both the hardware and software behaves as it 
should during error situations, it is time to concentrate on formal performance 
testing. 

General Guidelines y Before Irying to install or debug Ihe driver. back up .11 files in your lile 
system(s). Drivers can cause serious problems with disk sanity should an 
unanticipated problem occur. 

Compile your driver and produce an up-to-date listing and an object file. The fol­
lowing conventions must be observed: 

4-2 

• Ensure that all your ClDIl_err(D3X) calls direct output to at least the 
putbuf memory array. (putbuf defaults to a maximum size of 10,000 
bytes.) 

• Compile your driver without the optimizer, with the -g option enabled. 

• Use the pr -n(l) command to produce a listing of the source code with line 
numbers. Alternatively, list(l) can be used to pull line number informa­
tion out of the driver object file. 
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• Use dis(l) to produce a disassembly listing. This is useful to have on hand, 
even though you get the same information using the crash dis command . 

• Use list(l) to produce a listing that correlates the line numbers in the 
disassembly listing back to original source file. 

Using the instructions described earlier in this chapter, install your driver. If the 
UNIX system does not come up, divide your driver into separate sections and 
install each part separately until you find the problem. Fix the problem and install 
the driver. 

After the driver is installed, use idbuild(lM) to create the / stand/unix file. 

In single-user mode, run nm(l) on /stand/unix (with the -nef options) to create 
a name list for the entire kernel. All addressing is virtual. The name list gives the 
starting locations (routine names and starting addresses) of the instructions and 
variables. 

Putting Debug Statements in a Driver 

Use the emIl_err(D3X) function to put debugging comments in the driver code; 
when the driver executes, you can use these to tell what part of the driver is exe­
cuting. The emIl_err function is similar to the printf(3S) system call but it exe­
cutes from inside the kernel. 

emIl_err statements for debugging should be written to the putbuf where they 
can be viewed using crash. Because they are written by the kernel, they cannot 
be redirected to a file or to a remote terminal. You can also write emIl_err state­
ments to the console, but massive amounts of statements to the console will 
severely slow system speed. 

Calculations and emIl_err statements that are for debugging and other testing 
should be coded within conditional compiler statements in the driver. This saves 
you the task of removing extraneous code when you release the driver for produc­
tion, and makes that debugging code readily available should you need to troub­
leshoot the driver after it is in the field. You can provide separate code for dif­
ferent types of testing to which the driver will be subjected. For instance, you 
might use TEST for functionality testing, PERFON for minimal performance test­
ing, and FULLPERF for full performance monitoring. Each of the testing options is 
then defined in the code as either 0 (turned off) or 1 (turned on), as illustrated 
below. 
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/* TEST = 1 for functionality testing 
*/ 
#define TEST 1 
/* 
* PERFON = 1 for minimal performance monitoring 
*/ 
#define PERFON 0 
/* 
* FULLPERF = 1 for full performance monitoring 
*/ 
#define FULLPERF 1 

Note that minimal performance monitoring is turned off, which is appropriate 
because full performance monitoring is turned on. 

Debug code is then enclosed within #if TEST and #endif. When the code is com­
piled with the -DTEST option, the test code will execute. 

The testing procedure can be refined further by using flags within the 
conditionally-compiled code. Then, when TEST is turned on, you can specify the 
exact sort of testing without recompiling and reinstalling the driver. The flags 
should use the driver prefix. For instance, the following code sets three flags for 
testing the int(D2X) interrupt routine, the strategy(D2X) routine, and driver 
performance: 

#if TEST 

int xx_intpr, xx_stratpr, xx-perfpr; 
#endif 

The flags reside as the first words in the .bss section of the driver code. To turn 
on one or more flags 
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• Get the start address of . bss from the namelist with a command similar to 

nm -x /stand/unix I egrep 'xx_intprlxx_stratprlxx-perfpr' 

• Write a short program that prompts you for the address of the flag(s) you 
want turned on, then specifies location in memory 
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Installing a Driver for Testing 

Many of the steps that follow require you to modify files and directories owned by 
root. You must therefore be logged in as root or execute with the appropriate 
privileges to develop and debug device drivers. 

1. First of all, it would be a good idea to make a copy of your current UNIX 
operating system kernel before reconfiguring the system. The backup is 
made automatically by the idbuild command saving the kernel as 
/stand/unix.old (if there is enough disk space), but it is still a good idea 
to have a 'pre-driver test' backup kernel, because the second and subse­
quent executions of idbuild will overwrite the previously saved 
/ stand/unix. old. 

2. Create the required Master and System files (these are described in 
Chapter 3), and put them along with your Driver. a device driver module 
into the /tmp directory. 

3. You can also create the Mtune, Node, and other optional DSP component 
files if needed. However, if possible, you should test your driver first in as 
simple an environment as possible. 

4. Use the idinstall -a command to install the new driver. 

5. Use the idbuild command (with the appropriate options, depending on 
whether or not your device driver is to be loadable or static) to rebuild the 
UNIX system kernel. 

If you get errors, correct them and repeat the above step. If the kernel built 
correctly, a new UNIX system image will have been created. Running 
shutdown will cause the system to enter init state 2, and the new kernel 
will be automatically linked to /stand/unix. On the next boot, if you 
specify /stand/unix on the boot: prompt, the new kernel will execute, 
and upon entering init state 2, the new device nodes, inittab entries, and 
so on, will be installed. 

