
ATs.T

~vst8m
.,

UNIX® System V

User's Reference Manual

AT.T

UNIX® System V
I"

User's Reference Manual

AT&T

Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

Library of Congress Catalog Card Number: 87-60148

Editorial/production supervision: Karen S. Fortgang
Cover illustration: Jim Kinstry
Manufacturing buyer: S. Gordon Osbourne

© 1987,1986 by AT&T. All Rights Reserved.

IMPORTANT NOTICE TO USERS

While every effort has been to ensure the accuracy of all information in this
document, AT&T assumes no liability to any party for any loss or damage
caused by errors or omissions or statements of any kind in the UNIX@ Sys­
tem V User's Reference Manual ©AT&T, its upgrades, supplements, or spe­
cial editions, whether such errors are omissions or statements resulting from
negligence, accident or any other cause. AT&T further assumes no liability
arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from
the use of this document. AT&T disclaims all warranties regarding the infor­
mation contained herein, whether expressed, implied or statutory, including
implied warranties or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any pro­
ducts herein to improve reliability, function or design.

No part of this publication may be reproduced, transmitted or used in any
form or by any means-graphic, electronic, mechanical or chemical, including
photocopying, recording in any medium, taping, by any computer or informa­
tion storage and retrieval systems, etc. without prior permission in writing
from AT&T.

Dataphone is a registered trademark of
AT&T.

DEC is a trademark of Digital Equipment.
Diablo is a registered trademark of Xerox.
DOCUMENTER'S WORKBENCH is a

trademark of AT&T.
HP is a trademark of Hewlett-Packard.

TEKTRONIX is a trademark of TEKTRONIX.
Teletype is a registered trademark of AT&T.
TermiNet is a trademark of General Electric.
UNIX is a registered trademark of AT&T.
Versatec is a registered trademark of

Versatec.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-940487-2 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall of Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southea~t Asia Pte. Ltd., Singapore

~~ .. ~ \.....c,. \ ~

~:\
~'.} r

I 'y?

.1t,..

\~. ,:<"/intro(1) introduction to commands and application programs
300,300s(1) handle special functions of DASI 300 and 300s terminals
4014(1) .. paginator for the Tektronix 4014 terminal
450(1) ... handle special functions of the DASI 450 terminal
ar(1) ... archive and library maintainer for portable archives
at, batch(1) .. execute commands at a later time
awk(1) .. pattern scanning and processing language
banner(1) .. make posters
basename, dirname(1) ... deliver portions of path names
bc(1) .. arbitrary-precision arithmetic language
bdiff(1) ... :...................................... big diff
bfs(1) .. big file scanner
cal(1) ... print calendar
calendar(l) ... reminder service
cat(1) ... concatenate and print files
cd(1) .. change working directory
chmod(1) .. change mode
chown, chgrp(1) ... change owner or group
cmp(1) ... compare two files
col(1) .. :..... filter reverse line-feeds
comm(1) .. select or reject lines common to two sorted files
cp, In, mv(1) ... copy, link or move files
cpio(l) ... copy file archives in and out
crontab(1) ... user crontab file
crypt(1) .. encode/decode
csplit(1) ... context split
ct(1C) .. spawn getty to a remote terminal
cu(lC) .. call another UNIX system
cut(1) .. cut out selected fields of each line of a file
date(1) .. print and set the date
dc(1) .. desk calculator
dd(1M) .. convert and copy a file
deroff(1) .. remove nroff/troff, tbl, and eqn constructs
df(1M) ... report number of free disk blocks and i-nodes
diff(1) .. differential file comparator
diff3(1) ... 3-way differential file comparison
dircmp(1) .. directory comparison
du(1M) .. summarize disk usage
echo(1) ... echo arguments

TABLE OF CONTENTS v

Table of Contents

ed, red (1) text editor
edit(l) ... text editor (variant of ex for casual users)
egrep(l) .. search a file for a pattern using full regular expressions
enable, disable(l) .. enable/disable LP printers
env(l) .. set environment for command execution
ex (1) text editor
expr(l) .. evaluate arguments as an expression
factor(l) ... obtain the prime factors of a number
fgrep(l) .. search a file for a character string
file(l) ... determine file type
find(l) .. find files
gdev: hpd, erase, hardcopy, tekset, td(lG) graphical device routines and filters
ged(lG) ... graphical editor
getopt(l) .. parse command options
getopts, getoptcvt(l) ... parse command options
glossary(l) definitions of common UNIX system terms and symbols
graph(lG) ... draw a graph
graphics(lG) ... access graphical and numerical commands
greek(l) ... select terminal filter
grep(l) ... search a file for a pattern
gutil(lG) .. graphical utilities
help(l) ... UNIX system Help Facility
helpadm(lM) ... make changes to the Help Facility database
hp(l) ... handle special functions of Hewlett-Packard terminals
hpio(l) .. Hewlett-Packard 2645A terminal tape file archiver
id(lM) ... print user and group IDs and names
ipcrm(l) remove a message queue, semaphore set or shared memory id
ipcs(l) ... report inter-process communication facilities status
ismpx(l) ... return windowing terminal state
join(l) ... relational database operator
jterm(l) ... reset layer of windowing terminal
jwin(l) ... print size of layer
kill(l) .. terminate a process
layers(l) .. layer multiplexor for windowing terminals
line(l) .. read one line
locate(l) ... identify a UNIX system command using keywords
login(l) .. sign on
logname(l) .. get login name
Ip, cancel(l) ... send/cancel requests to an LP line printer
Ipstat(l) .. print LP status information
Is(l) .. list contents of directory

vi USER'S REFERENCE MANUAL

Table of Contents

machid: pdpll, u3b, u3b2, u3b5, vax(l) get processor type truth value
mail, rmail(l) .. send mail to users or read mail
mailx(l) ... interactive message processing system
makekey(l) .. generate encryption key
mesg(l) .. permit or deny messages
mkdir(l) .. make directories
newform(l) ... , change the format of a text file
newgrp(lM) ... log in to a new group
news(l) ... print news items
nice(l) ... run a command at low priority
nl(l) .. line numbering filter
nohup(l) .. run a command immune to hangups and quits
od(l) .. octal dump
pack, pcat, unpack(l) .. compress and expand files
passwd(l) ... change login password
paste(l) merge same lines of several files or subsequent lines of one file
pg(l) ... file perusal filter for eRTs
pr(l) .. print files
ps(l) ... report process status
pwd(l) ... working directory name
relogin(lM) ... rename login entry to show current layer
rm, rmdir (1) ... remove files or directories
sag(lG) ... system activity graph
sar(l) ... system activity reporter
sdiff(l) ... side-by-side difference program
sed(l) .. stream editor
setup(l) .. initialize system for first user
sh, rsh(l) shell, the standard/restricted command programming language
shl(l) .. shell layer manager
sleep(l) ... suspend execution for an interval
sort(l) .. sort and/or merge files
spell, hashmake, spellin, hashcheck(l) ... find spelling errors
spline(lG) ... interpolate smooth curve
split(l) .. split a file into pieces
starter(l) .. information about the UNIX System for beginning users
stat(lG) ... statistical network useful with graphical commands
stty(l)· ... set the options for a terminal
su(lM) ... become super-user or another user
sum(l) ... print checksum and block count of a file
sync(lM) ... update the super block
sysadm(l) ... menu interface to do' system administration

TABLE OF CONTENTS vii

Table of Contents

tabs(l) .. set tabs on a terminal
tail(l) .. deliver the last part of a file
tar(l) ... tape file archiver
tee(l) .. pipe fitting
test(l) .. condition evaluation command
time(l) .. time a command
timex(l) time a command; report process data and system activity
toc: dtoc, ttoc, vtoc(lG) .. graphical table of contents routines
touch(l) ... update access and modification times of a file
tplot(lG) ... graphics filters
tput(l) ... initialize a terminal or query terminfo database
tr(l) ... translate characters
true, false(l) .. provide truth values
tty(l) ... get the name of the terminal
umask(l) ... set file-creation mode mask
uname(l) ... print name of current UNIX system
uniq(l) .. report repeated lines in a file
units(l) ... conversion program
usage(l) ... retrieve a command description and usage examples
uucp, uulog, uuname(lC) .. UNIX-to-UNIX system copy
uustat(lC) .. uucp status inquiry and job control
uuto, uupick(lC) .. public UNIX-to-UNIX system file copy
uux(lC) .. UNIX-to-UNIX system command execution
vi(l) ... screen-oriented (visual) display editor based on ex
wait(l) .. await completion of process
wall(l) ... write to all users
wc(l) ... word count
who(l) .. who is on the system
write(l) ... write to another user
xargs(l) ;., construct argument list(s) and execute a command

viii USER'S REFERENCE MANUAL

UNIX® System V

User's Reference Manual

Introduction
This User's Reference Manual describes the commands that constitute the

basic software running on the AT&T 3B2 Computer.

Several other documents contain other valuable information:

• The User's Guide (P-H) presents an overview of the UNIX system and
tutorials on how to use text editors, automate repetitive jobs, and send
information to others.

• The Programmer's Guide (P-H) presents an overview of the UNIX system
programming environment and tutorials on various programming tools.

• The Programmer's Reference Manual (P-H) describes commands, system
calls, subroutines, libraries, and file formats needed by programmers.

• The System Administrator's Guide (AT&T) provides both procedures for
and explanations of administrative tasks.

• The System Administrator's Reference Manual (AT&T) describes the com­
mands used by system administrators.

While the commands are each part of a specific utility, they appear, in
alphabetical order, in a single section of this document called "Commands."
The various utilities represented in this section are as follows:

1. AT&T Windowing Utilities
2. Basic Networking Utilities
3. Cartridge Tape Controller Utilities
4. Directory and File Management Utilities
5. Editing Utilities
6. Essential Utilities
7. Graphics Utilities
8. Help Utilities
9. Inter-process Communications
10. Line Printer Spooling Utilities
11. Performance Measurement Utilities
12. Security Administration Utilities
13. Spell Utilities
14. Terminal Filters Utilities
15. Terminal Information Utilities
16. User Environment Utilities

INTRODUCTION 1

Introduction

Security Administration Utilities are expressly provided for U. S. custo­
mers.

Section 1: Commands
The entries in Section 1 describe programs intended to be invoked directly

by the user or by command language procedures, as opposed to subroutines,
which are called by the user's programs. Commands generally reside in the
directory /bin (for binary programs). In addition, some programs reside in
/usr/bin. These directories are searched automatically by the command
interpreter called the shell. UNIX systems running on the 3B2 Computer also
have a directory called /usr/lbin, containing local commands.

The numbers following the command are intended for easy cross­
reference. A command followed by a (1), (1C), or (1G) usually means that it
is contained in this manual. (Section 1 commands appropriate for use by pro­
grammers are located in the Programmer's Reference Manual (P-H).) A com­
mand with a (1M), (7), or (8) following it means that the command is in the
appropriate section of the System Administrator's Reference Manual (AT&T). A
command with a (2), (3), (4), or (5) following it means that the command is in
the appropriate section of the Programmer's Reference Manual (P-H).

Each entry in the Commands section appears under a single name shown
at the upper comers of its page(s). Entries are alphabetized, with the excep­
tion of the intro(l) entry, which is first. Some entries may describe several
commands. In such cases, the entry appears only once, alphabetized under its
"primary" name, the name that appears at the upper comers of the page. The
"secondary" commands are listed directly below their associated primary com­
mand.

All entries are presented using the following format (though some of these
headings might not appear in every entry):

• NAME gives the primary name (and secondary name(s), as the case
may be) and briefly states its purpose.

• SYNOPSIS summarizes the usage of the program being described. A
few explanatory conventions are used, particularly in the SYNOPSIS:

D Boldface strings are literals and are to be typed just as they appear.

2 USER'S REFERENCE MANUAL

Introduction

o Italic strings usually represent substitutable argument prototypes
and command names found elsewhere in the manual.

o Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
"name" or "file," it always refers to a file name.

o Ellipses ... are used to show that the previous argument prototype
may be repeated.

o A final convention is used by the commands themselves. An argu­
ment beginning with a minus (-), plus (+), or an equal sign (=) is
often taken to be some sort of flag argument, even if it appears in a
position where a file name could appear. Therefore, it is unwise to
have files whose names begin with -, +, or =.

• DESCRIPTION discusses how to use these commands.

• EXAMPLE(S) gives example(s) of usage, where appropriate.

• FILES contains the file names that are referenced by the program.

• EXIT CODES discusses values set when the command terminates. The
value set is available in the shell environment variable '?' (see sh(l)).

• NOTES gives information that may be helpful under the particular cir­
cumstances described.

• SEE ALSO offers pointers to related information.

• DIAGNOSTICS discusses the error messages that may be produced.
Messages that are intended to be self-explanatory are not listed.

• WARNINGS discusses the limits or boundaries of the respective com­
mands.

• BUGS lists known faults in software that have not been rectified. Occa­
sionally, a suggested short-term remedy is also described.

INTRODUCTION 3

Introduction

Preceding Section 1 is a "Table of Contents" (listing both primary and
secondary command entries). Each line of the "Table of Contents" lists an
abstract of the command.

How to Get Started
This discussion provides the basic information you need to get started on

the UNIX system: how to log in and log out, how to communicate through
your terminal, and how to run a program. (See the User's Guide (P-H) for a
more complete introduction to the system.)

Logging In
You must connect to the UNIX system from a full-duplex ASCII terminal.

You must also have a valid login id, which may be obtained (together with
how to access your UNIX system) from the administrator of your system.
Common terminal speeds are 120, 240, 480, and 960 characters per second
(1200, 2400, 4800, and 9600 baud). Some UNIX systems have different ways
of accessing each available terminal speed, while other systems offer several
speeds through a common access method. In the latter case, there is one "pre­
ferred" speed; if you access it from a terminal set to a different speed, you will
be greeted by a string of meaningless characters (the login: message at the
wrong speed). Keep hitting the "break," "interrupt," or "attention" key until the
login: message appears. .

Most terminals have a speed switch that should be set to the appropriate
speed and a half-jfull-duplex switch that should be set to full-duplex. When
a connection has been established, the system types login:. You respond by
typing your login id followed by the "return" key. If you have a password,
the system asks for it but will not print, or "echo," it on the terminal. After
you have logged in, the "return," "new-line," and "line-feed" keys all have
equivalent meanings.

Make sure you type your login name in lower-case letters. Typing
upper-case letters causes the UNIX system to assume that your terminal can
generate only upper-case letters and will treat all letters as upper-case for the
remainder of your login session. The shell will print a $ on your screen when
you have logged in successfully.

4 USER'S REFERENCE MANUAL

Introduction

When you log in, a message-of-the-day may greet you before you receive
your prompt. For more information, consult login(l), which discusses the
login sequence in more detail, and stQl(l), which tells you how to describe
your terminal to the system. profile.(4) (in the Programmer's Reference Manual
(P-H» explains how to accomplish this last task automatically every time you
log in.

Logging Out
There are two ways to ·log out:

• If you've dialed in, you can simply hang up the phone .

• You can log out by typing an end-of-file indication (ASCII EOT char­
acter, usually typed as "CONTROL-D") to the shell. The shell will ter­
minate, and the login: message will appear again.

How to Communicate Through Your Terminal
When you type to the UNIX system, your individual characters are being

gathered and temporarily saved. Although they are echoed back to you, these
characters will not be given to a program until you type a "return" (or "new­
line") as described above in "Logging In."

UNIX system terminal input/output is full duplex. It has full read-ahead,
which means that you can type at any time, even while a program is typing at
you. Of course, if you type during output, your input characters will have
output characters interspersed among them. In any case, whatever you type
will be saved and interpreted in the correct sequence. There is a limit to the
amount of read-ahead, but it is generous and not likely to be exceeded.

The character @ cancels all the characters typed before it on a line,
effectively deleting the line. (@ is called the line kill character.) The character
erases the last character typed. Successive uses of # will erase characters
back to, but not beyond, the beginning of the line; @ and # can be typed as
themselves by preceding them with \ (thus, to erase a \, you need two #s).
These default erase and line kill characters can be changed; see stty(l).

CONTROL-S (also known as the ASCII DC3 character) is typed by pressing
the control key and the alphabetic s simultaneously and is used to stop output
temporarily. It is useful with CRT terminals to prevent output from disap­
pearing before it can be read. Output is resumed when a CONTROL-Q (also
known as DCI) is typed. Thus, if you had typed cat yourfile and the contents
of yourfile were passing by on the screen more rapidly than you could read it,

INTRODUCTION 5

Introduction

you would type CONTROL-S to freeze the output for a moment. Typing
CONTROL-Q would allow the output to resume its rapid pace. The
CONTROL-S and CONTROL-Q characters are not passed to any other program
when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs but
instead generates an interrupt signal, just like the "break," "interrupt," or "atten­
tion" signal. This signal generally causes whatever program you are running
to terminate. It is typically used to stop a long printout that you do not want.
Programs, however, can arrange either to ignore this signal altogether or to be
notified and take a specific action when it happens (instead of being ter­
minated). The editor ed(l), for example, catches interrupts and stops what it
is doing, instead of terminating, so an interrupt can be used to halt an editor
printout without losing the file being edited.

Besides adapting to the speed of the terminal, the UNIX system tries to be
intelligent as to whether you have a terminal with the "new-line" function, or
whether it must be simulated with a "carriage-return" and "line-feed" pair. In
the latter case, all input "carriage-return" characters are changed to "line-feed"
characters (the standard line delimiter), and a "carriage-return" and "line-feed"
pair is echoed to the terminal. If you get into the wrong mode, the stty(l)
command will rescue you.

Tab characters are used freely in UNIX system source programs. If your
terminal does not have the tab function, you can arrange to have tab charac­
ters changed into spaces during output, and echoed as spaces during input.
Again, the stty(l) command will set or reset this mode. The system assumes
that tabs are set every eight character positions. The tabs(l) command will set
tab stops on your terminal, if that is possible.

How to Run a Program
When you have successfully logged into the UNIX system, a program

called the shell is communicating with your terminal. The shell reads each
line you type, splits the line into a command name and its arguments, and
executes the command. A command is simply an executable program. Nor­
mally, the shell looks first in your current directory (see "The Current Direc­
tory" below) for the named program and, if none is there, then in system
directories, such as /bin and /usr/bin. There is nothing special about
system-provided commands except that they are kept in directories where the
shell can find them. You can also keep commands in your own directories
and instruct the shell to find them there. See the manual entry for sh(l),

6 USER'S REFERENCE MANUAL

Introduction

under the sub-heading "Parameter Substitution," for the discussion of the
$PATH shell environment variable.

The command name is the first word on an input line to the shell; the
command and its arguments are separated from one another by space or tab
characters.

When a program terminates, the shell will ordinarily regain control and
give you back your prompt to indicate that it is ready for another command.
The shell has many other capabilities, which are described in detail in sh(l).

The Current Directory
The UNIX system has a file system arranged in a hierarchy of directories.

When you received your login id, the system administrator also created a
directory for you (ordinarily with the same name as your login id, and known
as your login or home directory). When you log in, that directory becomes
your current or working directory, and any file name you type is, by default,
assumed to be in that directory. Because you are the owner of this directory,
you have full permissions to read, write, alter, or remove its contents. Permis­
sions to enter or modify other directories and files will have been granted or
denied to you by their respective owners or by the system administrator. To
change the current directory, use cd(l).

Pathnames
To refer to files or directories not in the current directory, you must use a

pathname. Full pathnames begin with I, which is the name of the root direc­
tory of the whole file system. After the slash comes the name of each direc­
tory containing the next sub-directory (followed by a I), until finally the file or
directory name is reached (e.g., lusr/ae/filex refers to file filex in directory
ae, while ae is itself a subdirectory of usr, and usr is a subdirectory of the
root directory). Use pwd(l) to print the full pathname of the directory you are
working in. See intro(2) in the Programmer's Reference Manual (P-H) for a
formal definition of pathname.

If your current directory contains subdirectories, the pathnames of their
respective files begin with the name of the corresponding subdirectory
(without a prefixed I). A pathname may be used anywhere a file name is
required.

INTRODUCTION 7

Introduction

Important commands that affect files are cp(l), mv (see cp(l», and rm(l),
which respectively copy, move (Le., rename), and remove files. To find out
the status of files or directories, use ls(l). Use mkdir(l) for making directories
and rmdir (see rm(l» for removing them.

Text Entry and Display
Almost all text is entered through an editor. Common examples of UNIX

system editors are ed(l) and vi(l). The commands most often used to print
text on a terminal are cat(l), pr(l), and pg(l). The cat(l) command displays
the contents of ASCII text files on the terminal, with no processing at all. The
pr(l) command paginates the text, supplies headings, and has a facility for
multi-column output. The pg(l) command displays text in successive portions
no larger than your terminal screen.

Writing a Program
Once you have entered the text of your program into a file with an editor,

you are ready to give the file to the appropriate language processor. The
processor will accept only files observing the correct naming conventions: all
C programs must end with the suffix .c, and Fortran programs must end with
.f. The output of the language processor will be left in a file named a.out in
the current directory, unless you have invoked an option to save it in another
file. (Use mv(l) to rename a.out.) If the program is written in assembly
language, you will probably need to load library subroutines with it (see ld(l)
in the Programmer's Reference Manual (P-H».

When you have completed this process without provoking any diagnos­
tics, you may run the program by giving its name to the shell in response to
the $ prompt. Your programs can receive arguments from the command line
just as system programs do; see exec(2) in the Programmer's Reference Manual
(P-H). For more information on writing and running programs, see the Pro­
grammer's Guide (P-H).

8 USER'S REFERENCE MANUAL

ffJ
&
;}
OJ
:J
:i
uj

Introduction

Communicating with Others
Certain commands provide inter-user communication. Even if you do not

plan to use them, it would be well to learn something about them because
someone else may try to contact you. mail(l) or mailx(l) will leave a message
whose presence will be announced to another user when he or she next logs
in and at periodic intervals during the session. To communicate with another
user currently logged in, write(l) is used. The corresponding entries in this
manual also suggest how to respond to these two commands if you are their
target.

See the tutorials in Chapter 8 of the User's Guide (P-H) for more informa­
tion on communicating with others.

INTRODUCTION 9

INTRO(l) INTRO(l)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands available for the AT&T
3B2 Computer. Certain distinctions of purpose are made in the headings.

The following Utility packages are delivered with the computer:

AT&T Windowing Utilities
Basic Networking Utilities
Cartridge Tape Controller Utilities
Directory and File Management Utilities
Editing Utilities
Essential Utilities
Graphics Utilities
Help Utilities
Inter-process Communications
Line Printer Spooling Utilities
Performance Measurement Utilities
Security Administration Utilities
Spell Utilities
Terminal Filters Utilities
Terminal Information Utilities
User Environment Utilities

The following Utility Packages are available for purchase:

Networking Support Utilities
Remote File Sharing Utilities

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option ...] [cmdarg ...]
where:

[]

name
option

noargletter

argletter

Surround an option or cmdarg that is not required.

Indicates multiple occurrences of the option or cmdarg.

The name of an executable file.

(Always preceded by a "-".)
noargletter ... or,
argletter optarg[, ...]

A single letter representing an option without an option­
argument. Note that more than one noargletter option can be
grouped after one "-" (Rule 5, below).

A single letter representing an option requiring an option­
argument.

11

INTRO(l) INTRO(l)

optarg

cmdarg

An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter must
be separated by commas, or separated by white space and quoted
(Rule 8, below).

Path name (or other command argument) not beginning with "-",
or "-" by itself indicating the standard input.

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but all
new commands will obey them. getopts(l) should be used by all shell pro­
cedures to parse positional parameters and to check for legal options. It sup­
ports Rules 3-10 below. The enforcement of the other rules must be done by
the command itself.

1. Command names (name above) must be between two and nine
characters long.

2. Command names must include only lower-case letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by "-".

5. Options with no arguments may be grouped after a single "-".

6. The first option-argument (optarg above) following an option must
be preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g.,
-0 xxx, Z , yy or -0 "xxx Z yy").

9. All options must precede operands (cmdarg above) on the com-
mand line.

10. "--" may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

13. "-" preceded and followed by white space should only be used to
mean standard input.

SEE ALSO
getopts(I).
exit(2), wait(2), getopt(3C) in the Programmer's Reference Manual.
How to Get Started, at the front of this document.

DIAGNOSTICS

12

Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal"
termination) one supplied by the program [see wait(2) and exit(2»). The former
byte is 0 for normal termination; the latter is customarily 0 for successful

INTRO(l) INTRO(l)

execution and non-zero to indicate troubles such as erroneous parameters, or
bad or inaccessible data. It is called variously "exit code", "exit status", or
"return code", and is described only where special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and
therefore become confused upon encountering a null character (the string termi­
nator) within a line.

13

300(1) (Terminal Filters Utilities) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12 1 [-n 1 [-dt,l,c 1
300s [+12 1 [-n 1 [-dt,l,c 1

DESCRIPTION

14

The 300 command supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for the
DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, half­
line reverse, and full-line reverse motions to the correct vertical motions. In the
following discussion of the 300 command, it should be noted that unless your
system contains the DOCUMENTER'S WORKBENCH Software, references to certain
commands (e.g., nroff, neqn, eqn, etc.) will not work. It also attempts to draw
Greek letters and other special symbols. It permits convenient use of 12-pitch
text. It also reduces printing time 5 to 70%. The 300 command can be used to
print equations neatly, in the sequence:

neqn file ... I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on before
300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor­
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-pitch,
8 lines/inch. To obtain the 12-pitch, 6 lines per inch combination, the
user should turn the PITCH switch to 12, and use the +12 option.

-n controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a 10-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default value,
thus allowing for individual taste in the appearance of subscripts and
superscripts. For example, nroff half-lines could be made to act as
quarter-lines by using -2. The user could also obtain appropriate
half-lines for 12-pitch, 8 lines/inch mode by using the option -3
alone, having set the PITCH switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 ter­
minals sometimes produce peculiar output when faced with very long
lines, too many tab characters, or long strings of blankless, non­
identical characters. One null (delay) character is inserted in a line for
every set of t tabs, and for every contiguous string of c non-blank,
non-tab characters. If a line is longer than I bytes, 1 +(totallength)/20
nulls are inserted at the end of that line. Items can be omitted from
the end of the list, implying use of the default values. Also, a value of
zero for t (c) results in two null bytes per tab (character). The former
may be needed for C programs, the latter for files like /etc/passwd.
Because terminal behavior varies according to the specific characters
printed and the load on a system, the user may have to experiment

300(1) (Terminal Filters Utilities) 300(1)

with these values to get correct output. The -d option exists only as a
last resort for those few cases that do not otherwise print properly.
For example, the file /ete/passwd may be printed using -d3,30,5.
The value -dO,l is a good one to use for C programs that have many
levels of indentation.

Note that the delay control interacts heavily with the prevailing car­
riage return and line-feed delays. The stty(1) modes nlO er2 or nlO er3
are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed key
to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff - T300 files... and nroff files ... I 300
nroff -T300-12 files ... and nroff files ... I 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 300 are shown in greek(5).

SEE ALSO

BUGS

450(1), mesg(1), graph(lG), stty(l), tabs(l), tplot(1G).
eqn(1), nroff(1), tbl(1) in the DOCUMENTER'S WORKBENCH Software 2.0 Technical
Discussion and Reference Manual
greek(5) in the Programmer's Reference Manual.

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter has
a tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

15

4014(1) (Terminal Filters Utilities) 4014(1)

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [-t 1 [-n 1 [-cN 1 [-pL 1 [file 1

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014 arranges for
66 lines to fit on the screen, divides the screen into N columns, and contributes
an eight-space page offset in the (default) single-column case. Tabs, spaces, and
backspaces are collected and plotted when necessary. Teletype Model 37 half­
and reverse-line sequences are interpreted and plotted. At the end of each page,
4014 waits for a new-line (empty line) from the keyboard before continuing on
to the next page. In this wait state, the command !cmd will send the cmd to the
shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.

-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and 1 (lines);
default is lines.

SEE ALSO

16

pr(l), tc(l).
troff(l) in the DOCUMENTER'S WORKBENCH Software Release 2.0 Technical Discus­
sion and Reference Manual.

450(1) (Terminal Filters Utilities) 450(1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
Diablo 1620 or Xerox 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to draw
Greek letters and other special symbols in the same manner as 300(1). It should
be noted that, unless your system contains DOCUMENTER'S WORKBENCH
Software, certain commands (e.g., eqn, nroff, tbl, etc.) will not work. Use 450 to
print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450 is
used. The SPACING switch should be put in the desired position (either 10- or
12-pitch). In either case, vertical spacing is 6 lines/inch, unless dynamically
changed to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff -8 flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the
return key in these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff -T450 files ...
or

nroff -T450-12 files ...

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 450 are shown in greek(5).

SEE ALSO

BUGS

300(1), mesg(l), stty(l), tabs(l), graph(lG), tplot(lG).
eqn(l), nroff(l), tbl(l) in the DOCUMENTER'S WORKBENCH Software Release 2.0
Technical Discussion and Reference Manual.
greek(5) in the Programmer's Reference Manual.

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter has
a tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

17

AR(l) (Directory and File Management Utilities) AR(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] ...

DESCRIPTION

18

The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link editor. It
can be used, though, for any similar purpose. The magic string and the file
headers used by ar consist of printable ASCII characters. If an archive is com­
posed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure is described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor
[ld(l)] to effect multiple passes over libraries of object files in an efficient
manner. An archive symbol table is only created and maintained by ar when
there is at least one object file in the archive. The archive symbol table is in a
specially named file which is always the first file in the archive. This file is
never mentioned or accessible to the user. Whenever the ar(l) command is used
to create or update the contents of such an archive, the symbol table is rebuilt.
The s option described below will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar's command
line. The key (which may begin with a -) is formed with one of the following
letters: drqtpmx. Arguments to the key, alternatively, are made with one or
more of the following set: vuaibcls. Posname is an archive member name used
as a reference point in positioning other files in the archive. Afile is the archive
file. The names are constituent files in the archive file. The meanings of the key
characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than
the archive files are replaced. If an optional positioning character from
the set abi is used, then the posname argument must be present and
specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. This option is
useful to avoid quadratic behavior when creating a large archive piece­
by-piece. Unchecked, the file may grow exponentially up to the second
degree.

t Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

AR(l)

FILES

(Directory and File Management Utilities) AR(l)

m Move the named files to the end of the archive. If a positioning char­
acter is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

The meanings of the key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with t,
give a long listing of all information about the files. When used with x,
precede each file with a name.

c Suppress the message that is produced by default when afile is created.

1 Place temporary files in the local (current working) directory rather than
in the default temporary directory, TMPDIR.

s Force the regeneration of the archive symbol table even if ar(l) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(l)
command has been used on the archive.

$TMPDIRj* temporary files

$TMPDIR is usually jusrjtmp but can be redefined by setting the environment
variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO

NOTES

ld(l), lorder(l), strip(l), tmpnam(3S), a.out(4), ar(4)

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

19

AT(l) (User Environment Utilities) AT(l)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -r job .. .
at -l[job ...]
batch

DESCRIPTION

20

at and batch read commands from standard input to be executed at a later time.
at allows you to specify when the commands should be executed, while jobs
queued with batch will execute when system load level permits. at may be used
with the following options:

-r Removes jobs previously scheduled with at.

-I Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask,
and ulimit are retained when the commands are executed. Open file descriptors,
traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If at.deny
is empty, global usage is permitted. The allow/deny files consist of one user
name per line. These files can only be modified by the superuser.

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alter­
nately be specified as two numbers separated by a colon, meaning hour:minute.
A suffix am or pm may be appended; otherwise a 24-hour clock time is under­
stood. The suffix zulu may be used to indicate GMT. The special names noon,
midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day of
the week (fully spelled or abbreviated to three characters). Two special "days",
today and tomorrow are recognized. If no date is given, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is
less. If the given month is less than the current month (and no year is given),
next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

AT(l) (User Environment Utilities)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

AT(l)

batch submits a batch job. It is almost equivalent to "at now", but not quite.
For one, it goes into a different queue. For another, "at now" will respond with
the error message too late.

at -r removes jobs previously scheduled by at or batch. The job number is the
number given to you previously by the at or batch command. You can also get
job numbers by typing at -1. You can only remove your own jobs unless you
are the super-user.

EXAMPLES

FILES

The at and batch commands read from standard input the commands to be exe­
cuted at a later time. sh(l) provides different ways of specifying standard input.
Within your commands, it may be useful to redirect standard output.

Th~ sequence can be used at a terminal:
batch
sort filename > outfile
<control-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is useful
in a shell procedure (the sequence of output redirection specifications is
significant):

batch «!
sort filename 2 > & 1 > outfile I mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the following within the shell file:

echo "sh shellfile" I at 1900 thursday next week

lusr llib I cron
lusr llib I cronl at.allow
lusr llib I cronl at.deny
lusr llib I cronl queue
lusr I spoolj cronl atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

SEE ALSO
kill(l), mail(l), nice(l), ps(l), sh(l), sort(1).
cron(lM) in the System Administrator's Reference Manual.

DIAGNOSTICS
Complains about various syntax errors and times out of range.

21

AWK(l) (Directory and File Management Utilities) AWK(l)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc 1 [prog 1 [parameters 1 [files 1

DESCRIPTION

22

awk scans each input file for lines that match any of a set of patterns specified in
prog. With each pattern in prog there can be an associated action that will be
performed when a line of a file matches the pattern. The set of patterns may
appear literally as prog, or in a file specified as -£ file. The prog string should be
enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern por­
tion of every pattern-action statement; the associated action is performed for
each matched pattern.

An input line is made up of fields separated by white space. (This default can
be changed by using FS; see below). The fields are denoted $1, $2, ... ; $0 refers
to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression conditional; expression) statement
break
continue
{ [statement 1 ... }
variable = expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression 1
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, j, %, and con­
catenation (indicated by a blank). The C operators ++, --, +=, -=, *=, j=,
and %= are also available in expressions. Variables may be scalars, array ele­
ments (denoted xli]) or fields. Variables are initialized to the null string. Array
subscripts may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants are quoted (").

AWK(l) (Directory and File Management Utilities) AWK(l)

The print statement prints its arguments on the standard output (or on a file if
> expr is present), separated by the current output field separator, and ter­
minated by the output record separator. The printf statement formats its expres­
sion list according to the format [see printf(3S) in the Programmer's Reference
Manual].

The built-in function length returns the length of its argument taken as a string,
or of the whole line if no argument. There are also built-in functions exp, log,
sqrt, and into The last truncates its argument to an integer; substr(s, m, n)
returns the n-character substring of s that begins at position m. The function
sprintf(fmt, expr, expr, ...) formats the expressions according to the printf(3S)
format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of reg­
ular expressions and relational expressions. Regular expressions must be sur­
rounded by slashes and are as in egrep (see grep(l». Isolated regular expres­
sions in a pattern apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns separated by a
comma; in this case, the action is performed for all lines between an occurrence
of the first pattern and the next occurrence of the second.

A relational expression is One of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either
(for contains) or! (for does not contain). A conditional is an arithmetic expres­

sion, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the
first input line is read and after the last. BEGIN must be the first pattern, END
the last.

A single character c may be used to separate the fields by starting the program
with:

BEGIN { FS = c }

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME, the
name of the current input file; OFS, the output field separator (default blank);
ORS, the output record separator (default new-line); and OFMT, the output
format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

23

AWK(l) (Directory and File Management Utilities)

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print}

command line: awk -f program n=5 input

AWK(l)

SEE ALSO

BUGS

24

grep(l), sed(1).
lex(l), printf(3S) in the Programmer's Reference Manual.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string ("") to it.

BC(l) (User Environment Utilities) BC(l)

NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
be [-e] [-1] [file ...]

DESCRIPTION
be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The be(l) utility is actually a preprocessor for de(l), which it
invokes automatically unless the -e option is present. In this case the de input
is sent to the standard output instead. The options are as follows:

-e Compile only. The output is send to the standard output.

-1 Argument stands for the name of an arbitrary precision math library.

The syntax for be programs is as follows; L means letter a-z, E means expres­
sion, S means statement.

Comments
are enclosed in / * and * /.

Names
simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt(E)
length (E)
scale (E)
L(E, ... ,E)

Operators

number of significant decimal digits
number of digits right of decimal point

+ - * / % ~ (% is remainder; ~ is power)
++ -- (prefix and postfix; apply to names)

<= >= 1= < >
= =+ -- =* -=/ -% -~

Statements
E
{S; ... ; S}
u(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... , L
S; ... S

25

BC(l) (User Environment Utilities) BC(l)

return (E)

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate state­
ments. Assignment to scale influences the number of digits to be retained on
arithmetic operations in the manner of dc(l). Assignments to ibase or abase set
the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables are
pushed down during function calls. When using arrays as function arguments or
defining them as automatic variables, empty square brackets must follow the
array name.

EXAMPLE

FILES

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b=l
s = 1
for(i=l; 1==1; i++){

a = a·x
b = b·i
c = alb
if(c == 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential function
and

for(i=l; i < =10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO
dc(l).

26

BC(l)

BUGS

(User Environment Utilities)

The be command does not yet recognize the logical operators, &&: and II.
For statement must have all three expressions (E's).
Quit is interpreted when read, not when executed.

BC(l)

27

BFS(l) (Directory and File Management Utilities) BFS(l)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION

28

The bfs command is (almost) like ed(l) except that it is read-only and processes
much larger files. Files can be up to l024K bytes and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines). bfs is usually
more efficient than ed(l) for scanning a file, since the file is not copied to a
buffer. It is most useful for identifying sections of a large file where csplit(l) can
be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional - suppresses printing of sizes.
Input is prompted with * if P and a carriage return are typed, as in ed(l).
Prompting can be turned off again by inputting another P and carriage return.
Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed(l) are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?: > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, W, =, ! and null commands operate as described under ed(l).
Commands such as ---, +++-, +++=, -12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command only prints the
name of the file being scanned; there is no remembered file name. The W com­
mand is independent of output diversion, truncation, or crunching (see the
XO, xt and xc commands, below). The following additional commands are avail­
able:

xf file
Further commands are taken from the named file. When an end-of­
file is reached, an interrupt signal is received or an error occurs,
reading resumes with the file containing the xf. The xf commands
may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666 (readable and
writable by everyone), unless your umask setting (see umask(l» dic­
tates otherwise. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation of the
file.

: label
T~is positions a label in a command file. The label is terminated by
new-line, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

BFS(l) (Directory and File Management Utilities) BFS(l)

(. , •)xb/regular expression/label
A jump (either upward or downward) is made to label if the com­
mand succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in
the specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to label.
This command is the only one that does not issue an error message
on bad addresses, so it may be used to test whether addresses are
bad before other commands are executed. Note that the command

xbF/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number
Output from the p and null commands is truncated to at most number
characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The com­
mands xv5100 or xv5 100 both assign the value 100 to the variable 5.
The command xv61,100p assigns the value 1,10Op to the variable 6.
To reference a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p
would globally search for the characters 100 and print each line con­
taining a match. To escape the special meaning of 0/0, a \ must pre­
cede it.

g/".*\%[cdsj/p

could be used to match and list lines containing printf of characters,
decimal integers, or strings.

29

BFS(l) (Directory and File Management Utilities) BFS(l)

Another feature of the xv command is that the first line of output
from a UNIX system command can be stored into a variable. The
only requirement is that the first character of value be an!. For
example:

.wjunk
xv5!cat junk
!rmjunk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5, print it, and increment the
variable 6 by one. To escape the special meaning of ! as the first
character of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from the
execution of a UNIX system command (!command) or nonzero value,
respectively, to the specified label. The two examples below both
search for the next five lines containing the string size.

xc [switch]

xv55
: I
/size/
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Ini­
tially switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(l), ed(l), umask(l).

DIAGNOSTICS

30

? for errors in commands, if prompting is turned off. Self-explanatory error mes­
sages when prompting is on.

BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

(User Environment Utilities) BANNER(l)

banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

SEE ALSO
echo(l).

31

BASENAME(l) (User Environment Utilities) BASENAME(l)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside
substitution marks (' ') within shell procedures.

Dimame delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, com­
piles the named file and moves the output to a file named cat in the current
directory:

cc $1
mv a.out 'basename $1 '\.c"

The following example will set the shell variable NAME to /usr/src/cmd:

NAME='dirname jusrjsrcjcmdjcat.c'

SEE ALSO
sh(l).

32

BDIFF(l) (Directory and File Management Utilities) BDIFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

bdiff is used in a manner analogous to diff(l) to find which lines in two files
must be changed to bring the files into agreement. Its purpose is to allow proc­
essing of files which are too large for diff.

The parameters to bdiff are:

file1 (file2)
The name of a file to be used. If file1 (file2) is -, the standard input is
read.

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too
large for diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages
from diff(l), which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff upon corresponding segments. If
both optional arguments are specified, they must appear in the order indicated
above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been
processed whole). Note that because of the segmenting of the files, bdiff does
not necessarily find a smallest sufficient set of file differences.

/tmp/bd?????

SEE ALSO
diff(l), help(l).

DIAGNOSTICS
Use help(l) for explanations.

33

CAL(l) (User Environment Utilities) CAL(l)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar for the
present month is printed. Year can be between 1 and 9999. The month is a
number between 1 and 12. The calendar produced is that for England and the
United States.

EXAMPLES

BUGS

34

An unusual calendar is printed for September 1752. That is the month 11 days
were skipped to make up for lack of leap year adjustments. To see this
calendar, type: cal 9 1752

The year is always considered to start in January even though this is historically
naive.
Beware that "cal 83" refers to the early Christian era, not the 20th century.

CALENDAR(l) (User Environment Utilities) CALENDAR(l)

NAME
calendar - reminder service

SYNOPSIS
calendar [- 1

DESCRIPTION

FILES

calendar consults the file calendar in the current directory and prints out lines
that contain today's or tomorrow's date anywhere in the line. Most reasonable
month-day dates such as "Aug. 24," "august 24," "8/24," etc., are recognized,
but not "24 August" or "24/8". On weekends "tomorrow" extends through
Monday.

When an argument is present, calendar does its job for every user who has a file
calendar in his or her login directory and sends them any positive results by
mail(l). Normally this is done daily by facilities in the UNIX operating system.

/ usr /lib / calprog

/etc/passwd

/tmp/cal*

to figure out today's and tomorrow's dates

SEE ALSO
mail(l).

BUGS
Your calendar must be public information for you to get reminder service.
calendar's extended idea of "tomorrow" does not account for holidays.

35

CAT(l) (Essential Utilities) CAT(l)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

ca t file 1 file2 > file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from the
standard input file.

The following options apply to cat.

-u The output is not buffered. (The default is buffered output.)

-s cat is silent about non-existent files.

-v Causes non-printing characters (with the exception of tabs, new-lines
and form-feeds) to be printed visibly. Control characters are printed AX
(control-x); the DEL character (octal 0177) is printed A? Non-ASCII
characters (with the high bit set) are printed as M-x, where x is the char­
acter specified by the seven low order bits.

When used with the -v option, the following options may be used.

-t Causes tabs to be printed as Ts.

-e Causes a $ character to be printed at the end of each line (prior to the
new-line).

The -t and -e options are ignored if the -v option is not specified.

WARNING
Command formats such as

cat file 1 file2 > file 1
will cause the original data in filel to be lost; therefore, take care when using
shell special characters.

SEE ALSO
cp(1), pg(l), pr(l).

36

CD(l) (Essential Utilities) CD(l)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the
new working directory. If directory specifies a complete path starting with j, "
.. , directory becomes the new working directory. If neither case applies, cd tries
to find the designated directory relative to one of the paths specified by the
$CDPATH shell variable. $CDPATH has the same syntax as, and similar seman­
tics to, the $PATH shell variable. cd must have execute (search) permission in
directory .

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recognized
and is internal.to the shell.

SEE ALSO
pwd(l), sh(l).
chdir(2) in the Programmer's Reference Manual.

37

CHMOD(l) (Essential Utilities) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

chmod mode directory

DESCRIPTION

38

The permissions of the named files or directories are changed according to mode,
which may be symbolic or absolute. Absolute changes to permissions are stated
using octal numbers:

chmod nnn file(s)

where n is a number from 0 to 7. Symbolic changes are stated using mnemonic
characters:

chmod a operator b file(s)

where a is one or more characters corresponding to user, group, or other; where
operator is +, -, and =, signifying assignment of permissions; and where b is one
or more characters corresponding to type of permission.

