

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

PDP is a trademark of Digital Equipment.
Teletype is a registered trademark of AT&T.
UNIX is a registered trademark of AT&T.
VT100 is a trademark of Digital Equipment.
WE is a registered trademark of AT&T.

305-662

UNIX® System V Release 3.2
Update to the Programmer's Guide
(307-225 and 308-139)

Following this page, which you should discard, is the docu­
mentation to update your Programmer's Guide:

• Table of Contents, List of Figures, and Index for the
Programmer's Guide

• Table of Contents for Chapter 10

• Chapter 10: curses/terminfo

• Table of Contents for Chapter 4

• Chapter 4: awk

This documentation will bring your Programmer's Guide
(select codes 307-225 and 308-139) up to date for UNIX System
V Release 3.2.

UPDATE TO THE PROGRAMMER'S GUIDE

~.."'"\;

Table of Contents

Introduction

~'

1

2

3

Overview
Introduction
UNIX System Tools and Where You Can Read About

Them
Three Programming Environments
Summary

Programming Basics
Introduction
Choosing a Programming Language
After Your Code Is Written
The Interface Between a Programming Language and

the UNIX System
Analysis/Debugging
Program Organizing Utilities

Application Programming
Introduction
Application Programming
Language Selection
Advanced Programming Tools
Programming Support Tools

1·1

1-4

1·7
1-9

2-1

2·2

2·8

2-13

2·47
2·68

3-1
3-2

3·5
3·13

3·21

TABLE OF CONTENTS

Table of Contents

Project Control Tools
liber, A Library System

3-33

3-37

4

5

6

awk
Introduction
Basic awk
Patterns
Actions
Output
Input
Using awk with Other Commands and the Shell
Example Applications
awk Summary

lex
An Overview of lex Programming
Writing lex Programs
Running lex under the UNIX System

yacc
Introduction
Basic Specifications
Parser Operation
Ambiguity and Conflicts
Precedence
Error Handling
The yacc Environment
Hints for Preparing Specifications
Advanced Topics
Examples

4-1

4-2

4-12

4-20

4-38

4-43

4-49

4-52

4-58

5-1

5-3

5-19

6-1

6-4

6-13

6-18

6-24

6-28

6-32

6-34

6-38

6-45

)
,--.

ii PROGRAMMER'S GUIDE

"~f'
7

8

9

10

File and Record Locking
Introduction
Terminology
File Protection
Selecting Advisory or Mandatory Locking

Shared Libraries
Introduction
Using a Shared Library
Building a Shared Library
Summary

Interprocess Communication
Introduction
Messages
Semaphores
Shared Memory

curses/terminfo
Introduction
Overview
Working with curses Routines
Working with terminfo Routines
Working with the terminfo Database
curses Program Examples

Table of Contents

7-1

7-2

7-4

7-18

8-1

8-2

8-16

8·61

9-1

9-2

9·34
9·68

10-1

10-3

10-11

10-75

10-81

10·93

11 Common Object File Format (COFF)
The Common Object File Format (COFF) 11-1

TABLE OF CONTENTS ill

Table of Contents

12

13

14

15

The Link Editor
The Link Editor
Link Editor Command Language
Notes and Special Considerations
Syntax Diagram for Input Directives

make
Introduction
Basic Features
Description Files and Substitutions
Recursive Makefiles
Source Code Control System Filenames: the Tilde
Command Usage
Suggestions and Warnings
Internal Rules

Source Code Control System (SCCS)
Introduction
SCCS For Beginners
Delta Numbering
SCCS Command Conventions
SCCS Commands
SCCS Files

sdb-the Symbolic Debugger
Introduction
Using sdb

12-1

12·4

12-23

12-33

13-1

13-2

13-8

13·12

13·18

13-22

13-25

13-26

14-1

14-2

14-7

14-10

14-12

14-38

15-1

15·2

Iv PROGRAMMER'S GUIDE

16

17

lint
Introduction
Usage
lint Message Types

C Language
Introduction
Lexical Conventions
Storage Class and Type
Operator Conversions
Expressions and Operators
Declarations
Statements
External Definitions
Scope Rules
Compiler Control Lines
Types Revisited
Constant Expressions
Portability Considerations
Syntax Summary

Table of Contents

16-1

16-2

16-4

17-1

17-2

17-6
17-9

17-12

17-23

17·37
17-43

17-45

17-47

17-51

17-55

17-56

17·57

Appendix A: Floating Point Operations

Glossary

Index

TABLE OF CONTENTS v

o

~
\

List of Figures

Figure 2-1: Using Command Line Arguments to Set Flags 2-16

Figure 2-2: Using argv[n] Pointers to Pass a Filename 2-16

Figure 2-3: C Language Standard I/O Subroutines 2-19

Figure 2-4: String Operations 2-21

Figure 2-5: Classifying ASCII Character-Coded Integer Values 2-23

Figure 2-6: Conversion Functions and Macros 2-24

Figure 2-7: Manual Page for gets(3S) 2-26

~\
Figure 2-8: How gets Is Used in a Program 2-28

Figure 2-9: A Version of stdio.h 2-30

Figure 2-10: Environment and Status System Calls 2-36

Figure 2-11: Process Status 2-31

Figure 2-12: Example of fork 2-41

Figure 2-13: ExampIe of a popen pipe 2-43

Figure 2-14: Signal Numbers Defined in
IusrI includeIsysIsignaI.h 2-45

Figure 2-15: Source Code for Sample Program 2-50

Figure 2-16: cflow Output, No Options 2-51

Figure 2-17: cflow Output, Using -r Option 2-52

~

LIST OF FIGURES . vii

List of Figures

Figure 2-18: cflow Output, Using -ix Option 2·53

Figure 2-19: cflow Output, Using -r and -ix Options 2-54

Figure 2-20: ctrace Output 2-57 '~

Figure 2-21: cxref Output, Using -c Option 2-62

Figure 2-22: lint Output 2-63

Figure 2-23: prof Output 2-66

Figure 2-24: make Description File 2·69

Figure 2-25: nm Output, with -f Option 2-72

Figure 3-1: The fcntl.h Header File 3-17

Figure 4-1: awk Program Structure and Example 4-2

Figure 4-2: The Sample Input File countries 4-4

Figure 4-3: awk Comparison Operators 4-14

Figure 4-4: awk Regular Expressions 4-18 .~

Figure 4-5: awk Built-in Variables 4·20

Figure 4-6: awk Built-in Arithmetic Functions 4-23

Figure 4-7: awk Built-in String Functions 4-24

Figure 4-8: awk printf Conversion Characters 4-39

Figure 4-9: getline Function 4-47

Figure 5-1: Creation and Use of a Lexical Analyzer with lex 5-2

Figure 8-1: a.out Files Created Using an Archive Library and a
Shared Library 8-9

Figure 8-2: Processes Using an Archive and a Shared Library 8-10

Figure 8-3: A Branch Table in a Shared Library 8·13 '~

viii PROGRAMMER'S GUIDE

List of Figures

Figure 8-4: Imported Symbols in a Shared Library 8·32

Figure 8-5: File log.c 8-52

~ Figure 8-6: File poly.c(,. 8-53

Figure 8-7: File stats.c 8·54

Figure 8-8: Header File maux.h 8-55

Figure 8-9: Specification File 8·58

Figure 9-1: ipc....perm Data Structure 9·6

Figure 9-2: Operation Permissions Codes 9·9

Figure 9-3: Control Commands (Flags) 9-10

Figure 9-4: msggetO System Call Example 9-15

Figure 9.5: msgctI{) System Call Example 9-22

Figure 9-6: msgopO System Call Example 9-33

Figure 9.7: Operation Permissions Codes 9-42

Figure 9-8: Control Commands (Flags) 9-42

Figure 9-9: semgetO System Call Example 9·48

Figure 9-10: semctlO System Call Example 9-60

Figure 9-11: semop(2) System Call Example 9-67

Figure 9-12: Shared Memory State Information 9-71

Figure 9-13: Operation Permissions Codes 9-75

Figure 9-14: Control Commands (Flags) 9·75

Figure 9-15: shmget(2) System Call Example 9-80

Figure 9-16: shmct1(2) System Call Example 9-88

r'"

LIST OF FIGURES ix

List of Figures

Figure 9-17: shmopO System Call Example 9-95

Figure 10-1: A Simple curses Program 10-4

Figure 10-2: A Shell Script Using terminfo Routines 10-6 .~

Figure 10-3: Components of the curses/terminfo Screen
Management System 10-8

Figure 10-4: The Purposes of initscr(), refresh(), and endwin()
in a Program 10-13

Figure 10-5: The Relationship between stdscr and a Terminal
Screen 10-17

Figure 10-6: Multiple Windows and Pads Mapped to a Terminal
Screen 10-19

Figure 10-7: Input Option Settings for curses Programs 10-56

Figure 10-8: The Relationship Between a Window and a Termi-
nal Screen 10-63

Figure 10-9: Sending a Message to Several Terminals 10-74 .)
Figure 10-10: Typical Framework of a terminfo Program 10-76

Figure 11-1: Object File Format 11-2

Figure 11-2: File Header Contents 11-4

Figure 11-3: File Header Flags (3B2 Computer) 11-5

Figure 11-4: File Header Declaration 11-6

Figure 11-5: Optional Header Contents (3B2, 3B5, 3B15 Comput-
ers) 11-7

Figure 11-6: UNIX System Magic Numbers (3B2, 3B5, 3B15 Com-
puters) 11-8

Figure 11-7: aouthdr Declaration 11-9

)

x PROGRAMMER'S GUIDE

List of Figures

Figure 11-8: Section Header Contents 11-10

Figure 11·9: Section Header Flags 11·11

Figure 11·10: Section Header Declaration 11-12

Figure 11·11: Relocation Section Contents 11·13

Figure 11·12: Relocation Types (3B2, 3B5, 3B15 Computers) 11-14

Figure 11-13: Relocation Entry Declaration 11-15

Figure 11-14: Line Number Grouping 11-16

Figure 11·15: Line Number Entry Declaration 11·17

Figure 11-16: COFF Symbol Table 11-18

Figure 11·17: Special Symbols in the Symbol Table 11-19

Figure 11·18: Special Symbols (.bb and .eb) 11-20

Figure 11·19: Nested blocks 11-21

~ Figure 11·20: Example of the Symbol Table 11-22

Figure 11-21: Symbols for Functions 11·22

Figure 11·22: Symbol Table Entry Format 11·23

Figure 11-23: Name Field 11·24

Figure 11-24: Storage Classes 11-25

Figure 11·25: Storage Class by Special Symbols 11·26

Figure 11-26: Restricted Storage Classes 11-26

Figure 11-27: Storage Class and Value 11·27

Figure 11·28: Section Number 11-28

Figure 11·29: Section Number and Storage Class 11-29

~.

LIST OF FIGURES xi

List of Figures

Figure 11·30: Fundamental Types 11-30

Figure 11·31: Derived Types 11-31

Figure 11·32: Type Entries by Storage Class 11-32 ~
Figure 11·33: Symbol Table Entry Declaration 11·34

Figure 11·34: Auxiliary Symbol Table Entries 11-35

Figure 11-35: Format for Auxiliary Table Entries for Sections 11·36

Figure 11-36: Tag Names Table Entries 11-37

Figure 11-37: Table Entries for End of Structures 11-37

Figure 11-38: Table Entries for Functions 11·38

Figure 11-39: Table Entries for Arrays 11-38

Figure 11-40: End of Block and Function Entries 11·39

Figure 11·41: Format for Beginning of Block and Function 11·39

Figure 11·42: Entries for Structures, Unions, and Enumerations 11·40 ~
Figure 11-43: Auxiliary Symbol Table Entry 11-42

Figure 11-44: String Table 11-43

Figure 12-1: Operator Symbols 12·5

Figure 12·2: Syntax Diagram for Input Directives 12-33

Figure 13-1: Summary of Default Transformation Path 13-14

Figure 13-2: make Internal Rules 13·29

Figure 14·1: Evolution of an SCCS File 14-7

Figure 14-2: Tree Structure with Branch Deltas 14·8

Figure 14-3: Extended Branching Concept 14·9

.~

xii PROGRAMMER'S GUIDE

~,

\:

Figure 14-4: Determination of New SID

Figure 15-1: Example of sdb Usage

Figure 17-1: Escape Sequences for Nongraphic Characters

Figure 17-2: AT&T 3B Computer Hardware Characteristics

List of Figures

14·20

15·15

17·4

17·7

LIST OF FIGURES xiii

~.

Purpose

This guide is designed to give you information about programming in a
UNIX system environment. It does not attempt to teach you how to write
programs. Rather, it is intended to supplement texts on programming
languages by concentrating on the other elements that are part of getting
programs into operation.

Audience and Prerequisite Knowledge
As the title suggests, we are addressing programmers, especially those

who have not worked extensively with the UNIX system. No special level
of programming involvement is assumed. We hope the book will be useful
to people who write only an occasional program as well as those who work
on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system
software, may find this guide lacks the depth of information they need. For
them we reco~mend the Programmer's Reference Manual.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX
system directory I file structure is assumed. If you feel shaky about your
mastery of these basic tools, you might want to look over the User's Guide
before tackling this one.

Organization
The material is organized into two parts and seventeen chapters, as fol­

lows:

• Part 1, Chapter 1 - Overview

Identifies the special features of the UNIX system that make up the
programming environment: the concept of building blocks, pipes,
special files, shell programming, etc. As a framework for the material
that follows, three different levels of programming in a UNIX system
are defined: single-user, applications, and systems programming.

• Chapter 2 - Programming Basics

Describes the most fundamental utilities needed to get programs run­
ning.

INTRODUCTION xv

Purpose

• Chapter 3 - Application Programming

Enlarges on many of the topics covered in the previous chapter with
particular emphasis on how things change as the project grows ~

bigger. Describes tools for keeping programming projects organized. .. }

• Part 2, Chapters 4 through 17 - Support Tools, Descriptions, and
Tutorials

Includes detailed information about the use of many of the UNIX sys­
tem tools.

At the end of the text is an appendix on how to perform floating point
operations, a glossary, and an index.

The C Connection
The UNIX system supports many programming languages, and C com­

pilers are available on many different operating systems. Nevertheless, the
relationship between the UNIX operating system and C has always been
and remains very close. Most of the code in the UNIX operating system is
C, and over the years many organizations using the UNIX system have
come to use C for an increasing portion of their application code. Thus,
while this guide is intended to be useful to you no matter what language(s)
you are using, you will find that, unless there is a specific language­
dependent point to be made, the examples assume you are programming in
C.

Hardware/Software Dependencies
Nearly all the text in this book is accurate for any AT&T computer run­

ning UNIX System V Release 3.0 or a later release, with the exception of
hardware-specific information such as addresses. The hardware-specific
information in this text reflects the way things work on an AT&T 3B2 Com­
puter running UNIX System V at the Release 3.0 level.

If you find commands that work a little differently in your UNIX system
environment, it may be because you are running under a different release of ~
the software. If some commands just don't seem to exist at all, they may be
members of packages not installed on your system. If you do find yourself
trying to execute a non-existent command, talk to the administrators of your

xvi PROGRAMMER'S GUIDE

--------------------------- Purpose

system to find out what you have available.

In Part 2 of this text, most of the chapters describe an individual tool or
feature. A few of these tools are part of separate products with different
releases and updates. For example, it is possible that you could be running
the latest issue of the C Programming Language Utilities on an earlier
release of the UNIX operating system. There is nothing wrong with this
configuration, but the features described in this text may not work with the
release of the tool you have.

Listed below are the chapters that describe tools with features that work
in specific releases of UNIX System V. Also listed are parts of this text that
have been recently enhanced.

~
\.

Chapter 4

Chapter 8

Chapter 10

Appendix A

Index

This chapter describes the version of awk released in UNIX
System V Release 3.1 and described on the nawk(l) manual
page. If you use the nawk(l) command, this chapter
describes the version of awk you are using.

If you are running a release of UNIX System V earlier than
Release 3.1, you should keep Chapter 4 from your previous
Programmer's Guide. This older version of awk is described
on the awk(l) manual page.

This chapter describes the shared libraries and related com­
mands associated with UNIX System V Release 3.1. If you
are running UNIX System V Release 3.0, you should keep
Chapter 8 from your previous Programmer's Guide. Shared
libraries are not supported on any release earlier than UNIX
System V Release 3.0.

This chapter describes the curses/terminfo routines. The
text of this chapter has been enhanced and is more accurate
and more easily understood.

This appendix describes to the sophisticated programmer
how to perform floating point operations on the UNIX sys­
tem. The operations described are supported by Issue 4.2
and later of the C Programming Language Utilities.

The index to this text has been expanded and improved.

INTRODUCTION xvII

Purpose

Notation Conventions
Whenever the text includes examples of output from the computer

and/or commands entered by you, we follow the standard notation scheme
that is common throughout UNIX system documentation:

• Commands that you type in from your terminal are shown in bold
type.

• Text that is printed on your terminal by the computer is shown in
constant width type. Constant width type is also used for code sam­
ples because it allows the most accurate representation of spacing.
Spacing is often a matter of coding style, but is sometimes critical.

• Comments added to a display to show that part of the display has
been omitted are shown in italic type and are indented to separate
them from the text that represents computer output or input. Com­
ments that explain the input or output are shown in the same type
font as the rest of the display.

Italics are also used to show substitutable values, such as, filename, /~
when the format of a command is shown.

• There is an implied RETURN at the end of each command and menu
response you enter. Where you may be expected to enter only a
RETURN (as when you accept a menu default), the symbol <CR> is
used.

• In cases where you are expected to enter a control character, it is
shown as, for example, CTRL-D. This means that you press the d
key on your keyboard while holding down the CTRL key.

• The dollar sign, $, and pound sign, #, symbols are the standard
default prompt signs for an ordinary user and root respectively.

• When the # prompt is used in an example, it means the command
illustrated may be used only by root.

xvIII PROGRAMMER'S GUIDE

~."(..

Purpose

Command References
When commands are mentioned in a section of the text for the first

time, a reference to the manual section where the command is formally
described is included in parentheses: command(section). The numbered
sections are located in the following manuals:

Sections (1, IC, IG)

Sections (1, 1M), (4), (5), (7), (8)

Sections (1), (2), (3), (4), (5)

User's Reference Manual

System Administrator's Reference Manual

Programmer's Reference Manual

Note that Section 1 is listed for all the manuals. Section 1 of the User's
Reference Manual describes commands appropriate for general users. Section
1 of the Programmer's Reference Manual describes commands appropriate for
programmers. Section 1 of the System Administrator's Reference Manual
describes commands appropriate for system administrators.

Information in the Examples
While every effort has been made to present displays of information just

as they appear on your terminal, it is possible that your system may produce
slightly different output. Some displays depend on a particular machine
configuration that may differ from yours. Changes between releases of the
UNIX system software may cause small differences in what appears on your
terminal.

Where complete code samples are shown, we have tried to make sure
they compile and work as represented. Where code fragments are shown,
while we can't say that they have been compiled, we have attempted to
maintain the same standards of coding accuracy for them.

INTRODUCTION xix

1 Overview

Introduction 1-1

The Early Days 1-1

UNIX System Philosophy Simply Stated 1-3

UNIX System Tools and Where You Can
Read About Them 1-4

Tools Covered and Not Covered in this Guide 1-4

The Shell as a Prototyping Tool 1-5

Three Programming Environments
Single-User Programmer
Application Programming
Systems Programmers

Summary

OVERVIEW

1-7
1-7

1-8

1-8

1·9

~.

Introduction

The 1983 Turing Award of the Association for Computing Machinery
was given jointly to Ken Thompson and Dennis Ritchie, the two men who
first designed and developed the UNIX operating system. The award cita­
tion said, in part:

"The success of the UNIX system stems from its
tasteful selection of a few key ideas and their
elegant implementation. The model of the UNIX
system has led a generation of software designers
to new ways of thinking about programming. The
genius of the UNIX system is its framework which
enables programmers to stand on the work of others."

As programmers working in a UNIX system environment, why should
we care what Thompson and Ritchie did? Does it have any relevance for us
today?

It does because if we understand the thinking behind the system design
and the atmosphere in which it flowered, it can help us become productive
UNIX system programmers more quickly.

The Early Days
You may already have read about how Ken Thompson came across a

DEC PDP-7 machine sitting unused in a hallway at AT&T Bell Laboratories,
and how he and Dennis Ritchie and a few of their colleagues used that as
the original machine fOJ' developing a new operating system that became
UNIX.

The important thing to realize, however, is that what they were trying
to do was fashion a pleasant computing environment for themselves. It was
not, "Let's get together and build an operating system that will attract
world-wide attention."

The sequence in which elements of the system fell into place is interest­
ing. The first piece was the file system, followed quickly by its organization
into a hierarchy of directories and files. The view of everything, data
stores, programs, commands, directories, even devices, as files of one type or
another was critical, as was the idea of a file as a one-dimensional array of
bytes with no other structure implied. The cleanness and simplicity of this

OVERVIEW 1-1

Introduction

way of looking at files has been a major contributing factor to a computer
environment that programmers and other users have found comfortable to
work in.

The next element was the idea of processes, with one process being able
to create another and communicate with it. This innovative way of looking
at running programs as processes led easily to the practice (quintessentially
UNIX) of reusing code by calling it from another process. With the addi­
tion of commands to manipulate files and an assembler to produce execut­
able programs, the system was essentially able to function on its own.

The next major development was the acquisition of a DEC PDP-II and
the installation of the new system on it. This has been described by Ritchie
as a stroke of good luck, in that the PDP-II was to become a hugely success­
ful machine, its success to some extent adding momentum to the acceptance
of the system that began to be known by the name of UNIX.

By 1972 the innovative idea of pipes (connecting links between
processes whereby the output of one becomes the input of the next) had
been incorporated into the system, the operating system had been recoded
in higher level languages (first B, then C), and had been dubbed with the
name UNIX (coined by Brian Kernighan). By this point, the "pleasant com­
puting environment" sought by Thompson and Ritchie was a reality; but
some other things were going on that had a strong influence on the charac­
ter of the product then and today.

It is worth pointing out that the UNIX system came out of an atmo­
sphere that was totally different from that in which most commercially suc­
cessful operating systems are produced. The more typical atmosphere is
that described by Tracy Kidder in The Soul of a New Machine. In that case,
dozens of talented programmers worked at white heat, in an atmosphere of
extremely tight security, against murderous deadlines. By contrast, the
UNIX system could be said to have had about a ten year gestation period.
From the beginning it attracted the interest of a growing number of brilli­
ant specialists, many of whom found in the UNIX system an environment
that allowed them to pursue research and development interests of their
own, but who in turn contributed additions to the body of tools available
for succeeding ranks of UNIX programmers.

Beginning in 1971, the system began to be used for applications within
AT&T Bell Laboratories, and shortly thereafter (1974) was made available at
low cost and without support to colleges and universities. These versions,
called research versions and identified with Arabic numbers up through 7,
occasionally grew on their own and fed back to the main system additional

1-2 PROGRAMMER'S GUIDE

Introduction

innovative tools. The widely-used screen editor vi(l), for example, was
added to the UNIX system by William Joy at the University of California,
Berkeley. In 1979 acceding to commercial demand, AT&T began offering
supported versions (called development versions) of the UNIX system.
These are identified with Roman numerals and often have interim release
numbers appended. The current development version, for example, is
UNIX System V Release 3.0.

Versions of the UNIX system being offered now by AT&T are coming
from an environment more closely related, perhaps, to the standard
software factory. Features are being added to new releases in response to
the expressed needs of the market place. The essential quality of the UNIX
system, however, remains as the product of the innovative thinking of its
originators and the collegial atmosphere in which they worked. This qual­
ity has on occasion been referred to as the UNIX philosophy, but what is
meant is the way in which sophisticated programmers have come to work
with the UNIX system.

UNIX System Philosophy Simply Stated
For as long as you are writing programs on a UNIX system you should

keep this motto hanging on your wall:

* *
*
*
*

Build em the work of others
*
*
*

* *

Unlike computer environments where each new project is like starting
with a blank canvas, on a UNIX system a good percentage of any program­
ming effort is lying there in bins, and Ibins, and lusr/bins, not to mention
etc, waiting to be used.

The features of the UNIX system (pipes, processes, and the file system)
contribute to this reusability, as does the history of sharing and contributing
that extends back to 1969. You risk missing the essential nature of the
UNIX system if you don/t put this to work.

OVERVIEW 1-3

UNIX System Tools and Where You Can Read
About Them

The term "UNIX system tools" can stand some clarification. In the nar- ~
rowest sense, it means an existing piece of software used as a component in -'
a new task. In a broader context, the term is often used to refer to elements
of the UNIX system that might also be called features, utilities, programs,
filters, commands, languages, functions, and so on. It gets confusing
because any of the things that might be called by one or more of these
names can be, and often are, used in the narrow way as part of the solution
to a programming problem.

Tools Covered and Not Covered in this Guide
The Programmer's Guide is about tools used in the process of creating pro­

grams in a UNIX system environment, so let's take a minute to talk about
which tools we mean, which ones are not going to be covered in this book,
and where you might find information about those not covered here. Actu­
ally, the subject of things not covered in this guide might be even more
important to you than the things that are. We couldn't possibly cover
everything you ever need to know about UNIX system tools in this one
volume.

Tools not covered in this text:

• the login procedure

• UNIX system editors and how to use them

• how the file system is organized and how you move around in it

• shell programming

Information about these subjects can be found in the User's Guide and a
number of commercially available texts.

Tools covered here can be classified as follows:

• utilities for getting programs running

• utilities for organizing software development projects

1-4 PROGRAMMER'S GUIDE

UNIX System Tools

• specialized languages

• debugging and analysis tools

• compiled language components that are not part of the language syn­
tax, for example, standard libraries, systems calls, and functions

The Shell as a Prototyping Tool
Any time you log in to a UNIX system machine you are using the shell.

The shell is the interactive command interpreter that stands between you
and the UNIX system kernel, but that's only part of the story. Because of its
ability to start processes, direct the flow of control, field interrupts and
redirect input and output it is a full-fledged programming language. Pro­
grams that use these capabilities are known as shell procedures or shell
scripts.

Much innovative use of the shell involves stringing together commands
to be run under the control of a shell script. The dozens and dozens of
commands that can be used in this way are documented in the User's Refer­
ence Manual. Time spent with the User's Reference Manual can be rewarding.
Look through it when you are trying to find a command with just the right
option to handle a knotty programming problem. The more familiar you
become with the commands described in the manual pages the more you
will be able to take full advantage of the UNIX system environment.

It is not our purpose here to instruct you in shell programming. What
we want to stress here is the important part that shell procedures can play
in developing prototypes of full-scale applications. While understanding all
the nuances of shell programming can be a fairly complex task, getting a
shell procedure up and running is far less time-consuming than writing,
compiling and debugging compiled code.

This ability to get a program into production quickly is what makes the
shell a valuable tool for program development. Shell programming allows
you to lIbuild on the work of others" to the greatest possible degree, since it
allows you to piece together major components simply and efficiently.
Many times even large applications can be done using shell procedures.
Even if the application is initially developed as a prototype system for test­
ing purposes rather than being put into production, many months of work
can be saved.

OVERVIEW 1-5

UNIX System Tools

With a prototype for testing, the range of possible user errors can be
determined-something that is not always easy to plan out when an appli­
cation is being designed. The method of dealing with strange user input
can be worked out inexpensively, avoiding large re-coding problems.

A common occurrence in the UNIX system environment is to find that
an available UNIX system tool can accomplish with a couple of lines of
instructions what might take a page and a half of compiled code. Shell pro­
cedures can intermix compiled modules and regular UNIX system com­
mands to let you take advantage of work that has gone before.

1-6 PROGRAMMER'S GUIDE

Three Programming Environments

We distinguish among three programming environments to emphasize
that the information needs and the way in which UNIX system tools are
used differ from one environment to another. We do not intend to imply a
hierarchy of skill or experience. Highly-skilled programmers with years of
experience can be found in the "single-user" category, and relative newco­
mers can be members of an application development or systems program­
ming team.

Single-User Programmer
Programmers in this environment are writing programs only to ease the

performance of their primary job. The resulting programs might well be
added to the stock of programs available to the community in which the
programmer works. This is similar to the atmosphere in which the UNIX
system thrived; someone develops a useful tool and shares it with the rest
of the organization. Single-user programmers may not have externally
imposed requirements, or co-authors, or project management concerns. The
programming task itself drives the coding very directly. One advantage of
a timesharing system such as UNIX is that people with programming skills
can be set free to work on their own without having to go through formal
project approval channels and perhaps wait for months for a programming
department to solve their problems.

Single-user programmers need to know how to:

• select an appropriate language

• compile and run programs

• use system libraries

• analyze programs

• debug programs

• keep track of program versions

Most of the information to perform these functions at the single-user
level can be found in Chapter 2.

OVERVIEW 1-7

Three Programming Environments

Application Programming
Programmers working in this environment are developing systems for

the benefit of other, non-programming users. Most large commercial com­
puter applications still involve a team of applications development program­
mers. They may be employees of the end-user organization or they may
work for a software development firm. Some of the people working in this
environment may be more in the project management area than working
programmers.

Information needs of people in this environment include all the topics
in Chapter 2, plus additional information on:

• software control systems

• file and record locking

• communication between processes

• shared memory

• advanced debugging techniques

These topics are discussed in Chapter 3.

Systems Programmers
These are programmers engaged in writing software tools that are part

of, or closely related to the operating system itself. The project may involve
writing a new device driver, a data base management system or an enhance­
ment to the UNIX system kernel. In addition to knowing their way around
the operating system source code and how to make changes and enhance­
ments to it, they need to be thoroughly familiar with all the topics covered
in Chapters 2 and 3.

1-8 PROGRAMMER'S GUIDE

Summary

In this overview chapter we have described the way that the UNIX sys­
tem developed and the effect that has on the way programmers now work
with it. We have described what is and is not to be found in the other
chapters of this guide to help programmers. We have also suggested that in
many cases programming problems may be easily solved by taking advan­
tage of the UNIX system interactive command interpreter known as the
shell. Finally, we identified three programming environments in the hope
that it will help orient the reader to the organization of the text in the
remaining chapters.

OVERVIEW 1-9

~ . ,

I'
I.':

~.

"

2 Programming Basics

Introduction

Choosing a Programming Language
Supported Languages in a UNIX System

Environment
• C Language
• FORTRAN

• Pascal
• COBOL
• BASIC
• Assembly Language

Special Purpose Languages
.awk
• lex
• yace
• M4
• be and dc
• curses

After Your Code Is Written
Compiling and Link Editing

• Compiling C Programs
• Compiling FORTRAN Programs
• Loading and Running BASIC Programs
• Compiler Diagnostic Messages
• Link Editing

2·1

2-2

2-2

2·3
2-4
2-4
2-4
2·5
2-5
2-5
2·6
2·7
2·7
2-7
2·7
2-7

2·8
2-9

2·9
2·10
2-10

2-10

2-11

PROGRAMMING BASICS

Programming Basics

The Interface Between a Programming
Language and the UNIX System
Why C Is Used to Illustrate the Interface
How Arguments Are Passed to a Program
System Calls and Subroutines

• Categories of System Calls and Subroutines
• Where the Manual Pages Can Be Found
• How System Calls and Subroutines Are Used in

C Programs
Header Files and Libraries
Object File Libraries
Input/Output

• Three Files You Always Have
• Named Files
• Low-level I/O and Why You Shouldn't Use It

System Calls for Environment or Status
Information

Processes
• system(3S)
a exec(2)

• fork(2)
• Pipes

Error Handling
Signals and Interrupts

Analysis/Debugging
Sample Program
cflow
ctrace
cxref
lint
prof
size
strip

ii PROGRAMMER'S GUIDE

2-13

2-13

2-14

2-17

2-17

2-24

2-25

2-30

2-32

2-33

2-33

2-34

2-35

2-36

2-37

2-38

2-39

2-39

2-42

2·43

2-44

2-47

2-47
2-51
2-54

2-58
2-63

2-64

2-66

2-66

---------------------- Programming Basics

sdb

Program Organizing Utilities
The make Command
The Archive
Use of SCCS by Single-User Programmers

2-66

2-68

2-68

2·70
2-77

PROGRAMMING BASICS III

Introduction

The information in this chapter is for anyone just learning to write pro­
grams to run in a UNIX system environment. In Chapter 1 we identified
one group of UNIX system users as single-user programmers. People in
that category, particularly those who are not deeply interested in program­
ming, may find this chapter (plus related reference manuals) tells them as
much as they need to know about coding and running programs on a UNIX
system computer.

Programmers whose interest does run deeper, who are part of an appli­
cation development project, or who are producing programs on one UNIX
system computer that are being ported to another, should view this chapter
as a starter package.

PROGRAMMING BASICS 2-1

Choosing a Programming Language

How do you decide which programming language to use in a given
situation? One answer could be, "I always code in HAIRBOL, because that's
the language I know best." Actually, in some circumstances that's a legiti­
mate answer. But assuming more than one programming language is avail­
able to you, that different programming languages have their strengths and
weaknesses, and assuming that once you've learned to use one program­
ming language it becomes relatively easy to learn to use another, you might
approach the problem of language selection by asking yourself questions
like the following:

• What is the nature of the task this program is to do?

Does the task call for the development of a complex algorithm, or is
this a simple procedure that has to be done on a lot of records?

• Does the programming task have many separate parts?

Can the program be subdivided into separately compilable functions,
or is it one module?

• How soon does the program have to be available?

Is it needed right now, or do I have enough time to work out the
most efficient process possible?

• What is the scope of its use?

Am I the only person who will use this program, or is it going to be
distributed to the whole world?

• Is there a possibility the program will be ported to other systems?

• What is the life-expectancy of the program?

Is it going to be used just a few times, or will it still be going strong
five years from now?

Supported Languages in a UNIX System Environment
By "languages" we mean those offered by AT&T for use on an AT&T 3B

Computer running a current release of UNIX System V. Since these are
separately purchasable items, not all of them will necessarily be installed on
your machine. On the other hand, you may have languages available on

2-2 PROGRAMMER'S GUIDE

Choosing a Programming Language

your machine that came from another source and are not mentioned in this
discussion. Be that as it may, in this section and the one to follow we give
brief descriptions of the nature of a) six full-scale programming languages,
and b) a number of special purpose languages.

C Language
C is intimately associated with the UNIX system since it was originally

developed for use in recoding the UNIX system kernel. If you need to use
a lot of UNIX system function calls for low-level I/O, memory or device
management, or inter-process communication, C language is a logical first
choice. Most programs, however, don't require such direct interfaces with
the operating system so the decision to choose C might better be based on
one or more of the following characteristics:

• a variety of data types: character, integer, long integer, float, and
double

• low level constructs (most of the UNIX system kernel is written in C)

• derived data types such as arrays, functions, pointers, structures and
unions

• multi-dimensional arrays

• scaled pointers, and the ability to do pointer arithmetic

• bit-wise operators

• a variety of flow-of-control statements: if, if-else, switch, while, do­
while, and for

• a high degree of portability

C is a language that lends itself readily to structured programming. It is
natural in C to think in terms of functions. The next logical step is to view
each function as a separately compilable unit. This approach (coding a pro­
gram in small pieces) eases the job of making changes and / or improve­
ments. If this begins to sound like the UNIX system philosophy of building
new programs from existing tools, it's not just coincidence. As you create
functions for one program you will surely find that many can be picked up,
or quickly revised, for another program.

PROGRAMMING BASICS 2-3

Choosing a Programming Language

A difficulty with C is that it takes a fairly concentrated use of the
language over a period of several months to reach your full potential as a C
programmer. If you are a casual programmer, you might make life easier
for yourself if you choose a less demanding language. 1
FORTRAN

The oldest of the high-level programming languages, FORTRAN is still
highly prized for its variety of mathematical functions. If you are writing a
program for statistical analysis or other scientific applications, FORTRAN is
a good choice. An original design objective was to produce a language with
good operating efficiency. This has been achieved at the expense of some
flexibility in the area of type definition and data abstraction. There is, for
example, only a single form of the iteration statement. FORTRAN also
requires using a somewhat rigid format for input of lines of source code.
This shortcoming may be overcome by using one of the UNIX system tools
designed to make FORTRAN more flexible.

Pascal
Originally designed as a teaching tool for block structured program­

ming, Pascal has gained quite a wide acceptance because of its straightfor­
ward style. Pascal is highly structured and allows system level calls (charac­
teristics it shares with C). Since the intent of the developers, however, was
to produce a language to teach people about programming it is perhaps best
suited to small projects. Among its inconveniences are its lack of facilities
for specifying initial values for variables and limited file processing capabil­
ity.

COBOL
Probably more programmers are familiar with COBOL than with any

other single programming language. It is frequently used in business appli­
cations because its strengths lie in the management of input/output and in
defining record layouts.

It is somewhat cumbersome to use COBOL for complex algorithms, but
it works well in cases where many records have to be passed through a sim­
ple process; a payroll withholding tax calculation, for example. It is a rather
tedious language to work with because each program requires a lengthy
amount of text merely to describe record layouts, processing environment
and variables used in the code. The COBOL language is wordy so the com­
pilation process is often quite complex. Once written and put into produc­
tion, COBOL programs have a way of staying in use for years, and what

2-4 PROGRAMMER'S GUIDE

Choosing a Programming Language

might be thought of by some as wordiness comes to be considered self­
documentation. The investment in programmer time often makes them
resistant to change.

BASIC
The most commonly heard comment about BASIC is that it is easy to

learn. With the spread of personal microcomputers many people have
learned BASIC because it is simple to produce runnable programs in very
little time. It is difficult, however, to use BASIC for large programming pro­
jects. It lacks the provision for structured flow-of-control, requires that
every variable used be defined for the entire program and has no way of
transferring values between functions and calling programs. Most versions
of BASIC run as interpreted code rather than compiled. That makes for
slower running programs. Despite its limitations, however, it is useful for
getting simple procedures into operation quickly.

Assembly Language
The closest approach to machine language, assembly language is specific

to the particular computer on which your program is to run. High-level
languages are translated into the assembly language for a specific processor
as one step of the compilation. The most common need to work in assem­
bly language arises when you want to do some task that is not within the
scope of a high-level language. Since assembly language is machine­
specific, programs written in it are not portable.

Special Purpose Languages
In addition to the above formal programming languages, the UNIX sys­

tem environment frequently offers one or more of the special purpose
languages listed below.

Since UNIX system utilities and commands are packaged in functional
groupings, it is possible that not all the facilities mentioned will be
available on all systems.

PROGRAMMING BASICS 2-5

Choosing a Programming Language

awk
awk (its name is an acronym constructed from the initials of its

developers) scans an input file for lines that match pattern(s) described in a ~.
specification file. On finding a line that matches a pattern, awk performs
actions also described in the specification. It is not uncommon that an awk
program can be written in a couple of lines to do functions that would take
a couple of pages to describe in a programming language like FORTRAN or
C. For example, consider a case where you have a set of records that consist
of a key field and a second field that represents a quantity. You have sorted
the records by the key field, and you now want to add the quantities for
records with duplicate keys and output a file in which no keys are dupli-
cated. The pseudo-code for such a program might look like this:

Read the first reoord into a hold area;
Read additional reoords until EOF;
{

If the key matches the key of the reoord in the hold area,
add the quantity to the quantity field of the held reoord.;

If the key does rot match the key of the held reoord,
write the held record,
nove the new reoord to the hold area;

}

At EOF, write out the last reoord fran the hold area.

An awk program to accomplish this task would look like this:

{ ~[$1] += $2 }
END {far (key in ~) print key, ~[key] }

This illustrates only one characteristic of awk; its ability to work with asso­
ciative arrays. With awk, the input file does not have to be sorted, which is
a requirement of the pseudo-program.

2-6 PROGRAMMER'S GUIDE

------------------ Choosing a Programming Language

lex
lex is a lexical analyzer that can be added to C or FORTRAN programs.

A lexical analyzer is interested in the vocabulary of a language rather than
its grammar, which is a system of rules defining the structure of a language.
lex can produce C language subroutines that recognize regular expressions
specified by the user, take some action when a regular expression is recog­
nized and pass the output stream on to the next program.

yacc
yacc (Yet Another Compiler Compiler) is a tool for describing an input

language to a computer program. yacc produces a C language subroutine
that parses an input stream according to rules laid down in a specification
file. The yacc specification file establishes a set of grammar rules together
with actions to be taken when tokens in the input match the rules. lex may
be used with yacc to control the input process and pass tokens to the parser
that applies the grammar rules.

M4
M4 is a macro processor that can be used as a preprocessor for assembly

language, and C programs. It is described in Section (1) of the Programmer's
Reference Manual.

be and de
bc enables you to use a computer terminal as you would a programm­

able calculator. You can edit a file of mathematical computations and call bc
to execute them. The bc program uses dc. You can use dc directly, if you
want, but it takes a little getting used to since it works with reverse Polish
notation. That means you enter numbers into a stack followed by the
operator. bc and dc are described in Section (1) of the User's Reference
Manual.

curses
Actually a library of C functions, curses is included in this list because

the set of functions just about amounts to a sub-language for dealing with
terminal screens. If you are writing programs that include interactive user
screens, you will want to become familiar with this group of functions.

In addition to all the foregoing, don't overlook the possibility of using
shell procedures.

PROGRAMMING BASICS 2·7

After Your Code Is Written

The last two steps in most compilation systems in the UNIX system
environment are the assembler and the link editor. The compilation system
produces assembly language code. The assembler translates that code into
the machine language of the computer the program is to run on. The link
editor resolves all undefined references and makes the object module exe­
cutable. With most languages on the UNIX system the assembler and link
editor produce files in what is known as the Common Object File Format
(COFF). A common format makes it easier for utilities that depend on
information in the object file to work on different machines running
different versions of the UNIX system.

In the Common Object File Format an object file contains:

• a file header

• optional secondary header

• a table of section headers

• data corresponding to the section header(s)

• relocation information

• line numbers

• a symbol table

• a string table

An object file is made up of sections. Usually, there are at least two:
.text, and .data. Some object files contain a section called .bss. (.bss is an
assembly language pseudo-op that originally stood for "block started by
symboL") .bss, when present, holds uninitialized data. Options of the com­
pilers cause different items of information to be included in the Common
Object File Format. For example, compiling a program with the -g option
adds line numbers and other symbolic information that is needed for the
sdb (Symbolic Debugger) command to be fully effective. You can spend
many years programming without having to worry too much about the con­
tents and organization of the Common Object File Format, so we are not
going into any further depth of detail at this point. Detailed information is
available in Chapter 11 of this guide.

2-8 PROGRAMMER'S GUIDE

-p

--------------------- After Your Code Is Written

Compiling and Link Editing
The command used for compiling depends on the language used;

• for C programs, cc both compiles and link edits

• for FORTRAN programs, £77 both compiles and link edits

Compiling C Programs
To use the C compilation system you must have your source code in a

file with a filename that ends in the characters .c, as in myco~e.c. The com­
mand to invoke the compiler is:

cc mycode.c

If the compilation is successful the process proceeds through the link edit
stage and the result will be an executable file by the name of a.out.

Several options to the cc command are available to control its operation.
The most used options are:

-c causes the compilation system to suppress the link edit
phase. This produces an object file (mycode.o) that can be
link edited at a later time with a cc command without the
-c option.

-g causes the compilation system to generate special informa-
tion about variables and language statements used by the
symbolic debugger sdb. If you are going through the stage
of debugging your program, use this option.

-0 causes the inclusion of an additional optimization phase.
This option is logically incompatible with the -g option.
You would normally use -0 after the program has been
debugged, to reduce the size of the object file and increase
execution speed.

causes the compilation system to produce code that works in
conjunction with the prof(!) command to produce a runtime
profile of where the program is spending its time. Useful in
identifying which routines are candidates for improved
code.

PROGRAMMING BASICS 2-9

After Your Code Is Written

-0 outfile tells cc to tell the link editor to use the specified name for
the executable file, rather than the default a.out.

Other options can be used with cc. Check the Programmer's Reference /')
Manual.

If you enter the cc command using a file name that ends in .s, the com­
pilation system treats it as assembly language source code and bypasses all
the steps ahead of the assembly step.

Compiling FORTRAN Programs
The f77 command invokes the FORTRAN compilation system. The

operation of the command is similar to that of the cc command, except the
source code file(s) must have a .f suffix. The £77 command compiles your
source code and calls in the link editor to produce an executable file whose
name is a.out.

The following command line options have the same meaning as they do
for the cc command:

-c, -p, -0, -g, and -0 outfile

Loading and Running BASIC Programs
BASIC programs can be invoked in two ways:

• With the command

basic bscpgm.b

where bscpgm.b is the name of the file that holds your BASIC state­
ments. This tells the UNIX system to load and run the program. If
the program includes a run statement naming another program, you
will chain from one to the other. Variables specified in the first can
be preserved for the second with the common statement.

• By setting up a shell script.

Compiler Diagnostic Messages
The C compiler generates error messages for statements that don't com­

pile. The messages are generally quite understandable, but in common with
most language compilers they sometimes point several statements beyond
where the actual error occurred. For example, if you inadvertently put an

2-10 PROGRAMMER'S GUIDE

After Your Code Is Written

extra; at the end of an if statement, a subsequent else will be flagged as a
syntax error. In the case where a block of several statements follows the if,
the line number of the syntax error caused by the else will start you looking
for the error well past where it is. Unbalanced curly braces, { }, are another
common producer of syntax errors.

Link Editing
The Id command invokes the link editor directly. The typical user,

however, seldom invokes Id directly. A more common practice is to use a
language compilation control command (such as cc) that invokes Id. The
link editor combines several object files into one, performs relocation,
resolves external symbols, incorporates startup routines, and supports sym­
bol table information used by sdb. You may, of course, start with a single
object file rather than several. The resulting executable module is left in a
file named a.out.

Any file named on the Id command line that is not an object file (typi­
cally, a name ending in 0) is assumed to be an archive library or a file of
link editor directives. The Id command has some 16 options. We are going
to describe four of them. These options should be fed to the link editor by
specifying them on the cc command line if you are doing both jobs with the
single command, which is the usual case.

