s
.

o
9
=
gl
L
§e)
-
Q
Q
5]
n

UNIX® System V

User’s Guide

(

AT&T

UNIX® System V
User’'s Guide, Second Edition

AT&T

Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

Library of Congress Catalog Card Number: 87-60147

Editorial/production supervision: Karen S. Fortgang
Cover illustration: Jim Kinstry
Manufacturing buyer: S. Gordon Osbourne

©1987, 1986 by AT&T. All Rights Reserved.
IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this
document, AT&T assumes no liability to any party for any loss or damage caused
by errors or omissions or statements of any kind in the UNIX® System V User’s
Guide, its updates, supplements, or special editions, whether such errors are omis-
sions or statements resulting from negligence, accident, or any other cause. AT&T
further assumes no liability arising out of the application or use of any product or
system described herein; nor any liability for incidental or consequential damages
arising from the use of this document. AT&T disclaims all warranties regarding
the information contained herein, whether expressed, implied or statutory, includ-
ing implied warranties or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any products
herein to improve reliability, function or design.

No part of this publication may be reproduced, transmitted or used in any form or
by any means — graphic, electronic, mechanical or chemical, including photocopy-
ing, recording in any medium, taping, by any computer or information storage and
retrieval systems, etc. without prior permission in writing from AT&T.

Dataphone is a registered trademark of AT&T.
DOCUMENTER’S WORKBENCH is a trademark of AT&T.
HP is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines.
Teletype is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4

ISBN 0-13-940545-3 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore

Table of Contents

Preface

Part 1: UNIX System Overview

Chapter 1: What is the UNIX System?
What the UNIX System Does
How the UNIX System Works

Chapter 2: Basics for UNIX System Users
Getting Started

The Terminal

Obtaining a Login Name

Establishing Contact with the UNIX System

Part 2: UNIX System Tutorials
Chapter 3: Using the File System

Introduction

How the File System is Structured
Your Place in the File System
Organizing a Directory

Accessing and Manipulating Files

Summary

TABLE OF CONTENTS

xi

14
14
15
26

27

39
39
40
42
54
69

113

v

Table of Contents

Chapter 4: Overview of the Tutorials
Introduction

Text Editing

The Shell

Communicating Electronically
Programming in the System

Chapter 5: Line Editor Tutorial (ed)
Introducing the Line Editor
Suggestions for Using this Tutorial
Getting Started

Exercise 1

General Format of ed Commands
Line Addressing

Exercise 2

Displaying Text in a File

Creating Text

Exercise 3

Deleting Text

Substituting Text

Exercise 4

Special Characters

Exercise 5

vi USER’S GUIDE

114
114
115
120
125
126

127
127
128
129
140
141
142
156
157
160
168
170
175
184
186
197

Table of Contents

Moving Text 199
Exercise 6 208
Other Useful Commands and Information 209
Exercise 7 219
Answers to Exercises 220
Chapter 6: Screen Editor Tutorial (vi) 239
Introduction 239
Getting Started 242
Creating a File 245
Editing Text: the Command Mode 248
Quitting vi 256
Exercise 1 259
Moving the Cursor Around the Screen 260
Positioning the Cursor in Undisplayed Text 278
Exercise 2 290
Creating Text 292
Exercise 3 297
Deleting Text 298
Exercise 4 305
Modifying Text 306
Cutting And Pasting Text Electronically 314
Exercise 5 319

TABLE OF CONTENTS vii

Table of Contents

Special Commands

Using Line Editing Commands in vi
Quitting vi

Special Options for vi

Exercise 6

Answers To Exercises

Chapter 7: Shell Tutorial
Introduction

Shell Command Language
Command Language Exercises
Shell Programming

Modifying Your Login Environment
Shell Programming Exercises

Answers To Exercises

Chapter 8: Communication Tutorial
Introduction

Exchanging Messages

mail

mailx

mailx Overview

Command Line Options

How to Send Messages: the Tilde Escapes

viii USER’S GUIDE

320
322
330
333
336
337

344
344
345
380
381
436
443
445

452
452
453
454
467
468
470
471

How to Manage Incoming Mail
The .mailrc File

Sending and Receiving Files
Networking

Appendix A: Summary of the File System

Appendix B: Summary of UNIX System
Commands

Appendix C: Quick Reference to ed
Commands

Appendix D: Quick Reference to vi
Commands

Appendix E: Summary of Shell Command
Language

Appendix F: Setting Up the Terminal
Glossary

Index

TABLE OF CONTENTS

Table of Contents

483
493
498
518

529

532

537

542

551

558

568

583

ix

Preface

The material in this guide is organized into two major parts: an overview of
the UNIX operating system and a set of tutorials on the main tools available on
the UNIX system. A brief description of each part follows. The last section of
this Preface, "Notation Conventions," describes the typographical notation with
which all the chapters of this Guide conform. You may want to refer back to this
section from time to time as you read the Guide.

System Overview

This part consists of Chapters 1—3, which introduce you to the basic princi-
ples of the UNIX operating system. Each chapter builds on information
presented in preceding chapters, so it is important to read them in sequence.

B Chapter 1, "What is the UNIX System?," provides an overview of the
operating system.

B Chapter 2, "Basics for UNIX System Users," discusses the general rules
and guidelines for using the UNIX system. It covers topics related to
using your terminal, obtaining a system account, and establishing contact
with the UNIX system.

B Chapter 3, "Using the File System," offers a working perspective of the file
system. It introduces commands for building your own directory structure,
accessing and manipulating the subdirectories and files you organize within
it, and examining the contents of other directories in the system for which
you have access permission.

UNIX System Tutorials

The second part of the Guide consists of tutorials on the following topics: the
ed text editor, the vi text editor, the shell command language and programming
language, and electronic communication tools. For a thorough understanding of
the material, we recommend that you work through the examples and exercises as
you read each tutorial. The tutorials assume you understand the concepts intro-
duced in Chapters 1-3.

PREFACE «xi

Preface

NOTE

Chapter 4, "UNIX System Capabilities," introduces the four chapters of
tutorials in the second half of the Guide. It highlights UNIX system capa-
bilities such as command execution, text editing, electronic communication,
programming, and aids to software development.

Chapter 5, "Line Editor Tutorial (ed)," teaches you to how to use the ed
text editor to create and modify text on a video display terminal or paper
printing terminal.

Chapter 6, "Screen Editor Tutorial (vi)," teaches you how to use the visual
text editor, vi, to create and modify text on a video display terminal.

vi, the visual editor, is based on software developed by The University of Califor-
nia, Berkeley, California; Computer Science Division, Department of Electrical
Engineering and Computer Science, and such software is owned and licensed by
the Regents of the University of California.

Chapter 7, "Shell Tutorial," teaches you to how to use the shell, both as a
command interpreter and as a programming language used to create shell
programs.

Chapter 8, "Communication Tutorial," teaches you how to send messages
and files to users of both your UNIX system and other UNIX systems.

Reference Information

Six appendices and a glossary of UNIX system terms are also provided for
reference.

xii

Appendix A, "Summary of the File System," illustrates how information is
stored in the UNIX operating system.

Appendix B, "Summary of UNIX System Commands," describes, in
alphabetical order, each UNIX system command discussed in the Guide.

USER’S GUIDE

Preface

Appendix C, "Quick Reference to ed Commands," is a quick reference for
the line editor, ed. (For details, see Chapter 5, "Line Editor Tutorial.")
The commands are organized by topic, as they are covered in Chapter 5.

Appendix D, "Quick Reference to vi Commands," is a reference for the
full screen editor, vi, discussed in Chapter 6, "Screen Editor Tutorial (vi)."
Commands are organized by topic, as covered in Chapter 6.

Appendix E, "Summary of Shell Command Language," is a summary of
the shell command language, notation, and programming constructs, as dis-
cussed in Chapter 7, "Shell Tutorial."

Appendix F, "Setting Up the Terminal," explains how to configure your
terminal for use with the UNIX system, and create multiple windows on
the screens of terminals with windowing capability.

The Glossary defines terms pertaining to the UNIX system used in this
book.

PREFACE xiii

Notation Conventions

The following notation conventions are used throughout this Guide.

bold

italic

constant width

<>

<“char>

[1]

User input, such as commands, options and argu-
ments to commands, variables, and the names of
directories and files, appear in bold.

Names of variables to which values must be assigned
(such as password) appear in italic.

UNIX system output, such as prompt signs and
responses to commands, appear in constant width.

Input that does not appear on the screen when typed,
such as passwords, tabs, or RETURN, appear
between angle brackets.

Control characters are shown between angle brackets
because they do not appear on the screen when
typed. The circumflex (") represents the control key
(usually labeled CTRL). To type a control charac-
ter, hold down the control key while you type the
character specified by char. For example, the nota-
tion <"d> means to hold down the control key
while pressing the D key; the letter D will not
appear on the screen.

Command options and arguments that are optional,
such as [-msCjl, are enclosed in square brackets.

The vertical bar separates optional arguments from
which you may choose one. For example, when a
command line has the following format:

command largl | arg2]

You may use either argl or arg2 when you issue the
command.

PREFACE xv

Notation Conventions

Ellipses after an argument mean that more than one
argument may be used on a single command line.

Arrows on the screen (shown in examples in Chapter
6) represent the cursor.

command (number) A command name followed by a number in
parentheses refers to the part of a UNIX system
reference manual that documents that command.
(There are three reference manuals: the User’s
Reference Manual (P-H), Programmer’s Reference
Manual (P-H), and System Administrator’s Refer-
ence Manual (AT&T).) For example, the notation
cat(1) refers to the page in section 1 (of the User’s
Reference Manual (P-H)) that documents the cat
command.

In sample commands the $ sign is used as the shell command prompt. This
is not true for all systems. Whichever symbol your system uses, keep in mind that
prompts are produced by the system; although a prompt is sometimes shown at
the beginning of a command line as it would appear on your screen, you are not
meant to type it. (The $ sign is also used to reference the value of positional
parameters and named variables; see Chapter 7 for details.)

In all chapters, full and partial screens are used to display examples of how
your terminal screen will look when you interact with the UNIX system. These
examples show how to use the UNIX system editors, write short programs, and
execute commands. The input (characters typed by you) and output (characters
printed by the UNIX system) are shown in these screens in accordance with the
conventions listed above. All examples apply regardless of the type of terminal
you use.

The commands discussed in each section of a chapter are reviewed at the end
of that section. A summary of vi commands is found in Appendix D, where they
are listed by topic. At the end of some sections, exercises are also provided so you
can experiment with the commands. The answers to all the exercises in a chapter
are at the end of that chapter.

xvi USER’S GUIDE

NOTE

The text in the User’s Guide was prepared with the UNIX system text editors
described in the Guide and formatted with the DOCUMENTER’S WORK-

BENCH Software: troff, tbl, pic, and mm macros.

Notation Conventions

PREFACE

xvii

UNIX® System V

User’'s Guide

CHAPTER 1: WHAT IS THE UNIX SYSTEM?

What the UNIX System Does

The UNIX operating system is a set of programs (or software) that controls
the computer, acts as the link between you and the computer, and provides tools
to help you do your work. It is designed to provide an uncomplicated, efficient,
and flexible computing environment. Specifically, the UNIX system offers the fol-
lowing advantages:

B 3 general purpose system for performing a wide variety of jobs or applica-
tions

B an interactive environment that allows you to communicate directly with
the computer and receive immediate responses to your requests and mes-
sages

B a multi-user environment that allows you to share the computer’s resources
with other users without sacrificing productivity

This technique is called timesharing. The UNIX system interacts between
users on a rotating basis so quickly that it appears to be interacting with
all users simultaneously.

B 3 multi-tasking environment that enables you to execute more than one
program simultaneously.

The organization of the UNIX system is based on four major components:

the kernel The kernel is a program that constitutes the nucleus of
the operating system; it coordinates the functioning of
the computer’s internals (such as allocating system
resources). The kernel works invisibly; you need never
be aware of it while doing your work.

the file system The file system provides a method of handling data that
makes it easy to store and access information.

the shell The shell is a program that serves as the command inter-
preter. It acts as a liaison between you and the kernel,
interpreting and executing your commands. Because it
reads input from you and sends you messages, it is
described as interactive.

WHAT IS THE UNIX SYSTEM? 1

What the UNIX System Does

2

commands

USER’S GUIDE

Commands are the names of programs that you request
the computer to execute. Packages of programs are
called tools. The UNIX system provides tools for jobs
such as creating and changing text, writing programs
and developing software tools, and exchanging informa-
tion with others via the computer.

How the UNIX System Works

Figure 1-1 is a model of the UNIX system. Each circle represents one of the
main components of the UNIX system: the kernel, the shell, and user programs or
commands. The arrows suggest the shell’s role as the medium through which you
and the kernel communicate. The remainder of this chapter describes each of
these components, along with another important feature of the UNIX system, the

file system.

Programming
Environment

Text
Processing

Electronic
Communication

Additional .
Information

Utility
Programs Management

Figure 1-1: Model of the UNIX System

WHAT IS THE UNIX SYSTEM? 3

How the UNIX System Works

The Kernel

The nucleus of the UNIX system is called the kernel. The kernel controls
access to the computer, manages the computer’s memory, maintains the file sys-
tem, and allocates the computer’s resources among users. Figure 1-2 is a func-
tional view of the kernel.

AN
0‘(@
‘l‘ Allocates
system
resources

Maintains
file system

Manages
memory

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

4 USER’'S GUIDE

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX operating system. It provides
a logical method of organizing, retrieving, and managing information. The struc-
ture of the file system is hierarchical; if you could see it, it might look like an
organization chart or an inverted tree (Figure 1-3).

O = Directories
I__—] =Ordinary Files
\/ =seecial Fites

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UNIX system and it can be any one of three
types: an ordinary file, a directory, or a special file. (See Chapter 3, "Using the
File System.")

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the
system. Ordinary files are used to store any information you want to save. They
may contain text for letters or reports, code for the programs you write, or com-
mands to run your programs. Once you have created a file, you can add material
to it, delete material from it, or remove it entirely when it is no longer needed.

WHAT IS THE UNIX SYSTEM? 5

How the UNIX System Works

Directories

A directory is a super-file that contains a group of related files. For example,
a directory called sales may hold files containing monthly sales figures called jan,
feb, mar, and so on. You can create directories, add or remove files from them, or
remove directories themselves at any time.

All the directories that you create and own will be located in your home
directory. This is a directory assigned to you by the system when you receive a
recognized login. You have control over this directory; no one else can read or
write files in it without your explicit permission, and you determine its structure.

The UNIX system also maintains several directories for its own use. The
structure of these directories is much the same on all UNIX systems. These
directories, which include /unix (the kernel) and several important system direc-
tories, are located directly under the root directory in the file hierarchy. The root
directory (designated by /) is the source of the UNIX file structure; all directories
and files are arranged hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A special
file represents a physical device such as a terminal, disk drive, magnetic tape
drive, or communication link. The system reads and writes to special files in the
same way it does to ordinary files. However the system’s read and write requests
do not activate the normal file access mechanism; instead, they activate the device
handler associated with the file.

Some operating systems require you to define the type of file you have and to
use it in a specified way. In those cases, you must consider how the files are
stored since they might be sequential, random-access, or binary files. To the
UNIX system, however, all files are alike. This makes the UNIX system file
structure easy to use. For example, you need not specify memory requirements
for your files since the system automatically does this for you. Or if you or a pro-
gram you write needs to access a certain device, such as a printer, you specify the
device just as you would another one of your files. In the UNIX system, there is
only one interface for all input from you and output to you; this simplifies your
interaction with the system.

6 USER’S GUIDE

How the UNIX System Works

Figure 1-4 shows an example of a typical file system. Notice that the root
directory contains the kernel (/unix) and several important system directories.

O = Directories
D = Ordinary Files
v = Special Files

Figure 1-4: Example of a File System

WHAT IS THE UNIX SYSTEM? 7

How the UNIX System Works

/bin contains many executable programs and utilities

/dev contains special files that represent peripheral devices such as the
console, the line printer, user terminals, and disks

/et contains programs and data files for system administration

/lib contains libraries for programs and languages

/tmp contains temporary files that can be created by any user

/usr contains other directories including mail, which contains files for

storing electronic mail, and news, which contains files for storing
newsworthy items.

In summary, the directories and files you create comprise the portion of the
file system that is controlled by you. Other parts of the file system are provided
and maintained by the operating system, such as /bin, /dev, /etc, /lib, /tmp and
/usr, and have much the same structure on all UNIX systems.

You will learn more about the file system in other chapters. Chapter 3 shows
how to organize a file system directory structure, and access and manipulate files.
Chapter 4 gives an overview of UNIX system capabilities. The effective use of
these capabilities depends on your familiarity with the file system and your ability
to access information stored within it. Chapters 5 and 6 are tutorials designed to
teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communicate
with the operating system. The shell reads the commands you enter and inter-
prets them as requests to execute other programs, access files, or provide output.
The shell is also a powerful programming language, not unlike the C program-
ming language, that provides conditional execution and control flow features. The
model of a UNIX system in Figure 1-1 shows the two-way flow of communication
between you and the computer via the shell.

8 USER’S GUIDE

How the UNIX System Works

Chapter 4 describes the shell’s capabilities. Chapter 7 is a tutorial that
teaches you to write simple shell programs called shell scripts and custom tailor
your environment.

Commands

A program is a set of instructions to the computer. Programs that can be
executed by the computer without need for translation are called executable pro-
grams or commands. As a typical user of the UNIX system, you have many
standard programs and tools available to you. If you use the UNIX system to
write programs and develop software, you can also draw on system calls, subrou-
tines, and other tools. Of course, any programs you write yourself will be at your
disposal, too.

This book introduces you to many of the UNIX system programs and tools
that you will use on a regular basis. If you need additional information on these
or other standard programs, refer to the User’s Reference Manual. For informa-
tion on tools and routines related to programming and software development, con-
sult the Programmer’s Reference Manual. The Documentation Roadmap
describes and explains how to order all UNIX system documents from AT&T.

The reference manuals may also be available online. (Online documents are
stored in your computer’s file system.) You can summon pages from the online
manuals by executing the command man (short for manual page). For details on
how to use the man command refer to the man(1) page in the User’s Reference
Manual.

What Commands Do

The outer circle of the UNIX system model in Figure 1-1 organizes the sys-
tem programs and tools into functional categories. These functions include:

text processing The system provides programs such as line
and screen editors for creating and changing
text, a spelling checker for locating spelling
errors, and optional text formatters for pro-
ducing high-quality paper copies that are
suitable for publication.

information management The system provides many programs that
allow you to create, organize, and remove
files and directories.

WHAT IS THE UNIX SYSTEM? 9

How the UNIX System Works

electronic communication Several programs, such as mail, enable you
to transmit information to other users and to
other UNIX systems.

software development Several UNIX system programs establish a
friendly programming environment by pro-
viding UNIX-to-programming-language
interfaces and by supplying numerous utility
programs.

additional utilities The system also offers capabilities for gen-
erating graphics and performing calcula-
tions.

How to Execute Commands

To make your requests comprehensible to the UNIX system, you must
present each command in the correct format, or command line syntax. This syn-
tax defines the order in which you enter the components of a command line. Just
as you must put the subject of a sentence before the verb in an English sentence,
so must you put the parts of a command line in the order required by the com-
mand line syntax. Otherwise, the UNIX system shell will not be able to interpret
your request. Here is an example of the syntax of a UNIX system command line.

command option(s) argument (s) <CR>
On every UNIX system command line you must type at least two com-
ponents: a command name and the RETURN key. (The notation <CR> is
used as an instruction to press the RETURN key throughout this Guide.) A com-

mand line may also contain either options or arguments, or both. What are com-
mands, options, and arguments?

B a command is the name of the program you want to run

B an option modifies how the command runs

10 USER’S GUIDE

How the UNIX System Works

B an argument specifies data on which the command is to operate (usually
the name of a directory or file)

In command lines that include options and/or arguments, the component
words are separated by at least one blank space. (You can insert a blank by
pressing the space bar.) If an argument name contains a blank, enclose that name
in double quotation marks. For example, if the argument to your command is
sample 1, you must type it as follows: "sample 1". If you forget the double quota-
tion marks, the shell will interpret sample and 1 as two separate arguments.

Some commands allow you to specify multiple options and/or arguments on a
command line. Consider the following command line:

command
arguments

options

l

AN N /T
we —1 —w filel file2 file3

In this example, we is the name of the command and two options, —1 and
—w, have been specified. (The UNIX system usually allows you to group options
such as these to read —lw if you prefer.) In addition, three files (filel, file2, and

file3) are specified as arguments. Although most options can be grouped together,
arguments cannot.
The following examples show the proper sequence and spacing in command

line syntax:

WHAT IS THE UNIX SYSTEM? 11

How the UNIX System Works

Incorrect

wcfile
we —lfile
we —1 w file

wce filelfile2

Correct

we file

we —1 file

we —lw file
or

we =1 —w file

we filel file2

Remember, regardless of the number of components, you must end every

command line by pressing the RETURN key.

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX system executes a com-

mand.

YOUR
REQUEST

DIRECTORY

INPUT
outpuT | (COMMAND

A e LANGUAGE
— INTERPRETER)

SEARCH

EXECUTION

PROGRAM PROGRAM
RETRIEVAL

o
=

EXECUTABLE
PROGRAMS

Figure 1-5: Execution of a UNIX System Command

To execute a command, enter a command line when a prompt (such as a $
sign) appears on your screen. The shell considers your command as input,
searches through one or more directories to retrieve the program you specified,
and conveys your request, along with the program requested, to the kernel. The
kernel then follows the instructions in the program and executes the command you

12 USER’S GUIDE

How the UNIX System Works

requested. After the program has finished running, the shell signals that it is
ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX operating sys-
tem. The following chapters will help you apply these principles according to
your computing needs.

WHAT IS THE UNIX SYSTEM? 13

CHAPTER 2: BASICS FOR UNIX SYSTEM USERS

Getting Started

This chapter acquaints you with the general rules and guidelines for working
on the UNIX system. Specifically, it lists the required terminal settings, and
explains how to use the keyboard, obtain a login, log on and off the system, and
enter simple commands.

To establish contact with the UNIX system, you need:
® a terminal

B 3 login name (a name by which the UNIX system identifies you as one of
its authorized users)

B a password that verifies your identity
B instructions for dialing in and accessing the UNIX system if your terminal

is not directly connected or hard-wired to the computer

This chapter follows the notation conventions used throughout this Guide.
For a description of them, see the Preface.

14 USER’S GUIDE

The Terminal

A terminal is an input/output device: you use it to enter requests to the
UNIX system, and the system uses it to send its responses to you. There are two
basic types of terminals: video display terminals and printing terminals (see Fig-
ure 2-1).

Teletype
Model 43

Teletype
Model 5410

Figure 2-1: A Video Display Terminal and a Printing Terminal

The video display terminal shows input and output on a display screen; the print-
ing terminal, on continuously fed paper. In most respects, this difference has no
effect on the user’s actions or the system’s responses. Instructions throughout this
book that refer to the terminal screen apply in the same way to the paper in a
printing terminal, unless noted otherwise.

BASICS FOR UNIX SYSTEM USERS 15

The Terminal

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly to
communicate with the UNIX system. If you have not set terminal options before,
you might feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are using.
Some terminals are configured with switches; others are configured directly from
the keyboard by using a set of function keys. To determine how to configure your
terminal, consult the owner’s manual provided by the manufacturer.

The following is a list of configuration checks you should perform on any ter-
minal before trying to log in on the UNIX system.

1.
2.

16

Turn on the power.

Set the terminal to ON-LINE or REMOTE operation. This setting
ensures the terminal is under the direct control of the computer.

Set the terminal to FULL DUPLEX mode. This mode ensures two-way
communication (input/output) between you and the UNIX system.

If your terminal is not directly connected or hard-wired to the computer,
make sure the acoustic coupler or data phone set you are using is set to
the FULL DUPLEX mode.

Set character generation to LOWER CASE. If your terminal generates
only upper case letters, the UNIX system will accommodate it by print-
ing everything in upper case letters.

Set the terminal to NO PARITY.

Set the baud rate. This is the speed at which the computer communi-
cates with the terminal, measured in characters per second. (For exam-
ple, a terminal set at a baud rate of 4800 sends and receives 480 charac-
ters per second.) Depending on the computer and the terminal, baud rates
between 300 and 19200 are available. Some computers may be capable
of processing characters at higher speeds.

USER’S GUIDE

The Terminal

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal
keyboards share a standard set of 128 characters called the ASCII character set.
(ASCII is an acronym for American Standard Code for Information Inter-
change.) While the keys are labeled with characters that are meaningful to you
(such as the letters of the alphabet), each one is also associated with an ASCII
code that is meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter’s, with a few additional keys for functions such as interrupting tasks.
Figure 2-2 shows an example of a keyboard on an ASCII terminal.

BASICS FOR UNIX SYSTEM USERS 17

The Terminal

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

18 USER’S GUIDE

The Terminal

The keys correspond to the following:
B the letters of the English alphabet (both upper case and lower case)
® the numerals (0 through 9)

B 2 variety of symbols (including! @ #$ % "~ & () _—+=~"{}[1]\
< >,1/)

® specially defined words (such as RETURN and BREAK), and abbrevia-
tions (such as DEL for delete, CTRL for control, and ESC for escape)

While terminal and typewriter keyboards both have alphanumeric keys, ter-
minal keyboards also have keys designed for use with a computer. These keys are
labeled with characters or symbols that remind the user of their functions. How-
ever, their placement may vary from terminal to terminal because there is no
standard keyboard layout.

Typing Conventions

To interact effectively with the UNIX system, you should be familiar with its
typing conventions. The UNIX system requires that you enter commands in
lower case letters (unless the command includes an upper case letter). Other con-
ventions enable you to perform tasks, such as erasing letters or deleting lines, sim-
ply by pressing one key or entering a specific combination of characters. Charac-
ters associated with tasks in this way are known as special characters. Figure 2-3
lists the conventions based on special characters. Detailed explanations of them
are provided on the next few pages.

BASICS FOR UNIX SYSTEM USERS 19

The Terminal

Key(s) Meaning

$ System’s command prompt (your cue to issue a command)

#* Erase a character

@ Erase or kill an entire line

<BREAK> Stop execution of a program or command

 Delete or kill the current command line

<ESC> When used with another character, performs a specific function
(called an escape sequence)
When used in an editing session with the vi editor, ends the text
input mode and returns you to the command mode

<CR> Press the RETURN key. This ends a line of typing and puts the
cursor on a new line.

<*d>t Stop input to the system or log off

<"h> Backspace for terminals without a backspace key

<"i> Horizontal tab for terminals without a tab key

<"s> Temporarily stops output from printing on the screen

<"q> Makes the output resume printing on the screen after it has been

stopped by the <"s> command

Nonprinting characters are shown in angle brackets (< >).

Characters preceded by a circumflex (*) are called control characters and are pronounced
control-letter. To type a control character, hold down the control key and press the specified

letter.

Figure 2-3: UNIX System Typing Conventions

20

USER’S GUIDE

The Terminal

The Command Prompt

The standard UNIX system command prompt is the dollar sign ($). When
the prompt appears on your terminal screen, the UNIX system is waiting for
instructions from you. The appropriate response to the prompt is to issue a com-
mand and press the RETURN key.

The $ sign is the default value for the command prompt. Chapter 7 explains
how to change it if you would prefer another character or character string as your
command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typing
errors. The @ (at) sign key kills the current line and the # (pound) sign key
erases the last character typed. These keys are available by default to perform
these functions. However, if you want to use other keys, you can reassign the
erase and kill functions. (For instructions, see "Reassigning the Delete Functions"
later in this section and "Setting Terminal Options" in Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is added
to the end of the line, and the cursor moves to the next line. The line containing
the error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before you
press the RETURN key if you want to kill a line. In the following example, a
misspelled command is typed on a command line; the command is cancelled with
the @ sign:

whooo@
who <CR>
Deleting the Last Characters Typed: the # Sign Key

The # (pound) sign key deletes the character(s) last typed on the current line.
When you type a # sign, the cursor backs up over the last character and lets you
retype it, thus effectively erasing it. This is an easy way to correct a typing error.

BASICS FOR UNIX SYSTEM USERS 21

The Terminal

You can delete as many characters as you like as long as you type a corre-
sponding number of # signs. For example, in the following command line, two
characters are deleted by typing two # signs.

dattwi#f e <CR>

The UNIX system interprets this as the date command, typed correctly.
The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function
instead of the # sign key. When you press the BACKSPACE key, the cursor
backs up over your errors, erasing them as it goes. It does not print anything,
unlike the # sign key, which prints a # sign on your screen between an error and a
correction. When you have finished correcting an error with the BACKSPACE
key, the line of text on the screen looks as though it was typed perfectly.

The # sign and BACKSPACE keys are equally effective at deleting charac-
ters, but using the BACKSPACE key gives you better visual information about
what you are doing.

Some terminals may not recognize the # sign key as a delete character.
NOTE

Reassigning the Delete Functions

As stated earlier, you can change the keys that kill lines and erase characters.
If you want to change these keys for a single working session, you can issue a
command to the shell to reassign them; the delete functions will revert to the
default keys (# and @) as soon as you log off. If you want to use other keys regu-
larly, you must specify the reassignment in a file called .profile. Instructions for
making both temporary and permanent key reassignments, along with a descrip-
tion of the .profile, are given in Chapter 7.

There are three points to keep in mind if you reassign the delete functions to
non-default keys. First, the UNIX system allows only one key at a time to per-
form a delete function. When you reassign a function to a non-default key, you
also take that function away from the default key. For example, if you reassign
the erase function from the # sign key to the BACKSPACE key, you will no
longer be able to use the # sign key to erase characters. Neither will you have
two keys that perform the same function.

22 USER’S GUIDE

The Terminal

Secondly, such reassignments are inherited by any other UNIX system pro-
gram that allows you to perform the function you have reassigned. For example,
the interactive text editor called ed (described in Chapter 5) allows you to delete
text with the same key you use to correct errors on a shell command line (as
described in this section). Therefore, if you reassign the erase function to the
BACKSPACE key, you will have to use the BACKSPACE key to erase charac-
ters while working in the ed editor, as well. The # sign key will no longer work.

Finally, keep in mind that any reassignments you have specified in your
.profile do not become effective until after you log in. Therefore, if you make an
error while typing your login name or password, you must use the # sign key to
correct it.

Whichever keys you use, remember that they work only on the current line.
Be sure to correct your errors before pressing the RETURN key at the end of a
line.

Using Special Characters as Literal Characters

What happens if you want to use a special character in with literal meaning
as a unit of text? Since the UNIX system’s default behavior is to interpret spe-
cial characters as commands, you must tell the system to ignore or escape from a
character’s special meaning whenever you want to use it as a literal character.
The backslash (\) enables you to do this. Type a \ before any special character
that you want to have treated as it appears. By doing this you essentially tell the
system to ignore this character’s special meaning and treat it as a literal unit of
text.

For example, suppose you want to add the following sentence to a file:
Only one # appears on this sheet of music.

To prevent the UNIX system from interpreting the # sign as a request to delete a
character, enter a \ in front of the # sign. If you do not, the system will erase the
space after the word one and print your sentence as follows:

Only one appears on this sheet of music.
To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

BASICS FOR UNIX SYSTEM USERS 23

The Terminal

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as you
want, even when the UNIX system is executing a command or responding to one.
Since your input and the system’s output appear on the screen simultaneously, the
printout on your screen will appear garbled. However, while this may be incon-
venient for you, it does not interfere with the UNIX system’s work because the
UNIX system has read-ahead capability. This capability allows the system to
handle input and output separately. The system takes and stores input (your next
request) while it sends output (its response to your last request) to the screen.

Stopping a Command

If you want to stop the execution of a command, simply press the BREAK or
DELETE key. The UNIX system will stop the program and print a prompt on
the screen. This is its signal that it has stopped the last command from running
and is ready for your next command.

Using Control Characters

Locate the control key on your terminal keyboard. It may be labeled CON-
TROL or CTRL and is probably to the left of the A key or below the Z key.
The control key is used in combination with other characters to perform physical
controlling actions on lines of typing. Commands entered in this way are called
control characters. Some control characters perform mundane tasks such as back-
spacing and tabbing. Others define commands that are specific to the UNIX sys-
tem. For example, one control character (control-s) temporarily halts output that
is being printed on a terminal screen.

To type a control character, hold down the control key and press the
appropriate alphabetic key. Most control characters do not appear on the screen
when typed and therefore are shown between angle brackets (see "Notation Con-
ventions" in the Preface). The control key is represented by a circumflex (%)
before the letter. Thus, for example, <"s> designates the control-s character.

24 USER’S GUIDE

The Terminal

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To prevent
information from rolling off the screen on a video display terminal, type <"s>;
the printing will stop. When you are ready to read more output, type <"q> and
the printing will resume.

To log off the UNIX system, type <"d>. (See "Logging Off" later in this
chapter for a detailed description of this procedure.)

In addition, the UNIX system uses control characters to provide capabilities
that some terminals fail to make available through function specific keys. If your
keyboard does not have a backspace key, you can use the <"h> key instead.
You can also set tabs without a tab key by typing <"i> if your terminal is set
properly. (Refer to the section entitled "Possible Problems When Logging In" for
information on how to set the tab key.)

Now that you have configured the terminal and inspected the keyboard, one
step remains before you can establish communication with the UNIX system:
you must obtain a login name.

BASICS FOR UNIX SYSTEM USERS 25

Obtaining a Login Name

A login name is the name by which the UNIX system verifies that you are an
authorized user of the system when you request access to it. It is so called
because you must enter it every time you want to log in. (The expression logging
in is derived from the fact that the system maintains a log for each user, in which
it records the type and amount of system resources being used.)

