
ATs.T

-vstem
USER'S Gl..JDE

Second Edition

/

,
, .'

UNIX® System V

User's Guide

-.

~-AT&T

UNIX® System V

User's Guide, Second Edition

AT&T

Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

Library of Congress Catalog Card Number: 87-60147

Editorial/production supervision: Karen S. Fortgang
Cover illustration: Jim Kinstry
Manufacturing buyer: S. Gordon Osbourne

©1987, 1986 by AT&T. All Rights Reserved.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this
document, AT&T assumes no liability to any party for any loss or damage caused
by errors or omissions or statements of any kind in the UN/~ System V User's
Guide, its updates, supplements, or special editions, whether such errors are omis­
sions or statements resulting from negligence, accident, or any other cause. AT&T
further assumes no liability arising out of the application or use of any product or
system described herein; nor any liability for incidental or consequential damages
arising from the use of this document. AT&T disclaims all warranties regarding
the information contained herein, whether expressed, implied or statutory, includ­
ing implied warranties or merchantability or fitness for a particular purpose.

AT &T reserves the right to make changes without further notice to any products
herein to improve reliability, function or design.

No part of this publication may be reproduced, transmitted or used in any form or
by any means - graphic, electronic, mechanical or chemical, including photocopy­
ing, recording in any medium, taping, by any computer or information storage and
retrieval systems, etc. without prior permission in writing from AT&T.

Dataphone is a registered trademark of AT &T.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
HP is a trademark of Hewlett-Packard.
IBM is a registered trademark of International Business Machines.
Teletype is a registered trademark of AT&T.
UNIX is a registered trademark of AT&T.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4

ISBN 0-13-940545-3 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast.Asia Pte. Ltd., Singapore

Table of Contents

Preface

Part 1: UNIX System Overview

Chapter 1: What is the UNIX System?
What the UNIX System Does

xi

How the UNIX System Works 3

Chapter 2: Basics for UNIX System Users 14

Getting Started 14

The Terminal 15

Obtaining a Login Name 26

Establishing Contact with the UNIX System 27

Part 2: UNIX System Tutorials

Chapter 3: U sing the File System
Introduction

How the File System is Structured

Your Place in the File System

Organizing a Directory

Accessing and Manipulating Files

Summary

39

39

40

42

54

69

113

TABLE OF CONTENTS v

Table of Contents ------------------

Chapter 4: Overview of the Tutorials
Introduction

Text Editing

The Shell

Communicating Electronically

Programming in the System

Chapter 5: Line Editor Tutorial (ed)
Introducing the Line Editor

Suggestions for Using this Tutorial

Getting Started

Exercise 1

General Format of ed Commands

Line Addressing

Exercise 2

Displaying Text in a File

Creating Text

Exercise 3

Deleting Text

Substituting Text

Exercise 4

Special Characters

Exercise 5

vi USER'S GUIDE

114

114

115

120

125

126

127

127

128

129

140

141

142

156

157

160

168

170

175

184

186

197

------------------- Table of Contents

Moving Text

Exercise 6

Other Useful Commands and Information

Exercise 7

Answers to Exercises

Chapter 6: Screen Editor Tutorial (vi)
Introduction

Getting Started

Creating a File

Editing Text: the Command Mode

Quitting vi

Exercise 1

Moving the Cursor Around the Screen

Positioning the Cursor in Un displayed Text

Exercise 2

Crea ting Text

Exercise 3

Deleting Text

Exercise 4

Modifying Text

Cutting And Pasting Text Electronically

Exercise 5

199

208

209

219

220

239

239

242

245

248

256

259

260

278

290

292

297

298

305

306

314

319

TABLE OF CONTENTS vii

Table of Contents ------------------

Special Commands

Using Line Editing Commands in vi

Quitting vi

Special Options for vi

Exercise 6

Answers To Exercises

Chapter 7: Shell Tutorial
Introduction

Shell Command Language

Command Language Exercises

Shell Programming

Modifying Your Login Environment

Shell Programming Exercises

Answers To Exercises

Chapter 8: Communication Tutorial
Introduction

Exchanging Messages

mail

mailx

mailx Overview

Command Line Options

How to Send Messages: the Tilde Escapes

viii USER'S GUIDE

320

322

330

333

336

337

344

344

345

380

381

436

443

445

452

452

453

454

467

468

470

471

----------------- Table of Contents

How to Manage Incoming Mail 483

The .mailrc File 493

Sending and Receiving Files 498

Networking 518

Appendix A: Summary of the File System 529

Appendix B: Summary of UNIX System
Commands 532

Appendix C: Quick Reference to ed
Commands 537

Appendix D: Quick Reference to vi
Commands 542

Appendix E: Summary of Shell Command
Language 551

Appendix F: Setting Up the Terminal 558

Glossary 568

Index 583

TABLE OF CONTENTS ix

Preface

The material in this guide is organized into two major parts: an overview of
the UNIX operating system and a set of tutorials on the main tools available on
the UNIX system. A brief description of each part follows. The last section of
this Preface, "Notation Conventions," describes the typographical notation with
which all the chapters of this Guide conform. You may want to refer back to this
section from time to time as you read the Guide.

System Overview

This part consists of Chapters 1-3, which introduce you to the basic princi­
ples of the UNIX operating system. Each chapter builds on information
presented in preceding chapters, so it is important to read them in sequence.

• Chapter 1, "What is the UNIX System?," provides an overview of the
operating system.

• Chapter 2, "Basics for UNIX System Users," discusses the general rules
and guidelines for using the UNIX system. It covers topics related to
using your terminal, obtaining a system account, and establishing contact
with the UNIX system.

• Chapter 3, "Using the File System," offers a working perspective of the file
system. It introduces commands for building your own directory structure,
accessing and manipulating the subdirectories and files you organize within
it, and examining the contents of other directories in the system for which
you have access permission.

UNIX System Tutorials

The second part of the Guide consists of tutorials on the following topics: the
ed text editor, the vi text editor, the shell command language and programming
language, and electronic communication tools. For a thorough understanding of
the material, we recommend that you work through the examples and exercises as
you read each tutorial. The tutorials assume you understand the concepts intro­
duced in Chapters 1-3.

PREFACE xi

Preface

• Chapter 4, "UNIX System Capabilities," introduces the four chapters of
tutorials in the second half of the Guide. It highlights UNIX system capa­
bilities such as command execution, text editing, electronic communication,
programming, and aids to software development.

• Chapter 5, "Line Editor Tutorial (ed)," teaches you to how to use the ed
text editor to create and modify text on a video display terminal or paper
printing terminal.

• Chapter 6, "Screen Editor Tutorial (vi)," teaches you how to use the visual
text editor, vi, to create and modify text on a video display terminal.

vi, the visual editor, is based on software developed by The University of Califor­
nia, Berkeley, California; Computer Science Division, Department of Electrical
Engineering and Computer Science, and such software is owned and licensed by
the Regents of the University of California.

• Chapter 7, "Shell Tutorial," teaches you to how to use the shell, both as a
command interpreter and as a programming language used to create shell
programs.

• Chapter 8, "Communication Tutorial," teaches you how to send messages
and files to users of both your UNIX system and other UNIX systems.

Reference Information

Six appendices and a glossary of UNIX system terms are also provided for
reference.

• Appendix A, "Summary of the File System," illustrates how information is
stored in the UNIX operating system.

• Appendix B, "Summary of UNIX System Commands," describes, in
alphabetical order, each UNIX system command discussed in the Guide.

xii USER'S GUIDE

Preface

• Appendix C, "Quick Reference to ed Commands," is a quick reference for
the line editor, ed. (For details, see Chapter 5, "Line Editor Tutorial.")
The commands are organized by topic, as they are covered in Chapter 5.

• Appendix D, "Quick Reference to vi Commands," is a reference for the
full screen editor, vi, discussed in Chapter 6, "Screen Editor Tutorial (vi)."
Commands are organized by topic, as covered in Chapter 6.

• Appendix E, "Summary of Shell Command Language," is a summary of
the shell command language, notation, and programming constructs, as dis­
cussed in Chapter 7, "Shell Tutorial."

• Appendix F, "Setting Up the Terminal," explains how to configure your
terminal for use with the UNIX system, and create multiple windows on
the screens of terminals with windowing capability.

• The Glossary defines terms pertaining to the UNIX system used in this
book.

PREFACE xiii

Notation Conventions

The following notation conventions are used throughout this Guide.

bold

italic

constant width

<>

[]

User input, such as commands, options and argu­
ments to commands, variables, and the names of
directories and files, appear in bold.

Names of variables to which values must be assigned
(such as password) appear in italic.

UNIX system output, such as prompt signs and
responses to commands, appear in constant width.

Input that does not appear on the screen when typed,
such as passwords, tabs, or RETURN, appear
between angle brackets.

Control characters are shown between angle brackets
because they do not appear on the screen when
typed. The circumflex n represents the control key
(usually labeled CTRL). To type a control charac­
ter, hold down the control key while you type the
character specified by char. For example, the nota­
tion <Ad> means to hold down the control key
while pressing the D key; the letter D will not
appear on the screen.

Command options and arguments that are optional,
such as [-msCjI, are enclosed in square brackets.

The vertical bar separates optional arguments from
which you may choose one. For example, when a
command line has the following format:

command [argJ I arg2]

You may use either argJ or arg2 when you issue the
command.

PREFACE xv

Notation Conventions

command {number}

Ellipses after an argument mean that more than one
argument may be used on a single command line.

Arrows on the screen (shown in examples in Chapter
6) represent the cursor.

A command name followed by a number in
parentheses refers to the part of a UNIX system
reference manual that documents that command.
(There are three reference manuals: the User's
Reference Manual (P-H) , Programmer's Reference
Manual (P-H), and System Administrator's Refer­
ence Manual (AT&T).) For example, the notation
cat(1) refers to the page in section 1 (of the User's
Reference Manual (P-H» that documents the cat
command.

In sample commands the $ sign is used as the shell command prompt. This
is not true for all systems. Whichever symbol your system uses, keep in mind that
prompts are produced by the system; although a prompt is sometimes shown at
the beginning of a command line as it would appear on your screen, you are not
meant to type it. (The $ sign is also used to reference the value of positional
parameters and named variables; see Chapter 7 for details')

In all chapters, full and partial screens are used to display examples of how
your terminal screen will look when you interact with the UNIX system. These
examples show how to use the UNIX system editors, write short programs, and
execute commands. The input (characters typed by you) and output (characters
printed by the UNIX system) are shown in these screens in accordance with the
conventions listed above. All examples apply regardless of the type of terminal
you use.

The commands discussed in each section of a chapter are reviewed at the end
of that section. A summary of vi commands is found in Appendix D, where they
are listed by topic. At the end of some sections, exercises are also provided so you
can experiment with the commands. The answers to all the exercises in a chapter
are at the end of that chapter.

xvi USER'S GUIDE

Notation Conventions

The text in the User's Guide was prepared with the UNIX system text editors
described in the Guide and formatted with the DOCUMENTER'S WORK­
BENCH Software: troif, tbl, pic, and mm macros.

PREFACE xvii

UNIX® System V

User's Guide

CHAPTER 1: WHAT IS THE UNIX SYSTEM?

What the UNIX System Does

The UNIX operating system is a set of programs (or software) that controls
the computer, acts as the link between you and the computer, and provides tools
to help you do your work. It is designed to provide an uncomplicated, efficient,
and flexible computing environment. Specifically, the UNIX system offers the fol­
lowing advantages:

• a general purpose system for performing a wide variety of jobs or applica­
tions

• an interactive environment that allows you to communicate directly with
the computer and receive immediate responses to your requests and mes­
sages

• a multi-user environment that allows you to share the computer's resources
with other users without sacrificing productivity

This technique is called timesharing. The UNIX system interacts between
users on a rotating basis so quickly that it appears to be interacting with
all users simultaneously.

• a multi-tasking environment that enables you to execute more than one
program simultaneously.

The organization of the UNIX system is based on four major components:

the kernel

the file system

the shell

The kernel is a program that constitutes the nucleus of
the operating system; it coordinates the functioning of
the computer's internals (such as allocating system
resources). The kernel works invisibly; you need never
be aware of it while doing your work.

The file system provides a method of handling data that
makes it easy to store and access information.

The shell is a program that serves as the command inter­
preter. It acts as a liaison between you and the kernel,
interpreting and executing your commands. Because it
reads input from you and sends you messages, it is
described as interactive.

WHAT IS THE UNIX SYSTEM?

What the UNIX System Does

commands

2 USER'S GUIDE

Commands are the names of programs that you request
the computer to execute. Packages of programs are
called tools. The UNIX system provides tools for jobs
such as creating and changing text, writing programs
and developing software tools, and exchanging informa­
tion with others via the computer.

How the UNIX System Works

Figure 1-1 is a model of the UNIX system. Each circle represents one of the
main components of the UNIX system: the kernel, the shell, and user programs or
commands. The arrows suggest the shell's role as the medium through which you
and the kernel communicate. The remainder of this chapter describes each of
these components, along with another important feature of the UNIX system, the
file system.

Additional
Utility

Programs

Programming
Environment

Figure 1-1: Model of the UNIX System

Text
Processing

Information
Management

WHAT IS THE UNIX SYSTEM? 3

How the UNIX System Works

The Kernel

The nucleus of the UNIX system is called the kernel. The kernel controls
access to the computer, manages the computer's memory, maintains the file sys­
tem, and allocates the computer's resources among users. Figure 1-2 is a func­
tional view of the kernel.

Manages
memory

Allocates
system

resources

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

4 USER'S GUIDE

Maintains
file system

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX operating system. It provides
a logical method of organizing, retrieving, and managing information. The struc­
ture of the file system is hierarchical; if you could see it, it might look like an
organization chart or an inverted tree (Figure 1-3).

o = Direclories

o =Ordinary Files

V = Special Files

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UNIX system and it can be anyone of three
types: an ordinary file, a directory, or a special file. (See Chapter 3, "Using the
File System.")

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the
system. Ordinary files are used to store any information you want to save. They
may contain text for letters or reports, code for the programs you write, or com­
mands to run your programs. Once you have created a file, you can add material
to it, delete material from it, or remove it entirely when it is no longer needed.

WHAT IS THE UNIX SYSTEM? 5

How the UNIX System Works

Directories

A directory is a super-file that contains a group of related files. For example,
a directory called sales may hold files containing monthly sales figures called jan,
feb, mar, and so on. You can create directories, add or remove files from them, or
remove directories themselves at any time.

All the directories that you create and own will be located in your home
directory. This is a directory assigned to you by the system when you receive a
recognized login. You have control over this directory; no one else can read or
write files in it without your explicit permission, and you determine its structure.

The UNIX system also maintains several directories for its own use. The
structure of these directories is much the same on all UNIX systems. These
directories, which include /unix (the kernel) and several important system direc­
tories, are located directly under the root directory in the file hierarchy. The root
directory (designated by /) is the source of the UNIX file structure; all directories
and files are arranged hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A special
file represents a physical device such as a terminal, disk drive, magnetic tape
drive, or communication link. The system reads and writes to special files in the
same way it does to ordinary files. However the system's read and write requests
do not activate the normal file access mechanism; instead, they activate the device
handler associated with the file.

Some operating systems require you to define the type of file you have and to
use it in a specified way. In those cases, you must consider how the files are
stored since they might be sequential, random-access, or binary files. To the
UNIX system, however, all files are alike. This makes the UNIX system file
structure easy to use. For example, you need not specify memory requirements
for your files since the system automatically does this for you. Or if you or a pro­
gram you write needs to access a certain device, such as a printer, you specify the
device just as you would another one of your files. In the UNIX system, there is
only one interface for all input from you and output to you; this simplifies your
interaction with the system.

6 USER'S GUIDE

How the UNIX System Works

Figure 1-4 shows an example of a typical file system. Notice that the root
directory contains the kernel (/unix) and several important system directories.

Figure 1-4: Example of a File System

o = Directories

o = Ordinary FIles

V = Special Files

WHAT IS THE UNIX SYSTEM? 7

How the UNIX System Works

Ibin contains many executable programs and utilities

Idev contains special files that represent peripheral devices such as the
console, the line printer, user terminals, and disks

lete contains programs and data files for system administration

llib contains libraries for programs and languages

Itmp contains temporary files that can be created by any user

Insf contains other directories including mail, which contains files for
storing electronic mail, and news, which contains files for storing
newsworthy items.

In summary, the directories and files you create comprise the portion of the
file system that is controlled by you. Other parts of the file system are provided
and maintained by the operating system, such as /bin, Idev, lete, llib, Itmp and
Insf, and have much the same structure on all UNIX systems.

You will learn more about the file system in other chapters. Chapter 3 shows
how to organize a file system directory structure, and access and manipulate files.
Chapter 4 gives an overview of UNIX system capabilities. The effective use of
these capabilities depends on your familiarity with the file system and your ability
to access information stored within it. Chapters 5 and 6 are tutorials designed to
teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communicate
with the operating system. The shell reads the commands you enter and inter­
prets them as requests to execute other programs, access files, or provide output.
The shell is also a powerful programming language, not unlike the C program­
ming language, that provides conditional execution and control flow features. The
model of a UNIX system in Figure 1-1 shows the two-way flow of communication
between you and the computer via the shell.

8 USER'S GUIDE

How the UNIX System Works

Chapter 4 describes the shell's capabilities. Chapter 7 is a tutorial that
teaches you to write simple shell programs called shell scripts and custom tailor
your environment.

Commands
A program is a set of instructions to the computer. Programs that can be

executed by the computer without need for translation are called executable pro­
grams or commands. As a typical user of the UNIX system, you have many
standard programs and tools available to you. If you use the UNIX system to
write programs and develop software, you can also draw on system calls, subrou­
tines, and other tools. Of course, any programs you write yourself will be at your
disposal, too.

This book introduces you to many of the UNIX system programs and tools
that you will use on a regular basis. If you need additional information on these
or other standard programs, refer to the User's Reference Manual. For informa­
tion on tools and routines related to programming and software development, con­
sult the Programmer's Reference Manual. The Documentation Roadmap
describes and explains how to order all UNIX system documents from AT&T.

The reference manuals may also be available online. (Online documents are
stored in your computer's file system.) You can summon pages from the online
manuals by executing the command man (short for manual page). For details on
how to use the man command refer to the man(l) page in the User's Reference
Manual.

What Commands Do

The outer circle of the UNIX system model in Figure 1-1 organizes the sys­
tem programs and tools into functional categories. These functions include:

text processing

information management

The system provides programs such as line
and screen editors for creating and changing
text, a spelling checker for locating spelling
errors, and optional text formatters for pro­
ducing high-quality paper copies that are
suitable for publication.

The system provides many programs that
allow you to create, organize, and remove
files and directories.

WHAT IS THE UNIX SYSTEM? 9

How the UNIX System Works

electronic communication

software development

additional utilities

How to Execute Commands

Several programs, such as mail, enable you
to transmit information to other users and to
other UNIX systems.

Several UNIX system programs establish a
friendly programming environment by pro­
viding UNIX-to-programming-Ianguage
interfaces and by supplying numerous utility
programs.

The system also offers capabilities for gen­
erating graphics and performing calcula­
tions.

To make your requests comprehensible to the UNIX system, you must
present each command in the correct format, or command line 'syntax. This syn­
tax defines the order in which you enter the components of a command line. Just
as you must put the subject of a sentence before the verb in an English sentence,
so must you put the parts of a command line in the order required by the com­
mand line syntax. Otherwise, the UNIX system shell will not be able to interpret
your request. Here is an example of the syntax of a UNIX system command line.

command option(s) argument(s)<CR>

On every UNIX system command line you must type at least two com­
ponents: a command name and the RETURN key. (The notation <CR> is
used as an instruction to press the RETURN key throughout this Guide.) A com­
mand line may also contain either options or arguments, or both. What are com­
mands, options, and arguments?

• a command is the name of the program you want to run

• an option modifies how the command runs

10 USER'S GUIDE

How the UNIX System Works

• an argument specifies data on which the command is to operate (usually
the name of a directory or file)

In command lines that include options and/or arguments, the component
words are separated by at least one blank space. (You can insert a blank by
pressing the space bar.) If an argument name contains a blank, enclose that name
in double quotation marks. For example, if the argument to your command is
sample 1, you must type it as follows: "sample 1". If you forget the double quota­
tion marks, the shell will interpret sample and 1 as two separate arguments.

Some commands allow you to specify multiple options and/or arguments on a
command line. Consider the following command line:

command

arguments

options

1 1
A ,--A---, r A. \

we -I -w file1 file2 file3

In this example, we is the name of the command and two options, -I and
-w, have been specified. (The UNIX system usually allows you to group options
such as these to read -Iw if you prefer.) In addition, three files (file1, file2, and
file3) are specified as arguments. Although most options can be grouped together,
arguments cannot.

The following examples show the proper sequence and spacing in command
line syntax:

WHAT IS THE UNIX SYSTEM? 11

How the UNIX System Works

Incorrect

wefile
we-Ijile
we -I w file

we filelfile2

Correct

we file
we -I file
we -Iw file

or
we -I -w file

we filel file2

Remember, regardless of the number of components, you must end every
command line by pressing the RETURN key.

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX system executes a com­
mand.

YOUR
REQUEST

INPUT
SHELL

i~~i'-:O~UT~P~UT~ (COMMAND .:rmll'---___ LANGUAGE
INTERPRETER) PROGRAM

EXECUTION

DIRECTORY
SEARCH

Figure 1-5: Execution of a UNIX System Command

PROGRAM
RETRIEVAL

To execute a command, enter a command line when a prompt (such as a $

sign) appears on your screen. The shell considers your command as input,
searches through one or more directories to retrieve the program you specified,
and conveys your request, along with the program requested, to the kernel. The
kernel then follows the instructions in the program and executes the command you

12 USER'S GUIDE

How the UNIX System Works

requested. After the program has finished running, the shell signals that it is
ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX operating sys­
tem. The following chapters will help you apply these principles according to
your computing needs.

WHAT IS THE UNIX SYSTEM? 13

CHAPTER 2: BASICS FOR UNIX SYSTEM USERS

Getting Started

This chapter acquaints you with the general rules and guidelines for working
on the UNIX system. Specifically, it lists the required terminal settings, and
explains how to use the keyboard, obtain a login, log on and off the system, and
enter simple commands.

To establish contact with the UNIX system, you need:

• a terminal

• a login name (a name by which the UNIX system identifies you as one of
its authorized users)

• a password that verifies your identity

• instructions for dialing in and accessing the UNIX system if your terminal
is not directly connected or hard-wired to the computer

This chapter follows the notation conventions used throughout this Guide.
For a description of them, see the Preface.

14 USER'S GUIDE

The Terminal

A terminal is an input/output device: you use it to enter requests to the
UNIX system, and the system uses it to send its responses to you. There are two
basic types of terminals: video display terminals and printing terminals (see Fig­
ure 2-0.

Teletype
Model 5410

Figure 2-1: A Video Display Terminal and a Printing Terminal

Teletype
Model 43

The video display terminal shows input and output on a display screen; the print­
ing terminal, on continuously fed paper. In most respects, this difference has no
effect on the user's actions or the system's responses. Instructions throughout this
book that refer to the terminal screen apply in the same way to the paper in a
printing terminal, unless noted otherwise.

BASICS FOR UNIX SYSTEM USERS 15

The Terminal

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly to
communicate with the UNIX system. If you have not set terminal options before,
you might feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are using.
Some terminals are configured with switches; others are configured directly from
the keyboard by using a set of function keys. To determine how to configure your
terminal, consult the owner's manual provided by the manufacturer.

The following is a list of configuration checks you should perform on any ter­
minal before trying to log in on the UNIX system.

1. Turn on the power.

2. Set the terminal to ON-LINE or REMOTE operation. This setting
ensures the terminal is under the direct control of the computer.

3. Set the terminal to FULL DUPLEX mode. This mode ensures two-way
communication (input/output) between you and the UNIX system.

4. If your terminal is not directly connected or hard-wired to the computer,
make sure the acoustic coupler or data phone set you are using is set to
the FULL DUPLEX mode.

5. Set character generation to LOWER CASE. If your terminal generates
only upper case letters, the UNIX system will accommodate it by print­
ing everything in upper case letters.

6. Set the terminal to NO PARITY.

7. Set the baud rate. This is the speed at which the computer communi­
cates with the terminal, measured in characters per second. (For exam­
ple, a terminal set at a baud rate of 4800 sends and receives 480 charac­
ters per second.) Depending on the computer and the terminal, baud rates
between 300 and 19200 are available. Some computers may be capable
of processing characters at higher speeds.

16 USER'S GUIDE

The Terminal

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal
keyboards share a standard set of 128 characters called the ASCII character set.
(ASCII is an acronym for American Standard Code for Information Inter­
change.) While the keys are labeled with characters that are meaningful to you
(such as the letters of the alphabet), each one is also associated with an ASCII
code that is meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter's, with a few additional keys for functions such as interrupting tasks.
Figure 2-2 shows an example of a keyboard on an ASCII terminal.

BASICS FOR UNIX SYSTEM USERS 17

The Terminal

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

18 USER'S GUIDE

The Terminal

The keys correspond to the following:

• the letters of the English alphabet (both upper case and lower case)

• the numerals (O through 9)

• a variety of symbols {including! @ # $ % A & () _ - + = - ' { } [] I \
:;"'<>,?j)

• specially defined words (such as RETURN and BREAK), and abbrevia­
tions (such as DEL for delete, CTRL for control, and ESC for escape)

While terminal and typewriter keyboards both have alphanumeric keys, ter­
minal keyboards also have keys designed for use with a computer. These keys are
labeled with characters or symbols that remind the user of their functions. How­
ever, their placement may vary from terminal to terminal because there is no
standard keyboard layout.

Typing Conventions

To interact effectively with the UNIX system, you should be familiar with its
typing conventions. The UNIX system requires that you enter commands in
lower case letters (unless the command includes an upper case letter). Other con­
ventions enable you to perform tasks, such as erasing letters or deleting lines, sim­
ply by pressing one key or entering a specific combination of characters. Charac­
ters associated with tasks in this way are known as special characters. Figure 2-3
lists the conventions based on special characters. Detailed explanations of them
are provided on the next few pages.

BASICS FOR UNIX SYSTEM USERS 19

The Terminal

*
t

Key(s)

$

#*
@

<BREAK>

<ESC>

<CR>

<Ad>t

<Ah>

<Ai>

<AS>

<Aq>

Meaning

System's command prompt (your cue to issue a command)

Erase a character

Erase or kill an entire line

Stop execution of a program or command

Delete or kill the current command line

When used with another character, performs a specific function
(called an escape sequence)

When used in an editing session with the vi editor, ends the text
input mode and returns you to the command mode

Press the RETURN key. This ends a line of typing and puts the
cursor on a new line.

Stop input to the system or log off

Backspace for terminals without a backspace key

Horizontal tab for terminals without a tab key

Temporarily stops output from printing on the screen

Makes the output resume printing on the screen after it has been
stopped by the < AS> command

N onprinting characters are shown in angle brackets « » .

Characters preceded by a circumflex C) are called control characters and are pronounced
control-letter. To type a control character, hold down the control key and press the specified
letter.

Figure 2-3: UNIX System Typing Conventions

20 USER'S GUIDE

The Terminal

The Command Prompt

The standard UNIX system command prompt is the dollar sign ($). When
the prompt appears on your terminal screen, the UNIX system is waiting for
instructions from you. The appropriate response to the prompt is to issue a com­
mand and press the RETURN key.

The $ sign is the default value for the command prompt. Chapter 7 explains
how to change it if you would prefer another character or character string as your
command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typing
errors. The @ (at) sign key kills the current line and the # (pound) sign key
erases the last character typed. These keys are available by default to perform
these functions. However, if you want to use other keys, you can reassign the
erase and kill functions. (For instructions, see "Reassigning the Delete Functions"
later in this section and "Setting Terminal Options" in Chapter 7,)

Deleting the Current Line.: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is added
to the end of the line, and the cursor moves to the next line. The line containing
the error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before you
press the RETURN key if you want to kill a line. In the following example, a
misspelled command is typed on a command line; the command is cancelled with
the @ sign:

whooo@
who<CR>

Deleting the Last Characters Typed: the # Sign Key

The # (pound) sign key deletes the character<s) last typed on the current line.
When you type a # sign, the cursor backs up over the last character and lets you
retype it, thus effectively erasing it. This is an easy way to correct a typing error.

BASICS FOR UNIX SYSTEM USERS 21

The Terminal

You can delete as many characters as you like as long as you type a corre­
sponding number of # signs. For example, in the following command line, two
characters are deleted by typing two # signs.

dattw##e < CR >
The UNIX system interprets this as the date command, typed correctly.

The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function
instead of the # sign key. When you press the BACKSPACE key, the cursor
backs up over your errors, erasing them as it goes. It does not print anything,
unlike the # sign key, which prints a # sign on your screen between an error and a
correction. When you have finished correcting an error with the BACKSPACE
key, the line of text on the screen looks as though it was typed perfectly.

The # sign and BACKSPACE keys are equally effective at deleting charac­
ters, but using the BACKSPACE key gives you better visual information about
what you are doing.

Some terminals may not recognize the # sign key as a delete character.

Reassigning the Delete Functions

As stated earlier, you can change the keys that kill lines and erase characters.
If you want to change these keys for a single working session, you can issue a
command to the shell to reassign them; the delete functions will revert to the
default keys (# and @) as soon as you log off. If you want to use other keys regu­
larly, you must specify the reassignment in a file called .profile. Instructions for
making both temporary and permanent key reassignments, along with a descrip­
tion of the .profile, are given in Chapter 7.

There are three points to keep in mind if you reassign the delete functions to
non-default keys. First, the UNIX system allows only one key at a time to per­
form a delete function. When you reassign a function to a non-default key, you
also take that function away from the default key. For example, if you reassign
the erase function from the # sign key to the BACKSPACE key, you will no
longer be able to use the # sign key to erase characters. Neither will you have
two keys that perform the same function.

22 USER'S GUIDE

The Terminal

Secondly, such reassignments are inherited by any other UNIX system pro­
gram that allows you to perform the function you have reassigned. For example,
the interactive text editor called ed (described in Chapter 5) allows you to delete
text with the same key you use to correct errors on a shell command line (as
described in this section). Therefore, if you reassign the erase function to the
BACKSPACE key, you will have to use the BACKSPACE key to erase charac­
ters while working in the ed editor, as well. The # sign key will no longer work.

Finally, keep in mind that any reassignments you have specified in your
.profile do not become effective until after you log in. Therefore, if you make an
error while typing your login name or password, you must use the # sign key to
correct it.

Whichever keys you use, remember that they work only on the current line.
Be sure to correct your errors before pressing the RETURN key at the end of a
line.

Using Special Characters as Literal Characters

What happens if you want to use a special character in with literal meaning
as a unit of text? Since the UNIX system's default behavior is to interpret spe­
cial characters as commands, you must tell the system to ignore or escape from a
character's special meaning whenever you want to use it as a literal character.
The backs lash (\) enables you to do this. Type a \ before any special character
that you want to have treated as it appears. By doing this you essentially tell the
system to ignore this character's special meaning and treat it as a literal unit of
text.

For example, suppose you want to add the following sentence to a file:

Only one # appears on this sheet of music.

To prevent the UNIX system from interpreting the # sign as a request to delete a
character, enter a \ in front of the # sign. If you do not, the system will erase the
space after the word one and print your sentence as follows:

Only one appears on this sheet of music.

To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

BASICS FOR UNIX SYSTEM USERS 23

The Terminal

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as you
want, even when the UNIX system is executing a command or responding to one.
Since your input and the system's output appear on the screen simultaneously, the
printout on your screen will appear garbled. However, while this may be incon­
venient for you, it does not interfere with the UNIX system's work because the
UNIX system has read-ahead capability. This capability allows the system to
handle input and output separately. The system takes and stores input (your next
request) while it sends output Gts response to your last request) to the screen.

Stopping a Command

If you want to stop the execution of a command, simply press the BREAK or
DELETE key. The UNIX system will stop the program and print a prompt on
the screen. This is its signal that it has stopped the last command from running
and is ready for your next command.

Using Control Characters

Locate the control key on your terminal keyboard. It may be labeled CON­
TROL or CTRL and is probably to the left of the A key or below the Z key.
The control key is used in combination with other characters to perform physical
controlling actions on lines of typing. Commands entered in this way are called
control characters. Some control characters perform mundane tasks such as back­
spacing and tabbing. Others define commands that are specific to the UNIX sys­
tem. For example, one control character (control-s) temporarily halts output that
is being printed on a terminal screen.

To type a control character, hold down the control key and press the
appropriate alphabetic key. Most control characters do not appear on the screen
when typed and therefore are shown between angle brackets (see "Notation Con­
ventions" in the Preface). The control key is represented by a circumflex (~)
before the letter. Thus, for example, < ~s> designates the control-s character.

24 USER'S GUIDE

The Terminal

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To prevent
information from rolling off the screen on a video display terminal, type < ~s>;
the printing will stop. When you are ready to read more output, type <~q> and
the printing will resume.

To log off the UNIX system, type <~d>. (See "Logging Off" later in this
chapter for a detailed description of this procedure.)

In addition, the UNIX system uses control characters to provide capabilities
that some terminals fail to make available through function specific keys. If your
keyboard does not have a backspace key, you can use the < ~h> key instead.
You can also set tabs without a tab key by typing <~i> if your terminal is set
properly. (Refer to the section entitled "Possible Problems When Logging In" for
information on how to set the tab key.)

Now that you have configured the terminal and inspected the keyboard, one
step remains before you can establish communication with the UNIX system:
you must obtain a login name.

BASICS FOR UNIX SYSTEM USERS 25

Obtaining a Login Name

A login name is the name by which the UNIX system verifies that you are an
authorized user of the system when you request access to it. It is so called
because you must enter it every time you want to log in. (The expression logging
in is derived from the fact that the system maintains a log for each user, in which
it records the type and amount of system resources being used.)

To obtain a login name, set up a UNIX system account through your local
system administrator. There are few rules governing your choice of a login name.
Typically, it is three to eight characters long. It can contain any combination of
lower case alphanumeric characters, as long as it starts with a letter. It cannot
contain any symbols.

However, your login name will probably be determined by local practices.
The users of your system may all use their initials, last names, or nicknames as
their login names. Here are a few examples of legal login names: starship, mary2,
and jmrs.

26 USER'S GUIDE

Establishing Contact with the UNIX System

Typically, you will be using either a terminal that is wired directly to a com­
puter or a terminal that communicates with a computer over a telephone line.

This section describes a typical procedure for logging in, but may not apply to
your system. There are many ways to log in on a UNIX system over a telephone
line. Security precautions on your system may require that you use a special
telephone number or other security code. For instructions on logging in on your
UNIX system from outside your computer installation site, see your system
administrator.

Turn on your terminal. If it is directly connected, the login: prompt will
immediately appear in the upper lefthand corner of the screen.

If you are going to communicate with the computer over a telephone line, you
must now establish a connection. The following procedure is an example of a
method you might use to do this. (For the procedure required by your system, see
your system administrator.)

1. Dial the telephone number that connects you to the UNIX system. You
will hear one of the following:

o A busy signal. This means that either the circuits are busy or the line
is in use. Hang up and dial again.

o Continuous ringing and no answer. This usually means that there is
trouble with the telephone line or that the system is inoperable
because of mechanical failure or electronic problems. Hang up and
dial again later.

o A high-pitched tone. This means that the system is accessible.

2. When you hear the high-pitched tone, place the handset of the phone in
the acoustic coupler or momentarily press the appropriate button on the
data phone set (see the owner's manual for the appropriate equipment).
Then replace the handset in the cradle (see Figure 2-4).

3. After a few seconds, the login: prompt will appear in the upper lefthand
corner of the screen.

BASICS FOR UNIX SYSTEM USERS 27

Establishing Contact with the UNIX System

4. A series of meaningless characters may appear on your screen. This
means that the telephone number you called serves more than one baud
rate; the UNIX system is trying to communicate with your terminal, but
is using the wrong speed. Press the BREAK or RETURN key; this sig­
nals the system to try another speed. If the UNIX system does not
display the login: prompt within a few seconds, press the BREAK or
RETURN key again.

AT&T Dataphone II
Modem

AT&T Data Phone
Set 212A

Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler

28 USER'S GUIDE

AT&T Acoustic
Coupler

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press the
RETURN key. For example, if your login name is starship, your login line will
look like this:

login: starship < CR >

Remember to type in lower case letters. If you use upper case from the time you
log in, the UNIX system will expect and respond in upper case exclusively until
the next time you log in. It will accept and run many commands typed in upper
case, but will not allow you to edit files.

Password

Next, the system prompts you for your password. Type your password and
press the RETURN key. For security reasons, the UNIX system does not print
(or echo) your password on the screen.

If both your login name and password are acceptable to the UNIX system,
the system may print the message of the day and/or current news items and then
the default command prompt ($). (The message of the day might include a
schedule for system maintenance, and news items might include an announcement
of a new system tool.) When you have logged in, your screen will look similar to
this:

BASICS FOR UNIX SYSTEM USERS 29

Establishing Contact with the UNIX System

login: starsbip<CR>
password:
UNIX system news
$

If you make a typing mistake when logging in, the UNIX system prints the
message login incorrect on your screen. Then it gives you a second chance to
log in by printing another login: prompt.

login: ttarsbip<CR>
password:
login inco=ect
login:

The login procedure may also fail if the communication link between your
terminal and the UNIX system has been dropped. If this happens, you must rees­
tablish contact with the computer (specifically, with the data switch that links
your terminal to the computer) before trying to log in again. Since procedures for
doing this vary from site to site, ask your system administrator to give you exact
instructions for getting a connection on the data switch.

If you have never logged in on the UNIX system, your login procedure may
differ from the one just described. This is because some system administrators
follow the optional security procedure of assigning temporary passwords to new

30 USER'S GUIDE

Establishing Contact with the UNIX System

users when they set up their accounts. If you have a temporary password the sys­
tem will force you to choose a new password before it allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system's security. Protection of system resources and your per­
sonal files depends on your keeping your password private.

The actual procedure you follow will be determined by the administrative pro­
cedures at your computer installation site. However, it will probably be similar to
the following example of a first-time login procedure.

1. You establish contact; the UNIX system displays the login: prompt.
Type your login name and press the RETURN key.

2. The UNIX system prints the password prompt. Type your temporary
password and press the RETURN key.

3. The system tells you your temporary password has expired and you must
select a new one.

4. The system asks you to type your old password again. Type your tem­
porary password.

5. The system prompts you to type your new password. Type the password
you have chosen.

Passwords must be constructed to meet the following requirements:

o Each password must have at least six characters. Only the first eight
characters are significant.

o Each password must contain at least two alphabetic characters and at
least one numeric or special character. Alphabetic characters can be
upper case or lower case letters.

o Each password must differ from your login name and any reverse or
circular shift of that login name. For comparison purposes, an upper
case letter and its corresponding lower case letter are equivalent.

o A new password must differ from the old by at least three characters.
For comparison purposes, an upper case letter and its corresponding
lower case letter are equivalent.

Examples of valid passwords are: mar84ch, JonathOn, and BRA V3S.

BASICS FOR UNIX SYSTEM USERS 31

Establishing Contact with the UNIX System

6.

7.

The UNIX system you are using may have different requirements to consider
when choosing a password. Ask your system administrator for details.

For verification, the system asks you to reenter your new password. Type
your new password again.

If you do not reenter the new password exactly as typed the first time, the
system tells you the passwords do not match and asks you to try the pro­
cedure again. On some systems, however, the communication link may
be dropped if you do not reenter the password exactly as typed the first
time. If this happens, you must return to step 1 and begin the login pro­
cedure again. When the passwords match, the system displays the
prompt.

The following screen summarizes this procedure (steps 1 through 6) for first­
time UNIX system users.

logjn: starship <CR>
password: <CR>
Your password has expired.
Choose a new one.
Old password: <CR>
New password: <CR>
Re-enter new password: <CR>
$

32 USER'S GUIDE

Establishing Contact with the UNIX System

Possible Problems when Logging In

A terminal usually behaves predictably when you have configured it properly.
Sometimes, however, it may act peculiarly. For example, the carriage return may
not work properly.

Some problems can be corrected simply by logging off the system and logging
in again. If logging in a second time does not remedy the problem, you should
first check the following and try logging in once again:

the keyboard

the data phone set
or modem

the switches

Keys labeled CAPS, LOCAL, BLOCK, and so on
should not be enabled (put into the locked position).
You can usually disable these keys simply by press­
ing them.

If your terminal is connected to the computer
via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

Some terminals have several switches that must be
set to be compatible with the UNIX system. If this
is the case with the terminal you are using, make
sure they are set properly.

Refer to the section "Required Terminal Settings" in this chapter if you need
information to verify the terminal configuration. If you need additional informa­
tion about the keyboard, terminal, data phone, or modem, check the owner's
manuals for the appropriate equipment.

Figure 2-5 presents a list of procedures you can follow to detect, diagnose,
and correct some problems you may experience when logging in. If you need fur­
ther help, contact your system administrator.

BASICS FOR UNIX SYSTEM USERS 33

Establishing Contact with the UNIX System

*

t

:j:

Problemt

Meaningless characters

Input/output appears in
UPPER CASE letters

Input appears in UPPER
CASE, output in lower case

Input is printed twice

Tab key does not work prop­
erly

Communication link cannot be
established although high
pitched tone is heard when
dialing in

Communication link (terminal
to UNIX system) is repeatedly
dropped

Possible Cause

UNIX system at wrong speed

Terminal configuration includes
UPPER CASE setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or
OFF-LINE mode

Bad telephone line or bad com­
munications port

ActioniRemedy

Press RETURN or BREAK key

Log off and set character gen­
eration to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty -tabs:!:

Set terminal to ON-LINE mode
try logging in again

Call system administrator

Numerous problems can occur if your terminal is not configured properly. To eliminate these
possibilities before attempting to log in, perform the configuration checks listed under
"Required Terminal Settings."

Some problems may be specific to your terminal, data phone set, or modem. Check the
owner's manual for the appropriate equipment if suggested actions do not remedy the problem.

Typing stty -tabs corrects the tab setting only for your current computing session. To ensure
a correct tab setting for all sessions, add the line stty -tabs to your .profile (see Chapter 7).

Figure 2-5: Troubleshooting Problems When Logging In*

34 USER'S GUIDE

Establishing Contact with the UNIX System

Simple Commands

When the prompt appears on your screen, the UNIX system has recognized
you as an authorized user and is waiting for you to request a program by entering
a command.

For example, try running the date command. After the prompt, type the
command and press the RETURN key. The UNIX system accesses a program
called date, executes it, and prints its results on the screen, as shown below.

$ date<CR>
Wed Oct 15 09:49:44 EI1I' 1986
$

As you can see, the date command prints the date and time, using the 24-hour
clock.

Now type the who command and press the RETURN key. Your screen will
look something like this:

BASICS FOR UNIX SYSTEM USERS 35

Establishing Contact with the UNIX System

$ who<CR>
starship ttyOO Oct 12 8:53
mary2 tty02 Oct 12 8:56
acct123 tty05 Oct 12 8:54
jmrs tty06 Oct 12 8:56
$

The who command lists the login names of everyone currently working on your
system. The tty designations refer to the special files that correspond to each
user's terminal. The date and time at which each user logged in are also shown.

The help Command
To help you learn how to use these and other commands, the UNIX system

provides an on-line teaching aid: the help command. This program tells you
which command you need to perform a particular task and how to execute specific
commands. For novice users of the UNIX system, it also provides definitions of
vocabulary and explanations of basic concepts about the system.

The help command is not available on all UNIX systems; check with your sys­
tem administrator to find out if it is installed on your system.

When you need assistance, type help and press the RETURN key. The pro­
gram gives you a choice of four ways in which it can help you: by providing gen­
eral information; by locating the appropriate command for a particular task; by
giving you instructions on how to use a particular command; and by defining
terms. The following example shows how this menu appears on your screen when
you type the command.

36 USER'S GUIDE

Establishing Contact with the UNIX System

$ help<CR>
help: UNIX System On-Line Help

choices
s

1

u

g

r

q

Enter choice >

description
starter: general information

locate: find a camand with k~

usage: information about ccmrands

glossary: definitions of terms

Redirect to a file or a camand

Quit

Each choice on this menu (starter, locate, usage, and glossary) is an interac­
tive menu program. Request one of these programs by typing the option listed
beside it under choices (such as u).

Because starter, locate, usage, and glossary are programs, they can also be
called from the shell. Once you are familiar with them, you can skip the step of
entering the help command first. If you know which program you want to run,
you can call it by typing its name as either a command or an argument to the
help command. For example, to call the usage program, use one of the following
command lines:

help usage < CR >

or

usage <CR>

BASICS FOR UNIX SYSTEM USERS 37

Establishing Contact with the UNIX System

The program you choose responds by printing a summary of its function, a
menu of choices, instructions, and examples of how to follow the instructions. In
this way, the help program leads you through a series of steps that enable you to
get the information you need.

Logging Off

When you have completed a session with the UNIX system, type < ~d> after
the prompt. (Remember that control characters such as < ~d> are typed by
holding down the control key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen.)
After several seconds, the UNIX system will display the login: prompt again.

$ <~d>

login:

This shows that you have logged off successfully and the system is ready for
someone else to log in.

Always log off the UNIX system by typing <"d> before you turn off the termi­
nal or hang up the telephone. If you do not, you may not be actually logged off
the system.

The exit command also allows you to log off but is not used by most users. It
may be convenient if you want to include a command to log off within a shell pro­
gram. (For details, see the "Special Commands" section of the sb(!) page in the
User's Reference Manual.)

38 USER'S GUIDE

CHAPTER 3: USING THE FILE SYSTEM

Introduction

To use the UNIX file system effectively you must be familiar with its struc­
ture, know something about your relationship to this structure, and understand
how the relationship changes as you move around within it. This chapter prepares
you to use this file system.

The first two sections ("How the File System is Structured" and "Your Place
in the File System") offer a working perspective of the file system. The rest of the
chapter introduces UNIX system commands that allow you to build your own
directory structure, access and manipulate the subdirectories and files you organ­
ize within it, and examine the contents of other directories in the system for which
you have access permission.

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can later
review a command's syntax and capabilities quickly. Many of the commands
presented in this section have additional, sophisticated uses. These, however, are
left for more experienced users and are described in other UNIX system docu­
mentation. All the commands presented here ar,e basic to using the file system
efficiently and easily. Try using each command as you read about it.

USING THE FILE SYSTEM 39

How the File System is Structured

The file system is comprised of a set of ordinary files, special files, and direc­
tories. These components provide a way to organize, retrieve, and manage infor­
mation electronically. Chapter 1 introduced the properties of directories and files;
this section will review them briefly before discussing how to use them.

• An ordinary file is a collection of characters stored on a disk. It may con­
tain text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A directory is a collection of files and other directories (sometimes called
I subdirectories). Use directories to group files together on the basis of any

criteria you choose. For example, you might create a directory for each
product that your company sells or for each of your student's records.

The set of all the directories and files is organized into a tree shaped struc­
ture. Figure 3-1 shows a sample file structure with a directory called root (f) as
its source. By moving down the branches extending from root, you can reach
several other major system directories. By branching down from these, you can,
in turn, reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory have
what is called a parent/child relationship. This type of relationship is possible for
many layers of files and directories. In fact, there is no limit to the number of
files and directories you may create in any directory that you own. Neither is
there a limit to the number of layers of directories that you may create. Thus you
have the capability to organize your files in a variety of ways, as shown in Figure
3-1.

40 USER'S GUIDE

Figure 3-1: A Sample File System

How the File System is Structured

Imp

o = Directories

o = Ordinary Files

V = Special Files

USING THE FILE SYSTEM 41

Your Place in the File System

Whenever you interact with the UNIX system, you do so from a location in
its file system structure. The UNIX system automatically places you at a specific
point in its file system every time you log in. From that point, you can move
through the hierarchy to work in any of your directories and files and to access
those belonging to others that you have permission to use.

The following sections describe your position in the file system structure and
how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX system places
you at a specific point in its file system structure called your login or home direc­
tory. The login name assigned to you when your UNIX system account was set
up is usually the name of this home directory. Every user with an authorized
login name has a unique home directory in the file system.

The UNIX system is able to keep track of all these home directories by main­
taining one or more system directories that organize them. For example, the
home directories of the login names starship, mary2, and jmrs are contained in a
system directory called userl. Figure 3-2 shows the position of a system directory
such as userl in relation to the other important UNIX system directories dis­
cussed in Chapter 1.

42 USER'S GUIDE

Figure 3-2: Directory of Home Directories

Your Place in the File System

o '" Directorie::.

D = Ordinary Files

V = Special Files

= Branch

USING THE FILE SYSTEM 43

Your Place in the File System

Within your home directory, you can create files and additional directories
(sometimes called subdirectories) in which to group them. You can move and
delete your files and directories, and you can control access to them. You have
full responsibility for everything you create in your home directory because you
own it. Your home directory is a vantage point from which to view all the files
and directories it holds, and the rest of the file system, all the way up to root.

Your Current Directory

As long as you continue to work in your home directory, it is considered your
current working directory. If you move to another directory, that directory
becomes your new current directory.

The UNIX system command pwd (short for print working directory) prints
the name of the directory in which you are now working. For example, if your
login name is starship and you execute the pwd command in response to the first
prompt after logging in, the UNIX system will respond as follows:

$ pwd<CR>
/userVstarship
$

The system response gives you both the name of the directory in which you
are working (starship) and the location of that directory in the file system. The
path name /user1/starship tells you that the root directory (shown by the lead­
ing / in the line) contains the directory userl which, in turn, contains the direc­
tory starship. (All other slashes in the path name other than root are used to
separate the names of directories and files, and to show the position of each direc-

44 USER'S GUIDE

Your Place in the File System

tory relative to root.) A directory name that shows the directory's location in this
way is called a full or complete directory name or path name. In the next few
pages we will analyze and trace this path name so you can start to move around
in the file system.

Remember, you can determine your position in the file system at any time
simply by issuing a pwd command. This is especially helpful if you want to read
or copy a file and the UNIX system tells you the file you are trying to access does
not exist. You may be surprised to find you are in a different directory than you
thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd com­
mand.

Command Recap

pwd - print full name of working directory

command options arguments

pwd none none

Description: pwd prints the full path name of the directory in which
you are currently working.

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX system is identified by a unique path
name. The path name shows the location of the file or directo~y, and provides
directions for reaching it. Knoyving how to follow the directions given by a path
name is your key to moving around the file system successfully. The first step in
learning about these directions is to learn about the two types of path names: full
and relative.

USING THE FILE SYSTEM 4S

Your Place in the File System

Full Path Names

A full path name (sometimes called an absolute path name) gives directions
that start in the root directory and lead you down through a unique sequence of
directories to a particular directory or file. You can use a full path name to reach
any file or directory in the UNIX system in which you are working.

Because a full path name always starts at the root of the file system, its lead­
ing character is always a I (slash). The final name in a full path name can be
either a file name or a directory name. All other names in the path must be
directories.

To understand how a full path name is constructed and how it directs you,
consider the following example. Suppose you are working in the starship direc­
tory, located in lusert. You issue the pwd command and the system responds by
printing the full path name of your working directory: /user1/starship.
Analyze the elements of this path name using the following diagram and key.

46 USER'S GUIDE

/ (leading)

userl

/ (subsequent)

starship

root

system
directory

denmi ... /

~~
userl/ starship

Your Place in the File System

home
directory

the slash that appears as the first character in the path name is
the root of the file system

system directory one level below root in the hierarchy to which
root points or branches

the next slash separates or delimits the directory names userl
and stars hip

current working directory

Now follow the bold lines in Figure 3-4 to trace the full path to /userl/starship.

USING THE FILE SYSTEM 47

Your Place in the File System

Figure 3-4: Full Path Name of the luserl/starship Directory

48 USER'S GUIDE

o =; Directories

D =Ordinary Files

V = Special Files

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current working direc­
tory, and lead you up or down through a series of directories to a particular file or
directory. By moving down from your current directory, you can access files and
directories you own. By moving up from your current directory, you pass through
layers of parent directories to the grandparent of all system directories, root.
From there you can move anywhere in the file system.

A relative path name begins with one of the following: a directory or file
name; a • (pronounced dot), which is a shorthand notation for your current direc­
tory; or a .• (pronounced dot dot), which is a shorthand notation for the directory
immediately above your current directory in the file system hierarchy. The direc­
tory represented by •• (dot dot) is called the parent directory of • (your current
directory) .

For example, say you are in the directory starship in the sample system and
starship contains directories named draft, letters, and bin and a file named mbox.
The relative path name to any of these is simply its name, such as draft or mbox.
Figure 3-5 traces the relative path from starsbip to draft.

USING THE FILE SYSTEM 49

Your Place in the File System

o = Directories

o =Ordinary Files

Figure 3-5: Relative Path Name of the draft Directory

The draft directory belonging to starship contains the files outline and table.
The relative path name from starship to the file outline is draft/outline,

Figure 3-6 traces this relative path. Notice that the slash in this path name
separates the directory named draft from the file named outline. Here, the slash
is a delimiter showing that outline is subordinate to draft; that is, outline is a child
of its parent, draft.

50 USER'S GUIDE

Your Place in the File System

o = Directories

o =Ordinary Files

Figure 3-6: Relative Path Name from starship to outline

So far, the discussion of relative path names has covered how to specify
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by level
until you reach your destination. You can also, however, ascend the levels in the
system structure or ascend and subsequently descend into other files and direc­
tories.

To ascend to the parent of your current directory, you can use the.. notation.
This means that if you are in the directory named draft in the sample file system,
•• is the path name to starship, and • .1 .• is the path name to starship's parent
directory, userl.

USING THE FILE SYSTEM 51

Your Place in the File System

From draft, you can also trace a path to the file sanders by using the path
name •• !letters/sanders. The .. brings you up to starship. Then the names letters
and sanders take you down through the letters directory to the sanders file.

Keep in mind that you can always use a full path name in place of a relative
one.

Figure 3-7 shows some examples of full and relative path names.

Path Name Meaning

I full path name of the root directory

Ibin full path name of the bin directory <contains most
executable programs and utilities)

luserllstarship/bin/tools full path name of the tools directory belonging to
the bin directory that belongs to the starship
directory belonging to userl that belongs to root

bin/tools relative path name to the file or directory tools in
the directory bin

tools

If the current directory is I, then the UNIX sys­
tem searches for Ibin/tools. However, if the
current directory is starship, then the system
searches the full path luserl/starship/bin/tools.

relative path name of a file or directory tools in
the current directory.

Figure 3-7: Example Path Names

S2 USER'S GUIDE

Your Place in the File System

You may need some practice before you can use path names such as these to
move around the file system with confidence. However, this is to be expected
when learning a new concept.

Naming Directories and Files
You can give your directories and files any names you want, as long as you

observe the following rules:

• The name of a directory (or file) can be from one to fourteen characters
long.

• All characters other than / are legal.

• Some characters are best avoided, such as a space, tab, backspace, and the
following:

?@#$A & * () '[1\ I ;'" < >

If you use a blank or tab in a directory or file name, you must enclose the
name in quotation marks on the command line.

• Avoid using a +, - or • as the first character in a file name.

• Upper case and lower case characters are distinct to the UNIX system.
For example, the system considers a directory (or file) named draft to be
different from one named DRAFT.

The following are examples of legal directory or file names:

memo
file.d

MEMO
chap3+4

section2
iteml-IO

ref:list
outline

The rest of this chapter introduces UNIX system commands that enable you
to examine the file system.

USING THE FILE SYSTEM 53

Organizing a Directory

This section introduces four UNIX system commands that enable you to
organize and use a directory structure: mkdir, Is, cd, and rmdir.

mkdir

Is

cd

rmdir

enables you to make new directories and subdirectories
within your current directory

lists the names of all the subdirectories and files in a
directory

enables you to change your location in the file system
from one directory to another

enables you to remove an empty directory

These commands can be used with either full or relative path names. Two of
the commands, Is and cd, can also be used without a path name. Each command
is described more fully in the four sections that follow.

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facilitate the retrieval of
information from your files. If you put all files pertaining to one subject together
in a directory, you will know where to find them later.

To create a directory, use the command mkdir <short for make directory).
Simply enter the command name, followed by the name you are giving your new
directory or file. For example, in the sample file system, the owner of the draft
subdirectory created draft by issuing the following command from the home direc­
tory (Juser 1/ stars hip) :

$ mkdir draft < CR >
$

The second prompt shows that the command has succeeded; the subdirectory draft
has been created.

Still in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

54 USER'S GUIDE

$ mkdir letters < CR >
$ mkdir bin<CR>
$

Organizing a Directory

The user could have created all three subdirectories (draft, letters, and bin) simul­
taneously by listing them all on a single command line.

$ mkdir draft letters bin < CR >
$

You can also move to a subdirectory you created and build additional sub­
directories within it. When you build directories or create files, you can name
them anything you want as long as you follow the guidelines listed earlier under
liN aming Directories and Files. II

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

Command Recap

mkdir - make a new directory

command options arguments

mkdir none directoryname(s)

Description: mkdir creates a new directory (subdirectory).

Remarks: The system returns a prompt ($ by default) if the
directory is successfully created.

Figure 3-8: Summary of the mkdir Command

USING THE FILE SYSTEM SS

Organizing a Directory

Listing the Contents of a Directory: the Is Command

All directories in the file system have information about the files and direc­
tories they contain, such as name, size, and the date last modified. You can
obtain this information about the contents of your current directory and other sys­
tem directories by executing the command Is (short for list).

The Is command lists the names of all files and subdirectories in a specified
directory. If you do not specify a directory, Is lists the names of files and direc­
tories in your current directory. To understand how the Is command works, con­
sider the sample file system (Figure 3-2) once again.

Say you are logged in to the UNIX system and you run the pwd command.
The system responds with the path name /userl/starship. To display the names of
files and directories in this current directory, you then type Is and press the
RETURN key. After this sequence, your terminal will read:

$ pwd<CR>
$/user1/starship
$ls<CR>
bin
draft

letters
list
mbox
$

As you can see, the system responds by listing, in alphabetical order, the
names of files and directories in the current directory starship. (If the first char­
acter of any of the file or directory names had been a number or an upper case
letter, it would have been printed first.)

56 USER'S GUIDE

Organizing a Directory

To print the names of files and subdirectories in a directory other than your
current directory without moving from your current directory, you must specify
the name of that directory as follows:

Is pathname<CR>

The directory name can be either the full or relative path name of the desired
directory. For example, you can list the contents of draft while you are working
in starship by entering Is draft and pressing the RETURN key. Your screen will
look like this:

$ Is draft<CR>
outline
table
$

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent direc­
tory when you are located in a child directory. The .. (dot dot) notation provides
an easy way to do this. For example, the following command line specifies the
relative path name from starship to user1:

USING THE FILE SYSTEM 57

Organizing a Directory

$Is .. <CR>
jmrs
nary2

starship
$

You can get the same results by using the full path name from root to userl. If
you type Is lusert and press the RETURN key, the system will respond by print­
ing the same list.

Similarly, you can list the contents of any system directory that you have per­
mission to access by executing the Is command with a full or relative path name.

The Is command is useful if you have a long list of files and you are trying to
determine whether one of them exists in your current directory. For example, if
you are in the directory draft and you want to determine if the files named outline
and notes are there, use the Is command as follows:

$ Is outline notes < CR >
outline
notes not found
$

The system acknowledges the existence of outline by printing its name, and says
that the file notes is not found.

58 USER'S GUIDE

Organizing a Directory

The Is command does not print the contents of a file. If you want to see what
a file contains, use the cat, pg, or pr command. These commands are described in
"Accessing and Manipulating Files," later in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attributes of a file or
subdirectory to be listed. There are more than a dozen available options for the Is
commands. Of these, the -a and -1 will probably be most valuable in your
basic use of the UNIX system. Refer to the Is(1) page in the User's Reference
Manual for details about other options.

Listing All Names in a File

Some important file names in your home directory, such as .profile (pro­
nounced dot-profile), begin with a period. (As you can see from this example,
when a period is used as the first character of a file name it is pronounced dot.}
When a file name begins with a dot, it is not included in the list of files reported
by the Is command. If you want the Is to include these files, use the -a option on
the command line.

For example, to list all the files in your current directory (starsbip), including
those that begin with a . (dot), type Is -a and press the RETURN key.