~\..~.

-0 autfile

-Ix

provides a name to be used to replace a.out as the name
of the output file. Obviously, the name a.out is of only
temporary usefulness. If you know the name you want
to use to invoke your program, you can provide it here.
Of course, it may be equally convenient to do this:

mv a.out progname

when you want to give your program a less temporary
name.

directs the link editor to search a library libx.a, where x
is up to nine characters. For C programs, libc.a is
automatically searched if the cc command is used. The
-Ix option is used to bring in libraries not normally in
the search path such as libm.a, the math library. The-Ix
option can occur more than once on a command line,
with different values for the x. A library is searched
when its name is encountered, so the placement of the
option on the command line is important. The safest

PROGRAMMING BASICS 2-11

-L dir

After Your Code Is Written

place to put it is at the end of the command line. The
-Ix option is related to the -L option.

changes the libx.a search sequence to search in the
specified directory before looking in the default library
directories, usually /lib or lusr/lib. This is useful if you
have different versions of a library and you want to point
the link editor to the correct one. It works on the
assumption that once a library has been found no further
searching for that library is necessary. Because - L
diverts the search for the libraries specified by -Ix
options, it must precede such options on the command
line.

-u symname enters symname as an undefined symbol in the symbol
table. This is useful if you are loading entirely from an
archive library, because initially the symbol table is
empty and needs an unresolved reference to force the
loading of the first routine.

When the link editor is called through cc, a startup routine (typically
Ilib/crtO.o for C programs) is linked with your program. This routine calls 'J
exit(2) after execution of the main program.

The link editor accepts a file containing link editor directives. The
details of the link editor command language can be found in Chapter 12.

2-12 PROGRAMMER'S GUIDE

The Interface Between a Programming
Language and the UNIX System

When a program is run in a computer it depends on the operating sys­
tem for a variety of services. Some of the services such as bringing the pro­
gram into main memory and starting the execution are completely tran­
sparent to the program. They are, in effect, arranged for in advance by the
link editor when it marks an object module as executable. As a programmer
you seldom need to be concerned about such matters.

Other services, however, such as input/output, file management, storage
allocation do require work on the part of the programmer. These connec­
tions between a program and the UNIX operating system are what is meant
by the term UNIX system/language interface. The topics included in this
section are:

• How arguments are passed to a program

• System calls and subroutines

• Header files and libraries

~ • Input/Output

• Processes

• Error Handling, Signals, and Interrupts

Why C Is Used to Illustrate the Interface
Throughout this section C programs are used to illustrate the interface

between the UNIX system and programming languages because C programs
make more use of the interface mechanisms than other high-level
languages. What is really being covered in this section then is the UNIX
systemIC Language interface. The way that other languages deal with these
topics is described in the user's guides for those languages.

PROGRAMMING BASICS 2-13

Programming Language Interface/The UNIX System

How Arguments Are Passed to a Program
Information or control data can be passed to a C program as arguments

on the command line. When the program is run as a command, arguments
on the command line are made available to the function main in two
parameters, an argument count and an array of pointers to character strings.
(Every C program is required to have an entry module by the name of
main.) Since the argument count is always given, the program does not
have to know in advance how many arguments to expect. The character
strings pointed at by elements of the array of pointers contain the argument
information.

The arguments are presented to the program traditionally as argc and
argv, although any names you choose will work. argc is an integer that
gives the count of the number of arguments. Since the command itself is
considered to be the first argument, argv[01 the count is always at least one.
argv is an array of pointers to character strings (arrays of characters ter­
minated by the null character \0).

If you plan to pass runtime parameters to your program, you neE'd to
include code to deal with the information. Two possible uses of runtime
parameters are:

• as control data. Use the information to set internal flags that control
the operation of the program.

• to provide a variable filename to the program.

Figures 2-1 and 2-2 show program fragments that illustrate these uses.

2-14 PROGRAMMER'S GUIDE

/~.'.)

Programming Language Interface/The UNIX System

#include <stdio.11>

main(argc, cu:qv)
int argc;
char *cu:qv[];

void exit();

int oflag = FALSE;

int pflag = FALSE;I* E\mcticn Flags *1
int rflag = FALSE;

int ch;

while «ch = getopt(argc,cu:qv, "opr"» 1= EDF)
{

1* For options present, set flag to TRUE *1
1* If IX) options present, print error message *1

switch (ch)
{

case '0':

oflag = 1;
break;

case 'p':
pflag = 1;
break;

case 'r':
rflag = 1;
break;

default:
(void) fprintf (stderr.
"Usage: %s [-opr]\n", argv[O]);
exi.t(2) ;

Figure 2-1: Using Command Line Arguments to Set Flags

PROGRAMMING BASICS 2-15

Programming Language Interface/The UNIX System

#include <stdio.h>

main(argc, argv)

int argc;
char *argv[];

{

FILE *fopen(), *fin;
void perrar(), exit();

if (argc > 1)

{

if «fin =fopen(argv[1], "r "» == NULL)
{

1* First st:rinJ (%6) is program name (argv[O]) *1
1* Secxm:i striD;J (%6) is name of file that oould *1
h not be opened (argv[1]) *1

(void)fprintf(stderr,
"%6: cannot open %s: ",
argv[O], argv[1]);

perrar("");

exi.t(2) ;

Figure 2-2: Using argv[n] Pointers to Pass a Filename

The shell, which makes arguments available to your program, considers
an argument to be any non-blank characters separated by blanks or tabs.
Characters enclosed in double quotes ("abc def") are passed to the program
as one argument even if blanks or tabs are among the characters. It goes
without saying that you are responsible for error checking and otherwise
making sure the argument received is what your program expects it to be.

2-16 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

A third argument is also present, in addition to argc and argv. The
third argument, known as envp, is an array of pointers to environment vari­
ables. You can find more information on envp in the Programmer's Reference
Manual under exec(2) and environ(5).

System Calls and Subroutines
System calls are requests from a program for an action to be performed

by the UNIX system kernel. Subroutines are precoded modules used to sup­
plement the functionality of a programming language.

Both system calls and subroutines look like functions such as those you
might code for the individual parts of your program. There are, however,
differences between them:

• At link edit time, the code for subroutines is copied into the object
file for your program; the code invoked by a system call remains in
the kernel.

• At execution time, subroutine code is executed as if it was code you
had written yourself; a system function call is executed by switchingr from your process. area to the kernel.

This means that while subroutines make your executable object file
larger, runtime overhead for context switching may be less and execution
may be faster.

Categories of System Calls and Subroutines
System calls divide fairly neatly into the following categories:

• file access

• file and directory manipulation

• process control

• environment control and status information

r"
You can generally tell the category of a subroutine by the section of the

Programmer's Reference Manual in which you find its manual page. However,
the first part of Section 3 (3C and 3S) covers such a variety of subroutines it
might be helpful to classify them further.

PROGRAMMING BASICS 2-17

Programming Language Interface/The UNIX System

• The subroutines of sub-class 3S constitute the UNIX systemIC
Language standard I10, an efficient I/O buffering scheme for C.

• The subroutines of sub-class 3C do a variety of tasks. They have in ~.',""

common the fact that their object code is stored in libc.a. They can)
be divided into the following categories:

o string manipulation

o character conversion

o character classification

o environment management

o memory management

Figure 2-3 lists the functions that compose the standard I/O subroutines.
Frequently, one manual page describes several related functions. In Figure
2-3 the left hand column contains the name that appears at the top of the
manual page; the other names in the same row are related functions
described on the same manual page.

2-18 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

Function Name(s) Purpose

~
fdose £flush dose or flush a stream

ferror feof dearerr fileno stream status inquiries

fopen freopen fdopen open a stream

fread fwrite binary input/output

fseek rewind ftell reposition a file pointer in a stream

getc getchar fgetc getw get a character or word from a stream

gets fgets get a string from a stream

popen pelose begin or end a pipe to/from a process

printf fprintf sprintf print formatted output

For all functions: #indude <stdio.h>

~\
The function name shown in bold gives the location in
the Programmer's Reference Manual, Section 3.

"
Figure 2-3: C Language Standard I/O Subroutines

PROGRAMMING BASICS 2-19

Programming Language Interface/The UNIX System

Function Name(s) Purpose

putc putchar fputc putw put a character or word on a stream

~puts fputs put a string on a stream

scanf fscanf sscanf convert formatted input

setbuf setvbuf assign buffering to a stream

system issue a command through the shell

tmpfile create a temporary file

trnpnam tempnam create a name for a temporary file

ungetc push character back into input stream

vprintf vfprintf vspri~tf print formatted output of a varargs
argument list

For all functions: #include <stdio.h>

The function name shown in bold gives the location in
the Programmer's Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines (continued)

Figure 2-4 lists string handling functions that are grouped under the
heading string(3C) in the Programmer's Reference Manual.

2·20 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

String Operations

strcat(sl, s2)

strncat(sl, s2, n)

strcmp(sl, s2)

strncmp(sl, s2, n)

strcpy(sl, s2)

strncpy(sl, s2, n)

strdup(s)

strchr(s, c)

strrchr(s, c)

append a copy of s2 to the end of sl.

append n characters from s2 to the end of s1.

compare two strings. Returns an integer less
than, greater than or equal to 0 to show that
sl is lexicographically less than, greater than
or equal to s2.

compare n characters from the two strings.
Results are otherwise identical to strcmp.

copy s2 to sl, stopping after the null character
(\0) has been copied.

copy n characters from s2 to sl. s2 will be
truncated if it is longer than n, or padded
with null characters if it is shorter than n.

returns a pointer to a new string that is a
duplicate of the string pointed to by s.

returns a pointer to the first occurrence of
character c in string s, or a NULL pointer if c
is not in s.

returns a pointer to the last occurrence of
character c in string s, or a NULL pointer if c
is not in s.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations

PROGRAMMING BASICS 2-21

Programming Language Interface/The UNIX System

String Operations

strlen(s)

strpbrk(sl, s2)

strspn(sl, s2)

strcspn(sl, s2)

strtok(sl, s2)

returns the number of characters in s up to
the first null character.

returns a pointer to the first occurrence in sl
of any character from s2, or a NULL pointer if
no character from s2 occurs in s1.

returns the length of the initial segment of sl,
which consists entirely of characters from s2.

returns the length of the initial segment of sl,
which consists entirely of characters not from
s2.

look for occurrences of s2 within sl.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations (continued)

Figure 2-5 lists macros that classify ASCII character-coded integer
values. These macros are described under the heading ctype(3C) in Section
3 of the Programmer's Reference Manual.

2·22 PROGRAMMER'S GUIDE

~'
isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isxdigit(c)

isalnum(c)

isspace(c)

ispunct(c)

isprint(c)

~ isgraph(c)

iscntrl(c)

isascii(c)

Programming Language Interface/The UNIX System

Classify Characters

is c a letter

is c an upper-case letter

is c a lower-case letter

is c a digit [0-9]

is c a hexadecimal digit [0-9], [A-F] or [a-f]

is c an alphanumeric (letter or digit)

is c a space, tab, carriage return, new-line, vertical tab
or form-feed

is c a punctuation character (neither control nor
alphanumeric)

is c a printing character, code 040 (space) through
0176 (tilde)

same as isprint except false for 040 (space)

is c a control character (less than 040) or a delete char­
acter (0177)

is c an ASCII character (code less than 0200)

For all functions: #include <ctype.h>
Nonzero return == true; zero return == false

Figure 2-5: Classifying ASCII Character-Coded Integer Values

Figure 2-6 lists functions and macros that are used to convert characters,
integers, or strings from one representation to another.

PROGRAMMING BASICS 2-23

Programming Language Interface/The UNIX System

Function Name(s) Purpose

a641

ecvt

13tol

strtod

strtol

conv(3C):

164a

fcvt

ltol3

atof

atol

gcvt

atoi

convert between long integer and
base-64 ASCII string

convert floating-point number to
string

convert between 3-byte integer and
long integer

convert string to double-precision
number

convert string to integer

Translate Characters

toupper

_toupper

tolower

tolower

toascii

lower-case to upper-case

macro version of toupper

upper-case to lower-case

macro version of tolower

turn off all bits that are not part of a standard
ASCII character; intended for compatibility
with other systems

For all conv(3C) macros: #include <ctype.h>

Figure 2-6: Conversion Functions and Macros

Where the Manual Pages Can Be Found
System calls are listed alphabetically in Section 2 of the Programmer's

Reference Manual. Subroutines are listed in Section 3. We have deSCribed.~.
above what is in the first subsection of Section 3. The remaining subsec-
tions of Section 3 are:

2-24 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

• 3M-functions that make up the Math Library, libm

• 3X-various specialized functions

~. • 3F-the FORTRAN intrinsic function library, IibF77

• 3N-Networking Support Utilities

How System Calls and Subroutines Are Used in C Programs
Information about the proper way to use system calls and subroutines is

given on the manual page, but you have to know what you are looking for
before it begins to make sense. To illustrate, a typical manual page (for
gets(3S» is shown in Figure 2-7.

~.

PROGRAMMING BASICS 2-25

Programming Language Interface/The UNIX System

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char .gets (s)
char ·s;

char .fgets (s, n, stream)
char .s;
int n;
FILE ·stream;

DESCRIPTION
gels reads characters from the standard input stream, sld;l1, into the
array pointed to by 5, until a new-line character is read or an end­
of-file con~ition is encountered. The new-line character is discarded
and the string is terminated with a null character.

fgets reads characters from the stream into the array pointed to by s,
until 11-1 characters are read, or a new-line character is read and
transferred to 5, or an end-of-file condition is encountered. The
string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If a
read error occurs, such as trying to use these functions on a file that
has not been opened for reading, a NULL pointer is returned. Other­
wise s is returned.

Figure 2-7: Manual Page for gets(3S)

2-26 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

As you can see from the illustration, two related functions are described
on this page: gets and fgets. Each function gets a string from a stream in a
slightly different way. The DESCRIPTION section tells how each operates.

It is the SYNOPSIS section, however, that contains the critical informa­
tion about how the function (or macro) is used in your program. Notice in
Figure 2-7 that the first line in the SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard I/O header
file into your program (generally right at the top of the file). There is something
in stdio.h that is needed when you use the described functions. Figure 2-9
shows a version of stdio.h. Check it to see if you can understand what gets
or fgets uses.

The next thing shown in the SYNOPSIS section of a manual page that docu­
ments system calls or subroutines is the formal declaration of the function. The
formal declaration tells you:

• the type of object returned by the function

In our example, both gets and fgets return a character pointer.

• the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function.
gets expects a character pointer. (The DESCRIPTION section sheds
light on what the tokens of the formal declaration stand for.)

• how the function is going to treat those objects

The declaration

char *S;

in gets means that the token s enclosed in the parentheses will be
considered to be a pointer to a character string. Bear in mind that in
the C language, when passed as an argument, the name of an array is
converted to a pointer to the beginning of the array.

We have chosen a simple example here in gets. If you want to test
yourself on something a little more complex, try working out the meaning
of the elements of the fgets declaration.

PROGRAMMING BASICS 2·27

Programming Language Interface/The UNIX System

While we're on the subject of fgets, there is another piece of C esoterica
that we'll explain. Notice that the third parameter in the fgets declaration
is referred to as stream. A stream, in this context, is a file with its associ-
ated buffering. It is declared to be a pointer to a defined type FILE. Where .~.\

is FILE defined? Right! In stdio.h. ,

To finish off this discussion of the way you use functions described in
the Programmer's Reference Manual in your own code, in Figure 2-8 we show
a program fragment in which gets is used.

#include <stdio.h>

main()

{

char sarray[80];

for(;;)
{

if (qetB(sarray) I:::: NULL)

Figure 2-8: How gets Is Used in a Program

You might ask, "Where is gets reading from?" The answer is, "From the
standard input." That generally means from something being keyed in from
the terminal where the command was entered to get the program running,
or output from another command that was piped to gets. How do we know
that? The DESCRIPTION section of the gets manual page says, "gets reads .~/

characters from the standard input ..." Where is the standard input ,
defined? In stdio.h.

2-28 PROGRAMMER'S GUIDE

~

"

Programming Language Interface/The UNIX System

#ifrrlef _NFILE
#define _NFILE 20

#define BUFSIZ 1024
#define SBFSIZ B

typedef struct {
int
unsigned char
unsigned char

char
char

} FILE;

#define _IOFBF

#define _IOREAD
#define _lCMRl'

#define lamE'

#define ICMmUF

#define IOEOF
#define IOERR
#define lOLBF
#define lCHl

#ifrrlef NULL
#define NULL
#emif
#ifrrlef EOF
#define EOF
#emif

#define stdin
#define stdout
#define stderr

#define }~1fend(p)

#define _bufsiz(p)

_cnt;
*-ptr;
*}lase;
_flag;
_file;

0000 1* _lOLBF means that a file's output *1
0001 1* will be buffered line by line. *1

0002 1* In addition to being flags. _lamE'.*1
0004 1* _lOLBF and lOFBF are possible *1
0010 1* values for "type" in set:vb1:f. *1
0020
0040
0100
0200

o

(-1)

(&._iob[O])

(&._iab[1])

(&._iab[2])

_bufendtab[(p)->_file]
(_bufend(p) - (p)->_base)

PROGRAMMING BASICS 2·29

Programming Language Interface/The UNIX System

continued

#ifndef lint
#define getc(p)
#define Pltc(x, p)

#define getchar()
#define Pltchar(x)
#define clearerr(p)
#define feof(p)
#define fezror(p)
#define fileno(p)
#eOOi.f

(--(p)->_cnt < 0 ? _fi1buf(p) : (int) * (p)->-ptr++)
(--(p)->_cnt < 0 ?
_flsb1f((unsigned char) (x), (p» :
(int) (*(p)->_ptr++ = (unsigned char) (x»)
getc(stdin)

Pltc((x), stdcut)

«void) «p)->_flag &.= (_IomR I _IOIDF»)
«p)->_flag &. _IOIDF)
«p)->_flag &. _IomR)
(p)->_file

extern FILE _iab[_NFILE] ;

extern FILE *fopen(), *fdopen(), *freopen(), *popen(), *tmpfile();
extern lang ftell () ;
extent void rewind(), setbuf () ;
extern char *ctennid(), *cuserid(), *fgets(), *gets(), *tempnam(), *tmpnam();
extel:Il unsigned char *}nfendtab[] ;

#define L ctenni.d
#define L cuserid
#define P_tIopdi.r
#define L_t:mpnam

#eMif

9
9
"/usr/~/"

(sizeof(P_tmpdir) + 15)

Figure 2-9: A Version of stdio.h

Header Files and lilbrarfies
In the earlier parts of this chapter there have been frequent references '~.'\

to stdio.h, and a version of the file itself is shown in Figure 2-9. stdio.h is
the most commonly used header file in the UNIX systemIC environment,
but there are many others.

2-30 PROGRAMMER'S GUIDE

~.. '"\" .

~'.. """'"

\~'

Programming Language Interface/The UNIX System

Header files carry definitions and declarations that are used by more
than one function. Header filenames traditionally have the suffix .h, and
are brought into a program at compile time by the C-preprocessor. The
preprocessor does this because it interprets the #inc1ude statement in your
program as a directive; as indeed it is. All keywords preceded by a pound
sign (#) at the beginning of the line, are treated as preprocessor directives.
The two most commonly used directives are #include and #define. We
have already seen that the #inc1ude directive is used to call in (and process)
the contents of the named file. The #define directive is used to replace a
name with a token-string. For example,

#define NFILE 20

sets to 20 the number of files a program can have open at one time. See
epp(l) for the complete list.

In the pages of the Programmer's Reference Manual there are about 45
different .h files named. The format of the #include statement for all these
shows the file name enclosed in angle brackets « >), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places
for the file. In most systems the standard place is in the /usr/include direc­
tory. If you have some definitions or external declarations that you want to
make available in several files, you can create a .h file with any editor, store
it in a convenient directory and make it the subject of a #inc1ude statement
such as the following:

#inc1ude ".. /defs/ree.h"

It is necessary, in this case, to prOVide the relative pathname of the file
and enclose it in quotation marks (""). Fully-qualified pathnames (those that
begin with /) can create portability and organizational problems. An alter­
native to long or fully-qualified pathnames is to use the -Idir preprocessor
option when you compile the program. This option directs the preprocessor
to search for #include files whose names are enclosed in IIll, first in the
directory of the file being compiled, then in the directories named in the -I
option(s), and finally in directories on the standard list. In addition, all
#inc1ude files whose names are enclosed in angle brackets « » are first
searched for in the list of directories named in the -I option and finally in
the directories on the standard list.

PROGRAMMING BASICS 2-31

Programming Language Interface/The UNIX System

Object File Libraries
It is common practice in UNIX system computers to keep modules of

compiled code (object files) in archives; by convention, designated by a .a
suffix. System calls from Section 2, and the subroutines in Section 3, subsec­
tions 3C and 35, of the Programmer's Reference Manual that are functions (as
distinct from macros) are kept in an archive file by the name of libc.a. In
most systems, libc.a is found in the directory llib. Many systems also have
a directory lusr/lib. Where both llib and lusr/lib occur, lusr/lib is apt to
be used to hold archives that are related to specific applications.

Besides archive libraries, the UNIX System also supports shared libraries.
Shared libraries have advantages in terms of saving disk space and
memory. For more information about using shared libraries, see Chapter 8
"Shared Libraries" in this text.

During the link edit phase of the compilation and link edit process,
copies of some of the object modules in an archive file are loaded with your
executable code. By default the cc command that invokes the C compilation
system causes the link editor to search libc.a. If you need to point the link
editor to other libraries that are not searched by default, you do it by nam­
ing them explicitly on the command line with the -I option. The format of
the -I option is -Ix where x is the library name, and can be up to nine
characters. For example, if your program includes functions from the curses
screen control package, the option

-1curses

will cause the link editor to search for I lib I libcurses.a or
lusr/lib/libcurses.a and use the first one it finds to resolve references in
your program.

In cases where you want to direct the order in which archive libraries
are searched, you may use the - L dir option. Assuming the - L option
appears on the command line ahead of the -1 option, it directs the link edi- ~

tor to search the named directory for libx.a before looking in llib and }
lusr/lib. This is particularly useful if you are testing out a new version of a
function that already exists in an archive in a standard directory. Its success
is due to the fact that once having resolved a reference the link editor stops

2-32 PROGRAMMER'S GUIDE

~.
"

Programming Language Interface/The UNIX System

looking. That's why the -L option, if used, should appear on the command
line ahead of any -1 specification.

Input/Output
We talked some about I/O earlier in this chapter in connection with sys­

tem calls and subroutines. A whole set of subroutines constitutes the C
language standard I/O package, and there are several system calls that deal
with the same area. In this section we want to get into the subject in a little
more detail and describe for you how to deal with input and output con­
cerns in your C programs. First off, let's briefly define what the subject of
I/O encompasses. It has to do with

• creating and sometimes removing files

• opening and closing files used by your program

• transferring information from a file to your program (reading)

• transferring information from your program to a file (writing)

In this section we will describe some of the subroutines you might
choose for transferring information, but the heaviest emphasis will be on
dealing with files.

Three Files You Always Have
Programs are permitted to have several files open simultaneously. The

number may vary from system to system; the most common maximum is 20.
_NFILE in stdio.h specifies the number of standard I/O FILEs a program is
permitted to have open.

Any program automatically starts off with three files. If you will look
again at Figure 2-9, about midway through you will see that stdio.h con­
tains three #define directives that equate stdin, stdout, and stderr to the
address of _iob[O], _iob[l], and Job[2], respectively. The array _iob holds
information dealing with the way standard I/O handles streams. It is a
representation of the open file table in the control block for your program.
The position in the array is a digit that is also known as the file descriptor.
The default in UNIX systems is to associate all three of these files with your
terminal.

PROGRAMMING BASICS 2-33

Programming Language Interface/The UNIX System

The real significance is that functions and macros that deal with stdin
or stdout can be used in your program with no further need to open or
close files. For example, gets, cited above, reads a string from stdin; puts
writes a null-terminated string to stdout. There are others that do the same
(in slightly different ways: character at a time, formatted, etc.). You can
specify that output be directed to stderr by using a function such as fprintf.
fprintf works the same as printf except that it delivers its formatted output
to a named stream, such as stderr. You can use the shell's redirection
feature on the command line to read from or write into a named file. If you
want to separate error messages from ordinary output being sent to stdout
and thence possibly piped by the shell to a succeeding program, you can do
it by using one function to handle the ordinary output and a variation of
the same function that names the stream, to handle error messages.

Named Files
Any files other than stdin, stdout, and stderr that are to be used by

your program must be explicitly connected by you before the file can be
read from or written to. This can be done using the standard library rou­
tine fopen. fopen takes a pathname (which is the name by which the file is
known to the UNIX file system), asks the system to keep track of the con­
nection, and returns a pointer that you then use in functions that do the
reads and writes.

A structure is defined in stdio.h with a type of FILE. In your program
you need to have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then assign the
name of a particular file to the pointer with a statement in your program
like this:

fin = fopen(llfilename", Urn);

.,

where filename is the pathname to open. The "r" means that the file is to
be opened for reading. This argument is known as the mode. As you
might suspect, there are modes for reading, writing, and both reading and
writing. Actually, the file open function is often included in an if state­
ment such as:

if «fin = fopen("filename", "r")) ==NULL))
(void)fprintf(stderr, u%6: Unable to open input file %s\nll ,argv[O] , IIfilename");

2-34 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

that takes advantage of the fact that fopen returns a NULL pointer if it can't
open the file.

Once the file has been successfully opened, the pointer fin is used in
functions (or macros) to refer to the file. For example:

int c;
c = getc(fin);

brings in a character at a time from the file into an integer variable called c.
The variable c is declared as an integer even though we are reading charac­
ters because the function getcO returns an integer. Getting a character is
often incorporated into some flow-of-control mechanism such as:

while ((c = getc(fin» 1= EDF)

that reads through the file until EOF is returned. EOF, NULL, and the
macro getc are all defined in stdio.h. getc and others that make up the
standard I/O package keep advancing a pointer through the buffer associ­
ated with the file; the UNIX system and the standard I/O subroutines are
responsible for seeing that the buffer is refilled (or written to the output file
if you are producing output) when the pointer reaches the end of the
buffer. All these mechanics are mercifully invisible to the program and the
programmer.

The function fdose is used to break the connection between the pointer
in your program and the pathname. The pointer may then be associated
with another file by another call to fopen. This re-use of a file descriptor
for a different stream may be necessary if your program has many files to
open. For output files it is good to issue an fclose call because the call
makes sure that all output has been sent from the output buffer before
disconnecting the file. The system call exit closes all open files for you. It
also gets you completely out of your process, however, so it is safe to use
only when you are sure you are completely finished.

Low-level I/O and Why You Shouldn't Use It
The term low-level I/O is used to refer to the process of using system

calls from Section 2 of the Programmer's Reference Manual rather than the
functions and subroutines of the standard I/O package. We are going to
postpone until Chapter 3 any discussion of when this might be advanta­
geous. If you find as you go through the information in this chapter that it

PROGRAMMING BASICS 2-35

Programming Language Interface/The UNIX System

is a good fit with the objectives you have as a programmer, it is a safe
assumption that you can work with C language programs in the UNIX sys­
tem for a good many years without ever having a real need to use system
calls to handle your I/O and file accessing problems. The reason low-level
I/O is perilous is because it is more system-dependent. Your programs are
less portable and probably no more efficient.

System Calls for Environment or Status Information
Under some circumstances you might want to be able to monitor or con­

trol the environment in your computer. There are system calls that can be
used for this purpose. Some of them are shown in Figure 2-10.

Function Name(s) Purpose

link unlink

mount umount

chdir

chmod

chown

getpid

getuid

ioell

nice

stat

time

ulimit

uname

getpgrp getppid

geteuid getgid

fstat

change working directory

change access permission of a file

change owner and group of a file

get process IDs

get user IDs

control device

add or remove a directory entry

mount or unmount a file system

change priority of a process

get file status

get time

get and set user limits

get name of current UNIX system

Figure 2-10: Environment and Status System Calls

2-36 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

As you can see, many of the functions shown in Figure 2-10 have
equivalent UNIX system shell commands. Shell commands can easily be
incorporated into shell scripts to accomplish the monitoring and control
tasks you may need to do. The functions are available, however, and may
be used in C programs as part of the UNIX systemiC Language interface.
They are documented in Section 2 of the Programmers' Reference Manual.

Processes
Whenever you execute a command in the UNIX system you are initiat­

ing a process that is numbered and tracked by the operating system. A
flexible feature of the UNIX system is that processes can be generated by
other processes. This happens more than you might ever be aware of. For
example, when you log in to your system you are running a process, very
probably the shell. If you then use an editor such as vi, take the option of
invoking the shell from vi, and execute the ps command, you will see a
display something like that in Figure 2-11 (which shows the results of a ps
-f command):

UID

abc

abc

abc
abc

pm
24210
24631
28441
28358

PPm
1
24210
28358

24631

c STIME
o 06: 13: 14
o 06:59:07
80 09:17:22
2 09: 15:14

'I'I'Y
tty29

tty29
tty29
tty29

TIME

0:05
0: 13
0:01
0:01

CCt+WID
-sh
vi c2.uli
ps-f
sh -i

Figure 2-11: Process Status

As you can see, user abc (who went through the steps described above)
now has four processes active. It is an interesting exercise to trace the chain
that is shown in the Process 10 (PID) and Parent Process 10 (PPID)
columns. The shell that was started when user abc logged on is Process
24210; its parent is the initialization process (Process 10 1). Process 24210 is
the parent of Process 24631, and so on.

PROGRAMMING BASICS 2-37

Programming Language Interface/The UNIX System

The four processes in the example above are all UNIX system shell level
commands, but you can spawn new processes from your own program.
(Actually, when you issue the command from your terminal to execute a
program you are asking the shell to start another process, the process being ~

your executable object module with all the functions and subroutines that J
were made a part of it by the link editor.)

You might think, "Well, it's one thing to switch from one program to
another when I'm at my terminal working interactively with the computer;
but why would a program want to run other programs, and if one does,
why wouldn't I just put everything together into one big executable
module?"

Overlooking the case where your program is itself an interactive appli­
cation with diverse choices for the user, your program may need to run one
or more other programs based on conditions it encounters in its own pro­
cessing. (If it's the end of the month, go do a trial balance, for example.)
The usual reasons why it might not be practical to create one monster exe­
cutable are:

II The load module may get too big to fit in the maximum process size
for your system.

II You may not have control over the object code of all the other
modules you want to include.

Suffice it to say, there are legitimate reasons why this creation of new
processes might need to be done. There are three ways to do it:

• system(3S)-request the shell to execute a command

I!I exec(2)-stop this process and start another

IiJ fork(2)-start an additional copy of this process

system(3S)

The formal declaration of the system function looks like this:

#include <stdio.h>

int system(string)

char • string;

The function asks the shell to treat the string as a command line. The
string can therefore be the name and arguments of any executable program

2-38 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

or UNIX system shell command. If the exact arguments vary from one exe­
cution to the next, you may want to use sprintf to format the string before
issuing the system command. When the command has finished running,
system returns the shell exit status to your program. Execution of your pro­
gram waits for the completion of the command initiated by system and
then picks up again at the next executable statement.

exec(2)
exec is the name of a family of functions that includes execv, execle,

execve, execlp, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide
different ways of pulling together and presenting the arguments of the
function. An example of one version (execl) might be:

execl ("/bin/prog2", "prog", progarg1, progarg2, (char .)0) ;

For execl the argument list is

Ibin/prog2

prog

progargl,
progarg2

(char .)0

path name of the new process file

the name the new process gets in its argv[O]

arguments to prog2 as char ·'s

a null char pointer to mark the end of the arguments

Check the manual page in the Programmer's Reference Manual for the rest
of the details. The key point of the exec family is that there is no return
from a successful execution: the calling process is finished, the new process
overlays the old. The new process also takes over the Process ID and other
attributes of the old process. If the call to exec is unsuccessful, control is
returned to your program with a return value of -1. You can check errno
(see below) to learn why it failed.

fork(2)
The fork system call creates a new process that is an exact copy of the

calling process. The new process is known as the child process; the caller is
known as the parent process. The one major difference between the two
processes is that the child gets its own unique process 10. When the fork
process has completed successfully, it returns a 0 to the child process and
the child's process ID to the parent. If the idea of having two identical
processes seems a little funny, consider this:

PROGRAMMING BASICS 2-39

Programming Language Interface/The UNIX System

• Because the return value is different between the child process and
the parent, the program can contain the logic to determine different
paths.

• The child process could say, "Okay, I'm the child. I'm supposed to
issue an exec for an entirely different program."

• The parent process could say, "My child is going to be execing a new
process. I'll issue a wait until I get word that that process is
finished."

To take this out of the storybook world where programs talk like people
and into the world of C programming (where people talk like programs),
your code might include statements like this:

2-40 PROGRAMMER'S GUIDE

~\:.

Programming Language Interface/The UNIX System

#include <errno.h>

int ch_stat, ch_pid, status;
char *p:rogarg1;
char *progarg2;
void exi.t();
extern int errno;

if «ch_pid = fork(» < 0)
{

1* Could J'X)t fork •••
check errno

}

else if (ch_pid == 0)
{

(void)execl(IIlbinlprog2 II , Ilprogll ,progarg1,progarg2, (char *)0);

exi.t(2); 1* execl() failed *1
}

else

while «status = wait(&ch_stat» 1= ch_pid)
{

if (status < 0 &&. errno == rom..o)

break;

ernx> =0;

Figure 2-12: Example of fork

Because the child process ID is taken over by the new exec'd process,
the parent knows the ID. What this boils down to is a way of leaving one
program to run another, returning to the point in the first program where
processing left off. This is exactly what the system(3S) function does. As a
matter of fact, system accomplishes it through this same procedure of fork­
ing and execing, with a wait in the parent.

PROGRAMMING BASICS 2-41

Programming Language Interface/The UNIX System

Keep in mind that the fragment of code above includes a minimum
amount of checking for error conditions. There is also potential confusion
about open files and which program is writing to a file. Leaving out the
possibility of named files, the new process created by the fork or exec has
the three standard files that are automatically opened: stdin, stdout, and
stderr. If the parent has buffered output that should appear before output
from the child, the buffers must be flushed before the fork. Also, if the
parent and the child process both read input from a stream, whatever is
read by one process will be lost to the other. That is, once something has
been delivered from the input buffer to a process the pointer has moved on.

Pipes
The idea of using pipes, a connection between the output of one pro­

gram and the input of another, when working with commands executed by
the shell is well established in the UNIX system environment. For example,
to learn the number of archive files in your system you might enter a com­
mand like:

echo llib/·oa /usr/lib/·oa Iwe -w

that first echoes all the files in llib and lusr/lib that end in oa, then pipes
the results to the we command, which counts their number. /~

A feature of the UNIX systemIC Language interface is the ability to
establish pipe connections between your process and a command to be exe­
cuted by the shell, or between two cooperating processes. The first uses the
popen(3S) subroutine that is part of the standard 1/0 package; the second
requires the system call pipe(2).

popen is similar in concept to the system subroutine in that it causes
the shell to execute a command. The difference is that once haVing invoked
popen from your program, you have established an open line to a con­
currently running process through a stream. You can send characters or
strings to this stream with standard II0 subroutines just as you would to
stdout or to a named file. The connection remains open until your program
invokes the companion pclose subroutine. A common application of this
technique might be a pipe to a printer spooler. For example:

2·42 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

#include <stdio.h>

mrin()

{

if ((pptr = PJpen("lp" t " W"» 1= NULL)
{

fore;;)
{

(void) fprintf (pptr , "%s\n", outstring);

pclose (pptr) ;

}

Figure 2-13: Example of a popen pipe

Error HandUlnlg
Within your C programs you must determine the appropriate level of

checking for valid data and for acceptable return codes from functions and
subroutines. If you use any of the system calls described in Section 2 of the
Programmer's Reference Manual, you have a way in which you can find out
the probable cause of a bad return value.

PROGRAMMING BASICS 2-43

Programming Language Interface/The UNIX System

UNIX system calls that are not able to complete successfully almost
always return a value of -1 to your program. (If you look through the sys­
tem calls in Section 2, you will see that there are a few calls for which no
return value is defined, but they are the exceptions.) In addition to the -1 !~

that is returned to the program, the unsuccessful system call places an J
integer in an externally declared variable, errno. You can determine the
value in errno if your program contains the statement

#include <errno.~

The value in errno is not cleared on successful calls, so your program
should check it only if the system call returned a -1. The errors are
described in intro(2) of the Programmer's Reference Manual.

The subroutine perror(3C) can be used to print an error message (on
stderr) based on the value of errno.

Signals and Interrupts
Signals and interrupts are two words for the same thing. Both words

refer to messages passed by the UNIX system to running processes. Gen- ~.\,~

erally, the effect is to cause the process to stop running. Some signals are J
generated if the process attempts to do something illegal; others can be ini-
tiated by a user against his or her own processes, or by the super-user
against any process.

There is a system call, kill, that you can include in your program to
send signals to other processes running under your user-id. The format for
the kill call is:

ld.ll(pid, sig)

where pid is the process number against which the call is directed, and sig
is an integer from 1 to 19 that shows the intent of the message. The name
"kill ll is something of an overstatement; not all the messages have a "drop
dead" meaning. Some of the available signals are shown in Figure 2-14 as
they are defined in <sys/signal.h>.

2-44 PROGRAMMER'S GUIDE

Programming Language Interface/The UNIX System

~ #define SIGHUP 1 I. haDjup .1
#define SIGmI' 2 I. interrupt (rubout) .1
#define SIGGlJIT 3 I. quit (ASCII FS) .1
#define SIGILL 4 I. illegal instruction (not reset when caught).1

#define SIGl'RAP 5 I. trace trap (not reset when cauqht) .1
#define SIGlar 6 I. Iar instruction .1
#define SIGABRT 6 1* used by abort, replace SIGlar in the future *1
#define SIGEMr 7 1* EM!' instruction *1
#define SIGFPE 8 1* floating point exception *1
#define SIGKILL 9 1* kill (cannot be caught or ignored) .1
#define SIGBUS 10 1* bus error *1
#define SIGSmV 11 1* segmentation violation *1
#define SIGSYS 12 I. bad axgument to system call .1
#define SIGPIPE 13 I. write on a pipe with IX) one to read it .1
#define SIGALRM 14 1* alarm clock *1
#define SIGl'.mM 15 1* software tennination signal fran kill *1
#define SIGUSR1 16 1* user defined signal 1 *1
#define SIGUSR2 17 1* user defined signal 2 *1
#define SIGCW 18 1* death of a child *1

~
#define SIGPWR 19 1* power-fail restart *1

1* SIGWmD and SIGPfmE only used in UNIXIPC *1
l+#define SIGWIND 20 *1 1* win:low c:::him;e *1
l+#define SIGPJJ::m: 21 *1 1* haniset, line status chanqe *1

#define SIGEOLL 22 1* pollable event occurred .1

#define NSIG 23 I. The valid signal number is fran 1 to NSIG-1 .1
#define MAXSIG 32 1* size of u_signal[], NSIG-1 <= MAXSIG+I

I. MAXSIG is larger than we need IlCIW• • 1
1* In the future, we can add ItOre signal .1
I. number withcut changi.nq user.h .1

Figure 2-14: Signal Numbers Defined in lusr/include/sys/signal.h

PROGRAMMING BASICS 2-45

Programming Language Interface/The UNIX System

The signal(2) system call is designed to let you code methods of dealing
with incoming signals. You have a three-way choice. You can a) accept
whatever the default action is for the signal, b) have your program ignore
the signal, or c) write a function of your own to deal with it. /~

2-46 PROGRAMMER'S GUIDE

Analysis/Debugging

The UNIX system provides several commands designed to help you dis­
cover the causes of problems in programs and to learn about potential prob­
lems.

Sample Program
To illustrate how these commands are used and the type of output they

produce, we have constructed a sample program that opens and reads an
input file and performs one to three subroutines according to options
specified on the command line. This program does not do anything you
couldn't do quite easily on your pocket calculator, but it does serve to illus­
trate some points. The source code is shown in Figure 2-15. The header
file, recdef.h, is shown at the end of the source code.

The output produced by the various analysis and debugging tools illus­
trated in this section may vary slightly from one installation to another.
The Programmer's Reference Manual is a good source of additional informa­
tion about the contents of the reports.

PROGRAMMING BASICS 2-47

Analysis/Debugging

1* Main mXlule -- restate.c *1

#include <stdio.h>
#include "reodef .h"

#define '!RUE 1
#define FALSE 0

main(argc, argv)

int argc;
char *argv[];
{

Fn.E *fopen(), *fin;
void exit() ;
int getopt() ;
int oflag =FALSE;
int pflag = FALSE;
int rflag = FALSE;
int ch;
struct rec first;
extern int opterr;
extern float oppty(), pft(), rfe();

if (argc < 2)
{

(void) fprintf (stderr, "%8: Must specify optian\n" ,argv[0]) ;
(void) fprintf(stderr, "Usage: %8 _rpo\n", argv[O]);
exit(2) ;

opterr = FALSE;
while «ch :::: getopt(argc,argv, "apr")} 1= IDF)
{

switch(ch)
{

case '0':
oflag = 'lRUE;
break;

case 'p':
pflag = 'lRUE;
break;

case 'r':
rflag :::: 'lRUE;
break;

default:

2-48 PROGRAMMER'S GUIDE

~.

~

r-'

Analysis/Debugging

continued

(void) fprintf(stderr t "Usage: %s -rpo\n"tazgv[O]);
exi.t(2) ;

}

if «fin = fopen("info", "r"» = NULL)

{

(void) fprintf(stderr, "%s: canoot open inplt file %s\n",azgv[O]t"info");
exi.t(2) ;
}

if (fscanf(fin t "%s%f%f%f%f%f%f" ,first.p-lallle,&first.ppx,
&first.dPt&first.it&first.ct&first. tt&first.spx) 1= 7)
{

(void) fprintf(stderr, "%s: cannot read first reoord fran %s\n" t
argv[O] t "info");

exi.t(2) ;

printf("Property: %s\n" tfirst.plalIle);

if (oflaq)
printf("OpJx>rtuni.ty Cost: $%#5.2f\n" toppty(&first»;

if(pflag)
printf("An1:icipated Profit(loss): $%#7 .2f\n" tpft(&first) };

if (rflag)
printf(''Retuxn an Funds Employed: %#3.2~"trfe(&first»;

1* End of Main M:ldule -- restate.c *1

1* Opportunity Cost -- oppty.c *1
#include "r ecxlef.h"

float
oppty(ps)

struct rec *ps;
{

return(ps->il12 * ps->t * ps->dp};

PROGRAMMING BASICS 2-49

Analysis/Debugging

1* Profit -- pft.c *1

#include "recdef .h"

float
pft(ps)

struct rec *ps;
{

return(ps->spK - ps->ppx + ps->c);

1* Return an Fums Employed -- rfe.c *1

#include "r ecdef .h"

float
rfe(ps)
struct rec *ps;
{

return(100 * (ps->spK - ps->c) I ps->spK);

1* Header File -- recdef.h *1

stroct rec { 1* To oold inplt *1
char p1ame[25);

float ppx;
float dp;
float i;
float c;
float t;
float spK;

Figure 2-15: Source Code for Sample Program

2-50 PROGRAMMER'S GUIDE

continued

~

J

.~
)

~-
'-.

----------------------- Analysis/Debugging

cflow
cflow produces a chart of the external references in C, yacc, lex, and

assembly language files. Using the modules of our sample program, the
command

cflow restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-16.

1 main: intO. <restate.c 11>
2 fprintf: <>

3 exit: <>

4 getopt: <>

5 fopen: <>

6 fscant: <>

7 printf: <>

8 oppty: float(). ~.c 7>
9 pft: float(). <pft.c 7>
10 rfe: float(). <rfe.c 8>

Figure 2-16: cflow Output, No Options

PROGRAMMING BASICS 2·51

Analysis/Debugging

The -r option looks at the caller:callee relationship from the other side.
It produces the output shown in Figure 2-17.

1 exit: <>

2 main : <>

3 fopen: <>

4 main: 2
5 fprintf: <>

6 main: 2
7 fscanf: <>

8 main: 2
9 qetopt: <>

10 main : 2
11 main: int(), <restate.c 11>
12 oppty: float(}, <oppty.c 7>
13 main : 2
14 pft: float(), <pft.c 7>
15 main : 2
16 printf: <>

17 main : 2
18 rfe: float(), <rfe.c 8>
19 main : 2

Figure 2-17: cflow Output, Using -r Option

2·52 PROGRAMMER'S GUIDE

Analysis/Debugging

The -ix option causes external and static data symbols to be included.
Our sample program has only one such symbol, opterr. The output is
shown in Figure 2-18.

1 main: int(), <restate.c 11>
2 fprintf: <>

3 exit: <>

4 opter.r: <>

5 getopt: <>

6 fopen: <>

7 fscanf: <>

8 printf: <>

9 oppty: float(), ~.c 7>
10 pft: float(), <pft.c 7>
11 rfe: float(), <rfe.c 8>

Figure 2-18: cflow Output, Using -ix Option

PROGRAMMING BASICS 2-53

Analysis/Debugging

Combining the -r and the -ix options produces the output shown in
Figure 2-19.

1 exit: <>

2 main : <>

3 fopen: <>

4 main : 2
5 fprintf: <>

6 main: 2
7 fscanf: <>

8 main : 2
9 qetopt: <>

10 main : 2
11 main: intO, <restate.c 11>

12 oppty: float(), <oppty.c 7>
13 main : 2
14 opterr: <>

15 main : 2
16 pft: float(), <pft.c 7>
17 main : 2
18 printf: <>

19 main : 2
20 rfe: float(} t <rfe.c 8>
21 main : 2

Figure 2-19: cflow Output, Using -r and -ix Options

ctrace
ctrace lets you follow the execution of a C program statement by state-

mednt. ctrace takes a .cbfi1le as inPhut and inserts statements in thedsoyurce '~

co e to print out varia es as eac program statement is execute. ou must }
direct the output of this process to a temporary .c file. The temporary file is
then used as input to cc. When the resulting a.out file is executed it pro-
duces output that can tell you a lot about what is going on in your program.