6. When the system comes up, test your driver. 

Emergency Recovery (New Kernel Will Not Boot) 

There is a possibility that the kernel will fail to boot if your driver contains a seri­
ous bug. This can be due to a panic(D3X) call that you put in your driver or 
some other system problem. If this happens, you should reset your system and 
boot your original kernel that you hopefully saved as recommended above. To do 
this, reset your machine, and when you see the "Booting UNIX System . . . " 
message, quickly strike the keyboard space bar to interrupt the default boot. 
When the boot prompt appears, type the name of a backup copy of the kernel (for 
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example, /stand/unix.halt or whatever you named your old kernel}. If you did 
not save a copy of your kernel or some other disaster occurred, you can recover 
the system using the emergency kernel recovery procedure listed in Chapter 3, 
"Driver Installation and Tuning" . 
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Common Driver Problems 

Following is a discussion of some common drivers bugs, with possible symptoms. 
These should be used only as suggestions. Each driver is unique and will have 
unique bugs. 

Coding Problems 

Simple coding problems usually show up when you try to compile the driver. In 
general, these are similar to coding problems for any C program, such as failure to 
#include necessary header files, define all data structures, or properly delineate 
comment lines. Specific coding errors unique to driver code include the following: 

• ifdef-related problems, such as not providing for certain combinations 

• inadequate handling of error legs 

C Optimizer Bugs 

The optimizer (-0 option to cc(l» on all CPLU 4 releases can be used on drivers 
without causing problems. However, some old versions of the C optimizer cause 
problems when used on driver code. For instance, assume a device register is 
being set to 0 inside a loop, the register is not accessed anywhere else in the loop, 
and that the register must be set to 0 for every iteration of the loop. The optim­
izer pulls the statement that initializes the variable to just before the loop, which 
results in a bug in the driver. Disassembly, using either the dis(l) command or 
the crash dis command, can identify such problems. 

Installation Problems 

Installation problems refer to problems that prevent a system boot with your 
device configured. If the system won't boot, first try to boot it without the driver 
to verify that the driver is the problem. Some driver problems that prevent a sys­
tem boot include: 

• Missing information in the Master file. Specifically, external variables that 
are not defined in the Master file will not be detected when the driver is 
compiled, but will cause the following lboot error message: 
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symbol undefined - set to zero 

and will probably cause a kernel MMU panic when the variable is refer­
enced . 

• Errors in the init or start routine. You can check that the initialization 
routine is being entered by inserting an unconditional cmn_err statement 
at the beginning of the routine . 

• Allocating an array in the Master file, then not declaring it as a global data 
structure for the driver or initializing it in an init or start routine. This 
will not prevent you from booting the system the first time, but may pre­
clude a reboot from a /stand/unix file. 

Data Structure Problems 

A driver can corrupt the kernel data structures. If the driver is setting or clearing 
the wrong bits in a device register, a write operation may put bad data on the 
device and a read operation may put bad data anywhere in the kernel. Such 
errors may affect other drivers on the system. Finding this bug involves painstak­
ing walk-throughs of the code. Look for a place where perhaps a pointer is freed 
(or never set) before the driver tries to access it, or places where the code forgets to 
check a flag before accessing a certain structure. 

Value of Initialized Global Variables 

The driver should not depend on initialized global variables having the value 
assigned them in the driver source file. When the system is booted in absolute 
mode (from a /stand/unix file), driver global variables that are not explicitly ini­
tialized will be in .bss and will be O. Global variables with initializers will be in 
. data and will have whatever value they had at the time the / stand/unix file 
was created. 
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Timing Errors 

Timing errors occur when the driver code executes too quickly or too slowly for 
the device being driven. For instance, the driver might read a status register on a 
device too soon after sending the device a command. The device may not have 
had time to update the status register, so the status register is perceived by the 
driver to be all 0 bits when, in fact, the device may just be slow in posting the 
correct status register setting. 

When testing the driver, it is useful to verify that a simple, single interrupt is being 
handled properly. After this is confirmed, you should check that the interrupt 
handler can handle a number of interrupts that happen at almost the same time. 

Corrupted Interrupt Stack 

If a driver's interrupt handler runs at an execution level lower than the 
corresponding IPL for the device, the processing of one interrupt may be inter­
rupted by a second interrupt from the same device. This will seriously corrupt the 
interrupt stack, which may cause the system to panic with a stack fault or kernel 
MMU fault. Sometimes, however, it will only cause random operational irregular­
ities, which can make this a difficult problem to detect. You can identify this prob­
lem by looking at the interrupt stack in the system dump. If it is corrupted, check 
the execution level of the driver's interrupt handling routine. 

Accessing Critical Data 

Check the driver code for data structures that are accessible to both the base and 
interrupt levels of the driver. Ensure that any section of the base-level code that 
accesses such structures cannot be interrupted during that access by using the 
spln(D3X) function. 

Overuse of Local Driver Storage 

If the driver routines use large amounts of local storage, they may exceed the 
bounds of the kernel stack or the interrupt stack, which in turn will panic the sys­
tem. 
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Incorrect DMA Address Mapping 

Failure to set up address mapping for DMA transfers correctly is another common 
mistake. On a read operation, a bad address map may cause data to be placed in 
the wrong location in the main store, overwriting whatever is there including, for 
example, a portion of the operating system text. 

To check for this, write a simple user program that writes data to all possible 
memory locations (including shared memory, stack, and text), then reads it back 
and compares the input and output. As soon as anyone of these operations fails, 
you should reboot the system immediately to ensure that kernel memory is sane. 
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Testing the Hardware 

In addition to testing and debugging the driver, you must also test the hardware 
device itself. While the area of developing, testing, and debugging the hardware 
is beyond the scope of this book, the following guidelines are suggested: 

• Very early in the development process, you should get the equipment and 
do some basic tests on its integrity, such as ensuring that it can be powered 
up without problems and access registers on the peripherals. If the device 
does not pass these tests, it can be returned to the vendor for further 
development while you write the driver. 