To obtain a login name, set up a UNIX system account through your local
system administrator. There are few rules governing your choice of a login name.
Typically, it is three to eight characters long. It can contain any combination of
lower case alphanumeric characters, as long as it starts with a letter. It cannot
contain any symbols.

However, your login name will probably be determined by local practices.
The users of your system may all use their initials, last names, or nicknames as
their login names. Here are a few examples of legal login names: starship, mary2,
and jmrs.

26 USER’S GUIDE

Establishing Contact with the UNIX System

Typically, you will be using either a terminal that is wired directly to a com-
puter or a terminal that communicates with a computer over a telephone line.

NOTE

This section describes a typical procedure for logging in, but may not apply to
your system. There are many ways to log in on a UNIX system over a telephone
line. Security precautions on your system may require that you use a special
telephone number or other security code. For instructions on logging in on your
UNIX system from outside your computer installation site, see your system
administrator.

Turn on your terminal. If it is directly connected, the login: prompt will
immediately appear in the upper lefthand corner of the screen.

If you are going to communicate with the computer over a telephone line, you
must now establish a connection. The following procedure is an example of a
method you might use to do this. (For the procedure required by your system, see
your system administrator.)

1.

Dial the telephone number that connects you to the UNIX system. You
will hear one of the following:

= A busy signal. This means that either the circuits are busy or the line
is in use. Hang up and dial again.

s Continuous ringing and no answer. This usually means that there is
trouble with the telephone line or that the system is inoperable
because of mechanical failure or electronic problems. Hang up and
dial again later.

o A high-pitched tone. This means that the system is accessible.

When you hear the high-pitched tone, place the handset of the phone in
the acoustic coupler or momentarily press the appropriate button on the
data phone set (see the owner’s manual for the appropriate equipment).
Then replace the handset in the cradle (see Figure 2-4).

After a few seconds, the login: prompt will appear in the upper lefthand
corner of the screen.

BASICS FOR UNIX SYSTEM USERS 27

Establishing Contact with the UNIX System

4. A series of meaningless characters may appear on your screen. This
means that the telephone number you called serves more than one baud
rate; the UNIX system is trying to communicate with your terminal, but
is using the wrong speed. Press the BREAK or RETURN key; this sig-
nals the system to try another speed. If the UNIX system does not
display the login: prompt within a few seconds, press the BREAK or
RETURN key again.

AT&T Data Phone
Set 212A

E=lSh

< AT&T Acoustic

Coupler

AT&T Dataphone II
Modem

Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler

28 USER’S GUIDE

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press the
RETURN key. For example, if your login name is starship, your login line will
look like this:

login: starship<CR>

Remember to type in lower case letters. If you use upper case from the time you
NOTE log in, the UNIX system will expect and respond in upper case exclusively until
the next time you log in. It will accept and run many commands typed in upper
| case, but will not allow you to edit files.

Password

Next, the system prompts you for your password. Type your password and
press the RETURN key. For security reasons, the UNIX system does not print
(or echo) your password on the screen.

If both your login name and password are acceptable to the UNIX system,
the system may print the message of the day and/or current news items and then
the default command prompt ($). (The message of the day might include a
schedule for system maintenance, and news items might include an announcement
of a new system tool.) When you have logged in, your screen will look similar to

this:

BASICS FOR UNIX SYSTEM USERS 29

Establishing Contact with the UNIX System

login: starship<CR>
password:

UNIX system news

$

If you make a typing mistake when logging in, the UNIX system prints the
message login incorrect on your screen. Then it gives you a second chance to
log in by printing another login: prompt.

login: ttarship<CR>
password:

login incorrect
login:

The login procedure may also fail if the communication link between your
terminal and the UNIX system has been dropped. If this happens, you must rees-
tablish contact with the computer (specifically, with the data switch that links
your terminal to the computer) before trying to log in again. Since procedures for
doing this vary from site to site, ask your system administrator to give you exact
instructions for getting a connection on the data switch.

If you have never logged in on the UNIX system, your login procedure may
differ from the one just described. This is because some system administrators
follow the optional security procedure of assigning temporary passwords to new

30 USER’S GUIDE

Establishing Contact with the UNIX System

users when they set up their accounts. If you have a temporary password the sys-
tem will force you to choose a new password before it allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system’s security. Protection of system resources and your per-
sonal files depends on your keeping your password private.

The actual procedure you follow will be determined by the administrative pro-
cedures at your computer installation site. However, it will probably be similar to
the following example of a first-time login procedure.

1.

You establish contact; the UNIX system displays the login: prompt.
Type your login name and press the RETURN key.

The UNIX system prints the password prompt. Type your temporary
password and press the RETURN key.

The system tells you your temporary password has expired and you must
select a new one.

The system asks you to type your old password again. Type your tem-
porary password.

The system prompts you to type your new password. Type the password
you have chosen.
Passwords must be constructed to meet the following requirements:

- Bach password must have at least six characters. Only the first eight
characters are significant.

o Each password must contain at least two alphabetic characters and at
least one numeric or special character. Alphabetic characters can be
upper case or lower case letters.

o Bach password must differ from your login name and any reverse or
circular shift of that login name. For comparison purposes, an upper
case letter and its corresponding lower case letter are equivalent.

o A new password must differ from the old by at least three characters.
For comparison purposes, an upper case letter and its corresponding
lower case letter are equivalent.

Examples of valid passwords are: mar84ch, JonathOn, and BRAV3S.

BASICS FOR UNIX SYSTEM USERS 31

Establishing Contact with the UNIX System

NOTE

The UNIX system you are using may have different requirements to consider
when choosing a password. Ask your system administrator for details.

For verification, the system asks you to reenter your new password. Type
your new password again.

'

If you do not reenter the new password exactly as typed the first time, the
system tells you the passwords do not match and asks you to try the pro-
cedure again. On some systems, however, the communication link may
be dropped if you do not reenter the password exactly as typed the first
time. If this happens, you must return to step 1 and begin the login pro-
cedure again. When the passwords match, the system displays the
prompt.

The following screen summarizes this procedure (steps 1 through 6) for first-
time UNIX system users.

/

o

32

login: starship <CR>
password: <CR>

Your password has expired.
Choose a new one.

0ld password: <CR>

New password: <CR>
Re-enter new password: <CR>
$

USER’S GUIDE

Establishing Contact with the UNIX System

Possible Problems when Logging In

A terminal usually behaves predictably when you have configured it properly.
Sometimes, however, it may act peculiarly. For example, the carriage return may
not work properly.

Some problems can be corrected simply by logging off the system and logging
in again. If logging in a second time does not remedy the problem, you should
first check the following and try logging in once again:

the keyboard Keys labeled CAPS, LOCAL, BLOCK, and so on
should not be enabled (put into the locked position).
You can usually disable these keys simply by press-

ing them.
the data phone set If your terminal is connected to the computer
or modem via telephone lines, verify that the baud rate and

duplex settings are correctly specified.

the switches Some terminals have several switches that must be
set to be compatible with the UNIX system. If this
is the case with the terminal you are using, make
sure they are set properly.

Refer to the section "Required Terminal Settings" in this chapter if you need
information to verify the terminal configuration. If you need additional informa-
tion about the keyboard, terminal, data phone, or modem, check the owner’s
manuals for the appropriate equipment.

Figure 2-5 presents a list of procedures you can follow to detect, diagnose,
and correct some problems you may experience when logging in. If you need fur-
ther help, contact your system administrator.

BASICS FOR UNIX SYSTEM USERS 33

Establishing Contact with the UNIX System

Problemt

Possible Cause

Action/Remedy

Meaningless characters

Input/output appears in
UPPER CASE letters

Input appears in UPPER
CASE, output in lower case

Input is printed twice

Tab key does not work prop-
erly

Communication link cannot be
established although high
pitched tone is heard when
dialing in

Communication link (terminal
to UNIX system) is repeatedly
dropped

UNIX system at wrong speed

Terminal configuration includes
UPPER CASE setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or
OFF-LINE mode

Bad telephone line or bad com-
munications port

Press RETURN or BREAK key

Log off and set character gen-
eration to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty —tabs}

Set terminal to ON-LINE mode
try logging in again

Call system administrator

Numerous problems can occur if your terminal is not configured properly. To eliminate these

possibilities before attempting to log in, perform the configuration checks listed under

"Required Terminal Settings."

t Some problems may be specific to your terminal, data phone set, or modem. Check the
owner’s manual for the appropriate equipment if suggested actions do not remedy the problem.

i Typing stty —tabs corrects the tab setting only for your current computing session. To ensure
a correct tab setting for all sessions, add the line stty —tabs to your .profile (see Chapter 7).

Figure 2-5: Troubleshooting Problems When Logging In*

34 USER’S GUIDE

Establishing Contact with the UNIX System

Simple Commands

When the prompt appears on your screen, the UNIX system has recognized
you as an authorized user and is waiting for you to request a program by entering
a command.

For example, try running the date command. After the prompt, type the
command and press the RETURN key. The UNIX system accesses a program
called date, executes it, and prints its results on the screen, as shown below.

$ date<CR>
Wed Oct 15 09:49:44 EDT 1986
$

As you can see, the date command prints the date and time, using the 24-hour
clock.

Now type the who command and press the RETURN key. Your screen will
look something like this:

BASICS FOR UNIX SYSTEM USERS 35

Establishing Contact with the UNIX System

$ who<CR>

starship tty00 Oct 12 8:53
mary2 tty02 Oct 12 8:56
acct123 tty05 Oct 12 8:54
s tty06 Oct 12 8:56

$

The who command lists the login names of everyone currently working on your
system. The tty designations refer to the special files that correspond to each
user’s terminal. The date and time at which each user logged in are also shown.

The help Command

To help you learn how to use these and other commands, the UNIX system
provides an on-line teaching aid: the help command. This program tells you
which command you need to perform a particular task and how to execute specific
commands. For novice users of the UNIX system, it also provides definitions of
vocabulary and explanations of basic concepts about the system.

The help command is not available on all UNIX systems; check with your sys-
NOTE | tem administrator to find out if it is installed on your system.

When you need assistance, type help and press the RETURN key. The pro-
gram gives you a choice of four ways in which it can help you: by providing gen-
eral information; by locating the appropriate command for a particular task; by
giving you instructions on how to use a particular command; and by defining
terms. The following example shows how this menu appears on your screen when
you type the command.

36 USER’S GUIDE

Establishing Contact with the UNIX System

(e..,mb

help: UNIX System On-Line Help

choices description

s starter: general information

1 locate: find a command with keywords
u usage: information about commands

g glossary: definitions of terms

r Redirect to a file or a cammand

q Quit

Enter choice > _

Each choice on this menu (starter, locate, usage, and glossary) is an interac-
tive menu program. Request one of these programs by typing the option listed
beside it under choices (such as w).

Because starter, locate, usage, and glossary are programs, they can also be
called from the shell. Once you are familiar with them, you can skip the step of
entering the help command first. If you know which program you want to run,
you can call it by typing its name as either a command or an argument to the
help command. For example, to call the usage program, use one of the following
command lines:

help usage<CR>
or

usage<CR>

BASICS FOR UNIX SYSTEM USERS 37

Establishing Contact with the UNIX System

The program you choose responds by printing a summary of its function, a
menu of choices, instructions, and examples of how to follow the instructions. In
this way, the help program leads you through a series of steps that enable you to
get the information you need.

Logging Off

When you have completed a session with the UNIX system, type <"d> after
the prompt. (Remember that control characters such as <"d> are typed by
holding down the control key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen.)
After several seconds, the UNIX system will display the login: prompt again.

$ <"d>

login:
This shows that you have logged off successfully and the system is ready for
someone else to log in.

Always log off the UNIX system by typing <"d> before you turn off the termi-
NOTE nal or hang up the telephone. If you do not, you may not be actually logged off
the system.

The exit command also allows you to log off but is not used by most users. It
may be convenient if you want to include a command to log off within a shell pro-
gram. (For details, see the "Special Commands" section of the sh(1) page in the
User’s Reference Manual.)

38 USER’S GUIDE

CHAPTER 3: USING THE FILE SYSTEM

Introduction

To use the UNIX file system effectively you must be familiar with its struc-
ture, know something about your relationship to this structure, and understand
how the relationship changes as you move around within it. This chapter prepares
you to use this file system.

The first two sections ("How the File System is Structured" and "Your Place
in the File System") offer a working perspective of the file system. The rest of the
chapter introduces UNIX system commands that allow you to build your own
directory structure, access and manipulate the subdirectories and files you organ-
ize within it, and examine the contents of other directories in the system for which
you have access permission.

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can later
review a command’s syntax and capabilities quickly. Many of the commands
presented in this section have additional, sophisticated uses. These, however, are
left for more experienced users and are described in other UNIX system docu-
mentation. All the commands presented here are basic to using the file system
efficiently and easily. Try using each command as you read about it.

USING THE FILE SYSTEM 39

How the File System is Structured

The file system is comprised of a set of ordinary files, special files, and direc-
tories. These components provide a way to organize, retrieve, and manage infor-
mation electronically. Chapter 1 introduced the properties of directories and files;
this section will review them briefly before discussing how to use them.

® An ordinary file is a collection of characters stored on a disk. It may con-
tain text for a report or code for a program.

B A special file represents a physical device, such as a terminal or disk.

B A directory is a collection of files and other directories (sometimes called
. subdirectories). Use directories to group files together on the basis of any
criteria you choose. For example, you might create a directory for each
product that your company sells or for each of your student’s records.

The set of all the directories and files is organized into a tree shaped struc-
ture. Figure 3-1 shows a sample file structure with a directory called root (/) as
its source. By moving down the branches extending from root, you can reach
several other major system directories. By branching down from these, you can,
in turn, reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory have
what is called a parent/child relationship. This type of relationship is possible for
many layers of files and directories. In fact, there is no limit to the number of
files and directories you may create in any directory that you own. Neither is
there a limit to the number of layers of directories that you may create. Thus you
have the capability to organize your files in a variety of ways, as shown in Figure
3-1.

40 USER’S GUIDE

How the File System is Structured

O = Directories
D = Ordinary Files
v = Special Files

Figure 3-1: A Sample File System

USING THE FILE SYSTEM 41

Your Place in the File System

Whenever you interact with the UNIX system, you do so from a location in
its file system structure. The UNIX system automatically places you at a specific
point in its file system every time you log in. From that point, you can move
through the hierarchy to work in any of your directories and files and to access
those belonging to others that you have permission to use.

The following sections describe your position in the file system structure and
how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX system places
you at a specific point in its file system structure called your login or home direc-
tory. The login name assigned to you when your UNIX system account was set
up is usually the name of this home directory. Every user with an authorized
login name has a unique home directory in the file system.

The UNIX system is able to keep track of all these home directories by main-
taining one or more system directories that organize them. For example, the
home directories of the login names starship, mary2, and jmrs are contained in a
system directory called userl. Figure 3-2 shows the position of a system directory
such as userl in relation to the other important UNIX system directories dis-
cussed in Chapter 1.

42 USER’S GUIDE

Your Place in the File System

(root)
unix bin dev etc user1 user2 lib
console 1ty00 ttyo1
date cat
starship mary2 jmrs
tist draft letters bin mbox
outline table sanders | |johnson display list tools

Figure 3-2: Directory of Home Directories

tmp

mail news

O = Directories
[[] =ordinary Fites
v = Special Files

= Branch

USING THE FILE SYSTEM

43

Your Place in the File System

Within your home directory, you can create files and additional directories
(sometimes called subdirectories) in which to group them. You can move and
delete your files and directories, and you can control access to them. You have
full responsibility for everything you create in your home directory because you
own it. Your home directory is a vantage point from which to view all the files
and directories it holds, and the rest of the file system, all the way up to root.

Your Current Directory

As long as you continue to work in your home directory, it is considered your
current working directory. If you move to another directory, that directory
becomes your new current directory.

The UNIX system command pwd (short for print working directory) prints
the name of the directory in which you are now working. For example, if your
login name is starship and you execute the pwd command in response to the first
prompt after logging in, the UNIX system will respond as follows:

$ pwd<CR>
/user1/starship
$

The system response gives you both the name of the directory in which you
are working (starship) and the location of that directory in the file system. The
path name /user1/starship tells you that the root directory (shown by the lead-
ing / in the line) contains the directory userl which, in turn, contains the direc-
tory starship. (All other slashes in the path name other than root are used to
separate the names of directories and files, and to show the position of each direc-

44 USER’S GUIDE

Your Place in the File System

tory relative to root.) A directory name that shows the directory’s location in this
way is called a full or complete directory name or path name. In the next few
pages we will analyze and trace this path name so you can start to move around
in the file system.

Remember, you can determine your position in the file system at any time
simply by issuing a pwd command. This is especially helpful if you want to read
or copy a file and the UNIX system tells you the file you are trying to access does
not exist. You may be surprised to find you are in a different directory than you
thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd com-
mand.

Command Recap

pwd — print full name of working directory

command options arguments
pwd none none
Description: pwd prints the full path name of the directory in which

you are currently working.

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX system is identified by a unique path
name. The path name shows the location of the file or directory, and provides
directions for reaching it. Knowing how to follow the directions given by a path
name is your key to moving around the file system successfully. The first step in
learning about these directions is to learn about the two types of path names: full
and relative.

USING THE FILE SYSTEM 45

Your Place in the File System

Full Path Names

A full path name (sometimes called an absolute path name) gives directions
that start in the root directory and lead you down through a unique sequence of
directories to a particular directory or file. You can use a full path name to reach
any file or directory in the UNIX system in which you are working.

Because a full path name always starts at the root of the file system, its lead-
ing character is always a / (slash). The final name in a full path name can be
either a file name or a directory name. All other names in the path must be
directories.

To understand how a full path name is constructed and how it directs you,
consider the following example. Suppose you are working in the starship direc-
tory, located in /userl. You issue the pwd command and the system responds by
printing the full path name of your working directory: /user1/starship.
Analyze the elements of this path name using the following diagram and key.

46 USER’S GUIDE

Your Place in the File System

system
directory home
root directory
delimiter
user1/starship
/ (leading) = the slash that appears as the first character in the path name is

the root of the file system

userl = gsystem directory one level below root in the hierarchy to which
root points or branches

/ (subsequent) = the next slash separates or delimits the directory names userl
and starship

starship current working directory

Now follow the bold lines in Figure 3-4 to trace the full path to /user1/starship.

USING THE FILE SYSTEM

47

Your Place in the File System

unix

date cat

list

outline

table

sanders

johnson

display

list

mbox

Figure 3-4: Full Path Name of the /user1/starship Directory

O = Directories
D =Ordinary Files
v =Special Files

48

USER’S GUIDE

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current working direc-
tory, and lead you up or down through a series of directories to a particular file or
directory. By moving down from your current directory, you can access files and
directories you own. By moving up from your current directory, you pass through
layers of parent directories to the grandparent of all system directories, root.
From there you can move anywhere in the file system.

A relative path name begins with one of the following: a directory or file
name; a . (pronounced dot), which is a shorthand notation for your current direc-
tory; or a .. (pronounced dot dot), which is a shorthand notation for the directory
immediately above your current directory in the file system hierarchy. The direc-
tory represented by .. (dot dot) is called the parent directory of . (your current
directory).

For example, say you are in the directory starship in the sample system and
starship contains directories named draft, letters, and bin and a file named mbox.
The relative path name to any of these is simply its name, such as draft or mbox.
Figure 3-5 traces the relative path from starship to draft.

USING THE FILE SYSTEM 49

Your Place in the File System

O = Directories

=Ordinary Files
outline sanders johnson display D "y

Figure 3-5: Relative Path Name of the draft Directory

The draft directory belonging to starship contains the files outline and table.
The relative path name from starship to the file outline is draft/outline.

Figure 3-6 traces this relative path. Notice that the slash in this path name
separates the directory named draft from the file named outline. Here, the slash
is a delimiter showing that outline is subordinate to draft; that is, outline is a child
of its parent, draft.

50 USER’S GUIDE

Your Place in the File System

list mbox

O = Directories

D =0Ordinary Files
outline table sanders | |johnson display list

Figure 3-6: Relative Path Name from starship to outline

So far, the discussion of relative path names has covered how to specify
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by level
until you reach your destination. You can also, however, ascend the levels in the
system structure or ascend and subsequently descend into other files and direc-
tories.

To ascend to the parent of your current directory, you can use the .. notation.
This means that if you are in the directory named draft in the sample file system,
. is the path name to starship, and ../.. is the path name to starship’s parent
directory, userl.

USING THE FILE SYSTEM 51

Your Place in the File System

From draft, you can also trace a path to the file sanders by using the path
name ../letters/sanders. The .. brings you up to starship. Then the names letters
and sanders take you down through the letters directory to the sanders file.

Keep in mind that you can always use a full path name in place of a relative
one.

Figure 3-7 shows some examples of full and relative path names.

Path Name Meaning
/ full path name of the root directory
/bin full path name of the bin directory (contains most

executable programs and utilities)

/user1/starship/bin/tools full path name of the tools directory belonging to
the bin directory that belongs to the starship
directory belonging to userl that belongs to root

bin/tools relative path name to the file or directory tools in
the directory bin

If the current directory is /, then the UNIX sys-
tem searches for /bin/tools. However, if the
current directory is starship, then the system
searches the full path /user1/starship/bin/tools.

tools relative path name of a file or directory tools in
the current directory.

Figure 3-7: Example Path Names

52 USER’S GUIDE

Your Place in the File System

You may need some practice before you can use path names such as these to
move around the file system with confidence. However, this is to be expected
when learning a new concept.

Naming Directories and Files

You can give your directories and files any names you want, as long as you
observe the following rules:

The name of a directory (or file) can be from one to fourteen characters
long.

All characters other than / are legal.
Some characters are best avoided, such as a space, tab, backspace, and the
following:

?@#$ " & *()IIN]| ;7 "< >
If you use a blank or tab in a directory or file name, you must enclose the
name in quotation marks on the command line.
Avoid using a +, — or . as the first character in a file name.

Upper case and lower case characters are distinct to the UNIX system.
For example, the system considers a directory (or file) named draft to be
different from one named DRAFT.

The following are examples of legal directory or file names:

memo MEMO section2 ref:list
file.d chap3 +4 item1-10 outline

The rest of this chapter introduces UNIX system commands that enable you
to examine the file system.

USING THE FILE SYSTEM 53

Organizing a Directory

This section introduces four UNIX system commands that enable you to
organize and use a directory structure: mkdir, Is, c¢d, and rmdir.

mkdir enables you to make new directories and subdirectories
within your current directory

Is lists the names of all the subdirectories and files in a
directory

cd enables you to change your location in the file system

from one directory to another

rmdir enables you to remove an empty directory

These commands can be used with either full or relative path names. Two of
the commands, Is and cd, can also be used without a path name. Each command
is described more fully in the four sections that follow.

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facilitate the retrieval of
information from your files. If you put all files pertaining to one subject together
in a directory, you will know where to find them later.

To create a directory, use the command mkdir (short for make directory).
Simply enter the command name, followed by the name you are giving your new
directory or file. For example, in the sample file system, the owner of the draft
subdirectory created draft by issuing the following command from the home direc-
tory (/user1/starship):

$ mkdir draft <CR>
$

The second prompt shows that the command has succeeded; the subdirectory draft
has been created.

Still in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

54 USER’S GUIDE

Organizing a Directory

$ mkdir letters <CR>
$ mkdir bin<CR>
$

The user could have created all three subdirectories (draft, letters, and bin) simul-
taneously by listing them all on a single command line.

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional sub-
directories within it. When you build directories or create files, you can name
them anything you want as long as you follow the guidelines listed earlier under
"Naming Directories and Files."

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

Command Recap

mkdir — make a new directory

command options arguments
mkdir none directoryname(s)
Description: mkdir creates a new directory (subdirectory).
Remarks: The system returns a prompt ($ by default) if the

directory is successfully created.

Figure 3-8: Summary of the mkdir Command

USING THE FILE SYSTEM 55

Organizing a Directory

Listing the Contents of a Directory: the Is Command

All directories in the file system have information about the files and direc-
tories they contain, such as name, size, and the date last modified. You can
obtain this information about the contents of your current directory and other sys-
tem directories by executing the command Is (short for list).

The Is command lists the names of all files and subdirectories in a specified
directory. If you do not specify a directory, Is lists the names of files and direc-
tories in your current directory. To understand how the Is command works, con-
sider the sample file system (Figure 3-2) once again.

Say you are logged in to the UNIX system and you run the pwd command.
The system responds with the path name /user1/starship. To display the names of
files and directories in this current directory, you then type Is and press the
RETURN key. After this sequence, your terminal will read:

$/user1/starship
$ Is<CR>

bin

draft

letters

list

mbox

$ /
As you can see, the system responds by listing, in alphabetical order, the
names of files and directories in the current directory starship. (If the first char-

acter of any of the file or directory names had been a number or an upper case
letter, it would have been printed first.)

56 USER’S GUIDE

Organizing a Directory

To print the names of files and subdirectories in a directory other than your
current directory without moving from your current directory, you must specify
the name of that directory as follows:

Is pathname <CR>

The directory name can be either the full or relative path name of the desired
directory. For example, you can list the contents of draft while you are working
in starship by entering Is draft and pressing the RETURN key. Your screen will
look like this:

$ Is draft<CR>
outline

table

$

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent direc-
tory when you are located in a child directory. The .. (dot dot) notation provides
an easy way to do this. For example, the following command line specifies the
relative path name from starship to userl:

USING THE FILE SYSTEM 57

Organizing a Directory

$1s..<CR>
s

mary2
starship

You can get the same results by using the full path name from root to userl. If
you type Is /userl and press the RETURN key, the system will respond by print-
ing the same list.

Similarly, you can list the contents of any system directory that you have per-
mission to access by executing the Is command with a full or relative path name.

The Is command is useful if you have a long list of files and you are trying to
determine whether one of them exists in your current directory. For example, if
you are in the directory draft and you want to determine if the files named outline
and notes are there, use the Is command as follows:

$ Is outline notes <CR>
outline

notes not found

$

The system acknowledges the existence of outline by printing its name, and says
that the file notes is not found.

58 USER’S GUIDE

Organizing a Directory

The Is command does not print the contents of a file. If you want to see what
a file contains, use the cat, pg, or pr command. These commands are described in
"Accessing and Manipulating Files," later in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attributes of a file or
subdirectory to be listed. There are more than a dozen available options for the Is
commands. Of these, the —a and —1 will probably be most valuable in your
basic use of the UNIX system. Refer to the Is(1) page in the User’s Reference
Manual for details about other options.

Listing All Names in a File

Some important file names in your home directory, such as .profile (pro-
nounced dot-profile), begin with a period. (As you can see from this example,
when a period is used as the first character of a file name it is pronounced dot.)
When a file name begins with a dot, it is not included in the list of files reported
by the Is command. If you want the Is to include these files, use the —a option on
the command line.

For example, to list all the files in your current directory (starship), including
those that begin with a . (dot), type Is —a and press the RETURN key.

Ca<CR> \

.profile
bin
draft
letters
list
mbox

$

_/

USING THE FILE SYSTEM 59

Organizing a Directory

Listing Contents in Short Format

The —C and —F options for the Is command are frequently used. Together,
these options list a directory’s subdirectories and files in columns, and identify
executable files (with an *) and directories (with a /). Thus, you can list all files
in your working directory starship by executing the command line shown here:

$ Is —-CF<CR>

bin/ letters/ mbox
draft/ list*

$

Listing Contents in Long Format

Probably the most informative Is option is —I, which displays the contents of a
directory in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file. For example, say you run the Is
—] command while in the starship directory.

(s—l<CR>

total 30

drwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
drwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
drwxr-xr-x 2 starship project 80 Nov 8 08:41 1letters
—LWX—=—mmm 2 starship project 12301 Nov 2 10:15 1list
-rw--—----- 1 starship project 40 Oct 27 10:00 mbox

$

60 USER'S GUIDE

Organizing a Directory

The first line of output (total 30) shows the amount of disk space used, mea-
sured in blocks. Each of the rest of the lines comprises a report on a directory or
file in starship. The first character in each line (4, — b, or ¢) tells you the type
of file.

d = directory

ordinary disk file
b = block special file

¢ = character special file

Using this key to interpret the previous screen, you can see that the starship direc-
tory contains three directories and two ordinary disk files.

The next several characters, which are either letters or hyphens, identify who
has permission to read and use the file or directory. (Permissions are discussed in
the description of the chmod command under "Accessing and Manipulating Files"
later in this chapter.)

The following number is the link count. For a file, this equals the number of
users linked to that file. For a directory, this number shows the number of direc-
tories immediately under it plus two (for the directory itself and its parent direc-
tory).

Next, the login.name of the file’s owner appears (here it is starship), followed
by the group name of the file or directory (project).

The following number shows the length of the file or directory entry measured
in units of information (or memory) called bytes. The month, day, and time that
the file was last modified is given next. Finally, the last column shows the name
of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is —1 command.

USING THE FILE SYSTEM 61

Organizing a Directory

number of owner
blocks used name
number group
of links name name
total 30 \[/ \l/
rwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
File rwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
type = ld| rwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
TWX-==--- 2 starship project 12301 Nov 2 10:15 list
TW=-----=-- 1 starship project 40 Oct 27 10:00 mbox

w L\/—J

! !

time/date last
permissions modified

Figure 3-9: Description of Output Produced by the Is —1 Command

Figure 3-10 summarizes the syntax and capabilities of the Is command and
two available options.

62 USER’S GUIDE

Organizing a Directory

Command Recap

Is — list contents of a directory

command options arguments
Is —a, —1, and others* directoryname(s)
Description: Is lists the names of the files and subdirectories in the

specified directories. If no directory name is given as
an argument, the contents of your working directory
are listed.

Options: —a Lists all entries, including those beginning

with . (dot).

—1 Lists contents of a directory in long format
furnishing mode, permissions, size in bytes,
and time of last modification.

Remarks: L If you want to read the contents of a file, use the cat
command.

* See the Is(1) page in the User’s Reference Manual for all available options and an explanation

of their capabilities.

Figure 3-10: Summary of the Is Command

USING THE FILE SYSTEM 63

Organizing a Directory

Changing Your Current Directory: the ¢cd Command

When you first log in on the UNIX system, you are placed in your home
directory. As long as you do work in it, it is also your current working directory.
However, by using the command ed (short for change directory), you can work in
other directories as well. To use this command, enter cd, followed by a path
name to the directory to which you want to move.

cd pathname_of newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the ed com-
mand. If you do not specify a path name, the command will move you to your
home directory. Once you have moved to a new directory, it becomes your
current directory.

For example, to move from the starship directory to its child directory draft
(in the sample file system), type cd draft and press the RETURN key. (Here
draft is the relative path name to the desired directory.) When you get a prompt,
verify your new location by typing pwd and pressing the RETURN key. Your
terminal screen will look like this:

$ cd draft<CR>

$ pwd<CR>
/user1/starship/draft
$

Now that you are in the draft directory you can create subdirectories in it by
using the mkdir command, and new files, by using the ed and vi editors. (See
Chapters 5 and 6 for tutorials on the ed and vi commands, respectively.)

64 USER’'S GUIDE

Organizing a Directory

It is not necessary to be in the draft directory to access files within it. You
can access a file in any directory by specifying a full path name for it. For exam-
ple, to cat the sanders file in the letters directory (/userl/starship/letters) while
you are in the draft directory (/user1/starship/draft), specify the full path name
of sanders on the command line.

cat /userl/starship/letters/sanders <CR>
You may also use full path names with the cd command. For example, to

move to the letters directory from the draft directory, specify
/user1/starship/letters on the command line, as follows:

cd /userl/starship/letters <CR>
Also, because letters and draft are both children of starship, you can use the

relative path name ../letters with the ¢d command. The .. notation moves you
to the directory starship, and the rest of the path name moves you to letters.

Figure 3-11 summarizes the syntax and capabilities of the ¢d command.

USING THE FILE SYSTEM 65

Organizing a Directory

Command Recap

cd — change your working directory

command options arguments
cd none directoryname
Description: cd changes your position in the file system from the

current directory to the directory specified. If no
directory name is given as an argument, the ¢d com-
mand places you in your home directory.

Remarks: When the shell places you in the directory specified,

: the prompt ($ by default) is returned to you. To
access a directory that is not in your working directory,
you must use the full or relative path name in place of
a simple directory name.

Figure 3-11: Summary of the ed Command

Removing Directories: the rmdir Command
If you no longer need a directory, you can remove it with the command rmdir
(short for remove a directory). The standard syntax for this command is:
rmdir directoryname(s)<CR>
You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner of it
or if the directory is not empty. If you want to remove a file in another user’s
directory, the owner must give you write permission for the parent directory of the
file you want to remove.

66 USER’S GUIDE

Organizing a Directory

If you try to remove a directory that still contains subdirectories and files
(that is, is not empty), the rmdir command prints the message directoryname not
empty. You must remove all subdirectories and files; only then will the command
succeed.

For example, say you have a directory called memos that contains one sub-
directory, tech, and two files, june.30 and july.31. (Create this directory in your
home directory now so you can see how the rmdir command works.) If you try to
remove the directory memos (by issuing the rmdir command from your home
directory), the command responds as follows:

$ rmdir memos <CR>
rmdir: memos not empty
$

To remove the directory memos, you must first remove its contents: the subdirec-
tory tech, and the files june.30 and july.31. You can remove the tech subdirectory
by executing the rmdir command. For instructions on removing files, see "Access-
ing and Manipulating Files" later in this chapter.

Once you have removed the contents of the memos directory, memos itself can
be removed. First, however, you must move to its parent directory (your home
directory). The rmdir command will not work if you are still in the directory you
want to remove. From your home directory, type:

rmdir memos <CR>
If memos is empty, the command will remove it and return a prompt.