2·54 PROGRAMMER'S GUIDE

~••. , •• ,,,,\" ,

Analysis/Debugging

Options give you the ability to limit the number of times through loops.
You can also include functions in your source file that turn the trace off and
on so you can limit the output to portions of the program that are of partic­
ular interest.

ctrace accepts only one source code file as input. To use our sample
program to illustrate, it is necessary to execute the following four com­
mands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c
ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any names
that are convenient for you. The names must end in .c, since the files are
used as input to the C compilation system.

cc -0 ct.run ct.main.c ct.op.c ct.p.c ct.r.c

Now the command

ct.run -opr

produces the output shown in Figure 2-20. The command above will cause
the output to be directed to your terminal (stdout). It is probably a good
idea to direct it to a file or to a printer so you can refer to it.

8 main{argc. argv)
23 if (argc < 2)

1* argc == 2 *1
30 opterr =FALSE;

1* FALSE == 0 *1
1* opterr == 0 *1

31 while ({ch =getopt(argc.argv."opr"» 1= EDF)

1* argc = 2 *1
1* argv = 15729316 *1
1* ch == 111 or '0' or "tIt *1

32
33

35
36

switch(ch)

1* ch == 111 or '0' or "t" *1
case '0':

oflag =TRlJE;
1* TRlJE == 1 or "h" *1

PROGRAMMING BASICS 2-55

Analysis/Debugging

continued

I. oflag = 1 or "h" .1
37 break;
48 }
31 while «ch = getopt(argc,axgv, "apr"» 1= EOF}

1* argc == 2 .1
1* axgv == 15729316 *1
1* ch == 112 or 'p' *1

32 (
33 switch(ch)

1* ch == 112 or 'p' *1
38 case 'p':
39 pflag ='lmJE;

1* 'lRUE == 1 or "h" *1
1* pflag = 1 or "h" *1

40 break;
48 }
31 while «(ch =getopt(argc,axgv, "cpr"» 1= EOF)

1* argc == 2 *1
1* argv == 15729316 *1
I. ch == 114 or 'r' *1

32
33 switch(ch)

1* ch == 114 or 'r' *1
41 case 'r':
42 rflaq = 'lmJE;

1* '!RUE = 1 or "h" *1
1* rflag == 1 or "h" .1

43 break;
48}
31 while «ch = getopt(argc,axgv, "apr"» 1= EOF)

1* argc == 2 .1
I. argv = 15729316 .1
1* ch == -1 *1

49 if «fin = fopen("info", "r"» == NUIL)
1* fin = 140200 .1

54 if (fscanf(fin, "%s%f%f%f%f%f%f" ,first.pname,&first.PPlC,
&first.dp,&first.i,&first.c,&first. t,&first.spx) 1= 7)
I. fin == 140200 .1
I. first.pname == 15729528 .1

61 printf ("Property: %sO,first. pla11le) ;

I. first.plaIne == 15729528 or "Linden_Place" *1 Property: Linden Place

2-56 PROGRAMMER'S GUIDE

Analysis/Debugging

continued

63 if(oflaq)
I. oflag :::::::: 1 or "h" .1

64 printf("~tyCost: S%#5.2fO,oRJty(&.first»;
5 oJ:.Pty(ps)
8 retl1rn(ps->il12. ps->t • ps->dp);

I. ps->i == 1069044203 .1
I. ps->t == 1076494336 .1
I. ps->dp ::::= 1088765312 .1~ty Cost: $4476.87

66 if(pflaq)
I. pflaq :::::::: 1 or "h" .1

67 printf(ltAnticipated Profit(loss): S%#7.2fO,pft(&.first»;
5 pft(ps)
8 retl1rn(ps->spt - pS->RJK + ps->c);

I. ps->spt ::::= 1091649040 .1
I. ps->ppx ::::= 1091178464 .1
I. ps->c == 1087409536.1 Anticipated Profit(loss): $85950.00

69 if (rflag)
I. rflag = 1 or "h" .1

70 printf("Return an Fl.mds Employed: %#3.2fl§W,rfe(&.first»;
6 rfe(ps)
9 return(100 • (ps->spt - ps->c) I ps->spIC);

I. ps->spIC :::::::: 1091649040 .1
I. ps->c == 1087409536.1 Return an Ftmds Employed: 94.00%

Figure 2-20: drace Output

Using a program that runs successfully is not the optimal way to
demonstrate drace. It would be more helpful to have an error in the opera­
tion that could be detected by drace. It would seem that this utility might
be most useful in cases where the program runs to completion, but the out­
put is not as expected.

PROGRAMMING BASICS 2-57

Analysis/Debugging

cxref
exref analyzes a group of C source code files and builds a cross­

reference table of the automatic, static, and global symbols in each file.

The command

exref -e -0 ex.op restate.e oppty.e pft.e rfe.e

produces the output shown in Figure 2-21 in a file named, in this case,
ex.op. The -e option causes the reports for the four .e files to be combined
in one cross-reference file.

restate.c:

oppty.c:

pft.c:

rfe.c:

SYM8JL FILE roN:TlOO LINE ')BUFSIZ /usr/include/stdio.h *9
EDF /usr/include/stdio .h 49 *50

restate.c 31
FALSE restate.c *6 15 16 17 30
FILE /usr/include/stdio.h *29 73 74

restate.c main 12
L ctemid /usr/include/stdio.h *80
L cuserid /usr/include/stdio.h *81
L_1:IIplam /usr/include/stdio.h *83
NULL /usr/include/stdio.h 46 *47

restate.c 49
P_tmpdir /usr/include/stdio.h *82
TRUE restate.c *5 36 39 42

lOEDF /usr/include/stdio.h *41-
lOERR /usr/include/stdio .h ~2-
IOFBF /usr/include/stdio .h *36-
IOLBF /usr/include/stdio .h ~3-
IG1YBUF /usr/include/stdio.h ~O-
ICNBF /usr/include/stdio.h *39-
Ic:m:AD /usr/include/stdio.h *37

'~-
I<::ml /usr/include/stdio.h ~-
ICMRl' /usr/include/stdio.h *38-
NFILE /usr/include/stdio.h 2 *3 73-
SBFSIZ /usr/include/stdio.h *16-

2-58 PROGRAMMER'S GUIDE

Analysis/Debugging

continued

r'
SYMOOL FILE FUCl'ICN LINE

base /usr/include/stdio. h *26
):Jufem()

/usr/includelstdio.h *57
bufeIXltab /usr/includelstdio.h *78

-bufsiz()
/usr/include/stdio.h *58

cnt /usr/include/stdio.h *20-
file /usr/include/stdio.h *28

_flag /usr/include/stdio.h *27
iob /usr/include/stdio.h *73-

restate.c main 25 26 45 51 57

-ptr /usr/include/stdio.h *21
argc restate.c 8

restate.c main *9 23 31
argv restate.c 8

restate.c main *10 25 26 31 45 51 57

~'
c .lreodef.h *6

pft.c pft 8
restate.c main 55
rfe.c rfe 9

ch restate.c main *18 31 33
clearerr()

/usr/include/stdio.h *67
ctermi.d()

/usr/include/stdio.h *77
cuserid()

/usr/include/stdio. h *77
dp .lreodef.h --+4

oppty.c oppty 8
restate.c main 55

exit()
restate.c main *13 27 46 52 58

fdopen{)
/usr/include/stdio.h *74

~'

PROGRAMMING BASICS 2-59

Analysis/Debugging

continued
.~

SYMBOL En.E F"mC1'ICN LINE
feof()

/usr/include/stdio.h *68
ferror()

/usr/include/stdio.h -.69
fgets()

/usr/include/stdio.h *77
fileno()

/usr/include/stdio.h *70
fin restate.c main *12 49 54
first restate.c main *19 54 55 61 64 67 70
fopen()

/usr/include/stdio.h *74
restate.c main 12 49

fprintf restate.c main 25 26 45 51 57
freopen()

/usr/include/stdio.h *74
fscanf restate.c main 54 ,ftell()

/usr/include/stdio .h *75
getc()

/usr/include/stdio .h *61
getchar()

/usr/include/stdio.h *65
getopt()

restate.c main *14 31
gets()

/usr/include/stdio.h *77
i .Irecdef.h *5

oppty.c oppty 8
restate.c main 55

lint /usr/include/stdio.h 60
maine)

restate.c *8

2-60 PROGRAMMER'S GUIDE

Analysis/Debugging

continued

~'
SYMOOL FILE ~CN LINE

oflag restate.c main *15 36 63
oppty()

oppty.c *5
restate.c main *21 64

opterr restate.c main *20 30
P /usr/include/stdio.h *57 *58 *61 62
*62 63 64 67 *67 68 *68 69 *69 70 *70
pdp11 /usr/include/stdio.h 11
pflag restate.c main *16 39 66
pft()

pft.c *5
restate.c main *21 67

Plame ./reodef.h *2
restate.c main 54 61

popen()

/usr/include/stdio.h *74
ppx .Ireo:ief .h *3

~
pft.c pft 8
restate.c main 54

printf restate.c main 61 64 67 70
ps oppty.c 5

oppty.c oppty *6 8
pft.c 5
pft.c pft *6 8
rfe.c 6
rfe.c rfe *7 9

pltc()

/usr/include/stdio.h *62
pltchar()

/usr/include/stdio. h *66
rec .Ireo:ief .h *1

oppty.c oppty 6
pft.c pft 6
restate.c main 19
rfe.c rfe 7

~

PROGRAMMING BASICS 2-61

Analysis/Debugging

continued

~
SYMB)L FILE roN:'TICN LINE

rew:iIXi()
/usr/include/stdio.h *76

rfe()
restate.c main *21 70
rfe.c *6

rflag restate.c main *17 42 69
setbuf()

/usr/include/stdio.h *76
5plC .Ireodef.h itS

pft.c pft 8
restate.c main 55
rfe.c rfe 9

stderr /usr/include/stdio.h *55
restate.c 25 26 45 51 57

stdin /usr/include/stdio.h *53
stdout /usr/include/stdio .h *54
t .Ireodef.h *7

oppty.c oppty 8
i~restate.c main 55

tempnam()
/usr/include/stdio.h *n

t:IIpfile ()
/usr/include/stdio .h *74

t:np1am()

/usr/include/stdio .h *77
u370 /usr/include/stdio.h 5
u3b /usr/include/stdio .h p 19
u3b5 /usr/include/stdio.h 19
vax /usr/include/stdio.h 3 '9
x /usr/include/stdio.h 2 63 64 66 *66

Figure 2-21: cxref Output, Using -c Option

2-62 PROGRAMMER'S GUIDE

Analysis/Debugging

lint
lint looks for features in a C program that are apt to cause execution

errors, that are wasteful of resources, or that create problems of portability.

The command

lint restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-22.

restate.c:

restate.c

(71) wa.m:iD}: main() returns raman value to invocation environment
oppty.c:
pft.c:
rfe.c:

functioo returns value which is always ignored
printf

Figure 2-22: lint Output

lint has options that will produce additional information. Check the
User's Reference Manual. The error messages give you the line numbers of
some items you may want to review.

PROGRAMMING BASICS 2·63

Analysis/Debugging

prof
prof produces a report on the amount of execution time spent in various

portions of your program and the number of times each function is called.
The program must be compiled with the -p option. When a program that
was compiled with that option is run, a file called mon.out is produced.
mon.out and a.out (or whatever name identifies your executable file) are
input to the prof command.

The sequence of steps needed to produce a profile report for our sample
program is as follows:

Step 1:

Step 2:

Step 3:

Compile the programs with the -p option:

cc -p restate.c oppty.c pft.c rfe.c

Run the program to produce a file mon.out.

a.out -opr

Execute the prof command:

prof a.out

The example of the output of this last step is shown in Figure 2-23. The
figures may vary from one run to another. You will also notice that pro­
grams of very small size, like that used in the example, produce statistics
that are not overly helpful.

2-64 PROGRAMMER'S GUIDE

Analysis/Debugging

~ ~ Seoands CUmsecs #Calls msec/call Name

50.0 0.03 0.03 3 8. fcvt
20.0 0.01 0.04 6 2. atof
20.0 0.01 0.05 5 2. write
10.0 0.00 0.05 1 5. fwrite
0.0 0.00 0.05 1 O. m::m:i:tar

0.0 0.00 0.05 1 O. creat
0.0 0.00 0.05 4 O. printf
0.0 0.00 0.05 2 O. profil
0.0 0.00 0.05 1 O. fscanf
0.0 0.00 0.05 1 O. doscan-
0.0 0.00 0.05 1 O. oppty

0.0 0.00 0.05 1 O. filbuf-
0.0 0.00 0.05 3 O. strchr
0.0 0.00 0.05 1 O. strari>
0.0 0.00 0.05 1 O. ldexp
0.0 0.00 0.05 1 O. getenv
0.0 0.00 0.05 1 O. fopen
0.0 0.00 0.05 1 O. _fiIldiop
0.0 0.00 0.05 1 O. open

~
0.0 0.00 0.05 1 O. main
0.0 0.00 0.05 1 O. read
0.0 0.00 0.05 1 O. strcpy
0.0 0.00 0.05 14 0 UD3'etc
0.0 0.00 0.05 4 O. -doprnt
0.0 0.00 0.05 1 O. pft
0.0 0.00 0.05 1 O. rfe
0.0 0.00 0.05 4 O. xflsmf
0.0 0.00 0.05 1 O. wrtchk

0.0 0.00 0.05 2 O. fi.ndl:uf
0.0 0.00 0.05 2 O. isatty
0.0 0.00 0.05 2 O. ioctl
0.0 0.00 0.05 1 O. rnalloc
0.0 0.00 0.05 1 O. mem:::hr
0.0 0.00 0.05 1 O. IIlE!DCPY'
0.0 0.00 0.05 2 O. sbrk
0.0 0.00 0.05 4 O. getopt

r'
Figure 2-23: prof Output

PROGRAMMING BASICS 2·65

Analysis/Debugging

size
size produces information on the number of bytes occupied by the three ~

sections (text, data, and bss) of a common object file when the program is
brought into main memory to be run. Here are the results of one invoca-
tion of the size command with our object file as an argument.

11832 + 3872 + 2240 = 17944

Don't confuse this number with the number of characters in the object
file that appears when you do an Is -I command. That figure includes the
symbol table and other header information that is not used at run time.

strip
strip removes the symbol and line number information from a common

object file. When you issue this command the number of characters shown
by the Is -I command approaches the figure shown by the size command,
but still includes some header information that is not counted as part of the oJ
.text, .data, or .bss section. After the strip command has been executed, it is
no longer possible to use the file with the sdb command.

sdb
sdb stands for Symbolic Debugger, which means you can use the sym­

bolic names in your program to pinpoint where a problem has occurred.
You can use sdb to debug C, FORTRAN 77, or PASCAL programs. There
are two basic ways to use sdb: by running your program under control of
sdb, or by using sdb to rummage through a core image file left by a pro­
gram that failed. The first way lets you see what the program is doing up
to the point at which it fails (or to skip around the failure point and
proceed with the run). The second method lets you check the status at the
moment of failure, which mayor may not disclose the reason the program
failed.

2-66 PROGRAMMER'S GUIDE

~\

------------------------ Analysis/Debugging

Chapter 15 contains a tutorial on sdb that describes the interactive com­
mands you can use to work your way through your program. For the time
being we want to tell you just a couple of key things you need to do when
using it.

1. Compile your program(s) with the -g option, which causes addi­
tional information to be generated for use by sdb.

2. Run your program under sdb with the command:

sdb myprog - srcdir

where myprog is the name of your executable file (a.out is the
default), and srcdir is an optional list of the directories where source
code for your modules may be found. The dash between the two
arguments keeps sdb from looking for a core image file.

PROGRAMMING BASICS 2-67

macro definitions

Program Organizing Utilities

The following three utilities are helpful in keeping your programming
work organized effectively.

The make Command
When you have a program that is made up of more than one module of

code you begin to run into problems of keeping track of which modules are
up to date and which need to be recompiled when changes are made in
another module. The make command is used to ensure that dependencies
between modules are recorded so that changes in one module results in the
re-compilation of dependent programs. Even control of a program as simple
as the one shown in Figure 2-15 is made easier through the use of make.

The make utility requires a description file that you create with an edi­
tor. The description file (also referred to by its default name: makefile) con­
tains the information used by make to keep a target file current. The target
file is typically an executable program. A description file contains three
types of information:

dependency information tells the make utility the relationship between
the modules that comprise the target program.

executable commands needed to generate the target program. make
uses the dependency information to determine
which executable commands should be passed
to the shell for execution.

provide a shorthand notation within the
description file to make maintenance easier.
Macro definitions can be overridden by infor­
mation from the command line when the make
command is entered.

The make command works by checking the "last changed" time of the
modules named in the description file. When make finds a component that
has been changed more recently than modules that depend on it, the
specified commands (usually compilations) are passed to the shell for execu- ~

tion. .J

2-68 PROGRAMMER'S GUIDE

~.,

Program Organizing Utilities

The make command takes three kinds of arguments: options, macro
definitions, and target filenames. If no description filename is given as an
option on the command line, make searches the current directory for a file
named makefile or Makefile. Figure 2-24 shows a makefile for our sample
program.

~ = restate.o oppty.o pft.o rfe.o
all: restate
restate: $(C>BJF.Cl'S)

S(CC) $(CFL/lGS) $ (LDFLAGS) $(~) -0 restate

$(~): ./reodef.h

clean:
DI1 -f $ (C'lBJECI'S)

clobber: clean
DI1 -f restate

Figure 2-24: make Description File

The following things are worth noticing in this description file:

• It identifies the target, restate, as being dependent on the four object
modules. Each of the object modules in turn is defined as being
dependent on the header file, recdef.h, and by default, on its
corresponding source file.

• A macro, OBJECTS, is defined as a convenient shorthand for referring
to all of the component modules.

Whenever testing or debugging results in a change to one of the com­
ponents of restate, for example, a command such as the following should be
entered:

make CFLAGS=-g restate

PROGRAMMING BASICS 2-69

Program Organizing Utilities

This has been a very brief overview of the make utility. There is more
on make in Chapter 3, and a detailed description of make can be found in
Chapter 13.

The Archive
The most common use of an archive file, although not the only one, is

to hold object modules that make up a library. The library can be named on
the link editor command line (or with a link editor option on the ee com­
mand line). This causes the link editor to search the symbol table of the
archive file when attempting to resolve references.

The ar command is used to create an archive file, to manipulate its con­
tents and to maintain its symbol table. The structure of the ar command is
a little different from the normal UNIX system arrangement of command
line options. When you enter the ar command you include a one-character
key from the set drqtpmx that defines the type of action you intend. The
key may be combined with one or more additional characters from the set
vuaibcls that modify the way the requested operation is performed. The
makeup of the command line is

ar -key [posname] afile [name]. ..

where posname is the name of a member of the archive and may be used
with some optional key characters to make sure that the files in your
archive are in a particular order. The afile argument is the name of your
archive file. By convention, the suffix .a is used to indicate the named file is
an archive file. (Ube.a, for example, is the archive file that contains many of
the object files of the standard C subroutines.) One or more names may be
furnished. These identify files that are subjected to the action specified in
the key.

We can make an archive file to contain the modules used in our sample
program, restate. The command to do this is

ar -rv rste.a restate.o oppty.o pft.o rfe.o

If these are the only .0 files in the current directory, you can use shell
metacharacters as follows:

ar -rv rste.a ".0

2-70 PROGRAMMER'S GUIDE

Program Organizing Utilities

Either command will produce this feedback:

a - restate.o
a - oppty.o
a - pft.o
a - rfe.o
ar: creating rste.a

The om command is used to get a variety of information from the sym­
bol table of common object files. The object files can be, but don't have to
be, in an archive file. Figure 2-25 shows the output of this command when
executed with the -f (for full) option on the archive we just created. The
object files were compiled with the -g option.

PROGRAMMING BASICS 2-71

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value Class Type Size Line Section 1
.Ofake strtag struct 16
restate.c file
_cnt 0 strmem int
-ptr 4 strmem "Uchar
base 8 strmem "Uchar

_flag 12 strmem char
file 13 strmem char

.eos endstr 16
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float

36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float].eos endstr 52
main 0 extern int() 520 .text
.bf 10 fcn 11 .text
argc 0 argm't int
argv 4 argm't ""char
fin 0 auto "struct-.Ofake 16
oflag 4 auto int
pflag 8 auto int
rflag 12 auto int
ch 16 auto int

Figure 2-25: om Output, with -f Option

2-72 PROGRAMMER'S GUIDE

~'

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value Class Type Size Line Section

first 20 auto struct-rec 52
.ef 518 fen 61 .text
FILE typdef struct-.Ofake 16
.text 0 static 31 39 .text
.data 520 static 4 .data
.bss 824 static .bss
iob 0 extern

fprintf 0 extern
exit 0 extern
opterr 0 extern
getopt 0 extern
fopen 0 extern
fscanf 0 extern
printf 0 extern
oppty 0 extern
pft 0 extern
rfe 0 extern

Figure 2-25: nm Output, with -f Option (continued)

PROGRAMMING BASICS 2-73

Program Organizing Utilities

Symbols from rste.a[oppty.o]

Name Value Class Type Size Line Section
~

oppty.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float

36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
oppty 0 extern floatO 64 .text
.bf 10 fcn 7 .text
ps 0 argm't "'struct-rec 52
.ef 62 fcn 3 .text
.text 0 static 4 1 .text
.data 64 static .data .~
.bss 72 static .bss

Figure 2-25: nm Output, with -f Option (continued)

2-74 PROGRAMMER'S GUIDE

Program Organizing Utilities

Symbols from rste.a[pft.o]

~
Name Value Class Type Size Line Section

pft.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float

36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
..eos endstr 52
pft 0 extern floatO 60 .text
..bf 10 fcn 7 .text
ps 0 argm't "'struct-rec 52
..ef 58 fcn 3 .text
.. text 0 static 4 .text

~
..data 60 static .data
..bss 60 static .bss

Figure 2-25: nm Output, with -f Option (continued)

PROGRAMMING BASICS 2-75

Program Organizing Utilities

Symbols from rste.a[rfe.o]

Name Value Class Type Size Line Section ~
rfe.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float

36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
rfe 0 extern floatO 68 .text
.bf 10 fen 8 .text
ps 0 argm't ·struct-rec 52
.ef 64 fen 3 .text
.text 0 static 4 1 .text "

.data 68 static .data

.bss 76 static .bss

Figure 2-25: nm Output, with -f Option (continued)

For nm to work on an archive file all of the contents of the archive have
to be object modules. If you have stored other things in the archive, you
will get the message:

nm: rste.a bad magic

when you try to execute the command.

2-76 PROGRAMMER'S GUIDE

Program Organizing Utilities

Use of sees by Single-User Programmers
The UNIX system Source Code Control System (SeeS) is a set of pro­

grams designed to keep track of different versions of programs. When a
program has been placed under control of sees, only a single copy of any
one version of the code can be retrieved for editing at a given time. When
program code is changed and the program returned to sees, only the
changes are recorded. Each version of the code is identified by its SID, or
sees IDentifying number. By specifying the SID when the code is
extracted from the sees file, it is possible to return to an earlier version. If
an early version is extracted with the intent of editing it and returning it to
sees, a new branch of the development tree is started. The set of programs
that make up sees appear as UNIX system commands. The commands are:

admin
get
delta
prs
rmdel
cdc
what
sccsdiff
comb
val

It is most common to think of sees as a tool for project control of large
programming projects. It is, however, entirely possible for any individual
user of the UNIX system to set up a private sees system. Chapter 14 is an
sees user's guide.

PROGRAMMING BASICS 2-77

3 Application Programming

Introdlllction

Application Programming
Numbers
Portability
Documentation
Project M:anagement

Langu~lge Selection
Influenc,es
Special Purpose Languages

• What awk Is Like
• How awk Is Used
• Where to Find More Information
• What lex and yacc Are Like
• How lex Is Used
• Where to Find More Information
• How yacc Is Used
• Where to Find More Information

Advant:ed Programming Tools
Memory Management
File and Record Locking

• How File and Record Locking Works
.lockf
• Whe're to Find More Information

3-1

3-2
3-2
3-2
3-3
3-4

3-5
3-5
3-6

3-6

3·7
3·7
3-7
3-8

3-10
3-10
3-12

3-13
3-13
3-14

3-15

3-17
3·17

APPLICATION PROGRAMMING

Application Programming

Interprocess Communications
• IPC get Calls
• IPC etl Calls
• IPC op Calls
• Where to Find More Information

Programming Terminal Screens
• curses
• Where to Find More Information

Programming Support Tools
Link Edit Command Language

• Where to Find More Information
Common Object File Format

• Where to Find More Information
Libraries

• The Object File Library
.·Common Object File Interface Macros (Idfen.h)
• The Math Library
• Shared Libraries
• Where to Find More Information

Symbolic Debugger
• Where to Find More Information

lint as a Portability Tool
• Where to Find More Information

Project Control Tools
make

• Where to Find More Information
SCCS

• Where to Find More Information

liber, A Library System

II PROGRAMMER'S GUIDE

3-17

3-18

3-19

3-19

3-19

3-19

3-20

3-20

3-21

3-21

3-22

3-22

3-23

3-23

3-23

3-26

3-26

3-29

3-30

3-30

3-31

3-31

3-32

3-33

3-33

3-34
3-34

3-36

3-37

Introduction

This chapter deals with programming where the objective is to produce
sets of programs (applications) that will run on a UNIX system computer.

The chapter begins with a discussion of how the ground rules change as
you move up the scale from writing programs that are essentially for your
own private use (we have called this single-user programming), to working
as a member of a programming team developing an application that is to be
turned over to others to use.

There is a section on how the criteria for selecting appropriate program­
ming languages may be influenced by the requirements of the application.

The next three sections of the chapter deal with a number of loosely­
related topics that are of importance to programmers working in the appli­
cation development environment. Most of these mirror topics that were
discussed in Chapter 2, Programming Basics, but here we try to point out
aspects of the subject that are particularly pertinent to application program­
ming. They are covered under the following headings:

Advanced Programming deals with such topics as File and Record Lock­
ing, Interprocess Communication, and program­
ming terminal screens.

Support Tools

Project Control Tools

covers the Common Object File Format, link edi­
tor directives, shared libraries, SOB, and lint.

includes some discussion of make and SCCS.

The chapter concludes with a description of a sample application called
liber that uses several of the components described in earlier portions of the
chapter.

APPLICATION PROGRAMMING 3-1

Application Programming

The characteristics of the application programming environment that
make it different from single-user programming have at their base the need i~

for interaction and for sharing of information.'

Numbers
Perhaps the most obvious difference between application programming

and single-user programming is in the quantities of the components. Not
only are applications generally developed by teams of programmers, but the
number of separate modules of code can grow into the hundreds on even a
fairly simple application.

When more than one programmer works on a project, there is a need to
share such information as:

• the operation of each function

• the number, identity and type of arguments expected by a function

• if pointers are passed to a function, are the objects being pointed to .~

modified by the called function, and what is the lifetime of the 'J
pointed-to object

• the data type returned by a function

In an application, there is an odds-on possibility that the same function
can be used in many different programs, by many different programmers.
The object code needs to be kept in a library accessible to anyone on the
project who needs it.

Portability
When you are working on a program to be used on a single model of a

computer, your concerns about portability are minimal. In application
development, on the other hand, a desirable objective often is to produce
code that will run on many different UNIX system computers. Some of the ~.,.,.

things that affect portability will be touched on later in this chapter. .

3-2 PROGRAMMER'S GUIDE

Application Programming

Documentation
A single-user program has modest needs for documentation. There

should be enough to remind the program's creator how to use it, and what
the intent was in portions of the code.

On an application development project there is a significant need for
two types of internal documentation:

• comments throughout the source code that enable successor program­
mers to understand easily what is happening in the code. Applica­
tions can be expected to have a useful life of 5 or more years, and fre­
quently need to be modified during that time. It is not realistic to
expect that the same person who wrote the program will always be
available to make modifications. Even if that does happen the com­
ments will make the maintenance job a lot easier.

• hard-copy descriptions of functions should be available to all
members of an application development team. Without them it is
difficult to keep track of available modules, which can result in the
same function being written over again.

Unless end-users have clear, readily-available instructions in how to
install and use an application they either will not do it at all (if that is an
option), or do it improperly.

The software industry has become ever more keenly aware of the
importance of good end-user documentation. There are cases on record
where the success of a software package has been attributed in large part to
the fact that it had exceptionally good documentation. There are also cases
where a pretty good piece of software was not widely used due to the inac­
cessibility of its manuals. There appears to be no truth to the rumor that in
one or two cases, end-users have thrown the software away and just read
the manuaL

APPLICATION PROGRAMMING 3·3

Application Programming

Project Management
Without effective project management, an application development pro­

ject is in trouble. This subject will not be dealt with in this guide, except to
mention the following three things that are vital functions of project
management:

• tracking dependencies between modules of code

• dealing with change requests in a controlled way

• seeing that milestone dates are met

3-4 PROGRAMMER'S GUIDE

~.

~.

Language Selection

In this section we talk about some of the considerations that influence
the selection of programming languages, and describe two of the special
purpose languages that are part of the UNIX system environment.

Influences
In single-user programming the choice of language is often a matter of

personal preference; a language is chosen because it is the one the program­
mer feels most comfortable with.

An additional set of considerations comes into play when making the
same decision for an application development project.

1. Is there an existing standard within the organization that should be
observed?

A firm may decide to emphasize one language because a good
supply of programmers is available who are familiar with it.

2. Does one language have better facilities for handling the particular
algorithm?

One would like to see all language selection based on such objec­
tive criteria, but it is often necessary to balance this against the
skills of the organization.

3. Is there an inherent compatibility between the language and the
UNIX operating system?

This is sometimes the impetus behind selecting C for programs
destined for a UNIX system machine.

4. Are there existing tools that can be used?

If parsing of input lines is an important phase of the application,
perhaps a parser generator such as yacc should be employed to
develop what the application needs.

APPLICATION PROGRAMMING 3-5

Language Selection

5. Does the application integrate other software into the whole pack-
age?

If, for example, a package is to be built around an existing data
base management system, there may be constraints on the variety
of languages the data base management system can accommodate.

Special Purpose Languages
The UNIX system contains a number of tools that can be included in the

category of special purpose languages. Three that are especially interesting
are awk, lex, and yacc.

What awk Is Like
The awk utility scans an ASCII input file record by record, looking for

matches to specific patterns. When a match is found, an action is taken.
Patterns and their accompanying actions are contained in a specification file
referred to as the program. The program can be made up of a number of
statements. However, since each statement has the potential for causing a ~,\

complex action, most awk programs consist of only a few. The set of state- J
ments may include definitions of the pattern that separates one record from
another (a newline character, for example), and what separates one field of a
record from the next (white space, for example). It may also include actions
to be performed before the first record of the input file is read, and other
actions to be performed after the final record has been read. All statements
in between are evaluated in order for each record in the input file. To para-
phrase the action of a simple awk program, it would go something like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

First do some initialization.
Then, look through the input file.
Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, do these final things.

3-6 PROGRAMMER'S GUIDE

Language Selection

The directions for finding the patterns and for describing the actions
can get pretty complicated, but the essential idea is as simple as the two sets
of statements above.

One of the strong points of awk is that once you are familiar with the
language syntax, programs can be written very quickly. They don't always
run very fast, however, so they are seldom appropriate if you want to run
the same program repeatedly on a large quantities of records. In such a
case, it is likely to be better to translate the program to a compiled
language.

How awk Is Used
One typical use of awk would be to extract information from a file and

print it out in a report. Another might be to pull fields from records in an
input file, arrange them in a different order and pass the resulting rear­
ranged data to a function that adds records to your data base. There is an
example of a use of awk in the sample application at the end of this
chapter.

Where to Find More Information
The manual page for awk is in Section (1) of the User's Reference Manual.

Chapter 4 in Part 2 of this guide contains a description of the awk syntax
and a number of examples showing ways in which awk may be used.

What lex and yacc Are Like
lex and yacc are often mentioned in the same breath because they per­

form complementary parts of what can be viewed as a single task: making
sense out of input. The two utilities also share the common characteristic of
producing source code for C language subroutines from specifications that
appear on the surface to be quite similar.

Recognizing input is a recurring problem in programming. Input can
be from various sources. In a language compiler, for example, the input is
normally contained in a file of source language statements. The UNIX sys­
tem shell language most often receives its input from a person keying in
commands from a terminal. Frequently, information coming out of one pro­
gram is fed into another where it must be evaluated.

APPLICATION PROGRAMMING 3-7

Language Selection

The process of input recognition can be subdivided into two tasks: lexi­
cal analysis and parsing, and that's where lex and yacc come in. In both
utilities, the specifications cause the generation of C language subroutines
that deal with streams of characters; lex generates subroutines that do lexi- ~

cal analysis while yacc generates subroutines that do parsing.}

To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or vocabu­
lary of a language as distinguished from its grammar or struc­
ture.

Parsing is the act of describing units of the language grammati­
cally. Students in elementary school are often taught to do this
with sentence diagrams.

Of course, the important thing to remember here is that in each case the
rules for our lexical analysis or parsing are those we set down ourselves in
the lex or yacc specifications. Because of this, the dividing line between
lexical analysis and parsing sometimes becomes fuzzy.

The fact that lex and yacc produce C language source code means that
these parts of what may be a large programming project can be separately ~

maintained. The generated source code is processed by the C compiler to }
produce an object file. The object file can be link edited with others to pro-
duce programs that then perform whatever process follows from the recog-
nition of the input.

How lex Is Used
A lex subroutine scans a stream of input characters and waves a flag

each time it identifies something that matches one or another of its rules.
The waved flag is referred to as a token. The rules are stated in a format
that closely resembles the one used by the UNIX system text editor for reg­
ular expressions. For example,

[\t]+

describes a rule that recognizes a string of one or more blanks or tabs
(without mentioning any action to be taken). A more complete statement of
that rule might have this notation:

[\t]+ ;

which, in effect, says to ignore white space. It carries this meaning because
no action is specified when a string of one or more blanks or tabs is

3-8 PROGRAMMER'S GUIDE

Language Selection

recognized. The semicolon marks the end of the statement. Another rule,
one that does take some action, could be stated like this:

[0-9]+ {
i = atoi(yytext);
retunl(NBR) ;

}

This rule depends on several things:

NBR must have been defined as a token in an earlier part of the
lex source code called the declaration section. (It may be in a
header file which is #inc1ude'd in the declaration section.)

i is declared as an extern int in the declaration section.

It is a characteristic of lex that things it finds are made available
in a character string called yytext.

Actions can make use of standard C syntax. Here, the standard
C subroutine, atoi, is used to convert the string to an integer.

What this rule boils down to is lex saying, "Hey, I found the kind of
token we call NBR, and its value is now in i."

To review the steps of the process:

1. The lex specification statements are processed by the lex utility to
produce a file called lex.yy.e. (This is the standard name for a file
generated by lex, just as a.out is the standard name for the execut­
able file generated by the link editor.)

2. lex.yy.e is transformed by the C compiler (with a -c option) into an
object file called lex.yy.o that contains a subroutine called yylexO.

3. lex.yy.o is link edited with other subroutines. Presumably one of
those subroutines will call yylexO with a statement such as:

while«token = yylex()) 1= 0)

and other subroutines (or even main) will deal with what comes
back.

APPLICATION PROGRAMMING 3-9

Language Selection

Where to Find More Information
The manual page for lex is in Section (I) of the Programmer's Reference

Manual. A tutorial on lex is contained in Chapter 5 in Part 2 of this guide. .~

How yacc Is Used
yacc subroutines are produced by pretty much the same series of steps

as lex:

1. The yacc specification is processed by the yacc utility to produce a
file called y.tab.c.

2. y.tab.c is compiled by the C compiler producing an object file,
y.tab.o, that contains the subroutine yyparse(). A significant
difference is that yyparseO calls a subroutine called yylex() to per­
form lexical analysis.

3. The object file y.tab.o may be link edited with other subroutines,
one of which will be called yylexO.

There are two things worth noting about this sequence:

1. The parser generated by the yace specifications calls a lexical
analyzer to scan the input stream and return tokens.

2. While the lexical analyzer is called by the same name as one pro­
duced by lex, it does not have to be the product of a lex
specification. It can be any subroutine that does the lexical analysis.

What really differentiates these two utilities is the format for their rules.
As noted above, lex rules are regular expressions like those used by UNIX
system editors. yacc rules are chains of definitions and alternative
definitions, written in Backus-Naur form, accompanied by actions. The
rules may refer to other rules defined further down the specification.
Actions are sequences of C language statements enclosed in braces. They
frequently contain numbered variables that enable you to reference values
associated with parts of the rules. An example might make that easier to
understand:

i)

3-10 PROGRAMMER'S GUIDE

Language Selection

~
"token NtJomm

*expr numb { $$ =$1; }

exp:r , +' exp:r { $$ =$1 + $3;
exp:r , -' exp:r { $$ = $1 - $3;

exp:r , *' exp:r { $$ = $1 * $3;
exp:r , /' exp:r { $$ =$1 / $3;
'(' exp:r ')' { $$ =$2; }

nunt> : NtJomER { $$ = $1; }

This fragment of a yacc specification shows

• NUMBER identified as a token in the declaration section

• the start of the rules section indicated by the pair of percent signs

• a number of alternate definitions for expr separated by the Isign and
terminated by the semicolon

• actions to be taken when a rule is matched

• within actions, numbered variables used to represent components of
the rule:

$$ means the value to be returned as the value of the whole rule

$n means the value associated with the nth component of the rule,
counting from the left

• numb defined as meaning the token NUMBER. This is a trivial exam­
ple that illustrates that one rule can be referenced within another, as
well as within itself.

As with lex, the compiled yace object file will generally be link edited with
other subroutines that handle processing that takes place after the
parsing-or even ahead of it.

APPLICATION PROGRAMMING 3-11

Language Selection

Where to Find More Information
The manual page for yacc is in Section (1) of the Programmer's Reference

Manual. A detailed description of yacc may be found in Chapter 6 of this i~.•

guide.]

3-12 PROGRAMMER'S GUIDE

~
'.

Advanced Programming Tools

In Chapter 2 we described the use of such basic elements of program­
ming in the UNIX system environment as the standard I/O library, header
files, system calls and subroutines. In this section we introduce tools that
are more apt to be used by members of an application development team
than by a single-user programmer. The section contains material on the fol­
lowing topics:

• memory management

• file and record locking

II interprocess communication

• programming terminal screens

Memory Management
There are situations where a program needs to ask the operating system

for blocks of memory. It may be, for example, that a number of records
have been extracted from a data base and need to be held for some further
processing. Rather than writing them out to a file on secondary storage and
then reading them back in again, it is likely to be a great deal more efficient
to hold them in memory for the duration of the process. (This is not to
ignore the possibility that portions of memory may be paged out before the
program is finished; but such an occurrence is not pertinent to this discus­
sion.) There are two C language subroutines available for acquiring blocks
of memory and they are both called malloc. One of them is malloc(3C), the
other is malloc(3X). Each has several related commands that do specialized
tasks in the same area. They are:

II free-to inform the system that space is being relinquished

• realloc-to change the size and possibly move the block

II calloc-to allocate space for an array and initialize it to zeros

In addition, malloc(3X) has a function, mallopt, that provides for con­
trol over the space allocation algorithm, and a structure, mallinfo, from
which the program can get information about the usage of the allocated
space.

APPLICATION PROGRAMMING 3-13

Advanced Programming Tools

malloc(3X) runs faster than the other version. It is loaded by specifying

-lmalloc

on the cc(l) or Id(1) command line to direct the link editor to the proper
library. When you use malloc(3X) your program should contain the state­
ment

#include qalloc.h>

where the values for mallopt options are defined.

See the Programmer's Reference Manual for the formal definitions of the
two mallocs.

File and Record Locking
The provision for locking files, or portions of files, is primarily used to

prevent the sort of error that can occur when two or more users of a file try
to update information at the same time. The classic example is the airlines
reservation system where two ticket agents each assign a passenger to Seat
A, Row 5 on the 5 o'clock flight to Detroit. A locking mechanism is
designed to prevent such mishaps by blocking Agent B from even seeing '~
the seat assignment file until Agent A's transaction is complete.

File locking and record locking are really the same thing, except that
file locking implies the whole file is affected; record locking means that
only a specified portion of the file is locked. (Remember, in the UNIX sys­
tem, file structure is undefined; a record is a concept of the programs that
use the file.)

Two types of locks are available: read locks and write locks. If a process
places a read lock on a file, other processes can also read the file but all are
prevented from writing to it, that is, changing any of the data. If a process
places a write lock on a file, no other processes can read or write in the file
until the lock is removed. Write locks are also known as exclusive locks.
The term shared lock is sometimes applied to read locks.

Another distinction needs to be made between mandatory and advisory
locking. Mandatory locking means that the discipline is enforced automati-
cally for the system calls that read, write or create files. This is done ,~
through a permission flag established by the file's owner (or the super-user). }
Advisory locking means that the processes that use the file take the respon-
sibility for setting and removing locks as needed. Thus mandatory may

3-14 PROGRAMMER'S GUIDE

Advanced Programming Tools

sound like a simpler and better deal, but it isn't so. The mandatory locking
capability is included in the system to comply with an agreement with
/usr/group, an organization that represents the interests of UNIX system
users. The principal weakness in the mandatory method is that the lock is
in place only while the single system call is being made. It is extremely
common for a single transaction to require a series of reads and writes
before it can be considered complete. In cases like this, the term atomic is
used to describe a transaction that must be viewed as an indivisible unit.
The preferred way to manage locking in such a circumstance is to make cer­
tain the lock is in place before any I/O starts, and that it is not removed
until the transaction is done. That calls for locking of the advisory variety.

How File and Record Locking Works
The system call for file and record locking is fcntl(2). Programs should

include the line

#include <fc:ntl.h>

to bring in the header file shown in Figure 3-1.

APPLICATION PROGRAMMING 3-15

Advanced Programming Tools

1* len =0 means until end of file *1

I_type;
I_whence;
I_start;
I_len;
l_sysid;
l_pid;

#define

#define

#define

1* Flag values accessible to open(2) ani fcnt1(2) *1
1* ('!he first three can only be set by open) *1
#define 0_RIX:fiLy 0
#define 0_WR:E,Y 1
#define 0_RIltiR 2
#define O_NDELAY 04 1* Nan-bl.ocki.D] I/O *1
#define O_APPaID 010 1* append (writes guaranteed at the end) *1
#define O_~ 020 1* sync1u::onoos write option *1

1* Flag values accessible only to open(2) *1
#define O_CM'.AT 00400 1* open with file create (uses third open arg)*1
#define 0_':mIJ.OC 01000 1* open with truncation *1
#define O_EXCL 02000 1* exclusive open *1

1* fcnt1(2) requests *1
#define F_OO'PFD 0 1* I)Jplicate fildes *1
#define F_GETm 1 1* Get fildes flags *1
#define F_SEl'FD 2 1* set fildes flags *1
#define F_GEl'FL 3 1* Get file flags *1
#define F_SETFL 4 1* Set file flags *1
#define F_GEm..K 5 1* Get file lock *1
#define F_SEl'LK 6 1* set file lock *1
#define F_SEl'll(W 7 1* set file lock and wait *1
#define F_an<FL 8 1* Cleek legality of file flag chan3es *1

1* file segment locking set data type - infcmnation passed to system by user *1
struct flock {

short
short
long
long
short
short

} ;

1* file segment locking types *1
1* Read lock *1
F RDLa< 01
1* Write lock *1
F WRLCK 02
1* Renove lock(s) *1
F UNLCK 03

Figure 3-1: The fcntl.h Header File

3-16 PROGRAMMER'S GUIDE

('.

~.

Advanced Programming Tools

The format of the fcntl(2) system call is

int fcntl(fildes, aid, arg)
int fildes, aId, arg;

fildes is the file descriptor returned by the open system call. In addition to
defining tags that are used as the commands on fcntl system calls, fcntl.h
includes the declaration for a struct flock that is used to pass values that con­
trol where locks are to be placed.

lockf
A subroutine, lockf(3), can also be used to lock sections of a file or an

entire file. The format of lockf is:

#include <unistd.11>

int lockf (fildes, function, size)
int fildes, function;
lang size;

fildes is the file descriptor; function is one of four control values defined in
unistd.h that let you lock, unlock, test and lock, or simply test to see if a
lock is already in place. size is the number of contiguous bytes to be locked
or unlocked. The section of contiguous bytes can be either forward or back­
ward from the current offset in the file. (You can arrange to be somewhere
in the middle of the file by using the Iseek(2) system call.)

Where to Find More Information
There is an example of file and record locking in the sample application

at the end of this chapter. The manual pages that apply to this facility are
fcntl(2), fcotl(S), lockf(3), and chmod(2) in the Programmer's Reference
Manual. Chapter 7 in Part 2 of this guide is a detailed discussion of the sub­
ject with a number of examples.

Interprocess Communications
In Chapter 2 we described forking and execing as methods of communi­

cating between processes. Business applications running on a UNIX system
computer often need more sophisticated methods. In applications, for
example, where fast response is critical, a number of processes may be
brought up at the start of a business day to be constantly available to handle
transactions on demand. This cuts out initialization time that can add

APPLICATION PROGRAMMING 3-17

Advanced Programming Tools

seconds to the time required to deal with the transaction. To go back to the
ticket reservation example again for a moment, if a customer calls to reserve
a seat on the 5 o'clock flight to Detroit, you don't want to have to say, ttyes,
sir. Just hang on a minute while I start up the reservations program." In ~

transaction driven systems, the normal mode of processing is to have all the ..l
components of the application standing by waiting for some sort of an indi-
cation that there is work to do.

To meet requirements of this type the UNIX system offers a set of nine
system calls and their accompanying header files, all under the umbrella
name of Interprocess Communications (IPC).