• Write a stand-alone board exerciser that runs at the firmware level (not 
under the UNIX operating system) to detect hardware bugs. This is an 
interactive program that is used to exercise a board under controlled condi­
tions. The device should pass these tests before you attempt to test it with 
your driver. 

• Test the diagnostics that are hard-coded on the board by corrupting the 
hardware and booting the system. Check that the diagnostics detect the 
corruption and that the messages are sufficient to indicate the maintenance 
that is required. Power-up diagnostics should verify sanity at a gross level. 
Demand-phase diagnostics should be used for more extensive checks on the 
board, such as identifying marginal or intermittent errors. 

To ensure that the kernel-device interface is functioning properly, write a 
simplified driver that contains dummy routine calls for the init(D2X), 
start(D2X), open(D2X), close(D2X), read(D2X), and write(D2X) routines. 
For example: 

=--open{) 

cnm_err(CE_CONT, "Open routine entered\n ll ); 

This simplified driver should contain an ioctl(D2X) routine that gives user pro­
gram control to each control bit in the control status register (CSR). This lets you 
test each hardware function and ensure that the hardware is performing in the 
proper operational sequence. The exact layout of the CSR is specified in the 
/usr/include/sys/cc.h file. 
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Using crash to Debug a Driver 

The crash(lM) utility allows you to analyze how your driver interacts with the 
core image of the operating system. It is most frequently used in postmortem 
analysis of a system panic, but can also be run on an active system. The output 
from crash can help you identify such driver errors as corrupted data structures 
and pointers to the wrong address. Its shortcoming as a debugging tool is that it 
is difficult to freeze the core image at exactly the point where the error occurred; 
even if the error causes a system panic, the core image may be from beyond the 
point of actual error. This is especially true when debugging an intelligent board, 
because an autonomous intelligent controller continues processing even though 
you have halted kernel-level processing on the main memory. Moreover, for intel­
ligent boards, the crash dump cannot get at the onboard data structures. 

1-7
, Using the crash command requires a thorough knowledge of assembler, of 

NOTE: reading core dumps, and of systems programming concepts. The need to 
know assembler cannot be overemphasized. The crash output is displayed 
in assembler mnemonics and as strings of hex numbers that must be 
translated into address locations, stack frames, and memory offsets. 

Saving the Core Image of Memory 

To run crash as a postmortem analysis on a panicked system, you must save the 
core image of memory before rebooting the system and have a copy of the boat­
able kernel image (lstand/unix file) that was running. 

On computers using UNIX System V, the system automatically saves the dump 
image when it detects an improper shutdown. The partition used by the system to 
store the dump image is also shared by the swap facility used by the system pager 
when the computer is in multiuser state. Therefore, do not progress to multiuser 
state until after you have saved the memory core image to tape or floppy disk. 
However, saving the core image is only useful if you want to use crash to exam­
ine it. Saving the dumped memory image is not required and no system software 
will be damaged if you continue on to multiuser state. 
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~ 
If you are familiar with how memory is added to your computer, you can 

NOTE remove excess RAM cards before the system crash to reduce the amount of 
memory to be copied to disk. 

When you try to reboot the system, the following message is displayed automati­
cally. 

There may be a system dUJli) memory image on the swap device. 
Do you want to save it? (y/n» 

Answer y to save the dump file. When given a selection list of what media to use 
for the dump, enter the appropriate value for the media you intend to use. 

Once booted, you can use the command ldsysd~ to load the dump file from 
the tape or disks onto a file system. 

Initializing crash on the Memory Dump 

To run crash on the core image of memory at the time the system panicked, you 
must have saved the core image before rebooting and the file containing the kernel 
bootable image (I stand/unix file by default) that was running at the time of the 
crash. 

If the bootable kernel image is named something other than /stand/unix (either 
because it was named something else at the time of the panic or because you 
copied it to another name after the panic), use the -n option or the second posi­
tional parameter to specify that file name. If you want the output of crash to be 
written to a file rather than your terminal (standard output), use the -woption 
with the name of the file. Note that the output of a specific crash command can 
be redirected to a file even if you do not use the -w in the crash command line. 

Using crash Functions 

The crash session begins by reporting the dump file, namelist, and outfile being 
used, followed by the crash prompt (». Requests in the crash session have the 
following standard format 

command [argument . .. ] 

where command is one of the supported commands of crash and argument 
includes any qualifying data relevant to the requested command. Use the q com­
mand to end the crash session. 
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See the crash(lM) manual page for a list of supported commands. Note that, 
while most crash commands are common to all computers, each system also has 
unique commands that relate to specific devices supported on that machine. 

Following is a list of crash commands often useful when debugging a driver. 

dis 

cd 

proc 

stack 

stat 

trace 

Disassemble from a starting address. Use this information to trace 
code flow. However, you will have to mentally convert the resulting 
assembler code to C programming language statements. 

List memory. Use this command when you suspect that the stack is 
corrupted, or to list the contents of memory at a certain address. If 
you are listing the contents of the stack, you will have to manually 
find the boundaries of each stack entry, called stack frames. To get the 
starting address of the stack, list the registers with the panic com­
mand. 

List the process table. Use this information to obtain the process slot 
number of the process that panicked the system. 

Dump the stack. Use this information to determine the size of the 
stack frame. If stack returns information that you suspect is cor­
rupted, use proc to get a list of process table slots and then use 
stack on each individual slot entry. 

List system statistics. Use this information to display the reason a 
panic occurred. The panic command gives the same information as 
stat, plus registers, stack, and trace data. 

Print kernel stack trace. Use this information to determine which 
commands were executed in the stack or in an individual process 
table slot entry. 

USing crash Commands 

When a panic occurs, capture the core memory image and produce a file that you 
can use with crash. When crash executes, a ">" command line prompt is 
displayed. The following sequence of commands are frequently used to analyze 
the problem. 