An absolute mode is given as an octal number constructed from the OR of the
following modes:

4000
20#0

1000
0400
0200
0100
0070
0007

set user ID on execution
set group ID on execution if # is 7, 5, 3, or 1
enable mandatory locking if # is 6, 4, 2, or 0
sticky bit is turned on «see chmod(2))
read by owner
write by owner
execute (search in directory) by owner
read, write, execute (search) by group
read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access classes
and to the individual permissions themselves. Permissions to a file may vary
depending on your user identification number (UID) or group identification
number (GID). Permissions are described in three sequences each having three
characters:

User Group Other

rwx rwx rwx

This example (meaning that user, group, and others all have reading, writing,
and execution permission to a given file) demonstrates two categories for
granting permissions: the access class and the permissions themselves.

Thus, to change the mode of a file's (or directory's) permissions using chmod's
symbolic method, use the following syntax for mode:

[who 1 operator [permission(s) 1, ...
A command line using the symbolic method would appear as follows:

chmbd g+rw file

CHMOD(l) (Essential Utilities)

This command would make file readable and writable by the group.

The who part can be stated as one or more of the following letters:

u user's permissions
g group's permissions
o others permissions

CHMOD(l)

The letter a (all) is equivalent to ugo and is the default if who is omitted.

Operator can be + to add permission to the file's mode, - to take away permis­
sion, or - to assign permission absolutely. (Unlike other symbolic operations, =
has an absolute effect in that it resets all other bits.) Omitting permission is only
useful with = to take away all permissions.

Permission is any compatible combination of the following letters:
r reading permission
w writing permission
x execution permission
s user or group set-ID is turned on
t sticky bit is turned on
1 mandatory locking will occur during access

Multiple symbolic modes separated by commas may be given, though no spaces
may intervene between these modes. Operations are performed in the order
given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter s is only
meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file's ability to have its reading
or writing permissions locked while a program is accessing that file. It is not
possible to permit group execution and enable a file to be locked on execution at
the same time. In addition, it is not possible to tum on the set-group-ID and
enable a file to be locked on execution at the same time. The following exam­
ples,

chmod g+x,+l file

chmod g+s,+l file

are, therefore, illegal usages and will elicit error messages.

Only the owner of a file or directory (or the super-user) may change a file's
mode. Only the super-user may set the sticky bit. In order to tum on a file's
set-group-ID, your own group ID must correspond to the file's, and group execu­
tion must be set.

EXAMPLES
chmod a-x file

chmod 444 file

The first examples deny execution permlsslon to all. The absolute (octal)
example permits only reading permissions.

39

CHMOD(l) (Essential Utilities) CHMOD(l)

NOTES

chmod go+rw file

chmod 606 file

These examples make a file readable and writable by the group and others.

chmod +1 file

This causes a file to be locked during access.

chmod =rwx,g+s file

chmod 2777 file

These last two examples enable all to read, write, and execute the file; and they
turn on the set group-ID.

In a Remote File Sharing environment, you may not have the permissions that
the output of the Is -1 command leads you to believe. For more information see
the "Mapping Remote Users" section of Chapter 10 of the System Administrator's
Guide.

SEE ALSO
Is(1).
chmod(2) in the Programmer's Reference Manual.

40

CHOWN(l) (Essential Utilities) CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file .. ,

chown owner directory

chgrp group file ...

chgrp group directory ...

DESCRIPTION

FILES

NOTES

chown changes the owner of the files or directories to owner. The owner may be
either a decimal user ID or a login name found in the password file.

Chgrp changes the group ID of the files or directories to group. The group may
be either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Only the owner of a file (or the super-user) may change the owner or group of
that file.

/etc/passwd
/etc/group

In a Remote File Sharing environment, you may not have the permissions that
the output of the Is -1 command leads you to believe. For more information see
the "Mapping Remote Users" section of Chapter 10 of the System Administrator's
Guide.

SEE ALSO
chmod(l).
chown(2), group(4), passwd(4) in the Programmer's Reference Manual.

41

CMP(l) (Essential Utilities) CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1 1 [-s 1 filel file2

DESCRIPTION
The two files are compared. (If file 1 is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ, it
announces the byte and line number at which the difference occurred. If one
file is an initial subsequence of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS

42

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inac­
cessible or missing argument.

COL(l) (Directory and File Management Utilities) COL(l)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-b] [-f] [-x] [-pI

DESCRIPTION
col reads from the standard input and writes onto the standard output. It per­
forms the line overlays implied by reverse line feeds (ASCII code ESC-7), and by
forward and reverse half-line-feeds (ESC-9 and ESC-8). col is particularly useful
for filtering multicolumn output made with the .rt command of nroff and output
resulting from use of the tbl(l) preprocessor.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to appear in
the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the -£ (fine)
option; in this case,. the output from col may contain forward half-line-feeds
(ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start
and end text in an alternate character set. The character set to which each input
character belongs is remembered, and on output SI and SO characters are gen­
erated as appropriate to ensure that each character is printed in the correct char­
acter set.

On input, the only control characters accepted are space, backspace, tab, return,
new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT character is
an alternate form of full reverse line-feed, included for compatibility with some
earlier programs of this type. All other non-printing characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are found in
its input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use of
this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO

NOTES

nroff(l), tbl(l) in the DOCUMENTER's WORKBENCH Software Release 2.0 Technical
Discussion and Reference Manual .

The input format accepted by col matches the output produced by nroff with
either the -T37 or -TIp options. Use -T37 (and the -£ option of col) if the
ultimate disposition of the output of col will be a device that can interpret half­
line motions, and -TIp otherwise.

43

COL(l)

BUGS

44

(Directory and File Management Utilities) COL(l)

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

COMM(l) (Directory and File Management Utilities) COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file1 file2

DESCRIPTION
comm reads file1 and file2, which should be ordered in ASCII collating sequence
(see sort(l)), and produces a three-column output: lines only in file1; lines only
in file2; and lines in both files. The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the
first file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(I), diff(l), sort(l), uniq(l).

45

CP(l) (Essential Utilities) CP(l)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp filel [file2 ... J target
In [-f J file 1 [file2 ... J target
mv [-f J filel [file2 ... J target

DESCRIPTION
filel is copied (linked, moved) to target. Under no circumstance can filel and
target be the same (take care when using sh(l) metacharacters). If target is a
directory, then one or more files are copied (linked, moved) to that directory. If
target is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the
mode (see chmod(2», ask for a response, and read the standard input for one
line; if the line begins with y, the mv or In occurs, if permissable; if not, the
command exits. When the -f option is used or if the standard input is not a ter­
minal, no questions are asked and the mv or In is done.

Only mv will allow filel to be a directory, in which case the directory rename
will occur only if the two directories have the same parent; filel is renamed
target. If filel is a file and target is a link to another file with links, the other
links remain and target becomes a new file.

When using cp, if target is not a file, a new file is created which has the same
mode as filel except that the sticky bit is not set unless you are super-user; the
owner and group of target are those of the user. If target is a file, copying a file
into target does not change its mode, owner, nor group. The last modification
time of target (and last access time, if target did not exist) and the last access
time of filel are set to the time the copy was made. If target is a link to a file,
all links remain and the file is changed.

SEE ALSO
chmod(l), cpio(l), rm(l).

WARNINGS

BUGS

46

In will not link across file systems. This restriction is necessary because file sys­
tems can be added and removed.

If filel and target lie on different file systems, mv must copy the file and delete
the original. In this case any linking relationship with other files is lost.

CPIO(l) (Essential Utilities) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o[acBvJ

cpio -i[BcdmrtuvfsSb6J [patterns 1
cpio -p[adlmuvJ directory

DESCRIPTION
cpio -0 (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information. Output is padded to a 512-byte boundary.

cpio -i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio -0. Only files with names that match patterns
are selected. Patterns are regular expressions given in the name-generating nota­
tion of sh(l). In patterns, meta-characters ?, *, and [... J match the slash / char­
acter. Multiple patterns may be specified and if no patterns are specified, the
default for patterns is • (i.e., select all files). Each pattern should be surrounded
by double quotes. The extracted files are conditionally created and copied into
the current directory tree based upon the options described below. The permis­
sions of the files will be those of the previous cpio -0. The owner and group of
the files will be that of the current user unless the user is super-user, which
causes cpio to retain the owner and group of the files of the previous cpio -0.

NOTE: If cpio -i tries to create a file that already exists and the existing file is
the same age or newer, cpio will output a warning message and not replace the
file. (The -u option can be used to unconditionally overwrite the existing file.)

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree based
upon the options described below.

The meanings of the available options are

a Reset access times of input files after they have been copied. Access
times are not reset for linked files when cpio -pIa is specified.

B Input/output is to be blocked 5,120 bytes to the record (does not apply
to the pass option; meaningful only with data directed to or from a char­
acter special device, e.g. / dev /rmt/Om.

d Directories are to be created as needed.
c Write header information in ASCII character form for portability. Always

use this option when origin and destination machines are different types.
r Interactively rename files. If the user types a null line, the file is

skipped. (Not available with cpio -p.)
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally, an older file will not replace a newer file

with the same name).
v Verbose: causes a list of file names to be printed. When used with the t

option, the table of contents looks like the output of an Is -1 command
(see Is(l».

I Whenever possible, link files rather than copying them. Usable only
with the -p option.

47

CPIO(l) (Essential Utilities) CPIO(l)

m Retain previous file modification time. This option is ineffective on direc-
tories that are being copied.

f Copy in all files except those in patterns.
s Swap bytes within each half word. Use only with the -i option.
S Swap halfwords within each word. Use only with the -i option.
b Reverses the order of the bytes within each word. Use only with the -i

option.
6 Process an old (Le. UNIX System Sixth Edition format) file. Only useful

with -i (copy in).

NOTE: cpio assumes four-byte words.

If cpio reaches end of medium (end of a diskette for example), when writing to
(-0) or reading from (-i) a character special device, cpio will print the message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device
name (fdev/rdiskette for example) and carriage return. You may want to con­
tinue by directing cpio to use a different device. For example, if you have two
floppy drives you may want to switch between them so cpio can proceed while
you are changing the floppies. (A carriage return alone causes the cpio process
to exit.)

EXAMPLES

48

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the files so
they can be directed (» to a single file (.. /newfile). Instead of "Is," you could
use find, echo, cat, etc. to pipe a list of names to cpio. You could direct the
output to a device instead of a file.

Is I cpio -0 > .. /newfile

cpio -i uses the output file of cpio -0 (directed through a pipe with cat in the
example), takes out those files that match the patterns (memo/aI, memo/bOO),
creates directories below the current directory as needed (-d option), and places
the files in the appropriate directories. If no patterns were given, all files from
"newfile" would be placed in the directory.

cat newfile I cpio -id "memo / al" "memo /b*"

cpio -p takes the file names piped to it and copies or links (-1 option) those files
to another directory on your machine (newdir in the example). The -d options
says to create directories as needed. The -m option says retain the modification
time. (It is important to use the -depth option of find to generate path names
for cpio. This eliminates problems cpio could have trying to create files under
read-only directories.)

find. -depth -print I cpio -pdlmv newdir

CPIO(l) (Essential Utilities) CPIO(l)

SEE ALSO
ar(l), find(l), Is(l), tar(l).
cpio(4) in the Programmer's Reference Manual.

NOTES
1) Path names are restricted to 256 characters.
2) Only the super-user can copy special files.
3) Blocks are reported in 512-byte quantities.

49

CRONTAB(l) (User Environment Utilities) CRONTAB(l)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -I

DESCRIPTION

50

crontab copies the specified file, or standard input if no file is specified, into a
directory that holds all users' crontabs. The -r option removes a user's crontab
from the crontab directory. crontab -1 will list the crontab file for the invoking
user.

Users are permitted to use crontab if their names appear in the file
jusrjlibjcronjcron.allow. If that file does not exist, the file
jusrjlibjcronjcron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If
cron.allow does not exist and cron.deny exists but is empty, global usage is per­
mitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a
list of elements separated by commas. An element is either a number or two
numbers separated by a minus sign (meaning an inclusive range). Note that the
specification of days may be made by two fields (day of the month and day of
the week). If both are specified as a list of elements, both are adhered to. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only one field, the
other field should be set to * (for example, 0 0 * • 1 would run a command only
on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell
at the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line (up to a % or end of line)
of the command field is executed by the shell. The other lines are made avail­
able to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file.
Cron supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL(= jbinj sh), and P A TH(=: jbin: jusr j bin:jusr jib in) .

If you do not redirect the standard output and standard error of your commands,
any generated output or errors will be mailed to you.

CRONTAB(l) (User Environment Utilities)

FILES
/usr/lib/cron
/usr/spool/cron/crontabs
/ usr /lib / cron flog
/usr /lib / cron/ cron.allow
/usr /lib / cron/ cron.deny

SEE ALSO
sh(l).

main cron directory
spool area
accounting information
list of allowed users
list of denied users

cron(lM) in the System Administrator's Reference Manual.

WARNINGS

CRONTAB(l)

If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with a CTRL-d. This will cause all entries in your crontab file
to be removed. Instead, exit with a DEL.

51

CRYPT(l) (Security Administration Utilities) CRYPT(l)

NAME
crypt - encode I decode

SYNOPSIS
crypt [password]
crypt I-k]

DESCRIPTION

FILES

crypt reads from the standard input and writes on the standard output. The
password is a key that selects a particular transformation. If no argument is
given, crypt demands a key from the terminal and turns off printing while the
key is being typed in. If the -k option is used, crypt will use the key assigned
to the environment variable CRYPTKEY. crypt encrypts and decrypts with the
same key:

crypt key < clear > cypher
crypt key <cypher I pr

Files encrypted by crypt are compatible with those treated by the editors ed(l),
edit(l), ex(l), and vi(l) in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be infeasible;
"sneak paths" by which keys or clear text can become visible must be minim­
ized.

crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are
known, but not widely; moreover the amount of work required is likely to be
large.

The transformation of a key into the internal settings of the machine is delib­
erately designed to be expensive, i.e., to take a substantial fraction of a second to
compute. However, if keys are restricted to (say) three lower-case letters, then
encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to users
executing ps(l) or a derivative. The choice of keys and key security are the
most vulnerable aspect of crypt.

Idev Itty for typed key

SEE ALSO
ed(l), edit(l), ex(l), makekey(l), ps(l), stty(l), vi(l).

WARNING

BUGS

52

This command is provided with the Security Administration Utilities, which is
only available in the United States. If two or more files encrypted with the
same key are concatenated and an attempt is made to decrypt the result, only
the contents of the first of the original files will be decrypted correctly.

If output is piped to nroff and the encryption key is not given on the command
line, crypt can leave terminal modes in a strange state (see stty(l».

CSPLIT(l) (Directory and File Management Utilities) CSPLIT(l)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [... argn]

DESCRIPTION
esplit reads file and separates it into n+l sections, defined by the arguments
argl .•• argn. By default the sections are placed in xxOO ... xxn (n may not be
greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced
byargl.

01: ~rom the line referenced by argl up to the line referenced by arg2.

n+1: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The options to esplit are:

-s esp/it normally prints the character counts for each file created.
If the -s option is present, esplit suppresses the printing of all
character counts.

-k esplit normally removes created files if an error occurs. If the
-k option is present, esplit leaves previously created files intact.

-f prefix If the -f option is used, the created files are named prefixOO ...
prefixn. The default is xxOO ... xxn.

The arguments (argl ... argn) to esp/it can be a combination of the following:

jrexp j A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some number
of lines (e.g., jPage/-5).

%rexp % This argument is the same as j rexp j, except that no file is
created for the section.

lnno A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

Inurn} Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied nurn more times. If it follows lnno, the file will be split
every lnno lines (nurn times) from that point.

Enclose all rexp type arguments that contain blanks or other characters mean­
ingful to the shell in the appropriate quotes. Regular expressions may not con­
tain embedded new-lines. esplit does not affect the original file; it is the users
responsibility to remove it.

53

CSPLIT(l) (Directory and File Management Utilities) CSPLIT(l)

EXAMPLES
csplit -f cobol file '/procedure division/' /par5./ /par16./

This example creates four files, cobolOO ..• cobol03. After editing the "split"
files, they can be recombined as follows:

cat cobolO[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The-k
option causes the created files to be retained if there are less than 10,000 lines;
however, an error message would still be printed.

csplit -k prog.c '%main(%' 'F}j+1' {20}

Assuming that prog.c follows the normal C coding convention of ending rou­
tines with a } at the beginning of the line, this example will create a file con­
taining each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(l).
regexp(S) in the Programmer's Reference Manual.

DIAGNOSTICS

54

Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between the
current position and the end of the file.

CT(lC) (Basic Networking Utilities) CT(lC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-wn 1 [-xn 1 [-h 1 [-v 1 [-sspeed 1 telno ...

DESCRIPTION

FILES

ct dials the telephone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. (The set of legal characters for telno is 0 thru 9, -, =, *, and #. The max­
imum length te/no is 31 characters). If more than one telephone number is
specified, ct will try each in succession until one answers; this is useful for speci­
fying alternate dialing paths.

ct will try each line listed in the file jusrjlibjuucpjDevices until it finds an
available line with appropriate attributes or runs out of entries. If there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait before it gives up. ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. The dialogue may be
overridden by specifying the -wn option, where n is the maximum number of
minutes that ct is to wait for a line.

The -xn option is used for debugging; it produces a detailed output of the pro­
gram execution on stderr. The debugging level, n, is a single digit; -x9 is the
most useful value.

Normally, ct will hang up the current line, so the line can answer the incoming
call. The -h option will prevent this action. The -h option will also wait for
the termination of the specified ct process before returning control to the user's
terminal. If the -v option is used, ct will send a running narrative to the stan­
dard error output stream.

The data rate may be set with the -s option, where speed is expressed in baud.
The default rate is 1200.

After the user on the destination terminal logs out, there are two things that
could occur depending on what type of getty is on the line (getty or uugetty).
For the first case, ct prompts, Reconnect? If the response begins with the letter
n, the line will be dropped; otherwise, getty will be started again and the login:
prompt will be printed. In the second case, there is already a getty (uugetty) on
the line, so the login: message will appear.

To log out properly, the user must type control D.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

jusr jlib juucp jDevices
jusrjadmjctlog

SEE ALSO
cu(IC), 10gin(I), uucp(IC).
getty(IM), uugetty(lM) in the System Administrator's Reference Manual.

55

CT(lC)

BUGS

56

(Basic Networking Utilities) CT(lC)

For a shared port, one used for both dial-in and dial-out, the uugetty program
running on the line must have the -r option specified (see uugetty(lM».

CU(lC) (Basic Networking Utilities) CU(lC)

NAME
cu - call another UNIX system

SYNOPSIS
eu [-8speed] [-lline] [-h] [-t] [-d] [-0 I-e] [-n] telno
eu [-8 speed] [-h] [-d] [-0 I -e] -1 line
eu [-h] [-d] [-0 I -e] systemname

DESCRIPTION
cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible transfers of ASCII files.

cu accepts the following options and arguments:

-8speed Specifies the transmission speed (300, 1200, 2400, 4800, 9600); The
default value is "Any" speed which will depend on the order of the
lines in the /usr/lib/uucp/Deviees file. Most modems are either
300 or 1200 baud. Directly connected lines may be set to a speed

-lline

-h

-t

-d
-0

-n

-e

higher than 1200 baud.

Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -1 option
is used without the -8 option, the speed of a line is taken from the
Devices file. When the -1 and -8 options are both used together,
cu will search the Devices file to check if the requested speed for
the requested line is available. If so, the connection will be made at
the requested speed; otherwise an error message will be printed
and the call will not be made. The specified device is generally a
directly connected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number (telno) is not required. The specified
device need not be in the /dev directory. If the specified device is
associated with an auto dialer, a telephone number must be pro­
vided. Use of this option with systemname rather than teinD will not
give the desired result (see systemname below).

Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-line-feed

. pairs is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data sent to the
remote system.

For added security, will prompt the user to provide the telephone
number to be dialed rather than taking it from the command line.

Designates that even parity is to be generated for data sent to the
remote system.

57

CU(lC)

58

(Basic Networking Utilities) CU(lC)

telno When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of 4 seconds.

systemname A uucp system name may be used rather than a telephone number;
in this case, cu will obtain an appropriate direct line or telephone
number from jusrjlibjuucpjSystems. Note: the systemname
option should not be used in conjunction with the -1 and -s
options as cu will connect to the first available line for the system
name specified, ignoring the requested line and speed.

After making the connection, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with -, passes
it to the remote system; the receive process accepts data from the remote system
and, except for lines beginning with -, passes it to the standard output. Nor­
mally, an automatic DC3 JDCl protocol is used to control input from the remote
so the buffer is not overrun. Lines beginning with - have special meanings.

The transmit process interprets the following user initiated commands:

-!

-!cmd .. .

-$cmd .. .
-%cd

-%take from [to 1

-%put from [to 1

-- line

-%break

-%debug

terminate the conversation.

escape to an interactive shell on the local system.

run cmd on the local system (via sh -c).

run cmd locally and send its output to the remote system.

change the directory on the local system. Note: -!cd will
cause the command to be run by a sub-shell, probably not
what was intended.

copy file from (on the remote system) to file to on the local
system. If to is omitted, the from argument is used in both
places.

copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in both
places.

For both -%take and put commands, as each block of the
file is transferred, consecutive single digits are printed to
the terminal.

send the line- line to the remote system.

transmit a BREAK to the remote system (which can also
be specified as -%b).

toggles the -d debugging option on or off (which can also
be specified as -%d).

prints the values of the termio structure variables for the
user's terminal (useful for debugging).

prints the values of the termio structure variables for the
remote communication line (useful for debugging).

CU(lC)

-Ofonostop

(Basic Networking Utilities) CU(lC)

toggles between DC3/DCl input control protocol and no
input control. This is useful in case the remote system is
one which does not respond properly to the DC3 and DCl
characters.

The receive process normally copies data from the remote system to its standard
output. Internally the program accomplishes this by initiating an output diver­
sion to a file when a line from the remote begins with -.

Data from the remote is diverted (or appended, if > > is used) to file on the
local system. The trailing -> marks the end of the diversion.

The use of -Ofoput requires stty(l) and cat(l) on the remote side. It also requires
that the current erase and kill characters on the remote system be identical to
these current control characters on the local system. Backslashes are inserted at
appropriate places.

The use of -Ofotake requires the existence of echo(l) and cat(l) on the remote
system. Also, tabs mode (See stty(l)) should be set on the remote system if tabs
are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by
using --. Executing a tilde command reminds the user of the local system
uname. For example, uname can be executed on Z, X, and Y as follows:

uname
Z
-[X]!uname
X
--[Y]!uname
Y

In general, - causes the command to be executed on the original machine,
causes the command to be executed on the next machine in the chain.

EXAMPLES
To dial a system whose telephone number is 9 201 555 1212 using 1200 baud
(where dialtone is expected after the 9):

cu -s1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To login to a system connected by a direct line:
cu -1 Idev IttyXX

or
cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s1200 -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -1 culXX 9=12015551212

59

CU(lC)

FILES

To use a system name:
cu systemname

/usr /lib /uucp /Systems
/usr /lib / uucp /Devices

(Basic Networking Utilities)

/ usr / spool/locks /LCK .. (tty -device)

CU(lC)

SEE ALSO
cat(l), ct(lC), echo(l), stty(l), uucp(lC), uname(l).

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, one.

WARNINGS

BUGS

60

The cu command does not do any integrity checking on data it transfers. Data
fields with special cu characters may not be transmitted properly. Depending on
the interconnection hardware, it may be necessary to use a -. to terminate the
conversion even if sUy 0 has been used. Non-printing characters are not
dependably transmitted using either the -%put or -%take commands. cu
between an IMBRI and a penril modem will not return a login prompt immedi­
atelyupon connection. A carriage return will return the prompt.

There is an artificial slowing of transmission by cu during the -%put operation
so that loss of data is unlikely.

CUT(l) (Directory and File Management Utilities) CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -dist [file ...]
cut -£list [-dchar] [-8] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, Le., character positions as on a punched card (-c
option) or the length can vary from line to line and be marked with a field de­
limiter character like tab (-£ option). cut can be used as a filter; if no files are
given, the standard input is used. In addition, a file name of "-" explicitly
refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional - to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g.,
-cl-72 would pass the first 72 characters of each line).

-£list The list following -£ is a list of fields assumed to be separated in the
file by a delimiter character (see -d); e.g., -£1,7 copies the first and
seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless -8 is specified.

-dchar The character following -d is the field delimiter (-£ option only).
Default is tab. Space or other characters with special meaning to the
shell must be quoted.

-8 Suppresses lines with no delimiter characters in case of -£ option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -£ option must be specified.

Use grep(1) to make horizontal "cuts" (by context) through a file, or paste(1) to
put files together column-wise (Le., horizontally). To reorder columns in a table,
use cut and paste.

EXAMPLES
cut -d: -£1,5 /etc/passwd mapping of user IDs to names

name=='who am i I cut -£1 -d" II' to set name to current login name.

DIAGNOSTICS
ERROR: line too long A line can have no more than 1023 characters or fields, or

there is no new-line character.

ERROR: bad list for c / f option
Missing -c or -£ option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls for.

61

CUT(l) (Directory and File Management Utilities)

ERROR: no fields The list is empty.

ERROR: no delimeter Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>

CUT(l)

Either filename cannot be read or does not exist. If mul­
tiple filenames are present, prcessing continues.

SEE ALSO
grep(l), paste(l).

62

DATE(l) (Essential Utilities) DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[Yylll +format 1

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set. The first mm is the month
number; dd is the day number in the month; hh is the hour number (24 hour
system); the second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. date takes care of the conversion to
and from local standard and daylight time. Only the superuser may change the
date.

If the argument begins with +, the output of date is under the control of the
user. All output fields are of fixed size (zero padded if necessary). Each field
descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by %%. All other characters are
copied to the output without change. The string is always terminated with a
new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:
DATE: 08/01/76
TIME: 14:45:05

63

DATE(l)

DIAGNOSTICS
No permission

bad conversion
bad format character

FILES
/dev/krnem

WARNING

(Essential Utilities) DATE(l)

if you are not the super-user and you try to change the
date;
if the date set is syntactically incorrect;
if the field descriptor is not recognizable.

Should you need to change the date while the system is running multi-user, use
sysadm(l) datetime.

SEE ALSO
sysadm(l).

64

DC(l) (User Environment Utilities) DC(l)

NAME
dc - desk calculator

SYNOPSIS
de [file 1

DESCRIPTION
de is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of frac­
tional digits to be maintained. (See be(l), a preprocessor for de that provides
infix notation and a C-like syntax that implements functions. Be also provides
reasonable control structures for programs.) The overall structure of de is a
stacking (reverse Polish) calculator. If an argument is given, input is taken from
that file until its end, then from the standard input. The following constructions
are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an underscore
C) to input a negative number. Numbers may contain decimal points.

+-/*%"
The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (f), remaindered (%), or exponentiated C). The two entries
are popped off the stack; the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack and
the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the 1 is capitalized, register
x is treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped by
two.

Q Exits the program. The top value on the stack is popped and the string
execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as
a string of de commands.

X Replaces the number on the top of the stack with its scale factor.

65

DC(l) (User Environment Utilities) DC(l)

[...] Puts the bracketed ASCII string onto the top of the stack.

<x >X =X

The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a UNIX system command.

c All values on the stack are popped.

o

o
k

z

z
?

, .

The top value on the stack is popped and used as the number radix for
further input. I Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

are used by bc(l) for array operations.

EXAMPLE
This example prints the first ten values of n!:

[la 1 +dsa *pla 1 D > y]sy
Dsal
lyx

SEE ALSO
bc(l).

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

66

OC(l) (User Environment Utilities) OC(l)

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

67

DD(lM) (Essential Utilities) DD(lM)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option =value 1 ...

DESCRIPTION
dd copies the specified input file to the specified output with possible conver­
sions. The standard input and output are used by default. The input and
output block size may be specified to take advantage of raw physical I/O.

option
if=file
of=file
ibs=n
obs=n
bs=n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and obs;
also, if no conversion is specified, it is particularly efficient since
no in-core copy need be done

cbs=n conversion buffer size
skip-n skip n input blocks before starting copy
seek=n seek n blocks from beginning of output file before copying
count=n copy only n input blocks
conv=ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror

do not stop processing on an error
sync pad every input block to ibs
••• I ••• several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate multiplication.

cbs is used only if conv=ascii or conv=ebcdic is specified. In the former case, cbs
characters are placed into the conversion buffer (converted to ASCII). Trailing
blanks are trimmed and a new-line added before sending the line to the output.
In the latter case, ASCII characters are read into the conversion buffer (converted
to EBCDIC). Blanks are added to make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and output
blocks.

DIAGNOSTICS
f+p blocks in(out) numbers of full and partial blocks read(written)

68

DEROFF(l) (Spell Utilities) DEROFF(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx 1 [-w 1 [files 1

DESCRIPTION
deroff reads each of the files in sequence and removes all troff(l) requests, macro
calls, backslash constructs, eqn(l) constructs (between .EQ and .EN lines, and
between delimiters), and tbl(l) descriptions, perhaps replacing them with white
space (blanks and blank lines), and writes the remainder of the file on the stan­
dard output. deroff follows chains of included files (.so and .nx troff commands);
if a file has already been included, a .so naming that file is ignored and a .nx
naming that file terminates execution. If no input file is given, deroff reads the
standard input.

The -m option may be followed by an m, s, or 1. The -mm option causes the
macros to be interpreted so that only running text is output (Le., no text from
macro lines.) The -ml option forces the -mm option and also causes deletion
of lists associated with the mm macros.

If the -w option is given, the output is a word list, one "word" per line, with all
other characters deleted. Otherwise, the output follows the original, with the
deletions mentioned above. In text, a "word" is any string that contains at least
two letters and is composed of letters, digits, ampersands (&), and apostrophes
('); in a macro call, however, a "word" is a string that begins with at least two
letters and contains a total of at least three letters. Delimiters are any characters
other than letters, digits, apostrophes, and ampersands. Trailing apostrophes
and ampersands are removed from "words."

SEE ALSO

BUGS

eqn(l), nroff(l), tbl(l), troff(l) in the DOCUMENTER'S WORKBENCH Software
Release 2.0 Technical Discussion and Reference Manual.

deroff is not a complete troff interpreter, so it can be confused by subtle con­
structs. Most such errors result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

69

DF(lM) (Essential Utilities) DF(lM)

NAME
df - report number of free disk blocks and i-nodes

SYNOPSIS
df [-It] [-f] [file-system I directory I mounted-resource]

DESCRIPTION

NOTE

FILES

The df command prints out the number of free blocks and free i-nodes in
mounted file systems, directories, or mounted resources by examining the counts
kept in the super-blocks.

file-system may be specified either by device name (e.g., jdev jdskjc1dOs2) or by
mount point directory name (e.g., jusr).

directory can be a directory name. The report presents information for the device
that contains the directory.

mounted-resource can be a remote resource name. The report presents informa­
tion for the remote device that contains the resource.

If no arguments are used, the free space on all locally and remotely mounted file
systems is printed.

The df command uses the following options:

-1 only reports on local file systems.

-t causes the figures for total allocated blocks and i-nodes to be reported as
well as the free blocks and i-nodes.

-f an actual count of the blocks in the free list is made, rather than taking
the figure from the super-block (free i-nodes are not reported). This
option will not print any information about mounted remote resources.

If multiple remote resources are listed that reside on the same file system on a
remote machine, each listing after the first one will be marked with an asterisk.

jdevjdskj*
jetcjmnttab

SEE ALSO
mount(lM).
fs(4), mnttab(4) in the Programmer's Reference Manual.

70

DIFF(l) (Essential Utilities) DIFF(l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbb 1 file 1 file2

DESCRIPTION

FILES

diff tells what lines must be changed in two files to bring them into agreement.
If file1 (file2) is -, the standard input is used. If file1 (file2) is a directory, then a
file in that directory with the name file2 (file1) is used. The normal output con­
tains lines of these forms:

n1 a n3,n4
nl,n2 d n3
n1,n2 c n3,n4

These lines resemble ed commands to convert file1 into file2. The numbers after
the letters pertain to file2. In fact, by exchanging a for d and reading backward
one may ascertain equally how to convert file2 into file1. As in ed, identical
pairs, where nl = n2 or n3 = n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by >.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed,
which will recreate file2 from file1. The -£ option produces a similar script, not
useful with ed, in the opposite order. In connection with -e, the following shell
program may help maintain multiple versions of a file. Only an ancestral file
($1) and a chain of version-to-version ed scripts ($2,$3, ...) made by diff need be
on hand. A "latest version" appears on the standard output.

(shift; cat $*; echo '1,$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option -b does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -b.

jtmpjd?????
jusrjlibjdiffh for -b

SEE ALSO
bdiff(l), cmp(l), comm(l), ed(l).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

71

DIFF(l) (Essential Utilities) DIFF(l)

WARNINGS

72

Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are
different, they will be flagged and output; although the output will seem to indi­
cate they are the same.

DIFF3(1) (Directory and File Management Utilities) DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3] file 1 file2 file3

DESCRIPTION

FILES

diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

~=-=1

:.====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

/: nl a Text is to be appended after line number nl in file /'
where / == I, 2, or 3.

/: nl , n2 c Text is to be changed in the range line nl to line n2.
If nl = n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-numbered
file is suppressed.

Under the -e option, jliff3 publishes a script for the editor ed that will incor­
porate into filel all changes between file2 and file3, i.e., the changes that nor­
mally would be flagged -=-= and =====3. Option -x (-3) produces a script to
incorporate only changes flagged ==== (====3). The following command will
apply the resulting script to filel.

(cat script; echo '1,$p') I ed - filel

jtmpjd3*
jusr jlib j diff3prog

SEE ALSO

BUGS

diff(I).

Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes will not work.

73

DIRCMP(l) (Directory and File Management Utilities) DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d 1 [-s 1 [-wn 1 dirl dir2

DESCRIPTION
dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to each
directory are generated for all the options. If no option is entered, a list is
output indicating whether the file names common to both directories have the
same contents.

-d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(l).

-8 Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width
is 72.

SEE ALSO
cmp(l), diff(l).

74

DU(lM) (Essential Utilities) DU(lM)

NAME
du - summarize disk usage

SYNOPSIS
du [-sar 1 [names 1

DESCRIPTION

BUGS

du reports the number of blocks contained in all files and (recursively) direc­
tories within each directory and file specified by the names argument. The block
count includes the indirect blocks of the file. If names is missing, the current
directory is used.

The optional arguments are as follows:

-s causes only the grand total (for each of the specified names) to be given.

-a causes an output line to be generated for each file.

If neither -s or -a is specified, an output line is generated for each directory
only.

-r will cause du to generate messages about directories that cannot be read,
files that cannot be opened, etc., rather than being silent (the default).

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not listed.
If there are links between files in different directories where the directories are
on separate branches of the file system hierarchy, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count. (See Chapter 5, File
System Administration, in the System Administrator's Guide)

75

ECHO(l) (Essential Utilities) ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg 1 ...

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on
the standard output. It also understands C-like escape conventions; beware of
conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\ v vertical tab
\\ backslash
\On where n is the 8-bit character whose ASCII code is the 1-, 2- or

3-digit octal number representing that character.

echo is useful for producing diagnostics in command files and for sending known
data into a pipe.

SEE ALSO
sh(l).

CAVEATS

76

When representing an 8-bit character by using the escape convention \On, the n
must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\07' will print the phrase WARNING: and
sound the "bell" on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the "\" that precedes the "07".

For the octal equivalents of each character, see ascii(5), in the Programmer's
Reference Manual.

ED(l) (Essential Utilities) ED(l)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [-x] [file]

red [-s] [-p string] [-xl [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed's
buffer so that it can be edited.

-s Suppresses the printing of character counts bye, r, and w commands, of
diagnostics from e and q commands, and of the ! prompt after a
Ish ell command. Also, see the WARNING section at the end of this
manual page.

-p Allows the user to specify a prompt string.

-x Encryption option; when this option is used, the file will be encrypted as
it is being written and will require an encryption key to be read (see
crypt(l». Also, see the WARNING section at the end of this manual
page.

ed operates on a copy of the file it is editing; changes made to the copy have no
effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one buffer.

red is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits executing shell commands via !shell command. Attempts
to bypass these restrictions result in an error message (restricted shell).
Both ed and red support the fspec(4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal in
stty -tabs or stty tab3 mode (see stty(l», the specified tab stops will automati­
cally be used when scanning file. For example, if the first line of a file con­
tained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of
72 would be imposed. NOTE: while inputing text, tab characters when typed are
expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every com­
mand that requires addresses has default addresses, so that the addresses can
very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode,

77

ED(l)

78

(Essential Utilities) ED(l)

no commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line, followed immediately by a
carriage return.

ed supports a limited form of regular expression notation; regular expressions are
used in addresses to specify lines and in some commands (e.g., s) to specify por­
tions of a line that are to be substituted. A regular expression (RE) specifies a set
of character strings. A member of this set of strings is said to be matched by the
RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]; see 1.4 below).

b. "(caret or circumflex), which is special at the beginning of an entire
RE (see 3.1 and 3.2 below), or when it immediately follows the left of
a pair of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire RE (see 3.2
below).

d. The character used to bound (Le., delimit) an entire RE, which is spe­
cial for that RE (for example, see how slash (f) is used in the g com­
mand, below.)

1.3 A period (.) is a one-character RE that matches any character except new­
line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches anyone character in that string. If, how­
ever, the first character of the string is a circumflex ("), the one-character
RE matches any character except new-line and the remaining characters in
the string. The " has this special meaning only if it occurs first in the
string. The minus (-) may be used to indicate a range of consecutive
ASCII characters; for example, [O-9J is equivalent to [0123456789J. The­
loses this special meaning if it occurs first (after an initial ", if any) or last
in the string. The right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial ", if any); e.g., []a-fJ
matches either a right square bracket (]) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

EO(1) (Essential Utilities) EO(1)

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero or
more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\J is a RE that
matches a range of occurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly
m occurrences; \{m,\J matches at least m occurrences; \{m,n\J matches any
number of occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched
by an expression enclosed between \(and \) earlier in the same RE. Here
n is a digit; the sub-expression specified is that beginning with the n-th
occurrence of \(counting from the left. For example, the expression
"'\(.*\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex ("') at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a
final segment of a line.

The construction "'entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., / /) is equivalent to the last RE encountered. See also the last
paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is
a current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must
be a lower-case letter. Lines are marked with the k command described
below.

5. A RE enclosed by slashes (f) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE. If
necessary, the search wraps around to the beginning of the buffer and

79

EO(l)

80

(Essential Utilities) EO(l)

continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the

. beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of the
buffer and continues up to and including the current line. See also the last
paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indi­
cated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of Rule 8,
immediately above, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor, the
character" in addresses is entirely equivalent to -.) Moreover, trailing +
and - characters have a cumulative effect, so -- refers to the current line
less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semi-
colon (j) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume default addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires,
the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (j). In the latter case, the current line (.) is set
to the first address, and only then is the second address calculated. This feature
can be used to determine the starting line for forward and backward searches
(see Rules 5 and 6, above). The second address of any two-address sequence
must correspond to a line that follows, in the buffer, the line corresponding to
the first address.

In the follOwing list of edcommands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. However,
any command (except e, /, r, or w) may be suffixed by I, n, or p in which case
the current line is either listed, numbered or printed, respectively, as discussed
below under the I, n, and p commands.

(.)a
<text>

The append command reads the given text and appends it after the
addressed line; • is left at the last inserted line, or, if there were none, at

EO(I)

(.)c
<text>

(.,.)d

e file

E file

f file

(Essential Utilities) EO(I)

the addressed line. Address 0 is legal for this command: it causes the
"appended" text to be placed at the beginning of the buffer. The max­
imum number of characters that may be entered from a terminal is 256
per line (including the new-line character).

The change command deletes the addressed lines, then accepts input
text that replaces these lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

The edit command causes the entire contents of the buffer to be deleted,
and then the named file to be read in; . is set to the last line of the
buffer. If no file name is given, the currently-remembered file name, if
any, is used (see the f command). The number of characters read is
typed; file is remembered for possible use as a default file name in sub­
sequent e, " and w commands. If file is replaced by!, the rest of the
line is taken to be a shell (sh(l» command whose output is to be read.
Such a shell command is not remembered as the current file name. See
also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see
if any changes have been made to the buffer since the last w command.

If file is given, the file-name command changes the currently­
remembered file name to file; otherwise, it prints the currently­
remembered file name.

(1, $)g/RE / command list
In the global command, the first step is to mark every line that matches
the given f.E. Then, for every such line, the given command list is exe­
cuted with. initially set to that line. A single command or the first of a
list of commands appears on the same line as the global command. All
lines of a multi-line list except the last line must be ended with a \; a, i,
and c commands and associated input are permitted. The. terminating
input mode may be omitted if it would be the last line of the command
list. An empty command list is equivalent to the p command. The g, G,
v, and V commands are not permitted in the command list. See also
BUGS and the last paragraph before FILES below.

(1,$)G/RE/
In the interactive Global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed, . is changed to that line, and anyone command (other than one

81

ED(l)

82

h

H

(.)i
<text>

(.,.+l)j

(.)kx

(.,.)1

(.,.)ma

(.,.)n

(Essential Utilities) ED(l)

of the a, c, i, g, G, v, andY commands) may be input and is executed.
After the execution of that command, the next marked line is printed,
and so on; a new-line acts as a null command; an & causes the re­
execution of the most recent command executed within the current invo­
cation of G. Note that the commands input as part of the execution of
the G command may address and affect any lines in the buffer. The G
command can be terminated by an interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that explains the reason
for the most recent? diagnostic.

The Help command causes ed to'enter a mode in which error messages
are printed for all subsequent? diagnostics. It will also explain the pre­
vious ? if there was one. The H command alternately turns this mode
on and off; it is initially off.

The insert command inserts the given text before the addressed line; • is
left at the last inserted line, or, if there were none, at the addressed line.
This command differs from the a command only in the placement of the
input text. Address a is not legal for this command. The maximum
number of characters that may be entered from a terminal is 256 per line
(including the new-line character).

The join command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command does
nothing.

The mark command marks the addressed line with name x, which must
be a lower-case letter. The address IX then addresses this line; . is
unchanged.

The list command prints the addressed lines in an unambiguous way: a
few non-printing characters (e.g., tab, backspace) are represented by visu­
ally mnemonic overstrikes. All other non-printing characters are printed
in octal, and long lines are folded. An I command may be appended to
any other command other than e, f, r, or w.

The move command repositions the addressed line(s) after the line
addressed by a. Address a is legal for a and causes the addressed line(s)
to be moved to the beginning of the file. It is an error if address a falls
within the range of moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line by
its line number and a tab character; • is left at the last line printed. The

ED(1)

(.,.)p

p

q

Q

($)r file

(Essential Utilities) ED(1)

n command may be appended to any other command other than e, f, r,
or w.

The print command prints the addressed lines; . is left at the last line
printed. The p command may be appended to any other command
other than e, f, r, or w. For example, dp deletes the current line and
prints the new current line.

The editor will prompt with a * for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is
done; however, see DIAGNOSTICS, below.

The editor exits without checking if changes have been made in the
buffer since the last w command.

The read command reads in the given file after the addressed line. If no
file name is given, the currently-remembered file name, if any, is used
(see e and f commands). The currently-remembered file name is not
changed unless file is the very first file name mentioned since ed was
invoked. Address 0 is legal for r and causes the file to be read at the
beginning of the buffer. If the read is successful, the number of charac­
ters read is typed; . is set to the last line read in. If file is replaced by!,
the rest of the line is taken to be a shell (sh(l» command whose output
is to be read. For example, "$r !ls" appends current directory to the end
of the file being edited. Such a shell command is not remembered as the
current file name.

(.,.)sjREjreplacementj or
(.,.)sjREjreplacementjg or
(.,.)sjREjreplacementjn n = 1-512

The substitute command searches each addressed line for an occurrence
of the specified RE. In each line in which a match is found, all (non­
overlapped) matched strings are replaced by the replacement if the global
replacement indicator g appears after the command. If the global indi­
cator does not appear, only the first occurrence of the matched string is
replaced. If a number n appears after the command, only the n th
occurrence of the matched string on each addressed line is replaced. It
is an error for the substitution to fail on all addressed lines. Any char­
acter other than space or new-line may be used instead of j to delimit
the RE and the replacement; . is left at the last line on which a substitu­
tion occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this
context may be suppressed by preceding it by \. As a more general
feature, the characters \n, where n is a digit, are replaced by the text

83

ED(1)

84

(.,.)ta

u

(Essential Utilities) ED(1)

matched by the n-th regular subexpression of the specified RE enclosed
between \(and \). When nested parenthesized subexpressions are
present, n is determined by counting occurrences of \(starting from the
left. When the character % is the only character in the replacement, 'the
replacement used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its special
meaning when it is in a replacement string of more than one character
or is preceded by a \.