$ Is -a<CR>

• profile
bin
draft
letters
list
mbox
$

USING THE FILE SYSTEM 59

Organizing a Directory

Listing Contents in Short Format

The -C and -F options for the Is command are frequently used. Together,
these options list a directory's subdirectories and files in columns, and identify
executable files (with an *) and directories (with a I). Thus, you can list all files
in your working directory starship by executing the command line shown here:

$ Is -CF<CR>
bini
draft/
$

letters/
lisb

Listing Contents in Long Format

mbox

Probably the most informative Is option is -I, which displays the contents of a
directory in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file. For example, say you run the Is
-I command while in the starship directory.

$ Is -I<CR>
total 30
drw.xr-xr-x 3 starship project 96 Oct 27 08:16 bin
drw.xr-xr-x 2 starship project 64 Nov 14: 19 draft
drw.xr-xr-x 2 starship project 80 Nov 8 08:41 letters

-rwx------ 2 starship project 12301 Nov 2 10: 15 list

-:rw------- 1 starship project 40 Oct 27 10:00 mbox
$

60 USER'S GUIDE

Organizing a Directory

The first line of output (total 30) shows the amount of disk space used, mea­
sured in blocks. Each of the rest of the lines comprises a report on a directory or
file in starship. The first character in each line (d, -, b, or c) tells you the type
of file.

d directory

= ordinary disk file

b block special file

c character special file

Using this key to interpret the previous screen, you can see that the starship direc­
tory contains three directories and two ordinary disk files.

The next several characters, which are either letters or hyphens, identify who
has permission to read and use the file or directory. (Permissions are discussed in
the description of the chmod command under "Accessing and Manipulating Files"
later in this chapter.)

The following number is the link count. For a file, this equals the number of
users linked to that file. For a directory, this number shows the number of direc­
tories immediately under it plus two (for the directory itself and its parent direc­
tory) .

Next, the login name of the file's owner appears (here it is starship), followed
by the group name of the file or directory (project).

The following number shows the length of the file or directory entry measured
in units of information (or memory) called bytes. The month, day, and time that
the file was last modified is given next. Finally, the last column shows the name
of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is -I command.

USING THE FILE SYSTEM 61

Organizing a Directory

File
type

number of
blocks used

owner
name

number
of links

t
total 30

~ 'wx<-u-x
3 stars hip

d rwxr-xr-x 2 starship
~ d rwxr-xr-x 2 starship

- rwx------ 2 starship
- rw------- stars hip

~

I
permissions

group
name

t
project 96 Oct 27 08:16
project 64 Nov 1 14:19
project 80 Nov 8 08:41
project 12301 Nov 2 10:15
project 40 Oct 27 10:00

~

I
time/date last

modified

Figure 3-9: Description of Output Produced by the Is -I Command

name

~
bin
draft
letters
list
mbox

Figure 3-10 summarizes the syntax and capabilities of the Is command and
two available options.

62 USER'S GUIDE

*

Organizing a Directory

Command Recap

Is - list contents of a directory

command options arguments

Is -a, -I, and others * directoryname (s)

Description: Is lists the names of the files and subdirectories in the
specified directories. If no directory name is given as
an argument, the contents of your working directory
are listed.

Options:
-a Lists all entries, including those beginning

with. (dot).

-I Lists contents of a directory in long format
furnishing mode, permissions, size in bytes,
and time of last modification.

Remarks: If you want to read the contents of a file, use the cat
command.

See the Is(1) page in the User's Reference Manual for all available options and an explanation
of their capabilities.

Figure 3-10: Summary of the Is Command

USING THE FILE SYSTEM 63

Organizing a Directory

Changing Your Current Directory: the cd Command

When you first log in on the UNIX system, you are placed in your home
directory. As long as you do work in it, it is also your current working directory.
However, by using the command cd (short for change directory), you can work in
other directories as well. To use this command, enter cd, followed by a path
name to the directory to which you want to move.

cd pathname_of_newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the cd com­
mand. If you do not specify a path name, the command will move you to your
home directory. Once you have moved to a new directory, it becomes your
current directory.

For example, to move from the starship directory to its child directory draft
(in the sample file system), type cd draft and press the RETURN key. (Here
draft is the relative path name to the desired directory') When you get a prompt,
verify your new location by typing pwd and pressing the RETURN key. Your
terminal screen will look like this:

$ cd draft<CR>
$ pwd<CR>
/user1/starship/draft
$

Now that you are in the draft directory you can create subdirectories in it by
using the mkdir command, and new files, by using the ed and vi editors. (See
Chapters 5 and 6 for tutorials on the ed and vi commands, respectively.)

64 USER'S GUIDE

Organizing a Directory

It is not necessary to be in the draft directory to access files within it. You
can access a file in any directory by specifying a full path name for it. For exam­
ple, to cat the sanders file in the letters directory (/userl/starship/letters) while
you are in the draft directory (/userl/starship/draft), specify the full path name
of sanders on the command line.

ca t /user 1 /starship /letters/ sanders < CR >

You may also use full path names with the cd command. For example, to
move to the letters directory from the draft directory, specify
/userl/starship/letters on the command line, as follows:

cd /userl/starship/letters<CR>

Also, because letters and draft are both children of starship, you can use the
relative path name . .Iletters with the cd command. The .. notation moves you
to the directory starship, and the rest of the path name moves you to letters.

Figure 3-11 summarizes the syntax and capabilities of the cd command.

USING THE FILE SYSTEM 65

Organizing a Directory

Command Recap

cd - change your working directory

command options arguments

cd none directoryname

Description: cd changes your position in the file system from the
current directory to the directory specified. If no
directory name is given as an argument, the cd com-
mand places you in your home directory.

Remarks: When the shell places you in the directory specified,
the prompt ($ by default) is returned to you. To
access a directory that is not in your working directory,
you must use the full or relative path name in place of
a simple directory name.

Figure 3-11: Summary of the cd Command

Removing Directori,es: the rmdir Command

If you no longer need a directory, you can remove it with the command rmdir
(short for remove a directory). The standard syntax for this command is:

rmdir directoryname (s) < CR >
You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner of it
or if the directory is not empty. If you want to remove a file in another user's
directory, the owner must give you write permission for the parent directory of the
file you want to remove.

66 USER'S GUIDE

Organizing a Directory

If you try to remove a directory that still contains subdirectories and files
(that is, is not empty), the rmdir command prints the message directoryname not
empty. You must remove all subdirectories and files; only then will the command
succeed.

For example, say you have a directory called memos that contains one sub­
directory, tech, and two files, june.30 and july.31. (Create this directory in your
home directory now so you can see how the rmdir command works') If you try to
remove the directory memos (by issuing the rmdir command from your home
directory), the command responds as follows:

$ rmdir memos<CR>
zm:1ir: mertOS not empty
$

To remove the directory memos, you must first remove its contents: the subdirec­
tory tech, and the files june.30 and july.31. You can remove the tech subdirectory
by executing the rmdir command. For instructions on removing files, see "Access­
ing and Manipulating Files" later in this chapter.

Once you have removed the contents of the memos directory, memos itself can
be removed. First, however, you must move to its parent directory (your home
directory). The rmdir command will not work if you are still in the directory you
want to remove. From your home directory, type:

rmdir memos<CR>

If memos is empty, the command will remove it and return a prompt.

Figure 3-12 summarizes the syntax and capabilities of the rmdir command.

USING THE FILE SYSTEM 67

Organizing a Directory

Command Recap

rmdir - remove a directory

command options arguments

rmdir none directory name (s)

Description: rmdir removes specified directories if they do not con-
tain files and/or subdirectories.

Remarks: If the directory is empty, it is removed and the sys-
tem returns a prompt. If the directory contains files
or subdirectories, the command returns the message,
nrrlir: directoryname not enpt:y.

Figure 3-12: Summary of the rmdir Command

68 USER'S GUIDE

Accessing and Manipulating Files

This section introduces several UNIX system commands that access and
manipulate files in the file system structure. Information in this section is organ­
ized into two parts; basic and advanced. The part devoted to basic commands is
fundamental to using the file system; the advanced commands offer more sophisti­
cated information processing techniques for working with files.

Basic Commands

This section discusses UNIX system commands that are necessary for access­
ing and using the files in the directory structure. Figure 3-13 lists these com­
mands.

USING THE FILE SYSTEM 69

Accessing and Manipulating Files

Command Function

cat prints the contents of a specified file on a
terminal

pg , prints the contents of a specified file on a
I

terminal in chunks or pages

pr prints a partially formatted version of a
specified file on the terminal

Jp requests a paper copy of a file from a line
printer

cp makes a duplicate copy of an existing file

mv moves and renames a file

rm removes a file

wc reports the number of lines, words, and
characters in a file

chmod changes permission modes for a file (or a
directory)

Figure 3-13: Basic Commands for Using Files

70 USER'S GUIDE

I

Accessing and Manipulating Files

Each command is discussed in detail and summarized in a table that you can
easily reference later. These tables will allow you to review the syntax and capa­
bilities of these commands at a glance.

Displaying a File's Contents: the cat, pg, and pr Commands

The UNIX system provides three commands for displaying and printing the
contents of a file or files: cat, pg, and pro The cat command (short for concaten­
ate) outputs the contents of the file(s) specified. This output is displayed on your
terminal screen unless you tell cat to direct it to another file or a new command.

The pg command is particularly useful when you want to read the contents of
a long file because it displays the text of a file in pages a screenful at a time. The
pr command formats specified files and displays them on your terminal or, if you
so request, directs the formatted output to a printer (see the Ip command in this
chapter).

The following sections describe how to use the cat, pg, and pr commands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say
you are located in the directory letters (in the sample file system) and you want to
display the contents of the file johnson. Type the command line shown on the
screen and you will receive the following output:

USING THE FILE SYSTEM 71

Accessing and Manipulating Files

$ cat johnson<CR>
March 5, 1986

Mr. Rem. Johnson
Layton Printil'lq
52 llJdsan Street

New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this 1IOrIling

about your CCIlIPCIIW'S plans to autanate
your business.
Enclosed please find
the material you requested
about AB&C's line of ClCIIplters

and office autanation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

John Howe

$

To display the contents of two (or more) files, simply type the names of the
files you want to see on the command line. For example, to display the contents
of the files johnson and sanders, type:

$ cat johnson sanders<CR>

The cat command reads johnson and sanders and displays their contents in that
order on your terminal.

72 USER'S GUIDE

$ cat johnson sanders<CR>
March 5, 1986

Mr. Ran Johnson
layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this norning

Yours t:J:uly,

Jolm Howe

March 5, 1986

Mrs. D.L. Sanders
Sanders Research, Inc.

43 Nassau Street
Princeton, N.J.

Dear Mrs. Sanders:

Accessing and Manipulating Files

My colleagues and I have been following, with great interest,

Sincerely,

Jolm Howe

$

USING THE FILE SYSTEM 73

Accessing and Manipulating Files

To direct the output of the cat command to another file or to a new com­
mand, see the sections in Chapter 7 that discuss input and output redirection.

*

Figure 3-14 summarizes the syntax and capabilities of the cat command.

Command Recap

cat - concatenate and print a file's contents

command options arguments

cat available* jilename(s)

Description: The cat command reads the name of each file
specified on the command line and displays its con-
tents.

Remarks: If a specified file exists and is readable, its contents
are displayed on the terminal screen; otherwise, the
message cat: cannot openjilename appears on the
screen.

To display the contents of a directory, use the Is com-
mand.

See the cat(I) page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-14: Summary of the cat Command

74 USER'S GUIDE

Accessing and Manipulating Files

Paging Through the Contents of a File: the pg Command

The command pg (short for page) allows you to examine the contents of a
file or files, page by page, on a terminal. The pg command displays the text of a
file in pages (chunks) followed by a colon prompt (:), a signal that the program is
waiting for your instructions. Possible instructions you can then issue include
requests for the command to continue displaying the file's contents a page at a
time, and a request that the command search through the file(s) to locate a
specific character pattern. Figure 3-15 summarizes some of the available instruc­
tions.

USING THE FILE SYSTEM 7S

Accessing and Manipulating Files

*

t

Command* Function

h help; display list of available pgt commands

q or Q quit pg perusal mode

<CR> display next page of text

I display next line of text

d or Ad display additional half page of text

• or Al redisplay current page of text

f skip next page of text and display following one

n begin displaying next file you specified
on command line

p display previous file specified on command line

$ display last page of text in file currently displayed

/pattern search forward in file for specified character pattern

?pattern search backward in file for specified character pat-
tern

Most commands can be typed with a number preceding them. For example,
+ l-(display next page), -l-(display previous page), or l-(display first page of
text).

See the User's Reference Manual for a detailed explanation of all available pg com­
mands.

Figure 3-15: Summary of Commands to Use with pg

76 USER'S GUIDE

Accessing and Manipulating Files

The pg command is useful when you want to read a long file or a series of
files because the program pauses after displaying each page, allowing time to
examine it. The size of the page displayed depends on the terminal. For exam­
ple, on a terminal capable of displaying twenty-four lines, one page is defined as
twenty-three lines of text and a line containing a colon. However, if a file is less
than twenty-three lines long, its page size will be the number of lines in the file
plus one (for the colon).

To peruse the contents of a file with pg, use the following command line for­
mat:

pg jilename(s) <CR>

For example, to display the contents of the file outline in the sample file sys­
tem, type:

pg outline < CR >

The first page of the file will appear on the screen. Because the file has more
lines in it than can be displayed on one page, a colon appears at the bottom of the
screen. This is a reminder to you that there is more of the file to be seen. When
you are ready to read more, press the RETURN key and pg will print the next
page of the file.

The following screen summarizes our discussion of the pg command this far.

USING THE FI.LE SYSTEM 11

Accessing and Manipulating Files

$ pg outline < CR>
After you analyze the subject for your
report, you IIIIlSt oansider organizing and
arran;r.i.ng the material you want to use in
writing it.

An outline is an effective method of
organizing the material. The outline
is a type of blueprint or skeleton,
a fraIllE!liiOrk for you the builder-writer
of the report; in a sense it is a recipe
:<CR>

After you press the RETURN key, pg will resume printing the file's contents on
the screen.

that contains the names of the
ingredients and the order in which
to use them.

Your outline need not be elaborate or
overly detailed; it is sirlplya guide you

may cansult as you write, to be varied,
if need be, when additional iIrpartant
ideas are suggested in the actual writing.
(IDF):

78 USER'S GUIDE

Accessing and Manipulating Files

Notice the line at the bottom of the screen containing the string (EDF):.

This expression (EDF) means you have reached the end of the file. The colon
prompt is a cue for you to issue another command.

When you have finished examining the file, press the RETURN key; a
prompt will appear on your terminal. (Typing q or Q and pressing the RETURN
key also gives you a prompt.) Or you can use one of the other available com­
mands, depending on your needs. In addition, there are a number of options that
can be specified on the pg command line (see the pg(O page in the User's Refer­
ence M anuaJ).

Proper execution of the pg command depends on specifying the type of termi­
nal you are using. This is because the pg program was designed to be flexible
enough to run on many different terminals; how it is executed differs from termi­
nal to terminal. By specifying one type, you are telling this command:

• how many lines to print

• how many columns to print

• how to clear the screen

• how to highlight prompt signs or other words

• how to erase the current line

To specify a terminal type, assign the code for your terminal to the TERM
variable in your .profile file. (For more information about TERM and .profile, see
Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

Figure 3-16 summarizes the syntax and capabilities of the pg command.

USING THE FILE SYSTEM 79

Accessing and Manipulating Files

*

Command Recap

pg - display a file's contents in chunks or pages

command options arguments

pg available* jilename(s)

Description: The pg command displays the contents of the
specified file(s) in pages.

Remarks: After displaying a page of text, the pg command
awaits instructions from you to do one of the fol-
lowing: continue to display text, search for a pat-
tern of characters, or exit the pg perusal mode.
In addition, a number of options are available.
For example, you can display a section of a file
beginning at a specific line or at a line containing
a certain sequence or pattern. You can also opt
to go back and review text that has already been
displayed.

See the pg(1) page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-16: Summary of the pg Command

80 USER'S GUIDE

Accessing and Manipulating Files

Print Partially Formatted Contents of a File: the pr Command

The pr command is used to prepare files for printing. It supplies titles and
headings, paginates, and prints a file, in any of various page lengths and widths,
on your terminal screen.

You have the option of requesting that the command print its output on
another device, such as a line printer (read the discussion of the Jp command in
this section). You can also direct the output of pr to a different file (see the sec­
tions on input and output redirection in Chapter 7).

If you choose not to specify any of the available options, the pr command pro­
duces output in a single column that contains sixty-six lines per page and is pre­
ceded by a short heading. The heading consists of five lines: two blank lines; a
line containing the date, time, file name, and page number; and two more blank
lines. The formatted file is followed by five blank lines. (Complete sets of text
formatting tools are available on UNIX systems equipped with the Documenter's
Workbench Software. Check with your system administrator to see if this
software is available to you.)

The pr command is often used together with the Jp command to provide a
paper copy of text as it was entered into a file. (See the section on the Jp com­
mand for details') However, you can also use the pr command to format and print
the contents of a file on your terminal. For example, to review the contents of the
file johnson in the sample file system, type:

pr johnson<CR>

The following screen gives an example of output from this command.

USING THE FILE SYSTEM 81

Accessing and Manipulating Files

$ pr johnson < CR >

Mar 5 15:43 1986 johnson Page 1

March 5, 1986

Mr. Ran Johnson
Layton Printing

52 Hudson street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this IIDrning
about your oc:npa:ny's plans to autaliate
your business.
Enclosed please find
the material you requested
about AB&C's line of OCIf!PUters

and office autaliatian software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

Jolm Howe

$

The ellipses after the last line in the file represent the remaining lines (all
blank in this case) that pr formatted into the output (so that each page contains a
total of sixty-six lines). If you are working on a video display terminal, which
allows you to view twenty-four lines at a time, the entire sixty-six lines of the for­
matted file will be printed rapidly without pause. This means that the first forty-

82 USER'S GUIDE

Accessing and Manipulating Files

two lines will roll off the top of your screen, making it impossible for you to read
them unless you have the ability to roll back a screen or two. However, if the file
you are examining is particularly long, even this ability may not be sufficient to
allow you to read the file.

In such cases, type <AS> (control-s) to interrupt the flow of printing on
your screen. When you are ready to continue, type < Aq> (control-q) to resume
printing.

Figure 3-17 summarizes the syntax and capabilities of the pr command.

USING THE FILE SYSTEM 83

Accessing and Manipulating Files

*

command
pr

Description:

Remarks:

Command Recap

pr - print formatted contents of a file

options arguments
available* filename(s)

The pr command produces a formatted copy of a
file(s) on your terminal screen unless you specify
otherwise. It prints the text of the file(s) on
sixty-six line pages, and places five blank lines at
the bottom of each page and a five-line heading at
the top of each page. The heading includes: two
blank lines; a line containing the date, time, file
name, and page number; and two additional blank
lines.

If a specified file exists, its contents are formatted
and displaye; if not, the message pr: can't open
filename is printed.

The pr command is often used with the Ip com­
mand to produce a paper copy of a file. It can
also be used to review a file on a video display
terminal. To stop and restart the printing of a file
on a terminal, type < ~s> and < ~q >, respec­
tively.

See the pr(J) page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-17: Summary of the pr Command

84 USER'S GUIDE

Accessing and Manipulating Files

Requesting a Paper Copy of a File: the Ip Command

Some terminals have built-in printers that allow you to get paper copies of
files. If you have such a terminal, you can get a paper copy of your file simply by
turning on the printer and executing the cat or pr command. However, if you are
using a video display terminal, you must send a request for a paper copy of a file
to a printer (see Figure 3-18). The command Ip (short for line printer) allows
you to do this.

With Tractor
Feed Belt

With Tractor
Feed

With High-Speed
Tractor Feed

Figure 3-18: Examples of Teletype Model 40 Line Printers

To execute Ip, follow this format:

Ip filename<CR>

For example, to print the file johnson on a line printer, type the following com­
mand line:

USING THE FILE SYSTEM 85

Accessing and Manipulating Files

lp johnson<CR>

The system responds with the name (or type) of the printer on which the file will
be printed, and an identification (ID) number for your request.

$ lp johnson < CR>
request id is laser-6885 (1 file)
$

The system response shows that your job is to be printed on a laser printer
(this system's default type of printer), has a request ID number of 6885, and
includes one file.

The -ddest (short for destination) option on the command line causes your
file to be printed on another available device that you specify in the dest argu­
ment. The -m option causes mail to be sent to you stating the job has been
completed.

To cancel a request to a printer, type the command cancel and specify the
request ID number. For example, to cancel your request for a printing of the file
letters (request ID laser-6885), type:

cancel Iaser-6885<CR>

To check the status of a line printer job that it is in progress, or to get its
request ID number, execute the lpstat command. This command also provides a
complete listing of every printer available on your system. Which printers are
available to you depends on your UNIX system facility. Ask your system
administrator for the names of available line printers, or type the following com­
mand line:

Ipstat -v<CR>

Figure 3-19 summarizes the syntax and capabilities of the Ip command.

86 USER'S GUIDE

*

Accessing and Manipulating Files

Command Recap

Jp - request paper copy of file from a line printer

command
Jp

Description:

Options:

Remarks:

options arguments
-d, -m, and others* filers)

The Jp command requests that specified files be
printed by a line printer, thus providing paper
copies of the contents.

-ddest Allows you to choose dest as the printer
or type of printer to produce the paper
copy. If you do not use this option, the
Jp program specifies the printer for you.

-m Sends a message to you via mail after
the printing is complete.

You can cancel a request to the line printer by
typing cancel and the request ID furnished to you
by the system when the request was ack­
nowledged.

Check with your system administrator for infor­
mation on additional and/or different commands
for printers that may be available at your loca­
tion.

See the Ip(I) page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-19: Summary of the Ip Command

USING THE FILE SYSTEM 87

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

When using the UNIX system, you may want to make a copy of a file. For
example, you might want to revise a file while leaving the original version intact.
The command cp (short for copy) copies the complete contents of one file into
another. The cp command also allows you to copy one or more files from one
directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample direc­
tory, simply type cp outline new.outline and press the RETURN key. The sys­
tem returns the prompt when the copy is made. To verify the existence of the
new file, you can type Is and press the RETURN key. This command lists the
names of all files and directories in the current directory, in this case draft. The
following screen summarizes these activities.

$ cp outline new.outline<CR>
$ Is<CR>
new. outline
outline
table
$

The UNIX system does not allow you to have two files with the same name in
a directory. In this case, because there was no file called new.outline when the cp
command was issued, the system created a new file with that name. However, if
a file called new.outline had already existed, it would have been replaced by a
copy of the file outline; the previous version of new.outline would have been
deleted.

If you had tried to copy the file outline to another file named outline in the
same directory, the system would have told you the file names were identical and
returned the prompt to you. If you had then listed the contents of the directory to
determine exactly how many copies of outline existed, you would have received the
following output on your screen:

88 USER'S GUIDE

$ cp outline outline < CR >
cp: outline and outline are identical
$ ls<CR>
outline
table
$

Accessing and Manipulating Files

The UNIX system does allow you to have two files with the same name as
long as they are in different directories. For example, the system would let you
copy the file outline from the draft directory to another file named outline in the
letters directory. If you were in the draft directory, you could use anyone of four
command lines. In the first two command lines, you specify the name of the new
file you are creating by making a copy.

• cp outline /userl/starshiplIetters/outline<CR> (full path name specified)

• cp outline •• lIetters/outline<CR> (relative path name specified)

However, the cp command does not require that you specify the name of the
new file. If you do not include a name for it on the command line, cp gives your
new file the same name as the original one, by default. Therefore you could also
use either of these command lines:

• cp outline /userl/starshiplIetters<CR> (full path name specified)

• cp outline • ./letters<CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file in the letters
directory and call it outline, too.

Of course, if you want to give your new file a different name, you must
specify it. For example, to copy the file outline in the draft directory to a file
named outline.vers2 in the letters directory, you can use either of the following
command lines:

USING THE FILE SYSTEM 89

Accessing and Manipulating Files

• cp outline /userl/starship/letters/outline.vers2<CR> (full path name)

• cp outline .. lIetters/outline.vers2<CR> (relative path name)

When assigning new names, keep in mind the conventions for naming directories
and files described in "Naming Directories and Files" in this chapter.

Figure 3-20 summarizes the syntax and capabilities of the cp command.

Command Recap

cp - make a copy of a file

command options arguments

jile1 jile2
cp none jilers) directory

Description: cp allows you to make a copy of jile1 and call it
jile2 leaving jile1 intact or to copy one or more
files into a different directory.

Remarks: When you are copying jile1 to jile2 and a file
called jile2 already exists, the cp command
overwrites the first version of jile2 with a copy of
jile1 and calls it jile2. The first version of jile2 is
deleted.

You cannot copy directories with the cp com-
mand.

Figure 3-20: Summary of the cp Command

90 USER'S GUIDE

Accessing and Manipulating Files

Moving and Renaming a File: the mv Command

The command mv (short for move) allows you to rename a file in the same
directory or to move a file from one directory to another. If you move a file to a
different directory, the file can be renamed or it can retain its original name.

To rename a file within one directory, follow this format:

mv file1 file2<CR>

The mv command changes a file's name from file1 to file2 and deletes file1.
Remember that the names file1 and file2 can be any valid names, including path
names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table to new.table, simply type
mv table new.table and press the RETURN key. If the command executes suc­
cessfully, you will receive a prompt. To verify that the file new.table exists, you
can list the contents of the directory by typing Is and pressing the RETURN key.
The screen shows your input and the system's output as follows:

$ mv table new.table<CR>
$ Is<CR>
new. table
outline
$

You can also move a file from one directory to another, keeping the same
name or changing it to a different one. To move the file without changing its
name, use the following command line:

mv filers) directory<CR>

The file and directory names can be any valid names, including path names.

USING THE FILE SYSTEM 91

Accessing and Manipulating Files

For example, say you want to move the file table from the current directory
named draft (whose full path name is luserl/starship/draft) to a file with the
same name in the directory letters (whose relative path name from draft is
.'!Ietters and whose full path name is luserllstarship/letters), you can use any
one of several command lines, including the following:

mv table luserl/starship/letters<CR>

mv table luserllstarship/letters/table<CR>

mv table "/letters<CR>

mv table .'!letters/table<CR>

mv luserl/starship/draft/table luserl/starship/letters/table<CR>

Now suppose you want to rename the file table as table2 when moving it to
the directory letters. Use any of these command lines:

mv table luserl/starship/letters/table2<CR>

mv table .'!letters/table2<CR>

mv luser! Istarship/draft/table2 luserl Istarship/letters/table2 < CR >

You can verify that the command worked by using the Is command to list the
contents of the directory.

Figure 3-21 summarizes the syntax and capabilities of the mv command.

92 USER'S GUIDE

Accessing and Manipulating Files

t Command Recap

mv - move or rename files

command options arguments

filel file2
mv none filers) directory

Description: mv allows you to change the name of a file or to
move a file(s) into another directory.

Remarks: When you are movingfilel tofile2, if a file called
file2 already exists, the mv command overwrites
the first version of file2 with file 1 and renames it
file2. The first version of file2 is deleted.

Figure 3-21: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your directory by
executing the command rm <short for remove). The basic format for this com­
mand is:

rm file(s)<CR>

You can remove more than one file at a time by specifying those files you
want to delete on the command line with a space separating each filename:

rmfilel file2 file3<CR>

The system does not save a copy of a file it removes; once you have executed this
command, your file is removed permanently.

USING THE FILE SYSTEM 93

Accessing and Manipulating Files

After you have issued the rm command, you can verify its successful execu­
tion by running the Is command. Since Is lists the files in your directory, you'll
immediately be able to see whether or not rm has executed successfully.

For example, say you have a directory that contains two files, outline and
table. You can remove both files by issuing the rm command once. If rm is exe­
cuted successfully, your directory will be empty. Verify this by running the Is
command.

$ rm outline table < CR >
$ Is
$

The prompt shows that outline and table were removed.

*

Figure 3-22 summarizes the syntax and capabilities of the rm command.

Command Recap

rm - remove a file

command options arguments

rm available * jile(s)

Description: rm allows you to remove one or more files.

Remarks: Files specified as arguments to the rm command
are removed permanently.

See the rm(1) page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-22: Summary of the rm Command

94 USER'S GUIDE

Accessing and Manipulating Files

Counting Lines, Words, and Characters in a File: the we Command

The command we (short for word count) reports the number of lines, words,
and characters there are in the file(s) named on the command line. If you name
more than one file, the we program counts the number of lines, words, and char­
acters in each specified file and then totals the counts. In addition, you can direct
the we program to give you only a line, a word, or a character count by using the
-I, -w, or -e options, respectively.

To determine the number of lines, words, and characters in a file, use the fol­
lowing format on the command line:

we filet <CR>

The system responds with a line in the following format:

w c file]

where

• I represents the number of lines in file]

• w represents the number of words in file]

• c represents the number of characters in file1

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, letters), type the following command line:

$ we johnson < CR >
24 66 406 jolmson
$

The system response means that the file johnson has twenty-four lines, sixty-six
words, and 406 characters.

To count the lines, words, and characters in more than one file, use this for­
mat:

we file1 file2<CR>

USING THE FILE SYSTEM 95

Accessing and Manipulating Files

The system responds in the following format:

I
I
I

w
w
w

c
c
c

file1
file2
total

Line, word, and character counts for file1 and file2 are displayed on separate lines
and the combined counts appear on the last line beside the word total.

For example, ask the we program to count the lines, words, and characters in
the files johnson and sanders in the current directory.

$ we jobnson sanders < CR >
24 66 406 johnson
28 92 559 sanders
52 158 965 total

$

The first line reports that the johnson file has twenty-four lines, sixty-six words,
and 406 characters. The second line reports twenty-eight lines, ninety-two words,
and 559 characters in the sanders file. The last line shows that these two files
together have a total of fifty-two lines, 158 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate com­
mand line format from the following lines:

we -I file1 <CR>
we -w file1 <CR>
we -e file1 <CR>

96 USER'S GUIDE

(line count)
(word count)
(character count)

Accessing and Manipulating Files

For example, if you use the -I option, the system reports only the number of
lines in sanders.

$ we -I sanders<CR>
28 sanders

$

If the -w or -c option had been specified instead, the command would have
reported the number of words or characters, respectively, in the file.

Figure 3-23 summarizes the syntax and capabilities of the we command.

Command Recap

we - count lines, words, and characters in a file

command options arguments

we -~ -w, -c filers)

Description: we counts lines, words, and characters in the specified
file(s), keeping a total count of all tallies when more
than one file is specified.

Options -I counts the number of lines in the specified
file(s)

-w counts the number of words in the specified
file(s)

-c counts the number of chanicters in the
specified file(s)

Remarks: When a file name is specified in the command line,
it is printed with the count (s) requested.

Figure 3-23: Summary of the we Command

USING THE FILE SYSTEM 97

Accessing and Manipulating Files

Protecting Your Files: the chmod Command

The command chmod {short for change mode} allows you to decide who can
read, write, and use your files and who cannot. Because the UNIX operating sys­
tem is a multi-user system, you usually do not work alone in the file system. Sys­
tem users can follow path names to various directories and read and use files
belonging to one another, as long as they have permission to do so.

If you own a file, you can decide who has the right to read it, write in it
(make changes to it), or, if it is a program, to execute it. You can also restrict
permissions for directories with the chmod command. When you grant execute
permission for a directory, you allow the specified users to cd to it and list its con­
tents with the Is command.

To assign these types of permissions, use the following three symbols:

r allows system users to read a file or to copy its contents

wallows system users to write changes into a file (or a copy of it)

x allows system users to run an executable file

To specify the users to whom you are granting (or denying) these types of
permission, use these three symbols:

u you, the owner of your files and directories (u is short for user)

g members of the group to which you belong (the group could consist of
team members working on a project, members of a department, or a
group arbitrarily designated by the person who set up your UNIX sys­
tem account)

o all other system users

When you create a file or a directory, the system automatically grants or
denies permission to you, members of your group, and other system users. You
can alter this automatic action by modifying your environment (see Chapter 7 for
details). Moreover, regardless of how the permissions are granted when a file is
created, as the owner of the file or directory you always have the option of chang­
ing them. For example, you may want to keep certain files private and reserve
them for your exclusive use. You may want to grant permission to read and write
changes into a file to members of your group and all other system users as well.
Or you may share a program with members of your group by granting them per­
mission to execute it.

98 USER'S GUIDE

Accessing and Manipulating Files

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a file or a
directory by using the command that produces a long listing of a directory's con­
tents: Is -I. For example, typing Is -I and pressing the RETURN key while in
the directory named starship/bin in the sample file system produces the following
output:

$ Is -I<CR>
total 35
-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

Permissions for the display and list files and the tools directory are shown on
the left of the screen under the line total 35, and appear in this format:

-rwxr-xr-x
-rw-r--r--
drwx--x---

(for the display file)
(for the list file))

(for the tools directory)

After the initial character, which describes the file type (for example,
a - (dash) symbolizes a regular file and a CWd a directory), the other nine char­
acters that set the permissions comprise three sets of three characters. The first
set refers to permissions for the owner, the second set to permissions for group
members, and the last set to permissions for all other system users. Within each
set of characters, the r, w, and x show the permissions currently granted to each
category. If a dash appears instead of an r, w, or x, permission to read, write, or
execute is denied.

USING THE FILE SYSTEM 99

Accessing and Manipulating Files

The following diagram summarizes this breakdown for the file named display.

user group others

\l/
rwxr-xr-x

~

write
execute

Permission to write to
the file denied to
group and other

As you can see, the owner has r, w, and x permissions and members of the group
and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally the letter s or
the letter 1 may appear in the permissions line, instead of an r, w or x. The
letter s (short for set user ID or set group ID) represents a special type of per­
mission to execute a file. It appears where you normally see an x (or -) for the
user or group (the first and second sets of permissions). From a user's point of
view it is equivalent to an x in the same position; it implies that execute permis­
sion exists. It is significant only for programmers and system administrators.
(See the System Administrator's Guide for details about setting the user or group
ID.)

The letter I is the symbol for lock 'enabling. It does not mean that the file has
been locked. It simply means that the function of locking is enabled, or possible,
for this file. The file mayor may not be locked; that cannot be determined by the
presence or absence of the letter 1.

100 USER'S GUIDE

Accessing and Manipulating Files

How to Change Existing Permissions

After you have determined what permissions are in effect, you can change
them by executing the chmod command in the following format:

chmod who +permission jile(s) <CR>

or

chmod who=permissionjile(s)<CR>

The following list defines each component of this command line.

chmod

who

name of the program

one of three user groups (u, g, or 0)
u = user
g = group
0= others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r, w, and x)
r = read

jile(s)

w= write
x= execute

file (or directory) name(s) listed; assumed to be branches
from your current directory, unless you use full path­
names.

The chmod command will not work if you type a space(s) between who, the
instruction that gives (+) or denies (-) permission, and the permission.

The following examples show a few possible ways to use the chmod command.
As the owner of display, you can read, write, and run this executable file. You
can protect the file against being accidentally changed by denying yourself write
(w) permission. To do this, type the command line:

chmod u -w display<CR>

USING THE FILE SYSTEM 101

Accessing and Manipulating Files

After receiving the prompt, type Is -I and press the RETURN key to verify that
this permission has been changed, as shown in the following screen.

$ chmod u -w display<CR>
$ Is -I<CR>
total 35
-r-xr-xr-x 1 starship
~r--r-- 1 starship
drwx--x--x 2 starship
$

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

As you can see, you no longer have permission to write changes into the file. You
will not be able to change this file until you restore write permission for yourself.

Now consider another example. Notice that permission to write into the file
display has been denied to members of your group and other system users. How­
ever, they do have read permission. This means they can copy the file into their
own directories and then make changes to it. To prevent all system users from
copying this file, you can deny them read permission by typing:

chmod go-r display<CR>

The g and 0 stand for group members and all other system users, respectively, and
the -r denies them permission to read or copy the file. Check the results with
the Is -I command.

102 USER'S GUIDE

$ cbmod go-r dispIay<CR>
$ Is -I<CR>
total 35
-rwK--X--X 1 starship
rw-r--r-- 1 starship
dJ:wx--x--x 2 starship
$

project
project
project

A Note on Permissions and Directories

Accessing and Manipulating Files

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

You can use the chmod command to grant or deny permission for directories
as well as files. Simply specify a directory name instead of a file name on the
command line.

However, consider the impact on various system users of changing permissions
for directories. For example, say you grant read permission for a directory to
yourself (u), members of your group (g), and other system users (0). Every user
who has access to the system will be able to read the names of the files contained
in that directory by running the Is -I command. Similarly, granting write per­
mission allows the designated users to create new files in the directory and remove
existing ones. Granting permission to execute the directory allows designated
users to move to that directory (and make it their current directory) by using the
cd command.

An Alternative Method

There are two methods by which the chmod command can be executed. The
method described above, in which symbols such as r, W, and x are used to specify
permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to specify
permissions using three octal numbers, ranging from 0 to 7. (The octal number
system is different from the decimal system that we typically use on a day-to-day
basis.) To learn how to use the octal method, see the chmod(l) page in the User's
Reference Manual.

USING THE FILE SYSTEM 103

Accessing and Manipulating Files

Figure 3-24 summarizes the syntax and capabilities of the chmod command.

Command Recap

chmod - change permission modes for files (and directories)

command instruction arguments

chmod who + - permission jilename(s)
directoryname(s)

Description: chmod gives (+) or removes (-) permission to
read, write, and execute files for three categories
of system users: user (you), group (members of
your group), and other (all other users able to
access the system on which you are working).

Remarks: The instruction set can be represented in either
octal or symbolic terms.

Figure 3-24: Summary of the chmod Command

Advanced Commands

Use of the commands already introduced will increase your familiarity with
the file system. As this familiarity increases, so might your need for more sophis­
ticated information processing techniques when working with files. This section
introduces three commands that provide just that.

104 USER'S GUIDE

Accessing and Manipulating Files

diff finds differences between two files

grep searches for a pattern in a file

sort sorts and merges files

For additional information about these commands refer to the User's Reference
Manual.

Identifying Differences Between Files: the diff Command

The diff command locates and reports all differences between two files and
tells you how to change the first file so that it is a duplicate of the second. The
basic format for the command is:

diff filel file2<CR>

If filel and file2 are identical, the system returns a prompt to you. If they are
not, the diff command instructs you on how to change the first file so it matches
the second by using ed (line editor) commands. (See Chapter 5 for details about
the line editor.) The UNIX system flags lines in filel (to be changed) with the <
(less than) symbol, and lines in file2 (the model text) with the > (greater than)
symbol.

For example, say you execute the diff command to identify the differences
between the files johnson and mcdonough. The mcdonough file contains the same
letter that is in the johnson file, with appropriate changes for a different recipient.
The diff command will identify those changes as follows:

USING THE FILE SYSTEM 105

Accessing and Manipulating Files

3,603,6
< Mr. Ron Jolmsan
< Layton Printing
< 52 Irudsan street
< New York, N.Y.

> Mr. J.J. McDanouqh

> Ubu Press
> 37 Chico Place
> Springfield, N.J.
9c9
< Dear Mr. Jolmsan:

> Dear Mr. McDanouqh:

The first line of output from diff is :

3,6c3,6

This means that if you want johnson to match mcdonough, you must change (0)
lines 3 through 6 in johnson to lines 3 through 6 in mcdonough. The diff com­
mand then displays both sets of lines.

If you make these changes (using a text editor such as ed or vi), the johnson
file will be identical to the sanders file. Remember, the diff command identifies
differences between specified files. If you want to make an identical copy of a file,
use the cp command.

Figure 3-25 summarizes the syntax and capabilities of the diff command.

106 USER'S GUIDE

*

Accessing and Manipulating Files

Command Recap

cliff - finds differences between two files

command options arguments

diff available* filel file2

Description: The cliff command reports what lines are different
in two files and what you must do to make the
first file identical to the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), c (change), and d
(delete). Numbers given with a, c, or d show the
lines to be modified. Also used are the symbols
< (showing a line from the first file) and >
(showing a line from the second file).

See the diff(I) page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-25: Summary of the diff Command

Searching a File for a Pattern: the grep Command

You can instruct the UNIX system to search through a file for a specific
word, phrase, or group of characters by executing the command grep (short for
globally search for a regular expression and print). Put simply, a regular expres­
sion is any pattern of characters (be it a word, a phrase, or an equation) that you
specify.

USING THE FILE SYSTEM 107

Accessing and Manipulating Files

The basic format for the command line is:

grep pattern jile(s)<CR>

For example, to locate any lines that contain the word automation in the file
johnson, type:

grep automation johnson < CR >

The system responds:

$ grep automation johnson<CR>
and office autanatian software.
$

The output consists of all the lines in the file johnson that contain the pattern for
which you were searching (automation).

If the pattern contains multiple words or any character that conveys special
meaning to the UNIX system, (such as $, I, *, ?, and so on), the entire pattern
must be enclosed in single quotes. (For an explanation of the special meaning for
these and other characters see "Metacharacters" in Chapter 7.) For example, say
you want to locate the lines containing the pattern office autanatian. Your
command line and the system's response will read:

$ grep 'office automation' johnson < CR >
and office autanatian software.
$

But what if you cannot recall which letter contained a reference to office
automation; your letter to Mr. Johnson or the one to Mrs. Sanders? Type the fol­
lowing command line to find out:

$ grep 'office automation' johnson sanders<CR>
jolmsan:and office autanatian software.
$

The output tells you that the pattern office autanatian is found once in the
johnson file.

In addition to the grep command, the UNIX system provides variations of it
called egrep and fgrep, along with several options that enhance the searching
powers of the command. See the grep(l), egrep(1), and fgrep(O pages in the
User's Reference Manual for further information about these commands.

108 USER'S GUIDE

*

Accessing and Manipulating Files

Figure 3-26 summarizes the syntax and capabilities of the grep command.

Command Recap

grep - searches a file for a pattern

command options arguments

grep available* pattern filers)

Description: The grep command searches through specified
file(s) for lines containing a pattern and then
prints the lines on which it finds the pattern. If
you specify more than one file, the name of the
file in which the pattern is found is also reported.

Remarks: If the pattern you give contains multiple words or
special characters, enclose the pattern in single
quotes on the command line.

See the grep(I) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-26: Summary of the grep Command

USING THE FILE SYSTEM 109

Accessing and Manipulating Files

Sorting and Merging Files: the sort Command

The UNIX system provides an efficient tool called sort for sorting and merg­
ing files. The format for the command line is:

sort jile(s)<CR>

This command causes lines in the specified files to be sorted and merged in the
following order.

• Lines beginning with numbers are sorted by digit and listed before lines
beginning with letters.

• Lines beginning with upper case letters are listed before lines beginning
with lower case letters.

• Lines beginning with symbols such as *, %, or @, are sorted on the basis
of the symbol's ASCII representation.

For example, let's say you have two files, group! and group2, each containing
a list of names. You want to sort each list alphabetically and then interleave the
two lists into one. First, display the contents of the files by executing the cat
command on each.

$ cat group! <CR>
Smith, Allyn

Janes, Barbara

Cook, Karen

M:Jore, Peter
W:>lf, Robert:

$ cat group2<CR>
Frank, M. Jay

Nelson, James

West, Donna

Hill, Charles
M:lrgan, Kristine
$

11 0 USER'S GUIDE

Accessing and Manipulating Files

(Instead of printing these two files individually, you could have requested both
files on the same command line. If you had typed cat groupl group2 and pressed
the RETURN key, the output would have been the same.)

Now sort and merge the contents of the two files by executing the sort com­
mand. The output of the sort program will be printed on the terminal screen
unless you specify otherwise.

$ sort groupl group2<CR>
Cook, Karen

Frank, M. Jay

Hill, Charles

Janes, Barbara
MJore, Peter
M:lrgan, Kristine
Nelson, James
Smith, Allyn

West, Donna

Wolf, Robert
$

In addition to combining simple lists as in the example, the sort command can
rearrange lines and parts of lines (called fields) according to a number of other
specifications you designate on the command line. The possible specifications are
complex and beyond the scope of this text. Refer to the User's Reference Manual
for a full description of available options.

Figure 3-27 summarizes the syntax and capabilities of the sort command.

USING THE FILE SYSTEM 111

Accessing and Manipulating Files

*

Command Recap

sort - sorts and merges files

command options arguments

sort available* filers)

Description: The sort command sorts and merges lines from a
file or files you specify and displays its output on
your terminal screen.

Remarks: If no options are specified on the command line,
lines are sorted and merged in the order defined
by the ASCII representations of the characters in
the lines.

See the sort(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-27: Summary of the sort Command

112 USER'S GUIDE

Summary

This chapter described the structure of the file system and presented ways to
use and to navigate through the file system by using UNIX system commands.
The next chapter gives you an overview of a variety of UNIX system capabilities:
text editing, using the shell as a command language, communicating electronically
with other system users, and programming and developing software.

USING THE FILE SYSTEM 113

CHAPTER 4: OVERVIEW OF THE TUTORIALS

Introduction

This chapter serves as a transition between the overview that comprises the
first three chapters and the tutorials in the following four chapters. Specifically, it
provides an overview of the subjects covered in these tutorials: text editing, work­
ing in the shell, and communicating electronically. Text editing is covered in
Chapter 5, "Line Editor Tutorial," and Chapter 6, "Screen Editor Tutorial." How
to work and program in the shell is taught in Chapter 7, "Shell Tutorial," and
methods of electronic communication are covered in Chapter 8, "Communication
Tutorial."

114 USER'S GUIDE

Text Editing

Using the file system is a way of life in a UNIXsyst~m environment. This
section will teach you how to create an9 modify Bles with a software tool called a
text editor. The section begins by explaining what a text editor is and how it
works. Then it introduces two types of text editors supported on the UNIX sys­
tem: the line editor, ed, and the screen editor, vi (short for visual editor). A com­
parison of the two editors is also included. For detailed information about ed and
vi, see Chapters 5 and 6.

What is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform one or more
of the following tasks: insert new or additional material, delete unneeded material,
transpose material (sometimes called cutting and pasting), and, finally, prepare a
clean, corrected copy. Text editors perform these tasks at your direction, making
writing and revising text much easier and quicker than if done by hand.

The UNIX system text editors, like the UNIX system shell, are interactive
programs; they accept your commands and then perform the requested functions.
From the shell's point of view, the editors are executable programs.

A major difference between a text editor and the shell, however, is the set of
commands that each recognizes. All the commands introduced up to this point
belong to the shell's command set. A text editor has its own distinct set of com­
mands that allow you to create, move, add, and delete text in files, as well as
acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works, you need to understand the environ­
ment created when you use an editing program and the modes of operation under­
stood by a text editor.

OVERVIEW OF THE TUTORIALS 115

Text Editing

Text Editing Buffers

When you use a text editor to create a new file or modify an existing one, you
first ask the shell to put the editor in control of your computing session. As soon
as the editor takes over, it allocates a temporary work space called the editing
buffer; any information that you enter while editing a file is stored in this buffer
where you can modify it.

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are also temporary. The buffer and its contents will exist
only as long as you are editing. If you want to save the file, you must tell the text
editor to write the contents of the buffer into a file. The file is then stored in the
computer's memory. If you do not, the buffer's contents will disappear when you
leave the editing program. To prevent this from happening, the text editors send
you a reminder to write your file if you attempt to end an editing session without
doing so.

If you have made a critical mistake or are unhappy with the edited version, you
can choose to leave the editor without writing the file. By doing so, you leave the
original file intact; the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing one,
the text in the buffer is organized into lines. A line of text is simply a series of
characters that appears horizontally across the screen and is ended when you
press the RETURN key. Occasionally, files may contain a line of text that is too
long to fit on the terminal screen. Some terminals automatically display the con­
tinuation of the line on the next row of the screen; others do not.

Modes of Operation

Text editors are capable of understanding two modes of operation: command
mode and text input mode. When you begin an editing session, you will be placed
automatically in command mode. In this mode you can move around in a file,
search for patterns in it, or change existing text. However, you cannot create text
while you are in command mode. To do this you must be in text input mode.
While you are in this mode, any characters you type are placed in the buffer as
part of your text file. When you have finished entering text and want to run edit­
ing commands again, you must return to command mode.

116 USER'S GUIDE

Text Editing

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in. You
may try to enter text while in command mode or to enter a command while in
input mode. This is something even experienced users do from time to time. It
will not take long to recognize your mistake and determine the solution after you
complete the tutorials in Chapters 5 and 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile program for
preparing text files. It is called a line editor because it manipulates text on a
line-by-line basis. This means you must specify, by line number, the line contain­
ing the text you want to change. Then ed prints the line on the screen where you
can modify it.

This text editor provides commands with which you can change lines, print
lines, read and write files, and enter text. In addition, you can invoke the line edi­
tor from a shell program; something you cannot do with the screen editor. (See
Chapter 7 for information on basic shell programming techniques.)

The line editor (ed) works well on video display terminals and paper printing
terminals. It will also accommodate you if you are using a slow-speed telephone
line. (The visual editor, vi, can be used only on video display terminals') Refer to
Chapter 5, "Line Editor Tutorial," for instructions on how to use this editing tool.
Also see Appendix C for a summary of line editor commands.

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented, interac­
tive software tool. It allows you to view the file you are editing a page at a time.
This editor works most efficiently when used on a video display terminal operating
at 1200 or higher baud.

For the most part, you modify a file (by adding, deleting, or changing text)
by positioning the cursor at the point on the screen where the modification is to be
made and then making the change. The screen editor immediately displays the
results of your editing; you can see the change you made in the context of the sur­
rounding text. Because of this feature, the screen editor is considered more
sophisticated than the line editor.

OVERVIEW OF THE TUTORIALS 117

Text Editing

Furthermore, the screen editor offers a choice of commands. For example, a
number of screen editor commands allow you to move the cursor around a file.
Other commands scroll the file up or down on the screen. Still other commands
allow you to change existing text or to create new text. In addition to its own set
of commands, the screen editor can access line editor commands.

The trade-off for the screen editor's speed, visual appeal, efficiency, and power
is the heavy demand it places on the computer's processing time. Every time you
make a change, no matter how simple, vi must update the screen. Refer to
Chapter 6, "Screen Editor Tutorial," for instructions on how to use this editor.
Appendix D contains a summary of screen editor commands, and Figure 4-1 com­
pares the features of the line editor (ed) and the screen editor (vi).

118 USER'S GUIDE

Feature

Recommended
terminal type

Speed

Versatility

Sophistication

Power

Advantages

Line Editor (ed)

Video display or
paper-printing

Accommodates high­
and low-speed data
transmission lines.

Can be specified to run
from shell scripts as
well as used during
editing sessions.

Changes text quickly.
Uses comparatively
small amounts of pro­
cessing time.

Provides a full set of
editing commands.
Standard UNIX sys­
tem text editor.

There are fewer com­
mands you must learn
to use ed.

Text Editing

Screen Editor (vi)

Video display

Works best via high-speed
data transmission lines
(1200+ baud).

Must be used interactively
during editing sessions.

Changes text easily.
However, can make heavy
demands on computer
resources.

Provides its own editing
commands and recognizes
line editor commands as
well.

vi allows you to see the
effects of your editing in
the context of a page of
text, immediately. (When
you use the ed editor,
making changes and view­
ing the results are
separate steps.)

Figure 4-1: Comparison of Line and Screen Editors (ed and vi)

OVERVIEW OF THE TUTORIALS 119

The Shell

Every time you log in to the UNIX system you start communicating with the
shell, and continue to do so until you log off the system. However, while you are
using a text editor, your interaction with the shell is suspended; it resumes as soon
as you stop using the editor.

The shell is much like other programs, except that instead of performing one
job, as cat or Is does, it is central to your interactions with the UNIX system.
The shell's primary function is to act as a command interpreter between you and
the computer system. As an interpreter, the shell translates your requests into
language the computer understands, calls requested programs into memory, and
executes them.

This section introduces methods of using the shell that enhance your ability to
use system features. In addition to using it to run a single program, you may also
use the shell to:

• interpret the name of a file or a directory you enter in an abbreviated way
using a type of shell shorthand

• redirect the flow of input and output of the programs you run

• execute multiple programs simultaneously or in a pipeline format

• tailor your computing environment to.meet your individual needs

In addition to being the command language interpreter, the shell is a pro­
gramming language. For detailed information on how to use the shell as a com­
mand interpreter and a programming language, refer to Chapter 7. Complete
information about shell programming is available in a separate document, Shell
Commands and Programming.

Customizing Your Computing Environment

This section deals with another control provided by the shell: your environ­
ment. When you log in to the UNIX system, the shell automatically sets up a
computing environment for you. The default environment set up by the shell
includes these variables:

120 USER'S GUIDE

HOME

LOGNAME

PATH

your login directory

your login name

The Shell

route the shell takes to search for executable files or com­
mands (typically PATH=:/bin:/usr/bin)

The PATH variable tells the shell where to look for the executable program
invoked by a command. Therefore it is used every time you issue a command. If
you have executable programs in more than one directory, you will want all of
them to be searched by the shell to make sure every command can be found.

You can use the default environment supplied by your system or you can
tailor an environment to meet your needs. If you choose to modify any part of
your environment, you can use either of two methods to do so. If you want to
change a part of your environment only for the duration of your current comput­
ing session, specify your changes in a command line (see Chapter 7 for details).
However, if you want to use a different environment (not the default environ­
ment) regularly, you can specify your changes in a file that will set up the desired
environment for you automatically every time you log in. This file must be called
.profile and must be located in your home directory.

The .profile typically performs some or all of the following tasks: checks for
mail; sets data parameters, terminal settings, and tab stops; assigns a character or
character string as your login prompt; and assigns the erase and kill functions to
keys. You can define as few or as many tasks as you want in your .profile. You
can also change parts of it at any time. For instructions on modifying a .profile,
see "Modifying Your Login Environment" in Chapter 7.

Now check to see whether or not you have a .profile. If you are not already
in your home directory, cd to it. Then examine your .profile by issuing this com­
mand:

cat .profile

If you have a .profile, its contents will appear on your screen. If you do not have
a .profile you can create one with a text editor, such as ed or vi. (See "Modifying
Your Login Environment" in Chapter 7 for instructions')

OVERVIEW OF THE TUTORIALS 121

The Shell

Programming in the Shell

The shell is not only the command language interpreter; it is also a command
level programming language. This means that instead of always using the shell
strictly as a liaison between you and the computer, you can also program it to
repeat sequences of instructions automatically. To do this, you must create exe­
cutable files containing lists of commands. These files are called shell procedures
or shell scripts. Once you have a shell script for a particular task, you can simply
request that the shell read and execute the contents of the script whenever you
want to perform that task.

Like other programming languages, the shell provides such features as vari­
ables, control structures, subroutines, and parameter passing. These features
enable you to create your own tools by linking together system commands.

For example, you can combine three UNIX system programs (the date, who,
and we commands) into a simple shell script called users that tells you the current
date and time, and how many users are working on your system. If you use the vi
editor (described in Chapter 6) to create your script, you can follow this pro­
cedure. First, create the file users with the editor by typing

vi users < CR >
The editor will draw a blank page on your screen and wait for you to enter text.

122 USER'S GUIDE

cursor

"users" [New file]

Enter the three UNIX system commands on one line:

date; who I we -I

The Shell

Then write and quit the file. Make users executable by adding execute permission
with the ehmod command.

ehmod ug+x users<CR>

Now try running your new command. The following screen shows the kind of
output you will get.

$ users<CR>
Sat Mar 1 16:40:12 EST 1986

4
$

OVERVIEW OF THE TUTORIALS 123

The Shell

The output tells you that four users were logged in on the system when you
typed the command at 16:40 on Saturday, March 1, 1986.

For step-by-step instructions on writing shell scripts and information about
more sophisticated shell programming techniques, see Chapter 7, "Shell Tutorial."

124 USER'S GUIDE

Communicating Electronically

As a UNIX system user, you can send messages or transmit information
stored in files to other users who work on your system or another UNIX system.
To do so, you must be logged in on a UNIX system that is capable of communi­
cating with the UNIX system to which you want to send information. The com­
mand you use to send information depends on what you are sending. This guide
introduces you to these communication programs:

mail

mailx

uucp

uuto/uupick

UUX

This command allows you to send messages or files to other
UNIX system users, using their login names as addresses. It
also allows you to receive messages sent by other users. mail
holds messages and lets the recipient read them at his or her
convenience.

This command is a sophisticated, more powerful version of
mail. It offers a number of options for managing the elect­
ronic mail you send and receive.

This command is used to send files from one UNIX system to
another. (Its name is an acronym for UNIX to UNIX sys­
tem copy.) You can use uucp to send a file to a directory you
specify on a remote computer. When the file has been
transferred, the owner of the directory is notified of its arrival
by mail.

These commands are used to send and retrieve files. You can
use the uuto command to send a file(s) to a public directory;
when it is available, the recipient is notified by mail that the
file(s) has arrived. The recipient then can use the uupick
command to copy the file(s) from the public directory to a
directory of choice.

This command lets you execute commands on a remote com­
puter. It gathers files from various computers, executes the
specified command on these files, and sends the standard out­
put to a file on the specified computer.

Chapter 8 offers tutorials on each of these commands.

OVERVIEW OF THE TUTORIALS 125

Programming in the System

The UNIX system provides a powerful and convenient environment for pro­
gramming and software development, using the C programming language,
FORTRAN-77, BASIC, Pascal, and COBOL. As well, the UNIX system pro­
vides some sophisticated tools designed to make software development easier and
to provide a systematic approach to programming.

For information on available UNIX system programming languages, see the
Product Overview or Documentation Roadmap.

For information on the general topic of programming in the UNIX system
environment, see the Programmer's Guide. Besides supplementing texts on pro­
gramming languages, the Programmer's Guide provides tutorials on the following
five tools:

SCCS

RJE

make

lex

yacc

126 USER'S GUIDE

Source Code Control System

Remote Job Entry (not available on all UNIX systems)

maintains programs

generates programs for simple lexical tasks

generates parser programs

CHAPTER 5: LINE EDITOR TUTORIAL (ed)

Introducing the Line Editor
This chapter is a tutorial on the line editor, ed. ed is versatile and requires

little computer time to perform editing tasks. It can be used on any type of ter­
minal. The examples of command lines and system responses in this chapter will
apply to your terminal, whether it is a video display terminal or a paper printing
terminal. The ed commands can be typed in at your terminal or they can be used
in a shell program (see Chapter 7, "Shell Tutorial").

ed is a line editor; during editing sessions it is always pointing at a single line
in the file called the current line. When you access an existing file, ed makes the
last line the current line so you can start appending text easily. Unless you
specify the number of a different line or range of lines, ed will perform each com­
mand you issue on the current line. In addition to letting you change, delete, or
add text on one or more lines, ed allows you to add text from another file to the
buffer.

During an editing session with ed, you are altering the contents of a file in a
temporary buffer, where you work until you have finished creating or correcting
your text. When you edit an existing file, a copy of that file is placed in the
buffer and your changes are made to this copy. The changes have no effect on
the original file until you instruct ed, by using the write command, to move the
contents of the buffer into the file.

After you have read through this tutorial and tried the examples and exer­
cises, you will have a good working knowledge of ed. The following basics are
included:

• entering the line editor ed, creating text, writing the text to file, and quit-
ting ed

• addressing particular lines of the file and displaying lines of text

• deleting text

• substituting new text for old text

• using special characters as shortcuts in search and substitute patterns

• moving text around in the file, as well as other useful commands and infor­
mation

LINE EDITOR TUTORIAL (ed) 127

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end of that sec­
tion. A summary of all ed commands introduced in this chapter is found in
Appendix C, where they are listed by topic.

At the end of some sections, exercises are given so you can experiment with
the commands. The answers to all exercises are at the end of this chapter.

The notation conventions used in this chapter are those used throughout this
Guide. They are described in the Preface.

128 USER'S GUIDE

Getting Started

The best way to learn ed is to log in to the UNIX system and try the exam­
ples as you read this tutorial. Do the exercises; do not be afraid to experiment.
As you experiment and tryout ed commands, you will learn a fast and versatile
method of text editing.

In this section you will learn the commands used to:

• enter ed

• append text

• move up or down in the file to display a line of text

• delete a line of text

• write the buffer to a file

• quit ed

How to Enter ed

To enter the line editor, type ed and a file name:

edfilename<CR>

Choose a name that reflects the contents of the file. If you are creating a new
file, the system responds with a question mark and the file name:

$ ed new-file<CR>
?new-file

If you going to edit an existing file, ed responds with the number of characters in
the file:

$ ed old-file<CR>
235

LINE EDITOR TUTORIAL (ed) 129

Getting Started

How to Create Text

The editor receives two types of input, editing commands and text, from your
terminal. To avoid confusing them, ed recognizes two modes of editing work:
command mode and text input mode. When you work in command mode, any
ch~racters you type are interpreted as commands. In input mode, any characters
you type are interpreted as text to be added to a file.