1. stat - list reason for the crash 

2. proc -list the process table to see which process initiated the panic 
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3. stack or trace - list the last processes on the stack 

4. dis - trace the execution of a set of instructions 

The crash Command in STREAMS 

The following crash functions are related to STREAMS. 

linkb1k Print the linkb1k table. 

pty Print pseudo ttys now configured. The -1 option gives information 
on the line discipline module 1dterm, the -h option provides infor­
mation on the pseudo-tty emulation module ptem, and the -s option 
gives information on the packet module pckt. 

qrtm Print a list of scheduled queues. 

queue Print STREAMS queues. 

stream Print the stdata table. 

strstat Print STREAMS statistics. 

tty Print the tty table. The -1 option prints out details about the line dis-
cipline module. 

The crash functions 1inkb1k, queue, and stream take an optional address that 
is the address of the data structure. The strstat command gives information 
about STREAMS event cells and linkb1ks in addition to message blocks, data 
blocks, queues, and Streams. On the output report, the CONFIG column 
represents the number of structures currently configured. It may change because 
resources are allocated as needed. 

The following example illustrates the debugging of a line printer. Knowledge of 
the data structures of the driver is needed for debugging. The example starts with 
the following data structure of the line printer driver. 

struct Ip { 

queue_t *lp_qptr; 1* back pointer to write queue *1 
}; 
extern struct Ip Ip_lp[); 
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The first command, nm lp_lp, prints the value and type for the line printer driver 
data structure. The second command, rd 40275750 20, prints 20 values starting 
from the location 40275750 (note that the function rd is an alias of cd). The third 
command, size queue, gives the size of the queue structure. The next two func­
tions again give the 20 values starting at the specified locations in the hexadecimal 
format. The command rd -c 4032bf40 32 gives the character representation of 
the value in the given location. The option -x gives a value in the hexadecimal 
representation and the option -a produces the same in the ASCII format. 
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Debugging STREAMS Drivers 

This section provides some tools to assist in debugging STREAMS-based applica­
tions. For detailed information about STREAMS programming and debugging, 
however, refer to the guide, STREAMS Modules and Drivers. 

STREAMS modules and drivers can record trace messages using the 
strlog(D3X) function. Calls to this function are converted into STREAMS mes­
sages and relayed by log(7), a software driver, to the strace(lM) process. The 
log driver is also used to send error messages to the strerr(D3X) process. 

Module and driver writers should limit the number of messages sent to either the 
error or trace loggers. If a large number of messages are sent some could be lost, 
because some parts of this facility do not include flow control. 

Also, messages may not be delivered to strace in the same order in which they 
were sent. However, every message includes a sequence number field provided to 
make it possible to determine the correct message order where necessary. 

STREAMS Debugging 

The kernel routine ClIIIl_err allows printing of formatted strings on a system con­
sole. It displays a specified message on the console and/ or stores it in the putbuf 
that is a circular array in the kernel and contains output from ClIIIl_err. Its format 
is: 

#include <sys/ClIIIl_err.h> 

void ClIIIl_err (int level, char *fmt, int ARGS) 

where level can take the following values: 
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Use as a simple printf to continue another message or to display 
an informative message not associated with an error. 

Report system events. It is used to display a message preceded with 
NOTICE:. This message is used to report system events that do not 
necessarily require user action, but may interest the system adminis­
trator. For example, a sector on a disk needing to be accessed 
repeatedly before it can be accessed correctly might be such an 
event. 

Driver Testing and Debugging 



Report system events that require user action. This is used to 
display a message preceded with WARNING:. This message is used 
to report system events that require immediate attention, such as 
those where if an action is not taken, the system may panic. For 
example, when a peripheral device does not initialize correctly, this 
level should be used. 

Panic the system. This is used to display a message preceded with 
PANIC:. Drivers should specify this level only under the most 
severe conditions. A valid use of this level is when the system can­
not continue to function. If the error is recoverable, not essential to 
continued system operation, do not panic the system. This level 
halts all processing. 

fmt and ARCS are passed to the kernel routine printf, which runs at sp1hi and 
should be used sparingly. 

Validftnt specifications are %s (string), %u (unsigned decimal), 'Yod (decimal), 'Y00 

(octal), and 'YoX (hexadecimal). CIOn_err does not accept length specifications in 
conversion specifications. For example, %3d is ignored. If the first character of 
ftnt begins with"!" (an exclamation point), output is directed to putbuf. 
putbuf can be accessed with the crash(lM) command. If the destination charac­
ter begins with "~,, (a caret), output goes to the console. If no destination charac­
ter is specified, the message is directed to both the putbuf array and the console. 
CIOn_err appends eachftnt with "\n," except for the CE_CONT level, even when a 
message is sent to the putbuf array. 

ARCS specifies a set arguments passed when the message is displayed. 

STREAMS Error and Trace Logging 

STREAMS error and trace loggers are provided for debugging and for administer­
ing STREAMS modules and drivers. This facility consists of log(7), strace(lM), 
strc1ean(lM), strerr(lM), and the str10g function. 

Any module or driver in any Stream can call the STREAMS logging function 
str1og, described in log(7). When called, str10g sends formatted text to the 
error logger strerr(lM), the trace logger strace(lM), or the console logger. 
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Figure 4·1: Error and Trace Logging 
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strerr is intended to operate as a daemon process initiated at system startup. A 
call to strlog requesting an error to be logged causes an M_PROTO message to be 
sent to strerr, which formats the contents and places them in a daily file. The 
utility strclean(lM) is provided to purge daily log files that have not been 
modified for three days. 

A call to strlog requesting trace information to be logged causes a similar 
M_PROTO message to be sent to strace(lM), which places it in a user designated 
file. strace is intended to be initiated by a user. The user can designate the 
modules/drivers and severity level of the messages to be accepted for logging by 
strace. 