A line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \. Such
substitution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at the
last line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j,
m, r, s, t, v, G, or V command.

(l,$)vIRElcommand list
This command is the same as the global command g except that the
command list is executed with . initially set to every line that does not
match the RE.

(l,$)V IREI
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do not
match the RE.

(l,$)w file

x

The write command writes the addressed lines into the named file. If
the file does not exist, it is created with mode 666 (readable and writable
by everyone), unless your umask setting (see umask(l)) dictates other­
wise. The currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked. If no file name
is given, the currently-remembered file name, if any, is used (see e and f
commands); . is unchanged. If the command is successful, the number
of characters written is typed. If file is replaced by!, the rest of the line
is taken to be a shell (sh(l)) command whose standard input is the
addressed lines. Such a shell command is not remembered as the
current file name.

An encryption key is requested from the standard input. Subsequent e,
r, and w commands will use this key to encrypt or decrypt the text (see
crypt(l)). An explicitly empty key turns off encryption. Also, see the
-x option of ed.

EO(l)

FILES

($)=

(Essential Utilities) EO(l)

The line number of the addressed line is typed; . is unchanged by this
command.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell
(sh(1» to be interpreted as a command. Within the text of that com­
mand, the unescaped character % is replaced with the remembered file
name; if a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus,!! will
repeat the last shell command. If any expansion is performed, the
expanded line is echoed; . is unchanged.

(.+l)<new-line>
An address alone on a line causes the addressed line to be printed. A
new-line alone is equivalent to .+lp; it is useful for stepping forward
through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global com­
mand list, and 64 characters per file name. The limit on the number of lines
depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters. Files (e.g., a.out) that
contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If a file is not terminated by a new-line character, ed adds one and outputs a
message explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p
g/s1 g/s1/p
?s1 ?s1?

/usr/tmp default directory for temporary work file.
$TMPDIR if this environmental variable is not null, its value is used in place of

/usr/tmp as the directory name for the temporary work file.
ed.hup

DIAGNOSTICS
?

work is saved here if the terminal is hung up.

for command errors.
for an inaccessible file. ?file
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroyed's buffer
via the e or q commands. It prints ? and allows one to continue editing. A
second e or q command at this point will take effect. The -s command-line
option inhibits this feature.

85

ED(l) (Essential Utilities) ED(l)

SEE ALSO

BUGS

edit(l), ex(l), grep(l), sed(l), sh(l), stty(l), umask(l), vi(l).
fspec(4), regexp(5) in the Programmer's Reference Manual.

A ! command cannot be subject to a g or a v command.

The! command and the I escape from the e, r, and w commands cannot be used
if the editor is invoked from a restricted shell (see sh(l».

The sequence \n in a RE does not match a new-line character.

Characters are masked to 7 bits on input.

If the editor input is coming from a command file (e.g., ed file < ed-cmd-file),
the editor will exit at the first failure.

WARNINGS

86

The -x option is provided with the Security Administration Utilities, which is
available only in the United States.

The - option, although supported in this release for upward compatibility, will
no longer be supported in the next major release of the system. Convert shell
scripts that use the - option to use the -s option, instead.

EDIT(l) (Editing Utilities) EDIT(l)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] [-x] name ...

DESCRIPTION
edit is a variant of the text editor ex recommended for new or casual users who
wish to use a command-oriented editor.

-r Recover file after an editor or system crash.

-x Encryption option; when this option is used, the file will be encrypted as
it is being written and will require an encryption key to be read (see
crypt(l». Also, see the WARNING section at the end of this manual
page.

The following brief introduction should help you get started with edit. If you are
using a CRT terminal you may want to learn about the display editor vi.
To edit the contents of an existing file you begin with the command "edit name"
to the shell. edit makes a copy of the file which you can then edit, and tells you
how many lines and characters are in the file. To create a new file, just make up
a name for the file and try to run edit on it; you will cause an error diagnostic,
but do not worry.

edit prompts for commands with the character ':', which you should see after
starting the editor. If you are editing an existing file, then you will have some
lines in edit's buffer (its name for the copy of the file you are editing). Most
commands to edit use its "current line" if you do not tell them which line to
use. Thus if you say print (which can be abbreviated p) and hit carriage return
(as you should after all edit commands) this current line will be printed. If you
delete (d) the current line, edit will print the new current line. When you start
editing, edit makes the last line of the file the current line. If you delete this last
line, then the new last line becomes the current one. In general, after a delete,
the next line in the file becomes the current line. (Deleting the last line is a spe­
cial case.)

If you start with an empty file or wish to add some new lines, then the append
(a) command can be used. After you give this command (typing a carriage
return after the word append) edit will read lines from your terminal until you
give a line consisting of just a ".", placing these lines after the current.line. The
last line you type then becomes the current line. The command insert (i) is like
append but places the lines you give before, rather than after, the current line.

edit numbers the lines in the buffer, with the first line having number 1. If you
give the command "1" then edit will type this first line. If you then give the
command delete edit will delete the first line, line 2 will become line 1, and edit
will print the current line (the new line 1) so you can see where you are. In
general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the substi­
tute (s) command. You say "s/old/new/" where old is replaced by the old
characters you want to get rid of and new is the new characters you want to
replace it with.

87

EDIT(l)

88

(Editing Utilities) EDIT(l)

The command file (£) will tell you how many lines there are in the buffer you
are editing and will say "[Modified]" if you have changed it. After modifying a
file you can put the buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit (q) command. If
you run edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there has been "No write
since last change" and edit will await another command. If you wish not to
write the buffer out then you can issue another quit command. The buffer is
then irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see
lines in the file you can make any changes you desire. You should learn at least
a few more things, however, if you are to use edit more than a few times.

The change (c) command will change the current line to a sequence of lines you
supply (as in append you give lines up to a line consisting of only a "."). You
can tell change to change more than one line by giving the line numbers of the
lines you want to change, i.e., "3,5change". You can print lines this way too.
Thus "1,23p" prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave
which changed the buffer. Thus if you give a substitute command which does
not do what you want, you can say undo and the old contents of the line will
be restored. You can also undo an undo command so that you can continue to
change your mind. edit will give you a warning message when commands you
do affect more than one line of the buffer. If the amount of change seems
unreasonable, you should consider doing an undo and looking to see what hap­
pened. If you decide that the change is ok, then you can undo again to get it
back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look at
a number of lines hit AD (control key and, while it is held down D key, then let
up both) rather than carriage return. This will show you a half screen of lines
on a CRT or 12 lines on a hardcopy terminal. You can look at the text around
where you are by giving the command "z.". The current line will then be the
last line printed; you can get back to the line where you were before the "z."
command by saying """. The z command can also be given other following
characters "z-" prints a screen of text (or 24 lines) ending where you are; "z+"
prints the next screenful. If you want less than a screenful of lines, type in
"z.12" to get 12 lines total. This method of giving counts works in general; thus
you can delete 5 lines starting with the current line with the command "delete
5".

To find things in the file, you can use line numbers if you happen to know
them; since the line numbers change when you insert and delete lines this is
somewhat unreliable. You can search backwards and forwards in the file for
strings by giving commands of the form jtextj to search forward for text or
?text? to search backward for text. If a search reaches the end of the file without
finding the text it wraps, end around, and continues to search back to the line

EDIT(l) (Editing Utilities) EDIT(l)

where you are. A useful feature here is a search of the form f'textj which
searches for text at the beginning of a line. Similarly jtext$j searches for text at
the end of a line. You can leave off the trailing / or ? in these commands.

The current line has a symbolic name "."; this is most useful in a range of lines
as in ".,$print" which prints the rest of the lines in the file. To get to the last
line in the file you can refer to it by its symbolic name "$". Thus the command
"$ delete" or "$d" deletes the last line in the file, no matter which line was the
current line before. Arithmetic with line references is also possible. Thus the
line "$-5" is the fifth before the last, and ".+20" is 20 lines after the present.

You can find out which line you are at by doing ".=". This is useful if you wish
to move or copy a section of text within a file or between files. Find out the first
and last line numbers you wish to copy or move (say 10 to 20). For a move you
can then say "lO,20delete a" which deletes these lines from the file and places
them in a buffer named a. edit has 26 such buffers named a through z. You can
later get these lines back by doing "put a" to put the contents of buffer a after
the current line. If you want to move or copy these lines between files you can
give an edit (e) command after copying the lines, following it with the name of
the other file you wish to edit, Le., "edit chapter2". By changing delete to yank
above you can get a pattern for copying lines. If the text you wish to move or
copy is all within one file then you can just say "10,20move $" for example. It
is not necessary to use named buffers in this case (but you can if you wish).

SEE ALSO
ed(I), ex(I), vi(I).

WARNING
The -x option is provided with the Security Administration Utilities, which is
available only in the United States.

89

EGREP(l) (Directory and File Management Utilities) EGREP(l)

NAME
egrep - search a file for a pattern using full regular expressions

SYNOPSIS
egrep [options] full regular expression [file ...]

DESCRIPTION
egrep (expression grep) searches files for a pattern of characters and prints all
lines that contain that pattern. egrep uses full regular expressions (expressions
that have string values that use the full set of alphanumeric and special charac­
ters) to match the patterns. It uses a fast deterministic algorithm that sometimes
needs exponential space.

egrep accepts full regular expressions as in ed(l), except for \(and \), with the
addition of:

1. A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences of
the full regular expression.

3. Full regular expressions separated by 1 or by anew-line that match
strings that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses 0 for
grouping.

Be careful using the characters $, *, [, " I, (,), and \ in full regular expression,
because they are also meaningful to the shell. It is safest to enclose the entire
full regular expression in single quotes' ... '.

The order of precedence of operators is [], then *?+, then concatenation, then 1
and new-line.

If no files are specified, egrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before each line
found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by newlines.

Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-e special_expression

Search for a special expression (full regular expression that begins with a
-).

-£ file
Take the list of full regular expressions from file.

SEE ALSO
ed(l), fgrep(l), grep(l), sed(l), sh(l).

90

EGREP(l) (Directory and File Management Utilities) EGREP(l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac­
cessible files (even if matches were found).

Ideally there should be only one grep command, but there is not a single algo­
rithm that spans a wide enough range of space-time tradeoffs. Lines are limited
to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
jusrjinc1udejstdio.h.

91

ENABLE(l) (Line Printer Spooling Utilities) ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c 1 [-r[reason II printers

DESCRIPTION

FILES

enable activates the named printers, enabling them to print requests taken by
lp(l). Use lpstat(l) to find the status of printers.

Disable deactivates the named printers, disabling them from printing requests
taken by lp(l). By default, any requests that are currently printing on the desig­
nated printers will be reprinted in their entirety either on the same printer or on
another member of the same class. Use lpstat(l) to find the status of printers.
Options useful with disable are:

-c Cancel any requests that are currently printing on any of the desig­
nated printers.

-r[reason 1 Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next -r option.
If the -r option is not present or the -r option is given without a
reason, then a default reason will be used. Reason is reported by
lpstat(l).

/usr/spool/lp/*

SEE ALSO
lp(l), lpstat(l).

92

ENV(l) (User Environment Utilities) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value]... [command args]

DESCRIPTION
env obtains the current environment, modifies it according to its arguments, then
executes the command with the modified environment. Arguments of the form
name=value are merged into the inherited environment before the command is
executed. The - flag causes the inherited environment to be ignored com­
pletely, so that the command is executed with exactly the environment specified
by the arguments.

If no command is specified, the resulting environment is printed, one name­
value pair per line.

SEE ALSO
sh(l).
exec(2), profile(4), environ(5) in the Programmer's Reference Manual.

93

EX(l) (Editing Utilities) EX(l)

NAME
ex - text editor

SYNOPSIS
ex [-] [-v] [-t tag] [-r] [-R] [-x] [+command] name .. ,

DESCRIPTION

94

ex is the root of a family of editors: ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based editing is
the focus of vi.
If you have a CRT terminal, you may wish to use a display based editor; in this
case see vi(l), which is a command which focuses on the display editing portion
of ex.

For ed Users
If you have used ed you will find that ex has a number of new features useful
on CRT terminals. Intelligent terminals and high speed terminals are very
pleasant to use with vi. Generally, the editor uses far more of the capabilities of
terminals than ed does, and uses the terminal capability data base (see Terminal
Information Utilities Guide) and the type of the terminal you are using from the
variable TERM in the environment to determine how to drive your terminal
efficiently. The editor makes use of features such as insert and delete character
and line in its visual command (which can be abbreviated vi) and which is the
central mode of editing when using vi(l).
ex contains a number of new features for easily viewing the text of the file. The
z command gives easy access to windows of text. Hitting AD causes the editor
to scroll a half-window of text and is more useful for quickly stepping through a
file than just hitting return. Of course, the screen-oriented visual mode gives
constant access to editing context.

ex gives you more help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. ex gives you a lot of
feedback, normally printing changed lines, and indicates when more than a few
lines are affected by a command so that it is easy to detect when a command
has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited
them so that you do not accidentally clobber with a write a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally hang
up the telephone, you can use the editor recover command to retrieve your
work. This will get you back to within a few lines of where you left off.

ex has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or a
pattern as used by the shell to specify a new set of files to be dealt with. In
general, file names in the editor may be formed with full shell metasyntax. The
metacharacter '%' is also available in forming file names and is replaced by the
name of the current file.

For moving text between files and within a file the editor has a group of buffers,
named a through z. You can place text in these named buffers and carry it over
when you edit another file.

EX(l) (Editing Utilities) EX(l)

There is a command & in ex which repeats the last substitute command. In
addition there is a confirmed substitute command. You give a range of substitu­
tions to be done and the editor interactively asks whether each substitution is
desired.

It is possible to ignore case of letters in searches and substitutions. ex also
allows regular expressions which match words to be constructed. This is con­
venient, for example, in searching for the word "edit" if your document also
contains the word "editor."

ex has a set of options which you can set to tailor it to your liking. One option
which is very useful is the autoindent option which allows the editor to automat­
ically supply leading white space to align text. You can then use the AD key as
a backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command which
supplies white space between joined lines automatically, commands < and>
which shift groups of lines, and the ability to filter portions of the buffer through
commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:

-v
-t tagfR

-r file

-R
-x

+command

Suppress all interactive-user feedback. This is useful in pro­
cessing editor scripts.

Invokes vi

Edit the file containing the tag and position the editor at its
definition.

Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Encryption option; when this option is used, the file will be
encrypted as it is being written and will require an encryption
key to be read (see crypt(l». Also, see the WARNING section at
the end of this manual page.

Begin editing by executing the specified editor search or posi­
tioning command.

The name argument indicates files to be edited.

ex States
Command

Insert

Visual

Normal and initial state. Input prompted for by:. Your kill
character cancels partial command.

Entered by a, i, or c. Arbitrary text may be entered. Insert is
normally terminated by a line having only. on it, or abnor­
mally with an interrupt.

Entered by vi, terminates with Q or A\.

95

EX(l) (Editing Utilities)

96

ex command names and abbreviations
abbrev ab next n undo u
append a number nu unmap unm
args ar preserve pre version ve
change c print p visual vi
copy co put pu write w
delete d quit q xit x
edit e read re yank ya
file f recover rec window z
global g rewind rew escape
insert i set se lshift <
join j shell sh print next CR
list 1 source so resubst &
map stop st rshift >
mark rna substitute s scroll AD
move m unabbrev una

ex Command Addresses
n line n

current
$ last
+ next

previous
+n n forward
% 1,$

Initializing options
EXINIT
$HOME/.exrc
./.exrc
set x
set nox
set x=val
set
set all
set x?

Most useful options
autoindent
autowrite
ignorecase
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatch
showmode

/pat next with pat
?pat previous with pat
x-n n before x
x,y x through y
'x marked with x

previous context

place set's here in environment var.
editor initialization file
editor initialization file
enable option
disable option
give value val
show changed options
show all options
show value of option x

ai
aw
ic

nu
para

sect
sw
sm
smd

supply indent
write before changing files
in scanning
print AI for tab, $ at end
. [* special in patterns
number lines
macro names which start ...
simulate smart terminal
command mode lines
macro names ...
for < >, and input AD
to) and } as typed
show insert mode in vi

EX(l)

EX(l)

slowopen
window
wrapscan
wrapmargin

slow

ws
wm

(Editing Utilities)

stop updates during insert
visual mode lines
around end of buffer?
automatic line splitting

EX(l)

Scanning pattern formation
• beginning of line
$ end of line

\<
\>
[str]
[lstr]
[x-y]
*

any character
beginning of word
end of word
any char in str
... not in str
... between x and y
any number of preceding

AUTHOR

FILES

Vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

/usr/lib/ex??strings
/usr /lib / ex? ?recover
/usr /lib / ex? ?preserve
/usr /lib /* /*
$HOME/.exrc
./.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve/login

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory
(where login is the user's login)

SEE ALSO
awk(l), ed(l), edit(l), grep(l), sed(l), vi(l).
curses(3X), term(4), terminfo(4) in the Programmer's Reference Manual.
The Terminal Information Utilities Guide.

WARNING

BUGS

The -x option is provided with the Security Administration Utilities, which is
available only in the United States.

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than
a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line '-' option is
used.

97

EX(l)

98

(Editing Utilities) EX(l)

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

EXPR(l) (Essential Utilities) EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written
on the standard output. Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note that 0 is returned to indi­
cate a zero value, rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments may be preceded
by a unary minus sign. Internally, integers are treated as 32-bit, 2s complement
numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence, with
equal precedence operators grouped within {} symbols.

expr \1 expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns O.

expr {=, \>, \>=, \<, \<=,!=} expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, /' % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr

EXAMPLES
1.

The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression
syntax is the same as that of ed(l), except that all patterns are
"anchored" (Le., begin with A) and, therefore, A is not a special char­
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the \(... \)
pattern symbols can be used to return a portion of the first argument.

a='expr $a + l'
adds 1 to the shell variable a.

2. # 'For $a equal to either "/usr/abc/file" or just "file'"
expr $a : '.*/\(A)' \1 $a

returns the last segment of a path name (Le., file). Watch out for
/ alone as an argument: expr will take it as the division operator
(see BUGS below).

99

EXPR(l) (Essential Utilities)

3. # A better representation of example 2.
expr / /$a : '.* /\(A)'

EXPR(l)

The addition of the / / characters eliminates any ambiguity
about the division operator and simplifies the whole expression.

4. expr $VAR : '.*'
returns the number of characters in $V AR.

SEE ALSO
ed(l), sh(l).

DIAGNOSTICS

BUGS

100

As a side effect of expression evaluation, expr returns the following exit values:
o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an "", the command:

expr $a - '-'
looks like:

expr

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a - x ...

FACTOR(l) (User Environment Utilities) FACTOR(l)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to f'1:ve it an integer.
After you give it a positive integer less than or equal to 10 4, it factors the
integer, prints its prime factors the proper number of times, and then waits for
another integer. factor exits if it encounters a zero or any non-numeric character.

If you invoke factor with an argument, it factors the integer as described above,
and then it exits.

The maximum time to factor an integer is proportional to . n. factor will take
this time when n is prime or the square of a prime.

DIAGNOSTICS
factor prints the error message, "Ouch," for input out of range or for garbage
input.

101

FGREP(l) (Directory and File Management Utilities) FGREP(l)

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options J string [file ... J

DESCR1PTION
fgrep (fast grep) seaches files for a character string and prints all lines that con­
tain that string. fgrep is different from grep(1) and egrep(1) because it searches
for a string, instead of searching for a pattern that matches an expression. It
uses a fast and compact algorithm.

The characters $, *, [, A, I, (,), and \ are interpreted literally by fgrep, that is,
fgrep does not recognize full regular expressions as does egrep. Since these char­
acters have special meaning to the shell, it is safest to enclose the entire string in
single quotes ' ... '.

If no files are specified, fgrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before each line
found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper flower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by new-lines.

Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-x Print only lines matched entirely.
-e special_string

Search for a special string (string begins with a -).
-f file

Take the list of strings from file.

SEE ALSO
ed(l), egrep(l), grep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

102

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac­
cessible files (even if matches were found).

Ideally there should be only one grep command, but there is not a single algo­
rithm that spans a wide enough range of space-time tradeoffs. Lines are limited
to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
jusrjincludejstdio.h.

FILE(l) (Essential Utilities) FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-c 1 [-f ffile 1 [-m mfile 1 arg ...

DESCRIPTION

FILES

file performs a series of tests on each argument in an attempt to classify it. If an
argument appears to be ASCII, file examines the first 512 bytes and tries to guess
its language. If an argument is an executable a.out, file will print the version
stamp, provided it is greater than O.

-c The -c option causes file to check the magic file for format errors. This
validation is not normally carried out for reasons of efficiency. No file
typing is done under -c.

-f If the -f option is given, the next argument is taken to be a file con-
taining the names of the files to be examined.

-m The -m option instructs file to use an alternate magic file.

file uses the file jetcjmagic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates its
type. Commentary at the beginning of jetcjmagic explains its format.

jetcjmagic

SEE ALSO
filehdr(4) in the Programmer's Reference Manual.

103

FIND(l) (Directory and File Management Utilities) FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION

104

find recursively descends the directory hierarchy for each path name in the
path-name-list (that is, one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descriptions, the
argument n is used as a decimal integer where +n means more than n, -n
means less than nand n means exactly n. Valid expressions are:

-name file True if file matches the current file name. Normal shell argu­
ment syntax may be used if escaped (watch out for [, ? and *).

[-perm] -onum True if the file permission flags exactly match the octal number
onum (see chmod(1». If onum is prefixed by a minus sign, only
the bits that are set in onum are compared with the file permis­
sion flags, and the expression evaluates true if they match.

-type c True if the type of the file is c, where c is b, c, d, p, or f for
block special file, character special file, directory, fifo (a.k.a
named pipe), or plain file respectively.

-links n True if the file has n links.

-user una me True if the file belongs to the user uname. If uname is numeric
and does not appear as a login name in the /ete/passwd file,
it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the fete/group file, it is taken
as a group ID.

-size nrc] True if the file is n blocks long (512 bytes per block). If n is
followed by a e, the size is in characters.

-atime n True if the file has been accessed in n days. The access time
of directories in path-name-list is changed by find itself.

-mtime n True if the file has been modified in n days.

-dime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semicolon.
A command argument {} is replaced by the current path name.

-ok cmd Like -exec except that the generated command line is printed
with a question mark first, and is executed only if the user
responds by typing y.

-print Always true; causes the current path name to be printed.

-cpio device Always true; write the current file on device in cpio (1) format
(SI20-byte records).

FIND(l)

-newer file

-depth

-mount

-local

(expression)

(Directory and File Management Utilities) FIND(l)

True if the current file has been modified more recently than
the argument file.

Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with
cpio(l) to transfer files that are contained in directories without
write permission.

Always true; restricts the search to the file system containing
the directory specified, or if no directory was specified, the
current directory.

True if the file physically resides on the local system.

True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposi­
tion of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE
To remove all files named a.out or •. 0 that have not been accessed for a week:

find / \(-name a.out -0 -name ' •. 0' \) -atime +7 -exec rm {} \;

FILES
/etc/passwd, /etc/group

SEE ALSO

BUGS

chmod(l), cpio(l), sh(l), test(1).
stat(2), umask(2), fs(4) in the Programmer's Reference Manual.

find / -depth always fails with the message: "find: stat failed: : No such file
or directory".

105

GDEV(lG) (Graphics Utilities) GDEV(lG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [-options] [GPS file .•.]
erase
hardcopy
tekset
td [-ernn] [GPS file ...]

DESCRIPTION

106

All of the commands described below reside in jusrjbinjgraf (see
graphics(1 G».
hpd hpd translates a GPS (graphical primitive string; see gps(4» to instruc­

tions for the Hewlett-Packard 7221A Graphics Plotter. A viewing
window is computed from the maximum and minimum points in file
unless the -u or -r option is provided. If no file is given, the stan­
dard input is assumed. options are:

cn Select character set n, n between 0 and 5 (see the HP7221A
Plotter Operating and Programming Manual, Appendix A).

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left comer to n
inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left comer to n
inches.

yvn Set height of viewport to n inches.

erase Erase sends characters to a Tektronix 4010 series storage terminal to
erase the screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit,
hardcopy generates a screen copy on the unit.

tekset

td

tekset sends characters to a Tektronix terminal to clear the display
screen, set the display mode to alpha, and set characters to the smal­
lest font.

td translates a GPS to scope code for a Tektronix 4010 series storage
terminal. A viewing window is computed from the maximum and
minimum points in file unless the -u or -r option is prOvided. If no
file is given, the standard input is assumed. Options are:

GOEV(lG) (Graphics Utilities) GOEV(lG)

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire CPS universe.

SEE ALSO
ged(lG), graphics(lG).
gps(4) in the Programmer's Reference Manual.

107

GED(lG) (Graphics Utilities) GED(lG)

NAME
ged - graphical editor

SYNOPSIS
ged [-eruRjnj [GPS file ... j

DESCRIPTION
ged is an interactive graphical editor used to display, construct, and edit GPS files
on Tektronix 4010 series display terminals. If GPS file(s) are given, ged reads
them into an internal display buffer and displays the buffer. The GPS in the
buffer can then be edited. If - is given as a file name, ged reads a GPS from the
standard input.

ged accepts the following command line options:

e Do not erase the screen before the initial display.

rn Display region number n.

u Display the entire GPS universe.

R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc, and
text. Arc and lines objects have a start point, or object-handle, followed by zero
or more points, or point-handles. Text has only an object-handle. The objects
are positioned within a Cartesian plane, or universe, having 64K (-32K to +32K)
points, or universe-units, on each axis. The universe is divided into 25 equal
sized areas called regions. Regions are arranged in five rows of five squares
each, numbered 1 to 25 from the lower left of the universe to the upper right.

ged maps rectangular areas, called windows, from the universe onto the display
screen. Windows allow the user to view pictures from different locations and at
different magnifications. ,The universe-window is the window with minimum
magnification, i.e., the window that views the entire universe. The home-window
is the window that completely displays the contents of the display buffer.

COMMANDS

108

ged commands are entered in stages. Typically each stage ends with a <cr>
(return). Prior to the final <cr> the command may be aborted by typing
rubout. The input of a stage may be edited during the stage using the erase and
kill characters of the calling shell. The prompt * indicates that ged is waiting at
stage 1.

Each command consists of a subset of the following stages:

1. Command line

2. Text

A command line consists of a command name followed by argu­
ment(s) followed by a <cr>. A command name is a single char­
acter. Command arguments are either option(s) or a file-name.
Options are indicated by a leading -.

Text is a sequence of characters terminated by an unescaped <cr>
(120 lines of text maximum).

3. Points Points is a sequence of one or more screen locations (maximum of
30) indicated either by the terminal crosshairs or by name. The

GED(lG)

4. Pivot

(Graphics Utilities) GED(lG)

prompt for entering points is the appearance of the crosshairs.
When the crosshairs are visible, typing:

sp (space) enters the current location as a point. The point is
identified with a number.

$n enters the previous point numbered n.
> x labels the last point entered with the upper case letter x.
$x enters the point labeled x.

establishes the previous points as the current points. At the
start of a command the previous points are those locations
given with the previous command.

echoes the current points.
$.n enters the point numbered n from the previous points.
erases the last point entered.

@ erases all of the points entered.

The pivot is a single location, entered by typing <cr> or by using
the $ operator, and indicated with a *.

5. Destination
The destination is a single location entered by typing <cr> or by
using $.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Command
stages are printed in italics. Arguments surrounded by brackets "[]" are
optional. Parentheses "0" surrounding arguments separated by "or" means that
exactly one of the arguments must be given.

Construct commands:
Arc [-echo,style,weight] points

Box [-echo,style,weight] points
Circle [-echo,style,weight] points
Hardware [-echo] text points
Lines [-echo,style,weight] points
Text

Edit commands:

[-angle,echo,height,mid -point,right-point,text, weight]
points

text

Delete

Edit

(- (universe or view) or points)

[-angle,echo,height,style,weight] (- (universe or view) or
points)

Kopy [-echo,points,x] points pivot destination

109

GED(lG) (Graphics Utilities) GED(lG)

110

Move [-echo,points,x] points pivot destination

Rotate [-angie,echo,kopy,x] points pivot destination

Scale [-echo,factor,kopy,x] points pivot destination

View commands:
coordinates points

erase

new-display

object-handles (- (universe or view) or points)

point-handles (- (labelled-points or universe or view) or points)

view (- (home or universe or region) or [-x] pivot destination
)

x [-view] points

zoom [-out] points

Other commands:
quit or Quit

read [-angle,echo,height,mid-point,right-point,text,weight
file-name [destination]

set [-angle,echo,factor,height,kopy,mid-point,points,
right-poin t,style, text, weight,x]

write file-name

!command

?

Options:
Options specify parameters used to construct, edit, and view graphical objects. If
a parameter used by a command is not specifed as an option, the default value
for the parameter will be used (see set below). The format of c01;l1mand options
is:

-option [,option]
where option is keyletter[value]. Flags take on the values of true or false indi­
cated by + and - respectively. If no value is given with a flag, true is assumed.

Object options:

anglen

echo

factorn

heightn

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of text is n universe-units (0 ~ n < 1280).

GED(lG)

kopy

mid-point

points

right-point

styletype

text

weighttype

(Graphics Utilities) GED(lG)

When true, copy rather than move.

When true, mid-point is used to locate text string.

When true, operate on points; otherwise operate on objects.

When true, right-point is used to locate text string.

Line style set to one of following types:
so solid
da dashed
dd dot-dashed
do dotted
ld long-dashed

When false, text strings are outlined rather than drawn.

Sets line weight to one of following types:
n narrow
m medium
b bold

Area options:

home

out

regionn

universe

view

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area. x

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points. The
first point entered is the object-handle. Successive points are point­
handles. Lines connect the handles in numerical order. Arc fits a curve to
the handles (currently a maximum of 3 points will be fit with a circular arc;
splines will be added in a later version).

Box and Circle
are special Cases of Lines and Are, respectively. Box generates a rectangle
with sides parallel to the universe axes. A diagonal of the rectangle would
connect the first point entered with the last point. The first point is the
object-handle. Point-handles are created at each of the vertices. Circle
generates a circular arc centered about the point numbered zero and
passing through the last point. The circle's object-handle coincides with
the last point. A point-handle is generated 180 degrees around the circle
from the object-handle.

111

GED(lG) (Graphics Utilities) GED(lG)

112

Text and Hardware
generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <cr>. Multiple lines of text
may be entered by preceding a cr with a backslash (i.e., \cr). The Text
command creates software-generated characters. Each line of software text
is treated as a separate text object. The first point entered is the object­
handle for the first line of text. The Hardware command sends the charac­
ters in text uninterpreted to the terminal.

Edit commands:
Edit commands operate on portions of the display buffer called defined areas. A
defined area is referenced either with an area option or interactively. If an area
option is not given, the perimeter of the defined area is indicated by points. If no
point is entered, a small defined area is built around the location of the <cr>.
This is useful to reference a single point. If only one point is entered, the loca­
tion of the <cr> is taken in conjunction with the point to indicate a diagonal of
a rectangle. A defined area referenced by points will be outlined with dotted
lines.

Delete
removes all objects whose object-handle lies within a defined area. The
universe option removes all objects and erases the screen.

Edit modifies the parameters of the objects within a defined area. Parameters
that can be edited are:

angle angle of text
height height of text
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined area by
the displacement from the pivot to the destination.

Rotate

Scale

rotates objects within a defined area around the pivot. If the kopy flag is
true then the objects are copied rather than moved.

For objects whose object handles are within a defined area, point displace­
ments from the pivot are scaled by factor percent. If the kopy flag is true
then the objects are copied rather than moved.

View commands:
coordinates

prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

GED(lG) (Graphics Utilities) GED(lG)

object-handles (or point-handles)

view

labels object-handles (and/or point-handles) that lie within the defined
area with 0 (or P). Point-handles identifies labeled points when the
labelled-points flag is true.

moves the window so that the universe point corresponding to the pivot
coincides with the screen point corresponding to the destination. Options
for home, universe, and region display particular windows in the universe.

x indicates the center of a defined area. Option view indicates the center of
the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing window
based on the defined area. For increased magnification, the window is set
to circumscribe the defined area. For a decrease in magnification the
current window is inscribed within the defined area.

Other commands:
quit or Quit

exit from ged. Quit responds with? if the display buffer has not been
written since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read directly. If
the file contains text it is converted into text object(s). The first line of a
text file begins at destination.

set when given option(s) resets default parameters, otherwise it prints current
default values.

write
outputs the contents of the display buffer to a file.

escapes ged to execute a UNIX system command.

? lists ged commands.

SEE ALSO
gdev(lG), graphics(lG), sh(l).
gps(4) in the Programmer's Reference Manual.
"Graphics Editor" chapter in the Graphics Utilities Guide.

WARNING
See Appendix A of the Tektronix 4014 Computer Display Terminal User's Manual
for a discussion of the appropriate terminal strap options.

113

GETOPT(l) (Essential Utilities) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set -- 'getopt optstring $*'

DESCRIPTION
WARNING: Start using the new command getopts(l) in place of getopt(l).
getopt(l) will not be supported in the next major release. For more information,
see the WARNINGS section, below.

getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. optstring is a string of recognized
option letters (see getopt(3C»; if a letter is followed by a colon, the option is
expected to have an argument which mayor may not be separated from it by
white space. The special option -- is used to delimit the end of the options. If
it is used explicitly, getopt will recognize it; otherwise, getopt will generate it; in
either case, getopt will place it at the end of the options. The positional parame­
ters ($1 $2 ...) of the shell are reset so that each option is preceded by a - and
is in its own positional parameter; each option argument is also parsed into its
own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option 0, which
requires an argument:

set -- 'getopt
if [$? != 0

abo:

then

fi

]

echo $USAGE
exit 2

for i in $*
do

case
-a I
-0)
--)
esac

done

$i in
-b) FLAG=$i; shift;;

OARG=$2; shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
getopts(l), sh(l).
getopt(3C) in the Programmer's Reference Manual.

114

GETOPT(l) (Essential Utilities) GETOPT(l)

DIAGNOSTICS
getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

WARNINGS
getopt(l) does not support the part of Rule 8 of the command syntax standard
(see intro(l)) that permits groups of option-arguments following an option to be
separated by white space and quoted. For example,

cmd -a -b -0 "xxx z yy" file

is not handled correctly). To correct this deficiency, use the new command
getopts(l) in place of getopt(l).

getopt(l) will not be supported in the next major release. For this release a
conversion tool has been provided, getoptcvt. For more information about
getopts and getoptcvt, see the getopts (1) manual page.

If an option that takes an option-argument is followed by a value that is the
same as one of the options listed in optstring (referring to the earlier EXAMPLE
section, but using the following command line: cmd - 0 - a f i 1 e), getopt
will always treat -a as an option-argument to -0; it will never recognize -a as
an option. For this case, the for loop in the example will shift past the file argu­
ment.

115

GETOPTS(l) (Essential Utilities) GETOPTS(l)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg ... J

jusrjlibjgetoptcvt [-bJ file

DESCRIPTION
getopts is used by shell procedures to parse positional parameters and to check
for legal options. It supports all applicable rules of the command syntax stan­
dard (see Rules 3-10, intro(l». It should be used in place of the getopt(l) com­
mand. (See the WARNING, below.)

optstring must contain the option letters the command using getopts will recog­
nize; if a letter is followed by a colon, the option is expected to have an argu­
ment, or group of arguments, which must be separated from it by white space.

Each time it is invoked, getopts will place the next option in the shell variable
name and the index of the next argument to be processed in the shell variable
OPTIND. Whenever the shell or a shell procedure is invoked, OPTIND is initial­
ized to 1.

When an option requires an option-argument, getopts places it in the shell vari­
able OPT ARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit
status. The special option " __ ,, may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (arg ...)
are given on the getopts command line, getopts will parse them instead.

jusrjlibjgetoptcvt reads the shell script in file, converts it to use getopts(l)
instead of getopt(l), and writes the results on the standard output.

-b the results of running jusr jlib jgetoptcvt will be portable to earlier
releases of the UNIX system. j usr jlib j getoptcvt modifies the shell script
in file so that when the resulting shell script is executed, it determines at
run time whether to invoke getopts(l) or getopt(l).

So all new commands will adhere to the command syntax standard described in
intro(l), they should use getopts(l) or getopt(3C) to parse positional parameters
and check for options that are legal for that command (see WARNINGS, below).

EXAMPLE

116

The following fragment of a shell program shows how one might process the
arguments for a command that can take the options a or b, as well as the option
0, which requires an option-argument:

GETOPTS(l) (Essential Utilities) GETOPTS(l)

while getopts abo: c
do

done

case $c
a I b)
0)
'\?)

esac

in
FLAG=$C; ;
OARG=$OPTARG; ;
echo $USAGE
exit 2' • , ,

shift 'expr $OPTIND l'

This code will accept any of the following as equivalent:

cmd -a -b -0 "xxx z yy" file
cmd -a -b -0 "xxx z yy" file
cmd -ab -0 xxx, z , yy f i 1 e
cmd -ab -0 "xxx z yy" file
cmd -0 xxx,z,yy -b -a file

SEE ALSO
intro(l}, sh(l}.
getopts(3C) in the Programmer's Reference Manual.
UNIX System V Release 3.0 Release Notes.

WARNING
Although the following command syntax rule (see intro(l» relaxations are per­
mitted under the current implementation, they should not be used because they
may not be supported in future releases of the system. As in the EXAMPLE sec­
tion above, a and b are options, and the option 0 requires an option-argument:

cmd -aboxxx f i 1 e (Rule 5 violation: options with
option-arguments must not be grouped with other options)

cmd -ab -oxxx f i 1 e (Rule 6 violation: there must be
white space after an option that takes an option-argument)

Changing the value of the shell variable OPTIND or parsing different sets of
arguments may lead to unexpected results.

DIAGNOSTICS
getopts prints an error message on the standard error when it encounters an
option letter not included in optstring.

117

GLOSSARY(l) (Help Utilities) GLOSSARY(l)

NAME
glossary - definitions of common UNIX system terms and symbols

SYNOPSIS
[help] glossary [term]

DESCRIPTION
The UNIX system Help Facility command glossary provides definitions of
common technical terms and symbols.

Without an argument, glossary displays a menu screen listing the terms and sym­
bols that are currently included in glossary. A user may choose one of the terms
or may exit to the shell by typing q (for "quit"). When <I term is selected, its
definition is retrieved and displayed. By selecting the appropriate menu choice,
the list of terms and symbols can be redisplayed.

A term's definition may also be requested directly from shell level (as shown
above), causing a definition to be retrieved and the list of terms and symbols not
to be displayed. Some of the symbols must be escaped if requested at shell level
in order for the facility to understand the symbol. The following is a table
which list the symbols and their escape sequence.

SYMBOL

&

"
\
1

ESCAPE SEQUENCE
\"\"
\'V

\\[\\]
\'\'
\#
\&
\"

\\\\
\1

From any screen in the Help Facility, a user may execute a command via the
shell (sh(l)) by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt.
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file (see
profile (4)): "export SCROLL ; SCROLL=no". If you later decide that scrol­
ling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage, glos­
sary, and help) is located on their respective manual pages.

SEE ALSO

118

help(l), helpadm(lM), locate(l), sh(l), starter(l), usage(l).
term(5) in the Programmer's Reference Manual.

GLOSSARY(l) (Help Utilities) GLOSSARY(l)

WARNINGS
If the shell variable TERM (see sh(l» is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term(5).

119

GRAPH(lG) (Graphics/Performance Measurement Utilities) GRAPH(lG)

NAME
graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by straight
lines. The graph is encoded on the standard output for display by the tplot(lG)
filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with
quotes ", in which case they may be empty or contain blanks and numbers;
labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second optional
argument is the starting point for automatic abscissas (default 0 or

-b
-c

-g

-1
-m

-s
-x [1]

-y [1]
-h
-w
-r
-u
-t

lower limit given by -x).
Break (disconnect) the graph after each label in the input.
Character string given by next argument is default label for each
point.
Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid
(default).
Next argument is label for graph.
Next argument is mode (style) of connecting lines: 0 disconnected, 1
connected (default). Some devices give distinguishable line styles for
other small integers (e.g., the Tektronix 4014: 2=dotted, 3=dash-dot,
4=short-dash, 5=long-dash).
Save screen, do not erase before plotting.
If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are
lower (and upper) x limits. Third argument, if present, is grid spacing
on x axis. Normally these quantities are determined automatically.
Similarly for y.
Next argument is fraction of space for height.
Similarly for width.
Next argument is fraction of space to move right before plotting.
Similarly to move up before plotting.
Transpose horizontal and vertical axes. (Option -x now applies to
the vertical axis.)

A legend indicating grid range is produced with a grid unless the -s option is
present. If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
graphics(lG), spline(lG), tplot(lG).

120

GRAPH(lG) (Graphics/Performance Measurement Utilities) GRAPH(lG)

BUGS
graph stores all points internally and drops those for which there is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

121

GRAPHICS(lG) (Graphics Utilities) GRAPHICS(lG)

NAME
graphics - access graphical and numerical commands

SYNOPSIS
graphics [-r 1

DESCRIPTION
graphics prefixes the path name jusrjbinjgraf to the current $PATH value,
changes the primary shell prompt to " and executes a new shell. The directory
jusrjbinjgraf contains all of the Graphics subsystem commands. If the -r
option is given, access to the graphical commands is created in a restricted
environment; that is, $PATH is set to

: jusr jbinjgraf:jrbin: jusr jrbin
and the restricted shell, rsh, is invoked. To restore the environment that existed
prior to issuing the graphics command, type EOT (control-d on most terminals).
To logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name followed
by argument(s). An argument may be a file name or an option string. A file name
is the name of any UNIX system file except those beginning with -. The file
name - is the name for the standard input. An option string consists of - fol­
lowed by one or more option(s). An option consists of a keyletter possibly fol­
lowed by a value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see stat(lG).

Commands that generate tables of contents; see toc(lG).

Commands that interact with graphical devices; see gdev(lG) and
ged(lG).

A collection of graphical utility commands; see gutil(lG).

A list of the graphics commands can be generated by typing whatis in the
graphics environment.

SEE ALSO

122

gdev(lG), ged(lG), gutil(lG), stat(lG), toc(lG).
gps(4) in the Programmer's Reference Manual.

GREEK(l) (Terminal Filters Utilities) GREEK(l)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal 1

DESCRIPTION

FILES

greek is a filter that reinterprets the extended character set, as well as the reverse
and half-line motions, of a 128-character Teletype Model 37 terminal for certain
other terminals. Special characters are simulated by overstriking, if necessary
and possible. If the argument is omitted, greek attempts to use the environment
variable $TERM (see environ (5)). Currently, the following terminals are recog­
nized:

300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp
tek

jusrjbinj300
jusr jbinj300s
jusrjbinj4014
jusrjbinj450
jusrjbinjhp

DASI300.
DASI 300 in 12-pitch.
DASI300s.
DASI 300s in 12-pitch.
DASI450.
DASI 450 in 12-pitch.
Diablo 1620 (alias DASI 450).
Diablo 1620 (alias DASI 450) in 12-pitch.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.

SEE ALSO
300(1), 4014(1), 450(1), hp(l), tplot(lG).
eqn(l), mm(l), nroff(l) in the DOCUMENTER'S WORKBENCH Software Release
2.0 Technical Discussion and Reference Manual.
environ(5), greek(5), term(5) in the Programmer's Reference Manual.

123

GREP(l) (Essential Utilities) GREP(l)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [options] limited regular expression [file ...]

DESCRIPTION
grep searches files for a pattern and prints all lines that contain that pattern.
grep uses limited regular expressions (expressions that have string values that
use a subset of the possible alphanumeric and special characters) like those used
with ed (1) to match the patterns. It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, [, " I, (,), and \ in the limited regular expres­
sion because they are also meaningful to the shell. It is safest to enclose the
entire limited regular expression in single quotes' ... '.

If no files are specified, grep assumes standard input. Normally, each line found
is copied to standard output. The file name is printed before each line found if
there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by new-lines.

Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).
-s Suppress error messages about nonexistent or unreadable files
-v Print all lines except those that contain the pattern.

SEE ALSO
ed(l), egrep(l), fgrep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

124

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac­
cessible files (even if matches were found).

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.
If there is a line with embedded nulls, grep will only match up to the first null; if
it matches, it will print the entire line.