Whenever you enter ed you are put into command mode. To create text in
your file, change to input mode by typing a (for append), on a line by itself, and
pressing the RETURN key:

a<CR>

Now you are in input mode; any characters you type from this point wil be added
to your file as text. Be sure to type a on a line by itself; if you do not, the editor
will not execute your command.

After you have finished entering text, type a period on a line by itself. This
takes you out of the text input mode and returns you to the command mode.
Now you can give ed other commands.

The following example shows how to enter ed, create text in a new file called
try-me, and quit text input mode with a period.

$ ed try-me<CR>
/1 try-me

a<CR>
This is the first line of text. < CR >
This is the second line, < CR >
and tbis is the third line. < CR >
.<CR>

130 USER'S GUIDE

Getting Started

Notice that ed does not give a response to the period; it just waits for a new
command. If ed does not respond to a command, you may have forgotten to type
a period after entering text and may still be in text input mode. Type a period
and press the RETURN key at the beginning of a line to return to command
mode. Now you can execute editing commands. For example, if you have added
some unwanted characters or lines to your text, you can delete them once you
have returned to command mode.

How to Display Text

To display a line of a file, type p (for print) on a line by itself. The p com­
mand prints the current line, that is, the last line on which you worked. Continue
with the previous example. You have just typed a period to exit input mode.
Now type the p command to see the current line.

$ eel try-me<CR>
? try-me
a<CR>
This is the first line of text. < CR >
This is the second line, < CR>
and this is the third line. < CR>
.<CR>
p<CR>
and this is the t.h:ixd line.

You can print any line of text by specifying its line number (also known as
the address of the line). The address of the first line is 1; of the second, 2; and so
on. For example, to print the second line in the file try-me, type:

2p<CR>
This is the second line,

LINE EDITOR TUTORIAL (ed) 131

Getting Started

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated by a
comma. For example, to print the first three lines of a file, type:

1,3p<CR>

You can even print the whole file this way. For example, you can display a
twenty-line file by typing 1,20p. If you do not know the address of the last line in
your file, you can substitute a $ sign, ed symbol for the address of the last line.
(These conventions are discussed in detail in the section "Line Addressing.")

1,Sp<CR>
This is the first line of text.
This is a second line,
and this is the third line.

If you forget to quit text input mode with a period, you will add text that you
do not want. Try to make this mistake. Add another line of text to your try-me
file and then try the p command without quitting text input mode. Then quit text
input mode and print the entire file.

132 USER'S GUIDE

p<CR>
and this is the third line.
a<CR>
This is the fourth line. <CR>
p<CR>
.<CR>
1,$p<CR>
This is the first line of text.
This is the seoand line,
and this is the third line.
This is the fOOrth line.
p

Getting Started

What did you get? The next section will explain how to delete the unwanted line.

How to Delete a Line of Text

To delete text, you must be in the command mode of ed. Typing d deletes
the current line. Try this command on the last example to remove the unwanted
line containing p. Display the current line (p command), delete it (d command),
and display the remaining lines in the file (p command). Your screen should look
like this:

LINE EDITOR TUTORIAL (ed) 133

Getting Started

p<CR>
p

d<CR>
1,Sp<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.

ed does not send you any messages to confirm that you have deleted text.
The only way you can verify that the d command has succeeded is by printing the
contents of your file with the p command. To receive verification of your deletion,
you can put the d and p together on one command line. If you repeat the previ­
ous example with this command, your screen should look like this:

p<CR>
p

dp<CR>
This is the fourth line.

134 USER'S GUIDE

Getting Started

How to Move Up or Down in the File

To display the line below the current line, press the RETURN key while in
command mode. If there is no line below the current line, ed responds with a ?
and continues to treat the last line of the file as the current line. To display the
line above the current line, press the minus key (-).

The following screen provides examples of how both of these commands are
used:

p<CR>
This is the foorth line.
-<CR>
and this is the third line.
-<CR>

This is a seoand line,
-<CR>
This is the first line of text.
<CR>
This is a seoand line,
<CR>
and this is the third line.

Notice that by typing - <CR> or <CR>, you can display a line of text without
typing the p command. These commands are also line addresses. Whenever you
type a line address and do not follow it with a command, ed assumes that you
want to see the line you have specified. Experiment with these commands: create
some text, delete a line, and display your file.

LINE EDITOR TUTORIAL (ed) 135

Getting Started

How to Save the Buffer Contents in a File

As we discussed earlier, during an editing session, the system holds your text
in a temporary storage area called a buffer. When you have finished editing, you
can save your work by writing it from the temporary buffer to a permanent file in
the computer's memory. By writing to a file, you are simply putting a copy of the
contents of the buffer into the file. The text in the buffer is not disturbed, and
you can make further changes to it.

It is a good idea to write the buffer text into your file frequently. If an interrupt
occurs (such as an accidental loss of power to your terminal), you may lose the
material in the buffer, but you will not lose the copy written to your file.

To write your text to a file, enter the w command. You do not need to
specify a file name; simply type wand press the RETURN key. If you have just
created new text, ed creates a file for it with the name you specified when you
entered the editor. If you have edited an existing file, the w command writes the
contents of the buffer to that file by default.

If you prefer, you can specify a new name for your file as an argument on the
w command line. Be careful not to use the name of a file that already exists
unless you want to replace its contents with the contents of the current buffer. ed
will not warn you about an existing file; it will simply overwrite that file with your
buffer contents.

For example, if you decide you would prefer the try-me file to be called stuff,
you can rename it:

136 USER'S GUIDE

$ ed try-me<CR>
? try-me
a<CR>
This is the first line of text. < CR >
This is the second line,<CR>
and this is the third line. < CR >

w stuff <CR>
85

Getting Started

Notice the last line of the screen. This is the number of characters in your text.
When the editor reports the number of characters in this way, the write command
has succeeded.

How to Quit the Editor

When you have completed editing your text, write it from the buffer into a
file with the w command. Then leave the editor and return to the shell by typing
q (for quit).

w<CR>
85
q<CR>
$

LINE EDITOR TUTORIAL (ed) 137

Getting Started

The system responds with a shell prompt. At this point the editing buffer van­
ishes. If you have not executed the write command, your text in the buffer has
also vanished. If you did not make any changes to the text during your editing
session, no harm is done. However, if you did make changes, you could lose your
work in this way. Therefore, if you type q after changing the file without writing
it, ed warns you with a ? You then have a chance to write and quit.

q<CR>
?
w<CR>
85
q<CR>
$

If, instead of writing, you insist on typing q a second time, ed assumes you do
not want to write the buffer's contents to your file and returns you to the shell.
Your file is left unchanged and the contents of the buffer are wiped out.

You now know the basic commands needed to create and edit a file using ed.
Figure 5-1 summarizes these commands.

138 USER'S GUIDE

Getting Started

Command Function

edfile enter ed to edit file

a append text after the current line

quit text input mode and return to ed command
mode.

p print text on your terminal

d delete text

<CR> display the next line in the buffer Oiterally, car-
riage return}

+ display the next line in the buffer

- display the previous line in the buffer

w write the contents of the buffer to the file

q quit ed and return to the shell

Figure 5-1: Summary of ed Editor Commands

LINE EDITOR TUTORIAL (ed) 139

Exercise 1

Answers for all the exercises in this chapter are found at the end of the
chapter. However, they are not necessarily the only possible correct answers.
Any method that enables you to perform a task specified in an exercise is correct,
even if it does not match the answer given.

1-1. Enter ed with a file named junk. Create a line of text containing Hello
World, write it to the file and quit ed.

Now use ed to create a file called stuff. Create a line of text containing
two words, Goodbye world, write this text to the file, and quit ed.

1-2. Enter ed again with the file named junk. What was the editor's response?
Was the character count for it the same as the character count reported
by the w command in Exercise I-I?

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the file. Why do
you think the editor allowed you to quit without writing to the buffer?

1-3. Enter ed with the file junk. Add a line:

Wendy's horse came through the window.

Since you did not specify a line address, where do you think the line was
added to the buffer? Display the contents of the buffer. Try quitting the
buffer without writing to the file. Try writing the buffer to a different file
called stuff. Notice that ed does not warn you that a file called stuff
already exists. You have erased the contents of stuff and replaced them
with new text.

140 USER'S GUIDE

General Format of ed Commands

ed commands have a simple and regular format:

[addressl [,address2JJcommand{argumentJ < CR>

The brackets around addressl, address2, and argument show that these are
optional. The brackets are not part of the command line.

addressl,address2
The addresses give the position of lines in the buffer.
Addressl through address2 gives you a range of lines that
will be affected by the command. If address2 is omitted,
the command will affect only the line specified by addressl.

command The command is one character and tells the editor what task
to perform.

argument The arguments to a command are those parts of the text
that will be modified, or a file name, or another line address.

This format will become clearer to you when you begin to experiment with
the ed commands.

LINE EDITOR TUTORiAl (ed) 141

Line Addressing

A line address is a character or group of characters that identifies a line of
text. Before ed can execute commands that add, delete, move, or change text, it
must know the line address of the affected text. Type the line address before the
command:

[address l1,laddress21command < CR >

Both addressl and address2 are optional. Specifyaddressl alone to request
action on a single line of text; both addressl and address2 to request a span of
lines. If you do not specify any address, ed assumes that the line address is the
current line.

The most common ways to specify a line address in ed are:

• by entering line numbers (assuming that the lines of the files are consecu-
tively numbered from 1 to n, beginning with the first line of the file)

• by entering special symbols for the current line, last line, or a span of lines

• by adding or subtracting lines from the current line

• by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search for all
lines containing a specified character string. (A character string is a set of suc­
cessive characters, such as a wordJ

Numerical Addresses
ed gives a numerical address to each line in the buffer. The first line of the

buffer is 1, the second line is 2, and so on, for each line in the buffer. Any line
can be accessed by ed with its line address number. To see how line numbers
address a line, enter ed with the file try-me and type a number.

142 USER'S GUIDE

$ ed try-me<CR>
110
l<CR>
This is the first line of text.
3<CR>
and this is the third line.

Line Addressing

Remember that p is the default command for a line address specified without
a command. Because you gave a line address, ed assumes you want that line
displayed on your terminal.

Numerical line addresses frequently change in the course of an editing ses­
sion. Later in this chapter you will create lines, delete lines, or move a line to a
different position. This will change the line address. numbers of some lines. The
number of a specific line is always the current position of that line in the editing
buffer. For example, if you add five lines of text between line 5 and 6, line 6
becomes line 11. If you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed command. If
you have just entered ed with an existing file, the current line is the last line of
the buffer. The symbol for the address of the current line is a period. Therefore
you can display the current line simply by typing a period (.) and pressing the
RETURN key.

Try this command in the file try-me:

LINE EDITOR TUTORIAL (ed) 143

Line Addressing

$ eel try-me<CR>
110
.<CR>
This is the fourth line.

The • is the address. Because a command is not specified after the period, ed
executes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:

.-<CR>
ed responds with the line number. For example, in the try-me file, the current
line is 4 .

. <CR>
This is the fourth line .

. -<CR>
4

144 USER'S GUIDE

Line Addressing

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that
the $ sign accesses the last line, access the try-me file with ed and specify this
address on a line by itself. (Keep in mind that when you first access a file, your
current line is always the last line of the file.)

$ ed tty-me<CR>
110
.<CR>
This is the foorth line.
S<CR>
This is the foorth line.

Remember that the $ address within ed is not the same as the $ prompt from the
shell.

Symbolic Address of the Set of All Lines

When used as an address, a comma (,) refers to all the lines of a file, from
the first through the last line. It is an abbreviated form of the string mentioned
earlier that represents all lines in a file, 1,$. Try this shortcut to print the con­
tents of try-me:

,p<CR>
This is the first line of text.
This is the secand line,
and this is the third line.
This is the foorth line.

LINE EDITOR TUTORIAL (ed) 145

Line Addressing

Symbolic Address of the Current Line through the Last Line

The semi-colon (;) represents a set of lines beginning with the current line
and ending with the last line of a file. It is equivalent to the symbolic address .,$.
Try it with the file try-me:

2p<CR>
This is the second line,
;p<CR>
This is the second line,

and this is the third line.
This is the fourth line.

Relative Addresses: Adding or Subtracting Lines from the Current Line

You may often want to address lines with respect to the current line. You
can do this by adding or subtracting a number of lines from the current line with
a plus (+) or a minus (-) sign. Addresses derived in this way are called relative
addresses. To experiment with relative line addresses, add several more lines to
your file try-me, as shown in the following screen. Also, write the buffer contents
to the file so your additions will be saved:

146 USER'S GUIDE

$ eel try-me<CR>
110
.<CR>
'lhls is the fourth line.
a<CR>
five<CR>
six<CR>
seven<CR>
eight<CR>
nine <CR>
ten<CR>
.<CR>
w<CR>
140

Line Addressing

Now try adding and subtracting line numbers from the current line.

4<CR>
This is the fourth line.
+3<CR>
seven

-S<CR>
This is a second line,

What happens if you ask for a line address that is greater than the last line, or if
you try to subtract a number greater than the current line number?

LINE EDITOR TUTORIAL (ed) 147

Line Addressing

S<CR>
five
-6<CR>
?
.=<CR>
5
+7<CR>
?

Notice that the current line remains at line 5 of the buffer. The current line
changes only if you give ed a correct address. The? response means there is an
error. "Other Useful Commands and Information," at the end of this chapter,
explains how to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a partic­
ular character string. To do so, specify a string, preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a
string starts and ends. The most common delimiter is / (slash), used in the fol­
lowing format:

/pattern

When you specify a pattern preceded by a / (slash), ed begins at the current line
and searches forward (down through subsequent lines in the buffer) for the next
line containing the pattern. When the search reaches the last line of the buffer,
ed wraps around to the beginning of the file and continues its search from line 1.

The following rectangle represents the editing buffer. The path of the arrows
shows the search initiated by a / :

148 USER'S GUIDE

Line Addressing

,- - - ,
I

j
first line

+ current line

1 last line

L ___ .J

Another useful delimiter is ? If you specify a pattern preceded by a ?,
(?pattern), ed begins at the current line and searches backward (up through pre­
vious lines in the buffer) for the next line containing the pattern. If the search
reaches the first line of the file, it will wrap around and continue searching
upward from the last line of the file.

The following rectangle represents the editing buffer. The path of the arrows
shows the search initiated by a ? :

LINE EDITOR TUTORIAL (ed) 149

Line Addressing

Experiment with these two methods of requesting address searches on the file
try-me. What happens if ed does not find the specified character string?

$ ed try-me<CR>
140
.<CR>
ten
?first<CR>
This is the first line of text.
Ifourtb<CR>
This is the fourth line.
Ijunk<CR>
?

In this example, ed found the specified strings first and fourth. Then, because
no command was given with the address, it executed the p command by default,
displaying the lines it had found. When ed cannot find a specified string (such as
junk), it responds with a ? .

You can also use the / (slash) to search for multiple occurrences of a pattern
without typing it more than once. First, specify the pattern by typing /pattern, as
usual. After ed has printed the first occurrence, it waits for another command.
Type / and press the RETURN key; ed will continue to search forward through
the file for the last pattern specified. Try this command by searching for the
word line in the file try-me:

1 SO USER'S GUIDE

.<CR>
This is the first line of text.
IIine<CR>
This is the seccmd line,
I<CR>
and this is the third line.
I<CR>
This is the fourth line.
I<CR>
This is the first line of text.

Line Addressing

Notice that after ed has found all occurrences of the pattern between the line
where you requested a search and the end of the file, it wraps around to the
beginning of the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range of
lines, such as address] through address2, or you can specify a global search for
all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of the
first and last lines of the range, separated by a comma. Place this address before
the command. For example, if you want to display lines 2 through 7 of the edit­
ing buffer, give address] as 2 and address2 as 7 in the following format:

2,7p<CR>

Try this on the file try-me:

LINE EDITOR TUTORIAL (ed) 151

Line Addressing

2,7p<CR>
This is the second line,
and this is the third line.
This is the fourth line.

five
six

seven

Did you try typing 2,7 without the p? What happened? If you do not add
the p command, ed prints only address2, the last line of the range of addresses.

Relative line addresses can also be used to request a range of lines. Be sure
that address1 precedes address2 in the buffer. Relative addresses are calculated
from the current line, as the following example shows:

4<CR>
This is the fourth line
-2,+3p<CR>
This is the second line,

and this is the third line.
This is the fourth line.
five
six

seven

152 USER'S GUIDE

Line Addressing

Specifying a Global Search
There are two commands that do not follow the general format of ed com­

mands: g and v. These are global search commands that specify addresses with a
character string (pattern). The g command searches for all lines containing the
string pattern and performs the command on those lines. The v command
searches for all lines that do not contain the pattern and performs the command
on those lines.

The general format for these commands is:

g/ pattern/command < CR >
v/pattern/command<CR>

Try these commands by using them to search for the word line in try-me:

glIine/p<CR>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

v/line/p<CR>
five
six
seven
eight
nine
ten

LINE J;DITOR TUTORIAL (ed) 153

Line Addressing

Notice the function of the v command: it finds all the lines that do not con­
tain the word specified in the command line (line).

Once again, the default command for the lines addressed by g or v is p; you
do not need to include a p as the last delimiter on your command line.

glline<CR>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

However, if you are giving line addresses to be used by other ed commands, you
need to include beginning and ending delimiters. You can use any of the methods
discussed in this section to specify line addresses for ed commands. Figure 5-2
summarizes the symbols and commands available for addressing lines.

154 USER'S GUIDE

Line Addressing

Address Description

n ... the number of a line in the buffer

the current line (the line most recently acted on by an ed
command)

. = the command used to request the line number of the current
line

$ the last line of the file

, the set of lines from line 1 through the last line

; the set of lines from the current line through the last line

+n the line that is located n lines after the current line

-n the line that is located n lines before the current line

/abc the command used to search forward in the buffer for the first
line that contains the pattern abc

?abc the command used to search backward in the buffer for the
first line that contains the pattern abc

g/abc the set of all lines that contain the pattern abc

vlabc the set of all lines that do NOT contain the pattern abc

Figure 5-2: Summary of Line Addressing

LINE EDITOR TUTORIAL (ed) 155

Exercise 2

2-1. Create a file called towns with the following lines:

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost $$ in
Las Vegas

2-2. Display line 3.

2-3. If you specify a range of lines with the relative address -2,+3p, what
lines are displayed?

2-4. What is the current line number? Display the current line.

2-5. What does the last line say?

2-6. What line is displayed by the following request for a search?

?town<CR>

After ed responds, type this command alone on a line:

?<CR>

What happened?

2-7. Search for all lines that contain the pattern in. Then search for all lines
that do NOT contain the pattern in.

1 S6 USER'S GUIDE

Displaying Text in a File

ed provides two commands for displaying lines of text in the editing buffer: p
and D.

Displaying Text Alone: the p Command

You have already used the p command in several examples. You are prob­
ably now familiar with its general format:

[address1,address2]p<CR>

p does not take arguments. However, it can be combined with a substitution com­
mand line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 5-3 on a file in your
home directory. Try the p command with each address and see if ed responds as
described in the figure.

LINE EDITOR TUTORIAL (ed) 157

Displaying Text in a File

Specify this Address Check for this Response

1,$p<CR> ed should display the entire file on your
terminal.

- 5p < CR > ed should move backward five lines from
the current line and display the line
found there.

+2p<CR>

1,/x/p<CR>

ed should move forward two lines from
the current line and display the line
found there.

ed displays the set of lines from line one
through the first line after the current
line that contains the character x. It is
important to enclose the letter x between
slashes so that ed can distinguish between
the search pattern address (x) and the ed
command (p).

Figure 5-3: Sample Addresses for Displaying Text

Displaying Text with Line Addresses: the n Command

The n command displays text and precedes each line with its numerical line
address. It is helpful when you are deleting, creating, or changing lines. The
general command line format for n is the same as that for p.

[address] ,address21n <CR>

Like p, n does not take arguments, but it can be combined with the substitute
command.

158 USER'S GUIDE

Try running n on the try-me file:

$ ed try-me<CR>
140
1,$n<CR>
1 '1hl.s is the first line of text.
2 '1hl.s is the second line,
3 and this is the third line.
4 '1hl.s is the foorth line.
5 five
6 six
7 seven
8 eight
9 nine
10 ten

Displaying Text in a File

Figure 5-4 summarizes the ed commands for displaying text.

Command Function

p displays specified lines of text in the editing buffer on your
terminal

n displays specified lines of text in the editing buffer with
their numerical line addresses on your terminal

Figure 5-4: Summary of Commands for Displaying Text

LINE EDITOR TUTORIAL (ed) 159

Creating Text

ed has three basic commands for creating new lines of text:

a append text

insert text

c change text

Appending Text: the a Command

The append command, a, allows you to add text AFTER the current line or a
specified address in the file. You have already used this command in the "Getting
Started" section of this chapter. The general format for the append command line
is:

[address l]a < CR >
Specifying an address is optional. The default value of addressl is the current
line.

In previous exercises, you used this command with the default address. Now
try using different line numbers for addressl. In the following example, a new
file called new-file is created. In the first append command line, the default
address is the current line. In the second append command line, line 1 is specified
as addressl. The lines are displayed with n so that you can see their numerical
line addresses. Remember, the append mode is ended by typing a period (.) on a
line by itself.

160 USER'S GUIDE

$ ed new-file<CR>
?new--£ile
a<CR>
Create some lines
of text in
this file .
. <CR>
1,$n<CR>
1 Create sane lines
2 of text in
3 this file.
la<CR>
This will be line 2 < CR >
This will be line 3<CR>
.<CR>
1,$n<CR>
1 Create sane lines
2 This will be line 2
3 This will be line 3
4 of text in
5 this file.

Creating Text

Notice that after you append the two new lines, the line that was originally
line 2 (of text in) becomes line 4.

You can take shortcuts to places in the file where you want to append text by
combining the append command with symbolic addresses. The following three
command lines allow you to move through and add to the text quickly in this way .

. a < CR > appends text after the current line

$a<CR> appends text after the last line of the file

Oa<CR> appends text before the first line of the file (at a symbolic
address called line 0)

LINE EDITOR TUTORIAL (ed) 161

Creating Text

To try using these addresses, create a one-line file called lines and type the
examples shown in the following screens. (The examples appear in separate
screens for easy reference only; it is not necessary to access the lines file three
times to try each append symbol. You can access lines once and try all three con­
secutively.)

S eel lines<CR>
?lines
a<CR>
This is the current line. <CR>
.<CR>
p<CR>
This is the current line .
• a<CR>
This line is after the current line. < CR >
.<CR>
-l,.p<CR>
This is the current line.
This line is after the current line.

Sa<CR>
This is the last line now.<CR>
.<CR>
S<CR>
This is the last line 'OCM.

162 USER'S GUIDE

Oa<CR>
This is the first line now. <CR>
This is the second line now. < CR >
The line numbers change < CR >
as lines are added. < CR >
.<CR>
1,4n<CR>
1

2
3
4

This is the first line now.
This is the second line now.
The line numbers change
as lines are added.

Creating Text

Because the append command creates text after a specified address, the last
example refers to the line before line 1 as the line after line O. To avoid such cir­
cuitous references, use another command provided by the editor: the insert com­
mand, i.

Inserting Text: the i Command

The insert command (i), allows you to add text BEFORE a specified line in
the editing buffer. The general command line format for i is the same as that for
a.

[addresslli <CR>

As with the append command, you can insert one or more lines of text. To quit
input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command Ci):

LINE EDITOR TUTORIAL (ed) 163

Creating Text

$ ed insert<CR>
?insert
a<CR>
Line l<CR>
Line 2<CR>
Line 3<CR>
Line4<CR>
.<CR>
w<CR>
69

Now insert one line of text above line 2 and another above line 1. Use the n com­
mand to display all the lines in the buffer:

2i<CR>
This is the new line 2. < CR >
.<CR>
1,Sn<CR>
1

2
3
4
5
li<CR>

Line
This is the new line 2.
Line 2
Line 3
Line 4

This is the beginning. <CR>
.<CR>
1,Sn<CR>
1 In the begimring
2 Line 1
3 NoW' this is line 2
4 Line 2
5 Line 3
6 Line 4

164 USER'S GUIDE

Creating Text

Experiment with the insert command by combining it with symbolic line
addresses, as follows:

•. i<CR>

• $i<CR>

Changing Text: the c Command

The change text command (c) erases all specified lines and allows you to
create one or more lines of text in their place. Because c can erase a range of
lines, the general format for the command line includes two addresses.

[addressl ,address21c < CR >
The change command puts you in text input mode. To leave input mode, type a
period alone on a line.

Addressl is the first and address2 is the last of the range of lines to be
replaced by new text. To erase one line of text, specify only addressl. If no
address is specified, ed assumes the current line is the line to be changed.

Now create a file called cbange in which you can try this command. After
entering the text shown in the screen, change lines one through four by typing
1,4c:

LINE EDITOR TUTORIAL (ed) 165

Creating Text

1,5n<CR>
1 line 1
2 line 2
3 line 3
4 line 4
5 line 5
1,4c<CR>
Change line 1 <CR>
and lines 2 through 4<CR>
.<CR>
1,$n<CR>
1 cl'IimJe line 1
2 am lines 2 through 4
3 line 5

Now experiment with c and try to change the current line:

.<CR>
line 5
c<CR>
This is the new line 5 .
. <CR>
.<CR>
This is the new line 5.

If you are not sure whether you have left text input mode, it is a good idea to
type another period. If the current line is displayed, you know you are in the
command mode of ed.

166 USER'S GUIDE

Creating Text

Figure 5-5 summarizes the ed commands for creating text.

Command Function

a append text after the specified line in the buffer

i insert text before the specified line in the buffer

c change the text on the specified line(s) to new text

quit text input mode and return to ed command mode

Figure 5-5: Summary of Commands for Creating Text

LINE EDITOR TUTORIAL (ed) 167

Exercise 3

3-1. Create a new file called ex3. Instead of using the append command to
create new text in the empty buffer, try the insert command. What hap­
pens?

3-2. Enter ed with the file towns. What is the current line?

Insert above the third line:

Illinois < CR >

Insert above the current line:

or<CR>
Naperville<CR>

Insert before the last line:

hotels in < CR >

Display the text in the buffer preceded by line numbers.

3-3. In the file towns, display lines 1 through 5 and replace lines 2 through 5
with:

London <CR>

Display lines 1 through 3.

3-4. After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

168 USER'S GUIDE

Replace

Toledo

with

Peoria

Display the current line.

Exercise 3

3-5 With one command line search for and replace:

New York

with:

Iron City

LINE EDITOR TUTORIAL (ed) 169

Deleting Text

This section discusses two types of commands for deleting text in ed. One
type is to be used when you are working in command mode: d deletes a line and
u undoes the last command. The other type of command is to be used in text
input mode: <I> (the pound sign) deletes a character and <@> (the at sign)
kills a line. The delete keys that are used in input mode are the same keys you
use to delete text that you enter after a shell prompt. They are described in detail
in "Correcting Typing Errors" in Chapter 2.

Deleting Lines: the d Command

You have already deleted lines of text with the delete command (d) in the
"Getting Started" section of this chapter.

The general format for the d command line is:

[addressl ,address2]d <CR>

You can delete a range of lines (addressl through address2) or you can delete
one line only (addressl). If no address is specified, ed deletes the current line.

The next example displays lines one through five and then deletes lines two
through four:

1,Sn<CR>
1 1 horse
2 2 chickens
3 3 ham taoos
4 4 cans of IlUStard
5 5 bails of hay

2,4d<CR>
1,Sn<CR>
1 1 horse
2 5 bails of hay

170 USER'S GUIDE

Deleting Text

How can you delete only the last line of a file? Using a symbolic line address
makes this easy:

$d<CR>

How can you delete the current line? One of the most common errors in ed is
forgetting to type a period to leave text input mode. When this happens,
unwanted text may be added to the buffer. In the next example, a line containing
a print command (t,$p) is accidentally added to the text before the user leaves
input mode. Because this line was the last one added to the text, it becomes the
current line. The symbolic address. is used to delete it.

a<CR>
Last line of text < CR >
1,$p<CR>
.<CR>
p<CR>
1,$p

.d<CR>
p<CR>
Last line of text.

Before experimenting with the delete command, you may first want to learn
about the undo command, u.

Undoing the Previous Command: the u Command

The command u (short for undo) nullifies the last command and restores any
text changed or deleted by that command. It takes no addresses or arguments.
The format is:

u<CR>

LINE EDITOR TUTORIAL (ed) 171

Deleting Text

One purpose for which the u command is useful is to restore text you have
mistakenly deleted. If you delete all the lines in a file and then type p, ed will
respond with a ? since there are no more lines in the file. Use the u command to
restore them.

1,Sp<CR>
This is the first line.
This is the middle line.
This is the last line.
1,Sd<CR>
p<CR>
?
u<CR>
p<CR>
This is the last line.

Now experiment with u: use it to undo the append command .

• <CR>
This is the only line of text
a<CR>
Add this 6ne<CR>
.<CR>
1,Sp<CR>
This is the only line of text
Add this line
u<CR>
I,Sp<CR>
This is the only line of text

172 USER'S GUIDE

Deleting Text

u cannot be used to undo the write command (w) or the quit command (q).
However, u can undo an undo command (u).

How to Delete in Text Input Mode

While in text input mode, you can correct the current line of input with the
same keys you use to correct a shell command line. By default, there are two
keys available to correct text. The @ sign key kills the current line. The # sign
key backs up over one character on the current line so you can retype it, thus
effectively erasing the original character. (See "Correcting Typing Errors" in
Chapter 2 for details'>

As mentioned in Chapter 2, you can reassign the line kill and character erase
functions to other keys if you prefer. (See "Modifying Your Login Environment"
in Chapter 7 for instructions'> If you have reassigned these functions, you must
use the keys you chose while working in ed; the default keys (@ and #) will no
longer work.

Escaping the Delete Function

You may want to include an @ sign or a # sign as a character of text. To
avoid having these characters interpreted as delete commands, you must precede
them with a \ (backslash), as shown in the following example.

a<CR>
leave San Francisco \@ 20:15 onftight \#347 <CR>
.<CR>
p<CR>
leave San Francisco @ 20:15 an flight #347

LINE EDITOR TUTORIAL (ed) 173

Deleting Text

Figure 5-6 summarizes the ed commands and shell commands for deleting
text in ed.

Command Function

In command mode:

<d> delete one or more lines of text

<u> undo the previous command

<@> delete the current command line

In text input mode:

<@> delete the current line

<I> or
<BACKSPACE> delete the last character typed in

Figure 5-6: Summary of Commands for Deleting Text

174 USER'S GUIDE

Substituting Text

You can modify your text with a substitute command. This command
replaces the first occurrence of a string of characters with new text. The general
command line format is

[address] ,address2]s/ old_text /new _text/[command] < CR >

Each component of the command line is described below.

address] ,address2
The range of lines being addressed by s. The address can be
one line, (address]), a range of lines (address] through
address2), or a global search address. If no address is given,
eel makes the substitution on the current line.

s The substitute command

fold _text The argument specifying the text to be replaced is usually
delimited by slashes, but can be delimited by other charac­
ters such as a ? or a period. It consists of the words or char­
acters to be replaced. The command will replace the first
occurrence of these characters that it finds in the text.

/new _text The argument specifying the text to replace old_text. It is
delimited by slashes or the same delimiters used to specify
the old text. It consists of the words or characters that are
to replace the old_text.

/command Anyone of the following four commands:

LINE EDITOR TUTORIAL (ed) 175

Substituting Text

g

I

o

p

Change all occurrences of old _text on the specified lines.

Display the last line of substituted text, including nonprinting
characters. (See the last section of this chapter, "Other Use­
ful Commands and Information.")

Display the last line of the substituted text preceded by its
numerical line address.

Display the last line of substituted text.

Substituting on the Current Line

The simplest example of the substitute command is making a change to the
current line. You do not need to give a line address for the current line.

sloldJextlnew_textl<CR>

The next example contains a typing error. While the line that contains it is
still the current line, you make a substitution to correct it. The old text is the ai
of airor and the new text is er.

a<CR>
In the beginning, I made an airor .
. <CR>
.p<CR>
In the beginning, I made an airor.
s/ai/er<CR>

Notice that ed gives no response to the substitute command. To verify that
the command has succeeded in this case, you either have to display the line with p
or 0, or include p or 0 as part of the substitute command line. In the following
example, 0 is used to verify that the word file has been substituted for the word
toad.

176 USER'S GUIDE

.p<CR>
This is a test toad
s/toad/file/n<CR>
1 This is a test file

Substituting Text

However, ed allows you one shortcut: it prints the results of the command
automatically, if you omit the last delimiter after the new _text argument:

.p<CR>
This is a test file
s/file/frog < CR>
This is a test frog

Substituting on One Line

To substitute text on a line that is not the current line, include an address in
the command line, as follows:

[addressl]s/old_text/new jext/ <CR>

LINE EDITOR TUTORIAL (ed) 177

Substituting Text

For example, in the following screen the command line includes an address
for the line to be changed Oine 1) because the current line is line 3: '

1,3p<CR>
This is a pest toad

test:i.ng test:i.ng
cane in toad

.<CR>
cane in toad
ls/pest/test<CR>
This is a test toad

As you can see, ed printed the new line automatically after the change was made,
because the last delimiter was omitted.

Substituting on a Range of Lines

You can make a substitution on a range of lines by specifying the first
address (addressl) through the last address (address2).

[addressl,address2]s/old_text/new _text/ <CR>

If ed does not find the pattern to be replaced on a line, no changes are made to
that line.

In the following example, all the lines in the file are addressed for the substi­
tute command. However, only the lines that contain the string es (the old_text
argument) are changed.

118 USER'S GUIDE

1,$p<CR>
This is a test toad
testing testing
cane in toad

testing 1, 2, 3
1,$s/es/ES/n <CR>
4 tESting 1, 2, 3

Substituting Text

When you specify a range of lines and include p or n at the end of the substitute
line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p command
with the address 1,$.

1,$n<CR>
1 This is a tESt toad
2 tESting testing
3 cane in toad

4 tESting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been changed. To
change every occurrence of a pattern, use the g command, described in the next
section.

LINE EDITOR TUTORIAL (ed) 179

Substituting Text

Global Substitution

One of the most versatile tools in ed is global substitution. By placing the g
command after the last delimiter on the substitute command line, you can change
every occurrence of a pattern on the specified lines. Try changing every
occurrence of the string es in the last example. If you are following along, doing
the examples as you read this, remember you can use u to undo the last substitute
command.

u<CR>
1,Sp<CR>
This is a test toad
testing, testinq
ccme in toad
testinq 1, 2, 3
1,Ss/eslES/g<CR>
1,Sp<CR>
This is a tESt toad
tEStinq tEStiIJq
ccme in toad

tESting 1, 2, 3

Another method is to use a global search pattern as an address instead of the
range of lines specified by 1,$.

180 USER'S GUIDE

1,$p<CR>
This is a test toad
testing testing
cane in toad
testing 1, 2, 3
g/test/s/es/ES/g<CR>
1,$p<CR>
This is a tESt toad
tESting tESting
cane in toad
tESting 1, 2, 3

Substituting Text

If the global search pattern is unique and matches the argument old_text (text to
be replaced), you can use an ed shortcut: specify the pattern once as the global
search address and do not repeat it as an old_text argument. ed will remember
the pattern from the search address and use it again as the pattern to be replaced.

gloldJextlsl Inew _text/g<CR>

Whenever you use this shortcut, be sure to include two slashes (II) after the s.

LINE EDITOR TUTORIAL (ed) 181

Substituting Text

1,$p<CR>
This is a test toad
testing testing
cane in toad
testing 1, 2, 3
g/es/s/ /ES/g<CR>
1,$p<CR>
This is a tESt toad
tESting tESting
cane in toad
tESting 1, 2, 3

Experiment with other search pattern addresses:

/pattern<CR>
?pattern<CR>
v/pattern<CR>

See what they do when combined with the substitute command. In the following
example, the v/pattern search format is used to locate lines that do not contain
the pattern testing. Then the substitute command (s) is used to replace the
existing pattern (in.) with a new pattern (out) on those lines.

v/testing/s/in/out<CR>
This is a test toad
cane out toad

182 USER'S GUIDE

Substituting Text

Notice that the line This is a test toad was also printed, even though no
substitution was made on it. When the last delimiter is omitted, all lines found
with the search address are printed, regardless of whether or not substitutions
have been made on them.

Now search for lines that do contain the pattern testing with the g com­
mand.

g/testing/s/ /jumping < CR>
jumping testing"
jumping 1, 2, 3

Notice that this command makes substitutions only for the first occurrence of the
pattern (testing) in each line. Once again, the lines are displayed on your ter­
minal because the last delimiter has been omitted.

LINE EDITOR TUTORIAL (ed) 183

Exercise 4

4-1. In your file towns change town to city on all lines but the line with lit­
tle town on it.

The file should read:

My kind of city is
London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
llost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

4-2. Try using? as a delimiter. Change the current line

Las Vegas

to

Toledo

Because you are changing the whole line, you can also do this by using
the change command, c.

4-3. Try searching backward in the file for the word

lost

and substitute

found

using the? as the delimiter. Did it work?

184 USER'S GUIDE

Exercise 4

4-4. Search forward in the file for

no

and substitute

NO

for it. What happens if you try to use? as a delimiter?

Experiment with the various command combinations available for addressing
a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to substi­
tute Big $ for $ on line 9 of your file. Type:

9s/$/Big $<CR>

What happened?

LINE EDITOR TUTORIAL (ed) 185

Special Characters

If you try to substitute the $ sign in the line

I lost my $ in Las Vegas

you will find that instead of replacing the $, the new text is placed at the end of
the line. The $ is a special character in ed that is symbolic for the end of the line.

ed has several special characters that give you a shorthand for search patterns
and substitution patterns. The characters act as wild cards. If you have tried to
type in any of these characters, the result was probably different than what you
had expected.

The special characters are:

*

.*

Match anyone character.

Match zero or more occurrences of the preceding character.

Match zero or more occurrences of any character following
the period.

Match the beginning of the line.

$ Match the end of the line.

\ Take away the special meaning of the special character that
follows.

& Repeat the old text to be replaced in the new text of the
replacement pattern.

L..1 Match the first occurrence of a character in the brackets.

L . .J Match the first occurrence of a character that is NOT in the
brackets.

186 USER'S GUIDE

Special Characters

In the following example, ed searches for any three-character sequence ending
in the pattern at.

1,$p<CR>
rat
cat
turtle
caw

goat
g/.at<CR>
rat
cat
goat

Notice that the word goat is included because the string oat matches the string
.at.

The * (asterisk) represents zero or more occurrences of a specified character
in a search or substitute pattern. This can be useful in deleting repeated
occurrences of a character that have been inserted by mistake. For example, sup­
pose you hold down the R key too long while typing the word broke. You can use
the * to delete every unnecessary R with one substitution command.

p<CR>
brrroke
slbr*lbr<CR>
broke

LINE EDITOR TUTORIAL (ed) 187

Special Characfers

Notice that the substitution pattern includes the b before the first r. If the b
were not included in the search pattern, the * would interpret it, during the
search, as a zero occurrence of r, make the substitution on it, and quit.
(Remember, only the first occurrence of a pattern is changed in a substitution,
unless you request a global search with g,) The following screen shows how the
substitution would be made if you did not specify both the b and the r before the

*

p<CR>
br=oke
s/r*/r<CR>
rbr=oke

If you combine the period and the *, the combination will match all charac­
ters. With this combination you can replace all characters in the last part of a
line:

p<CR>
Toads are sl:ilny. cold creatures
s/are.*/are wonderful and warm<CR>
Toads are wonderful and warm

188 USER'S GUIDE

Special Characters

The. * can also replace all characters between two patterns.

p<CR>
Toads are slimy, =ld creatures
s/are.*cre/are wonderful and warm cre<CR>
Toads are wonderful aDd wa.nn creatures

If you want to insert a word at the beginning of a line, use the A (circumflex)
for the old text to be substituted. This is very helpful when you want to insert the
same pattern in the front of several lines. The next example places the word all
at the beginning of each line:

1,$p<CR>
creatures great aDd small
things wise aDd wonderful
things bright aDd beautiful
1,$sr/all I<CR>
1,$p<CR>
all creatures great aDd small
all things wise aDd wonderful
all things bright aDd beautiful

The $ sign is useful for adding characters at the end of a line or a range of
lines:

LINE EDITOR TUTORIAL (ed) 189

Special Characters

1,$p<CR>
I love
I need
I use
The IRS wants my

l,$s/$/ money. <CR>
1,$p<CR>
I love m:mey.

I need m:mey.

I use m:mey.

The IRS wants my m:mey.

In these examples, you must remember to put a space after the word all or
before the word noney because ed adds the specified characters to the very begin­
ning or the very end of the sentence. If you forget to leave a space before the
word noney, your file will look like this:

l,$s/$/money/<CR>
1,$p<CR>
I lovem:mey
I needm:mey

I userraney
The IRS wants Il'!YIIOIl€Y

The $ sign also provides a handy way to add punctuation to the end of a line:

190 USER'S GUIDE

I,Sp<CR>
I love uoney
I need uoney
I use uoney
The ms wants II!Y uoney
I,Ss/S/./<CR>
I,Sp/<CR>
I love uoney.
I need uoney.
I use uoney.
The ms wants Il!Y uoney.

Special Characters

Because • is not matching a character (old text), but replacing a character
(new text), it does not have a special meaning. To change a period in the middle
of a line, you must take away the special meaning of the period in the old text.
To do this, simply precede the period with a backslash (\). This is how you take
away the special meaning of some special characters that you want to treat as
normal text characters in search or substitute arguments. For example, the fol­
lowing screen shows how to take away the special meaning of the period:

p<CR>
way to go. Wow!
sl\.I!<CR>
Way to go 1 Wowl

LINE EDITOR TUTORIAL (ed) 191

Special Characten

The same method can be used with the backslash character itself. If you
want to treat a \ as a normal text character, be sure to precede it with a \. For
example, if you want to replace the \ symbol with the word backslash, use the
substitute command line shown in the following screen:

1,2p<CR>
This chapter expla:i.ns

hoW' to use the \.
s/\ \lbackslash~
hoW'to use the backslash.

If you want to add text without changing the rest of the line, the & provides
a useful shortcut. The & (ampersand) repeats the old text in the replacement
pattern, so you do not have to type the pattern twice. For example:

p<CR>
The nean:ierthal skeletal remains
s/thal/ & man's/ < CR>
p<CR>
The nean:ierthal man's skeletal remains

ed automatically remembers the last string of characters in a search pattern
or the old text in a substitution. However, you must prompt ed to repeat the
replacement characters in a substitution with the % sign. The % sign allows you
to make the same substitution on multiple lines without requesting a global substi-

192 USER'S GUIDE

Special Characters

tution. For example, to change the word money to the word gold, repeat the last
substitution from line 1 on line 3, but not on line 4.

1,$n<CR>
1 I love m::mey
2 I need food
3 I use m::mey
4 The IRS wants ~ m::mey
Is/money/gold <CR>
I love gold
3s//% <CR>
I use gold
1,$n<CR>
1 I love gold
2 I need food

3 I use gold
4 The IRS wants ~ m::mey

ed automatically remembers the word noney (the old text to be replaced), so
that string does not have to be repeated between the first two delimiters. The %
sign tells ed to use the last replacement pattern, gold.

ed tries to match the first occurrence of one of the characters enclosed in
brackets and substitute the specified old text with new text. The brackets can be
at any position in the pattern to be replaced.

In the following example, ed changes the first occurrence of the numbers 6,
7, 8, or 9 to 4 on each line in which it finds one of those numbers:

LINE EDITOR TUTORIAL (ed) 193

Special Characters

1,Sp<CR>
~ 33,000
TUesday 75,000
Wednesday 88,000
~y 62,000
1,Ss/[6789114< CR>
~ 33,000
TUesday 45,000
Wednesday 48,000
~sday 42,000

The next example deletes the Mr or Ms from a list of names:

1,Sp<CR>
Mr Artlmr Middleton
Mr Matt Lewis
Ms Anna Kelley
Ms M. L. Hodel
1,SslMlrs) / / <CR>
1,Sp<CR>
Artlmr Middleton
Matt Lewis
Anna Kelley
M. L. Hodel

If a A (circumflex) is the first character in brackets, ed interprets it as an
instruction to match characters that are NOT within the brackets. However, if
the circumflex is in any other position within the brackets, ed interprets it
literally, as a circumflex.

194 USER'S GUIDE

1,$p<CR>
grade A Canputer Science
grade B Robot Design
grade A Boolean Algebra
grade D Jogging

grade C Tennis
l,$s/grade r ABI/grade A < CR>
1,$p<CR>
grade A
grade B

grade A
grade A

grade A

Canputer Science

Robot Design
Boolean Algebra

Jogging
Tennis

Special Characters

Whenever you use special characters as wild cards in the text to be changed,
remember to use a unique pattern of characters. In the above example, if you
had used only

1,$s/rABJ/A<CR>

you would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what happens (or does
not happen) if you use them in different combinations.

Figure 5-7 summarizes the special characters for search or substitute pat­
terns.

LINE EDITOR TUTORIAL (ed) 195

Special Characters

Command Function

. Match anyone character in a search or substitute pattern .

* Match zero or more occurrences of the preceding character
in a search or substitute pattern.

* Match zero or more occurrences of any characters following .
the period.

A Match the beginning of the line in the substitute pattern to
be replaced or in a search pattern.

S Match the end of the line in the substitute pattern to be
replaced.

\ Take away the special meaning of the special character that
follows in the substitute or search pattern.

& Repeat the old text to be replaced in the new text replace-
ment pattern.

% Match the last replacement pattern.

LI Match the first occurrence of a character in the brackets.

L .. I Match the first occurrence of a character that is NOT in the
brackets.

Figure 5-7: Summary of Special Characters

196 USER'S GUIDE

Exercise 5

5-1. Create a file that contains the following lines of text.

A Computer Science
D Jogging
C Tennis

What happens if you try this command line:

1,$s/r ABJI AI <CR>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by the
~.) Do not be afraid to experiment!

5-2. Insert the following line above line 2:

These are not really my grades.

Using brackets and the ~ character, create a search pattern that you can
use to locate the line you inserted. There are several ways to address a
line. When you edit text, use the way that is quickest and easiest for
you.

5-3. Add the following lines to your file:

I love money
I need money
The IRS wants my money

Now use one command to change them to:

It's my money
It's my money
The IRS wants my money

LINE EDITOR TUTORIAL (eel) 197

Exercise 5

Using two command lines, do the following: change the word on the first
line from money to gold, and change the last two lines from money to
gold without using the words money or gold themselves.

5-4. How can you change the line

1020231020

to

10202031020

without repeating the old digits in the replacement pattern?

5-5. Create a line of text containing the following characters.

Substitute a letter for each character. Do you need to use a backslash for
every substitution?

198 USER'S GUIDE

Moving Text

You have now learned to address lines, create and delete text, and make sub­
stitutions. ed has one more set of versatile and important commands. You can
move, copy, or join lines of text in the editing buffer. You can also read in text
from a file that is not in the editing buffer, or write lines of the file in the buffer
to another file in the current directory. The commands that move text are:

m move lines of text

copy lines of text t

j

w

r

join contiguous lines of text

write lines of text to a file

read in the contents of a file

Move Lines of Text

The m command allows you to move blocks of text to another place in the
file. The general format is:

[address1 ,address2]m[address3] <CR>

The components of this command line include:

address 1 ,address2
The range of lines to be moved. If only one line is moved, only
address1 is given. If no address is given, the current line is
moved.

m The move command.

address3 Place the text after this line.

Try the following example to see how the command works. Create a file that
contains these three lines of text:

I want to move this line.
I want the first line
below this line.

LINE EDITOR TUTORIAL (ed) 199

Moving Text

Type:

Im3<CR>

ed will move line 1 below line 3 .

.--- I want to I1OV'e this line.

I want the first line
below this line.

~ I want to nove this line.

The next screen shows how this will appear on your terminal:

1,Sp<CR>
I want to m:we this line.
I want the first line
belOW' this line.
Im3<CR>
1,Sp<CR>
I want the first line
belOW' this line.
I want to m:we this line.

If you want to move a paragraph of text, have address] and address2 define
the range of lines of the paragraph.

In the following example, a block of text Oines 8 through 12) is moved below
line 65. Notice the n command that prints the line numbers of the file:

200 USER'S GUIDE

8,12n<CR>
8
9
10
11
12
64,6Sn<CR>
64
65
8,12m6S<CR>
59,6Sn<CR>
59
60
61
62
63
64
65

This is l:ine 8.
It is the beginning of a
very short paragraph.
This paragraph ends
an this line.

MJve the block of text
beloW' this line.

MJve the block of text
beloW' this line.
This is line 8.
It is the beginning of a
very short paragraph.
This paragraph ends
an this line.

Moving Text

How can you move lines above the first line of the file? Try the following
command.

3,4mO<CR>

When address3 is 0, the lines are placed at the beginning of the file.

Copy Lines of Text

The copy command t (transfer) acts like the m command except that the
block of text is not deleted at the original address of the line. A copy of that
block of text is placed after a specified line of text. The general format of the
command line is also similar.

LINE EDITOR TUTORIAL (ed) 201

Moving Text

The general format of the t command also looks like the m command.

[address1 ,address2Jt[address31 <CR>

address1,address2
The range of lines to be copied. If only one line is copied, only
address1 is given. If no address is given, the current line is
copied.

t The copy command.

address3 Place the copy of the text after this line.

The next example shows how to copy three lines of text below the last line.

Safety procedures:

If there is a fire in the building:
Close the door of the roam to seal off the fire

~eak glass of nearest alarm.
,--- Pull lever.

Locate and use fire extinguisher.

A chemical fire in the lab requires that you

~eak glass of nearest alarm
Pull lever
~te and use fire extinguisher

The commands and ed's responses to them are displayed in the next screen.
Again, the n command displays the line numbers:

202 USER'S GUIDE

Moving Text

5,8n<CR>
5 Close the door of the room, to seal off the fire.
6 Break glass of nearest alarm.
7 Pull lever.
8 Locate and use fire extinguisher.
30n<CR>
30 A chemical fire in the lab requires that you:
6,8t30<CR>
30,$n<CR>
30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm
32 Pull lever
33 Locate and use fire extinguisher
6,8n<CR>
6 Break glass of nearest alarm
7 Pull lever
8 Locate and use fire extinguisher

The text in lines 6 through 8 remains in place. A copy of those three lines is .
placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

The j command joins the current line with the following line. The general
format is:

[address1 ,addressJ]j <CR>

The next example shows how to join several lines together. An easy way of
doing this is to display the lines you want to join using p or D.

LINE EDITOR TUTORIAL (ed) 203

Moving Text

1,2p<CR>
Now is the time to join
the team.
p<CR>
the team.
Ip<CR>
Now is the time to join
j<CR>
p<CR>
Now is the time to jointhe team.

Notice that there is no space between the last word (join.) and the first word
of the next line (the), and the last word (play). You must place a space between
them by using the s command.

Write Lines of Text to a File

is:
The w command writes text from the buffer into a file. The general format

faddress1,address21w f}ilename1 <CR>

address1,address2

w

filename

The range of lines to be placed in another file. If you do not use
address1 or address2, the entire file is written into a new file.

The write command.

The name of the new file that contains a copy of the block of
text.

204 USER'S GUJDE

Moving Text

In the following example the body of a letter is saved in a file called memo, so
that it can be sent to other people.

1,$n<CR>
1

2
3
4
5

March 17, 1986
Dear Kelly,
There will be a meeting in the
green roan at 4:30 P.M. today.
Refreshments will be served.

3,6w memo<CR>
87

The w command places a copy of lines three through six into a new file called
memo. ed responds with the number of characters in the new file.

Problems

The w command overwrites preexisting files; it erases the current file and puts
the new block of text in the file without warning you. If, in our example, a file
called memo had existed before we wrote our new file to that name, the original
file would have been erased.

In "Special Commands," later in this chapter, you will learn how to execute
shell commands from ed. Then you can list the file names in the directory to
make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file
memo. If you try to add lines 13 through 16, the existing lines (3 through 6) will
be erased and the file will contain only the new lines (13 through 16).

LINE EDITOR TUTORIAL (ed) 205

Moving Text

Read in the Contents of a File

The r command can be used to append text from a file to the buffer. The
general format for the read command is:

[address1]r filename <CR>

address 1 The text will be placed after the line address 1. If address 1 is not
given, the file is added to the end of the buffer.

r The read command.

filename The name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file
being edited and new text being read into it.

l,$n<CR>
1

2
3

March 17, 1986
Dear Michael,
Are you free later today?

4 Hope to see you there.
3r memo<CR>
87
3,$n<CR>
3
4
5
6

7

Are you free later today?

There is a meeting in the
green roan at 4:30 P.M. today.

Refreslnnents will be served.
Hope to see you there.

ed responds to the read command with the number of characters in the file being
added to the buffer (in the example, memo).

206 USER'S GUIDE

Moving Text

It is a good idea to display new or changed lines of text to be sure that they
are correct.

Figure 5-8 summarizes the ed commands for moving text.

Command Function

m move lines of text

t copy lines of text

j join contiguous lines

w write text into a new file

r read in text from another file

Figure 5-8: Summary of ed Commands for Moving Text

LINE EDITOR TUTORIAL (ed) 207

Exercise 6

6-1. There are two ways to copy lines of text in the buffer: by issuing the
copy command; or by using the write and read commands to first write
text to a file and then read the file into the buffer.

Writing to a file and then reading the file into the buffer is a longer pro­
cess. Can you think of an example where this method would be more
practical?

What commands can you use to copy lines 10 through 17 of file exer into
the file exer6 at line 7?

6-2. Lines 33 through 46 give an example that you want placed after line 3,
and not after line 32. What command performs this task?

6-3. Say you are on line 10 of a file and you want to join lines 13 and 14.
What commands can you issue to do this?

208 USER'S GUIDE

Other Useful Commands and Information

There are four other commands and a special file that will be useful to you
during editing sessions.

h,H access the help commands, which provide error messages

display characters that are not normally displayed

f

ed.hup

display the current file name

temporarily escape ed to execute a shell command

When a system interrupt occurs, the ed buffer is saved in a spe­
cial file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed responds to some
of your commands with a ? The ? is a diagnostic message issued by ed when it
has found an error. The help commands give you a short message to explain the
reason for the most recent diagnostic.

There are two help commands:

h Display a short error message that explains the reason for the most
recent ?

H Place ed into help mode so that a short error message is displayed every
time the ? appears. (To cancel this request, type HJ

You know that if you try to quit ed without writing the changes in the buffer
to a file, you will get a ? Do this now. When the? appears, type h:

LINE EDITOR TUTORIAL (ed) 209

Other Useful Commands and Information

q<CR>
?

h<CR>
wanrlng: expecting 'w'

The ? is also displayed when you specify a new file name on the ed command
line. Give ed a new file name. When the? appears, type h to find out what the
error message means.

ed newfile<CR>
? newfile

h<CR>
cannot open input file

This message means one of two things: either there is no file called newfile or
there is such a file but ed is not allowed to read it.

As explained earlier, the H command responds to the ? and then turns on the
help mode of ed, so that ed gives you a diagnostic explanation every time the? is
displayed subsequently. To turn off help mode, type H again. The next screen
shows H being used to turn on help mode. Sample error messages are also
displayed in response to some common mistakes:

210 USER'S GUIDE

$ ed newfile < CR>
e newfile < CR>
?newfile
H<CR>
cannot open input file
lheUo<CR>
?
illegal suffix
l,22p<CR>
?
line out of range
a<CR>
I am appending this line to the buffer •
• <CR>
sIS tea party <CR>
?
illegal or missiDJ delimiter
,Ss/S/ tea party<CR>
?
unknown cx:mrand

H<CR>
q<CR>
?
h<CR>
wanrlng: ex;pect:ing 'w'

Other Useful Commands and Information

These are some of the most common error messages that you may encounter dur­
ing editing sessions:

illegal suffix
eel cannot find an occurrence of the search pattern hello because the
buffer is empty.

line out of raDJe
eel cannot print any lines because the buffer is empty or the line specified
is not in the buffer.

LINE EDITOR TUTORIAL (ed) 211

Other Useful Commands and Information

A line of text is appended to the buffer to show you some error messages associ­
ated with the s command.

illegal or missing delimiter
The delimiter between the old text to be replaced and the new text is
missing.

Wlknown carmand
address1 was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off and h is used to determine the meaning of the
last ? While you are learning ed, you may want to leave help mode turned on.
If so, use the H command. However, once you become adept at using ed, you will
only need to see error messages occasionally. Then you can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally display up to
eight spaces (covering the space up to the next tab setting. (Your tab setting may
be more or less than eight spaces. See Chapter 7, "Shell Tutorial," on setting
using stty).

If you want to see how many tabs you have inserted into your text, use the I
(list) command. The general format for the I command is the same as for nand
p.

[address1 ,address2H <CR>

The components of this command line are:

address1,address2

212 USER'S GUIDE

The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
address] is given, only that line will be displayed.

Other Useful Commands and Information

I The command that displays the nonprinting characters
along with the text.

The I command denotes tabs with a > (greater than) character. To type
control characters, hold down the CONTROL key and press the appropriate
alphabetic key. The key that sounds the bell is Ag (control-g). It is displayed as
\07 which is the octal representation (the computer's code) for Ag.

Type in two lines of text that contain a <Ag> (control-g) and a tab. Then
use the I command to display the lines of text on your terminal.

a<CR>
Add a <'g> (control-g) to tbis line.<CR>
Add a <tab> (tab) to this line. <CR>
.<CR>
1,21<CR>
Add a \07 (c:antrol-q) to this line. <CR>
Add a > (tab) to this line.<CR>

Did the bell sound when you typed < Ag> ?

The Current File Name

In a long editing session, you may forget the file name. The f command will
remind you which file is currently in the buffer. Or, you may want to preserve
the original file that you entered into the editing buffer and write the contents of
the buffer to a new file. In a long editing session, you may forget, and acciden­
tally overwrite the original file with the customary wand q command sequence.
You can prevent this by telling the editor to associate the contents of the buffer
with a new file name while you are in the middle of the editing session. This is
done with the f command and a new file name.

LINE EDITOR TUTORIAL (ed) 213

Other Useful Commands and Information

The format for displaying the current file name is f alone on a line:

f<CR>

To see how f works, enter ed with a file. For example, if your file is called oldfile,
ed will respond as shown in the following screen:

ed oldfile<CR>
323

f<CR>
oldfile

To associate the contents of the editing buffer with a new file name use this
general format:

f newfile < CR >

If no file name is specified with the write command, ed remembers the file
name given at the beginning of the editing session and writes to that file. If you
do not want to overwrite the original file, you must either use a new file name
with the write command, or change the current file name using the f command
followed by the new file name. Because you can use f at any point in an editing
session, you can change the file name immediately. You can then continue with
the editing session without worrying about overwriting the original file.

The next screen shows the commands for entering the editor with oldfile and
then changing its name to newfile. A line of text is added to the buffer and then
the write and quit commands are issued.

214 USER'S GUIDE

Other Useful Commands and Information

ell oldfile<CR>
323
f<CR>
oldfile
f newfile < CR >
newfile
a<CR>
Add a line of text. <CR>
.<CR>
w<CR>
343
q<CR>

Once you have returned to the shell, you can list your files and verify the
existence of the new file, newfile. newfile should contain a copy of the contents of
oldfile plus the new line of text.

Escape to the Shell
How can you make sure you are not overwriting an existing file when you

write the contents of the editor to a new file name? You need to return to the
shell to list your files. The! allows you to temporarily return to the shell, execute
a shell command, and then return to the current line of the editor.

The general format for the escape sequence is:

!shell command line<CR>
shell response to the c:cmnand line

When you type the ! as the first character on a line, the shell command must
follow on that same line. The program's response to your command will appear
as the command is running. When the command has finished executing, the !
will be appear alone on a line. This means that that you are back in the editor at
the current line.

LINE EDITOR TUTORIAL (ed) 215

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date,
type ! and the shell command date.

p<CR>
This is the =rent line
! date<CR>
Tue Apr 1 14:24:22 EST 1986
I
p<CR>
This is the =rent line.

The screen first displays the current line. Then the command is given to tem­
porarily leave the editor and display the date. After the date is displayed, you are
returned to the current line of the editor.