The IPC system calls come in sets of three; one set each for messages,
semaphores, and shared memory. These three terms define three different
styles of communication between processes:

messages communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores communication is in the form of positive integers with
a value between 0 and 32,767. Semaphores may be con­
tained in an array the size of which is determined by
the system administrator. The default maximum size
for the array is 25.

shared memory communication takes place through a common area of
main memory. One or more processes can attach a seg­
ment of memory and as a consequence can share what­
ever data is placed there.

The sets of IPC system calls are:

msgget
msgctl
msgop

semget
semctl
semop

shmget
shmctl
shmop

IPC get Calls
The get calls each return to the calling program an identifier for the

type of IPC facility that is being requested.

3-18 PROGRAMMER'S GUIDE

~.

------------------- Advanced Programming Tools

IPC etl Calls
The etl calls provide a variety of control operations that include obtain­

ing (IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in
data structures associated with the identifiers picked up by the get calls.

IPC op Calls
The op manual pages describe calls that are used to perform the particu­

lar operations characteristic of the type of IPC facility being used. msgop
has calls that send or receive messages. semop (the only one of the three
that is actually the name of a system call) is used to increment or decrement
the value of a semaphore, among other functions. shmop has calls that
attach or detach shared memory segments.

Where to Find More Information
An example of the use of some IPC features is included in the sample

application at the end of this chapter. The system calls are all located in
Section (2) of the Programmer's Reference Manual. Don't overlook
intro(2). It includes descriptions of the data structures that are used by IPC
facilities. A detailed description of IPC, with many code examples that use
the IPC system calls, is contained in Chapter 9 in Part 2 of this guide.

Programming Terminal Screens
The facility for setting up terminal screens to meet the needs of your

application is provided by two parts of the UNIX system. The first of these,
terminfo, is a data base of compiled entries that describe the capabilities of
terminals and the way they perform various operations.

The terminfo data base normally begins at the directory
/usr/lib/terminfo. The members of this directory are themselves direc­
tories, generally with single-character names that are the first character in
the name of the terminal. The compiled files of operating characteristics are
at the next level down the hierarchy. For example, the entry for a Teletype
5425 is located in both the file /usr/lib/terminfo/S/S42S and the file
/usr/lib/terminfo/t/tty542S.

APPLICATION PROGRAMMING 3-19

Advanced Programming Tools

Describing the capabilities of a terminal can be a painstaking task.
Quite a good selection of terminal entries is included in the terminfo data
base that comes with your 3B Computer. However, if you have a type of
terminal that is not already described in the data base, the best way to .~

proceed is to find a description of one that comes close to having the same J
capabilities as yours and building on that one. There is a routine (setup-
term) in curses(3X) that can be used to print out descriptions from the data
base. Once you have worked out the code that describes the capabilities of
your terminal, the tic(1M) command is used to compile the entry and add it
to the data base.

curses
After you have made sure that the operating capabilities of your termi­

nal are a part of the terminfo data base, you can then proceed to use the
routines that make up the curses(3X) package to create and manage screens
for your application.

The curses library includes functions to:

• define portions of your terminal screen as windows

• define pads that extend beyond the borders of your physical terminal /~.'

screen and let you see portions of the pad on your terminal 7
• read input from a terminal screen into a program

• write output from a program to your terminal screen

• manipulate the information in a window in a virtual screen area and
then send it to your physical screen

Where to Find More Information
In the sample application at the end of this chapter, we show how you

might use curses routines. Chapter 10 in Part 2 of this guide contains a
tutorial on the subject. The manual pages for curses are in Section (3X), and
those for terminfo are in Section (4) of the Programmer's Reference Manual.

3-20 PROGRAMMER'S GUIDE

~.

~<.

Programming Support Too~s

This section covers UNIX system components that are part of the pro­
gramming environment, but that have a highly specialized use. We refer to
such things as:

• link edit command language

• Common Object File Format

• libraries

• Symbolic Debugger

• lint as a portability tool

Link Edit Command Language
The link editor command language is for use when the default arrange­

ment of the ld output will not do the job. The default locations for the
standard Common Object File Format sections are described in a.out(4) in
the Programmer's Reference Manual. On a 3B2 Computer, when an a.out file
is loaded into memory for execution, the text segment starts at location
Ox80800000, and the data section starts at the next segment boundary after
the end of the text. The stack begins at OxC0020000 and grows to higher
memory addresses.

The link editor command language provides directives for describing
different arrangements. The two major types of link editor directives are
MEMORY and SECTIONS. MEMORY directives can be used to define the
boundaries of configured and unconfigured sections of memory within a
machine, to name sections, and to assign specific attributes (read, write, exe­
cute, and initialize) to portions of memory. SECTIONS directives, among a
lot of other functions, can be used to bind sections of the object file to
specific addresses within the configured portions of memory.

Why would you want to be able to do those things? Well, the truth is
that in the majority of cases you don't have to worry about it. The need to
control the link editor output becomes more urgent under two, possibly
related, sets of circumstances.

APPLICATION PROGRAMMING 3-21

Programming Support Tools

1. Your application is large and consists of a lot of object files.

2. The hardware your application is to run on is tight for space.

Where to Find More Information
Chapter 12 in Part 2 of this guide gives a detailed description of the

subject.

Common Object File Format
The details of the Common Object File Format have never been looked

on as stimulating reading. In fact, they have been recommended to hard­
core insomniacs as preferred bedtime fare. However, if you're going to
break into the ranks of really sophisticated UNIX system programmers,
you're going to have to get a good grasp of COFF. A knowledge of COFF is
fundamental to using the link editor command language. It is also good
background knowledge for tasks such as:

• setting up archive libraries or shared libraries

• using the Symbolic Debugger

The following system header files contain definitions of data structures
of parts of the Common Object File Format:

<syms.h>
<linenum.h>
<ldfcn.h>
<filehdr.h>
<a.out.h>
<scnhdr.h>
<reloc.h>
< storclass.h>

symbol table format
line number entries
COFF access routines
file header for a common object file
common assembler and link editor output
section header for a common object file
relocation information for a common object file
storage classes for common object files

The object file access routines are described below under the heading
"The Object File Library."

3-22 PROGRAMMER'S GUIDE

~'

Programming Support Tools

Where to Find More Information
Chapter 11 in Part 2 of this guide gives a detailed description of COFF.

Libraries
A library is a collection of related object files and/or declarations that

simplify programming effort. Programming groups involved in the
development of applications often find it convenient to establish private
libraries. For example, an application with a number of programs using a
common data base can keep the I/O routines in a library that is searched at
link edit time.

o The archive libraries are collections of common object format files stored
in an archive (filename.a) file that is searched by the link editor to resolve
references. Files in the archive that are needed to satisfy unresolved refer­
ences become a part of the resulting executable.

Shared libraries are similar to archive libraries in that they are collec­
tions of object files that are acted upon by the link editor. The difference,
however, is that shared libraries perform a static linking between the file in
the library and the executable that is the output of Id. The result is a saving
of space, because all executables that need a file from the library share a sin­
gle copy. We go into shared libraries later in this section.

In Chapter 2 we described many of the functions that are found in the
standard C library, libc.a. The next two sections describe two other
libraries, the object file library and the math library.

The Object File Library
The object file library provides functions for the access and manipula­

tion of object files. Some functions locate portions of an object file such as
the symbol table, the file header, sections, and line number entries associ­
ated with a function. Other functions read these types of entries into
memory. The need to work at this level of detail with object files occurs
most often in the development of new tools that manipulate object files.
For a description of the format of an object file, see liThe Common Object
File Format" in Chapter 11. This library consists of several portions. The
functions reside in llib/libld.a and are loaded during the compilation of a
C language program by the -I command line option:

APPLICATION PROGRAMMING 3-23

Programming Support Tools

cc file -lid

which causes the link editor to search the object file library. The argument
-lid must appear after all files that reference functions in libld.a.

The following header files must be included in the source code.

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

Function Reference Brief Description

Idac10se Idc1ose(3X) Close object file being processed.

Idahread Idahread(3X) Read archive header.

Idaopen Idopen(3X) Open object file for reading.

Idc10se Idc1ose(3X) Close object file being processed.

Idfhread Idfhread(3X) Read file header of object file being
processed.

Idgetname Idgetname(3X) Retrieve the name of an object file
symbol table entry.

Idlinit Idlread(3X) Prepare object file for reading line
number entries via Idlitem.

Idlitem Idlread(3X) Read line number entry from object
file after Idlinit.

Idlread Idlread(3X) Read line number entry from object
file.

Idlseek Idlseek(3X) Seeks to the line number entries of the
object file being processed.

Idnlseek Idlseek(3X) Seeks to the line number entries of the
object file being processed given the
name of a section.

3-24 PROGRAMMER'S GUIDE

Programming Support Tools

Function Reference Brief Description

~
ldnrseek Idrseek(3X) Seeks to the relocation entries of the

object file being processed given the
name of a section.

ldnshread Idshread(3X) Read section header of the named sec-
tion of the object file being processed.

Idnsseek Idsseek(3X) Seeks to the section of the object file
being processed given the name of a
section.

ldohseek Idohseek(3X) Seeks to the optional file header of the
object file being processed.

Idopen Idopen(3X) Open object file for reading.

ldrseek Idrseek(3X) Seeks to the relocation entries of the
object file being processed.

Idshread Idshread(3X) Read section header of an object file

~ being processed.
",

Idsseek Idsseek(3X) Seeks to the section of the object file
being processed.

ldtbindex Idtbindex(3X) Returns the long index of the symbol
table entry at the current position of
the object file being processed.

ldtbread Idtbread(3X) Reads a specific symbol table entry of
the object file being processed.

ldtbseek Idtbseek(3X) Seeks to the symbol table of the object
file being processed.

sgetl sputl(3X) Access long integer data in a machine
independent format.

sputl sputl(3X) Translate a long integer into a

~\ machine independent format.

APPLICATION PROGRAMMING 3-25

Programming Support Tools

Common Object File Interface Macros (ldfcn.h)
The interface between the calling program and the object file access rou-

tines is based on the defined type LDFILE, which is in the header file ~

Idfcn.h (see Idfcn(4». The primary purpose of this structure is to prOVide,
uniform access to both simple object files and to object files that are
members of an archive file.

The function Idopen(3X) allocates and initializes the LDFILE structure
and returns a pointer to the structure. The fields of the LDFILE structure
may be accessed individually through the following macros:

• The TYPE macro returns the magic number of the file, which is used
to distinguish between archive files and object files that are not part
of an archive.

• The IOPTR macro returns the file pointer, which was opened by
Idopen(3X) and is used by the input/output functions of the C
library.

• The OFFSET macro returns the file address of the beginning of the
object file. This value is non-zero only if the object file is a member
of the archive file.

• The HEADER macro accesses the file header structure of the object
file.

Additional macros are provided to access an object file. These macros
parallel the input/output functions in the C library; each macro translates a
reference to an LDFILE structure into a reference to its file descriptor field.
The available macros are described in Idfcn(4) in the Programmer's Reference
Manual.

The Math Library
The math library package consists of functions and a header file. The

functions are located and loaded during the compilation of a C language
program by the -I option on a command line, as follows:

cc file -1m

..~

3-26 PROGRAMMER'S GUIDE

Programming Support Tools

This option causes the link editor to search the math library, libm.a. In
addition to the request to load the functions, the header file of the math
library should be included in the program being compiled. This is accom­
plished by including the line:

#include <math.h>

near the beginning of each file that uses the routines.

The functions are grouped into the following categories:

• trigonometric functions

• Bessel functions

• hyperbolic functions

• miscellaneous functions

Trigonometric Functions
These functions are used to compute angles (in radian measure), sines,

cosines, and tangents. All of these values are expressed in double-precision.

~
Function Reference Brief Description

acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of a ratio.

cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions
These functions calculate Bessel functions of the first and second kinds

of several orders for real values. The Bessel functions are jO, jt, jn, yO, yt,
and yn. The functions are located in section bessel(3M).

APPLICATION PROGRAMMING 3-27

Programming Support Tools

Hyperbolic Functions
These functions are used to compute the hyperbolic sine, cosine, and

tangent for real values.

Function Reference Brief Description

cosh sinh(3M) Return hyperbolic cosine.

sinh sinh(3M) Return hyperbolic sine.

tanh sinh(3M) Return hyperbolic tangent.

Miscellaneous Functions
These functions cover a wide variety of operations, such as natural loga­

rithm, exponential, and absolute value. In addition, several are provided to
truncate the integer portion of double-precision numbers.

Function Reference

ceil floor(3M)

exp exp(3M)

labs floor(3M)

floor floor(3M)

fmod floor(3M)

Brief Description

Returns the smallest integer not less
than a given value.

Returns the exponential function of a
given value.

Returns the absolute value of a given
value.

Returns the largest integer not greater
than a given value.

Returns the
remainder
produced by the division of two given
values.

gamma gamma(3M) Returns the natural log of the absolute
value of the result of applying the
gamma function to a given value.

3-28 PROGRAMMER'S GUIDE

Programming Support Tools

Function Reference Brief Description

~
hypot hypot(3M) Return the square root of the sum of

the squares of two numbers.

log exp(3M) Returns the natural logarithm of a
given value.

log10 exp(3M) Returns the logarithm base ten of a
given value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a given value
raised to another given value.

sqrt exp(3M) Returns the square root of a given
value.

Shared Libraries
As noted above, shared libraries are also available on the UNIX system.

Not only are some system libraries (libc and the networking library) avail­
able in both archive and shared library form, but also applications have the
option of creating private application shared libraries.

The reason why shared libraries are desirable is that they save space,
both on disk and in memory. With an archive library, when the link editor
goes to the archive to resolve a reference it takes a copy of the object file
that it needs for the resolution and binds it into the a.out file. From that
point on the copied file is a part of the executable, whether it is in memory
to be run or sitting in secondary storage. If you have a lot of executables
that use, say, printf (which just happens to require much of the standard
I/O library) you can be talking about a sizeable amount of space.

With a shared library, the link editor does not copy code into the exe­
cutable files. When the operating system starts a process that uses a shared
library it maps the shared library contents into the address space of the pro­
cess. Only one copy of the shared code exists, and many processes can use
it at the same time.

APPLICATION PROGRAMMING 3-29

Programming Support Tools

This fundamental difference between archives and shared libraries has
another significant aspect. When code in an archive library is modified, all
existing executables are uneffected. They continue using the older version
until they are re-link edited. When code in a shared library is modified, all
programs that share that code use the new version the next time they are
executed.

All this may sound like a really terrific deal, but as with most things in
life there are complications. To begin with, in the paragraphs above we
didn't give you quite all the facts. For example, each process that uses
shared library code gets its own copy of the entire data region of the
library. It is actually only the text region that is really shared. So the truth
is that shared libraries can add space to executing a.out's even though the
chances are good that they will cause more shrinkage than expansion.
What this means is that when there is a choice between using a shared
library and an archive, you shouldn't use the shared library unless it saves
space. If you were using a shared libe to access only stremp, for example,
you would pick up more in shared library data than you would save by
sharing the text.

The answer to this problem, and to others that are somewhat more com­
plex, is to assign the responsibility for shared libraries to a central person or
group within the application. The shared library developer should be the
one to resolve questions of when to use shared and when to use archive
system libraries. If a private library is to be built for your application, one
person or organization should be responsible for its development and
maintenance.

Where to Find More Information
The sample application at the end of this chapter includes an example

of the use of a shared library. Chapter 8 in Part 2 of this guide describes
how shared libraries are built and maintained.

Symbolic Debugger
The use of sdb was mentioned briefly in Chapter 2. In this section we

want to say a few words about sdb within the context of an application
developmentproject.')

3-30 PROGRAMMER'S GUIDE

-------------------- Programming Support Tools

sdb works on a process, and enables a programmer to find errors in the
code. It is a tool a programmer might use while coding and unit testing a
program, to make sure it runs according to its design. sdb would normally
be used prior to the time the program is turned over, along with the rest of
the application, to testers. During this phase of the application develop­
ment cycle programs are compiled with the -g option of cc to facilitate the
use of the debugger. The symbol table should not be stripped from the
object file. Once the programmer is satisfied that the program is error-free,
strip(l) can be used to reduce the file storage overhead taken by the file.

If the application uses a private shared library, the possibility arises that
a program bug may be located in a file that resides in the shared library.
Dealing with a problem of this sort calls for coordination by the administra­
tor of the shared library. Any change to an object file that is part of a
shared library means th{~ change effects all processes that use that file. One
program's bug may be another program's feature.

Where to Find More Information
Chapter 15 in Part 2 of this guide contains information on how to use

sdb. The manual page is in Section (1) of the Programmer's Reference Manual.

lint as a Portability Tool
It is a characteristic of the UNIX system that language compilation sys­

tems are somewhat permissive. Generally speaking it is a design objective
that a compiler should run fast. Most C compilers, therefore, let some
things go unflagged as long as the language syntax is observed statement by
statement. This sometimes means that while your program may run, the
output will have some surprises. It also sometimes means that while the
program may run on th(~ machine on which the compilation system runs,
there may be real difficulties in running it on some other machine.

That's where lint comes in. lint produces comments about inconsisten­
cies in the code. The types of anomalies flagged by lint are:

• cases of disagreement between the type of value expected from a
called function and what the function actually returns

• disagreement between the types and number of arguments expected
by functions and what the function receives

APPLICATION PROGRAMMING 3-31

Programming Support Tools

• inconsistencies that might prove to be bugs

• things that might cause portability problems

Here is an example of a portability problem that would be caught by 'J
lint.

Code such as this:

int i =Iseek(fdes, offset, whence)

would get by most compilers. However, Iseek returns a long integer
representing the address of a location in the file. On a machine with a 16­
bit integer and a bigger long int, it would produce incorrect results, because
i would contain only the last 16 bits of the value returned.

Since it is reasonable to expect that an application written for a UNIX
system machine will be able to run on a variety of computers, it is impor­
tant that the use of lint be a regular part of the application development.

Where to Find More Information
Chapter 16 in Part 2 of this guide contains a description of lint with /~.."\

examples of the kinds of conditions it uncovers. The manual page is in Sec- J
tion (1) of the Programmer's Reference Manual.

3-32 PROGRAMMER'S GUIDE

Project Control Tools

Volumes have been written on the subject of project control. It is an
item of top priority for the managers of any application development team.
Two UNIX system tools that can playa role in this area are described in this
section.

make
make is extremely useful in an application development project for

keeping track of what object files need to be recompiled as changes are
made to source code files. One of the characteristics of programs in a UNIX
system environment is that they are made up of many small pieces, each in
its own object file, that are link edited together to form the executable file.
Quite a few of the UNIX system tools are devoted to supporting that style
of program architecture. For example, archive libraries, shared libraries and
even the fact that the cc command accepts .0 files as well as .c files, and that
it can stop short of the ld step and produce .0 files instead of an a.out, are
all important elements of modular architecture. The two main advantages
of this type of programming are that

• A file that performs one function can be re-used in any program that
needs it.

• When one function is changed, the whole program does not have to
be recompiled.

On the flip side, however, a consequence of the proliferation of object
files is an increased difficulty in keeping track of what does need to be
recompiled, and what doesn't. make is designed to help deal with this
problem. You use make by describing in a specification file, called
makefile, the relationship (that is, the dependencies) between the different
files of your program. Once having done that, you conclude a session in
which possibly a number of your source code files have been changed by
running the make command. make takes care of generating a new a.out by
comparing the time-last-changed of your source code files with the depen­
dency rules you have given it.

APPLICATION PROGRAMMING 3-33

Project Control Tools

make has the ability to work with files in archive libraries or under
control of the Source Code Control System (SCCS).

Where to Find More Information
The make(l) manual page is contained in the Programmer's Reference

Manual. Chapter 13 in Part 2 of this guide gives a complete description of
how to use make.

sees
SCCS is an acronym for Source Code Control System. It consists of a set

of 14 commands used to track evolving versions of files. Its use is not lim­
ited to source code; any text files can be handled, so an application's docu­
mentation can also be put under control of SCCS. SCCS can:

• store and retrieve files under its control

• allow no more than a single copy of a file to be edited at one time

• provide an audit trail of changes to files

• reconstruct any earlier version of a file that may be wanted

secs files are stored in a special coded format. Only through com­
mands that are part of the SCCS package can files be made available in a
user's directory for editing, compiling, etc. From the point at which a file is
first placed under sces control, only changes to the original version are
stored. For example, let's say that the program, restate, that was used in
several examples in Chapter 2, was controlled by secs. One of the original
pieces of that program is a file called oppty.c that looks like this:

3-34 PROGRAMMER'S GUIDE

Project Control Tools

#i11clude "reodef.h"

float
oppty(ps)
struct rec *ps;
{

return(ps->il12 * ps->t * ps->dp);

If you decide to add a message to this function, you might change the
file like this:

#include "r eodef .h"
#include <stdio.h>

float
oppty{ps)
struct rec *ps;
{

(void) fprintf (stderr , "Opportunity callin;J\n");

return(ps->il12 * ps->t * ps->dp);

sees saves only the two new lines from the second version, with a
coded notation that shows where in the text the two lines belong. It also
includes a note of the version number, lines deleted, lines inserted, total
lines in the file, the date and time of the change and the login id of the per­
son making the change.

APPLICATION PROGRAMMING 3-35

Project Control Tools

Where to Find More Information
Chapter 14 in Part 2 of this guide is an SCCS user's gUide. SCCS com-

mands are in Section (1) of the Programmers Reference Manual.)

3-36 PROGRAMMER'S GUIDE

liber, A Library System

To illustrate the use of UNIX system programming tools in the develop­
ment of an application, we are going to pretend we are engaged in the
development of a computer system for a library. The system is known as
liber. The early stages of system development, we assume, have already
been completed; feasibility studies have been done, the preliminary design
is described in the coming paragraphs. We are going to stop short of pro­
ducing a complete detailed design and module specifications for our system.
You will have to accept that these exist. In using portions of the system for
examples of the topics covered in this chapter, we will work from these vir­
tual specifications.

We make no claim as to the efficacy of this design. It is the way it is
only in order to provide some passably realistic examples of UNIX system
programming tools in use.

tiber is a system for keeping track of the books in a library. The
hardware consists of a single computer with terminals throughout the
library. One terminal is used for adding new books to the data base. Oth­
ers are used for checking out books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning
of the day and remain running while the library is in operation. The sys­
tem has one master index that contains the unique identifier of each title in
the library. When the system is running the index resides in memory.
Semaphores are used to control access to the index. In the pages that follow
fragments of some of the system/s programs are shown to illustrate the way
they work together. The startup program performs the system initialization;
opening the semaphores and shared memory; reading the index into the
shared memory; and kicking off the other programs. The id numbers for
the shared memory and semaphores (shmid, wrtsem, and rdsem) are read
from a file during initialization. The programs all share the in-memory
index. They attach it with the following code:

APPLICATION PROGRAMMING 3-37

liber, A Library System

/* attach shared memJrY for iniex */
if «int)(index = (INDEX *) Shmat(Shmid, NULL, 0» == -1)
{

(void) fprintf(stderr, "slmat failed: %d\n", ernx»;
exit(1);

Of the programs shown, add-books is the only one that alters the index.
The semaphores are used to ensure that no other programs will try to read
the index while add-books is altering it. The checkout program locks the
file record for the book, so that each copy being checked out is recorded
separately and the book cannot be checked out at two different checkout sta­
tions at the same time.

The program fragments do not provide any details on the structure of
the index or the book records in the database.')

typedef ••• INDEX;
typedef struct {

char title[30];
char autl'm"[30] ;

} BXIC;

int slmid;
int wrtsEm;
int rdsem;
INDEK *index;

int book_file;
BXIC book}~1f;

/* liber.h - header file for the

* libraxy system.
*/

/* data structure for book file index */
/* type of reooJ:ds in book file */

3-38 PROGRAMMER'S GUIDE

Iiber, A Library System

continued

/*
* 1. Open shared nerory for file iniex and read it in.
* 2. Open two semapblres for providing exclusive write access to index.
* 3. Stash id' s for shared nerory segxrent ani semaphores in a file
* where they can be accessed by the programs.
* 4. Start programs: add-books, card-catalog, ani checkout rumrlng
* an the various tenninals throughout the libraxy.
*/

#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/sbn.h>
<sys/sem.h>
"liber.h"

void exit() ;
exten1 int errno;

key_t key;
int shmid;
int wrtsem;
int rdsem;
FILE *ipc_file;

main()

{

if « shmid =shnget(key, sizeof (INDEX), !Fe_cm:AT : 0666» == -1)
{

(void) fprintf(stderr, "startup: shnget failed: errno-~\n", errno);
exi.t(1) :

}

if « wrtsem = senget(key, 1, IFC_<m:AT : 0666)) == -1)
{

(void) fprintf(stderr, "startup: semget failed: ~\n", errno);
exi.t(1) ;

APPLICATION PROGRAMMING 3-39

liber, A Library System

continued

if «rdsem = senget(key, 1, !PC_<m:AT I 0666» == -1)
{

(void) fprintf(st:del:r, "startup: seuget failed: ern1O=>%:i\n", errno);
exit(1);

}

(void) fprintf(ipc_file, "%d\nXd~II, shmid, wrtsem, rdsem);

1*
* Start the add-books program running on the tenn:inal in the
* basement. start the checkoo.t and card-catalog programs
* runni.D;J on the various other tenninals t:h.rouqhoo.t the library.

*1

1*
* 1. Read screen for author and title.
* 2. Use semaphores to prevent readin] iIxlex while it is bein;' written.
* 3. Use iniex to get position of book record in book file.
* 4. Print book reoord on screen or iIxlicate book was not fourxi.
* 5. Go to 1.
*1

#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/sem.h>

<fcntl.h>
"li.ber.h"

void exit() ;
extexn int ern1O;

struct sembuf sop[1] ;

main() {

3-40 PROGRAMMER'S GUIDE

tiber, A Library System

continued

while (1)
{

/*
* Read author/title/subject infonnation fran screen.
*/

/*
* wait for write semaphore to reach 0 (index not being written).

*/
sop[O] .sem_op = 1;
if (SE!lIOp(wrtsem, sop, 1) == -1)

{

(void) fprintf(stderr, "seuop failed: ~\n", errno);
exi.t(1);

}

/*
* Increment read semaphore so potential writer will wait
* for us to finish readinJ the index.

*/
sop[O].sem_op =0;
if (semop(rdsem, sop, 1) == -1)
{

(void) fprintf(stderr, "seuop failed: ~\n", en:no);
exi.t(1);

/* Use index to find file pointer(s) for book(s) */

/* Decrement read semaphore */
sop[O).sem_op = -1;
if (sE!lIOp(rdsem, sop, 1) == -1)
{

(void) fprintf(stderr, "seuop failed: ~\n", errno);
exit(1);

/*
* Now we use the file pointers found in the index to
* read the book file. 'lben we print the infonnation
* on the book(s) to the screen.
*/

/* while */

APPLICATION PROGRAMMING 3-41

liber, A Library System

continued

1*
* 1. Read screen for Dewey Decimal number of book to be checked cut.
* 2. Use semaJilares to prevent readiDJ index while it is beiIq written.
* 3. Use index to get position of book record in book file.
* 4. If book not fomd print message on screen. ot:heIwi.se lock
* book record and read.
* 5. If book already checked out print message on screen. otherwise
* mark record "checked out" and write back to book file.
* 6. Unlock book record.
* 7. Go to 1.
*1

#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/sem.h>

<fc:ntl.h>
"liber.h"

void exit();
lc:mq lseek();
extem int en:I1O;
stJ:uct flock flk;
stJ:uct semb1f sop[1] ;
lCD1 bookpos;

maine)
{

while (1)
{

1*
* Read Dewey Decimal number fran screen.
*1

3-42 PROGRAMMER'S GUIDE

liber, A Library System

continued

I •
• wait far write semapx,re to reach 0 (index not being written) .
• 1

sop[O).sem_flq = 0;
sop[O).sem_op = 0;
if (senDP(wrtsem, sop, 1) == -1)

{

(void) fprintf(stderr, "seaop failed: ~\n", enno);
exi.t(1);

}

I •
• Increment read semaJi1are so potential writer will wait

* far us to finish readiD;J the :irxlex.
*1

sop[0) •sem_op = 1;
if (senDP(rdsem, sop, 1) == -1)

{

(void) fprint£(stderr, "senop failed: ~\n", enno);
exi.t(1);

1*
* Now we can use the index to find the book's record position.
* Assign this value to "l:x:101qx:Is" •
• 1

1* Decrement read semaJi1are .1
sop[O).sem_op =-1;
if (senDP(rdsE!m, sop, 1) == -1)

{

(void) fprintf(stderr, "seaop failed: ~\n", enno);
exi.t(1);

I. Lock the book's record in book file, read the record. *1
flk.l_type = F_WRLCK;
flk.I_Whence =0;
flk.l_start = l:x:101qx:Is;
flk.I_Ien = sizeof(BXJ();
if (fcntl(book_file, F_SEl'LKW, &ilk) == -1)

APPLICATION PROGRAMMING 3-43

liber, A Library System

continued

(void) fprintf(stderr, "trouble lockiD;J: %d\n", errno);
exit(1);

}

if (lseek(book_file, bookpos, 0) == -1)
{

Error processing for Iseek;
}

if (read(book_file, &book):Alf, sizeof(B:XJK» == -1)
{

Error processing for read;

1*
* If the book is checked out inform the client, otherwise
* nark the book's record as checked out ani write it
* back into the book file.
*1

1* unlock the book's record in book file. *1
flk.l_type = F_UNLCK;
if (faltl(book_file , F_~, &ilk) == -1)
{

(void) fprintf(stderr, "trouble unlocki.ng: Xd\n", errno);
exit (1);

1* add-books progr&n*1

1*
* 1. Read a new book entzy fran screen.
* 2. Insert book in book file.
* 3. Use semaJinre "wrtsem" to block new readers.
* 4. wait for semaphore "rdsem" to reach O.
* 5. Insert book into index.
* 6. Decrement wrtsem.
* 7. Go to 1.
*1

3-44 PROGRAMMER'S GUIDE

liber, A Library System

continued

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include "liber .h"

void exit();

extern int errno;
stn1ct sE!l1dJuf sop[1] ;
JD:I(000kbuf;

m:rin()

{

for (;;)
(

1*
* Read infonnatian an new book fran screen.
*1

addscr (&booJd:uf) ;

1* write new record at the ern of the bookfile.
* Code not sl'x:lwn, rot
* addscr() returns a 1 if title infonnatian has
* been entered, 0 if not.
*1

1*
* Increment write semaph::)re, blocking new readers fran
* accessin:J the index.
*1

sop[O].sem_flg =0;
sop[O].sem_op = 1;
if (senop(wrtsem, sop, 1) == -1)
{

(void) fprintf(stderr, "serop failed: Y.d\n", errno);
exit(1);

APPLICATION PROGRAMMING 3·45

liber, A Library System

continued

1*
* wait for read semaphore to reach 0 (all readers to finish
* usiD;J the :imex).
*1

sop[O] .sem_op =0;
if (seaop(rdsem, sop, 1) == -1)

{

(void) fprintf(stderr, "SeDOp failed: %d\n", enno);
exi.t(1);

1*
* tbl that we have exclusive access to the index we
* insert our new bc:dt with its file pointer.
*1

1* Decrement write semaphore, penni.ttin:J readers to read index. *1
sop[O) .sem_op =-1;
if (seaop(WI'tsem, sop, 1) == -1)
{

(void) fprintf(stderr, "s€mJp failed: %d\Jl", enno);
exi.t(1);

The example following, addscr(), illustrates two significant points about
curses screens:

1. Information read in from a curses window can be stored in fields
that are part of a structure defined in the header file for the applica­
tion.

2. The address of the structure can be passed from another function
where the record is processed.

3-46 PROGRAMMER'S GUIDE

~:.,.. ",
~' ,. ,

tiber, A Library System

1* addscr is called fran add-bcx:>ks.
* '!be user is praripted for titie
* infmmation.
*1

#include <curses.h>

addscr(bb)

struct BXI< *bb;
{

int c;

initscr() ;

nonl();

noecho() ;

cbreak();

cmiwin =newwin(6, 40, 3, 20);
mvprintw(0, 0, "This screen is for~ tities to the data base");

mvprintw(1, 0, "Enter a to add; q to quit: ");
refresh() ;
for (;;)
{

refresh() ;
c = getch();
switch (c) {

case 'a':
werase(ardwin) ;
bax(cmdwin, '1', '-');
mvwprintw(ardwin, 1, 1, "Enter title: ");
w.move(ardwin, 2, 1);
echo();

wrefresh(an:iwin) ;
wgetst:r(an:iwin, ~>titie) ;
noecho();

werase(ardwin) ;
bax(ardwin, '1', '-');
mvwprintw(atdwin, 1, 1, "Enter author: ");
~(ardwin, 2, 1);
ecb:>() ;

wrefresh(ardwin) ;
wge1:str(cmdwin, bb->aut:b:>r);
noecho();

APPLICATION PROGRAMMING 3·47

liber, A Library System

werase(ardwin) ;

wrefresh(ardwin) ;

emwm();

retum(1);

case 'q':
erase() ;

emwm();

return(O) ;

#
Makefile for liber librazy system
#

cc=cc
CFLAGS =-0
all: startup add-books checkcut caxd-catalog

startup: liber.h startup.c
$ (OC) $ (CFLAGS) -0 startup startup.c

add-books: add-books.o addscr.o
$(CC) $ (CFLAGS) -0 add-books add-books.o addscr.o

add-books.o: liber.h

checkout: liber. h checkout.c
$ (OC) $ (CFLAGS) -0 checkcut checkout. C

card-catalog: liber.h card-catalog.c
$(CC) $ (CFLAGS) -0 card-catalog card-catalog. c

3-48 PROGRAMMER'S GUIDE

continued

.~

4 awk

Introduction

Basic awk
Program Structure
Usage
Fields
Printing
Formatted Printing
Simple Patterns
Simple Actions

• Built-in Variables
• User-defined Variables
• Functions

A Handful of Useful One-liners
Error Messages

Patterns
BEGIN and END
Relational Expressions
Regular Expressions
Combinations of Patterns
Pattern Ranges

Actions
Built-in Variables
Arithmetic

4-1

4-2

4-2

4·3

4·4
4-5

4-6

4-7

4-8

4·9
4-9
4-9

4-10

4-11

4-12

4-12

4-13

4·15

4-18

4-19

4-20
4-20

4-20

awk

awk

Strings and String Functions
Field Variables
Number or String?
Control Flow Statements
Arrays
User-Defined Functions
Some Lexical Conventions

Output
The print Statement
Output Separators
The printf Statement
Output into Files
Output into Pipes

Input
Files and Pipes
Input Separators
Multi-line Records
The getline Function
Command-line Arguments

4-23

4·28

4·29

4-30

4·33

4-36

4-37

4-38

4-38

4-38

4-39

4-40

4·41

4-43

4-43

4-43

4-44

4-44

4·47

'~

Using awk with Other Commands and
the Shell 4·49

The system Function 4·49

Cooperation with the Shell 4-49

Example Applications
Generating Reports
Additional Examples

• Word Frequencies
• Accumulation

4-52

4-52

4-54

:~:: ~

II PROGRAMMER'S GUIDE

• Random Choice
• Shell Facility
• Form-letter Generation

awk Summary
Command Line
Patterns
Control Flow Statements
Input-output
Functions
String Functions
Arithmetic Functions
Operators (Increasing Precedence)
Regular Expressions (Increasing Precedence)
Built-in Variables
Limits
Initialization, Comparison, and Type Coercion

awk

4-55

4-56

4-57

4-58

4-58

4-58

4-58

4-59

4-59

4-60

4-60

4-61

4-61

4-62

4-62

4-63

awk iii

....... -.1 '

Introduction

This chapter describes the new version of awk released in UNIX Sys­
tem V Release 3.1 and described in nawk(1). An earlier version is
described in awk(1). The new version will become the default in the
next major UNIX system release. Until then, you should read nawk
for awk in this chapter.

Suppose you want to tabulate some survey results stored in a file, print
various reports summarizing these results, generate form letters, reformat a
data file for one application package to use with another package, or count
the occurrences of a string in a file. awk is a programming language that
makes it easy to handle these and many other tasks of information retrieval
and data processing. The name awk is an acronym constructed from the
initials of its developers; it denotes the language and also the UNIX system
command you use to run an awk program.

awk is an easy language to learn. It automatically does quite a few
things that you have to program for yourself in other languages. As a
result, many useful awk programs are only one or two lines long. Because
awk programs are usually smaller than equivalent programs in other
languages, and because they are interpreted, not compiled, awk is also a
good language for prototyping.

The first part of this chapter introduces you to the basics of awk and is
intended to make it easy for you to start writing and running your own
awk programs. The rest of the chapter describes the complete language and
is somewhat less tutorial. For the experienced awk user, there's a summary
of the language at the end of the chapter.

You should be familiar with the UNIX system and shell programming
to use this chapter. Although you don't need other programming experi­
ence, some knowledge of the C programming language is beneficial,
because many constructs found in awk are also found in C.

awk 4·1

Basic awk

This section provides enough information for you to write and run
some of your own programs. Each topic presented is discussed in more
detail in later sections.

Program Structure
The basic operation of awk(l) is to scan a set of input lines one after

another, searching for lines that match any of a set of patterns or conditions
you specify. For each pattern, you can specify an action; this action is per­
formed on each line that matches the pattern. Accordingly, an awk pro­
gram is a sequence of pattern-action statements, as Figure 4-1 shows.

Structure:

pattern
patte",

{ action}
{ action}

Example:

$1 == "address" {print $2, $3 }

Figure 4-1: awk Program Structure and Example

The example in the figure is a typical awk program, consisting of one
pattern-action statement. The program prints the second and third fields of
each input line whose first field is address. In general, awk programs work
by matching each line of input against each of the patterns in turn. For
each pattern that matches, the associated action (which may involve multi- ~

pie steps) is executed. Then the next line is read and the matching starts J
over. This process typically continues until all the input has been read.

4·2 PROGRAMMER'S GUIDE

Basic awk

Either the pattern or the action in a pattern-action statement may be
omitted. If there is no action with a pattern, as in

$1 == "name"

~' the matching line is printed. If there is no pattern with an action, as in

{ print $1, $2 }

the action is performed for every input line. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from pat­
terns.

Usage
There are two ways to run an awk program. First, you can type the

command line

~... ,..".m

""

awk 'pattern-action statements' optional list of input files

to execute the pattern-action statements on the set of named input files. For
example, you could say

awk '{ print $1, $2 }' filel file2

Notice that the pattern-action statements are enclosed in single quotes. This
protects characters like $ from being interpreted by the shell and also
allows the program to be longer than one line.

If no files are mentioned on the command line, awk(l) reads from the
standard input. You can also specify that input comes from the standard
input by using the hyphen (-) as one of the input files. For example,

awk '{ print $3, $4 }' filel -

says to read input first from filel and then from the standard input.

The arrangement above is convenient when the awk program is short (a
few lines). If the program is long, it is often more convenient to put it into
a separate file and use the -f option to fetch it:

awk -f program file optional list of input files

For example, the following command line says to fetch and execute mypro­
gram on input from the file file1:

awk -f myprogram file1

awk 4-3

Basic awk

Fields
awk normally reads its input one line, or record, at a time; a record is,

by default, a sequence of characters ending with a newline. awk then splits
each record into fields, where, by default, a field is a string of non-blank, /~
non-tab characters.

As input for many of the awk programs in this chapter, we use the file
countries, which contains information about the ten largest countries in the
world. Each record contains the name of a country, its area in thousands of
square miles, its population in millions, and the continent on which it is
found. (Data are from 1978; the U.S.S.R. has been arbitrarily placed in
Asia.) The white space between fields is a tab in the original input; a single
blank separates North and South from America .

USSR 8650 262 Asia
Canada 3852 24 North .America
China 3692 866 Asia
USA 3615 219 North America '~Brazil 3286 116 SOUth America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South .America
SUdan 968 19 Africa
Algeria 920 18 Africa

Figure 4-2: The Sample Input File countries

This file is typical of the kind of data awk is good at processing - a mix­
ture of words and numbers separated into fields by blanks and tabs.

The number of fields in a record is determined by the field separator.
Fields are normally separated by sequences of blanks and/or tabs, so that ~

the first record of countries would have four fields, the second five, and so J
on. It's possible to set the field separator to just tab, so each line would
have four fields, matching the meaning of the data; we'll show how to do
this shortly. For the time being, we'll use the default: fields separated by

4·4 PROGRAMMER'S GUIDE

~,",i','\H

Basic awk

blanks and/or tabs. The first field within a line is called $1, the second $2,
and so forth. The entire record is called $0.

Printing
If the pattern in a pattern-action statement is omitted, the action is exe­

cuted for all input lines. The simplest action is to print each line; you can
accomplish this with an awk program consisting of a single print statement

{ print}

so the command line

awk '{ print }' countries

prints each line of countries, copying the file to the standard output. The
print statement can also be used to print parts of a record; for instance, the
program

{ print $1, $3 }

prints the first and third fields of each record. Thus

awk '{ print $1, $3 }' countries

produces as output the sequence of lines:

USSR 262

Canada 24

alina 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
SUdan 19
Algeria 18

awk 4-5

Basic awk

When printed, items separated by a comma in the print statement are
separated by the output field separator, which by default is a single blank.
Each line printed is terminated by the output record separator, which by
default is a newline.

In the remainder of this chapter, we only show awk programs, without
the command line that invokes them. Each complete program can be run
either by enclosing it in quotes as the first argument of the awk com­
mand, or by putting it in a file and invoking awk with the -f flag, as dis­
cussed in "awk Command Usage." In an example, if no input is men-
tioned, the input is assumed to be the file countries.

Formatted Printing
For more carefully formatted output, awk provides a C-like printf state­

ment

printf format, exprt, expr2, ... , exprn

which prints the expr;'s according to the specification in the string format.
For example, the awk program

{ printf "%108 r£d\nll, $1, $3 }

prints the first field ($1) as a string of 10 characters (right justified), then a
space, then the third field ($3) as a decimal number in a six-character field,
then a newline (\n). With input from the file countries, this program prints
an aligned table:

4-6 PROGRAMMER'S GUIDE

Basic awk

USSR 262
canada 24

China 866
USA 219

Brazil 116
Australia 14

Imia 637
Argentina 26

SUdan 19
Algeria 18

With printf, no output separators or newlines are produced automati­
cally; you must create them yourself by using \n in the format specification.
"The printf Statement" in this chapter contains a full description of printf.

Simple Patterns
You can select specific records for printing or other processing by using

simple patterns. awk has three kinds of patterns. First, you can use pat­
terns called relational expressions that make comparisons. For example, the
operator == tests for equality. To print the lines for which the fourth field
equals the string Asia, we can use the program consisting of the single pat­
tern

$4 == "Asia"

With the file countries as input, this program yields

USSR

China
India

8650
3692
1269

262
866
637

Asia
Asia
Asia

The complete set of comparisons is >, > =, <, <=, == (equal to) and !=
(not equal to). These comparisons can be used to test both numbers and
strings. For example, suppose we want to print only countries with a popu­
lation greater than 100 million. The program

awk 4·7

Basic awk

$3 > 100

is all that is needed. (Remember that the third field in the file countries is
the population in millions.) It prints all lines in which the third field ~
exceeds 100.

Second, you can use patterns called regular expressions that search for
specified characters to select records. The simplest form of a regular expres­
sion is a string of characters enclosed in slashes:

IUS/

This program prints each line that contains the (adjacent) letters US any­
where; with the file countries as input, it prints

USSR
USA

8650
3615

262
219

Asia
North America

We will have a lot more to say about regular expressions later in this
chapter.

Third, you can use two special patterns, BEGIN and END/that match
before the first record has been read and after the last record has been pro- ~.".;""

cessed. This program uses BEGIN to print atitle:;

BmIN
/Asia/

{ print "Countries of Asia:" }
{ print II II, $1 }

The output is

Countries of Asia:
USSR

arina
India

Simple Actions
We have already seen the simplest action of an awk program: printing

each input line. Now let's consider how you can use built-in and user­
defined variables and functions for other simple actions in a program.

4-8 PROGRAMMER'S GUIDE

Basic awk

Built-in Variables
Besides reading the input and splitting it into fields, awk(l) counts the

number of records read and the number of fields within the current record;
you can use these counts in your awk programs. The variable NR is the
number of the current record, and NF is the number of fields in the record.
So the program

{ print NR, NF }

prints the number of each line and how many fields it has, while

{ print NR, $0 }

prints each record preceded by its record number.

User-defined Variables
Besides providing built-in variables like NF and NR, awk lets you

define your own variables, which you can use for storing data, doing arith­
metic, and the like. To illustrate, consider computing the total population
and the average population represented by the data in the file countries:

{ sum = sum + $3 }
END {print ll'lbtal p:>pU1ation isll , sum, llmillionll

print llAverage PJPU,lation of II , NR, "countries is", smnINR }

awk initializes sum to zero before it is used.

The first action accumulates the population from the third field; the second
action, which is executed after the last input, prints the sum and average:

Total popllation is 2201 million
Average popllation of 10 countries is 220. 1

Functions
awk has built-in functions that handle common arithmetic and string

operations for you. For example, there's an arithmetic function that com­
putes square roots. There is also a string function that substitutes one string
for another. awk also lets you define your own functions. Functions are
described in detail in the section "Actions" in this chapter.

awk 4-9

Basic awk

A Handful of Useful One-liners
Although awk can be used to write large programs of some complexjty, ~

many programs are not much more complicated than what we've seen so
far. Here is a collection of other short programs that you may find useful
and instructive. They are not explained here, but any new constructs do
appear later in this chapter.