GUTIL(lG) (Graphics Utilities) GUTIL(lG)

NAME
gutil - graphical utilities
gutil: utilities - bel; cvrtopt; gd; gtop; pd; ptog; quit; remcom; whatis; yoo

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device independent utility commands found in
jusrjbinjgraf. If no files are given, input is from the standard input. All
output is to the standard output. Graphical data is stored in GPS format; see
gps(4).

bel - send bel character to terminal

cvrtopt [=sstring fstring istring tstring] [args] - options converter
Cvrtopt reformats args (usually the command line arguments of a cal­
ling shell procedure) to facilitate processing by shell procedures. An
arg is either a file name (a string not beginning with a -, or a - by
itself) or an option string (a string of options beginning with a -).
Output is of the form:

-option -option . .. file name(s)
All options appear singularly and preceding any file names. Options
that take values (e.g., -r1.1) or are two letters long must be described
through options to cvrtopt.

Cvrtopt is usually used with set in the following manner as the first
line of a shell procedure:

set - cvrtopt =[options] $@
Options to cvrtopt are:

sstring
fstring

istring

tstring

String accepts string values.

String accepts floating point numbers as values.

String accepts integers as values.

String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

gd [GPS files] - GPS dump
Gd prints a human readable listing of GPS.

gtop [-rn u] [GPS files] - GPS to plot(4) filter
Gtop transforms a GPS into plot(4) commands displayable by plot
filters. GPS objects are translated if they fall within the window that
circumscribes the first file unless an option is given.
Options:

rn translate objects in GPS region n.

u translate all objects in the GPS universe.

125

GUTIL(lG) (Graphics Utilities) GUTIL(lG)

pd [plot(5) files] - plot(4) dump
Pd prints a human readable listing of plot(4) format graphical com­
mands.

ptog [plot(5) files] - plot(4) to GPS filter
Ptog transforms plot(4) commands into a GPS.

quit - terminate session

remcom [files] - remove comments
Remcom copies its input to its output with comments removed. Com­
ments are as defined in C (Le., /* comment */).

whatis [-0] [names] - brief on-line documentation
Whatis prints a brief description of each name given. If no name is
given, then the current list of description names is printed. The com­
mand whatis * prints out every description.
Option:

o just print command options

yoo file - pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into a
file used in the pipeline. Note that, without yoo, this is not usually
successful as it causes a read and write on the same file simultane­
ously.

SEE ALSO
graphics(lG).
gps(4), plot(4) in the Programmer's Reference Manual.

126

HELP(l) (Help/sees Utilities) HELP(l)

NAME
help - UNIX system Help Facility

SYNOPSIS
help

[help 1 starter
[help 1 usage [-d 1 [-e 1 [-0 1 [command _name 1
[help 1 locate [keywordl [keyword2 1 ... 1
[help 1 glossary [term 1

help arg ...

DESCRIPTION
The UNIX system Help Facility provides on-line assistance for UNIX system users,
whether they desire general information or specific assistance for use of the
Source Code Control System (SCCS) commands.

Without arguments, help prints a menu of available on-line assistance commands
with a short description of their functions. The commands and their descrip­
tions are:

COMMAND DESCRIPTION

starter information about the UNIX system for the beginning
user

locate

usage

glossary

locate UNIX system commands using function-related
keywords

UNIX system command usage information

definitions of UNIX system technical terms

The user may choose one of the above commands by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").

With arguments, help directly invokes the named on-line assistance command,
bypassing the initial help menu. The commands starter, locate, usage, and glos­
sary, optionally preceded by the word help, may also be specified at shell level.
When executing glossary from shell level some of the symbols listed in the glos­
sary must be escaped (preceded by one or more backslashes, "\") to be under­
stood by the Help Facility. For a list of symbols and how many backslashes to
use for each, refer to the glossary(l) manual page.

From any screen in the Help Facility, a user may execute a command via the
shell (sh(l» by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt.
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file (see
profile (4»: "export SCROLL ; SCRoLL=no". If you later decide that scrol­
ling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage, glos­
sary, and help) is located on their respective manual pages.

127

HELP(l) (Help/sees Utilities) HELP(l)

The Help Facility can be tailored to a customer's needs by use of the hel­
padm(lM) command.

If the first argument to help is different from starter, usage, locate, or glossary,
help assumes information is being requested about the sees Facility. The argu­
ments may be either message numbers (which normally appear in parentheses
following messages) or command names, of one of the following types:

type 1 Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the program or set of routines which pro­
duced the message (e.g., ge3 for message 3 from the get command).

type2 Does not contain numerics (as a command, such as get).

type3 Is all numeric (e.g., 212).

SEE ALSO
glossary(l), helpadm(lM), locate(l), sh(l), starter(l), usage(l).
admin(l), cdc(l), comb(l), delta(l), get(l), prs(l), rmdel(l), sact(l), sccsdiff(l),
unget(l), val(l), vc(l), what(l), profile(4), sccsfile(4), term(5) in the Programmer's
Reference Manual.

WARNINGS

128

If the shell variable TERM (see sh(l» is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term(5).

HELPADM(lM) (Help Utilities) HELP ADM(lM)

NAME
helpadm - make changes to the Help Facility database

SYNOPSIS
/ etc/helpadm

DESCRIPTION
The UNIX system Help Facility Administration command, helpadm , allows UNIX
system administrators and command developers to define the content of the
Help Facility database for specific commands and to monitor use of the Help
Facility. The helpadm command can only be executed by login root, login bin,
or a login that is a member of group bin.

The helpadm command prints a menu of 3 types of Help Facility data which can
be modified, and 2 choices relating to monitoring use of the Help Facility. The
five choices are:

- modify startup data

- add, modify, or delete a glossary term

- add, modify, or delete command data (description, options, examples, and
keywords)

- prevent monitoring use of the Help Facility (login root and login bin only)

- permit monitoring use of the Help Facility (login root and login bin only)

The user may make one of the above choices by entering its corresponding letter
(given in the menu), or may exit to the shell by typing q (for "quit").

If one of the first three choices is chosen, then the user is prompted for addi­
tional information; specifically, which startup screen, glossary term definition, or
command description is to be modified. The user may also be prompted for
information to identify whether the changes to the database are additions,
modifications, or deletions. If the user is modifying existing data or adding new
data, then they are prompted to make the appropriate modifications/additions.
If the user is deleting a glossary term or a command from the database, then they
must respond affirmatively to the next query in order for the deletion to be
done. In any case, before the user's changes are final, they must respond
affirmatively when asked whether they are sure they want their requested data­
base changes to be done.

By default, helpadm will put the user into ed(l) to make additions/modifications
to database information. If the user wishes to be put into a different editor, then
they should set the environment variable EDITOR in their environment to the
desired editor, and then export EDITOR.

If the user chooses to monitor/prevent monitoring use of the Help Facility, the
choice made is acted on with no further interaction by the user.

SEE ALSO
ed(l), glossary(l), help(l), locate(l), starter(l), usage(l).

129

HELPADM(lM) (Help Utilities) HELPADM(lM)

WARNINGS

FILES

130

When the UNIX system is delivered to a customer, jete/profile exports the
environment variable LOGNAME • If jete/profile has been changed so that
LOGNAME is not exported, then the options to monitor/prevent monitoring use
of the Help Facility may not work properly.

HELPLOG
helpclean

/usr /lib /help /HELPLOG
/usr /lib /help /helpclean

HP(l) (Terminal Filters Utilities) HP(l)

NAME
hp - handle special functions of Hewlett-Packard terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
hp supports special functions of the Hewlett-Packard 2640 series of terminals,
with the primary purpose of producing accurate representations of most nroff
output. A typical usage is in conjunction with DOCUMENTER'S WORKBENCH
Software:

nroff -h files ... I hp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the "display
enhancements" feature, subscripts and superscripts can be indicated in distinct
ways. If it has the "mathematical-symbol" feature, Greek and other special char­
acters can be displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display enhancements" feature,

and so maximal use is made of the added display modes. Overstruck
characters are presented in the Underline mode. Superscripts are shown
in Half-bright mode, and subscripts in Half-bright, Underlined mode. If
this flag is omitted, hp assumes that your terminal lacks the "display
enhancements" feature. In this case, all overstruck characters, subscripts,
and superscripts are displayed in Inverse Video mode, i.e., dark-on-light,
rather than the usuallight-on-dark.

-m Requests minimization of output by removal of new-lines. Any con­
tiguous sequence of 3 or more new-lines is converted into a sequence of
only 2 new-lines; i.e., any number of successive blank lines produces
only a single blank output line. This allows you to retain more actual
text on the screen.

With regard to Greek and other special characters, hp provides the same set as
does 300(1), except that "not" is approximated by a right arrow, and only the top
half of the integral sign is shown.

DIAGNOSTICS
''line too long" if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO

BUGS

300(1), greek(1).
col(1), eqn(1), nroff(1), tbl(1) in the DOCUMENTER'S WORKBENCH Software
Release 2.0 Technical Discussion and Reference Manual.

An "overstriking sequence" is defined as a printing character followed by a back­
space followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown under­
lined or in Inverse Video; otherwise, only the first printing character is shown
(again, underlined or in Inverse Video). Nothing special is done if a backspace
is adjacent to an ASCII control character. Sequences of control characters (e.g.,

131

HP(l)

132

(Terminal Filters Utilities) HP(l)

reverse line-feeds, backspaces) can make text "disappear"; in particular, tables
generated by tbl(I)- that contain vertical lines will often be missing the lines of
text that contain the "foot" of a vertical line, unless the input to hp is piped
through col(1).
Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

HPIO(l) (Terminal Filters Utilities) HPIO(l)

NAME
hpio - Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS
hpio -o[re] file ...

hpio -i[rta] [-n count]

DESCRIPTION
hpio is designed to take advantage of the tape drives on Hewlett-Packard 2645A
terminals. Up to 255 UNIX system files can be archived onto a tape cartridge for
off-line storage or for transfer to another UNIX system. The actual number of
files depends on the sizes of the files. One file of about 115,000 bytes will
almost fill a tape cartridge. Almost 300 1-byte files will fit on a tape, but the ter­
minal will not be able to retrieve files after the first 255. This manual page is
not intended to be a guide for using tapes on Hewlett-Packard 2645A terminals,
but tries to give enough information to be able to create and read tape archives
and to position a tape for access to a desired file in an archive.

hpio -0 (copy out) copies the specified file(s), together with path name and
status information to a tape drive on your terminal (which is assumed to be
positioned at the beginning of a tape or immediately after a tape mark). The left
tape drive is used by default. Each file is written to a separate tape file and ter­
minated with a tape mark. When hpio finishes, the tape is positioned following
the last tape mark written.

hpio -i (copy in) extracts a file(s) from a tape drive (which is assumed to be
positioned at the beginning of a file that was previously written by a hpio -0).
The default action extracts the next file from the left tape drive.

hpio always leaves the tape positioned after the last file read from or written to
the tape. Tapes should always be rewound before the terminal is turned off. To
rewind a tape depress the green function button, then function key 5, and then
select the appropriate tape drive by depressing either function key 5 for the left
tape drive or function key 6 for the right. If several files have been archived
onto a tape, the tape may be positioned at the beginning of a specific file by
depressing the green function button, then function key 8, followed by typing
the desired file number (1-255) with no RETURN, and finally function key 5 for
the left tape or function key 6 for the right. The desired file number may also
be specified by a signed number relative to the current file number.

The meanings of the available options are:

r Use the right tape drive.
e Include a checksum at the end of each file. The checksum is always

checked by hpio -i for each file written with this option by hpio -0.

n count The number of input files to be extracted is set to count. If this option
is not given, count defaults to 1. An arbitrarily large count may be
specified to extract all files from the tape. hpio will stop at the end of
data mark on the tape.

133

HPIO(l)

FILES

(Terminal Filters Utilities) HPIO(l)

t Print a table of contents only. No files are created. Printed information
gives the file size in bytes, the file name, the file access modes, and
whether or not a checksum is included for the file.

a Ask before creating a file. hpio -i normally prints the file size and
name, creates and reads in the file, and prints a status message when
the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option, the file size and name are printed followed by a ? Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

/dev /tty?? to block messages while accessing a tape

SEE ALSO
cu(1C).

DIAGNOSTICS
BREAK

134

An interrupt signal terminated processing.
Can't create 'file'.

File system access permissions did not allow file to be created.
Can't get tty options on stdout.

hpio was unable to get the input-output control settings associated with
the terminal.

Can't open 'file'.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the usual reason for this, but it may also occur if
the wrong tape drive is being accessed and no tape is present.

'file' not a regular file.
File is a directory or other special file. Only regular files will be copied
to tape.

Readcnt = rc, termcnt = tc.
hpio expected to read rc bytes from the next block on the tape, but the
block contained tc bytes. This is caused by having the tape improperly
positioned or by a tape block being mangled by interference from other
terminal I/O.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.
A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on a
tape that is write protected.

HPIO(l) (Terminal Filters Utilities) HPIO(l)

WARNINGS

BUGS

Tape I/0 operations may copy bad data if any other I/O involving the terminal
occurs. Do not attempt any type ahead while hpio is running. hpio turns off
write permissions for other users while it is running, but processes started asyn­
chronously from your terminal can still interfere. The most common indication
of this problem, while a tape is being written, is the appearance of characters on
the display screen that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.

hpio must have complete control of the attributes of the terminal to communi­
cate with the tape drives. Interaction with commands such as cu(lC) may inter­
fere and prevent successful operation.

Some binary files contain sequences that will confuse the terminal.

An hpio -i that encounters the end of data mark on the tape (e.g., scanning the
entire tape with hpio -itn 300), leaves the tape positioned after the end of data
mark. If a subsequent hpio -0 is done at this point, the data will not be retriev­
able. The tape must be repositioned manually using the terminal FIND FILE -1
operation (depress the green function button, function key 8, and then function
key 5 for the left tape or function key 6 for the right tape) before the hpio -0 is
started.

If an interrupt is received by hpio while a tape is being written, the terminal may
be left with the keyboard locked. If this happens, the terminal's RESET TER­
MINAL key will unlock the keyboard.

135

IO(lM) (Essential Utilities)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

IO(lM)

id outputs the user and group IDs and the corresponding names of the invoking
process. If the effective and real IDs are different, both are printed.

SEE ALSO

136

logname(l) in the User's Reference Manual.
getuid(2) in the Programmer's Reference Manual.

IPCRM(l) (lnterprocess Communication Utilities) IPCRM(l)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
ipcrm will remove one or more specified messages, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are
destroyed after the last detach.

-s semid removes the semaphore identifier semid from the system and des­
troys the set of semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data struc­
ture associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-8 semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

The details of the removes are described in msgctl(2), shmctl(2), and semctl(2).
The identifiers and keys may be found by using ipcs(l).

SEE ALSO
ipcs(l).
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2),
shmget(2), shmop(2) in the Programmer's Reference Manual.

137

IPCS(l) (Interprocess Communication Utilities) IPCS(l)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options 1

DESCRIPTION

138

ipcs prints certain information about active inter-process communication facili­
ties. Without options, information is printed in short format for message queues,
shared memory, and semaphores that are currently active in the system. Other­
wise, the information that is displayed is controlled by the following options:

-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only those
indicated will be printed. If none of these three are specified, information about
all three will be printed subject to these options:

-b Print biggest allowable size information. (Maximum number of bytes in
messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-0 Print information on outstanding usage. (Number of messages on queue
and total number of bytes in messages on queue for message queues and
number of processes attached to shared memory segments.)

-p Print process number information. (Process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process ID of creating process and process ID of last process
to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that changed
the access permissions for all facilities. Time of last msgsnd and last
msgrcv on message queues, last shmat and last shmdt on shared memory,
last semop(2) on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -0, -p,
and -t.)

-C corefile
Use the file corefile in place of /dev /kmem.

-N namelist
The argument will be taken as the name of an alternate namelist (funix
is the default).

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always appears.

IPCS(l) (Interprocess Communication Utilities) IPCS(l)

Note that these options only determine what information is provided for each
facility; they do not determine which facilities will be listed.

T (all)

ID (all)

KEY (all)

MODE (all)

OWNER (all)

GROUP (all)

CREATOR (a,c)

Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.

The key used as an argument to msgget, semget, or shmget to
create the facility entry. (Note: The key of a shared memory
segment is changed to IPC_PRIVATE when the segment has
been removed until all processes attached to the segment
detach it.)

The facility access modes and flags: The mode consists of 11
characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has been

removed. It will disappear when the last process
attached to the segment detaches it;

C if the associated shared memory segment is to be
cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner's permissions; the next
to permissions of others in the user-group of the facility entry;
and the last to all others. Within each set, the first character
indicates permission to read, the second character indicates
permission to write or alter the facility entry, and the last char­
acter is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

The login name of the owner of the facility entry.

The group name of the group of the owner of the facility
entry.

The login name of the creator of the facility entry.

139

IPCS(l)

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

140

(a,c)

(Interprocess Communication Utilities) IPCS(l)

The group name of the group of the creator of the facility
entry.

(a,o)

(a,o)

(a,b)

The number of bytes in messages currently outstanding on the
associated message queue.

The number of messages currently outstanding on the associ­
ated message queue.

The maximum number of bytes allowed in messages out­
standing on the associated message queue.

(a,p)
The process ID of the last process to send a message to the
associated queue.

(a,p)

(a,t)

The process ID of the last process to receive a message from
the associated queue.

The time the last message was sent to the associated queue.
(a,t)

(a,t)

The time the last message was received from the associated
queue.

The time when the associated entry was created or changed.
(a,o)

The number of processes attached to the associated shared
memory segment.

(a,b)
The size of the associated shared memory segment.

(a,p)
The process ID of the creator of the shared memory entry.

(a,p)

(a,t)

(a,t)

(a,b)

(a,t)

The process ID of the last process to attach or detach the
shared memory segment.

The time the last attach was completed to the associated
shared memory segment.

The time the last detach was completed on the associated
shared memory segment.

The number of semaphores in the set associated with the
semaphore entry.

The time the last semaphore operation was completed on the
set associated with the semaphore entry.

IPCS(l)

FILES
/unix
/dev/kmem
/etc/passwd
/etc/group

(Interprocess Communication Utilities)

system namelist
memory
user names
group names

IPCS(l)

SEE ALSO

BUGS

msgop(2), semop(2), shmop(2) in the Programmer's Reference Manual.

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

141

ISMPX(l) (AT&T Windowing Utilities)

NAME
ismpx - return windowing terminal state

SYNOPSIS
ismpx [-s]

DESCRIPTION

ISMPX(l)

The ismpx command reports whether its standard input is connected to a multi­
plexed xt(7) channel; i.e., whether it's running under layers(l) or not. It is useful
for shell scripts that download programs to a windowing terminal or depend on
screen size.

ismpx prints yes and returns 0 if invoked under layers(I), and prints no and
returns 1 otherwise.

-s Do not print anything; just return the proper exit status.

EXIT STATUS
Returns 0 if invoked under layers(I), 1 if not.

SEE ALSO
layers(I), jwin(I).
xt(7) in the System Administrator's Reference Manual.

EXAMPLE

142

if ismpx -s
then

jwin
fi

JOIN(1) (Directory and File Management Utilities) JOIN(1)

NAME
join - relational database operator

SYNOPSIS
join [options] file 1 file2

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by the
lines of file 1 and file2. If filel is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line [see sort(l)].

There is one line in the output for each pair of lines in file 1 and file2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from file 1 , then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, mul­
tiple separators count as one field separator, and leading separators are ignored.
The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1 or
a 2 referring to either filel or file2, respectively. The following options are
recognized:

-an In addition to the normal output, produce a line for each unpairable line
in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each
file. Fields are numbered starting with 1.

-0 list Each output line comprises the fields specified in list, each element of
which has the form n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in
a line is significant. The character c is used as the field separator for
both input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO

BUGS

awk(l), comm(l), sort(l), uniq(l).

With default field separation, the collating sequence is that of sort -b; with -t,
the sequence is that of a plain sort.

143

JOIN(l)

144

(Directory and Pile Management Utilities) JOIN(l)

The conventions of join, sort, comm, uniq and awk(l) are wildly incongruous.

Filenames that are numeric may cause conflict when the -0 option is used right
before listing filenames.

JTERM(l) (AT&T Windowing Utilities) JTERM(l)

NAME
jterm - reset layer of windowing terminal

SYNOPSIS
jterm

DESCRIPTION
The jterm command is used to reset a layer of a windowing terminal after down­
loading a terminal program that changes the terminal attributes of the layer. It
is useful only under layers(l). In practice, it is most commonly used to restart
the default terminal emulator after using an alternate one provided with a
terminal-specific application package. For example, on the AT&T Teletype 5620
DMD terminal, after executing the hp2621(1) command in a layer, issuing the
jterm command will restart the default terminal emulator in that layer.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

NOTE
The layer that is reset is the one attached to standard error; that is, the window
you are in when you type the jterm command.

SEE ALSO
layers(l).

145

JWIN(1) (AT&T Windowing Utilities)

NAME
jwin - print size of layer

SYNOPSIS
jwin

DESCRIPTION

JWIN(l)

jwin runs only under /ayers(l) and is used to determine the size of the layer
associated with the current process. It prints the width and the height of the
layer in bytes (number of characters across and number of lines, respectively).
For bit-mapped terminals only, it also prints the width and height of the layer in
bits.

EXIT STATUS
Returns 0 on successful completion, 1 otherwise.

DIAGNOSTICS
If /ayers(l) has not been invoked, an error message is printed:

jwin: not mpx

NOTE
The layer whose size is printed is the one attached to standard input; that is, the
window you are in when you type the jwin command.

SEE ALSO
layers(l).

EXAMPLE

146

jwin
bytes:
bits:

86 25
780 406

KILL(l) (Essential Utilities) KILL(l)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo 1 PID ...

DESCRIPTION
kill sends signal 15 (terminate) to the specified processes. This will normally kill
processes that do not catch or ignore the signal. The process number of each
asynchronous process started with & is reported by the shell (unless more than
one process is started in a pipeline, in which case the number of the last process
in the pipeline is reported). Process numbers can also be found by using ps(I).

The details of the kill are described in kill(2). For example, if process number 0
is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sent
instead of terminate (see signal(2». In particular "kill -9 ... " is a sure kill.

SEE ALSO
ps(I), sh(I).
kill(2), signal(2) in the Programmer's Reference Manual.

147

LAYERS(l) (AT&T Windowing Utilities) LAYERS(l)

NAME
layers - layer multiplexor for windowing terminals

SYNOPSIS
layers [-s] [-t] [-d] [-p] [-f file] ~ayersys-prgm]

DESCRIPTION

148

layers manages asynchronous windows (see layers(5» on a windowing terminal.
Upon invocation, layers finds an unused xt(7) channel group and associates it
with the terminal line on its standard output. It then waits for commands from
the terminal.

Command-line options:

-s Reports protocol statistics on standard error at the end of the session
after you exit from layers. The statistics may be printed during a session
by invoking the program xts(lM).

-t Turns on xt(7) driver packet tracing, and produces a trace dump on
standard error at the end of the session after you exit from layers. The
trace dump may be printed during a session by invoking the program
xtt(lM).

-d If a firmware patch has been downloaded, prints out the sizes of the
text, data, and bss portions of the firmware patch on standard error.

-p If a firmware patch has been downloaded, prints the down-loading pro­
tocol statistics and a trace on standard error.

-f file Starts layers with an initial configuration specified by file. Each line of
the file represents a layer to be created, and has the following format:

The coordinates specify the size and position of the layer on the screen
in the terminal's coordinate system. If all four are 0, the user must
define the layer interactively. commandJist, a list of one or more com­
mands, must be provided. It is executed in the newlayer using the
user's shell (by executing: $SHELL -i -c "commandJist"). This means
that the last command should invoke a shell, such as jbinjsh. (If the
last command is not a shell, then, when the last command has com­
pleted, the layer will not be functional.)

layersys-prgm
A file containing a firmware patch that the layers command downloads
to the terminal before layers are created and commandJist is executed.

Each layer is in most ways functionally identical to a separate terminal. Charac­
ters typed on the keyboard are sent to the standard input of the UNIX system
process attached to the current layer (called the host process), and characters
written on the standard output by the host process appear in that layer. When a
layer is created, a separate shell is established and bound to the layer. If the
environment variable SHELL is set, the user will get that shell: otherwise,
jbinjsh will be used. In order to enable communications with other users via
write(l), layers invokes the command relogin(lM) when the first layer is created.

LAYERS(l) (AT&T Windowing Utilities) LAYERS(l)

relogin(lM) will reassign that layer as the user's logged-in terminal. An alterna­
tive layer can be designated by using relogin(lM) directly. layers will restore the
original assignment on termination.

Layers are created, deleted, reshaped, and otherwise manipulated in a terminal­
dependent manner. For instance, the AT&T Teletype 5620 DMD terminal pro­
vides a mouse-activated pop-up menu of layer operations. The method of
ending a layers session is also defined by the terminal.

If a user wishes to take advantage of a terminal-specific application software
package, the environment variable DMD should be set to the pathname of the
directory where the package was installed. Otherwise DMD should not be set.

EXAMPLE

NOTES

layers -f startup

where startup contains

8 8 700 200 date ; pwd ; exec $SHELL
8 300 780 850 exec $SHELL

The xt(7) driver supports an alternate data transmission scheme known as
ENCODING MODE. This mode makes layers operation possible even over data
links which intercept control characters or do not transmit 8-bit characters.
ENCODING MODE is selected either by setting a configuration option on your
windowing terminal or by setting the environment variable DMDLOAD to the
value hex before running layers:

export DMDLOAD; DMDLOAD=hex

If, after executing layers -£ file, the terminal does not respond in one or more of
the layers, often the last command in the command-list for that layer did not
invoke a shell. .

WARNING

FILES

To access this version of layers, make sure /usr /bin appears before any other
directory, such as $DMD /bin, you have in your path that contains a layers pro­
gram. (For information about defining the shell environmental variable PATH in
your .profile, see profile(4)) Otherwise, if there is a terminal-dependent version of
layers, you may get it instead of the correct one.

When invoking layers with the -s, -t, -d, or -p options, it is best to redirect
standard error to another file to save the statistics and tracing output (e.g.,
layers -s 2>stats); otherwise all or some of the output may be lost.

/dev /xt??[0-7]
/usr/lib/layersys/lsys.8;7;3
$DMD /lib /layersys/lsys.8;?;?

149

LAYERS(l) (AT&T Windowing Utilities) LAYERS(l)

SEE ALSO

150

sh(I), write(I).
layers(5), libwindows(3X) in the Programmer's Reference Manual.
relogin(lM), xt(7), xts(lM), xtt(IM), wtinit(IM) in the System Administrator's
Reference Manual.

LINE(l)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

(User Environment Utilities) LINE(l)

line copies one line (up to a hew-line) from the standard input and writes it on
the standard output. It returns an exit code of 1 on EOF and always prints at
least a new-line. It is often used within shell files to read from the user's ter­
minal.

SEE ALSO
sh(l).
read(2) in the Programmer's Reference Manual.

151

LOCATE(l) (Help Utilities) LOCATE(l)

NAME
locate - identify a UNIX system command using keywords

SYNOPSIS
[help 1 locate
[help 1 locate [keyword I [keyword2 1 ... 1

DESCRIPTION
The locate command is part of the UNIX system Help Facility, and provides on­
line assistance with identifying UNIX system commands.

Without arguments, the initial locate screen is displayed from which the user
may enter keywords functionally related to the action of the desired UNIX
system commands they wish to have identified. A user may enter keywords and
receive a list of UNIX system commands whose functional attributes match those
in the keyword list, or may exit to the shell by typing q (for "quit"). For
example, if you wish to print the contents of a file, enter the keywords "print"
and "file". The locate command would then print the names of all commands
related to these keywords.

Keywords may also be entered directly from the shell, as shown above. In this
case, the initial screen is not displayed, and the resulting command list is
printed.

More detailed information on a command in the list produced by locate can be
obtained by accessing the usage module of the UNIX system Help Facility.
Access is made by entering the appropriate menu choice after the command list
is displayed.

From any screen in the Help Facility, a user may execute a command via the
shell (sh(I» by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt.
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file (see
profile (4»: "export SCROLL ; SCRoLL=no". If you later decide that scrol­
ling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage, glos­
sary, and help) is located on their respective manual pages.

SEE ALSO
glossary(I), help(I), sh(I), starter(I), usage(I).
term(S) in the Programmer's Reference Manual.

WARNINGS

152

If the shell variable TERM (see sh(l» is not set in the user's .profile file, then
TERM will default to the terminal value type 4S0 (a hard-copy terminal). For a
list of valid terminal types, refer to term(S).

LOGIN(l) (Essential Utilities) LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [name [env-var ... II

DESCRIPTION
The login command is used at the beginning of each terminal session and allows
you to identify yourself to the system. It may be invoked as a command or by
the system when a connection is first established. Also, it is invoked by the
system when a previous user has terminated the initial shell by typing a cntrl-d
to indicate an "end-of-file." (See How to Get Started at the beginning of this
volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial command interpreter.
This is accomplished by typing:

exec login
from the initial shell.

login asks for your user name (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during the
typing of your password, so it will not appear on the written record of the ses­
sion.

At some installations, an option may be invoked that will require you to enter a
second "dialup" password. This will occur only for dial-up connections, and
will be prompted by the message "dialup password:". Both passwords are
required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure jetejprofile
is performed, the message-of-the-day, if any, is printed, the user-ID, the group­
ID, the working directory, and the command interpreter (usually sh(l» is initial­
ized, and the file .profile in the working directory is executed, if it exists. These
specifications are found in the jetejpasswd file entry for the user. The name of
the command interpreter is - followed by the last component of the interpreter's
path name (Le., -sh). If this field in the password file is empty, then the default
command interpreter, jbinjsh is used. If this field is "*", then the named direc­
tory becomes the root directory, the starting point for path searches for path
names beginning with a j. At that point login is re-executedat the new level
which must have its own root structure, including jetejlogin and jetejpasswd.

The basic environment is initialized to:

HOME=your-login-directory
PATH=:jbin:jusrjbin
SHELL=last-field-of-passwd-entry
MAIL= jusr jmailjyour-Iogin-name
TZ=timezone-specification

The environment may be expanded or modified by supplying additional argu­
ments to login, either at execution time or when login requests your login name.

153

LOGIN(l) (Essential Utilities) LOGIN(l)

FILES

The arguments may take either the form xxx or xxx-yyy. Arguments without an
equal sign are placed in the environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an ... are placed into the environment
without modification. If they already appear in the environment, then they
replace the older value. There are two exceptions. The variables PATH and
SHELL cannot be changed. This prevents people, logging into restricted shell
environments, from spawning secondary shells which are not restricted. Both
login and getty understand simple single-character quoting conventions. Typing
a backslash in front of a character quotes it and allows the inclusion of such
things as spaces and tabs.

/etc/utmp
/etc/wtmp
/usr /mail/your-name
/etc/motd
/etc/passwd
/etc/profile
.profile

accounting
accounting
mailbox for user your-name
message-of-the-day
password file
system profile
user's login profile

SEE ALSO
mail(l), newgrp(l), sh(l), su(lM).
passwd(4), profile(4), environ(S) in the Programmer's Reference Manual.

DIAGNOSTICS

154

login incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX system pro­
gramming counselor.
No utmp entry. You must exec "login" from the lowest level "sh" if you attempted to
execute login as a cominand without using the shell's exec internal command or
from other than the initial shell.

LOGNAME(l) (User Environment Utilities)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(l)

/ogname returns the contents of the environment variable $LOGNAME, which is
set when a user logs into the system.

FILES
jete/profile

SEE ALSO
env(l), login(l).
logname(3X), environ(5) in the Programmer's Reference Manual.

155

LP(l) (Line Printer Spooling Utilities) LP(l)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
lp [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-ttitle] [-w] files
cancel [ids] [printers]

DESCRIPTION

156

lp arranges for the named files and associated information (collectively called a
request) to be printed by a line printer. If nO file names are mentioned, the stan­
dard input is assumed. The file name - stands for the standard input and may
be supplied on the command line in conjunction with named files. The order in
which files appear is the same order in which they will be printed.

lp associates a unique id with each request and prints it on the standard output.
This id can be used later to cancel (see cancel) or find the status (see lpstat(l)) of
the request.

The following options to lp may appear in any order and may be intermixed
with file names:

-c Make copies of the files to be printed immediately when lp is
invoked. Normally, files will not be copied, but will be linked
whenever possible. If the -c option is not given, then the user
should be careful not to remove any of the files before the request
has been printed in its entirety. It should also be noted that in the
absence of the -c option, any changes made to the named files after
the request is made but before it is printed will be reflected in the
printed output.

-ddest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed only On
that specific printer. If dest is a class of printers, then the request
will be printed on the first available printer that is a member of the
class. Under certain conditions (printer unavailability, file space lim­
itation, etc.), requests for specific destinations may not be accepted
(see accept(lM) and lpstat(l)). By default, dest is taken from the
environment variable LPDEST (if it is set). Otherwise, a default des­
tination (if one exists) for the computer system is used. Destination
names vary between systems (see lpstat(l)).

-m Send mail (see mail(1) after the files have been printed. By default,
nO mail is sent upon normal completion of the print request.

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several such
options may be collected by specifying the -0 keyletter more than
once. For more information about what is valid for options, see
Models in Ipadmin(IM).

-s Suppress messages from lp(l) such as "request id is ... ".

-ttitle Print title on the banner page of the output.

LP(l)

FILES

(Line Printer Spooling Utilities) LP(l)

-w Write a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the lp(l) command. The
command line arguments may be either request ids (as returned by lp(l» or
printer names (for a complete list, use lpstat(l». Specifying a request id cancels
the associated request even if it is currently printing. Specifying a printer cancels
the request which is currently printing on that printer. In either case, the cancel­
lation of a request that is currently printing frees the printer to print its next
available request.

/usr/spoolflp/*

SEE ALSO
enable(l), lpstat(l), mail(l).
accept(lM), Ipadmin(lM), Ipsched(lM) in the System Administrator's Reference
Manual.

157

LPSTAT(l) (Line Printer Spooling Utilities) LPSTAT(l)

NAME
lpstat - print LP status information

SYNOPSIS
Ip8tat [options]

DESCRIPTION

FILES

lpstat prints information about the current status of the LP spooling system.

If no options are given, then Ips tat prints the status of all requests made to lp(l)
by the user. Any arguments that are not options are assumed to be request ids
(as returned by lp). Ips tat prints the status of such requests. Options may
appear in any order and may be repeated and intermixed with other arguments.
Some of the keyletters below may be followed by an optional list that can be in
one of two forms: a list of items separated from one another by a comma, or a
list of items enclosed in double quotes and separated from one another by a
comma andjor one or more spaces. For example:

-u"userl, user2, user3"

The omission of a list following such keyletters causes all information relevant
to the keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

-a[list] Print acceptance status (with respect to lp) of destinations for requests.
List is a list of intermixed printer names and class names.

-c[list] Print class names and their members. List is a list of class names.

-d Print the system default destination for lp.

-or list] Print the status of output requests. List is a list of intermixed printer
names, class names, and request ids.

-p[list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-8 Print a status summary, including the system default destination, a list
of class names and their members, and a list of printers and their
associated devices.

-t Print all status information.

-u[list] Print status of output requests for users. List is a list of login names.

-v[list] Print the names of printers and the path names of the devices associ-
ated with them. List is a list of printer names.

jusrjspooljlpj*

SEE ALSO
enable(l), lp(l).

158

LS(l) (Essential Utilities) LS(l)

NAME
Is - list contents of directory

SYNOPSIS
Is [-RadCxmlnogrtucpFbqisf 1 [names]

DESCRIPTION
For each directory argument, Is lists the contents of the directory; for each file
argument, Is repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments appear before directories and their con­
tents.

There are three major listing formats. The default format is to list one entry per
line, the -C and -x options enable multi-column formats, and the -m option
enables stream output format. In order to determine output formats for the -C,
-x, and -m options, Is uses an environment variable, COLUMNS, to determine
the number of character positions available on one output line. If this variable is
not set, the terminfo(4) database is used to determine the number of columns,
based on the environment variable TERM. If this information cannot be
obtained, 80 columns are assumed.

The Is command has the following options:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are nor-
mally not listed.

-d If an argument is a directcry, list only its name (not its contents); often
used with -I to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down the
page.

-m Stream output format; files are listed across the page, separated by
commas.

-I List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file
is a special file, the size field will instead contain the major and minor
device numbers rather than a size.

-n The same as -I, except that the owner's UID and group's GID numbers
are printed, rather than the associated character strings.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time stamp (latest first) instead of by name. The default is the
last modification time. (See -n and -c.)

159

LS(l)

160

-u

-c

-p
-F

-b
-q

-i

-s
-£

(Essential Utilities) LS(l)

Use time of last access instead of last modification for sorting (with the
-t option) or printing (with the -I option).

Use time of last modification of the i-node (file created, mode changed,
etc.) for sorting (-t) or printing (-I).

Put a slash (j) after each filename if that file is a directory.

Put a slash (j) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

Force printing of non-graphic characters to be in the octal \ddd notation.

Force printing of non-graphic characters in file names as the character
(7).

For each file, print the i-number in the first column of the report.

Give size in blocks, including indirect blocks, for each entry.

Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -1, -t, -s, and -r, and turns
on -ai the order is the order in which entries appear in the directory.

The mode printed under the -I option consists of ten characters. The first char­
acter may be one of the following:

d the entry is a directory;
b the entry is a block special file;
c the entry is a character special file;
p the entry is a fifo (a.k.a. "named pipe") special file;

the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first
set refers to the owner's permissions; the next to permissions of others in: the
user-group of the file; and the last to all others.· Within each set, the three char­
acters indicate permission to read, to write, and to execute the file as a program,
respectively. For a directory, "execute" permission is interpreted to mean permis­
sion to search the directory for a specified file.

Is -I (the long list) prints its output as follows:

-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a good deal of information. Reading from
right to left, you see that the current directory holds one file, named "part2."
Next, the last time that file's contents were modified was 9:42 A.M. on May 16.
The file is moderately sized, containing 10,876 characters, or bytes. The owner
of the file, or the user, belongs to the group "dev" (perhaps indicating "develop­
ment"), and his or her login name is "smith." The number, in this case "1," indi­
cates the number of links to file "part2." Finally, the row of dash and letters tell
you that user, group, and others have permissions to read, write, execute "part2."

LS(l) (Essential Utilities) LS(l)

The execute (x) symbol here occupies the third position of the three-character
sequence. A - in the third position would have indicated a denial of execution
permissions.

The permissions are indicated as follows:

r the file is readable
w the file is writable
x the file is executable

the indicated permission is not granted
I mandatory locking will occur during access (the set-group-ID bit is

on and the group execution bit is off)
s the set-user-ID or set-group-ID bit is on, and the corresponding user

or group execution bit is also on
S undefined bit-state (the set-user-ID bit is on and the user execution

bit if off)
t the 1000 (octal) bit, or sticky bit, is on (see chmod(l», and execu­

tion is on
T the 1000 bit is turned on, and execution is off (undefined bit-state)

For user and group permissions, the third pOSition is sometimes occupied by a
character other than x or -. s also may occupy this position, referring to the
state of the set-ID bit, whether it be the user's or the group's. The ability to
assume the same ID as the user during execution is, for example, used during
login when you begin as root but need to assume the identity of the user stated
at "login."

In the case of the sequence of group permissions, I may occupy the third posi­
tion. I refers to mandatory file and record locking. This permission describes a
file's ability to allow other files to lock its reading or writing permissions during
access.

For others permissions, the third position may be occupied by t or T. These
refer to the state of the sticky bit and execution permissions.

EXAMPLES
The first set of examples refers to permissions:

-rwxr--r--

This describes a file that is readable, writable, and executable by the user and
readable by the group and others.

-rwsr-xr-x

The second example describes a file that is readable, writable, and executable by
the user, readable and executable by the group and others, and allows its user-ID
to be assumed, during execution, by the user presently executing it.

-rw-rwl---

161

LS(l)

FILES

(Essential Utilities) LS(l)

This example describes a file that is readable and writable only by the user and
the group and can be locked during access.

Is -a

This command will print the names of all files in the current directory, including
those that begin with a dot (.), which normally do not print.

Is -aisn

This command will provide you with quite a bit of information including all
files, including non-printing ones (a), the i-number-the memory address of the
i-node associated with the file-printed in the left-hand column (i); the size (in
blocks) of the files, printed in the column to the right of the i-numbers (s);
finally, the report is displayed in the numeric version of the long list, printing
the UID (instead of user name) and GID (instead of group name) numbers associ­
ated with the files.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

/etc/passwd
/etc/group
/usr/lib/terminfo/? /*

user IDs for Is -I and Is -0

group IDs for Is -I and Is -g
terminal information database

SEE ALSO

NOTES

BUGS

162

chmod(I), find(l).

In a Remote File Sharing environment, you may not have the permissions that
the output of the Is -I command leads you to believe. For more information see
the "Mapping Remote Users" section of Chapter 10 of the System Administrator's
Guide.

Unprintable characters in file names may confuse the columnar output options.

MACHID(l) (Essential/User Environment Utilities) MACHID(l)

NAME
machid: pdpll, u3b, u3b2, u3bS, vax - get processor type truth value

SYNOPSIS
pdpll
u3b

u3b2

u3bS

vax

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on a
processor that the command name indicates.

pdpll True if you are on a PDP-ll/45 or PDP-ll/70.

u3b True if you are on a 3B20 computer.

u3b2 True if you are on a 3B2 computer.

u3bS True if you are on a 3BS computer.

vax True if you are on a VAX-ll/750 or VAX-ll/780.

The commands that do not apply will return a false (non-zero) value. These
commands are often used within makefiles (see make(l)) and shell procedures
(see sh(l)) to increase portability.

SEE ALSO
sh(l), test(l), true(l).
make(l) in the Programmer's Reference Manual.

163

MAIL(l) (Essential Utilities) MAIL(l)

NAME
mail, nnail - send mail to users or read mail

SYNOPSIS
Sending mail:

mail [-oswt 1 persons

rmail [-oswt 1 persons

Reading mail:
mail [-ehpqr 1 [-f file 1 [-F persons 1

DESCRIPTION
Sending mail:

164

The command-line arguments that follow affect SENDING mail:

-0 suppresses the address optimization facility.

-s suppresses the addition of a <new-line> at the top of the letter being
sent. See WARNINGS below.

-w causes a letter to be sent to a remote user without waiting for the com­
pletion of the remote transfer program.

-t causes a To: line to be added to the letter, showing the intended reci-
pients.

A person is usually a user name recognized by login(l). When persons are
named, mail assumes a message is being sent (except in the case of the /-F
option). It reads from the standard input up to an end-of-file (control-d), or
until it reads a line consisting of just a period. When either of those signals is
received, mail adds the letter to the mailfile for each person. A letter is a message
preceded by a postmark. The message is preceded by the sender's name and a
postmark. A"postmark consists of one or more 'From' lines followed by a blank
line (unless the -s argument was used).

If a letter is found to be undeliverable, it is returned to the sender with diagnos­
tks that indicate the location and nature of the failure. If mail is interrupted
during input, the file dead.1etter is saved to allow editing and resending.
dead.1etter is recreated every time it is needed, erasing any previous contents.

rmail only permits the sending of mail; uucp(lC) uses rmail as a security precau­
tion.

If the local system has the Basic Networking Utilities installed, mail may be sent
to a recipient on a remote system. Prefix person by the system name and excla­
mation point. A series of system names separated by exclamation points can be
used to direct a letter through an extended network.

Reading Mail:
The command-line arguments that follow affect READING mail:

-e causes mail not to be printed. An exit value of 0 is returned if the user
has mail; otherwise, an exit value of 1 is returned.

-h causes a window of headers to be displayed rather than the latest mes­
sage. The display is followed by the '1' prompt.

MAIL(l) (Essential Utilities) MAIL(l)

-p causes all messages to be printed without prompting for disposition.
-q causes mail to terminate after interrupts. Normally an interrupt causes

only the termination of the message being printed.
-r causes messages to be printed in first-in, first-out order.
-ffile causes mail to use file (e.g., mbox) instead of the default mailfile.
-Fpersons

entered into an empty mailbox, causes all incoming mail to be forwarded
to persons.

mail, unless otherwise influenced by command-line arguments, prints a user's
mail messages in last-in, first-out order. For each message, the user is prompted
with a 1, and a line is read from the standard input. The following commands
are available to determine the disposition of the message:

<new-line>, +, or n

d, or dp

d#

dq
h

h#
ha
hd

p

a

r [users]

8 [files 1
y

u[#]
w [files]

m [persons]
q, or ctl-d

x

Go on to next message.

Delete message and go on to next message.

Delete message number #. Do not go on to next mes­
sage.

Delete message and quit mail.
Display a window of headers around current message.