Figure 3-12 summarizes the syntax and capabilities of the rmdir command.

USING THE FILE SYSTEM 67

Organizing a Directory

Command Recap

rmdir — remove a directory

command options arguments
rmdir none directoryname(s)
Description: rmdir removes specified directories if they do not con-
tain files and/or subdirectories.
Remarks: If the directory is empty, it is removed and the sys-

tem returns a prompt. If the directory contains files
or subdirectories, the command returns the message,
rmdir: directoryname not empty.

Figure 3-12: Summary of the rmdir Command

68

USER’S GUIDE

Accessing and Manipulating Files

This section introduces several UNIX system commands that access and
manipulate files in the file system structure. Information in this section is organ-
ized into two parts; basic and advanced. The part devoted to basic commands is
fundamental to using the file system; the advanced commands offer more sophisti-
cated information processing techniques for working with files.

Basic Commands
This section discusses UNIX system commands that are necessary for access-

ing and using the files in the directory structure. Figure 3-13 lists these com-
mands.

USING THE FILE SYSTEM 69

Accessing and Manipulating Files

Command Function
cat prints the contents of a specified file on a
terminal
pg , prints the contents of a specified file on a

terminal in chunks or pages

pr prints a partially formatted version of a
specified file on the terminal

Ip requests a paper copy of a file from a line
printer

cp makes a duplicate copy of an existing file

my moves and renames a file

rm removes a file

wce reports the number of lines, words, and

characters in a file

chmod changes permission modes for a file (or a
directory)

Figure 3-13: Basic Commands for Using Files

70 USER’S GUIDE

1
Accessing and Manipulating Files

Each command is discussed in detail and summarized in a table that you can
easily reference later. These tables will allow you to review the syntax and capa-
bilities of these commands at a glance.

Displaying a File’s Contents: the cat, pg, and pr Commands

The UNIX system provides three commands for displaying and printing the
contents of a file or files: cat, pg, and pr. The cat command (short for concaten-
ate) outputs the contents of the file(s) specified. This output is displayed on your
terminal screen unless you tell cat to direct it to another file or a new command.

The pg command is particularly useful when you want to read the contents of
a long file because it displays the text of a file in pages a screenful at a time. The
pr command formats specified files and displays them on your terminal or, if you
so request, directs the formatted output to a printer (see the Ip command in this
chapter).

The following sections describe how to use the cat, pg, and pr commands.
Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say
you are located in the directory letters (in the sample file system) and you want to
display the contents of the file johnson. Type the command line shown on the
screen and you will receive the following output:

USING THE FILE SYSTEM 71

Accessing and Manipulating Files

$ cat johnson<CR>
March 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johmson:

I enjoyed speaking with you this morning
about your company’s plans to automate
your business.

Enclosed please find

the material you requested

about ABSC’s line of computers

and office automation software.

If I can be of further assistance to you,
please don’t hesitate to call.

Yours truly,

John Howe
$

To display the contents of two (or more) files, simply type the names of the
files you want to see on the command line. For example, to display the contents
of the files johnson and sanders, type:

$ cat johnson sanders <CR>

The cat command reads johnson and sanders and displays their contents in that
order on your terminal.

72 USER’'S GUIDE

Accessing and Manipulating Files

$ cat johnson sanders <CR>
March 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.
Dear Mr. Johnson:

I enjoyed speaking with you this morning

Yours truly,

John Howe

March 5, 1986

Mrs. D.L. Sanders

Sanders Research, Inc.

43 Nassau Street

Princeton, N.J.

Dear Mrs. Sanders:

My colleagues and I have been following, with great interest,

Sincerely,

John Howe
$

USING THE FILE SYSTEM 73

Accessing and Manipulating Files

To direct the output of the cat command to another file or to a new com-
mand, see the sections in Chapter 7 that discuss input and output redirection.

Figure 3-14 summarizes the syntax and capabilities of the cat command.

Command Recap

cat — concatenate and print a file’s contents

command options arguments
cat available* filename(s)
Description: The cat command reads the name of each file
specified on the command line and displays its con-
tents.
Remarks: If a specified file exists and is readable, its contents

are displayed on the terminal screen; otherwise, the
message cat: carmot open filename appears on the
screen.

To display the contents of a directory, use the Is com-
mand.

See the cat(1) page in the User’s Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-14: Summary of the cat Command

74 USER’S GUIDE

A ing and Manipulating Files

Paging Through the Contents of a File: the pg Command

The command pg (short for page) allows you to examine the contents of a
file or files, page by page, on a terminal. The pg command displays the text of a
file in pages (chunks) followed by a colon prompt (:), a signal that the program is
waiting for your instructions. Possible instructions you can then issue include
requests for the command to continue displaying the file’s contents a page at a
time, and a request that the command search through the file(s) to locate a
specific character pattern. Figure 3-15 summarizes some of the available instruc-
tions.

USING THE FILE SYSTEM 75

Accessing and Manipulating Files

Command* Function

h help; display list of available pgt commands

qor Q quit pg perusal mode

<CR> display next page of text

1 display next line of text

d or 'd display additional half page of text

.or "1 redisplay current page of text

f skip next page of text and display following one

n begin displaying next file you specified
on command line

p display previous file specified on command line

$ display last page of text in file currently displayed

/pattern search forward in file for specified character pattern

?pattern search backward in file for specified character pat-
tern

Most commands can be typed with a number preceding them. For example,

+1-(display next page), —1(display previous page), or 17 (display first page of

text).

t See the User’s Reference Manual for a detailed explanation of all available pg com-

mands.

Figure 3-15: Summary of Commands to Use with pg

76 USER’'S GUIDE

Accessing and Manipulating Files

The pg command is useful when you want to read a long file or a series of
files because the program pauses after displaying each page, allowing time to
examine it. The size of the page displayed depends on the terminal. For exam-
ple, on a terminal capable of displaying twenty-four lines, one page is defined as
twenty-three lines of text and a line containing a colon. However, if a file is less
than twenty-three lines long, its page size will be the number of lines in the file
plus one (for the colon).

To peruse the contents of a file with pg, use the following command line for-
mat:

pg filename(s) <CR>
For example, to display the contents of the file outline in the sample file sys-
tem, type:
pg outline<CR>

The first page of the file will appear on the screen. Because the file has more
lines in it than can be displayed on one page, a colon appears at the bottom of the
screen. This is a reminder to you that there is more of the file to be seen. When
you are ready to read more, press the RETURN key and pg will print the next
page of the file.

The following screen summarizes our discussion of the pg command this far.

USING THE FILE SYSTEM 77

Accessing and Manipulating Files

$ pg outline<CR>

After you analyze the subject for your
report, you must consider organizing and
arranging the material you want to use in
writing it.

.

An outline is an effective method of
organizing the material. The outline
is a type of blueprint or skeleton,

a framework for you the builder-writer
of the report; in a sense it is a recipe
:<CR>

After you press the RETURN key, pg will resume printing the file’s contents on
the screen.

that contains the names of the
to use them.

.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,

if need be, when additional important
ideas are suggested in the actual writing.
(EOF) :

78 USER’S GUIDE

Accessing and Manipulating Files

Notice the line at the bottom of the screen containing the string (EOF):.
This expression (EOF) means you have reached the end of the file. The colon
prompt is a cue for you to issue another command.

When you have finished examining the file, press the RETURN key; a
prompt will appear on your terminal. (Typing q or Q and pressing the RETURN
key also gives you a prompt.) Or you can use one of the other available com-
mands, depending on your needs. In addition, there are a number of options that
can be specified on the pg command line (see the pg(1) page in the User’s Refer-
ence Manual).

Proper execution of the pg command depends on specifying the type of termi-
nal you are using. This is because the pg program was designed to be flexible
enough to run on many different terminals; how it is executed differs from termi-
nal to terminal. By specifying one type, you are telling this command:

® how many lines to print
how many columns to print
how to clear the screen

how to highlight prompt signs or other words

how to erase the current line

To specify a terminal type, assign the code for your terminal to the TERM
variable in your .profile file. (For more information about TERM and .profile, see
Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

Figure 3-16 summarizes the syntax and capabilities of the pg command.

USING THE FILE SYSTEM 79

Accessing and Manipulating Files

*

Command Recap

pg — display a file’s contents in chunks or pages

command options arguments
pg available* filename(s)
Description: The pg command displays the contents of the
specified file(s) in pages.
Remarks: After displaying a page of text, the pg command

awaits instructions from you to do one of the fol-
lowing: continue to display text, search for a pat-
tern of characters, or exit the pg perusal mode.
In addition, a number of options are available.
For example, you can display a section of a file
beginning at a specific line or at a line containing
a certain sequence or pattern. You can also opt
to go back and review text that has already been
displayed.

See the pg(1) page in the User’s Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-16: Summary of the pg Command

80

USER’S GUIDE

Accessing and Manipulating Files

Print Partially Formatted Contents of a File: the pr Command

The pr command is used to prepare files for printing. It supplies titles and
headings, paginates, and prints a file, in any of various page lengths and widths,
on your terminal screen.

You have the option of requesting that the command print its output on
another device, such as a line printer (read the discussion of the Ip command in
this section). You can also direct the output of pr to a different file (see the sec-
tions on input and output redirection in Chapter 7).

If you choose not to specify any of the available options, the pr command pro-
duces output in a single column that contains sixty-six lines per page and is pre-
ceded by a short heading. The heading consists of five lines: two blank lines; a
line containing the date, time, file name, and page number; and two more blank
lines. The formatted file is followed by five blank lines. (Complete sets of text
formatting tools are available on UNIX systems equipped with the Documenter’s
Workbench Software. Check with your system administrator to see if this
software is available to you.)

The pr command is often used together with the Ip command to provide a
paper copy of text as it was entered into a file. (See the section on the Ip com-
mand for details.) However, you can also use the pr command to format and print
the contents of a file on your terminal. For example, to review the contents of the
file johnson in the sample file system, type:

pr johnson<CR>

The following screen gives an example of output from this command.

USING THE FILE SYSTEM 81

Accessing and Manipulating Files

(rjohnson <CR>

Mar 5 15:43 1986 johnson Page 1

March 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your company’s plans to automate
your business.

Enclosed please find

the material you requested

about ABSC’s line of computers

and office automation software.

If I can be of further assistance to you,
please don’t hesitate to call.

Yours truly,

John Howe

The ellipses after the last line in the file represent the remaining lines (all
blank in this case) that pr formatted into the output (so that each page contains a
total of sixty-six lines). If you are working on a video display terminal, which
allows you to view twenty-four lines at a time, the entire sixty-six lines of the for-
matted file will be printed rapidly without pause. This means that the first forty-

82 USER’S GUIDE

Accessing and Manipulating Files

two lines will roll off the top of your screen, making it impossible for you to read
them unless you have the ability to roll back a screen or two. However, if the file
you are examining is particularly long, even this ability may not be sufficient to
allow you to read the file.

In such cases, type <"s> (control—s) to interrupt the flow of printing on
your screen. When you are ready to continue, type <"q> (control—q) to resume
printing.

Figure 3-17 summarizes the syntax and capabilities of the pr command.

USING THE FILE SYSTEM 83

Accessing and Manipulating Files

*

Command Recap

pr — print formatted contents of a file

command

options arguments

pr

available* filename(s)

Description:

Remarks:

The pr command produces a formatted copy of a
file(s) on your terminal screen unless you specify
otherwise. It prints the text of the file(s) on
sixty-six line pages, and places five blank lines at
the bottom of each page and a five-line heading at
the top of each page. The heading includes: two
blank lines; a line containing the date, time, file
name, and page number; and two additional blank
lines.

If a specified file exists, its contents are formatted
and displaye; if not, the message pr: can’t open
filename is printed.

The pr command is often used with the Ip com-
mand to produce a paper copy of a file. It can
also be used to review a file on a video display
terminal. To stop and restart the printing of a file
on a terminal, type <"s> and <"q>, respec-
tively.

See the pr(1) page in the User’s Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-17: Summary of the pr Command

84

USER’S GUIDE

Accessing and Manipulating Files

Requesting a Paper Copy of a File: the Ip Command

Some terminals have built-in printers that allow you to get paper copies of
files. If you have such a terminal, you can get a paper copy of your file simply by
turning on the printer and executing the cat or pr command. However, if you are
using a video display terminal, you must send a request for a paper copy of a file
to a printer (see Figure 3-18). The command lIp (short for line printer) allows
you to do this.

With Tractor
Feed

With High-Speed
With Tractor Tractor Feed

Feed Belt

Figure 3-18: Examples of Teletype Model 40 Line Printers

To execute lIp, follow this format:
Ip filename<CR>

For example, to print the file johnson on a line printer, type the following com-
mand line:

USING THE FILE SYSTEM 85

Accessing and Manipulating Files

Ip johnson<CR>

The system responds with the name (or type) of the printer on which the file will
be printed, and an identification (ID) number for your request.

$ Ip johnson<CR>
request id is laser-6885 (1 file)
$

The system response shows that your job is to be printed on a laser printer
(this system’s default type of printer), has a request ID number of 6885, and
includes one file.

The —ddest (short for destination) option on the command line causes your
file to be printed on another available device that you specify in the dest argu-
ment. The —m option causes mail to be sent to you stating the job has been
completed.

To cancel a request to a printer, type the command cancel and specify the
request ID number. For example, to cancel your request for a printing of the file
letters (request ID laser-6885), type:

cancel laser-6885<CR>

To check the status of a line printer job that it is in progress, or to get its
request ID number, execute the Ipstat command. This command also provides a
complete listing of every printer available on your system. Which printers are
available to you depends on your UNIX system facility. Ask your system
administrator for the names of available line printers, or type the following com-
mand line:

Ipstat —v<CR>

Figure 3-19 summarizes the syntax and capabilities of the Ip command.

86 USER'S GUIDE

Ip — request paper copy of file from a line printer

Command Recap

command

options arguments

Ip

—d, —m, and others* file(s)

Description:

Options:

Remarks:

The Ip command requests that specified files be
printed by a line printer, thus providing paper
copies of the contents.

—ddest Allows you to choose dest as the printer
or type of printer to produce the paper
copy. If you do not use this option, the
Ip program specifies the printer for you.

—m Sends a message to you via mail after
the printing is complete.

You can cancel a request to the line printer by
typing cancel and the request ID furnished to you
by the system when the request was ack-
nowledged.

Check with your system administrator for infor-
mation on additional and/or different commands
for printers that may be available at your loca-

tion.

* See the Ip(1) page in the User’s Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-19: Summary of the Ip Command

Accessing and Manipulating Files

USING THE FILE SYSTEM

87

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

When using the UNIX system, you may want to make a copy of a file. For
example, you might want to revise a file while leaving the original version intact.
The command cp (short for copy) copies the complete contents of one file into
another. The cp command also allows you to copy one or more files from one
directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample direc-
tory, simply type cp outline new.outline and press the RETURN key. The sys-
tem returns the prompt when the copy is made. To verify the existence of the
new file, you can type Is and press the RETURN key. This command lists the
names of all files and directories in the current directory, in this case draft. The
following screen summarizes these activities.

$ cp outline new.outline<CR>
$ Is<CR>

new.outline

outline

table

$

The UNIX system does not allow you to have two files with the same name in
a directory. In this case, because there was no file called new.outline when the cp
command was issued, the system created a new file with that name. However, if
a file called new.outline had already existed, it would have been replaced by a
copy of the file outline; the previous version of new.outline would have been
deleted.

If you had tried to copy the file outline to another file named outline in the
same directory, the system would have told you the file names were identical and
returned the prompt to you. If you had then listed the contents of the directory to
determine exactly how many copies of outline existed, you would have received the
following output on your screen:

88 USER’S GUIDE

A ing and Manipulating Files

$ cp outline outline<CR>

cp: outline and outline are identical
$ Is<CR>

outline

table

$

The UNIX system does allow you to have two files with the same name as
long as they are in different directories. For example, the system would let you
copy the file outline from the draft directory to another file named outline in the
letters directory. If you were in the draft directory, you could use any one of four
command lines. In the first two command lines, you specify the name of the new
file you are creating by making a copy.

B cp outline /user1/starship/letters/outline <CR> (full path name specified)

= cp outline ../letters/outline<CR> (relative path name specified)

However, the ¢cp command does not require that you specify the name of the
new file. If you do not include a name for it on the command line, cp gives your

new file the same name as the original one, by default. Therefore you could also
use either of these command lines:

B cp outline /user1/starship/letters <CR> (full path name specified)

B cp outline ../letters <CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file in the letters
directory and call it outline, too.

Of course, if you want to give your new file a different name, you must
specify it. For example, to copy the file outline in the draft directory to a file
named outline.vers2 in the letters directory, you can use either of the following
command lines:

USING THE FILE SYSTEM 89

Accessing and Manipulating Files

B cp outline /userl/starship/letters/outline.vers2<CR> (full path name)

B cp outline ../letters/outline.vers2 <CR> (relative path name)

When assigning new names, keep in mind the conventions for naming directories
and files described in "Naming Directories and Files" in this chapter.

Figure 3-20 summarizes the syntax and capabilities of the cp command.

Command Recap

cp — make a copy of a file

command options arguments
filel file2
cp none file(s) directory
Description: cp allows you to make a copy of filel and call it

file2 leaving filel intact or to copy one or more
files into a different directory.

Remarks: When you are copying filel to file2 and a file
called file2? already exists, the cp command
overwrites the first version of file2 with a copy of
filel and calls it file2. The first version of file2 is
deleted.

You cannot copy directories with the c¢p com-
mand.

Figure 3-20: Summary of the cp Command

90 USER’S GUIDE

Accessing and Manipulating Files

Moving and Renaming a File: the mv Command

The command mv (short for move) allows you to rename a file in the same
directory or to move a file from one directory to another. If you move a file to a
different directory, the file can be renamed or it can retain its original name.

To rename a file within one directory, follow this format:

mv filel file2<CR>

The mv command changes a file’s name from filel to file2 and deletes filel.
Remember that the names filel and file2 can be any valid names, including path
names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table to new.table, simply type
myv table new.table and press the RETURN key. If the command executes suc-
cessfully, you will receive a prompt. To verify that the file new.table exists, you
can list the contents of the directory by typing Is and pressing the RETURN key.
The screen shows your input and the system’s output as follows:

$ mv table new.table <CR>
$ Is<CR>

new.table

outline

$

You can also move a file from one directory to another, keeping the same
name or changing it to a different one. To move the file without changing its
name, use the following command line:

mv file(s) directory<CR>

The file and directory names can be any valid names, including path names.

USING THE FILE SYSTEM 91

Accessing and Manipulating Files

For example, say you want to move the file table from the current directory
named draft (whose full path name is /user1/starship/draft) to a file with the
same name in the directory letters (whose relative path name from draft is
../letters and whose full path name is /userl/starship/letters), you can use any
one of several command lines, including the following:

mv table /user1/starship/letters <CR>

my table /userl/starship/letters/table <CR>

mv table ../letters <CR>

mv table ../letters/table <CR>

mv /userl/starship/draft/table /user1/starship/letters/table <CR>

Now suppose you want to rename the file table as table2 when moving it to
the directory letters. Use any of these command lines:

mv table /userl/starship/letters/table2 <CR>
mv table ../letters/table2 <CR>

my /user1/starship/draft/table2 /userl/starship/letters/table2<CR>
You can verify that the command worked by using the Is command to list the

contents of the directory.

Figure 3-21 summarizes the syntax and capabilities of the mv command.

92 USER’S GUIDE

Accessing and Manipulating Files

4 Command Recap

mv — move or rename files

command options arguments
filel file2
my none file(s) directory
Description: mv allows you to change the name of a file or to

move a file(s) into another directory.

Remarks: When you are moving filel to file2, if a file called
file2 already exists, the mv command overwrites
the first version of file2 with filel and renames it
file2. The first version of file2 is deleted.

Figure 3-21: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your directory by
executing the command rm (short for remove). The basic format for this com-

mand is:
rm file(s)<CR>
You can remove more than one file at a time by specifying those files you
want to delete on the command line with a space separating each filename:

rm filel file? file3<CR>

The system does not save a copy of a file it removes; once you have executed this
command, your file is removed permanently.

USING THE FILE SYSTEM 93

Accessing and Manipulating Files

After you have issued the rm command, you can verify its successful execu-
tion by running the Is command. Since Is lists the files in your directory, you’ll
immediately be able to see whether or not rm has executed successfully.

For example, say you have a directory that contains two files, outline and
table. You can remove both files by issuing the rm command once. If rm is exe-
cuted successfully, your directory will be empty. Verify this by running the Is
command.

$ rm outline table <CR>
$Is
$

The prompt shows that outline and table were removed.

Figure 3-22 summarizes the syntax and capabilities of the rm command.

Command Recap

rm — remove a file

command options arguments
rm available* file(s)
Description: rm allows you to remove one or more files.
Remarks: Files specified as arguments to the rm command

are removed permanently.

See the rm(1) page in the User’s Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-22: Summary of the rm Command

94 USER’S GUIDE

Accessing and Manipulating Files

Counting Lines, Words, and Characters in a File: the w¢ Command

The command we (short for word count) reports the number of lines, words,
and characters there are in the file(s) named on the command line. If you name
more than one file, the we program counts the number of lines, words, and char-
acters in each specified file and then totals the counts. In addition, you can direct
the we program to give you only a line, a word, or a character count by using the
—1, —w, or —c options, respectively.

To determine the number of lines, words, and characters in a file, use the fol-
lowing format on the command line:

we filel<CR>

The system responds with a line in the following format:
I w c filel

where

B] represents the number of lines in filel

B w represents the number of words in filel

B ¢ represents the number of characters in filel

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, letters), type the following command line:

$ wc johnson<CR>
24 66 406 johnson
$

The system response means that the file johnson has twenty-four lines, sixty-six
words, and 406 characters.

To count the lines, words, and characters in more than one file, use this for-
mat:

we filel file2<CR>

USING THE FILE SYSTEM 95

Accessing and Manipulating Files

The system responds in the following format:

1 w c filel
1 w c file2
I} w c total

Line, word, and character counts for filel and file2 are displayed on separate lines
and the combined counts appear on the last line beside the word total.

For example, ask the we program to count the lines, words, and characters in
the files johnson and sanders in the current directory.

$ wc johnson sanders <CR>

24 66 406 johnson
28 92 559 sanders
52 158 965 total

The first line reports that the johnson file has twenty-four lines, sixty-six words,
and 406 characters. The second line reports twenty-eight lines, ninety-two words,
and 559 characters in the sanders file. The last line shows that these two files
together have a total of fifty-two lines, 158 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate com-
mand line format from the following lines:

we =l filel <CR> (line count)
we —w filel<CR> (word count)
we —c filel<CR> (character count)

96 USER’S GUIDE

Accessing and Manipulating Files
For example, if you use the —1 option, the system reports only the number of
lines in sanders.

$ wc —I sanders<CR>
28 sanders
$

If the —w or —c option had been specified instead, the command would have
reported the number of words or characters, respectively, in the file.

Figure 3-23 summarizes the syntax and capabilities of the we command.

Command Recap

wc — count lines, words, and characters in a file

command options arguments
we -1, —-w, —c file(s)
Description:

wce counts lines, words, and characters in the specified
file(s), keeping a total count of all tallies when more
than one file is specified.

Options —1 counts the number of lines in the specified
file(s)
—w counts the number of words in the specified
file(s)

~¢ counts the number of characters in the
specified file(s)

Remarks: When a file name is specified in the command line,
it is printed with the count(s) requested.

Figure 3-23: Summary of the we Command

USING THE FILE SYSTEM 97

Accessing and Manipulating Files

Protecting Your Files: the chmod Command

The command chmod (short for change mode) allows you to decide who can
read, write, and use your files and who cannot. Because the UNIX operating sys-
tem is a multi-user system, you usually do not work alone in the file system. Sys-
tem users can follow path names to various directories and read and use files
belonging to one another, as long as they have permission to do so.

If you own a file, you can decide who has the right to read it, write in it
(make changes to it), or, if it is a program, to execute it. You can also restrict
permissions for directories with the chmod command. When you grant execute
permission for a directory, you allow the specified users to ed to it and list its con-
tents with the Is command.

To assign these types of permissions, use the following three symbols:
r allows system users to read a file or to copy its contents
w allows system users to write changes into a file (or a copy of it)

x allows system users to run an executable file

To specify the users to whom you are granting (or denying) these types of
permission, use these three symbols:

u you, the owner of your files and directories (u is short for user)

g members of the group to which you belong (the group could consist of
team members working on a project, members of a department, or a
group arbitrarily designated by the person who set up your UNIX sys-
tem account)

o all other system users

When you create a file or a directory, the system automatically grants or
denies permission to you, members of your group, and other system users. You
can alter this automatic action by modifying your environment (see Chapter 7 for
details). Moreover, regardless of how the permissions are granted when a file is
created, as the owner of the file or directory you always have the option of chang-
ing them. For example, you may want to keep certain files private and reserve
them for your exclusive use. You may want to grant permission to read and write
changes into a file to members of your group and all other system users as well.
Or you may share a program with members of your group by granting them per-
mission to execute it.

98 USER’S GUIDE

Accessing and Manipulating Files

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a file or a
directory by using the command that produces a long listing of a directory’s con-
tents: Is —1. For example, typing Is —1 and pressing the RETURN key while in
the directory named starship/bin in the sample file system produces the following
output:

$Is —-1<CR>

total 35

-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw-r--r-- 1 starship project 6428 Dec 2 10:24 1list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools

$

Permissions for the display and list files and the tools directory are shown on
the left of the screen under the line total 35, and appear in this format:

-rwxr-xr-x (for the display file)
-rw-r--r-- (for the list file))
drwx--x--- (for the tools directory)

After the initial character, which describes the file type (for example,
a - (dash) symbolizes a regular file and a CWd a directory), the other nine char-
acters that set the permissions comprise three sets of three characters. The first
set refers to permissions for the owner, the second set to permissions for group
members, and the last set to permissions for all other system users. Within each
set of characters, the r, w, and x show the permissions currently granted to each
category. If a dash appears instead of an r, w, or x, permission to read, write, or
execute is denied.

USING THE FILE SYSTEM 99

Accessing and Manipulating Files

The following diagram summarizes this breakdown for the file named display.

user group others
TWXTr-Xr-x
\ Permission to write to
the file denied to
read group and other
write
execute

As you can see, the owner has r, w, and x permissions and members of the group
and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally the letter s or
the letter 1 may appear in the permissions line, instead of an r, wor x. The
letter s (short for set user ID or set group ID) represents a special type of per-
mission to execute a file. It appears where you normally see an x (or —) for the
user or group (the first and second sets of permissions). From a user’s point of
view it is equivalent to an x in the same position; it implies that execute permis-
sion exists. It is significant only for programmers and system administrators.

(See the System Administrator’s Guide for details about setting the user or group
ID.)

The letter 1 is the symbol for lock enabling. It does not mean that the file has
been locked. It simply means that the function of locking is enabled, or possible,
for this file. The file may or may not be locked; that cannot be determined by the
presence or absence of the letter 1.

100 USER’'S GUIDE

A ing and Manipulating Files

How to Change Existing Permissions

After you have determined what permissions are in effect, you can change
them by executing the chmod command in the following format:

chmod who +permission file(s) <CR>
or
chmod who = permission file(s) <CR>

The following list defines each component of this command line.

chmod name of the program
who one of three user groups (u, g, or o)
u = user
g = group
o = others
+ or — instruction that grants (+) or denies (—) permission

permission any combination of three authorizations (r, w, and x)
r = read
w= write
X = execute

file(s) file (or directory) name(s) listed; assumed to be branches
from your current directory, unless you use full path-
names.

The chmod command will not work if you type a space(s) between who, the
NOIE [instruction that gives (+) or denies (—) permission, and the permission.

The following examples show a few possible ways to use the chmod command.
As the owner of display, you can read, write, and run this executable file. You
can protect the file against being accidentally changed by denying yourself write
(w) permission. To do this, type the command line:

chmod u—w display <CR>

USING THE FILE SYSTEM 101

Accessing and Manipulating Files

After receiving the prompt, type Is —1 and press the RETURN key to verify that
this permission has been changed, as shown in the following screen.

$ chmod u—w display <CR>

$ Is —1<CR>

total 35

-r-xr-xr-x 1 starship project 9346 Nov 1 08:06 display
IW-r=-—Y—- 1 starship project 6428 Dec 2 10:24 1list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools

$

As you can see, you no longer have permission to write changes into the file. You
will not be able to change this file until you restore write permission for yourself.

Now consider another example. Notice that permission to write into the file
display has been denied to members of your group and other system users. How-
ever, they do have read permission. This means they can copy the file into their
own directories and then make changes to it. To prevent all system users from
copying this file, you can deny them read permission by typing:

chmod go —r display <CR>

The g and o stand for group members and all other system users, respectively, and
the —r denies them permission to read or copy the file. Check the results with
the Is —1 command.

102 USER’S GUIDE

Accessing and Manipulating Files

$ chmod go —r display <CR>

$Is —1<CR>

total 35

-rwx--x--x 1 starship project 9346 Nov 1 08:06 display
YW-Y--Y—— 1 starship project 6428 Dec 2 10:24 1list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools

$

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission for directories
as well as files. Simply specify a directory name instead of a file name on the
command line.

However, consider the impact on various system users of changing permissions
for directories. For example, say you grant read permission for a directory to
yourself (w), members of your group (g), and other system users (o). Every user
who has access to the system will be able to read the names of the files contained
in that directory by running the Is —l command. Similarly, granting write per-
mission allows the designated users to create new files in the directory and remove
existing ones. Granting permission to execute the directory allows designated
users to move to that directory (and make it their current directory) by using the
cd command.

An Alternative Method

There are two methods by which the chmod command can be executed. The
method described above, in which symbols such as r, w, and x are used to specify
permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to specify
permissions using three octal numbers, ranging from 0 to 7. (The octal number
system is different from the decimal system that we typically use on a day-to-day
basis.) To learn how to use the octal method, see the chmod(1) page in the User’s
Reference Manual.

USING THE FILE SYSTEM 103

Accessing and Manipulating Files

Figure 3-24 summarizes the syntax and capabilities of the chmod command.

Command Recap

chmod — change permission modes for files (and directories)

command instruction arguments
chmod who + — permission filename(s)
directoryname(s)
Description: chmod gives (+) or removes (—) permission to

read, write, and execute files for three categories
of system users: user (you), group (members of
your group), and other (all other users able to
access the system on which you are working).

Remarks: The instruction set can be represented in either
octal or symbolic terms.

Figure 3-24: Summary of the chmod Command

Advanced Commands

Use of the commands already introduced will increase your familiarity with
the file system. As this familiarity increases, so might your need for more sophis-
ticated information processing techniques when working with files. This section
introduces three commands that provide just that.

104 USER’S GUIDE

Accessing and Manipulating Files

diff finds differences between two files
grep searches for a pattern in a file
sort sorts and merges files

For additional information about these commands refer to the User’s Reference
Manual.

Identifying Differences Between Files: the diff Command

The diff command locates and reports all differences between two files and
tells you how to change the first file so that it is a duplicate of the second. The
basic format for the command is:

diff filel file2<CR>

If filel and file2 are identical, the system returns a prompt to you. If they are
not, the diff command instructs you on how to change the first file so it matches
the second by using ed (line editor) commands. (See Chapter 5 for details about
the line editor.) The UNIX system flags lines in filel (to be changed) with the <
(less than) symbol, and lines in file2 (the model text) with the > (greater than)
symbol.

For example, say you execute the diff command to identify the differences
between the files johnson and mcdonough. The mcdonough file contains the same
letter that is in the johnson file, with appropriate changes for a different recipient.
The diff command will identify those changes as follows:

USING THE FILE SYSTEM 105

Accessing and Manipulating Files

3,6c3,6

< Mr. Ron Johnson
< Layton Printing
< 52 Hudson Street
< New York, N.Y.

> Mr. J.J. McDonough
> Ubu Press

> 37 Chico Place

> Springfield, N.J.
9c9

< Dear Mr. Johnson:

> Dear Mr. McDonough:

/

The first line of output from diff is :
3,6¢3,6

This means that if you want johnson to match mcdonough, you must change (c)
lines 3 through 6 in johmson to lines 3 through 6 in medonough. The diff com-
mand then displays both sets of lines.

If you make these changes (using a text editor such as ed or vi), the johnson
file will be identical to the sanders file. Remember, the diff command identifies
differences between specified files. If you want to make an identical copy of a file,
use the cp command.

Figure 3-25 summarizes the syntax and capabilities of the diff command.

106 USER’S GUIDE

Accessing and Manipulating Files

Command Recap

diff — finds differences between two files

command options arguments
diff available* filel file2
Description: The diff command reports what lines are different

in two files and what you must do to make the
first file identical to the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), ¢ (change), and d
(delete). Numbers given with a, ¢, or d show the
lines to be modified. Also used are the symbols
< (showing a line from the first file) and >
(showing a line from the second file).

See the diff (1) page in the User’s Reference Manual for all available options and an
explanation of their capabilities.

Figure 3-25: Summary of the diff Command

Searching a File for a Pattern: the grep Command

You can instruct the UNIX system to search through a file for a specific
word, phrase, or group of characters by executing the command grep (short for
globally search for a regular expression and print). Put simply, a regular expres-
sion is any pattern of characters (be it a word, a phrase, or an equation) that you
specify.

USING THE FILE SYSTEM 107

Accessing and Manipulating Files

The basic format for the command line is:

grep pattern file(s)<CR>

For example, to locate any lines that contain the word automation in the file
johnson, type:

grep automation johnson<CR>
The system responds:

$ grep automation johnson<CR>
and office automation software.
$

The output consists of all the lines in the file johnson that contain the pattern for
which you were searching (automation).