Print last field of each input line:
{ print $NF }

Print 10th input line:
NR == 10

Print last input line:
{ line = $O}

END { print line }

Print input lines that don't have four fields:
NF 1= 4 { print $ 0, "does not have 4 fields n }

Print input lines with more than four fields:
NF > 4

Print input lines with last field more than 4:
$NF > 4

Print total number of input lines:
END { print NR }

Print total number of fields:
{nf=nf+NF}

END { print nf }

Print total number of input characters:
{ nc =nc + length($O) }

END { print nc + NR }
(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:
/Asia/ { nlines++ }
END { print nlines }

(The statement nlines++ has the same effect as nlines = nlines
+ 1.)

4-10 PROGRAMMER'S GUIDE

~
~~/.

Basic awk

Error Messages
If you make an error in your awk program, you generally get an error

message. For example, trying to run the program

$3 < 200 { print ($1 }

generates the error messages

awk: syntax error at source line 1
context is

$3 < 200 { print (»> $1 } «<

awk: illegal statement at source line 1
1 extra (

Some errors may be detected while your program is running. For example,
if you try to divide a number by zero, awk stops processing and reports the
input record number (NR) and the line number in the program.

awk 4-11

Patterns

In a pattern-action statement, the pattern is an expression that selects
the records for which the associated action is executed. This section ~

describes the kinds of expressions that may be used as patterns. J

BEGIN and END
BEGIN and END are two special patterns that give you a way to control

initialization and wrap-up in an awk program. BEGIN matches before the
first input record is read, so any statements in the action part of a BEGIN
are done once, before the awk command starts to read its first input record.
The pattern END matches the end of the input, after the last record has
been processed.

The following awk program uses BEGIN to set the field separator to tab
(\t) and to put column headings on the output. The field separator is stored
in a built-in variable called FS. Although FS can be reset at any time, usu­
ally the only sensible place is in a BEGIN section, before any input has
been read. The program's second printf statement, which is executed for
each input line, formats the output into a table, neatly aligned under the '~
column headings. The END action prints the totals. (Notice that a long
line can be continued after a comma.)

BmIN { FS = "\t"
printf "%10s %6s %5s %s\n" ,

"<XXlNIRY", "ARFA", "POP", "CCIlI'DmNl'" }
{ printf "%10s %6d %5d %s\nll

, $1, $2, $3, $4

area ::: area + $2; pop =pop + $3 }

aID {printf "'\n%10s %6d %5d\n", "'IOI'AL", area, pop }

With the file countries as input, this program produces

4-12 PROGRAMMER'S GUIDE

Patterns

~
a::>uNI'RY ARFA pop <Xm'INENl'

USSR 8650 262 Asia
Canada 3852 24 tbrth Almrica
01ina 3692 866 Asia

USA 3615 219 Nx'th America
Brazil 3286 116 Soo.th America

Australia 2968 14 Australia
Irxlia 1269 637 Asia

Argentina 1072 26 Soo.th America
SUdan 968 19 Africa

Algeria 920 18 Africa

'lU1'AL 30292 2201

Relational Expressions
An awk pattern can be any expression involving comparisons between

strings of characters or numbers. awk has six relational operators, and two
regular expression matching operators, - (tilde) and 1-, which are discussed
in the next section, for making comparisons. Figure 4-3 shows these opera­
tors and their meanings.

awk 4-13

Patterns

Operator
<

<=

!=
>=
>

!-

Meaning
less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than
matches
does not match

Figure 4-3: awk Comparison Operators

In a comparison, if both operands are numeric, a numeric comparison is
made; otherwise, the operands are compared as strings. (Every value might
be either a number or a string; usually awk can tell what is intended. The
section "Number or String?" contains more information about this.) Thus,
the pattern $3>100 selects lines where the third field exceeds 100, and the
program ~

$1 >= "s"

selects lines that begin with the letters S through Z, namely,

USSR
USA

SUdan

8650 262
3615 219
968 19

Asia
North America
Africa

In the absence of any other information, awk treats fields as strings, so
the program

$1 == $4

compares the first and fourth fields as strings of characters, and with the file
countries as input, prints the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically. ')

4-14 PROGRAMMER'S GUIDE

~.,.. i·····r

Patterns

Regular Expressions
awk provides more powerful patterns for searching for strings of char­

acters than the comparisons illustrated in the previous section. These pat­
terns are called regular expressions, and are like those in egrep(1) and
lex(l). The simplest regular expression is a string of characters enclosed in
slashes, like

/Asia/

This program prints all input records that contain the substring Asia. (If a
record contains Asia as part of a larger string like Asian or Pan-Asiatic, it
is also printed.) In general, if re is a regular expression, then the pattern

Irel

matches any line that contains a substring specified by the regular expres­
sion reo

To restrict a match to a specific field, you use the matching operators ­
(matches) and 1- (does not match). The program

$4 - /Asia/ { print $1 }

prints the first field of all lines in which the fourth field matches Asia,
while the program

$4 ! ... /Asia/ { print $1 }

prints the first field of all lines in which the fourth field does not match
Asia.

In regular expressions, the symbols

\" $.[)*+?O:

are metacharacters with special meanings like the metacharacters in the
UNIX shell. For example, the metacharacters " and $ match the beginning
and end, respectively, of a string, and the metacharacter • ("dot ll

) matches
any single character. Thus,

/".$/

matches all records that contain exactly one character.

awk 4-15

Patterns

A group of characters enclosed in brackets matches anyone of the
enclosed characters; for example, I [ABC] I matches records containing any
one of A, B, or C anywhere. Ranges of letters or digits can be abbreviated
within brackets: I [a-zA-Z] I matches any single letter.

If the first character after the [is a "', this complements the class so it
matches any character not in the set: I ["a-zA-Z) I matches any non-letter.
The program

$2 1- I A
[0-9] + $1

prints all records in which the second field is not a string of one or more
digits (A for beginning of string, [0-9]+ for one or more digits, and $ for
end of string). Programs of this nature are often used for data validation.

Parentheses () are used for grouping and the symbol I is used for alter­
natives. The program

I(applel~) (pieltart)1

matches lines containing anyone of the four substrings apple pie, apple
tart,~ pie, or~ tart .

To turn off the special meaning of a metacharacter, precede it by a \
(backslash). Thus, the program ''J

/b\$1

prints all lines containing b followed by a dollar sign.

In addition to recognizing metacharacters, the awk command recognizes
the following C programming language escape sequences within regular
expressions and strings:

\b backspace
\f formfeed
\0 newline
\r carriage return
\t tab
\ddd octal value ddd
\" quotation mark
\c any other character c literally

For example, to print all lines containing a tab, use the program

/\t!

4-16 PROGRAMMER'S GUIDE

Patterns

awk interprets any string or variable on the right side of a - or !- as a
regular expression. For example, we could have written the program

$2 I- /" [0-9] + $/

as

mx;m { digits = 11"[0-9]+ $11 }

$2 ,- digits

Suppose you wanted to search for a string of characters like "[0-9]+$
When a literal quoted string like "" [0-9]+$" is used as a regular expression,
one extra level of backslashes is needed to protect regular expression meta­
characters. This is because one level of backslashes is removed when a
string is originally parsed. If a backslash is needed in front of a character to
turn off its special meaning in a regular expression, then that backslash
needs a preceding backslash to protect it in a string.

For example, suppose we want to match strings containing b followed
by a dollar sign. The regular expression for this pattern is b\$. If we want
to create a string to represent this regular expression, we must add one
more backslash: "b\\$". The two regular expressions on each of the follow­
ing lines are equivalent:

x - "b\\$" X - /b\$/

x - "b\$11 X - /b$/

x - "bS lI X - /b$/

x - II\\t II x - /\t!

The precise form of regular expressions and the substrings they match is
given in Figure 4-4. The unary operators *, +, and? have the highest pre­
cedence, then concatenation, and then alternation l. All operators are left
associative. r stands for any regular expression.

awk 4-17

Patterns

Expression
c
\c

$

[5]
["'5]
r·
,+
,?
(r)

'1'2
rll '2

Matches
any non-metacharacter c
character c literally
beginning of string
end of string
any character but newline
any character in set 5

any character not in set 5

zero or more ,'s
one or more r's
zero or one r,
rl then '2 (concatenation)
'lor r2 (alternation)

Figure 4-4: awk Regular Expressions

Combinations of Patterns
A compound pattern combines simpler patterns with parentheses and

the logical operators II (or), && (and), and! (not). For example, suppose
we want to print all countries in Asia with a population of more than 500
million. The following program does this by selecting all lines in which
the fourth field is Asia and the third field exceeds 500:

$4 == "Asia II && $3 > 500

The program

$4 == "Asia" II $4 == "Africa"

selects lines with Asia or Africa as the fourth field. Another way to write
the latter query is to use a regular expression with the alternation operator
I :

$4 - /"(AsiaIAfrica)$/

4-18 PROGRAMMER'S GUIDE

.~

--------------------------- Patterns

The negation operator! has the highest precedence, then &&, and
finally : L The operators && and :: evaluate their operands from left to
right; evaluation stops as soon as truth or falsehood is determined.

Pattern Ranges
A pattern range consists of two patterns separated by a comma, as in

{ ... }

In this case, the action is performed for each line between an occurrence of
pat l and the next occurrence of pat2 (inclusive). As an example, the pattern

lcanadal, /Brazill

matches lines starting with the first line that contains the string Canada up
through the next occurrence of the string Brazil:

Canada
China
USA
Brazil

3852
3692
3615
3286

24
866
219
116

North America
Asia
North America
South America

Similarly, since FNR is the number of the current record in the current
input file (and FILENAME is the name of the current input file), the pro­
gram

FNR == 1, Em == 5 { print FILENAME, $ 0 }

prints the first five records of each input file with the name of the current
input file prepended.

awk 4-19

Actions

In a pattern-action statement, the action determines what is to be done
with the input records that the pattern selects. Actions frequently are sim- ~.".

pIe printing or assignment statements, but they may also be a combination
of one or more statements. This section describes the statements that can
make up actions.

Built-in Variables
Figure 4-5 lists the built-in variables that awk maintains. Some of these

we have already met; others are used in this and later sections.

Variable
ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Meaning
number of command-line arguments
array of command-line arguments
name of current input file
record number in current file
input field separator
number of fields in current record
number of records read so far
output format for numbers
output field separator
output record separator
input record separator
index of first character matched by matchO
length of string matched by matchO
subscript separator

Default

blank&tab

%.6g
blank

newline
newline

"\034 II

Figure 4-5: awk Built-in Variables

Arithmetic
Actions can use conventional arithmetic expressions to compute numeric ~

values. As a simple example, suppose we want to print the population den-)
sity for each country in the file countries. Since the second field is the area
in thousands of square miles and the third field is the population in

4·20 PROGRAMMER'S GUIDE

Actions

millions, the expression 1000 • $3 I $2 gives the population density in peo­
ple per square mile. The program

{ printf "%10s raG. 1f\n", $1, 1000 * $3 / $2 }

applied to the file countries prints the name of each country and its popula­
tion density:

USSR 30.3
Canada 6.2

01i.na 234.6
USA 60.6

Brazil 35.3
Australia 4.7

Iniia 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators
are +, -, ., I, % (remainder) and" (exponentiation; .. is a synonym).
Arithmetic expressions can be created by applying these operators to con­
stants/ variables, field names, array elements, functions, and other expres­
sions/ all of which are discussed later. Note that awk recognizes and pro­
duces scientific (exponential) notation: 1e6, 1E6, 10e5, and 1000000 are
numerically equal.

awk has assignment statements like those found in the C programming
language. The Simplest form is the assignment statement

v=e

where v is a variable or field name, and e is an expression. For example, to
compute the number of Asian countries and their total population, we could
write

$4 == "Asia"
EN)

{ pop =pop + $3; n =n + 1 }
{ print "}X)pulaticm ofII , n,

"Asian countries in millions is", }X)p }

awk 4-21

Actions

Applied to countries, this program produces

population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 == "Asia" contains two assign- ~
ment statements, one to accumulate population and the other to count coun-
tries. The variables are not explicitly initialized, yet everything works prop-
erly because awk initializes each variable with the string value 1111 and the
numeric value O.

The assignments in the previous program can be written more concisely
using the operators += and ++:

$4 == "Asia" { pop += $3; ++n }

The operator += is borrowed from the C programming language:

pop += $3

has the same effect as

pop = pop + $3

but the +- operator is shorter and runs faster. The same is true of the ++
operator, which adds one to a variable.

The abbreviated assignment operators are +=, -=, *=, 1=, %=, and "'=.
Their meanings are similar:

v 0P""" e

has the same effect as

v - v op e.

The increment operators are ++ and --. As in C, they may be used as
prefix (++x) or postfix (x++) operators. If x is 1, then i=++x increments x,
then sets i to 2, while i=x++ sets i to 1, then increments x. An analogous
interpretation applies to prefix and postfix --.

Assignment and increment and decrement operators may all be used in
arithmetic expressions.

We use default initialization to advantage in the following program, '~.,

which finds the country with the largest population: J
maxpop < $3
END

{ maxpop = $3; coun~ = $1 }
{ print countxy, maxpop }

4·22 PROGRAMMER'S GUIDE

Actions

Note, however, that this program would not be correct if all values of $3
were negative.

awk provides the built-in arithmetic functions shown in Figure 4-6.

Function
atan2(y,x)
cos(x)
exp(x)
int(x)
log(x)
randO
sin(x)
sqrt(x)
srand(x)

Value Returned
arctangent of y / x in the range -7r to 7r

cosine of x, with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and 1
sine of x, with x in radians
square root of x
x is new seed for randO

Figure 4-6: awk Built-in Arithmetic Functions

x and yare arbitrary expressions. The function randO returns a pseudo­
random floating point number in the range (0,1), and srand(x) can be used
to set the seed of the generator. If srandO has no argument, the seed is
derived from the time of day.

Strings and String Functions
A string constant is created by enclosing a sequence of characters inside

quotation marks, as in lIabc" or "hello, everyone ll
• String constants may con­

tain the C programming language escape sequences for special characters
listed in "Regular Expressions" in this chapter.

String expressions are created by concatenating constants, variables,
field names, array elements, functions, and other expressions. The program

{ print NR ":" $ 0 }

prints each record preceded by its record number and a colon, with no
blanks. The three strings representing the record number, the colon, and
the record are concatenated and the resulting string is printed.. The con­
catenation operator has no explicit representation other than juxtaposition.

awk 4-23

Actions

awk provides the built-in string functions shown in Figure 4-7. In this
table, r represents a regular expression (either as a string or as /rl), sand t
string expressions, and nand p integers.

Function
gsub(r,s)

gsub(r, s, t)

index(s, t)
length(s)
match(s, r)
split(s, a)

split(s, a, r)
sprintf(fmt, expr-list)

sub(r, s)

sub(r, s, t)

substr(s, p)

substr(s, p, n)

Description ~
substitute s for r globally in current record,

return number of substitutions
substitute s for r globally in string t,

return number of substitutions
return position of string t in s, 0 if not present
return length of s
return the position in s where r occurs, 0 if not present
split s into array a on FS, return number of fields
split s into array a on r, return number of fields
return expr-list formatted according to format

string Imt
substitute s for first r in current record, return

number of substitutions
substitute s for first r in t, return number of

substitutions
return suffix of s starting at position p ~

return substring of s of length n starting at J
position p

Figure 4-7: awk Built-in String Functions

The functions sub and gsub are patterned after the substitute command
in the text editor ed(1). The function gsub(r, s, t) replaces successive
occurrences of substrings matched by the regular expression r with the
replacement string s in the target string t. (As in ed, the leftmost match is
used, and is made as long as possible.) It returns the number of substitu­
tions made. The function gsub(r, s) is a synonym for gsub(r, s, $0). For
example, the program

{ gsub(IUSA/, "United StatesII); print }

transcribes its input, replacing occurrences of USA by United States. The .~

sub functions are similar, except that they only replace the first matching J
substring in the target string.

4-24 PROGRAMMER'S GUIDE

Actions

The function index(s, t) returns the leftmost position where the string t
begins in s/ or zero if t does not occur in s. The first character in a string is
at position 1. For example,

index("banana", "an")

returns 2.

The length function returns the number of characters in its argument
string; thus,

{ print length($O), $0 }

prints each record, preceded by its length. ($0 does not include the input
record separator.) The program

length($1) > max {max = length($1); name = $1 }
END { print name }

applied to the file countries prints the longest country name: Australia.

The match(s, r) function returns the position in string s where regular
expression r occurs, or 0 if it does not occur. This function also sets two
built-in variables RSTART and RLENGTH. RSTART is set to the starting
position of the match in the string; this is the same value as the returned
value. RLENGTH is set to the length of the matched string. (If a match
does not occur, RSTART is 0/ and RLENGTH is -1.) For example, the fol­
lowing program finds the first occurrence of the letter i followed by at
most one character followed by the letter a in a record:

{ if (matdh($O, /i.?a/»
print RSTART, RLEN;TH, $0 }

It produces the following output on the file countries:

awk 4-25

Actions

17 2 USSR 8650 262 Asia

~26 3 canada 3852 24 North America
3 3 01ina 3692 866 Asia
24 3 USA 3615 219 North .America
27 3 Brazil 3286 116 South America
8 2 Australia 2968 14 Australia
4 2 India 1269 637 Asia
7 3 Argentina 1072 26 South America
17 3 Sudan 968 19 Africa
6 2 Algeria 920 18 Africa

match() matches the left-most longest matching string. For example, with
the record

AsiaaaAsiaaaaan

as input, the program

{ if (match(SOt /a+/» print RSTART t RLaGIH t SO }

matches the first string of a's and sets RSTAR1' to 4 and RLEH1.lH to 3.

The function sprintf(format, exprl, expr2, ... , expr,,) returns (without
printing) a string containing exprl, expr2, ... , expr" formatted according to
the printf specifications in the string format. "The printf Statement" in this
chapter contains a complete specification of the format conventions. The
statement

x = sprintf("%10s %&in t $1, $2)

assigns to x the string produced by formatting the values of $1 and $2 as a
ten-character string and a decimal number in a field of width at least six; x
may be used in any subsequent computation.

4-26 PROGRAMMER'S GUIDE

----------------------------- Actions

The function substr(s, p, n) returns the substring of s that begins at posi­
tion p and is at most n characters long. If substr(s, p) is used, the substring
goes to the end of s; that is, it consists of the suffix of s beginning at posi­
tion p. For example, we could abbreviate the country names in countries to
their first three characters by invoking the program

{ $1 = sUbstr($1, 1, 3); print }

on this file to produce

uss 8650 262 Asia
Can 3852 24 North Atrerica
Chi 3692 866 Asia

USA 3615 219 North America
Bra 3286 116 South Atrerica
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South Jlmerica
SUd 968 19 Africa
Alg 920 18 Africa

Note that setting $1 in the program forces awk to recompute $0 and, there­
fore, the fields are separated by blanks (the default value of OFS), not by
tabs.

Strings are stuck together (concatenated) merely by writing them one
after another in an expression. For example, when invoked on file coun­
tries,

{ s = s substr($1, 1, 3) " " }
END {print s }

prints

uss Can Chi USA Bra Aus Ind Arg SUd Alg

~ by building s up a piece at a time from an initially empty string.

awk 4-27

{ FS =OFS = "\t" }
{ $4 = "NAil }

{ $4 ="SA" }
{ print }

Actions

Field Variables
The fields of the current record can be referred to by the field variables ~

$1, $2, ... , $NF. Field variables share all of the properties of other vari-
ables - they may be used in arithmetic or string operations, and they may
have values assigned to them. So, for example, you can divide the second
field of the file countries by 1000 to convert the area from thousands to mil-
lions of square miles:

{ $2 /= 1000; print}

or assign a new string to a field:

:smm
$4 = "North America"
$4 == "South America"

The Bmm action in this program resets the input field separator FS and the
output field separator OFS to a tab. Notice that the print in the fourth line
of the program prints the value of $0 after it has been modified by previous
assignments.

Fields can be accessed by expressions. For example, $(NF-l) is the
second to last field of the current record. The parentheses are needed: the
value of $NF-l is 1 less than the value in the last field.

A field variable referring to a nonexistent field, for example, $(NF+l),
has as its initial value the empty string. A new field can be created, how­
ever, by assigning a value to it. For example, the follOWing program
invoked on the file countries creates a fifth field giving the population den­
sity:

BEGIN {FS =OFS = n\t" }
{ $5 = 1000 * $3 / $2; print }

The number of fields can vary from record to record, but there is usu­
ally an implementation limit of 100 fields per record.

4-28 PROGRAMMER'S GUIDE

~~.' .

----------------------------- Actions

Number or String?
Variables, fields and expressions can have both a numeric value and a

string value. They take on numeric or string values according to context.
For example, in the context of an arithmetic expression like

pop += $3

pop and $3 must be treated numerically, so their values will be coerced to
numeric type if necessary.

In a string context like

print $1 11:11 $2

$1 and $2 must be strings to be concatenated, so they will be coerced if
necessary.

In an assignment v = e or v op = e, the type of v becomes the type of e.
In an ambiguous context like

$1 == $2

the type of the comparison depends on whether the fields are numeric or
string, and this can only be determined when the program runs; it may well
differ from record to record.

In comparisons, if both operands are numeric, the comparison is
numeric; otherwise, operands are coerced to strings, and the comparison is
made on the string values. All field variables are of type string; in addition,
each field that contains only a number is also considered numeric. This
determination is done at run time. For example, the comparison 11$1 == $211

will succeed on any pair of the inputs

1 1.0 +1 0.1e+1 10E-1 001

but fail on the inputs

(null)
(null)
Oa
1e50

o
0.0
o
1.0e50

awk 4-29

Actions

There are two idioms for coercing an expression of one type to the
other:

number lin

string + 0

concatenate a null string to a number to coerce it
to type string
add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, say

$1 nn == $2 nn

The numeric value of a string is the value of any prefix of the string
that looks numeric; thus the value of 12.34x is 12.34, while the value of
x12.34 is zero. The string value of an arithmetic expression is computed by
formatting the string with the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value 1111.

Nonexistent fields and fields that are explicitly null have only the string
value IIll; they are not numeric.

Control Flow Statements
awk provides if-else, while, do-while, and for statements, and state- /~

ment grouping with braces, as in the C programming language.

The if statement syntax is

if (expression) statement} else statement 2

The expression acting as the conditional has no restrictions; it can include the
relational operators <, <=, >, >=, ==, and !=; the regular expression
matching operators - and 1-; the logical operators II, &&, and !; juxtaposi­
tion for concatenation; and parentheses for grouping.

In the if statement, the expression is first evaluated. If it is non-zero and
non-null, statement 1 is executed; otherwise statement 2 is executed. The else
part is optional.

A single statement can always be replaced by a statement list enclosed
in braces. The statements in the statement list are terminated by newlines
or semicolons.

4-30 PROGRAMMER'S GUIDE

----------------------------- Actions

Rewriting the maximum population program from "Arithmetic Func­
tions ll with an if statement results in

if (maxpop < 53) {

maxpop = 53
OOIIntry = 51

}

END {print OOIIntry, maxpop }

The while statement is exactly that of the C programming language:

while (expression) statement

The expression is evaluated; if it is non-zero and non-null the statement is
executed and the expression is tested again. The cycle repeats as long as the
expression is non-zero. For example, to print all input fields one per line,

i = 1
while (i <= NF)

print $i

i++

The for statement is like that of the C programming language:

for (expression 1; expression; expression 2) statement

It has the same effect as

awk 4-31

Actions

expression 1

while (expression) (
statement
expression 2

so

{ for (i = 1; i <= NF; i++) print $i }

does the same job as the while example above. An alternate version of the
for statement is described in the next section.

The do statement has the form

do statement while (expression)

The statement is executed repeatedly until the value of the expression
becomes zero. Because the test takes place after the execution of the state­
ment (at the bottom of the loop), it is always executed at least once. As a
result, the do statement is used much less often than while or for, which
test for completion at the top of the loop.

The following example of a do statement prints all lines except those
between start and stop.

/startl {

dol
getline x

} while (x 1- /stopI)
}

{ print}

4-32 PROGRAMMER'S GUIDE

~'

Actions

The break statement causes an immediate exit from an enclosing while
or for; the continue statement causes the next iteration to begin. The next
statement causes awk to skip immediately to the next record and begin
matching patterns starting from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the
input had occurred; no more input is read, and the END action, if any, is
executed. Within the END action,

exit expr

causes the program to return the value of expr as its exit status. If there is
no expr, the exit status is zero.

Arrays
awk provides one-dimensional arrays. Arrays and array elements need

not be declared; like variables, they spring into existence by being men­
tioned. An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to the NRth element of the array x. In fact, it
is possible in principle (though perhaps slow) to read the entire input into
an array with the awk program

{ x[NR] = $0 }
END {... processing . . . }

The first action merely records each input line in the array x, indexed by
line number; processing is done in the END statement.

Array elements may also be named by nonnumeric values. For example,
the following program accumulates the total population of Asia and Africa
into the associative array pop. The END action prints the total population of
these two continents.

awk 4-33

Actions

/Asia/
/Mrical
Elm

{ pop["Asia"] += $3 }
{ pop["Mricall

] += $3 }
{ print IIAsian p)pl1atian in millions is", pop[IIAsia"]

print llMrican popllation in millions is",
pop[IIMrica"] }

On the file countries, this program generates

Ac;ian population in millions is 1765
African population in millions is 37

In this program if we had used pop[Ac;ia] instead of pop["Ac;ia"] the
expression would have used the value of the variable Ac;ia as the subscript,
and since the variable is uninitialized, the values would have been accumu­
lated in pop[II"] .

Suppose our task is to determine the total area in each continent of the
file countries. Any expression can be used as a subscript in an array refer­
ence. Thus

area[$4] += $2

uses the string in the fourth field of the current input record to index the
array area and in that entry accumulates the value of the second field:

{ FS = "\t" }
{ area[$4] += $2 }
{ for (name in area)

print name, area[name] }

Invoked on the file countries, this program produces

4-34 PROGRAMMER'S GUIDE

Actions

Africa 1888
North America 7467
South America 4358
Asia 13611
Australia 2968

This program uses a form of the for statement that iterates over all
defined subscripts of an array:

for (i in array) statement

executes statement with the variable i set in turn to each value of i for which
arrayliJ has been defined. The loop is executed once for each defined sub­
script, which are chosen in a random order. Results are unpredictable when
i or array is altered during the loop.

~ awk does not provide multi-dimensional arrays, but it does permit a list
of subscripts. They are combined into a single subscript with the values
separated by an unlikely string (stored in the variable SUBSEP). For exam­
ple,

for (i = 1; i <= 10; i++)
far (j = 1; j <= 10; j++)

arr[i,j] = ...
creates an array which behaves like a two-dimensional array; the subscript
is the concatenation of i, SUBSEP, and j.

You can determine whether a particular subscript i occurs in an array arr
by testing the condition i in arr, as in

if ("Africa" in area) ..•

This condition performs the test without the side effect of creating
area["Africa"], which would happen if we used

if (area["Africa"] 1= "") •••

Note that neither is a test of whether the array area contains an element
with value "Africa" .

awk 4-35

Actions

It is also possible to split any string into fields in the elements of an
array using the built-in function split. The function

split("s1 :s2:s3", a, ": II)

splits the string s 1:s2: s3 into three fields, using the separator : , and ~
stores s1 in a[1], s2 in a[2], and s3 in a[3] . The number of fields
found, here three, is returned as the value of split. The third argument of
split is a regular expression to be used as the field separator. If the third
argument is missing, FS is used as the field separator.

An array element may be deleted with the delete statement:

delete arrayname[subscript]

User-Defined Functions
awk provides user-defined functions. A function is defined as

function name(argument-list) {
statements

The definition can occur anywhere a pattern-action statement can. The
argument list is a list of variable names separated by commas; within the
body of the function these variables refer to the actual parameters when the
function is called. There must be no space between the function name and
the left parenthesis of the argument list when the function is called; other­
wise it looks like a concatenation. For example, the following program
defines and tests the usual recursive factorial function (of course, using
some input other than the file countries):

4-36 PROGRAMMER'S GUIDE

Actions

function fact(n) {
if (n <= 1)

return 1
else

return n * fact(n-1)
}

{ print $1 "I is " fact($1) }

Array arguments are passed by reference, as in C, so it is possible for
the function to alter array elements or create new ones. Scalar arguments
are passed by value, however, so the function cannot affect their values out­
side. Within a function, formal parameters are local variables but all other
variables are global. (You can have any number of extra formal parameters
that are used purely as local variables.) The return statement is optional,
but the returned value is undefined if it is not included.

Some Lexical Conventions
Comments may be placed in awk programs: they begin with the char­

acter # and end at the end of the line, as in

print x, Y # this is a ccmnent

Statements in an awk program normally occupy a single line. Several
statements may occur on a single line if they are separated by semicolons.
A long statement may be continued over several lines by terminating each
continued line by a backslash. (It is not possible to continue a "..." string.)
This explicit continuation is rarely necessary, however, since statements
continue automatically if the line ends with a comma (for example, as might
occur in a print or printf statement) or after the operators && and II.

~.,f'r• Several pattern-action statements may appear on a single line if
\' separated by semicolons.

awk 4-37

Output

The print and printf statements are the two primary constructs that
generate output. The print statement is used to generate simple output; ~

printf is used for more carefully formatted output. Like the shell, awk lets',
you redirect output/ so that output from print and printf can be directed to
files and pipes. This section describes the use of these two statements.

The print Statement
The statement

print expr l' expr2' • • ., exprn

prints the string value of each expression separated by the output field
separator followed by the output record separator. The statement

print

is an abbreviation for

print $0

To print an empty line use

print nil

Output Separators
The output field separator and record separator are held in the built-in

variables OFS and ORS. Initially, OFS is set to a single blank and ORS to a
single newline, but these values can be changed at any time. For example,
the following program prints the first and second fields of each record with
a colon between the fields and two newlines after the second field:

BEGm {OFS = 11:11; DRS = "\n\n" }
{ print $1, $2 }

Notice that

{ print $1 $2 }

prints the first and second fields with no intervening output field separator,
because $1 $2 is a string consisting of the concatenation of the first two
fields.

4-38 PROGRAMMER'S GUIDE

Output

The printf Statement
awk's printf statement is the same as that in C except that the • format

specifier is not supported. The printf statement has the general form

printf format, exprl, expr21 .. ", expr"

where format is a string that contains both information to be printed and
specifications on what conversions are to be performed on the expressions
in the argument list, as in Figure 4-8. Each specification begins with a %,
ends with a letter that determines the conversion, and may include

width

.prec

left-justify expression in its field
pad field to this width as needed; fields that begin
with a leading 0 are padded with zeros
maximum string width or digits to right of
decimal point

Character Prints Expression as
c single character
d decimal number
e [-]d.ddddddE[+-]dd
f [-]ddd.dddddd
g e or f conversion, whichever is shorter, with

nonsignificant zeros suppressed
o unsigned octal number
s string
x unsigned hexadecimal number
% print a %; no argument is converted

Figure 4-8: awk printf Conversion Characters

awk 4-39

Output

Here are some examples of printf statements along with the correspond­
ing output:

.~

Jan I

printf "~", 99/2
printf "%e", 99/2
printf "%f", 99/2
printf "%6.2£", 99/2
printf "~", 99/2
printf "%0", 99
printf "%060", 99
printf "%x", 99
printf "1%8 I", "January"
printf "1%105 I", "January"
printf ":%-105 I", "January"
printf n :%.351", "January"
printf "1%10.351", "January"
printf "I %-10.35 I" , "January"
printf "%%"

49
4. 950000e+01
49.500000
49.50
49.5
143
000143
63
IJanuaryI

•I January•
•lJanuary •

IJanI
I
I

lJan
%

~
The default output format of numbers is %.6g; this can be changed by
assigning a new value to OFMT. OFMT also controls the conversion of
numeric values to strings for concatenation and creation of array subscripts.

Output into Files
It is possible to print output into files instead of to the standard output

by using the > and > > redirection operators. For example, the following
program invoked on the file countries prints all lines where the population
(third field) is bigger than 100 into a file called bigpop, and all other lines
into smallpop:

$3 > 100
$3 <= 100

{ print $1, $3 >"bigpop" }
{ print $1, $3 >"smallpop" }

Notice that the file names have to be quoted; without quotes, bigpop and .~

smallpop are merely uninitialized variables. If the output file names were)
created by an expression, they would also have to be enclosed in
parentheses:

4-40 PROGRAMMER'S GUIDE

Output

$4 - /North America! { print $1 > (lbl1p" FILENAME) }

This is because the > operator has higher precedence than concatenation;
without parentheses, the concatenation of blip and FILENAME would not
work.

Files are opened once in an awk program. If > is used to open a file,
its original contents are overwritten. But if > > is used to open a file,
its contents are preserved and the output is appended to the file. Once
the file has been opened, the two operators have the same effect.

Output into Pipes
It is also possible to direct printing into a pipe with a command on the

other end, instead of into a file. The statement

print I "command-line"

~ causes the output of print to be piped into the command-line.

Although we have shown them here as literal strings enclosed in
quotes, the command-line and file names can come from variables and the
return values from functions, for instance.

Suppose we want to create a list of continent-population pairs, sorted
alphabetically by continent. The awk program below accumulates the
population values in the third field for each of the distinct continent names
in the fourth field in an array called p'p. Then it prints each continent and
its population, and pipes this output into the sort command.

mx;DJ {FS = "\t" }
{ pop[$4] += $3 }

END { for (c in IX>p)

print c ": II pop[c] I "sort" }

Invoked on the file countries, this program yields

awk 4-41

Output

Africa: 37
Asia: 1765
Australia: 14
North America: 243
South America: 142

In all of these print statements involving redirection of output, the files
or pipes are identified by their names (that is, the pipe above is literally
named sort), but they are created and opened only once in the entire run.
So, in the last example, for all c in pop, only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously.
The statement c1ose(file) closes a file or pipe; file is the string used to create
it in the first place, as in

close ("sort II)

When opening or closing a file, different strings are different commands.

4-42 PROGRAMMER'S GUIDE

Input

The most common way to give input to an awk program is to name on
the command line the file(s) that contains the input. This is the method
we've been using in this chapter. However, there are several other methods
we could use, each of which this section describes.

Files and Pipes
You can provide input to an awk program by putting the input data

into a file, say awkdata, and then executing

awk 'program' awkdata

awk reads its standard input if no file names are given (see "Usage" in this
chapter); thus, a second common arrangement is to have another program
pipe its output into awk. For example, egrep(l) selects input lines contain­
ing a specified regular expression, but it can do so faster than awk since this
is the only thing it does. We could, therefore, invoke the pipe

egrep 'Asia' countries I awk '... '

egrep quickly finds the lines containing Asia and passes them on to the
awk program for subsequent processing.

Input Separators
With the default setting of the field separator FS, input fields are

separated by blanks or tabs, and leading blanks are discarded, so each of
these lines has the same first field:

field1 field2
field1

field1

When the field separator is a tab, however, leading blanks are not discarded.

awk 4-43

Input

The field separator can be set to any regular expression by assigning a
value to the built-in variable FS. For example,

BEGIN { FS = "(, [\\t]*): ([\\t]+)" }

sets it to an optional comma followed by any number of blanks and tabs.
FS can also be set on the command line with the -F argument:

awk -F'(,[\t].) : ([\t]+)' '... '

behaves the same as the previous example. Regular expressions used as
field separators match the left-most longest occurrences (as in subO), but do
not match null strings.

Multi-line Records
Records are normally separated by newlines, so that each line is a

record, but this too can be changed, though only in a limited way. If the
built-in record separator variable RS is set to the empty string, as in

BEGIN {RS = "" }

then input records can be several lines long; a sequence of empty lines ~.',"

separates records. A common way to process multiple-line records is to use 1

BEGIN {RS = "II; FS = "\n" }

to set the record separator to an empty line and the field separator to a new­
line. There is a limit, however, on how long a record can be; it is usually
about 2500 characters. liThe getline Function" and "Cooperation with the
Shell II in this chapter show other examples of processing multi-line records.

The getline Function
awk's facility for automatically breaking its input into records that are

more than one line long is not adequate for some tasks. For example, if
records are not separated by blank lines, but by something more compli­
cated, merely setting RS to null doesn't work. In such cases, it is necessary
to manage the splitting of each record into fields in the program. Here are
some suggestions. .~

4-44 PROGRAMMER'S GUIDE

Input

The function getline can be used to read input either from th~ current
input or from a file or pipe, by redirection analogous to printf. By itself,
getline fetches the next input record and per.forms the normal field-splitting
operations on it. It sets NF, NR, and FNR. getline returns 1 if there was a
record present, 0 if the end-of-file was encountered, and -1 if some error
occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line
records, each of which begins with a line beginning with START and ends
with a line beginning with S'IOP. The following awk program processes
these multi-line records, a line at a time, putting the lines of the record into
consecutive entries of an array

f[1] f[2] ... f[nf]

Once the line containing S'IOP is encountered, the record can be processed
from the data in the f array:

I"srARr/ {
f[nf=1] = so
while (getline && so I - I"STOP/)

f[++nf] = so
rrM process the data in f[1]. •• f[nfl

Notice that this code uses the fact that && evaluates its operands left to
right and stops as soon as one is true.

The same job can also be done by the following program:

awk 4-45

Input

I"~/ &&nf==O
nf > 1
I"sroP/

{ f[nf=1] = so }
{ f[++nf] = so }
{ :# JXlW process the data in f[1] ••• f[nf]

nf = 0

.~

The statement

getline x

reads the next record into the variable x. No splitting is done; NF is not
set. The statement

getline <IIfile II

reads from file instead of the current input. It has no effect on NR or
FNR, but field splitting is performed and NF is set. The statement

getline x <llfile"

gets the next record from file into x; no splitting is done, and NF, NR and
FNR are untouched.

If a filename is an expression, it should be in parentheses for evaluation:

while (getline x < (ARGV[1] ARGV[2])) { • •• }

This is because the < has precedence over concatenation. Without
parentheses, a statement such as

getline x < 111::nl>" FILENAME

sets x to read the file 1::nI> and not tup <value of FILENAME>. Also, if you
use this getline statement form, a statement like

while (getline x < file) { ••. }

loops forever if the file cannot be read, because getline returns -1, not ~.'
zero, if an error occurs. A better way to write this test is ,

while (getline x < file> 0) { ••. }

4-46 PROGRAMMER'S GUIDE

Input

It is also possible to pipe the output of another command directly into
getline. For example, the statement

while (nwhon I getline)
n++

executes who and pipes its output into getline. Each iteration of the while
loop reads one more line and increments the variable n, so after the while
loop terminates, n contains a count of the number of users. Similarly, the
statement

"daten I getline d

pipes the output of date into the variable d, thus setting d to the current
date. Figure 4-9 summarizes the getline function.

Form
getline
getline var
getline < file
getline var < file
cmd I getline
cmd I getline var

Figure 4-9: getline Function

Command-line Arguments

Sets
$0, NF, NR, FNR
var, NR, FNR
$0, NF
var
$0, NF
var

The command-line arguments are available to an awk program: the
array ARGV contains the elements ARGV{Ot ... , ARGV{ARGC-l~ as in C,
ARGC is the count. ARGV{O] is the name of the program (generally awk);
the remaining arguments are whatever was provided (excluding the pro­
gram and any optional arguments). The following command line contains
an awk program that echoes the arguments that appear after the program
name:

awk 4-47

Input

awk'
BEGIN {

for (i "" 1; i < ARGC; i++)
printf "%s ", ARGV[i]

printf "\n"
}' $-

The arguments may be modified or added to; ARGC may be altered. As
each input file ends, awk treats the next non-null element of ARGV (up to
the current value of ARGC-l) as the name of the next input file.

There is one exception to the rule that an argument is a file name: if it
is of the form

var=value

then the variable var is set to the value value as if by assignment. Such an ~.

argument is not treated as a file name. If value is a string, no quotes are }
needed.

4·48 PROGRAMMER'S GUIDE

Using awk with Other Commands and the
Shell

awk gains its greatest power when it is used in conjunction with other
programs. Here we describe some of the ways in which awk programs
cooperate with other commands.

The system Function
The built-in function system(command-line) executes the command

command-line, which may well be a string computed by, for example, the
built-in function sprintf. The value returned by system is the return status
of the command executed.

For example, the program

$1 == It#include lt {gsub(/[<>It]/, It It , $2); system("eat " $2) }

calls the command eat to print the file named in the second field of every
input record whose first field is #include, after stripping any <, > or It that
might be present.

Cooperation with the Shell
In all the examples thus far, the awk program was in a file and fetched

from there using the -f flag, or it appeared on the command line enclosed
in single quotes, as in

awk ' { print $1 }' ...

Since awk uses many of the same characters as the shell does, such as $ and
", surrounding the awk program with single quotes ensures that the shell
will pass the entire program unchanged to the awk interpreter.

Now, consider writing a command addr that will search a file
addresslist for name, address and telephone information. Suppose that
addresslist contains names and addresses in which a typical entry is a
multi-line record such as

awk 4-49

Using awk with Other Commands and the Shell

G. R. Elnlin
600 M:>untain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like

addr Emlin

That is easily done by a program of the form

awk '
BmIN { RS = 1111 }

lEmlin/
, addresslist

The problem is how to get a different search pattern into the program each
time it is run.

There are several ways to do this. One way is to create a file called addr
that contains

awk '
BmIN { RS = "" }
/'$1' /
, addresslist

The quotes are critical here: the awk program is only one argument, even
though there are two sets of quotes, because quotes do not nest. The $1 is
outside the quotes, visible to the shell, which therefore replaces it by the
pattern Emlin when the command addr Emlin is invoked. On a UNIX sys­
tem, addr can be made executable by changing its mode with the following
command: chmod +x addr.

A second way to implement addr relies on the fact that the shell substi­
tutes for $ parameters within double quotes:

awk II

BmIN { RS = \"\11 }
/$1/
II addresslist

Here we must protect the quotes defining RS with backslashes, so that the
shell passes them on to awk, uninterpreted by the shell. $1 is recognized

4-50 PROGRAMMER'S GUIDE

------------- Using awk with Other Commands and the Shell

as a parameter, however, so the shell replaces it by the pattern when the
command addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular
expression to an awk program that explicitly reads through the address list
with getline:

awk '
mx;m {RS = IIlI

while (qetline < "addresslist")
if ($0 - ~(1))

print SO

All processing is done in the BEJiIN action.

Notice that any regular expression can be passed to addr; in particular,
it is possible to retrieve by parts of an address or telephone number as well
as by name.

awk 4-51

Example Applications

awk has been used in surprising ways. We have seen awk programs
that implement database systems and a variety of compilers and assemblers, /~

in addition to the more traditional tasks of information retrieval, data mani-)
pulation, and report generation. Invariably, the awk programs are
significantly shorter than equivalent programs written in more conventional
programming languages such as Pascal or C. In this section, we will
present a few more examples to illustrate some additional awk programs.

Generating Reports
awk is especially useful for producing reports that summarize and for­

mat information. Suppose we wish to produce a report from the file coun­
tries in which we list the continents alphabetically, and after each continent
its countries in decreasing order of population:

Africa:
)

Sudan 19
Alqeria 18

Asia:
China 866

Iniia 637
USSR 262

Australia:
Australia 14

North America:
USA 219
canada 24

South America:
Brazil 116
Argentina 26

)

4-52 PROGRAMMER'S GUIDE

Example Applications

As with many data processing tasks, it is much easier to produce this
report in several stages. First, we create a list of continent-country­
population triples, in which each field is separated by a colon. This can be
done with the following program triples, which uses an array pop indexed
by subscripts of the form 'continent:country' to store the population of a
given country. The print statement in the END section of the program
creates the list of continent-country-population triples that are piped to the
sort routine.

BEGIN FS = "\.t" }
{ pop[$4 ":11 $1] += $3 }

END {for (cc in pop)
print cc ": II pop(cc] I "sort -t: +0 -1 +2nr" }

The arguments for sort deserve special mention. The -1:: argument tells
sort to use : as its field separator. The +0 -1 arguments make the first
field the primary sort key. In general, +i -j makes fields i+1 / i+2, ... / j the
sort key. If -j is omitted, the fields from ;+1 to the end of the record are
used. The +2nr argument makes the third field, numerically decreasing, the
secondary sort key (n is for numeric, r for reverse order). Invoked on the
file countries, this program produces as output

Africa: SUdan: 19
Africa:A1geria: 18
Asia:alina: 866
Asia:I:rdi.a:637
Asia:USSR:262
Australia:Australia: 14
~rth America:USA:219
~rth America: Canada: 24
South America:Brazil:116
South America:Argentina: 26

awk 4-53

Example Applications

This output is in the right order but the wrong format. To transform
the output into the desired form we run it through a second awk program
format:

smDl {FS = ":u }
{ if ($1 1= prev)

print u\n" $1 ":"

prev =$1

}

print! "\1::%-10s ~\n", $2, $3

This is a control-break program that prints only the first occurrence of a
continent name and formats the country-population lines associated with
that continent in the desired manner. The command line

awk -f triples countries I awk -f format

gives us our desired report. As this example suggests, complex data
transformation and formatting tasks can often be reduced to a few simple
awks and sorts.

As an exercise, add to the population report subtotals for each continent
and a grand total.

Additional Examples

Word Frequencies
Our first example illustrates associative arrays for counting. Suppose we

want to count the number of times each word appears in the input, where a
word is any contiguous sequence of non-blank, non-tab characters. The fol­
lowing program prints the word frequencies, sorted in decreasing order.

{ for (w = 1; w <= NF; W++) count[$w]++ }
END {for (w in count) print count[w], w I "sort -nr" }

The first statement uses the array count to accumulate the number of times

4-54 PROGRAMMER'S GUIDE

Example Applications

each word is used. Once the input has been read, the second for loop
pipes the final count along with each word into the sort command.

Accumulation
Suppose we have two files, deposits and withdrawals, of records con­

taining a name field and an amount field. For each name we want to print
the net balance determined by subtracting the total withdrawals from the
total deposits for each name. The net balance can be computed by the fol­
lowing program:

awk '
FILENAME == "deposits"
FILENAME == "withdrawals"
END

} , deposits withdrawals

{ balance[$1] += $2 }
{ balance[$1] -= $2 }
{ for (name in balance)

print name t balance[name]

The first statement uses the array balance to accumulate the total amount
for each name in the file deposits. The second statement subtracts associ­
ated withdrawals from each total. If there are only withdrawals associated
with a name, an entry for that name will be created by the second state­
ment. The EM> action prints each name with its net balance.