A user process can submit its own M_PROTO messages to the log driver for inclu­
sion in the logger of its choice through putmsg(2). The messages must be in the 
same format required by the logging processes and will be switched to the 
logger(s) requested in the message. /' 

The output to the log files is formatted, ASCII text. The files can be processed by 
standard system commands such as grep(l) or ed(l), or by developer-provided 
routines. 
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Driver Debugging Techniques 

Kernel Print Statements 

There are, of course, limitations in debugging and testing device drivers. If the 
kernel debugger, kdb, is not available, print statements inside the driver are the 
primary method used. Because the print statements are written by the kernel, 
there is no way to redirect the output to a file or to a remote terminal. Using print 
statements also modifies the timing of driver code execution, which may change 
the behavior of problems you are investigating. Print statements in the driver can 
be made more efficient by using an ioctl to set one or more levels of debugging 
output. This way you can write a simple user program to turn the print output on 
or off as needed. 

System Panics 

If you expect that the driver could enter a state that is invalid, the driver can halt 
the system by using the cmn_err function with a panic flag set. For example, if 
the driver expects one of three specific cases in a switch statement, the driver can 
add a fourth default case that calls the cmn_err function. The system will dump 
an image of memory for later analysis. If the error is recoverable, the driver 
should not panic the system. An example of panicking using cmn_err is 

CInn_err(CE_PANIC, "Your system has panicked, DEV_NAME error!"); 

Taking a System Dump 

In the event a panic occurs, there may be some value in examining the dump 
produced by the system. Because UNIX System V uses the same physical hard 
disk partition for both "swap" and "dump," it is important that you do not reboot 
to the multiuser state before examining the dump. If the system reaches multiuser 
state, the dump may be overwritten by system paging. 

To examine the dump, the dump image must be saved. If the root partition does 
not have enough space to save the crash dump, the following message will appear. 
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Need nnnnK to save crash dump. 
Root has only XXXXK free. 
F - write to floppy disk 
T - write to tape 
S - spawn a shell 

X - skip it 

You may then proceed in whatever manner you prefer. 

~ We recommend that you write your crash dump to tape. 

y 
When the system reboots and detects a dump image, it will copy the dump image 
from the swap/d~ area to the file crash.MMDD in the /crash directory; 
where MM is the month, and DD is the day. If a crash file already exists in the 
/crash directory, another crash file is created with a .1, .2, .3, and so forth 
appended to the file name. A corresponding symbol file, sym.MMDD is also 
saved in the /crash directory. 

Before the dump image is saved, the following message appears on the console. 

Saving nnnnK crash d~ in crash.MMDD 

where nnnn is the size of the dump in KB. After the dump image is saved, the 
console displays the following message, Done, and the system continues its start­
up procedure. 

You can use the crash command to examine the dump as follows. 

crash -d dump-file -n symbol-file 

or you can use the kcrash command to examine the dump as follows. 

kcrash dump-file symbol-file 

Consult the crash(lM) and kcrash(lM) manual pages in the UNIX System V 
Command Reference for information on how to use crash and kcrash to examine 
the UNIX operating system kernel and user process status at the time of the 
panic. 

Note that the procedures to examine a memory dump only apply to systems that 
have completed the dump sequence, usually in response to a panic. The prompt 
that you may see after an improper shutdown only indicates that the system was 
not properly brought down and a dump may exist. If the system is inadvertently 
powered down or reset, or if your device driver causes the kernel to hang or go 
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berserk without ever executing a panic, no dump will have been taken. 
Remember, the system will only do a dump when you have properly detected an 
error and executed the panic function inside your driver or when your driver has 
caused a system error detected by the kernel or some other driver causing it to 
panic. 

At this point, it might be well to repeat the advice stated in the introduction: 

Writing a device driver carries a heavy responsibility. As part of the UNIX system 
kernel, it is assumed to always take the correct action. Few limits are placed on 
the driver by the other parts of the kernel, and the driver must be written to never 
compromise the system's stability. 
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Kernel Debugger 

An extremely useful tool for debugging device drivers is the kernel debugger (­
kdb). Refer to the kdb(l) manual page in the Command Reference for more detail 
and a complete list of commands for the kdb utility. 

kdb can set breakpoints, display kernel stack traces and various kernel structures, 
and modify the contents of memory, I/O, and registers. The debugger supports 
basic arithmetic operations, conditional execution, variables, and macros. kdb 
does conversions from a kernel symbol name to its virtual address, from a virtual 
address to the value at that address, and from a virtual address to the name of the 
nearest kernel symbol. You have a choice of different numeric bases, address 
spaces, and operand sizes. 

You can invoke the debugger by using the kdb command or the 
sysi86 (SI86TODEMON) system call, or by pressing CTRL-ALT-d (from the console 
only) on an AT-bus system, or by typing the interrupt character (from the console 
only) on a Multibus system. In addition, kdb is entered automatically under vari­
ous conditions, such as panics and breakpoint traps. Any time the kdb» prompt 
appears, you are in the debugger. I/O is performed through the console or a 
serial terminal. 

To exit the debugger, press CTRL-d or q. 

When you exit and re-enter the debugger, its state is preserved, including the con­
tents of the value stack. 

kdb is an extremely powerful tool, and should be used carefully to avoid acciden­
tal corruption of kernel data structures, which could lead to a system crash. kdb 
has few provisions for preventing programmer error. 

r::l The kernel debugger is not meant for debugging user programs. Use an y appropriale user-level debugger, such as sdb(1}, for Ihal purpose. 

kdb must exist in your kernel before you can use it Gust like any device driver). 

kdb prints and accepts address inputs symbolically, using kernel procedure and 
variable names instead of hexadecimal numbers, but you must load the debugger 
with the kernel's symbols after the debugger itself has been installed into the ker­
nel. You can do this by using the unixsyms command, which loads the symbols 
into the kernel executable file after building it and before booting it. Normally, 
this will be done automatically for you by idbuild(lM). 
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The symbols must be loaded before the system panics (or you enter the ker­
nel debugger for some other reason) for them to be useful. You cannot load 
the kernel symbols while in the debugger. 