Display header of message number #.

Display headers of ALL messages in the user's mailfile.
Display headers of messages scheduled for deletion.

Print current message again.

Print previous message.

Print message that arrived during the mail session.

Print message number #.

Reply to the sender, and other user(s), then delete the
message.

Save message in the named files (mbox is default).

Same as save.

Undelete message number # (default is last read).

Save message, without its top-most header, in the
named files (mbox is default).

Mail the message to the named persons.
Put undeleted mail back in the mailfile and quit mail.
Put all mail back in the mailfile unchanged and exit
mail.

165

MAIL(1)

FILES

(Essential Utilities) MAIL(l)

!command Escape to the shell to do command.

? Print a command summary.

When a user logs in, the presence of mail, if any, is indicated. Also, notification
is made if new mail arrives while using mail.

The mailfile may be manipulated in two ways to alter the function of mail. The
other permissions of the file may be read-write, read-only, or neither read nor
write to allow different levels of privacy. If changed to other than the default,
the file will be preserved even when empty to perpetuate the desired permis­
sions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to
person. A "Forwarded by ... " message is added to the header. This is especially
useful in a multi-machine environment to forward all of a person's mail to a
Single machine, and to keep the recipient informed if the mail has been for­
warded. Installation and removal of forwarding is done with the -F option.

To forward all of one's mail to systema!user enter:

mail -Fsystema!user

To forward to more than one user enter:

mail -F"user1 ,systema!user2,systema!systemb!user3"

Note that when more than one user is specified, the whole list should be
enclosed in double quotes so that it may all be interpreted as the operand of the
-F option. The list can be up to 1024 bytes; either commas or white space can
be used to separate users.

To remove forwarding enter:

mail -F ""

The pair of double quotes is mandatory to set a NULL argument for the -F
option.

In order for forwarding to work properly the mailfile should have "mail" as
group ID, and the group permission should be read-write.

/etc/passwd
/usr/mail/user
$HOME/mbox
$MAIL
/tmp/ma*
/usr/mail/*.lock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mailfile
saved mail
variable containing path name of mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO

166

login(1), mailx(1), write(1).
Users Guide.
System Administrator's Guide.

MAIL(l) (Essential Utilities) MAIL(l)

WARNING

BUGS

The "Forward to person" feature may result in a loop, if sysl!userb forwards to
sys2!userb and sys2!userb forwards to sysl!userb. The symptom is a message
saying "unbounded ... saved mail in dead.letter."

The -s option should be used with caution. It allows the text of a message to
be interpreted as part of the postmark of the letter, possibly causing confusion to
other mail programs. To allow compatibility with mailx(l), if the first line of the
message is "Subject: ... ", the addition of a <newline> is suppressed whether or
not the -8 option is used.

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced
by typing a p.

167

MAILX(l) (Essential Utilities) MAILX(l)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options] [name ...]

DESCRIPTION

168

The command mailx provides a comfortable, flexible environment for sending
and receiving messages electronically. When reading mail, mailx provides com­
mands to facilitate saving, deleting, and responding to messages. When sending
mail, mailx allows editing, reviewing and other modification of the message as it
is entered.

Many of the remote features of mailx will only work if the Basic Networking
Utilities are installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox for
that user. When mailx is called to read messages, the mailbox is the default place
to find them. As messages are read, they are marked to be moved to a secon­
dary file for storage, unless specific action is taken, so that the messages need
not be seen again. This secondary file is called the mbox and is normally located
in the user's HOME directory (see "MBOX" (ENVIRONMENT VARIABLES) for a
description of this file). Messages can be saved in other secondary files named
by the user. Messages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx com­
mand. Messages in the secondary file can then be read or otherwise processed
using the same COMMANDS as in the primary mailbox. This gives rise within
these pages to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments are
taken to be destinations (recipients). If no recipients are specified, mailx will
attempt to read messages from the mailbox. Command line options are:

-e Test for presence of mail. mailx prints nothing and exits
with a successful return code if there is mail to read.

-f [filename] Read messages from filename instead of mailbox. If no
filename is specified, the mbox is used.

-F Record the message in a file named after the first reci­
pient. Overrides the "record" variable, if set (see
ENVIRONMENT VARIABLES).

-h number The number of network "hops" made so far. This is pro­
vided for network software to avoid infinite delivery
loops. (See addsopt under ENVIRONMENT VARIABLES)

-H Print header summary only.
-i Ignore interrupts. See also "ignore" (ENVIRONMENT

VARIABLES).
-n Do not initialize from the system default mailx.rc file.
-N Do not print initial header summary.
-r address Pass address to network delivery software. All tilde com-

mands are disabled. (See addsopt under ENVIRONMENT
VARIABLES)

MAILX(l)

-s subject
-u user

-u

(Essential Utilities) MAILX(l)

Set the Subject header field to subject.
Read user's mailbox. This is only effective if user's

mailbox is not read protected.
Convert uucp style addresses to internet standards.
Overrides the "conv" environment variable. (See
addsopt under ENVIRONMENT VARIABLES)

When reading mail, mailx is in command mode. A header summary of the first
several messages is displayed, followed by a prompt indicating mailx can accept
regular commands (see COMMANDS below). When sending mail, mailx is in
input mode. If no subject is specified on the command line, a prompt for the
subject is printed. (A "subject" longer than 1024 characters will cause mailx to
dump core) As the message is typed, mailx will read the message and store it in
a temporary file. Commands may be entered by beginning a line with the tilde
n escape character followed by a single command letter and optional argu­
ments. See TILDE ESCAPES for a summary of these commands.

At any time, the behavior of mailx is governed by a set of environment variables.
These are flags and valued parameters which are set and cleared via the set and
unset commands. See ENVIRONMENT VARIABLES below for a summary of these
parameters.

Recipients listed on the command line may be of three types: login names, shell
commands, or alias groups. Login names may be any network address,
including mixed network addressing. If mail is found to to undeliverable, an
attempt is made to return it to the sender's mailbox. If the recipient name begins
with a pipe symbol (I), the rest of the name is taken to be a shell command to
pipe the message through. This provides an automatic interface with any pro­
gram that reads the standard input, such as Ip(1) for recording outgoing mail on
paper. Alias groups are set by the alias command (see COMMANDS below) and
are lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input mode,
commands are recognized by the escape character, and lines not treated as com­
mands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a current message, marked by a right angle bracket (» in the header
summary. Many commands take an optional list of messages (msglist) to
operate on. The default for msglist is the current message. A msglist is a list of
message identifiers separated by spaces, which may include:

n

$
*

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.

169

MAILX(l) (Essential Utilities) MAILX(l)

170

n-m An inclusive range of message numbers.
user All messages from user.
jstring All messages with string in the subject line (case ignored).
:c All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this
type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the com­
mand involved. File names, where expected, are expanded via the normal shell
conventions (see sh(l». Special characters are recognized by certain commands
and are documented with the commands below.

At start-up time, mailx tries to execute commands from the optional system-wide
file (fusrjlibjmailxjmailx.rc) to initialize certain parameters, then from a
private start-up file ($HOMEj.mailrc) for personalized variables. With the
exceptions noted below, regular commands are legal inside start-up files. The
most common use of a start-up file is to set up initial display options and alias
lists. The following commands are not legal in the start-up file: !, Copy, edit,
followup, Followup, hold, mail, preserve, reply, Reply, shell, and visual. An
error in the start-up file causes the remaining lines in the file to be ignored. The
.mailrc file is optional, and must be constructed locally.

COMMANDS
The following is a complete list of mailx commands:

!shell-command
Escape to the shell. See "SHELL" (ENVIRONMENT VARIABLES).

comment
Null command (comment). This may be useful in .mailrc files.

Print the turrent message number.

?
Prints a summary of commands.

alias alias name ...
group alias name '"

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to a
message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alter­
nate names. See also "allnet" (ENVIRONMENT VARIABLES).

MAILX(l) (Essential Utilities) MAILX(l)

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved. Oth­
erwise equivalent to the save command.

Copy [msglist]
Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set, the next message
after the last one deleted is printed (see ENVIRONMENT VARIABLES).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" and
"cc." The fields are included when the message is saved. The Print and
Type commands override this command.

dp [msglist]
dt [msglist]

Delete the specified messages from the mailbox and print the next mes­
sage after the last one deleted. Roughly equivalent to a delete command
followed by a print command.

echo string ...
Echo the given strings (like echo(l)).

edit [msglist]

exit
xit

Edit the given messages. The messages are placed in a temporary file
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES). Default editor is ed(l).

Exit from mailx, without changing the mailbox. No messages are saved
in the mbox (see also quit).

171

MAILX(l) (Essential Utilities) MAILX(l)

172

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with
the following substitutions:

% the current mailbox.
%user

the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" variable
(see ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" variable,
if set. See also the Followup, Save, and Copy commands and "out­
folder" (ENVIRONMENT VARIABLES).

Followup [msglist]
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from the
first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the followup,
Save, and Copy commands and "outfolder" (ENVIRONMENT VARIABLES).

from [msglist]
Prints the header summary for the specified messages.

group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

headers [message]

help

Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRON­
MENT VARIABLES). See also the z command.

Prints a summary of commands.

hold [msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

MAILX(l) (Essential Utilities) MAILX(l)

if sir
mail-commands
else
mail-commands
endif

Conditional execution, where s will execute following mail-commands, up
to an else or endif, if the program is in send mode, and r causes the
mail-commands to be executed only in receive mode. Useful in the
.mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" and
"cc." All fields are included when the message is saved. The Print and
Type commands override this command.

Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox save file
when mailx terminates normally. See "MBOX" (ENVIRONMENT VARI­
ABLES) for a description of this file. See also the exit and quit com­
mands.

next [message]
Go to next message matching message. A msglist may be specified, but
in this case the first valid message in the list is the only one used. This
is useful for jumping to the next message from a specific user, since the
name would be taken as a command in the absence of a real command.
See the discussion of msglists above for a description of possible mes­
sage specifications.

pipe [msglist] [shell-command]
I [msglist] [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current mes­
sage is piped through the command specified by the value of the "cmd"
variable. If the "page" variable is set, a form feed character is inserted
after each message (see ENVIRONMENT VARIABLES).

173

MAILX(l) (Essential Utilities) MAILX(l)

174

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]

quit

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the
command specified by the "PAGER" variable. The default command is
pg(l) (see ENVIRONMENT VARIABLES).

Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in a
file are deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the msglist. The sub­
ject line is taken from the first message. If "record" is set to a file name,
the response is saved at the end of that file (see ENVIRONMENT VARI­
ABLES).

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the mes­
sage. If "record" is set to a file name, the response is saved at the end of
that file (see ENVIRONMENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, followup, and Followup commands and "outfolder" (ENVIRON­
MENT VARIABLES).

save [filename]
save [msglist] filename

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when mailx ter­
minates unless "keepsave" is set (see also ENVIRONMENT VARIABLES and
the exit and quit commands).

MAILX(l) (Essential Utilities) MAILX(l)

set
set name
set name-string
set name=number

shell

Define a variable called name. The variable may be given a null, string,
or numeric value. Set by itself prints all defined variables and their
values. See ENVIRONMENT VARIABLES for detailed descriptions of the
mailx variables.

Invoke an interactive shell (see also "SHELL" (ENVIRONMENT VARI·
ABLES».

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode·.

top [msglist]
Print the top few lines of the specified messages. If the "toplines" vari·
able is set, it is taken as the number of lines to print (see ENVIRONMENT
VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox upon normal ter·
mination. See exit and quit.

Type [msglist]
Print [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

type [msglist]
print [msglist]

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the
command specified by the "PAGER" variable. The default command is
pg(l) (see ENVIRONMENT VARIABLES).

undelete [msglist]
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If "autoprint" is set, the last message
of those restored is printed (see ENVIRONMENT VARIABLES).

175

MAILX(l) (Essential Utilities) MAILX(l)

176

unset name ...

version

Causes the specified variables to be erased. If the variable was imported
from the execution environment (Le., a shell variable) then it cannot be
erased.

Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The messages are placed
in a temporary file and the "VISUAL" variable is used to get the name of
the editor (see ENVIRONMENT VARIABLES).

write [msglist] filename

xit
exit

z[+ 1-]

Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

Exit from mailx, without changing the mailbox. No messages are saved
in the mbox (see also quit).

Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning a
line with the tilde escape character C). See "escape" (ENVIRONMENT VARI­
ABLES) for changing this special character.

-! shell-command
Escape to the shell.

Simulate end of file (terminate message input).

-: mail-command
mail-command

Perform the command-level request. Valid only when sending a mes­
sage while reading mail.

Print a summary of tilde escapes.

Insert the autograph string "Sign" into the message (see ENVIRONMENT
VARIABLES).

MAILX(l) (Essential Utilities) MAILX(l)

Insert the autograph string "sign" into the message (see ENVIRONMENT
VARIABLES).

-b name ...
Add the names to the blind carbon copy (Bcc) list.

-c name ...
Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. See "DEAD" (ENVIRONMENT VARIABLES) for
a description of this file.

Invoke the editor on the partial message. See also "EDITOR" (ENVIRON­
MENT VARIABLES).

-f [msglist]
Forward the specified messages. The messages are inserted into the
message, without alteration.

Prompt for Subject line and To, Cc, and Bcc lists. If the field is
displayed with an initial value, it may be edited as if you had just typed
it.

-i string
Insert the value of the named variable into the text of the message. For
example, -A is equivalent to '-i Sign.'

-m [msglist]
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead.letter. See
"DEAD" (ENVIRONMENT VARIABLES) for a description of this file.

177

MAILX(l) (Essential Utilities) MAILX(l)

178

-r filename
--< filename
--< !shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

-s string ...
Set the subject line to string.

-t name .,.
Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also
"VISUAL" (ENVIRONMENT VARIABLES).

-w filename
Write the partial message onto the given file, without the header.

Exit as with -q except the message is not saved in dead.letter.

-I shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the com­
mand replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment
and are not alterable within mailx.

HOME=directory
The user's base of operations.

MAILRC=filename
The name of the start-up file. Default is $HOMElmailrc.

The following variables are internal mailx variables. They may be imported
from the execution environment or set via the set command at any time. The
unset command may be used to erase variables.

addsopt
Enabled by default. If /bin/mail is not being used as the deliverer,
noaddsopt should be specified. (See WARNINGS below)

MAILX(l)

aHnet

append

askee

asksub

(Essential Utilities) MAILX(l)

All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifications to
behave similarly. Default is noaHnet. See also the alternates command
and the "metoo" variable.

Upon termination, append messages to the end of the mbox file instead
of prep ending them. Default is noappend.

Prompt for the Cc list after message is entered. Default is noaskee.

Prompt for subject if it is not specified on the command line with the -s
option. Enabled by default.

autoprint

bang

Enable automatic printing of messages after delete and undelete com­
mands. Default is noautoprint.

Enable the special-casing of exclamation points (!) in shell escape com­
mand lines as in vi(l). Default is nobang.

emd=shell-command
Set the default command for the pipe command. No default value.

eonv=conversion
Convert uucp addresses to the specified address style. The only valid
conversion now is internet, which requires a mail delivery program con­
forming to the RFC822 standard for electronic mail addressing. Conver­
sion is disabled by default. See also "sendmail" and the -U command
line option.

ert=number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable (pg(l) by default). Dis­
abled by default.

DEAD=filename

debug

The name of the file in which to save partial letters in case of untimely
interrupt. Default is $HOMEjdead.letter.

Enable verbose diagnostics for debugging. Messages are not delivered.
Default is nodebug.

179

MAILX(l) (Essential Utilities) MAILX(l)

180

dot
Take a period on a line by itself during input from a terminal as end-of­
file. Default is nodot.

EDITOR=-shell-command
The command to run when the edit or -e command is used. Default is
ed(l).

escape-c
Substitute c for the - escape character. Takes effect with next message
sent.

folder=directory

header

hold

ignore

The directory for saving standard mail meso User-specified me names
beginning with a plus (+) are expanded by preceding the me name with
this directory name to obtain the real me name. If directory does not
start with a slash (/), $HOME is prepended to it. In order to use the
plus (+) construct on a mailx command line, "folder" must be an
exported sh environment variable. There is no default for the "folder"
variable. See also "outfolder" below.

Enable printing of the header summary when entering mailx. Enabled
by default.

Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up
lines. Default is noignore.

ignoreeof

keep

Ignore end-of-file during message input. Input must be terminated by a
period (.) on a line by itself or by the -. command. Default is noig­
noreeof. See also "dot" above.

When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox instead
of deleting them. Default is nokeepsave.

MAILX(l) (Essential Utilities) MAILX(l)

MBOX=filename

metoo

The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message explicitly
in another file. Default is $HOME/mbox.

If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=shell-command

onehop

The command (and options) to use when listing the contents of the
"folder" directory. The default is Is(1).

When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative to
the originating author's machine for the response. This flag disables
alteration of the recipients' addresses, improving efficiency in a network
where all machines can send directly to all other machines (Le., one hop
away).

outfolder

page

Causes the files used to record outgoing messages to be located in the
directory specified by the "folder" variable unless the path name is abso­
lute. Default is nooutfolder. See "folder" above and the Save, Copy,
followup, and Followup commands.

Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg(1).

prompt=string

quiet

Set the command mode prompt to string. Default is "? ".

Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

record=filename

save

Record all outgoing mail in filename. Disabled by default. See also "out­
folder" above.

Enable saving of messages in dead.letter on interrupt or delivery error.
See "DEAD" for a description of this file. Enabled by default.

181

MAILX(I) (Essential Utilities) MAILX(I)

FILES

screen-number
Sets the number of lines in a screen-full of headers for the headets
command.

sendmai1=shell-command
Alternate command for delivering messages. Default is mail(1).

sendwait
Wait for background mailer to finish before returning. befault is
nosendwait.

SHELL-shell-command
The name of a preferred command interpreter. Default is sh(l).

showto
When displaying the header summary and the message is from yoU,
print the recipient's name instead of the author's n~me.

sign=string
The variable inserted into the text of a message when the -a (autograph)
command is given. No default (see also -i (TILDE ESCAPES».

Sign=string
The variable inserted into the text of a message when the -A command
is given. No default (see also -i (TILDE ESCAPES».

toplines=number
The number of lines of header to print with the top command. Default
is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(1).

$HOME/ .mailrc
$HOME/mbox
/usr/mail/*
/usr /lib /mailx/mailx.help*
/usr /lib /mailx/mailx.rc
/tmp/R[emqsx]'"

personal start-up file
secondary storage file
post office directory
help message files
optional global start-up file
temporary files

SEE ALSO
Is(1), mail(1), pg(1).

WARNINGS

182

The -h, -r and -U options can be used only if mailx is built with a delivery
program other than /bin/mail.

MAILX(l) (Essential Utilities) MAILX(l)

BUGS
Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards
need some time to settle down.

Attempts to send a message having a line consisting only of a "." are treated as
the end of the message by mail(l) (the standard mail delivery program).

183

MAKEKEY(l) (Security Administration Utilities) MAKEKEY(l)

NAME
makekey - generate encryption key

SYNOPSIS
lusr llib Imakekey

DESCRIPTION
make key improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space. It reads 10
bytes from its standard input, and writes 13 bytes on its standard output. The
output depends on the input in a way intended to be difficult to compute (Le., to
require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The
last two (the salt) are best chosen from the set of digits, ., I, and upper- and
lower-case letters. The salt characters are repeated as the first two characters of
the output. The remaining 11 output characters are chosen from the same set as
the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to
select one of 4,096 cryptographic machines all based on the National Bureau of
Standards DES algorithm, but broken in 4,096 different ways. Using the input
key as key, a constant string is fed into the machine and recirculated a number
of times. The 64 bits that come out are distributed into the 66 output key bits in
the result.

makekey is intended for programs that perform encryption. Usually, its input
and output will be pipes.

SEE ALSO
ed(I), crypt(I), vi(I).
passwd(4) in the Programmer's Reference Manual.

WARNING

184

This command is provided with the Security Administration Utilities, which is
only available in the United States.

MESG(l) (Essential Utilities)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [-n] [-y]

DESCRIPTION

MESG(l)

mesg with argument n forbids messages via write(l) by revoking non-user write
permission on the user's terminal. mesg with argument y reinstates permission.
All by itself, mesg reports the current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

185

MKDIR(l) (Essential Utilities) MKDIR(l)

NAME
mkdir - make directories

SYNOPSIS
mkdir [-m mode 1 [-p 1 dirname ...

DESCRIPTION
mkdir creates the named directories in mode 777 (possibly altered by umask(l».

Standard entries in a directory (e.g., the files ., for the directory itself, and .. , for
its parent) are made automatically. mkdir cannot create these entries by name.
Creation of a directory requires write permission in the parent directory.

The owner ID and group ID of the new directories are set to the process's real
user ID and group ID, respectively.

Two options apply to mkdir:

-m This option allows users to specify the mode to be used for new direc­
tories. Choices for modes can be found in chmod(l).

-p With this option, mkdir creates dirname by creating all the non-existing
parent directories first.

EXAMPLE
To create the subdirectory structure ltr/jd/jan, type:

mkdir -p ltr/jd/jan

SEE ALSO
sh(l), rm(l), umask(l).
intro(2), mkdir(2) in the Programmer's Reference Manual.

DIAGNOSTICS

186

mkdir returns exit code 0 if all directories given in the command line were made
successfully. Otherwise, it prints a diagnostic and returns non-zero. An error
code is stored in errno.

NEWFORM(l) (Directory and File Management Utilities) NEWFORM(l)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f] [-cchar]
[-In] [files]

DESCRIPTION
newform reads lines from the named files, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted
in accordance with command line options in effect.

Except for -5, command line options may appear in any order, may be repeated,
and may be intermingled with the optional files. Command line options are
processed in the order specified. This means that option sequences like "-e15
-160" will yield results different from "-160 -e15". Options are applied to all
files on the command line.

-5 Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a * and any characters to the right of
it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72 (or
truncated to column 72), and the leading digits placed starting at
column 73, the command would be:

newform -s -i -1 -a -e file-name

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs(1). In addition, tabspec may be --, in which
newform assumes that the tab specification is to be found in the first
line read from the standard input (see fspec(4)). If no tabspec is
given, tabspec defaults to -S. A tabspec of -0 expects no tabs; if any
are found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -S. A tabspec of
-0 means that no spaces will be converted to tabs on output.

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -In). Default is to
truncate the number of characters necessary to obtain the effective
line length. The default value is used when -b with no n is used.

1S7

NEWFORM(l) (Directory and File Management Utilities) NEWFORM(l)

This option can be used to delete the sequence numbers from a
COBOL program as follows:
newform -11 -b7 file-name

-en Same as -bn except that characters are truncated from the end
of the line.

-pn Prefix n characters (see -ck) to the beginning of a line when the
line length is less than the effective line length. Default is to
prefix the number of characters necessary to obtain the effective
line length.

-an Same as -pn except characters are appended to the end of a
line.

-£ Write the tab specification format line on the standard output
before any other lines are output. The tab specification format
line which is printed will correspond to the format specified in
the last -0 option. If no -0 option is specified, the line which
is printed will contain the default specification of -8. '

-ck Change the prefix/append character to k. Default character for
k is a space.

-In Set the effective line length to n characters. If n is not entered,
-I defaults to 72. The default line length without the -I option
is 80 characters. Note that tabs and backspaces are considered
to be one character (use -i to expand tabs to spaces).

The -11 must be used to set the effective line length shorter than any
existing line in the file so that the -b option is activated.

DIAGNOSTICS
All diagnostics are fatal.
usage: ...
not -s format
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

o - normal execution
1 - for any error

SEE ALSO
csplit(l), tabs(l).

newform was called with a bad option.
There was no tab on one line.
Self-explanatory.
A line exceeds 512 characters after being expanded in
the internal work buffer.
A tab specification is incorrectly formatted, or specified
tab stops are not ascending.
A tabspec read from a file (or standard input) may not
contain a tabspec referencing another file (or standard
input).

fspec(4) in the Programmer's Reference Manual.

188

NEWFORM(l) (Directory and File Management Utilities) NEWFORM(l)

BUGS
new/arm normally only keeps track of physical characters; however, for the -i
and -0 options, new/arm will keep track of backspaces in order to line up tabs in
the appropriate logical columns.

new/arm will not prompt the user if a tabspec is to be read from the standard
input (by use of -i-- or -0--).

If the -f option is used, and the last -0 option specified was -0--, and was
preceded by either a -0-- or a -i--, the tab specification format line will be
incorrect.

189

NEWGRP(lM) (Essential Utilities) NEWGRP(lM)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [-j [group j

DESCRIPTION

FILES

newgrp changes a user's group identification. The user remains logged in and
the current directory is unchanged, but calculations of access permissions to files
are performed with respect to the new real and effective group IDs. The user is
always given a new shell, replacing the current shell, by newgrp, regardless of
whether it terminated successfully or due to an error condition (Le., unknown
group).

Exported variables retain their values after invoking newgrp; however, all unex­
ported variables are either reset to their default value or set to null. System
variables (such as PSI, PS2, PATH, MAIL, and HOME), unless exported by the
system or explicitly exported by the user, are reset to default values. For
example, a user has a primary prompt string (PSI) other than $ (default) and has
not exported PSI. After an invocation of newgrp , successful or not, their PSI
will now be set to the default prompt string $. Note that the shell command
export (see sh(l» is the method to export variables so that they retain their
assigned value when invoking new shells.

With no arguments, newgrp changes the group identification back to the group
specified in the user's password file entry. This is a way to exit the effect of an
earlier newgrp command.

If the first argument to newgrp is a -, the environment is changed to what
would be expected if the user actually logged in again as a member of the new
group.

A password is demanded if the group has a password and the user does not, or
if the group has a password and the user is not listed in fete/group as being a
member of that group.

/etc/group
/etc/passwd

system's group file
system's password file

SEE ALSO

BUGS

190

login(l), sh(l) in the User's Reference Manual.
group(4), passwd(4), environ(5) in the Programmer's Reference Manual.

There is no convenient way to enter a password into fete/group. Use of group
passwords is not encouraged, because, by their very nature, they encourage poor
security practices. Group passwords may disappear in the future.

NEWS(l) (Essential Utilities) NEWS(l)

NAME
news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION

FILES

news is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files in
/usr/news, most recent first, with each preceded by an appropriate header.
news stores the "currency" time as the modification date of a file named
.news_time in the user's home directory (the identity of this directory is deter­
mined by the environment variable $HOME); only files more recent than this
currency time are considered "current."

-a option causes news to print all items, regardless of currency. In this
case, the stored time is not changed.

-n option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

-s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time.
It is useful to include such an invocation of news in one's .profile file, or
in the system's /etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the
next item is started. Another delete within one second of the first causes the
program to terminate.

/etc/profile
/usr/news/*
$HOME/.news_time

SEE ALSO
profile(4), environ(S) in the Programmer's Reference Manual.

191

NICE(l) (User Environment Utilities)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment 1 command [arguments 1

DESCRIPTION

NICE(l)

nice executes command with a lower CPU scheduling priority. If the increment
argument (in the range 1-19) is given, it is used; if not, an increment of 10 is
assumed.

The super-user may run commands with priority higher than normal by using a
negative increment, e.g., --10.

SEE ALSO
nohup(1).
nice(2) in the Programmer's Reference Manual.

DIAGNOSTICS
nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

192

NL(l) (Directory and File Management Utilities) NL(l)

NAME
nl - line numbering filter

SYNOPSIS
ni [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-p] [-Inum] [-ssep]
[-wwidth] [-nformat] [-ddelim] file

DESCRIPTION
nl reads lines from the named file or the standard input if no file is named and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and a
footer section. Empty sections are valid. Different line numbering options are
independently available for header, body, and footer (e.g., no numbering of
header and footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character(s):

Line contents Start of

\:\:\:
\:\:
\:

header

body

footer

Unless optioned otherwise, nl assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recog­
nized types and their meaning are:

-htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

a
t
n
pstring

number all lines
number lines with printable text only
no line numbering
number only lines that contain the-regular expression
specified in string.

Default type for logical page body is t (text lines numbered).

-ftype Same as -btype except for footer. Default for logical page footer is n
(no lines numbered).

-vstart# Start# is the initial value used to number logical page lines. Default
is 1.

-iincr Incr is the increment value used to number logical page lines.
Default is 1.

193

NL(l) (Directory and File Management Utilities) NL(l)

-p Do not restart numbering at logical page delimiters.

-Inurn Num is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being num­
bered (if the appropriate -ha, -ba, and/or -fa option is set).
Default is 1.

-ssep Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line numbering format. Recognized values are: In, left
justified, leading zeroes suppressed; rn, right justified, leading zeroes
supressed; rz, right justified, leading zeroes kept. Default format is rn
(right justified).

-dxx The delimiter characters specifying the start of a logical page section
may be changed from the default characters (\:) to two user-specified
characters. If only one character is entered, the second character
remains the default character (:). No space should appear between
the -d and the delimiter characters. To enter a backslash, use two
backslashes.

EXAMPLE
The command:

nl -vl0 -itO -d!+ filel

will number filel starting at line number 10 with an increment of ten. The log­
ical page delimiters are !+.

SEE ALSO
pr(I).

194

NOHUP(l) (User Environment Utilities) NOHUP(l)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments 1

DESCRIPTION
nohup executes command with hangups and quits ignored. If output is not re­
directed by the user, both standard output and standard error are sent to
nohup.out. If nohup.out is not writable in the current directory, output is
redirected to $HOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands. This
can be done only by placing pipelines and command lists in a single file, called a
shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to be
executed often, then the need to type sh can be eliminated by giving file execute
permission. Add an ampersand and the contents of file are run in the back­
ground with interrupts also ignored (see sh(1»:

nohup file &

An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO
chmod(1), nice(1), sh(1),
signal(2) in the Programmer's Reference Manual.

WARNINGS
In the case of the following command

nohup command1; command2

nohup applies only to command1. The command

nohup (command1; command2)

is syntactically incorrect.

195

00(1) (Directory and File Management Utilities) 00(1)

NAME
od - octal dump

SYNOPSIS
od [-bcdosx] [file] [[+]offset[.][b]]

DESCRIPTION

196

ad dumps file in one or more formats as selected by the first argument. If the
first argument is missin~ -0 is default. The meanings of the format options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, form-feed-\f, new-line-\n, return-\r,
tab-\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-8 Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to com­
mence. This argument is normally interpreted as octal bytes. If. is appended,
the offset is interpreted in decimal. If b is appended, the offset is interpreted in
blocks of 512 bytes. If the file argument is omitted, the offset argument must be
preceded by +.
Dumping continues until end-of-file.

PACK(l) (Directory and File Management Utilities) PACK(l)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [- 1 [-£ 1 name .,.

pcat name .. ,

unpack name

DESCRIPTION
pack attempts to store the specified files in a compressed form. Wherever pos­
sible (and useful), each input file name is replaced by a packed file name.z with
the same access modes, access and modified dates, and owner as those of name.
The -£ option will force packing of name. This is useful for causing an entire
directory to be packed even if some of the files will not benefit. If pack is suc­
cessful, name will be removed. Packed files can be restored to their original
form using unpack or peat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the
- argument is used, an internal flag is set that causes the number of times each
byte is used, its relative frequency, and the code for the byte to be printed on
the standard output. Additional occurrences of - in place of name will cause the
internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first part
of each .z file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of charac­
ters, show little compression, the packed versions being about 90% of the ori­
ginal size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters to
allow space for the appended .z extension. Directories cannot be compressed.

197

PACK(l) (Directory and File Management Utilities) PACK(l)

Pcat does for packed files what cat(1) does for ordinary files, except that pcat
cannot be used as a filter. The specified files are unpacked and written to the
standard output. Thus to view a packed file named name.z use:

pcat name.z
or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named name.z (without
destroying name.z) use the command:

pcat name > nnn

Pcat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the com­
mand, a search is made for a file called name.z (or just name, if name ends in .z).
If this file appears to be a packed file, it is replaced by its expanded version.
The new file has the .z suffix stripped from its name, and has the same access
modes, access and modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in pcat, as well as for the fol­
lowing:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat(1).

198

PASSWD(l) (Essential Utilities) PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name 1

DESCRIPTION

FILES

This command changes or installs a password associated with the login name.

Ordinary users may change only the password which corresponds to their login
name.

passwd prompts ordinary users for their old password, if any. It then prompts
for the new password twice. The first time the new password is entered passwd
checks to see if the old password has "aged" sufficiently. Password "aging" is
the amount of time (usually a certain number of days) that must elapse between
password changes. If "aging" is insufficient the new password is rejected and
passwd terminates; see passwd(4).
Assuming "aging" is sufficient, a check is made to insure that the new password
meets construction requirements. When the new password is entered a second
time, the two copies of the new password are compared. If the two copies are
not identical the cycle of prompting for the new password is repeated for at
most two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only the first eight
characters are significant.

Each password must contain at least two alphabetic characters and at
least one numeric or special character. In this case, "alphabetic" means
upper and lower case letters.

Each password must differ from the user's login name and any reverse or
circular shift of that login name. For comparison purposes, an upper
case letter and its corresponding lower case letter are equivalent.

New passwords must differ from the old by at least three characters.
For comparison purposes, an upper case letter and its corresponding
lower case letter are equivalent.

One whose effective user ID is zero is called a super-user; see id(l), and su(l).
Super· users may change any password; hence, passwd does not prompt super­
users for the old password. Super-users are not forced to comply with password
aging and password construction requirements. A super-user can create a null
password by entering a carriage return in response to the prompt for a new
password.

jetcjpasswd

199

PASSWD(l)

SEE ALSO
login(l).

(Essential Utilities)

crypt(3C), passwd(4) in the Programmer's Reference Manual.
id(lM), su(lM) in the System Administrator's Reference Manual.

200

PASSWD(l)

PASTE(l) (Directory and File Management Utilities) PASTE(l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file 1 file2 ...
paste -dlist filel file2
paste -s [-d list] file 1 file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files file1, file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the coun­
terpart of cat(l) which concatenates vertically, Le., one file after the other. In
the last form above, paste replaces the function of an older command with the
same name by combining subsequent lines of the input file (serial merging). In
all cases, lines are glued together with the tab character, or with characters from
an optionally specified list. Output is to the standard output, so it can be used
as the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or
last line in case of the -s option) are replaced by a tab character. This
option allows replacing the tab character by one or more alternate char­
acters (see below).

list One or more characters immediately following -d replace the default tab
as the line concatenation character. The list is used circularly, Le., when
exhausted, it is reused. In parallel merging (Le., no -s option), the lines
from the last file are always terminated with a new-line character, not
from the list. The list may contain the special escape sequences: \n
(new-line), \t (tab), \\ (backslash), and \0 (empty string, not a null char­
acter). Quoting may be necessary, if characters have special meaning to
the shell (e.g., to get one backslash, use -d"\\\\").

-s Merge subsequent lines rather than one from each input file. Use tab for
concatenation, unless a list is specified with -d option. Regardless of
the list, the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the standard
input. (There is no prompting).

EXAMPLES
Is I paste -d" " -

Is I paste - - - -

paste -s -d°,\ t\n" file

SEE ALSO
cut(l), grep(l), pr(l).

list directory in one column

list directory in four columns

combine pairs of lines into lines

201

PASTE(l)

DIAGNOSTICS
line too long

too many files

202

(Directory and File Management Utilities) PASTE(l)

Output lines are restricted to 511 characters.

Except for -8 option, no more than 12 input files may
be specified.

PG(l) (Directory and File Management Utilities) PG(l)

NAME
pg - file perusal filter for CRTs

SYNOPSIS
pg [-number] [-p string] [-ce£ns] [+linenumber] [+/pattern/] [files ...]

DESCRIPTION
The pg command is a filter which allows the examination of files one screenful at
a time on a CRT. (The file name - and/or NULL arguments indicate that pg
should read from the standard input.) Each screenful is followed by a prompt. If
the user types a carriage return, another page is displayed; other possibilities are
enumerated below.

This command is different from previous paginators in that it allows you to back
up and review something that has already passed. The method for doing this is
explained below.

In order to determine terminal attributes, pg scans the terminfo(4) data base for
the terminal type specified by the environment variable TERM. If TERM is not
defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default
window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains a
"%d", the first occurrence of "%d" in the prompt will be replaced by
the current page number when the prompt is issued. The default
prompt string is ":".

-c Home the cursor and clear the screen before displaying each page. This
option is ignored if clear_screen is not defined for this terminal type in
the terminfo(4) data base.

-e Causes pg not to pause at the end of each file.

-£ Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (e.g., escape
sequences for underlining) generate undesirable results. The -f option
inhibits pg from splitting lines.

-n Normally, commands must be terminated by a <newline> character.
This option causes an automatic end of command as soon as a command
letter is entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression pattern.

203

PG(l)

204

(Directory and File Management Utilities) PG(l)

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or line,
and an unsigned address specifies an address relative to the beginning of the file.
Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1)<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+1) 1 With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified line.

(+1) d or AD
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

. or AL Typing a single period causes the current page of text to be redisplayed.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the text.
The regular expressions described in ed(l) are available. They must always be
terminated by a <newline>, even if the -n option is specified.

i/pattern/
Search forward for the ith (default i=l) occurrence of pattern. Searching
begins immediately after the current page and continues to the end of
the current file, without wrap-around.

i"pattern A

i?pattern?
Search backwards for the ith (default i=l) occurrence of pattern.
Searching begins immediately before the current page and continues to
the beginning of the current file, without wrap-around. The A notation is
useful for Adds 100 terminals which will not properly handle the ?

After searching, pg will normally display the line found at the top of the screen.
This can be modified by appending m or b to the search command to leave the
line found in the middle or at the bottom of the window from now on. The
suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following com­
mands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

PG(l) (Directory and File Management Utilities) PG(l)

ip Begin perusing the ith previous file in the command line. is an
unsigned number, default is 1.

iw Display another window of text. If i is present, set the window size to i.

s filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This
command must always be terminated by a < newline>, even if the -n
option is specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit pg.

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a < newline>, even if the
-n option is specified.

At any time when output is being sent to the terminal, the user can hit the quit
key (normally control-\) or the interrupt (break) key. This causes pg to stop
sending output, and display the prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is lost
when this is done, due to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(l), except that a
header is printed before each file (if there is more than one).

EXAMPLE

NOTES

FILES

A sample usage of pg in reading system news would be

news I pg -p "(Page %d):"

While waiting for terminal input, pg responds to BREAK, DEL, and • by ter­
minating execution. Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These should be used with
caution when input is being read from a pipe, since an interrupt is likely to ter­
minate the other commands in the pipeline.

Users of Berkeley'S more will find that the z and f commands are available, and
that the terminal I, ., or ? may be omitted from the searching commands.

lusr/lib/terminfol? 1*
Itmp/pg*

terminal information database
temporary file when input is from a pipe

SEE ALSO
ed(l), grep(l).
terminfo(4) in the Programmer's Reference Manual.

205

PG(l)

BUGS

206

(Directory and File Management Utilities) PG(l)

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options terminal settings may not be restored correctly.

PR(l) (Essential Utilities) PR(l)

NAME
pr - print files

SYNOPSIS
pr [[-column] [-wwidth] [-a]] [-eck] [-ick] [-drtfp] [+page] [-nck]
[-ooffset] [-llength] [-sseparator] [-h header] [file ...]

pr [[-m] [-wwidth]] [-eck] [-ick] [-drtfp] [+page] [-nck] [-ooffset]
[-llength] [-sseparator] [-h header] file1 file2 ...

DESCRIPTION
pr is used to format and print the contents of a file. If file is -, or if no files are
specified, pr assumes standard input. pr prints the named files on standard
output.

By default, the listing is separated into pages, each headed by the page number,
a date and time, and the name of the file. Page length is 66 lines which
includes 10 lines of header and trailer output. The header is composed of 2
blank lines, 1 line of text (can be altered with -h), and 2 blank lines; the trailer
is 5 blank lines. For single column output, line width may not be set and is
unlimited. For multicolumn output, line width may be set and the default is 72
columns. Diagnostic reports (failed options) are reported at the end of standard
output associated with a terminal, rather than interspersed in the output. Pages
are separated by series of line feeds rather than form feed characters.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separator character.

Either -column or -m should be used to produce multi-column output. -a
should only be used with -column and not -m.

Command line options are

+page Begin printing with page numbered page (default is 1).

-column
Print column columns of output (default is 1). Output appears as if -e
and -i are turned on for multi-column output. May not use with -m.

-a Print multi-column output across the page one line per column. columns
must be greater than one. If a line is too long to fit in a column, it is
truncated.

-m Merge and print all files simultaneously, one per column. The maximum
number of files that may be specifed is eight. If a line is too long to fit
in a column, it is truncated. May not use with -column.

-d Double-space the output. Blank lines that result from double-spacing
are dropped when they occur at the top of a page.

-eck Expand input tabs to character positions k+1, 2*k+1, 3*k+1, etc. If k is
o or is omitted, default tab settings at every eighth position are assumed.
Tab characters in the input are expanded into the appropriate number of

207

PR(l)

208

(Essential Utilities) PR(l)

spaces. If c (any non-digit character) is given, it is treated as the input
tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to
character positions k+ 1, 2*k+ 1, 3*k+l, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any non­
digit character) is given, it is treated as the output tab character (default
for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number occupies
the first k+ 1 character positions of each column of single column output
or each line of -m output. If c (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for c is a tab).

-wwidth

-ooffset

Set the width of a line to width character positions (default is 72). This
is effective only for multi-column output (-column and -m). There is no
line limit for single column output.

Offset each line by offset character positions (default is 0). The number
of character positions per line is the sum of the width and offset.

-llength
Set the length of a page to length lines (default is 66). -10 is reset to
-166. When the value of length is 10 or less, -t appears to be in effect
since headers and trailers are suppressed. By default, output contains 5
lines of header and 5 lines of trailer leaving 56 lines for user-supplied
text. When -llength is used and length exceeds 10, then length-IO lines
are left per page for user supplied text. When length is 10 or less,
header and trailer output is omitted to make room for user supplied text.

-h header
Use header as the text line of the header to be printed instead of the file
name. -h is ignored when -t is specified or -llength is specified and
the value of length is 10 or less. (-h is the only pr option requiring
space between the option and argument.)

-p Pause before beginning each page if the output is directed to a terminal
(pr will ring the bell at the terminal and wait for a carriage return).

-f Use single form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first page if the
standard output is associated with a terminal.

-r Print no diagnostic reports on files that will not open.

-t Print neither the five-line identifying header nor the five-line trailer nor-
mally supplied for each page. Quit printing after the last line of each
file without spacing to the end of the page. Use of -t overrides the -h
option.

PR(l) (Essential Utilities) PR(l)

-sseparator
Separate columns by the single character separator instead of by the
appropriate number of spaces (default for separator is a tab). Prevents
truncation of lines on multicolumn output unless -w is specified.

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing headed by "file
list":

pr - 3dh "file list" file 1 file2

Copy filel to file2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t <filel >file2

Print filel and file2 simultaneously in a two-column listing with no header or
trailer where both columns have line numbers:

pr -t -n filel I pr -t -m -n file2 -

/dev /tty* to delay messages enabling them to print at the bottom of
files rather than interspersed throughout printed output.

SEE ALSO
cat(I), pg(I).

209

PS(l) (Essential Utilities) PS(l)

NAME
ps - report process status

SYNOPSIS
ps [options 1

DESCRIPTION

210

ps prints certain information about active processes. Without options, informa­
tion is printed about processes associated with the controlling terminal. The
output consists of a short listing containing only the process ID, terminal
identifier, cumulative execution time, and the command name. Otherwise, the
information that is displayed is controlled by the selection of options.

Options accept names or lists as arguments. Arguments can be either separated
from one another by commas or enclosed in double quotes and separated from
one another by commas or spaces. Values for prodist and grplist must be
numeric.

The options are given in descending order according to volume and range of
information provided:

-e Print information about every process now running.
-d Print information about all processes except process group leaders.
-a Print information about all processes most frequently requested: all

those except process group leaders and processes not associated
with a terminal.

-f Generate a full listing. (See below for significance of columns in a
full listing.)

-1 Generate a long listing. (See below.)
-n name Take argument signifying an alternate system name in place of

junix.
-t termlist List only process data associated with the terminal given in term­

list. Terminal identifiers may be specified in one of two forms: the
device's file name (e.g., tty04) or, if the device's file name starts
with tty, just the digit identifier (e.g., 04).

-p prodist List only process data whose process ID numbers are given in pro­
dist.

-u uidlist List only process data whose user ID number or login name is
given in uidlist. In the listing, the numeri~al user ID will qe printed
unless you give the -f option, which prints the login name.