Random Choice
The following function prints (in order) k random elements from the

first n elements of the array A. In the program, k is the number of entries
that still need to be printed, and n is the number of elements yet to be
examined. The decision of whether to print the ith element is determined
by the test rand{) < kin.

awk 4-55

Example Applications

function chcose(A, k, n) {
far (i = 1; n > 0; i++)

if (rand() < k1n--)

print A[i]

k--

Shell Facility
The following awk program simulates (crudely) the history facility of

the UNIX system shell. A line containing only = re-executes the last com­
mand executed. A line beginning with = cmd re-executes the last command
whose invocation included the string cmd. Otherwise, the current line is
executed.

$1 == "=" { if (NF == 1)
systE!m{x[NR] = x[NR-1])

else
far {i = NR-1; i > 0; i--)

if (x[i] - S2) {
system(x[NR] =x[i])

break

next }

/ •/ { systeIn(x[NR] = SO)

4-56 PROGRAMMER'S GUIDE

Example Applications

Form-letter Generation
The following program generates form letters, using a template stored

in a file called form. letter:

This is a farm letter.
The first field is $1, the seoond $2, the third $3.
The third is $3, seoond is $2, and first is $1.

and replacement text of this form:

field 1 Ifield 21field 3
one Itwo Ithree
albIc

The mx;m action stores the template in the array template; the remaining
action cycles through the input data, using gsub to replace template fields
of the form $n with the corresponding data fields.

Bmm { FS = IIlll
while (getline <"fann.letter")

line[++n] = $0

for (i = 1; i <= n; i++)
s = line[i]
for (j = 1; j <= NF; j++)

gsub("\\$"j, $j, s)
print s

In all such examples, a prudent strategy is to start with a small version
and expand it, trying out each aspect before moving on to the next.

awk 4-57

awk Summary

Command Line

awk program filenames
awk -f program-file filenames
awk -Fs sets field separator to string s; -Ft sets separator to tab

Patterns

BmIN
END
/regular expression/
relational expression
pattern && pattern
pattern :: pattern
(pattern)
!pattern
pattern, pattern

Control Flow Statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement
for (expr; expr; expr) statement
for (var in array) statement
do statement while (expr)
break
continue
next
exit [expr]
return [expr]

4-58 PROGRAMMER'S GUIDE

..~

awk Summary

Input-output

c1ose(filename)
getline
getline <file
getline var
getline var <file
print
print expr-list
print expr-list > file
printf fmt, expr-list
printf fmt, expr-list > file
system(cmd-line)

close file
set $0 from next input record; set NF, NR, FNR
set $0 from next record of file; set NF
set var from next input record; set NR, FNR
set vaT from next record of file
print current record
print expressions
print expressions on file
format and print
format and print on file
execute command cmd-line, return status

In print and printf above, > > file appends to the file, and : command
writes on a pipe. Similarly, command : getline pipes into getline. getline
returns 0 on end of file, and -1 on error.

Functions

fune name(parameter list) { statement}
function name(parameter list) { statement}
function-name(expr, expr, .••)

awk 4-59

awk Summary

String Functions

gsub(r, 5, t)

index(s, t)

length(s)
match(5, r)

split(s, a, r)

sprintf(fmt, expr-li5t)

sub(r, 5, t)

substr(5, i, n)

substitute string 5 for each substring matching
regular expression r in string t, return number
of substitutions; if t omitted, use $0
return index of string t in string 5, or 0 if not
present
return length of string 5
return position in 5 where regular expression r
occurs, or 0 if r is not present
split string 5 into array a on regular expression
r, return number of fields; if r omitted, FS is
used in its place
print expr-li5t according to fmt, return result­
ing string
like gsub except only the first matching sub­
string is replaced
return n-char substring of 5 starting at i; if n
omitted, use rest of 5

Arithmetic Functions

atan2(y,x)
cos(expr)
exp(expr)
int(expr)
log(expr)
randO
sin(expr)
sqrt(expr)
srand(expr)

arctangent of y / x in radians
cosine (angle in radians)
exponential
truncate to integer
natural logarithm
random number between 0 and 1
sine (angle in radians)
square reot
new seed for random number generator;
use time of day if no expr

4-60 PROGRAMMER'S GUIDE

awk Summary

Operators (Increasing Precedence)

= += -= *= /= %= "=

?:
II
II

&&
- 1-
< <= > >= 1= ==
blank
+­

*/%
+-1

++ -­
$

assignment
conditional expression
logical OR
logical AND
regular expression match, negated match
relationals
string concatenation
add, subtract
multiply, divide, mod
unary plus, unary minus, logical negation
exponentiation (** is a synonym)
increment, decrement (prefix and postfix)
field

~.... "..,.

(Regular Expressions (Increasing Precedence)

c
\c

$
[abc]
["abc]
r1lr2
r1r2
r+
r*
r1
(r)

matches non-metacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc .
negated class matches any but abc and newline
matches either r1 or r2
concatenation: matches r1, then r2
matches one or more r's
matches zero or more r's
matches zero or one r's
grouping: matches r

awk 4·61

awk Summary

Built-in Variables

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Limits

number of command-line arguments
array of command-line arguments (0 .. ABGC-1)
name of current input file
input record number in current file
input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default %.6g)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline)
index of first character matched by matchO; 0 if no match
length of string matched by matchO; -1 if no match
separates multiple subscripts in array elements; default ''\034''

Any particular implementation of awk enforces some limits. Here are
typical values:

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters per printf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the local

machine, e.g., 1e-38..1e+38

4-62 PROGRAMMER'S GUIDE

~'

------------------------- awk Summary

Initialization, Comparison, and Type Coercion
Each variable and field can potentially be a string or a number or both

at any time. When a variable is set by the assignment

var = expr

its type is set to that of the expression. (Assignment includes +=, -=, etc.)
An arithmetic expression is of type number, a concatenation is of type
string, and so on. If the assignment is a simple copy, as in

v1 =v2

then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to string if necessary, and the
comparison is made on strings. The type of any expression can be coerced
to numeric by subterfuges such as

expr + 0

~ and to string by

expr ""

(that is, concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value "".
Accordingly, if x is uninitialized,

if (x)

is false, and

if (Ix)

if (x == 0)
if (x == "") ...

are all true. But the following is false:

if (x == "0") •.•

awk 4-63

awk Summary

The type of a field is determined by 'context when possible; for example,

$1++

clearly implies that $1 is to be numeric, and

$1 = $1 II," $2

implies that $1 and $2 are both to be strings. Coercion is done as needed.

In contexts where types cannot be reliably determined, for example,

if ($1 == $2) •••

the type of each field is determined on input. All fields are strings; in addi­
tion, each field that contains only a number is also considered numeric.

Fields that are explicitly null have the string value nn ; they are not
numeric. Non-existent fields (Le., fields past NF) are treated this way, too.

As it is for fields, so it is for array elements created by splitO.

Mentioning a variable in an expression causes it to exist, with the value
1111 as described above. Thus, if arr[i] does not currently exist,

if (arr[i] == '''') •••

causes it to exist with the value "" so the if is satisfied. The special construc­
tion

if (i in arr) ••.

determines if arr[i] exists without the side effect of creating it if it does
not.

4-64 PROGRAMMER'S GUIDE

5 lex

An Overview of lex Programming

Writing lex Programs
The Fundamentals of lex Rules

• Specifications
• Actions

Advanced lex Usage
• Some Special Features
• Definitions
• Subroutines

Using lex with yacc

Running lex under the UNIX System

5-1

5-3
5-3
5-3
5-6
5-7

5-8

5-12

5-14

5-16

5-19

lex

An Overview of lex Programming

lex is a software tool that lets you solve a wide class of problems drawn
from text processing, code enciphering, compiler writing, and other areas.
In text processing, you may check the spelling of words for errors; in code
enciphering, you may translate certain patterns of characters into others;
and in compiler writing, you may determine what the tokens (smallest
meaningful sequences of characters) are in the program to be compiled.
The problem common to all of these tasks is recognizing different strings of
characters that satisfy certain characteristics. In the compiler writing case,
creating the ability to solve the problem requires implementing the
compiler's lexical analyzer. Hence the name lex.

It is not essential to use lex to handle problems of this kind. You could
write programs in a standard language like C to handle them, too. In fact,
what lex does is produce such C programs. (lex is therefore called a pro­
gram generator.) What lex offers you, once you acquire a facility with it, is
typically a faster, easier way to create programs that perform these tasks. Its
weakness is that it often produces C programs that are longer than neces­
sary for the task at hand and that execute more slowly than they otherwise
might. In many applications this is a minor consideration, and the advan­
tages of using lex considerably outweigh it.

To understand what lex does, see the diagram in Figure 5-1. We begin
with the lex source (often called the lex specification) that you, the pro­
grammer, write to solve the problem at hand. This lex source consists of a
list of rules specifying sequences of characters (expressions) to be searched
for in an input text, and the actions to take when an expression is found.
The source is read by the lex program generator. The output of the pro­
gram generator is a C program that, in turn, must be compiled by a host
language C compiler to generate the executable object program that does the
lexical analysis. Note that this procedure is not typically automatic-user
intervention is required. Finally, the lexical analyzer program produced by
this process takes as input any source file and produces the desired output,
such as altered text or a list of tokens.

lex 5·1

An Overview of lex Programming

lex can also be used to collect statistical data on features of the input,
such as character count, word length, number of occurrences of a word, and
so forth. In later sections of this chapter, we will see

• how to write lex source to do some of these tasks

• how to translate lex source

• how to compile, link, and execute the lexical analyzer in C

• how to run the lexical analyzer program

We will then be on our way to appreciating the power that lex provides.

lex lex
lex - AnalyzerSource

in C

,

C
Compiler

,

Input
lex Output:

- Analyzer - Tokens,
Text

Program Text, etc.

Figure 5-1: Creation and Use of a Lexical Analyzer with lex

5-2 PROGRAMMER'S GUIDE

~(' ,

Writing lex Programs

A lex specification consists of at most three sections: definitions, rules,
and user subroutines. The rules section is mandatory. Sections for
definitions and user subroutines are optional, but if present, must appear in
the indicated order.

The Fundamentals of lex Rules
The mandatory rules section opens with the delimiter %%. If a subrou­

tines section follows, another %% delimiter ends the rules section. If there
is no second delimiter, the rules section is presumed to continue to the end
of the program.

Each rule consists of a specification of the pattern sought and the
action(s) to take on finding it. (Note the dual meaning of the term
specification-it may mean either the entire lex source itself or, within it, a
representation of a particular pattern to be recognized.) Whenever the
input consists of patterns not sought, lex writes out the input exactly as it
finds it. So, the simplest lex program is just the beginning rules delimiter,
%%. It writes out the entire input to the output with no changes at all.
Typically, the rules are more elaborate than that.

Specifications
You specify the patterns you are interested in with a notation called

regular expressions. A regular expression is formed by stringing together
characters with or without operators. The simplest regular expressions are
strings of text characters with no operators at all. For example,

apple
orange
pluto

These three regular expressions match any occurrences of those character
strings in an input text. If you want to have your lexical analyzer a.out
remove every occurrence of orange, from the input text, you could specify
the rule

orange;

lex 5-3

Writing lex Programs

Because you did not specify an action on the right (before the semi­
colon), lex does nothing but print out the original input text with every
occurrence of this regular expression removed, that is, without any
occurrence of the string orange at all. ~

Unlike orange above, most of the expressions that we want to search for
cannot be specified so easily. The expression itself might simply be too
long. More commonly, the class of desired expressions is too large; it may,
in fact, be infinite. Thanks to the use of operators, we can form regular
expressions signifying any expression of a certain class. The + operator, for
instance, means one or more occurrences of the preceding expression, the ?
means 0 or 1 occurrence(s) of the preceding expression (this is equivalent,
of course, to saying that the preceding expression is optional), and • means
oor more occurrences of the preceding expression. (It may at first seem odd
to speak of 0 occurrences of an expression and to need an operator to cap­
ture the idea, but it is often quite helpful. We will see an example in a
moment.) 50 m+ is a regular expression matching any string of ms such as
each of the following:

nom
m
mmmn
mn

and 7· is a regular expression matching any string of zero or more 7s:

77
77777

777

The string of blanks on the third line matches simply because it has no 7s
in it at all.

Brackets, [], indicate anyone character from the string of characters
specified between the brackets. Thus, [dgka] matches a single d, g, k, or a.
Note that commas are not included within the brackets. Any comma here
would be taken as a character to be recognized in the input text. Ranges
within a standard alphabetic or numeric order are indicated with a hyphen,
-. The sequence [a-z], for instance, indicates any lowercase letter. 50me- .~

what more interestingly, }

[A-za-zO-9~]

5-4 PROGRAMMER'S GUIDE

~'

Writing lex Programs

is a regular expression that matches any letter (whether upper- or lower­
case), any digit, an asterisk, an ampersand, or a sharp character. Given the
input text

$$$$?? ????III*$$ $$$$$$&+====r--# «

the lexical analyzer with the previous specification in one of its rules will
recognize the ., &, r, and #, perform on each recognition whatever action
the rule specifies (we have not indicated an action here), and print out the
rest of the text as it stands.

The operators become especially powerful in combination. For example,
the regular expression to recognize an identifier in many programming
languages is

[a-zA-Z] [O-9a-zA-Z]*

An identifier in these languages is defined to be a letter followed by
zero or more letters or digits, and that is just what the regular expression
says. The first pair of brackets matches any letter. The second, if it were
not followed by a ., would match any digit or letter. The two pairs of
brackets with their enclosed characters would then match any letter fol­
lowed by a digit or a letter. But with the asterisk, ., the example matches
any letter followed by any number of letters or digits. In particular, it
would recognize the following as identifiers:

e
pay
distance
pH

EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not idenTIFER
Stimes
$hello

because notJdenTIFER has an embedded underscore; Stimes starts with a
digit, not a letter; and Sheila starts with a special character. Of course, you
may want to write the specifications for these three examples as an exercise.

lex 5-5

Writing lex Programs

A potential problem with operator characters is how we can refer to
them as characters to look for in our search pattern. The last example, for
instance, will not recognize text with an • in it. lex solves the problem in
one of two ways: a character enclosed in quotation marks or a character pre­
ceded by a \ is taken literally, that is, as part of the text to be searched for.
To use the backslash method to recognize, say, an • followed by any
number of digits, we can use the pattern

'*[1-9]*

To recognize a \ itself, we need two backslashes: \\.

Actions
Once lex recognizes a string matching the regular expression at the start

of a rule, it looks to the right of the rule for the action to be performed.
Kinds of actions include recording the token type found and its value, if
any; replacing one token with another; and counting the number of
instances of a token or token type. What you want to do is write these
actions as program fragments in the host language C. An action may con­
sist of as many statements as are needed for the job at hand. You may want
to print out a message noting that the text has been found or a message
transforming the text in some way. Thus, to recognize the expression /~
Amelia Earhart and to note such recognition, the rule

"Amelia Farhart" printf("found .Amelia");

would do. And to replace in a text lengthy medical terms with their
equivalent acronyms, a rule such as

Electroencephalogram printf("m;");

would be called for. To count the lines in a text, we need to recognize
end-of-lines and increment a linecounter. lex uses the standard escape
sequences from C like \n for end-of-line. To count lines we might have

\n lineoo++;

where lineno, like other C variables, is declared in the definitions section
that we discuss later.

lex stores every character string that it recognizes in a character array
called yytext[]. You can print or manipulate the contents of this array as')/,
you want. Sometimes your action may consist of two or more C statements
and you must (or for style and clarity, you choose to) write it on several
lines. To inform lex that the action is for one rule only, simply enclose the

5-6 PROGRAMMER'S GUIDE

----------------------- Writing lex Programs

C code in braces. For example, to count the total number of all digit strings
in an input text, print the running total of the number of digit strings (not
their sum, here) and print out each one as soon as it is found, your lex code
might be

+?[1-9]+ { digstnlgoount++;
printf("rcd" ,digstrngoount);
printf("%5", yytext); }

This specification matches digit strings whether they are preceded by a plus
sign or not, because the? indicates that the preceding plus sign is optional.
In addition, it will catch negative digit strings because that portion follow­
ing the minus sign, -, will match the specification. The next section
explains how to distinguish negative from positive integers.

Advanced lex Usage
lex provides a suite of features that lets you process input text riddled

with quite complicated patterns. These include rules that decide what
specification is relevant, when more than one seems so at first; functions
that transform one matching pattern into another; and the use of definitions
and subroutines. Before considering these features, you may want to affirm
your understanding thus far by examining an example drawing together
several of the points already covered.

C'.

*-[0-9]+

+1£0-9]+
-0.[0-9]+
rail[]+road
crook
functicm
G[a-zA-Z]*

print£("negative integer");
printf("p:>sitive integer");
print£("negative fracticm, no wb:>le number part");
print£("railroad is one word");
printf ("Here's a crook");
subprogoc:mlt++ ;

{ print£ ("may have a G \OlOrd here: ", yytext);

Gstri.D;Joc:mlt++; }

lex 5-7

Writing lex Programs

The first three rules recognize negative integers, positive integers, and
negative fractions between 0 and -1. The use of the terminating + in each
specification ensures that one or more digits compose the number in ques­
tion. Each of the next three rules recognizes a specific pattern. The
specification for railroad matches cases where one or more blanks intervene
between the two syllables of the word. In the cases of railroad and crook,
you may have simply printed a synonym rather than the messages stated.
The rule recognizing a function simply increments a counter. The last rule
illustrates several points:

• The braces specify an action sequence extending over several lines.

• Its action uses the lex array yytext[], which stores the re'cognized
character string.

• Its specification uses the * to indicate that zero or more letters may
follow the G.

Some Special Features
Besides storing the recognized character string in yytext[], lex automati­

cally counts the number of characters in a match and stores it in the vari-
able yyleng. You may use this variable to refer to any specific character just)
placed in the array yytext[]. Remember that C numbers locations in an
array starting with 0, so to print out the third digit (if there is one) in a just
recognized integer, you might write

[1-9]+ {if (yyleng > 2)
printf(1I%e1l, yytext[2]); }

lex follows a number of high-level rules to resolve ambiguities that may
arise from the set of rules that you write. Prima facie, any reserved word,
for instance, could match two rules. In the lexical analyzer example
developed later in the section on lex and yacc, the reserved word end could
match the second rule as well as the seventh, the one for identifiers.

lex follows the rule that where there is a match with two or more rules in
a specification, the first rule is the one whose action will be executed.

By placing the rule for end and the other reserved words before the rule for
identifiers, we ensure that our reserved words will be duly recognized.

5-8 PROGRAMMER'S GUIDE

Writing lex Programs

Another potential problem arises from cases where one pattern you are
searching for is the prefix of another. For instance, the last two rules in the
lexical analyzer example above are designed to recognize > and > =. If
the text has the string > = at one point, you might worry that the lexical
analyzer would stop as soon as it recognized the > character to execute the
rule for> rather than read the next character and execute the rule for> =.

lex follows the rule that it matches the longest character string possi­
ble and executes the rule for that.

Here it would recognize the >= and act accordingly. As a further example,
the rule would enable you to distinguish + from ++ in a program in C.

Still another potential problem exists when the analyzer must read char­
acters beyond the string you are seeking because you cannot be sure you've
in fact found it until you've read the additional characters. These cases
reveal the importance of trailing context. The classic example here is the
DO statement in FORTRAN. In the statement

DO 50 k = 1 , 20, 1

we cannot be sure that the first 1 is the initial value of the index k until we
read the first comma. Until then, we might have the assignment statement

D050k = 1

(Remember that FORTRAN ignores all blanks.) The way to handle this is to
use the forward-looking slash, I (not the backslash, \), which signifies that
what follows is trailing context, something not to be stored in yytext[],
because it is not part of the token itself. So the rule to recognize the FOR­
TRAN DO statement could be

DO/[]*[0-9][]*[a-z A-ZO-9l+=[a-z A-ZO-9l+, printf("found DO");

Different versions of FORTRAN have limits on the size of identifiers, here
the index name. To simplify the example, the rule accepts an index name
of any length.

lex uses the $ as an operator to mark a special trailing context-the end
of line. (It is therefore equivalent to \n.) An example would be a rule to
ignore all blanks and tabs at the end of a line:

\.tl+$

lex 5-9

Writing lex Programs

On the other hand, if you want to match a pattern only when it starts a
line, lex offers you the circumflex, "', as the operator. The formatter nroff,
for example, demands that you never start a line with a blank, so you might
want to check input to nroff with some such rule as:

A[] printf(lienor: renove leading blankll);

Finally, some of your action statements themselves may require your
reading another character, putting one back to be read again a moment
later, or writing a character on an output device. lex supplies three func­
tions to handle these tasks-inputO, unput(c), and output(c), respectively.
One way to ignore all characters between two special characters, say
between a pair of double quotation marks, would be to use input(), thus:

\11 while (input() 1= 'I");

Upon finding the first double quotation mark, the generated a.out will sim­
ply continue reading all subsequent characters so long as none is a quota­
tion mark, and not again look for a match until it finds a second double
quotation mark.

To handle special I/O needs, such as writing to several files, you may
use standard I/O routines in C to rewrite the functions inputO, unput(c), '~
and output. These and other programmer-defined functions should be
placed in your subroutine section. Your new routines will then replace the
standard ones. The standard input(), in fact, is equivalent to getchar(), and
the standard output(c) is equivalent to putchar(c).

There are a number of lex routines that let you handle sequences of
characters to be processed in more than one way. These include yymore(),
yyless(n), and REJECT. Recall that the text matching a given specification
is stored in the array yytext[]. In general, once the action is performed for
the specification, the characters in yytext[] are overwritten with succeeding
characters in the input stream to form the next match. The function
yymore(), by contrast, ensures that the succeeding characters recognized are
appended to those already in yytext[]. This lets you do one thing and then
another, when one string of characters is significant and a longer one
including the first is significant as well. Consider a character string bound
by Us and interspersed with one at an arbitrary location.

B•••B •••B

5-10 PROGRAMMER'S GUIDE

~'

~'

Writing lex Programs

In a simple code deciphering situation, you may want to count the
number of characters between the first and second B's and add it to the
number of characters between the second and third B. (Only the last B is
not to be counted.) The code to do this is

B[AB]* { if (flag =0)
save :;: yyler¥]'
flag = 1.
yynore().

else {
~t:no = save + yyler¥];
flag:;: O.

}

where flag, save, and importantno are declared (and at least flag initialized
to 0) in the definitions section. The flag distinguishes the character
sequence terminating just before the second B from that terminating just
before the third.

The function yyless(n) lets you reset the end point of the string to be
considered to the nth character in the original yytext[]. Suppose you are
again in the code deciphering business and the gimmick here is to work
with only half the characters in a sequence ending with a certain one, say
upper- or lowercase Z. The code you want might be

[a-yA-Y]+[Zz] { yyless(yyleng/2);
.•• process first half of strinq•.• }

Finally, the function REJECT lets you more easily process strings of
characters even when they overlap or contain one another as parts. REJECT
does this by immediately jumping to the next rule and its specification
without changing the contents of yytext[]. If you want to count the
number of occurrences both of the regular expression snapdragon and of its
subexpression dragon in an input text, the following will do:

lex 5-11

Writing lex Programs

snapdragon
dragon

{countflowers++; REJECI';}
countm:msters++ ;

As an example of one pattern overlapping another, the following counts
the number of occurrences of the expressions comedian and diana, even
where the input text has sequences such as comediana••:

oanedian
diana

{cx:ndcoount++; ~;}
princesscount++;

Note that the actions here may be considerably more complicated than
simply incrementing a counter. In all cases, the counters and other neces­
sary variables are declared in the definitions section commencing the lex
specification.

Definitions
The lex definitions section may contain any of several classes of items.

The most critical are external definitions, #inc1ude statements, and abbrevi­
ations. Recall that for legal lex source this section is optional, but in most
cases some of these items are necessary. External definitions have the form .~..
and function that they do in C. They declare that variables globally defined
elsewhere (perhaps in another source file) will be accessed in your lex-
generated a.out. Consider a declaration from an example to be developed
later.

extel:n int t:okval;

When you store an integer value in a variable declared in this way, it
will be accessible in the routine, say a parser, that calls it. If, on the other
hand, you want to define a local variable for use within the action sequence
of one rule (as you might for'the index variable for a loop), you can declare
the variable at the start of the action itself right after the left brace, { .

The purpose of the #inc1ude statement is the same as in C: to include
files of importance for your program. Some variable declarations and lex
definitions might be needed in more than one lex source file. It is then
advantageous to place them all in one file to be included in every file that
needs them. One example occurs in using lex with yacc, which generates)
parsers that call a lexical analyzer. In this context, you should include the
file y.tab.h, which may contain #defines for token names. Like the declara-
tions, #include statements should come between %{ and }%, thus:

5-12 PROGRAMMER'S GUIDE

Writing lex Programs

%{
#include "y. tab.h"
extern int tokval;
int line:oo;
%}

In the definitions section, after the %} that ends your #include's and
declarations, you place your abbreviations for regular expressions to be used
in the rules section. The abbreviation appears on the left of the line and,
separated by one or more spaces, its definition or translation appears on the
right. When you later use abbreviations in your rules, be sure to enclose
them within braces.

The purpose of abbreviations is to avoid needless repetition in writing
your specifications and to provide clarity in reading them.

As an example, reconsider the lex source reviewed at the beginning of
this section on advanced lex usage. The use of definitions simplifies our
later reference to digits, letters, and blanks. This is especially true if the
specifications appear several times:

lex 5-13

Writing lex Programs

D

L

B

%%
-{D}+

+?{D}+

-0. {D}+

G{L}*
rail{B}+road
crook
\"\.I{B}+

[0-9]

[a-zA-Z]
[]

printf("negative integer");
printf("positive integer");
printf("negative fraction");
printf("may have a G w:m:} here");
printf("railzoad is one w:m:}1l);

printf("criminal") ;
printf(".\"");

The last rule, newly added to the example and somewhat more complex
than the others, is used in the WRITER'S WORKBENCH Software, an AT&T
software product for promoting good writing. (See the UNIX System
WRITER'S WORKBENCH Software Release 3.0 User's Guide for information on
this product.) The rule ensures that a period always precedes a quotation
mark at the end of a sentence. It would change example". to example."

Subroutines
You may want to use subroutines in lex for much the same reason that

you do so in other programming languages. Action code that is to be used
for several rules can be written once and called when needed. As with
definitions, this can simplify the writing and reading of programs. The
function put_in_tabl(), to be discussed in the next section on lex and yacc,
is a good candidate for a subroutine.

Another reason to place a routine in this section is to highlight some
code of interest or to simplify the rules section, even if the code is to be
used for one rule only. As an example, consider the following routine to
ignore comments in a language like C where comments occur between /.
and ./ :

5-14 PROGRAMMER'S GUIDE

----------------------- Writing lex Programs

skipamts();

1* rest of rules *1

*skipc:mnts()
{

far(; ;)
{

while (inplt() 1= '*');
if (inplt() 1= '1') {

unplt(yytext[yyl enr1]) ;
else return;

There are three points of interest in this example. First, the unput(c)
function (putting back the last character read) is necessary to avoid missing
the final/if the comment ends unusually with a **/. In this case, eventu­
ally having read an ., the analyzer finds that the next character is not the
terminal/and must read some more. Second, the expression
yytext[yyleng-l] picks out that last character read. Third, this routine
assumes that the comments are not nested. (This is indeed the case with the
C language.) If, unlike C, they are nested in the source text, after
input()ing the first */ ending the inner group of comments, the a.out will
read the rest of the comments as if they were part of the input to be
searched for patterns.

Other examples of subroutines would be programmer-defined versions
of the I/O routines input(), unput(c), and output{), discussed above. Sub­
routines such as these that may be exploited by many different programs
would probably do best to be stored in their own individual file or library
to be called as needed. The appropriate #include statements would then be
necessary in the definitions section.

lex 5-15

Writing lex Programs

Using lex with yacc
If you work on a compiler project or develop a program to check the

validity of an input language, you may want to use the UNIX system pro­
gram tool yacc. yacc generates parsers, programs that analyze input to
ensure that it is syntactically correct. (yacc is discussed in detail in Chapter
6 of this guide.) lex often forms a frUitful union with yacc in the compiler
development context. Whether or not you plan to use lex with yacc, be
sure to read this section because it covers information of interest to all lex
programmers.

The lexical analyzer that lex generates (not the file that stores it) takes
the name yylex(). This name is convenient because yacc calls its lexical
analyzer by this very name. To use lex to create the lexical analyzer for the
parser of a compiler, you want to end each lex action with the statement
return token, where token is a defined term whose value is an integer. The
integer value of the token returned indicates to the parser what the lexical
analyzer has found. The parser, whose file is called y.tab.c by yacc, then
resumes control and makes another call to the lexical analyzer when it
needs another token.

In a compiler, the different values of the token indicate what, if any,
reserved word of the language has been found or whether an identifier,
constant, arithmetic operand, or relational operator has been found. In the
latter cases, the analyzer must also specify the exact value of the token:
what the identifier is, whether the constant, say, is 9 or 888, whether the
operand is + or • (multiply), and whether the relational operator is = or >.
Consider the following portion of lex source for a lexicr.l' malyzer for some
programming language perhaps slightly reminiscent of 1 .a:

5-16 PROGRAMMER'S GUIDE

begin
end
while
if
package
reverse

loop
[a-zA-Z] [a-zA-ZO-9]*

[0-9]+

\+

\-

>

>=

return(BEXiIN) ;

retum(EM» ;

return(WHILE) ;

rebml(IF) ;

rebml(PAa<AGE) ;

rebml (RE.:VmSE) ;

rebml(IOOP) ;

(tokval = put_in_tabl();
rebml(IDENl'IFIER); }

{ takval =put_in_tabl ();
retunl(INI'EGER); }

(tokval = PUJS;
return(ARI'IHOP); }

(tokval =MINUS;
return(ARI'IHOP); }

(tokval = GRFA'lm;
rebml(RELOP); }

{ tokval = GRFA'lmmL;
retunl(RELOP); }

Writing lex Programs

Despite appearances, the tokens returned, and the values assigned to
tokval, are indeed integers. Good programming style dictates that we use
informative terms such as BEGIN, END, WHILE, and so forth to signify the
integers the parser understands, rather than use the integers themselves.
You establish the association by using #define statements in your parser
calling routine in C. For example,

#define BEXiIN 1
#define EM) 2

#define PLUS 7

lex 5-17

Writing lex Programs

If the need arises to change the integer for some token type, you then
change the #define statement in the parser rather than hunt through the
entire program, changing every occurrence of the particular integer. In
using yace to generate your parser, it is helpful to insert the statement)

#include y. tab.h

into the definitions section of your lex source. The file y.tab.h provides
#define statements that associate token names such as BEGIN, END, and so
on with the integers of significance to the generated parser.

To indicate the reserved words in the example, the returned integer
values suffice. For the other token types, the integer value of the token
type is stored in the programmer-defined variable tokval. This variable,
whose definition was an example in the definitions section, is globally
defined so that the parser as well as the lexical analyzer can access it. yace
provides the variable yylval for the same purpose.

Note that the example shows two ways to assign a value to tokval.
First, a function put_in_tabl() places the name and type of the identifier or
constant in a symbol table so that the compiler can refer to it in this or a
later stage of the compilation process. More to the present point, ~

putJn_tabl() assigns a type value to tokval so that the parser can use the)
information immediately to determine the syntactic correctness of the input
text. The function putJn_tabl() would be a routine that the compiler
writer might place in the subroutines section discussed later. Second, in the
last few actions of the example, tokval is assigned a specific integer indicat-
ing which operand or relational operator the analyzer recognized. If the
variable PLUS, for instance, is associated with the integer 7 by means of the
#define statement above, then when a + sign is recognized, the action
assigns to tokval the value 7, which indicates the +. The analyzer indicates
the general class of operator by the value it returns to the parser (in the
example, the integer signified by ARITHOP or RELOP).

5-18 PROGRAMMER'S GUIDE

~.p.

\:

Running lex under the UNIX System

As you review the following few steps, you might recall Figure 5-1 at
the start of the chapter. To produce the lexical analyzer in C, run

lex lex.l

where lex.l is the file containing your lex specification. The name lex.l is
conventionally the favorite, but you may use whatever name you want.
The output file that lex produces is automatically called lex.yy.c; this is the
lexical analyzer program that you created with lex. You then compile and
link this as you would any C program, making sure that you invoke the lex
library with the -II option:

ee lex.yy.c -II

The lex library provides a default main() program that calls the lexical
analyzer under the name yylex(), so you need not supply your own main().

If you have the lex specification spread across several files, you can run
lex with each of them individually, but be sure to rename or move each
lex.yy.e file (with mv) before you run lex on the next one. Otherwise, each
will overwrite the previous one. Once you have all the generated .e files,
you can compile all of them, of course, in one command line.

With the executable a.out produced, you are ready to analyze any
desired input text. Suppose that the text is stored under the filename textin
(this name is also arbitrary). The lexical analyzer a.out by default takes
input from your terminal. To have it take the file textin as input, simply
use redirection, thus:

a.out < textin

By default, output will appear on your terminal, but you can redirect this as
well:

a.out < textin > textout

In running lex with yaee, either may be run first.

yaee -d grammar.y
lex lex.l

spawns a parser in the file y.tab.e. (The -d option creates the file y.tab.h,
which contains the #define statements that associate the yaee assigned

lex 5-19

Running lex under the UNIX System

integer token values with the user-defined token names.) To compile and
link the output files produced, run

cc lex.yy.c y.tab.c -Iy -11

Note that the yacc library is loaded (with the -Iy option) before the lex)
library (with the -11 option) to ensure that the main() program supplied
will call the yacc parser.

There are several options available with the lex command. If you use
one or more of them, place them between the command name lex and the
filename argument. If you care to see the C program, lex.yy.c, that lex gen­
erates on your terminal (the default output device), use the -t option.

lex -t lex.l

The -v option prints out for you a small set of statistics describing the
so-called finite automata that lex produces with the C program lex.yy.c.
(For a detailed account of finite automata and their importance for lex, see
the Aho, Sethi, and Ullman text, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.)

lex uses a table (a two-dimensional array in C) to represent its finite
automaton. The maximum number of states that the finite automaton)
requires is set by default to 500. If your lex source has a large number of
rules or the rules are very complex, this default value may be too small.
You can enlarge the value by placing another entry in the definitions sec-
tion of your lex source, as follows:

ren 700

This entry tells lex to make the table large enough to handle as many as
700 states. (The -v option will indicate how large a number you should
choose.) If you have need to increase the maximum number of state transi­
tions beyond 2000, the designated parameter is a, thus:

%a. 2800

Finally, check the Programmer's Reference Manual page on lex for a list of
all the options available with the lex command.

5-20 PROGRAMMER'S GUIDE

Running lex under the UNIX System

This tutorial has introduced you to lex programming. As with any pro­
gramming language, the way to master it is to write programs and then
write some more.

lex 5-21

6 yacc

Introduction 6-1

Basic Specifications 6-4

Actions 6-6

Lexical Analysis 6-10

Parser Operation 6-13

~
Ambiguity and Conflicts 6-18

Precedence 6·24

Error Handling

The yacc Environment

Hints for Preparing Specifications
Input Style
Left Recursion
Lexical Tie-Ins

6-28

6-32

6-34
6-34

6-34

6-36

yacc

yacc

Reserved Words

Advanced Topics
Simulating error and accept in Actions
Accessing Values in Enclosing Rules
Support for Arbitrary Value Types
yacc Input Syntax

Examples
1. A Simple Example
2. An Advanced Example

II PROGRAMMER'S GUIDE

6·37

6-38
6-38
6-38

6·40
6-42

6-45
6·45
6·48

Introduction

yacc provides a general tool for imposing structure on the input to a
computer program. The yacc user prepares a specification that includes:

• a set of rules to describe the elements of the input

• code to be invoked when a rule is recognized

• either a definition or declaration of a low-level routine to examine
the input

yacc then turns the specification into a C language function that exam­
ines the input stream. This function, called a parser, works by calling the
low-level input scanner. The low-level input scanner, called a lexical
analyzer, picks up items from the input stream. The selected items are
known as tokens. Tokens are compared to the input construct rules, called
grammar rules. When one of the rules is recognized, the user code supplied
for this rule, (an action) is invoked. Actions are fragments of C language
code. They can return values and make use of values returned by other
actions.

The heart of the yacc specification is the collection of grammar rules.
Each rule describes a construct and gives it a name. For example, one gram­
mar rule might be

date nonth_name day ',' year

where date, month_name, day, and year represent constructs of interest;
presumably, month_name, day, and year are defined in greater detail else­
where. In the example, the comma is enclosed in single quotes. This
means that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule and have no significance
in evaluating the input. With proper definitions, the input

July 4, 1776

might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This
user-supplied routine reads the input stream, recognizes the lower-level
constructs, and communicates these as tokens to the parser. The lexical
analyzer recognizes constructs of the input stream as terminal symbols; the
parser recognizes constructs as nonterminal symbols. To avoid confusion,
we will refer to terminal symbols as tokens.

yacc 6-1

Introduction

There is considerable leeway in deciding whether to recognize con­
structs using the lexical analyzer or grammar rules. For example, the rules

month name : 'J' 'a' 'n'
ucnth name : 'F' ,e' 'b'

month name : 'D' 'e' 'c'

might be used in the above example. While the lexical analyzer only needs
to recognize individual letters, such low-level rules tend to waste time and
space, and may complicate the specification beyond the ability of yacc to
deal with it. Usually, the lexical analyzer recognizes the month names and
returns an indication that a month_name is seen. In this case, month_name
is a token and the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexi­
cal analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date m:mth ' /' day , /' year

allowing

7/4/1776

as a synonym for

July 4, 1776

on input. In most cases, this new rule could be slipped into a working sys­
tem with minimal effort and little danger of disrupting existing input.

6-2 PROGRAMMER'S GUIDE

Introduction

The input being read may not conform to the specifications. With a
left-to-right scan input errors are detected as early as is theoretically possi­
ble. Thus, not only is the chance of reading and computing with bad input
data substantially reduced, but the bad data usually can be found quickly.
Error handling, provided as part of the input specifications, permits the
reentry of bad data or the continuation of the input process after skipping
over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-contradictory, or
they may require a more powerful recognition mechanism than that avail­
able to yacc. The former cases represent design errors; the latter cases often
can be corrected by making the lexical analyzer more powerful or by rewrit­
ing some of the grammar rules. While yacc cannot handle all possible
specifications, its power compares favorably with similar systems. More­
over, the constructs that are difficult for yacc to handle are also frequently
difficult for human beings to handle. Some users have reported that the
discipline of formulating valid yacc specifications for their input revealed
errors of conception or design early in the program development.

The remainder of this chapter describes the following subjects:

II basic process of preparing a yace specification

II parser operation

• handling ambiguities

• handling operator precedences in arithmetic expressions

• error detection and recovery

II the operating environment and special features of the parsers yacc
produces

• suggestions to improve the style and efficiency of the specifications

• advanced topics

In addition, there are two examples and a summary of the yacc input
syntax.

yacc 6-3

Basic Specifications

Names refer to either tokens or nonterminal symbols. yace requires
token names to be declared as such. While the lexical analyzer may be
included as part of the specification file, it is perhaps more in keeping with
modular design to keep it as a separate file. Like the lexical analyzer, other
subroutines may be included as well. Thus, every specification file theoreti­
cally consists of three sections: the declarations, (grammar) rules, and sub­
routines. The sections are separated by double percent signs, %% (the per­
cent sign is generally used in yace specifications as an escape character).

A full specification file looks like:

declarations
%%
rules
%%
subroutines

when all sections are used. The declarations and subroutines sections are
optional. The smallest legal yaee specification is

%%
rules

Blanks, tabs, and newlines are ignored, but they may not appear in
names or multicharacter reserved symbols. Comments may appear wher­
ever a name is legal. They are enclosed in /- ... -/, as in the C language.

The rules section is made up of one or more grammar rules. A grammar
rule has the form

A : B:>DY

where A represents a nonterminal symbol, and BODY represents a sequence
of zero or more names and literals. The colon and the semicolon are yaee
punctuation.

Names may be of any length and may be made up of letters, dots,
underscores, and digits although a digit may not be the first character of a
name. Uppercase and lowercase letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.)

6·4 PROGRAMMER'S GUIDE

Basic Specifications

A literal consists of a character enclosed in single quotes,'. As in the C
language, the backslash, \, is an escape character within literals, and all the
C language escapes are recognized. Thus:

'\n'
'\r'
'\"
'\\'
'\1'
'\b'
'\f'
'\xxx'

newline
return
single quote (,)
backslash (\)
tab
backspace
form feed
xxx in octal notation

are understood by yacc. For a number of technical reasons, the NULL char­
acter (\0 or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the
vertical bar, I, can be used to avoid rewriting the left-hand side. In addi­
tion, the semicolon at the end of a rule is dropped before a vertical bar.
Thus the grammar rules

A

A
A

BCD
E F
G

can be given to yacc as

ABC D
E F
G

by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section although it
makes the input more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated
by

epsilon :

The blank space following the colon is understood by yacc to be a nonter­
minal symbol named epsilon.

yacc 8-5

Basic Specifications

Names representing tokens must be declared. This is most simply done
by writing

"token name1 name2 •••

in the declarations section. Every name not defined in the declarations sec­
tion is assumed to represent a nonterminal symbol. Every nonterminal
symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular impor­
tance. By default, the start symbol is taken to be the left-hand side of the
first grammar rule in the rules section. It is possible and desirable to
declare the start symbol explicitly in the declarations section using the
%start keyword.

%start symbol

The end of the input to the parser is signaled by a special token, called
the end-marker. The end-marker is represented by either a zero or a nega­
tive number. If the tokens up to but not including the end-marker form a
construct that matches the start symbol, the parser function returns to its
caller after the end-marker is seen and accepts the input. If the end-marker
is seen in any other context, it is an error. !~

It is the job of the user-supplied lexical analyzer to return the end-
marker when appropriate. Usually the end-marker represents some reason-
ably obvious I/O status, such as end of file or end of record.

Actions
With each grammar rule, the user may associate actions to be performed

when the rule is recognized. Actions may return values and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can
return values for tokens if desired.

An action is an arbitrary C language statement and as such can do input
and output, call subroutines, and alter arrays and variables. An action is
specified by one or more statements enclosed in curly braces, {, and}. For
example:

6-6 PROGRAMMER'S GUIDE

Basic Specifications

'(' B ')'

hello(1, "abc");

and

:xxx Y'rf ZZZ

(void) print.f("a message\n") ;
flag =25;

are grammar rules with actions.

The dollar sign symbol, $, is used to facilitate communication between
the actions and the parser, The pseudo-variable $$ represents the value
returned by the complete action. For example, the action

{ $$ = 1; }

returns the value of one; in fact, that's all it does.

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the pseudo-variables $1, $2, ... $n. These refer
to the values returned by components 1 through n of the right side of a
rule, with the components being numbered from left to right. If the rule is

ABC D

then $2 has the value returned by C, and $3 the value returned by D.

yacc 6-7

Basic Specifications

The rule

~ '(' ~ ')'

provides a common example. One would expect the value returned by this
rule to be the value of the expr within the parentheses. Since the first com­
ponent of the action is the literal left parenthesis, the desired logical result
can be indicated by

~ '(' ~ ')'
{

$$ = $2 ;
}

By default, the value of a rule is the value of the first element in it ($1).
Thus, grammar rules of the form

A B

frequently need not have an explicit action. In previous examples, all the
actions came at the end of rules. Sometimes, it is desirable to get control
before a rule is fully parsed. yacc permits an action to be written in the
middle of a rule as well as at the end. This action is assumed to returna/~..
value accessible through the usual $ mechanism by the actions to the right)
of it. In turn, it may access the values returned by the symbols to its left.
Thus, in the rule below the effect is to set x to 1 and y to the value returned
by C.

A B

$$ = 1;
}

c

x =$2;
Y =$3;

6-8 PROGRAMMER'S GUIDE

Basic Specifications

Actions that do not terminate a rule are handled by yacc by manufactur­
ing a new nonterminal symbol name and a new rule matching this name to
the empty string. The interior action is the action triggered by recognizing
this added rule. yacc treats the above example as if it had been written

$ACr Ie EmPtY e I

$$ = 1;

A B $/Cl' C

x = $2;
Y = $3;

where $ACT is an empty action.

In many application:;, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and transformations
are applied to it before output is generated. Parse trees are particularly easy
to construct given routines to build and maintain the tree structure desired.
For example, suppose there is a C function node written so that the call

node(L, n1, 112)

creates a node with label L and descendants 01 and 02 and returns the
index of the newly created node. Then a parse tree can be built by supply­
ing actions such as

expr expr'+' expr
{

$$ =node{ '+', $1, $3);
}

in the specification.

yacc 6-9

Basic Specifications

The user may define other variables to be used by the actions. Declara­
tions and definitions can appear in the declarations section enclosed in the
marks %(and %). These declarations and definitions have global scope, so
they are known to the action statements and can be made known to the lex- ~,

ical analyzer. For example:)

%{ int variable = 0; %}

could be placed in the declarations section making variable accessible to all
of the actions. Users should avoid names beginning with yy because the
yacc parser uses only such names. In the examples shown thus far all the
values are integers. A discussion of values of other types is found in the
section "Advanced Topics.1t

Lexical Analysis
The user must supply a lexical analyzer to read the input stream and

communicate tokens (with values, if desired) to the parser. The lexical
analyzer is an integer-valued function called yylex. The function returns an
integer, the token number, representing the kind of token read. If there is a
value associated with that token, it should be assigned to the external vari­
able yylval.