Entering kdb from a Driver 

If you are debugging a device driver or another part of the kernel, you can directly 
invoke the kernel debugger by including this code in your driver. 

#include <sys/xdebug.h> 
(*cdebugger) (DR_OTHER, NO_FRAME); 

DR_OTHER tells kdb that the reason for entering is "other." See sys/xdebug. h for 
a list of other reason codes. 

Note that this mechanism cannot be used for debugging early kernel startup code 
or driver init routines, since the debugger cannot be used until its init routine 
(kdb_init) has been called. 
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Glossary 

The following is a list of terms used throughout the Device Driver Programming 
document set: 

alignment 

ARP 

asmmacro 

asynchronous 

automatic calling unit (ACU) 

base level 

block and character interface 

block data transfer 

Glossary 

The position in memory of a unit of data, such 
as a word or half-word, on an integral boun­
dary. A data unit is properly aligned if its 
address is evenly divisible by the data unit's 
size in bytes. For example, a word is correctly 
aligned if its address is divisible by four. A 
half-word is aligned if its address is divisible 
by two. 

Address Resolution Protocol 

The macro that defines system functions used 
to improve driver execution speed. They are 
assembler language code sections (instead of C 
code). 

An event occurring in an unpredictable 
fashion. A signal is an example of an asyn­
chronous event. A signal can occur when 
something in the system fails, but it is not 
known when the failure will occur. 

A device that permits processors to dial calls 
automatically over the communications net­
work. 

The code that synchronously interacts with a 
user program. The driver's initialization and 
switch table entry point routines constitute the 
base leveL Compare interrupt level. 

A collection of driver routines, kernel func­
tions, and data structures that provide a stan­
dard interface for writing block and character 
drivers. 

The method of transferring data in units 
(blocks) between a block device such as a mag­
netic tape drive or disk drive and a user pro­
gram. 
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block device switch table 

block device 

block driver 

block I/O 

block 

boot device 

bootable object file 

bootstrap 

boot 

GL-2 

The table constructed during automatic 
configuration that contains the address of each 
block driver entry point routine [for example, 
open(D2DK), close(D2DK), 
strategy(D2DK)]. This table is called bdevsw 
and its structure is defined in conf .h. 

A device, such as a magnetic tape drive or 
disk drive, that conveys data in blocks 
through the buffer management code. Com­
pare character device. 

A device driver, such as for a magnetic tape 
device or disk drive, that conveys data in 
blocks through the buffer management code 
(for example, the buf structure). One driver is 
written for each major number employed by 
block devices. 

A data transfer method used by drivers for 
block access devices. Block I/O uses the sys­
tem buffer cache as an intermediate data 
storage area between user memory and the 
device. 

The basic unit of data for I/O access. A block 
is measured in bytes. The size of a block 
differs between computers, file system sizes, 
or devices. 

The device that stores the self-configuration 
and system initialization code and necessary 
file systems to start the operating system. 

A file that is created and used to build a new 
version of the operating system. 

The process of bringing up the operating sys­
tem by its own action. The first few instruc­
tions load the rest of the operating system into 
the computer. 

The process of starting the operating system. 
The boot process consists of self-configuration 
and system initialization. 
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buffer 

cache 

called DLS user 

calling DLS user 

canonical processing 

character device 

character driver 

character 1/ 0 

CLNS 

Glossary 

A staging area for input-output (I/O) 
processes where arbitrary-length transactions 
are collected into convenient units for system 
operations. A buffer consists of two parts: a 
memory array that contains data from the disk 
and a buffer header that identifies the buffer. 

A section of computer memory where the 
most recently used buffers, i-nodes, pages, and 
so on are stored for quick access. 

The DLS user in connection mode that 
processes requests for connections from other 
DLSusers. 

The DLS user in connection mode that initiates 
the establishment of a data link connection. 

Terminal character processing in which the 
erase character, delete, and other commands 
are applied to the data received from a termi­
nal before the data is sent to a receiving pro­
gram. Other terms used in this context are 
canonical queue, which is a buffer used to 
retain information while it is being canonically 
processed, and canonical mode, which is the 
state where canonical processing takes place. 
Compare raw mode. 

A device, such as a terminal or printer, that 
conveys data character by character. Compare 
block device. 

The driver that conveys data character by 
character between the device and the user pro­
gram. Character drivers are usually written 
for use with terminals, printers, and network 
devices, although block devices, such as tapes 
and disks, also support character access. 

The process of reading and writing to/from a 
terminal. 

Connectionless Network Service, the 
datagram version of the OSI network layer 
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clone driver 

communication endpoint 

connection establishment 

connection management stream 

connection mode 

A software driver used by STREAMS drivers 
to select an unused minor device number, so 
that the user process does not need to specify 
it. 

The local communication channel between a 
DLS user and DLS provider. 

The phase in connection mode that enables 
two DLS users to create a data link connection 
between them. 

A special stream that will receive all incoming 
connect indications destined for Data Link 
Service Access Point (DLSAP) addresses that 
are not bound to any other streams associated 
with a particular Physical Point of Attachment 
(PPA). 