-g grplist List only process data whose process group leader's ID number(s)
appears in grplist. (A group leader is a process whose process ID
number is identical to its process group ID number. A login shell is
a common example of a process group lea!;ier.)

Under the -f option, ps tries to determine the command name and arguments
given when the process was created by examining the user block. Failing this,
the command name is printed, as it would have appeared without the -f option,
in square brackets.

PS(l) (Essential Utilities) PS(l)

The column headings and the meaning of the columns in a ps listing are given
below; the letters f and I indicate the option (full or long, respectively) that
causes the corresponding heading to appear; all means that the heading always
appears. Note that these two options determine only what information is pro­
vided for a process; they do not determine which processes will be listed.

F (1) Flags (hexadecimal and additive) associated with the process

3B2 COMPUTER

00 Process has terminated: process table entry now
available.

01 A system process: always in primary memory.
02 Parent is tracing process.
04 Tracing parent's signal has stopped process: parent is

waiting [ptrace(2)].
08 Process is currently in primary memory.
10 Process currently in primary memory: locked until an

event completes.

V AX PROCESSOR

00 Process has terminated: process table entry now
available.

01 Process currently in primary memory.
02 A system process: always in primary memory.
04 Process is currently in primary memory: locked until

an event completes.
08 Should not occur on this system.
10 Parent is tracing process.
20 Tracing parent's signal has stopped process: parent is

waiting [ptrace(2)].
S (1) The state of the process:

o 3B2 Computer: Process is running on a processor.
VAX processor: Should not occur on this system.

S Sleeping: process is waiting for an event to complete.
R Runnable: process is on run queue.
I Idle: process is being created.
Z Zombie state: process terminated 'l-nd parent not

waiting.
T Traced: process stopped by a signal because parent is

tracing it.
X SXBRK state: process is waiting for more primary

memory.
UID (£,1) The user ID number of the process owner (the login name is

printed under the -f option).
PIO (all) The process ID of the process (this datum is necessary in

order to kill a process).
PPIO (£,1) The process ID of the parent process.
C (£,1) Processor utilization for scheduling.

211

PS(l)

FILES

PRI (1)

NI (1)
ADDR (1)
SZ (1)

WCHAN (1)

STIME (f)

TTY (all)

TIME (aU)
COMMAND (aU)

(Essential Utilities) PS(l)

The priority of the process (higher numbers mean lower
priority).
Nice value, used in priority computation.
The memory address of the process.
The size (in pages or clicks) of the swappable process's image
in main memory.
The address of an event for which the process is sleeping, or
in SXBRK state, (if blank, the process is running).
The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours
before the ps inquiry is executed is given in months and
days.)
The controlling terminal for the process (the message, ?, is
printed when there is no controlling terminal).
The cumulative execution time for the process.
The command name (the full command name and its argu­
ments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by
the parent, is marked <defunct>.

/dev
/dev/sxt/*
/dev/tty*
/dev/xt/*
/dev/kmem
/dev/swap
/dev/mem
/etc/passwd
/etc/ps_data
/unix

terminal ("tty") names searcher files
kernel virtual memory
the default swap device
memory
UID information supplier
internal data structure
system namelist

SEE ALSO
kill(l), nice(l).
getty(lM) in the System Administrator's Reference Manual.

WARNING

212

Things can change while ps is running; the snap-shot it gives is only true for a
split-second, and it may not be accurate by the time you see it. Some data
printed for defunct processes is irrelevant.

If no term list, proC/ist, uidlist, or grplist is specified, ps checks stdin, stdout, and
stderr in that order, looking for the controlling terminal and will attempt to
report on processes associated with the controlling terminal. In this situation, if
stdin, stdout, and stderr are all redirected, ps will not find a controlling terminal,
so there will be no report.

PS(l) (Essential Utilities) PS(l)

On a heavily loaded system, ps may report an /seek(2) error and exit. ps may
seek to an invalid user area address: having got the address of a process' user
area, ps may not be able to seek to that address before the process exits and the
address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an earlier
time, when a getty was last respawned on the tty line.

213

PWD(l) (Essential Utilities)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the path name of the working (current) directory.

SEE ALSO
cd(l).

DIAGNOSTICS

PWD(l)

"Cannot open .. " and "Read error in .. " indicate possible file system trouble and
should be referred to a UNIX system administrator.

214

RELOGIN(lM) (AT&T Windowing Utilities) RELOGIN(lM)

NAME
relogin - rename login entry to show current layer

SYNOPSIS
jusr jlib jlayersys jrelogin [-s 1 [line 1

DESCRIPTION

FILES

The relogin command changes the terminal line field of a user's utmp(4) entry to
the name of the windowing terminal layer attached to standard input. write(l)
messages sent to this user are directed to this layer. In addition, the who(1)
command will show the user associated with this layer. relogin may only be
invoked under layers(l).

relogin is invoked automatically by layers(l) to set the utmp(4) entry to the ter­
minalline of the first layer created upon startup, and to reset the utmp(4) entry
to the real line on termination. It may be invoked by a user to designate a
different layer to receive write(l) messages.

-s Suppress error messages.

line Specifies which utmp(4) entry to change. The utmp(4) file is searched
for an entry with the specified line field. That field is changed to the
line associated with the standard input. (To learn what lines are associ­
ated with a given user, say jdoe, type ps -£ -u jdoe and note the values
shown in the TTY field (see ps(l))).

jetcjutmp database of users versus terminals

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO

NOTES

utmp(4) in the Programmer's Reference Manual.
layers(l), mesg(l), ps(l), who(l), write(l) in the User's Reference Manual.

If line does not belong to the user issuing the relogin command or standard input
is not associated with a terminal, relogin will fail.

215

RM(l) (Essential Utilities) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-f] [-i) file ...

rm -r [-f] [-i) dirname ... [file ...]

rmdir [-p] [-8] dirname .. .

DESCRIPTION

216

rm removes the entries for one or more files from a directory. If an entry was
the last link to the file, the file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write permission on the file
itself.

If a file has no write permission and the standard input is a terminal, the full set
of permissions (in octal) for the file are printed followed by a question mark.
This is a prompt for confirmation. If the answer begins with y (for yes), the file
is deleted, otherwise the file remains.

Note that if the standard input is not a terminal, the command will operate as if
the -f option is in effect.

rmdir removes the named directories, which must be empty.

Three options apply to rm:
-f This option causes the removal of all files (whether write-protected or not)

in a directory without prompting the user. In a write-protected directory,
however, files are never removed (whatever their permissions are), but no
messages are displayed. If the removal of a write-protected directory was
attempted, this option cannot suppress an error message.

-r This option causes the recursive removal of any directories and subdirec­
tories in the argument list. The directory will be emptied of files and
removed. Note that the user is normally prompted for removal of any
write-protected files which the directory contains. The write-protected files
are removed without prompting, however, if the -f option is used, or if
the standard input is not a terminal and the -i option is not used.

If the removal of a non-empty, write-protected directory was attempted,
the command will always fail (even if the -f option is used), resulting in
an error message.

-i With this option, confirmation of removal of any write-protected file occurs
interactively. It overrides the -f option and remains in effect even if the
standard input is not a terminal.

Two options apply to rmdir:
-p This option allows users to remove the directory dirname and its parent

directories which become empty. A message is printed on standard output
as to whether the whole path is removed or part of the path remains for
some reason.

-8 This option is used to suppress the message printed on standard error
when -p is in effect.

RM(l) (Essential Utilities) RM(l)

DIAGNOSTICS
All messages are generally self-explanatory.
It is forbidden to remove the files "." and " .. " in order to avoid the consequences
of inadvertently doing something like the following:

1m -I."
Both rm and rmdir return exit codes of 0 if all the specified directories are
removed successfully. Otherwise, they return a non-zero exit code.

SEE ALSO
unlink(2), rmdir(2) in the Programmer's Reference Manual.

217

SAG(lG) (Performance Measurement Utilities) SAG(lG)

NAME
sag - system activity graph

SYNOPSIS
sag [options 1

DESCRIPTION
sag graphically displays the system activity data stored in a binary data file by a
previous sar(l) run. Any of the sar data items may be plotted singly, or in com­
bination; as cross plots, or versus time. Simple arithmetic combinations of data
may be specified. sag invokes sar and finds the desired data by string-matching
the data column header (run sar to see what is available). These options are
passed through to sar:

-s time Select data later than time in the form hh [:mm]. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-£ file Use file as the data source for sar. Default is the current daily data file
/usr/adm/sa/sadd.

Other options:

-T term Produce output suitable for terminal term. S,~e tplot(lG) for known
terminals. Default for term is $TERM.

-x spec x axis specification with spec in the form:
"name[op name] ... [lo hi]"

-y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report, with
an optional device name in square brackets, e.g., r+w/s[dsk-1], or an integer
value. Op is + - * or / surrounded by blanks. Up to five names may be
specified. Parentheses are not recognized. Contrary to custom, + and -
have precedence over * and f. Evaluation is left to right. Thus
A / A + B * 100 is evaluated (A/(A+B»*100, and A + B / C + D is
(A+B)/(C+D). Lo and hi are optional numeric scale limits. If unspecified, they
are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5
spec's separated by ; may be given for -yo Enclose the -x and -y arguments in
"" if blanks or \ < CR> are included. The -y default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES

218

To see today's CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
TS=date +%H:%M
sar -0 tempfile 60 15
TE=date +%H:%M
sag -f tempfile -s $TS -e $TE -y "r+w /s[dsk]"

SAG(lG)

FILES
/usr/adm/sa/sadd

SEE ALSO
sar(l), tplot(lG)

(Performance Measurement Utilities) SAG(lG)

daily data file for day dd.

219

SAR(l) (Performance Measurement Utilities) SAR(l)

NAME
sar - system activity reporter

SYNOPSIS
sar [-ubdycwaqvmprDSA] [-0 file] t [n]

sar [-ubdycwaqvmprDSA] [-s time] [-e time] [-i sec] [-f file]

DESCRIPTION

220

sar, in the first instance, samples cumulative activity counters in the operating
system at n intervals of t seconds, where t should be 5 or greater. If the -0

option is specified, it saves the samples in file in binary format. The default
value of n is 1. In the second instance, with no sampling interval specified, sar
extracts data from a previously recorded file, either the one specified by -f
option or, by default, the standard system activity daily data file
/usr/adm/sa/sadd for the current day dd. The starting and ending times of the
report can be bounded via the -s and -e time arguments of the form
hh[:mm[:ss]]. The -i option selects records at sec second intervals. Otherwise, all
intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running
in system mode, idle with some process waiting for block I/O, and other­
wise idle. When used with -D, %sys is split into percent of time servicing
requests from remote machines (%sys remote) and all other system time
(%sys local).

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
lreadjs, lwritjs - accesses of system buffers;
%rcache, %wcache - cache hit ratios, i. e., (1-bread/lread) as a percen­
tage;
pread/s, pwritjs - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive. When data
is displayed, the device specification dsk- is generally used to represent a
disk drive. The device specification used to represent a tape drive is
machine dependent. The activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w Is, blks/s - number of data transfers from or to device, number of
bytes transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek,
rotational latency and data transfer times).

-y Report TTY device activity:
rawchjs, canch/s, outch/s - input character rate, input character rate pro­
cessed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates.

SAR(l) (Performance Measurement Utilities) SAR(l)

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system calls.
When used with -0, the system calls are split into incoming, outgoing,
and strictly local calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of
512-byte units transferred for swapins and swapouts (including initial
loading of some programs);
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to
run.

-v Report status of process, i-node, file tables:
text-sz, proc-sz, inod-sz, file-sz, lock-sz - entries/size for each table,
evaluated once at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-p Report paging activities:
vflt/s - address translation page faults (valid page not in memory);
pflt/s - page faults from protection errors (illegal access to page) or
"copy-on-writes";
pgfil/s - vflt/s satisfied by page-in from file system;
rclm/s - valid pages reclaimed for free list.

-r Report unused memory pages and disk blocks:
freemem - average pages available to user processes;
freeswap - disk blocks available for process swapping.

-0 Report Remote File Sharing activity:
When used in combination with -u or -c, it causes sar to produce the
remote file sharing version of the corresponding report. -u is assumed
when neither -u or -c is specified.

-5 Report server and request queue status:
Average number of Remote File Sharing servers on the system (serv flo-hi),
% of time receive descriptors are on the request queue (request %busy),
average number of receive descriptors waiting for service when queue is
occupied (request avg 19th), % of time there are idle servers (server
%avail), average number of idle servers when idle ones exist (server avg
avail).

-A Report all data. EqUivalent to -udqbwcayvmpr50.

221

SAR(l) (Performance Measurement Utilities)

EXAMPLES

FILES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

/usr/adm/sa/sadd

SAR(l)

daily data file, where dd are digits representing the day of the
month.

SEE ALSO
sag(lG).
sar(lM) in the System Administrator's Reference Manual.

222

SDIFF(l) (Directory and File Management Utilities) SDIFF(l)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ... 1 file 1 file2

DESCRIPTION
sdiff uses the output of diff(l) to produce a side-by-side listing of two files indi­
cating those lines that are different. Each line of the two files is printed with a
blank gutter between them if the lines are identical, a < in the gutter if the line
only exists in filel, a > in the gutter if the line only exists in file2, and a I for
lines that are different.

For example:

x
a
b
c
d

The following options exist:

<
<

y
a

d
> c

-w n Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-1 Only print the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that is
created as a user-controlled merging of filel and file2. Identicallines
of filel and file2 are copied to output. Sets of differences, as pro­
duced by diff(l), are printed; where a set of differences share a
common gutter character. After printing each set of differences, sdiff
prompts the user with a % and waits for one of the following user­
typed commands:

1 append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines

v turn off silent mode

e 1 call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left and
right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the end
of the output file.

223

SDIFF(l) (Directory and File Management Utilities) SDIFF(l)

SEE ALSO
diff(l), ed(l).

224

SED(l) (Essential Utilities) SED(l)

NAME
sed - stream editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f sfile 1 [files 1

DESCRIPTION
sed copies the named files (standard input default) to the standard output, edited
according to a script of commands. The -f option causes the script to be taken
from file sfile; these options accumulate. If there is just one -e option and no
-f options, the flag -e may be omitted. The -n option suppresses the default
output. A script consists of editing commands, one per line, of the following
form:

[address [, address 1 1 function [arguments 1
In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all com­
mands whose addresses select that pattern space, and at the end of the script
copies the pattern space to the standard output (except under -n) and deletes
the pattern space.

Some of the commands use a hold space to save all or part of the pattern space
for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address, i.e., a
/regular expression/ in the style of ed(l) modified thus:

In a context address, the construction \?regular expression?, where? is
any character, is identical to /regular expression/. Note that in
the context address \xabc\xdefx, the second x stands for itself,
so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period . matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from the

first pattern space that matches the first address through the next
pattern space that matches the second. (If the second address is
a number less than or equal to the line number first selected,
only one line is selected.) Thereafter the process is repeated,
looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function! (below).

In the following list of functions the maximum number of permissible addresses
for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end
with \ to hide the new-line. Backslashes in text are treated like backslashes in

225

SEO(l)

226

(Essential Utilities) SEO(l)

the replacement string of an s command, and may be used to protect initial
blanks and tabs against the stripping that is done on every script line. The rfile
or wfile argument must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be
at most 10 distinct wfile arguments.

(l)a\
text
(2) b label

(2)c\
text

(2)d
(2)D

(2)g

(2)G
(2)h

(2)H
(1)i\
text
(2)1

(2)n

(2)N

(2)p
(2)P

Append. Place text on the output before reading the next input line.
Branch to the: command bearing the label. If label is empty, branch
to the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at the end
of a 2-address range, place text on the output. Start the next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first new­
line. Start the next cycle.
Replace the contents of the pattern space by the contents of the hold
space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the pattern
space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII and long
lines are folded.
Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.
Append the next line of input to the pattern space with an embedded
new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first new­
line to the standard output.

(l)q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading

the next input line.
(2) s/regular expression /replacement /flags

Substitute the replacement string for instances of the regular expres­
sion in the pattern space. Any character may be used instead of /.
For a fuller description see ed(I). Flags is zero or more of:

n n= 1 - 512. Substitute for just the n th occurrence of

g

p

the regular expression.
Global. Substitute for all nonoverlapping instances of
the regular expression rather than just the first one.
Print the pattern space if a replacement was made.

SEO(l)

w wfile

(Essential Utilities) SEO(l)

Write. Append the pattern space to wfile if a replace­
ment was made.

(2)t label Test. Branch to the: command bearing the label if any substitutions
have been made since the most recent reading of an input line or
execution of a t. If label is empty, branch to the end of the script.

(2)w wfile Write. Append the pattern space to wfile.
(2)x Exchange the contents of the pattern and hold spaces.
(2) y / stringl / string2 /

Transform. Replace all occurrences of characters in stringl with the
corresponding character in string2. The lengths of stringl and string2
must be equal.

(2)! function
Don't. Apply the function (or group, if function is {) only to lines not
selected by the addressees).

(0): label This command does nothing; it bears a label for band t commands to

(1)=
(2) {

(0)
(0)#

branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching } only when
the pattern space is selected.
An empty command is ignored.
If a # appears as the first character on the first line of a script file,
then that entire line is treated as a comment, with one exception. If
the character after the # is an 'n', then the default output will be
suppressed. The rest of the line after #n is also ignored. A script file
must contain at least one non-comment line.

SEE ALSO
awk(I), ed(I), grep(I).

227

SETUP(1) (Essential Utilities) SETUP(l)

NAME
setup - initialize system for first user

SYNOPSIS
setup

DESCRIPTION
The setup command, which is also accessible as a login by the same name,
allows the first user to be established as the "owner" of the machine.

The user is permitted to add the first logins to the system, usually starting with
his or her own.

The user can then protect the system from unauthorized modification of the
machine configuration and software by giving passwords to the administrative
and maintenance functions. Normally, the first user of the machine enters this
command through the setup login, which initially has no password, and then
gives passwords to the various functions in the system. Any that the user leaves
without password protection can be exercised by anyone.

The user can then give passwords to system logins such as "root", "bin", etc.
(provided they do not already have passwords). Once given a password, each login
can only be changed by that login or "root".

The user can then set the date, time and time zone of the machine.

The user can then set the node name of the machine.

SEE ALSO
passwd(l).

DIAGNOSTICS
The passwd(l) command complains if the password provided does not meet its
standards.

WARNING

228

If the setup login is not under password control, anyone can put passwords on
the other functions.

SH(l) (Essential Utilities) SH(l)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh [-acefhiknrstuvx 1 [args 1
rsh [-acefhiknrstuvx 1 [args 1

DESCRIPTION
sh is a command programming language that executes commands read from a
terminal or a file. rsh is a restricted version of the standard command interpreter
sh; it is used to set up login names and execution environments whose capabili­
ties are more controlled than those of the standard shell. See "Invocation"
below for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or under­
scores beginning with a letter or underscore. A parameter is a name, a digit, or
any of the characters ., @' #, 7, -, $, and !.

Commands
A simple-command is a sequence of non-blank words separated by blanks. The
first word specifies the name of the command to be executed. Except as
specified below, the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0 (see exec(2». The
value of a simple-command is its exit status if it terminates normally, or (octal)
200+status if it terminates abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The standard
output of each command but the last is connected by a pipe(2) to the standard
input of the next command. Each command is run as a separate process; the
shell waits for the last command to terminate. The exit status of a pipeline is
the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, &, &&, or I I, and
optionally terminated by ; or &. Of these four symbols, ; and & have equal pre­
cedence, which is lower than that of && and I I. The symbols && and I I also
have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (Le., the shell does not wait for that pipeline to finish). The
symbol && (I I) causes the list following it to be executed only if the preceding
pipeline returns a zero (non-zero) exit status. An arbitrary number of new-lines
may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless other­
wise stated, the value returned by a command is that of the last simple-command
executed in the command.

for name [in word ... 1 do list done
Each time a for command is executed, name is set to the next word taken
from the in word list. If in word ... is omitted, then the for command
executes the do list once for each positional parameter that is set (see
Parameter Substitution below). Execution ends when there are no more
words in the list.

229

SH(l) (Essential Utilities) SH(l)

230

case word in [pattern [I pattern 1 ...) list ;; 1 .,. esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see "File Name Generation") except that a slash, a
leading dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list [elif list then list 1 ... [else list 1 fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then
is executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list do list done

(list)

{list;}

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; other­
wise the loop terminates. If no commands in the do list are executed,
then the while command returns a zero exit status; until may be used
in place of while to negate the loop termination test.

Execute list in a sub"shell.

list is executed in the current (that is, parent) shell.
name () {list;}

Define a function which is referenced by name. The body of the function
is the list of commands between { and}. Execution of functions is
described below (see Execution).

The following words are only recognized as the first word of a command and
when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up
to a new-line to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents (") and
the standard output from these commands may be used as all or part of a word.
Trailing new-lines from the standard output are removed.

No interpretation is done on the string before the string is read, except to
remove backslashes (\) used to escape other characters. Backslashes may be
used to escape a grave accent (') or another backslash (\) and are removed
before the command string is read. Escaping grave accents allows nested com­
mand substitution. If the command substitution lies within a pair of double
quotes (" ... ' ... ' ... "), a backslash used to escape a double quote (\") will be
removed; otherwise, it will be left intact.

If a backslash is used to escape a new-line character (\new-line), both the
backslash and the new-line are removed (see the later section on "Quoting"). In
addition, backslashes used to escape dollar signs (\$) are removed. Since no

SH(l) (Essential Utilities) SH(l)

interpretation is done on the command string before it is read, inserting a
backslash to escape a dollar sign has no effect. Backslashes that precede charac­
ters other than \, " ", new-line, and $ are left intact when the command string
is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two
types of parameters, positional and keyword. If parameter is a digit, it is a posi­
tional parameter. Positional parameters may be assigned values by set. Key­
word parameters (also known as variables) may be assigned values by writing:

name=value [name=value 1 ...
Pattern-matching is not performed on value. There cannot be a function and a
variable with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name. If parameter is * or @'
all the positional parameters, starting with $1, are substituted (separated
by spaces). Parameter $0 is set from argument zero when the shell is
invoked.

${parameter:-word}
If parameter is set and is non-null, substitute its value; otherwise substi­
tute word.

${parameter:=word}
If parameter is not set or is null set it to word; the value of the parameter
is substituted. Positional parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message "param­
eter null or not set" is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set or
is null:

echo ${d:-"pwd'}

If the colon (:) is omitted from the above expressions, the shell only checks
whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed

command.

231

SH(l) (Essential Utilities) SH(l)

$ The process number of this shell.
The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The user

may not change PATH if executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the MAIL­

PATH parameter is not set, the shell informs the user of the
arrival of mail in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the MAIL­
PATH or MAIL parameters. The default value is 600 seconds (10
minutes). If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set,
the shell informs the user of the arrival of mail in any of the
specified files. Each file name can be followed by % and a mes­
sage that will be printed when the modification time changes.
The default message is you have mail .

PSt Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> "
IPS Internal field separators, normally space, tab, and new-line.
SHACCT

If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed.

SHELL When the shell is invoked, it scans the environment (see
"Environment" below) for this name. If it is found and 'rsh' is
the file name part of its value, the shell becomes a restricted
shell.

The shell gives default values to PATH, PSt, PS2, MAILCHECK and IPS. HOME
and MAIL are set by login(l).

Blank Interpretation

232

After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IPS) and split into
distinct arguments where such characters are found. Explicit null arguments (""
or ") are retained. Implicit null arguments (those resulting from parameters that
have no values) are removed.

SH(l) (Essential Utilities) SH(l)

Input/Output
A command's input and output may be redirected using a special notation inter­
preted by the shell. The following may appear anywhere in a simple-command
or may precede or follow a command and are not passed on as arguments to the
invoked command. Note that parameter and command substitution occurs
before word or digit is used.

<word
> word

»word

«[-]word

<&digit

<&-

Use file word as standard input (file descriptor 0).
Use file word as standard output (file descriptor 1). If the file
does not exist it is created; otherwise, it is truncated to zero
length.
Use file word as standard output. If the file exists output is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.
After parameter and command substitution is done on word, the
shell input is read up to the first line that literally matches the
resulting word, or to an end-of-file. If, however, - is appended
to «:
1) leading tabs are stripped from word before the shell input is

read (but after parameter and command substitution is done
on word),

2) leading tabs are stripped from the shell input as it is read
and before each line is compared with word, and

3) shell input is read up to the first line that literally matches
the resulting word, or to an end-of-file.

If any character of word is quoted (see "Quoting," later), no addi­
tional processing is done to the shell input. If no characters of
word are quoted:
1) parameter and command substitution occurs,
2) (escaped) \new-line is ignored, and
3) \ must be used to quote the characters \, $, and '.
The resulting document becomes the standard input.
Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.
The standard input is closed. Similarly for the standard output
using >&-.

If any of the above is preceded by a digit, the file descriptor which will be asso­
ciated with the file is that specified by the digit (instead of the default 0 or 1).
For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

233

SH(l) (Essential Utilities) SH(l)

234

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

... 1 > xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (Le., xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming
file descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under "Commands," if a
command is composed of several simple commands, redirection will be evaluated
for the entire command before it is evaluated for each simple command. That is,
the shell evaluates redirection for the entire list, then each pipeline within the
list, then each command within each pipeline, then each list within each com­
mand.

If a command is followed by & the default standard input for the command is
the empty file /dev /null. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as modified by
input/output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the charac­
ters *, ?, and [. If one of these characters appears the word is regarded as a pat­
tern. The word is replaced with alphabetically sorted file names that match the
pattern. If no file name is found that matches the pattern, the word is left
unchanged. The character. at the start of a file name or immediately following
a /, as well as the character / itself, must be matched explicitly.

Quoting

* Matches any string, including the null string .
. ? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters

separated by - matches any character leXically between the pair,
inclusive. If the first character following the opening "[" is a"!"
any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termina­
tion of a word unless quoted:

; & () I A < > new-line space tab

A character may be quoted (Le., made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (" or 1111). During
processing, the shell may quote certain characters to prevent them from taking
on a special meaning. Backslashes used to quote a single character are removed
from the word before the command is executed. The pair \new-line
is removed from a word before command and parameter substitution.

All characters enclosed between a pair of single quote marks (' '), except a
single quote, are quoted by the shell. Backslash has no special meaning inside a
pair of single quotes. A single quote may be quoted inside a pair of double

SH(I) (Essential Utilities) SH(I)

quote marks (for example, "''').

Inside a pair of double quote marks (""), parameter and command substitution
occurs and the shell quotes the results to avoid blank interpretation and file
name generation. If $* is within a pair of double quotes, the positional parame­
ters are substituted and quoted, separated by quoted spaces ("$1 $2 ... "); how­
ever, if $@ is within a pair of double quotes, the positional parameters are sub­
stituted and quoted, separated by unquoted spaces ("$1" "$2" ...). \ quotes the
characters \, " ", and $. The pair \new-line is removed before parameter and
command substitution. If a backslash precedes characters other than \, " ", $,
and new-line, then the backslash itself is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PSI before reading
a command. If at any time a new-line is typed and further input is needed to
complete a command, the secondary prompt (Le., the value of PS2) is issued.

Environment
The environment (see environ(S)} is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The shell
interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters
or creates new parameters, none of these affects the environment unless the
export command is used to bind the shell's parameter to the environment (see
also set -a). A parameter may be removed from the environment with the unset
command. The environment seen by any executed command is thus composed
of any unmodified name-value pairs originally inherited by the shell, minus any
pairs removed by unset, plus any modifications or additions, all of which must
be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=4S0 cmd and
(export TERM; TERM=4S0; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even
if they occur after the command name. The following first prints a=b c and c:

Signals

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise signals have the values inherited by the
shell from its parent, with the exception of signal 11 (but see also the trap com­
mand below).

Execution
Each time a command is executed, the above substitutions are carried out. If the
command name matches one of the Special Commands listed below, it is

235

SH(l) (Essential Utilities) SH(l)

executed in the shell process. If the command name does not match a Special
Command, but matches the name of a defined function, the function is executed
in the shell process (note how this differs from the execution of shell pro­
cedures). The positional parameters $1, $2, are set to the arguments of the
function. If the command name matches neither a Special Command nor the
name of a defined function, a new process is created and an attempt is made to
execute the command via exec(2).
The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is :/bin:/usr/bin (specifying the current directory, /bin, and
/usr/bin, in that order). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign, between two
colon delimiters anywhere in the path list, or at the end of the path list. If the
command name contains a / the search path is not used; such commands will
not be executed by the restricted shell. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is not an
a.out file, it is assumed to be a file containing shell commands. A sub-shell is
spawned to read it. A parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by
the shell (to help avoid unnecessary execs later). If the command was found in
a relative directory, its location must be re-determined whenever the current
directory changes. The shell forgets all remembered locations whenever the
PATH variable is changed or the hash -r command is executed (see below).

Special Commands

236

Input/output redirection is now permitted for these commands. File descriptor 1
is the default output location.

No effect; the command does nothing. A zero exit code is returned .
. file Read and execute commands from file and return. The search path

specified by PATH is used to find the directory containing file.
break [n 1

Exit from the enclosing for or while loop, if any. If n is specified break
n levels.

continue [n 1
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n-th enclosing loop.

cd [arg 1
Change the current directory to arg. The shell parameter HOME is the
default argo The shell parameter CD PATH defines the search path for
the directory containing argo Alternative directory names are separated
by a colon (:). The default path is <null> (specifying the current direc­
tory). Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If arg begins with a / the
search path is not used. Otherwise, each directory in the path is
searched for argo The cd command may not be executed by rsh.

SH(l) (Essential Utilities) SH(l)

echo [arg ...]
Echo arguments. See echo(l) for usage and description.

eval [arg ...]
The arguments are read as input to the she1l and the resulting com­
mand(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
she1l without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the she1l
input/output to be modified.

exit[n]
Causes a she1l to exit with the exit status specified by n. If n is omitted
the exit status is that of the last command executed (an end-of-file will
also cause the she1l to exit.)

export [name ...]

getopts

The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, variable
names that have been marked for export during the current she1l's exe­
cution are listed. (Variable names exported from a parent she1l are listed
only if they have been exported again during the current she1l's execu­
tion.) Function names are not exported.

Use in shell scripts to support command syntax standards (see intro(l»;
it parses positional parameters and checks for legal options. See
getopts(l) for usage and description.

hash [-r] [name ...]
For each name, the location in the search path of the command specified
by name is determined and remembered by the she1l. The -r option
causes the she1l to forget all remembered locations. If no arguments are
given, information about remembered commands is presented. Hits is
the number of times a command has been invoked by the shell process.
Cost is a measure of the work required to locate a command in the
search path. If a command is found in a "relative" directory in the
search path, after changing to that directory, the stored location of that
command is recalculated. Commands for which this will be done are
indicated by an asterisk (*) adjacent to the hits information. Cost will be
incremented when the recalculation is done.

newgrp [arg ...]
Equivalent to exec newgrp arg See newgrp(l) for usage and descrip­
tion.

pwd Print the current working directory. See pWd(l) for usage and descrip­
tion.

read [name ...]
One line is read from the standard input and, using the internal field
separator, IFS (normally space or tab), to delimit word boundaries, the
first word is assigned to the first name, the second word to the second
name, etc., with leftover words assigned to the last name. Lines can be

237

SH(l)

238

(Essential Utilities) SH(l)

continued using \new-line. Characters other than new-line can be
quoted by preceding them with a backslash. These backslashes are
removed before words are assigned to names, and no interpretation is
done on the character that follows the backslash. The return code is 0
unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these names
may not be changed by subsequent assignment. If no arguments are.
given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

set [--aefhkntuvx [arg ...]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit status.
-f Disable file name generation
-h Locate and remember function commands as functions are

defined (function commands are normally located when the
function is executed).

-k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags
can also be used upon invocation of the shell. The current set of flags
may be found in $-. The remaining arguments are positional parame­
ters and are assigned, in order, to $1, $2, If no arguments are given
the values of all names are printed.

shift[n]

test

times

The positional parameters from $n+1 ... are renamed $1 If n is not
given, it is assumed to be 1.

Evaluate conditional expressions. See test(l) for usage and description.

Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and once
when the trap is taken.) Trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was ignored on

SH(l) (Essential Utilities) SH(l)

entry to the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If arg is absent all trap(s) n are reset
to their original values. If arg is the null string this signal is ignored by
the shell and by the commands it invokes. If n is 0 the command arg is
executed on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a com­
mand name.

ulimit [n]
Impose a size limit of n blocks on files written by the shell and its child
processes (files of any size may be read). If n is omitted, the current
limit is printed. You may lower your own ulimit, but only a super-user
(see su(lM» can raise a ulimit.

umask [nnn]
The user file-creation mask is set to nnn (see umask(l». If nnn is
omitted, the current value of the mask is printed.

unset [name ...]
For each name, remove the corresponding variable or function. The
variables PATH, PSI, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its
termination status. If n is omitted, all your shell's currently active
background processes are waited for and the return code will be zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero is
-, commands are initially read from jetcjprofile and from $HOMEj.profile, if
such files exist. Thereafter, commands are read as described below, which is
also the case when the shell is invoked as jbinjsh. The flags below are inter­
preted by the shell on invocation only; Note that unless the -c or -s flag is
specified, the first argument is assumed to be the name of a file containing com­
mands, and the remaining arguments are passed as positional parameters to that
command file:

-c string If the -c flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain commands are

read from the standard input. Any remaining arguments specify the
positional parameters. Shell output (except for Special Commands) is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached
to a terminal, this shell is interactive. In this case TERMINATE is
ignored (so that kill 0 does not kill an interactive shell) and INTER­
RUPT is caught and ignored (so that wait is interruptible). In all
cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

239

SH(l) (Essential Utilities) SH(l)

rsh Only
rsh is used to set up login names and execution environments whose capabilities
are more controlled than those of the standard shell. The actions of rsh are
identical to those of sh, except that the following are disallowed:

changing directory (see cd(l»,
setting the value of SPATH,
specifying path or command names containing /,
redirecting output (> and> ».

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is the file
name part of the last entry in the /etc/passwd file (see passwd(4»; (2) the
environment variable SHELL exists and rsh is the file name part of its value; (3)
the shell is invoked and rsh is the file name part of argument 0; (4) the shell is
invoke with the -r option.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a limited
menu of commands; this scheme assumes that the end-user does not have write
and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile (see profile(4» has
complete control over user actions by performing guaranteed setup actions and
leaving the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (Le., /usr/rbin)
that can be safely invoked by a restricted shell. Some systems also provide a
restricted editor, red.

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of the
shell file is abandoned. Otherwise, the shell returns the exit status of the last
command executed (see also the exit command above). .

/ etc/profile
SHOME/.profile
/tmp/sh*'
/dev/null

SEE ALSO
cd(l), echo(l), env(l), getopts(l), intro(l), login(l), newgrp(l), pwd(l), test(l),
umask(l), wait(l).
dup(2), exe'c(2), fork(2), pipe(2), profile(4), signal(2), ulimit(2) in the Programmer's
Reference Manual.

CAVEATS

240

Words used for filenames in input/output redirection are not interpreted for
filename generation (see "File Name Generation," above). For example, cat filel
> a* will create a file named a*.

SH(l)

BUGS

(Essential Utilities) SH(l)

Because commands in pipelines are run as separate processes, variables set in a
pipeline have no effect on the parent shell.

If you get the error message cannot fork, too many processes, try using the wait(l)
command to clean up your background processes. If this doesn't help, the
system process table is probably full or you have too many active foreground
processes. (There is a limit to the number of process ids associated with your
login, and to the number the system can keep track of.)

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command
was found, the shell will continue to exec the original command. Use the hash
command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

Not all the processes of a 3- or more-stage pipeline are children of the shell, and
thus cannot be waited for.

For wait n, if n is not an active process id, all your shell's currently active back­
ground processes are waited for and the return code will be zero.

241

SHL(l) (User Environment Utilities) SHL(l)

NAME
shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION

242

shl allows a user to interact with more than one shell from a single terminal.
The user controls these shells, known as layers, using the commands described
below.

The current layer is the layer which can receive input from the keyboard. Other
layers attempting to read from the keyboard are blocked. Output from multiple
layers is multiplexed onto the terminal. To have the output of a layer blocked
when it is not current, the stty option loblk may be set within the layer.

The stty character swtch (set to ~Z if NUL) is used to switch control to shl from a
layer. shl has its own prompt, »>, to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device (fdev fsxt???).
The virtual device can be manipulated like a real tty device using stty(l) and
ioctl (2). Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line. Only
the first eight characters are significant. The names (1) through (7) cannot be
used when creating a layer. They are used by shl when no name is supplied.
They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any unique
prefix is accepted.

create [name 1
Create a layer called name and make it the current layer. If no argument
is given, a layer will be created with a name of the form (#) where # is
the last digit of the virtual device bound to the layer. The shell prompt
variable PSt is set to the name of the layer followed by a space. A max­
imum of seven layers can be created.

block name [name ... 1
For each name, block the output of the corresponding layer when it is
not the current layer. This is equivalent to setting the stty option -Ioblk
within the layer.

delete name [name ... 1
For each name, delete the corresponding layer. All processes in the pro­
cess group of the layer are sent the SIGHUP signal (see signal(2».

help (or ?)
Print the syntax of the shl commands.

layers [-I 1 [name ... 1
For each name, list the layer name and its process group. The -I option
produces a ps(l)-like listing. If no arguments are given, information is
presented for all existing layers.

SHL(l)

FILES

(User Environment Utilities) SHL(l)

resume [name]
Make the layer referenced by name the current layer. If no argument is
given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.
unblock name [name ...]

For each name, do not block the output of the corresponding layer when
it is not the current layer. This is equivalent to setting the stty option
-loblk within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.
name Make the layer referenced by name the current layer.

jdev jsxt???
$SHELL

Virtual tty devices
Variable containing path name of the shell to use (default is
jbinjsh).

SEE ALSO
sh(l), stty(l).
ioct1(2), signal(2) in the Programmer's Reference Manual.
sxt(7) in the System Administrator's Reference Manual.

243

SLEEP(l) (Essential Utilities)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(l)

sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time, as in:

(sleep 105; command)&
or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alarm(2), sleep(3C) in the Programmer's Reference Manual.

244

SORT(l) (Essential Utilities) SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+pos1 [-pos2]]
[files]

DESCRIPTION
sort sorts lines of all the named files together and writes the result on the stan­
dard output. The standard input is read if - is used as a file name or no input
files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is lex­
icographic by bytes in machine collating sequence.

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering rules; give no
output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutput
The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs. There
may be optional blanks between -0 and output.

-ykmem
The amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a waste.
If this option is omitted, sort begins using a system default memory size,
and continues to use more space as needed. If this option is presented
with a value, kmem, sort will start using that number of kilobytes of
memory, unless the administrative minimum or maximum is violated, in
which case the corresponding extremum will be used. Thus, -yO is
guaranteed to start with minimum memory. By convention, -y (with no
argument) starts with maximum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers
can be allocated during the merge phase. If the sort phase is omitted via
the -e or -m options, a popular system default size will be used. Lines
longer than the buffer size will cause sort to terminate abnormally. Sup­
plying the actual number of bytes in the longest line to be merged (or
some larger value) will prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-£ Fold lower case letters into upper case.

-i Ignore characters outside the ASCII range 040-0176 in non-numeric com-
parisons.

245

SORT(l) (Essential Utilities) SORT(l)

246

-M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared so that "JAN" < "FEB" < ... < "DEC".
Invalid fields compare low to "JAN". The -M option implies the -b
option (see below).

-n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. The -n option implies the -b option (see below). Note
that the -b option is only effective when restricted sort key specifications
are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached to
a specific sort key (described below), the specified ordering options override all
global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and
ending just before pos2. The characters CIt position posl and just before pos2 are
included in the sort key (provided that pos2 does not precede posl). A missing
-pos2 means the end of the line.

Specifying posl and pos2 involves the notion of a field, a minimal sequence of
characters followed by a field separator or a new-line. By default, the first blank
(space or tab) of a sequence of blanks acts as the field separator. All blanks in a
sequence of blanks are considered to be part of the next field; for example, all
blanks at the beginning of a line are considered to be part of the first field. The
treatment of field separators can be altered using the options:

-b Ignore leading blanks when determining the starting and ending positions
of a restricted sort key. If the -b option is specified before the first +posl
argument, it will be applied to all +posl arguments. Otherwise, the b flag
may be attached independently to each +posl or -pos2 argument (see
below).

-tx Use x as the field separator character; x is not considered to be part of a
field (although it may be included in a sort key). Each occurrence of x is
significant (for example, xx delimits an empty field).

Posl and pos2 each have the form m.n optionally followed by one or more of the
flags bdfinr. A starting position specified by +m.n is interpreted to mean the
n+lst character in the m+lst field. A missing .n means .0, indicating the first
character of the m+lst field. If theb flag is in effect n is counted from the first
non-blank in the m+lst field; +rn.Ob refers to the first non-blank character in
the m+lst field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the m th field. A missing .n
means .0, indicating the last character of the mth field. If the b flag is in effect n
is counted from the last leading blank in the m+lst field; -m.lb refers to the
first non-blank in the m+lst field.

SORT(l) (Essential Utilities) SORT(l)

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all
bytes significant.

EXAMPLES

FILES

Sort the contents of infile with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of infilel and infile2, placing the output in
outfile and using the first character of the second field as the sort key:

sort -r -0 outfile +1.0 -1.2 infile1 infile2

Sort, in reverse order, the contents of infilel and infile2 using the first non-blank
character of the second field as the sort key:

sort -r +1.0b -1.lb infilel infile2

Print the password file (passwd(4» sorted by the numeric user ID (the third
colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options -um with just one
input file make the choice of a unique representative from a set of equal lines
predictable):

sort -urn +2 -3 infile

/usr/tmp/stm???

SEE ALSO
comm(1), join(l), uniq(1).

WARNINGS
Comments and exits with non-zero status for various trouble conditions (for
example, when input lines are too long), and for disorder discovered under the
-c option. When the last line of an input file is missing a new-line character,
sort appends one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

247

SPELL(l) (Spell Utilities) SPELL(l)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v 1 [-b 1 [-x 1 [-1 1 [+local_file 1 [files 1
jusr jlib jspelljhashmake

jusrjlibjspell/spellin n

jusrjlib jspelljhashcheck spellingJist

DESCRIPTION

248

spell collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are printed
on the standard output. If no files are named, words are collected from the stan­
dard input.

spell ignores most troff(l), tbl(l), and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and
plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in words
like standardise, Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for each word.

By default, spell (like deroff(l» follows chains of included files (.so and .nx
troff(l) requests), unless the names of such included files begin with jusrjlib.
Under the -1 option, spell will follow the chains of all included files.

Under the +localJile option, words found in localJile are removed from spell's
output. LocalJile is the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of words that
are correct spellings (in addition to spell's own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective with respect to proper names and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below
with their default settings (see FILES). Copies of all output are accumulated in
the history file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that
would otherwise pass.

Three routines help maintain and check the hash lists used by spell:
hashmake Reads a list of words from the standard input and writes the

corresponding nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output.

SPELL(l) (Spell Utilities) SPELL(l)

FILES

hashcheck Reads a compressed spellingJist and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard
output.

D _SPELL= lusr llib Ispell/hlist[ab]
S _ SPELL= I usr I lib I spell Ihstop
H_SPELL= lusr llib Ispell/spellhist
lusr I lib I spell I spellprog

hashed spelling lists, American & British
hashed stop list
history file
program

SEE ALSO

BUGS

deroff(l), sed(1), sort(l), tee(l).
eqn(l), tbl(l), troff(l) in the DOCUMENTER'S WORKBENCH Software 2.0 Technical
Discussion and Reference Manual.

The spelling list's coverage is uneven; new installations will probably wish to
monitor the output for several months to gather local additions; typically, these
are kept in a separate local file that is added to the hashed spellingJist via
speIlin.

249

SPLINE(lG) (Graphics Utilities) SPLINE(lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options 1

DESCRIPTION
spline takes pairs of numbers from the standard input as abscissas and ordinates
of a function. It produces a similar set, which is approximately equally spaced
and includes the input set, on the standard output. The cubic spline output has
two continuous derivatives, and sufficiently many points to look smooth when
plotted, for example by graph(lG).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be 1 if next
argument is not a number.

-k The constant k used in the boundary value computation:
y; = ky~, y~' = kY~'-l

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur between
the lower and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First and last
input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally,
these limits are calculated from the data. Automatic abscissas start at
lower limit (default 0).

SEE ALSO
graph(lG).

DIAGNOSTICS

BUGS

250

When data is not strictly monotone in x, spline reproduces the input without
interpolating extra points.