The parser and the lexical analyzer must agree on these token numbers
in order for communication between them to take place. The numbers may
be chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers sym­
bolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the yacc specification file. The
relevant portion of the lexical analyzer might look like

6-10 PROGRAMMER'S GUIDE

Basic Specifications

int yylex()
{

extern int yylval;
int 0;

o = qetchar();

switch (0)

{

case '0':
case '1':

case '9':
yylval = 0 - '0';
return (DIGIT);

to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to
the numerical value of the digit. Provided that the lexical analyzer code is
placed in the subroutines section of the specification file, the identifier
DIGIT is defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The
only pitfall to avoid is using any token names in the grammar that are
reserved or significant in C language or the parser. For example, the use of
token names if or while will almost certainly cause severe difficulties when
the lexical analyzer is compiled. The token name error is reserved for error
handling and should not be used naively.

In the default situation, token numbers are chosen by yace. The default
token number for a literal character is the numerical value of the character
in the local character set. Other names are assigned token numbers starting
at 257. If the yaec command is invoked with the -d option a file called
y.tab.h is generated. y.tab.h contains #define statements for the tokens.

yacc 6-11

Basic Specifications

If the user prefers to assign the token numbers, the first appearance of
the token name or literal in the declarations section must be followed
immediately by a nonnegative integer. This integer is taken to be the token
number of the name or literal. Names and literals not defined this way are ~

assigned default definitions by yacc. The potential for duplication exists }
here. Care must be taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or
negative. This token number cannot be redefined by the user. Thus, all
lexical analyzers should be prepared to return 0 or a negative number as a
token upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex utility.
Lexical analyzers produced by lex are designed to work in close harmony
with yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. lex can be easily used to produce
quite complicated lexical analyzers, but there remain some languages (such
as FORTRAN), which do not fit any theoretical framework and whose lexi­
cal analyzers must be crafted by hand.

6-12 PROGRAMMER'S GUIDE

Parser Operation

yacc turns the specification file into a C language procedure, which
parses the input according to the specification given. The algorithm used to
go from the specification to the parser is complex and will not be discussed
here. The parser itself, though, is relatively simple and understanding its
usage will make treatment of error recovery and ambiguities easier.

The parser produced by yacc consists of a finite state machine with a
stack. The parser is also capable of reading and remembering the next
input token (called the look-ahead token). The current state is always the
one on the top of the stack. The states of the finite state machine are given
small integer labels. Initially, the machine is in state 0 (the stack contains
only state 0) and no look-ahead token has been read.

The machine has only four actions available-shift, reduce, accept, and
error. A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead
token to choose the action to be taken. If it needs one and does not
have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This may result
in states being pushed onto the stack or popped off of the stack and
in the look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever
a shift action is taken, there is always a look-ahead token. For example, in
state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the
top of the stack). The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds.
reduce actions are appropriate when the parser has seen the right-hand side
of a grammar rule and is prepared to announce that it has seen an instance
of the rule replacing the right-hand side by the left-hand side. It may be
necessary to consult the look-ahead token to decide whether or not to
reduce (usually it is not necessary). In fact, the default action (represented
by a dot) is often a reduce action.

yace 6-13

Parser Operation

reduce actions are associated with individual grammar rules. Grammar
rules are also given small integer numbers, and this leads to some confu­
sion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule

A x y z

is being reduced. The reduce action depends on the left-hand symbol (A in
this case) and the number of symbols on the right-hand side (three in this
case). To reduce, first pop off the top three states from the stack. (In gen­
eral, the number of states popped equals the number of symbols on the
right side of the rule.) In effect, these states were the ones put on the stack
while recognizing x, y, and z and no longer serve any useful purpose.
After popping these states, a state is uncovered, which was the state the
parser was in before beginning to process the rule. Using this uncovered
state and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing con­
tinues. There are significant differences between the processing of the left­
hand symbol and an ordinary shift of a token, however, so this action is
called a goto action. In particular, the look-ahead token is cleared by a shift
but is not affected by a goto. In any case, the uncovered state contains an
entry such as

A 9000 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action turns back the clock in the parse popping
the states off the stack to go back to the state where the right-hand side of
the rule was first seen. The parser then behaves as if it had seen the left
side at that time. If the right-hand side of the rule is empty, no states are
popped off of the stacks. The uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the rule
is executed before the stack is adjusted. In addition to the stack holding the
states, another stack running in parallel with it holds the values returned
from the lexical analyzer and the actions. When a shift takes place, the

6-14 PROGRAMMER'S GUIDE

Parser Operation

external variable yylval is copied onto the value stack. After the return
from the user code, the reduction is carried out. When the goto action is
done, the external variable yyval is copied onto the value stack. The
pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the look-ahead token is the
end-marker and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it
has seen (together with the look-ahead token) cannot be followed by any­
thing that would result in a legal input. The parser reports an error and
attempts to recover the situation and resume parsing. The error recovery (as
opposed to the detection of error) will be discussed later.

Consider:

"token DnG I:(N; DELL

*rhyme SOUI'rl place

place DELL

as a yacc specification.

When yacc is invoked with the -v option, a file called y.output is pro­
duced with a human-readable description of the parser. The y.output file
corresponding to the above grammar (with some statistics stripped off the
end) follows.

yacc 6-15

Parser Operation

state 0
$accept

DIN; shift 3

• error

rhyme goto 1
sound gem 2

state 1
$accept

Send accept

• error

state 2
rhyme

DELL shift 5

• error

place goto 4

state 3
sound

I:X::N:; shift 6

• error

'J

state 4
rhyme soon:l place_ (1)

reduce 1

state 5
place DELL (3)

reduce 3

state 6
sound (2)

reduce 2

6-16 PROGRAMMER'S GUIDE

Parser Operation

The actions for each state are specified and there is a description of the pars­
ing rules being processed in each state. The _ character is used to indicate
what has been seen and what is yet to come in each rule. The following
input

can be used to track the operations of the parser. Initially, the current state
is state o. The parser needs to refer to the input in order to decide between
the actions available in state 0, so the first token, DING, is read and becomes
the look-ahead token. The action in state 0 on DING is shift 3, state 3 is
pushed onto the stack, and the look-ahead token is cleared. State 3 becomes
the current state. The next token, DONG, is read and becomes the look­
ahead token. The action in state 3 on the token DONG is shift 6, state 6 is
pushed onto the stack, and the look-ahead is cleared. The stack now con­
tains 0, 3, and 6. In state 6, without even consulting the look-ahead, the
parser reduces by

sound : D~ IXH;

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering
state O. Consulting the description of state 0 (looking for a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
look-ahead token is cleared. In state 5, the only action is to reduce by rule
3. This has one symbol on the right-hand side, so one state, 5, is popped
off, and state 2 is uncovered. The goto in state 2 on place (the left side of
rule 3) is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only
action is to reduce by rule 1. There are two symbols on the right, so the top
two states are popped off, uncovering state 0 again. In state 0, there is a
goto on rhyme causing the parser to enter state 1. In state I, the input is
read and the end-marker is obtained indicated by $end in the y.output file.
The action in state 1 (when the end-marker is seen) successfully ends the
parse.

The reader is urged to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG, DING
DONG DELL DELL, etc. A few minutes spent with this and other simple
examples is repaid when problems arise in more complicated contexts.

yacc 6-17

Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that
can be structured in two or more different ways. For example, the grammar
rule

expr expr'-' expr

is a natural way of expressing the fact that one way of forming an arith­
metic expression is to put two other expressions together with a minus sign
between them. Unfortunately, this grammar rule does not completely
specify the way that all complex inputs should be structured. For example,
if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association.)

yacc detects such ambiguities when it is attempting to build the parser.
Given the input

expr - expr - expr

consider the problem that confronts the parser. When the parser has read
the second expr, the input seen

expr - expr

matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying the rule, the input is
reduced to expr (the left side of the rule). The parser would then read the
final part of the input

- expr

and again reduce. The effect of this is to take the left associative interpreta­
tion.

6-18 PROGRAMMER'S GUIDE

Ambiguity and Conflicts

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue reading
the input until

expr - expr - expr

is seen. It could then apply the rule to the rightmost three symbols reduc­
ing them to expr, which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to take
the right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It has no
way of deciding between them. This is called a shift-reduce conflict. It
may also happen that the parser has a choice of two legal reductions. This
is called a reduce-reduce conflict. Note that there are never any shift-shift
conflicts.

When there are shift-reduce or reduce-reduce conflicts, yacc still pro­
duces a parser. It does this by selecting one of the valid steps wherever it
has a choice. A rule describing the choice to make in a given situation is
called a disambiguating rule.

yacc invokes two default disambiguating rules:

1. In a shift-reduce conflict, the default is to do the shift.

2. In a reduce-reduce conflict, the default is to reduce by the earlier
grammar rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there
is a choice. Rule 2 gives the user rather crude cO.f\trol over the behavior of
the parser in this situation, but reduce-reduce conflicts should be avoided
when possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc
can construct. The use of actions within rules can also cause conflicts if the
action must be done before the parser can be sure which rule is being
recognized. In these cases, the application of disambiguating rules is inap­
propriate and leads to an incorrect parser. For this reason, yacc always

yacc 6-19

Ambiguity and Conflicts

reports the number of shift-reduce and reduce-reduce conflicts resolved by
Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to pro- .~

duce a correct parser, it is also possible to rewrite the grammar rules so that)
the same inputs are read but there are no conflicts. For this reason, most
previous parser generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat unnatural and
produces slower parsers. Thus, yacc will produce parsers even in the pres-
ence of conflicts.

As an example of the power of disambiguating rules, consider

stat IF '(' cand ')'
IF '(' cx:md ')'

stat
stat ELSE stat

which is a fragment from a programming language involving an if-then­
else statement. In these rules, IF and ELSE are tokens, cond is a nonterminal
symbol describing conditional (logical) expressions, and stat is a nontermi­
nal symbol describing statements. The first rule will be called the simple if
rule and the second the if-else rule.

These two rules form an ambiguous construction because input of the
form

IF C1 IF(C2 81 ELSE 82

. can be structured according to these rules in two ways

IF (C1)
{

IF (C2)
S1

}

ELSE
S2

or

6-20 PROGRAMMER'S GUIDE

---------------------- Ambiguity and Conflicts

IF (C1)
{

IF (C2)

51
ELSE

52

where the second interpretation is the one given in most programming
languages having this construct; each ELSE is associated with the last
preceding un-ELSE'd IF. In this example, consider the situation where the
parser has seen

IF (C1 IF(C2 51

and is looking at the ELSE. It can immediately reduce by the simple if rule
to get

IF (C1 stat

and then read the remaining input

ELSE 52

and reduce

IF (C1 stat ELSE 52

by the if-else rule. This leads to the first of the above groupings of the
input.

On the other hand, the ELSE may be shifted, S2 read, and then the
right-hand portion of

IF (C1 IF (C2 51 ELSE S2

can be reduced by the if-else rule to get

IF (C1 stat

yacc 6-21

Ambiguity and Conflicts

which can be reduced by the simple if rule. This leads to the second of the
above groupings of the input which is usually desired.

Once again, the parser can do two valid things-there is a shift-reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in ~,.';..
this case, which leads to the desired grouping.

This shift-reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as

IF (C1 IF(C2 81

have already been seen. In general, there may be many conflicts, and each
one will be associated with an input symbol and a set of previously read
inputs. The previously read inputs are characterized by the state of the
parser.

The conflict messages of yacc are best understood by examining the ver­
bose (-v) option output file. For example, the output corresponding to the
above conflict state might be

23: shift-reduce oanflict (shift 45, reduce 18) an ELSE

state 23

stat
stat

IF
IF

oond
oond

stat (18)

stat ELSE stat

ELSE shift 45

reduce 18

where the first line describes the conflict-giving the state and the input
symbol. The ordinary state description gives the grammar rules active in
the state and the parser actions. Recall that the underline marks the portion
of the grammar rules, which has been seen. Thus in the example, in state
23 the parser has seen input corresponding to)

IF oond stat

6-22 PROGRAMMER'S GUIDE

---------------------- Ambiguity and Conflicts

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into
state 45. State 45 will have, as part of its description, the line

stat IF (cand) stat ELSE stat

because the ELSE will have been shifted in this state. In state 23, the alter­
native action (describing a dot, .), is to be done if the input symbol is not
mentioned explicitly in the actions. In this case, if the input symbol is not
ELSE, the parser reduces to

stat IF' (, ccmd ') , stat

by grammar rule 18.

Once again, notice that the numbers following shift commands refer to
other states, while the numbers following reduce commands refer to gram­
mar rule numbers. In the y.output file, the rule numbers are printed in
parentheses after those rules, which can be reduced. In most states, there is
a reduce action possible in the state and this is the default command. The
user who encounters unexpected shift-reduce conflicts will probably want
to look at the verbose output to decide whether the default actions are
appropriate.

yacc 6-23

Precedence
There is one common situation where the rules given above for resolv­

ing conflicts are not sufficient. This is in the parsing of arithmetic expres­
sions. Most of the commonly used constructions for arithmetic expressions
can be naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to
create parsers that are faster and easier to write than parsers constructed
from unambiguous grammars. The basic notion is to write grammar rules of
the form

expr expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts. As disambiguating rules, the user
specifies the precedence or binding strength of all the operators and the
associativity of the binary operators. This information is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these rules and con- ')
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declara­
tions section. This is done by a series of lines beginning with a yacc key­
word: %Ieft, %right, or %nonassoc, followed by a list of tokens. All of the
tokens on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or bind­
ing strength. Thus:

%left ' +' '-'
%left ' *' '1'

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to
describe right associative operators, and the keyword %nonassoc is used to
describe operators, like the operator .LT. in FORTRAN, that may not associ­
ate with themselves. Thus:

A •LT. B •LT. C

6-24 PROGRAMMER'S GUIDE

Precedence

is illegal in FORTRAN and such an operator would be described with the
keyword %nonassoc in yacc. As an example of the behavior of these
declarations, the description

%right '=
,

%left '+' ,- ,

%left '. ' 'I'

~

expr expr '=' expr
expr '+' expr
expr

,- ,
expr

expr '.' expr
expr 'I' expr
NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows

a = (b = («c*d)-e) - (f*g)))

in order to perform the correct precedence of operators. When this mechan­
ism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic
representation but different precedences. An example is unary and binary
minus, -.

Unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular
grammar rule. The keyword %prec appears immediately after the body of
the grammar rule, before the action or closing semicolon, and is followed
by a token name or literal. It causes the precedence of the grammar rule to
become that of the following token name or literal. For example, the rules

yacc 6-25

Precedence

%left ' +' '-'
%left '.' '1'

expr expr '+' expr
expr ,-' expr
expr '.' expr
expr 'I' expr,- ,

expr "'Prec '.'
NAME

might be used to give unary minus the same precedence as multiplication.

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing
conflicts. They give rise to the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens and
literals that have them.

2. A precedence and associativity is associated with each grammar rule.
It is the precedence and associativity of the last token or literal in
the body of the rule. If the %prec construction is used, it overrides
this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce-reduce conflict or there is a shift-reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two default disambiguating
rules given at the beginning of the section are used, and the
conflicts are reported.)

6-26 PROGRAMMER'S GUIDE

Precedence

4. If there is a shift-reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action-shift or
reduce-associated with the higher precedence. If precedences are
equal, then associativity is used. Left associative implies reduce;
right associative implies shift; nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of
shift-reduce and reduce-reduce conflicts reported by yacc. This means that
mistakes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them in
a cookbook fashion until some experience has been gained. The y.output
file is very useful in deciding whether the parser is actually doing what was
intended.

yacc 6-27

Error Handling

Error handling is an extremely difficult area, and many of the problems
are semantic ones. When an error is found, for example, it may be neces­
sary to reclaim parse tree storage, delete or alter symbol table entries,
and/or, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It
is more useful to continue scanning the input to find further syntax errors.
This leads to the problem of getting the parser restarted after an error. A
general class of algorithms to do this involves discarding a number of
tokens from the input string and attempting to adjust the parser so that
input can continue.

To allow the user some control over this process, yacc provides the
token name error. This name can be used in grammar rules. In effect, it
suggests places where errors are expected and recovery might take place.
The parser pops its stack until it enters a state where the token error is
legal. It then behaves as if the token error were the current look-ahead
token and performs the action encountered. The look-ahead token is then
reset to the token that caused the error. If no special error rules have been
specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detect­
ing an error, remains in error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in error
state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat error

means that on a syntax error the parser attempts to skip over the statement
in which the error is seen. More precisely, the parser scans ahead, looking
for three tokens that might legally follow a statement, and start processing
at the first of these. If the beginnings of statements are not sufficiently dis­
tinctive, it may make a false start in the middle of a statement and end up
reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

6-28 PROGRAMMER'S GUIDE

Error Handling

Error rules such as the above are very general but difficult to control.
Rules such as

stat error , .,,
are somewhat easier. Here, when there is an error, the parser attempts to
skip over the statement but does so by skipping to the next semicolon. All
tokens after the error and before the next semicolon cannot be shifted and
are discarded. When the semicolon is seen, this rule will be reduced and
any cleanup action associated with it performed.

Another form of error rule arises in interactive applications where it
may be desirable to permit a line to be reentered after an error. The follow­
ing example

inprt. error'\n'

(void) printf ("Reenter last line: II);

}

inprt.

$$ = $4;

is one way to do this. There is one potential difficulty with this approach.
The parser must correctly process three input tokens before it admits that it
has correctly resynchronized after the error. If the reentered line contains
an error in the first two tokens, the parser deletes the offending tokens and
gives no message. This is clearly unacceptable. For this reason, there is a
mechanism that can force the parser to believe that error recovery has been
accomplished. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example can be
rewritten as

yacc 6-29

Error Handling

error '\n'
{

yyen:ok;
(void) printf("Reenter last line: II);

}

inplt

SS = $4;

which is somewhat better.

As previously mentioned, the token seen immediately after the error
symbol is the input token at which the error was discovered. Sometimes,
this is inappropriate; for example, an error recovery action might take upon
itself the job of finding the correct place to resume input. In this case, the
previous look-ahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after
error were to call some sophisticated resynchronization routine (supplied by
the user) that attempted to advance the input to the beginning of the next
valid statement. After this routine is called, the next token returned by
yylex is presumably the first token in a legal statement. The old illegal
token must be discarded and the error state reset. A rule similar to

6-30 PROGRAMMER'S GUIDE

~' stat error

resynch();

yyerrok ;
yyclearin;

Error Handling

~'

could perform this.

These mechanisms are admittedly crude but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can
get control to deal with the error actions required by other portions of the
program.

yacc 6-31

The yacc Environment

When the user inputs a specification to yacc, the output is a file of C
language subroutines, called y.tab.c. The function produced by yacc is
called yyparseO; it is an integer valued function. When it is called, it in
turn repeatedly calls yylexO, the lexical analyzer supplied by the user (see
"Lexical Analysis"), to obtain input tokens. Eventually, an error is detected,
yyparseO returns the value 1, and no error recovery is possible, or the lexi­
cal analyzer returns the end-marker token and the parser accepts. In this
case, yyparseO returns the value O.

The user must prOVide a certain amount of environment for this parser
in order to obtain a working program. For example, as with every C
language program, a routine called mainO must be defined that eventually
calls yparseO. In addition, a routine called yyerrorO is needed to print a
message when a syntax error is detected.

These two routines must be supplied in one form or another by the
user. To ease the initial effort of using yace, a library has been prOVided
with default versions of mainO and yerrorO. The library is accessed by a
-Iy argument to the ce(l) command or to the loader. The source codes

maine)
{

return (yyparse());
}

and

include <stdio.h>

yyerror(s)

char *s;
{

(void) fprintf (steierr, n%s\n", s);
}

show the triviality of these default programs. The argument to yerrorO is a
string containing an error message, usually the string syntax error. The
average application wants to do better than this. Ordinarily, the program
should keep track of the input line number and print it along with the mes- ')
sage when a syntax error is detected. The external integer variable yychar
contains the look-ahead token number at the time the error was detected.
This may be of some interest in giving better diagnostics. Since the mainO

6-32 PROGRAMMER'S GUIDE

~\,

The yacc Environment

routine is probably supplied by the user (to read arguments, etc.), the yacc
library is useful only in small projects or in the earliest stages of larger
ones.

The external integer variable yydebug is normally set to O. If it is set to
a nonzero value, the parser will output a verbose description of its actions
including a discussion of the input symbols read and what the parser
actions are. It is possible to set this variable by using sdb.

yacc 6-33

Hints for Preparing Specifications

This part contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more or less
independent.

Input Style
It is difficult to provide rules with substantial actions and still have a

readable specification file. The folloWing are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters
for nonterminal names. This is useful in debugging.

2. Put grammar rules and actions on separate lines. It makes editing
easier.

3. Put all rules with the same left-hand side together. Put the left­
hand side in only once and let all following rules begin with a vert­
ical bar.

4. Put a semicolon only after the last rule with a given left-hand side ~

and put the semicolon on a separate line. This allows new rules to }
be easily added.

5. Indent rule bodies by one tab stop and action bodies by two tab
stops.

6. Put complicated actions into subroutines defined in separate files.

Example 1 is written following this style, as are the examples in this sec­
tion (where space permits). The user must decide about these stylistic ques­
tions. The central problem, however, is to make the rules visible through
the morass of action code.

Left Recursion
The algorithm used by the yacc parser encourages so called left recur­

sive grammar rules. Rules of the form

name name rest_of_:role ;

match this algorithm. These rules such as

6-34 PROGRAMMER'S GUIDE

~' and

list item
list

, ,, item

Hints for Preparing Specifications

~'

seq item
seq item

frequently arise when writing specifications of sequences and lists. In each
of these cases, the first rule will be reduced for the first item only; and the
second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser is a bit bigger; and the items are seen and reduced from right to
left. More seriously, an internal stack in the parser is in danger of
overflowing if a very long sequence is read. Thus, the user should use left
recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any mean­
ing, and if so, consider writing the sequence specification as

seq 1* empty *1
seq item

using an empty rule. Once again, the first rule would always be reduced
exactly once before the first item was read, and then the second rule would
be reduced once for each item read. Permitting empty sequences often
leads to increased generality. However, conflicts might arise if yacc is asked
to decide which empty sequence it has seen when it hasn't seen enough to
know!

yacc 6-35

Hints for Preparing Specifications

Lexical Tie-Ins
Some lexical decisions depend on context. For example, the lexical ~

analyzer might want to delete blanks normally, but not within quoted
strings, or names might be entered into a symbol table in declarations but
not in expressions. One way of handling these situations is to create a glo-
bal flag that is examined by the lexical analyzer and set by actions. For
example,

%{
int dflag;

%}
other declarations •..

%%

prog decls stats)
decls 1* empty *1

dflag = 1;

decls declaration

stats 1* empty *1

dflag =0;

stats statement

... other rules ...

)
specifies a program that consists of zero or more declarations followed by
zero or more statements. The flag dflag is now 0 when reading statements

6-36 PROGRAMMER'S GUIDE

Hints for Preparing Specifications

and 1 when reading declarations, except for the first token in the first state­
ment. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many
cases, this single token exception does not affect the lexical scan.

This kind of back-door approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if
not impossible, to do otherwise.

Reserved Words
Some programming languages permit you to use words like if, which

are normally reserved as label or variable names, provided that such use
does not conflict with the legal use of these names in the programming
language. This is extremely hard to do in the framework of yacc. It is
difficult to pass information to the lexical analyzer telling it this instance of
if is a keyword and that instance is a variable. The user can make a stab at
it using the mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until
then, it is better that the keywords be reserved, i.e., forbidden for use as
variable names. There are powerful stylistic reasons for preferring this.

yacc 6-37

Advanced Topics

This part discusses a number of advanced features of yacc.

Simulating error and accept in Actions
The parsing actions of error and accept can be simulated in an action by

use of macros YYACCEPT and YYERROR. The YYACCEPT macro causes
yyparseO to return the value 0; YYERROR causes the parser to behave as if
the current input symbol had been a syntax error; yyerrorO is called, and
error recovery takes place. These mechanisms can be used to simulate
parsers with multiple end-markers or context sensitive syntax checking.

Accessing Values in Enclosing Rules
An action may refer to values returned by actions to the left of the

current rule. The mechanism is simply the same as with ordinary actions, a
dollar sign followed by a digit.

6·38 PROGRAMMER'S GUIDE

sent adj 11IOOn verb adj 00lD'l

look at the sentence ...

Advanced Topics

adj 'DIE

$$ ='DIE;

$$ = n:uG;

$$ = IX:G;

if($0 == n:uG)
{

(void) printf("what?\n");

In this case, the digit may be 0 or negative. In the action following the
word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about
what might precede the symbol noun in the input. There is also a dis­
tinctly unstructured flavor about this. Nevertheless, at times this mechan­
ism prevents a great deal of trouble especially when a few combinations are
to be excluded from an otherwise regular structure.

yacc 6-39

Advanced Topics

Support for Arbitrary Value Types
By default, the values returned by actions and the lexical analyzer are

integers. yacc can also support values of other types including structures.
In addition, yacc keeps track of the types and inserts appropriate union
member names so that the resulting parser is strictly type checked. yacc
value stack is declared to be a union of the various types of values desired.
The user declares the union and associates union member names with each
token and nonterminal symbol having a value. When the value is refer­
enced through a $$ or $n construction, yacc will automatically insert the
appropriate union name so that no unwanted conversions take place. In
addition, type checking commands such as lint are far more silent.

There are three mechanisms used to provide for this typing. First, there
is a way of defining the union. This must be done by the user since other
subroutines, notably the lexical analyzer, must know about the union
member names. Second, there is a way of associating a union member
name with tokens and nonterminals. Finally, there is a mechanism for
describing the type of those few values where yacc cannot easily determine
~~. ~

,I

To declare the union, the user includes

rcmri.on
{

body of union
}

in the declaration section. This declares the yacc value stack and the exter­
nal variables yylval and yyval to have type equal to this union. If yacc was
invoked with the -d option, the union declaration is copied onto the
y.tab.h file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be associated
with the various terminal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this f~llows one of the key- ~

words %token, %left, %right, and %nonassoc, the union member name is)
associated with the tokens listed. Thus, saying

%left <optype> ' +'

6-40 PROGRAMMER'S GUIDE

'-'

------------------------- Advanced Topics

causes any reference to values returned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used to
associate union member names with nonterminals. Thus, one might say

%type <nodetype> expr stat

to associate the union member nodetype with the nonterminal symbols
expr and stat.

There remain a couple of cases where these mechanisms are insufficient.
If there is an action within a rule, the value returned by this action has no a
priori type. Similarly, reference to left context values (such as $0) leaves
yacc with no easy way of knowing the type. In this case, a type can be
imposed on the reference by inserting a union member name between <
and > immediately after the first $. The example

rule aaa

$<intval>$:: 3;
}

bbb

£un($<int'ra1>2, $<other>O);

shows this usage. This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in Example 2. The facilities in this sub­
section are not triggered until they are used. In particular, the use of %type
will turn on these mechanisms. When they are used, there is a fairly strict
level of checking. For example, use of $n or $$ to refer to something with
no defined type is diagnosed. If these facilities are not triggered, the yacc
value stack is used to hold ints.

yacc 6-41

Advanced Topics

yacc Input Syntax
This section has a description of the yacc input syntax as a yacc

specification. Context dependencies, etc. are not considered. Ironically,
although yacc accepts an LALR(l) grammar, the yacc input specification
language is most naturally specified as an LR(2) grammar; the sticky part
comes when an identifier is seen in a rule immediately following an action.
If this identifier is followed by a colon, it is the start of the next rule; other­
wise, it is a continuation of the current rule, which just happens to have an
action embedded in it. As implemented, the lexical analyzer looks ahead
after seeing an identifier and decides whether the next token (skipping
blanks, newlines, and comments, etc.) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings)
are also returned as IDENTIFIERs but never as part of C_IDENTIFIERs.

1* basic entries *1
"token IDENl'IF.Im 1* includes identifiers and literals *1
"token C ImNl'IFIER 1* identifier (bIt oot literal) follC7wlled by a : *1
%token NUMBER 1* [0-9]+ *1

1* reserved \IiOrds: "type=>'l'XPE %1eft=>LEFl',etc. *1

,~

J
l

"taken
"token
"token

1* the "" mark *1
1* the ,,{ mark *1
1* the ,,} mark *1

"token spec

spec defs MARK rules tail

6-42 PROGRAMMER'S GUIDE

tail MARK

In this action, eat up the rest of the file

1* empty: the seoc:ni MARI< is optional *1

defs 1* empty *1
defs def

def STARr IDEN1'IFIm

UNIOO

Copy union definition to output

LCURL

Copy C code to output file

RC'URL
:rwom tag nlist

Advanced Topics

continued

tag

nlist

1* empty: union tag is optional *1
I < I IDENTIFIER I> I

nmno
nlist nmno
nlist I, I 1'lIJIX)

yace 6-43

Advanced Topics

continued

I1JIIlX) IDENl'IFIER I. Note: literal illegal with " type .1
IDENl'IFIER NtJo1Bm I. Note: illegal with " type .1

rules C_IDENl'IFIER rbody prec
rules rule

rule C ImNl'IFIER rbody prec
,T' rbody prec

act '{'

'}'

Copy action translate $$ etc.

prec I. empty .1
PREX: IDENl'IFIm

PREX: ImNl'IFIER act
prec ';'

6-44 PROGRAMMER'S GUIDE

Examples

1. A Simple Example
This example gives the complete yacc applications for a small desk cal­

culator; the calculator has 26 registers labeled a through z and accepts arith­
metic expressions made up of the operators

+, -, ., /, % (trod operator), &. (bitwise and), I (bitwise or),
and assigmnents.

If an expression at the top level is an assignment, only the assignment is
done; otherwise, the expression is printed. As in the C language, an integer
that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to
be decimal.

As an example of a yacc specification, the desk calculator does a reason­
able job of showing how precedence and ambiguities are used and demon­
strates simple recovery. The major oversimplifications are that the lexical
analyzer is much simpler than for most applications, and the output is pro­
duced immediately line by line. Note the way that decimal and octal
integers are read in by grammar rules. This job is probably better done by
the lexical analyzer.

%{
:inc:lude <stdio.h>
:inc:lude <ctype.h>

int regs[26] ;
int base;

%}

%start list

%token DIGIT LEl'l'm

%left' I'
%left '&'

%left ' +' '-'
%left '.' 'I' '%'

yacc 6-45

Examples

%left mmros / .. suwlies precedence for unaxy minus ../

* /.. beginn:in:} of rules section ../

list : / .. empty ../

list stat '\n'
list error '\n'

yyenok;

stat : expr

(void) printf(1I~\nn, $1);

LErl'ER '::' expr

regs[$1] :: $3;

continued

~

J
expr : .(. expr .).

{

$$:: $2;

expr •+' expr

$S =$1 + $3;

expr •-' expr

SS =$1 - $3;

expr expr

$$:: $1 .. $3;

expr •/. expr
~

$S :: $1 / $3;

exp .". expr

6-46 PROGRAMMER'S GUIDE

int yylex(
{

Examples

continued

$$ = $1 " $3;

expr ,&' expr

$$ = $1 &$3;

expr , l' expr

$$:= $1 : $3;

'-' expr %prec tMINtJS

$$ = -,$2;

$$:= reg($1];

DIGIT

$$ = $1; base := ($1==0) ? 8 10;

number DIGIT

$$ = base * $1 + $2;

1* lexical analysis :z:outine *1
1* return~ for lowercase letter, *1
1* yylval := 0 t:hroogh 25 *1
1* re'bJrns DIGIT for digit, yylval := 0 through 9 *1
1* all other characters are returned inmediately *1

yacc 6-47

Examples

continued

int c;
/*skip blanks*/

while «c =getchar(» = ' ')

/* c is now nonblank */

if (islower(c»
{

yylval =c - 'a';
retum. (LE"l'l'm);

}

if (isdigit(c»
}

yylval = c - '0';
retum (DIGIT);

}

retunl (c);

2. An Advanced Example
This section gives an example of a grammar using some of the advanced

features. The desk calculator example in Example 1 is modified to provide a
desk calculator that does floating point interval arithmetic. The calculator
understands floating point constants; the arithmetic operations +, - ..., I,
unary - a through z. Moreover, it also understands intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued variables A ~,':"

through Z that may also be used. The usage is similar to that in Example 1; '}
assignments return no value and print nothing while expressions print the
(floating or interval) value.

6·48 PROGRAMMER'S GUIDE

Examples

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure consisting of the left and right end­
point values stored as doubles. This structure is given a type name, INTER­
VAL, by using typedef. yacc value stack can also contain floating point
scalars and integers (used to index into the arrays holding the variable
values). Notice that the entire strategy depends strongly on being able to
assign structures and unions in C language. In fact, many of the actions call
functions that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions-division by an interval containing 0 and an interval presented
in the wrong order. The error recovery mechanism of yacc is used to throw
away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (for
example, scalar or interval) of intermediate expressions. Note that scalar
can be automatically promoted to an interval if the context demands an
interval value. This causes a large number of conflicts when the grammar is
run through yacc: 18 shift-reduce and 26 reduce-reduce. The problem can
be seen by looking at the two input lines.

2.5 + (3.5 - 4.)

and

2.5 + (3.5, 4)

Notice that the 2.5 is to be used in an interval value expression in the
second example, but this fact is not known until the comma is read. By this
time, 2.5 is finished, and the parser cannot go back and change its mind.
More generally, it might be necessary to look ahead an arbitrary number of
tokens to decide whether to convert a scalar to an interval. This problem is
evaded by having two rules for each binary interval valued operator-one
when the left operand is a scalar and one when the left operand is an inter­
val. In the second case, the right operand must be an interval, so the
conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the
above conflicts. They are resolved by listing the rules that yield scalars first
in the specification file; in this way, the conflict will be resolved in the
direction of keeping scalar valued expressions scalar valued until they are
forced to become intervals.

yacc 6-49

Examples

This way of handling multiple types is very instructive. If there were
many kinds of expression types instead of just two, the number of rules
needed would increase dramatically and the conflicts even more dramati­
cally. Thus, while this example is instructive, it is better practice in a more
normal programming language environment to keep the type information
as part of the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is
the treatment of floating point constants. The C language library routine
atofO is used to do..the actual conversion from a character string to a
double-precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar provoking a syntax error
in the parser and thence error recovery.

,,{

#include <stdio.11>
#include <ctype.11>

typedef struct interval
{

double 10, hi;
INI'ERV'AL;

INl'ERVAL WIll0, vdivO;

dooble atof() ;

dooble dreg[26] ;
INl'ERVAL vreg[26];

"}

%start line

~on

{

int ival;
double dval;
Dn'ERVAL vval;

"token <ival> mEG WID 1* indices into dreg, vreg arrays *1

6-50 PROGRAMMER'S GUIDE

..~

~

Examples

continued

"token <dval> cx:NST

"'type <dval> dexp

"'type <VVa1> vexp

1* floa.tiD] point cx:mstant *1

1* expression *1

1* interval expressicm *1

/* precedence infOxm!lticm aboo,t the operators *1

%left '+' '-'
%left ' *' ,/'
%left tHINtJS / * precedence for una%Y minus *1

~'

~

lines

line

/*~ of rules secticm *1

/* en;rt:y */
lines line

dexp '\n'

(void) printf("%15.8f\n" ,$1) ;

vexp '\n'

~

(void) printf("(%15.8f, "15.8f)\n", $1.10, $1.hi);

ImEG '=' dexp '\n'

dreg[$1] = $3;

VRm '=' vexp '\n'

vreg[$1] = $3;

error '\n'

yyen:ok;

dexp cx:NST

yacc 6-51

Examples

$$ = dreq[$1];

dexp ,+' dexp

$$ = $1 + $3;

dexp ,-' dexp

$$ = $1 - $3;

dexp , *' dexp

$$ =$1 * $3;

dexp , /' dexp

$$ = $1 / $3;

,-' dexp %pre<: tJ.tINUS

$$ =-$2;

, (' dexp')'

$$ = $2;

vexp dexp

$$.hi = $$.10 = $1;

'(' dexp ',' dexp ')'

$$.10 =$2;
$$.hi = $4;

if($$.10 > $$.hi)

6·52 PROGRAMMER'S GUIDE

continued

Examples

continued

(void) printf("interval oo.t of order \n");

~;

$$ = vreg[$1];

vexp '+' vexp

$$.hi =$1.hi + $3.hi;
$$.10 =$1.10 + $3.10;

dexp '+' vexp

$$.hi = $1 + $3.hi;
$$.10 = $1 + $3.10;

vexp '-' vexp

$$.hi =$1.hi - $3.10;
$$.10 = $1.10 - $3.hi;

dvep '-' vdep

$$.hi =$1 - $3.10;
$$.10 = $1 - S3.hi

vexp '*' vexp

$S = vmul($1.lo,$.hi,$3)

dexp '*' vexp

$S = vmul($1, $1. $3)

vexp , /' vexp

yacc 6-53

Examples

if(dcheck($3))~;
$$ =vdiv($1.10, $1.hi, $3)

dexp ,I' vexp

if(dcheck($3))~;
$$ =vdiv($1.10, $1.hi, $3)

,-' vexp %prec tMINUS

$$.hi = -$2.10;$$.10 = -$2.hi

'(' vexp ')'

$$ = $2

define BSZ 50 1* buffer size for floatinq lXlint IlUl'llber *1

1* lexical analysis *1

int yy1ex()
{

register int c;

1* skip aver blanks *1
while ({ c = getehar(» = ' ')

if (isupper(c»
{

yy1val.ival = c - 'A'
return (VRm);

}

if (is1CJli1l1er(c»

6-54 PROGRAMMER'S GUIDE

continued

~.

~.
\.

Examples

continued

yylval.ival =c - 'a' ,
retmn(I:mX;);

1* gobble up digits. points, exponents *1

if (isdigit(c) II c == '.')
{

char buf [BSZ+ 1], *Cp =buf;

int dot =0, exp =0;

for(; (op - blf) < BSZ ++cp, C =getchar(»
{

*Cp =c;
if (isdigit(c»

continue;
if (c = '.')

{

if (dotH : I exp)

retmn ('.'); 1* will cause syntax error *1
continue;

}

if(c == 'e')
{

if (exp++)

retw:n ('e') ; 1* will cause syntax error *1
continue;

}

1* end of number *1
break;

*cp=";
if (cp - buf >= BSZ)

(void) printf("constant too lang - trunc:ated\n");
else

UD:Jetc(c, stdin); 1* p1Sh back last char read *1
yylval.dval = atof(buf);

retmn (cnsr);

yacc 6-55

Examples

continued

return (c);
}

mImVAL
hilo(a, b, c, d)

double a, b, c, d;

1* retuIns the smallest interval oontaining a, b, c, and d *1

I. used by .,1 routine .1
mImVAL v;

if (a > b)
{

v.hi =a;
v.lo =b;

}

else
{

v.hi =b;
v.lo =a;

}

if (c > d)
{

(c > v.hi)
v.hi =c;

(d < v.lo)
v.lo = d;

(d > v.hi)
v.hi = d;

(c < v.lo)
v.lo =c;

if

if

}

else
}

if

if

}

return (v);

6-56 PROGRAMMER'S GUIDE

INTERVAL
W'DJ1(a, b, v)

double a, b;
INl'ERVAL v;

return (hilo(a * v.hi, a * v,lo, b * v.hi, b * v.lo»;
}

dcheck(v)

INl'ERVAL v;

if (v.hi >= O. && v.lo <= 0.)
{

(void) printf("divisor interval cxmtains O.\n");
return (1);

}

return (0);

INTERVAL
vdiv(a, b, v)

double a, b;
INTERVAL v;

return (hilo(a / v.hi, a / v,lo, b / v.hi, b / v.lo»;

Examples

continued

yacc 6-57

7 File and Record Locking

Introduction

Terminology

File Protection
Opening a File for Record Locking
Setting a File Lock
Setting and Removing Record Locks
Getting Lock Information
Deadlock Handling

7-1

7-2

7-4
7-4
7-6

7-10
7-14

7-17

Selecting Advisory or Mandatory
Locking 7-18

Caveat Emptor-Mandatory Locking 7-19
Record Locking and Future Releases of the UNIX

System 7-20

FILE AND RECORD LOCKING

~.

Introduction

Mandatory and advisory file and record locking both are available on
current releases of the UNIX system. The intent of this capability to is pro­
vide a synchronization mechanism for programs accessing the same stores
of data simultaneously. Such processing is characteristic of many multi-user
applications, and the need for a standard method of dealing with the prob­
lem has been recognized by standards advocates like /usr/group, an organi­
zation of UNIX system users from businesses and campuses across the coun­
try.

Advisory file and record locking can be used to coordinate self­
synchronizing processes. In mandatory locking, the standard I/O subrou­
tines and I/O system calls enforce the locking protocol. In this way, at the
cost of a little efficiency, mandatory locking double checks the programs
against accessing the data out of sequence.

The remainder of this chapter describes how file and record locking
capabilities can be used. Examples are given for the correct use of record
locking. Misconceptions about the amount of protection that record locking
affords are dispelled. Record locking should be viewed as a synchronization
mechanism, not a security mechanism.

The manual pages for the fcntl(2) system call, the lockf(3) library func­
tion, and fcntl(S) data structures and commands are referred to throughout
this section. You should read them before continuing.

FILE AND RECORD LOCKING 7-1

Terminology

/~.,.-:.:,
Record

A contiguous set of bytes in a file. The UNIX operating system does
not impose any record structure on files. This may be done by the
programs that use the files.

Cooperating Processes
Processes that work together in some well defined fashion to accom­
plish the tasks at hand. Processes that share files must request per­
mission to access the files before using them. File access permis­
sions must be carefully set to restrict non-cooperating processes
from accessing those files. The term process will be used inter­
changeably with cooperating process to refer to a task obeying such
protocols.

Read (Share) Locks
These are used to gain limited access to sections of files. When a
read lock is in place on a record, other processes may also read lock ~

that record, in whole or in part. No other process, however, may)
have or obtain a write lock on an overlapping section of the file. If
a process holds a read lock it may assume that no other process will
be writing or updating that record at the same time. This access
method also permits many processes to read the given record. This
might be necessary when searching a file, without the contention
involved if a write or exclusive lock were to be used.

Before discussing how record locking should be used, let us first define
a few terms.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When
a write lock is in place on a record, no other process may read or
write lock that record, in whole or in part. If a process holds a
write lock it may assume that no other process will be reading or
writing that record at the same time.

Advisory Locking
A form of record locking that does not interact with the I/O subsys-
tem (i.e. creat(2), open(2), read(2), and write(2». The control over ~,"'"

records is accomplished by requiring an appropriate record lock J
request before I/O operations. If appropriate requests are always
made by all processes accessing the file, then the accessibility of the

7-2 PROGRAMMER'S GUIDE

~.

-------------------------- Terminology

file will be controlled by the interaction of these requests. Advisory
locking depends on the individual processes to enforce the record
locking protocol; it does not require an accessibility check at the
time of each I/O request.

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat(2), open(2), read(2),
and write(2) system calls. If a record is locked, then access of that
record by any other process is restricted according to the type of
lock on the record. The control over records should still be per­
formed explicitly by requesting an appropriate record lock before
I/O operations, but an additional check is made by the system
before each I/O operation to ensure the record locking protocol is
being honored. Mandatory locking offers an extra synchronization
check, but at the cost of some additional system overhead.

FILE AND RECORD LOCKING 7·3

File Protection

There are access permissions for UNIX system files to control who may
read, write, or execute such a file. These access permissions may only be set
by the owner of the file or by the superuser. The permissions of the direc­
tory in which the file resides can also affect the ultimate disposition of a
file. Note that if the directory permissions allow anyone to write in it, then
files within the directory may be removed, even if those files do not have
read, write or execute permission for that user. Any information that is
worth protecting, is worth protecting properly. If your application warrants
the use of record locking, make sure that the permissions on your files and
directories are set properly. A record lock, even a mandatory record lock,
will only protect the portions of the files that are locked. Other parts of
these files might be corrupted if proper precautions are not taken.

Only a known set of programs and/or administrators should be able to
read or write a data base. This can be done easily by setting the set-group­
10 bit (see'chmod(l» of the data base accessing programs. The files can
then be accessed by a known set of programs that obey the record locking
protocol. An example of such file protection, although record locking is not
used, is the mail(1) command. In that command only the particular user
and the mail command can read and write in the unread mail files.

Opening a File for Record Locking
The first requirement for locking a file or segment of a file is having a

valid open file descriptor. If read locks are to be done, then the file must be
opened with at least read accessibility and likewise for write locks and write
accessibility. For our example we will open our file for both read and write
access:

7-4 PROGRAMMER'S GUIDE

File Protection

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd; 1* file descriptor *1
char *filerlaIOO;

ma:m(argc t argv)

int argo;
char .argv[];
{

extern void exit() t perror();

1* get data base file name fran cx:mnand line and open the
* file for read and write access.
*1

if (argo < 2) (
(void) fpr:mtf(stderr, "usage: %oS filename\n", argv[O]);

exi.t(2) ;

}

filename = argv[1];
fd =open(filename, O)UHt);

if (fd < 0) (
perror(filename);
exit(2) ;
}

The file is now open for us to perform both locking and I I 0 functions.
We then proceed with the task of setting a lock.

FILE AND RECORD LOCKING 7-5

File Protection

Setting a File Lock
There are several ways for us to set a lock on a file. In part, these

methods depend upon how the lock interacts with the rest of the program.
There are also questions of performance as well as portability. Two
methods will be given here, one using the fcnt1(2) system call, the other
using the!usr!group standards compatible lockf(3) library function call.

Locking an entire file is just a special case of record locking. For both
these methods the concept and the effect of the lock are the same. The file
is locked starting at a byte offset of zero (0) until the end of the maximum
file size. This point extends beyond any real end of the file so that no lock
can be placed on this file beyond this point. To do this the value of the size
of the lock is set to zero. The code using the fcntl(2) system call is as fol­
lows:

7-6 PROGRAMMER'S GUIDE

File Protection

#include <fentl.h>
#define MAX 'lRY10
int try;
struct flock lck;

try = 0;

1* set up the reoord loc:k:i.D;J structure, the address of which
• is passed to the fentl system call.