If the pattern contains multiple words or any character that conveys special
meaning to the UNIX system, (such as $, |, *, ?, and so on), the entire pattern
must be enclosed in single quotes. (For an explanation of the special meaning for
these and other characters see "Metacharacters” in Chapter 7.) For example, say
you want to locate the lines containing the pattern office automation. Your
command line and the system’s response will read:

$ grep ’office automation” johnson<CR>
and office automation software.
$

But what if you cannot recall which letter contained a reference to office
automation; your letter to Mr. Johnson or the one to Mrs. Sanders? Type the fol-
lowing command line to find out:

$ grep ‘office automation” johnson sanders <CR>
jolmson:and office automation software.
$

The output tells you that the pattern office automation is found once in the
johnson file.

In addition to the grep command, the UNIX system provides variations of it
called egrep and fgrep, along with several options that enhance the searching
powers of the command. See the grep(1), egrep(1), and fgrep(1) pages in the
User’s Reference Manual for further information about these commands.

108 USER’S GUIDE

Accessing and Manipulating Files

Figure 3-26 summarizes the syntax and capabilities of the grep command.

Command Recap

grep — searches a file for a pattern

command options arguments
grep available* pattern file(s)
Description: The grep command searches through specified

file(s) for lines containing a pattern and then
prints the lines on which it finds the pattern. If
you specify more than one file, the name of the
file in which the pattern is found is also reported.

Remarks: If the pattern you give contains multiple words or
special characters, enclose the pattern in single
quotes on the command line.

See the grep(1) page in the User’s Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-26: Summary of the grep Command

USING THE FILE SYSTEM 109

Accessing and Manipulating Files

Sorting and Merging Files: the sort Command

The UNIX system provides an efficient tool called sort for sorting and merg-
ing files. The format for the command line is:

sort file(s)<CR>

This command causes lines in the specified files to be sorted and merged in the
following order.

B Lines beginning with numbers are sorted by digit and listed before lines
beginning with letters.

® Lines beginning with upper case letters are listed before lines beginning
with lower case letters.

® Lines beginning with symbols such as *, %, or @, are sorted on the basis
of the symbol’s ASCII representation.

For example, let’s say you have two files, groupl and group2, each containing
a list of names. You want to sort each list alphabetically and then interleave the
two lists into one. First, display the contents of the files by executing the cat
command on each.

$ cat groupl <CR>
Smith, Allyn
Jones, Barbara
Coock, Karen
Moore, Peter
Wolf, Robert

$ cat group2<CR>
Frank, M. Jay
Nelson, James
West, Donna

Hill, Charles
Morgan, Kristine
$

N

110 USER’S GUIDE

Accessing and Manipulating Files

(Instead of printing these two files individually, you could have requested both
files on the same command line. If you had typed cat groupl group2 and pressed
the RETURN key, the output would have been the same.)

Now sort and merge the contents of the two files by executing the sort com-
mand. The output of the sort program will be printed on the terminal screen
unless you specify otherwise.

cgroupl group2 <CR>

Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert
$

o

In addition to combining simple lists as in the example, the sort command can
rearrange lines and parts of lines (called fields) according to a number of other
specifications you designate on the command line. The possible specifications are
complex and beyond the scope of this text. Refer to the User’s Reference Manual
for a full description of available options.

Figure 3-27 summarizes the syntax and capabilities of the sort command.

USING THE FILE SYSTEM 111

Accessing and Manipulating Files

Command Recap

sort — sorts and merges files

command options arguments
sort available* file(s)
Description: The sort command sorts and merges lines from a

file or files you specify and displays its output on
your terminal screen.

Remarks: If no options are specified on the command line,
lines are sorted and merged in the order defined
by the ASCII representations of the characters in
the lines.

See the sort(1) page in the User’s Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-27: Summary of the sort Command

112

USER’'S GUIDE

Summary

This chapter described the structure of the file system and presented ways to
use and to navigate through the file system by using UNIX system commands.
The next chapter gives you an overview of a variety of UNIX system capabilities:
text editing, using the shell as a command language, communicating electronically
with other system users, and programming and developing software.

USING THE FILE SYSTEM 113

CHAPTER 4: OVERVIEW OF THE TUTORIALS

Introduction

This chapter serves as a transition between the overview that comprises the
first three chapters and the tutorials in the following four chapters. Specifically, it
provides an overview of the subjects covered in these tutorials: text editing, work-
ing in the shell, and communicating electronically. Text editing is covered in
Chapter 5, "Line Editor Tutorial," and Chapter 6, "Screen Editor Tutorial." How
to work and program in the shell is taught in Chapter 7, "Shell Tutorial," and
methods of electronic communication are covered in Chapter 8, "Communication
Tutorial." '

114 USER’S GUIDE

Text Editing

Using the file system is a way of life in a UNIX system environment. This
section will teach you how to create and modify files with a software tool called a
text editor. The section begins by explaining what a text editor is and how it
works. Then it introduces two types of text editors supported on the UNIX sys-
tem: the line editor, ed, and the screen editor, vi (short for visual editor). A com-
parison of the two editors is also included. For detailed information about ed and
vi, see Chapters 5 and 6.

What is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform one or more
of the following tasks: insert new or additional material, delete unneeded material,
transpose material (sometimes called cutting and pasting), and, finally, prepare a
clean, corrected copy. Text editors perform these tasks at your direction, making
writing and revising text much easier and quicker than if done by hand.

The UNIX system text editors, like the UNIX system shell, are interactive
programs; they accept your commands and then perform the requested functions.
From the shell’s point of view, the editors are executable programs.

A major difference between a text editor and the shell, however, is the set of
commands that each recognizes. All the commands introduced up to this point
belong to the shell’s command set. A text editor has its own distinct set of com-
mands that allow you to create, move, add, and delete text in files, as well as
acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works, you need to understand the environ-
ment created when you use an editing program and the modes of operation under-
stood by a text editor.

OVERVIEW OF THE TUTORIALS 115

Text Editing

Text Editing Buffers

When you use a text editor to create a new file or modify an existing one, you
first ask the shell to put the editor in control of your computing session. As soon
as the editor takes over, it allocates a temporary work space called the editing
buffer; any information that you enter while editing a file is stored in this buffer
where you can modify it.

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are also temporary. The buffer and its contents will exist
only as long as you are editing. If you want to save the file, you must tell the text
editor to write the contents of the buffer into a file. The file is then stored in the
computer’s memory. If you do not, the buffer’s contents will disappear when you
leave the editing program. To prevent this from happening, the text editors send
you a reminder to write your file if you attempt to end an editing session without
doing so.

If you have made a critical mistake or are unhappy with the edited version, you
NOTE | can choose to leave the editor without writing the file. By doing so, you leave the
original file intact; the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing one,
the text in the buffer is organized into lines. A line of text is simply a series of
characters that appears horizontally across the screen and is ended when you
press the RETURN key. Occasionally, files may contain a line of text that is too
long to fit on the terminal screen. Some terminals automatically display the con-
tinuation of the line on the next row of the screen; others do not.

Modes of Operation

Text editors are capable of understanding two modes of operation: command
mode and text input mode. When you begin an editing session, you will be placed
automatically in command mode. In this mode you can move around in a file,
search for patterns in it, or change existing text. However, you cannot create text
while you are in command mode. To do this you must be in text input mode.
While you are in this mode, any characters you type are placed in the buffer as
part of your text file. When you have finished entering text and want to run edit-
ing commands again, you must return to command mode.

116 USER’S GUIDE

Text Editing

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in. You
may try to enter text while in command mode or to enter a command while in
input mode. This is something even experienced users do from time to time. It
will not take long to recognize your mistake and determine the solution after you
complete the tutorials in Chapters 5 and 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile program for
preparing text files. It is called a line editor because it manipulates text on a
line-by-line basis. This means you must specify, by line number, the line contain-
ing the text you want to change. Then ed prints the line on the screen where you
can modify it.

This text editor provides commands with which you can change lines, print
lines, read and write files, and enter text. In addition, you can invoke the line edi-
tor from a shell program; something you cannot do with the screen editor. (See
Chapter 7 for information on basic shell programming techniques.)

The line editor (ed) works well on video display terminals and paper printing
terminals. It will also accommodate you if you are using a slow-speed telephone
line. (The visual editor, vi, can be used only on video display terminals.) Refer to
Chapter 5, "Line Editor Tutorial," for instructions on how to use this editing tool.
Also see Appendix C for a summary of line editor commands.

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented, interac-
tive software tool. It allows you to view the file you are editing a page at a time.
This editor works most efficiently when used on a video display terminal operating
at 1200 or higher baud.

For the most part, you modify a file (by adding, deleting, or changing text)
by positioning the cursor at the point on the screen where the modification is to be
made and then making the change. The screen editor immediately displays the
results of your editing; you can see the change you made in the context of the sur-
rounding text. Because of this feature, the screen editor is considered more
sophisticated than the line editor.

OVERVIEW OF THE TUTORIALS 117

Text Editing

Furthermore, the screen editor offers a choice of commands. For example, a
number of screen editor commands allow you to move the cursor around a file.
Other commands scroll the file up or down on the screen. Still other commands
allow you to change existing text or to create new text. In addition to its own set
of commands, the screen editor can access line editor commands.

The trade-off for the screen editor’s speed, visual appeal, efficiency, and power
is the heavy demand it places on the computer’s processing time. Every time you
make a change, no matter how simple, vi must update the screen. Refer to
Chapter 6, "Screen Editor Tutorial," for instructions on how to use this editor.
Appendix D contains a summary of screen editor commands, and Figure 4-1 com-
pares the features of the line editor (ed) and the screen editor (vi).

118 USER’S GUIDE

Text Editing

Feature

Line Editor (ed)

Screen Editor (vi)

Recommended
terminal type

Speed

Versatility

Sophistication

Power

Advantages

Video display or
paper-printing

Accommodates high-
and low-speed data
transmission lines.

Can be specified to run
from shell scripts as
well as used during
editing sessions.

Changes text quickly.
Uses comparatively
small amounts of pro-
cessing time.

Provides a full set of
editing commands.
Standard UNIX sys-
tem text editor.

There are fewer com-
mands you must learn
to use ed.

Video display

Works best via high-speed

data transmission lines
(1200+ baud).

Must be used interactively

during editing sessions.

Changes text easily.

However, can make heavy

demands on computer
resources.

Provides its own editing

commands and recognizes

line editor commands as
well.

vi allows you to see the
effects of your editing in
the context of a page of

text, immediately. (When

you use the ed editor,

making changes and view-

ing the results are
separate steps.)

Figure 4-1: Comparison of Line and Screen Editors (ed and vi)

OVERVIEW OF THE TUTORIALS

119

The Shell

Every time you log in to the UNIX system you start communicating with the
shell, and continue to do so until you log off the system. However, while you are
using a text editor, your interaction with the shell is suspended; it resumes as soon
as you stop using the editor.

The shell is much like other programs, except that instead of performing one
job, as cat or Is does, it is central to your interactions with the UNIX system.
The shell’s primary function is to act as a command interpreter between you and
the computer system. As an interpreter, the shell translates your requests into
language the computer understands, calls requested programs into memory, and
executes them.

This section introduces methods of using the shell that enhance your ability to
use system features. In addition to using it to run a single program, you may also
use the shell to:

B interpret the name of a file or a directory you enter in an abbreviated way
using a type of shell shorthand

B redirect the flow of input and output of the programs you run

B execute multiple programs simultaneously or in a pipeline format

® tailor your computing environment to.meet your individual needs

In addition to being the command language interpreter, the shell is a pro-
gramming language. For detailed information on how to use the shell as a com-
mand interpreter and a programming language, refer to Chapter 7. Complete

information about shell programming is available in a separate document, Shell
Commands and Programming.

Customizing Your Computing Environment

This section deals with another control provided by the shell: your environ-
ment. When you log in to the UNIX system, the shell automatically sets up a
computing environment for you. The default environment set up by the shell
includes these variables:

120 USER’S GUIDE

The Shell

HOME your login directory
LOGNAME your login name

PATH route the shell takes to search for executable files or com-
mands (typically PATH=:/bin:/usr/bin)

The PATH variable tells the shell where to look for the executable program
invoked by a command. Therefore it is used every time you issue a command. If
you have executable programs in more than one directory, you will want all of
them to be searched by the shell to make sure every command can be found.

You can use the default environment supplied by your system or you can
tailor an environment to meet your needs. If you choose to modify any part of
your environment, you can use either of two methods to do so. If you want to
change a part of your environment only for the duration of your current comput-
ing session, specify your changes in a command line (see Chapter 7 for details).
However, if you want to use a different environment (not the default environ-
ment) regularly, you can specify your changes in a file that will set up the desired
environment for you automatically every time you log in. This file must be called
.profile and must be located in your home directory.

The .profile typically performs some or all of the following tasks: checks for
mail; sets data parameters, terminal settings, and tab stops; assigns a character or
character string as your login prompt; and assigns the erase and kill functions to
keys. You can define as few or as many tasks as you want in your .profile. You
can also change parts of it at any time. For instructions on modifying a .profile,
see "Modifying Your Login Environment" in Chapter 7.

Now check to see whether or not you have a .profile. If you are not already
in your home directory, cd to it. Then examine your .profile by issuing this com-
mand:

cat .profile

If you have a .profile, its contents will appear on your screen. If you do not have
a .profile you can create one with a text editor, such as ed or vi. (See "Modifying
Your Login Environment" in Chapter 7 for instructions.)

OVERVIEW OF THE TUTORIALS 121

The Shell

Programming in the Shell

The shell is not only the command language interpreter; it is also a command
level programming language. This means that instead of always using the shell
strictly as a liaison between you and the computer, you can also program it to
repeat sequences of instructions automatically. To do this, you must create exe-
cutable files containing lists of commands. These files are called shell procedures
or shell scripts. Once you have a shell script for a particular task, you can simply
request that the shell read and execute the contents of the script whenever you
want to perform that task.

Like other programming languages, the shell provides such features as vari-
ables, control structures, subroutines, and parameter passing. These features
enable you to create your own tools by linking together system commands.

For example, you can combine three UNIX system programs (the date, who,
and we commands) into a simple shell script called users that tells you the current
date and time, and how many users are working on your system. If you use the vi
editor (described in Chapter 6) to create your script, you can follow this pro-
cedure. First, create the file users with the editor by typing

vi users<CR>

The editor will draw a blank page on your screen and wait for you to enter text.

122 USER’S GUIDE

The Shell

"users" [New file]

/

Enter the three UNIX system commands on one line:
date; who | we —1

Then write and quit the file. Make users executable by adding execute permission
with the chmod command.

chmod ug +x users <CR>

Now try running your new command. The following screen shows the kind of
output you will get.

$ users<CR>

Sat Mar 1 16:40:12 EST 1986
4

$

OVERVIEW OF THE TUTORIALS 123

The Shell

The output tells you that four users were logged in on the system when you
typed the command at 16:40 on Saturday, March 1, 1986.

For step-by-step instructions on writing shell scripts and information about
more sophisticated shell programming techniques, see Chapter 7, "Shell Tutorial."

124 USER’S GUIDE

Communicating Electronically

As a UNIX system user, you can send messages or transmit information
stored in files to other users who work on your system or another UNIX system.
To do so, you must be logged in on a UNIX system that is capable of communi-
cating with the UNIX system to which you want to send information. The com-
mand you use to send information depends on what you are sending. This guide
introduces you to these communication programs:

mail

mailx

uucp

uuto/uupick

uux

This command allows you to send messages or files to other
UNIX system users, using their login names as addresses. It
also allows you to receive messages sent by other users. mail
holds messages and lets the recipient read them at his or her
convenience.

This command is a sophisticated, more powerful version of
mail. It offers a number of options for managing the elect-
ronic mail you send and receive.

This command is used to send files from one UNIX system to
another. (Its name is an acronym for UNIX to UNIX sys-
tem copy.) You can use uucp to send a file to a directory you
specify on a remote computer. When the file has been
transferred, the owner of the directory is notified of its arrival
by mail.

These commands are used to send and retrieve files. You can
use the uuto command to send a file(s) to a public directory;
when it is available, the recipient is notified by mail that the
file(s) has arrived. The recipient then can use the uapick
command to copy the file(s) from the public directory to a
directory of choice.

This command lets you execute commands on a remote com-
puter. It gathers files from various computers, executes the
specified command on these files, and sends the standard out-
put to a file on the specified computer.

Chapter 8 offers tutorials on each of these commands.

OVERVIEW OF THE TUTORIALS 125

Programming in the System

The UNIX system provides a powerful and convenient environment for pro-
gramming and software development, using the C programming language,
FORTRAN-77, BASIC, Pascal, and COBOL. As well, the UNIX system pro-
vides some sophisticated tools designed to make software development easier and
to provide a systematic approach to programming.

For information on available UNIX system programming languages, see the
Product Overview or Documentation Roadmap.

For information on the general topic of programming in the UNIX system
environment, see the Programmer’s Guide. Besides supplementing texts on pro-
gramming languages, the Programmer’s Guide provides tutorials on the following
five tools:

SCCS Source Code Control System

RIJE Remote Job Entry (not available on all UNIX systems)
make maintains programs

lex generates programs for simple lexical tasks

yacc generates parser programs

126 USER’S GUIDE

CHAPTER 5: LINE EDITOR TUTORIAL (ed)

Introducing the Line Editor

This chapter is a tutorial on the line editor, ed. ed is versatile and requires
little computer time to perform editing tasks. It can be used on any type of ter-
minal. The examples of command lines and system responses in this chapter will
apply to your terminal, whether it is a video display terminal or a paper printing
terminal. The ed commands can be typed in at your terminal or they can be used
in a shell program (see Chapter 7, "Shell Tutorial").

ed is a line editor; during editing sessions it is always pointing at a single line
in the file called the current line. When you access an existing file, ed makes the
last line the current line so you can start appending text easily. Unless you
specify the number of a different line or range of lines, ed will perform each com-
mand you issue on the current line. In addition to letting you change, delete, or
add text on one or more lines, ed allows you to add text from another file to the
buffer.

During an editing session with ed, you are altering the contents of a file in a
temporary buffer, where you work until you have finished creating or correcting
your text. When you edit an existing file, a copy of that file is placed in the
buffer and your changes are made to this copy. The changes have no effect on
the original file until you instruct ed, by using the write command, to move the
contents of the buffer into the file.

After you have read through this tutorial and tried the examples and exer-
cises, you will have a good working knowledge of ed. The following basics are
included:

B entering the line editor ed, creating text, writing the text to file, and quit-
ting ed

addressing particular lines of the file and displaying lines of text
deleting text
substituting new text for old text

using special characters as shortcuts in search and substitute patterns

moving text around in the file, as well as other useful commands and infor-
mation

LINE EDITOR TUTORIAL (ed) 127

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end of that sec-
tion. A summary of all ed commands introduced in this chapter is found in
Appendix C, where they are listed by topic.

At the end of some sections, exercises are given so you can experiment with
the commands. The answers to all exercises are at the end of this chapter.

The notation conventions used in this chapter are those used throughout this
Guide. They are described in the Preface.

128 USER’S GUIDE

Getting Started

The best way to learn ed is to log in to the UNIX system and try the exam-
ples as you read this tutorial. Do the exercises; do not be afraid to experiment.
As you experiment and try out ed commands, you will learn a fast and versatile
method of text editing.

In this section you will learn the commands used to:

B enter ed

® append text

move up or down in the file to display a line of text
delete a line of text

write the buffer to a file

quit ed

How to Enter ed

To enter the line editor, type ed and a file name:
ed filename <CR>
Choose a name that reflects the contents of the file. If you are creating a new
file, the system responds with a question mark and the file name:

$ ed new-file <CR>
?new-file

If you going to edit an existing file, ed responds with the number of characters in
the file:

$ ed old-file<CR>
235

LINE EDITOR TUTORIAL (ed) 129

Getting Started

How to Create Text

The editor receives two types of input, editing commands and text, from your
terminal. To avoid confusing them, ed recognizes two modes of editing work:
command mode and text input mode. When you work in command mode, any
characters you type are interpreted as commands. In input mode, any characters
you type are interpreted as text to be added to a file.

Whenever you enter ed you are put into command mode. To create text in
your file, change to input mode by typing a (for append), on a line by itself, and
pressing the RETURN key:

a<CR>

Now you are in input mode; any characters you type from this point wil be added
to your file as text. Be sure to type a on a line by itself; if you do not, the editor
will not execute your command.

After you have finished entering text, type a period on a line by itself. This
takes you out of the text input mode and returns you to the command mode.
Now you can give ed other commands.

The following example shows how to enter ed, create text in a new file called
try-me, and quit text input mode with a period.

$ ed try-me<CR>

This is the first line of text. <CR>
This is the second line, <CR>

and this is the third line. <CR>
<CR>

130 USER’S GUIDE

Getting Started

Notice that ed does not give a response to the period; it just waits for a new
command. If ed does not respond to a command, you may have forgotten to type
a period after entering text and may still be in text input mode. Type a period
and press the RETURN key at the beginning of a line to return to command
mode. Now you can execute editing commands. For example, if you have added
some unwanted characters or lines to your text, you can delete them once you
have returned to command mode.

How to Display Text

To display a line of a file, type p (for print) on a line by itself. The p com-
mand prints the current line, that is, the last line on which you worked. Continue
with the previous example. You have just typed a period to exit input mode.
Now type the p command to see the current line.

$ ed try-me<CR>

? try-me

a<CR>

This is the first line of text. <CR>
This is the second line, <CR>

and this is the third line. <CR>
.<CR>

p<CR>

and this is the third line.

/

You can print any line of text by specifying its line number (also known as
the address of the line). The address of the first line is 1; of the second, 2; and so
on. For example, to print the second line in the file try-me, type:

2p<CR>
This is the second line,

LINE EDITOR TUTORIAL (ed) 131

Getting Started

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated by a
comma. For example, to print the first three lines of a file, type:

1,3p<CR>

You can even print the whole file this way. For example, you can display a
twenty-line file by typing 1,20p. If you do not know the address of the last line in
your file, you can substitute a $ sign, ed symbol for the address of the last line.
(These conventions are discussed in detail in the section "Line Addressing.")

1,Sp<CR>

This is the first line of text.
This is a second line,

and this is the third line.

If you forget to quit text input mode with a period, you will add text that you
do not want. Try to make this mistake. Add another line of text to your try-me
file and then try the p command without quitting text input mode. Then quit text
input mode and print the entire file.

132 USER’S GUIDE

Getting Started

p<CR>

and this is the third line.
a<CR>

This is the fourth line. <CR>
p<CR>

.<CR>

1,$p<CR>

This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.

p

What did you get? The next section will explain how to delete the unwanted line.

How to Delete a Line of Text

To delete text, you must be in the command mode of ed. Typing d deletes
the current line. Try this command on the last example to remove the unwanted
line containing p. Display the current line (p command), delete it (d command),
and display the remaining lines in the file (p command). Your screen should look
like this:

LINE EDITOR TUTORIAL (ed) 133

Getting Started

P
P
d<CR>

1,$p<CR>

This is the first line of text.
This is a second line,

and this is the third line.
This is the fourth line.

ed does not send you any messages to confirm that you have deleted text.
The only way you can verify that the d command has succeeded is by printing the
contents of your file with the p command. To receive verification of your deletion,
you can put the d and p together on one command line. If you repeat the previ-
ous example with this command, your screen should look like this:

p<CR>

b
dp<CR>

This is the fourth line.

134 USER’S GUIDE

Getting Started

How to Move Up or Down in the File

To display the line below the current line, press the RETURN key while in
command mode. If there is no line below the current line, ed responds with a ?
and continues to treat the last line of the file as the current line. To display the
line above the current line, press the minus key (—).

The following screen provides examples of how both of these commands are
used:

This is the fourth line.
—<CR>

and this is the third line.
—<CR>

This is a second line,
—<CR>

This is the first line of text.
<CR>

This is a second line,
<CR>

and this is the third line.

Notice that by typing —<CR> or <CR>, you can display a line of text without
typing the p command. These commands are also line addresses. Whenever you
type a line address and do not follow it with a command, ed assumes that you
want to see the line you have specified. Experiment with these commands: create
some text, delete a line, and display your file.

LINE EDITOR TUTORIAL (ed) 135

Getting Started

How to Save the Buffer Contents in a File

As we discussed earlier, during an editing session, the system holds your text
in a temporary storage area called a buffer. When you have finished editing, you
can save your work by writing it from the temporary buffer to a permanent file in
the computer’s memory. By writing to a file, you are simply putting a copy of the
contents of the buffer into the file. The text in the buffer is not disturbed, and
you can make further changes to it.

It is a good idea to write the buffer text into your file frequently. If an interrupt
NOTE occurs (such as an accidental loss of power to your terminal), you may lose the
material in the buffer, but you will not lose the copy written to your file.

To write your text to a file, enter the w command. You do not need to
specify a file name; simply type w and press the RETURN key. If you have just
created new text, ed creates a file for it with the name you specified when you
entered the editor. If you have edited an existing file, the w command writes the
contents of the buffer to that file by default.

If you prefer, you can specify a new name for your file as an argument on the
w command line. Be careful not to use the name of a file that already exists
unless you want to replace its contents with the contents of the current buffer. ed
will not warn you about an existing file; it will simply overwrite that file with your
buffer contents.

For example, if you decide you would prefer the try-me file to be called stuff,
you can rename it:

136 USER’S GUIDE

Getting Started

Gry-me <CR>

? try-me

a<CR>

This is the first line of text. <CR>
This is the second line, <CR>

and this is the third line. <CR>

w stuff <CR>
85

Notice the last line of the screen. This is the number of characters in your text.
When the editor reports the number of characters in this way, the write command
has succeeded.

How to Quit the Editor

When you have completed editing your text, write it from the buffer into a
file with the w command. Then leave the editor and return to the shell by typing
q (for quit).

w<CR>
85
q<CR>

LINE EDITOR TUTORIAL (ed) 137

Getting Started

The system responds with a shell prompt. At this point the editing buffer van-
ishes. If you have not executed the write command, your text in the buffer has
also vanished. If you did not make any changes to the text during your editing
session, no harm is done. However, if you did make changes, you could lose your
work in this way. Therefore, if you type q after changing the file without writing
it, ed warns you with a ?. You then have a chance to write and quit.

If, instead of writing, you insist on typing q a second time, ed assumes you do
not want to write the buffer’s contents to your file and returns you to the shell.
Your file is left unchanged and the contents of the buffer are wiped out.

You now know the basic commands needed to create and edit a file using ed.
Figure 5-1 summarizes these commands.

138 USER’S GUIDE

Getting Started

Command Function
ed file enter ed to edit file
a append text after the current line
quit text input mode and return to ed command
mode.
p print text on your terminal
d delete text
<CR> display the next line in the buffer (literally, car-
riage return)
+ display the next line in the buffer
- display the previous line in the buffer
w write the contents of the buffer to the file
quit ed and return to the shell

Figure 5-1: Summary of ed Editor Commands

LINE EDITOR TUTORIAL (ed)

139

Exercise 1

Answers for all the exercises in this chapter are found at the end of the

chapter. However, they are not necessarily the only possible correct answers.
Any method that enables you to perform a task specified in an exercise is correct,
even if it does not match the answer given.

1-1.

1-3.

140

Enter ed with a file named junk. Create a line of text containing Hello
World, write it to the file and quit ed.

Now use ed to create a file called stuff. Create a line of text containing
two words, Goodbye world, write this text to the file, and quit ed.

Enter ed again with the file named junk. What was the editor’s response?
Was the character count for it the same as the character count reported
by the w command in Exercise 1-1?

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the file. Why do
you think the editor allowed you to quit without writing to the buffer?

Enter ed with the file junk. Add a line:
Wendy’s horse came through the window.

Since you did not specify a line address, where do you think the line was
added to the buffer? Display the contents of the buffer. Try quitting the
buffer without writing to the file. Try writing the buffer to a different file
called stuff. Notice that ed does not warn you that a file called stuff
already exists. You have erased the contents of stuff and replaced them
with new text.

USER’S GUIDE

General Format of ed Commands

ed commands have a simple and regular format:
laddressi|,address21lcommandlargument] <CR>

The brackets around addressl, address2, and argument show that these are
optional. The brackets are not part of the command line.

addressl address2
The addresses give the position of lines in the buffer.
Addressl through address2 gives you a range of lines that
will be affected by the command. If address2 is omitted,
the command will affect only the line specified by address1.

command The command is one character and tells the editor what task
to perform.

argument The arguments to a command are those parts of the text
that will be modified, or a file name, or another line address.

This format will become clearer to you when you begin to experiment with
the ed commands.

LINE EDITOR TUTORIAL (ed) 14

Line Addressing

A line address is a character or group of characters that identifies a line of
text. Before ed can execute commands that add, delete, move, or change text, it
must know the line address of the affected text. Type the line address before the
command:

laddressi),laddress2lcommand <CR>
Both address1 and address2 are optional. Specify addressl alone to request
action on a single line of text; both addressl and address2 to request a span of

lines. If you do not specify any address, ed assumes that the line address is the
current line.

The most common ways to specify a line address in ed are:

B by entering line numbers (assuming that the lines of the files are consecu-
tively numbered from 1 to n, beginning with the first line of the file)

® by entering special symbols for the current line, last line, or a span of lines
® by adding or subtracting lines from the current line

B by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search for all

lines containing a specified character string. (A character string is a set of suc-
cessive characters, such as a word.)

Numerical Addresses

ed gives a numerical address to each line in the buffer. The first line of the
buffer is 1, the second line is 2, and so on, for each line in the buffer. Any line
can be accessed by ed with its line address number. To see how line numbers
address a line, enter ed with the file try-me and type a number.

142 USER’S GUIDE

Line Addressing

$ ed try-me<CR>

110

1<CR>

This is the first line of text.
3<CR>

and this is the third line.

Remember that p is the default command for a line address specified without
a command. Because you gave a line address, ed assumes you want that line
displayed on your terminal.

Numerical line addresses frequently change in the course of an editing ses-
sion. Later in this chapter you will create lines, delete lines, or move a line to a
different position. This will change the line address numbers of some lines. The
number of a specific line is always the current position of that line in the editing
buffer. For example, if you add five lines of text between line 5 and 6, line 6
becomes line 11. If you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed command. If
you have just entered ed with an existing file, the current line is the last line of
the buffer. The symbol for the address of the current line is a period. Therefore
you can display the current line simply by typing a period (.) and pressing the
RETURN key.

Try this command in the file try-me:

LINE EDITOR TUTORIAL (ed) 143

Line Addressing

$ ed try-me<CR>

110

<CR>

This is the fourth line.

The . is the address. Because a command is not specified after the period, ed
executes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:
.=<CR>

ed responds with the line number. For example, in the try-me file, the current
line is 4.

.<CR>

This is the fourth line.
.=<CR>

4

144 USER’S GUIDE

Line Addressing

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that
the $ sign accesses the last line, access the try-me file with ed and specify this
address on a line by itself. (Keep in mind that when you first access a file, your
current line is always the last line of the file.)

$ ed try-me<CR>

110

<CR>

This is the fourth line.
$<CR>

This is the fourth line.

Remember that the $ address within ed is not the same as the $ prompt from the
shell.

Symbolic Address of the Set of All Lines

When used as an address, a comma (,) refers to all the lines of a file, from
the first through the last line. It is an abbreviated form of the string mentioned
earlier that represents all lines in a file, 1,$. Try this shortcut to print the con-
tents of try-me:

,p<CR>

This is the first line of text.
This is the second line,

and this is the third line.
This is the fourth line.

LINE EDITOR TUTORIAL (ed) 145

Line Addressing

Symbolic Address of the Current Line through the Last Line

The semi-colon (;) represents a set of lines beginning with the current line
and ending with the last line of a file. It is equivalent to the symbolic address .,$.
Try it with the file try-me:

2p<CR>

This is the second line,
;p<CR>

This is the second line,
and this is the third line.
This is the fourth line.

Relative Addresses: Adding or Subtracting Lines from the Current Line

You may often want to address lines with respect to the current line. You
can do this by adding or subtracting a number of lines from the current line with
a plus (+) or a minus (—) sign. Addresses derived in this way are called relative
addresses. To experiment with relative line addresses, add several more lines to
your file try-me, as shown in the following screen. Also, write the buffer contents
to the file so your additions will be saved:

146 USER’S GUIDE

Line Addressing

$ ed try-me<CR>
110

.<CR>

This is the fourth line.
a<CR>
five<CR>

six <CR>
seven<CR>

eight <CR>

nine <CR>
ten<CR>
.<CR>

w<CR>

140

Now try adding and subtracting line numbers from the current line.

4<CR>

This is the fourth line.
+3<CR>

seven

—5<CR>

This is a second line,

What happens if you ask for a line address that is greater than the last line, or if
you try to subtract a number greater than the current line number?

LINE EDITOR TUTORIAL (ed) 147

Line Addressing

S5<CR>
five
—6<CR>
?
.=<CR>
5
+7<CR>

Notice that the current line remains at line 5 of the buffer. The current line
changes only if you give ed a correct address. The ? response means there is an

error. "Other Useful Commands and Information," at the end of this chapter,
explains how to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a partic-
ular character string. To do so, specify a string, preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a
string starts and ends. The most common delimiter is / (slash), used in the fol-
lowing format:

/pattern

When you specify a pattern preceded by a / (slash), ed begins at the current line
and searches forward (down through subsequent lines in the buffer) for the next
line containing the pattern. When the search reaches the last line of the buffer,
ed wraps around to the beginning of the file and continues its search from line 1.