A circuit-oriented mode of transfer in which 
data is passed from one user to another over 
an established connection in a sequenced 
manner. 

connection release The phase in connection mode that terminates 
a previously established data link connection. 

connectionless mode A mode of transfer in which data is passed 
from one user to another in self-contained 
units with no logical relationship required 
among the units. 

control and status register (CSR) Memory locations providing communication 
between the device and the driver. The driver 
sends control information to the CSR, and the 
device reports its current status to it. 

controller The circuit board that connects a device, such 
as a terminal or disk drive, to a computer. A 
controller converts software commands from a 
driver into hardware commands that the 
device understands. For example, on a disk 
drive, the controller accepts a request to read a 
file and converts the request into hardware 
commands to have the reading apparatus 
move to the precise location and send the 
information until a delimiter is reached. 
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critical code 

CSMA/CD 

cyclic redundancy check (CRC) 

data structure 

data terminal ready (DTR) 

data transfer 

DDI/DKI 

demand paging 

device number 

Glossary 

A section of code is critical if execution of arbi­
trary interrupt handlers could result in con­
sistency problems. The kernel raises the pro­
cessor execution level to prevent interrupts 
during a critical code section. 

Carrier Sense Multiple Access/Collision 
Detection 

A way to check the transfer of information 
over a channel. When the message is received, 
the computer calculates the remainder and 
checks it against the transmitted remainder. 

The memory storage area that holds data 
types, such as integers and strings, or an array 
of integers. The data structures associated 
with drivers are used as buffers for holding 
data being moved between user data space 
and the device, as flags for indicating error 
device status, as pointers to link buffers 
together, and so on. 

The signal that a terminal device sends to a 
host computer to indicate that a terminal is 
ready to receive data. 

The phase in connection and connectionless 
modes that supports the transfer of data 
between two DLS users. 

Device Driver Interface/Device Kernel Inter­
face 

A memory management system that allows 
unused portions of a program to be stored 
temporarily on disk to make room for 
urgently needed information in main memory. 
With demand paging, the virtual size of a pro­
cess can exceed the amount of physical 
memory available in a system. 

The value used by the operating system to 
name a device. The device number contains 
the major number and the minor number. 
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dev t 

diagnostic 

DLIDU 

DLM 

DLPI 

DLS provider 

DLS user 

DLS 

DLSAP address 

DLSAP 

DLSDU 

downstream 

driver entry points 

driver routines 
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The C programming language data type 
declaration that is used to store the driver 
major and the minor device numbers. 

A software routine for testing, identifying, and 
isolating a hardware error. A message is gen­
erated to notify the tester of the results. 

Data Link Interface Data Unit. A grouping of 
DLS user data that is passed between a DLS 
user and the DLS provider across the data link 
interface. In connection mode, a DLSDU may 
consist of multiple DLIDUs. 

Dynamically Loadable Modules 

Data Link Provider Interface 

The data link layer protocol that provides the 
services of the Data Link Provider Interface. 

The user-level application or user-level or 
kernel-level protocol that accesses the services 
of the data link layer. 

Data Link Service 

An identifier used to differentiate and locate 
specific DLS user access points to a DLS pro­
vider. 

A point at which a DLS user attaches itself to a 
DLS provider to access data link services. 

Data Link Service Data Unit. A grouping of 
DLS user data whose boundaries are 
preserved from one end of a data link connec­
tion to the other. 

The direction of STREAMS messages flowing 
through a write queue from the user process 
to the driver. 

Driver routines that provide an interface 
between the kernel and the device driver. 

See routines. 
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driver 

DSAP 

EDLIDU 

error correction code (ECC) 

expedited data transfer 

FDDI 

function 

initialization entry points 

interface 

interprocess communication (IPC) 

interrupt level 

Glossary 

The set of routines and data structures 
installed in the kernel that provide an interface 
between the kernel and a device. 

Destination Service Access Point 

Expedited Data Link Interface Data Unit 

A generic term applied to coding schemes that 
allow for the correction of errors in one or 
more bits of a word of data. 

A DLPI service that transfers data subject to 
separate flow control than that applying to 
normal data transfer. The service is intended 
to deliver the data ahead of any DLSDUs that 
may be in transit. 

Fiber Distributed Data Interface 

A kernel utility used in a driver. The term 
function is used interchangeably with the term 
kernel function. The use of functions in a 
driver is analogous to the use of system calls 
and library routines in a user-level program. 

Driver initialization routines that are executed 
during system initialization [for example, 
init(D2D), start(D2DK)]. 

The set of data structures and functions sup­
ported by the UNIX kernel to be used by 
device drivers. 

A set of software-supported facilities that 
enable independent processes, running at the 
same time, to share information through mes­
sages, semaphores, or shared memory. 

Driver interrupt routines that are started when 
an interrupt is received from a hardware 
device. The system accesses the interrupt vec­
tor table, determines the major number of the 
device, and passes control to the appropriate 
interrupt routine. 
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interrupt priority level (IPL) 

interrupt vector 

IP 

ISO 

kernel buffer cache 

LLC 

loadable module 

low water mark 

MAC 

memory management 

message block 
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The interrupt priority level at which the 
device requests that the CPU call an interrupt 
process. This priority can be overridden in the 
driver's interrupt routine for critical sections 
of code with the spln(D3D) function .. 

Interrupts from a device are sent to the 
device's interrupt vector, activating the inter­
rupt entry point for the device. 

Internet Protocol 

International Organization for Standardiza­
tion 

A linked list of buffers used to minimize the 
number of times a block-type device must be 
accessed. 

Logical Link Control, a sub-layer of the data 
link layer for media independent data link 
functions. 

A kernel module (such as a device driver) that 
can be added to a running system without 
rebooting the system or rebuilding the kernel. 

The point at which more data is requested 
from a terminal because the amount of data 
being processed in the character lists has fallen 
creating room for more. It also applies to 
STREAMS queues regarding flow control. 

Media Access Control, a sub-layer of the data 
link layer for media specific data link func­
tions. 