If you want to execute more than one command on the shell command line,
see the discussion on ; in the section called "Special Characters" in Chapter 7.

Recovering From System Interrupts

What happens if you are creating text in ed and there is an interrupt to the
system, you are accidentally hung up on the system, or your terminal is
unplugged? When an interrupt occurs, the UNIX system tries to save the con­
tents of the editing buffer in a special file named ed.hup. Later you can retrieve
your text from this file in one of two ways. First, you can use a shell command to
move ed.hup to another file name, such as the name the file had while you were
editing it (before the interrupt). Second, you can enter ed and use the f com­
mand to rename the contents of the buffer. An example of the second method is
shown in the following screen:

216 USER'S GUIDE

ed ed.hup < CR >
928
f myfile < CR >
myfile

Other Useful Commands and Information

If you use the second method to recover the contents of the buffer, be sure to
remove the ed.hup file afterward.

Conclusion
You now are familiar with many useful commands in ed. The commands

that were not discussed in this tutorial, such as G, P, Q and the use of () and { },
are discussed on the ed(l) page of the User's Reference Manual. You can experi­
ment with these commands and try them to see what tasks they perform.

Figure 5-9 summarizes the functions of the commands introduced in this sec­
tion.

LINE EDITOR TUTORIAL (ed) 211

Other Useful Commands and Information

Command Function

h Display a short error message for the preceding diag-
nostic ?

H Turn on help mode. An error message will be given
with each diagnostic? The second H turns off help
mode.

I Display nonprinting characters in the text.

r Display the current file name.

r newfile Change the current file name associated with the edit-
ing buffer to new file.

fcmd Temporarily escape to the shell to execute a shell
command cmd.

ed.hup The editing buffer is saved in ed.hup if the terminal is
hung up before a write command.

Figure 5-9: Summary of Other Useful Commands

218 USER'S GUIDE

Exercise 7

7-1. Create a new file called newfilel. Access ed and change the file's name to
currentl. Then create some text and write and quit ed. Run the Is com­
mand to verify that there is not a file called newfilel in your directory. If
you do the shell command Is, you will see the directory does not contain a
file called newfile1.

7-2. Create a file named filel. Append some lines of text to the file. Leave
append mode but do not write the file. Turn off your terminal. Then
turn on your terminal and log in again. Issue the Is command in the
shell. Is there a new file called ed.hup? Place ed.hup in ed. How can
you change the current file name to filel? Display the contents of the
file. Are the lines the same lines you created before you turned off your
terminal?

7-3. While you are in ed, temporarily escape to the shell and send a mail mes­
sage to yourself.

LINE EDITOR TUTORIAL (ed) 219

Answers to Exercises

Exercise 1

1-2.

1-1.

$ ed junk<CR>
? junk

a<CR>
Hello world. <CR>
.<CR>
w<CR>
12
q<CR>
$

$ ed junk<CR>
12
1,Sp<CR>
Hello world.<CR>
q<CR>
$

220 USER'S GUIDE

Answers to Exercises

The system did not respond with the warning question mark because you did
not make any changes to the buffer.

1-3.

$ ed junk <CR>
12
a<CR>
Wendy's horse came through the window.<CR>
.<CR>
1,Sp<CR>
Hello world.
Wendy's mrse came t:h:rough the window.
q<CR>
?
w stutr<CR>
60
q<CR>
$

LINE EDITOR TUTORIAL (ed) 221

Answers to Exercises

Exercise 2
2-1.

2-2.

$ ed towns<CR>
? towns
a<CR>
My kind of town is<CR>
Chicago <CR>
Like being no where at all in<CR>
Toledo<CR>
I lost those Uttle town blues in<CR>
New York<CR>
I lost my beart in<CR>
San Francisco < CR>
I lost 55 in<CR>
Las Vegas<CR>
.<CR>
w<CR>
164

3<CR>
Like being no where at all in

222 USER'S GUIDE

2-3.

2-4 .

-2,+3p<CR>
My kim. of town is
Chicago

Like being no where at all in
'lbledo
I lost those little town blues in
New York

. =<CR>
6

6<CR>
New York

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 223

Answen to Exercises

2-5.

2-6.

$<CR>
Las Vegas

?town<CR>
I lost those little town blues in
?<CR>
My kind of town is

224 USER'S GUIDE

2-7.

g/in<CR>
My kind of town is
Like being no where at all in
I lost those little town blues in

I lost II'!Y heart in
I lost $$ in

v/in<CR>
Chicago
Toledo

New York

San Francisco
Las Vegas

Exercise 3

3-1.

$ ed ex3<CR>
?ex3
i<CR>
?
q<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 225

Answers to Exercises

The ? after the i means there is an error in the command. There is no
current line before which text can be inserted.

3-2.

$ ed towns <CR>
164
.n<CR>
10
3i<CR>
Illinois < CR >
.<CR>

Las Vegas

.i<CR>
or<CR>
Naperville <CR>
.<CR>
$i<CR>
hotels in < CR >
1,$n<CR>

1 my kind of town is
2 Chicago
3 or
4 Naperville
5 Illinois
6 Like being no where at all in
7 Toledo
8 I lost those little town blues in
9 New York

10 I lost my heart in
11 San Francisco
12 I lost $$ in
13 hotels in
14 Las Vegas

226 USER'S GUIDE

3-3.

3-4 .

1,5n<CR>
1 My kind of town is
2 Chicago

3 or
4 Naperville
5 Illinois
2,5c<CR>
London<CR>
.<CR>
1,3n<CR>
1 My kind of town is
2 Landon
3 Like being no where at all

. <CR>
Like being no where at all
/rol<CR>
Toledo
c<CR>
Peoria<CR>
.<CR>
.<CR>
Peoria

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 227

Answers to Exercises

3-5 .

. <CR>
/New Y/c<CR>
Iron City < CR >
.<CR>
.<CR>
Iron City

Your search string need not be the entire word or line. It only needs to be
unique.

Exercise 4

4-1.

v/little town/s/town/city<CR>
My kind of city is
Landon
Like being no where at all in
Peoria
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

228 USER'S GUIDE

Answers to Exercises

The line

I lost those little town blues in

was not printed because it was NOT addressed by the v command.

4-2 .

4-3.

. <CR>
Las Vegas

s?Las Vegas?Toledo<CR>
Toledo

?Iost?s??found < CR >
I found $$ in

LINE EDITOR TUTORIAL (ed) 229

Answers to Exercises

4-4.

Ino?s??NO<CR>
?
Ino/sl !NO<CR>
Like being 00 where at all in

You cannot mix delimiters such as / and ? in a command line.

The substitution command on line 9 produced this output:

I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

230 USER'S GUIDE

Exercise 5

5-1.

$ ed filel <CR>
? file1
a<CR>
A Computer Science<CR>
D Jogging<CR>
C Tennis<CR>
.<CR>
1,58/1' ABI! AI <CR>
1,$p<CR>
A Ca!q:uter Science

A Jogging
A Tennis
u<CR>

1,$srrABI!A<CR>
1,$p<CR>
A CaIpIter Science
A Jogging

A Tennis

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 231

Answers to Exercises

5-2.

5-3.

2i<CR>
These are not really my grades.<CR>
1,Sp<CR>
A Catplter Science

'!hese are not really lIlY grades.
A Temris
A Jogging
r/AAI<CR>
'!hese are not really lIlY grades
?A'TI<CR>
'!hese are not really lIlY grades

1,Sp<CR>
I love m:mey

I need m:mey

The ms wants lIlY m:mey
g/"I1s/I.*m /It's my m<CR>
It's lIlY m:mey

It's lIlY m:mey

232 USER'S GUIDE

5-4.

5-5.

Is/money /gold < CR>
It's my gold
2,$s//% <CR>
The IRS wants my gold

s/10202/ &O<CR>
10202031020

a<CR>
.\&%'<CR>
.<CR>
s/*/a<CR>
a.\&%A*
s/*/b<CR>
a.\&%Ab

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 233

Answers to Exercises

Because there were no preceding characters, * substituted for itself.

s/\.Ic<CR>
ac\&.%Ab

s/\\ld<CR>
acd&.%Ab

s/&/e<CR>
acde%Ab

s/%/f<CR>
acdefAb

The & and % are only special characters in the replacement text.

s/ \A/g<CR>
acdefgb

Exercise 6

6-1. Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in the
file at those points in the text.

If you want to copy the lines into another file you must write them to a
file and then read that file into the buffer containing the other file.

234 USER'S GUIDE

6-2.

eel exer<CR>
725
10,17 w temp<CR>
210
q<CR>
eel exer6<CR>
305
7r temp<CR>
210

The file temp can be called any file name.

33,46m3<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 235

Answers to Exercises

6-3 .

. =<CR>
10
13p<CR>
This is line 13.
j<CR>
.p<CR>
This is line 13.and line 14.

Remember that. = gives you the current line.

236 USER'S GUIDE

Exercise 7

7-1.

7-2.

$ ed newfilel <CR>
? newfile1
f currentl <CR>
cu=ent1
a<CR>
This is a line of text < CR >
Will it go into newfilel <CR>
or into currentl < CR >
.<CR>
w<CR>
66
q<CR>
$ Is<CR>
bin
cu=ent1

ed filet <CR>
? file1
a<CR>
I am adding text to this file.<CR>
Will it show up in ed.hup?<CR>
.<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 237

Answers to Exercises

Turn off your terminal.

Log in again.

7-3.

ed ed.hup<CR>
58
f filel<CR>
file 1

l,$p<CR>
I am adding text to this file.
Will it show up in ed.hup?

$ ed filel <CR>
58
! mail mylogiu<CR>
You will get mail when<CR>
you are done editing! <CR>
.<CR>

238 USER'S GUIDE

CHAPTER 6: SCREEN EDITOR TUTORIAL (vi)

Introduction
This chapter is a tutorial on the screen editor, vi (short for visual editor).

The vi editor is a powerful and sophisticated tool for creating and editing files. It
is designed for use with a video display terminal which is used as a window
through which you can view the text of a file. A few simple commands allow you
to make changes to the text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows you to move
the cursor to any point on the screen or in the file (by specifying places such as
the beginning or end of a word, line, sentence, paragraph, or file) and create,
change, or delete text from that point. You can also use some line editor com­
mands, such as the powerful global commands that allow you to change multiple
occurrences of the same character string by issuing one command. To move
through the file, you can scroll the text forward or backward, revealing the lines
below or above the current window, as shown in Figure 6-1.

Not all terminals have text scrolling capability; whether or not you can take
advantage of vi's scrolling feature depends on what type of terminal you have.

SCREEN EDITOR TUTORIAL (vi) 239

Introduction

TEXT FILE

You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

This part of the file
is in the display window.

You can edit it.

This part of the file is below
the display window . You can
place it on the screen by
scrolling forward.

Figure 6-1: Displaying a File with a vi Window

240 USER'S GUIDE

Introduction

There are more than 100 commands within vi. This chapter covers the basic
commands that will enable you to use vi simply but effectively. Specifically, it
explains how to do the following tasks:

• set up your terminal so that vi is accessible

• enter vi, create text, delete mistakes, write the text to a file, and quit

• move text within a file

• electronically cut and paste text

• use special commands and shortcuts

• temporarily escape to the shell to execute shell commands

• use line editing commands available within vi

• edit several files in the same session

• recover a file lost by an interruption to an editing session

• change your shell environment to set your terminal configuration and an
automatic carriage return

Suggestions for Reading this Tutorial
As you read this tutorial, keep in mind the notation conventions described in

the Preface. In the screens in this chapter arrows are also used to show the posi­
tion of the cursor.

The commands discussed in each section are reviewed at the end of the sec­
tion. A summary of vi commands is found in Appendix D, where they are listed
by topic. At the end of some sections, exercises are given so you can experiment.
The answers to all the exercises are at the end of this chapter. The best way to
learn vi is by doing the examples and exercises as you read the tutorial. Log in on
the UNIX system when you are ready to read this chapter.

SCREEN EDITOR TUTORIAL (vi) 241

Getting Started

The UNIX system is flexible; it can run on many types of computers and can
be accessed from many kinds of terminals. However, because it is internally
structured to be able to operate in so many ways, it needs to know what kind of
hardware is being used in a given situation.

In addition, the UNIX system offers various optional features for using your
terminal that you mayor may not want to incorporate into your computing ses­
sion routine. Your choice of these options, together with your hardware
specifications, comprise your login environment. Once you have set up your login
environment, the shell implements these specifications and options automatically
every time you log in.

This section describes two parts of the login environment: setting the terminal
configuration, which is essential for using vi properly, and setting the wrapmargin,
or automatic (carriage) RETURN, which is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration. This simply
means that you tell the UNIX system what type of terminal you are using. This
is necessary because the software for the vi editor is executed differently on
different terminals.

Each type of terminal has several code names that are recognized by the
UNIX system. Appendix F, "Setting Up the Terminal," tells you how to find a
recognized name for your terminal.· Keep in mind that many computer installa­
tions add terminal types to the list of terminals supported by default in your
UNIX system. It is a good idea to check with your local system administrator for
the most up-to-date list of available terminal types.

To set your terminal configuration, type

TERM = terminal name<CR>
export TERM <CR>
tput init<CR>

The first line puts a value (a terminal type) in a variable called TERM. The
second line exports this value; it conveys the value to all UNIX system programs
whose execution depends on the type of terminal being used.

242 USER'S GUIDE

Getting Started

The tput command on the third line initializes (sets up) the software in your
terminal so that it functions properly with the UNIX system. It is essential to
run the tput init command when you are setting your terminal configuration
because terminal functions such as tab settings will not work properly unless you
do.

For example, if your terminal is a Teletype 5425 this is how your commands
will appear on the screen.

$ TERM=S42S<CR>
$ export TERM < CR>
$tp~elt:>

Do not experiment by entering names for terminal types other than your ter­
minal. This might confuse the UNIX system, and you may have to log off, hang
up, or get help from your system administrator to restore your login environment.

Changing Your Environment

If you are going to use vi regularly, you should change your login environment
permanently so you do not have to configure your terminal each time you log in.
Your login environment is controlled by a file in your home directory called
.profile. (This file, pronounced dot profile, does not exist in the file system; you
must create it. For details, see Chapter 7.)

If you specify the setting for your terminal configuration in your .profile, your
terminal will be configured automatically every time you log in. You can do this
by adding the three lines shown in the last screen (the TERM assignment, export
command, and tput command) to your .profile. (For detailed instructions, see
Chapter 7.)

SCREEN EDITOR TUTORIAL (vi) 243

Getting Started

Setting the Automatic RETURN

To set an automatic RETURN you must know how to create a file. If you are
familiar with another text editor, such as ed, follow the instructions in this sec­
tion. If you do not know how to use an editor but would like to have an
automatic RETURN setting, skip this section for now and return to it when you
have learned the basic skills taught in this chapter.

If you want the RETURN key to be entered automatically, create a file
called .exrc in your home directory. You can use the .exrc file to contain options
that control the vi editing environment. (For details about the .exrc file, see the
Editing Guide or Editing Utilities Guide.)

To create a .exrc file, enter an editor with that file name. Then type in one
line of text: a specification for the wrapmargin (automatic carriage return)
option. The format for this option specification is

wm==n<CR>

n represents the number of characters from the righthand side of the screen where
you want an automatic carriage return to occur. For example, say you want a
carriage return at twenty characters from the righthand side of the screen. Type

wm=20<CR>

Finally, write the buffer contents to the file and quit the editor (see "Text Editing
Buffers" in Chapter 4). The next time you log in, this file will give you an
automatic RETURN.

To check your settings for the terminal and wrapmargin' when you are in vi,
enter the command

:set<CR>

vi will report the terminal type and the wrapmargin, as well as any other options
you may have specified. You can also use the :set command to create or change
the wrapmargin option. Try experimenting with it.

244 USER'S GUIDE

Creating a File

First, enter the editor; type vi and the name of the file you want to create or
edit.

vifilename<CR>

For example, say you want to create a file called stuff. When you type the vi
command with the file name stuff, vi clears the screen and displays a window in
which you can enter and edit text.

"stuff" [New file]

The _ (underscore) on the top line shows the cursor waiting for you to enter
a command there. (On video display terminals the cursor may be a blinking
underscore or a reverse color block.) Every other line is marked with a - (tilde),
the symbol for an empty line.

If, before entering vi, you have forgotten to set your terminal configuration or
have set it to the wrong type of terminal, you will see an error message instead.

SCREEN EDITOR TUTORIAL (vi) 245

Creating a File

$ vi stuff<CR>
terminal_name: unknown terminal type

[Using open node]

"stuff" [New file]

You cannot set the terminal configuration while you are in the editor; you must be
in the shell. Leave the editor by typing

: q<CR>

Then set the correct terminal configuration.

How to Create Text: the Append Mode

If you have successfully entered vi, you are in command mode and vi is wait­
ing for your commands. How do you create text?

• Press the A key «a» to enter the append mode of vi. (Do not press the
RETURN key.) You can now add text to the file. (An A is not printed on
the screen.)

• Type in some text.

• To begin a new line, press the RETURN key.

If you have specified the wrapmargin option in a .exrc file, you will get a
new line whenever you get an automatic RETURN (see "Setting the
Automatic RETURN").

246 USER'S GUIDE

Creating a File

How to Leave Append Mode

When you finish creating text, press the ESCAPE key to leave append mode
and return to command mode. Then you can edit any text you have created or
write the text in the buffer to a file.

<a>Create some text<CR>
in the screen editor<CR>
and return to < CR >
command mode.<ESC>

If you press the ESCAPE key and a bell sounds, you are already in command
mode. The text in the file is not affected by this, even if you press the ESCAPE
key several times.

SCREEN EDITOR TUTORIAL (vi) 247

Editing Text: the Command Mode

To edit an existing file you must be able to add, change, and delete text.
However, before you can perform those tasks you must be able to move to the
part of the file you want to edit. vi offers an array of commands for moving from
page to page, between lines, and between specified points inside a line. These
commands, along with commands for deleting and adding text, are introduced in
this section.

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the screen
where you will begin the correction. This is easily done with four keys that are
grouped together on the keyboard: h, j, k, and 1.

<h> moves the cursor one character to the left

<j> moves the cursor down one line

<k> moves the cursor up one line

<I> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the cursor. For
example, if the cursor is on the seventh character from the left, when you type
<j> or <k> it goes to the seventh character on the new line. If there is no
seventh character on the new line, the cursor moves to the last character.

Many people who use vi find it helpful to mark these four keys with arrows
showing the direction in which each key moves the cursor.

248 USER'S GUIDE

Editing Text: the Command Mode

Some terminals have special cursor control keys that are marked with arrows.
Use them in the same way you use the <h>, <j>, <k>, and <1> commands.

Watch the cursor on the screen while you press the keys <h>, <j>, <k>,
and <I>. Instead of pressing a motion command key a number of times to move
the cursor a corresponding number of spaces or lines, you can precede the com­
mand with the desired number. For example, to move two spaces to the right,
you can press <I> twice or enter <21>. To move up four lines, press <k>
four times or enter <4k>. If you cannot go any farther in the direction you
have requested, vi will sound a bell.

Now experiment with the j and k motion commands. First, move the cursor
up seven lines. Type

<7k>

SCREEN EDITOR TUTORIAL (vi) 249

Editing Text: the Command Mode

The cursor will move up seven lines above the current line. If there are less than
seven lines above the current line, a bell will sound and the cursor will remain on
the current line.

Now move the cursor down thirty-five lines. Type

<35j>

vi will clear and redraw the screen. The cursor will be on the thirty-fifth line
below the current line, appearing in the middle of the new window. If there are
less than thirty-five lines below the current line, the bell will sound and the cursor
will remain on the current line. Watch what happens when you type the next
command.

<35k>

Like most vi commands, the <h>, <j>, <k>, and <I> motion commands
are silent; they do not appear on the screen as you enter them. The only time you
should see characters on the screen is when you are in append mode and are
adding text to your file. If the motion command letters appear on the screen, you
are still in append mode. Press the ESCAPE key to return to command mode
and try the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <I>, the space bar and
the BACKSPACE key can be used to move the cursor right or left to a character
on the current line.

<space bar> move the cursor one character to the right

<nspace bar> move the cursor n characters to the right

<BACKSPACE> move the cursor one character to the left

<nBACKSPACE> move the cursor n characters to the left

Try typing in a number before the command key. Notice that the cursor
moves the specified number of characters to the left or right. In the example
below, the cursor movement is shown by the arrows.

250 USER'S GUIDE

Editing Text: the Command Mode

To move the cursor quickly to the right or left, prefix a number to the com­
mand. For example, suppose you want to create four columns in your screen.
After you've finished typing the headings for the first three columns, you notice a
typing mistake.

Column 1 Column 2 oolumn

t
<ESC>

You want to correct your mistake before continuing. Exit insert mode and return
to command mode by pressing the ESCAPE key; the cursor will move to the D.

Then use the <h> command to move back five spaces.

Column 1 Column 2 oolumn

t
<5h>

Column 1 Column 2 oolumn

t
<x> <i>C<ESC>

SCREEN EDITOR TUTORIAL (vi) 2S 1

Editing Text: the Command Mode

Erase the c by typing <x>. Then change to insert mode «i», enter a C, fol­
lowed by pressing the ESCAPE key. Use the <I> motion command to return to
your earlier position.

Column 1 Column 2 Column

t
<51>

Column 1 Column 2 Column

t

By now you may have discovered that you can move the cursor back and
forth on a line by using the space bar and the BACKSPACE key.

<space bar> move the cursor one character to the right

<nspace bar> move the cursor n characters to the right

<BACKSPACE> move the cursor one character to the left

<nBACKSPACE> move the cursor n characters to the left

Again, you can specify a multiple space movement by typing a number before
pressing the space bar or BACKSPACE key. The cursor will move the number of
characters you request to the left or right.

252 USER'S GUIDE

Editing Text: the Command Mode

How to Delete Text

If you want to delete a character, move the cursor to that character and press
the <x>. Watch the screen as you do so; the character will disappear and the
line will readjust to the change. To erase three characters in a row, press <x>
three times. In the following example, the arrows under the letters show the posi­
tions of the cursor.

<x>

<nx>

delete one character

delete n characters, where n is the number of characters
you want to delete

Hello world!

t
<x>

Hello wrld!

Now try preceding <x> with the number of characters you want to delete.
For example, delete the second occurrence of the word deep from the text shown
in the following screen. Put the cursor on the first letter of the string you want to
delete, and delete five characters (for the four letters of deep plus an extra
space).

SCREEN EDITOR TUTORIAL (vi) 253

Editing Text: the Command Mode

TaIorrow the I£x:h Ness m::mster
shall slither forth fran
the deep dark deep depths of the lake.

t
<Sx>

Tatorrow the I£x:h Ness m::mster
shall slither forth fran
the deep dark depths of the lake.

t
<Sx>

Notice that vi adjusts the text so that no gap appears in place of the deleted
string. If, as in this case, the string you want to delete happens to be a word, you
can also use the vi command for deleting a word. This command is described
later in the section "Word Positioning."

254 USER'S GUIDE

Editing Text: the Command Mode

How to Add Text

There are two basic commands for adding text: the insert «i» and append
«a» commands. To add text with the insert command at a point in your file
that is visible on the screen, move the cursor to that point by using <h>, <j>,
<k>, and <I>. Then press <i> and start entering text. As you type, the new
text will appear on the screen to the left of the character on which you put the
cursor. That character and all characters to the right of the cursor will move
right to make room for your new text. The vi editor will continue to accept the
characters you type until you press the ESCAPE key. If necessary, the original
characters will even wrap around onto the next line.

Hello Wrld!

t
<i>o

HeIl.Q Worldl

t
<ESC>

You can use the append command in the same way. The only difference is
that the new text will appear to the right of the character on which you put the
cursor.

Later in this tutorial you will learn how to move around on the screen or
scroll through a file to add or delete characters, words, or lines.

SCREEN EDITOR TUTORIAL (vi) 255

Quitting vi

When you have finished your text, you will want to write the buffer contents
to a file and return to the shell. To do this, hold down the SHIFT key and press
Z twice « zz >). The editor remembers the file name you specified with the vi
command at the beginning of the editing session, and moves the buffer text to the
file of that name. A notice at the bottom of the screen gives the file name and the
number of lines and characters in the file. Then the shell gives you a prompt.

<a>Tbis is a test file. <CR>
I am adding text to<CR>
a temporary buffer and<CR>
now it is perfect.<CR>
I want to write tbis file, < CR >
and return to tbe sbell.<ESC> <ZZ>

"stuff" [New file] 7 lines, 151 characters
$

You can also use the :w and :q commands of the line editor for writing and
quitting a file. (I.,iJle,J<gjjQL~Q,mma.ru!S begin with a colon and appear on the bot­
tom line of the screen.) The :w command writes the buffer to a file. The:q
command leaves the editor and returns you to the shell. You can type these com­
mands separately or combine them into the single command :wq. It is easier to
combine them.

256 USER'S GUIDE

< a> This is a test file. < CR>
I am adding text to<CR>
a temporary buffer and<CR>
now it is perfect.<CR>
I want to write this file,<CR>
and return to the shell.<ESC>

:wq<CR>

QuiHing vi

SCREEN EDITOR TUTORIAL (vi) 257

Quitting vi

Figure 6-2 summarizes the basic commands you need to enter and use vi.

Command Function

TERM = terminal name
export TERM set the terminal configuration

tput init initialize the terminal as defined by terminal_name

vi filename enter vi editor to edit the file called filename

< a > add text after the cursor

<h> move one character to the left

<j> move down one line

<k> move up one line

<I> move one character to the right

<x> delete a character

< CR > carriage return

<ESC> leave append mode, and return to vi
command mode

:w write to a file

:q quit vi

:wq write to a file and quit vi

<ZZ> write to a file and quit vi

Figure 6-2: Summary of Commands for the vi Editor

258 USER'S GUIDE

Exercise 1

Answers to the exercises are given at the end of this chapter. However, keep
in mind that there is often more than one way to perform a task in vi. If your
method works, it is correct.

As you give commands in the following exercises, watch the screen to see how
it changes or how the cursor moves.

1-1. If you have not logged in yet, do so now. Then set your terminal
configuration.

1-2. Enter vi and append the following five lines of text to a new file called
exerl.

This is an exercise!
Up, down,
left, right,
build your terminal's
muscles bit by bit

1-3. Move the cursor to the first line of the file and the seventh character from
the right. Notice that as you move up the file, the cursor moves in to the
last letter of the file, but it does not move out to the last letter of the next
line.

1-4. Delete the seventh and eighth characters from the right.

1-5. Move the cursor to the last character on the last line of the text.

1-6. Append the following new line of text:

and byte by byte

1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file exert.
What does the notice at the bottom of the screen say once you have reen­
tered vi to edit exert?

SCREEN EDITOR TUTORIAL (vi) 259

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>, <j>, <k>,
<I>, BACKSPACE key, and the space bar. There are several other commands
that can help you move the cursor quickly around the screen. This section
explains how to position the cursor in the following ways:

• by characters on a line

• by lines

• by text objects

o words

o sentences

o paragraphs

• in the window

There are also commands that position the cursor within parts of the vi editing
buffer that are not visible on the screen. These commands will be discussed in the
next section, "Positioning the Cursor in Undisplayed Text."

To follow this section of the tutorial, you should enter vi with a file that con­
tains at least forty lines. If you do not have a file of that length, create one now.
Remember, to execute the commands described here, you must be in command
mode of vi. Press the ESCAPE key to make sure that you are in command mode
rather than append mode.

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a line.

• by moving the cursor right or left to a character

• by specifying the character at either end of the line

• by searching for a character on a line

The first method was discussed earlier in this chapter under "Moving the Cursor
to the Right or Left." The following sections describe the other two methods.

260 USER'S GUIDE

Moving the Cursor Around the Screen

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using one of three
commands that put the cursor on the first or last character of a line.

<$> puts the cursor on the last character of a line

<0> (zero) puts the cursor on the first character of a line

< A> (circumflex) puts the cursor on the first nonblank character of a line

The following examples show the movement of the cursor produced by each of
these three commands.

Go to the end of the line!

t
<$>

Go to the end of the line!

t

SCREEN EDITOR TUTORIAL (vi) 261

Moving the Cursor Around the Screen

Go to the begirming of the line!

t
<0>

Go to the begirming of the line!

t

Go to the first character
of the line

that is not blank!

t
<'>

Go to the first character
of the line

that is not blank!

t

262 USER'S GUIDE

Moving the Cursor Around the Screen

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a specific char­
acter on the current line. If the character is not found on the current line, a bell
sounds and the cursor does not move. (There is also a command that searches a
file for patterns. This will be discussed in the next section.) There are six com­
mands you can use to search within a line: <f>, <F>, <t>, <T>, <;>, and
<.>. You must specify a character after all of them except the <;> and <.>
commands.

<fx> Move the cursor to the right to the specified character x.

<Fx> Move the cursor to the left to the specified character x.

<tx> Move the cursor right to the character just before the specified char­
acter x.

<Tx> Move the cursor left to the character just after the specified character
x.

<;> Continue the search specified in the last command, in the same direc­
tion. The; remembers the character and seeks out the next
occurrence of that character on the current line.

<.> Continue the search specified in the last command, in the opposite
direction. The. remembers the character and seeks out the previous
occurrence of that character on the current line.

For example, in the following screen vi searches to the right for the first
occurrence of the letter A on the current line.

SCREEN EDITOR TUTORIAL (vi) 263

Moving the Cursor Around the Screen

Go fozward to the letter A on this line.

t
<fA>

Go fozward to the letter A on this line.

t

Try the search commands on one of your files.

Line Positioning

Besides the <j> and <k> commands that you have already used, the
< +>, <->, and <CR> commands can be used to move the cursor to other
lines.

The Minus Sign Motion Command
The <-> command moves the cursor up a line, positioning it at the first non­

blank character on the line. To move more than one line at a time, specify the
number of lines you want to move before the <-> command. For example, to
move the cursor up thirteen lines, type:

<13->

The cursor will move up thirteen lines. If some of those lines are above the
current window, the window will scroll up to reveal them. This is a rapid way to
move quickly up a file.

Now try to move up 100 lines. Type:

<100->

What happened to the window? If there are less then 100 lines above the current
line a bell will sound, telling you that you have made a mistake, and the cursor
will remain on the current line.

264 USER'S GUIDE

Moving the Cursor Around the Screen

The Plus Sign Motion Command

The plus sign command « + » or the < CR > command moves the cursor
down a line. Specify the number of lines you want to move before the < + >
command. For example, to move the cursor down nine lines, type:

<9+>

The cursor will move down nine lines. If some of those lines are below the current
screen, the window will scroll down to reveal them.

Now try to do the same thing by pressing the RETURN key. Were the resu­
lts the same as when you pressed the + key?

Word Positioning

The vi editor considers a word to be a string of characters that may include
letters, numbers, or underscores. There are six word positioning commands:
<w>, , <e>, <W>, , and <E>. The lower case commands
«w>, , and <e» treat any character other than a letter, digit, or under­
score as a delimiter, signifying the beginning or end of a word. Punctuation
before or after a blank is considered a word. The beginning or end of a line is
also a delimiter.

The upper case commands «W>, , and <E» treat punctuation as
part of the word; words are delimited by blanks and newlines only.

The following is a summary of the word positioning commands.

< W > Move the cursor forward to the first character in the next word. You
may press <w> as many times as you want to reach the word you
want, or you can prefix the necessary number to the <w>.

<nw> Move the cursor forward n number of words to the first character of
that word. The end of the line does not stop the movement of the
cursor; instead, the cursor wraps around and continues counting
words from the beginning of the next line.

SCREEN EDITOR TUTORIAL (vi) 265

Moving the Cursor Around the Screen

The < w > ocmnand

leaps ~ by ~ through the

file. Move fran THIS ~ forward

t
<6w>

six ~ to THIS ~.

t

The < w > ocmnand
leaps ~ by ~ through the

file. Move fran THIS ~ forward
six ~ to THIS ~.

t

<W> Ignore all punctuation and move the cursor forward to the word after
the next blank.

<e> Moves the cursor forward in the line to the last character in the next
word.

266 USER'S GUIDE

Go forward one \'lOrd to the end of
the next \'lOrd in this line

t
<e>

Go forward one \'lOrd to the end of
the next word in this line

t

Moving the Cursor Around the Screen

Go to the end of the third word after the =ent word.

t
<3e>

SCREEN EDITOR TUTORIAL (vi) 267

Moving the Cursor Around the Screen

Go to the end of the third word after the cu=ent 'WOrd.

t

<E> Ignores all punctuation except blanks, delimiting words only by
blanks.

 Move the cursor backward in the line to the first character of the pre­
vious word.

<nb> Move the cursor backward n number of words to the first character
of the nth word. The command does not stop at the beginning
of a line, but moves to the end of the line above and continues mov­
ing backward.

 Can be used just like the command, except that it delimits the
word only by blank spaces and newlines. It treats all other punctua­
tion as letters of a word.

Leap backward word by word tl=gh

the file. Go back four words fran here.

t
<4b>

268 USER'S GUIDE

Moving the Cursor Around the Screen

the file. Go back four words fran here.

t

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence ends in ! or . or ?
If these delimiters appear in the middle of a line, they must be followed by two
blanks for vi to recognize them. You should get used to the vi convention of
recognizing two blanks after a period as the end of a sentence, because it is often
useful to be able to operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file with the < (>
(open parenthesis) and <) > (close parenthesis) commands.

< (> Move the cursor to the beginning of the current sentence.

< n(> Move the cursor to the beginning of the nth sentence above the
current sentence.

<) > Move the cursor to the beginning of the next sentence.

< n) > Move the cursor to the beginning of the nth sentence below the
current sentence.

The example in the following screens shows how the open parenthesis moves
the cursor around the screen.

SCREEN EDITOR TUTORIAL (vi) 269

Moving the Cursor Around the Screen

Suddenly we spotted whales in the

distance. Daniel was the first to see them.

t
«>

distance. Daniel was the first to see them.

t

Now repeat the command. preceding it with a number. For example. type:

<3(> (or)
<5»

Did the cursor move the correct number of sentences?

270 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line. If you want
to be able to move the cursor to the beginning of a paragraph (or later in this
tutorial, to delete or change a whole paragraph), then make sure each paragraph
ends in a blank line.

<{>

<of>

<}>

<oJ>

Move the cursor to the beginning of the current paragraph,
which is delimited by a blank line above it.

Move the cursor to the beginning of the nth paragraph above
the current paragraph.

Move the cursor to the beginning of the next paragraph.

Move the cursor to the nth paragraph below the current line.

The following two screens show how the cursor can be moved to the beginning
of another paragraph.

SUddenly, we spotted whales in the
distance. Daniel was the first to see them.

t
<}>

"Hey lookl Here cane the whales!" he cried excitedly.

SCREEN EDITOR TUTORIAL (vi) 271

Moving the Cursor Around the Screen

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey look I Here cane the whalesl" he cried excitedly.

Positioning in the Window

The vi editor also provides three commands that help you position yourself in
the window. Tryout each command. Be sure to type them in upper case.

<H>

<M>

<L>

272 USER'S GUIDE

Move the cursor to the first line on the screen.

Move the cursor to the middle line on the screen.

Move the cursor to the last line on the screen.

This part of the file is
above the display window.

Moving the Cursor Around the Screen

Type <H> (HOME) to move the cursor here.

t

Type <M> (MIDDLE) to move the cursor here.

t
Type <L> (LAST line on screen) to move t the cursor here.

This part of the file is
below the display window.

Figures 6-3 through 6-6 summarize the vi commands for moving the cursor
by positioning it on a character, line, word, sentence, paragraph, or position on the
screen. (Additional vi commands for moving the cursor are summarized in Figure
6-7, later in the chapter.)

SCREEN EDITOR TUTORIAL (vi) 273

Moving the Cursor Around the Screen

<h>

<I>

<BACKSPACE>

<space bar>

<fx>

<Fx>

<tx>

<Tx>

<;>

<,>

Positioning on a Character

Move the cursor one character to the left.

Move the cursor one character to the right.

Move the cursor one character to the left.

Move the cursor one character to the right.

Move the cursor to the right to the specified char­
acter x.

Move the cursor to the left to the specified char­
acter x.

Move the cursor to the right, to the character just
before the specified character x.

Move the cursor to the left, to the character just
after the specified character x.

Continue searching in same direction on the line
for the last character requested with <f>, <F>,
<t>, or <T>. The ; remembers the character
and finds the next occurrence of it on the current
line.

Continue searching in opposite direction on the
line for the last character requested with <f>,
<F>, <t>, or <T>. The , remembers the
character and finds the next occurrence of it on
the current line.

Figure 6-3: Summary of vi Motion Commands (Sheet 1 of 4)

274 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning on a Line

<k> Move the cursor up to the same column in the previ-
ous line (if a character exists in that column).

<j> Move the cursor down to the same column in the next
line (if a character exists in that column).

<-> Move the cursor up to the beginning of the previous
line.

<+> Move the cursor down to the beginning of the next
line.

<CR> Move the cursor down to the beginning of the next
line.

Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4)

SCREEN EDITOR TUTORIAL (vi) 275

Moving the Cursor Around the Screen

Positioning on a Word

<w> Move the cursor forward to the first character in the
next word.

<W> Ignore all punctuation and move the cursor forward to
the next word delimited only by blanks.

 Move the cursor backward one word to the first char-
acter of that word.

 Move the cursor to the left one word, which is delim-
ited only by blanks.

<e> Move the cursor to the end of the current word.

<E> Delimit the words by blanks only. The cursor is
placed on the last character before the next blank
space, or end of the line.

Figure 6-5: Summary of vi Motion Commands (Sheet 3 of 4)

276 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning on a Sentence

«> Move the cursor to the beginning of the current sen-
tence.

<» Move the cursor to the beginning of the next sentence.

Positioning on a Paragraph

<{> Move the cursor to the beginning of the current para-
graph.

<}> Move the cursor to the beginning of the next para-
graph.

Positioning in the Window

<H> Move the cursor to the first line on the screen (the
home position).

<M> Move the cursor to the middle line on the screen.

<L> Move the cursor to the last line on the screen.

Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4)

SCREEN EDITOR TUTORIAL (vi) 277

Positioning the Cursor in Undisplayed Text

How do you move the cursor to text that is not shown in the current editing
window? One option is to use the <20j> or <20k> command. However, if you
are editing a large file, you need to move quickly and accurately to another place
in the file. This section covers those commands that can help you move around
within the file in the following ways:

• by scrolling forward or backward in the file

• by going to a specified line in the file

• by searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The <Af> {control-O
and <Ad> (control-d) commands scroll the screen forward. The <Ab>
(control-b) and < AU> (control-u) commands scroll the screen backward.

The Control-f Command

The <Af> (control-f) command scrolls the text forward one full window of
text below the current window. To do this vi clears the screen and redraws the
window. The three lines that were at the bottom of the current window are
placed at the top of the new window. If there are not enough lines left in the file
to fill the window, the screen displays a - (tilde) to show that there are empty
lines.

vi clears and redraws the screen as follows:

278 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

These last three lines of the current
window become the first two lines of
the new window.

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
display window.

The Control-d Command

The < ~d> (control-d) command scrolls down a half screen to reveal text
below the window. When you type < ~d>, the text appears to be rolled up at the
top and unrolled at the bottom. This allows the lines below the screen to appear
on the screen, while the lines at the top of the screen disappear. If there are not
enough lines in the file, a bell will sound.

The Control-b Command

The <~b> (control-b) command scrolls the screen back a full window to
reveal the text above the current window. To do this, vi clears the screen and
redraws the window with the text that is above the current screen. Unlike the
<~f> command, <~b> does not leave any reference lines from the previous win­
dow. If there'are not enough lines above the current window to fill a full new
window, a bell will sound and the current window will remain on the screen.

SCREEN EDITOR TUTORIAL (vi) 279

Positioning the Cursor in Undisplayed Text

This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is re­
drawn with the text above the window.

Now try scrolling backward. Type

<Ab>

vi clears the screen and draws a new screen.

280 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the
window.

Any text that was in the display window is placed below the current window.

The Control-u Command

The <AU> (control-u) command scrolls up a half screen of text to reveal the
lines just above the window. The lines at the bottom of the window are erased.
Now scroll down in the text, moving the portion below the screen into the window.
Type:

<AU>

When the cursor reaches the top of the file, a bell sounds to notify you that the
file cannot scroll further.

Go to a Specified Line

The <G> command positions the cursor on a specified line in the window; if
that line is not currently on the screen, <G> clears the screen and redraws the
window around it. If you do not specify a line, < G > goes to the last line of the
file.

SCREEN EDITOR TUTORIAL (vi) 281

Positioning the Cursor in Undisplayed Text

< G> go to the last line of the file

< nG > go to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and type
<Ag>. The <Ag> command gives you a status notice at the bottom of the
screen which tells you:

• the name of the file

• if the file has been modified

• the line number on which the cursor rests

• the total number of lines in the buffer

• the percentage of the total lines in the buffer represented by the current
line

This line is the 35th line of the buffer.
The =sor is an this line.

t
<Ag>

There are several rrore lines in the

buffer.
The last line of the buffer is line 116.

282 USER'S GUIDE

This line is the 35th line of the buffer.
The cursor is an this line.

There are several nore lines in the
buffer.
The last line of the buffer is line 116.

Positioning the Cursor in Undisplayed Text

"file.name" [rrodifiedl line 36 of 116 --34ro--

Searching for a Pattern of Characters: the / and?
Commands

The fastest way to reach a specific place in your text is by using one of the
search commands: I,?, <0>, or <N>. These commands allow you to search
forward or backward in the buffer for the next occurrence of a specified character
pattern. The I and ? commands are not silent; they appear as you type them,
along with the search pattern, on the bottom of the screen. The <0> and <N>
commands, which allow you to repeat the requests you made for a search with a I
or ? command, are silent.

The I, followed by a pattern Upattern), searches forward in the buffer for the
next occurrence of the characters in pattern, and puts the cursor 00 the first of
those characters. For example, the command line

IHello world < CR >
finds the next occurrence in the buffer of the words Hello world and puts the cur­
sor under the H.

The ?, followed by a pattern (?pattern), searches backward in the buffer for
the first occurrence of the characters in pattern, and puts the cursor on the first of
those characters. For example, the command line

?data set desigo<CR>

SCREEN EDITOR TUTORIAL (vi) 283

Positioning the Cursor in Undisplayed Text

finds the last occurrence in the buffer (before your current position) of the words
data set desigo and puts the cursor under the d in data. .

These search commands do not wrap around the end of a line while searching
for two words. For example, say you are searching for the words Hello 'IlOrld.
If Hello is at the end of one line and world is at the beginning of the next, the
search command will not find that occurrence of Hello W:>rld.

However, they do wrap around the end or the beginning of the buffer to con­
tinue a search. For example, if you are near the end of the buffer, and the pat­
tern for which you are searching (with the /pattern command) is at the top of the
buffer, the command will find the pattern.

The <0> and <N> commands allow you to continue searches you have
requested with /pattern or ?pattern without retyping them.

<0> Repeat the last search command.

<N> Repeat the last search command in the opposite direction.

For example, say you want to search backward in the file for the three-letter pat­
tern the. Initiate the search with ?the and continue it with <0>. The following
screens offer a step-by-step illustration of how the <0> searches backward
through the file and finds four occurrences of the character string the.

SUddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey lookl Here ccme the whalesl" he cried excitedly.

?the

284 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

SUddenly, we spotted whales in the
distance. Daniel was the first to see them •
• P

"Hey look! Here cane the whales!" he cried excitedly.

t
(1)

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey look! Here cane the whales!" he cried excitedly.

t
<0>

SCREEN EDITOR TUTORIAL (vi) 285

Positioning the Cursor in Undisplayed Text

Suddenly, we spatted whales in the

distance. Daniel was the first to see them.

t
"Hey look! Here cane the whales!" he cried excitedly.

Suddenly, we spatted whales in the

distance. Daniel was the first to see them.

t
<0>

"Hey look! Here cane the whales!" he cried excitedly.

286 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

SUddenly, we spotted whales in the

distance. Daniel was the first to see them.

t
"Hey look I Here cane the whales!" he =ied excitedly.

SUddenly, we sp:>tted whales in the

distance. Daniel was the first to see them.

t
<0>

.P
"Hey look! Here cane the whales!" he =ied excitedly.

SCREEN EDITOR TUTORIAL (vi) 287

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the

t
(4)

distance. Daniel was the first to see them •

• P
"Hey look I Here cane the whales I " he cried excitedly.

The / and ? search commands do not allow you to specify particular
occurrences of a pattern with numbers. You cannot, for example, request the
third occurrence (after your current position) of a pattern.

Figure 6-7 summarizes the vi commands for moving the cursor by scrolling
the text, specifying a line number, and searching for a pattern.

288 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

Scrolling

<Af> Scroll the screen forward a full window, revealing the win-
dow of text below the current window.

<Ad> Scroll the screen down a half window, revealing lines
below the current window.

<Ab> Scroll the screen back a full window, revealing the window
of text above the current window.

<AU> Scroll the screen up a half window, revealing the lines of
text above the current window.

Positioning on a Numbered Line

<lG> Go to the first line of the file.

<G> Go to the last line of the file.

<Ag> Give the line number and file status.

Searching for a Pattern

/pattern Search forward in the buffer for the next occurrence of
the pattern. Position the cursor on the first character of
the pattern.

?pattern Search backward in the buffer for the first occurrence of
the pattern. Position the cursor under the first character
of the pattern.

<0> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

Figure 6-7: Summary of Additional vi Motion Commands

SCREEN EDITOR TUTORIAL (vi) 289

Exercise 2

2-1. Create a file called exer2. Type a number on each line, numbering the
lines from 1 to 50. Your file should look similar to the following.

2
3

48
49

50

2-2. Try using each of the scroll commands, noticing how many lines scroll
through the window. Try the following:

<Af>
<Ab>
<AU>
<Ad>

2-3. Go to the end of the file. Append the following line of text.

123456789 123456789

What number does the command <7h> place the cursor on? What
number does the command <31> place the cursor on?

2-4. Try the command <$> and the command <0> (number zero).

2-5. Go to the first character on the line that is not a blank. Move to the first
character in the next word. Move back to the first character of the word
to the left. Move to the end of the word.

290 USER'S GUIDE

Exercise 2

2-6. Go to the first line of the file. Try the commands that place the cursor in
the middle of the window, on the last line of the window, and on the first
line of the window.

2-7. Search for the number 8. Find the next occurrence of the number 8.
Find 48.

SCREEN EDITOR TUTORIAL (vi) 291

Creating Text

There are three basic commands for creating text:

<a> append text

<i> insert text

<0> open a new line on which text can be entered

After you finish creating text with anyone of these commands, you can
return to the command mode of vi by pressing the ESCAPE key.

Appending Text

<a> append text after the cursor

<A> append text at the end of the current line

You have already experimented with the <a> command in the "Creating a
File" section. Make a new file named junk2. Append some text using the <a>
command. To return to command mode of vi, press the ESCAPE key. Then
compare the <a> command to the <A> command.

Inserting Text

<i> insert text before the cursor

<I> insert text at the beginning of the current line before the first charac­
ter that is not a blank

To return to the command mode of vi, press the ESCAPE key.

In the following examples you can compare the append and insert commands.
The arrows show the position of the cursor, where new text will be added.

292 USER'S GUIDE

Creating Text

Append three spaces AFTER the H of Here

t
<a>

Append three spaces AFTER the H of Here.

t
<ESC>

Insert three spaces BEFORE the H of Here.

t
<i>.

Insert three spaces BEFORE the H of Here.

t
<ESC>

Notice that in both cases, the user has left text input mode by pressing the
ESCAPE key.

SCREEN EDITOR TUTORIAL (vi) 293

Creating Text

Opening a Line for Text

<0> Create text from the beginning of a new line below the current line.
You can issue this command from any point in the current line.

<0> Create text from the beginning of a new line above the current line.
This command can also be issued from any position in the current
line.

The open command creates a directly above or below the current line, and
puts you into text input mode. For example, in the following screens the <0>
command opens a line above the current line, and the <0> command opens a
line below the current line. In both cases, the cursor waits for you to enter text
from the beginning of the new line.

Create text Af!CNE the current line.

t
<0>

[blank line]

Create text Af!CNE the current line.

294 USER'S GUIDE

Now create text BEIaV the current line.

t
<0>

Now create text BEIaV the current line.
[blank line]

t

Creating Text

Figure 6-8 summarizes the commands for creating and adding text with the vi
editor.

SCREEN EDITOR TUTORIAL (vi) 295

Creating Text

Command Function

<a> Create text after the cursor.

<A> Create text at the end of the current line.

<i> Create text in front of the cursor.

<I> Create text before the first character on
the current line that is not a blank.

<0> Create text at the beginning of a new
line below the current line.

<0> Create text at the beginning of a new
line above the current line.

<ESC> Return vi to command mode from any
of the above text input modes.

Figure 6-8: Summary of vi Commands for Creating Text

296 USER'S GUIDE

Exercise 3

3-1. Create a text file called exer3.

3-2. Insert the following four lines of text.

3-3.

Append text
Insert text
a computer's
job is boring.

Add the following line of text above the last line:

financial statement and

I
':"

/

3-4. Using a text insert command, add the following line of text above the
third line:

Delete text

3-5. Add the following line of text below the current line:

byte of the budget

3-6. Using an append command, add the following line of text below the last
line:

But, it is an exciting machine.

3-7. Move to the first line and add the word some before the word text.
/ (~' l

Now practice using each of the six commands for creating text.

3-8. Leave vi and go on to the next section to find out how to delete any mis­
takes you made in creating text.

SCREEN EDITOR TUTORIAL (vi) 297

Deleting Text

You can delete text with various commands in command mode, and undo the
entry of small amounts of text in text input mode. In addition, you can undo
entirely the effects of your most recent command.

Undoing Entered Text in Text Input Mode

To delete a character at a time when you are in text input mode use the
BACKSPACE key.

<BACKSPACE> Delete the current character (the character shown by the
cursor).

The BACKSPACE key backs up the cursor in text input mode and deletes
each character that the cursor backs across. However, the deleted characters are
not erased from the screen until you type over them or press the ESCAPE key to
return to command mode.

In the following example, the arrows represent the cursor.

~ had a litttl

t
<BACKSPACE> <BACKSPACE>

~ had a litttl

t
<ESC>

~ had a litt

t

298 USER'S GUIDE

Deleting Text

Notice that the characters are not erased from the screen until you press the
ESCAPE key.

There are two other keys that delete text in text input mode. Although you
may not use them often, you should be aware that they are available. To remove
the special meanings of these keys so that they can be typed as text, see the sec­
tion on special commands.

<AW> undo the entry of the current word

<@> delete all text entered on current line since text input mode was
entered

When you type <AW>, the cursor backs up over the word last typed and
waits on the first character. It does not literally erase the word until you press
the ESCAPE key or enter new characters over the old ones. The <@> sign
behaves in a similar manner except that it removes all text you have typed on the
current line since you last entered input mode.

Undo the Last Command

Before you experiment with the delete commands, you should try the u com­
mand. This command undoes the last command you issued.

<u> undo the last command

<U> restore the current line to its state before you changed it

If you delete lines by mistake, type <u>; your lines will reappear on the
screen. If you type the wrong command, type <u> and it will be nullified. The
<U> command will nullify all changes made to the current line as long as the
cursor has not been moved from it.

If you type <u> twice in a row, the second command will undo the first;
your undo will be undone! For example, say you delete a line by mistake and
restore it by typing <u>. Typing <u> a second time will delete the line again.
Knowing this command can save you a lot of trouble.

SCREEN EDITOR TUTORIAL (vi) 299

Deleting Text

Delete Commands in Command Mode

You know that you can precede a command by a number. Many of the com­
mands in vi, such as the delete and change commands, also allow you to enter a
cursor movement command after another command. The cursor movement com­
mand can specify a text object such as a word, line, sentence, or paragraph. The
general format of a vi command is:

[number][command]text _object

The brackets around some components of the command format show that those
components are optional.

All delete commands issued in command mode immediately remove unwanted
text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command.

[number]dt ext _object

Deleting Words

You can delete a word or part of a word with the <dw> command. Move
the cursor to the first character to be deleted and type < dw >. The character
under the cursor and all subsequent characters in that word will be erased.

the deep dark depths of the lake.

t
<2dw>

300 USER'S GUIDE

Deleting Text

the depths of the lake.

t

The <dw> command deletes one word or punctuation mark and the space(s)
that follow it. You can delete several words or marks at once by specifying a
number before the command. For example, to delete three words and two com­
mas, type < Sdw > .

the deep, deep, dark depths of the lake

t
<Sdw>

SCREEN EDITOR TUTORIAL (vi) 301

Deleting Text

the depths of the lake

t

Deleting Paragraphs

To delete paragraphs, use the following commands.

<d{> or <d}>

Observe what happens to your file. Remember, you can restore the deleted text
with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a number
before the command. For example, typing

<tOdd>

will erase ten lines. If you delete more than a few lines, vi will display this notice
on the bottom of the screen:

10 lines deleted

If there are less than ten lines below the current line in the file, a bell will sound
and no lines will be deleted.

302 USER'S GUIDE

Deleting Text

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first charac­
ter to be deleted and type

<D> or <d$>.

Neither of these commands allows you to specify a number of lines; they can be
used only on the current line.

Figure 6-9 summarizes the vi commands for deleting text.

SCREEN EDITOR TUTORIAL (vi) 303

Deleting Text

Command Function

For INSERT Mode:

<BACKSPACE> Delete the current character.

<~h> Delete the current character.

<~W> Delete the current word.

<@> Delete the current line of new text or
delete all new text on the current line.

For COMMAND Mode:

<u> Undo the last command.

<U> Restore current line to its previous state.

<x> Delete the current character.

<ndx> Delete n number of text objects of type x.

<dw> Delete the word at the cursor through the
next space or to the next punctuation
mark.

<dW> Delete the word and punctuation at the
cursor through the next space.

<dd> Delete the current line.

<D> Delete the portion of the line to the right
of the cursor.

<d» Delete the current sentence.

<d}> Delete the current paragraph.

Figure 6-9: Summary of Delete Commands

304 USER'S GUIDE

Exercise 4

4-1. Create a file called exer4 and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line two and append to the end of that line:

tedious and unsavory.

Delete the word unsavory while you are in append mode. ,

Delete the word boring while you are in command mode.

What is another way you could have deleted the word boring?

4-3. Insert at the beginning of line four:

congenial and computerized.

Delete the line.

How can you delete the contents of the line without removing the line
itself?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your directory.

SCREEN EDITOR TUTORIAL (vi) 305

Modifying Text

The delete commands and text input commands provide one way for you to
modify text. Another way you can chaqge text is by using a command that lets
you delete and create text simultaneously. There are three basic change com­
mands: <r>, <s>, and <c>.

Replacing Text

<r> Replace the current character (the character shown by the cursor).
This command does not initiate text input mode, and so does not
need to be followed by pressing the ESCAPE key.

<nr> Replace n characters with the same letter. This command automati­
cally terminates after the nth character is replaced. It does not need
to be followed by pressing the ESCAPE key.

<R> Replace only those characters typed over until the ESCAPE com­
mand is given. If the end of the line is reached, this command will
append the input as new text.

The <r> command replaces the current character with the next character
that is typed in. For example, suppose you want to change the word acts to ants
in the following sentence:

The circus has many acts.

Place the cursor under the c of acts and type

<r>n

The sentence becomes

The circus has many ants.

To change many to 7777, place the cursor under the m of many and type

<4r7>

The <r> command changes the four letters of many to four occurrences of the
number seven.

The circus has 7777 ants.

306 USER'S GUIDE

Modifying Text

Substituting Text

The substitute command replaces characters, but then allows you to continue
to insert text from that point until you press the ESCAPE key.

<s> Delete the character shown by the cursor and append text. End the
text input mode by pressing the ESCAPE key.

<ns> Delete n characters and append text. End the text input mode by
pressing the ESCAPE key.

<S> Replace all the characters in the line.

When you enter the <s> command, the last character in the string of char­
acters to be replaced is overwritten by a $ sign. The characters are not erased
from the screen until you type over them, or leave text input mode by pressing the
ESCAPE key.

Notice that you cannot use an argument with either <r> or <s>. Did you
try?

Suppose you want to substitute the word million for the word hundred in the
sentence My salary is one hundred dollars. Put the cursor under the h of
lnmdred and type <7s>. Notice where the $ sign appears.

My salazy is one lnmdred dollars.

t
<7s>

Then type million.

SCREEN EDITOR TUTORIAL (vi) 307

Modifying Text

My salary is one hundre$ dollars.

t
million

My salazy is one million dollars.

t

Changing Text

The substitute command replaces characters. The change command replaces
text objects, and then continues to append text from that point until you press the
ESCAPE key. To end the change command, press the ESCAPE key.

The change command can take an argument. You can replace a character,
word, or an entire line with new text.

<ncx> Replace n number of text objects of type x, such as sentences
(shown by <») and paragraphs (shown by <}».

308 USER'S GUIDE

<cw>

<new>

<ee>

<nee>

<C>

<nC>

Modifying Text

Replace a word or the remaining characters in a word with new
text. The vi editor prints a $ sign to show the last character to
be changed.

Replace n words.

Replace all the characters in the line.

Replace all characters in the current line and up to n lines of
text.

Replace the remaining characters in the line, from the cursor to
the end of the line.

Replace the remaining characters from the cursor in the current
line and replace all the lines following the current line up to n
lines.

The change commands, <cw> and <C>, use a $ sign to mark the last
letter to be replaced. Notice how this works in the following example:

They are 'OCJW due to arrive an Tuesday.

t
<cw>

SCREEN EDITOR TUTORIAL (vi) 309

Modifying Text

They are nt:M due to a=i ve an Tuesda$.

t
Wednesday <ESC>

They are nt:M due to a=i ve an Wednesday.

t

Notice that the new word (Wednesday) has more letters than the word it replaced
(Tuesday). Once you have executed the change command you are in text input
mode and can enter as much text as you want. The buffer will accept text until
you press the ESCAPE key.

The <C> command, when used to change the remaining text on a line,
works in the same way. When you enter the command it uses a $ sign to mark
the end of the text that will be deleted, puts you in text input mode, and waits for
you to type new text over the old. The following screens offer an example of the
C command.

310 USER'S GUIDE

This is line 1.
Oh, I IIIlSt have the wrong number.

t
<C>
This is line 3.
This is line 4.

This is line 1.
Oh, I Il1llSt have the wrong numberS

t
This is line 2.<ESC>
This is line 3.
This is line 4.

This is line 1.
This is line 2.
This is line 3.
This is line 4.

Modifying Text

SCREEN EDITOR TUTORIAL (vi) 311

Modifying Text

Now try combining arguments. For example, type

<c{>

Because you know the undo command, do not hesitate to experiment with dif­
ferent arguments or to precede the command with a number. You must press the
ESCAPE key before using the <u> command, since <c> places you in text
input mode.

Compare <S> and <cc>. The two commands should produce the same
results.

Figure 6-10 summarizes the vi commands for changing text.

312 USER'S GUIDE

Modifying Text

Command Function

<r> Replace the current character.

<R> Replace only those characters typed over with
new characters until the ESCAPE key is pressed.

<s> Delete the character the cursor is on and append
text. End the append mode by pressing the
ESCAPE key.

<S> Replace all the characters in the line.

<cc> Replace all the characters in the line.

<ncx> Replace n number of text objects of type x, such
as sentences (shown by <) » and paragraphs
(shown by <}».

<cw> Replace a word or the remaining characters in a
word with new text.

<C> Replace the remaining characters in the line,
from the cursor to the end of the line.

Figure 6-10: Summary of vi Commands for Changing Text

SCREEN EDITOR TUTORIAL (vi) 313

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file. Another set of
commands copies a portion of text and places it in another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by deleting the
lines and then placing them at the required point. The last text that was deleted
is stored in a temporary buffer. If you move the cursor to that part of the file
where you want the deleted lines to be placed and press the p key, the deleted
lines will be added below the current line.

<p> Place the contents of the temporary buffer after the cursor.

A partial sentence that was deleted by the <D> command can be placed in
the middle of another line. Position the cursor in the space between two words,
then press < p>. The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text
object that was just deleted can be placed somewhere else in the text with <p>.

The <p> command should be used right after a delete command since the
temporary buffer only stores the results of one command at a time. The <p>
command is also used to copy text placed in the temporary buffer by the yank
command. The yank command «y» is discussed in "Copying Text."

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the <x> and the <p>
commands as <xp>. <x> deletes the letter. <p> places it after next charac­
ter.

314 USER'S GUIDE

Cutting And Pasting Text Electronically

Notice the error in the next line.