The following rectangle represents the editing buffer. The path of the arrows
shows the search initiated by a / :

148 USER’S GUIDE

Line Addressing

r-oo
}
) 1
| first line
I
I
I
I
]
/f\ current line
]
|
I
|
I
: last line
T
|
L - - -4

Another useful delimiter is ?. If you specify a pattern preceded by a ?,
(?pattern), ed begins at the current line and searches backward (up through pre-
vious lines in the buffer) for the next line containing the pattern. If the search
reaches the first line of the file, it will wrap around and continue searching
upward from the last line of the file.

The following rectangle represents the editing buffer. The path of the arrows
shows the search initiated by a ? :

.
T first line

current line

last line

LINE EDITOR TUTORIAL (ed) 149

Line

Addressing

Experiment with these two methods of requesting address searches on the file

try-me. What happens if ed does not find the specified character string?

$ ed try-me<CR>

140

<CR>

ten

?first <CR>

This is the first line of text.
/fourth<CR>

This is the fourth line.

/junk <CR>

?

o /

In this example, ed found the specified strings first and fourth. Then, because

no command was given with the address, it executed the p command by default,
displaying the lines it had found. When ed cannot find a specified string (such as
junk), it responds with a ? .

You can also use the / (slash) to search for multiple occurrences of a pattern

without typing it more than once. First, specify the pattern by typing /pattern, as

usual. After ed has printed the first occurrence, it waits for another command.
Type / and press the RETURN key; ed will continue to search forward through
the file for the last pattern specified. Try this command by searching for the
word line in the file try-me:

150 USER’S GUIDE

Line Addressing

This is the first line of text.
/line<CR>

This is the second line,
/<CR>

and this is the third line.
/<CR>

This is the fourth line.
/<CR>

This is the first line of text.

/

Notice that after ed has found all occurrences of the pattern between the line
where you requested a search and the end of the file, it wraps around to the
beginning of the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range of
lines, such as addressl through address2, or you can specify a global search for
all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of the
first and last lines of the range, separated by a comma. Place this address before
the command. For example, if you want to display lines 2 through 7 of the edit-
ing buffer, give addressl as 2 and address2 as 7 in the following format:

2,7p<CR>
Try this on the file try-me:

LINE EDITOR TUTORIAL (ed) 151

Line Addressing

2,7p<CR>

This is the second line,
and this is the third line.
This is the fourth line.
five
six
seven

Did you try typing 2,7 without the p? What happened? If you do not add
the p command, ed prints only address2, the last line of the range of addresses.

Relative line addresses can also be used to request a range of lines. Be sure
that addressl precedes address2 in the buffer. Relative addresses are calculated
from the current line, as the following example shows:

This is the fourth line
—2,+3p<CR>

This is the second line,
and this is the third line.
This is the fourth line.
five

six

seven

152 USER’S GUIDE

Line Addressing

Specifying a Global Search

There are two commands that do not follow the general format of ed com-
mands: g and v. These are global search commands that specify addresses with a
character string (pattern). The g command searches for all lines containing the
string pattern and performs the command on those lines. The v command
searches for all lines that do not contain the pattern and performs the command
on those lines.

The general format for these commands is:

g/pattern/command <CR>
v/pattern/command <CR>

Try these commands by using them to search for the word line in try-me:

g/line/p<CR>

This is the first line of text.
This is the second line,

and this is the third line.
This is the fourth line

v/line/p<CR>
five

six

seven

eight

nine

ten

LINE EDITOR TUTORIAL (ed) 153

Line Addressing

Notice the function of the v command: it finds all the lines that do not con-
tain the word specified in the command line (line).

Once again, the default command for the lines addressed by g or v is p; you
do not need to include a p as the last delimiter on your command line.

g/line<CR>

This is the first line of text.
This is the second line,

and this is the third line.
This is the fourth line

However, if you are giving line addresses to be used by other ed commands, you
need to include beginning and ending delimiters. You can use any of the methods
discussed in this section to specify line addresses for ed commands. Figure 5-2
summarizes the symbols and commands available for addressing lines.

154 USER’S GUIDE

Line Addressing

Address Description
n... the number of a line in the buffer
. the current line (the line most recently acted on by an ed
command)
.= the command used to request the line number of the current
line
$ the last line of the file
, the set of lines from line 1 through the last line
H the set of lines from the current line through the last line
+n the line that is located n lines after the current line
- n the line that is located n lines before the current line
/abc the command used to search forward in the buffer for the first
line that contains the pattern abc
?abc the command used to search backward in the buffer for the
first line that contains the pattern abc
g/abc the set of all lines that contain the pattefn abc
v/abc the set of all lines that do NOT contain the pattern abc

Figure 5-2: Summary of Line Addressing

LINE EDITOR TUTORIAL (ed) 155

Exercise 2

2-1. Create a file called towns with the following lines:

My kind of town is

Chicago

Like being no where at all in
Toledo

I lost those little town blues in
New York

I lost my heart in

San Francisco

I lost $$ in

Las Vegas

2-2. Display line 3.

2-3. If you specify a range of lines with the relative address —2,+3p, what
lines are displayed ?

2-4, What is the current line number? Display the current line.
2-5. What does the last line say?
2-6. What line is displayed by the following request for a search?

?town <CR>
After ed responds, type this command alone on a line:
?<CR>

What happened?

2-7. Search for all lines that contain the pattern in. Then search for all lines
that do NOT contain the pattern in.

156 USER’S GUIDE

Displaying Text in a File

ed provides two commands for displaying lines of text in the editing buffer: p
and n.

Displaying Text Alone: the p Command
You have already used the p command in several examples. You are prob-
ably now familiar with its general format:
[addressi ;addres32]p <CR>

p does not take arguments. However, it can be combined with a substitution com-
mand line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 5-3 on a file in your
home directory. Try the p command with each address and see if ed responds as
described in the figure.

LINE EDITOR TUTORIAL (ed) 157

Displaying Text in a File

Specify this Address

Check for this Response

1,8p<CR>

—-5p<CR>

+2p<CR>

1,/x/p<CR>

ed should display the entire file on your
terminal.

ed should move backward five lines from
the current line and display the line
found there.

ed should move forward two lines from
the current line and display the line
found there.

ed displays the set of lines from line one
through the first line after the current
line that contains the character x. It is
important to enclose the letter x between
slashes so that ed can distinguish between
the search pattern address (x) and the ed
command (p).

Figure 5-3: Sample Addresses for Displaying Text

Displaying Text with Line Addresses: the n Command

The n command displays text and precedes each line with its numerical line
address. It is helpful when you are deleting, creating, or changing lines. The

general command line format for n is the same as that for p.

laddressl.,address2In<CR>

Like p, n does not take arguments, but it can be combined with the substitute

command.

158 USER’S GUIDE

Try running n on the try-me file:

/

140

1

=2 Q0 OO0 U WwN

$ ed try-me<CR>

1,$n<CR>

This is the first line of text.
This is the second line,

and this is the third line.
This is the fourth line.

five

six

seven

eight

nine

ten

Figure 5-4 summarizes the ed commands for displaying text.

Displaying Text in a File

Command Function
p displays specified lines of text in the editing buffer on your
terminal
n displays specified lines of text in the editing buffer with
their numerical line addresses on your terminal '

Figure 5-4: Summary of Commands for Displaying Text

LINE EDITOR TUTORIAL (ed)

159

Creating Text

ed has three basic commands for creating new lines of text:
a append text
i insert text

¢ change text

Appending Text: the a Command

The append command, a, allows you to add text AFTER the current line or a
specified address in the file. You have already used this command in the "Getting
Started" section of this chapter. The general format for the append command line
is:

[addressila<CR>

Specifying an address is optional. The default value of address! is the current
line.

In previous exercises, you used this command with the default address. Now
try using different line numbers for addressl. In the following example, a new
file called new-file is created. In the first append command line, the default
address is the current line. In the second append command line, line 1 is specified
as addressl. The lines are displayed with n so that you can see their numerical
line addresses. Remember, the append mode is ended by typing a period (.) on a
line by itself.

160 USER’S GUIDE

Creating Text

?new—file
a<CR>

of text in
this file.
<CR>
1,$n<CR>
1

2

3

$ ed new—file<CR>

Create some lines

Create some lines
of text in
this file.

1a<CR>
This will be line 2<CR>
This will be line 3<CR>

<CR>

1,$n<CR>

1 Create same lines

2 This will be line 2
3 This will be line 3
4 of text in

5 this file.

/

Notice that after you append the two new lines, the line that was originally
line 2 (of text in) becomes line 4.

You can take shortcuts to places in the file where you want to append text by
combining the append command with symbolic addresses. The following three
command lines allow you to move through and add to the text quickly in this way.

.a<CR> appends text after the current line
$a<CR> appends text after the last line of the file
0a<CR> appends text before the first line of the file (at a symbolic

address called line 0)

LINE EDITOR TUTORIAL (ed) 161

Creating Text

To try using these addresses, create a one-line file called lines and type the
examples shown in the following screens. (The examples appear in separate
screens for easy reference only; it is not necessary to access the lines file three
times to try each append symbol. You can access lines once and try all three con-
secutively.)

$ ed lines<CR>

?lines

a<CR>

This is the current line. <CR>

<CR>

p<CR>

This is the current line.

a<CR>

This line is after the current line. <CR>
<CR>

-1,.p<CR>

This is the current line.

This line is after the current line.

$a<CR>

This is the last line now. <CR>
.<CR>

$<CR>

This is the last line now.

162 USER’S GUIDE

Creating Text

This is the first line now. <CR>
This is the second line now. <CR>
The line numbers change <CR>
as lines are added. <CR>

.<CR>

1,4n<CR>

1 This is the first line now.
2 This is the second line now.
3 The line mumbers change

4 as lines are added.

Because the append command creates text after a specified address, the last
example refers to the line before line 1 as the line after line 0. To avoid such cir-
cuitous references, use another command provided by the editor: the insert com-
mand, i.

Inserting Text: the i Command

The insert command (i), allows you to add text BEFORE a specified line in
the editing buffer. The general command line format for i is the same as that for
a. ’

[address1li<CR>

As with the append command, you can insert one or more lines of text. To quit
input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command (i):

LINE EDITOR TUTORIAL (ed) 163

Creating Text

$ ed insert <CR>
?insert

a<CR>

Line 1<CR>
Line 2<CR>
Line 3<CR>
Line 4<CR>
<CR>

w<CR>

69

Now insert one line of text above line 2 and another above line 1. Use the n com-
mand to display all the lines in the buffer:

2i<CR>

This is the new line 2. <CR>
<CR>

1,$n<CR>

1 Line 1

2 This is the new line 2.
3 Line 2

4 Line 3

5 Line 4

1i<CR>

This is the beginning. <CR>
<CR>

1,$5n<CR>

1 In the beginning

2 Line 1

3 Now this is line 2
4 Line 2

5 Line 3

6 Line 4

164 USER’S GUIDE

Creating Text

Experiment with the insert command by combining it with symbolic line
addresses, as follows:

® i<CR>
B §i<CR>

Changing Text: the ¢ Command

The change text command (c) erases all specified lines and allows you to
create one or more lines of text in their place. Because ¢ can erase a range of
lines, the general format for the command line includes two addresses.

[address],address2lc <CR>

The change command puts you in text input mode. To leave input mode, type a
period alone on a line.

Address| is the first and address2 is the last of the range of lines to be
replaced by new text. To erase one line of text, specify only addressl. If no
address is specified, ed assumes the current line is the line to be changed.

Now create a file called change in which you can try this command. After
entering the text shown in the screen, change lines one through four by typing
1,4c:

LINE EDITOR TUTORIAL (ed) 165

Creating Text

1,5n<CR>

1 line 1
2 line 2
3 line 3
4 line 4
5 line 5
1,4c<CR>

Change line 1<CR>

and lines 2 through 4<CR>
.<CR>

1,$n<CR>

1 change line 1

2 and lines 2 through 4
3 line 5

Now experiment with ¢ and try to change the current line:

.<CR>
line 5
c<CR>

This is the new line 5.
.<CR>

.<CR>

This is the new line 5.

If you are not sure whether you have left text input mode, it is a good idea to
type another period. If the current line is displayed, you know you are in the
command mode of ed.

166 USER’S GUIDE

Creating Text

Figure 5-5 summarizes the ed commands for creating text.

Command Function
a append text after the specified line in the buffer
i insert text before the specified line in the buffer
c change the text on the specified line(s) to new text
. quit text input mode and return to ed command mode

Figure 5-5: Summary of Commands for Creating Text

LINE EDITOR TUTORIAL (ed) 167

Exercise 3

3-1.

3-2.

3-3.

168

Create a new file called ex3. Instead of using the append command to
create new text in the empty buffer, try the insert command. What hap-
pens?

Enter ed with the file towns. What is the current line?

Insert above the third line:

Illinois <CR >

Insert above the current line:

or<CR>
Naperville<CR>

Insert before the last line:

hotels in<CR>

Display the text in the buffer preceded by line numbers.

In the file towns, display lines 1 through 5 and replace lines 2 through 5
with:

London<CR>
Display lines 1 through 3.

After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

USER’S GUIDE

3-5

Replace
Toledo
with

Peoria

Display the current line.

With one command line search for and replace:
New York

with:

Iron City

LINE EDITOR TUTORIAL (ed)

Exercise 3

169

Deleting Text

This section discusses two types of commands for deleting text in ed. One
type is to be used when you are working in command mode: d deletes a line and
u undoes the last command. The other type of command is to be used in text
input mode: <#> (the pound sign) deletes a character and <@> (the at sign)
kills a line. The delete keys that are used in input mode are the same keys you
use to delete text that you enter after a shell prompt. They are described in detail
in "Correcting Typing Errors" in Chapter 2.

Deleting Lines: the d Command

You have already deleted lines of text with the delete command (d) in the
"Getting Started" section of this chapter.

The general format for the d command line is:
[address1,address2]d<CR>

You can delete a range of lines (addressl through address2) or you can delete
one line only (address1). If no address is specified, ed deletes the current line.

The next example displays lines one through five and then deletes lines two
through four:

1 1 horse

2 2 chickens

3 3 ham tacos

4 4 cans of mustard
5 5 bails of hay
2,4d<CR>

1,$n<CR>

1 1 horse

2 5 bails of hay

170 USER’S GUIDE

Deleting Text

How can you delete only the last line of a file? Using a symbolic line address
makes this easy:

$d<CR>

How can you delete the current line? One of the most common errors in ed is
forgetting to type a period to leave text input mode. When this happens,
unwanted text may be added to the buffer. In the next example, a line containing
a print command (1,$p) is accidentally added to the text before the user leaves
input mode. Because this line was the last one added to the text, it becomes the
current line. The symbolic address . is used to delete it.

a<CR>

Last line of text<CR>
1,$p<CR>

.<CR>

p<CR>

1,%p

d<CR>

p<CR>

Last line of text.

J

Before experimenting with the delete command, you may first want to learn
about the undo command, u.

Undoing the Previous Command: the u Command

The command u (short for undo) nullifies the last command and restores any
text changed or deleted by that command. It takes no addresses or arguments.
The format is:

u<CR>

LINE EDITOR TUTORIAL (ed) 171

Deleting Text

One purpose for which the u command is useful is to restore text you have
mistakenly deleted. If you delete all the lines in a file and then type p, ed will
respond with a ? since there are no more lines in the file. Use the u command to
restore them.

This is the first line.
This is the middle line.
This is the last line.

1,$d<CR>

p<CR>

?

u<CR>

p<CR>

This is the last line.

/

Now experiment with u: use it to undo the append command.

This is the only line of text
a<CR>

Add this line<CR>

~<CR>

1,$p<CR>

This is the only line of text
Add this line

u<CR>

1,8p<CR>

172

This is the only line of text

USER’S GUIDE

Deleting Text

u cannot be used to undo the write command (w) or the quit command (g).
NOTE However, u can undo an undo command (u).

How to Delete in Text Input Mode

While in text input mode, you can correct the current line of input with the
same keys you use to correct a shell command line. By default, there are two
keys available to correct text. The (@ sign key kills the current line. The # sign
key backs up over one character on the current line so you can retype it, thus
effectively erasing the original character. (See "Correcting Typing Errors" in
Chapter 2 for details.)

As mentioned in Chapter 2, you can reassign the line kill and character erase
functions to other keys if you prefer. (See "Modifying Your Login Environment"
in Chapter 7 for instructions.) If you have reassigned these functions, you must
use the keys you chose while working in ed; the default keys (@ and #) will no
longer work.

Escaping the Delete Function

You may want to include an (@ sign or a # sign as a character of text. To
avoid having these characters interpreted as delete commands, you must precede
them with a \ (backslash), as shown in the following example.

a<CR>

leave San Francisco \@ 20:15 on flight \#347 <CR>
<CR>

p<CR>

leave San Francisco @ 20:15 on flight #347

LINE EDITOR TUTORIAL (ed) 173

Deleting Text

Figure 5-6 summarizes the ed commands and shell commands for deleting
text in ed.

Command Function

In command mode:

<d> delete one or more lines of text
<u> undo the previous command
<@> delete the current command line

In text input mode:

<@> delete the current line
<#> or
<BACKSPACE> delete the last character typed in

Figure 5-6: Summary of Commands for Deleting Text

174 USER’S GUIDE

Substituting Text

You can modify your text with a substitute command. This command
replaces the first occurrence of a string of characters with new text. The general
command line format is

laddressi,address21s/old_text/new_text/lcommand]<CR>

Each component of the command line is described below.

addressl,address2

S

fold text

/new _text

The range of lines being addressed by s. The address can be
one line, (addressI), a range of lines (addressi through
address2), or a global search address. If no address is given,
ed makes the substitution on the current line.

The substitute command

The argument specifying the text to be replaced is usually
delimited by slashes, but can be delimited by other charac-
ters such as a ? or a period. It consists of the words or char-
acters to be replaced. The command will replace the first
occurrence of these characters that it finds in the text.

The argument specifying the text to replace old text. It is
delimited by slashes or the same delimiters used to specify
the old text. It consists of the words or characters that are
to replace the old_text.

/command Any one of the following four commands:

LINE EDITOR TUTORIAL (ed) 175

Substituting Text

g Change all occurrences of old_text on the specified lines.

1 Display the last line of substituted text, including nonprinting
characters. (See the last section of this chapter, "Other Use-
ful Commands and Information.")

n Display the last line of the substituted text preceded by its
numerical line address.

p Display the last line of substituted text.

Substituting on the Current Line
The simplest example of the substitute command is making a change to the
current line. You do not need to give a line address for the current line.
s/old_text/new text/{<CR>
The next example contains a typing error. While the line that contains it is

still the current line, you make a substitution to correct it. The old text is the ai
of airor and the new text is er.

a<CR>

In the beginning, I made an airor.
.<CR>

P<CR>

In the begimning, I made an airor.
s/ai/er<CR>

Notice that ed gives no response to the substitute command. To verify that
the command has succeeded in this case, you either have to display the line with p
or n, or include p or n as part of the substitute command line. In the following
example, n is used to verify that the word file has been substituted for the word
toad.

176 USER’'S GUIDE

Substituting Text

Pp<CR>

This is a test toad
s/toad/file/n<CR>

1 This is a test file

However, ed allows you one shortcut: it prints the results of the command
automatically, if you omit the last delimiter after the new_text argument:

Pp<CR>

This is a test file
s/file/frog <CR>
This is a test frog

Substituting on One Line

To substitute text on a line that is not the current line, include an address in
the command line, as follows:

laddressils/old_text/new text/<CR>

LINE EDITOR TUTORIAL (ed) 177

Substituting Text

For example, in the following screen the command line includes an address
for the line to be changed (line 1) because the current line is line 3:

This is a pest toad
testing testing
come in toad
<CR>

came in toad
1s/pest/test<CR>

\isisatesttoad

As you can see, ed printed the new line automatically after the change was made,
because the last delimiter was omitted.

Substituting on a Range of Lines
You can make a substitution on a range of lines by specifying the first
address (address1) through the last address (address2).
laddress1,address2ls/old_text/new_text/<CR>

If ed does not find the pattern to be replaced on a line, no changes are made to
that line.

In the following example, all the lines in the file are addressed for the substi-
tute command. However, only the lines that contain the string es (the old_text
argument) are changed.

178 USER’S GUIDE

Substituting Text

1,$p<CR>

This is a test toad
testing testing

come in toad

testing 1, 2, 3
1,9s/es/ES/n<CR>

4 tESting 1, 2, 3

When you specify a range of lines and include p or n at the end of the substitute
line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p command
with the address 1,$.

1,$n<CR>

1 This is a tESt toad
2 tESting testing

3 came in toad

4 tESting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been changed. To
change every occurrence of a pattern, use the g command, described in the next
section.

LINE EDITOR TUTORIAL (ed) 179

Substituting Text

Global Substitution

One of the most versatile tools in ed is global substitution. By placing the g
command after the last delimiter on the substitute command line, you can change
every occurrence of a pattern on the specified lines. Try changing every
occurrence of the string es in the last example. If you are following along, doing
the examples as you read this, remember you can use u to undo the last substitute
command.

1,$p<CR>

This is a test toad
testing, testing
came in toad
testing 1, 2, 3
1,8s/es/ES/g <CR>
1,Sp<CR>

This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

Another method is to use a global search pattern as an address instead of the
range of lines specified by 1,$.

180 USER’S GUIDE

Substituting Text

/CR

This is a test toad
testing testing

cane in toad

testing 1, 2, 3
g/test/s/es/ES/g <CR>
1,$p<CR>

This is a tESt toad
tESting tESting

came in toad

tESting 1, 2, 3

If the global search pattern is unique and matches the argument old_text (text to
be replaced), you can use an ed shortcut: specify the pattern once as the global
search address and do not repeat it as an old_text argument. ed will remember
the pattern from the search address and use it again as the pattern to be replaced.

g/old text/s//new _text/g<CR>

{

Whenever you use this shortcut, be sure to include two slashes (//) after the s.

LINE EDITOR TUTORIAL (ed) 181

Substituting Text

/CR

This is a test toad
testing testing
came in toad
testing 1, 2, 3
g/es/s//ES/g<CR>
1,$p<CR>

This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

Experiment with other search pattern addresses:

/pattern<CR>
?pattern<CR>
v/pattern<CR>

See what they do when combined with the substitute command. In the following
example, the v/pattern search format is used to locate lines that do not contain
the pattern testing. Then the substitute command (s) is used to replace the
existing pattern (in) with a new pattern (out) on those lines.

v/testing/s/in/out <CR>
This is a test toad
come out toad

182 USER’S GUIDE

Substituting Text

Notice that the line This is a test toad was also printed, even though no
substitution was made on it. When the last delimiter is omitted, all lines found
with the search address are printed, regardless of whether or not substitutions
have been made on them.

Now search for lines that do contain the pattern testing with the g com-
mand.

g/testing/s//jumping <CR>
Jumping testing
Jumping 1, 2, 3

Notice that this command makes substitutions only for the first occurrence of the
pattern (testing) in each line. Once again, the lines are displayed on your ter-
minal because the last delimiter has been omitted.

LINE EDITOR TUTORIAL (ed) 183

Exercise 4

4-1. In your file towns change town to city on all lines but the line with 1it-
tle town on it.

The file should read:

My kind of city is

London

Like being no where at all in
Peoria

I lost those little town blues in
Iron City

I lost my heart in

San Francisco

I lost $$ in

hotels in

Las Vegas

4-2. Try using ? as a delimiter. Change the current line
Las Vegas
to
Toledo

Because you are changing the whole line, you can also do this by using
the change command, c.

4-3, Try searching backward in the file for the word
lost
and substitute
found

using the ? as the delimiter. Did it work?

184 USER’S GUIDE

Exercise 4

4-4. Search forward in the file for
no
and substitute
NO
for it. What happens if you try to use ? as a delimiter?

Experiment with the various command combinations available for addressing
a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to substi-
tute Big $ for $ on line 9 of your file. Type:

9s/$/Big $<CR>
What happened?

LINE EDITOR TUTORIAL (ed) 185

Special Characters

If you try to substitute the $ sign in the line
I lost my $ in Las Vegas

you will find that instead of replacing the $, the new text is placed at the end of
the line. The $ is a special character in ed that is symbolic for the end of the line.

ed has several special characters that give you a shorthand for search patterns
and substitution patterns. The characters act as wild cards. If you have tried to
type in any of these characters, the result was probably different than what you
had expected.

The special characters are:

Match any one character.

* Match zero or more occurrences of the preceding character.
¥ Match zero or more occurrences of any character following
the period.

Match the beginning of the line.

$ Match the end of the line.

\ Take away the special meaning of the special character that
follows.

& Repeat the old text to be replaced in the new text of the

replacement pattern.
L.] Match the first occurrence of a character in the brackets.

.1 Match the first occurrence of a character that is NOT in the
brackets.

186 USER’S GUIDE

Special Characters

In the following example, ed searches for any three-character sequence ending
in the pattern at.

([KCR>

rat

cat

turtle

cow

goat
g/.at<CR>
rat

cat

goat

Notice that the word goat is included because the string oat matches the string
.at.

The * (asterisk) represents zero or more occurrences of a specified character
in a search or substitute pattern. This can be useful in deleting repeated
occurrences of a character that have been inserted by mistake. For example, sup-
pose you hold down the R key too long while typing the word broke. You can use
the * to delete every unnecessary R with one substitution command.

p<CR>
brrroke
s/br*/br <CR>
broke

LINE EDITOR TUTORIAL (ed) 187

Special Characfers

Notice that the substitution pattern includes the b before the first r. If the b
were not included in the search pattern, the * would interpret it, during the
search, as a zero occurrence of r, make the substitution on it, and quit.
(Remember, only the first occurrence of a pattern is changed in a substitution,
unless you request a global search with g.) The following screen shows how the
substitution would be made if you did not specify both the b and the r before the

*0

p<CR>
brrroke
s/r*/r<CR>
rbrrroke

If you combine the period and the *, the combination will match all charac-
ters. With this combination you can replace all characters in the last part of a
line:

p<CR>

Toads are slimy, cold creatures
s/are.* /are wonderful and warm <CR>
Toads are wonderful and warm

188 USER'S GUIDE

Special Characters

The .* can also replace all characters between two patterns.

p<CR>

Toads are slimy, cold creatures
s/are.*cre/are wonderful and warm cre <CR>
Toads are wonderful and warm creatures

If you want to insert a word at the beginning of a line, use the * (circumflex)
for the old text to be substituted. This is very helpful when you want to insert the
same pattern in the front of several lines. The next example places the word all
at the beginning of each line:

creatures great and small
things wise and wonderful
things bright and beautiful
1,8s/"/all /<CR>

1,$p<CR>

all creatures great and small
all things wise and wonderful
all things bright and beautiful

The $ sign is useful for adding characters at the end of a line or a range of
lines:

LINE EDITOR TUTORIAL (ed) 189

Special Characters

1,$p<CR>

I love

I need

I use

The IRS wants my
1,$s/$/ money. <CR>
1,$p<CR>

I love money.

I need money.

I use money.

The IRS wants my money.

In these examples, you must remember to put a space after the word all or
before the word money because ed adds the specified characters to the very begin-
ning or the very end of the sentence. If you forget to leave a space before the
word money, your file will look like this:

1,%s/$/money/ <CR>
1,$p<CR>

I lovemoney

I needmoney

I usemoney

The IRS wants mymoney

The $ sign also provides a handy way to add punctuation to the end of a line:

190 USER’S GUIDE

Special Characters

I love money

I need money

I use money

The IRS wants my money
1,$s/8/./<CR>

1,$p/ <CR>

I love momey.

I need money.

I use money.

The IRS wants my money.

/

Because . is not matching a character (old text), but replacing a character
(new text), it does not have a special meaning. To change a period in the middle
of a line, you must take away the special meaning of the period in the old text.
To do this, simply precede the period with a backslash (\). This is how you take
away the special meaning of some special characters that you want to treat as
normal text characters in search or substitute arguments. For example, the fol-
lowing screen shows how to take away the special meaning of the period:

p<CR>

Way to go. Wow!
s/\./!<CR>

Way to go! Wow!

LINE EDITOR TUTORIAL (ed) 191

Special Characters

The same method can be used with the backslash character itself. If you
want to treat a \ as a normal text character, be sure to precede it with a \. For
example, if you want to replace the \ symbol with the word backslash, use the
substitute command line shown in the following screen:

1,2p<CR>

This chapter explains
how to use the \.
s/\\/backslash<CR>

how to use the backslash.

If you want to add text without changing the rest of the line, the & provides
a useful shortcut. The & (ampersand) repeats the old text in the replacement
pattern, so you do not have to type the pattern twice. For example:

p<CR>

The neanderthal skeletal remains
s/thal/ & man’s/ <CR>

p<CR>

The neanderthal man’s skeletal remains

ed automatically remembers the last string of characters in a search pattern
or the old text in a substitution. However, you must prompt ed to repeat the
replacement characters in a substitution with the % sign. The % sign allows you
to make the same substitution on multiple lines without requesting a global substi-

192 USER’S GUIDE

Special Characters

tution. For example, to change the word money to the word gold, repeat the last
substitution from line 1 on line 3, but not on line 4.

1 I love momey

2 I need food

3 I use money

4 The IRS wants my money
1s/money/gold <CR>

I love gold

3s//% <CR>

I use gold

1,$n<CR>

1 I love gold

2 I need food

3 I use gold

4 The IRS wants my money

ed automatically remembers the word money (the old text to be replaced), so
that string does not have to be repeated between the first two delimiters. The %
sign tells ed to use the last replacement pattern, gold.

ed tries to match the first occurrence of one of the characters enclosed in
brackets and substitute the specified old text with new text. The brackets can be
at any position in the pattern to be replaced.

In the following example, ed changes the first occurrence of the numbers 6,
7, 8, or 9 to 4 on each line in which it finds one of those numbers:

LINE EDITOR TUTORIAL (ed) 193

Special Characters

Monday 33,000
Tuesday 75,000
Wednesday 88,000
Thursday 62,000
1,%s/167891/4<CR>

Monday 33,000
Tuesday 45,000
Wednesday 48,000
Thursday 42,000

The next example deletes the Mr or Ms from a list of names:

/CR

Mr Arthur Middleton
Mr Matt Lewis

Ms Amna Kelley

Ms M. L. Hodel
1,$s/Milrs] //<CR>
1,$8p<CR>

Arthur Middleton
Matt Lewis

Anmna Kelley

M. L. Hodel

If a * (circumflex) is the first character in brackets, ed interprets it as an
instruction to match characters that are NOT within the brackets. However, if
the circumflex is in any other position within the brackets, ed interprets it
literally, as a circumflex.

194 USER’S GUIDE

(MCR>

grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade D Jogging

grade C Temnis

1,$s/grade ["ABl/grade A<CR>

1,Sp<CR>

grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade A Jogging

grade A Temnis

Special Characters

/

Whenever you use special characters as wild cards in the text to be changed,

remember to use a unique pattern of characters. In the above example, if you

had used only

1,$s/["ABI/A <CR>

you would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what happens (or does

not happen) if you use them in different combinations.

Figure 5-7 summarizes the special characters for search or substitute pat-

terns.

LINE EDITOR TUTORIAL (ed)

195

Special Characters

Command Function
. Match any one character in a search or substitute pattern.
* Match zero or more occurrences of the preceding character

in a search or substitute pattern.

F Match zero or more occurrences of any characters following
the period.

Match the beginning of the line in the substitute pattern to
be replaced or in a search pattern.

$ Match the end of the line in the substitute pattern to be
replaced.
\ Take away the special meaning of the special character that

follows in the substitute or search pattern.

& Repeat the old text to be replaced in the new text replace-
ment pattern.

% Match the last replacement pattern.
L. Match the first occurrence of a character in the brackets. .
.l Match the first occurrence of a character that is NOT in the
brackets.

Figure 5-7: Summary of Special Characters

196 USER’S GUIDE

Exercise 5

5-1.

5-2.

5-3.

Create a file that contains the following lines of text.

A Computer Science
D Jogging
C Tennis

What happens if you try this command line:
1,8s/["ABI/A/<CR>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by the
".) Do not be afraid to experiment!

Insert the following line above line 2:
These are not really my grades.

Using brackets and the " character, create a search pattern that you can
use to locate the line you inserted. There are several ways to address a
line. When you edit text, use the way that is quickest and easiest for
you.

Add the following lines to your file:
I love money
I need money
The IRS wants my money
Now use one command to change them to:
It’s my money

It’s my money
The IRS wants my money

LINE EDITOR TUTORIAL (ed) 197

Exercise 5

5-5.

198

Using two command lines, do the following: change the word on the first
line from money to gold, and change the last two lines from money to
gold without using the words money or gold themselves.

How can you change the line
1020231020

to
10202031020

without repeating the old digits in the replacement pattern?

Create a line of text containing the following characters.
*\N& % " *

Substitute a letter for each character. Do you need to use a backslash for
every substitution?

USER’S GUIDE

Moving Text

You have now learned to address lines, create and delete text, and make sub-
stitutions. ed has one more set of versatile and important commands. You can
move, copy, or join lines of text in the editing buffer. You can also read in text
from a file that is not in the editing buffer, or write lines of the file in the buffer
to another file in the current directory. The commands that move text are:

m move lines of text

t copy lines of text

j join contiguous lines of text
w write lines of text to a file

r read in the contents of a file

Move Lines of Text
The m command allows you to move blocks of text to another place in the
file. The general format is:

[address],address2lmladdress31<CR>

The components of this command line include:

addressl,address2
The range of lines to be moved. If only one line is moved, only
addressl is given. If no address is given, the current line is
moved.

m The move command.

address3 Place the text after this line.

Try the following example to see how the command works. Create a file that
contains these three lines of text:

I want to move this line.
I want the first line
below this line.

LINE EDITOR TUTORIAL (ed) 199

Moving Text

Type:
1Im3<CR>

ed will move line 1 below line 3.

I want to move this line.

I want the first line
below this line.
I want to move this line.