The memory management scheme of the 
UNIX operating system imposes certain res­
trictions on drivers that transfer data between 
devices. 

A STREAMS message is made up of one or 
more message blocks. A message block is 
referenced by a pointer to a mblk_t structure, 
which in turn points to the data block 
(dblk_t) structure and the data buffer. 
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message 

MIB 

modem 

module 

panic 

PDU 

portable device interface (PDI) 

PP A identifier 

PPA 

prefix 

Glossary 

All information flowing in a stream, including 
transferred data, control information, queue 
flushing, errors and signals. The information 
is referenced by a pointer to a mblk_t struc­
ture. 

Management Information Base 

A contraction of modulator-demodulator. A 
modulator converts digital signals from the 
computer into tones that can be transmitted 
across phone lines. A demodulator converts 
the tones received from the phone lines into 
digital signals so that the computer can pro­
cess the data. 

A STREAMS module consists of two related 
queue structures, one each for upstream and 
downstream messages. One or more modules 
may be pushed onto a stream between the 
stream head and the driver, usually to imple­
ment and isolate a line discipline or a com­
munication protocol. virtual to physical 
memory. 

The state where an unrecoverable error has 
occurred. Usually, when a panic occurs, a 
message is displayed on the console to indi­
cate the cause of the problem. 

Protocol Data Unit 

A collection of driver routines, kernel func­
tions, and data structures that provide a stan­
dard interface for writing block drivers. 

An identifier of a particular physical medium 
over which communication transpires. 

The point at which a system attaches itself to a 
physical communications medium. 

A character name that uniquely identifies a 
driver's routines to the kernel. The prefix 
name starts each routine in a driver. For 
example, a RAM disk might be given the ramd 
prefix. If it is a block driver, the routines are 
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priority message 

quality of service (QOS) 

queue 

rawI/O 

raw mode 

read queue 

routines 

SAP 

SCSI driver interface (SDI) 
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ramdopen,ramdclose,ramdstrategy, and 
ramdprint. 

STREAMS messages that must move through 
the stream quickly are classified as priority 
messages. They are placed at the head of the 
queue for processing by the srv(D2DK) rou­
tine. 

Characteristics of transmission quality 
between two DLS users. 

A data structure, the central node of a collec­
tion of structures and routines, which makes 
up half of a STREAMS module or driver. Each 
module or driver is made up of one queue 
each for upstream and downstream messages. 
Location: stream.h. 

Movement of data directly between user 
address spaces and the device. Raw I/O is 
used primarily for administrative functions 
where the speed of a specific operation is more 
important than overall system performance. 

The method of transmitting data from a termi­
nal to a user without processing. This mode is 
defined in the line discipline modules. 

The half of a STREAMS module or driver that 
passes messages upstream. 

A set of instructions that perform a specific 
task for a program. Driver code consists of 
entry-point routines and subordinate routines. 
Subordinate routines are called by driver 
entry-point routines. The entry-point routines 
are accessed through system tables. 

Service Access Point, conceptually the "point" 
at which a layer in the OSI model make its ser­
vices available to the layer above it. 

A collection of machine-independent 
input/ output controls, functions, and data 
structures, that provide a standard interface 
for writing Small Computer System Interface 
(SCSI) drivers. 
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SDU 

semantic processing 

Service Data Unit 

Semantic processing entails input validation of 
the characters received from a character 
device. 

small computer system interface (SCSI) 
The American National Standards Institute 
(ANSI) approved interface for supporting 
specific peripheral devices. 

SNMP Simple Network Management Protocol 

Source Code Control System (SCCS) 

special device file 

SSAP 

stream end 

stream head 

STREAMS 

stream 

Glossary 

A utility for tracking, maintaining, and con­
trolling access to source code files. 

The file that identifies the device's access type 
(block or character), the external major and 
minor numbers of the device, the device name 
used by user-level programs, and security con­
trol (owner, group, and access permissions) 
for the device. 

Source Service Access Point 

The stream end is the component of a stream 
farthest from the user process, providing the 
interface to the device. It contains pointers to 
driver (rather than module) routines. 

Every stream has a stream head, which is 
inserted by the STREAMS subsystem. It is the 
component of a stream closest to the user pro­
cess. The stream head processes STREAMS­
related system calls and performs the transfer 
of data between user and kernel space. 

A kernel subsystem used to build a stream, 
which is a modular, full-duplex data path 
between a device and a user process. 

A linked list of kernel data structures provid­
ing a full-duplex data path between a user 
process and a device or pseudo-device. 
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switch table entry points 

switch table 

Driver routines that are activated through 
bdevsw or cdevsw tables. 

The operating system that has two switch 
tables, cdevsw and bdevsw. These tables hold 
the entry point routines for character and 
block drivers and are activated by I/O system 
calls. 

synchronous data link interface (SDU) 

system initialization 

TCP 

upstream 

A UN-type circuit board that works subordi­
nately to the input! output accelerator (lOA). 
The SDU provides up to eight ports for full­
duplex synchronous data communication. 

The routines from the driver code and the 
information from the master file that initialize 
the system (including device drivers). 

Transmission Control Protocol, a connection 
oriented transport in the Internet suite 

The direction of STREAMS messages flowing 
through a read queue from the driver to the 
user process. 

user space The part of the operating system where pro­
grams that do not have direct access to the 
kernel structures and services execute. The 
UNIX operating system is divided into two 
major areas: the user program and the kernel. 
Drivers execute in the kernel, and the user 
programs that interact with drivers generally 
execute in the user program area. This space 
is also referred to as user data area. 

volume table of contents (VTOC) Lists the beginning and ending points of the 
disk partitions by the system administrator for 
a given disk. 

write queue The half of a STREAMS module or driver that 
passes messages downstream. 
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