A line of tetx

This error can be changed quickly by placing the cursor under the t in tx and
then pressing the <x> and <p> keys, in that order. The result is:

A line of text

Try this. Make a typing error in your file and use the <xp> command to
correct it. Why does this command work?

Copyi n9 Text

You can yank (copy) one or more lines of text into a temporary buffer, and
then put a copy of that text anywhere in the file. To put the text in a new posi­
tion type <p>; the text will appear on the next line.

The yank command follows the general format of a vi command.

[number]y[text_objectl

Yanking lines of text does not delete them from their original position in the file.
If you want the same text to appear in more than one place, this provides a con­
venient way to avoid typing the same text several times. However, if you do not
want the same text in multiple places, be sure to delete the original text after you
have put the text into its new position.

Figure 6-11 summarizes the ways you can use the yank command.

SCREEN EDI~OR TUTORIAL (vi) 315

Cutting And Pasting Text Electronically

Command Function

<nyx> Yank n number of text objects of type x, (such as
sentences) and paragraphs}).

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line.

<nyy> Yank n lines.

<y» Yank all text up to the end of a sentence.

<y}> Yank all text up to the end of the paragraph.

Figure 6-11: Summary of the Yank Command

Notice that this command allows you to specify the number of text objects to be
yanked.

Try the following command lines and see what happens on your screen.
(Remember, you can always undo your last command,) Type:

<Syw>

Move the cursor to another spot. Type:

<p>

Now try yanking a paragraph <y}> and placing it after the current paragraph.
Then move to the end of the file <G> and place that same paragraph at the end
of the file.

316 USER'S GUIDE

Cutting And Pasting Text Electronically

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is
tedious work. vi provides a shortcut for this: named registers in which you can
store text until you want to move it. To store text you can either yank or delete
the text you wish to store.

Using registers is useful if a piece of text must appear in many places in the
file. The extracted text stays in the specified register until you either end the
editing session, or yank or delete another section of text to that register.

The general format of the command is:

[number]["x]command£text_object]

The x is the name of the register and can be any single letter. It must be pre­
ceded by a double quotation mark. For example, place the cursor at the begin­
ning of a line. Type:

< 3"ayy >
Type in more text and then go to the end of the file. Type:

< "ap>

Did the lines you saved in register a appear at the end of the file?

Figure 6-12 summarizes the cut and paste commands.

SCREEN EDITOR TUTORIAL (vi) 311

Cutting And Pasting Text Electronically

Command Function

<p> Place the contents of the temporary buffer con-
taining the text obtained from the most recent
delete or yank command into the text after the
cursor.

<yy> Yank a line of text and place it into a temporary
buffer.

<nyx> Yank a copy of n number of text objects of type x
and place them in a temporary buffer.

< "xyn> Place a copy of a text object of type n in the
register named by the letter x.

<"xp> Place the contents of the register x after the cur-
sor.

F;igure 6-12: Summary of vi Commands for Cutting and Pasting Text

318 USER'S GUIDE

Exercise 5

5-1. Enter vi with the file called exer2. that you created in Exercise 2.

Go to line eight and change its contents to END OF FILE

5-2. Yank the first eight lines of the file and place them in register z. Put the
contents of register z after the last line of the file.

5-3. Go to line eight and change its contents to eight is great

5-4. Go to the last line of the file. Substitute EXERCISE for FILE Replace
OF with TO

SCREEN EDITOR TUTORIAL (vi) 319

Special Commands

Here are some special commands that you will find useful.

repeat the last command

join two lines together

clear the screen and redraw it

change lower case to upper case and vice versa

Repeating the Last Command

The. period repeats the last command to create, delete, or change text in the
file. It is often used with the search command.

For example, suppose you forget to capitalize the S in United States. How­
ever, you do not want to capitalize the s in chemical states. One way to correct
this problem is by searching for the word states. The first time you find it in the
expression United States, you can change the s to S. Then continue your search.
When you find another occurrence, you can simply type a period; vi will
remember your last command and repeat the substitution of s for S.

Experiment with this command. For example, if you try to add a period at
the end of a sentence while in command mode, the last text change will suddenly
appear on the screen. Watch the screen to see how the text is affected.

Joining Two Lines

The <J> command joins lines. To enter this command, place the cursor on
the current line, and press the SHIFT and j keys simultaneously. The current
line is joined with the following line.

For example, suppose you have the following two lines of text:

Dear Mr.
\ Smith:

320 USER'S GUIDE

Special Commands

To join these two lines into one, place the cursor under any character in the first
line and type:

<J>

You will immediately see the following on your screen:

Dear Mr. Smith:

Notice that vi automatically places a space between the last word on the first line
and the first word on the second line.

Clearing and Redrawing the Window

If another UNIX system user sends you a message using the write command
while you are editing with vi, the message will appear in your current window,
over part of the text you are editing. To restore your text after you have read the
message, you must be in command mode. (If you are in text input mode, press
the ESCAPE key to return to command mode.) Then type < AI> (control-I). vi
will erase the message and redraw the window exactly as it appeared before the
message arrived.

Changing Lower Case to Upper Case and Vice Versa

A quick way to change any lower case letter to upper case, or vice versa, is by
putting the cursor on the letter to be changed and typing a < - > (tilde). For
example, to change the letter a to A, press -. You can change several letters by
typing - several times, but you cannot precede the command with a number to
change several letters with one command.

Figure 6-13 summarizes the special commands.

SCREEN EDITOR TUTORIAL (vi) 321

Special Commands

Command Function

<.> Repeat the last command.

<J> Join the line below the current line with the current line.

<~l> Clear and redraw the current window.

<-> Change lower case to upper case, or vice versa.

Figure 6-13: Summary of Special Commands

322 USER'S GUIDE

Using Line Editing Commands in vi

The vi editor has access to many of the commands provided by a line editor
called ex. (For a complete list of ex commands see the ex(I) page in the User's
Reference Manual.) This section discusses some of those most commonly used.

The ex commands are very similar to the ed commands discussed in
Chapter 5. If you are familiar with ed, you may want to experiment on a test file
to see how many ed commands also work in vi.

Line editor commands begin with a : (colon). After the colon is typed, the
cursor will drop to the bottom of the screen and display the colon. The remainder
of the command will also appear at the bottom of the screen as you type it.

Temporarily Returning to the Shell: the :sh and :!
Commands

When you enter vi, the contents of the buffer fill your screen, making it
impossible to issue any shell commands. However, you may want to do so. For
example, you may want to get information from another file to incorporate into
your current text. You could get that information by running one of the shell
commands that display the text of a file on your screen, such as the cat or pg
command. However, quitting and reentering the editor is time consuming and
tedious. vi offers two methods of escaping the editor temporarily so that you can
issue shell commands (and even edit other files) without having to write your
buffer and quit: the:! command and the :sh command.

The :! command allows you to escape the editor and run a shell command on
a single command line. From the command mode of vi, type :!. These characters
will be printed at the bottom of your screen. Type a shell command immediately
after the!. The shell will run your command, give you output, and print the mes­
sage [Hit return to continue]. When you press the RETURN key vi will
refresh the screen and the cursor will reappear exactly where you left it.

SCREEN EDITOR TUTORIAL (vi) 323

Using Line Editing Commands in vi

The ex command :sh allows you to do the same thing, but behaves differently
on the screen. From the command mode of vi type :sh and press the RETURN
key. A shell command prompt will appear on the next line. Type your
command(s) after the prompt as you would normally do while working in the
shell. When you are ready to return to vi, type <~d> or exit; your screen will be
refreshed with your buffer contents and the cursor will appear where you left it.

Even changing directories while you are temporarily in the shell will not
prevent you from returning to the vi buffer where you were editing your file when
you type exit or <~d>.

Writing Text to a New File: the:w Command

The :w (for write) command allows you to create a file by copying lines of
text from the file your are currently editing into a file that you specify. To create
your new file you must specify a line or range of lines (with their line numbers),
along with the name of the new file, on the command line. You can write as
many lines as you like. The general format is:

: line _numberlline _ numberlw filename

For example, to write the third line of the buffer to a line named three, type:

:3w three < CR >
vi reports the successful creation of your new file with the following information:

"three" [New file] 1 l:ine, 20 characters

To write your current line to a file, you can use a . (period) as the line
address:

:.w junk<CR>

A new file called junk will be created. It will contain only the current line in the
vi buffer.

324 USER'S GUIDE

Using Line Editing Commands in vi

You can also write a whole section of the buffer to a new file by specifying a
range of lines. For example, to write lines 23 through 37 to a file, type the fol­
lowing:

:23,37w newfile<CR>

Finding the Line Number

To determine the line number of a line, move the cursor to it and type
(colon). The colon will appear at the bottom of the screen. Type . = after it
and press the RETURN key.

If you want to know the !lImlber

of this line, type :.= <CR>

As soon as you press the RETURN key, your command line will disappear from
the bottom line and be replaced by the number of your current line in the buffer.

SCREEN EDITOR TUTORIAL (vi) 325

Using Line Editing Commands in vi

If you want to know the number

of this line, type in :.=<CR>

34

You can move the cursor to any line in the buffer by typing: and the line
number. The command line

:n<CR>

means to go to the nth line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current line and the
end of the buffer is by using the line editor command d with the special symbols
for the current and last lines.

:.,Sd<CR>

The . represents the current line; the S sign, the last line.

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer, use the :r
(read) command. For example, to put the contents of a file called data into your
current file, place the cursor on the line above the place where you want it to
appear. Type:

:r data<CR>

You may also specify the line number instead of moving the cursor. For example,
to insert the file data below line 56 of the buffer, type

326 USER'S GUIDE

Using Line Editing Commands in vi

:56r data <CR>

Do not be afraid to experiment; you can use the <u> command to undo ex com­
mands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The glo­
bal command is given here to help those users who are familiar with the line edi­
tor. Even if you are not familiar with a line editor, you may want to try the com­
mand on a test file.

For example, say you have several pages of text about the DNA molecule in
which you refer to its structure as a helix. Now you want to change every
occurrence of the word helix to double helix. The ex editor's global command
allows you to do this with one command line. First, you need to understand a
series of commands.

:glpattern/command < CR>

For each line containing pattern, execute the ex command named
command. For example, type: :g/helix<CR>. The line editor will
print all lines that contain the pattern helix.

:slpattern/new _words I <CR>

This is the substitute command. The line editor searches for the first
instance of the characters pattern on the current line and changes
them to new words.

:slpattern/new_wordslg<CR>

If you add the letter g after the last delimiter of this command line,
ex will change every occurrence of pattern on the current line. If you
do not, ex will change only the first occurrence.

:glhelixlslldouhle helixlg<CR>

This command line searches for the word helix. Each time helix is
found, the substitute command substitutes two words, double helix,
for every instance of helix on that line. The delimiters after the s do

SCREEN EDITOR TUTORIAL (vi) 327

Using Line Editing Commands in vi

not need to have helix typed in again. The command remembers the
word from the delimiters after the global command g. This is a
powerful command. For a more detailed explanation of global and
substitution commands, see Chapter 5.

Figure 6-14 summarizes the line editor commands available in vi.

328 USER'S GUIDE

Using Line Editing Commands in vi

Command Function

: Shows that the commands that follow are
line editor commands.

:sh<CR> Temporarily returns you to the shell to
perform shell commands.

<Ad> Escapes the temporary shell and returns
you to the current window of vi to con-
tinue editing.

:n<CR> Goes to the nth line of the buffer.

:x,yw data<CR> Writes lines from the number x through
the number y into a new file (data).

:S<CR> Goes to the last line of the buffer.

:.,Sd<CR> Deletes all the lines in the buffer from
the current line to the last line.

:r shell.file<CR> Inserts the contents of shell.file after the
current line of the buffer.

:sltext/new _words/<CR> Replaces the first instance of the charac-
ters text on the current line with
new words.

:sltext/new _words/g<CR> Replaces every occurrence of text on the
current line with new words.

:gltext/sllnew _words/g<CR> Replaces every occurrence of text in the
file with new words.

Figure 6-14: Summary of Line Editor Commands

SCREEN EDITOR TUTORIAL (vi) 329

Quitting vi

There are five basic command sequences to quit the vi editor. Commands
that are preceded by a colon (:) are line editor commands.

<ZZ> or :wq<CR>

:w filename<CR>
:q<CR>

:w! filename < CR>
:q<CR>

:q!<CR>

:q<CR>

Write the contents of the vi buffer to the UNIX file
currently being edited and quit vi.

Write the temporary buffer to a new file named
filename and quit vi.

Overwrite an existing file called filename with the
contents of the buffer and quit vi.

Quit vi without writing the buffer to a file, and dis­
card all changes made to the buffer.

Quit vi without writing the buffer to a UNIX file.
This works only if you have made no changes to the
buffer; otherwise vi will warn you that you must either
save the buffer or use the :q!<CR> command to ter­
minate.

The <ZZ> command and :wq command sequence both write the contents of
the buffer to a file, quit vi, and return you to the shell. You have tried the
<ZZ> command. Now try to exit vi with :wq. vi remembers the name of the
file currently being edited, so you do not have to specify it when you want to write
the buffer's contents back into the file. Type

:wq<CR>

The system responds in the same way it does for the <ZZ> command. It tells
you the name of the file, and reports the number of lines and characters in the
file.

What must you do to give the file a different name? For example, suppose
you want to write to a new file called junk. Type:

:w junk<CR>

After you write to the new file, leave vi. Type:

330 USER'S GUIDE

Quitting vi

:q<CR>

If you try to write to an existing file, you will receive a warning. For exam­
ple, if you try to write to a file called johnson, the system will respond with:

"johnson" File exists - use "wI johnson" to overwrite

If you want to replace the contents of the existing file with the contents of the
buffer, use the :w! command to overwrite johnson.

:w! johnson < CR >

Your new file will overwrite the existing one.

If you edit a file called memo, make some changes to it, and then decide you
don't want to keep the changes, or if you accidentally press a key that gives vi a
command you cannot undo, leave vi without writing to the file. Type:

:q!<CR>

Figure 6-15 summarizes the quit commands.

SCREEN EDITOR TUTORIAL (vi) 331

Quitting vi

Command Function

<zz> Write the file and quit vi.

:wq<CR> Write the file and quit vi.

:w filename<CR> Write the editing buffer to a new file (filename) and
:q<CR> quit vi.

:w! filename<CR> Overwrite an existing file (filename) with the con-
:q<CR> tents of the editing buffer and quit vi.

:q!<CR> Quit vi without writing buffer to a file.

:q<CR> Quit vi without writing the buffer to a file.

Figure 6-15: Summary of the Quit Commands

332 USER'S GUIDE

Special Options For vi

The vi command has some special options. It allows you to:

• recover a file lost by an interrupt to the UNIX system

• place several files in the editing buffer and edit each in sequence, and

• view the file at your own pace by using the vi cursor positioning commands

Recovering a File Lost by an Interrupt

If there is an interrupt or disconnect, the system will exit the vi command
without writing the text in the buffer back to its file. However, the UNIX system
will store a copy of the buffer for you. When you log back in to the UNIX sys­
tem you will be able to restore the file with the -r option for the vi command.
Type

vi -r filename <CR>

The changes you made to filename before the interrupt occurred are now in the vi
buffer. You can continue editing the file, or you can write the file and quit vi.
The vi editor will remember the file name and write to that file.

Editing Multiple Files

If you want to edit more than one file in the same editing session, issue the vi
command, specifying each file name. Type

vi file 1 file2<CR>

vi responds by telling you how many files you are going to edit. For example:

2 files to edit

SCREEN EDITOR TUTORIAL (vi) 333

Special Options For vi

After you have edited the first file, write your changes Gn the buffer} to the
file (file]). Type

:w<CR>

The system response to the :w <CR> command will be a message at the bottom
of the screen giving the name of the file, and the number of lines and characters
in that file. Then you can bring the next file into the editing buffer by using the
:0 command. Type

:o<CR>

The system responds by printing a notice at the bottom of the screen, telling you
the name of the next file to be edited and the number of characters and lines in
that file.

Select two of the files in your current directory. Then enter vi and place the
two files in the editing buffer at the same time. Notice the system responses to
your commands at the bottom of the screen.

Viewing a File

It is often convenient to be able to inspect a file by using vi's powerful search
and scroll capabilities. However, you might want to protect yourself against
accidentally changing a file during an editing session. The read-only option
prevents you from writing in a file. To avoid accidental changes, you can set this
option by invoking the editor as view rather than vi.

Figure 6-16 summarizes the special options for vi.

334 USER'S GUIDE

Special Options For vi

Option Function

vifilel file2 file3<CR> Enter three files (filel, file2, and file3)
into the vi buffer to be edited.

:w<CR> Write the current file and call the next
:n<CR> file into the buffer.

vi -r filel <CR> Restore the changes made to filel.

Figure 6-16: Summary of Special Options for vi

SCREEN EDITOR TUTORIAL (vi) 335

Exercise 6

6-1. Try to restore a file lost by an interrupt.

Enter vi, create some text in a file called exer6. Turn off your terminal
without writing to a file or leaving vi. Turn your terminal back on, and
log in again. Then try to get back into vi and edit exer6.

6-2. Place exerl and exer2 in the vi buffer to be edited. Write exert and call
in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

6-3. Tryout the command:

vi exer* <CR>

What happens? Try to quit all the files as quickly as possible.

6-4. Look at exer4 in read-only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

336 USER'S GUIDE

Answers To Exercises

There is often more than one way to perform a task in vi. Any method that
works is correct. The following are suggested ways of doing the exercises.

Exercise 1

1-1. Ask your system administrator for your terminal's system name. Type:

TERM=terminai name<CR>

1-2. Enter the vi command for a file called exert:

vi exert <CR>

Then use the append command «a» to enter the following text in your
file:

This is an exercise! < CR >
Up, down<CR>
left, right, < CR >
build your terminal's<CR>
muscles bit by bit < ESC >

1-3. Use the <k> and <h> commands.

1-4. Use the <x> command.

SCREEN EDITOR TUTORIAL (vi) 337

Answers To Exercises

1-5. Use the <j> and <I> commands.

1-6. Enter vi and use the append command «a» to enter the following text:

and byte by byte<ESC>

Then use <j> and <I> to move to the last line and character of the
file. Use the <a> command again to add text. You can create a new
line by pressing the RETURN key. To leave text input mode, press the
ESCAPE key.

1-7. Type:

<zz>

1-8. Type:

vi exerl <CR>

Notice the system response:

Exercise 2

2-1. Type:

"exer1" 7 lines, 102 characters

vi exer2<CR>
<a>l<CR>
2<CR>
3<CR>

48<CR>
49<CR>
50<ESC>

338 USER'S GUIDE

2-2. Type:
<"f>
<"b>
<AU>
<Ad>

Notice the line numbers as the screen changes.

2-3. Type:
<G>
<0>
123456789123456789<ESC>
<7h>
<31>

Typing <7h> puts the cursor
on the 2 in the second set of numbers.
Typing <31> puts the cursor
on the 5 in the
second set of numbers.

2-4. $ = end of line
o = first character in the line

2-5. Type:
<A>
<w>

<e>

2-6. Type:
<IG>
<M>
<L>
<H>

2-7. Type:
18
<n>
148

Answers To Exercises

SCREEN EDITOR TUTORIAL (vi) 339

Answers To Exercises

Exercise 3

3-1. Type:

3-2. Type:

3-3. Type:

3-4. Type:

vi exer3<CR>

<a> Append text <CR>
Insert text < CR >
a computer's < CR >
job is boring. < ESC>

<0>
financial statement and<ESC>

<3G>
<i> Delete text<CR> <ESC>

The text in your file now reads:

Append text·
Insert text
Delete text
a catplter's
financial statement and
job is bor:ing.

3-5. The current line is a ccmputer's. To create a line of text below that line
use the <0> command.

3-6. The current line is byte of the budget.
<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line.
<CR> creates the new line.
Add the sentence: But, it is an exciting machine.
<ESC> leaves append mode.

3-7. Type:
<lG>
/text
<i>some<space bar> <ESC>

340 USER'S GUIDE

Answers To Exercises

3-8. <ZZ> will write the buffer to exer3 and return you to the shell.

Exercise 4

4-1. Type:

4-2. Type:

vi exer4 < CR >
< a > When in the course of human events < CR >
there are many repetitive, boring<CR>
chores, then one ought to get a < CR >
robot to perform those chores. <ESC>

<2G>
<A> tedious and unsavory <SBACKSPACE> <CR>
<ESC>

Press <h> until you get to the b of boring. Then type:
<dw>. (You can also use <6x>J

4-3. You are at the second line. Type:
<2j>
< I > congenial and computerized < ESC>
<dd>

To delete the line and leave it blank, type in:
<0> (zero moves the cursor to the beginning of the line)
<D>

<H>
<3dd>

4-4. Write and quit vi.

<ZZ>

Remove the file.

rm exer4<CR>

SCREEN EDITOR TUTORIAL (vi) 341

Answers To Exercises

Exercise 5

5-1. Type:

5-2. Type:

5-3. Type:

5-4. Type:

Exercise 6

6-1. Type:

vi exer2<CR>
<8G>
<cc> END OF FILE <ESC>

<lG>
< 8"zyy >
<G>
<"zp>

<8G>
<cc> 8 is great<ESC>

<G>
<2w>
<cw>
EXERCISE <ESC>
<2b>
<cw>
TO<ESC>

vi exer6 < CR>
<a> (append several lines of text)
<ESC>

Turn off the terminal.

Turn on the terminal.
Log in on your UNIX system. Type:

vi -r exer6<CR>
:wq<CR>

342 USER'S GUIDE

6-2. Type:

6-3. Type:

6-4. Type:

vi exerl exer2<CR>
:w<CR>
:n<CR>

:w junk<CR>
<ZZ>

vi exer* < CR >

(Response:)

Answers To Exercises

8 files to edit (vi calls all files with names that begin with exer.)

<zz>
<zz>

view exer4 < CR >
<Af>
<Ad>
<Ab>
<AU>
:q<CR>

SCREEN EDITOR TUTORIAL (vi) 343

CHAPTER 7: SHELL TUTORIAL

Introduction
This chapter describes how to use the UNIX system shell to do routine tasks.

For example, it shows you how to use the shell to manage your files, to manipu­
late file contents, and to group commands together to make programs the shell
can execute for you.

The chapter has two major sections. The first section, "Shell Command
Language," covers in detail using the shell as a command interpreter. It tells you
how to use shell commands and characters with special meanings to manage files,
redirect standard input and output, and execute and terminate processes. The
second section, "Shell Programming," covers in detail using the shell as a pro­
gramrriing language. It tells you how to create, execute, and debug programs
made up of commands, variables, and programming constructs like loops and case
statements. Finally, it tells you how to modify your login environment.

The chapter offers many examples. You should login to your UNIX system
and recreate the examples as you read the text. As in the other examples in this
guide, different type (bold, italic, and oonstant width) is used to distinguish
your input from the UNIX system's output. See "Notation Conventions" in the
Preface for details.

In addition to the examples, there are exercises at the end of both the "Shell
Command Language" and "Shell Programming" sections. The exercises can help
you better understand the topics discussed. The answers to the exercises are at
the end of the chapter.

Your UNIX system might not have all commands referenced in this chapter. If
you cannot access a command, check with your system administrator.

If you want an overview of how the shell functions as both command inter­
preter and programming language, see Chapters 1 and 4 before reading this
chapter. Also, refer to Appendix E, Summary of Shell Command Language. If
you want to learn more advanced concepts in shell programming, you might read
Shell Commands and Programming (see the Documentation Roadmap for infor­
mation on ordering this manual).

344 USER'S GUIDE

Shell Command Language

This section introduces commands and, more importantly, some characters
with special meanings that let you

• find and manipulate a group of files by using pattern matching

• run a command in the background or at a specified time

• run a group of commands sequentially

• redirect standard input and output from and to files and other commands

• terminate processes

It first covers the characters having special meanings to the shell and then covers
the commands and notation for carrying out the tasks listed above. For your con­
venience, Figure 7-1 summarizes the characters with special meanings discussed
in this chapter.

SHELL TUTOIUAl 345

Shell Command Language

Character Function

* ? [J metacharacters that provide a shortcut for specifying file
names by pattern matching

& places commands in background mode, leaving your termi-
nal free for other tasks

; separates multiple commands on one command line

\ turns off the meaning of special characters such as *, ?,
[J, &, ;, >, <, and I.

, ,
single quotes turn off the delimiting meaning of a space ...
and the special meaning of all special characters

" " double quotes turn off the delimiting meaning of a space ...
and the special meaning of all special characters except $
and'

> redirects output of a command into a file (replaces exist-
ing contents)

< redirects input for a command to come from a file

» redirects output of a command to be added to the end of
an existing file

1 creates a pipe of the output of one command to the input
of another command

, ,
grave accents allow the output of a command to be used ...
directly as arguments on a command line

$ used with positional parameters and user-defined variables;
also used as the default shell prompt symbol

Figure 7-1: Characters with Special Meanings in the Shell Language

346 USER'S GUIDE

Shell Command Language

Metacharacters

Metacharacters, a subset of the special characters, represent other characters.
They are sometimes called wild cards, because they are like the joker in card
games that can be used for any card. The metacharacters * (asterisk), ? (ques­
tion mark), and [] (brackets) are discussed here.

These characters are used to match file names or parts of file names, thereby
simplifying the task of specifying files or groups of files as command arguments.
(The files whose names match the patterns formed from these metacharacters
must already exist.) This is known as file name expansion. For example, you may
want to refer to all file names containing the letter "a", all file names consisting of
five letters, and so on.

The Metacharacter That Matches All Characters: the Asterisk (*)

The asterisk (*) matches any string of characters, including a null (empty)
string. You can use the * to specify a full or partial file name. The * alone
refers to all the file and directory names in the current directory. To see the
effect of the *, try it as an argument to the echo(l) command. Type:

echo *<CR>

The echo command displays its arguments on your screen. Notice that the system
response to echo * is a listing of all the file names in your current directory.
However, the file names are displayed horizontally rather than in vertical columns
such as those produced by the Is command.

Figure 7-2 summarizes the syntax and capabilities of the echo command.

SHELL TUTORIAL 347

Shell Command language

Command Recap

echo - write any arguments to the output

command options arguments

echo none any character(s)

Description: echo writes arguments, which are separated by
blanks and ended with <CR>, to the output.

Remarks: In shell programming, echo is used to issue
instructions, to redirect words or data into a file,
and to pipe data into a command. All these uses
will be discussed later in this chapter.

Figure 7-2: Summary of the echo Command

Y Th,' i" pow"fol eh,,"ete,. Fo' mmpi', if you typ' ~ • you will "'" ,II
the files in your current directory. Be very careful how you use it!

For another example, say you have written several reports and have named
them report, reportl, reportla, reportlb.Ol, report25, and report316. By typing
reportl* you can refer to all files that are part of reportl, collectively. To find
out how many reports you have written, you can use the Is command to list all
files that begin with the string "report," as shown in the following example.

348 USER'S GUIDE

$ Is report*<CR>
report
report1
report1a
report1b.01
rep0rt25
report316
$

Shell Command Language

The * matches any characters after the string "report," including no letters at all.
Notice that * matches the files in numerical and alphabetical order. A quick and
easy way to print the contents of your report files in order on your screen is by
typing the following command:

pr report* < CR >

Now try another exercise. Choose a character that all the file names in your
current directory have in common, such as a lower case "a". Then request a list­
ing of those files by referring to that character. For example, if you choose a
lower case "a", type the following command line:

Is *a*<CR>

The system responds by printing the names of all the files in your current direc­
tory that contain a lower case "a".

The * can represent characters in any part of the file name. For example, if
you know that several files have their first and last letters in common, you can
request a list of them on that basis. For such a request, your command line might
look like this:

Is F*E<CR>

The system response will be a list of file names that begin with F, end with E, and
are in the following order:

SHELL tUTORIAL 349

Shell Command Language

F123E
FATE
FE
Fig3.4E

The order is determined by the ASCII sort sequence: (1) numbers; (2) upper case
letters; (3) lower case letters.

The Metacharacter That Matches One Character: the Question Mark (?)

The question mark (?) matches any single character of a file name. Let's say
you have written several chapters in a book that has twelve chapters, and you
want a list of those you have finished through Chapter 9. Use the Is command
with the? to list all chapters that begin with the string "chapter" and end with
any single character, as shown below:

$ Is cbapter?<CR>
chapter1
chapter2
chapterS
chapter9
$

The system responds by printing a list of all file names that match.

Although? matches anyone character, you can use it more than once in a
file name. To list the rest of the chapters in your book, type:

Is chapter?? <CR>

Of course, if you want to list all the chapters in the current directory, use the *:

Is chapter*

350 USER'S GUIDE

Shell Command Language

Using the * or ? to Correct Typing Errors

Suppose you use the mv(1) command to move a file, and you make an error
and enter a character in the file name that is not printed on your screen. The sys­
tem incorporates this non-printing character into the name of your file and subse­
quently requires it as part of the file name. If you do not include this character
when you enter the file name on a command line, you get an error message. You
can use * or ? to match the file name with the non-printing character and rename
it to the correct name.

Try the following example.

1 . Make a very short file called trial.

2. Type: mv trial trial<~g>l<CR>

(Remember, to type <~g> you must hold down the CONTROL key and
press the g key.)

3. Type: Is triall <CR>

The system will respond with an error message:

$ Is trial 1 <CR>
trial 1 : no such file or directory
$

4. Type: Is trial? 1 <CR>

The system will respond with the file name triall (including the non­
printing character), verifying that this file exists. Use the? again to
correct the file name.

$ mv trial?1 triall < CR >
$ Is triall < CR >
trial 1
$

SHELL TUTORIAL 351

Shell Command Language

The Metacharacters That Match One of a Set: Brackets ([])

Use brackets ([I) when you want the shell to match anyone of several possi­
ble characters that may appear in one position in the file name. For example, if
you include [crC) as part of a file name pattern, the shell will look for file names
that have the letter "c", the letter "r", or the letter "f" in the specified position, as
the following example shows.

$ Is [crfJat<CR>
cat
fat
rat
$

This command displays all file names that begin with the letter "c", "r", or "f" and
end with the letters "at". Characters that can be grouped within brackets in this
way are collectively called a "character class".

Brackets can also be used to specify a range of characters, whether numbers
or letters. For example, if you specify

chapterll -5)

the shell will match any files named chapterl through chapter5. This is an easy
way to handle only a few chapters at a time.

Try the pr command with an argument in brackets:

$ pr chapter[2-4) < CR >
This command will print the contents of chapter2, chapter3, and chapter4, in that
order, on your terminal.

352 USER'S GUIDE

Shell Command Language

A character class may also specify a range of letters. If you specify (A-ZJ,
the shell will look only for upper case letters; if (a-zJ, only lower case letters.

The uses of the metacharacters are summarized in Figure 7-3. Tryout the
metacharacters on the files in your current directory.

Character Function

* matches any string of characters, including an empty
(null) string

? matches any single character

[] matches one of the sequence of characters specified within
the brackets

[-] matches one of the range of characters specified

Figure 7-3: Summary of Metacharacters

Special Characters

The shell language has other special characters that perform a variety of use­
ful functions. Some of these additional special characters are discussed in this
section; others are described in the next section, "Input and Output Redirection."

Running a Command in Background: the Ampersand (&)

Some shell commands take considerable time to execute. The ampersand
(&) is used to execute commands in background mode, thus freeing your termi­
nal for other tasks. The general format for running a command in background
mode is

command & <CR>

SHELL TUTORIAL 353

Shell Command Language

You should not run interactive shell commands, for example read (see "Using the
read Command" in this chapter), in the background.

In the example below, the shell is performing a long search in background
mode. Specifically, the grep(l) command is searching for the string "delinquent"
in the file accounts.) Notice the & is the last character of the command line:

$ grep delinquent accounts & < CR >
21940
$

When you run a command in the background, the UNIX system outputs a pro­
cess number; 21940 is the process number in the example. You can use this
number to stop the execution of a background command. (Stopping the execution
of processes is discussed in the "Executing and Terminating Processes" section.)
The prompt on the last line means the terminal is free and waiting for your com­
mands; grep has started running in background.

Running a command in background affects only the availability of your ter­
minal; it does not affect the output of the command. Whether or not a command
is run in background, it prints its output on your terminal screen, unless you
redirect it to a file. (See "Redirecting Output," later in this chapter, for details')

If you want a command to continue running in background after you log off,
you can submit it with the nohup(l) command. (This is discussed in "Using the
nohup Command," later in this chapter.)

Executing Commands Sequentially: the Semicolon (;)

You can type two or more commands on one line as long as each pair is
separated by a semicolon (;) , as follows:

commandl; command2; command3<CR>

The UNIX system executes the commands in the order that they appear in the
line and prints all output on the screen. This process is called sequential execu­
tion.

354 USER'S GUIDE

Try this exercise to see how the ; works. First, type

cd; pwd; Is < CR >

The shell executes these commands sequentially:

1. cd changes your location to your login directory

Shell Command Language

2. pwd prints the full path name of your current directory

3. Is lists the files in your current directory

If you do not want the system's responses to these commands to appear on your
screen, refer to "Redirecting Output" for instructions.

Turning Off Special Meanings: the Backslash (\)

The shell interprets the backslash (\) as an escape character that allows you
to turn off any special meaning of the character immediately after it. To see how
this works, try the following exercise. Create a two-line file called trial that con­
tains the following text:

The all * game
was held in Summit.

Use the grep command to search for the asterisk in the file, as shown in the fol­
lowing example:

$ grep \ * trial<CR>
The all * game
$

The grep command finds the * in the text and displays the line in which it
appears. Without the \, the * would be a meta character to the shell and would
match all file names in the current directory.

Turning Off Special Meanings: Quotes

Another way to escape the meaning of a special character is to use quotation
marks. Single quotes C.:) turn off the special meaning of any character. Double
quotes (" ... ,,) turn off the special meaning of all characters except $ and' (grave
accent), which retain their special meanings within double quotes. An advantage
of using quotes is that numerous special characters can be enclosed in the quotes;
this can be more concise than using the backslash.

SHELL TUTORIAL 355

Shell Command Language

For example, if your file named trial also contained the line

He really wondered why? Why???

you could use the grep command to match the line with the three question marks
as follows:

$ grep '???' trial<CR>
He really wondered why? Why???
$

If you had instead entered the command

grep ??? trial<CR>

the three question marks would have been used as shell metacharacters and
matched all file names of length three.

Using Quotes to Turn Off the Meaning of a Space

A common use of quotes as escape characters is for turning off the special
meaning of the blank space. The shell interprets a space on a command line as a
delimiter between the arguments of a command. Both single and double quotes
allow you to escape that meaning.

For example, to locate two or more words that appear together in text, make
the words a single argument (to the grep command) by enclosing them in quotes.
To find the two words "The all" in your file trial, enter the following command
line:

$ grep 'The all' trial < CR >
The all * game
$

grep finds the string "The all" and prints the line that contains it. What
would happen if you did not put quotes around that string?

The ability to escape the special meaning of a space is especially helpful when
you are using the banner(1) command. This command prints a message across a
terminal screen in large, poster size letters.

To execute banner, specify a message consisting of one or more arguments (in
this case usually words), separated on the command line by spaces. The banner
will use these spaces to delimit the arguments and print each argument on a
separate line.

356 USER'S GUIDE

Shell Command Language

To print more than one argument on the same line, enclose the words,
together, in double quotes. For example, to send a birthday greeting to another
user, type:

banner happy birthday to you<CR>

The command prints your message as a four-line banner. Now print the same
message as a three-line banner. Type:

banner happy birthday "to you"<CR>

Notice that the words "to" and "you" now appear on the same line. The space
between them has lost its meaning as a delimiter.

Figure 7-4 summarizes the syntax and capabilities of the banner command.

Command Recap

banner - make posters

command options arguments

banner none characters

Description: banner displays up to ten characters in large
letters

Remarks: Later in this chapter you will learn how to
redirect the banner command into a file to be used
as a poster.

Figure 7-4: Summary of the banner Command

SHELL TUTORIAL 357

Shell Command Language

Input and Output Redirection

In the UNIX system, some commands expect to receive their input from the
keyboard (standard input) and most commands display their output at the termi­
nal (standard output). However, the UNIX system lets you reassign the standard
input and output to other files and programs. This is known as redirection. With
redirection, you can tell the shell to

• take its input from a file rather than the keyboard

• send its output to file rather than the terminal

• use a program as the source of data for another program

You use a set of operators, the less than sign «), the greater than sign (»,
two greater than signs (»), and the pipe (j) to redirect input and output.

Redirecting Input: the < Sign

To redirect input, specify a file name after a less than sign «) on a com­
mand line:

command < file<CR>

For example, assume that<you want use the mail(I) command (described in
Chapter 8) to send a message to another user with the login colleague and that
you already have the message in a file named report. You can avoid retyping the
message by specifying the file name as the source of input:

mail colleague < report < CR >

Redirecting Output to a File: the > Sign

To redirect output, specify a file name after the greater than sign (» on a
command line:

command> file<CR>

358 USER'S GUIDE

Shell Command Language

V If you redirect output to, file th,t ,I,,,,dy exi,t" the output of yoo< """mand
will overwrite the contents of the existing file.

I

Before redirecting the output of a command to a particular file, make sure
that a file by that name does not already exist, unless you do not mind losing it.
Because the shell does not allow you to have two files of the same name in a
directory, it will overwrite the contents of the existing file with the output of your
command if you redirect the output to a file with the existing file's name. The
shell does not warn you about overwriting the original file.

To make sure there is no file with the name you plan to use, run the Is com­
mand, specifying your proposed file name as an argument. If a file with that
name exists, Is will list it; if not, you will receive a message that the file was not
found in the current directory. For example, checking for the existence of the
files temp and junk would give you the following output.

$ Is temp<CR>
tenp
$ Is junk<CR>
junk: no such file or directozy
$

This means you can name your new output file junk, but you cannot name it temp
unless you no longer want the contents of the existing temp file.

SHELL TUTORIAL 359

Shell Command Language

Appending Output to an Existing File: the > > Symbol

To keep from destroying an existing file, you can also use the double redirec­
tion symbol (»), as follows:

command> > file<CR>

This appends the output of a command to the end of the file file. If file does not
exist, it is created when you use the> > symbol this way.

The following example shows how to append the output of the cat command
to an existing file. First, the cat command is first executed on both files without
output redirection to show their respective contents. Then the contents of trial2
are added after the last line of triall by executing the cat command on trial2 and
redirecting the output to triall.

$ cat triall < CR >
This is the first line of tria11.
Hello.
This is the last line of tria11.
$

$ cat triaI2<CR>
This is the heginn:ing of trial2.
Hello.
This is the end of trial2.
$

$ cat trial2 > > triall <CR>
$ cat triall <CR>
This is the first line of tria11.
Hello.
This is the last line of trial1.
This is the heginn:ing of tria12.
Hello.
This is the end of tria12.
$

360 USER'S GUIDE

Shell Command Language

Useful Applications of Output Redirection

Redirecting output is useful when you do not want it to appear on your screen
immediately or when you want to save it. Output redirection is also especially
useful when you run commands that perform clerical chores on text files. Two
such commands are spell and sort.

The spell Command

The spell program compares every word in a file against its internal vocabu­
lary list and prints a list of all potential misspellings on the screen. If spell does
not have a listing for a word <such as a person's name), it will report that as a
misspelling, too.

Running spell on a lengthy text file can take a long time and may produce a
list of misspellings that is too long to fit on your screen. spell prints all its output
at once; if it does not fit on the screen, the command scrolls it continuously off the
top until it has all been displayed. A long list of misspellings will roll off your
screen quickly and may be difficult to read.

You can avoid this problem by redirecting the output of spell to a file. In the
following example, spell searches a file named memo and places a list of
misspelled words in a file named misspell:

$ spell memo > misspell < CR >

Figure 7-5 summarizes the syntax and capabilities of the spell command.

SHELL TUTORIAL 361

Shell Command Language

Command Recap

spell - find spelling errors

command options arguments

spell available* file

Description: spell collects words from a specified file
or files and looks them up in a spelling
list. Words that are not on the spelling
list are displayed on your terminal.

Options: spell has several options, including one
for checking British spellings.

Remarks: The list of misspelled words can be
redirected into a file.

* See the speU(I) manual page in the User's Reference Mqnual for all available options and an
explanation of their capabilities.

Figure 7-5: Summary of the spell Command

The sort Command

The sort command arranges the lines of a specified file in alphabetical order
(see Chapter 3 for details). Because users generally want to keep a file that has
been alphabetized, output redirection greatly enhances the value of this command.

Be careful to choose a new name for the file that will receive the output of
the sort command (the alphabetized list). When sort is executed, the shell first
empties the file that will accept the redirected output. Then it performs the sort
and places the output in the blank file. If you type

362 USER'S GUIDE

Shell Command Language

sort list > list < CR >

the shell will empty list and then sort nothing into list.

Combining Background Mode and Output Redirection

Running a command in background does not affect the command's output;
unless it is redirected, output is always printed on the terminal screen. If you are
using your terminal to perform other tasks while a command runs in background,
you will be interrupted when the command displays its output on your screen.
However, if you redirect that output to a file, you can work undisturbed.

For example, in the "Special Characters" section you learned how to execute
the grep command in background with &. Now suppose you want to find
occurrences of the word "test" in a file named schedule. Run the grep command
in background and redirect its output to a file called testfile:

$ grep test schedule > testfile & < CR >
You can then use your terminal for other work and examine testfile when you
have finished it.

Redirecting Output to a Command: the Pipe (I)
The I character is called a pipe. Pipes are powerful tools that allow you to

take the output of one command and use it as input for another command without
creating temporary files. A multiple command line created in this way is called a
pipeline.

The general format for a pipeline is:

command] I command2 I command3 ... <CR>

The output of command] is used as the input of command2. The output of com­
mand2 is then used as the input for command3.

To understand the efficiency and power of a pipeline, consider the contrast
between two methods that achieve the same results.

• To use the input/output redirection method, run one command and redirect
its output to a temporary file. Then run a second command that takes the
contents of the temporary file as its input. Finally, remove the temporary
file after the second command has finished running.

SHELL TUTORIAL 363

Shell Command Language

• To use the pipeline method, run one command and pipe its output directly
into a second command.

For example, say you want to mail a happy birthday message in a banner to
the owner of the login david. Doing this without a pipeline is a three-step pro­
cedure. You must

1. Enter the banner command and redirect its output to a temporary file:

banner happy birthday > message.tmp

2. Enter the mail command using message.tmp as its input:

mail david < message.tmp

3. Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday I mail david<CR>

A Pipeline Using the cut and date Commands

The cut and date commands provide a good example of how pipelines can
increase the versatility of individual commands. The cut command allows you to
extract part of each line in a file. It looks for characters in a specified part of the
line and prints them. To specify a position in a line, use the -c option and iden­
tify the part of the file you want by the numbers of the spaces it occupies on the
line, counting from the left-hand margin.

For example, say you want to display only the dates from a file called birth­
days. The file contains the following list:

364 USER'S GUIDE

Shell Command Language

Arme 12/26
Klaus 714
Mary 10/18
Peter 1119
Nandy 4/23
Sam 8/12

The birthdays appear between the ninth and thirteenth spaces on each line. To
display them, type:

cut -c9-13 birthdays<CR>

The output is shown below:

12/26
714
10/18
1119
4/23
8/12

Figure 7-6 summarizes the syntax and capabilities of the cut command.

SHELL TUTORIAL 365

Shell Command Language

Command Recap

cut - cut out selected fields from each line of a file

command

cut

Description:

Options:

Remarks:

options arguments

-clist file
-flist [-d1

cut extracts columns from a table or fields from
each line of a file

-c lists the number of character positions from
the left. A range of numbers such as characters
1-9 can be specified by -cl-9

-f lists the field number from the left separated
by a delimiter described by -d.

-d gives the field delimiter for -f. The default
is a space. If the delimiter is a colon, this would
be specified by -d: .

If you find the cut command useful, you may also
want to use the paste command and the split com­
mand.

Figure 7-6: Summary of the cut Command

The cut command is usually executed on a file. However, piping makes it
possible to run this command on the output of other commands, too. This is use­
ful if you want only part of the information generated by another command. For
example, you may want to have the time printed. The date command prints the
day of the week, date, and time, as follows:

366 USER'S GUIDE

Shell Command Language

$ date<CR>
Sat Dec 27 13:12:32 EST 1986

Notice that the time is given between the twelfth and nineteenth spaces of the
line. You can display the time (without the date) by piping the output of date
into cut, specifying spaces 12-19 with the - c option. Your command line and its
output will look like this:

$ date I cut -c12-19<CR>
13:14:56

Figure 7-7 summarizes the syntax and capabilities of the date command.

SHELL TUTORIAL 367

Shell Command Language

command

date

Description:

Options:

Remarks:

Command Recap

date - display the date and time

options

+%m%d%y*
+%H%%M%S

arguments

available *

date displays the current date and time on your
terminal

+% followed by m (for month), d (for day), y (for
year), H (for hour), M (for month), and S (for
second) will echo these back to your terminal. You
can add explanations such as:

date ' + % H: % M is the time'

If you are working on a small computer system of
which you are both a user and the system
administrator, you may be allowed to set the date
and time using optional arguments to the date
command. Check your reference manual for
details. When working in a multiuser environ­
ment, the arguments are available only to the sys­
tem administrator.

Figure 7-7: Summary of the date Command

*

368

See the date(J) manual page in the User's Reference Manual for all available options and an
explanation of their capabilities.

USER'S GUIDE

Shell Command Language

Substituting Output for an Argument

The output of any command may be captured and used as arguments on a
command line. This is done by enclosing the command in grave accents C .. .') and
placing it on the command line in the position where the output should be treated
as arguments. This is known as command substitution.

For example, you can substitute the output of the date and cut pipeline com­
mand used previously for the argument in a banner printout by typing the follow­
ing command line:

$ banner 'date I cut -c12-19'<CR>

Notice the results: the system prints a banner with the current time.

The "Shell Programming" section in this chapter shows you how you can also
use the output of a command line as the value of a variable.

Executing and Terminating Processes

This section discusses the following topics:

• how to schedule commands to run at a later time by using the batch or at
command

• how to obtain the status of active processes

• how to terminate active processes

• how to keep background processes running after you have logged off

Running Commands at a Later Time With the batch and at Commands

The batch and at commands allow you to specify a command or sequence of
commands to be run at a later time. With the batch command, the system deter­
mines when the commands run; with the at command, you determine when the
commands run. Both commands expect input from standard input (the terminal);
the list of commands entered as input from the terminal must be ended by press­
ing <Ad> (control-d).

SHELL TUTORIAL 369

Shell Command Language

The batch command is useful if you are running a process or shell program
that uses a large amount of system time. The batch command submits a batch
job (containing the commands to be executed) to the system. The job is put in a
queue, and runs when the system load falls to an acceptable level. This frees the
system to respond rapidly to other input and is a courtesy to other users.

The general format for batch is:

batch<CR>
first command<CR>

last command<CR>
<~d>

If there is only one command to be run with batch, you can enter it as follows:

batch command line<CR>
<~d>

The next example uses batch to execute the grep command at a convenient
time. Here grep searches all files in the current directory and redirects the output
to the file dol.file.

$ batch grep dollar * > dol-me<CR>
<Ad>
job 155223141.b at Sun Dec 7 11:14:54 1986
$

After you submit a job with batch, the system responds with a job number, date,
and time. This job number is not the same as the process number that the system
generates when you run a command in the background.

370 USER'S GUIDE

Shell Command Language

Figure 7-8 summarizes the syntax and capabilities of the batch Command.

Command Recap

batch - execute commands at a later time

command options input

batch none command lines

Description: batch submits a batch job, which is placed in a
queue and executed when the load on the system
falls to an acceptable level.

Remarks: The list of commands must end with a <Ad>
<control-d) .

Figure 7-8: Summary of the batch Command

The at command allows you to specify an exact time to execute the com­
mands. The general format for the at command is

at time<CR>
first command<CR>

last command<CR>
<Ad>

The time argument consists of the time of day and, if the date is not today,
the date.

SHELL TUTORIAL 371

Shell Command Language

The following example shows how to use the at command to mail a happy
birthday banner to login emily on her birthday:

$ at 8:15am Feb 27<CR>
banner happy birthday I mail emily<CR>
<'d>
job 453400603.a at Thurs Feb 27 08:15:00 1986
$

Notice that the at command, like the batch command, responds with the job
number, date, and time.

If you decide you do not want to execute the commands currently waiting in a
batch or at job queue, you can erase those jobs by using the -r option of the at
command with the job number. The general format is

at -r jobnumber<CR>

Try erasing the previous at job for the happy birthday banner. Type in:

at -r 453400603.a<CR>

If you have forgotten the job number, the at -I command will give you a list of
the current jobs in the batch or at queue, as the following screen shows:

372 USER'S GUIDE

$ at -I<CR>
user = my/ogin 168302040.a at Sat Nov 29 13:00:00 1986
user = my/ogin 453400603.a at Fri Feb 27 08: 15:00 1987
$"

Shell Command Language

Notice that the system displays the job number and the time the job will run.

Using the at command, mail yourself the file memo at noon, to tell you it is
lunch time. (You must redirect the file into mail unless you use the "here docu­
ment," described in the "Shell Programming" section.) Then try the at command
with the -I option:

$ at 12:00pm<CR>
mail my/ogin < memo<CR>
<"d>
job 263131754.a at Jun 30 12:00:00 1986
$

$ at -1<CR>
user = my/ogin 263131754.a at Jun 30 12:00:00 1986
$

Figure 7-9 summarizes the syntax and capabilities of the at command.

SHELL TUTORIAL 373

Shell Command Language

Command Recap

at - execute commands at a specified time

command

at

Description:

Options:

Remarks:

options

-r
-)

arguments

time (date)
jobnumber

Executes commands at the time specified. You
can use between one and four digits, and am or
pm to show the time. To specify the date, give a
month name followed by the number for the day.
You do not need to enter a date if you want your
job to run the same day. See the at(l) manual
page in the User's Reference Manual for other
default times.

The -r option with the job number removes pre­
viously scheduled jobs.

The -) option (no arguments) reports the job
number and status of all scheduled at and batch
jobs.

Examples of how to specify times and dates with
the at command:

at 08:15am Feb 27
at 5:14pm Sept 24

Figure 7-9: Summary of the at Command

374 USER'S GUIDE

Shell Command Language

Obtaining the Status of Running Processes

The ps command gives you the status of all the processes you are currently
running. For example, you can use the ps command to show the status of all
processes that you run in the background using & (described in the earlier section
"Special Characters").

The next section, "Terminating Active Processes," discusses how you can use
the PID (process identification) number to stop a command from executing. A
PID is a number from 1 to 30,000 that the UNIX system assigns to each active
process.

In the following example, grep is run in the background, and then the ps com­
mand is issued. The system responds with the process identification (pm) and the
terminal identification ('lTY) number. It also gives the cumulative execution time
for each process (TIME), and the name of the command that is being executed
(CXMvWID).

$ grep word * > temp & <CR>
28223
$

$ps<CR>
PID

28124
28223
28224
$

Tl'Y TIME CXHWID

tty10 0: 00 sh

tty100:04 grep
tty100:04 ps

Notice that the system reports a PID number for the grep command, as well
as for the other processes that are running: the ps command itself, and the sh
(shell) command that runs while you are logged in. The shell program sh inter­
prets the shell commands and is discussed in Chapters 1 and 4.

SHELL TUTORIAL 375

Shell Command Language

*

Figure 7-10 summarizes the syntax and capabilities of the ps command.

Command Recap

ps - report process status

command options arguments

ps several * none

Description: ps displays information about active processes.

Options: Several. If none are specified, ps displays the
status of all active processes you are running.

Remarks: Gives you the PID (process ID). This is needed
to kill a process (stop the process from executing).

See the ps(1) manual page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 7-10: Summary of the ps Command

Terminating Active Processes

The kill command is used to terminate active shell processes. The general
format for the kill command is

kill PID<CR>

You can use the kill command to terminate processes that are running in back­
ground. Note that you cannot terminate background processes by pressing the
BREAK or DELETE key.

376 USER'S GUIDE

Shell Command Language

The following example shows how you can terminate the grep command that
you started executing in background in the previous example.

$ kill 28223<CR>
28223 Terminated
$

Notice the system responds with a message and a $ prompt, showing that the
process has been killed. If the system cannot find the PID number you specify, it
responds with an error message:

*

kill:28223:No such process

Figure 7-11 summarizes the syntax and capabilities of the kill command.

Command Recap

kill - terminate a process

command options arguments

kill available* job number or PID

Description: kill terminates the process specified by the PID
number.

See the kill(l) manual page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 7-11: Summary of the kill Command

SHELL TUTORIAL 377

Shell Command Language

Using the nohup Command

All processes are killed when you log off. If you want a background process
to continue running after you log off, you must use the nohup command to submit
that background command.

To execute the nohup command, follow this format:

nohup command & <CR>

Notice that you place the nohup command before the command you intend to run
as a background process.

For example, say you want the grep command to search all the files in the
current directory for the string "word" and redirect the output to a file called
word.Iist, and you wish to log off immediately afterward. Type the command line
as follows:

nohup grep word * > word.Iist & < CR >
You can terminate the nohup command by using the kill command. Figure 7-12
summarizes the syntax and capabilities of the nohup command.

Command Recap

nohup - prevents interruption of command execution by hang ups

command options arguments

nohup none command line

Description: Executes a command line, even if you hang up or
quit the system.

Figure 7-12: Summary of the nohup Command

378 USER'S GUIDE

Shell Command Language

Now that you have mastered these basic shell commands and notations, use
them in your shell programs! The exercises that follow will help you practice
using shell command language. The answers to the exercises are at the end of the
chapter.

SHELL TUTORIAL 379

Command Language Exercises
1-1. What happens if you use an * (asterisk) at the beginning of a file name?

Try to list some of the files in a directory using the * with the last letter
of one of your file names. What happens?

1-2. Try the following two commands; enter them as follows:

catlO-91*<CR>
echo *<CR>

1-3. Is it acceptable to use a ? at the beginning or in the middle of a file name
generation? Try it.

1-4. Do you have any files that begin with a number? Can you list them
without listing the other files in your directory? Can you list only those
files that begin with a lower case letter between a and m? (Hint: use a
range of numbers or letters in [J).

1-5. Is it acceptable to place a command in background mode on a line that is
executing several other commands sequentially? Try it. What happens?
(Hint: use; and &.) Can the command in background mode be placed
in any position on the command line? Try placing it in various positions.
Experiment with each new character that you learn to see the full power
of the character.

1-6. Redirect the output of pwd and Is into a file by using the following com­
mand line:

cd; pWd; Is; ed trial < CR >

Remember, if you want to redirect both commands to the same file, you
have to use the> > (append) sign for the second redirection. If you do
not, you will wipe out the information from the pwd command.

1-7. Instead of cutting the time out of the date response, try redirecting only
the date, without the time, into banner. What is the only part you need
to change in the time command line?

banner 'date I cut -c12-19'<CR>

380 USER'S GUIDE

Shell Programming

You can use the shell to create programs-new commands. Such programs
are also called "shell procedures." This section tells you how to create and execute
shell programs using commands, variables, positional parameters, return codes,
and basic programming control structures.

The examples of shell programs in this section are shown two ways. First, the
cat command is used in a screen to display the contents of a file containing a shell
program:

$ cat testfile<CR>
first command

last command
$

Second, the results of executing the shell program appear after a command line:

$ testjile<CR>
program _output
$

You should be familiar with an editor before you try to create shell programs.
Refer to the tutorials in Chapter 5 (for the ed editor) and Chapter 6 (for the vi
editor) .

SHELL TUTORIAL 381

Shell Programming

Shell Programs

Creating a Simple Shell Program

We will begin by creating a simple shell program that will do the following
tasks, in order.

• print the current directory

• list the contents of that directory

• display this message on your terminal: "This is the end of the shell" pro­
gram.

Create a file called dl (short for directory list) using your editor of choice,
and enter the following:

pwd<CR>
Is<CR>
echo This is the end of the shell program.<CR>

Now write and quit the file. You have just created a shell program! You can cat
the file to display its contents, as the following screen shows:

$ cat dl<CR>
~
Is
eclx> '1hl.s is the end of the shell program.
$

382 USER'S GUIDE

Shell Programming

Executing a Shell Program

One way to execute a shell program is to use the sh command. Type:

sh dl<CR>

The dl command is executed by sh, and the path name of the current directory is
printed first, then the list of files in the current directory, and finally, the com­
ment This is the end of the shell program. The sh command provides a
good way to test your shell program to make sure it works.

If dl is a useful command, you can use the chmod command to make it an
executable file; then you can type dl by itself to execute the command it contains.
The following example shows how to use the chmod command to make a file exe­
cutable and then run the Is -I command to verify the changes you have made in
the permissions.

$ chmod u+x dl<CR>
$ Is -I<CR>
total 2

-rw-------
-rwx------
$

login login 3661 Nov 2
login login 48 Nov 15

10:28 mbox

10:50 dl

Notice that chmod turns on permission to execute (+x) for the user (u).
Now dl is an executable program. Try to execute it. Type:

dl<CR>

You get the same results as before, when you entered sh dl to execute it. For fur­
ther details about the chmod command, see Chapter 3.

SHELL TUTORIAL 383

Shell Programming

Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories, you can
make a bin directory from your login directory and move the shell files to your
bin.

You must also set your shell variable PATH to include your bin directory:

PATH =SPATH:SHOME/bin

See "Variables" and "Using Shell Variables" in this chapter for more information
about PATH. For more advanced information, refer to the manual Shell Com­
mands and Programming.

The following example will remind you which commands are necessary. In
this example, dl is in the login directory. Type these command lines:

cd<CR>
mkdir bin < CR>
mv dl bin/dl<CR>

Move to the bin directory and type the Is -I command. Does dl still have execute
permission?

Now move to a directory other than the login directory, and type the follow­
ing command:

dl<CR>

What happened?

Figure 7 -13 summarizes your new shell program, dl.

384 USER'S GUIDE

Shell Programming

Shell Program Recap

dl - display the directory path and directory contents (user defined)

command arguments

dl none

Description: dl displays the output of the shell command pwd
and Is.

i

Figure 7-13: Summary of the dl Shell Program

It is possible to give the bin directory another name; if you do so, you need to
change your shell variable PATH again.

Warnings about Naming Shell Programs

You can give your shell program any appropriate file name. However, you
should not give your program the same name as a system command. If you do,
the system will execute your command instead of the system command. For exam­
ple, if you had named your dl program mv, each time you tried to move a file, the
system would have executed your directory list program instead of mv.

Another problem can occur if you name the dI file Is, and then try to execute
the file. You would create an infinite loop, since your program executes the Is
command. After some time, the system would give you the following error mes­
sage:

Too many processes, cannot fork

What happened? You typed in your new command, Is. The shell read and exe­
cuted the pwd command. Then it read the Is command in your program and tried
to execute your Is command. This formed an infinite loop.

SHELL TUTORIAL 385

Shell Programming

UNIX system designers wisely set a limit on how many times an infinite loop
can execute. One way to keep this from happening is to give the path name for
the system's Is command, /binlls, when you write your own shell program.

The following Is shell program would work:

$ cat Is<CR>
pi«!
/bin/Is
eclx> This is the erXl. of the shell program

If you name your command Is, then you can only execute the system Is com­
mand by using its full path name, /binlIs.

Variables

Variables are the basic data objects shell programs manipulate, other than
files. Here we discuss three types of variables and how you can use them:

• positional parameters

• special parameters

• named variables

386 USER'S GUIDE

Shell Programming

Positional Parameters

A positional parameter is a variable within a shell program whose value is set
from an argument specified on the command line invoking the program. Posi­
tional parameters are numbered and are referred to with a preceding $: $1, $2,
$3, and so on.

A shell program may reference up to nine positional parameters. If a shell
program is invoked on with a command line that appears like this:

shell.prog ppl pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9<CR>

then positional parameter $1 within the program will be assigned the value ppl,
positional parameter $2 within the program will be assigned the value pp2, and so
on, when the shell program is invoked.