The next screen shows how this will appear on your terminal:

I want to move this line.
I want the first line
below this line.
Im3<CR>

1,$p<CR>

I want the first line
below this line.

I want to move this line.

If you want to move a paragraph of text, have addressl and address2 define
the range of lines of the paragraph.

In the following example, a block of text (lines 8 through 12) is moved below
line 65. Notice the n command that prints the line numbers of the file:

200 USER’S GUIDE

Moving Text

8,12n<CR>

8 This is line 8.

9 It is the beginning of a
10 very short paragraph.

11 This paragraph ends

12 on this line.
64,65n<CR>

64 Move the block of text
65 below this line.
8,12m65<CR>

59,65n<CR>

59 Move the block of text
60 below this line.

61 This is line 8.

62 It is the begimning of a
63 very short paragraph.

64 This paragraph ends

65 on this line.

/

How can you move lines above the first line of the file? Try the following
command.

3,4m0 <CR>

When address3 is 0, the lines are placed at the beginning of the file.

Copy Lines of Text

The copy command t (transfer) acts like the m command except that the
block of text is not deleted at the original address of the line. A copy of that
block of text is placed after a specified line of text. The general format of the
command line is also similar.

LINE EDITOR TUTORIAL (ed) 201

Moving Text

The general format of the t command also looks like the m command.
[address],address21tladdress31<CR>
addressl,address2
The range of lines to be copied. If only one line is copied, only

addressl1 is given. If no address is given, the current line is
copied.

t The copy command.

address3 Place the copy of the text after this line.

The next example shows how to copy three lines of text below the last line.

Safety procedures:

If there is a fire in the building:
Close the door of the room to seal off the fire

Break glass of nearest alarm.
—— [Pull lever.

Locate and use fire extinguisher.

A chemical fire in the lab requires that you:

Break glass of nearest alarm
Pull lever
———=[Locate and use fire extinguisher

The commands and ed’s responses to them are displayed in the next screen.
Again, the n command displays the line numbers:

202 USER’S GUIDE

7
8\ Locate and use fire extinguisher

5,8n<CR>
5 Close the door of the roam, to seal off the fire.
6 Break glass of nearest alarm.
7 Pull lever.
8 Locate and use fire extinguisher.
30n<CR>
30 A chemical fire in the lab requires that you:
6,8t30<CR>
30,$n <CR>
30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm
32 Pull lever
33 Locate and use fire extinguisher
6,8n<CR>
6 Break glass of nearest alarm
Pull lever

Moving Text

The text in lines 6 through 8 remains in place. A copy of those three lines is

placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

The j command joins the current line with the following line. The general

format is:

[addressl,address1]j<CR>

The next example shows how to join several lines together. An easy way of
doing this is to display the lines you want to join using p or n.

LINE EDITOR TUTORIAL (ed)

203

Moving Text

Now is the time to join

the team.

p<CR>

the team.

1p<CR>

Now is the time to join

j<CR>

p<CR>

Now is the time to jointhe team.

/

Notice that there is no space between the last word (join) and the first word
of the next line (the), and the last word (play). You must place a space between
them by using the s command.

Write Lines of Text to a File
The w command writes text from the buffer into a file. The general format
is:
[address1,address2lw [filename] <CR>
addressladdress2

The range of lines to be placed in another file. If you do not use
addressl or address2, the entire file is written into a new file.

w The write command.

filename The name of the new file that contains a copy of the block of
text.

204 USER’S GUIDE

Moving Text

In the following example the body of a letter is saved in a file called memo, so
that it can be sent to other people.

1,$n<CR>

1 March 17, 1986

2 Dear Kelly,

3 There will be a meeting in the
4 green room at 4:30 P.M. today.
5 Refreshments will be served.
3,6w memo<CR>

87

The w command places a copy of lines three through six into a new file called
memo. ed responds with the number of characters in the new file.

Problems

The w command overwrites preexisting files; it erases the current file and puts
the new block of text in the file without warning you. If, in our example, a file
called memo had existed before we wrote our new file to that name, the original
file would have been erased.

In "Special Commands," later in this chapter, you will learn how to execute
shell commands from ed. Then you can list the file names in the directory to
make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file
memo. If you try to add lines 13 through 16, the existing lines (3 through 6) will
be erased and the file will contain only the new lines (13 through 16).

LINE EDITOR TUTORIAL (ed) 205

Moving Text

Read in the Contents of a File

The r command can be used to append text from a file to the buffer. The
general format for the read command is:
laddress1Ir filename <CR>
address1 The text will be placed after the line addressl. If addressl is not
given, the file is added to the end of the buffer.
r The read command.
filename The name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file
being edited and new text being read into it.

/

1,$n<CR>

1 March 17, 1986

2 Dear Michael,

3 Are you free later today?
4 Hope to see you there.

3r memo<CR>

87

3,$n<CR>

Are you free later today?
There is a meeting in the
green room at 4:30 P.M. today.
Refreshments will be served.
Hope to see you there.

/\’U\U'I.hw

ed responds to the read command with the number of characters in the file being
added to the buffer (in the example, memo).

206 USER’S GUIDE

Moving Text

It is a good idea to display new or changed lines of text to be sure that they
are correct.

Figure 5-8 summarizes the ed commands for moving text.

Command Function
m move lines of text
t copy lines of text
j join contiguous lines
w write text into a new file
r read in text from another file

Figure 5-8: Summary of ed Commands for Moving Text

LINE EDITOR TUTORIAL (ed) 207

Exercise 6

6-1.

6-2.

6-3.

208

There are two ways to copy lines of text in the buffer: by issuing the
copy command; or by using the write and read commands to first write
text to a file and then read the file into the buffer.

Writing to a file and then reading the file into the buffer is a longer pro-
cess. Can you think of an example where this method would be more
practical?

What commands can you use to copy lines 10 through 17 of file exer into
the file exer6 at line 7?

Lines 33 through 46 give an example that you want placed after line 3,
and not after line 32. What command performs this task?

Say you are on line 10 of a file and you want to join lines 13 and 14.
What commands can you issue to do this?

USER’S GUIDE

Other Useful Commands and Information

There are four other commands and a special file that will be useful to you
during editing sessions.

h,H access the help commands, which provide error messages

1 display characters that are not normally displayed

f display the current file name

! temporarily escape ed to execute a shell command

ed.hup When a system interrupt occurs, the ed buffer is saved in a spe-

cial file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed responds to some
of your commands with a ?. The ? is a diagnostic message issued by ed when it
has found an error. The help commands give you a short message to explain the
reason for the most recent diagnostic.

There are two help commands:

h Display a short error message that explains the reason for the most
recent ?.

H Place ed into help mode so that a short error message is displayed every
time the ? appears. (To cancel this request, type H.)

You know that if you try to quit ed without wriﬁng the changes in the buffer
to a file, you will get a ?. Do this now. When the ? appears, type h:

LINE EDITOR TUTORIAL (ed) 209

Other Useful Commands and Information

q<CR>

h<CR>
warning: expecting ‘w’

The ? is also displayed when you specify a new file name on the ed command
line. Give ed a new file name. When the ? appears, type h to find out what the
error message means.

ed newfile<CR>

? newfile

h<CR>

cannot open input file

This message means one of two things: either there is no file called newfile or
there is such a file but ed is not allowed to read it.

As explained earlier, the H command responds to the ? and then turns on the
help mode of ed, so that ed gives you a diagnostic explanation every time the ? is
displayed subsequently. To turn off help mode, type H again. The next screen
shows H being used to turn on help mode. Sample error messages are also
displayed in response to some common mistakes:

210 USER’S GUIDE

Other Useful Commands and Information

$ ed newfile <CR>

e newfile <CR>
?newfile

H<CR>

cannot open input file
/hello<CR>

?

illegal suffix
1,22p<CR>

?

line out of range
a<CR>

I am appending this line to the buffer.
.<CR>

s/$ tea party <CR>

?

illegal or missing delimiter
,85/$/ tea party <CR>
?

unknown cormand
H<CR>

q<CR>

?

h<CR>

warning: expecting ‘w’

These are some of the most common error messages that you may encounter dur-
ing editing sessions:

illegal suffix
ed cannot find an occurrence of the search pattern hello because the
buffer is empty.

line out of range

ed cannot print any lines because the buffer is empty or the line specified
is not in the buffer.

LINE EDITOR TUTORIAL (ed) 211

Other Useful Commands and Information

A line of text is appended to the buffer to show you some error messages associ-
ated with the s command.

illegal or missing delimiter
The delimiter between the old text to be replaced and the new text is
missing.

unknown command
address] was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off and h is used to determine the meaning of the
last ? . While you are learning ed, you may want to leave help mode turned on.
If so, use the H command. However, once you become adept at using ed, you will
only need to see error messages occasionally. Then you can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally display up to
eight spaces (covering the space up to the next tab setting. (Your tab setting may
be more or less than eight spaces. See Chapter 7, "Shell Tutorial," on setting
using stty).

If you want to see how many tabs you have inserted into your text, use the 1
(list) command. The general format for the 1 command is the same as for n and

p.
[address],address2]l<CR>

The components of this command line are:

addressl address?2
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
addressl is given, only that line will be displayed.

212 USER’S GUIDE

Other Useful Commands and Information

1 The command that displays the nonprinting characters
along with the text.

The 1 command denotes tabs with a > (greater than) character. To type
control characters, hold down the CONTROL key and press the appropriate
alphabetic key. The key that sounds the bell is “g (control-g). It is displayed as
\07 which is the octal representation (the computer’s code) for "g.

Type in two lines of text that contain a <"g> (control-g) and a tab. Then
use the 1 command to display the lines of text on your terminal.

a<CR>

Add a <"g> (control-g) to this line. <CR>
Add a <tab> (tab) to this line. <CR>
.<CR>

1,2I<CR>

Add a \07 (control-g) to this line.<CR>
Add a > (tab) to this line.<CR>

Did the bell sound when you typed <"g>?

The Current File Name

In a long editing session, you may forget the file name. The f command will
remind you which file is currently in the buffer. Or, you may want to preserve
the original file that you entered into the editing buffer and write the contents of
the buffer to a new file. In a long editing session, you may forget, and acciden-
tally overwrite the original file with the customary w and q command sequence.
You can prevent this by telling the editor to associate the contents of the buffer
with a new file name while you are in the middle of the editing session. This is
done with the f command and a new file name.

LINE EDITOR TUTORIAL (ed) 213

Other Useful Commands and Information

The format for displaying the current file name is f alone on a line:
f<CR>

To see how f works, enter ed with a file. For example, if your file is called oldfile,
ed will respond as shown in the following screen:

ed oldfile<CR>
323

f<CR>
oldfile

To associate the contents of the editing buffer with a new file name use this
general format:

f newfile<CR>

If no file name is specified with the write command, ed remembers the file
name given at the beginning of the editing session and writes to that file. If you
do not want to overwrite the original file, you must either use a new file name
with the write command, or change the current file name using the f command
followed by the new file name. Because you can use f at any point in an editing
session, you can change the file name immediately. You can then continue with
the editing session without worrying about overwriting the original file.

The next screen shows the commands for entering the editor with oldfile and
then changing its name to newfile. A line of text is added to the buffer and then
the write and quit commands are issued.

214 USER’S GUIDE

Other Useful Commands and Information

ed oldfile<CR>
323

f<CR>
oldfile

f newfile <CR>
newfile
a<CR>

Add a line of text. <CR>
.<CR>
w<CR>

343

q<CR>

/

Once you have returned to the shell, you can list your files and verify the
existence of the new file, newfile. newfile should contain a copy of the contents of
oldfile plus the new line of text.

Escape to the Shell

How can you make sure you are not overwriting an existing file when you
write the contents of the editor to a new file name? You need to return to the
shell to list your files. The ! allows you to temporarily return to the shell, execute
a shell command, and then return to the current line of the editor.

The general format for the escape sequence is:

Ishell command line<CR>

shell response to the command line
]

When you type the ! as the first character on a line, the shell command must
follow on that same line. The program’s response to your command will appear
as the command is running. When the command has finished executing, the !
will be appear alone on a line. This means that that you are back in the editor at
the current line.

LINE EDITOR TUTORIAL (ed) 215

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date,
type ! and the shell command date.

p<CR>

This is the current line

! date<CR>

Tue Apr 1 14:24:22 EST 1986
!

p<CR>

This is the current line.

The screen first displays the current line. Then the command is given to tem-
porarily leave the editor and display the date. After the date is displayed, you are
returned to the current line of the editor.

If you want to execute more than one command on the shell command line,
see the discussion on ; in the section called "Special Characters" in Chapter 7.

Recovering From System Interrupts

What happens if you are creating text in ed and there is an interrupt to the
system, you are accidentally hung up on the system, or your terminal is
unplugged? When an interrupt occurs, the UNIX system tries to save the con-
tents of the editing buffer in a special file named ed.hup. Later you can retrieve
your text from this file in one of two ways. First, you can use a shell command to
move ed.hup to another file name, such as the name the file had while you were
editing it (before the interrupt). Second, you can enter ed and use the f com-
mand to rename the contents of the buffer. An example of the second method is
shown in the following screen:

216 USER’S GUIDE

Other Useful Commands and Information

ed ed.hup<CR>
928

f myfile<CR>
myfile

If you use the second method to recover the contents of the buffer, be sure to
remove the ed.hup file afterward.

Conclusion

You now are familiar with many useful commands in ed. The commands
that were not discussed in this tutorial, such as G, P, Q and the use of () and { }>
are discussed on the ed(1) page of the User’s Reference Manual. You can experi-
ment with these commands and try them to see what tasks they perform.

Figure 5-9 summarizes the functions of the commands introduced in this sec-
tion.

LINE EDITOR TUTORIAL (ed) 217

Other Useful Commands and Information

Command Function

h Display a short error message for the preceding diag-
nostic ?.

H Turn on help mode. An error message will be given
with each diagnostic ?. The second H turns off help
mode.

1 Display nonprinting characters in the text.

f Display the current file name.

f newfile Change the current file name associated with the edit-
ing buffer to newfile.
lemd Temporarily escape to the shell to execute a shell
command cmd.
ed.hup The editing buffer is saved in ed.hup if the terminal is
hung up before a write command.

Figure 5-9: Summary of Other Useful Commands

218

USER’S GUIDE

Exercise 7

7-1.

7-2.

7-3.

Create a new file called newfilel. Access ed and change the file’s name to
currentl. Then create some text and write and quit ed. Run the Is com-

mand to verify that there is not a file called newfilel in your directory. If
you do the shell command Is, you will see the directory does not contain a
file called newfilel.

Create a file named filel. Append some lines of text to the file. Leave
append mode but do not write the file. Turn off your terminal. Then
turn on your terminal and log in again. Issue the Is command in the
shell. Is there a new file called ed.hup? Place ed.hup in ed. How can
you change the current file name to filel? Display the contents of the
file. Are the lines the same lines you created before you turned off your
terminal?

While you are in ed, temporarily escape to the shell and send a mail mes-
sage to yourself.

LINE EDITOR TUTORIAL (ed) 219

Answers to Exercises

Exercise 1

1-1.

s/edjunk<CR>

? junk

a<CR>

Hello world. <CR>
.<CR>

w<CR>

12

q<CR>

$

N

1-2.

$ ed junk<CR>

12

1,8p<CR>

Hello world. <CR>
q<CR>

$

220 USER’'S GUIDE

Answers to Exercises

The system did not respond with the warning question mark because you did
not make any changes to the buffer.

1-3.

$ ed junk <CR>

12

a<CR>

Wendy’s horse came through the window. <CR>
.<CR>

1,8p<CR>

Hello world.

Wendy’s horse came through the window.
q<CR>

?

w stuff <CR>

60

q<CR>

$

LINE EDITOR TUTORIAL (ed) 221

Answers to Exercises

Exercise 2
2-1.

$ ed towns<CR>

? towns

a<CR>

My kind of town is<CR>

Chicago <CR>

Like being no where at all in<CR>
Toledo<CR>

I lost those little town blues in <CR>
New York <CR>

I lost my heart in<CR>

San Francisco<CR>

I lost $$ in<CR>

Las Vegas<CR>

<LCR>

w<CR>

164

3<CR>
Like being no where at all in

222 USER’S GUIDE

Answers to Exercises

2-3.

2-4.

—2,+3p<CR>

My kind of town is

Chicago

Like being no where at all in
Toledo

I lost those little town blues in
New York

.=<CR>

6<CR>
New York

LINE EDITOR TUTORIAL (ed) 223

Answers to Exercises

2-5.

$<CR>
Las Vegas

?town<CR>

I lost those little town blues in
?<CR>

My kind of town is

224 USER’S GUIDE

Answers to Exercises

2-7.

g/in<CR>

My kind of town is

Like being no where at all in

I lost those little town blues in
I lost my heart in

I lost $$ in

v/in<CR>
Chicago
Toledo

New York

San Francisco
Las Vegas

Exercise 3
3-1.

$ ed ex3<CR>
?ex3

i<CR>

?

q<CR>

LINE EDITOR TUTORIAL (ed) 225

Answers to Exercises

The ? after the i means there is an error in the command

current line before which text can be inserted.

3-2.

226

. There is no

$ ed towns<CR>
164

n<CR>

10

3i<CR>
Illinois <CR >
<CR>
A<CR>
or<CR>
Naperville<CR>

<CR>

$i<CR>

hotels in<CR>

1,$n<CR>

my kind of town is

Chicago

or

Naperville

Illinois

Like being no where at all in
Toledo

I lost those little town blues in
New York

I lost my heart in

San Francisco

I lost $$ in

hotels in

Las Vegas

Las Vegas

-
20O VWO NOULPE WN

-
S w N

USER’S GUIDE

3-3.

1,50 <CR>

1 My kind of town is
2 Chicago

3 or

4 Naperville

5 Illinois
2,5¢<CR>
London<CR>

.<CR>

1,3n<CR>

1 My kind of town is
2 London

3 Like being no where at all

3-4.

Like being no where at all
/Tol<CR>

Toledo

¢<CR>

Peoria <CR>

.<CR>

<CR>

Peoria

LINE EDITOR TUTORIAL (ed)

Answers to Exercises

227

Answers to Exercises

3-5.

.<CR>

/New Y/c<CR>
Iron City <CR>
.<CR>

.<CR>

Iron City

Your search string need not be the entire word or line.

unique.

Exercise 4
4-1.

It only needs to be

g& town/s/town/city <CR>

v

My kind of city is
London

Like being no where at all in
Peoria

Iron City

I lost my heart in
San Francisco

I lost $$% in
hotels in

Las Vegas

228 USER’S GUIDE

Answers to Exercises

The line
I lost those little town blues in

was not printed because it was NOT addressed by the v command.

4-2.

.<CR>

Las Vegas
s?Las Vegas?Toledo <CR>
Toledo

?lost?s? ?found < CR>
I found $$ in

LINE EDITOR TUTORIAL (ed) 229

Answers to Exercises

4-4.

/no?s??NO<CR>

?
/no/s//NO<CR>
Like being NO where at all in

You cannot mix delimiters such as / and ? in a command line.
The substitution command on line 9 produced this output:
I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

230 USER’S GUIDE

Answers to Exercises

Exercise 5
5-1.

$ ed filel <CR>

? file1

a<CR>

A Computer Science <CR>
D Jogging<CR>

C Tennis<CR>
<CR>
1,$s/["ABI/A/<CR>
1,$p<CR>

A Computer Science
A Jogging

A Temnis

u<CR>

1,5s/"["AB]/A<CR>
1,$p<CR>
A Camputer Science
A Jogging
A Tennis

LINE EDITOR TUTORIAL (ed) 231

Answers to Exercises

5-2.

2i<CR>

These are not really my grades. <CR>
1,$p<CR>

A Camputer Science

These are not really my grades.
A Temnis

A Jogging

/""Al1<CR>

These are not really my grades
?"[TI<CR>

These are not really my grades

1,$p<CR>

I love money

I need money

The IRS wants my money
g/"I/s/L*m /It’s my m<CR>
It’s my money

It’s my money

232 USER’S GUIDE

/s/money/gold <CR>
It’s my gold

2,8s//% <CR>

The IRS wants my gold

5-4.

$/10202/ & 0<CR>
10202031020

a<CR>

*\& %" *<CR>
.<CR>
s/*/a<CR>
a.\N&%" *
s/*/b<CR>
a.\&%" Db

LINE EDITOR TUTORIAL (ed)

Answers to Exercises

233

Answers to Exercises

Because there were no preceding characters, * substituted for itself.

s/ \./e<CR>
ac\&%"b
s/ \\/d<CR>
acd&%”b
s/ & /e<CR>
acde%”b
s/ % /f<CR>
acdef”™b

o

The & and % are only special characters in the replacement text.

s/ \"/g<CR>
acdefgb

Exercise 6
6-1. Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in the

file at those points in the text.

If you want to copy the lines into another file you must write them to a
file and then read that file into the buffer containing the other file.

234 USER’S GUIDE

Answers to Exercises

725

10,17 w temp<CR>
210

q<CR>

ed exer6 <CR>

305

Tr temp<CR>

210

The file temp can be called any file name.

6-2.

33,46m3<CR>

LINE EDITOR TUTORIAL (ed) 235

Answers to Exercises

6-3.

.=<CR>

10

13p<CR>

This is line 13.

j<CR>

P<CR>

This is line 13.and line 14.

Remember that .= gives you the current line.

236 USER’S GUIDE

Answers to Exercises

Exercise 7
7-1.

$ ed newfilel <CR>

? newfile1

f currentl1 <CR>

current

a<CR>

This is a line of text<CR>
Will it go into newfilel <CR>
or into currentl <CR>
.<CR>

w<CR>

66

q<CR>

$ Is<CR>

bin

current

7-2.

ed filel <CR>

? file1

a<CR>

I am adding text to this file. <CR>
Will it show up in ed.hup? <CR>
.<CR>

LINE EDITOR TUTORIAL (ed) 237

Answers to Exercises

Turn off your terminal.

Log in again.

ed ed.hup<CR>

58

f filel <CR>

file1

1,8p<CR>

I am adding text to this file.
Will it show up in ed.hup?

$ ed filel <CR>

58

! mail mylogin<CR>

You will get mail when<CR>
you are done editing! <CR>

<CR>
!

238 USER’S GUIDE

CHAPTER 6: SCREEN EDITOR TUTORIAL (vi)

Introduction

This chapter is a tutorial on the screen editor, vi (short for visual editor).
The vi editor is a powerful and sophisticated tool for creating and editing files. It
is designed for use with a video display terminal which is used as a window
through which you can view the text of a file. A few simple commands allow you
to make changes to the text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows you to move
the cursor to any point on the screen or in the file (by specifying places such as
the beginning or end of a word, line, sentence, paragraph, or file) and create,
change, or delete text from that point. You can also use some line editor com-
mands, such as the powerful global commands that allow you to change multiple
occurrences of the same character string by issuing one command. To move
through the file, you can scroll the text forward or backward, revealing the lines
below or above the current window, as shown in Figure 6-1.

Not all terminals have text scrolling capability; whether or not you can take
NOTE| advantage of vi’s scrolling feature depends on what type of terminal you have.

SCREEN EDITOR TUTORIAL (vi) 239

Introduction

TEXT FILE
You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

-

This part of the file
is in the display window.

You can edit it.

N

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 6-1: Displaying a File with a vi Window

!

240 USER’S GUIDE

Introduction

There are more than 100 commands within vi. This chapter covers the basic
commands that will enable you to use vi simply but effectively. Specifically, it
explains how to do the following tasks:

set up your terminal so that vi is accessible

enter vi, create text, delete mistakes, write the text to a file, and quit
move text within a file

electronically cut and paste text

use special commands and shortcuts

temporarily escape to the shell to execute shell commands

use line editing commands available within vi

edit several files in the same session

recover a file lost by an interruption to an editing session

change your shell environment to set your terminal configuration and an
automatic carriage return

Suggestions for Reading this Tutorial

As you read this tutorial, keep in mind the notation conventions described in
the Preface. In the screens in this chapter arrows are also used to show the posi-
tion of the cursor.

The commands discussed in each section are reviewed at the end of the sec-
tion. A summary of vi commands is found in Appendix D, where they are listed
by topic. At the end of some sections, exercises are given so you can experiment.
The answers to all the exercises are at the end of this chapter. The best way to
learn vi is by doing the examples and exercises as you read the tutorial. Log in on
the UNIX system when you are ready to read this chapter.

SCREEN EDITOR TUTORIAL (vi) 241

Getting Started

The UNIX system is flexible; it can run on many types of computers and can
be accessed from many kinds of terminals. However, because it is internally
structured to be able to operate in so many ways, it needs to know what kind of
hardware is being used in a given situation.

In addition, the UNIX system offers various optional features for using your
terminal that you may or may not want to incorporate into your computing ses-
sion routine. Your choice of these options, together with your hardware
specifications, comprise your login environment. Once you have set up your login
environment, the shell implements these specifications and options automatically
every time you log in.

This section describes two parts of the login environment: setting the terminal
configuration, which is essential for using vi properly, and setting the wrapmargin,
or automatic (carriage) RETURN, which is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration. This simply
means that you tell the UNIX system what type of terminal you are using. This
is necessary because the software for the vi editor is executed differently on
different terminals.

Each type of terminal has several code names that are recognized by the
UNIX system. Appendix F, "Setting Up the Terminal," tells you how to find a
recognized name for your terminal. Keep in mind that many computer installa-
tions add terminal types to the list of terminals supported by default in your
UNIX system. It is a good idea to check with your local system administrator for
the most up-to-date list of available terminal types.

To set your terminal configuration, type

TERM =terminal_name<CR>
export TERM <CR>
tput init<CR>

The first line puts a value (a terminal type) in a variable called TERM. The
second line exports this value; it conveys the value to all UNIX system programs
whose execution depends on the type of terminal being used.

242 USER’S GUIDE

Getting Started

The tput command on the third line initializes (sets up) the software in your
terminal so that it functions properly with the UNIX system. It is essential to
run the tput init command when you are setting your terminal configuration
because terminal functions such as tab settings will not work properly unless you
do.

For example, if your terminal is a Teletype 5425 this is how your commands
will appear on the screen.

$ TERM =5425<CR>
$ export TERM <CR>
$ tputimit<CR>"

Do not experiment by entering names for terminal types other than your ter-
minal. This might confuse the UNIX system, and you may have to log off, hang
up, or get help from your system administrator to restore your login environment.

Changing Your Environment

If you are going to use vi regularly, you should change your login environment
permanently so you do not have to configure your terminal each time you log in.
Your login environment is controlled by a file in your home directory called
.profile. (This file, pronounced dot profile, does not exist in the file system; you
must create it. For details, see Chapter 7.)

If you specify the setting for your terminal configuration in your .profile, your
terminal will be configured automatically every time you log in. You can do this
by adding the three lines shown in the last screen (the TERM assignment, export
command, and tput command) to your .profile. (For detailed instructions, see
Chapter 7.)

SCREEN EDITOR TUTORIAL (vi) 243

Getting Started

Setting the Automatic RETURN

To set an automatic RETURN you must know how to create a file. If you are
NOTE familiar with another text editor, such as ed, follow the instructions in this sec-
tion. If you do not know how to use an editor but would like to have an

' automatic RETURN setting, skip this section for now and return to it when you
have learned the basic skills taught in this chapter.

If you want the RETURN key to be entered automatically, create a file
called .exrc in your home directory. You can use the .exre file to contain options
that control the vi editing environment. (For details about the .exre file, see the
Editing Guide or Editing Utilities Guide.)

To create a .exrc file, enter an editor with that file name. Then type in one
line of text: a specification for the wrapmargin (automatic carriage return)
option. The format for this option specification is

wm=n<CR>

n represents the number of characters from the righthand side of the screen where
you want an automatic carriage return to occur. For example, say you want a
carriage return at twenty characters from the righthand side of the screen. Type

wm=20<CR>

Finally, write the buffer contents to the file and quit the editor (see "Text Editing
Buffers" in Chapter 4). The next time you log in, this file will give you an
automatic RETURN.

To check your settings for the terminal and wrapmargin when you are in vi,
enter the command

set<CR>

vi will report the terminal type and the wrapmargin, as well as any other options
you may have specified. You can also use the :set command to create or change
the wrapmargin option. Try experimenting with it.

244 USER’'S GUIDE ‘

Creating a File

First, enter the editor; type vi and the name of the file you want to create or
edit.

vi filename <CR>

For example, say you want to create a file called stuff. When you type the vi
command with the file name stuff, vi clears the screen and displays a window in
which you can enter and edit text.

"stuff" [New file]

/

The __ (underscore) on the top line shows the cursor waiting for you to enter
a command there. (On video display terminals the cursor may be a blinking
underscore or a reverse color block.) Every other line is marked with a — (tilde),
the symbol for an empty line.

If, before entering vi, you have forgotten to set your terminal configuration or
have set it to the wrong type of terminal, you will see an error message instead.

SCREEN EDITOR TUTORIAL (vi) 245

Creating a File

$ vi stuff <CR>
terminal_name: unknown terminal type

[Using open mode]
"stuff" [New file]

You cannot set the terminal configuration while you are in the editor; you must be
in the shell. Leave the editor by typing

: q<CR>

Then set the correct terminal configuration.

How to Create Text: the Append Mode
If you have successfully entered vi, you are in command mode and vi is wait-
ing for your commands. How do you create text?

B Press the A key (<a>) to enter the append mode of vi. (Do not press the
RETURN key.) You can now add text to the file. (An A is not printed on
the screen.)

® Type in some text.
B To begin a new line, press the RETURN key.
If you have specified the wrapmargin option in a .exrc file, you will get a

new line whenever you get an automatic RETURN (see "Setting the
Automatic RETURN").

246 USER’'S GUIDE

Creating a File

How to Leave Append Mode

When you finish creating text, press the ESCAPE key to leave append mode
and return to command mode. Then you can edit any text you have created or
write the text in the buffer to a file.

<a>Create some text<CR>
in the screen editor <CR>
and return to<CR>
command mode. <ESC>

If you press the ESCAPE key and a bell sounds, you are already in command
mode. The text in the file is not affected by this, even if you press the ESCAPE
key several times.

SCREEN EDITOR TUTORIAL (vi) 247

Editing Text: the Command Mode

To edit an existing file you must be able to add, change, and delete text.
However, before you can perform those tasks you must be able to move to the
part of the file you want to edit. vi offers an array of commands for moving from
page to page, between lines, and between specified points inside a line. These
commands, along with commands for deleting and adding text, are introduced in
this section.

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the screen
where you will begin the correction. This is easily done with four keys that are
grouped together on the keyboard: h, j, k, and 1.

<h> moves the cursor one character to the left
<j> moves the cursor down one line

<k> moves the cursor up one line

<1> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the cursor. For
example, if the cursor is on the seventh character from the left, when you type
<j> or <k> it goes to the seventh character on the new line. If there is no
seventh character on the new line, the cursor moves to the last character.

Many people who use vi find it helpful to mark these four keys with arrows
showing the direction in which each key moves the cursor.

248 USER’'S GUIDE

Editing Text: the Command Mode

-i

- 4y

t
=2
.
, |
%ﬁ

L__-’A—-'“‘ A vifle)l e H[:IL - ! Jr
Jo I B ﬁLL__JH 1]

Some terminals have special cursor control keys that are marked with arrows.
NOTE Use them in the same way you use the <h>, <j>, <k>, and <I> commands.

Watch the cursor on the screen while you press the keys <h>, <j>, <k>,
and <I>. Instead of pressing a motion command key a number of times to move
the cursor a corresponding number of spaces or lines, you can precede the com-
mand with the desired number. For example, to move two spaces to the right,
you can press <I> twice or enter <21>. To move up four lines, press <k>
four times or enter <4k>. If you cannot go any farther in the direction you
have requested, vi will sound a bell.

Now experiment with the j and k motion commands. First, move the cursor
up seven lines. Type

<7k>

SCREEN EDITOR TUTORIAL (vi) 249

Editing Text: the Command Mode

The cursor will move up seven lines above the current line. If there are less than
seven lines above the current line, a bell will sound and the cursor will remain on
the current line.

Now move the cursor down thirty-five lines. Type
<35j>

vi will clear and redraw the screen. The cursor will be on the thirty-fifth line
below the current line, appearing in the middle of the new window. If there are
less than thirty-five lines below the current line, the bell will sound and the cursor
will remain on the current line. Watch what happens when you type the next
command. '

<35k>

Like most vi commands, the <h>, <j>, <k>, and <I> motion commands
are silent; they do not appear on the screen as you enter them. The only time you
should see characters on the screen is when you are in append mode and are
adding text to your file. If the motion command letters appear on the screen, you
are still in append mode. Press the ESCAPE key to return to command mode
and try the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <I>, the space bar and
the BACKSPACE key can be used to move the cursor right or left to a character
on the current line.

<space bar> move the cursor one character to the right
<nspace bar> move the cursor n characters to the right
<BACKSPACE> move the cursor one character to the left
<nBACKSPACE> move the cursor n characters to the left

Try typing in a number before the command key. Notice that the cursor

moves the specified number of characters to the left or right. In the example
below, the cursor movement is shown by the arrows.

250 USER’S GUIDE

Editing Text: the Command Mode

To move the cursor quickly to the right or left, prefix a number to the com-
mand. For example, suppose you want to create four columns in your screen.
After you've finished typing the headings for the first three columns, you notice a
typing mistake.

Colum 1 Colum 2 colummn

<ESC>

You want to correct your mistake before continuing. Exit insert mode and return
to command mode by pressing the ESCAPE key; the cursor will move to the n.
Then use the <h> command to move back five spaces.