A limit of 1,000 input points is enforced silently.

SPUT(l) (Directory and File Management Utilities) SPUT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
split reads file and writes it in n-line pieces (default 1000 lines) onto a set of
output files. The name of the first output file is name with aa appended, and so
on lexicographically, up to zz (a maximum of 676 files). Name cannot be longer
than 12 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file
is used.

SEE ALSO
bfs(l), csplit(l).

251

STARTER(l) (Help Utilities) STARTER(l)

NAME
starter - information about the UNIX system for beginning users

SYNOPSIS
[help 1 starter

DESCRIPTION
The UNIX system Help Facility command starter provides five categories of infor­
mation about the UNIX system to assist new users.

The five categories are:

- commands a new user should learn first

- UNIX system documents important for beginners

- education centers offering UNIX system courses

- local environment information

- on-line teaching aids installed on the UNIX system

The user may choose one of the above categories by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").
When a category is chosen, the user will receive one or more pages of informa­
tion pertaining to it.

From any screen in the Help Facility, a user may execute a command via the
shell (sh(l» by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt.
If ent.ered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file (see
profile (4»: "export SCROLL ; SCRoLL=no". If you later decide that scrol­
ling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage, glos­
sary, and help) is located on their respective manual pages.

SEE ALSO
glossary(l), help(l), locate(l), sh(l), usage(l).
term(5) in the Programmer's Reference Manual.

WARNINGS

252

If the shell variable TERM (see sh(l» is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term(5).

STAT(lG) (Graphics Utilities) STAT(lG)

NAME
stat - statistical network useful with graphical commands

SYNOPSIS
node-name [options] [files]

DESCRIPTION
stat is a collection of command level functions (nodes) that can be intercon­
nected using sh(l) to form a statistical network. The nodes reside in
/usr/bin/graf (see graphics(lG». Data is passed through the network as
sequences of numbers (vectors), where a number is of the form:

[sign](digits)(. digits)[e[sign]digits]

evaluated in the usual way. Brackets and parentheses surround fields. All fields
are optional, but at least one of the fields surrounded by parentheses must be
present. Any character input to a node that is not part of a number is taken as a
delimiter.

stat nodes are divided into four classes.

Transformers, which map input vector elements into output vector
elements;

Summarizers,
Translators,

which calculate statistics of a vector;

which convert among formats; and

Generators, which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indicated
by a leading minus (-). In general, an option is specified by a character fol­
lowed by a value, such as c5. This is interpreted as c := 5 (c is assigned 5). The
following keys are used to designate the expected type of the value:

c characters,

integer,

f floating point or integer,

file file name, and

string string of characters, surrounded by quotes to include a shell argu-
ment delimiter.

Options without keys are flags. All nodes except generators accept files as input,
hence it is not indicated in the synopses.

Transformers:
abs

af

ceil

cusum

[-cil - absolute value
columns (similarly for -c options that follow)

[-ci tv] - arithmetic function
titled output, verbose

[-ci] - round up to next integer

[-ci] - cumulative sum

253

STAT(lG)

254

exp

floor

gamma

list

log

mod

pair

power

root

round

siline

sin

subset

Summarizers:

bucket

cor

hilo

Ireg

mean

point

(Graphics Utilities)

[-ci] - exponential

[-ci] - round down to next integer

[-ci] - gamma

[-ci dstring] - list vector elements
delimiter(s)

[-ci bf] - logarithm
base

[-ci mf] - modulus
modulus

[-ci Ffile xi] - pair elements
File containing base vector, x group size

[-ci pf] - raise to a power
power

[-ci rf] - take a root
root

[-ci pi si] - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-ci if ni sf] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-ci] - sine

[-af bf ci Ffile ii If nl np pf si ti] - generate a subset

STAT(lG)

above, below, File with master vector, interval, leave, master
contains element numbers to leave, master contains element
numbers to pick, pick, start, terminate

[-ai ci Ffile hf ii If ni] - break into buckets
average size, File containing bucket boundaries, high, interval,
low, number
Input data should be sorted

[-Ffile] - correlation coefficient
File containing base vector

[- h I 0 ox oy]- find high and low values
high only, low only, option form, option form with x
prepended, option form with y prepended

[-Ffile i 0 s] - linear regression
File containing base vector, intercept only, option form for
siline, slope only

[-f[ni pf] - (trimmed) arithmetic mean
fraction, number, percent

[-f[ni pf s] - point from empirical cumulative density function
fraction, number, percent, sorted input

STAT(lG)

prod

qsort

rank

total

var

Translators:
bar

hist

label

pie

plot

title

Generators:
gas

prime

rand

(Graphics Utilities) STAT(lG)

- internal product

[-ci] - quick sort

- vector rank

- sum total

- variance

[-a b f g ri wi xf xa yf ya ylf yhf] - build a bar chart
suppress axes, bold, suppress frame, suppress grid, region,
width in percent, x origin, suppress x-axis label, y origin,
suppress y-axis label, y-axis lower bound, y-axis high bound
Data is rounded off to integers.

[-a b f g ri xf xa yf ya ylf yhf] - build a histogram
suppress axes, bold, suppress frame, suppress grid, region, x
origin, suppress x-axis label, y origin, suppress y-axis label, y­
axis lower bound, y-axis high bound

[-b c Ffile h p ri x xu y yr] - label the axis of a GPS file
bar chart input, retain case, label File, histogram input, plot
input, rotation, x-axis, upper x-axis, y-axis, right y-axis

[-b 0 P pni ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage(:-lOO), value as
percentage(:=i), draw percent of pie, region, no values, x origin,
yorigin
Unlike other nodes, input is lines of the form

[< i e f cc >] value [label]
ignore (do not draw) slice, explode slice, fill slice, color
slice c=(black, red, green, blue)

[-a b cstring d f Ffile g m ri xf xa xif xhf xlf xni xt yf ya yif yhf
ylf yni yt] - plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points,
region, x origin, suppress x-axis label, x interval, x high bound,
x low bound, number of ticks on x-axis, suppress x-axis title, y
origin, suppress y-axis label, y interval, y high bound, y low
bound, number of ticks on y-axis, suppress y-axis title

[-b c Istring vstring ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

[-ci if ni sf ttl - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni] - generate prime numbers
high, low, number

[-ci hf If mf ni si] - generate random sequence
high, low, multiplier, number, seed

255

STAT(lG) (Graphics Utilities)

RESTRICTIONS
Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics(lG).
gps(4) in the Programmer's Reference Manual.

256

STAT(lG)

STTY(l) (Essential Utilities) STTY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a 1 [-g 1 [options 1

DESCRIPTION
stty sets certain terminal I/O options for the device that is the current standard
input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret C), then the value of that
option is the corresponding CTRL character (e.g., "Ah" is CTRL-h i in this case,
recall that CTRL-h is the same as the "back-space" key.) The sequence """
means that an option has a null value. For example, normally stty -a will
report that the value of swtch is """; however, if shl (1) or layers (1) has been
invoked, stty -a will have the value "AZ".

-a reports all of the option settings;

-g reports current settings in a form that can be used as an argument to
another stty command.

Options in the last group are implemented using options in the previous groups.
Note that many combinations of options make no sense, but no sanity checking
is performed. The options are selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
cs5 cs6 cs7 cs8 select character size (see termio(7».
o hang up phone line immediately.
110300600120018002400480096001920038400

Set terminal baud rate to the number given, if possible.

hupcl (-hupcl)

hup (-hup)
cstopb (-cstopb)
cread (-cread)
clocal (-clocal)
loblk (-loblk)

Input Modes
ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpck (-inpck)
istrip (-istrip)
inler (-inler)
igncr (-igncr)
icrnl (-icrnl)

(All speeds are not supported by all hardware interfaces.)
hang up (do not hang up) Dataphone connection on last
close.
same as hupcl (-hupcl).
use two (one) stop bits per character.
enable (disable) the receiver.
n assume a line without (with) modem control.
block (do not block) output from a non-current layer.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see termio(7».
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.

257

STTY(l)

258

iucle (-iucle)

ixon (-ixon)

ixany (-ixany)
ixoff (-ixoff)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)
oeml (-oeml)
onoer (-onoer)
onlret (-onlret)

ofill (-of ill)
of de I (-of del)
erO erl er2 er3
nlO nll
tabO tabl tab2 tab3
bsO bsl
ffO ffl
vtO vtl

Local Modes
isig (-isig)

ieanon (-icanon)

xease (-xease)
echo (-echo)
eehoe (-echoe)

eehok (-eehok)
Ifke (-lfke)
echonl (-echonl)
noflsh (-noflsh)
stwrap (-stwrap)

stflush (-stflush)

(Essential Utilities) STTY(l)

map (do not map) upper-case alphabetics to lower case on
input.
enable (disable) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by sending
an ASCII DCI.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP char­
acters when the input queue is nearly empty/full.

post-process output (do not post-process output; ignore all
other output modes).
map (do not map) lower-case alphabetics to upper case on
output.
map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the CR
function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see termio(7».
select style of delay for line-feeds (see termio(7».
select style of delay for horizontal tabs (see termio(7».
select style of delay for backspaces (see termio(7».
select style of delay for form-feeds (see termio(7».
select style of delay for vertical tabs (see termio(7».

enable (disable) the checking of characters against the spe­
cial control characters INTR, QUIT, and SWTCH.
enable (disable) canonical input (ERASE and KILL pro­
cessing).
canonical (unprocessed) upper/lower-case presentation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed
character on many CRT terminals; however, it does not
keep track of column position and, as a result, may be
confusing on escaped characters, tabs, and backspaces.
echo (do not echo) NL after KILL character.
the same as eehok (-eehok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR, QUIT, or SWTCH.
disable (enable) truncation of lines longer than 79 charac­
ters on a synchronous line. (Does not apply to the 3B2.)
enable (disable) flush on a synchronous line after every
write(2).(Doesnotapplyto

STTY(l)

stappl (-stappl)

Control Assignments
control-character c

line i

(Essential Utilities) STTY(l)

use application mode (use line mode) on a synchronous
line. (Does not apply to the 3B2.)

set control-character to c, where control-character is erase,
kill, intr, quit, swteh, eof, dab, min, or time (dab is
used with -stappl; min and time are used with -icanon;
see termio(7». If c is preceded by an (escaped from the
shell) caret C), then the value used is the corresponding
CTRL character (e.g., "Ad" is a CTRL-d); "A?" is interpreted
as DEL and "A -" is interpreted as undefined.
set line discipline to i (0 < i < 127).

Combination Modes
evenp or parity enable parenb and es7.
oddp enable parenb, es7, and parodd.
-parity, -evenp, or -oddp

disable parenb, and set es8.
raw (-raw or cooked)

nl (-nl)

lease (-lease)
LCASE (-LCASE)
tabs (-tabs or tab3)
ek
sane
term

SEE ALSO
tabs(I).

enable (disable) raw input and output (no ERASE, KILL,
INTR, QUIT, SWTCH, EOT, or output post processing).
unset (set) iernl, onler. In addition -nl unsets inler,
igner, oernl, and onlret.
set (unset) xease, iucle, and oleue.
same as lease (-lease).
preserve (expand to spaces) tabs when printing.
reset ERASE and KILL characters back to normal # and @.
resets all modes to some reasonable values.
set all modes suitable for the terminal type term, where
term is one of tty33, tty37, vt05, tn300, ti700, or tek.

ioctl(2) in the Programmer's Reference Manual.
termio(7) in the System Administrator's Reference Manual.

259

SU(lM) (Essential Utilities) SU(lM)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg ...]]

DESCRIPTION
su allows one to become another user without logging off. The default user
name is root (Le., super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real and
effective user ID set to that of the specified user. The new shell will be the
optional program named in the shell field of the specified user's password file
entry (see passwd(4», or /bin/sh if none is specified (see sh(l». To restore
normal user ID privileges, type an EOF (cntrl-d) to the new shell.

Any additional arguments given on the command line are passed to the program
invoked as the shell. When using programs like sh(l), an arg of the form -c
string executes string via the shell and an arg of -r will give the user a restricted
shell.

The following statements are true only if the optional program named in the
shell field of the specified user's password file entry is like sh(l). If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first character
is -, thus causing first the system's profile (jete/profile) and then the specified
user's profile (.profile in the new HOME directory) to be executed. Otherwise,
the environment is passed along with the possible exception of $P ATH, which is
set to /bin:/ete:/usr/bin for root. Note that if the optional program used as
the shell is /bin/sh, the user's .profile can check argO for -sh or -su to deter­
mine if it was invoked by login(l) or su(l), respectively. If the user's program is
other than /bin/sh, then .profile is invoked with an argO of -program by both
login(l) and su(l).

All attempts to become another user using su are logged in the log file
/usr/adm/sulog.

EXAMPLES

260

To become user bin while retaining your previously exported environment, exe­
cute:

su bin

To become user bin but change the environment to what would be expected if
bin had originally logged in, execute:

su - bin
To execute command with the temporary environment and permissions of user
bin, type:

su - bin -c "command args"

SU(lM)

FILES
jetcjpasswd
j etc j profile
$HOMEj.profile
jusrjadmjsulog

(Essential Utilities)

system's password file
system's profile
user's profile
log file

SEE ALSO
env(l), login(l), sh(l) in the User's Reference Manual.
passwd(4), profile(4), environ(5) in the Programmer's Reference Manual.

SU(lM)

261

SUM(l) (Directory and File Management Utilities) SUM(l)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION
sum calculates and prints a 16-bit checksum for the named file, and also prints
the number of blocks in the file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line. The option -r causes
an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS

262

"Read error" is indistinguishable from end of file on most devices; check the
block count.

SYNC(lM) (Essential Utilities) SYNC(lM)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

NOTE

sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. It will flush all previously
unwritten system buffers out to disk, thus assuring that all file modifications up
to that point will be saved. See sync(2) for details.

If you have done a write to a file on a remote machine in a Remote File Sharing
environment, you cannot use sync to force buffers to be written out to disk on
the remote machine. sync will only write local buffers to local disks.

SEE ALSO
sync(2) in the Programmer's Reference Manual.

263

SYSADM(l) (Essential Utilities) SYSADM(l)

NAME
sysadm - menu interface to do system administration

SYNOPSIS
sysadm [sub-command 1

DESCRIPTION
This command, when invoked without an argument, presents a menu of system
administration sub-commands, from which the user selects. If the optional argu­
ment is presented, the named sub-command is run or the named sub-menu is
presented.

The sysadm command may be given a password. See admpasswd in the SUB­
COMMANDS section.

SUB-COMMANDS

264

The following menus of sub-commands are available. (The number of bullets
(•) in front of each item indicates the level of the menu or subcommand.}

• diagnostics
system diagnostics menu

These subcommands look for and sometimes repair problems in the
system. Those sub commands that issue reports allow you to determine
if there are detectable problems. Commands that attempt repair are for
repair people only. You must know what you are doing!

•• diskrepair
advice on repair of built-in disk errors

This subcommand advises you on how to go about repairing errors that
occur on built-in disks.

WARNING: Because this is a repair function, it should only be performed
by qualified service personnel.
NOTE: Reports of disk errors most probably result in the loss of files
and/or damage to data. It will be necessary to restore the repaired disk
from backup copies .

• • diskreport
report on built-in disk errors

This subcommand shows you if the system has collected any informa­
tion indicating that there have been errors while reading the built-in
disks. You can request either summary or full reports. The summary
report provides sufficient information about disk errors to determine if
repair should be attempted. If the message no errors logged is part of
the report, then there is probably no damage. If a number of errors is
reported, there is damage and you should call for service. The full
report gives additional detail for the expert repair person trouble
shooting complicated problems.

SYSADM(l) (Essential Utilities) SYSADM(l)

NOTE: Reports of disk errors most probably result in the loss of files
and/or damage to data. It will be necessary to restore the repaired disk
from backup copies .

• diskmgmt
disk management menu

The subcommands in this menu provide functions for using removable
disks. The subcommands include the ability to format disks, copy disks,
and to use disks as mountable file systems. It also contains a menu of
subcommands for handling non-removable media .

•• checkfsys
check a removable disk file system for errors

Checkfsys checks a file system on a removable disk for errors. If there
are errors, this procedure attempts to repair them .

•• cpdisk

• • erase

make exact copies of a removable disk

This procedure copies the contents of a removable disk into the machine
and then allows the user to make exact copies of it. These copies are
identical to the original in every way. The copies are made by first
reading the original removable disk entirely into the machine and then
writing it out onto duplicate disks. The procedure will fail if there is not
enough space in the system to hold the original disk .

erase data from removable disk

This procedure erases a removable disk by overwriting it with null bytes.
The main purpose is to remove data that the user does not want seen.
Once performed, this operation is irreversible.

• • format
format new removable disks

Format prepares new removable disks for use. Once formatted, pro­
grams and data can be written on the disks .

•• harddisk
hard disk management menu

The sub commands in this menu provide functions for using hard disks.
For each hard disk, the disk can be partitioned with default partitioning
or the current disk partitioning can be displayed .

••• display
display hard disk partitioning

Display will allow the user to display the hard disk partitioning. This
will inform the user of current disk partitioning information.

265

SYSADM(l) (Essential Utilities) SYSADM(l)

266

o 0 0 partitioning
partition a hard disk

Partitioning configures hard disks. This will allow you to partition a
hard disk according to the default partitioning.

00. rmdisk
remove a hard disk

Removes a hard disk from the system configuration. It may then be
physically disconnected (once the machine has been turned off) or
freshly partitioned (after the machine has been restarted).

O. makefsys
create a new file system on a removable disk

Makefsys creates a new file system on a removable disk which can then
store data which the user does not wish to keep on the hard disk.
When "mounted", the file system has all the properties of a file kept on
the hard disk, except that it is smaller.

.0 mountfsys
mount a removable disk file system

Mountfsys mounts a file system, found on a removable disk, making it
available to the user. The file system is unmounted with the
"umountfsys" command. THE DISK MUST NOT BE REMOVED WHILE THE
FILE SYSTEM IS STILL MOUNTED.
IF THE FILE SYSTEM HAS BEEN MOUNTED WITH THE mountfsys COM­
MAND, IT MUST BE UNMOUNTED WITH umountfsys.

o 0 umountfsys
unmount a removable disk file system

Umountfsys unmounts a file system, allowing the user to remove the
disk. THE DISK MUST NOT BE REMOVED UNTIL THE FILE SYSTEM IS
UNMOUNTED.
umountfsys MAY ONLY BE USED TO UNMOUNT FILE SYSTEMS
MOUNTED WITH THE mountfsys COMMAND.

o filemgmt
file management menu

The subcommands in this menu allow the user to protect files on the
hard disk file systems by copying them onto diskettes and later restoring
them to the hard disk by copying them back. Subcommands are also
provided to determine which files might be best kept on diskette based
on age or size.

SYSADM(l) (Essential Utilities) SYSADM(l)

•• backup
backup files from integral hard disk to removable disk or tape

Backup saves copies of files from the integral hard disk file systems to
removable disk or tape. There are two kinds of backups:

COMPLETE - copies all files (useful in case of serious file system
damage)

INCREMENTAL - copies files changed since the last backup

The normal usage is to do a complete backup of each file system and
then periodically do incremental backups. Two cycles are recommended
(one set of complete backups and several incrementals to each cycle).
Files backed up with "backup" are restored using "restore" .

•• bupsched
backup reminder scheduling menu

Backup scheduling is used to schedule backup reminder messages and
backup reminder checks. Backup reminder messages are sent to the con­
sole to remind the administrator to backup particular file systems when
the machine is shutdown or a reminder check has been run during the
specified time period.

Backup reminder checks specify particular times at which the system will
check to see if any backup reminder messages have been scheduled.

• • • schedcheck
schedule backup reminder checks

Backup reminder checks are run at specific times to check to see if any
reminders are scheduled. The user specifies the times at which the
check is to be run. Checks are run for the reminder messages scheduled
by schedmsg .

••• schedmsg
schedule backup reminder message

Backup reminder messages are sent to the console if the machine is
shutdown or a reminder check has been scheduled. The user specifies
the times at which it is appropriate to send a message and the file sys­
tems to be included in the message .

•• diskuse
display how much of the hard disk is being used

Diskuse lets the user know what percentage of the hard disk is currently
occupied by files. The list is organized by file system names.

267

SYSADM(l) (Essential Utilities) SYSADM(l)

268

•• fileage
list files older than a particular date

Fileage prints the names of all files older than the date specified by the
user. If no date is entered, all files older than 90 days will be listed. If
no directory is specified to look in, the jusrjadmin directory will be
used .

•• filesize
list the largest files in a particular directory

Filesize prints the names of the largest files in a specific directory. If no
directory is specified, the jusrjadmin directory will be used. If the user
does not specify how many large files to list, 10 files will be listed.

• • restore

•• store

restore files from "backup" and "store" media to integral hard disk

Restore copies files from disks and tapes made by ''backup'' and "store"
back onto the hard disk. You can restore individual files, directories of
files, or the entire contents of a disk or tape. The user can restore from
both "incremental" and "complete" media. The user can also list the
names of files stored on the disk or tape .

store files and directories of files onto disk or tape

Store copies files from the integral hard disk to disk or tape and allows
the user to optionally verify that they worked and to optionally remove
them when done. Typically, these would be files that the user wants to
archive or restrict access to. The user can store single files and direc­
tories of files. Use the "restore" command to put stored files back on the
integral hard disk and to list the files stored .

• machinemgmt
machine management menu

Machine management functions are tools used to operate the machine,
e.g., turn it off, reboot, or go to the firmware monitor .

•• autold
set automatic boot device, default manual boot program

This procedure specifies the default manual program to boot from
firmware andjor the device to be used when automatically rebooting.

SYSADM(l) (Essential Utilities) SYSADM(l)

•• firmware
stop all running programs then enter firmware mode

This procedure will stop all running programs, close any open files,
write out information to the disk (such as directory information), then
enter the firmware mode. (Machine diagnostics and other special func­
tions that are not available on the UNIX system.)

•• floppykey
create a "floppy key" removable disk

The "floppy key" removable disk allows the user to enter firmware mode
if the firmware password has been changed and then forgotten. Thus
the "floppy key" is just that, the "key" to the system and should be pro­
tected as such .

•• powerdown
stop all running programs, then turn off the machine

Powerdown will stop all running programs, close any open files, write
out information to disk (such as directory information), then turn the
machine power off .

•• reboot
stop all running programs then reboot the machine

Reboot will stop all running programs, close any open files, write out
information to disk (such as directory information), then reboot the
machine. This can be used to get out of some types of system trouble,
such as when a process cannot be killed .

•• whoson
print list of users currently logged onto the system

Whoson prints the login ID, terminal device number, and sign-on time of
all users who are currently using the computer .

• packagemgmt
package management

These submenus and subcommands manage various software and
hardware packages that you install on your machine. Not all optional
packages add subcommands here.

269

SYSADM(l) (Essen tial Utili ties) SYSADM(l)

270

o softwaremgmt
software management menu

These subcommands permit the user to install new software, remove
software, and run software directly from the removable disk it is
delivered on. The "remove" and "run" capabilities are dependent on the
particular software packages. See the instructions delivered with each
package.

o 0 installpkg
install new software package onto integral hard disk

Install copies files from removable disk onto the integral hard disk and
performs additional work if necessary so that the software can be run.
From then on, the user will have access to those commands.

o olistpkg
list packages already installed

This subcommand show you a list of currently installed optional
software packages.

00 removepkg
remove previously installed package from integral hard disk

This subcommand displays a list of currently installed optional software
packages. Actions necessary to remove the software packages specified
by the user will then be performed. The removable disk used to
"installpkg" the software is needed to remove it.

00 runpkg
run software package without installing it

This package allows the user to run software from a removable disk
without installing it permanently on the system. This is useful if the
user does not use the software often or does not have enough room on
the system. WARNING: Not all software packages have the ability to
run their contents this way. See the instructions that come with the
software package.

o syssetup
system setup menu

System setup routines allow the user to tell the computer what its
environment looks like: what the date, time, and time zone is, what
administration and system capabilities are to be under password control,
what the machine's name is, etc. The first-time setup sequence is also
here.

SYSADM(l) (Essential Utilities) SYSADM(l)

•• admpasswd
assign or change administrative passwords

Admpasswd lets you set or make changes to passwords for administra­
tive commands and logins such as setup and sysadm .

•• datetime
set the date, time, time zone, and daylight savings time

Datetime tells the computer the date, time, time zone, and whether you
observe Daylight Savings Time (DST). It is normally run once when the
machine is first set up. If you observe DST, the computer will automati­
cally start to observe it in the spring and return to Standard Time in the
fall. The machine has to be turned off and turned back on again to
guarantee that ALL times will be reported correctly. Most are correct the
next time the user logs in .

•• nodename
set the node name of this machine

This allows you to change the node name of this machine. The node
name is used by various communications networks to identify this
machine .

•• setup
set up your machine the very first time

Setup allows the user to define the first login, to set the passwords on
the user-definable administration logins and to set the time zone for
your location .

•• syspasswd
assign system passwords

Syspasswd lets the User set system passwords normally reserved for the
very knowledgeable user. For this reason, this procedure may assign
those passwords, but may not change or clear them. Once set, they may
only be changed by the specific login or the "root" login.

• ttymgmt
terminal management

This procedure allows the user to manage the computer's terminal func­
tions .

• ·lineset
show tty line settings and hunt sequences

The tty line settings are often hunt sequences where, if the first line set­
ting does not work, the line "hunts" to the next line setting until one that
does work comes by. This subcommand shows the various sequences
with only specific line settings in them. It also shows each line setting
in detail.

271

SYSADM(l) (Essential Utilities) SYSADM(l)

272

•• mklineset
create new tyy line settings and hunt sequences

This subcommand helps you to create tty line setting entries. You might
want to add line settings that are not in the current set or create hunt
sequences with only specific line settings in them. The created hunt
sequences are circular; stepping past the last setting puts you on the first .

•• modtty
show and optionally modify characteristics of tty lines

This subcommand reports and allows you to change the characteristics
of tty lines (also called "ports") .

• usermgmt
user management menu

These subcommands allow you to add, modify and delete the list of
users that have access to your machine. You can also place them in
separate groups so that they can share access to files within the group
but protect themselves from other groups .

•• addgroup
add a group to the system

Addgroup adds a new group name or ID to the computer. Group names
and IDs are used to identify groups of users who desire <!ommon access
to a set of files and directories .

•• adduser
add a user to the system

Adduser installs a new login ID on the machine. You are asked a series
of questions about the user and then the new entry is made. You can
enter more than one user at a time. Once this procedure is finished, the
new login ID is available .

•• delgroup
delete a group from the system

Delgroup allows you to remove groups from the computer. The deleted
group is no longer identified by name. However, files may still be
identified with the group ID number .

•• deluser
delete a user from the system

Deluser allows you to remove users from the computer. The deleted
user's files are removed from the hard disk and their logins are removed
from the /etc/passwd file.

SYSADM(l) (Essential Utilities) SYSADM(l)

o olsgroup
list groups in the system

Lsgroup will list all the groups that have been entered into the com­
puter. This list is updated automatically by "addgroup" and "delgroup"

o olsuser
list users in the system

Lsuser will list all the users that have been entered into the computer.
This list is updated automatically by "adduser" and "deluser".

o 0 modadduser
modify defaults used by adduser

Modadduser allows the user to change some of the defaults used when
adduser creates a new login. Changing the defaults does not effect any
existing logins, only logins made from this point on.

00 modgroup
make changes to a group on the system

Modgroup allows the user to change the name of a group that the user
enters when "addgroup" is run to set up new groups.

00 moduser
menu of commands to modify a user's login

This menu contains commands that modify the various aspects of a
user's login.

o 0 0 chgloginid
change a user's login ID

This procedure allows the user to change a user's login ID. Administra­
tive and system logins cannot be changed.

000 chgpasswd
change a user's passwd

This proceudure allows removal or change of a suer's password.
Administrative and system login passwords channot be changed. To
change administrative and system login passwords, see the system setup
menu: sysadm syssetup.

000 chgshell
change a user's login shell

This procedure allows the user to change the command run when a user
logs in. The login shell of the administrative and system logins cannot
be changed by this procedure.

273

SYSADM(l) (Essen tial Utili ties) SYSADM(l)

EXAMPLES
sysadm adduser

FILES
The files that support sysadm are found in /usr/admin.

The menu starts in directory /usr/admin/menu.

274

TABS(l) (User Environment Utilities) TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [-Ttype] [+mn]

DESCRIPTION
tabs sets the tab stops on the user's terminal according to the tab specification
tabspec, after clearing any previous settings. The user's terminal must have
remotely-settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec. They are
described below: canned (-code), repetitive (-n), arbitrary (nl,n2, ...),
and file (--file). If no tabspec is given, the default value is -8, i.e.,
UNIX system "standard" tabs. The lowest column number is 1. Note
that for tabs, column 1 always refers to the leftmost column on a ter­
minal, even one whose column markers begin at 0, e.g., the DASI 300,
DASI 300s, and DASI 450.

-code Use one of the codes listed below to select a canned set of tabs. The
legal codes and their meanings are as follows:
-a 1,10,16,36,72

Assembler, IBM 5/370, first format
-a2 1,10,16,40,72

Assembler, IBM 5/370, second format
-c 1,8,12,16,20,55

COBOL, normal format
-c2 1,6,10,14,49

COBOL compact format (columns 1-6 omitted). Using this
code, the first typed character corresponds to card column 7,
one space gets you to column 8, and a tab reaches column 12.
Files using this tab setup should include a format specification
as follows (see fspec(4)):

< :t-c2 m6 s66 d: >
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs
than -c2. This is the recommended format for COBOL. The
appropriate format specification is (see fspec(4)):

< :t-c3 m6 s66 d: >
-£ 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PLjI
-s 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

275

TABS(l) (User Environment Utilities) TABS(l)

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n, etc. Of
particular importance is the value 8: this represents the UNIX system
"standard" tab setting, and is the most likely tab setting to be found at
a terminal. Another special case is the value 0, implying no tabs at all.

n1,n2, ... The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40 numbers
are allowed. If any number (except the first one) is preceded by a plus
sign, it is taken as an increment to be added to the previous value.
Thus, the formats 1,10,20,30, and 1,10,+10,+10 are considered identical.

--file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification (see fspec(4». If it finds one there, it
sets the tab stops according to it, otherwise it sets them as -8. This
type of specification may be used to make sure that a tabbed file is
printed with correct tab settings, and would be used with the pr(l)
command:

tabs -- file; pr file

Any of the following also may be used; if a given flag occurs more than once,
the last value given takes effect:

-Ttype tabs usually needs to know the type of terminal in order to set tabs and
always needs to know the type to set margins. type is a name listed in
term(5). If no -T flag is supplied, tabs uses the value of the environ­
ment variable TERM. If TERM is not defined in the environment (see
environ(5», tabs tries a sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all
tabs to be moved over n columns by making column n+ 1 the left
margin. If +m is given without a value of n, the value assumed is 10.
For a TermiNet, the first value in the tab list should be 1, or the margin
will move even further to the right. The normal (leftmost) margin on
most terminals is obtained by +mO. The margin for most terminals is
reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

EXAMPLES

276

tabs -a example using -code (canned specification) to set tabs to the set­
tings reqUired by the IBM assembler: columns 1, 10, 16, 36, 72.

tabs -8

tabs 1,8,36

example of using -n (repetitive specification), where n is 8, causes
tabs to be set every eighth position:
1 +(1 *8), 1 +(2*8), ... which evaluate to columns 9, 17, ...

example of using n1,n2,... (arbitrary specification) to set tabs at
columns 1, 8, and 36.

TABS(l) (User Environment Utilities) TABS(l)

tabs --$HOME/fspec.list/att4425
example of using --file (file specification) to indicate that tabs
should be set according to the first line of
$HOME/fspec.list / att4425 (see fspec(4».

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly
when a zero or missing increment is found in an arbitrary
specification
when a canned code cannot be found
if --file option used, and file can't be opened
if --file option used and the specification in that file points
to yet another file. Indirection of this form is not permitted

SEE ALSO

NOTE

newform(l), pr(l), tput(l).
fspec(4), terminfo(4), environ(5), term(5) in the Programmer's Reference Manual.

There is no consistency among different terminals regarding ways of clearing
tabs and setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing
to set 64.

WARNING
The tabspec used with the tabs command is different from the one used with the
newform(l) command. For example, tabs -8 sets every eighth position; whereas
newform -i-8 indicates that tabs are set every eighth position.

277

TAIL(1) (Directory and File Management Utilities) TAIL(1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±[number](lbc[f] 1 1 [file 1

DESCRIPTION
tail copies the named file to the standard output beginning at a designated place.
If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the
end of the input (if number is null, the value 10 is assumed). Number is counted
in units of lines, blocks, or characters, according to the appended option I, b, or
c. When no units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the program will
not terminate after the line of the input file has been copied, but will enter an
endless loop, wherein it sleeps for a second and then attempts to read and copy
further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process. For example, the com­
mand:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(IM).

BUGS
Tails relative to the end of the file are stored in a buffer, and thus are limited in
length. Various kinds of anomalous behavior may happen with character special
files.

WARNING

278

The tail command will only tail the last 4096 bytes of a file regardless of its line
count.

TAR(l) (Cartridge Tape Utilities) TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
jetejtar -e[vwfb[#sll device block files
jetejtar -r[vwb[#s]] device block [files ...]
jetejtar -t[vf[#s] device
jetejtar -u[vwb[#s]] device block [files ...]
jetejtar -x[lmovwf[#sll device [files ...]

DESCRIPTION
tar saves and restores files on magnetic tape. Its actions are controlled by the
key argument. The key is a string of characters containing one function letter (c,
r, t, u, or x) and possibly followed by one or more function modifiers (v, w, f, b,
and #). Other arguments to the command are files (or directory names) speci­
fying which files are to be dumped or restored. In all cases, appearance of a
directory name refers to the files and (recursively) subdirectories of that direc­
tory.

The function portion of the key is specified by one of the following letters:

r Replace. The named files are written on the end of the tape. The e
function implies this function.

x Extract. The named files are extracted from the tape. If a named file
matches a directory whose contents had been written onto the tape, this
directory is (recursively) extracted. Use the file or directory's relative
path when appropriate, or tar will not find a match. The owner,
modification time, and mode are restored (if possible). If no files argu­
ment is given, the entire content of the tape is extracted. Note that if
several files with the same name are on the tape, the last one
overwrites all earlier ones.
Table. The names and other information for the specified files are listed
each time that they occur on the tape. The listing is similar to the
format produced by the Is -I command. If no files argument is given,
all the names on the tape are listed.

u Update. The named files are added to the tape if they are not already
there, or have been modified since last written on that tape. This key
implies the r key.

e Create a new tape; writing begins at the beginning of the tape, instead
of after the last file. This key implies the r key.

The characters below may be used in addition to the letter that selects the
desired function. Use them in the order shown in the synopsis. Note: the only
applicable device information for the 3B 2 Computer is as follows:

jdevjmtjctape [12 ...]

#s This modifier determines the drive on which the tape is mounted
(replace # with the drive number) and the speed of the drive (replace s
with 1, m, or h for low, medium or high). The modifier tells tar to use
a drive other than the default drive, or the drive specified with the -f
option. For example, with the 5h modifier, tar would use jdev jmtj5h
or jdev jmtO instead of the default drives jdev jmtjOm or jdev jmtO,

279

TAR(l)

FILES

(Cartridge Tape Utilities) TAR(l)

respectively. However, if for example, It_f / dev /rmtO Shit appeared on
the command line, tar would use /dev /rmtSh or /devmtO. The default
entry is Om.

v Verbose. Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the func­
tion letter. With the t function, v gives more information about the
tape entries than just the name.

w What. This causes tar to print the action to be taken, followed by the
name of the file, and then wait for the user's confirmation. If a word
beginning with y is given, the action is performed. Any other input
means "no". This is not valid with the t key.

f File. This causes tar to use the device argument as the name of the
archive instead of /dev /mt/Om or /dev /mtO. If the name of the file is
-, tar writes to the standard output or reads from the standard input,
whichever is appropriate. Thus, tar can be used as the head or tail of a
pipeline. tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

b Blocking Factor. This causes tar to use the block argument as the
blocking factor for tape records. The default is I, the maximum is 20.
This function should not be supplied when operating on regular
archives or block special devices. It is mandatory however, when
reading archives on raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes created on
block special devices (key letters x and t).
Link. This tells tar to complain if it cannot resolve all of the links to
the files being dumped. If I is not specified, no error messages are
printed.

m Modify. This tells tar to not restore the modification times. The
modification time of the file will be the time of extraction.

o Ownership. This causes extracted files to take on the user and group
identifier of the user running the program, rather than those on tape.
This is only valid with the x key.

/dev/mt/*
/dev/mt*
/tmp/tar*
/dev /mt/ctape
/dev/mt/Om
/ dev /rmt/Om

SEE ALSO
ar(I}, cpio(I}, Is(I}.

DIAGNOSTICS

280

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

TAR(l)

BUGS

(Cartridge Tape Utilities)

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.

TAR(l)

The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If the
archive is on a disk file, the b option should not be used at all, because updating
an archive stored on disk can destroy it.
The current limit on file name length is 100 characters.
tar doesn't copy empty directories or special files.

281

TEE(l) (Essential Utilities) TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i 1 [-a 1 [file 1

DESCRIPTION

282

tee transcribes the standard input to the standard output and makes copies in
the files. The

-i ignore interrupts;

-a causes the output to be appended to the files rather than overwriting
them.

TEST(l) (Essential Utilities) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION
test evaluates the expression expr and, if its value is true, sets a zero (true) exit
status; otherwise, a non-zero (false) exit status is set; test also sets a non-zero
exit status if there are no arguments. When permissions are tested, the effective
user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second
SYNOPSIS line) must be separate arguments to the test command; normally these
items are separated by spaces.

The following primitives are used to construct expr:

-r file true if file exists and is readable.

-w tile

-x file

-f tile

-d file

-c tile

-b file

-p file

-u tile

-g file

-k file

-s file

-t [fildes]

-z sl

-n sl

sl = s2

sl != s2

sl

n1 -eq n2

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

true if the length of string sl is zero.

true if the length of the string sl is non-zero.

true if strings sl and s2 are identical.

true if strings sl and s2 are not identical.

true if sl is not the null string.

true if the integers n1 and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -Ie may be used in place of
-eq.

283

TEST(l) (Essential Utilities) TEST(l)

These primaries may be combined with the following operators:

unary negation operator.

-a

-0

(expr)

binary and operator.

binary or operator (-a has higher precedence than -0).

parentheses for grouping. Notice also that parentheses are mean­
ingful to the shell and, therefore, must be quoted.

SEE ALSO
find(l), sh(l).

WARNING

284

If you test a file you own (the -r, -W, or -x tests), but the permission tested does
not have the owner bit set, a non-zero (false) exit status will be returned even
though the file may have the group or other bit set for that permission. The
correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n
operators, and = and != always expect arguments; therefore, = and != cannot be
used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first
argument is examined; the others are ignored, unless a -a or a -0 is the second
argument.

TIME(l) (User Environment Utilities) TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in execu­
tion of the command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
times(2) in the Programmer's Reference Manual.

285

TIMEX(l) (Performance Measurement Utilities) TIMEX(l)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting data
for the command and all its children can be listed or summarized, and total
system activity during the execution interval can be reported.

The output of timex is written on standard error.

Options are:

-p List process accounting records for command and all its children. Subop­
tions f, h, k, m, r, and t modify the data items reported. The options are
as follows:

-f Print the fork/exec flag and system exit status columns in
the output.

-h Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its
execution. This "hog factor" is computed as:

(total CPU time)/(elapsed time).

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times. The number
of blocks read or written and the number of characters
transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that occurred
during the execution interval of command. All the data items listed in
sar(l) are reported.

SEE ALSO
sar(l).

WARNING

286

Process records associated with command are selected from the accounting file
/usr/adm/pacct by inference, since process genealogy is not available. Back­
ground processes having the same user-id, terminal-id, and execution time
window will be spUriously included.

TIMEX(l) (Performance Measurement Utilities) TIMEX(l)

EXAMPLES
A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub­
shell:

timex -opskmt sh

session commands
EOT

287

TOC(lG) (Graphics Utilities) TOC(lG)

NAME
toc: dtoc, ttoc, vtoc - graphical table of contents routines

SYNOPSIS
dtoe [directory]
ttoe mm-file
vtoe [-edhnimsvn] [TTOC file]

DESCRIPTION

288

All of the commands listed below reside in jusrjbinjgraf (see graphics(lG».

dtoe Dtoc makes a textual table of contents, TTOC, of all subdirectories
beginning at directory (directory defaults to .). The list has one entry
per directory. The entry fields from left to right are level number,
directory name, and the number of ordinary readable files in the
directory. Dtoc is useful in making a visual display of all or parts of
a file system. The following will make a visual display of all the
readable directories under j:

dtoe j I vtoe I td

ttoe Output is the table of contents generated by the .TC macro of mm(l)
translated to TTOC format. The input is assumed to be an mm file that
uses the .H family of macros for section headers (see the DOCU­
MENTER'S WORKBENCH Software). If no file is given, the standard
input is assumed.

vtoe Vtoc produces a GPS describing a hierarchy chart from a TTOe. The
output drawing consists of boxes containing text connected in a tree
structure. If no file is given, the standard input is assumed. Each
TTOC entry describes one box and has the form:

id [line-weight,line-style] "text" [mark]
where:

id is an alternating sequence of numbers and dots. The id
specifies the position of the entry in the hierarchy. The
id O. is the root of the tree.

line-weight is either:

line-style is either:

n, normal-weight; or
m, medium-weight; or
b, bold-weight.

so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
ld, long-dashed

text is a character string surrounded by quotes. The charac­
ters between the quotes become the contents of the box.
To include a quote within a box it must be escaped (\").

TOC(lG) (Graphics Utilities) TOC(lG)

mark is a character string (surrounded by quotes if it contains
spaces), with included dots being escaped. The string is
put above the top right corner of the box. To include
either a quote or a dot within a mark it must be escaped.

Entry example: 1.1 b,da "ABC" DEF
Entries may span more than one line by escaping the new-line
(\new-line).

Comments are surrounded by the /*,*/ pair. They may appear any­
where in a TTOe.

Options:

c Use text as entered (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n % of box width.

Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

vn Vertical interbox space is n% of box height.

SEE ALSO
graphics(lG).
gps(4) in the Programmer's Reference Manual.
mm(l) in the DOCUMENTER'S WORKBENCH Software Release 2.0 Technical Discus­
sion and Reference Manual.

289

TOUCH(l) (Directory and File Management Utilities) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-arne] [mmddhhmm[yy]] files

DESCRIPTION
touch causes the access and modification times of each argument to be updated.
The file name is created if it does not exist. If no time is specified (see date(1»
the current time is used. The -a and -m options cause touch to update only
the access or modification times respectively (default is -am). The -c option
silently prevents touch from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not
be successfully modified (including files that did not exist and were not created).

SEE ALSO
date(l).
utime(2) in the Programmer's Reference Manual.

290

TPLOT(lG) (Graphics/Performance Measurement Utilities) TPLOT(lG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [- Tterminal [-e raster 1 1

DESCRIPTION

FILES

These commands read plotting instructions (see plot(4)) from the standard input
and in general produce, on the standard output, plotting instructions suitable for
a particular terminal. If no terminal is specified, the environment parameter
$TERM (see environ(5)) is used. Known terminals are:

300 DASI 300.
3005 DASI 300s.
450 DASI 450.
4014 Tektronix 4014.
ver Vers~tec D1200A. This version of plot places a scan-converted image in

jusrjtmpjraster$$ and sends the result directly to the plotter device,
rather than to the standard output. The -e option causes a previously
scan-converted file raster to be sent to the plotter.

lusrjlibjt300
lusr llib jt300s
jusr/libjt450
lusrjlib/t4014
lusr/lib/vplot
I usr I tmp I raster$$

SEE ALSO
plot(3X), plot(4), term(5) in the Programmer's Reference Manual.

291

TPUT(l) (Terminal Information Utilities) • TPUT(l)

NAME
tput - initialize a terminal or query terminfo database

SYNOPSIS
tput [-Ttype] capname [parms ...]

tput [-Ttype] init

tput [-Ttype] reset

tput [-Ttype] longname

DESCRIPTION

292

tput uses the terminfo(4) database to make the values of terminal-dependent
capabilities and information available to the shell (see sh(1», to initialize or reset
the terminal, or return the long name of the requested terminal type. tput out­
puts a string if the attribute (capability name) is of type string, or an integer if
the attribute is of type integer. If the attribute is of type boolean, tput simply
sets the exit code (0 for TRUE if the terminal has the capability, 1 for FALSE if it
does not), and produces no output. Before using a value returned on standard
output, the user should test the exit code ($?, see sh(I» to be sure it is O. (See
EXIT CODES and DIAGNOSTICS below.) For a complete list of capabilities and
the capname associated with each, see terminfo(4).
-Ttype indicates the type of terminal. Normally this option is unnecessary,

because the default is taken from the environment variable TERM. If
-T is specified, then the shell variables LINES and COLUMNS and
the layer size (see /ayers(I» will not be referenced.

capname
parms

init

reset

indicates the attribute from the terminfo(4) database.