Create a file called pp (short for positional parameters) to practice positional
parameter substitution. Then enter the echo commands shown in the following
screen. Enter the command lines so that running the cat command on your comp­
leted file will produce the following output:

$ cat pp<CR>
echo The first positional parameter is: $1<CR>
echo '!he seoand positional parameter is: $2<CR>
echo '!he third positional parameter is: $3<CR>
echo '!he fourth positional parameter is: $4<CR>
$

If you execute this shell program with the arguments one, two, three, and four,
you will obtain the following results (first you must make the shell program pp
executable using the chmod command):

SHELL TUTORIAL 387

Shell Programming

$ chmod u +x pp<CR>
$

$ pp one two three four <CR>
The first positional parameter is: one
The second positional parameter is: two
The third positional parameter is: three
The fourth positional parameter is: four
$

The following screen shows the shell program bbday, which mails a greeting
to the login entered in the command line:

$ cat bbday<CR>
banner happy birthday : mail $1

Try sending yourself a birthday greeting. If your login name is sue, your
command line will be:

bbday sue<CR>

Figure 7-14 summarizes the syntax and capabilities of the bbday shell program.

388 USER'S GUIDE

Shell Programming

Shell Program Recap

bbday - mail a banner birthday greeting (user defined)

command arguments

bbday login

Description: bbday mails the message happy birthday, in
poster-sized letters, to the specified login.

Figure 7-14: Summary of the bbday Command

The who command lists all users currently logged in on the system. How can
you make a simple shell program called whoson, that will tell you if the owner of
a particular login is currently working on the system?

Type the following command line into a file called whoson:

who I grep $1 <CR>

The who command lists all current system users, and grep searches the output of
the who command for a line containing the string contained as a value in the posi­
tional parameter $1.

Now try using your login as the argument for the new program whoson. For
example, say your login is sue. When you issue the whoson command, the shell
program substitutes sue for the parameter $1 in your program and executes as if
it were:

who I grep sue <CR>

The output is shown on the following screen:

SHELL TUTORIAL 389

Shell Programming

$ whoson sue<CR>
sue tty26 Jan 24 13: 35
$

If the owner of the specified login is not currently working on the system, grep
fails and the whoson prints no output.

Figure 7-15 summarizes the syntax and capabilities of the whoson command.

Shell Program Recap

whoson - display login information if user is logged in (user defined)

command arguments

whoson login

Description: If a user is on the system, whoson displays the user's login,
the TTY number, and the time and date the user logged
m.

Figure 7-15: Summary of the whoson Command

The shell allows a command line to contains 128 arguments. However, a
shell program is restricted to referencing nine positional parameters, $1 through
$9, at a given time. This restriction can be worked around using the shift com-

390 USER'S GUIDE

Shell Programming

mand, described in the manual Shell Commands and Programming. The special
parameter $*, described in the next section, can also be used to access the values
of all command line arguments.

Special Parameters

$# This parameter, when referenced within a shell program, contains the
number of arguments with which the shell program was invoked. Its
value can be used anywhere within the shell program.

Enter the command line shown in the following screen in an executable shell
program called get.num. Then run the cat command on the file:

$ cat get.num<CR>
echo The number of arguments is: $#

$

The program simply displays the number of arguments with which it is
invoked. For example:

$ get.num test out this program<CR>
The number of arguments is: 4
$

SHELL TUTORIAL 391

Shell Programming

Figure 7 -16 summarizes the get.num shell program.

Shell Program Recap

get.num - count and display the number of arguments (user defined)

command arguments

get.num (character_string)

Description: get.num counts the number of arguments given to the
command and then displays the total.

Remarks: This command demonstrates the special parameter $#.

Figure 7-16: Summary of the get.num Shell Program

$* This special parameter, when referenced within a shell program, contains
a string with all the arguments with which the shell program was
invoked, starting with the first. You are not restricted to nine parameters
as with the positional parameters $1 through $9 ..

You can write a simple shell program to demonstrate $*. Create a shell pro­
gram called show.param that will echo all the parameters. Use the command line
shown in the following completed file:

392 USER'S GUIDE

$ cat show.param<CR>
echo The parameters f= this ccmnand are: $*

$

Shell Programming

show.param will echo all the arguments you give to the command. Make
show.param executable and try it out, using these parameters:

Hello. How are you?

$ show.param Hello. How are you? <CR>
The parameters f= this ccmnand are: Hello. How are you?
$

Notice that show.param echoes Hello. How are you? Now try show.param
using more than nine arguments:

SHELL TUTORIAL 393

Shell Programming

$ show.param one two 3 4 S six 7 8 9 10 11 <CR>
The parameters for this oc::muand are: one two 3 4 5 six 7 8 9 10 11
$

Once again, show.param echoes all the arguments you give. The $* parameter
can be useful if you use file name expansion to specify arguments to the shell
command.

Use the file name expansion feature with your show.param command. For
example, say you have several files in your directory named for chapters of a
book: chapl, chap2, and so on, through chap7. show.param will print a list of all
those files.

$ show.param chap? <CR>
The parameters for this oc::muand are: chap1 chap2 chap3
chap4 chapS chapG chap7
$

Figure 7-17 summarizes the show.param shell program.

394 USER'S GUIDE

Shell Programming

Shell Program Recap

show.param - display all positional parameters (user defined)

command arguments

show.param (any positional parameters)

Description: show.param displays all the parameters.

Remarks: If the parameters are file name generations, the command
will display each of those file names.

Figure 7-17: Summary of the show.param Shell Program

Named Variables

Another form of variable that you can use within a shell program is a named
variable. You assign values to named variables yourself. The format for assign­
ing a value to a named variable is

named variable = value < CR >
Notice that there are no spaces on either side of the = sign.

In the following example, varl is a named variable, and myname is the value
or character string assigned to that variable:

varl = myname < CR>

A $ is used in front of a variable name in a shell program to reference the
value of that variable. Using the example above, the reference $varl tells the
shell to substitute the value myname (assigned to varl), for any occurrence of the -
character string $varl.

SHELL TUTORIAL 395

Shell Programming

The first character of a variable name must be a letter or an underscore. The
rest of the name can be composed of letters, underscores, and digits. As in shell
program file names, it is not advisable to use a shell command name as a variable
name. Also, the shell has reserved some variable names you should not use for
your variables. A brief explanation of these reserved shell variable names follows:

• CDPATH defines the search path for the cd command.

• HOME is the default variable for the cd command (home directory).

• IFS defines the internal field separators (normally the space, the tab, and
the carriage return).

• LOGNAME is your login name.

• MAIL names the file that contains your electronic mail.

• PATH determines the search path used by the shell to find commands.

• PSI defines the primary prompt (default is $).

• PS2 defines the secondary prompt (default is ».
• TERM identifies your terminal type. It is important to set this variable if

you are editing with vi.

• TERMINFO identifies the directory to be searched for information about
your terminal, for example, its screen size.

• TZ defines the time zone (default is EST5EDT).

Many of these variables are explained in "Modifying Your Login Environment"
later in this chapter. You can also read more about them on the sb(l) manual
page in the User's Reference Manual.

You can see the value of these variables in your shell in two ways. First, you
can type

echo $variable _name

The system outputs the value of variable_name. Second, you can use the env(I)
command to print out the value of all defined variables in the shell. To do this,
type env on a line by itself; the system outputs a list of the variable names and
values.

396 USER'S GUIDE

Shell Programming

Assigning a Value to a Variable

If you edit with vi, you know you can set the TERM variable by entering the
following command line:

TERM = terminal name<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to do this:

• Use the read command to assign input to the variable.

• Redirect the output of a command into a variable by using command sub­
stitution with grave accents C ... ').

• Assign a positional parameter to the variable.

The following sections discuss each of these methods in detail.

Using the read Command

The read command used within a shell program allows you to prompt the user
of the program for the values of variables. The general format for the read com­
mand is:

read variable<CR>

The values assigned by read to variable will be substituted for $variable wherever
it is used in the program. If a program executes the echo command just before
the read command, the program can display directions such as rrype in
The read command will wait until you type a character string, followed by a
RETURN key, and then make that string the value of the variable.

The following example shows how to write a simple shell program called
num.please to keep track of your telephone numbers. This program uses the fol­
lowing commands for the purposes specified:

echo to prompt you for a person's last name

read to assign the input value to the variable name

grep to search the file list for this variable

SHELL TUTORIAL 397

Shell Programming

Your finished program should look like the one displayed here:

$ cat num.please<CR>
echo Type in the last name:
read name
grep $name list
$

Create a file called list that contains several last names and phone numbers.
Then try running num.please.

The next example is a program called mknum, which creates a list. mknum
includes the following commands for the purposes shown.

• echo prompts for a person's name

• read assigns the person's name to the variable name

• echo asks for the person's number

• read assigns the telephone number to the variable num

• echo adds the values of the variables name and num to the file list

If you want the output of the echo command to be added to the end of list, you
must use » to redirect it. If you use>, list will contain only the last phone
number you added.

Running the cat command on mknum displays the program's contents. When
your program looks like this, you will be ready to make it executable (with the
chmod command):

398 USER'S GUIDE

$ cat mknum<CR>
echo Type in name
read name
echo Type in rrumber

read =
echo $name $= » list
$ cbmod u+x mknum<CR>
$

Shell Programming

Tryout the new programs for your phone list. In the next example, mknum
creates a new listing for Mr. Niceguy. Then num.please gives you Mr. Niceguy's
phone number:

$ mknum<CR>
Type in the name
Mr. Niceguy<CR>
Type in the rrumber

668-0007 < CR >
$ num.please<CR>
Type in last name
Niceguy<CR>
Mr. Niceguy 668-0007
$

Notice that the variable name accepts both Mr. and Niceguy as the value.

Figures 7-18 and 7-19 summarize the mknum and num.please shell programs,
respectively.

SHELL TUTORIAL 399

Shell Programming

Shell Program Recap

mknum - place name and number on a phone list

command arguments

mknum (interactive)

Description: Asks you for the name and number of a person and adds
that name and number to your phone list.

Remarks: This is an interactive command.

Figure 7-18: Summary of the mknum Shell Program

Shell Program Recap

num.please - display a person's name and number

command arguments

num.please (interactive)

Description: Asks you for a person's last name, and then displays the
person's full name and telephone number.

Remarks: This is an interactive command.

Figure 7-19: Summary of the num.please Shell Program

400 USER'S GUIDE

Shell Programming

Substituting Command Output for the Value of a Variable

You can substitute a command's output for the value of a variable by using
command substitution. This has the following format:

variable = 'command' <CR>

The output from command becomes the value of variable.

In one of the previous examples on piping, the date command was piped into
the cut command to get the correct time. That command line was the following:

date I cut -c12-19<CR>

You can put this in a simple shell program called t that will give you the time.

$ cat t<CR>
time='date i cut ~12-19'
echo The time is: $time
$

Remember there are no spaces on either side of the equal sign. Make the file exe­
cutable, and you will have a program that gives you the time:

SHELL TUTORIAL 401

Shell Programming

$ chmod u +x t<CR>
$ t<CR>
The time is: 10:36
$

Figure 7-20 summarizes your t program.

Shell Program Recap

t - display the correct time

command arguments

t none

Description: t gives you the correct time in hours and minutes.

Figure 7-20: Summary of the t Shell Program

Assigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by using the fol­
lowing format:

varl =$1 <CR>

402 USER'S GUIDE

Shell Programming

The next example is a simple program called simp.p that assigns a positional
parameter to a variable. The following screen shows the commands in simp.p:

$ cat simp.p<CR>
var1=$1
echo $var1
$

Of course, you can also assign the output of a command that uses positional
parameters to a variable, as follows:

person = 'who I grep $l'<CR>

In the next example, the program log. time keeps track of your whoson pro­
gram results. The output of whoson is assigned to the variable person, and added
to the file login. file with the echo command. The last echo displays the value of
$person, which is the same as the output from the whoson command:

$ cat log.time<CR>
person= 'who : grep $1'
echo $person » login.file
echo $person
$

SHELL TUTORIAL 403

Shell Programming

The system response to log. time is shown in the following screen:

$ log. time maryann<CR>
maryann tty61 Apr 11 10:26
$

Figure 7-21 summarizes the log.time shell program.

Shell Program Recap

log. time - log and display a specified login (user defined)

command arguments

log.time login

Description: If the specified login is currently on the system, log. time
places the line of information from the who command into
the file login.file and then displays that line of information
on your terminal.

Figure 7-21: Summary of the log. time Shell Program

404 USER'S GUIDE

Shell Programming

Shell Programming Constructs

The shell programming language has several constructs that give added flexi­
bility to your programs:

• Comments let you document a program's function.

• The "here document" allows you to include within the shell program itself
lines to be redirected to be the input to some command in the shell pro­
gram.

• The exit command lets you terminate a program at a point other than the
end of the program and use return codes.

• The looping constructs, for and while, allow a program to iterate through
groups of commands in a loop.

• The conditional control commands, if and case, execute a group of com­
mands only if a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a loop.

Comments

You can place comments in a shell program in two ways. All text on a line
following a # (pound) sign is ignored by the shell. The # sign can be at the
beginning of a line, in which case the comment uses the entire line, or it can occur
after a command, in which case the command is executed but the remainder of
the line is ignored. The end of a line always ends a comment. The general for­
mat for a comment line is

#comment < CR >

For example, a program that contains the following lines will ignore them
when it is executed:

This program sends a generic birthday greeting. <CR>
This program needs a lcX)in as<CR>
the IX>si tional parameter. <CR>

Comments are useful for documenting a program's function and should be
included in any program you write.

SHELL TUTORIAL 405

Shell Programming

The here Document

A "here document" allows you to place into a shell program lines that are
redirected to be the input of a command in that program. It is a way to provide
input to a command in a shell program without needing to use a separate file.
The notation consists of the redirection symbol « and a delimiter that specifies
the beginning and end of the lines of input. The delimiter can be one character or
a string of characters; the ! is often used.

Figure 7-22 shows the general format for a here document.

command < <delimiter<CR>
... input lines ... < CR >
delimiter<CR>

Figure 7-22: Format of a Here Document

In the next example, the program gbday uses a here document to send a gen­
eric birthday greeting by redirecting lines of input into the mail command:

$ cat gbday<CR>
nail $1 «!

Best wishes to you an your birthday.
!
$

406 USER'S GUIDE

Shell Programming

When you use this command, you must specify the recipient's login as the argu­
ment to the command. The input included with the use of the here document is:

Best wishes to you on your birthday

For example, to send this greeting to the owner of login mary, type:

$ gbday mary<CR>

Login mary will receive your greeting the next time she reads her mail messages:

$ mail<CR>
Fran mylogin Wed May 14 14:31 CDT 1986
Best wishes to you an your birthday
$

Figure 7-23 summarizes the format and capabilities of the gbday command.

Shell Program Recap

gbday - send a generic birthday greeting (user defined)

command arguments

gbday login

Description: gbday sends a generic birthday greeting to the
owner of the login specified in the argument.

Figure 7-23: Summary of the gbday Command

SHELL TUTORIAL 407

Shell Programming

Using ed in a Shell Program

The here document offers a convenient and useful way to use ed in a shell
script. For example, suppose you want to make a shell program that will enter
the ed editor, make a global substitution to a file, write the file, and then quit ed.
The following screen shows the contents of a program called ch.text which does
these tasks.

408 USER'S GUIDE

$ cat ch.text<CR>
ecOO ':type in the file name.
read file1
ecOO ':type in the exact text to be changed.

read old text
ecOO ':type in the exact new text to replace the above.

read new text
ed - $file1 «I
g/$old_text/s//$new_text/g

w

q

1
$

Shell Programming

Notice the - (minus) option to the ed command. This option prevents the
character count from being displayed on the screen. Notice, also, the format of
the ed command for global substitution:

glold_text/sllnew_textlg<CR>

The program uses three variables: file], old_text, and new _text. When the pro­
gram is run, it uses the read command to obtain the values of these variables.
The variables provide the following information:

file the name of the file to be edited

old text the exact text to be changed

new text the new text

Once the variables are entered in the program, the here document redirects
the global substitution, the write command, and the quit command into the ed
command. Try the new ch.text command. The following screen shows sample
responses to the program prompts:

SHELL TUTORIAL 409

Shell Programming

$ ch.text<CR>
Type in the filename.
memo<CR>
Type in the exact text to be chanqed.
Dear Jobn:<CR>
Type in the exact new text to replace the above.

To whom it may concem:<CR>
$ cat memo<CR>
To whan it may cancern:
$

Notice that by running the cat command on the changed file, you could
examine the results of the global substitution.

Figure 7-24 summarizes the format and capabilities of the ch.text command.

Shell Program Recap

ch.text - change text in a file

command arguments

ch.text (interactive)

Description: Replaces text in a file with new text.

Remarks: This shell program is interactive. It will prompt
you to type in the arguments.

Figure 7-24: Summary of the ch.text Command

410 USER'S GUIDE

Shell Programming

If you want to become more familiar with ed, see Chapter 5, "Line Editor
Tutorial (ed)." The stream editor sed can also be used in shell programming.
You can find more information on the sed editor in the Editing Guide or Editing
Utilities Guide.

Return Codes
Most shell commands issue return codes that indicate whether the command

executed properly. By convention, if the value returned is 0 (zero) than the com­
mand executed properly; any other value indicates that it did not. The return
code is not printed automatically, but is available as the value of the shell special
parameter $?

Checking Return Codes

After executing a command interactively, you can see its return code by typ-
ing

echo $?

Consider the following example:

$ cat hi
This is file hi.
$ echo $?
o
$ cat hello
cat: cannot open hello
$ echo $?
2
$

In the first case, the file hi exists in your directory and has read permission for
you. The cat command behaves as expected and outputs the contents of the file.
It exits with a return code of 0, which you can see using the parameter $? In the
second case, the file either does not exist or does not have read permission for you.
The cat command prints a diagnostic message and exits with a return code of 2.

SHELL TUTORIAL 411

Shell Programming

Using Return Codes With the exit Command

A shell program normally terminates when the last command in the file is
executed. However, you can use the exit command to terminate a program at
some other point. Perhaps more importantly, you can also use the exit command
to issue return codes for a shell program. For more information about exit, see
the exit(2) manual page in the Programmer's Reference Manual or Shell Com­
mands and Programming.

Looping

In the previous examples in this chapter, the commands in shell programs
have been executed in sequence. The for and while looping constructs allow a
program to execute a command or sequence of commands several times.

The for Loop

The for loop executes a sequence of commands once for each member of a
list. It has the following format:

for variable<CR>
in aJist_of_values<CR>

do<CR>
command 1 < CR>
command 2<CR>

last command<CR>
done<CR>

Figure 7-25: Format of the for Loop Construct

For each iteration of the loop, the next member of the list is assigned to the
variable given in the for clause. References to that variable may be made any­
where in the commands within the do clause.

412 USER'S GUIDE

Shell Programming

It is easier to read a shell program if the looping constructs are visually clear.
Since the shell ignores spaces at the beginning of lines, each section of commands
can be indented as it was in the above format. Also, if you indent each command
section, you can easily check to make sure each do has a corresponding done at
the end of the loop.

The variable can be any name you choose. For example, if you call it var,
then the values given in the list after the keyword in will be assigned in turn to
var; references within the command list to $var will make the value available. If
the in clause is omitted, the values for var will be the complete set of arguments
given to the command and available in the special parameter $*. The command
list between the keywords do and done will be executed once for each value.

When the commands have been executed for the last value in the list, the pro­
gram will execute the next line below done. If there is no line, the program will
end.

The easiest way to understand a shell programming construct is to try an
example. Create a program that will move files to another directory Include the
following commands for the purposes shown:

echo

read

for variable

in list _oLvalues

to prompt the user for a path name to the new
directory.

to assign the path name to the variable path

to call the variable file; it can be referenced as $file
in the command sequence.

to supply a list of values. If the in clause is omit­
ted, the list of values is assumed to be -$* (all the
arguments entered on the command line).

do command _sequence to provide a command sequence. The construct for
this program will be:

do
mv $file $path/$file<CR>

done

SHELL TUTORIAL 413

Shen Programming

The following screen shows the text for the shell program mv.file:

$ cat mv.file<CR>
echo Please type :in the directozy path
read path
far file

:in mem::> 1 mem::>2 1IlE!IID3
do

mv $file Spath/$file
done
$

In this program the values for the variable file are already in the program.
To change the files each time the program is invoked, assign the values using posi­
tional parameters or the read command. When positional parameters are used,
the in keyword is not needed, as the next screen shows:

$ cat mv.file<CR>
echo type :in the directory path
read path
far file
do

mv $file $path/$file
dane
$

414 USER'S GUIDE

Shell Programming

You can move several files at once with this command by specifying a list of
file names as arguments to the command. (This can be done most easily using
the file name expansion mechanism described earlier).

Figure 7·26 summarizes the mv.file shell program.

Shell Program Recap

mv.file - move files to another directory (user defined)

command arguments

mv.file filenames
(interactive)

Description: Moves files to a new directory.

Remarks: This program requires file names to be given as
arguments. The program prompts for the path to
the new directory.

Figure 7·26: Summary of mv.file Shell Program

The while Loop

Another loop construct, the while loop, uses two groups of commands. It will
continue executing the sequence of commands in the second group, the do ... done
list, as long as the final command in the first group, the while list, returns a status
of true (meaning the command can be executed).

The general format of the while loop is shown in Figure 7-27.

SHELL TUTORIAL 415

Shell Programming

while<CR>
command 1 < CR>

last command < CR>
do<CR>

command l<CR>

last command<CR>
done<CR>

Figure 7-27: Format of the while Loop Construct

For example, a program called enter.name uses a while loop to enter a list of
names into a file. The program consists of the following command lines:

$ cat enter.name<CR>
while

read x
do

echo $x»xfile
done
$

416 USER'S GUIDE

With some added refinements, the program becomes:

$ cat enter.name<CR>
echo Please type in each person's name and then a <CR>

echo Please end the list of names with a <Ad>

while read x

do
echo $x;»xfile

done
echo xfile contains the following names:
cat xfile
$

Shell Programming

Notice that after the loop is completed, the program executes the commands
below the done.

You used special characters in the first two echo command lines, so you must
use quotes to turn off the special meaning. The next screen shows the results of
enter.name:

$ enter.name<CR>
Please type in each person's name and then a <CR>

Please end the list of names with a <Ad>

Mary Lou <CR>
Janice <CR>
<Ad>
xfile contains the follow:ing names:
Mary Lou

Janice
$

SHELL TUTORIAL 417

Shell Programming

Notice that after the loop completes, the program prints all the names contained
in xfile.

The Shell's Garbage Can: Idev loull

The file system has a file called Idev/null where you can have the shell deposit
any unwanted output.

Tryout Idev/null by destroying the results of the who command. First, type
in the who command. The response tells you who is on the system. Now, try the
who command, but redirect the output into Idev/null:

who> /dev/null<CR>

Notice that the system responded with a prompt. The output from the who
command was placed in Idev/null and was effectively discarded.

Conditional Constructs

if ... then

The if command tells the shell program to execute the then sequence of com­
mands only if the final command in the if command list is successful. The if con­
struct ends with the keyword ti.

The general format for the if construct is shown in Figure 7-28.

418 USER'S GUIDE

if<CR>
command1 <CR>

last command<CR>
then<CR>

command1 <CR>

last command<CR>
fi<CR>

Figure 7-28: Format of the if .•• then Conditional Construct

Shell Programming

For example, a shell program called search demonstrates the use of the
if ... then construct. search uses the grep command to search for a word in a file.
If grep is successful, the program will echo that the word is found in the file.
Copy the search program (shown on the following screen) and try it yourself:

$ cat search<CR>
echo Type in the 1.«lrd and the file name.
read 1.«lrd file
if grep $1.«lrd $file

fi
$

then echo $1.«lrd is in $file

SHELL TUTORIAL 419

Shell Programming

Notice that the read command assigns values to two variables. The first char­
acters you type, up until a space, are assigned to word. The rest of the charac­
ters, including embedded spaces, are assigned to file.

A problem with this program is the unwanted display of output from the grep
command. If you want to dispose of the system response to the grep command in
your program, use the file Idev/null, changing the if command line to the follow­
ing:

if grep Sword $file > Idev/null<CR>

Now execute your search program. It should respond only with the message
specified after the echo command.

if •.• then ••. else

The if ... then construction can also issue an alternate set of commands with
else, when the if command sequence is false. It has the following general format:

420 USER'S GUIDE

if<CR>
command1 <CR>

last command<CR>
then<CR>

command1 <CR>

last command<CR>
else<CR>

command1 <CR>

last command<CR>
fi<CR>

Shell Programming

Figure 7-29: Format of the if •.. then ... else Conditional Construct

You can now improve your search command so it will tell you when it cannot
find a word, as well as when it can. The following screen shows how your
improved program will look:

SHELL TUTORIAL 421

Shell Programming

$ cat search <CR>
echo Type in tlJe word and tlJe file name.
read word file
if

grep $word $file >/dev/null
tlJen

echo $word is in $file
else

fi
$

echo $word is NJT in $file

Figure 7-30 summarizes your enhanced search program.

Shell Program Recap

search - tells you if a word is in a file (user defined)

command arguments

search interactive

Description: Reports whether a word is in a file.

Remarks: The command prompts you for the arguments
(the word and the file)

Figure 7-30: Summary of the search Shell Program

422 USER'S GUIDE

Shell Programming

The test Command for Loops

The test command, which checks to see if certain conditions are true, is a use­
ful command for conditional constructs. If the condition is true, the loop will con­
tinue. If the condition is false, the loop will end and the next command will be
executed. Some of the useful options for the test command are:

test -r file<CR>

test -w file <CR>

test -xfile<CR>

test -sfile<CR>

true if the file exists and is readable

true if the file exists and has write permission

true if the file exists and is executable

true if the file exists and has at least one character

test var} -eq var2<CR> true if var} equals var2

test var} -ne var2<CR> true if var} does not equal var2

You may want to create a shell program to move all the executable files in
the current directory to your bin directory. You can use the test -x command to
select the executable files. Review the example of the for construct that occurs in
the mv.file program, shown in the following screen:

$ cat mv.file<CR>
echo type in the directoJ:y path
read path
for file
do

mv $file $path/$file
done
$

Create a program called mv.ex that includes an if test -x statement in the
do ... done loop to move executable files only. Your program will be as follows:

SHELL TUTORIAL 423

Shell Programming

$ cat mV.ex<CR>
echo type in the directory path
read path
for file

$

do
if test -x $file

then

fi
done

mv $file $path/$file

The directory path will be the path from the current directory to the bin
directory. However, if you use the value for the shell variable HOME, you will
not need to type in the path each time. $HOME gives the path to the login direc­
tory. $HOMEibin gives the path to your bin.

In the following example, mv.ex does not prompt you to type in the directory
name, and therefore, does not read the path variable:

$ cat mv.ex<CR>
for file

$

do
if test -x $file

then

fi
done

mv $file $lOo!EIbinl$file

424 USER'S GUIDE

Shell Programming

Test the command, using all the files in the current directory, specified with
the -*- metacharacter as the command argument. The command lines shown in
the following example execute the command from the current directory and then
changes to bin and lists the files in that directory. All executable files should be
there.

$ mv.ex *<CR>
$ cd; cd bin; Is<CR>
list _oLexecutable .files
$

Figure 7-31 summarizes the format and capabilities of the mv.ex shell pro­
gram.

SHELL TUTORIAL 425

Shell Programming

Shell Program Recap

mv.ex - move all executable files in the current
directory to the bin directory

command arguments

mv.ex * (all file names)

Description: Moves all files in the current directory with exe-
cute permission to the bin directory.

Remarks: All executable files in the bin directory (or any
directory shown by the PATH variable) can be
executed from any directory.

Figure 7-31: Summary of the mv.ex Shell Program

case .. esac

The case ... esac construction has a multiple choice format that allows you to
choose one of several patterns and then execute a list of commands for that pat­
tern. The pattern statements must begin with the keyword in, and a) must be
placed after the last character of each pattern. The command sequence for each
pattern is ended with ;;. The case construction must be ended with esac (the
letters of the word case reversed).

The general format for the case construction shown in Figure 7-32:

426 USER'S GUIDE

case word < CR >
in<CR>

pattern]) <CR>
command line 1 <CR>

last command line<CR>
;;<CR>
pattern2) <CR>

command line 1 < CR >

last command line<CR>
;;<CR>
pattern3) <CR>

command line 1 <CR>

last command line<CR>
;;<CR>
*) <CR>

command 1 <CR>

last command<CR>
;;<CR>

esac<CR>

Figure 7-32: The case ... esac Conditional Construct

Shell Programming

The case construction tries to match the word following the word case with the
pattern in the first pattern section. If there is a match, the program executes the
command lines after the first pattern and up to the corresponding ;;.

SHELL TUTORIAL 427

Shell Programming

If the first pattern is not matched, the program proceeds to the second pat­
tern. Once a pattern is matched, the program does not try to match any more of
the patterns, but goes to the command following esac.

The * used as a pattern matches any word, and so allows you to give a set
of commands to be executed if no other pattern matches. To do this, it must be
placed as the last possible pattern in the case construct, so that the other patterns
are checked first. This provides a useful way to detect erroneous or unexpected
input.

The patterns that can be specified in the pattern part of each section may use
the metacharacters *, ?, and [) as described earlier in this chapter for the shell's
file name expansion capability. This provides useful flexibility.

The set. term program contains a good example of the case ... esac construction.
This program sets the shell variable TERM according to the type of terminal you
are using. It uses the following command line:

TERM=terminal name<CR>

(For an explanation of the commands used, see the vi tutorial in Chapter 6.) In
the following example, the terminal is a Teletype 4420, Teletype 5410, or Tele­
type 5420.

set.term first checks to see whether the value of term is 4420. If it is, the pro­
gram makes T4 the value of TERM, and terminates. If it the value of term is not
4420, the program checks for other values: 5410 and 5420. It executes the com­
mands under the first pattern that it finds, and then goes to the first command
after the esac command.

The pattern *, meaning everything else, is included at the end of the termi­
nal patterns. It will warn that you do not have a pattern for the terminal
specified and will allow you to exit the case construct:

428 USER'S GUIDE

$ cat set.term<CR>
echo If you have a TrY 4420 type in 4420
echo If you have a TrY 5410 type in 5410
echo If you have a TrY 5420 type in 5420
read tenn
case $tenn

in

esac
export. TERM

4420)
TERM=T4

;;
5410)

TERM=T5

;;
5420)

TERM=T7

;;
*)
echo not a correct tenninal type

echo end of program
$

Shell Programming

Notice the use of the export command. You use export to make a variable
available within your environment and to other shell procedures. What would
happen if you placed the * pattern first? The set. term program would never
assign a value to TERM, since it would always match the first pattern *, which
means everything.

Figure 7-33 summarizes the format and capabilities of the set.term shell pro­
gram.

SHELL TUTORIAL 429

Shell Programming

Shell Program Recap

set.term - assign a value to TERM (user defined)

command arguments

set.term interactive

Description: Assigns a value to the shell variable TERM and
then exports that value to other shell procedures.

Remarks: This command asks for a specific terminal code to
be used as a pattern for the case construction.

Figure 7-33: Summary of the set.term Shell Program

Unconditional Control Statements: the break and continue Commands

The break command unconditionally stops the execution of any loop in which
it is encountered, and goes to the next command after the done, fl, or esac state­
ment. If there are no commands after that statement, the program ends.

In the example for set.term, you could have used the break command instead
of echo to leave the program, as the next example shows:

430 USER'S GUIDE

$ cat set.term<CR>
echo If you have a 'l'l'Y 4420 type in 4420
echo If you have a 'l'l'Y 5410 type in 5410
echo If you have a 'l'l'Y 5420 type in 5420
read tenn
case $tenn

esac

in

;;

4420)
TERM--T4

5410)
TERM--T5

;;
5420)

TERM=T7
;;

break
;;

export: TERM

echo end of program
$

Shell Programming

The continue command causes the program to go immediately to the next
iteration of a do or for loop without executing the remaining commands in the
loop.

Debugging Programs

At times you may need to debug a program to find and correct errors. There
are two options to the sh command (listed below) that can help you debug a pro­
gram:

sh -v shellprogramname prints the shell input lines as they are read by
the system

SHELL TUTORIAL 431

Shell Programming

sb -x shellprogramname prints commands and their arguments as they
are executed

To tryout these two options, create a shell program that has an error in it.
For example, create a file called bug that contains the following list of commands:

$ cat bug<CR>
today: • date •

echo enter person
read person
mail $1
$person

When you log off cane into lIlY office please.
$today.

MUI
$

Notice that today equals the output of the date command, which must be
enclosed in grave accents for command substitution to occur.

The mail message sent to Tom ($1) at login tommy ($2) should read as the
following screen shows:

432 USER'S GUIDE

$ mail<CR>
Fran mlh Thu Apr 10 11 :36 CST 1984
Tan
When you log off cane into II'!Y office please.
Thu Apr 10 11:36:32 CST 1986
MLH

?

Shell Programming

If you try to execute bug, you will have to press the BREAK or DELETE key
to end the program.

To debug this program, try executing bug using sh -v. This will print the
lines of the file as they are read by the system, as shown below:

$ sh -v bug tom <CR>
today.: • date •

echo enter person
enter person
read person
tommy
mail $1

Notice that the output stops on the mail command, since there is a problem
with mail. You must use the here document to redirect input into mail.

Before you fix the bug program, try executing it with sh -x, which prints the
commands and their arguments as they are read by the system:

SHELL TUTORIAL 433

Shell Programming

$ sh -x bug tom tommy<CR>
+date
today=Thu Apr 10 11:07:23 CST 1986
+ echo enter person
enter person
+ read person
tommy
+ mail tom
$

Once again, the program stops at the mail command. Notice that the substi­
tutions for the variables have been made and are displayed.

The corrected bug program is as follows:

$ cat bug<CR>
today.: , date'

echo enter person
read person
mail $1 «I
$person
When you log off cane into my office please.
$today

MLH

$

The tee command is a helpful command for debugging pipelines. While sim­
ply passing its standard input to its standard output, it also saves a copy of its
input into the file whose name is given as an argument.

434 USER'S GUIDE

The general format of the tee command is:

command1 I tee saver/de I command2<CR

Shell Programming

saverfile is the file that saves the output of command1 for you to study.

For example, say you want to check on the output of the grep command in
the following command line:

who I grep $1 I cut -c1-9<CR>

You can use tee to copy the output of grep into a file called check, without dis­
turbing the rest of the pipeline.

who I grep $1 I tee check I cut -c1-9<CR>

The file check contains a copy of the grep output, as shown in the following
screen:

$ who I grep mlhmo I tee check I cut -c1-9<CR>
rnl1lIlo

$ cat check<CR>
rnl1lIlo tty61 Apr 10 11 : 30
$

For further information about shell programming, including features such as
command return codes, refer to the manual Shell Commands and Programming.

SHELL TUTORIAL 435

Modifying Your Login Environment

The UNIX system lets you modify your login environment in several ways.
One modification that users commonly want to make is to change the default
values of the erase (#) and line kill (@) characters.

When you log in, the shell first examines a file in your login directory named
.profile (pronounced "dot profile"). This file contains commands that control your
shell environment.

Because the .profile is a file, it can be edited and changed to suit your needs.
On some systems you can edit this file yourself, while on others, the system
administrator does this for you. To see whether you have a .profile in your home
directory, type:

Is -al $HOME

If you can edit the file yourself, you may want to be cautious the first few
times. Before making any changes to your .profile, make a copy of it in another
file called safe. profile. Type:

cp .profile safe.profile<CR>

You can add commands to your .profile just as you add commands to any
other shell program. You can also set some terminal options with the stty com­
mand, and set some shell variables.

Adding Commands to Your .profile

Practice adding commands to your .profile. Edit the file and add the follow­
ing echo command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate them in
the current work session, you may cause the commands in .profile to be executed
directly using the. (dot) shell command. The shell will reinitialize your environ­
ment by reading executing the commands in your .profile. Try this now. Type:

. .profile < CR >

The system should respond with the following:

436 USER'S GUIDE

Modifying Your Login Environment

Good Morning! I am ready to work for you.
$

Setting Terminal Options

The stty command can make your shell environment more convenient. There
are three options you can use with stty: -tabs, erase < ~h>, and echoe.

stty -tabs

sttyechoe

This option preserves tabs when you are printing. It
expands the tab setting to eight spaces, which is the
default. The number of spaces for each tab can be
changed. (See stty(l) in the User's Reference
Manual for details')

This option allows you to use the erase key on your
keyboard to erase a letter, instead of the default
character #. Usually the BACKSPACE key is the
erase key.

If you have a terminal with a screen, this option
erases characters from the screen as you erase them
with the BACKSPACE key.

If you want to use these options for the stty command, you can create those
command lines in your .profile just as you would create them in a shell program.
If you use the tail command, which displays the last few lines of a file, you can
see the results of adding those four command lines to your .profile:

SHELL TUTORIAL 437

Modifying Your Login Environment

$ tail -4 .profile<CR>
echo Good M:lrning I I am ready to work for you
stty -tabs

stty erase <~h>
stty echoe
$

Figure 7-34 summarizes the format and capabilities of the tail command.

Command Recap

tail - display the last portion of a file

command options arguments

tail -n filename

Description: Displays the last lines of a file.

Options: Use -n to specify the number of lines n (default
is ten lines). You can specify a number of blocks
(-nb) or characters (-nc) instead of lines.

Figure 7-34: Summary of the tail Command

438 USER'S GUIDE

Modifying Your Login Environment

Creating an rje Directory

We have often talked about sharing useful programs with other users in this
chapter. Similarly, these users may have programs or other files that they want to
share with you. So that these users can send you the files easily, you should
create an rje (remote job entry) directory:

mkdir rje
chmod go +w rje

Notice that you have to change the permissions of the directory using chmod.
When you have an rje directory with the correct permissions, other users can send
you files using the uucp command. See the uucp(l) manual page in the User's
Reference Manual for details.

Using Shell Variables

Several of the variables reserved by the shell are used in your .profile. You
can display the current value for any shell variable by entering the following com­
mand:

echo $variable_name

Four of the most basic of these variables are discussed next.

HOME

This variable gives the path name of your login directory. Use the cd
command to go to your login directory and type:

pwd<CR>

What was the system response? Now type:

echo $HOME<CR>

Was the system response the same as the response to pWd?

SHELL TUTORIAL 439

Modifying Your Login Environment

$HOME is the default argument for the cd command. If you do not
specify a directory, cd will move you to $HOME.

PATH

This variable gives the search path for finding and executing com­
mands. To see the current values for your PATH variable type:

echo $PATH<CR>

The system will respond with your current PATH value.

$ echo $PATH<CR>
: lIl\Yloginlbin: Ibin: lusrlbin: lusr/lib
$

The colon (:) is a delimiter between path names in the string
assigned to the $PA TH variable. When nothing is specified before a : ,
then the current directory is understood. Notice how, in the last example,
the system looks for commands in the current directory first, then in
Imyloginlbin/, then in Ibin, then in lusr/bin, and finally in lusr/lib.

If you are working on a project with several other people, you may
want to set up a group bin, a directory of special shell programs used only
by your project members. The path might be named Iprojectl/bin. Edit
your .profile, and add :/projectllbin to the end of your PATH, as in the
next example.

PATH = ":/mylogin/bin:/bin:/usr/lib:/projectl/bin" <CR>

440 USER'S GUIDE

Modifying Your Login Environment

TERM

This variable tells the shell what kind of terminal you are using. To
put assign a value to it, you must execute the following three commands
in this order:

TERM =terminal_name<CR>
export TERM <CR>
tput init

The first two lines, together, are necessary to tell the computer what type
of terminal you are using. (For an explanation of exporting variables, see
Shell Commands and Programming.) The last line, containing the tput
command, tells the terminal that the computer is expecting to communi­
cate with the type of terminal specified in the TERM variable. Therefore
this command must always be entered after the variable has been
exported.

If you do not want to specify the TERM variable each time you log
in, add these three command lines to your .profile; they will be executed
automatically whenever you log in. To determine what terminal name to
assign to the TERM variable, see the instructions in Appendix F, "Setting
Up the Terminal." This appendix also contains details about the tput
command.

If you log in on more than one type of terminal, it would also be use­
ful to have your set. term command in your .profile.

PSt

This variable sets the primary shell prompt string (the default is the
$ sign). You can change your prompt by changing the PSt variable in
your .profile.

Try the following example. Note that to use a multi-word prompt,
you must enclose the phrase in quotes. Type the following variable
assignment in your .profile.

PSt = "Your command is my wish<CR>"

Now execute your .profile (with the. command) and watch for your new
prompt sign.

$ •• profile<CR>

SHELL TUTORIAL 441

Modifying Your Login Environment

Your carmand is my wish

The mundane $ sign is gone forever, or at least until you delete the PSt
variable from your .profile.

442 USER'S GUIDE

Shell Programming Exercises

2-1. Create a shell program called time from the following command line:

banner 'date I cut -c12-19'<CR>

2-2. Write a shell program that will give only the date in a banner display.
Be careful not to give your program the same name as a UNIX system
command.

2-3. Write a shell program that will send a note to several people on your sys­
tem.

2-4. Redirect the date command without the time into a file.

2-5. Echo the phrase Dear colleague in the same file that contains the date
command, without erasing the date.

2-6. Using the above exercises, write a shell program that will send a memo to
the same people on your system mentioned in Exercise 2-3. Include in
your memo:

The current date and the words Dear colleague at the top of the
memo

The body of the memo (stored in an existing file)

The closing statement

2-7. How can you read variables into the mv.file program?

2-8. Use a for loop to move a list of files in the current directory to another
directory. How can you move all your files to another directory?

2-9. How can you change the program search, so that it searches through
several files?

Hint:

for file
in $*

SHELL TUTORIAL 443

Shell Programming Exercises

2-10. Set the stty options for your environment.

2-11. Change your prompt to the word Hello.

2-12. Check the settings of the variables $HOME, $TERM, and $PATH in
your environment.

444 USER'S GUIDE

Answers To Exercises

Command Language Exercises

1-1. The * at the beginning of a file name refers to all files that end in that
file name, including that file name.

$ Is *t<CR>
cat
123t
new.t
t
$

1-2. The command cat [0-91* will produce the following output:

1merro

100data
9
05name

The command echo * will produce a list of all the files in the current
directory.

1-3. You can place? in any position in a file name.

1-4. The command Is [0-91* will list only those files that start with a number.

The command Is la-ml* will list only those files that start with the letters
"a" through "m".

SHELL TUTORIAL 445

Answers To Exercises

1-5. If you placed the sequential command line in the background mode, the
immediate system response was the PID number for the job.

No, the & (ampersand) must be placed at the end of the command line.

1-6. The command line would be:

cd; pwd > junk; Is > > junk; ed trial < CR >

1-7. Change the -c option of the command line to read:

banner 'date I cut -cl-10'<CR>

Shell Programming Exercises

2-1.

$ cat time<CR>
banner 'date : 'cut -c12-19'
$

$ chmod u+x time<CR>
$ time<CR>
(banner display of the time 10:26)
$

446 USER'S GUIDE

2-2.

2-3.

$ cat mydate<CR>
banner 'date : cut --c1-10'
$

$ cat tofriends < CR >
echo Type in the name of the file cant:aini.ng the note.
read note
mail janice marylou myan < $note

$

Answers To Exercises

Or, if you used parameters for the logins, instead of the logins themselves,
your program may have looked like this:

SHELL TUTORIAL 447

Answers To Exercises

$ cat tofriends<CR>
echo Type in the name of the file conta:ining the note.
read note
mail $* < $note

$

2-4. date I cut -cl-lO > filel <CR>

2-5. echo Dear colleague > > filel <CR>

448 USER'S GUIDE

2-6.

2-7.

$ cat send.memo<CR>
date I cut --1::1-10 > meno1
echo Dear colleague» memo1
cat meno » meno1
echo A memo fran M. L. Kelly » memo1
mail janice marylou btyan < memo1
$

$ cat mv.fiIe<CR>
echo type in the directo:Iy path
read path
echo type in file names, end with <Ad>

while
read file

do
mv $file $path/$file

done
echo all done
$

Answers To Exercises

SHELL TUTORIAL 449

Answers To Exercises

2-8.

$ cat mv.fiIe<CR>
eclx> Please type in direct:ary path
read path
far file in h

do

$

mv $file $path/$file
dane

The command line for moving all files in the current directory is:

$ mv.fiIe *<CR>

2-9. See hint given with exercise 2-9.

$ cat search < CR >
far file

$

in $*

do
if grep $word $file >/dev/null
then eclx> $word is in $file
else eclx> $word is NOT in $file
fi

dane

450 USER'S GUIDE

2-10. Add the following lines to your .profile.

stty -tabs<CR>
sttyerase <Ah> <CR>
stty echoe < CR >

2-11. Add the following command lines to your .profile

PSI =Hello<CR>
export PSI

Answers To Exercises

2-12. To check the values of these variables in your home environment:

Q $ echo $HOME<CR>

Q $ echo $TERM <CR>

Q $ echo $PATH<CR>

SHELL TUTORIAL 451

CHAPTER 8: COMMUNICATION TUTORIAL

Introduction

The UNIX system offers a choice of commands that enable you to communi­
cate with other UNIX system users. Specifically, they allow you to: send and
receive messages from other users (on either your system or another UNIX sys­
tem); exchange files; and form networks with other UNIX systems. Through net­
working, a user on one system can exchange messages and files between comput­
ers, and execute commands on remote computers.

To help you take advantage of these capabilities, this chapter will teach you
how to use the following commands.

For exchanging messages:

For exchanging files:

For networking:

452 USER'S GUIDE

mail, mailx, uname, and uuname

uucp, uuto, uupick, and uustat

ct, cu, and uux

Exchanging Messages

To send messages you can use either the mail or mailx command. These
commands deliver your message to a file belonging to the recipient. When the
recipient logs in (or while already logged in), he or she receives a message that
says you have mail. The recipient can use either the mail or mailx command to
read your message and reply at his or her leisure.

The main difference between mail and mailx is that only mailx offers the fol­
lowing features:

• a choice of text editors {ed or vi} for handling incoming and outgoing mes­
sages

• a list of waiting messages that allows the user to decide which messages to
handle and in what order

• several options for saving files

• commands for replying to messages and sending copies (of both incoming
and outgoing messages) to other users

You can also use mail or mailx to send short files containing memos, reports,
and so on. However, if you want to send someone a file that is over a page long,
use one of the commands designed for transferring files: uuto or uucp. (See
"Sending Large Files" later in this chapter for descriptions of these commands.>

COMMUNICATION TUTORIAL 453

mail

This section presents the mail command. It discusses the basics of sending
mail to one or more people simultaneously, whether they are working on the local
system (the same system as you) or on a remote system. It also covers receiving
and handling incoming mail.

Sending Messages

The basic command line format for sending mail is

maillogin<CR>

where login is the recipient's login name on a UNIX system. This login name
can be either of the following:

• a login name if the recipient is on your system (for example, bob)

• a system name and login name if the recipient is on another UNIX system
that can communicate with yours (for example, sys2!bob)

For the moment, assume that the recipient is on the local system. (We will deal
with sending mail to users on remote systems later.} Type the mail command at
the system prompt, press the RETURN key, and start typing the text of your
message on the next line. There is no limit to the length of your message. When
you have finished typing it, send the message by typing a period (.) or a <~d>
(control-d) at the beginning of a new line.

o The following example shows how this procedure will appear on your screen.

454 USER'S GUIDE

$ mail phyllis<CR>
My meeting with Smith's<CR>
group tomorrow has been moved<CR>
up to 3:00 so I won't be able to<CR>
see you then. Could we meet<CR>
in the morning instead? <CR>
.<CR>
$

mail

The prompt on the last line means that your message has been queued (placed in
a waiting line of messages) and will be sent.

Undeliverable Mail

If you make an error when typing the recipient's login, the mail command
will not be able to deliver your mail. Instead, it will print two messages telling
you that it has failed and that it is returning your mail. Then it will return your
mail in a message that includes the system name and login name of both the
sender and intended recipient, and an error message stating the reason for the
failure.

For example, say you (owner of the login koI) want to send a message to a
user with the login chris on a system called marmaduk. Your message says The
meeting has been changed to 2: 00. Failing to notice that you have incorrectly
typed the login as cris, you try to send your message.

COMMUNICA nON TUTORIAL 455

mail

$ mail cris < CR>
The meeting has been changed to 2:00 •
• <CR>
mail: can't send to cris
mail: Re'bl:rn to kol
you have mail in /usr/maillkol
$

The mail that is waiting for you in lusr/mail will be useful if you do not know
why the mail command has failed, or if you want to retrieve your mail so that you
can resend it without typing it in again. It contains the following:

$ mail<CR>
Fran kol Sat Jan 18 17:33 EST 1986
>Fran kol Sat Jan 18 17:33 EST 1986 forwarded by kol

***** UNDELIVERABLE MAIL sent to cris, being retuzned by marmaduklkol *****
mail: ERRCR # 8 'Invalid recipient' encountered an system marmaduk

The I\'eeting has been changed to 2: 00 •

?

To learn how to display and handle this message see "Managing Incoming Mail"
later in this chapter.

456 USER'S GUIDE

Sending Mail to One Person

The following screen shows a typical message.

$ mail tommy<CR>
Tom, <CR>
There's a meeting of the review committee<CR>
at 3:00 this afternoon. D.F. wants your <CR>
comments and an idea of how long you think < CR >
the project will take to complete. <CR>
B.K.<CR>
.<CR>
$

mail

When Tom logs in at his terminal (or while he is already logged in), he receives a
message that tells him he has mail waiting:

$ you have mail

To find out how he can read his mail, see the section "Managing Incoming Mail"
in this chapter.

You can practice using the mail command by sending mail to yourself. Type
in the mail command and your login ID, and then write a short message to your­
self. When you type the final period or < ~ d >, the mail will be sent to a file
named after your login ID in the lusr/mail directory, and you will receive a
notice that you have mail.

Sending mail to yourself can also serve as a handy reminder system. For
example, suppose you (login ID bob) want to call someone the next morning.
Send yourself a reminder in a mail message.

COMMUNICATION TUTORIAL 457

mail

$ mail bob<CR>
Call Accounting and find out < CR >
why they haven't returned my 1985 figures!<CR>
.<CR>
$

When you log in the next day, a notice will appear on your screen informing you
that you have mail waiting to be read.

Sending Mail to Several People Simultaneously

You can send a message to a number of people by including their login names
on the mail command line. For example:

$ mail tommy jane wombat dave<CR>
Diamond cutters,<CR>
The game is on for tonight at diamond three. <CR>
Don't forget your gloves!<CR>
Your Manager < CR>
.<CR>
$

Figure 8-1 summarizes the syntax and capabilities of the mail command.

458 USER'S GUIDE

mail

Command Recap

mail - sends a message to another user's login

command options arguments

mail none [system_name!llogin

Description: Typing mail followed by one or more login names,
sends the message typed on the lines following the
command line to the specified login (s).

Remarks: Typing a period or a <Ad> (followed by the
RETURN key) at the beginning of a new line
sends the message.

Figure 8-1; Summary of Sending Messages with the mail Command

Sending Mail to Remote Systems: the uname and uuname
Commands

Until now we have assumed that you are sending messages to users on the
local UNIX system. However, your company may have three separate computer
systems, each in a different part of a building, or you may have offices in several
locations, each with its own system.

You can send mail to users on other systems simply by adding the name of
the recipient's system before the login ID on the command line.

mail sys2!bob < CR >

Notice that the system name and the recipient's login ID are separated by an
exclamation point.

COMMUNICA nON TUTORIAL 459

mail

Before you can run this command, however, you need three pieces of informa­
tion:

• the name of the remote system

• whether or not your system and the remote system communicate

• the recipient's login name

The uname and uuname commands allow you to find this information.

If you can, get the name of the remote system and the recipient's login name
from the recipient. If the recipient does not know the system name, have him or
her issue the following command on the remote system:

uname -n<CR>

The command will respond with the name of the system. For example:

$ uname -n<CR>
dumbo
$

Once you know the remote system name, the uuname command can help you
verify that your system can communicate with the remote system. At the prompt,
type:

uuname<CR>

This generates a list of remote systems with which your system can communicate.
If the recipient's system is on that list, you can send messages to it by mail.

You can simplify this step by using the grep command to search through the
uuname output. At the prompt, type:

uuname I grep system<CR>

(Here system is the recipient's system name.) If grep finds the specified system
name, it prints it on the screen. For example:

$ uuname I grep dumbo <CR>
dumbo
$

This means that dumbo can communicate with your system. If dumbo does not
communicate with your system, uuname returns a prompt.

460 USER'S GUIDE

$ uuname I grep dumbo < CR >
$

mail

To summarize our discussion of uname and uuname, consider an example.
Suppose you want to send a message to login sarah on the remote system dumbo.
Verify that dumbo can communicate with your system and send your message.
The following screen shows both steps.

$ uuname I grep dumbo<CR>
dumbo

$ mail dumbo!sarah < CR >
Sarah, <CR>
The final counts for the writing seminar <CR>
are as foUows:<CR>
<CR>
Our department - 18<CR>
Your department - 20 < CR >
<CR>
Tom<CR>
.<CR>
$

Figures 8-2 and 8-3 summarize the syntax and capabilities of the uname and
uuname commands, respectively.

COMMUNICATION TUTORIAL 461

mail

Command Recap

uname - displays the system name

command options arguments

uname -n and others * none

Description: uname -n displays the name of the system on
which your login resides.

Figure 8-2: Summary of the uname Command

* See the uname(I) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Command Recap

uuname - displays a list of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that can
communicate with your system.

Figure 8-3: Summary of the uuname Command

462 USER'S GUIDE

mail

Managing Incoming Mail

As stated earlier, the mail command also allows you to display messages sent
to you by other users on your screen so you can read them. If you are logged in
when someone sends you mail, the following message is printed on your screen:

you have mail

This means that one or more messages are being held for you in a file called
lusr/maillyour _login, usually referred to as your mailbox. To display these mes­
sages on your screen, type the mail command without any arguments:

mail<CR>

The messages will be displayed one at a time, beginning with the one most
recently received. A typical mail message display looks like this:

$ mail
Fran t:anI!Y Wed May 21 15:33 CST 1986
Bob,

Looks like the meeting has been cancelled.
Do ~ still want the material far the technical review?
Tan

?

The first line, called the header, provides information about the message: the
login name of the sender and the date and time the message was sent. The lines
after the header (up to the line containing the ?) comprise the text of the mes­
sage.

If a long message is being displayed on your terminal screen, you may not be
able to read it all at once. You can interrupt the printing by typing < AS>
(control-s). This will freeze the screen, giving you a chance to read. When you
are ready to continue, type <Aq> and the printing will resume.

COMMUNICATION TUTORIAL 463

mail

After displaying each message, the mail command prints a ? prompt and
waits for a response. You have many options, for example, you can leave the
current message in your mailbox while you read the next message; you can delete
the current message; or you can save the current message for future reference.
For a list of mail's available options, type a? in response to mail's ? prompt.

To display the next message without deleting the current message, press the
RETURN key after the question mark.

?<CR>

The current message remains in your mailbox and the next message is displayed.
If you have read all the messages in your mailbox, a prompt appears.

To delete a message, type a d after the question mark:

? d<CR>

The message is deleted from your mailbox. If there is another message waiting, it
is then displayed. If not, a prompt appears as a signal that you have finished
reading your messages.

To save a message for later reference, type an s after the question mark:

? s<CR>

This saves the message, by default, in a file called mbox in your home directory.
To save the message in another file, type the name of that file after the s com­
mand.

For example, to save a message in a file called mailsave Gn your current
directory), enter the response shown after the question mark:

? s maiisave<CR>

If mailsave is an existing file, the mail command appends the message to it. If
there is no file by that name, the mail command creates one and stores your mes­
sage in it. You can later verify the existence of the new file by using the Is com­
mand. Os lists the contents of your current directory')

464 USER'S GUIDE

mail

You can also save the message in a file in a different directory by specifying a
path name. For example:

? s projectl/memo<CR>

This is a relative path name that identifies a file called memo (where your mes­
sage will be saved) in a subdirectory (projectl) of your current directory. You
can use either relative or full path names when saving mail messages. (For
instructions on using path names, see Chapter 3.)

To quit reading messages, enter the response shown after the question mark:

?q<CR>

Any messages that you have not read are kept in your mailbox until the next time
you use the mail command.

To stop the printing of a message entirely, press the BREAK key. The mail
command will stop the display, print a ? prompt, and wait for a response from
you.

Figure 8-4 summarizes the syntax and capabilities of the mail command for
reading messages.

COMMUNICATION TUTORIAL 465

mail

Command Recap

mail - reads messages sent to your login

command options arguments

mail available* none

Description: When issued without options, the mail command
displays any messages waiting in your mailbox
(the system file lusr Imaillyour Jogin).

Remarks: A question mark (?) at the end of a message
means that a response is expected. A full list of
possible responses is given in the User's Reference
Manual.

Figure 8-4: Summary of Reading Messages with the mail Command

*

466

See the mail(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

USER'S GUIDE

mailx

This section introduces the mailx facility. It explains how to set up your
mailx environment, send messages with the mailx command, and handle messages
that have been sent to you. The material is presented in four parts:

• mailx Overview

• Sending Messages

• Managing Incoming Mail

• The .mailre File

COMMUNICATION TUTORIAL 467

mailx Overview

The mailx command is an enhanced version of the mail command. There are
many options to mailx that are not available in mail for sending and reading mail.
For example, you can define an alias for a single login or for a group. This allows
you to send mail to an individual using a name or word other than their login ID,
and to send mail to a whole group of people using a single name or word. When
you use mailx to read incoming mail you can save it in various files, edit it, for­
ward it to someone else, respond to the person who originated the message, and so
forth. By using mailx environment variables you can develop an environment to
suit your individual tastes.

If you type the mailx command with one or more logins as arguments,mailx
decides you are sending mail to the named users, prompts you for a summary of
the subject, and then waits for you to type in your message or issue a command.
The section "How to Send Messages" describes features that are available to you
for editing, incorporating other files, adding names to copy lists, and more.

If you enter the mailx command with no arguments,mailx checks incoming
mail for you in a file named lusr/maillyour ...login. If there is mail for you in that
file, you are shown a list of the items and given the opportunity to read, store,
remove or transfer each one to another file. The section entitled "How to Manage
Incoming Mail" provides some examples and describes the options available.

If you choose to customize mailx, you should create a start-up file in your
home directory called .mailrc. The section on "The .mailrc File" describes vari­
ables you can include in your start-up file.

mailx has two modes of functioning: input mode and command mode. You
must be in input mode to create and send messages. Command mode is used to
read incoming mail. You can use any of the following methods to control the way
mailx works for you:

• by entering options on the command line. (See the mailx (1) manual page
in the User's Reference Manual.)

• by issuing commands when you are in input mode, for example, creating a
message to send. These commands are always preceded by a - (tilde) and
are referred to as tilde escapes. (See the mailx(I) manual page in the
User's Reference Manual.)

• by issuing commands when you are in command mode, for example, read­
ing incoming mail.

468 USER'S GUIDE

mailx

• by storing commands and environment variables in a start-up file in your
home directory called $HOME/.mailrc.

Tilde escapes are discussed in "Sending Messages," command mode com­
mands in "Managing Incoming Mail," and the .mailrc file in "The .mailrc File."

COMMUNICATION TUTORIAL 469

Command Line Options

In this section, we will look at command line options.

The syntax for the mailx command is:

mailx [options] [name .. J

The options are flags that control the action of the command, and name ...
represents the intended recipients.

Anything on the command line other than an option preceded by a hyphen is
read by mailx as a name; that is, the login or alias of a person to whom you are
sending a message.

Two of the command line options deserve special mention:

• -f [filename]: Allows you to read messages from filename instead of your
mailbox.

Because mailx lets you store messages in any file you name, you need the
-f option to review these stored options. The default storage file is
SHOME/mbox, so the command:

mailx -f

is used to review messages stored there.

• -0: Do not initialize from the system default mailx.rc file.

If you have your own .mailrc file (see "The .mailrc File") mailx will not
look through the system default file for specifications when you use the -0

option, but will go directly to your .mailrc file. This results in faster ini­
tialization; substantially faster when the system is busy.

470 USER'S GUIDE

How to Send Messages: the Tilde Escapes

To send a message to another UNIX system user, enter the following com­
mand:

$ mailx daves<CR>

The login name specified belongs to the person who is to receive the message.
The system puts you into input mode and prompts you for the subject of the mes­
sage. (You may have to wait a few seconds for the SUbject: prompt if the sys­
tem is very busy.) This is the simplest way to run the mailx command; it differs
very little from the way you run the mail command.

The following examples show how you can edit messages you are sending,
incorporate existing text into your messages, change the header information, and
perform other tasks that take advantage of the mailx command's capabilities.
Each example is followed by an explanation of the key points illustrated in the
example.

$ mailx daves<CR>
Subject:

Whether to include a subject or not is optional. If you elect not to, press the
RETURN key. The cursor moves to the next line and the program waits for you
to enter the text of the message.