Colum 1 Colum 2 colummn \

<5h>
Colum 1 Colum 2 column
<x><i>C<ESC>

/

SCREEN EDITOR TUTORIAL (vi) 251

Editing Text: the Command Mod

Erase the ¢ by typing <x>. Then change to insert mode (<i>), enter a C, fol-
lowed by pressing the ESCAPE key. Use the <1> motion command to return to
your earlier position.

gxm 1 Colum 2 Colurm \

<S>

Column 1 Column 2 Colum

By now you may have discovered that you can move the cursor back and
forth on a line by using the space bar and the BACKSPACE key.

<space bar> move the cursor one character to the right
<nspace bar> move the cursor n characters to the right
<BACKSPACE> move the cursor one character to the left
<nBACKSPACE> move the cursor n characters to the left

Again, you can specify a multiple space movement by typing a number before
pressing the space bar or BACKSPACE key. The cursor will move the number of
characters you request to the left or right.

252 USER’S GUIDE

Editing Text: the Command Mode

How to Delete Text

If you want to delete a character, move the cursor to that character and press
the <x>. Watch the screen as you do so; the character will disappear and the
line will readjust to the change. To erase three characters in a row, press <x>
three times. In the following example, the arrows under the letters show the posi-
tions of the cursor.

<x> delete one character

<nx> delete n characters, where n is the number of characters
you want to delete

/ Hello warld!

<x>

Hello wrld!

Now try preceding <x> with the number of characters you want to delete.
For example, delete the second occurrence of the word deep from the text shown
in the following screen. Put the cursor on the first letter of the string you want to
delete, and delete five characters (for the four letters of deep plus an extra
space).

SCREEN EDITOR TUTORIAL (vi) 253

Editing Text: the Command Mode

Tomorrow the Loch Ness monster
shall slither forth fram
the deep dark deep depths of the lake.

<Sx>

Tamorrow the Loch Ness monster
shall slither forth from
the deep dark depths of the lake.

f

<5x>

Notice that vi adjusts the text so that no gap appears in place of the deleted
string. If, as in this case, the string you want to delete happens to be a word, you
can also use the vi command for deleting a word. This command is described
later in the section "Word Positioning."

254 USER'S GUIDE

Editing Text: the Command Mode

How to Add Text

There are two basic commands for adding text: the insert (<i>) and append
(<a>) commands. To add text with the insert command at a point in your file
that is visible on the screen, move the cursor to that point by using <h>, <j>,
<k>, and <I>. Then press <i> and start entering text. As you type, the new
text will appear on the screen to the left of the character on which you put the
cursor. That character and all characters to the right of the cursor will move
right to make room for your new text. The vi editor will continue to accept the
characters you type until you press the ESCAPE key. If necessary, the original
characters will even wrap around onto the next line.

/Hello Wrld!

<i>o

Helle World!

T

<ESC>

You can use the append command in the same way. The only difference is
that the new text will appear to the right of the character on which you put the
cursor.

Later in this tutorial you will learn how to move around on the screen or
scroll through a file to add or delete characters, words, or lines.

SCREEN EDITOR TUTORIAL (vi) 255

Quitting vi

When you have finished your text, you will want to write the buffer contents
to a file and return to the shell. To do this, hold down the SHIFT key and press
Z twice (<ZZ>). The editor remembers the file name you specified with the vi
command at the beginning of the editing session, and moves the buffer text to the
file of that name. A notice at the bottom of the screen gives the file name and the
number of lines and characters in the file. Then the shell gives you a prompt.

crhis is a test file. <CR>

I am adding text to<CR>

a temporary buffer and <CR>

now it is perfect. <CR>

I want to write this file, <CR>

and return to the shell. <ESC> <ZZ>

-~

"stuff" [New file] 7 lines, 151 characters
$

You can also use the :w and :q commands of the line editor for writing and
quitting a file. (Line.editor commands begin with a colon and appear on the bot-
tom line of the screen.) The :w command writes the buffer to a file. The :q
command leaves the editor and returns you to the shell. You can type these com-
mands separately or combine them into the single command :wq. It is easier to

combine them.

256 USER’S GUIDE

Quitting vi

<a>This is a test file. <CR>

I am adding text to<CR>

a temporary buffer and <CR>

now it is perfect. <CR>

I want to write this file, KCR>
and return to the shell. <ESC>

SCREEN EDITOR TUTORIAL (vi) 257

Quitting vi

Figure 6-2 summarizes the basic commands you need to enter and use vi.

Command

Function

TERM =terminal_name
export TERM

tput init

vi filename
<a>
<h>
<j>
<k>
<I>
<x>
<CR>
<ESC>

R
q

‘wq
<ZZ>

set the terminal configuration

initialize the terminal as defined by terminal_name
enter vi editor to edit the file called filename

add text after the cursor

move one character to the left

move down one line

move up one line

move one character to the right

delete a character

carriagc return

leave append mode, and return to vi
command mode

write to a file
quit vi
write to a file and quit vi

write to a file and quit vi

Figure 6-2: Summary of Commands for the vi Editor

258 USER’'S GUIDE

Exercise 1

Answers to the exercises are given at the end of this chapter. However, keep
in mind that there is often more than one way to perform a task in vi. If your
method works, it is correct.

As you give commands in the following exercises, watch the screen to see how
it changes or how the cursor moves.

1-1. If you have not logged in yet, do so now. Then set your terminal
configuration.

1-2. Enter vi and append the following five lines of text to a new file called
exerl.

This is an exercise!
Up, down,

left, right,

build your terminal’s
muscles bit by bit

1-3. Move the cursor to the first line of the file and the seventh character from
the right. Notice that as you move up the file, the cursor moves in to the
last letter of the file, but it does not move out to the last letter of the next
line.

1-4. Delete the seventh and eighth characters from the right.
1-5. Move the cursor to the last character on the last line of the text.

1-6. Append the following new line of text:

and byte by byte
1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file exerl.
What does the notice at the bottom of the screen say once you have reen-
tered vi to edit exerl?

SCREEN EDITOR TUTORIAL (vi) 259

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>, <j>, <k>,
<1>, BACKSPACE key, and the space bar. There are several other commands
that can help you move the cursor quickly around the screen. This section
explains how to position the cursor in the following ways:

B by characters on a line
B by lines
B by text objects

o words

- sentences

= paragraphs

B in the window

There are also commands that position the cursor within parts of the vi editing
buffer that are not visible on the screen. These commands will be discussed in the
next section, "Positioning the Cursor in Undisplayed Text."

To follow this section of the tutorial, you should enter vi with a file that con-
tains at least forty lines. If you do not have a file of that length, create one now.
Remember, to execute the commands described here, you must be in command
mode of vi. Press the ESCAPE key to make sure that you are in command mode
rather than append mode.

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a line.
B by moving the cursor right or left to a character
B by specifying the character at either end of the line

® by searching for a character on a line

The first method was discussed earlier in this chapter under "Moving the Cursor
to the Right or Left." The following sections describe the other two methods.

260 USER’S GUIDE

Moving the Cursor Around the Screen

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using one of three
commands that put the cursor on the first or last character of a line.

<$> puts the cursor on the last character of a line
<0> (zero) puts the cursor on the first character of a line

<"> (circumflex) puts the cursor on the first nonblank character of a line

The following examples show the movement of the cursor produced by each of
these three commands.

étheendofthelinel

<$>

Go to the end of the line!

T

SCREEN EDITOR TUTORIAL (vi) 261

Moving the Cursor Around the Screen

Go to the beginning of the line!

T

<0>
Go to the begimning of the line!

T

Go to the first character
of the line
that is not blank!

T

<>
Go to the first character
of the line
that is not blank!

T

262 USER’S GUIDE

Moving the Cursor Around the Screen

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a specific char-
acter on the current line. If the character is not found on the current line, a bell
sounds and the cursor does not move. (There is also a command that searches a
file for patterns. This will be discussed in the next section.) There are six com-
mands you can use to search within a line: <f>, <F>, <t>, <T>, <;>, and
<,>. You must specify a character after all of them except the <;> and <,>
commands.

<fx> Move the cursor to the right to the specified character x.
<Fx> Move the cursor to the left to the specified character x.

<tx> Move the cursor right to the character just before the specified char-
acter x.

<Tx> Move the cursor left to the character just after the specified character
x.

<;> Continue the search specified in the last command, in the same direc-
tion. The ; remembers the character and seeks out the next
occurrence of that character on the current line.

<,> Continue the search specified in the last command, in the opposite
direction. The , remembers the character and seeks out the previous
occurrence of that character on the current line.

For example, in the following screen vi searches to the right for the first
occurrence of the letter A on the current line.

SCREEN EDITOR TUTORIAL (vi) 263

Moving the Cursor Around the Screen

@rwardtotheletterAmthis line.

<fA>
Go forward to the letter A on this line.

T

/

Try the search commands on one of your files.

Line Positioning

Besides the <j> and <k> commands that you have already used, the
<+>, <->, and <CR> commands can be used to move the cursor to other
lines.

The Minus Sign Motion Command

The <-> command moves the cursor up a line, positioning it at the first non-
blank character on the line. To move more than one line at a time, specify the
number of lines you want to move before the <-> command. For example, to
move the cursor up thirteen lines, type:

<13—->

The cursor will move up thirteen lines. If some of those lines are above the
current window, the window will scroll up to reveal them. This is a rapid way to
move quickly up a file.

Now try to move up 100 lines. Type:
<100—>

What happened to the window? If there are less then 100 lines above the current
line a bell will sound, telling you that you have made a mistake, and the cursor
will remain on the current line.

264 USER’S GUIDE

Moving the Cursor Around the Screen

The Plus Sign Motion Command

The plus sign command (< +>) or the <CR> command moves the cursor
down a line. Specify the number of lines you want to move before the < +>
command. For example, to move the cursor down nine lines, type:

<9+>

The cursor will move down nine lines. If some of those lines are below the current
screen, the window will scroll down to reveal them.

Now try to do the same thing by pressing the RETURN key. Were the resu-
Its the same as when you pressed the + key?

Word Positioning

The vi editor considers a word to be a string of characters that may include
letters, numbers, or underscores. There are six word positioning commands:
<w>, , <e>, <W>, , and <E>. The lower case commands
(<w>, , and <e>) treat any character other than a letter, digit, or under-
score as a delimiter, signifying the beginning or end of a word. Punctuation
before or after a blank is considered a word. The beginning or end of a line is
also a delimiter.

The upper case commands (<W>, , and <E>) treat punctuation as
part of the word; words are delimited by blanks and newlines only.

The following is a summary of the word positioning commands.

<w> Move the cursor forward to the first character in the next word. You
may press <w> as many times as you want to reach the word you
want, or you can prefix the necessary number to the <w>.

<nw> Move the cursor forward n number of words to the first character of
that word. The end of the line does not stop the movement of the
cursor; instead, the cursor wraps around and continues counting
words from the beginning of the next line.

SCREEN EDITOR TUTORIAL (vi) 265

Moving the Cursor Around the Screen

C<W> cammand

leaps word by word through the
file. Move from THIS word forward

T

six words to THIS word.

<6w>

@w> cammand

leaps word by word through the
file. Move from THIS word forward
six words to THIS word.

f

266

NN

<W> Ignore all punctuation and move the cursor forward to the word after
the next blank.

<e> Moves the cursor forward in the line to the last character in the next
word.

USER’S GUIDE

Moving the Cursor Around the Screen

Go forward one word to the end of
the next word in this line

T

<e>

Go forward one word to the end of
the next word in this line

T

Go to the end of the third word after the current word.

T

<3e>

SCREEN EDITOR TUTORIAL (vi) 267

Moving the Cursor Around the Screen

Go to the end of the third word after the current word.

T

<E> Ignores all punctuation except blanks, delimiting words only by
blanks.

 Move the cursor backward in the line to the first character of the pre-
vious word.

<nb> Move the cursor backward » number of words to the first character
of the nth word. The command does not stop at the beginning
of a line, but moves to the end of the line above and continues mov-
ing backward.

 Can be used just like the command, except that it delimits the
word only by blank spaces and newlines. It treats all other punctua-
tion as letters of a word.

Leap backward word by word through
the file. Go back four words from here.

T

<4b>

268 USER’'S GUIDE

Moving the Cursor Around the Screen

the file. Go back four words from here.

T

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence endsin ! or . or ?.
If these delimiters appear in the middle of a line, they must be followed by two
blanks for vi to recognize them. You should get used to the vi convention of
recognizing two blanks after a period as the end of a sentence, because it is often
useful to be able to operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file with the < (>
(open parenthesis) and <)> (close parenthesis) commands.

< (> Move the cursor to the beginning of the current sentence.

< n(>Move the cursor to the beginning of the nth sentence above the
current sentence.

<) > Move the cursor to the beginning of the next sentence.
< n) >Move the cursor to the beginning of the nth sentence below the

current sentence.

The example in the following screens shows how the open parenthesis moves
the cursor around the screen.

SCREEN EDITOR TUTORIAL (vi) 269

Moving the Cursor Around the Screen

Suddenly we spotted whales in the
distance. Daniel was the first to see them.

T

<(>

distance. Daniel was the first to see them.

T

Now repeat the command, preceding it with a number. For example, type:
<3(> (on)
<5)>

Did the cursor move the correct number of sentences?

270 USER’S GUIDE

Moving the Cursor Around the Screen

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line. If you want
to be able to move the cursor to the beginning of a paragraph (or later in this
tutorial, to delete or change a whole paragraph), then make sure each paragraph
ends in a blank line.

<{> Move the cursor to the beginning of the current paragraph,
which is delimited by a blank line above it.

<n{> Move the cursor to the beginning of the nth paragraph above
the current paragraph.

<}> Move the cursor to the beginning of the next paragraph.

<n}> Move the cursor to the nth paragraph below the current line.

The following two screens show how the cursor can be moved to the beginning
of another paragraph.

/Stﬁderﬂy, we spotted whales in the \

distance. Daniel was the first to see them.

T

<}>
"Hey lock! Here come the whales!" he cried excitedly.

N

SCREEN EDITOR TUTORIAL (vi) 271

Moving the Cursor Around the Screen

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

B m———
"Hey look! Here come the whales!" he cried excitedly.

Positioning in the Window

The vi editor also provides three commands that help you position yourself in
the window. Try out each command. Be sure to type them in upper case.

<H> Move the cursor to the first line on the screen.
<M> Move the cursor to the middle line on the screen.
<L> Move the cursor to the last line on the screen.

272 USER’S GUIDE

Moving the Cursor Around the Screen

This part of the file is
above the display window.

Type <H> (HOME) to move the cursor here.

Type <M> (MIDDLE) to move the cursor here.

Type <L> (LAST line on screen) to move
the cursor here.

. j

This part of the file is
below the display window.

Figures 6-3 through 6-6 summarize the vi commands for moving the cursor
by positioning it on a character, line, word, sentence, paragraph, or position on the
screen. (Additional vi commands for moving the cursor are summarized in Figure
6-7, later in the chapter.)

SCREEN EDITOR TUTORIAL (vi) 273

Moving the Cursor Around the Screen

Positioning on a Character

<h>
<I>
<BACKSPACE>
<space bar>

<fx>

<Fx>

<tx>

<Tx>

Move the cursor one character to the left.
Move the cursor one character to the right.
Move the cursor one character to the left.
Move the cursor one character to the right.

Move the cursor to the right to the specified char-
acter x.

Move the cursor to the left to the specified char-
acter x.

Move the cursor to the right, to the character just
before the specified character x.

Move the cursor to the left, to the character just
after the specified character x.

Continue searching in same direction on the line
for the last character requested with <f>, <F>,
<t>, or <T>. The ; remembers the character
and finds the next occurrence of it on the current
line.

Continue searching in opposite direction on the
line for the last character requested with <f>,
<F>, <t>, or <T>. The , remembers the
character and finds the next occurrence of it on
the current line.

Figure 6-3: Summary of vi Motion Commands (Sheet 1 of 4)

274 USER’S GUIDE

Moving the Cursor Around the Screen

Positioning on a Line

<k>

<+>

<CR>

Move the cursor up to the same column in the previ-
ous line (if a character exists in that column).

Move the cursor down to the same column in the next
line Gf a character exists in that column).

Move the cursor up to the beginning of the previous
line.

Move the cursor down to the beginning of the next
line.

Move the cursor down to the beginning of the next
line.

Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4)

SCREEN EDITOR TUTORIAL (vi)

275

Moving the Cursor Around the Screen

Positioning on a Word

<w> Move the cursor forward to the first character in the
next word.
<W> Ignore all punctuation and move the cursor forward to

the next word delimited only by blanks.

 Move the cursor backward one word to the first char-
acter of that word.

 Move the cursor to the left one word, which is delim-
ited only by blanks.

<e> Move the cursor to the end of the current word.
<E> Delimit the words by blanks only. The cursor is

placed on the last character before the next blank
space, or end of the line.

Figure 6-5: Summary of vi Motion Commands (Sheet 3 of 4)

276 USER’S GUIDE

Moving the Cursor Around the Screen

Pasitioning on a Sentence
<(> Move the cursor to the beginning of the current sen-
tence.
<)> Move the cursor to the beginning of the next sentence.
Positioning on a Paragraph
<{> Move the cursor to the beginning of the current para-
graph.
<}> Move the cursor to the beginning of the next para-
graph.
Positioning in the Window
<H> Move the cursor to the first line on the screen (the
home position).
<M> Move the cursor to the middle line on the screen.
<L> Move the cursor to the last line on the screen.

Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4)

SCREEN EDITOR TUTORIAL (vi)

277

Positioning the Cursor in Undisplayed Text

How do you move the cursor to text that is not shown in the current editing
window? One option is to use the <20j> or <20k> command. However, if you
are editing a large file, you need to move quickly and accurately to another place
in the file. This section covers those commands that can help you move around
within the file in the following ways:

® by scrolling forward or backward in the file
B by going to a specified line in the file

B by searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The <"f> (control-f)
and <"d> (control-d) commands scroll the screen forward. The <“b>
(control-b) and <™u> (control-u) commands scroll the screen backward.

The Control-f Command.

The <*f> (control-f) command scrolls the text forward one full window of
text below the current window. To do this vi clears the screen and redraws the
window. The three lines that were at the bottom of the current window are
placed at the top of the new window. If there are not enough lines left in the file
to fill the window, the screen displays a ~ (tilde) to show that there are empty
lines.

vi clears and redraws the screen as follows:

278 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

These last three lines of the current
window become the first two lines of
the new window.

.)

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
Qisplay window. \ g >

The Control-d Command

The <"d> (control-d) command scrolls down a half screen to reveal text
below the window. When you type <"d>, the text appears to be rolled up at the
top and unrolled at the bottom. This allows the lines below the screen to appear
on the screen, while the lines at the top of the screen dlsappear If there are not
enough lines in the file, a bell will sound.

The Control-b Command

The <"b> (control-b) command scrolls the screen back a full window to
reveal the text above the current window. To do this, vi clears the screen and
redraws the window with the text that is above the current screen. Unlike the
<*f> command, <"b> does not leave any reference lines from the previous win-
dow. If there-are not enough lines above the current window to fill a full new
window, a bell will sound and the current window will remain on the screen.

SCREEN EDITOR TUTORIAL (vi) 279

Positioning the Cursor in Undisplayed Text

This part of the file f
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window

will be placed below the current
window.

The current window clears and is re-
drawn with the text above the window.

Now try scrolling backward. Type

<"b>

vi clears the screen and draws a new screen.

280 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

N

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window

will be placed below the current

window.

The current window clears and is
redrawn with the text above the

window.

Any text that was in the display window is placed below the current window.

The Control-u Command

The <"u> (control-u) command scrolls up a half screen of text to reveal the
lines just above the window. The lines at the bottom of the window are erased.
Now scroll down in the text, moving the portion below the screen into the window.
Type:

<"u>
When the cursor reaches the top of the file, a bell sounds to notify you that the
file cannot scroll further.

Go to a Specified Line

The <G> command positions the cursor on a specified line in the window; if
that line is not currently on the screen, <G> clears the screen and redraws the
window around it. If you do not specify a line, <G> goes to the last line of the
file.

SCREEN EDITOR TUTORIAL (vi) 281

Positioning the Cursor in Undisplayed Text

<G> go to the last line of the file
<nG> go to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and type
<"g>. The <"g> command gives you a status notice at the bottom of the
screen which tells you:

® the name of the file
if the file has been modified
the line number on which the cursor rests

the total number of lines in the buffer

the percentage of the total lines in the buffer represented by the current
line

/

This line is the 35th line of the buffer.
The cursor is on this line.

i

<"g>

There are several more lines in the
buffer.
The last line of the buffer is line 116.

282 USER’'S GUIDE

Positioning the Cursor in Undisplayed Text

Csline is the 35th line of the buffer.

The cursor is on this line.

There are several more lines in the
buffer.
The last line of the buffer is line 116.

"file.name" [modified] line 36 of 116 —--34%—-

/

Searching for a Pattern of Characters: the / and ?
Commands

The fastest way to reach a specific place in your text is by using one of the
search commands: /, ?, <n>, or <N>. These commands allow you to search
forward or backward in the buffer for the next occurrence of a specified character
pattern. The / and ? commands are not silent; they appear as you type them,
along with the search pattern, on the bottom of the screen. The <n> and <N>
commands, which allow you to repeat the requests you made for a search with a /
or ? command, are silent.

The /, followed by a pattern (/pattern), searches forward in the buffer for the
next occurrence of the characters in pattern, and puts the cursor on the first of
those characters. For example, the command line

/Hello world<CR>

finds the next occurrence in the buffer of the words Hello world and puts the cur-
sor under the H.

The ?, followed by a pattern (?pattern), searches backward in the buffer for
the first occurrence of the characters in pattern, and puts the cursor on the first of
those characters. For example, the command line

?data set design<CR>

SCREEN EDITOR TUTORIAL (vi) 283

Positioning the Cursor in Undisplayed Text

finds the last occurrence in the buffer (before your current position) of the words
data set design and puts the cursor under the d in data.

These search commands do not wrap around the end of a line while searching
for two words. For example, say you are searching for the words Hello world.
If Hello is at the end of one line and world is at the beginning of the next, the
search command will not find that occurrence of Hello World.

However, they do wrap around the end or the beginning of the buffer to con-
tinue a search. For example, if you are near the end of the buffer, and the pat-
tern for which you are searching (with the /pattern command) is at the top of the
buffer, the command will find the pattern.

The <n> and <N> commands allow you to continue searches you have
requested with /pattern or ?pattern without retyping them.

<n> Repeat the last search command.

<N> Repeat the last search command in the opposite direction.

For example, say you want to search backward in the file for the three-letter pat-
tern the. Initiate the search with ?the and continue it with <mn>. The following
screens offer a step-by-step illustration of how the <m> searches backward
through the file and finds four occurrences of the character string the.

gmly,wespottedwhalesinthe

distance. Daniel was the first to see them.

"Hey lock! Here come the whales!" he cried excitedly.

?the

284 USER’'S GUIDE.

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.
P

"Hey lock! Here come the whales!" he cried excitedly.

T

o))

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey lock! Here came the whales!" he cried excitedly.

T

<n>

AN/

SCREEN EDITOR TUTORIAL (vi) 285

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

T

V)]

"Hey look! Here come the whales!" he cried excitedly.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

T

<n>

"Hey look! Here come the whales!" he cried excitedly.

286 USER’S GUIDE

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

T

3)

"Hey look! Here came the whales!" he cried excitedly.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

T

<n>
P

"Hey look! Here came the whales!" he cried excitedly.

N

SCREEN EDITOR TUTORIAL (vi) 287

Positioning the Cursor in Undisplayed Text

-

y, we spotted whales in the

T

@
distance. Daniel was the first to see them.
P
"Hey loock! Here come the whales!" he cried excitedly.

The / and ? search commands do not allow you to specify particular
occurrences of a pattern with numbers. You cannot, for example, request the
third occurrence (after your current position) of a pattern.

Figure 6-7 summarizes the vi commands for moving the cursor by scrolling
the text, specifying a line number, and searching for a pattern.

288 USER’S GUIDE

Scrolling

<"f> Scroll the screen forward a full window, revealing the win-
dow of text below the current window.

<"d> Scroll the screen down a half window, revealing lines
below the current window.

<"b> Scroll the screen back a full window, revealing the window
of text above the current window.

< u> Scroll the screen up a half window, revealing the lines of
text above the current window.

Positioning on a Numbered Line

<1G> Go to the first line of the file.
<G> Go to the last line of the file.

<"g> Give the line number and file status.

Searching for a Pattern

/pattern | Search forward in the buffer for the next occurrence of
the pattern. Position the cursor on the first character of
the pattern.

?pattern | Search backward in the buffer for the first occurrence of
the pattern. Position the cursor under the first character
of the pattern.

<n> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

Figure 6-7: Summary of Additional vi Motion Commands

Positioning the Cursor in Undisplayed Text

SCREEN EDITOR TUTORIAL (vi)

289

Exercise 2

2-1.

4

3

48
49

50

Create a file called exer2. Type a number on each line, numbering the
lines from 1 to 50. Your file should look similar to the following.

o _/

2-2.

2-3.

2-4,
2-5.

290

U

Try using each of the scroll commands, noticing how many lines scroll
through the window. Try the following:
<"f>
<"b>
<"u>
<"d>
Go to the end of the file. Append the following line of text.
123456789 123456789
What number does the command <7h> place the cursor on? What
number does the command <3I> place the cursor on?

Try the command <$> and the command <0> (number zero).

Go to the first character on the line that is not a blank. Move to the first
character in the next word. Move back to the first character of the word
to the left. Move to the end of the word.

SER’S GUIDE

2-7.

Exercise 2

Go to the first line of the file. Try the commands that place the cursor in

the middle of the window, on the last line of the window, and on the first
line of the window.

Search for the number 8. Find the next occurrence of the number 8.
Find 48.

SCREEN EDITOR TUTORIAL (vi) 291

Creating Text

There are three basic commands for creating text:
<a> append text

<i> insert text

<o0> open a new line on which text can be entered

After you finish creating text with any one of these commands, you can
return to the command mode of vi by pressing the ESCAPE key.

Appending Text

<a> append text after the cursor

<A> append text at the end of the current line

You have already experimented with the <a> command in the "Creating a
File" section. Make a new file named junk2. Append some text using the <a>

command. To return to command mode of vi, press the ESCAPE key. Then
compare the <a> command to the <A> command.

Inserting Text

<i> insert text before the cursor

<I> insert text at the beginning of the current line before the first charac-
ter that is not a blank

To return to the command mode of vi, press the ESCAPE key.

In the following examples you can compare the append and insert commands.
The arrows show the position of the cursor, where new text will be added.

292 USER’S GUIDE

Creating Text

-

Append three spaces AFTER the H of Here

T

<a>

Append three spaces AFTER the H of H ere.

!

<ESC>

N

CrtthreespacesBHOREtheHofHere.

<i>.

Insert three spaces BEFORE the H of Here.

Notice that in both cases, the user has left text input mode by pressing the
ESCAPE key.

SCREEN EDITOR TUTORIAL (vi) 293

Creating Text

Opening a Line for Text

<o0> Create text from the beginning of a new line below the current line.
You can issue this command from any point in the current line.

<O0> Create text from the beginning of a new line above the current line.
This command can also be issued from any position in the current
line.

The open command creates a directly above or below the current line, and
puts you into text input mode. For example, in the following screens the <O>
command opens a line above the current line, and the <o0> command opens a
line below the current line. In both cases, the cursor waits for you to enter text
from the beginning of the new line.

-~

Create text ABOVE the current line.

f

<0>

[blank linel
Create text ABOVE the current line.

294 USER’S GUIDE

Creating Text

@eate text BELOW the current line.

<o>

Now create text BELOW the current line.
[blank line]

T

Figure 6-8 summarizes the commands for creating and adding text with the vi
editor.

SCREEN EDITOR TUTORIAL (vi) 295

Creating Text

Command Function
<a> Create text after the cursor.
<A> Create text at the end of the current line.
<i> Create text in front of the cursor.
<I> Create text before the first character on
the current line that is not a blank.
<o> Create text at the beginning of a new
line below the current line.
<0> Create text at the beginning of a new
line above the current line.
<ESC> | Return vi to command mode from any
of the above text input modes.

Figure 6-8: Summary of vi Commands for Creating Text

296

USER’S GUIDE

Exercise 3

3-1.
3-2.

3-4.

3-5.

3-6.

3-7.

3-8.

Create a text file called exer3.

Insert the following four lines of text.
Append text
Insert text

a computer’s
job is boring.

Add the following line of text above the last line:

financial statement and Ve

Using a text insert command, add the following line of text above the
third line:

Delete text

Add the following line of text below the current line:

byte of the budget e

Using an append command, add the following line of text below the last
line: SN ,
But, it is an exciting machine.
Move to the first line and add the word some before the word text.
(¢ b
Now practice using each of the six commands for creating text.

Leave vi and go on to the next section to find out how to delete any mis-

;

takes you made in creating text. 7

SCREEN EDITOR TUTORIAL (vi) 297

Deleting Text

You can delete text with various commands in command mode, and undo the
entry of small amounts of text in text input mode. In addition, you can undo
entirely the effects of your most recent command.

Undoing Entered Text in Text Input Mode

To delete a character at a time when you are in text input mode use the
BACKSPACE key.

<BACKSPACE> Delete the current character (the character shown by the

cursor).

The BACKSPACE key backs up the cursor in text input mode and deletes
each character that the cursor backs across. However, the deleted characters are
not erased from the screen until you type over them or press the ESCAPE key to
return to command mode.

In the following example, the arrows represent the cursor.

ghad a 1itttl \

<BACKSPACE> <BACKSPACE>

Mary had a litttl

<ESC>

_
. /

298 USER’S GUIDE

Deleting Text

Notice that the characters are not erased from the screen until you press the
ESCAPE key.

There are two other keys that delete text in text input mode. Although you
may not use them often, you should be aware that they are available. To remove
the special meanings of these keys so that they can be typed as text, see the sec-
tion on special commands.

<"w> undo the entry of the current word

<@> delete all text entered on current line since text input mode was
entered

When you type <"w>>, the cursor backs up over the word last typed and
waits on the first character. It does not literally erase the word until you press
the ESCAPE key or enter new characters over the old ones. The <@> sign
behaves in a similar manner except that it removes all text you have typed on the
current line since you last entered input mode.

Undo the Last Command

Before you experiment with the delete commands, you should try the u com-
mand. This command undoes the last command you issued.

<u> undo the last command

<U> restore the current line to its state before you changed it

If you delete lines by mistake, type <u>; your lines will reappear on the
screen. If you type the wrong command, type <u> and it will be nullified. The
<U> command will nullify all changes made to the current line as long as the
cursor has not been moved from it.

If you type <u> twice in a row, the second command will undo the first;
your undo will be undone! For example, say you delete a line by mistake and
restore it by typing <u>. Typing <u> a second time will delete the line again.
Knowing this command can save you a lot of trouble.

SCREEN EDITOR TUTORIAL (vi) 299

Deleting Text

Delete Commands in Command Mode

You know that you can precede a command by a number. Many of the com-
mands in vi, such as the delete and change commands, also allow you to enter a
cursor movement command after another command. The cursor movement com-
mand can specify a text object such as a word, line, sentence, or paragraph. The
general format of a vi command is:

[numberllcommandltext_object

The brackets around some components of the command format show that those
components are optional.

All delete commands issued in command mode immediately remove unwanted
text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command.

[numberldtext_object

Deleting Words

You can delete a word or part of a word with the <dw> command. Move
the cursor to the first character to be deleted and type <dw>. The character
under the cursor and all subsequent characters in that word will be erased.

the deep dark depths of the lake.

!

<2dw>

300 USER’S GUIDE

Deleting Text

the depths of the lake.

T

The <dw> command deletes one word or punctuation mark and the space(s)
that follow it. You can delete several words or marks at once by specifying a
number before the command. For example, to delete three words and two com-
mas, type <Sdw>.

the deep, deep, dark depths of the lake

T

<S5dw>

SCREEN EDITOR TUTORIAL (vi) 301

Deleting Text

the depths of the lake

T

Deleting Paragraphs

To delete paragraphs, use the following commands.
<df> or <d}>
Observe what happens to your file. Remember, you can restore the deleted text
with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a number
before the command. For example, typing

<10dd>

will erase ten lines. If you delete more than a few lines, vi will display this notice
on the bottom of the screen:

10 lines deleted

If there are less than ten lines below the current line in the file, a bell will sound
and no lines will be deleted.

302 USER’S GUIDE

Deleting Text

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first charac-
ter to be deleted and type

<D> or <d$>.
Neither of these commands allows you to specify a number of lines; they can be

used only on the current line.

Figure 6-9 summarizes the vi commands for deleting text.

SCREEN EDITOR TUTORIAL (vi) 303

Deleting Text

Command Function
For INSERT Mode:
<BACKSPACE> Delete the current character.
<"h> Delete the current character.
<"W> Delete the current word.
<@> Delete the current line of new text or
delete all new text on the current line.
For COMMAND Mode:
<u> Undo the last command.
<U> Restore current line to its previous state.
<x> Delete the current character.
<ndx> Delete n number of text objects of type x.
<dw> Delete the word at the cursor through the
next space or to the next punctuation
mark.
<dW> Delete the word and punctuation at the
cursor through the next space.
<dd> Delete the current line.
<D> Delete the portion of the line to the right
of the cursor.
<d)> Delete the current sentence.
<d}> Delete the current paragraph.

Figure 6-9: Summary of Delete Commands

304

USER’S GUIDE

Exercise 4

4-1.

4-2.

4-3.

4-4.

Create a file called exerd and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

Move the cursor to line two and append to the end of that line:
tedious and unsavory. o A >

Delete the word unsavory while you are in append mode.

Delete the word boring while you are in command mode. " | T

What is another way you could have deleted the word boring?

Insert at the beginning of line four:
congenial and computerized.
Delete the line.