If the attribute is a string that takes parameters, the arguments parms
will be instantiated into the string. An all numeric argument will be
passed to the attribute as a number.

If the terminfo(4) database is present and an entry for the user's ter­
minal exists (see -Ttype, above), the following will occur: (1) if
present, the terminal's initialization strings will be output (isl, is2,
is3, if, iprog), (2) any delays (e.g., newline) specified in the entry
will be set in the tty driver, (3) tabs expansion will be turned on or
off according to the specification in the entry, and (4) if tabs are not
expanded, standard tabs will be set (every 8 spaces). If an entry
does not contain the information needed for any of the four above
activities, that activity will silently be skipped.

Instead of putting out initialization strings, the terminal's reset
strings will be output if present (rsl, rs2, rs3, rf). If the reset strings
are not present, but initialization strings are, the initialization strings
will be output. Otherwise, reset acts identically to init.

TPUT(l) (Terminal Information Utilities) TPUT(l)

longname If the terminfo(4) database is present and an entry for the user's ter­
minal exists (see -Ttype above), then the long name of the terminal
will be put out. The long name is the last name in the first line of
the terminal's description in the terminfo(4) database (see term(5)).

EXAMPLES

FILES

tput init

tput -T5620 reset

tput cup 0 0

tput clear

tput cols

tput -T450 cols

bold='tput smso'

Initialize the terminal according to the type of terminal in
the environmental variable TERM. This command should be
included in everyone's .profile after the environmental vari­
able TERM has been exported, as illustrated on the profile(4)
manual page.

Reset an AT&T 5620 terminal, overriding the type of ter­
minal in the environmental variable TERM.

Send the sequence to move the cursor to row 0, column 0
(the upper left corner of the screen, usually known as the
"home" cursor position).

Echo the clear-screen sequence for the current terminal.

Print the number of columns for the current terminal.

Print the number of columns for the 450 terminal.

offbold='tput rmso'

tput hc

tput cup 23 4

tput longname

Set the shell variables bold, to begin stand-out mode
sequence, and offbold, to end standout mode sequence, for
the current terminal. This might be followed by a prompt:
echo "$ {bold} Please type in your name: ${offboldJ\c"

Set exit code to indicate if the current terminal is a hardcopy
terminal.

Send the seqUfnce to move the cursor to row 23, column 4.

Print the long name from the terminfo(4) database for the
type of terminal specified in the environmental variable
TERM.

I usr I lib I terminfo I? I *
lusr linclude I curses.h
lusr/include/term.h
lusr/lib/tabset/*

compiled terminal description database
curses(3X) header file
terminfo(4) header file
tab settings for some terminals, in a format
appropriate to be output to the terminal (escape
sequences that set margins and tabs); for more infor­
mation, see the "Tabs and Initialization" section of
terminfo(4)

SEE ALSO
stty (I), tabs (1).
profile(4), terminfo(4) in the Programmer's Reference Manual.
Chapter 10 of the Programmer's Guide.

293

TPUT(l) (Terminal Information Utilities) TPUT(l)

EXIT CODES
If capname is of type boolean, a value of 0 is set for TRUE and 1 for FALSE.

If capname is of type string, a value of 0 is set if the capname is defined for this
terminal type (the value of capname is returned on standard output); a value of 1
is set if capname is not defined for this terminal type (a null value is returned on
standard output).

If capname is of type integer, a value of 0 is always set, whether or not cap name
is defined for this terminal type. To determine if capname is defined for this ter­
minal type, the user must test the value of standard output. A value of -1
means that capname is not defined for this terminal type.

Any other exit code indicates an error; see DIAGNOSTICS, below.

DIAGNOSTICS

294

tput prints the following error messages and sets the corresponding exit codes.
exit
code error message

o -1 (capname is a numeric variable that is not specified in the
terminfo(4) database for this terminal type, e.g.
tput -T450 lines and tput -T2621 xmc)

1 no error message is printed, see EXIT CODES, above.
2 usage error
3 unknown terminal type or no terminfo(4) database
4 unknown terminfo(4) capability capname

TR(l) (Directory and File Management Utilities) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string1 [string2]]

DESCRIPTION
tr copies the standard input to the standard output with substitution or deletion
of selected characters. Input characters found in stringl are mapped into the
corresponding characters of string2. Any combination of the options -cds may
be used:

-c Complements the set of characters in stringl with respect to the
universe of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in stringl.

-s Squeezes all strings of repeated output characters that are in string2 to
Single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from char­
acter a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered
octal; otherwise, n is taken to be decimal. A zero or missing n is taken
to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning
from any character in a string. In addition, \ followed by 1, 2, or 3 octal digits
stands for the character whose ASCII code is given by those digits.

EXAMPLE
The following example creates a list of all the words in filel one per line in file2,
where a word is taken to be a maximal string of alphabetics. The strings are
quoted to protect the special characters from interpretation by the shell; 012 is
the ASCII code for newline.

tr -cs "[A-Z][a-z]" "[\012*]" <file1 >file2

SEE ALSO
ed(l), sh(l).
ascii(S) in the Programmer's Reference Manual.

BUGS
Will not handle ASCII NUL in stringl or string2; always deletes NUL from input.

295

TRUE(l) (Essential Utilities)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(l)

true does nothing, successfully. False does nothing, unsuccessfully. They are
typically used in input to sh(l) such as:

SEE ALSO
sh(l).

DIAGNOSTICS

while true
do

command
done

true has exit status zero, false nonzero.

296

TTY(l) (User Environment Utilities) TTY(l)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-1 1 [-8 1

DESCRIPTION
tty prints the path name of the user's terminal.

-1 prints the synchronous line number to which the user's terminal is con­
nected, if it is on an active synchronous line.

-8 inhibits printing of the terminal path name, allowing one to test just the
exit code.

DIAGNOSTICS

EXIT CODES
2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

"not on an active synchronous line" if the standard input is not a synchronous
terminal and -1 is specified.
"not a tty" if the standard input is not a terminal and -s is not specified.

297

UMASK(l) (Essential Utilities) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000 1

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively (see
chmod(2) and umllsk(2». The value of each specified digit is subtracted from the
corresponding "digit" specified by the system for the creation of a file (see
creat(2». For example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files created with mode
666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell.

umask can be included in the user's .profile (see profile(4» and invoked at login
to automatically set the user's permissions on files or directories created.

SEE ALSO
chmod(l), sh(l).
chmod(2), creat(2), umask(2), profile(4) in the Programmer's Reference Manual.

298

UNAME(l) (Essential Utilities) UNAME(l)

NAME
uname - print name of current UNIX system

SYNOPSIS
uname [-snrvma 1
uname [-5 system name 1

DESCRIPTION
uname prints the current system name of the UNIX system on the standard
output file .. It is mainly useful to determine which system one is using. The
options cause selected information returned by uname(2) to be printed:

-s print the system name (default).

-n print the nodename (the nodename is the name by which the system is
known to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

On the 3B2 computer, the system name and the nodename may be changed by
specifying a system name argument to the -5 option. The system name argu­
ment is restricted to 8 characters. Only the super-user is allowed this capability.

SEE ALSO
uname(2) in the Programmer's Reference Manual.

299

UNIQ(l) (Directory and File Management Utilities) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder is
written on the output file. Input and output should always be different. Note
that repeated lines must be adjacent in order to be found; see sort(l). If the -u
flag is used, just the lines that are not repeated in the original file are output.
The -d option specifies that one copy of just the repeated lines is to be written.
The normal mode output is the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
comm(l), sort(l).

300

UNITS(l) (User Environment Utilities) UNITS(l)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

units converts quantities expressed in various standard scales to their equivalents
in other scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.540000e+OO
/3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally pre­
ceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 lbs forcejin2
You want: atm

* 1.02068ge+OO
/ 9.79729ge-Ol

units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and
metric prefixes are recognized, together with a generous leavening of exotica and
a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run
together, (e.g., light year). British units that differ from their U.S. counterparts
are prefixed thus: brgallon. For a complete list of units, type:

cat jusrjlibjunittab

j usr jlib j unittab

301

USAGE(l) (Help Utilities) USAGE(l)

NAME
usage - retrieve a command description and usage examples

SYNOPSIS
[help 1 usage [-d 1 [-e 1 [-0 1 [command_name 1

DESCRIPTION
The UNIX system Help Facility command usage retrieves information about UNIX
system commands. With no argument, usage displays a menu screen prompting
the user for the name of a command, or allows the user to retrieve a list of com­
mands supported by usage. The user may also exit to the shell by typing q (for
"quit).

After a command is selected, the user is asked to choose among a description of
the command, examples of typical usage of the command, or descriptions of the
command's options. Then, based on the user's request, the appropriate informa­
tion will be printed.

A command name may also be entered at shell level as an argument to usage.
To receive information on the command's description, examples, or options, the
user may use the -d, -e, or -0 options respectively. (The default option is -d.)

From any screen in the Help Facility, a user may execute a command via the
shell (sh(l» by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt.
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file (see
profile (4»: "export SCROLL ; SCRoLL=no". If you later decide that scrol­
ling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage, glos­
sary, and help) is located on their respective manual pages.

SEE ALSO
glossary(l), help(l), locate(l), sh(l), starter(l).
term(5) in the Programmer's Reference Manual.

WARNINGS

302

If the shell variable TERM (see sh(l» is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term(5).

UUCP(lC) (Basic Networking Utilities) UUCP(lC)

NAME
uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file
uulog [options] -ssystem
uulog [options] system
uulog [options] -fsystem
uuname [-1] [-c]

DESCRIPTION
uucp

uucp copies files named by the source-file arguments to the destination-file argu­
ment. A file name may be a path name on your machine, or may have the
form:

system-name!path-name

where system-name is taken from a list of system names that uucp knows about.
The system-name may also be a list of names such as

system-name!system-name!. .. !system-name!path-name

in which case an attempt is made to send the file via the specified route, to the
destination. See WARNINGS and BUGS below for restrictions. Care should be
taken to ensure that intermediate nodes in the route are willing to foward infor­
mation (see WARNINGS below for restrictions).

The shell metacharacters ?, * and [...] appearing in path-name will be expanded
on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by -/ destination where destination is
appended to /usr/spool/uucppublic; (NOTE: This destination
will be treated as a file name unless more than one file is being
transfered by this request or the destination is already a directory.
To ensure that it is a directory, follow the destination with a 'j'.
For example -/ dan/ as the destination will make the directory
/usr/spooljuucppublic/dan if it does not exist and put the
requested file(s) in that directory).

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail.
If the destination-file is a directory, the last part of the source-file name is used.

uucp preserves execute permissions across the transmission and gives 0666 read
and write permissions (see chmod(2».

The following options are interpreted by uucp:

-c Do not copy local file to the spool directory for transfer to the remote
machine (default).

303

UUCP(lC) (Basic Networking Utilities) . UUCP(lC)

-c Force the copy of local files to the spool directory for transfer.

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-ggrade Grade is a single letter/number; lower ascii sequence characters will
cause the job to be transmitted earlier during a particular conversa­
tion.

-j Output the job identification ASCII string on the standard output.
This job identification can be used by uustat to obtain the status or
terminate a job.

-m Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-stile Report status of the transfer to file. Note that the file must be a full
path name.

-xdebugJeve/

uulog

Produce debugging output on standard output. The debugJeve/ is a
number between 0 and 9; higher numbers give more detailed infor­
mation. (Debugging will not be available if uucp was compiles with
-DSMALL.)

uulog queries a log file of uucp or uuxqt transactions in a file
/usr/spool/uucp/.Log/uucico/ system, or /usr/spooljuucp/.Log/uuxqt/ system.
The options cause uulog to print logging information:

-ssys Print information about file transfer work involving system sys.
-fsystem Does a "tail -f" of the file transfer log for system. (You must hit

BREAK to exit this function.) Other options used in conjunction with
the above:

-x Look in the uuxqt log file for the given system.

-number Indicates that a "tail" command of number lines should be executed.

uuname
uuname lists the names of systems known to uucp. The -c option returns the
names of systems known to cu. (The two lists are the same, unless your
machine is using different Systems files for cu and uucp. See the Sysfiles file.)
The -I option returns the local system name.

FILES

304

/usr/spooljuucp
/usr/spooljuucppublic/*

/usr/lib/uucp/*

spool directories
public directory for receiving and
sending (fusr/spool/uucppublic)
other data and program files

UUCP(lC) (Basic Networking Utilities) UUCP(lC)

SEE ALSO
mail(l), uustat(lC), uux(lC), uuxqt(lM).
chmod(2) in the Programmer's Reference Manual.

WARNINGS

BUGS

The domain of remotely accessible files can (and for obvious security reasons,
usually should) be severely restricted. You will very likely not be able to fetch
files by path name; ask a responsible person on the remote system to send them
to you. For the same reasons you will probably not be able to send files to arbi­
trary path names. As distributed, the remotely accessible files are those whose
names begin /usr/spool/uucppublic (equivalent to -I).
All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. Receiving
multiple files specified by special shell characters ? * [...] will not activate the
-m option.

The forwarding of files through other systems may not be compatible with the
previous version of uucp. If forwarding is used, all systems in the route must
have the same version of uucp.

Protected files and files that are in protected directories that are owned by the
requestor can be sent by uucp. However, if the requestor is root, and the direc­
tory is not searchable by "other" or the file is not readable by "other", the request
will fail.

305

UUSTAT(lC) (Basic Networking Utilities) UUSTAT(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-a]
uustat [-ttl]
uustat [-p]
uustat [-qj
uustat [-kjobid]
uustat [-rjobid J
uustat [-ssystem] [-uuser]

DESCRIPTION

306

uustat will display the status of, or cancel, previously specified uucp commands,
or provide general status on uucp connections to other systems. Only one of the
following options can be specified with uustat per command execution:

-a Output all jobs in queue.
-m Report the status of accessibility of all machines.
-p Execute a ups -fip" for all the process-ids that are in the lock files.
-q List the jobs queued for each machine. If a status file exists for the

machine, its date, time and status information are reported. In addi­
tion, if a number appears in 0 next to the number of C or X files, it is
the age in days of the oldest C./X. file for that system. The Retry
field represents the number of hours until the next possible call. The
Count is the number of failure attempts. NOTE: for systems with a
moderate number of outstanding jobs, this could take 30 seconds or
more of real-time to execute. As an example of the output produced
by the -q option:

eagle
mh3bs3

3C
2C

04/07-11:07
07/07-10:42

NO DEVICES AVAILABLE
SUCCESSFUL'

The above output tells how many command files are waiting for each system.
Each command file may have zero or more files to be sent (zero means to call
the system and see if work is to be done). The date and time refer to the pre­
vious interaction with the system followed by the status of the interaction.
-kjobid Kill the uucp request whose job identification is jobid. The killed

uucp request must belong to the person issuing the uustat command
unless one is the super-user.

-rjobid Rejuvenate jobid. The files associated with jobid are touched so that
their modification time is set to the current time. This prevents the
cleanup daemon from deleting the job until the jobs modification
time reaches the limit imposed by the deamon.

UUSTAT(lC) (Basic Networking Utilities) UUSTAT(lC)

FILES

Either or both of the following options can be specified with uustat:
-ssys
-uuser

Report the status of all uucp requests for temote system sys.
Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eaglenOOOO 4/07-11:01:03 (POLL)
eagleN1bd7 4/07'-11:07 5eagledanS22/ust/dan/A
eagleC1bd8 4/07-11:07 5eagiedanS9 D.3b2a12ce4924

4/07"11:07 5eagledanrmail mike
With the above two options, the first field is the jobid of the job. This is fol­
lowed by the date/time. The next field is either art '5' or 'R' depending on
whether the job is to send or request a file. This is followed by the user-id of
the user who queued the job. The next field contains the size of the file, or in
the case of a remote execution (rmail - the command used for remote mail), the
name of the command. When the size appears in this field, the file name is also
given. This can either be the name given by the user or an internal name (e.g.,
D.3b2alce4924) that is created for data files associated with remote executions
(rmail in this example).
When no options are given, uustat outputs the status of all uucp requests issued
by the current user.

/usr/spool/uucpj* spool directories
SEE ALSO

uucp(lC).

307

UUTO(lC) (Basic Networking Utilities) UUTO(lC)

NAME
uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [options] source-files destination
uupick [-s system]

DESCRIPTION

308

uuto sends source-files to destination. uuto uses the uucp(lC) facility to send
files, while it allows the local system to control the file access. A source-file
name is a path name on your machine. Destination has the form:

system!user

where system is taken from a list of system names that uucp knows about (see
uuname). User is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system,
where PUBDIR is a public directory defined in the uucp source. By default this
directory is jusrjspooljuucppublic. Specifically the files are sent to

PUBDIR j receive j user j mysystem j files.

The destined recipient is notified by mail(l) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or directory)
found, the following message is printed on the standard output:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposition of
the file:

<new-line>

d

m [dir]

a [dir]

p

q
EOT (control-d)

!command

Go on to next entry.

Delete the entry.

Move the entry to named directory dir. If dir is not specified as
a complete path name (in which $HOME is legitimate), a desti­
nation relative to the current directory is assumed. If no desti­
nation is given, the default is the current directory.

Same as m except moving all the files sent from system.

Print the content of the file.

Stop.

Same as q.

Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the -ssystem option will only search the PUBDIR for files
sent from system.

UUTO(lC) (Basic Networking Utilities)

FILES
PUBDIR jusrjspooljuucppublic public directory

SEE ALSO
mail(l), uucp(lC), uustat(lC), uux(lC).
uuc1eanup(lM) in the System Administrator's Reference Manual.

WARNINGS

UUTO(lC)

In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof"', .profil? are correct; whereas
"'prof"', ?profile are incorrect.

309

UUX(lC) (Basic Networking Utilities) UUX(lC)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION

310

uux will gather zero or more files from various systems, execute a command on
a specified system and then send standard output to a file on a specified system.

NOTE: For security reasons, most installations limit the list of commands exe­
cutable on behalf of an incoming request from uux, permiting only the receipt of
mail (see mail (1». (Remote execution permissions are defined in
lusr llib I uucp IPermissions.)

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by
system-name!. A null system-name is interpreted as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff usg!/usr/dan/file1 pwbalja4/dan/file2 > !-/dan/file.diff"

will get the file 1 and file2 files from the "usg" and "pwba" machines, execute a
diff(l) command and put the results in file.diff in the local PUBDIR/dan/ direc­
tory.

Any special shell characters such as < >;1 should be quoted either by quoting
the entire command-string, or quoting the special characters as individual argu­
ments.

uux will attempt to get all files to the execution system. For files that are output
files, the file name must be escaped using parentheses. For example, the com­
mand

uux a!cut -f1 bljusr/file \(c!/usr/file\)

gets /usr/file from system "b" and sends it to system "a", performs a cut com­
mand on that file and sends the result of the cut command to system "c".

uux will notify you if the requested command on the remote system was disal­
lowed. This notification can be turned off by the -n option. The response
comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

-aname Use name as the user identification replacing the initiator user-id.
(Notification will be returned to the user.)

UUX(lC) (Basic Networking Utilities) UUX(lC)

FILES

-b Return whatever standard input was provided to the uux command if
the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer to the remote
machine (default).

-C Force the copy of local files to the spool directory for transfer.

-ggrade Grade is a single letterjnumber; lower ASCII sequence characters will
cause the job to be transmitted earlier during a particular conversa­
tion.

-j Output the jobid ASCII string on the standard output which is the job
identification. This job identification can be used by uustat to obtain
the status or terminate a job.

-n Do not notify the user if the command fails.

-p Same as -: The standard input to uux is made the standard input to
the command-string.

-r Do not start the file transfer, just queue the job.

-stile Report status of the transfer in file.
-xdebugJevel

Produce debugging output on the standard output. The debugJevel is
a number between 0 and 9; higher numbers give more detailed infor­
mation.

-z Send success notification to the user.

jusrjlibjuucpjspool spool directories
jusr jlib juucp jPermissions

remote execution permissions
jusrjlibjuucpj* other data and programs

SEE ALSO
cut(l), mail(l), uucp(lC), uustat(lC).

WARNINGS
Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to
do. The shell tokens < < and > > are not implemented.

The execution of commands on remote systems takes place in an execution
directory known to the uucp system. All files required for the execution will be
put into this directory unless they already reside on that machine. Therefore,
the simple file name (without path or machine reference) must be unique within
the uux request. The following command will NOT work:

uux "a!diff b!jusrjdanjxyz c!jusrjdanjxyz > !xyz.diff"

311

UUX(lC) (Basic Networking Utilities) UUX(lC)

BUGS

312

but the command

uux "a!diff a!jusrjdanjxyz c!jusrjdanjxyz > !xyz.diff"

will work. (If diff is a permitted command.)

Protected files and files that are in protected directories that are owned by the
requestor can be sent in commands using uux. However, if the requestor is root,
and the directory is not searchable by "other", the request will fail.

VI(l) (Editing Utilities) VI(l)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag 1 [-r file 1 [-wn 1 [-R 1 [-x 1 [+command 1 name ...
view [-t tag 1 [-r file 1 [-wn 1 [-R 1 [-x 1 [+command 1 name
vedit [-t tag 1 [-r file 1 [-wn 1 [-R 1 [-x 1 [+command 1 name

DESCRIPTION
vi (visual) is a display-oriented text editor based on an underlying line editor
ex(l). It is possible to use the command mode of ex from within vi and vice­
versa.

When using vi, changes you make to the file are reflected in what you see on
your terminal screen. The position of the cursor on the screen indicates the
position within the file.

INVOCATION
The following invocation options are interpreted by vi:

-t tag Edit the file containing the tag and position the editor at its
definition.

-rfile

-wn

-R

+command

-x

Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

Set the default window size to n. This is useful when using the
editor over a slow speed line.

Read only mode; the readonly flag is set, preventing accidental
overwriting of the file.

The specified ex command is interpreted before editing begins.

Encryption option; when this option is used, the file will be
encrypted as it is being written and will require an encryption
key to be read (see crypt(l)). Also, see the WARNING section at
the end of this manual page.

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. The report flag is set to 1, and
the showmode and novice flags are set. These defaults make it easier to get
started learning the editor.

VI MODES
Command Normal and initial mode. Other modes return to command

mode upon completion. ESC (escape) is used to cancel a partial
command.

Input

Last line

Entered by the following options a i A I 0 0 c C s S R. Arbi­
trary text may then be entered. Input mode is normally ter­
minated with ESC character, or abnormally with interrupt.

Reading input for: / ? or !; terminate with CR to execute, inter­
rupt to cancel.

313

VI(l)

COMMAND SUMMARY
Sample commands

+-! t-+
hjkl
itextESC
cwnewESC
easESC
x
dw
dd
3dd
u
ZZ
:q!CR
/textCR
'U'D
:ex cmdCR

Counts before vi commands

(Editing Utilities)

arrow keys move the cursor
same as arrow keys
insert text abc
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

VI(l)

Numbers may be typed as a prefix to some commands. They are interpreted in
one of these ways.

314

line/column number z G I
scroll amount 'D 'u
repeat effect most of the rest

Interrupting, canceling
ESC end insert or incomplete cmd
DEL (delete or rub out) interrupts
'L reprint screen if DEL scrambles it
'R reprint screen if 'L is -+ key

File manipulation
:wCR
:qCR
:q!CR
:e nameCR
:e!CR
:e + nameCR
:e +nCR
:e #CR

write back changes
quit
quit, discard changes
edit file name
reedit, discard changes
edit, starting at end
edit starting at line n
edit alternate file
synonym for :e #

VI(l) (Editing Utilities) VI(l)

:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
AG show current file and line
:ta tagCR to tag file entry tag
A] :ta, following word is tag

In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a CR.

Positioning within file
AF forward screen
AB backward screen
AD scroll down half screen
AU scroll up half screen
G go to specified line (end default)
/pat next line matching pat
?pat prev line matching pat
n repeat last / or ?
N reverse last / or ?
/pat/+n nth line after pat
?pat?-n nth line before pat
]] next section/function
[[previous section/function
(beginning of sentence
) end of sentence
{ beginning of paragraph
} end of paragraph
% find matching () { or }

Adjusting the screen
AL clear and redraw
AR retype, eliminate @ lines
zCR redraw, current at window top
z-CR ... at bottom
z .CR ... at center
/pat/z-CR pat line at bottom
zn .CR use n line window
AE scroll window down 1 line
Ay scroll window up 1 line

Marking and returning
" move cursor to previous context

... at first non-white in line
mx mark current position with letter x
'x move cursor to mark x
'x ... at first non-white in line

315

VI(l) (Editing Utilities)

316

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white

previous line, at first non-white
CR return, same as +
! or j next line, same column
1 or k previous line, same column

Character positioning
A first non white
o beginning of line
$ end of line
h or - forward
1 or +- backwards
AH same as +-

space
fx
Fx
tx
Tx

,
I
%

same as­
find x forward
f backward
upto x forward
back upto x
repeat last f F t or T
inverse of;
to specified column
find matching ({) or}

Words, sentences, paragraphs
w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B back W
E to end of W

VI(l)

VI(l) (Editing Utilities)

Corrections during insert
AH erase last character
AW erase last word
erase your erase, same as AH
kill your kill, erase input this line
\ quotes AH, your erase and kill
ESC ends insertion, back to command
DEL interrupt, terminates insert
AD backtab over autoindent
rD kill autoindent, save for next
OAD ... but at margin next also
AV quote non-printing character

Insert and replace
a
i
A
I
o
o
rx
RtextESC

Operators

append after cursor
insert before cursor
append at end of line
insert before first non-blank
open line below
open above
replace single char with x
replace characters

VI(l)

Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, since w moves over a word, dw deletes the
word that would be moved over. Double the operator, e.g., dd to affect whole
lines.
d
c
y
<
>

delete
change
yank lines to buffer
left shift
right shift
filter through command
indent for LISP

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (c1)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (dh)
Y yank lines (yy)

317

VI(l) (Editing Utilities) VI(l)

Yank and Put
Put inserts the text most recently deleted or yanked. However, if a buffer is
named, the text in that buffer is put instead.
p put bClCk text after cursor
P put before cursor
"xp put from buffer x
"xy yan~ to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"dp retrieve d'th last delete

AUTHOR

FILES

vi and ex were developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Computer
Science.

/usr/lib/terminfo/?/* compiled terminal description database
/usr/libj.COREterm/?/* subset of compiled terminal description database,
supplied on hard disk d

SEE ALSO
ed(l), edit(l), ex(l).
User's Guide.
Editing Guide.

WARNING

BUGS

318

The -x option is provided with the Security Administration Utilities, which is
available only in the United States.

Tampering with entries in /usr/libj.COREterm/?/* or /usr/lib/terminfo/?/* (for
example, changing or removing an entry) can affect programs such as vi(l) that
expect the entry to be present and correct. In particular, removing the "dumb"
terminal may cause unexpected problems.

Software tabs using AT work only immediately after the autoindent.
Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

WAIT(l) (Essential Utilities) WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait [n 1

DESCRIPTION
Wait for your background process whose process id is n and report its termina­
tion status. If n is omitted, all your shell's currently active background processes
are waited for and the return code will be zero.

The shell itself executes wait, without creating a new process.

SEE ALSO
sh(l).

CAVEAT

BUGS

If you get the error message cannot fork, too many processes, try using the wait(l)
command to clean up your background processes. If this doesn't help, the
system process table is probably full or you have too many active foreground
processes. (There is a limit to the number of process ids associated with your
login, and to the number the system can keep track of.)

Not all the processes of a 3- or more-stage pipeline are children of the shell, and
thus cannot be waited for.

If n is not an active process id, all your shell's currently active background
processes are waited for and the return code will be zero.

319

WALL(l)

NAME
wall - write to all users

SYNOPSIS
fete/wall

DESCRIPTION

(Essential Utilities) WALL(1)

wall reads its standard input until an end-of-file. It then sends this message to
all currently logged-in users preceded by:

FILES

Broadcast Message from .••

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may have
invoked (see mesg(l».

/dev/tty ..

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

320

WC(l) (Essential Utilities) WC(l)

NAME
wc - word count

SYNOPSIS
wc [-lwc 1 [names 1

DESCRIPTION
we counts lines, words, and characters in the named files, or in the standard
input if no names appear. It also keeps a total count for all named files. A word
is a maximal string of characters delimited by spaces, tabs, or new-lines.

The options 1, w, and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -lwc.

When names are specified on the command line, they will be printed along with
the counts.

321

WHO{l) (Essential Utilities) WHO{l)

NAME
who - who is on the system

SYNOPSIS
who [-uTlHqpdbrtas] [file]

who am i

who am I

DESCRIPTION

322

who can list the user's name, terminal line, login time, elapsed time since activity
occurred on the line, and the process-ID of the command interpreter (shell) for
each current UNIX system user. It examines the /etc/utmp file at login time to
obtain its information. If file is given, that file (which must be in utmp[4] format)
is examined. Usually, file will be /etc/wtmp, which contains a history of all the
logins since the file was last created.

who with the am i or am I option identifies the invoking user.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]

The name, line, and time information is produced by all options except -q; the
state information is produced only by -T; the idle and pid information is pro­
duced only by -u and -1; and the comment and exit information is produced
only by -a. The information produced for -p, -d, and -r is explained during
the discussion of each option, below.

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the init process. These options are:

-u This option lists only those users who are currently logged in. The name
is the user's login name. The line is the name of the line as found in the
directory /dev. The time is the time that the user logged in. The idle
column contains the number of hours and minutes since activity last
occurred on that particular line. A dot (.) indicates that the terminal has
seen activity in the last minute and is therefore "current". If more than
twenty-four hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying to deter­
mine whether a person is working at the terminal or not. The pid is the
process-ID of the user's shell. The comment is the comment field associ­
ated with this line as found in /etc/inittab (see inittab[4]). This can con­
tain information about where the terminal is located, the telephone
number of the dataset, type of terminal if hard-wired, etc.

-T This option is the same as the -s option, except that the state of the ter­
minal line is printed. The state describes whether someone else can write
to that terminal. A + appears if the terminal is writable by anyone; a -
appears if it is not. root can write to all lines having a + or a - in the
state field. If a bad line is encountered, a ? is printed.

-1 This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other fields
are the same as for user entries except that the state field does not exist.

WHO(l)

FILES

(Essential Utilities) WHO(l)

-H This option will print column headings above the regular output.

-q This is a quick who, displaying only the names and the number of users
currently logged on. When this option is used, all other options are
ignored.

-p This option lists any other process which is currently active and has been
previously spawned by init. The name field is the name of the program
executed by init as found in jetcjinittab. The state, line, and idle fields
have no meaning. The comment field shows the id field of the line from
jetcjinittab that spawned this process. See inittab(4).

-d This option displays all processes that have expired and not been
respawned by init. The exit field appears for dead processes and contains
the termination and exit values (as returned by wait[2]), of the dead pro­
cess. This can be useful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process. In addition,
it produces the process termination status, process id, and process exit
status (see utmp(4» under the idle, pid, and comment headings, respec­
tively.

-t This option indicates the last change to the system clock (via the date[l]
command) by root. See su(l).

-a This option processes jetcjutmp or the named file with all options turned
on.

-s This option is the default and lists only the name, line, and time fields.

Note to the super-user: after a shutdown to the single-user state, who returns a
prompt; the reason is that since jetcjutmp is updated at login time and there is
no login in single-user state, who cannot report accurately on this state. who am
i, however, returns the correct information.

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO
date(l), login(l), mesg(l), su(lM).
init(lM) in the System Administrator's Reference Manual.
wait(2), inittab(4), utmp(4) in the Programmer's Reference Manual.

323

WRITE(l) (Essential Utilities) WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION

FILES

write copies lines from your terminal to that of another user. When first called,
it sends the message:

Message from yourname (tty??) [date] ...

to the person you want to talk to. When it has successfully completed the con­
nection, it also sends two bells to your own terminal to indicate that what you
are typing is being sent.

The recipient of the message should write back at this point. Communication
continues until an end of file is read from the terminal, an interrupt is sent, or
the recipient has executed "mesg nIt. At that point write writes EOT on the other
terminal and exits.

If you want to write to a user who is logged in more than once, the line argu­
ment may be used to indicate which line or terminal to send to (e.g., ttyOO); oth­
erwise, the first writable instance of the user found in /etc/utmp is assumed
and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(1) command.
Writing to others is normally allowed by default. Certain commands, such as
pr(l) disallow messages in order to prevent interference with their output.
However, if the user has super-user permissions, messages can be forced onto a
write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to exe­
cute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal (Le., (0) for "over") so that the
other person knows when to reply. The signal (00) (for "over and out") is sug­
gested when conversation is to be terminated.

/etc/utmp
/bin/sh

to find user
to execute!

SEE ALSO
mail(l), mesg(l), pr(l), sh(l), who(l).

DIAGNOSTICS

324

"user is not logged on" if the person you are trying to write to is not logged on.
"Permission denied" if the person you are trying to write to denies that permis­

sion (with mesg).

WRITE(l) (Essential Utilities) WRITE(l)

"Warning: cannot respond, set mesg _y" if your terminal is set to mesg n and the
recipient cannot respond to you.

"Can no longer write to user" if the recipient has denied permission (mesg n) after
you had started writing.

325

XARGS(l) (User Environment Utilities) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags 1 [command [initial-arguments 1 1

DESCRIPTION

326

xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of argu­
ments read for each command invocation and the manner in which they are
combined are determined by the flags specified.

command, which may be a shell file, is searched for, using one's $PATH. If com­
mand is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, followed by
some number of arguments read from standard input (Exception: see -i flag).
Flags -i, -1, and -n determine how arguments are selected for each command
invocation. When none of these flags are coded, the initial-arguments are fol­
lowed by arguments read continuously from standard input until an internal
buffer is full, and then command is executed with the accumulated args. This
process is repeated until there are no more args. When there are flag conflicts
(e.g., -1 vs. -n), the last flag has precedence. Flag values are:

-lnumber

-ireplstr

command is executed for each non-empty number lines of
arguments from standard input. The last invocation of
command will be with fewer lines of arguments if fewer
than number remain. A line is considered to end with the
first new-line unless the last character of the line is a blank
or a tab; a trailing blank/tab signals continuation through
the next non-empty line. If number is omitted, 1 is
assumed. Option -x is forced.

Insert mode: command is executed for each line from stan­
dard input, taking the entire line as a single arg, inserting
it in initial-arguments for each occurrence of replstr. A
maximum of 5 arguments in initial-arguments may each
contain one or more instances of replstr. Blanks and tabs
at the beginning of each line are thrown away. Con­
structed arguments may not grow larger than 255 charac­
ters, and option -x is also forced. {} is assumed for
replstr if not specified.

XARGS(l)

-nnumber

-t

-p

-x

-8size

-eeofstr

(User Environment Utilities) XARGS(l)

Execute command using as many standard input arguments
as possible, up to number arguments maximum. Fewer
arguments will be used if their total size is greater than
size characters, and for the last invocation if there are
fewer than number arguments remaining. If option -x is
also coded, each number arguments must fit in the size
limitation, else xargs terminates execution.

Trace mode: The command and each constructed argument
list are echoed to file descriptor 2 just prior to their execu­
tion.

Prompt mode: The user is asked whether to execute com­
mand each invocation. Trace mode (-t) is turned on to
print the command instance to be executed, followed by a
? .. prompt. A reply of y (optionally followed by any­
thing) will execute the command; anything else, including
just a carriage return, skips that particular invocation of
command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options -i
and -1. When neither of the options -i, -1, or -n are
coded, the total length of all arguments must be within
the size limit.

The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or
equal to 470. If -8 is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.

eofstr is taken as the logical end-of-file string. Underbar
C) is assumed for the logical EOF string if -e is not
coded. The value -e with no eofstr coded turns off the
logical EOF string capability (underbar is taken literally).
xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

xargs will terminate if either it receives a return code of -1 from, or if it cannot
execute, command. When command is a shell program, it should explicitly exit
(see sh(l» with an appropriate value to avoid accidentally returning with -1.

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

Is $1 I xargs -i -t mv $1/0 $2/0

The following will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) I xargs > > log

327

XARGS(l) (User Environment Utilities) XARGS(l)

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -I ar r arch
2. Is I xargs -p -I I xargs ar r arch

The following will execute diff(1) with successive pairs of arguments originally
typed as shell arguments:

echo $* I xargs -n2 diff

SEE ALSO
sh(1).

328

Index to Utilities

• AT&T Windowing Utilities
ismpx ... ismpx(l)
jterm ... jterm(l)
jwin .. jwin(l)
layers ... layers(l)
relogin .. relogin(lM)

• Basic Networking Utilities
ct .. ct(lC)
cu .. cu(lC)
uucp ... uucp(lC)
uulog .. uucp(lC)
uuname .. uucp(lC)
uupick ... uuto(lC)
uustat ... uustat(lC)
uuto ... uuto(lC)
uux ... uux(lC)

• Cartridge Tape Utilities
tar ... tar(l)

• Directory and File Management Utilities
ar .. ar(l)
awk ... awk(l)
bdiff ... bdiff (1)
bfs ... bfs(l)
col ... col(l)
comm .. comm(l)
csplit ... csplit(l)
cut .. cut(l)
diff3 diff3 (1)
dircmp ... dircmp(l)
egrep .. grep(l)
fgrep .. grep(l)
join .. join(l)
newform ... newform(l)
nl .. nl(l)
od .. od(l)
pack ... pack(l)

INDEX TO UTILITIES 329

Index to Utilities

paste ... paste(l)
pcat .. pack(l)
pg .. pg(l)
sdiff .. sdiff(l)
split .. split(l)
sum .. sum(l)
tail .. tail(l)
touch .. touch(l)
tr ... tr(l)
uniq .. uniq(l)
unpack ... pack(l)

• Editing Utilities
edit .. edit(l)
ex ... ex(l)
vi .. vi(l)

• Essential Utilities
cat ... cat(l)
cd ... cd(l)
chgrp .. chown(l)
chmod .. chmod(l)
chown .. chown(l)
cmp .. cmp(l)
cp ... cp(l)
cpio ... cpio(l)
date .. date(l)
dd .. dd(lM)
df .. df(lM)
diff ... diff(l)
du .. du(lM)
echo ... echo(l)
ed .. ed(l)
expr .. expr(l)
false .. true(l)
file .. file(l)
find ... find(l)
getopt .. getopt(l)
getoptcvt ... getopts(l)
getopts ... getopts(l)
grep .. grep(l)

330 USER'S REFERENCE MANUAL

--------------------- Index to Utilities

id .. id(l)
kill .. kill (1)
In ... cp(l)
login .. login(l)
Is ... ls(l)
mail .. mail(l)
mailx mailx (1)
mesg ... mesg(l)
mkdir ... mkdir(l)
mv ... cp(l)
newgrp .. newgrp(lM)
news ... news(l)
passwd .. passwd(l)
pdp11 .. machid(l)
pr ... pr(l)
ps ... ps(l)
pwd .. pwd(l)
red ... ed(l)
rm ... rm(l)
rmail ... mail (1)
rmdir ... rm(l)
rsh ... sh(l)
sed ... sed(l)
setup ... setup(l)
sh ... sh(l)
sleep ... sleep(l)
sort .. sort(l)
stty .. stty(l)
su ... su(l)
sync ... sync(l)
sysadm .. sysadm(l)
tee ... tee(l)
test ... test(l)
true ... true(l)
u3b2 .. machid(l)
umask ... umask(l)
uname .. uname(l)
wait .. wait(l)
wall .. wall(l)
we ... wc(l)
who .. who(l)

INDEX TO UTILITIES 331

Index to Utilities

write ... write(l)

• Graphics Utilities
abs .. stat(lG)
af ... stat(lG)
bar .. stat(lG)
bel ... gutil(lG)
bucket ... stat(lG)
ceil .. stat(l G)
cor ... stat(lG)
cusum ... stat(lG)
cvrtopt .. gutil(lG)
dtoc .. toc(lG)
erase ... gdev(lG)
exp .. stat(lG)
floor .. stat(lG)
gamma ... stat(lG)
gas .. stat(lG)
gd .. gutil(lG)
ged .. ged(lG)
graph .. graph(lG)
graphics .. graphics (1 G)
gtop ... gutil(lG)
hardcopy .. gdev(lG)
hilo ... stat(l G)
hist .. stat(lG)
hpd ... gdev(lG)
label .. stat(l G)
list ... stat(lG)
log ... stat(lG)
lreg ... stat(lG)
mean ... stat(lG)
mod .. stat(lG)
pair ... stat(lG)
pd .. gutil(lG)
pie ... stat(lG)
plot ... stat(lG)
point ... stat(lG)
power ... stat(lG)
prime .. stat(l G)
prod .. stat(lG)

332 USER'S REFERENCE MANUAL

---------------------- Index to Utilities

ptog ... gutil(lG)
qsort ... stat(lG)
quit .. gutil(lG)
rand .. stat(lG)
rank .. stat(lG)
remcom ... gutil(lG)
root ... stat(lG)
round .. stat(lG)
siline ... stat(lG)
sin ... stat(lG)
spline .. spline(lG)
subset ... stat(lG)
td .. gdev(lG)
tekset .. gdev(lG)
title ... stat(l G)
total .. stat(lG)
tplot .. tplot(lG)
ttoc .. toc(lG)
var .. stat(lG)
vtoc .. toc(lG)
whatis ... gutil(lG)
yoo .. gutil(lG)

• Help Utilities
glossary ... glossary(l)
help .. help(l)
helpadm .. helpadm(lM)
locate ... locate(l)
starter .. starter(l)
usage .. usage(l)

• Inter-process Communications Utilities
ipcrm ... ipcrm(l)
ipcs .. ipcs(l)

• Line Printer Spooling Utilities
cancel ... lp(l)
disable .. enable(l)
enable ... enable(l)
lp .. lp(l)
lpstat .. lpstat(l)

INDEX TO UTILITIES 333

Index to Utilities

• Performance Measurement Utilities
graph .. graph(lG)
sag ... sag(lG)
sar ... sar(l)
timex .. timex(l)
tplot .. tplot(lG)

• Security Administration Utilities
crypt .. crypt(l)
makekey ... makekey(l)

• Spell Utilities
deroff ... deroff(l)
hashcheck ... spell(l)
hashmake .. spell(l)
spell ... spell(l)
spellin .. spell(l)

• Terminal Filters Utilities
300 .. 300(1)
300s ... 300(1)
4014 .. 4014(1)
450 .. 450(1)
greek .. greek(l)
hp .. hp(l)
hpio ... hpio(l)

• Terminal Information Utilities
tput ... tput(l)

• User Environment Utilities
at .. at(l)
banner ... banner(l)
basename .. basename(l)
batch .. at(l)
bc ... bc(l)
cal ... cal(l)
calendar .. calendar(l)
crontab .. crontab(l)
dc ... dc(l)

334 USER'S REFERENCE MANUAL

--------------------- Index to Utilities

dimame .. basename(l)
env .. env(l)
factor .. factor(l)
line .. line(l)
logname .. logname(l)
nice ... nice(l)
nohup ... nohup(l)
shl ... shl(l)
tabs ... tabs(l)
time .. time(l)
tty ... tty(l)
u3b .. machid(l)
u3b5 .. machid(l)
units .. units(l)
vax .. machid(l)
xargs ... xargs(l)

INDEX TO UTILITIES 335

• The C Programmer's Handbook Bell Labs/M. I. Bolsky

• The UNIX System User's Handbook Bell Labs/M. I. Bolsky

• The Vi User's Handbook Bell Labs/M. I, Bolsky

• UNIX Syste'm Software Readings AT&T UNIX PACIFIC

• UNIX System Readings and Applications , Volume I Bell Labs

• UNIX System Readings and Applications , Volume II Bell Labs

• UNIX System V Utilities Release Notes AT&T

• UNIX System V Streams Primer AT&T -

• UNIX System V User's Guide, Second Edition AT&T

• UNIX System V User's Reference Manual AT&T

. , UNIX System V Programmer's Reference Manual AT&T

• UNIX System V Streams Programmer's Guide AT&T

• UNIX System V Network Programmer's Guide AT&T

:' . , UNIX System V Programmer's Guide AT&T

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

ISBN 0-13-940487-2
I