COMMUNICATION TUTORIAL 471

How to Send Messages: the Tilde Escapes

$ mailx daves<CR>
Subject: meeting<CR>
We're having a meeting for novice mailx users in<CR>
the auditorium at 9:00 tomorrow. <CR>
Would you be willing to give a demonstration? <CR>
Bob<CR>
-. <CR>
cc:<CR>
$

There are two important things to notice about the above example:

• You break up the lines of your message by pressing the RETURN key at
the end of each line. This makes it easier for the recipient to read the
message, and prevents you from overflowing the line buffer.

• You end the text and send the message by entering a tilde and a period
together (-.) at the beginning of a line. The system responds with an end­
of-text notice (EDT) and a prompt.

There are several commands available to you when you are in input mode (as
we were in the example). Each of them consists of a tilde n, followed by an
alphabetic character, entered at the beginning of a line. Together they are known
as tilde escapes. (See the mailx(1) manual page in the User's Reference
Manual.) Most of them are used in the examples in this section.

You can include the subject of your message on the command line by using
the -s option. For example, the command line:

$ mailx -s "meeting" daves < CR >

is equivalent to:

$ mailx daves<CR>
Subject: meeting < CR >

472 USER'S GUIDE

How to Send Messages: the Tilde Escapes

The subject line will look the same to the recipient of the message. Notice
that when putting the subject on the command line, you must enclose a subject
that has more than one word in quotation marks.

Editing the Message

When you are in the input mode of mailx, you can invoke an editor by enter­
ing the -e (tilde e) escape at the beginning of a line. The following example
shows how to use tilde:

$ mailx daves<CR>
Subject: Testing my tilde<CR>
When entering the text of a message<CR>
that has somehow gotten grabled<CR>
you may invoke your favorite editor<CR>
by means of a -e <tilde e).

Notice that you have misspelled a word in your message. To correct the error,
use -e to invoke the editor, in this case the default editor, ed.

COMMUNICATION TUTORIAL 473

How to Send Messages: the Tilde Escapes

-e<CR>
12
Igrabled/p
that has sanehow gotten grabled
s/gra/gac/p
that has sanehow gotten garbled
w
132
q
(continue)

Wbat more can I tell you?

In this example the eel editor was used. Your .profile or a .mailrc file controls
which editor will be invoked when you issue a -e escape command. The -v (tilde
v) escape invokes an alternate editor (most commonly, vi).

When you exited from ed (by typing q), the mailx command returned you to
input mode and prompted you to continue your message. At this point you may
want to preview your corrected message by entering a -p (tilde p) escape. The-p
escape prints out the entire message up to the point where the -p was entered.
Thus, at any time during text entry, you can review the current contents of your
message.

474 USER'S GUIDE

-p

Message oantains:
To: daves
Subject: Testing II!Y tilde

When entering the text of a rressage
that has sanehow gotten garbled

you may invoke your favorite editor
by means of a tilde e (-e).
What nore can I tell you?
(oantinue)

mr
$

How to Send Messages: the Tilde Escapes

Incorporating Existing Text into Your Message

mailx provides four ways to incorporate material from another source into the
message you are creating. You can:

• read a file into your message

• read a message you have received into a reply

• incorporate the value of a named environment variable into a message

• execute a shell command and incorporate the output of the command into
a message

The following examples show the first two of these functions. These are the
most commonly used of these four functions. For information about the other
two, see the mailx(I) manual page of the User's Reference Manual.

COMMUNICATION TUTORIAL 475

How to Send Messages: the Tilde Escapes

Reading a File into a Message

$ mailx daves<CR>
Subject: Work Schedule < CR >
As you can see from the following <CR>
-r letters/filet
"letters/file1" 101725
we have our work cut out for us.
Please give me your thoughts on this.
- Bob

ror
$

As the example shows, the -r (tilde r) escape is followed by the name of the
file you want to include. The system displays the file name and the number of
lines and characters it contains. You are still in input mode and can continue
with the rest of the message. When the recipient gets the message, the text of
letters/filet is included. (You can, of course, use the -p (tilde p) escape to pre­
view the contents before sending your message.)

476 USER'S GUIDE

How to Send Messages: the Tilde Escapes

Incorporating a Message from Your Mailbox into a Reply

$ mailx<CR>
mailx version 2.14 2/9/85 Type? for help.
"usr/mail/raberts": 2 messages 1 new
>N 1 abc TIle May 1 08:09 8/155 Meeting Notice

2 lqtrs M:In Apr 30 16:57 41127 SChedule
? m jones<CR>
Subject: Hq Schedule<CR>
Here is a copy of the schedule from headquarters ... < CR >
-f2<CR>
Interpolating: 2
(continue)

As you can see, the boss will be visiting our district on<CR>
the 14th and 15th.<CR>
- Robert

Em'

?

There are several important points illustrated in this example:

• The sequence begins in command mode, where you read and respond to
your incoming mail. Then you switch into input mode by issuing the com­
mand m jones (meaning send a message to jones).

• The -r escape is used in input mode to call in one of the messages in your
mailbox and make it part of the outgoing message. The number 2 after the
-r means message 2 is to be interpolated (read in).

• mailx tells you that message 2 is being interpolated and then tells you to
continue.

• When you finish creating and sending the message, you are back in com­
mand mode, as shown by the ? prompt. You may now do something else
in command mode, or exit mailx by typing q.

COMMUNICATION TUTORIAL 477

How to Send Messages: the Tilde Escapes

An alternate command, the -m (tilde m) escape, works the way that -r does
except the read-in message is indented one tab stop. Both the -m and -r com­
mands work only if you start out in command mode and then enter a command
that puts you into input mode. Other commands that work this way will be
covered in the section "How to Manage Incoming Mail."

Changing Parts of the Message Header

The header of a mailx message has four components:

• subject

• recipient(s)

• copy-to list

• blind-copy list (a list of intended recipients that is not shown on the copies
sent to other recipients)

When you enter the mailx command followed by a login or an alias you are
put into input mode and prompted for the subject of your message. Once you end
the subject line by pressing the RETURN key, mailx expects you to type the text
of the message. If, at any point in input mode, you want to change or supplement
some of the header information, there are four tilde escapes that you can use: D,
-t, -c, and D.

D displays all the header fields: subject, recipient, copy-to list, and
blind copy list, with their current values. You can change a current
value, add to it, or, by pressing the RETURN key, accept it.

-t lets you add names to the list of recipients. Names can be either
login names or aliases.

-c lets you create or add to a copy-to list for the message. Enter either
login names or aliases of those to whom a copy of the message should
be sent.

lets you create or add to a blind-copy list for the message.

478 USER'S GUIDE

How to Send Messages: the Tilde Escapes

All tilde escapes must be in the first position on a line. For the -t, -c or D,
any additional material on the line is taken to be input for the list in question.
Any additional material on a line that begins with a D is ignored.

Adding Your Signature

If you want, you can establish two different signatures with the sign and Sign
environment variables. These can be invoked with the -a (tilde a) or -A (tilde A)
escape, respectively. Assume you have set the value Supreme Commander to be
called by the -A escape. Here's how it would work:

$ mailx -s orders all<CR>
Be ready to move out at 0400 hours. < CR >
-A<CR>
Supreme Camander
-.<CR>
EDT
$

Having both escapes (-a and -A) allows you to set up two forms for your sig­
nature. However, because the sender's login automatically appears .in the message
header when the message is read, no signature is required to identify you.

Keeping a Record of Messages You Send

The mailx command offers several ways to keep copies of outgoing messages.
Two that you can use without setting any special environment variables are the -w
(tilde w) escape and the -F option on the command line.

The -w followed by a file name causes the message to be written to the named
file. For example:

COMMUNICATION TUTORIAL 479

How to Send Messages: the Tilde Escapes

$ mailx belr <CR>
Subject: Saving Copies<CR>
When you want to save a copy of<CR>
the text of a message, use the tilde w.<CR>
-w savemail
"savemail" 2171

ED!'
$

If you now display the contents of savemail, you will see this:

$ cat savemail<CR>
When you want to save a copy of

the text of a message, use the tilde w.
$

The drawback to this method, as you can see, is that none of the header informa­
tion is saved.

Using the -F option on the command line does preserve the header informa­
tion. It works as follows:

480 USER'S GUIDE

$ mailx -F -s Savings bdr<CR>
This method appends this message to a
file in my current directory named bdr.

ror
$

How to Send Messages: the Tilde Escapes

We can check the results by looking at the file bdr.

$ cat bdr<CR>
Fran: kol FriMay2 11:14:45 1986
'lb: bdr
Subject: Savings

This method appends this message to a
file in II!Y current directory named bdr.
$

The -F option appends the text of the message to a file named after the first
recipient. If you have used an alias for the recipient(s) the alias is first converted
into the appropriate login(s) and the first login is used as the file name. As noted
above, if you have a file by that name'in your current directory, the text of the
message is appended to it.

COMMUNICATION TUTORIAL 481

How to Send Messages: the Tilde Escapes

Exiting from mailx
When you have finished composing your message, you can leave mailx by typ-

ing any of the following three commands:

tilde period (-.) is the standard way of leaving input mode. It also
sends the message. If you entered input mode from the command
mode of mailx, you now return to the command mode (as shown by
the ? prompt you receive after typing this command). If you started
out in input mode, you now return to the shell (as shown by the shell
prompt).

-q tilde q (-q) simulates an interrupt. It lets you exit the input mode of
mailx. If you have entered text for a message, it will be saved in a
file called dead.letter in your home directory.

-x tilde x (-x) simulates an interrupt. It lets you exit the input mode of
mailx without saving anything.

Summary

In the preceding paragraphs we have described and shown examples of some
of the tilde escape commands available when sending messages via the mailx com­
mand. (See the mailx(1) manual page in the User's Reference Manual.)

482 . USER'S GUIDE

How to Manage Incoming Mail

mailx has over fifty commands which help you manage your incoming mail.
See the mailx(I) manual page in the User's Reference Manual for a list of all of
them (and their synonyms) in alphabetic order. The most commonly used com­
mands (and arguments) are described in the following subsections:

• the msglist argument

• commands for reading and deleting mail

• commands for saving mail

• commands for replying to mail

• commands for getting out of mailx

The msglist Argument

Many commands in mailx take a form of the msglist argument. This argu­
ment provides the command with a list of messages on which to operate. If a
command expects a msglist argument and you do not provide one, the command
is performed on the current message. Any of the following formats can be used
for a msglist:

n message number n the current message

the first undeleted message

$

*
n-m

user

the last message

all messages

an inclusive range of message numbers

all messages from user

Istring all messages with string in the subject line (case is ignored)

:c all messages of type c where cis:

d - deleted messages
n - new messages
o - old messages
r - read messages
u - unread messages

COMMUNICATION TUTORIAL 483

How to Manage Incoming Mail

The context of the command determines whether this type of specification makes
sense.

Here are two examples (the ? is the command mode prompt):

? d 1-3
? s bdr bdr

[Delete messages 1, 2 and 3 J
[Save all messages from user bdr in a

file named bdr. J

Additional examples may be found throughout the next three subsections.

Commands for Reading and Deleting Mail

When a message arrives in your mailbox the following notice appears on your
screen:

you have mail

The notice appears when you log in or when you return to the shell from another
procedure.

Reading Mail

To read your mail, enter the mailx command with or without arguments.
Execution of the command places you in the command mode of mailx. The next
thing that appears on your screen is a display that looks something like this:

484 USER'S GUIDE

..

How to Manage Incoming Mail

mailx version 2.14 10/19/86 Type? for help
"/usr/mail/bdr" :
> N 1 rbt

?

N 2 admin
N 3 daves

3 messages 3 new
Thur Apr 30 14:20 8/190 Review Session
Thur Apr 30 15: 56 5/84 New printer
Fri May 1 08:39 64/1574 Reorganization

The first line identifies the version of mailx used on your system, displays the
date, and reminds you that help is available by typing a question mark (?). The
second line shows the path name of the file used as input to the display (the file
name is normally the same as your login name) together with a count of the total
number of messages and their status. The rest of the display is header informa­
tion from the incoming messages. The messages are numbered in sequence with
the last one received at the bottom of the list. To the left of the numbers there
may be a status indicator; N for new, U for unread. A greater than sign (»
points to the current message. Other fields in the header line show the login of
the originator of the message, the day, date and time it was delivered, the number
of lines and characters in the message, and the message subject. The last field
may be blank.

When the header information is displayed on your screen, you can print mes­
sages either by pressing the RETURN key or entering a command followed by a
msglist argument. If you enter a command with no msglist argument, the com­
mand acts on the message pointed at by the > sign. Pressing the RETURN key
is the equivalent of a typing the p (for print) command without a msglist argu­
ment; the message displayed is the one pointed at by the > sign. To read some
other message (or several others in succession), enter a p (for print) or t (for
type) followed by the message number(s). Here are some examples:

COMMUNICATION TUTORIAL 485

How to Manage Incoming Mail

? <CR>
? p2<CR>
? p daves<CR>

[Print the current message.]
[Print message number 2.
[Print all messages Jrom user daves.

The command t (for type) is a synonym of p (for print).

Scanning Your Mailbox
The mailx command lets you look through the messages in your mailbox

while you decide which ones need your immediate attention.

When you first enter the mailx command mode, the banner tells you how
many messages you have and displays the header line for twenty messages. (If
you are dialed into the computer system, only the header lines for ten messages
are displayed.) If the total number of messages exceeds one screenful, you can
display the next screen by entering the z command. Typing z- causes a previous
screen (if there is one) to be displayed. If you want to see the header information
for a specific group of messages, enter the f (for from) command followed by the
msglist argument.

Here are examples of those commands:

? z
? z-
? f daves

486 USER'S GUIDE

[Scroll Jorward one screenful oj header lines.]
[Scroll backward one screen Jul.]
[Display headers oj all messages Jrom user daves.

..

Switching to Other Mail Files

When you enter mailx by issuing the command:

$ mailx<CR>

you are looking at the file lusr/maillyour _login.

How to Manage Incoming Mail

mailx lets you switch to other mail files and use any of the mailx commands on
their contents. (You can even switch to a non-mail file, but if you try to use
mailx commands you are told No applicable messages.) The switch to another
file is done with the fi or fold command (they are synonyms) followed by the
filename. The following special characters work in place of the filename argu­
ment:

% the current mailbox

% login the mailbox of the owner of login (if you have the required permis­
sions)

#- the previous file

& the current mbox

Here is an example of how this might look on your screen:

COMMUNICATION TUTORIAL 487

How to Manage Incoming Mail

$ mailx<CR>

mailx version 2.14 10/19/86 Type? for help.
"usr/mail/daves": 3 messages 2 new 3 unread

U 1 jaf Sat May 9 07:55 7/137 test25
> N 2 todd Sat May 9 08: 59 9/377 UNITS requirements

N 3 has Sat May 9 11:08 29/1214 access to bailey

?fi& [Enter this command to transfer to your mbox.

Held 3 messages in /usr/mail/daves
"/fs1/daves/rnbax": 74 messages 10 unread

? q<CR>
$

Deleting Mail
To delete a message, enter a d followed by a msglist argument. If the

msglist argument is omitted, the current message is deleted. The messages are
not deleted until you leave the mailbox file you are processing. Prior to that, the
u (for undelete) gives you the opportunity to change your mind. Once you have
issued the quit command (q) or switched to another file, however, the deleted
messages are gone.

mailx permits you to combine the delete and print command and enter a dp.
This is like saying, "Delete the message I just read and show me the next one."
Here are some examples of the delete command:

488 USER'S GUIDE

How to Manage Incoming Mail

[Delete all my messages. J ? d *
? d r
? dp

[Delete all messages that have been read.

? d 2-5
[Delete the current message and print the next one.
[Delete messages 2 through 5. J

Commands for Saving Mail
All messages not specifically deleted are saved when you quit mailx. Mes­

sages that have been read are saved in a file in your home directory called mbox.
Messages that have not been read are held in your mailbox
(lusr Imaillyour _login).

The command to save messages comes in two forms: with an upper case or a
lower case s. The syntax for the upper case version is:

S [msglistl

Messages specified by the msglist argument are saved in a file in the current
directory named for the author of the first message in the list.

The syntax for the lower case version is:

s [msglistl [filename]

Messages specified by the msglist argument are saved in the file named in the
filename argument. If you omit the msglist argument, the current message is
saved. If you are using logins for file names, this can lead to some ambiguity. If
mailx is puzzled, you will get an error message.

COMMUNICATION TUTORIAL 489

How to Manage Incoming Mail

Commands for Replying to Mail

The command for replying to mail comes in two forms: with an upper case or
a lower case r. The principal difference between the two forms is that the upper
case form (R) causes your response to be sent only to the originator of the mes­
sage, while the lower case form (r) causes your response to be sent not only to the
originator but also to all other recipients. (There are other differences between
these two forms. For details, see the mailx(I) manual page in the User's Refer­
ence Manual.)

When you reply to a message, the original subject line is picked up and used
as the subject of your reply. Here's an example of the way it looks:

$ mailx<CR>

mailx version 2.14 10/19/83 Type? for help.
"usr/mail/daves": 3 messages 2 new 3 unread

U 1 jaf Wed May 9 07:55 7/137 test25
> N 2 todd Wed May 9 08: 59 9/377 UNITS requirements

N 3 has Wed May 9 11 :08 29/1214 access to bailey

? R 2
To: todd
Subject: Re: UNITS requirements

Assuming the message about UNITS requirements had been sent to some addi­
tional people, and the lower case r had been used, the header might have
appeared like this:

490 USER'S GUIDE

? r 2
To: todd eg has jcb bdr

Subject: Re: UNITS requirements

How to Manage Incoming Mail

Commands for Getting Out of mailx

There are two standard ways of leaving mailx: with a q or with an x. If you
leave mailx with a q, you see messages that summarize what you did with your
mail. They look like this:

? q<CR>
Saved 1 message in Ifs11bdr/mbox

Held 1 message in lusr/maillbdr
$

From the example we can surmise that user bdr had at least two messages,
read one and either left the other unread or issued a command asking that it be
held in /usr/mail/bdr. If there were more than two messages, the others were
deleted or saved in other files. mailx does not issue a message about those.

COMMUNICATION TUTORIAL 491

How to Manage Incoming Mail

If you leavemailxwith an x, it is almost as if you had never entered. Mail
read and messages deleted are retained in your mailbox. However, if you have
saved messages in other files, that action has already taken place and is not
undone by the x.

mailx Command Summary
In the preceding subsections we have described some of the most frequently

used mailx commands. (See the mailx(I) manual page in the User's Reference
Manual for a complete list.) If you need help while you are in the command
mode of mailx, type either a ? or help after the? prompt. A list of mailx com­
mands and what they do will be displayed on your terminal screen.

492 USER'S GUIDE

The .mailrc File

The .mailre file contains commands to be executed when you invoke mailx.

There may be a system-wide start-up file Uusr/lib/mailx/mailx.re} on your
system. If it exists it is used by the system administrator to set common vari­
ables. Variables set in your .mailre file take precedence over those in mailx.re.

Most mailx commands are legal in the .mailre file. However, the following
commands are NOT legal entries:

! (or) shell

Copy

edit

visual

followup

Followup

mail

reply

Reply

escape to the shell

save messages in msglist in a file whose name is derived
from the author

invoke the editor

invoke vi

respond to a message

respond to a message, sending a copy to msglist

switch into input mode

respond to a message

respond to the author of each message in msglist

You can create your own .mailre with any editor, or copy a friend's. Figure
8-5 shows a sample .mailre file.

COMMUNICATION TUTORIAL 493

mailx

if r
crl $lD1EImail

endif
set allnet append asksub askcc autoprint dot
set metoo quiet save showto header hold keep keepsave
set outfolder
set folder='mail'
set reoord='outbax'
set crt=24
set EDI'lDR=' /bin/ed'
set sign='Roberts'
set Sign=' Jackson Roberts, Supervisor'
set toplines=10
alias fred
alias bob
alias alice
alias mark
alias donna
alias pat
group robertsgrp

group accounts

fjs
rem
ap
met
dr

pat
fred bob alice pat mark
robertsgrp donna

Figure 8-5: Sample .mailrc File

The example in Figure 8-5 includes the commands you are most likely to find
useful: the set command and the alias or group commands.

The set command is used to establish values for environment variables. The
command syntax is:

set
set name
set name = string
set name = number

494 USER'S GUIDE

mailx

When you issue the set command without any arguments, set produces a list
of all defined variables and their values. The argument name refers to an envi­
ronmental variable. More than one name can be entered after the set command.
Some variables take a string or numeric value. String values are enclosed in sin­
gle quotes.

When you put a value in an environment variable by making an assignment
such as HOME = my)ogin, you are telling the shell how to interpret that variable.
However, this type of assigment in the shell does not make the value of the vari­
able accessible to other UNIX system programs that need to reference environ­
ment variables. To make it accessible, you must export the variable. If you set
the TERM variable in your environment in Chapter 6 or Chapter 7, you will
remember using the export command as shown in the following example:

$ TERM = 5425
$ export TERM

When you export variables from the shell in this way, programs that refer­
ence environment variables are said to import them. Some of these variables
(such as EDITOR and VISUAL) are not peculiar to mailx, but may be specified
as general environment variables and imported from your execution environment.
If a value is set in .mailrc for an imported variable it overrides the imported
value. There is an unset command, but it works only against variables set in
.mailrc; it has no effect on imported variables.

There are forty-one environment variables that can be defined in your .mailrc;
too many to be fully described in this document. For complete information, con­
sult the mailx(l) manual page in the User's Reference Manual.

Three variables used in the example in Figure 8-5 deserve special attention
because they demonstrate how to organize the filing of messages. These variables
are: folder, record, and outfolder. All three are interrelated and control the
directories and files in which copies of messages are kept.

To put a value into the folder variable, use the following format:

set folder = directory

This specifies the directory in which you want to save standard mail files. If the
directory name specified does not begin with a / (slash), it is presumed to be rela-

COMMUNICATION TUTORIAL 495

mailx

tive to $HOME. If folder is an exported shell variable, you can specify file names
(in commands that call for a filename argument) with a / before the name; the
name will be expanded so that the file is put into the folder directory.

To put a value in the record variable, use the following format:

set record = filename

This directs mailx to save a copy of all outgoing messages in the specified file.
The header information is saved along with the text of the message. By default,
this variable is disabled.

The outfolder variable causes the file in which you store copies of outgoing
messages (enabled by the variable record =) to be located in the folder directory.
It is established by being named in a set command. The default is nooutfolder.

The alias and group commands are synonyms. In Figure 8-5, the alias com­
mand is used to associate a name with a single login; the group command is used
to specify multiple names that can be called in with one pseudonym. This is a
nice way to distinguish between single and group aliases, but if you want, you can
treat the commands as exact equivalents. Notice, too, that aliases can be nested.

In the .mailrc file shown in Figure 8-5, the alias robertsgroup represents five
users; three of them are specified by previously defined aliases and one is specified
by a login. The fifth user, pat, is specified by both a login and an alias. The next
group command in the example, accounts, uses the alias robertsgroup plus the
alias donna. It expands to twelve logins.

The .mailrc file in Figure 8-5 includes an if-endif command. The full syntax
of that command is:

if sir mail commands

else mail commands

endif

The sand r stand for send and receive, so you can cause some initializing com­
mands to be executed according to whether mailx is entered in input mode (send)
or command mode (receive). In the preceding example, the command is issued to
change directory to $HOME/mail if reading mail. The user in this case had
elected to set up a subdirectory for handling incoming mail.

496 USER'S GUIDE

mailx

The environment variables shown in this section are those most commonly
included in the .mailrc file. You can, however, specify any of them for one session
only whenever you are in command mode. For a complete list of the environment
variables you can set in mailx see the mailx(I) manual page in the User's Refer­
ence Manual.

COMMUNICATION TUTORIAL 497

Sending and Receiving Files

This section describes the commands available for transferring files: the mail
command for small files (a page or less), and the uucp and uuto commands for
long files. Themail command can be used for transferring a file either within a
local system or to a remote system. The uucp and uuto commands transfer files
from one system to another.

Sending Small Files: themail Command

To send a file in a mail message, you must redirect the input to that file on
the command line. Use the < (less than) redirection symbol as follows:

mail login < filename <CR>

(For further information on input redirection, see Chapter 7.) Here login is the
recipient's login ID and filename is the name of the file you want to send. For
example, to send a copy of a file called agenda to the owner of login sarah (on
your system) type the following command line:

$ mail sarah < agenda < CR >
$

The prompt that appears on the second line means the contents of agenda have
been sent. When sarah issues the mail command to read her messages, she will
receive agenda.

To send the same file to more than one user on your system, use the same
command line format with one difference; in place of one login ID, type several,
separated by spaces. For example:

$ mail sarah tommy dingo wombat < agenda<CR>
$

Again, the prompt returned by the system in response to your command is a sig­
nal that your message has been sent.

The same command line format, with one addition, can also be used to send a
file to a user on a remote system that can communicate with yours. In this case,
you must specify the name of the remote system before the user's login name.
Separate the system name and the login name with an ! (exclamation point):

498 USER'S GUIDE

mail system!iogin < filename <CR>

For example:

$ mail dumbo!wombat < agenda<CR>
$

Sending and Receiving Files

The system prompt on the second line means that your message (containing the
file) has been queued for sending.

If you are using mailx, you cannot use the mail command line syntax to send
a file. Instead, you use the -r option as follows:

$ mailx phyllis
Subject: Memo
-r memo
$

Sending Large Files

The uucp and uuto commands allow you to transfer files to a remote com­
puter. uucp allows you to send files to the directory of your choice on the destina­
tion system. If you are transferring a file to a directory that you own, you will
have permission to put the file in that directory. (See Chapter 3 for information
on directory and file permissions.) However, if you are transferring the file to
another user's directory, you must be sure, in advance, that the user has given you
permission to write a file to his or her directory. In addition, because you must
specify path names that are often long and accuracy is required, uucp command
lines may be cumbersome and lead to error.

COMMUNICATION TUTORIAL 499

Sending and Receiving Files

The uuto command is an enhanced version of uucp. It automatically sends
files to a public directory on the recipient's system called lusrlspool/uucppubJic.
This means you cannot choose a destination file. However, it also means that you
can transfer a file at any time without having to request write permission from the
owner of the destination directory. Finally, the uuto command line is shorter and
less complicated than the uucp command line. When you type a uuto command
line, the likelihood of making an error is greatly reduced.

Getting Ready: Do You Have Permission?

Before you actually send a file with the uucp or uuto command, you need to
find out whether or not the. file is transferable. To do that, you must check the
file's permissions. If they are not correct, you must use the chmod command to
change them, if you own the files. (Permissions and the chmod command are
covered in Chapter 3.)

There are two permission criteria that must be met before a file can be
transferred using uucp or uuto .

• The file to be transferred must have read permission (r) for others .

• The directory that contains the file must have read (r) and execute (x)
permission for others.

For example, assume that you have a file named chicken, under a directory
named soup (in your home directory). You want to send a copy of the chicken
file to another user with the uuto command. First, check the permissions on soup:

$ Is -I<CR>
total 4
drwxr-xr-x
$

500 USER'S GUIDE

2 reader group1 45 Feb 9 10:43

Sending and Receiving Files

The response of the Is command shows that soup has read (r) and execute (x)
permissions for all three groups; no changes have to be made. Now use the cd
command to move from your home directory to soup, and check the permissions
on the file chicken:

$ Is -I chicken<CR>
total 4
-rw-------
$

reader group1 3101 Mar 1 18:22 chicken

The command's output means that you (the user) have permission to read the file
chicken, but no one else does. To add read permissions for your group (g) and
others (0), use the chmod command:

$ chmod go+r chicken<CR>

Now check the permissions again with the Is -I command:

$ Is -I chicken<CR>
total 4
-rw-r--r--
$

reader group1 3101 Mar01 18: 22 chicken

This confirms that the file is now transferable; you can send it with the uucp or
uuto command. After you send copies of the file, you can reverse the procedure
and replace the previous permissions.

COMMUNICATION TUTORIAL 501

Sending and Receiving Files

The uucp Command

The command uucp (short for UNIX-to-UNIX system copy) allows you to
copy a file directly to the home directory of a user on another computer, or to any
other directory you specify and for which you have write permission.

uucp is not an interactive command. It performs its work silently, invisible to
the user. Once you issue this command you may run other processes.

Transferring a file between computers is a multiple-step procedure. First, a
work file, containing instructions for the file transfer, must be created. When
requested, a data file (a copy of the file being sent) is also made. Then the file is
ready to be sent. When you issue the uucp command, it performs the preliminary
steps described above (creating the necessary files in a dedicated directory called
a spool directory), and then calls the uucico daemon that actually transfers the
file. (Daemons are system processes that run in background.) The file is placed in
a queue and uucico sends it at the first available time.

Thus, the uucp command allows you to transfer files to a remote computer
without knowing anything except the name of the remote computer and, possibly,
the login ID of the remote user(s) to whom the file is being sent.

Command Line Syntax

uucp allows you to send:

• one file to a file or a directory or

• multiple files to a directory

To deliver your file(s), uucp must know the full path name of both the source-file
and the destination-file. However, this does not mean you must type out the full
path name of both files every time you use the uucp command. There are several
abbreviations you can use once you become familiar with their formats; uucp will
expand them to full path names.

502 USER'S GUIDE

Sending and Receiving Files

To choose the appropriate designations for your source-file and destination­
file, begin by identifying the source-file's location relative to your own current
location in the file system. (We'll assume, for the moment, that the source-file is
in your local system.) If the source-file is in your current directory, you can
specify it by its name alone (without a path). If the source-file is not in your
current directory, you must specify its full path name.

How do you specify the destination-file? Because it is on a remote system,
the destination-file must always be specified with a path name that begins with
the name of the remote system. After that, however, uucp gives you a choice:
you can specify the full path or use either of two forms of abbreviation. Your
destination-file should have one of the following three formats:

• system_name!fullyath

• system _ namenogin _ name[/directory _name/filename]

• systemname!-/login _name[/directory _name/filename]

The login name, in this case, belongs to the recipient of the file.

Until now we have described what to do when you want to send a file from
your local system to a remote system. However, it is also possible to use uucp to
send a file from a remote system to your local system. In either case, you can use
the formats described above to specify either source-files or destination-files.
The important distinction in choosing one of these formats is not whether a file is
a source-file or a destination-file, but where you are currently located in the file
system relative to the files you are specifying. Therefore, in the formats shown
above, the login_name could refer to the login of the owner or the recipient of
either a source-file or a destination-file.

For example, let's say you are login kol on a system called mickey. Your
home directory is /usr/kol and you want to send a file called chapl (in a directory
called text in your home directory) to login wsm on a system c"alled minnie. You
are currently working in /usr/kol/text, so you can specify the source-file with its
relative path name, chapl. Specify the destination-file in any of the ways shown
in the following command lines:

• Specify the destination-file with its full path name:

uucp chapl minnie!/usr/wsm/receive/chapl

• Specify the destination-file with -loginyame (which expands to the name
of the recipient's home directory) and a name for the new file.

uucp chapl minnie!-wsm/receive/chapl

COMMUNICA liON TUTORIAL 503

Sending and Receiving Files

(The file will go to minnie!/usr/wsm/receive/chaplJ

• Specify the destination-file with -login_name (which expands to the
recipient's home directory) but without a name for the new file; uucp will
give the new file the same name as the source-file.

uucp chapl minnie!-wsm/receive

(The file will go to minnie!/usr/wsm/receive/chaplJ

• Specify the destination-file with -!login_name. This expands to the
recipient's subdirectory in the public directory on the remote system.

uucp chapl minnie!-/wsm

(The file will go to minnie!/usr/usr/spool/uucppublic/wsm)

Sample Usage of Options with the uucp Command

Suppose you want to send a file called minutes to a remote computer named
eagle. Enter the command line shown in the following screen:

$ uucp -m -s status -j minutes eagle!lusr/gws/minutes<CR>
eagleN3f45
$

This sends the file minutes (located in your current directory on your local com­
puter) to the remote computer eagle, and places it under the path name /usr/gws
in a file named minutes. When the transfer is complete, the user gws on the
remote computer is notified by mail.

504 USER'S GUIDE

Sending and Receiving Files

The -m option ensures that you (the sender) are also notified by mail as to
whether or not the transfer has succeeded. The -s option, followed by the name
of the file (status), asks the program to put a status report of the file transfer in
the specified file (status).

Be sure to include a file name after the -s option. If you do not, you will get this
message: uucp failed CClr(pletely.

The job ID (eagleN3f45) is displayed in response to the -j option.

Even if uucp does not notify you of a successful transfer soon after you send a
file, do not assume that the transfer has failed. Not all systems equipped with
networking software have the hardware needed to call other systems. Files being
transferred from these so called passive systems must be collected periodically by
active systems equipped with the required hardware (see "How the uucp Com­
mand Works" for details). Therefore, if you are transferring files from a passive
system, you may experience some delay. Check with your system administrator to
find out whether your system is active or passive.

The previous example uses a full path name to specify the destination-file.
There are two other ways the destination-file can be specified:

• The login directory of gws can be specified through use of the - (tilde), as
shown below:

eagJe!-gws/minutes

is interpreted as:

eagJe!/usr Igws/minutes

• The uucppubJic area is referenced by a similar use of the tilde prefix to the
path name. For example:

eagJe!-Igws/minutes

is interpreted as:

lusr Ispool/uucppublic/gws/minutes

COMMUNICATION TUTORIAL 50S

Sending and Receiving Files

How the uucp Command Works

This section is an overview of what happens when you issue the uucp com­
mand. An understanding of the processes involved may help you to be aware of
the command's limitations and requirements: why it can perform some tasks and
not others, why it performs tasks when it does, and why you mayor may not be
able to use it for tasks that uucp performs. For further details see the System
Administrator's Guide and the System Administrator's Reference Manual.

When you enter a uucp command, the uucp program creates a work file and
usually a data file for the requested transfer. (uucp does not create a data file
when you use the -c option.) The work file contains information required for
transferring the file(s). The data file is simply a copy of the specified source file.
After these files are created in the spool directory, the uucico daemon is started.

The uucico daemon attempts to establish a connection to the remote computer
that is to receive the file(s). It first gathers the information required for establish­
ing a link to the remote computer from the Systems file. This is how uucico
knows what type of device to use in establishing the link. Then uucico searches
the Devices file looking for the devices that match the requirements listed in the
Systems file. After uucico finds an available device, it attempts to establish the
link and log in on the remote computer.

When uucico logs in on the remote computer, it starts the uucico daemon on
the remote computer. The two uucico daemons then negotiate the line protocol to
be used in the file transfer(s). The local uucico daemon then transfers the file(s)
that you are sending to the remote computer; the remote uucico places the file in
the specified path name(s) on the remote computer. After your local computer
completes the transfer(s), the remote computer may send files that are queued for
your local computer. The remote computer can be denied permission to transfer
these files with an entry in the Permissions file. If this is done, the remote com­
puter must establish a link to your local computer to perform the transfers.

506 USER'S GUIDE

Sending and Receiving Files

If the remote computer or the device selected to make the connection to the
remote computer is unavailable, the request remains queued in the spool directory.
Each hour (default), uudemon.hour is started by cron which in turn starts the
uusched daemon. When the uusched daemon starts, it searches the spool directory
for the remaining work files, generates the random order in which these requests
are to be processed, and then starts the transfer process (uucico) described in the
previous paragraphs.

The transfer process described generally applies to an active computer. An
active computer (one with calling hardware and networking software) can be set
up to poll a passive computer. Because it has networking software, a passive com­
puter can queue file transfers. However, it cannot call the remote computer
because it does not have the required hardware. The Poll file
(/usr/Hb/uucp/Pon) contains a list of computers that are to be polled in this
manner.

Figure 8-6 summarizes the syntax and capabilities of the uucp command.

COMMUNICATION TUTORIAL 507

Sending and Receiving Files

Command Recap

uucp - copies a file from one computer to another

command options arguments

uucp -jt, -m, -s and others* source-file

Description: uucp performs preliminary tasks required to copy
a file from one computer to another, and calls
uucico, the daemon (background process) that
transfers the file. The user need only issue the
uucp command for a file to be copied.

Remarks: By default, the only directory to which you can
write files is lusrlspool/uucppublic. To write to
directories belonging to another user, you must
receive write permission from that user. Although
there are several ways of representing path names
as arguments, it is recommended that you type
full path names to avoid confusion.

Figure 8-6: Summary of the uucp Command

*

508

See the uucp(1) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

USER'S GUIDE

Sending and Receiving Files

The uuto Command

The uuto command allows you to transfer files to the public directory of
another system. The basic format for the uuto command is:

uuto filename system!login<CR>

where filename is the name of the file to be sent, system is the recipient's system,
and login is the recipient's login name.

If you send a file to someone on your local system, you may omit the system
name and use the following format:

uuto filename login<CR>

Sending a File: the -m Option and uustat Command

Now that you know how to determine if a file is transferable, let's take an
example and see how the whole thing works.

The process of sending a file by uuto is referred to as a job. When you issue
a uuto command, your job is not sent immediately. First, the file is stored in a
queue (a waiting line of jobs) and assigned a job number. When the job's
number comes up, the file is transmitted to the remote system and placed in a
public directory there. The recipient is notified by a mail message and must use
the uupick command (discussed later in the chapter) to retrieve the file.

For the following discussions, assume this information:

wombat your login name
sysl your system name
marie recipient's login name
sys2 recipient's system name
money file to be sent

Also assume that the two systems can communicate with each other.

COMMUNICATION TUTORIAL 509

Sending and Receiving Files

To send the file money to login marie on system sys2, enter the following:

$ uuto money sys2!marie < CR >
$

The prompt on the second line is a signal that the file has been sent to a job
queue. The job is now out of your hands; all you can do is wait for confirmation
that the job reached its destination.

How do you know when the job has been sent? The easiest method is to alter
the uuto command line by adding a -m option, as follows:

$ uuto -m money sys2!marie<CR>
$

This option sends a mail message back to you when the job has reached the
recipient's system. The message may look something like this:

$ mail<CR>
Fran uucp Thur Apr3 09:45 EST 1986
file /sys1/wanbat/rroney, system sys1
oopy succeeded
?

If you would like to check if the job has left your system, you can use the uustat
command. This command keeps track of all the uucp and uuto jobs you submit
and reports the status of each on demand. For example:

510 USER'S GUIDE

$ uustat<CR>
1145 wombat sys2 10/05-09:31 10/05-09:33 JOB IS QUEUED

$

Sending and Receiving Files

The elements of this sample status message are as follows:

• 1145 is the job number assigned to the job of sending the file money to
marie on sys2.

• wombat is the login name of the person requesting the job.

• sys2 is the recipient's system.

• 10/05-09:31 is the date and time the job was queued.

• 10/05-09:33 is the date and time this uustat message was sent.

• The final part is a status report on the job. Here the report shows that the
job has been queued, but has not yet been sent.

To receive a status report on only one uuto job, use the -j option and specify
the job number on the command line:

uustat -jjobnumber<CR>

For example, to get a report on the job described in the previous example, specify
1145 (the job number) after the -j option:

COMMUNICATION TUTORIAL 511

Sending and Receiving Files

$ Dostat -j1145<CR>
1145 wombat sys2 10/05-09:31 10/05-09:37 COPY FINISHED,JOB DELETED
$

This status report shows that the job was sent and deleted from the job queue; it
is now in the public directory of the recipient's system. Other status messages
and options for the uustat command are described in the User's Reference
Manual.

That is all there is to sending files. To practice, try sending a file to yourself.

Figures 8-7 and 8-8 summarize the syntax and capabilities of the uuto and
uustat commands, respectively.

512 USER'S GUIDE

Sending and Receiving Files

Command Recap

uuto - sends files to another login

command options arguments

uuto - m and others * file system!login

Description: uuto sends a specified file to the public directory
of a specified system, and notifies the intended
recipient (by mail addressed to his or her login)
that the file has arrived there.

Remarks: Files to be sent must have read permission for
others; the file's parent directory must have read
and execute permissions for others.

The -m option notifies the sender by mail when
the file has arrived at its destination.

Figure 8-7: Summary of the uuto Command

* See the uutoO) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

COMMUNICATION TUTORIAL 513

Sending and Receiving Files

Command Recap

uustat - checks job status of a uucp or uuto job

command options arguments

uustat -j and others* none

Description: uustat reports the status of all uucp and uuto jobs
you have requested.

Remarks: The -j option, followed by a job number, allows
you to request a status report on only the specified
job.

Figure 8-8: Summary of the uustat Command

* See the uustat(J) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Receiving Files Sent with uuto: the uupick Command

When a file sent by uuto reaches the public directory on your UNIX system,
you receive a mail message. To continue the previous example, the owner of login
marie receives the following mail message when the file money has arrived in her
system's public directory:

514 USER'S GUIDE

Sending and Receiving Files

$ mail
Fran uucp Wed May 14 09:22 EST 1986
lusrlspool/uucppublic/receive/marie/sys1l/m:mey fran sys11wanbat arrived
$

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

• The second line, up to the two slashes (J /), gives the path name to the
part of the public directory where the file has been stored.

• The rest of the line Cafter the two slashes) gives the name of the file and
the sender.

Once you have disposed of the mail message, you can use the uupick com­
mand to store the file where you want it. Type the following command after the
system prompt:

uupick<CR>

The command searches the public directory for any files sent to you. If it finds
any, it reports the filenameCs). It then prints a ? prompt as a request for further
instructions from you.

For example, say the owner of login marie issues the uupick command to
retrieve the money file. The command will respond as follows:

$ uupick < CR >
fran system sys1: file noney
?

There are several available responses; we will look at the most common responses
and what they do.

COMMUNICATION TUTORIAL 515

Sending and Receiving Files

The first thing you should do is move the file from the public directory and
place it in your login directory. To do so, type an m after the question mark:

?
m<CR>
$

This response moves the file into your current directory. If you want to put it in
some other directory instead, follow the m response with the directory name:

?
mother _directory <CR>

If there are other files waiting to be moved, the next one is displayed, followed by
the question mark. If not, uucpick returns a prompt.

If you do not want to do anything to that file now, press the RETURN key
after the question mark:

?
<CR>

The current file remains in the public directory until the next time you use the
uupick command. If there are no more messages, the system returns a prompt.

If you already know that you do not want to save the file, you can delete it by
typing d after the question mark:

?
d<CR>

This response deletes the current file from the public directory and displays the
next message (if there is one). If there are no additional messages about waiting
files, the system returns a prompt.

Finally, to stop the uupick command, type a q after the question mark:

?
q<CR>

Any unmoved or undeleted files will wait in the public directory until the next
time you use the uupick command.

516 USER'S GUIDE

Sending and Receiving Files

Other available responses are listed in the User's Reference Manual.

Figure 8-9 summarizes the syntax and capabilities of the uupick command.

Command Recap

uupick - searches for files sent by uuto or uucp

command options arguments

uupick -s system name

Description: uupick searches the public directory of your sys-
tem for files sent by uuto or uucp. If any are
found, the command displays information about
the file and prompts you for a response.

Remarks: The question mark (?) at the end of the message
shows that a response is expected. A complete
list of responses is given in the User's Reference
Manual.

Figure 8-9: Summary of the uupick Command

COMMUNICATION TUTORIAL 517

Networking

Networking is the process of linking computers and terminals so that users
may be able to:

• log in on a remote computer as well as a local one

• log in and work on two computers in one work session (without alternately
logging off one and logging in on the other)

• exchange data between computers

The commands presented in this section make it possible for you to perform
these tasks. The ct command allows you to connect your computer to a remote
terminal that is equipped with a modem. The cu command enables you to con­
nect your computer to a remote computer, and the uux command lets you run
commands on a remote system, without being logged in on it.

On some small computers, the presence of these commands may depend on
whether or not networking software is installed. If it is not installed on your sys­
tem, you will receive a message such as the following when you type a networking
command:

cu: not found

Check with your system administrator to verify the availability of networking
commands on your UNIX system.

Connecting a Remote Terminal: the ct Command

The ct command connects your computer to a remote terminal equipped with
a modem, and allows a user on that terminal to log in. To do this, the command
dials the phone number of the modem. The modem must be able to answer the
call automatically. When ct detects that the call has been answered, it issues a
getty (login) process for the remote terminal and allows a user on it to log in on
the computer.

518 USER'S GUIDE

Networking

This command can be useful when issued from the opposite end, that is, from
the remote terminal itself. If you are using a remote terminal that is far from
your computer and want to avoid long distance charges, you can use ct to have
the computer place a call to your terminal. Simply call the computer, log in, and
issue the ct command. The computer will hang up the current line and call your
(remote) terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy and
asks if it should wait until one becomes available. If you answer yes, it asks how
long Gn minutes) it should wait for one.

Command Line Format

To execute the ct command, follow this format:

ct [options] telno<CR>

The argument telno is the telephone number of the remote terminal.

Sample Command Usage

Suppose you are logged in on a computer through a local terminal and you
want to connect a remote terminal to your computer. The phone number of the
modem on the remote terminal is 932-3497. Enter this command line:

ct -h -w5 -s1200 9=9323497<CR>

The equal sign (=) represents a secondary dial tone, and dashes (-) following
the phone number represent delays (the dashes are useful following a long dis­
tance number).

ct will call the modem, using a dialer operating at a speed of 1200 baud. If a
dialer is not available, the -w5 option will cause ct to wait for a dialer for five
minutes before quitting. The -h option tells ct not to disconnect the local termi­
nal (the terminal on which the command was issued) from the computer.

COMMUNICATION TUTORIAL 519

Networking

Now imagine that you want to log in on the computer from home. To avoid
long distance charges, use ct to have the computer call your terminal:

ct -s1200 9 = 9323497 < CR >

Because you did not specify the -w option, if no device is available, ct sends you
the following message:

1 busy dialer at 1200 baud Wait for dialer?

If you type n (no), the ct command exits. If you type y (yes), ct prompts you to
specify how long ct should wait:

Time, in nrinutes?

If a dialer is available, ct responds with:

Allocated dialer at 1200 baud

This means that a dialer has been found. In any case, ct asks if you want the line
connecting your remote terminal to the computer to be dropped:

Confinn hangup?

If you type y (yes), you are logged off and ct calls your remote terminal back
when a dialer is available. If you type n (no), the ct command exits, leaving you
logged in on the computer.

Figure 8-10 summarizes the syntax and capabilities of the ct command.

520 USER'S GUIDE

Networking

Command Recap

ct - connect computer to remote terminal

command options arguments

ct -h, -w, -s and others* te/no

Description: ct connects the computer to a remote terminal
and allows a user to log in from that terminal.

Remarks: The remote terminal must have a modem capable
of answering phone calls automatically.

Figure 8-10: Summary of the ct Command

* See the ct(J) manual page in the User's Reference Manual for all avail­
able options and an explanation of their capabilities.

Calling Another UNIX System: the Cll Command

The Cli command connects a remote computer to your computer and allows
you to be logged in on both computers simultaneously. This means that you can
move back and forth between the two computers, transferring files and executing
commands on both, without dropping the connection.

The method used by the Cli command depends on the information you specify
on the command line. You must specify the telephone number or system name of
the remote computer. If you specify a phone number, it is passed on to the
automatic dial modem. If you specify a system name, cu obtains the phone
number from the Systems file. If an automatic dial modem is not used to estab­
lish the connection, the line (port) associated with the direct link to the remote
computer can be specified on the command line.

COMMUNICATION TUTORIAL 521

Networking

Once the connection is made, the remote computer prompts you to log in on
it. When you have finished working on the remote terminal, log off it and ter­
minate the connection by typing < -. >. You will still be logged in on the local
computer.

The cu command is not capable of detecting or correcting errors; data may be
lost or corrupted during file transfers. After a transfer, you can check for loss of
data by running the sum command or the Is -I command on the file that was sent
and the file that was received. Both of these commands will report the total
number of bytes in each file; if the totals match, your transfer was successful.
The sum command checks more quickly and gives output that is easier to inter­
pret. (See the sumO) and the IsO) manual pages in the User's Reference
Manual for details')

Command Line Format

To execute the eu command, follow this format:

cu [options] telno I systemname<CR>

The components of the command line are:

telno the telephone number of a remote computer

Equal signs (=) represent secondary dial tones and dashes (-)
repreent four-second delays.

system name a system name that is listed in the Systems file.

The cu command obtains the telephone number and baud rate
from the Systems file and searches for a dialer. The -s, -n,
and -I options should not be used together with system name.
(To see the list of computers in the Systems file, run the
uuname command.)

Once your terminal is connected and you are logged in on the remote com­
puter, all standard input (input from the keyboard) is sent to the remote com­
puter. Figures 8-11 and 8-12 show the commands you can execute while con­
nected to a remote computer through cu.

522 USER'S GUIDE

Networking

String Interpretation

- T ermina te the link.

-! Escape to the local computer without dropping
the link. To return to the remote computer, type
< Ad> (control-d).

-!command Execute command on the local computer.

-$command Run command locally and send its output to the
remote system.

-%cdpath Change the directory on the local computer where
path is the path name or directory name.

-%takefrom [to] Copy a file named from (on the remote computer)
to a file named to (on the local computer). If to
is omitted, the from argument is used in both
places.

-%putfrom [to] Copy a file named from (on the local computer)
to a file named to (on the remote computer). If
to is omitted, the from argument is used in both
places.

--... Send a line beginning with - (--...) to the
remote computer.

-%break Transmit a BREAK to the remote computer (can
also be specified as - % b).

Figure 8-11: Command Strings for Use with cu (Sheet 1 of 2)

COMMUNICATION TUTORIAL 523

Networking

String Interpretation

-%nostop Turn off the handshaking protocol for the
remainder of the session. This is useful when the
remote computer does not respond properly to the
protocol characters.

-%debug Turn the -d debugging option on or off (can also
be specified as - % d) .

-t Display the values of the terminal I/O
(input/output) structure variables for your termi-
nal (useful for debugging).

-I Display the values of the termio structure vari-
ables for the remote communication line (useful
for debugging).

Figure 8-12: Command Strings for Use with cu (Sheet 2 of 2)

The use of - % put requires stty and cat on the remote computer. It also
requires that the current erase and kill characters on the remote computer be
identical to the current ones on the local computer.

The use of - % take requires the existence of the echo and cat commands on the
remote computer. Also, stty tabs mode should be set on the remote computer if
tabs are to be copied without expansion.

524 USER'S GUIDE

Networking

Sample Command Usage

Suppose you want to connect your computer to a remote computer called
eagle. The phone number for eagle is 847-7867. Enter the following command
line:

eu -s1200 9=8477867<CR>

The -s1200 option causes eu to use a 1200 baud dialer to call eagle. If the -s
option is not specified, eu uses a dialer at the default speed, 300 baud.

When eagle answers the call, eu notifies you that the connection has been
made, and prompts you for a login ID:

carmected
login:

Enter your login ID and password.

The take command allows you to copy files from the remote computer to the
local computer. Suppose you want to make a copy of a file named proposal for
your local computer. The following command copies proposal from your current
directory on the remote computer and places it in your current directory on the
local computer. If you do not specify a file name for the new file, it will also be
called proposal.

-%take proposal<CR>

The put command allows you to do the opposite: copy files from the local
computer to the remote computer. Say you want to copy a file named minutes
from your current directory on the local computer to the remote computer. Type:

-%put minutes minutes.9-18<CR>

In this case, you specified a different name for the new file (minutes.9-18).
Therefore the copy of the minutes file that is made on the remote computer will
be called minutes.9-18.

Figure 8-13 summarizes the syntax and capabilities of the eu command.

COMMUNICATION TUTORIAL 525

Networking

Command Recap

cu - connects computer to remote computer

command options arguments

cu -s and othcrs* telno (or) system name

Description: cu connects your computer to a remote computer
and allows you to be logged in on both simultane-
ously. Once you are logged in, you can move
between computers to execute commands and
transfer files on each without dropping the link.

Figure 8-13: Summary of the cu Command

* See the cu(1) manual page in the User's Reference Manual for all avail­
able options and an explanation of their capabilities.

Executing Commands on a Remote System: the uux
Command

The command uux (short for UNIX-to-UNIX system command execution)
allows you to execute UNIX system commands on remote computers. It can
gather files from various computers, execute a command on a specified computer,
and send the standard output to a file on a specified computer. The execution of
certain commands may be restricted on the remote machine. The command
notifies you by mail if the command you have requested is not allowed to execute.

526 USER'S GUIDE

Networking

Command Line Format

To execute the uux command, follow this format:

uux [options] command-string<CR>

The command-string is made up of one or more arguments. All special shell
characters (such as "< >I~") must be quoted either by quoting the entire
command-string or quoting the character as a separate argument. Within the
command-string the command and file names may contain a system name!
prefix. All arguments that do not contain a systemname are interpreted as com­
mand arguments. A file name may be either a full path name or the name of a
file under the current directory (on the local computer).

Sample Command Usage

If your computer is hard-wired to a larger host computer you can use uux to
get printouts of files that reside on your computer by entering:

pr minutes I uux -p host!Jp < CR >
This command line queues the file minutes to be printed on the area printer of the
computer host.

Figure 8-14 summarizes the syntax and capabilities of the uux command.

COMMUNICATION TUTORIAL 527

Networking

Command Recap

uux - executes commands on a remote computer

command options arguments

uux -It -p, and others* command -string

Description: uux allows you to run UNIX system commands
on remote computers. It can gather files from
various computers, run a command on a specified
computer, and send the standard output to a file
on a specified computer.

Remarks: By default, users of the uux command have per-
mission to run only the mail and mailx com-
mands. Check with your system administrator to
find out if users on your system have been granted
permission to run other commands.

Figure 8-14: Summary of the uux Command

*

528

See the uux(I) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

USER'S GUIDE

A: SUMMARY OF THE FILE SYSTEM

The UNIX System Files

This appendix summarizes the description of the file system given in Chapter
I and reviews the major system directories in the root directory.

File System Structure

The UNIX System files are organized in a hierarchy; their structure is often
described as an inverted tree. At the top of this tree is the root directory, the
source of the entire file system. It is designated by a / (slash). All other direc­
tories and files descend and branch out from root, as shown in Figure A-I.

Figure A-I: Directory Tree from root

o = Directories

o = Ordinary Files

V = Special Files

One path from root leads to your home directory. You can organize and
store information in your own hierarchy of directories and files under your home
directory.

SUMMARY OF THE FILE SYSTEM 529

The UNIX System Files

Other paths lead from root to system directories that are available to all
users. The system directories described in this book are common to all UNIX
system installations and are provided and maintained by the operating system.

In addition to this standard set of directories, your UNIX system may have
other system directories. To obtain a listing of the directories and files in the root
directory on your UNIX system, type the following command line:

Is -I / <CR>

To move around in the file structure, you can use path names. For example,
you can move to the directory Ibin (which contains UNIX system executable
files) by typing the following command line:

cd /bin<CR>

To list the contents of a directory, issue one of the following command lines:

Is<CR>
Is -I<CR>

for a list of file and directory names
for a detailed list of file and
directory names

To list the contents of a directory in which you are not located, issue the Is
command as shown in the following examples:

Is /bin<CR>
Is -I /bin<CR>

for a short listing
for a detailed listing

The following section provides brief descriptions of the root directory and the
system directories under it, as shown in Figure A-I.

530 USER'S GUIDE

UNIX System Directories

I The source of the file system (called root directory)

Ibin Contains many executable programs and utilities, such as the fol­
lowing:

cat
date
login
grep
mkdir
who

/lib Contains available program libraries and language libraries, such
as

libc.a

libm.a

system calls, standard I/O

math routines and support for languages
such as C, FORTRAN, and BASIC.

Idev Contains special files that represent peripheral devices, such as:

console
lp
ttyn
dsk/*

console
line printer
user terminaHs)
disks

letc Contains programs and data files for system administration

Itmp Contains temporary files, such as the buffers created for editing a
file

lusr Contains the following subdirectories which, in turn, contain the
data listed below:

news important news items
mail electronic mail
spool files waiting to be printed on the line

printer

SUMMARY OF THE FILE SYSTEM 531

B: SUMMARY OF UNIX SYSTEM COMMANDS

Basic UNIX System Commands

at Request that a command be run in background mode at a time
you specify on the command line. If you do n0t specify a time,
at(1) displays the job numbers of all jobs you have running in
at(I), batch(I), or background mode.

banner

batch

A sample format is:

at 8:45am Jun 09<CR>
command1 <CR>
command2<CR>
<Ad>

If you use the at command
without the date,
the command executes within twenty-four hours
at the time specified.

Display a message (in words up to ten characters long) in large
letters on the standard output.

Submit command(s) to be processed when the system load is at
an acceptable level. A sample format of this command is:

batch <CR>
command1 <CR>
command2< CR>
<Ad>

You can use a shell script for a command in batch(I).
This may be useful and timesaving if you have a set of commands
you frequently submit using this command.

cat Display the content!> of a specified file at your terminal. To halt
the output on an ASCII terminal temporarily, use <AS>; type
<Aq> to restart the output. To interrupt the output and return
to the shell on an ASCII terminal, press the BREAK or
DELETE key.

532 USER'S GUIDE

cd

cp

cut

date

diff

echo

ed

grep

kill

lex

Ip

Ips tat

Basic UNIX System Commands

Change directory from the current one to your home directory.
If you include a directory name, changes from the current direc­
tory to the directory specified. By using a path name in place of
the directory name, you can jump several levels with one com­
mand.

Copy a specified file into a new file, leaving the original file
intact.

Cut out specified fields from each line of a file. This command
can be used to cut columns from a table, for example.

Display the current date and time.

Compare two files. The diff(1) command reports which lines are
different and what changes should be made to the second file to
make it the same as the first file.

Display input on the standard output (the terminal), including
the carriage return, and returns a prompt.

Edit a specified file using the line editor. If there is no file by the
name specified, the ed(1) command creates one. See Chapter 5
for detailed instructions on using the ed(l) editor.

Search a specified file(s) for a specified pattern and prints those
lines that contain the pattern. If you name more than one file,
grep(l) prints the file that contains the pattern.

Terminate a background process specified by its process
identification number (PI D) . You can obtain a PID by running
the ps(1) command.

Generate programs to be used in simple lexical analysis of text,
perhaps as a first step in creating a compiler. See the User's
Reference Manual for details.

Print the contents of a specified file on a line printer, giving you a
paper copy of the file.

Display the status of any requests made to the line printer.
Options are available for requesting more detailed information.

SUMMARY OF UNIX SYSTEM COMMANDS 533

Basic UNIX System Commands

Is List the names of all files and directories except those whose
names begin with a dot (.). Options are available for listing
more detailed information about the files in the directory. (See
the Is(1) entry in the User's Reference Manual for details')

mail Display any electronic mail you may have received at your termi­
nal, one message at a time. Each message ends with ? prompt;
mail(1) waits for you to request an option such as saving, for­
warding, or deleting a message. To obtain a list of the available
options, type ?

mailx

make

mkdir

mv

nohup

pg

When followed by a login name, mail(1) sends a message to the
owner of that name. You can type as many lines of text as you
want. Then type <Ad> to end the message and send it to the
recipient. Press the BREAK key to interrupt the mail session.

mailx(1) is a more sophisticated, expanded version of electronic
mail.

Maintain and support large programs or documents on the basis
of smaller ones. See the make(1) page in the User's Reference
Manual for details.

Make a new directory. The new directory becomes a subdirec­
tory of the directory in which you issue the mkdir command. To
create subdirectories or files in the new directory, you must first
move into the new directory with the cd command.

Move a file to a new location in the file system. You can move a
file to a new file name in the same directory or to a different
directory. If you move a file to a different directory, you can use
the same file name or choose a new one.

Place execution of a command in the background, so it will con­
tinue executing after you log off of the system. Error messages
are placed in a file called nohup.out.

Display the contents of a specified file on your terminal, a page at
a time. After each page, the system pauses and waits for your
instructions before proceeding.

534 USER'S GUIDE

pr

ps

pwd

rm

rmdir

sort

Basic UNIX System Commands

Display a partially formatted version of a specified file at your
terminal. The pr(I) command shows page breaks, but does not
implement any macros supplied for text formatter packages.

Display the status and number of every process currently run­
ning. The ps(I) command does not show the status of jobs in the
at(I) or batcb(t) queues, but it includes these jobs when they are
executing.

Display the full path name of the current working directory.

Remove a file from the file system. You can use metacharacters
with the rm(I) command but should use them with caution; a
removed file cannot be recovered easily.

Remove a directory. You cannot be in the directory you want to
delete. Also, the command will not delete a directory unless it is
empty. Therefore, you must remove any subdirectories and files
that remain in a directory before running this command on it.
(See rm -r in the User's Reference Manual for the ability to
remove directories that are not empty.)