How can you delete the contents of the line without removing the line
itself?

Delete all the lines with one command.

Leave the screen editor and remove the empty file from your directory.

SCREEN EDITOR TUTORIAL (vi)

305

Modifying Text

The delete commands and text input commands provide one way for you to
modify text. Another way you can change text is by using a command that lets
you delete and create text simultaneously. There are three basic change com-
mands: <r>, <s>, and <c>.

Replacing Text

<r> Replace the current character (the character shown by the cursor).
This command does not initiate text input mode, and so does not
need to be followed by pressing the ESCAPE key.

<nr> Replace n characters with the same letter. This command automati-
cally terminates after the nth character is replaced. It does not need
to be followed by pressing the ESCAPE key.

<R> Replace only those characters typed over until the ESCAPE com-
mand is given. If the end of the line is reached, this command will
append the input as new text.

The <r> command replaces the current character with the next character
that is typed in. For example, suppose you want to change the word acts to ants
in the following sentence:

The circus has many acts.
Place the cursor under the c of acts and type
<r>n
The sentence becomes
The circus has many ants.
To change many to 7777, place the cursor under the m of many and type
<4r7>

The <r> command changes the four letters of many to four occurrences of the
number seven.

The circus has 7777 ants.

306 USER’S GUIDE

Modifying Text

Substituting Text

The substitute command replaces characters, but then allows you to continue
to insert text from that point until you press the ESCAPE key.

<s> Delete the character shown by the cursor and append text. End the
text input mode by pressing the ESCAPE key.

<ns> Delete n characters and append text. End the text input mode by
pressing the ESCAPE key.

<S> Replace all the characters in the line.

When you enter the <s> command, the last character in the string of char-
acters to be replaced is overwritten by a $ sign. The characters are not erased
from the screen until you type over them, or leave text input mode by pressing the
ESCAPE key.

Notice that you cannot use an argument with either <r> or <s>. Did you
try?

Suppose you want to substitute the word million for the word hundred in the
sentence My salary is one hundred dollars. Put the cursor under the h of
hundred and type <7s>. Notice where the $ sign appears.

My salary is one hundred dollars.

T

<Ts>

Then type million.

SCREEN EDITOR TUTORIAL (vi) 307

Modifying Text

My salary is one hundre$ dollars.

T

million

My salary is one million dollars.

T

Changing Text

The substitute command replaces characters. The change command replaces
text objects, and then continues to append text from that point until you press the
ESCAPE key. To end the change command, press the ESCAPE key.

The change command can take an argument. You can replace a character,
word, or an entire line with new text.

<ncx> Replace n number of text objects of type x, such as sentences
(shown by <)>) and paragraphs (shown by <}>).

308 USER’'S GUIDE

<cw>

<ncw>
<cc>
<ncc>

<C>

<nC>

Modifying Text

Replace a word or the remaining characters in a word with new
text. The vi editor prints a $ sign to show the last character to
be changed.

Replace n words.
Replace all the characters in the line.

Replace all characters in the current line and up to » lines of
text.

Replace the remaining characters in the line, from the cursor to
the end of the line.

Replace the remaining characters from the cursor in the current
line and replace all the lines following the current line up to n
lines.

The change commands, <cw> and <C>, use a $ sign to mark the last
letter to be replaced. Notice how this works in the following example:

They are now due to arrive on Tuesday.

T

<cw>

SCREEN EDITOR TUTORIAL (vi) 309

Modifying Text

They are now due to arrive on Tuesda$.

T

Wednesday <ESC>

They are now due to arrive on Wednesday.

T

Notice that the new word (Wednesday) has more letters than the word it replaced
(Tuesday). Once you have executed the change command you are in text input
mode and can enter as much text as you want. The buffer will accept text until
you press the ESCAPE key.

The <C> command, when used to change the remaining text on a line,
works in the same way. When you enter the command it uses a $ sign to mark
the end of the text that will be deleted, puts you in text input mode, and waits for
you to type new text over the old. The following screens offer an example of the
C command.

310 USER’'S GUIDE

Modifying Text

This is line 1.
Oh, I must have the wrong number.

T

<C>
This is line 3.
This is line 4.

This is 1line 1.
Oh, I must have the wrong number$

T

This is line 2. <ESC>
This is line 3.
This is line 4.

This is line 1.
This is line 2.
This is line 3.
This is line 4.

N N N

SCREEN EDITOR TUTORIAL (vi) 311

Modifying Text

Now try combining arguments. For example, type
<cf>

Because you know the undo command, do not hesitate to experiment with dif-
ferent arguments or to precede the command with a number. You must press the
ESCAPE key before using the <u> command, since <¢> places you in text
input mode.

Compare <S> and <ce>. The two commands should produce the same
results.

Figure 6-10 summarizes the vi commands for changing text.

312 USER’S GUIDE

Command Function
<r> Replace the current character.
<R> Replace only those characters typed over with
new characters until the ESCAPE key is pressed.
<s> Delete the character the cursor is on and append
text. End the append mode by pressing the
ESCAPE key.
<S> Replace all the characters in the line.
<ce> Replace all the characters in the line.
<ncx> Replace n number of text objects of type x, such
as sentences (shown by <)>) and paragraphs
(shown by <}>).
<cw> Replace a word or the remaining characters in a
word with new text.
<C> Replace the remaining characters in the line,
from the cursor to the end of the line.

Figure 6-10: Summary of vi Commands for Changing Text

Modifying Text

SCREEN EDITOR TUTORIAL (vi)

313

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file. Another set of
commands copies a portion of text and places it in another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by deleting the
lines and then placing them at the required point. The last text that was deleted
is stored in a temporary buffer. If you move the cursor to that part of the file
where you want the deleted lines to be placed and press the p key, the deleted
lines will be added below the current line.

<p> Place the contents of the temporary buffer after the cursor.

A partial sentence that was deleted by the <D> command can be placed in
the middle of another line. Position the cursor in the space between two words,
then press <p>. The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text
object that was just deleted can be placed somewhere else in the text with <p>.

The <p> command should be used right after a delete command since the
temporary buffer only stores the results of one command at a time. The <p>
command is also used to copy text placed in the temporary buffer by the yank
command. The yank command (<y>) is discussed in "Copying Text."

Fixing Transposed Letters
A quick way to fix transposed letters is to combine the <x> and the <p>

commands as <xp>. <x> deletes the letter. <p> places it after next charac-
ter.

314 USER’S GUIDE

Cutting And Pasting Text Electronically

Notice the error in the next line.

A line of tetx

This error can be changed quickly by placing the cursor under the t in tx and
then pressing the <x> and <p> keys, in that order. The result is:

A line of text

Try this. Make a typing error in your file and use the <xp> command to
correct it. Why does this command work?

Copying Text

You can yank (copy) one or more lines of text into a temporary buffer, and
then put a copy of that text anywhere in the file. To put the text in a new posi-
tion type <p>; the text will appear on the next line.

The yank command follows the general format of a vi command.

[numberlyltext object]

Yanking lines of text does not delete them from their original position in the file.
If you want the same text to appear in more than one place, this provides a con-
venient way to avoid typing the same text several times. However, if you do not
want the same text in multiple places, be sure to delete the original text after you
have put the text into its new position.

Figure 6-11 summarizes the ways you can use the yank command.

SCREEN EDITOR TUTORIAL (vi) 315

Cutting And Pasting Text Electronically

Command Function
<nyx> Yank n number of text objects of type x, (such as
sentences) and paragraphs }).
<yw> Yank a copy of a word.
<yy> Yank a copy of the current line.
<nyy> Yank 7 lines.
<y)> Yank all text up to the end of a sentence.
<y}> Yank all text up to the end of the paragraph.

Figure 6-11: Summary of the Yank Command

Notice that this command allows you to specify the number of text objects to be
yanked.

Try the following command lines and see what happens on your screen.
(Remember, you can always undo your last command.) Type:

<Syw>
Move the cursor to another spot. Type:

<p>

Now try yanking a paragraph <y}> and placing it after the current paragraph.
Then move to the end of the file <G> and place that same paragraph at the end
of the file.

316 USER’S GUIDE

Cutting And Pasting Text Electronically

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is
tedious work. vi provides a shortcut for this: named registers in which you can
store text until you want to move it. To store text you can either yank or delete
the text you wish to store.

Using registers is useful if a piece of text must appear in many places in the
file. The extracted text stays in the specified register until you either end the
editing session, or yank or delete another section of text to that register.

The general format of the command is:
[numberl["xlcommandltext object]

The x is the name of the register and can be any single letter. It must be pre-
ceded by a double quotation mark. For example, place the cursor at the begin-
ning of a line. Type:

<3'ayy>

Type in more text and then go to the end of the file. Type:
<"ap>

Did the lines you saved in register a appear at the end of the file?

Figure 6-12 summarizes the cut and paste commands.

SCREEN EDITOR TUTORIAL (vi) 317

Cutting And Pasting Text Electronically

Command Function
<p> Place the contents of the temporary buffer con-
taining the text obtained from the most recent
delete or yank command into the text after the
cursor.
<yy> Yank a line of text and place it into a temporary
buffer.
<nyx> Yank a copy of » number of text objects of type x
and place them in a temporary buffer.
<"xyn> Place a copy of a text object of type » in the
register named by the letter x.
<"xp> Place the contents of the register x after the cur-

sSor.

Figure 6-12: Summary of vi Commands for Cutting and Pasting Text

318

USER’S GUIDE

Exercise 5

5-1. Enter vi with the file called exer2. that you created in Exercise 2.

Go to line eight and change its contents to END OF FILE

5-2. Yank the first eight lines of the file and place them in register z. Put the
contents of register z after the last line of the file.

5-3. Go to line eight and change its contents to eight is great

5-4. Go to the last line of the file. Substitute EXERCISE for FILE Replace
OF with TO

SCREEN EDITOR TUTORIAL (vi) 319

Special Commands

Here are some special commands that you will find useful.
<.> repeat the last command
<J> join two lines together
<> clear the screen and redraw it

<~> change lower case to upper case and vice versa

Repeating the Last Command

The . period repeats the last command to create, delete, or change text in the
file. It is often used with the search command.

For example, suppose you forget to capitalize the S in United States. How-
ever, you do not want to capitalize the s in chemical states. One way to correct
this problem is by searching for the word states. The first time you find it in the
expression United States, you can change the s to S. Then continue your search.
When you find another occurrence, you can simply type a period; vi will
remember your last command and repeat the substitution of s for S.

Experiment with this command. For example, if you try to add a period at
the end of a sentence while in command mode, the last text change will suddenly
appear on the screen. Watch the screen to see how the text is affected.

Joining Two Lines

The <J> command joins lines. To enter this command, place the cursor on
the current line, and press the SHIFT and j keys simultaneously. The current
line is joined with the following line.

For example, suppose you have the following two lines of text:

Dear Mr.
Smith:

320 USER’S GUIDE

Special Commands

To join these two lines into one, place the cursor under any character in the first
line and type:

<J>
You will immediately see the following on your screen:
Dear Mr. Smith:

Notice that vi automatically places a space between the last word on the first line
and the first word on the second line.

Clearing and Redrawing the Window

If another UNIX system user sends you a message using the write command
while you are editing with vi, the message will appear in your current window,
over part of the text you are editing. To restore your text after you have read the
message, you must be in command mode. (If you are in text input mode, press
the ESCAPE key to return to command mode.) Then type <"1> (control-). vi
will erase the message and redraw the window exactly as it appeared before the
message arrived.

Changing Lower Case to Upper Case and Vice Versa

A quick way to change any lower case letter to upper case, or vice versa, is by
putting the cursor on the letter to be changed and typing a <~> (tilde). For
example, to change the letter a to A, press ~. You can change several letters by
typing ~ several times, but you cannot precede the command with a number to
change several letters with one command.

Figure 6-13 summarizes the special commands.

SCREEN EDITOR TUTORIAL (vi) 321

Special Commands

Command Function
<.> Repeat the last command.
<J> Join the line below the current line with the current line.
< 1> Clear and redraw the current window.
<~> Change lower case to upper case, or vice versa.

Figure 6-13: Summary of Special Commands

322 USER’S GUIDE

Using Line Editing Commands in vi

The vi editor has access to many of the commands provided by a line editor
called ex. (For a complete list of ex commands see the ex(1) page in the User’s
Reference Manual.) This section discusses some of those most commonly used.

The ex commands are very similar to the ed commands discussed in
Chapter 5. If you are familiar with ed, you may want to experiment on a test file
to see how many ed commands also work in vi.

Line editor commands begin with a : (colon). After the colon is typed, the
cursor will drop to the bottom of the screen and display the colon. The remainder
of the command will also appear at the bottom of the screen as you type it.

Temporarily Returning to the Shell: the :sh and :!
Commands

When you enter vi, the contents of the buffer fill your screen, making it
impossible to issue any shell commands. However, you may want to do so. For
example, you may want to get information from another file to incorporate into
your current text. You could get that information by running one of the shell
commands that display the text of a file on your screen, such as the cat or pg
command. However, quitting and reentering the editor is time consuming and
tedious. vi offers two methods of escaping the editor temporarily so that you can
issue shell commands (and even edit other files) without having to write your
buffer and quit: the :! command and the :sh command.

The :! command allows you to escape the editor and run a shell command on
a single command line. From the command mode of vi, type :!. These characters
will be printed at the bottom of your screen. Type a shell command immediately
after the !. The shell will run your command, give you output, and print the mes-
sage [Hit return to continue]. When you press the RETURN key vi will
refresh the screen and the cursor will reappear exactly where you left it.

SCREEN EDITOR TUTORIAL (vi) 323

Using Line Editing Commands in vi

The ex command :sh allows you to do the same thing, but behaves differently
on the screen. From the command mode of vi type :sh and press the RETURN
key. A shell command prompt will appear on the next line. Type your
command(s) after the prompt as you would normally do while working in the
shell. When you are ready to return to vi, type <"d> or exit; your screen will be
refreshed with your buffer contents and the cursor will appear where you left it.

Even changing directories while you are temporarily in the shell will not
prevent you from returning to the vi buffer where you were editing your file when
you type exit or <“d>.

Writing Text to a New File: the :w Command

The :w (for write) command allows you to create a file by copying lines of
text from the file your are currently editing into a file that you specify. To create
your new file you must specify a line or range of lines (with their line numbers),
along with the name of the new file, on the command line. You can write as
many lines as you like. The general format is:

:line_numberl line_numberlw filename

For example, to write the third line of the buffer to a line named three, type:
:3w three<CR>
vi reports the successful creation of your new file with the following information:
"three" [New file] 1 line, 20 characters
To write your current line to a file, you can use a . (period) as the line
address:
W junk<CR>

A new file called junk will be created. It will contain only the current line in the
vi buffer.

324 USER'S GUIDE

Using Line Editing Commands in vi

You can also write a whole section of the buffer to a new file by specifying a

range of lines. For example, to write lines 23 through 37 to a file, type the fol-
lowing:

:23,37w newfile<CR>

Finding the Line Number

To determine the line number of a line, move the cursor to it and type :
(colon). The colon will appear at the bottom of the screen. Type .= after it
and press the RETURN key.

If you want to know the number
of this line, type :=<CR>

As soon as you press the RETURN key, your command line will disappear from
the bottom line and be replaced by the number of your current line in the buffer.

SCREEN EDITOR TUTORIAL (vi) 325

Using Line Editing Commands in vi

If you want to know the number
of this line, type in :.=<CR>

34

You can move the cursor to any line in the buffer by typing : and the line
number. The command line

n<CR>

means to go to the nth line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current line and the
end of the buffer is by using the line editor command d with the special symbols
for the current and last lines.

2 3d<CR>

The . represents the current line; the $ sign, the last line.

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer, use the :r
(read) command. For example, to put the contents of a file called data into your
current file, place the cursor on the line above the place where you want it to
appear. Type:

o data<CR>

You may also specify the line number instead of moving the cursor. For example,
to insert the file data below line 56 of the buffer, type

326 USER’S GUIDE

Using Line Editing Commands in vi

:56r data<CR>

Do not be afraid to experiment; you can use the <u> command to undo ex com-
mands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The glo-
bal command is given here to help those users who are familiar with the line edi-
tor. Even if you are not familiar with a line editor, you may want to try the com-
mand on a test file.

For example, say you have several pages of text about the DNA molecule in
which you refer to its structure as a helix. Now you want to change every
occurrence of the word helix to double helix. The ex editor’s global command
allows you to do this with one command line. First, you need to understand a
series of commands.

:g/pattern/command <CR>

For each line containing pattern, execute the ex command named
command. For example, type: :g/helix <CR>. The line editor will
print all lines that contain the pattern helix.

:s/pattern/new _words/ <CR>
This is the substitute command. The line editor searches for the first

instance of the characters pattern on the current line and changes
them to new_words.

:s/pattern/new_words/g<CR>
If you add the letter g after the last delimiter of this command line,

ex will change every occurrence of pattern on the current line. If you
do not, ex will change only the first occurrence.

:g/helix/s//double helix/g<CR>
This command line searches for the word helix. Each time helix is

found, the substitute command substitutes two words, double helix,
for every instance of helix on that line. The delimiters after the s do

SCREEN EDITOR TUTORIAL (vi) 327

Using Line Editing Commands in vi
not need to have helix typed in again. The command remembers the
word from the delimiters after the global command g. This is a
powerful command. For a more detailed explanation of global and
substitution commands, see Chapter 5.

Figure 6-14 summarizes the line editor commands available in vi.

328 USER’'S GUIDE

x,yw data<CR>

$<CR>
+.,3d<CR>

:r shell file<CR>

:s/text/new_words/<CR>

s/text/new_words/g<CR>

:g/text/s//new_words/g<CR>

Command Function
Shows that the commands that follow are
line editor commands.

:sh<CR> Temporarily returns you to the shell to
perform shell commands.

<"d> Escapes the temporary shell and returns

you to the current window of vi to con-
tinue editing.

n<CR> Goes to the nth line of the buffer.

Writes lines from the number x through
the number y into a new file (data).

Goes to the last line of the buffer.

Deletes all the lines in the buffer from
the current line to the last line.

Inserts the contents of shell.file after the
current line of the buffer.

Replaces the first instance of the charac-
ters fext on the current line with
new_words.

Replaces every occurrence of zext on the
current line with new_words.

Replaces every occurrence of fext in the
file with new_words.

Figure 6-14: Summary of Line Editor Commands

Using Line Editing Commands in vi

SCREEN EDITOR TUTORIAL (vi)

329

Quitting vi

There are five basic command sequences to quit the vi editor. Commands
that are preceded by a colon (:) are line editor commands.

<ZZ> or :wq<CR> Write the contents of the vi buffer to the UNIX file
currently being edited and quit vi.

:w filename<CR> Write the temporary buffer to a new file named
q<CR> filename and quit vi.

:w! filename<CR> Overwrite an existing file called filename with the
q<CR> contents of the buffer and quit vi.

:q!<CR> Quit vi without writing the buffer to a file, and dis-

card all changes made to the buffer.

:q<CR> Quit vi without writing the buffer to a UNIX file.
This works only if you have made no changes to the
buffer; otherwise vi will warn you that you must either
save the buffer or use the :q! <CR> command to ter-
minate.

The <ZZ> command and :wq command sequence both write the contents of
the buffer to a file, quit vi, and return you to the shell. You have tried the
<ZZ> command. Now try to exit vi with :wq. vi remembers the name of the
file currently being edited, so you do not have to specify it when you want to write
the buffer’s contents back into the file. Type

:wq<CR>

The system responds in the same way it does for the <ZZ> command. It tells
you the name of the file, and reports the number of lines and characters in the
file.

What must you do to give the file a different name? For example, suppose
you want to write to a new file called junk. Type:

:w junk<CR>

After you write to the new file, leave vi. Type:

330 USER’'S GUIDE

Quitting vi

q<CR>
If you try to write to an existing file, you will receive a warning. For exam-
ple, if you try to write to a file called johnson, the system will respond with:
"Jjohnson" File exists - use "w! johnson" to overwrite

If you want to replace the contents of the existing file with the contents of the
buffer, use the :w! command to overwrite johnson.

:w! johnson<CR>
Your new file will overwrite the existing one.

If you edit a file called memo, make some changes to it, and then decide you
don’t want to keep the changes, or if you accidentally press a key that gives vi a
command you cannot undo, leave vi without writing to the file. Type:

:q!<CR>

Figure 6-15 summarizes the quit commands.

SCREEN EDITOR TUTORIAL (vi) 331

Quitting vi

Command Function
<ZZ1> Write the file and quit vi.
:wq<CR> Write the file and quit vi.
W filename<CR> Write the editing buffer to a new file (filename) and
q<CR> quit vi.
:w! filename<CR> Overwrite an existing file (filename) with the con-
:q<CR> tents of the editing buffer and quit vi.
:q!<CR> Quit vi without writing buffer to a file.
q<CR> Quit vi without writing the buffer to a file.

Figure 6-15: Summary of the Quit Commands

332 USER’S GUIDE

Special Options For vi

The vi command has some special options. It allows you to:
B recover a file lost by an interrupt to the UNIX system
B place several files in the editing buffer and edit each in sequence, and

B view the file at your own pace by using the vi cursor positioning commands

Recovering a File Lost by an Interrupt

If there is an interrupt or disconnect, the system will exit the vi command
without writing the text in the buffer back to its file. However, the UNIX system
will store a copy of the buffer for you. When you log back in to the UNIX sys-
tem you will be able to restore the file with the —r option for the vi command.
Type

vi —r filename<CR>

The changes you made to filename before the interrupt occurred are now in the vi
buffer. You can continue editing the file, or you can write the file and quit vi.
The vi editor will remember the file name and write to that file.

Editing Multiple Files

If you want to edit more than one file in the same editing session, issue the vi
command, specifying each file name. Type
vi filel file2<CR>

vi responds by telling you how many files you are going to edit. For example:

2 files to edit

SCREEN EDITOR TUTORIAL (vi) 333

Special Options For vi

After you have edited the first file, write your changes (in the buffer) to the
file (filel). Type

‘w<CR>

The system response to the :w <CR> command will be a message at the bottom
of the screen giving the name of the file, and the number of lines and characters
in that file. Then you can bring the next file into the editing buffer by using the
:n command. Type

n<CR>

The system responds by printing a notice at the bottom of the screen, telling you
the name of the next file to be edited and the number of characters and lines in
that file.

Select two of the files in your current directory. Then enter vi and place the
two files in the editing buffer at the same time. Notice the system responses to
your commands at the bottom of the screen.

Viewing a File

It is often convenient to be able to inspect a file by using vi’s powerful search
and scroll capabilities. However, you might want to protect yourself against
accidentally changing a file during an editing session. The read-only option
prevents you from writing in a file. To avoid accidental changes, you can set this
option by invoking the editor as view rather than vi.

Figure 6-16 summarizes the special options for vi.

334 USER’S GUIDE

Special Options For vi

Option Function

vi filel file2 file3<CR> | Enter three files (filel, file2, and file3)
into the vi buffer to be edited.

‘w<CR> Write the current file and call the next
n<CR> file into the buffer.
vi —r filel <CR> Restore the changes made to filel.

Figure 6-16: Summary of Special Options for vi

SCREEN EDITOR TUTORIAL (vi) 335

Exercise 6

6-1.

6-2.

6-3.

6-4.

336

Try to restore a file lost by an interrupt.
Enter vi, create some text in a file called exer6. Turn off your terminal

without writing to a file or leaving vi. Turn your terminal back on, and
log in again. Then try to get back into vi and edit exer6.

Place exerl and exer2 in the vi buffer to be edited. Write exerl and call
in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

Try out the command:
vi exer* <CR>

What happens? Try to quit all the files as quickly as possible.

Look at exer4 in read-only mode.
Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

USER’S GUIDE

Answers To Exercises

There is often more than one way to perform a task in vi. Any method that
works is correct. The following are suggested ways of doing the exercises.

Exercise 1

1-1. Ask your system administrator for your terminal’s system name. Type:

TERM =terminal name<CR>

1-2. Enter the vi command for a file called exerl:
vi exerl1 <CR>

Then use the append command (<a>) to enter the following text in your
file:

This is an exercise! <CR>
Up, down<CR>

left, right, <CR>

build your terminal’s <CR>
muscles bit by bit<ESC>

1-3. Use the <k> and <h> commands.
1-4. Use the <x> command.

SCREEN EDITOR TUTORIAL (vi) 337

Answers To Exercises

1-5.
1-6.

1-7.

1-8.

Use the <j> and <I> commands.

Enter vi and use the append command (<a>) to enter the following text:

)

and byte by byte <ESC>

Then use <j> and <I> to move to the last line and character of the
file. Use the <a> command again to add text. You can create a new
line by pressing the RETURN key. To leave text input mode, press the
ESCAPE key.

Type:

<ZZ>
Type:

vi exerl <CR>
Notice the system response:

"exer1" 7 lines, 102 characters

Exercise 2

2-1.

338

Type:
vi exer2<CR>
<a>1<CR>
2<CR>
3<CR>

48<CR>
49<CR>
S0<ESC>

USER’S GUIDE

2-2.

2-3.

2-5.

2-6.

2-7.

Type:

<>
<"b>
<"u>
<"d>

Notice the line numbers as the screen changes.

Type:

<G>

<0>

123456789 123456789 <ESC>
<7h>

<31>

Typing <7h> puts the cursor

on the 2 in the second set of numbers.

Typing <31> puts the cursor
on the 5 in the
second set of numbers.

$ = end of line
0 = first character in the line

Type:

Type:

Type:

<w>

<e>

<1G>
<M>
<L>
<H>

/8
<n>
/48

Answers To Exercises

SCREEN EDITOR TUTORIAL (vi) 339

Answers To Exercises

Exercise 3

3-1.

3-2.

3-3.

3-4.

3-5.

3-6.

340

Type:

vi exer3<CR>
Type:

<a> Append text <CR>

Insert text <CR>

a computer’s <CR>

job is boring. <ESC>
Type:

<0>

financial statement and <ESC>
Type:

<3G>
<i>Delete text<CR> <ESC>

The text in your file now reads:

Append text’

Insert text

Delete text

a camputer’s

financial statement and

job is boring.
The current line is a computer’s. To create a line of text below that line
use the <0> command.

The current line is byte of the budget.

<G> puts you on the bottom line.

<A> lets you begin appending at the end of the line.
<CR> creates the new line. :

Add the sentence: But, it is an exciting machine.
<ESC> leaves append mode.

Type:
<1G>
/text
<i>some<space bar> <ESC>

USER’S GUIDE

3-8.

<ZZ> will write the buffer to exer3 and return you to the shell.

Exercise 4

4-1.

4-2.

4-3.

4-4.

Type:
vi exer4 <CR>
<a> When in the course of human events <CR>
there are many repetitive, boring <CR>
chores, then one ought to get a<CR>
robot to perform those chores. <ESC>

Type:
<2G>
<A> tedious and unsavory <8BACKSPACE> <CR>
<ESC>

Press <h> until you get to the b of boring. Then type:
<dw>. (You can also use <6x>.)

You are at the second line. Type:
<2j>
<I> congenial and computerized <ESC>
<dd>

To delete the line and leave it blank, type in:
<0> (zero moves the cursor to the beginning of the line)

<D>

<H>
<3dd>

Write and quit vi.
<ZZ>
Remove the file.

rm exerd <CR>

SCREEN EDITOR TUTORIAL (vi)

Answers To Exercises

341

Answers To Exercises

Exercise 5

5-1.

5-2.

5-3.

5-4.

Exercise 6

6-1.

342

Type:

Type:

Type:

Type:

Type:

vi exer2<CR>
<8G>
<ce> END OF FILE <ESC>

<1G>
<8"zyy>
<G>
<'"zp>

<8G>
<cce> 8 is great<ESC>

<G>

<2w>

<cw>
EXERCISE<ESC>
<2b>

<cw>

TO<ESC>

vi exer6 <CR>

<a> (append several lines of text)

<ESC>

Turn off the terminal.

Turn on the terminal.
Log in on your UNIX system. Type:

vi —r exer6 <CR>
:wq<CR>

USER’S GUIDE

Answers To Exercises

6-2. Type:
vi exerl exer2<CR>
w<CR>
:n<CR>

:w junk <CR>
<ZZ>

6-3. Type:
vi exer* <CR>

(Response:)
8 files to edit (vi calls all files with names that begin with exer.)

<ZZ>
<ZZ>

6-4. Type:
view exerd <CR>
<>
<"d>
<"b>
<"u>
:q<CR>

SCREEN EDITOR TUTORIAL (vi) 343

CHAPTER 7: SHELL TUTORIAL

Introduction

This chapter describes how to use the UNIX system shell to do routine tasks.
For example, it shows you how to use the shell to manage your files, to manipu-
late file contents, and to group commands together to make programs the shell
can execute for you.

The chapter has two major sections. The first section, "Shell Command
Language," covers in detail using the shell as a command interpreter. It tells you
how to use shell commands and characters with special meanings to manage files,
redirect standard input and output, and execute and terminate processes. The
second section, "Shell Programming," covers in detail using the shell as a pro-
gramming language. It tells you how to create, execute, and debug programs
made up of commands, variables, and programming constructs like loops and case
statements. Finally, it tells you how to modify your login environment.

The chapter offers many examples. You should login to your UNIX system
and recreate the examples as you read the text. As in the other examples in this
guide, different type (bold, italic, and constant width) is used to distinguish
your input from the UNIX system’s output. See "Notation Conventions" in the
Preface for details.

In addition to the examples, there are exercises at the end of both the "Shell
Command Language" and "Shell Programming" sections. The exercises can help
you better understand the topics discussed. The answers to the exercises are at
the end of the chapter.

Your UNIX system might not have all commands referenced in this chapter. If
NOTE| you cannot access a command, check with your system administrator.

If you want an overview of how the shell functions as both command inter-
preter and programming language, see Chapters 1 and 4 before reading this
chapter. Also, refer to Appendix E, Summary of Shell Command Language. If
you want to learn more advanced concepts in shell programming, you might read
Shell Commands and Programming (see the Documentation Roadmap for infor-
mation on ordering this manual).

344 USER’S GUIDE

Shell Command Language
This section introduces commands and, more importantly, some characters
with special meanings that let you
find and manipulate a group of files by using pattern matching
run a command in the background or at a specified time
run a group of commands sequentially

redirect standard input and output from and to files and other commands

terminate processes

It first covers the characters having special meanings to the shell and then covers
the commands and notation for carrying out the tasks listed above. For your con-
venience, Figure 7-1 summarizes the characters with special meanings discussed
in this chapter.

SHELL TUTORIAL 345

Shell Command Language

Character

Function

.e

metacharacters that provide a shortcut for specifying file
names by pattern matching

places commands in background mode, leaving your termi-
nal free for other tasks

separates multiple commands on one command line

turns off the meaning of special characters such as *, ?,
[], &,; >, <,and].

single quotes turn off the delimiting meaning of a space
and the special meaning of all special characters

double quotes turn off the delimiting meaning of a space
and the special meaning of all special characters except $
and °

redirects output of a command into a file (replaces exist-
ing contents)

redirects input for a command to come from a file

redirects output of a command to be added to the end of
an existing file

creates a pipe of the output of one command to the input
of another command

grave accents allow the output of a command to be used
directly as arguments on a command line

used with positional parameters and user-defined variables;
also used as the default shell prompt symbol

Figure 7-1: Characters with Special Meanings in the Shell Language

346

USER’S GUIDE

Shell Command Language

Metacharacters

Metacharacters, a subset of the special characters, represent other characters.
They are sometimes called wild cards, because they are like the joker in card
games that can be used for any card. The metacharacters * (asterisk), ? (ques-
tion mark), and [] (brackets) are discussed here.

These characters are used to match file names or parts of file names, thereby
simplifying the task of specifying files or groups of files as command arguments.
(The files whose names match the patterns formed from these metacharacters
must already exist.) This is known as file name expansion. For example, you may
want to refer to all file names containing the letter "a", all file names consisting of
five letters, and so on.

The Metacharacter That Matches All Characters: the Asterisk (*)

The asterisk (*) matches any string of characters, including a null (empty)
string. You can use the * to specify a full or partial file name. The * alone
refers to all the file and directory names in the current directory. To see the
effect of the *, try it as an argument to the echo(1) command. Type:

echo *<CR>

The echo command displays its arguments on your screen. Notice that the system
response to echo * is a listing of all the file names in your current directory.
However, the file names are displayed horizontally rather than in vertical columns
such as those produced by the Is command.

Figure 7-2 summarizes the syntax and capabilities of the echo command.

SHELL TUTORIAL 347

Shell Command Language

Command Recap

echo — write any arguments to the output

command options arguments
echo none any character(s)
Description: echo writes arguments, which are separated by

blanks and ended with <CR>>, to the output.

Remarks: In shell programming, echo is used to issue
instructions, to redirect words or data into a file,
and to pipe data into a command. All these uses
will be discussed later in this chapter.

Figure 7-2: Summary of the echo Command

The * is a powerful character. For example, if you type rm * you will erase all
the files in your current directory. Be very careful how you use it!

For another example, say you have written several reports and have named
them report, reportl, reportla, reportlb.01, report25, and report316. By typing
reportl* you can refer to all files that are part of reportl, collectively. To find
out how many reports you have written, you can use the Is command to list all
files that begin with the string "report," as shown in the following example.

348 USER’S GUIDE

Shell Command Language

$ Is report* <CR>
report

report1

reportia
reportib.01
report25
report316

$

/

The * matches any characters after the string "report," including no letters at all.
Notice that * matches the files in numerical and alphabetical order. A quick and
easy way to print the contents of your report files in order on your screen is by -
typing the following command:

pr report* <CR>

~Now try another exercise. Choose a character that all the file names in your
current directory have in commo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>