Sort a file in ASCII order and displays the results on your termi-
nal. ASCII order is as follows:

1. numbers before letters
2. upper case before lower case
3. alphabetical order

There are other options for sorting a file. For a complete list of
sorter) options, see the sorter) page in the User's Reference
Manual.

spell Collect words from a specified file and check them against a spel­
ling list. Words not on the list or not related to words on the list
(with suffixes, prefixes, and so on) are displayed.

stty Report the settings of certain input/output options for your termi­
nal. When issued with the appropriate options and arguments,
stty(I) also sets these input/output option. (See the stty(r)
entry in the User's Reference Manual.)

SUMMARY OF UNIX SYSTEM COMMANDS 535

Basic UNIX System Commands

uname Display the name of the UNIX system on which you are
currently working.

uucp Send a specified file to another UNIX system. (See the uucp(1)
page in the User's Reference Manual for details'>

uuname . List the names of remote UNIX systems that can communicate
with your UNIX system.

uupick Search the public directory for files sent to you by the uuto(1)
command. If a file is found, uupick(I) displays its name and the
system it came from, and prompts you (with a ?) to take action.

uustat Report the status of the uuto(1) command you issued to send
files to another user.

uuto Send a specified file to another user. Specify the destination in
the format system!login. The system must be on the list of sys­
tems generated by the uuname(I) command.

vi Edit a specified file using the vHI) screen editor. If there is no
file by the name you specify, vHI) creates one. (See Chapter 6
for detailed information on using the vHI) editor.>

wc Count the number of lines, words, and characters in a specified
file and display the results on your terminal.

who Display the login names of the users currently logged in on your
UNIX system. List the terminal address for each login and the
time each user logged in.

yacc Impose a structure on the input of a program. See the User's
Reference Manual for details.

536 USER'S GUIDE

C: QUICK REFERENCE TO ed COMMANDS

The ed Commands

The general format for ed commands is:

{address 1 ,address 2]command{parameter 1... < CR >
where address1 and address2 denote line addresses and the parameters show the
data on which the command operates. The commands appear on your terminal as
you type them. You can find complete information on using ed commands in
Chapter 5, "Line Editor Tutorial."

The following is a glossary of ed commands. The commands are grouped
according to function.

Commands for Getting Started

ed filename Accesses the ed line editor to edit a specified file.

a

P

d

<CR>

w

q

Appends text after the current line.

Ends the text input mode and returns to the command mode.

Displays the current line.

Deletes the current line.

Moves down one line in the buffer.

Moves up one line in the buffer.

Writes the buffer contents to the file currently associated with the
buffer.

Ends an editing session. If changes to the buffer were not written
to a file, a warning (?) is issued. Typing q a second time ends
the session without writing to a file.

QUICK REFERENCE TO ed COMMANDS 537

The ed Commands

Line Addressing Commands

1,2, 3 ... Denotes line addresses in the buffer.

Address of the current line in the buffer.

= Displays the current line address.

$ Denotes the last line in the buffer.

Addresses the first through the last line.

Addresses the current line through the last line.

+x Relative address, determined by adding x to the current line
number.

- x Relative address, determined by subtracting x from the current
line number.

/ abc Searches forward in the buffer and addresses the first line after
the current line that contains the pattern abc.

?abc Searches backward in the buffer and addresses the first line
before the current line that contains the pattern abc.

g/abc

v/abc

Addresses all lines in the buffer that contain the pattern abc.

Addresses all lines in the buffer that do not contain the pattern
abc.

DisplayCommands

p Displays the specified lines in the buffer.

n Displays the specified lines preceded by their line addresses and a
tab space.

538 USER'S GUIDE

Text Input

a

c

Deleting Text

d

u

@

The ed Commands

Enters text after the specified line in the buffer.

Enters text before the specified line in the buffer.

Replaces text in the specified lines with new text.

When typed on a line by itself, ends the text input mode and
returns to the command mode.

Deletes one or more lines of text (command mode).

Undoes the last command given (command mode).

Deletes the current line Gn text input mode} or a command line
Gn command mode}.

or BACKSPACE
Deletes the last character entered as text Gn input mode}.

Substituting Text

address 1 ,address2s/old _text/new _text/command
Substitutes new _text for old _text within the range of lines
denoted by addressl,address2 (which may be numbers, symbols,
or text). The command may be g, 1, n, p, or gpo

Special Characters

Matches any single character in search or substitution patterns.

* Matches zero or more occurrences of the preceding character in
search or substitution patterns.

L..l Matches the first occurrence of a pattern in the brackets.

r .. .l Matches the first occurrence of a character that is not in the
brackets.

QUICK REFERENCE TO ed COMMANDS 539

The ed Commands

.*

$

\

&

%

Matches zero or more occurrences of any characters following
the period in search or substitution patterns.

The circumflex n matches the beginning of the line in search or
substitution patterns.

Matches the end of the line in search or substitution patterns.

Takes away the special meaning of the special character that fol­
lows in search and substitution patterns.

Repeats the last pattern to be substituted.

Repeats the last replacement pattern.

Text Movement Commands

m

t

j

w

r

Moves the specified lines of text after a destination line; deletes
the lines at the old location.

Copies the specified lines of text and places the copied lines after
a destination line.

Joins the current line with the next contiguous line.

Copies (writes) the buffer contents into a file.

Reads in text from another file and appends it to the buffer.

Other Useful Commands and Information

h

H

Displays a short explanation for the preceding diagnostic response
(?).

Turns on the help mode, which automatically displays an
explanation for each diagnostic response (?) during the editing
session.

Displays nonprinting characters in the text.

f Displays the current file name.

540 USER'S GUIDE

f newfile

The ed Commands

Changes the current file name associated with the buffer to
new file.

!command Allows you to escape, temporarily, to the shell to execute a shell
command.

ed.hup If the terminal is hung up before a write command, the editing
buffer is saved in the file ed.hup.

QUICK REFERENCE TO ed COMMANDS 541

D: QUICK REFERENCE TO vi COMMANDS

vi Quick Reference
This appendix is a glossary of commands for the screen editor vi. The com­

mands are grouped according to function.

The general format of a vi command is:

[x] [command]text -object

where x denotes a number and text-object shows the portion of text on which the
command operates. The commands appear on your screen as you type them. For
an introduction to the use of vi commands, see Chapter 6, "Screen Editor
Tutorial."

Commands for Getting Started

Shell Commands

TERM = code

export TERM

tput init

Puts a code name for your terminal into the variable
TERM.

Conveys the value of TERM (the terminal code) to any
UNIX system program that is terminal dependent.

Initializes the terminal so that it will function properly
with various UNIX system programs.

Before you can use vi, you must complete the first three steps represented by the
above three lines: setting the TERM variable, exporting the value of TERM, and
running the tput init command.

vi filename

542 USER'S GUIDE

Accesses the vi screen editor so that you can edit a
specified file.

Basic vi Commands

<a>

<ESC>

<h>

<j>

<k>

<I>

<x>

<CR>

<zz>

:w

:q

vi Quick Reference

Enters text input mode and appends text after the cursor.

Escape; leaves text input mode and returns to command
mode.

Moves the cursor to the left one character.

Moves the cursor down one line in the same column.

Moves the cursor up one line in the same column.

Moves the cursor to the right one character.

Deletes the current character.

Carriage return; moves the cursor down to the beginning
of the next line.

Writes changes made to the buffer to the file and quits
vi.

Writes changes made to the buffer to the file.

Quits vi if changes made to the buffer have been written
to a file.

Commands for Positioning in the Window

Positioning by Character

 Moves the cursor one character to the left.

<BACKSPACE> Backspace; moves the cursor one character to the left.

<I>

<space bar>

<fx>

Moves the cursor one character to the right.

Moves the cursor one character to the right.

Moves the cursor right to the specified character x.

QUICK REFERENCE TO vi COMMANDS 543

vi Quick Reference

<Fx>

<tx>

<Tx>

<;>

<,>

Positioning by Line

<j>

<k>

<+>

<CR>

<->

Positioning by Word

<w>

544 USER'S GUIDE

Moves the cursor left to the specified character x.

Moves the cursor right to the character just before the
specified character x.

Moves the cursor left to the character just after the
specified character x.

Continues the search for the character specified by the
<f>, <F>, <t>, or <T> commands. The;
remembers the character specified and searches for the
next occurrence of it on the current line.

Continues the search for the character specified by the
<f>, <F>, <t>, or <T> commands. The,
remembers the character specified and searches for the
previous occurrence of it on the current line.

Moves the cursor down one line from its present position,
in the same column.

Moves the cursor up one line from its present position, in
the same column.

Moves the cursor down to the beginning of the next line.

Carriage return; moves the cursor down to the beginning
of the next line.

Moves the cursor up to the beginning of the next line.

Moves the cursor to the right, to the first character in
the next word.

Moves the cursor back to the first character of the previ­
ous word.

vi Quick Reference

<e> Moves the cursor to the end of the current word.

Positioning by Sentence

«>
<»

Moves the cursor to the beginning of the sentence.

Moves the cursor to the beginning of the next sentence.

Positioning by Paragraph

<{>

<}>

Moves the cursor to the beginning of the paragraph.

Moves the cursor to the beginning of the next paragraph.

Positioning in the Window

<H>

<M>

<L>

Moves the cursor to the first line on the screen, or
"home."

Moves the cursor to the middle line on the screen.

Moves the cursor to the last line on the screen.

Commands for Positioning in the File

Scrolling

<Af> Scrolls the screen forward a full window, revealing the
window of text below the current window.

Scrolls the screen down a half window, revealing lines of
text below the current window.

Scrolls the screen back a full window, revealing the win­
dow of text above the current window.

Scrolls the screen up a half window, revealing the lines
of text above the current window.

QUICK REFERENCE TO vi COMMANDS 545

vi Quick Reference

Positioning on a Numbered Line

<G>

<nG>

Moves the cursor to the beginning of the last line in the
buffer.

Moves the cursor to the beginning of the nth line of the
file (n = line number).

Searching for a Pattern

/pattern

?pattern

<0>

<N>

Searchs forward in the buffer for the next occurrence of
the pattern of text. Positions the cursor under the first
character of the pattern.

Searches backward in the buffer for the first occurrence
of pattern of text. Positions the cursor under the first
character of the pattern.

Repeats the last search command.

Repeats the search command in the opposite direction.

Commands for Inserting Text

<a>

<i>

<0>

<0>

<ESC>

546 USER'S GUIDE

Enters text input mode and appends text after the cursor.

Enters text input mode and inserts text before the cursor.

Enters text input mode by opening a new line immedi­
ately below the current line.

Enters text input mode by opening a new line immedi­
ately above the current line.

Escape; returns to command mode from text input mode
(entered with any of the above commands).

vi Quick Reference

Commands for Deleting Text

In Text Input Mode

<BACKSPACE> Backspace; deletes the current character.

<AW> Deletes the current word delimited by blanks.

<@> Erases the current line of text.

In Command Mode

<x>

<dw>

<dd>

<ndx>

<D>

Deletes the current character.

Deletes a word (or part of a word) from the cursor
through the next space or to the next punctuation.

Deletes the current line.

Deletes n number of text objects of type x, where x may
be as a word, line, sentence, or paragraph.

Deletes the current line from the cursor to the end of the
line.

Commands for Modifying Text

Characters, Words, Text Objects

<r>

<s>

<S>

<->

Replaces the current character.

Deletes the current character and appends text until the
<ESC> command is typed.

Replaces all the characters in the current line.

Changes upper case to lower case or lower case to upper
case.

QUICK REFERENCE TO vi COMMANDS 547

vi Quick Reference

<cw>

<cc>

<ncx>

<c>

Replaces the current word or the remaining characters in
the current word with new text, from the cursor to the
next space or punctuation.

Replaces all the characters in the current line.

Replaces n number of text objects of type x, where x
may be a word, line, sentence, or paragraph.

Replaces the remaining characters in the current line,
from the cursor to the end of the line.

Cutting and Pasting Text

<p>

<yy>

<nyx>

< "/yx>

< "xp>

Other Commands

Special Commands

<.>

548 USER'S GUIDE

Places the contents of the temporary buffer (containing
the output of the last delete or yank command) into the
text after the cursor or below the current line.

Yanks (extracts) a specified line of text and puts it into
a temporary buffer.

Extracts a copy of n number of text objects of type x
and puts it into a temporary buffer.

Places a copy of text object x into a register named by a
letter I. x may be a word, line, sentence, or paragraph.

Places the contents of register x after the cursor or below
the current line.

Gives the line number of current cursor position in the
buffer and modification status of the file.

Repeats the action performed by the last command.

<u>

<u>

<J>

Line Editor Commands

:sh

:n

:x,zw filename

:$

:.,$d

:r filename

:s/text/new text/

:s/text/new _text/g

vi Quick Reference

Undoes the effects of the last command.

Restores the current line to its state prior to present
changes.

Joins the line immediately below the current line with
the current line.

Clears and redraws the current window.

Tells vi that the next commands you issue will be line
editor commands.

Temporarily returns to the shell to perform some shell
commands without leaving vi.

Escapes the temporary return to the shell and returns to
vi so you can edit the current window.

Goes to the nth line of the buffer.

Writes lines from the number x through the number z
into a new file called filename.

Moves the cursor to the beginning of the last line in the
buffer.

Deletes all the lines from the current line to the last line.

Inserts the contents of the file filename under the current
line of the buffer.

Replaces the first instance of text on the current line
with new text.

Replace every occurrence of text on the current line with
new text.

:gltext/s/ /new _text/g
Changes every occurrence of text in the buffer to
new text.

QUICK REFERENCE TO vi COMMANDS 549

vi Quick Reference

Commands for Quitting vi

<zz>
:wq

:w filename
:q

:w! filename
:q

:q!

:q

Writes the buffer to the file and quits vi.

Writes the buffer to the file and quits vi.

Writes the buffer to the new file filename and quits vi.

Overwrites the existing file filename with the contents of
the buffer and quits vi.

Quits vi whether or not changes made to the buffer were
written to a file. Does not incorporate changes made to
the buffer since the last write (:w) command.

Quits vi if changes made to the buffer were written to a
file.

Special Options for vi

vi file] file2 file3

:w
:0

vi -r file]

view file]

550 USER'S GUIDE

Enters three files into the vi buffer to be edited. Those
files are file], file2, and file3.

When more than one file has been called on a single vi
command line, writes the buffer to the file you are edit­
ing and then calls the next file in the buffer (use :0 only
after :w).

Restores the changes made to file] that were lost
because of an interrupt in the system.

Displays file] in the read-only mode of vi. Any changes
made to the buffer will not be allowed to be written to
the file.

E: SUMMARY OF SHELL COMMAND LANGUAGE

This appendix is a summary of the shell command language and program­
ming constructs discussed in Chapter 7, "Shell Tutorial." The first section reviews
metacharacters, special characters, input and output redirection, variables and
processes. These are arranged by topic in the order that they were discussed in
the chapter. The second section contains models of the shell programming con­
structs.

The Vocabulary of Shell Command Language

Special Characters in the Shell

* ? [). Metacharacters; used to provide a shortcut to referencing file
names, through pattern matching.

& Executes commands in the background mode.

\

" "

Sequentially executes several commands typed on one line, each
pair separated by;.

Turns off the meaning of the immediately following special char­
acter.

Enclosing single quotes turn off the special meaning of all char­
acters.

Enclosing double quotes turn off the special meaning of all char­
acters except $ and '

Redirecting Input and Output

< Redirects the contents of a file into a command.

> Redirects the output of a command into a new file, or replaces
the contents of an existing file with the output.

> > Redirects the output of a command so that it is appended to the
end of a file.

SUMMARY OF SHELL COMMAND LANGUAGE 551

Summary of Shell Command Language

Directs the output of one command so that it becomes the input
of the next command.

'command' Substitutes the output of the enclosed command in place of 'com­
mand'.

Executing and Terminating Processes

batch Submits the following commands to be processed at a time when
the system load is at an acceptable level. <Ad> ends the batch
command.

at Submits the following commands to be executed at a specified
time. <Ad> ends the at command.

at -I Reports which jobs are currently in the at or batch queue.

at -r Removes the at or batch job from the queue.

ps Reports the status of the shell processes.

kill PID Terminates the shell process with the specified process ID (PID).

nohup command list &
Continues background processes after logging off.

Making a File Accessible to the Shell

chmod u +xfilename
Gives the user permission to execute the file (useful for shell pro­
gram files).

mv filename SHOMElbin/filename
Moves your file to the bin directory in your home directory. This
bin holds executable shell programs that you want to be accessi­
ble. Make sure the PATH variable in your .profile file specifies
this bin. If it does, the shell will search in SHOMElbin for your
file when you try to execute it. If your PATH variable does not
include your bin, the shell will not know where to find your file
and your attempt to execute it will fail.

552 USER'S GUIDE

filename

Variables

Summary of Shell Command Language

The name of a file that contains a shell program becomes the
command that you type to run that shell program.

positional parameter

echo

$#

$*

named variable

A numbered variable used within a shell program to reference
values automatically assigned by the shell from the arguments
of the command line invoking the shell program.

A command used to print the value of a variable on your ter­
minal.

A special parameter that contains the number of arguments
with which the shell program has been executed.

A special parameter that contains the values of all arguments
with which the shell program has been executed.

A variable to which the user can give a name and assign
values.

Variables Used in the System

HOME Denotes your home directory; the default variable for the cd
command.

PATH Defines the path your login shell follows to find commands.

CDPATH Defines the search path for the cd command.

MAIL Gives the name of the file containing your electronic mail.

PSt PS2 Define the primary and secondary prompt strings.

TERM Defines the type of terminal.

LOGNAME Login name of the user.

SUMMARY OF SHELL COMMAND LANGUAGE 553

Summary of Shell Command Language

IFS Defines the internal field separators (normally the space, the
tab, and the carriage return).

TERMINFO Allows you to request that the curses and terminfo subroutines
search a specified directory tree before searching the default
directory for your terminal type.

TZ Sets and maintains the local time zone.

Shell Programming Constructs

Here Document

For Loop

command «!
input lines

for variable<CR>
in this list of values<CR>

do the following commands<CR>
command 1 < CR>
command 2 < CR >

.<CR>

.<CR>
last command < CR >

done <CR>

554 USER'S GUIDE

While Loop

If ... Then

Summary of Shell Command Language

while command list<CR>
do<CR>

command1 <CR>
command2<CR>

.<CR>

.<CR>
last command<CR>

done<CR>

if this command is successful<CR>
then command1 <CR>

command2<CR>
.<CR>
.<CR>

last command<CR>
fi<CR>

SUMMARY OF SHELL COMMAND LANGUAGE 555

Summary of Shell Command Language

If ... Then ... Else

if command list<CR>
then command list<CR>
else command list<CR>

fi<CR>

556 USER'S GUIDE

Case Construction

case word < CR>
in<CR>

pattern 1) <CR>

Summary of Shell Command Language

command line 1 <CR>
.<CR>
.<CR>

last command line<CR>
;;<CR>
pattern2) <CR>

command line 1 < CR >
.<CR>
.<CR>

last command line<CR>
;;<CR>
pattern3) <CR>

command Nne 1 < CR >
.<CR>
.<CR>

last command line<CR>
;;.<CR>

esac<CR>

break and continue Statements

A break or continue statement forces the program to leave any loop and exe­
cute the command following the end of the loop.

SUMMARY OF SHELL COMMAND lAMGUAS!: 5.51

F: SETTING UP THE TERMINAL

Setting the TERM Variable

AT&T supports many types of terminals for use with the UNIX system.
Because some commands are terminal dependent, the system must know what
type of terminal you are using whenever you log in. The system determines the
characteristics of your terminal by checking the value of a variable called TERM
which holds the name of a terminal. If you have put the name of your terminal
into this variable, the system will be able to execute all programs in a way that is
suitable for your terminal.

This method of telling the UNIX system what type of terminal you are using
is called setting the terminal configuration. To set your terminal configuration,
type the command lines shown on the following screen, substituting the name of
your terminal for terminal name.

$ TERM-terminaCname<CR>
$ export TERM<CR>
$ tput init<CR>

. These lines must be executed in the order shown; otherwise, they will not work.
Also, this procedure must be repeated every time you log in. Therefore, most
users put these lines into a file called .profile that is automatically executed every
time they log in. For details about the .profile file, see Chapter 7.

The first two lines in the screen tell the UNIX system shell what type of ter­
minal you are using. The tput init command line instructs your terminal to
behave in ways that the UNIX system expects a terminal of that type to behave.
For example, it sets the terminal's left margin and tabs, if those capabilities exist
for the terminal.

558 USER'S GUIDE

Setting the TERM Variable

The tput command uses the entry in this database for your terminal to make
terminal dependent capabilities and information available to the shell. Because
the values of these capabilities differ for each type of terminal, you must execute
the tput init command line every time you change the TERM variable.

For each terminal type, a set of capabilities is defined in a database. This
database is usually found in either the lusr/lib/terminfo or lusr/Iib.COREterm
directory, depending on the system.

Every system has at least one of these directories; some may have both. Your
system administrator can tell you whether your system has the terminfo and/or
the .COREterm directory.

The following sections describe how you can determine what terminal_names
are acceptable. Further information about the capabilities in the terminfo data­
base can be found on the terminfo(4) manual page in the Programmer's Refer­
ence Manual.

Acceptable Terminal Names

The UNIX system recognizes a wide range of terminal types. Before you put
a terminal name into the TERM variable, you must make sure that your terminal
is within that range.

You must also verify that the name you put into the TERM variable is a
recognized terminal name. There are usually at least two recognized names: the
name of the manufacturer and the model number. However, there are several
ways to represent these names: by varying the use of uppercase and lowercase,
using abbreviations, and so on. Do not put a terminal name in the TERM vari­
able until you have verified that the system recognizes it.

The tput command provides a quick way to make sure your terminal is sup­
ported by your system. Type:

tput -Ttermina'-name longname<CR>

If your system supports your terminal it will respond with the complete name of
your terminal. Otherwise, you will get an error message.

SETTING UP THE TERMINAL 559

Setting the TERM Variable

To find an acceptable name that you can put in the TERM variable, find a
listing for your terminal in either of two directories: lusrllib/terminfo or
lusr/lib/.COREterm. Each of these directories is a collection of files with single­
character names. Each file, in turn, holds a list of terminal names that all begin
with the name of the file. (This name can be either a letter, such as the initial A
in AT&T, or a number, such as the initial 5 in 5425.) Find the file whose name
matches the first character of your terminal's name. Then list the file's contents
and look for your terminal.

You can also check with your system administrator for a list of terminals sup­
ported by your system, and the acceptable names you can put in the TERM vari­
able.

560 USER'S GUIDE

Example

Suppose your terminal is an AT &T Teletype Model 5425. Your login is jim
and you are currently in your home directory. First, you verify that your system
supports your terminal by running the tput command. Next, you find an accept­
able name for it in the /usr/lib/.COREterm/ A directory. The following screen
shows which commands you need to do this:

$ tput - TS42S longname < CR >
AT&T 4425/5425
$ cd lusr/lib/.COREterm/A<CR>
$ Is
ATT4410
ATT4415
ATT4418
ATT4424
ATT4424-2
ATT4425
ATT4426
ATT513
ATT541 0
ATT5418
ATT5420
ATT5420-2
ATT5425
ATT5620
ATT610~

ATTPT505
$

Now you are ready to put the name you found, A'IT5425, in the TERM variable.
Whenever you do this, you must also export TERM and execute tput ioit.

SETTING UP THE TERMINAL 561

Example

$ TERM=ATIS42S<CR>
$ export TERM <CR>
$ tput init < CR>
$

The UNIX system now knows what type of terminal you are using and will
execute commands appropriately.

562 USER'S GUIDE

Windowing

The area of the terminal screen in which you work and display files is similar
to the window of a house: both are devices that frame a part of a whole (whether
the world or a file) for viewing. For this reason, the working area of a terminal
screen is called a window. Until now we have assumed that your terminal screen
has only one window (the whole screen). However, some terminals allow you to
create more than one window on your screen. Each window on a windowing ter­
minal has its own shell and functions almost exactly like a separate terminal. To
help you take advantage of this feature, the UNIX system provides a set of
software tools called the Basic Windowing Utilities.

We have already discussed how you can perform several tasks simultaneously
with one screen by using tools such as background mode and the at command.
With multiple windows you have the additional capability of working interactively
with more than one process at a time. You can keep track of several processes at
once or look at more than one file simultaneously. If you have a windowing ter­
minal and the Basic Windowing Utilities are installed on your UNIX system, you
can use the techniques described in this section to make efficient use of your ter­
minal.

Creating Windows

To create a window you must draw it on your screen and set up the shell
associated with it. The shell is the command interpreter; it allows you to work
interactively with the UNIX system. Without a shell assigned to it, a window is
simply a drawing on your screen.

The layers command allows you to draw a window on any windowing termi­
nal. If you execute it without any arguments, you must use the mouse to draw a
window. If you give specifications for windows as arguments to the layers com­
mand, you can program the drawing of windows and avoid using the mouse; your
windows will be drawn automatically by the layers command.

SETTING UP THE TERMINAL 563

Windowing

Drawing Windows With a Mouse

The easiest way to draw windows is with the mouse. First, enter the layers
command.

layers<CR>

Next, press a button on your mouse; a pop-up menu of layer operations will
appear on the screen. Choose the menu option for drawing windows (such as
New), and use the mouse to draw one (see the terminal owner's manual for
instructions) .

To create more than one window, reinvoke the menu, make your selection,
and draw with the mouse. (You cannot issue the layers command again.) In
response, the terminal draws your window{s) on the screen and then waits for
commands from the terminal.

Drawing Windows Without a Mouse

If you prefer to program the drawing of windows, you must first create a file
containing the number and dimensions of the windows you want. Then run the
layers command with the name of that file as an argument, and the -f option.
This option tells the command to read your specifications file. The general com­
mand line format is:

layers -f file<CR>

The specifications file must contain a line for each window you want, in the fol­
lowing format:

origin_x originy corner _x corner y command_list

The first four fields of the line define the coordinates of the window. The origin_x
and originy entries specify the position on the 'screen of the top, lefthand corner
of the window, the point at which the command starts drawing. The corner_x
and corner y entries specify the position of the lower, righthand corner.

564 USER'S GUIDE

Windowing

origin_x originy

corner~ cornery

For example, to create a large rectangular window and a small one, write a
specification file with the following lines:

o
650

o
o

650
792

300
175

Windows drawn to these specifications will look like this:

The fifth field of each line in your specifications file is command _list. Here
you must enter a command that will assign a shell to the window. You can also
assign a particular terminal type or an editor to the window in this field.

SETTING UP THE TERMINAL 565

Windowing

The command that allows you to assign a shell to your window is exec (short
for execute). Enter this command with an argument specifying the type of shell
you want to run in the window. To run the same type of shell that normally runs
in your terminal, enter the following:

exec SSHELL

To run the standard UNIX system shell, enter

exec Ibin/sh

You may also want your window to provide features that are available only
on a type of terminal other than the one you are using. Specify the terminal type
you want and assign it to the TERM variable. If you include this assignment in
the commands _list field, place it before the exec command. Separate all three
requests (terminal type, TERM assignment, and exec command) with semi­
colons, and leave spaces on both sides of each semi-colon. For example, say you
want your window to provide the features of an HP 2621 terminal running the
same type of shell that you normally run on your terminal. Type the
commands_list field in your specifications file as follows:

jim; exec SSHELL

To summarize, the specifications file must contain a line for each window that
you want to create, and each line must include five fields: four coordinates for
drawing the window and one command line that assigns a shell to the window.
The command line may also include the assignment of a particular editor or ter­
minal to the window. The following example of a specifications file incorporates
the previous examples of fields:

8
675
o
o

o
o
200
800

566 USER'S GUIDE

650
800
800
792

300
175
900
1024

exec $SHELL

exec Ibinlsh
jim ; exec $SHELL

hp2621 ; 'l'ERM=hp2621 ; exec $SHELL

Windowing

When your specifications file is ready, run the layers command as follows:

layers -f specificationsJile<CR>

The windows you have requested will be drawn on the screen, and the shells you
assigned to them will be activated and ready for your commands.

Working with Layers

Once you have windows on your screens, you need to learn how to work with
them: how to navigate among them, use each one as a terminal, and delete them.
You can perform all these tasks by pressing different buttons on the mouse (see
the owner's manual for your terminal for specific instructions).

Programmers who want to write their own programs for creating or using
windows can do so with the library of functions called libwindows. (See the
libwindows(3X) entry in the Programmer's Reference Manual.)

SETTING UP THE TERMINAL 567

Glossary

acoustic coupler
A device that permits transmission of data over an ordinary telephone
line. When you place a telephone handset in the coupler, you link a
computer at one end of the phone line to a peripheral device, such as a
user terminal, at the other.

address
Generally, a number that indicates the location of information in the
computer's memory. In the UNIX system, the address is part of an
editor command that specifies a line number or range.

append mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. In this mode you enter (append) text
after the current position in the buffer. See text input mode, compare
with command mode and insert mode.

argument
The element of a command line that specifies data on which a command
is to operate. Arguments follow the command name and can include
numbers, letters, or text strings. For instance, in the command
lp -m myfile, lp is the command and myfile is the argument. See
option.

ASCII
(pronounced as'-kee) American Standard Code for Information Inter­
change, a standard for data transmission that is used in the UNIX sys­
tem. ASCII assigns sets of Os and Is to represent 128 characters,
including alphabetical characters, numerals, and standard special char­
acters, such as #, $, %, and &.

AT It T 3D Computers
Computers manufactured by AT &T Technologies, Inc.

background
A type of program execution where you request the shell to run a com­
mand away from the interaction between you and the computer ("in the
background"). While this command runs, the shell prompts you to
enter other commands through the terminal.

568 USER'S GUIDE

Glossary

baud rate
A measure of the speed of data transfer from a computer to a peri­
pheral device (such as a terminal) or from one device to another. Com­
mon baud rates are 300, 1200,4800, and 9600. As a general guide,
divide a baud rate by 10 to get the approximate number of English
characters transmitted each second.

buffer
A temporary storage area of the computer used by text editors to make
changes to a copy of an existing file. When you edit a file, its contents
are read into a buffer, where you make changes to the text. For the
changes to become a part of the permanent file, you must write the
buffer contents back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be executed by the
computer on request. Compiled programs and shell programs are forms
of commands.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the com­
puter. In the UNIX system, a program called the sheD takes com­
mands and translates them into a language understood by the computer.

command line
A line containing one or more commands, ended by typing a carriage
return «CR». The line may also contain options and arguments for
the commands. You type a command line to the shell to instruct the
computer to perform one or more tasks.

GLOSSARY 569

Glossary

command mode
A text editing mode in which the characters you type are interpreted as
editing commands. This mode permits actions such as moving around
in the buffer, deleting text, or moving lines of text. See text input
mode, compare with append mode and insert mode.

context search
A technique for locating a specified pattern of characters (called a
string) when in a text editor. Editing commands that cause a context
search scal! the buffer, looking for a match with the string specified in
the command. See string.

control character
A nonprinting character that is entered by holding down the control key
and typing a character. Control characters are often used for special
purposes. For instance, when viewing a long file on your screen with
the cat command, typing control-s (~s) stops the display so you can read
it, and typing control-q Cq) continues the display.

current directory
The directory in which you are presently working. You have direct
access to all files and subdirectories contained in your current directory.
The shorthand notation for the current directory is a dot (.).

cursor
A cue printed on the terminal screen that indicates the position at
which you enter or delete a character. It is usually a rectangle or a
blinking underscore character.

default
An automatically assigned value or condition that exists unless you
explicitly change it. For example, the shell prompt string has a default
value of $ unless you change it.

delimiter
A character that logically separates words or arguments on a command
line. Two frequently used delimiters in the UNIX system are the space
and the tab.

570 USER'S GUIDE

Glossary

diagnostic
A message printed at your terminal to indicate an error encountered
while trying to execute some command or program. Generally, you
need not respond directly to a diagnostic message.

directory

disk

A type of file used to group and organize other files or directories. You
cannot directly enter text or other data into a directory. (For more
detail, see Appendix A, Summary of the File SystemJ

A magnetic data storage device consisting of several round plates simi­
lar to phonograph records. Disks store large amounts of data and allow
quick access to any piece of data.

electronic mail
The feature of an operating system that allows computer users to
exchange written messages via the computer. The UNIX system mail
command provides electronic mail in which the addresses are the login
names of users.

environment
The conditions under which you work while using the UNIX system.
Your environment includes those things that personalize your login and
allow you to interact in specific ways with the UNIX system and the
computer. For example, your shell environment includes such things as
your shell prompt string, specifics for backspace and erase characters,
and commands for sending output from your terminal to the computer.

erase character
The character you type to delete the previous character you typed. The
UNIX system default erase character is #; some users set the erase
character to the BACKSPACE key.

escape
A means of getting into the shell from within a text editor or other pro­
gram.

execute
The computer's action of running a program or command and perform­
ing the indicated operations.

GLOSSARY 571

Glossary

e:xecutable file

file

A file that can be processed or executed by the computer without any
further translation. When you type in the file name, the commands in
the file are executed. See shell procedure.

A collection of information in the form of a stream of characters. Files
may contain data, programs, or other text. You access UNIX system
files by name. See ordinary file, permanent file, and executable file.

filename
A sequence of characters that denotes a file. (In the UNIX system, a
slash character «()cannot be used as part of a file name.)

file system

filter

A collection of files and the structure that links them together. The
UNIX file system is a hierarchical structure. (For more detail, see
Appendix A, Summary of the File System.)

A command that reads the standard input, acts on it in some way, and
then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of command execution. When executing a command
in foreground, the shell waits for one command to end before prompting
you for another command. Tn other words, you enter something into the
computer and the computer "replies" before you enter something else.

fuJI.duplex
A type of data communication in which a computer system can transmit
and receive data simultaneously. Terminals and modems usually have
settings for half-duplex (one-way) and full-duplex communication; the
UNIX system uses the full-duplex setting.

fUll path name
A path name that originates at the root directory of the UNIX system
and leads to a specific file or directory. Each file and directory in the
UNIX system has a unique full path name, sometimes called an abso­
lute path name. See path name.

572 USER'.S GUIDE

Glossary

global
A term that indicates the complete or entire file. While normal editor
commands commonly act on only the first instance of a pattern in the
file, global commands can perform the action on all instances in the file.

hardware
The physical machinery of a computer and any associated devices.

hidden character
One of a group of characters within the standard ASCII character set
that are not printable. Characters such as backspace, escape, and
<~d> are examples.

home directory
The directory in which you are located when you log in to the UNIX
system; also known as your login directory.

inpllt/olltPllt
The path by which information enters a computer system (input) and
leaves the system (output). An input device that you use is the termi­
nal keyboard and an output device is the terminal display.

insert mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. In this mode you enter (insert) text
before the current position in the buffer. See text input mode, compare
with append mode and command mode.

interactive
Describes an operating system (such as the UNIX system) that can
handle immediate-response communication between you and the com­
puter. In other words, you interact with the computer from moment to
moment.

line editor
An editing program in which text is operated upon on a line-by-line
basis within a file. Commands for creating, changing, and removing
text use line addresses to determine where in the file the changes are
made. Changes can be viewed after they are made by displaying the
lines changed. See text editor, compare with screen editor.

GLOSSARY 573

Glossary

login
The procedure used to gain access to the UNIX operating system.

login directory
See home directory.

login name
A string of characters used to identify a user. Your login name is
different from other login names.

log off
The procedure used to exit from the UNIX operating system.

metacharacter
A subset of the set of special characters that have special meaning to
the shell. The metacharacters are *, ?, and the pair [J. Metacharac­
ters are used in patterns to match file names.

mode
In general, a particular type of operation (for example, an editor's
append mode). In relation to the file system, a mode is an octal number
used to determine who can have access to your files and what kind of
access they can have. See permissions.

modem
A device that connects a terminal and a computer by way of a tele­
phone line. A modem converts digital signals to tones and converts
tones back to digital signals, allowing a terminal and a computer to
exchange data over standard telephone lines.

multitasking
The ability of an operating system to execute more than one program at
a time.

multiuser

nroff

The ability of an operating system to support several users on the sys­
tem at the same time.

A text formatter available as an add-on to the UNIX system. You can
use the nroff program to produce a formatted on-line copy or a printed
copy of a file. See text formatter.

574 USER'S GUIDE

Glossary

operating system
The software system on a computer under which all other software runs.
The UNIX system is an operating system.

option
Special instructions that modify how a command runs. Options are a
type of argument that follow a command and usually precede other
arguments on the command line. By convention, an option is preceded
by a minus sign (-); this distinguishes it from other arguments. You
can specify more than one option for some commands given in the
UNIX system. For example, in the command Is -I -a directory, -I
and -a are options that modify the Is command. See argument.

ordinary file
A file, containing text or data, that is not executable. See executable
file.

output
Information processed in some fashion by a computer and delivered to
you by way of a printer, a terminal, or a similar device.

parameter
A special type of variable used within shell programs to access values
related to the arguments on the command line or the environment in
which the program is executed. See positional parameter.

parent directory
The directory immediately above a subdirectory or file in the file system
organization. The shorthand notation for the parent directory is two
dots (..).

parity
A method used by a computer for checking that the data received
matches the data sent.

password
A code word known only to you that is called for in the login process.
The computer uses the password to verify that you may indeed use the
system.

GLOSSARY 575

Glossary

path name
A sequence of directory names separated by the slash character (f) and
ending with the name of a file or directory. The path name defines the
connection path between some directory and the named file.

peripheral device
Auxiliary devices under the control of the main computer, used mostly
for input, output, and storage functions. Some examples include termi­
nals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure. To change a
permanent file, you can make use of a text editor, which maintains a
temporary work space, or buffer, apart from the permanent files. Once
changes have been made to the buffer, they must be written to the per­
manent file to make the changes permanent. See buffer.

permissions

pipe

Access modes, associated with directories and files, that permit or deny
system users the ability to read, write, and/or execute the directories
and files. You determine the permissions for your directories and files
by changing the mode for each one with the chmod command.

A method of redirecting the output of one command to be the input of
another command. It is named for the character I that redirects the
output. For example, the shell command who I we -I pipes output
from the who command to the wc command, telling you the total
number of people logged into your UNIX system.

pipeline
A series of filters separated by I (the pipe character). The output of
each filter becomes the input of the next filter in the line. The last filter
in the pipeline writes to its standard output, or may be redirected to a
file. See filter.

576 USER'S GUIDE

Glossary

positional parameters
Numbered variables used within a shell procedure to access the strings
specified as arguments on the command line invoking the shell pro­
cedure. The name of the shell procedure is positional parameter $0.
See variable and shell procedure.

prompt
A cue displayed at your terminal by the shell, telling you that the shell
is ready to accept your next request. The prompt can be a character or
a series of characters. The UNIX system default prompt is the dollar
sign character ($).

printer
An output device that prints the data it receives from the computer on
paper.

process
Generally a program that is at some stage of execution. In the UNIX
system, it also refers to the execution of a computer environment,
including contents of memory, register values, name of the current
directory, status of files, information recorded at login time, and various
other items.

program
The instructions given to a computer on how to do a specific task. Pro­
grams are user-executable software.

read-ahead capability
The ability of the UNIX system to read and interpret your input while
sending output information to your terminal in response to previous
input. The UNIX system separates input from output and processes
each correctly.

relative path name
The path name to a file or directory which varies in relation to the
directory in which you are currently working.

remote system

root

A system ~ther than the one on which you are working.

The source directory of all files and directories in the file system; desig­
nated by the slash character (j).

GLOSSARY 577

Glossary

screen editor
An editing program in which text is operated on relative to the position
of the cursor on a visual display. Commands for entering, changing,
and removing text involve moving the cursor to the area to be altered
and performing the necessary operation. Changes are viewed on the
terminal display as they are made. See text editor, compare with line
editor.

search pattern
See string.

search string
See string.

secondary prompt

shell

A cue displayed at your terminal by the shell to tell you that the com­
mand typed in response to the primary prompt is incomplete. The
UNIX system default secondary prompt is the "greater than" character
(».

A UNIX system program that handles the communication between you
and the computer. The shell is also known as a command language
interpreter because it translates your commands into a language under­
standable by the computer. The shell accepts commands and causes the
appropriate program to be executed.

shell procedure
An executable file that is not a compiled program. A shell procedure
calls the shell to read and execute commands contained in a file. This
lets you store a sequence of commands in a file for repeated use. It is
also called a shell program or command file. See executable file.

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do. Contrast
with hardware.

578 USER'S GUIDE

Glossary

source code
The uncompiled version of a program written in a language such as C
or Pascal. The source code must be translated to machine language by
a program known as a compiler before the computer can execute the
program.

special character
A character having special meaning to the shell program and used for
common shell functions such as file redirection, piping, background exe­
cution, and file name expansion. The special characters include <, >,
I, ;, &, *, ?, l, and I.

special file
A file (called a device driver) used as an interface to an input/output
device, such as a user terminal, a disk drive, or a line printer.

standard input
An open file that is normally connected directly to the keyboard.
Standard input to a command normally goes from the keyboard to this
file and then into the shell. You can redirect the standard input to
come from another file instead of from the keyboard; use an argument
in the form < file. Input to the command will then come from the
specified file.

standard output
An open file that is normally connected directly to a primary output
device, such as a terminal printer or screen. Standard output from the
computer normally goes to this file and then to the output device. You
can redirect the standard output into another file instead of to the
printer or screen; use an argument in the form > file. Output will then
go to the specified file.

string
Designation for a particular group or pattern of characters, such as a
word or phrase, that may contain special characters. In a text editor, a
context search interprets the special characters and attempts to match
the specified pattern with a string in the editor buffer.

string variable
A sequence of characters that can be the value of a shell variable. See
variable.

GLOSSARY 579

Glossary

subdirectory
A directory pointed to by a directory one level above it in the file sys­
tem organization; also called a child directory.

system administrator
The person who monitors and controls the computer on which your
UNIX system runs; sometimes referred to as a super-user.

terminal
An input/output device connected to a computer system, usually consist­
ing of a keyboard with a video display or a printer. A terminal allows
you to give the computer instructions and to receive information in
response.

text editor
Software for creating, changing, or removing text with the aid of a com­
puter. Most text editors have two modes--an input mode for typing in
text and a command mode for moving or modifying text. Two examples
are the UNIX system editors ed and vi. See line editor and screen edi­
tor.

text formatter
A pwgram that prepares a file of text for printed output. To make use
of a text formatter, your file must also contain some special commands
for structuring the final copy. These special commands tell the for­
matter to justify margins, start new paragraphs, set up lists and tables,
place figures, and so on. Two text formatters available as add-ons to
your UNIX system are nroff and troff.

text input mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. To execute a command, you must
leave text input mode. See command mode, compare with append mode
and insert mode.

timesharing
A method of operation in which several users share a common computer
system seemingly simultaneously. The computer interacts with each
user in sequence, but the high-speed operation makes it seem that the
computer is giving each user its complete attention.

580 USER'S GUIDE

tool

troff

tty

user

Glossary

A package of software programs.

A text formatter available as an add-on to the UNIX system. The troff
program drives a phototypesetter to produce high-quality printed text
from a file. See text formatter.

Historically, the abbreviation for a teletype terminal. Today, it is gen­
erally used to denote a user terminal.

Anyone who uses a computer or an operating system.

user-defined
Something determined by the user.

user-defined variable
A named variable given a value by the user. See variable.

UNIX system
A general-purpose, multiuser, interactive, time-sharing operating system
developed by AT &T Bell Laboratories. The UNIX system allows lim­
ited computer resources to be shared by several users and efficiently
organizes the user's interface to a computer system.

utility
Software used to carry out routine functions or to assist a programmer
or system user in establishing routine tasks.

variable
A symbol whose value may change. In the shell, a variable is a symbol
representing some string of characters (a string value). Variables may
be used in an interactive shell as well as within a shell procedure.
Within a shell procedure, positional parameters and keyword parame­
ters are two forms of variables. (Keyword parameters are discussed
fully in Shell Commands and Programming.)

video display terminal
A terminal that uses a television-like screen (a monitor) to display
information. A video display terminal can display information much
faster than printing terminals.

GLOSSARY 581

Glossary

visual editor
See screen editor.

working directory
See current directory.

582 USER'S GUIDE

Index

absolute path name, 46
acceptable terminal names, 559-61
active computer, 507
alias, 468, 470, 478, 481, 494, 496
background mode, 353-54, 363, 380,

446,532,551,563
backslash, 23, 173, 191-92, 198, 355
banner, 356-57, 364, 369, 372, 380,

443,486,532
BASIC, 126,531
Basic Windowing Utilities, 563
baud rate, 16, 28, 33, 521
calling another unix system, 28, 520
case construction, 426-28, 557
cat, 59, 65, 71-72, 74, 85, 110-11,

120-21, 324, 360, 380-82, 387,
391, 398, 410-11, 445, 523, 531,
532

cd, 54, 64-65, 98, 103, 121, 355, 380,
384, 396, 439-40, 446, 501, 530,
533-34,553

change text, 2, 9, 105-6, 116-18, 127,
130, 136, 138, 142-43, 158, 160,
165,171, 176, 178-79, 191-92,
195,207,214,219,239,303,
309,313,321,409,471,478,549

changing directories, 64, 98, 102-3
changing permissions, 98, 101-3, 383,

439, 500-501
character counts, 95-96, 141, 364,

409, 536
child directory, 50, 57, 64
chmod, 61, 98, 101-4, 123, 383, 387,

398, 439, 500-501, 552
command line syntax, 10-11,499,502
command mode, 3, 60, 98, 105, 116-

17, 130-33, 135, 163, 165-66,
170-71, 173, 210, 212, 244, 249-
50, 260, 298, 302, 304, 313, 322,

324, 353-54, 380, 446, 468-69,
471-72,474,477-78,482,484,
486, 492, 496-97, 517-18, 520,
523, 532, 537, 539, 543, 546-47,
551,563

configuration checks, 16, 33
connecting remote terminal, 517 -19,

521
continue statements, 430, 557
control characters, 24-25, 38, 213
copy-to list, 478
COREterm,559
cp, 88-90, 106, 436, 533
ct, 452, 517-19
cu command, 517, 520-21, 524
current directory, 44, 49, 51, 54, 56-

59, 64, 88, 92, 95-96, 103, 199,
347-50, 353, 355, 359, 370, 378,
382-83, 423-25, 440, 443, 445,
450,464-65,481,489, 503-4,
515, 524, 526, 533, 535

data file, 1, 8, 11, 121, 386, 502, 506,
521,531

date, 22, 35-36, 56, 81, 122-123,216,
364,366-67,369-72,380,401,
432,443,448,463,485, 511,
531, 532-33

default environment, 120-21, 173, 436
defined aliases, 496
defined variables, 396, 495
delete functions, 21-23, 173
deleting mail, 464, 483-84, 488, 492,

534
deleting text, 5, 21, 23,115,117,127,

129, 133-35, 142-43, 158, 170-
74, 199,201,239,241,309,313,
316, 338, 539-40, 547-48

INDEX 583

Index

destination directory, 51, 499-500
destination-file, 502-5
diff, 105-6, 533
directory, 5-8, 11, 39-40, 42, 44-46,

49-54, 56-61, 64-67, 69, 71, 88-
89,91-96,98-99, 103, 120-21,
125, 157, 199,205,219,243,
308,333,347-51,353,355,359,
370, 378, 380, 382, 385, 394,
396,411,413,423-25,436,439-
40, 443, 445, 450, 457, 464-65,
468-69,481-82,489,495-96,
499-509,511,513-15,524,526,
529-31, 533-36, 552-54, 559, 561

display commands, 71-80
echo, 29, 347, 380, 382, 387, 392-94,

396-98,403,411,413,417,419-
20, 430, 436-37, 439-40, 443,
445,448,451,523,533,553

editing messages, 209, 211, 332,468,
471,473

else, 420, 428, 556
environment, 1,9-10,98, 115, 120-21,

126,173,241,243,344,396,
429,436-37,444,451,467-69,
475, 479, 494-95, 497

erase function, 21-23, 121, 173
executing commands, remote system,

452, 525
exit, 38, 131,325,332,405,441-12,

428, 474, 477, 482, 519
exiting mailx, 477, 482
file system, 1,3-11,29,31,36,39-

40, 42, 44-46, 49, 51, 53-54, 56,
58,64,69,71, 77, 81, 86, 88-89,
91,93,95,98-99, 102-5, 107,
110-11,113,115,125,129,136,
209, 216, 243, 329-30, 344, 347,
349-51,358,385,418,420,433,
436, 452, 470, 476, 485, 493,
498-500, 502-3, 505-6, 508-9,

584 USER GUIDE

513-15,520-21,525-26,529-31,
534-36,550

flow of control, 8, 12, 83
folder variable, 495-96
full path name, 44-46, 52, 54, 57-58,

64-65, 89-90, 92, 355, 386, 465,
502-3, 505, 526, 535

glossary, 37, 537, 542
grep, 105, 107-9, 354-56, 363, 370,

375,377-78,389-90,397,419-
20,435,460, 531, 533

help, 16-38,209-12, 540, 563
HOME,553
home directory, 6, 42, 44, 54, 59, 64,

67, 121, 157, 243, 396, 424, 436,
440, 464, 468-69, 482, 489, 495-
96, 500-504, 529, 533, 552-53,
561

if-endif command, 496
incorporate existing text, 471, 475
input redirection, 74, 81, 353, 358,

363,406,498, 551
job number, 86, 370, 372-73, 446,

509, 511, 532, 535
job queue, 370, 372, 509, 511, 535,

552
kernel, 1, 3-4, 6-7, 12-13
kill function, 21-22,121,173
layers, 40, 49, 563-64, 567
leaving mailx, 464, 482, 491-92
lex, 126, 533
libwindows, 567
Line Addressing, 132, 142
line addressing commands, 135, 141-

44, 150-54, 157-58, 160-61, 163,
165,176-79,185,199,201,537-
39

line kill function, 21-22, 173
link count, 61

-- Index

linking computers, 1, 30, 506, 517,
520

local system, 26, 454, 459, 498, 503,
509

lock enabling, 33, 100
log off, 14,22,25, 120,219,354, 378,

517, 521, 534
login name, 14,23,25-26,29,31,36,

42,44,61, 121, 125,358,388,
396, 439, 454-55, 458-60, 463,
468,471-72,478,481,485,489,
496,498,502-3,509, 511, 534,
536, 553

login procedure, 29-32, 42, 364
LOGNAME, 396, 553
loop, 344, 385-86,405,412-13,415-

18,423,430-31,443,554-55,
557

lp, 71, 81, 85-86, 526, 531, 533
lpstat, 86, 533
Is, 54, 56-62, 88, 91-92, 94-96, 98-

100, 102-3, 120, 176, 209, 212-
13,219,249,322,347-51,355,
359, 380, 382-86, 436, 445, 464,
501, 521, 530, 534, 539-40, 543,
545, 548-49

mail, 8, 10,86, 121,219, 358, 364,
372-73, 388, 396, 406-7, 432-34,
452-60,463-65,467-69,471,
477-78,483-84,487-93,495-96,
498-99, 504-505, 509-10, 513-14,
525,531,534, 553

mailbox, 463-65, 470, 477, 484, 486-
89, 492

mailrc, 467-70, 474, 493, 495-97
mailx, 8, 10, 86, 121, 125,219,358,

364, 372-73, 388, 396, 406-7,
432-34, 452-60, 463-65, 467-75,
477-79,482-93,495-99,504-5,
509-10,513-14,525,531,534,
553

managing incoming mail, 456-57, 463,
467-69, 478, 483

merging files, 105, 110-11
mkdir, 54-55, 64, 384, 439, 531, 534
msglist, 483, 485-86, 488-89, 493
mv, 91-92, 351, 384-85, 414-15,423-

25, 443, 45~ 53~ 552
networking, 452, 505, 507, 517
octal method, 103
ordinary file, 5, 6, 40, 61
outfolder variable, 495-96
output redirection, 74, 81, 353, 358,

360-63, 551
parent directory, 49-51, 57, 61, 66-67
password, 14, 23, 29-32, 524
PATH, 552-53
path names, 44-46, 49-54, 56-58, 64-

65, 89-92, 98, 356, 383, 385-86,
413, 424, 439-40, 465, 485, 499,
502-6, 514, 526, 530, 533, 535

permission, 6, 39, 42, 58,61, 66, 98-
103, 123, 383-84, 411, 421, 439,
487, 499-502, 506, 552

pg, 59, 71, 75, 77-79, 324, 534
pr, 59, 71, 80-83, 85, 349, 352, 526,

535
print command, 81-87
profile, 22-23, 59, 79, 243, 436-37,

439-42, 451, 474, 552
protecting files, 98, 101
public directory, 125, 500, 504, 508-9,

511, 513-15, 536
put command, 10, 107, 130, 134, 165,

205, 326, 370, 441, 471, 478,
496, 524

pwd, 44-46, 56, 64, 355, 380, 382,
385, 439, 535

quitting vi, 543, 550
read permission, 6, 61, 98-99, 101-3,

411,500-501

INDEX 585

Index

reading mail, 125, 407, 432, 453,
457-58, 463-64, 468-69, 477,
483-84,492,496,498

reassigning delete functions, 21-23
receiving files, 6, 71, 88, 91, 125, 130,

134, 330, 358-59, 362, 452-53,
457, 498, 506, 513, 521

record variable, 495-96
redirecting input, 120, 344-45, 358,

363, 405-6, 433, 498, 551
relative path name, 44-45, 49-52, 54,

57-58, 64-65, 89-90, 92, 465, 503
remote command execution, 525
remote system, 125-26, 452, 454,

459-61, 498-99, 503-4, 506, 509,
517, 520, 525, 536

removing file, 5-6, 10, 66-67, 93-94,
102, 133, 217, 339, 363-64, 468,
535

renaming file, 91-92, 136, 216, 351
rm, 93-94, 348, 364, 535
rmdir, 54, 66-67, 535
root directory, 6-7, 40, 44-46, 49,

529-31
saving mail, 465, 483, 489, 492, 534
scrolling, 118,239,264-65,333,361,

545
set command, 9, 106, 115, 118, 121,

199, 242, 386-87, 397, 405, 413,
420, 428, 430, 436, 441, 467,
494-97, 523, 530, 532, 558, 563

shell, 1, 3, 8-13, 22-23, 37-38, 113,
114-17, 120-22, 124, 127, 137-
38, 140, 145, 170, 173-74, 205,
209, 212, 215-16, 219, 242, 244,
324-25, 329, 344-45, 352-56,
358-59, 362-63, 369-70, 373,
375-76,379,381-92,394-97,
399, 401, 404-6, 408, 411-15,
418-19, 423-25, 428-29, 431-32,
435-37, 439-41, 443, 446, 475,

586 USER GUIDE

482, 484, 493, 495-96, 526, 532,
541, 542, 549, 551-54, 558-59,
563, 565-67

shell programming constructs, 344,
405,412-13,418-19,551,554

shell script, 9, 122, 124, 408, 532
software development, tools, 2, 9, 126
sort command, 11 0-11, 361-62
source-file, 502-4
special character, 19,23,31, 108,

127, 186, 191,216,230,234,
344-45, 347, 353, 355-56, 363,
375,417,487,526,539-40,551

specification file, 470, 564-67
spell command, 361
spool directory, 502, 506-7
status report, 505, 510-11, 536, 552
symbolic method, 103
take command, 121, 130, 157-58, 161,

171,311,353,361,363,452,
471,483,495,524,536

TERM, 79, 553, 558-61, 566
terminal configuration, 16, 33, 241-42,

244, 558
tilde escapes, 468-69, 471-74, 476,

478-79,482
time command, 29, 35,45,60, 71, 75,

77,81,93, 117, 121-22,210,243,
324, 333, 345, 353, 361, 366-67,
369-73,375,380,385-86, 390,
401, 403, 412, 414, 431, 441,
443,465, 50~ 50~ 515, 53~
552, 559, 563

tput command, 243, 441, 542, 558-59,
561

uname, 452, 459-61, 536
undeliverable mail, 455
uucico, 502, 506-7
uucp, 125,439,452-53,498-507,510,

536

------------------------ Index

uuname, 452, 461, 521, 536
uupick, 125, 452, 509, 513-16, 536
uustat, 452, 509-12, 536
uuto, 125,452-53,498-501, 508-13,

536
UUX, 125,452,517,525-26
wc, 11, 95-97, 122-23, 536
who command, 35-36, 61, 98, 101,

103, 122, 389, 418 _
windowing, 140, 239, 244, 272, 279,

281-82,286,294,322, 543, 545,
549, 563-67

work file, 22, 36, 39, 42, 44, 46, 49,
56, 60, 67, 69, 82, 98, 104, 115-
17, 125, 127, 130-31, 136, 138,
199,214,317,355,363,383,
487, 502-3, 505-7, 509, 563

write permission, 6, 66, 98-99, 101-3,
123, 423, 449-50, 502

yacc, 126, 536

INDEX 587

__ __ IV VllUWliift ",uu ••• un'lI. "U"C~ vr I;nll
TITLE AS WEll AS COPIES OF THE GrHER VOWMIS IN; lHE
PRENTICE HALl/AT&T UNIX® SYSTEM V RELEASE 3.0 SERIES
QUANTITY TITLE/AUTHOR ISBN PRICE TOTAL

UNIX® Sysfem V Utilities Release Notes, AT&T 013-940552-6 $21.95

UNIX® System V Programmer's Reference 013-940479-1 $34.95
Manual,. AT&T

UNIX® System V Network Programmer's 013-940461-9 $24.95
Guide, AT&T

UNIX® System V Streams Programmer's 013-940537-2 $24.95
Guide, AT&T

UNIX® System V Streams Primer, AT&T 013-940529-1 $21.95

UNIX® System V User's Reference 013-940487-2 $34.95
Manual, AT&T

UNIX® System V User's Guide, 2nd Ed., 013-940545-3 $24.95
AT&T

013-940438-4 UNIX® System V Programmer's Guide, $34.95 ---
AT&T

TOTAL $ __ _
- DISCOUNT (IF APPROPRIATE)

NEW TOTAL $ __ _

AND TAKE ADVANTAGE OF THESE SPECIAL OFFERS!
When ordering 3 or 4 copies (of the same or different titles) take 10% off the total list price.

When ordering 5 to 20 copies (of the same or different· titles) take 15% off the total list price.

To receive a greater discount when ordering more than 20 copies, call or write: Special Sales
Department, College Marketing, Prentice Hall, Englewood Cliffs, N.). 07632 (201-592-2406).

SAVE!
If payment accompanies order, plus your state's sales tax where applicable, Prentice Hall pays
postage and handling charges. Same return privilege refund guaranteed. Please do not mail in cash.

o PAYMENT ENCLOSED-shipping and handling to be paid by publisher (please include your
slate's tax where applicable).

C SEND BOOKS ON 15-DAY TRIAL BASIS & bill me (with small charge for shipping and
handling).

Name __________ -----------------------------------~-------------

Address __________________________________ ~ ___________ ___:---------

City ____________ __ ______________ State _______ lip: _____ _

I prefer to charge my D Visa o Master.Card

Card Number _________________________ Expimhon [lute, ____________ _

Signature ________________ __:_--__:_----__:_----------------------
All prices listed are subrect to change without notir;:e.

OFFER NOr VALlD OUTSIDE US.

MAIL YOUR ORDER TO: Prentice Hall BOOK Disfribution Center, Route 59 at
Brook HiH Dri,ve, West Nyack, NY)0994

DEPT. 1 D-JSAR-RO(3)

CJthep I.Jc::rrb in the PNt'1tice-H8t1 C and UNIX. Systems Ubrary

• The C Programmer's Handbook Bell Labs/M. I. Bolsky

• The UNIX System User's Handbook Bell Labs/M. I. Bolsky

• The Vi User's Handbook Bell Labs/M. I. Bolsky

• UNIX System Software .Readings AT&T UNIX PACIFIC

• UNIX System Readings and Applications , Volume I Bell Labs

• UNIX System Readings and Applications, Volume II Bell Labs

• UNIX System V Utilities Release Notes AT&T

• UNIX System V Streams Primer AT&T

• UNIX System V User's Guide, Second Edition AT&T

• UNIX System V User's Reference Manual AT&T

• UNIX System V Programmer's Reference Manual AT&T

• UNIX -System V Streams Programmer's Guide AT&T

• UNIX System V Network Programmer's Guide AT&T

• UNIX Sys,tem V Programmer's Guide AT&T

PRENTICE HALL, Englewood Cliffs, N.J .

. '

ISBN 0-13-940545-3