*1
lck.l_type = F}rmIJ:1C; 1* sett.in;J a write lock *1
lck.l_whence = 0; I. offset I_start fran beginn.:iD} of file .1
lck.l_start = OL;
lck.l_len = OL; I. until the end of the file address space .1

1* Attempt loc:k:i.D;J MAX_TRY times before giviDJ up.

*1
while (fentl(fd, F SErLK, &1ck) < 0) {

if (ermo ;= EAGAIN I: ermo == EACCES) {

I. there might be other enors cases in which
* you might try again.

*1
if (++try < MAX_TRY) (

(void) sleep(2);
oont:irDJe;

}

(void) fprintf (stderr, "File bJsy try again later I\nil) ;

retum;
}

perrar("fOltl");
exi.t(2) ;

FILE AND RECORD LOCKING 7-7

File Protection

This portion of code tries to lock a file. This is attempted several times
until one of the following things happens:

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf(3) function, the code is as fol­
lows:

7-8 PROGRAMMER'S GUIDE

File Protection

#include <unistd.h>
#define MAX 'mY 10
int t%'y;

try =0;

/. make sure the file pointer
• is at the beginn:inq of the file •./

lseek(fd, OL, 0);

/. Attempt lockinq MAX_'mY times before qiviDJ up•./
while (lockf(fd, F TU::X:K, OL) < 0) {

if (errn::>-== F.AGI.IN I: errno == ENX:ES) {

/. there might be other eaors cases in which
• yen might try again•./

if (++try < MAX_'mY)
sleep(2) ;

cantiJme;
}

(void) fprintf(stderr, "File blsy b:y again laterl\n");
retuzn;

}

perror("lockf") ;
exi.t(2) ;

It should be noted that the lockf(3) example appears to be simpler, but
the fcntl(2) example exhibits additional flexibility. Using the fcntl(2)
method, it is possible to set the type and start of the lock request simply by
setting a few structure variables. lockf(3) merely sets write (exclusive)
locks; an additional system call (lseek(2» is required to specify the start of
the lock.

FILE AND RECORD LOCKING 7·9

File Protection

Setting and Removing Record Locks
Locking a record is done the same way as locking a file except for the)~

differing starting point and length of the lock. We will now try to solve an
interesting and real problem. There are two records (these records may be
in the same or different file) that must be updated simultaneously so that
other processes get a consistent view of this information. (This type of
problem comes up, for example, when updating the interrecord pointers in
a doubly linked list.) To do this you must decide the following questions:

• What do you want to lock?

• For multiple locks, what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if one cannot
obtain all the required locks. It is because of contention for these records
that we have decided to use record locking in the first place. Different pro­
grams might:

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Let us now look at our example of inserting an entry into a doubly
linked list. For the example, we will assume that the record after which the
new record is to be inserted has a read lock on it already. The lock on this
record must be changed or promoted to a write lock so that the record may
be edited.

Promoting a lock (generally from read lock to write lock) is permitted if
no other process is holding a read lock in the same section of the file. If
there are processes with pending write locks that are sleeping on the same
section of the file, the lock promotion succeeds and the other (sleeping)
locks wait. Promoting (or demoting) a write lock to a read lock carries no
restrictions. In either case, the lock is merely reset with the new lock type.

7-10 PROGRAMMER'S GUIDE

File Protection

Because the I usrIgroup lockf function does not have read locks, lock promo­
tion is not applicable to that call. An example of record locking with lock
promotion follows:

struct reooro. {

1* data portion of record *1

};

lang prev;
lang next;

1* iIxiex to previous record in the list *1
1* iIxiex to next record in the list *1

1* 1£lCk praIOtion usirq fentl (2)

* Mlen this routine is entered it is assumed that there are read
* locks on "here" an:i "next".
* If write locks on "here" ani "next" are obtained:
* set a write lock on "this".
* Retunl iroex to "this" record.
* If any write lock i.s J'X)t obtained:

* Restore read locks on "here" am "next".
* Retrove all other locks.
* Retuzn a -1.
*1

10D3'
set3lock (this, here, next)
10D3' this, here, next j

{

struct flock lck;

lck.l_type = F}'lRLCX; 1* setting a write lock *1
lck.l_whence =0; 1* offset I_start fran beg'innin] of file *1
1ck.1_start :: here;
lck.l_len =Elizeof(struC't record);

1* pratOte lock on "here" to write lock *1
if (fentl(fd, F_SE'I'U<.W, &lck) < 0) {

return (-1);

}

1* lock "thin" with write lock *1
lck.1_start :: this;
if (fentl(fd. F_SE'I'U<.W, &lck) < 0)

1* 1Dc'..k on "this" failed;
* der.x:rt:e lock on "hereII to read lock.
*1

lck.l..type =F_RDu::K;

FILE AND RECORD LOCKING 7-11

File Protection

continued

lCk.l_start :::: here;
(void) fmtl(fd, F_SEl'IKW, &lCk);
retuzn (-1);

}

1* prcm:Jte lock. on I1nextll to write lock *1
lCk.l_start :::: next;
if (fmtl(fd, F_SEl'Ll<W, &lCk) < 0) {

1* Lock on IInextl1 failed;
* darote lock on "berel1 to read lock,

*1
lCk.l_type :::: F)IDLCK;
lCk.l_start :::: here;

(void) fmtl(fd, F_~, &lCk);
1* and rem:::JVe lock on "this".

*1
lCk.l_type :::: F_tJNJ:.CIq
lCk.l_start :::: this;
(void) fcntl(fd, F_~, &lCk);

re'bnn (-1) ;1* cannot set lock, tJ:y again or quit *1

retuzn (this);

The locks on these three records were all set to wait (sleep) if another
process was blocking them from being set. This was done with the
F_SETLKW command. If the F_SETLK command was used instead, the fentI
system calls would fail if blocked. The program would then have to be
changed to handle the blocked condition in each of the error return sec­
tions.

Let us now look at a similar example using the lockf function. Since
there are no read locks, all (write) locks will be referenced generically as

~. ~

7-12 PROGRAMMER'S GUIDE

File Protection

1* lock praroti.an usin} 10ckf (3)

* When this rcutine is entered it is assumed that there are
* no locks an ''here'' and "next".
* If locks are obtained:
* set a lock an "this".
* Retunl index to "this" record.
* If any lock is not obtained:
* ReIooVe all other locks.
* Retunl a -1.
*1

#include <Uni.std.h>

10DJ
set3lock (this, here, next)
1OD;J this, here, next;

1* lock "here" *1
(void) lseek(fd, here, 0);
if (1ockf (fd, FJ.J:J:K, sizeof (struct record» < 0) {

reb1m (-1);

}

1* lock "this" *1
(void) lseek(fd, this, 0);
if (lockf (fd, F_u::J::K, sizeof (struct record» < 0) {

1* lock an "this" failed.
* Clear lock an "here".
*1

(void) lseek(fd, here, 0);
(void) lockf(fd, F}JWCK, sizeof(struct record»;
ret:unl (-1);

1* lock "next" *1
(void) lseek(fd, next, 0);
if (lockf(fd, F_u::J::K, sizeof(struct record» < 0) {

1* lock an "next" failed.
* Clear lock an "here",
*1

(void) lsee1t(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record»;

FILE AND RECORD LOCKING 7-13

File Protection

continued

'~•••,.

"J

I. ani reDDVe lock an "this" .
•1

(void) lseek(fd, this, 0);

(void) lockf(fd, F-'~.I:Q<, sizeof(stn1ct record»;
return (-1);1* cannot set lock, try again or quit *1

return (this);

Locks are removed in the same manner as they are set, only the lock
type is different (F_UNLCK or F_VLOCK). An unlock cannot be blocked by ~

another process and will only affect locks that were placed by this process. J
The unlock only affects the section of the file defined in the previous exam-
ple by lek. It is possible to unlock or change the type of lock on a subsec-
tion of a previously set lock. This may cause an additional lock (two locks
for one system call) to be used by the operating system. This occurs if the
subsection is from the middle of the previously set lock.

Getting Lock Information
One can determine which processes, if any, are blocking a lock from

being set. This can be used as a simple test or as a means to find locks on a
file. A lock is set up as in the previous examples and the F_GETLK com­
mand is used in the fcntl call. If the lock passed to fentl would be blocked,
the first blocking lock is returned to the process through the structure
passed to fentl. That is, the lock data passed to fentl is overwritten by
blocking lock information. This information includes two pieces of data ~

that have not been discussed yet, l...pid and l_sysid, that are only used by J
F_GETLK. (For systems that do not support a distributed architecture the
value in I_sysid should be ignored.) These fields uniquely identify the pro-
cess holding the lock.

7..14 PROGRAMMER'S GUIDE

-------------------------- File Protection

If a lock passed to fcntl using the F_GETLK command would not be
blocked by another process' lock, then the I_type field is changed to
F_UNLCK and the remaining fields in the structure are unaffected. Let us
use this capability to print all the segments locked by other processes. Note
that if there are several read locks over the same segment only one of these
will be found.

struet flock 1ck;

I. Find an:l print "write lock" blocked segments of this file • • 1
(void) printf("sysid pid type start length\n");

1ck.l_whence =0;
lck.1_start =OL;
1ck.1_1en =OL;
do{

1ck.1_type =F_WRLCK;
(void) fcntl(fd, F_GETU<, &lck);
if (lck.1_type 1= F_UNLCK) {

(void) printf ("%5d %Sci %c %8d %8d\n" ,
1ck.l_sysid,
lck.l_pid,
(lck.l_type == F_WRLCK) ? 'w' 'R',
1ck.l_start,
1ck.l_1en) ;

1* if this lock goes to the em of the address
* space, no need to look further, so break cut.

*1
if (lck.1_1en == 0)

break;
1* otherwise, look for new lock after the one

• just foum.
*1

1ck.1_start += 1ck.1_1en;
}

} while (lck.1_type 1= F_UNLCK);

FILE AND RECORD LOCKING 7-15

File Protection

fcotI with the F_GETLK command will always return correctly (that is,
it will not sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F_TEST command can also be used to test if
there is a process blocking a lock. This function does not, however, return
the information about where the lock actually is and which process owns
the lock. A routine using lockf to test for a lock on a file follows:

1* find a blocked record. *1
1* seek to beginni.ng of file *1
(void) lseek(fd, 0, OL);
1* set the size of the test region to zero (0)

* to test until the end of the file address space.
*1
if (lockf(fd, F_~, OL) < 0)

switch (errno) {

case~:

case EAGAIN:

(void) printf(nfile is locked by another process\nn);
break;
case EBADF:

1* bad argument passed to lockf *1
perrar(nlockfn) ;
break;
default:
(void) printf("1ockf: unlm:lwn error ~\nn, erroo);
break;
}

When a process forks, the child receives a copy of the file descriptors
that the parent has opened. The parent and child also share a common file
pointer for each file. If the parent were to seek to a point in the file, the
child's file pointer would also be at that location. This feature has impor­
tant implications when using record locking. The current value of the file
pointer is used as the reference for the offset of the beginning of the lock,
as described by I_start, when using a I_whence value of 1. If both the
parent and child process set locks on the same file, there is a possibility that

7-16 PROGRAMMER'S GUIDE

~\ ,\

'.

File Protection

a lock will be set using a file pointer that was reset by the other process.
This problem appears in the lockf(3) function call as well and is a result of
the lusr/group requirements for record locking. If forking is used in a
record locking program, the child process should close and reopen the file if
either locking method is used. This will result in the creation of a new and
separate file pointer that can be manipulated without this problem occur­
ring. Another solution is to use the fcntl system call with a I_whence value
of 0 or 2. This makes the locking function atomic, so that even processes
sharing file pointers can be locked without difficulty.

Deadlock Handling
There is a certain level of deadlock detection Iavoidance built into the

record locking facility. This deadlock handling provides the same level of
protection granted by the lusrlgroup standard lockf call. This deadlock
detection is only valid for processes that are locking files or records on a
single system. Deadlocks can only potentially occur when the system is
about to put a record locking system call to sleep. A search is made for con­
straint loops of processes that would cause the system call to sleep
indefinitely. If such a situation is found, the locking system call will fail
and set errno to the deadlock error number. If a process wishes to avoid
the use of the systems deadlock detection it should set its locks using
F_GETLK instead of F_GETLKW.

FILE AND RECORD LOCKING 7-17

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will
be made clear in a subsequent section. Whether or not locks are enforced
by the I I0 system calls is determined at the time the calls are made and the
state of the permissions on the file (see chmod(2». For locks to be under
mandatory enforcement, the file must be a regular file with the set-group-ID
bit on and the group execute permission off. If either condition fails, all
record locks are advisory. Mandatory enforcement can be assured by the
following code:

#include <sys/types.h>
#include <sys/stat.h>

int m:xie;
stzuet stat buf;

if (stat(filename, &huf) < 0)
penor("program") ;
exit (2);

}

I. get currently set m:xie .1
uode =buf.st_m:xie;

I. renDVe groJp execute penni.ssion fnn m:::xie .1
uode &= -(S_IEXEX»3);
I. set ' set gra.JP id bit' in m:::xie .1

m:xie 1= S_I$m;
if (chm::ld(filename, m:xie) < 0)

penor("program") ;
exit(2) ;

7-18 PROGRAMMER'S GUIDE

--------------- Selecting Advisory or Mandatory Locking

Files that are to be record locked should never have any type of execute
permission set on them. This is because the operating system does not obey
the record locking protocol when executing a file.

The chmod(l) command can also be easily used to set a file to have
mandatory locking. This can be done with the command:

chmod +1 filename

The Is(l) command was also changed to show this setting when you ask for
the long listing format:

Is -I filename

causes the following to be printed:

-rw---l--- 1 abc other 1048576 Dec 3 11:44 filename

Caveat Emptor-Mandatory Locking

• Mandatory locking only protects those portions of a file that are
locked. Other portions of the file that are not locked may be accessed
according to normal UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction,
the process should explicitly lock all such pieces before any I/O
begins. Thus advisory enforcement is sufficient for all programs that
perform in this way.

• As stated earlier, arbitrary programs should not have unrestricted
access permission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does
not have to be performed for every I/O request.

FILE AND RECORD LOCKING 7-19

Selecting Advisory or Mandatory Locking

Record Locking and Future Releases of the UNIX
System

Provisions have been made for file and record locking in a UNIX system
environment. In such an environment the system on which the locking
process resides may be remote from the system on which the file and record
locks reside. In this way multiple processes on different systems may put
locks upon a single file that resides on one of these or yet another system.
The record locks for a file reside on the system that maintains the file. It is
also important to note that deadlock detection/avoidance is only determined
by the record locks being held by and for a single system. Therefore, it is
necessary that a process only hold record locks on a single system at any
given time for the deadlock mechanism to be effective. If a process needs to
maintain locks over several systems, it is suggested that the process avoid
the sleep-when-blocked features of fcotl or lockf and that the process
maintain its own deadlock detection. If the process uses the sleep-when­
blocked feature, then a timeout mechanism should be provided by the pro­
cess so that it does not hang waiting for a lock to be cleared.

7-20 PROGRAMMER'S GUIDE

.~
l

~,
(

8 Shared Libraries

Introduction

Using a Shared Library
What is a Shared Library?
The UNIX System Shared Libraries
Building an a.out File
Coding an Application
Deciding Whether to Use a Shared ~ibrary

More About Saving Space
• How Shared Libraries Save Space
• How Shared Libraries Are Implemented
• How Shared Libraries Might Increase Space

Usage
Identifying a.out Files that Use Shared Libraries
Debugging a.out Files that Use Shared Libraries

Building a Shared Library
The Building Process

• Step 1: Choosing Region Addresses
• Step 2: Choosing the Target Library Pathname
• Step 3: Selecting Library Contents
• Step 4: Rewriting Existing Library Code
• Step 5: Writing the Library Specification File
• Step 6: Using mkshlib to Build the Host and

Target
Guidelines for Writing Shared Library Code

• Choosing Library Members
• Changing Existing Code for the Shared Library

8-1

8·2

8-2

8-3

8-4

8-5

8-5

8-6

8·7
8·10

8-13

8-14
8-14

8-16

8-16

8-16

8-18

8-19

8-19

8-19

8-22

8-24

8-25

8-27

SHARED LIBRARIES

Shared Libraries

• Using the Specification File for Compatibility
• Importing Symbols
• Referencing Symbols in a Shared Library from

Another Shared Library
• Providing Archive Library Compatibility
• Tuning the Shared Library Code
• Checking for Compatibility
• Checking Versions of Shared Libraries Using

chkshlib(l)
An Example

• The Original Source
• Choosing Region Addresses and the Target

Pathname
• Selecting Library Contents
• Rewriting Existing Code
• Writing the Specification File
• Building the Shared Library
• Using the Shared Library

Summary

II PROGRAMMER'S GUIDE

8·30
8·32

8-39

~8-41

8-42
8-45

8-45
8-50

8-50

8-55
8-55
8-56
8-57

8-59

8·59

8-61 .~

..~

Introduction

Efficient use of disk storage space, memory, and computing power is
becoming increasingly important. A shared library can offer savings in all
three areas. For example, if constructed properly, a shared library can make
a.out files (executable object files) smaller on disk storage and processes
(a.out files that are executing) smaller in memory.

The first part of this chapter, "Using a Shared Library/" is designed to
help you use UNIX System V shared libraries. It describes what a shared
library is and how to use one to build a.out files. It also offers advice about
when and when not to use a shared library and how to determine whether
an a.out uses a shared library.

The second part in this chapter, "Building a Shared Library/" describes
how to build a shared library. You do not need to read this part to use
shared libraries. It addresses library developers, advanced programmers
who are expected to build their own shared libraries. Specifically, this part
describes how to use the UNIX system tool mkshlib(l) (documented in the
Programmer's Reference Manual) and how to write C code for shared libraries
on a UNIX system. An example is included. This part also describes how
to use the tool chkshlib(l), which helps you check the compatibility of ver­
sions of shared libraries. Read this part of the chapter only if you have to
build a shared library.

Shared libraries are a new feature of UNIX System V Release 3.0. An
executable object file that needs shared libraries will not run on previ­
ous releases of UNIX System V.

SHARED LIBRARIES a.1

Using a Shared Library

If you are accustomed to using libraries to build your applications pro-
grams, shared libraries should blend into your work easily. This part of the ~..:..'
chapter explains what shared libraries are and how and when to use them':g
on the UNIX system.

What is a Shared Library?
A shared library is a file containing object code that several a.out files

may use simultaneously while executing. When a program is compiled or
link edited with a shared library, the library code that defines the program's
external references is not copied into the program's object file. Instead, a
special section called .lib that identifies the library code is created in the
object file. When the UNIX system executes the resulting a.out file, it uses
the information in this section to bring the required shared library code
into the address space of the process.

The implementation behind these concepts is a shared library with two
pieces. The first, called the host shared library, is an archive that the link
editor searches to resolve user references and to create the .lib section in .~
a.out files. The structure and operation of this archive is the same as any
archive without shared library members. For simplicity, however, in this
chapter references to archives mean archive libraries without shared library
members.

The second part of a shared library is the target shared library. This is
the file that the UNIX system uses when running a.out files built with the
host shared library. It contains the actual code for the routines in the
library. Naturally, it must be present on the the system where the a.out
files will be run.

A shared library offers several benefits by not copying code into a.out
files. It can

• save disk storage space

Because shared library code is not copied into all the a.out files that
use the code, these files are smaller and use less disk space.

• save memory

By sharing library code at run time, the dynamic memory needs of
processes are reduced.

8-2 PROGRAMMER'S GUIDE

Using a Shared Library

• make executable files using library code easier to maintain

As mentioned above, shared library code is brought into a process'
address space at run time. Updating a shared library effectively
updates all executable files that use the library, because the operating
system brings the updated version into new processes. If an error in
shared library code is fixed, all processes automatically use the
corrected code.

Archive libraries cannot, of course, offer this benefit: changes to
archive libraries do not affect executable files, because code from the
libraries is copied to the files during link editing, not during execu­
tion.

"Deciding Whether to Use a Shared Library" in this chapter describes shared
libraries in more detail.

The UNIX System Shared Libraries
For the 3B2 Computer, AT&T provides the C target shared library with

UNIX System V Release 3.0 and later releases and the C host shared library
with C Programming Language Utilities 4.0 and later. The networking
library included with the Networking Support Utilities is also a shared
library. Other shared libraries may be available now from software vendors
and in the future from AT&T.

Shared
Library

C Library

Networking Library

Host Library
Command Line Option

-Ie s

Target Library
Pathname

Ishlib/libe s

Ishlib/libnsl_5

~.

Notice the _5 suffix on the library names; we use it to identify both host
and target shared libraries. For example, it distinguishes the standard relo­
eatable C library libe from the shared C library Jibe_s. The _5 also indicates
that the libraries are statically linked.

SHARED LIBRARIES 8-3

Using a Shared Library

The relocatable C library is still available with releases of the C Pro­
gramming Language Utilities; this library is searched by default during the
compilation or link editing of C programs. All other archive libraries from
previous releases of the system are also available. Just as you use the ,~

archive libraries' names, you must use a shared library's name when you /
want to use it to build your a.out files. You tell the link editor its name
with the -I option, as shown below.

Building an a.out File
You direct the link editor to search a shared library the same way you

direct a search of an archive library on the UNIX system:

cc file.c -0 file -IlibraryJile

To direct a search of the networking library, for example, you use the
following command line.

cc file.c -0 file

And to link all the files in your current directory together with the
shared C library you'd use the following command line:

cc *.c -lc_s

Normally, you should include the -lc_s argument after all other -1
arguments on a command line. The shared C library will then be treated
like the relocatable C library, which is searched by default after all other
libraries specified on a command line are searched.

A shared library might be built with references to other shared libraries.
That is, the first shared library might contain references to symbols that are
resolved in a second shared library. In this case, both libraries must be
given on the cc command line, in the order of the dependencies.

For example, if the library libX.a references symbols in the shared C
library, the command line would be:

cc *.c -IX_s -lc_s

8-4 PROGRAMMER'S GUIDE

Using a Shared Library

Notice that the shared library containing the references to symbols must
be listed on the command line before the shared library needed to resolve
those references. For more information on inter-library dependencies, see
the section "Referencing Symbols in a Shared Library from Another Shared
Library" later in this chapter.

Coding an Application
Application source code in C or assembly language is compatible with

both archive libraries and shared libraries. As a result, you should not have
to change the code in any applications you already have when you use a
shared library with them. When coding a new application for use with a
shared library, you should just observe your standard coding conventions.

However, do keep the following two points in mind, which apply when
using either an archive or a shared library:

• Don't define symbols in your application with the same names as
those in a library.

Although there are exceptions, you should avoid redefining standard
library routines, such as printf(3S) and strcmp(3C). Replacements
that are incompatibly defined can cause any library, shared or
unshared, to behave incorrectly.

• Don't use undocumented archive routines.

Use only the functions and data mentioned on the manual pages
describing the routines in Section 3 of the Programmer's Reference
Manual. For example, don't try to outsmart the ctype design by
manipulating the underlying implementation.

Deciding Whether to Use a Shared Library
You should base your decision to use a shared library on whether it

saves space in disk storage and memory for your program. A well-designed
shared library almost always saves space. So, as a general rule, use a shared
library when it is available.

SHARED LIBRARIES 8-5

Using a Shared Library

To determine what savings are gained from using a shared library, you
might build the same application with both an archive and a shared library,
assuming both kinds are available. Remember, that you may do this
because source code is compatible between shared libraries and archive /~.'

libraries. (See the above section "Coding an Application. lI
) Then compare y

the two versions of the application for size and performance. For example,

$ cat hello.e
main()

{

printf("Hello\n") ;
}

$ cc -0 unshared hello. e
$ cc -0 shared hello.e -Ie s
$ size unshared shared
unshared: 8680 + 1388 + 2248 = 12316
shared: 300 + 680 + 2248 = 3228

~••••••,
If the application calls only a few library members, it is possible that

using a shared library could take more disk storage or memory. The follow­
ing section gives a more detailed discussion about when a shared library
does and does not save space.

When making your decision about using shared libraries, also remember
that they are not available on UNIX System V releases prior to Release 3.0.
If your program must run on previous releases, you will need to use archive
libraries.

More About Saving Space
This section is designed to help you better understand why your pro­

grams will usually benefit from using a shared library. It explains

• how shared libraries save space that archive libraries cannot

8-6 PROGRAMMER'S GUIDE

Using a Shared Library

• how shared libraries are implemented on the UNIX system

• how shared libraries might increase space usage

How Shared Libraries Save Space
To better understand how a shared library saves space, we need to com­

pare it to an archive library.

A host shared library resembles an archive library in three ways. First,
as noted earlier, both are archive files. Second, the object code in the
library typically defines commonly used text symbols and data symbols.
The symbols defined inside and made visible outside the library are external
symbols. Note that the library may also have imported symbols, symbols
that it uses but usually does not define. Third, the link editor searches the
library for these symbols when linking a program to resolve its external
references. By resolving the references, the link editor produces an execut­
able version of the program, the a.out file.

Note that the link editor on the UNIX system is a static linking tool;
static linking requires that all symbolic references in a program be
resolved before the program may be executed. The link editor uses
static linking with both an archive library and a shared library.

Although these similarities exist, a shared library differs significantly
from an archive library. The major differences relate to how the libraries
are handled to resolve symbolic references, a topic already discussed briefly.

Consider how the UNIX system handles both types of libraries during
link editing. To produce an a.out file using an archive library, the link edi­
tor copies the library code that defines a program's unresolved external
reference from the library into appropriate .text and .data sections in the
program's object file. In contrast, to produce an a.out file using a shared
library, the link editor copies from the shared library into the program's
object file only a small amount of code for initialization of imported sym­
bols. (See the section "Importing SymbolsII later in the chapter for more
details on imported symbols.) For the bulk of the library code, it creates a
special section called .lib in the file that identifies the library code needed
at run time and resolves the external references to shared library symbols
with their correct values. When the UNIX system executes the resulting
a.out file, it uses the information in the .lib section to bring the required
shared library code into the address space of the process.

SHARED LIBRARIES 8-7

Using a Shared Library

Figure 8-1 depicts the a.out files produced using a regular archive ver­
sion and a shared version of the standard C library to compile the following
program:

main()

{

printf("How do you like this manuaJ.?\n");

result = stranp("I do.", answer);

Notice that the shared version is smaller. Figure 8-2 depicts the process
images in memory of these two files when they are executed.

8-8 PROGRAMMER'S GUIDE

a.out Using
Archive Library

FILE HEADER

program .text

library .text

for printf(3S) and

strcmp(3C)

program .data

library .data
for printf(3S) and

strcmp(3C)

SYMBOL TABLE

STRING TABLE

Created by the link editor.
Refers to library code for
print and strcmp(3C)

Copied to file by
the link editor

Using a Shared Library

a.out Using
Shared Library

FILE HEADER

program .text

program .data

.lib

SYMBOL TABLE

STRING TABLE

Figure 8-1: a.out Files Created Using an Archive Library and a Shared
Library

Now consider what happens when several a.out files need the same
code from a library. When using an archive library, each file gets its own
copy of the code. This results in duplication of the same code on the disk
and in memory when the a.out files are run as processes. In contrast, when
a shared library is used, the library code remains separate from the code in
the a.out files, as indicated in Figure 8-2. This separation enables all
processes using the same shared library to reference a single copy of the
code.

SHARED LIBRARIES 8-9

Using a Shared Library

Address

Space

Archive

Version

Shared

Version

May be brought
to other processes

simultaneously

4. .~....­.. '....

...... ·1 Library I
~. Brought into process'

~ address space......,......,,
Library code referred

to by .lib

Figure 8-2: Processes Using an Archive and a Shared Library

How Shared Libraries Are Implemented
Now that you have a better understanding of how shared libraries save

space, you need to consider their implementation on the UNIX system to
understand how they might increase space usage (this happens seldomly).
The following paragraphs describe host and target shared libraries, the
branch table, and then how shared libraries might increase space usage.

The Host Library and Target Library
As previously mentioned, every shared library has two parts: the host

library used for linking that resides on the host machine and the target
library used for execution that resides on the target machine. The host
machine is the machine on which you build an a.out file; the target
machine is the machine on which you run the file. Of course, the host and
target may be the same machine, but they don't have to be.

The host library is just like an archive library. Each of its members (typ­
ically a complete object file) defines some text and data symbols in its sym­
bol table. The link editor searches this file when a shared library is used
during the compilation or link editing of a program.

8-10 PROGRAMMER'S GUIDE

Using a Shared Library

The search is for definitions of symbols referenced in the program but
not defined there. However, as mentioned earlier, the link editor does not
copy the library code defining the symbols into the program's object file.
Instead, it uses the library members to locate the definitions and then places
symbols in the file that tell where the library code is. The result is the spe­
cial section in the a.out file mentioned earlier (see the section "What is a
Shared Library?") and shown in Figure 8-1 as .lib.

The target library used for execution resembles an a.out file. The UNIX
operating system reads this file during execution if a process needs a shared
library. The special .lib section in the a.out file tells which shared libraries
are needed. When the UNIX system executes the a.out file, it uses this sec­
tion to bring the appropriate library code into the address space of the pro­
cess. In this way, before the process starts to run, all required library code
has been made available.

Shared libraries enable the sharing of .text sections in the target library,
which is where text symbols are defined. Although processes that use the
shared library have their own virtual address spaces, they share a single
physical copy of the library's text among them. That is, the UNIX system
uses the same physical code for each process that attaches a shared library's
text.

The target library cannot share its .data sections. Each process using
data from the library has its own private data region (contiguous area of vir­
tual address space that mirrors the .data section of the target library).
Processes that share text do not share data and stack area so that they do not
interfere with one another.

As suggested above, the target library is a lot like an a.out file, which
can also share its text, but not its data. Also, a process must have execute
permission for a target library to execute an a.out file that uses the library.

The Branch Table
When the link editor resolves an external reference in a program, it gets

the address of the referenced symbol from the host library. This is because
a static linking loader like Id binds symbols to addresses during link edit­
ing. In this way, the a.out file for the program has an address for each
referenced symbol. .

SHARED LIBRARIES 8-11

/~••••:",

Using a Shared Library

What happens if library code is updated and the address of a symbol
changes? Nothing happens to an a.out file built with an archive library,
because that file already has a copy of the code defining the symbol. (Even
though it isn't the updated copy, the a.out file will still run.) However, the ~

change can adversely affect an a.out file built with a shared library. This J
file has only a symbol telling where the required library code is. If the
library code were updated, the location of that code might change. There-
fore, if the a.out file ran after the change took place, the operating system
could bring in the wrong code. To keep the a.out file current, you might
have to recompile a program that uses a shared library after each library
update.

To prevent the need to recompile, a shared library is implemented with
a branch table on the UNIX system. A branch table associates text symbols
with absolute addresses that do not change even when library code is
changed. Each address labels a jump instruction to the address of the code
that defines a symbol. Instead of being directly associated with the
addresses of code, text symbols have addresses in the branch table.

Figure 8-3 shows two a.out files executing that make·a call to printf(3S).
The process on the left was built using an archive library. It already has a
copy of the library code defining the printf(3S) symbol. The process on the
right was built using a shared library. This file references an absolute
address (10) in the branch table of the shared library at run time; at this
address, a jump instruction references the needed code.

8-12 PROGRAMMER'S GUIDE

A shared library uses

a branch table.

An archive library does

not use a branch table.

Using a Shared Library

Shared
Library

.. "?'
..:.....

Branch

Table 300

.....

Figure 8-3: A Branch Table in a Shared Library

Data symbols do not have a mechanism to prevent a change of address
between shared libraries. The tool chkshlib(l) compares a.out files with a
shared library to check compatibility and help you decide if the files need
to be recompiled. See "Checking Versions of Shared Libraries Using
chkshlib(l)."

How Shared Libraries Might Increase Space Usage
A target library might add space to a process. Recall from "How Shared

Libraries are Implemented" in this chapter that a shared library's target file
may have both text and data regions connected to a process. While the text
region is shared by all processes that use the library, the data region is not.
Every process that uses the library gets its own private copy of the entire
library data region. Naturally, this region adds to the process's memory

SHARED LIBRARIES 8-13

Using a Shared Library

requirements. As a result, if an application uses only a small part of a
shared library's text and data, executing the application might require more
memory with a shared library than without one. For example, it would be
unwise to use the shared C library to access only strcmp(3C). Although ~

sharing strcmp(3C) saves disk storage and memory, the memory cost for ~,

sharing all the shared C library's private data region outweighs the savings.
The archive version of the library would be more appropriate.

A host library might add space to an a.out file. Recall that UNIX Sys­
tem V Release 3.0 uses static linking, which requires that all external refer­
ences in a program be resolved before it is executed. Also recall that a
shared library may have imported symbols, which are used but not defined
by the library. To resolve these references, the link editor has to add to the
a.out initialization code defining the referenced imported symbols file. This
code increases the size of the a.out file.

Identifying a.out Files that Use Shared Libraries
Suppose you have an executable file and you want to know whether it

uses a shared library. You can use the dump(l) command (documented in
the Programmer's Reference Manual) to look at the section headers for the file: ')

dump -hv a.out

If the file has a .lib section, a shared library is needed. If the a.out does
not have a .lib section, it does not use shared libraries.

With a little more work, you can even tell what libraries a file uses by
looking at the .lib section contents.

dump - L a.out

Debugging a.out Files that Use Shared Libraries
sdb reads the shared libraries' symbol tables and performs as docu­

mented (in the Programmer's Reference Manual) using the available debug­
ging information. The branch table is hidden so that functions in shared
libraries can be referenced by their names, and the M command lists,)
among other information, the names of shared libraries' target files used by
the executable file.

8-14 PROGRAMMER'S GUIDE

~... "

(

Using a Shared Library

Shared library data are not dumped to core files, however. So, if you
encounter an error that results in a core dump and does not appear to be in
your application code, you may find debugging easier if you rebuild the
application with the archive version of the library used.

SHARED LIBRARIES 8-15

Building a Shared Library

This part of the chapter explains how to build a shared library. It cov-
ers the major steps in the building process, the use of the UNIX system tool ~.'
mkshlib(I) that builds the host and target libraries, and some gUidelines for
writing shared library code. There is an example at the end of this part
which demonstrates the major features of mkshlib and the steps in the
building process.

This part assumes that you are an advanced C programmer faced with
the task of building a shared library. It also assumes you are familiar with
the archive library building process. You do not need to read this part of
the chapter if you only plan to use the UNIX system shared libraries or
other shared libraries that have already been built.

The Building Process
To build a shared library on the UNIX system, you have to complete six

major tasks:

• Choose region addresses.

• Choose the pathname for the shared library target file.

• Select the library contents.

• Rewrite existing library code to be included in the shared library.

• Write the library specification file.

• Use the mkshlib tool to build the host and target libraries.

Here each of these tasks is discussed.

Step 1: Choosing Region Addresses
The first thing you need to do is choose region addresses for your

shared library.

Shared library regions on the AT&T 3B2 Computer correspond to
memory management unit (MMU) segment size, each of which is 128 KB.
The following table gives a list of the segment assignments on the 3B2 /~
Computer (as of the copyright date for this guide) and shows what virtual .
addresses are available for libraries you might build.

8-16 PROGRAMMER'S GUIDE

Building a Shared Library

Start Target
Address Contents Pathname

Ox80000000 Reserved for AT&T

... UNIX Shared C Library Ishlib/libc_s
AT&T Networking Library Ishlib/libnsl_s

Ox803EOOOO
Ox80400000 Generic Database Library Unassigned
Ox80420000
Ox80440000 Generic Statistical Library Unassigned
Ox80460000
Ox80480000 Generic User Interface Library Unassigned
Ox804AOOOO
Ox804COOOO Generic Screen Handling Library Unassigned
Ox804EOOOO
Ox80500000 Generic Graphics Library Unassigned
Ox80520000
Ox80540000 Generic Networking Library Unassigned
Ox80560000
Ox80580000 Generic - to be defined Unassigned
...
Ox80660000
Ox80680000 For private use Unassigned
...
Ox807EOOOO

What does this table tell you? First, the AT&T shared C library and the
networking library reside at the pathnames given above and use addresses
in the range reserved for AT&T. If you build a shared library that uses
reserved addresses you run the risk of conflicting with future AT&T pro­
ducts.

Second, a number of segments are allocated for shared libraries that pro­
vide various services such as graphics, database access, and so on. These
categories are intended to reduce the chance of address conflicts among
commercially available libraries. Although two libraries of the same type
may conflict, that doesn't matter. A single process should not usually need
to use two shared libraries of the same type. If the need arises, a program
can use one shared library and one archive library.

SHARED LIBRARIES 8-17

Building a Shared Library

Any number of libraries can use the same virtual addresses, even on the
same machine. Conflicts occur only within a single process, not among
separate processes. Thus two shared libraries can have the same region
addresses without causing problems, as long as a single a.out file doesn't
need to use both libraries.

Third, several segments are reserved for private use. If you are building
a large system with many a.out files and processes, shared libraries might
improve its performance. As long as you don't intend to release the shared
libraries as separate products, you should use the private region addresses.
You can put your shared libraries into these segments and avoid conflicting
with commercial shared libraries. You should also use the private areas
when you will own all the a.out files that access your shared library. Don't
risk address conflicts.

If you plan to build a commercial shared library, you are strongly
encouraged to provide a compatible, relocatable archive as well. Some of
your customers might not find the shared library appropriate for their
applications. Others might want their applications to run on versions of
the UNIX system without shared library support.

Step 2: Choosing the Target Library Pathname
After you choose the region addresses for your shared library, you

should choose the pathname for the target library. We chose Ishlib/libc_s
for the shared C library and Ishlib/libnsl_s for the networking library. (As
mentioned earlier, we use the _s suffix in the pathnames of all statically
linked shared libraries.) To choose a pathname for your shared library, con­
sult the established list of names for your computer or see your system
administrator. Also keep in mind that shared libraries needed to boot a
UNIX system should normally be located in Ishlib; other application
libraries normally reside in lusr/lib or in private application directories.
Of course, if your shared library is for personal use, you can choose any
convenient pathname for the target library.

8-18 PROGRAMMER'S GUIDE

~.
(~'

Building a Shared Library

Step 3: Selecting Library Contents
Selecting the contents for your shared library is the most important task

in the building process. Some routines are prime candidates for sharing;
others are not. For example, it's a good idea to include large, frequently
used routines in a shared library but to exclude smaller routines that aren't
used as much. What you include will depend on the individual needs of
the programmers and other users for whom you are building the library.
There are some general guidelines you should follow, however. They are
discussed in the section "Choosing Library Members" in this chapter. Also
see the guidelines in the follOWing sections: "1mporting Symbols, II

"Referencing Symbols in a Shared Library from Another Shared Library,"
and "Tuning the Shared Library Code."

Step 4: Rewriting Existing Library Code
If you choose to include some existing code from an archive library in a

shared library, changing some of the code will make the shared code easier
to maintain. See the section "Changing Existing Code for the Shared
Library" in this chapter.

Step 5: Writing the Library Specification File
After you select and edit all the code for your shared library, you have

to build the shared libra:ry specification file. The library specification file
contains all the information that mkshlib needs to build both the host and
target libraries. An exan\ple specification file is given in the section
towards the end of the chapter, "An Example." Also, see the section "Using
the Specification File for Compatibility" in this chapter. The contents and
format of the specification file are given by the following directives (see
also the mkshlib(l) manual page).

All directives that ar,e followed by multi-line specifications are valid
until the next directive or the end of file.

#address sectname address
Specifies the start address, address, of section sectname for
the tclrget file. This directive is typically used to specify
the start addresses of the .text and .data sections.

#target pathname
Specifies the pathname, pathname, of the target shared
library on the target machine. This is the location
where the operating system looks for the shared library

SHARED LIBRARIES 8-19

Building a Shared Library

#branch

#objects

during execution. Normally, pathname will be an abso­
lute pathname, but it does not have to be.

This directive must be specified exactly once per
specification file.

Starts the branch table specifications. The lines follow­
ing this directive are taken to be branch table
specification lines.

Branch table specification lines have the following for­
mat:

funcname <white space> position

funcname is the name of the symbol given a branch table
entry and position specifies the position of funcname's
branch table entry. position may be a single integer or a
range of integers of the form positionl-position2. Each
position must be greater than or equal to one. The same
position cannot be specified more than once, and every
position from one to the highest given position must be
accounted for.

If a symbol is given more than one branch table entry
by associating a range of positions with the symbol or
by specifying the same symbol on more than one branch
table specification line, then the symbol is defined to
have the address of the highest associated branch table
entry. All other branch table entries for the symbol can
be thought of as empty slots and can be replaced by new
entries in future versions of the shared library.

Finally, only functions should be given branch table
entries, and those functions must be external.

This directive must be specified exactly once per shared
library specification file.

Specifies the names of the object files constituting the
target shared library. The lines following this directive
are taken to be the list of input object files in the order
they are to be loaded into the target. The list simply
consists of each filename followed by a newline charac­
ter. This list of objects will be used to build the shared
library.

8-20 PROGRAMMER'S GUIDE

#init object

~'

Building a Shared Library

This directive must be specified exactly once per shared
library specification file.

#objects noload
Specifies the ordered list of host shared libraries to be
searched to resolve references to symbols not defined in
the library being built and not imported. Resolution of
a reference in this way requires a version of the symbol
with an absolute address to be found in one of the listed
libraries. It's considered an error if a non-shared version
of a symbol is found during the search for a shared ver­
sion of the symbol.

Each name specified is assumed to be a pathname to a
host or an argument of the form -IX, where libX.a is
the name of a file in the default library locations. This
behavior is identical to that of ld, and the -L option can
be used on the command line to specify other directories
in which to locate these archives.

Specifies that the object file, object, requires initialization
code. The lines following this directive are taken to be
initialization specification lines.

Initialization specification lines have the following for­
mat:

ptr <white space> import

ptr is a pointer to the associated imported symbol, import,
and must be defined in the current specified object file,
object. The initialization code generated for each such
line is of the form:

ptr = &import;

All initializations for a particular object file must be
given once and multiple specifications of the same object
file are not allowed.

#hide linker lifo]
This directive changes symbols that are normally external
into static symbols, local to the library being created. A
regular expression may be given [sh(l), egrep(l)], in
which case all external symbols matching the regular

SHARED LIBRARIES 8-21

Building a Shared Library

expression are hidden; the #export directive can be used
to counter this effect for specified symbols.

The optional "." is equivalent to the directive

#hide linker

*
and causes all external symbols to be made into static
symbols.

All symbols specified in #init and #branch directives
are assumed to be external symbols, and cannot be
changed into static symbols using the #hide directive.

#export linker •
Specifies those symbols that a regular expression in a
#hide directive would normally cause to be hidden but
that should nevertheless remain external. For example,

#hide linker *
#expJrt linker

one
b«> '~

causes all symbols except one, two, and those used in
#branch and #init entries to be tagged as static.

#ident string Specifies a string, string, to be included in the .comment
section of the target shared library and the .comment
sections of every member of the host shared library.

Specifies a comment. The rest of the line is ignored.

Step 6: Using mkshlib to Build the Host and Target
The UNIX system command mkshlib(1) builds both the host and target

libraries. mkshlib invokes other tools such as the assembler, as(l), and link
editor, Id(1). Tools are invoked through the use of execvp (see exec(2»,
which searches directories in a user's $PATH environment variable. Also,
prefixes to mkshlib are parsed in much the same manner as prefixes to the
cc(1) command and invoked tools are given the prefix, where appropriate. ~.\

For example, 3bmkshlib invokes 3bld. These commands all are docu- .
mented in the Programmer's Reference Manual.

8-22 PROGRAMMER'S GUIDE

Building a Shared Library

The user input to mkshlib consists of the library specification file and
command line options. We just discussed the specification file; let's take a
look at the options now. The shared library build tool has the following
syntax:

mkshlib -s specfil -t target [-h host] [-L dir...] [-n] [-q]

-s specfil Specifies the shared library specification file, specfil. This file
contains all the information necessary to build a shared
library.

-t target Specifies the name, target, of the target shared library pro­
duced on the host machine. When target is moved to the
target machine, it should be installed at the location given
in the specification file (see the #target directive in the sec­
tion nWriting the Library Specification Filen). If the -n
option is given, then a new target shared library will not be
generated.

-h host Specifies the name of the host shared library, host. If this
option is not given, then the host shared library will not be
produced.

-n Prevents a new target shared library from being generated.
This option is useful when producing only a new host
shared library. The -t option must still be supplied since a
version of the target shared library is needed to build the
host shared library.

- L dir Changes the algorithm of searching for the host shared
libraries specified with the #objeds noload directive to look
in dir before looking in the default directories. The - L
option can be specified multiple times on the command line
in which case the directories given with the -L options are
searched in the order given on the command line before the
default directories.

-q Suppresses the printing of certain warning messages.

SHARED liBRARIES 8-23

Building a Shared Library

Guidelines for Writing Shared Library Code
Because the main advantage of a shared library over an archive library

is sharing and the space it saves, these guidelines stress ways to increase
sharing while avoiding the disadvantages of a shared library. The guide­
lines also stress upward compatibility. When appropriate, we describe our
experience with building the shared C library to illustrate how following a
particular guideline helped us.

We recommend that you read these guidelines once from beginning to
end to get a perspective of the things you need to consider when building a
shared library. Then use it as a checklist to guide your planning and
decision-making.

Before we consider these guidelines, let's consider the restrictions to
building a shared library common to all the guidelines. These restrictions
involve static linking. Here's a summary of them, some of which are dis­
cussed in more detail later. Keep them in mind when reading the guide­
lines in this section:

• External symbols have fixed addresses.

If an external symbol moves, you have to re-link all a.out files that
use the library. This restriction applies both to text and data symbols.

Use of the #hide directive to limit externally visible symbols can
help avoid problems in this area. (See "Use #hide and #export to
Limit Externally Visible Symbols" for more details).

• If the library's text changes for one process at run time, it changes for
all processes.

• If the library uses a symbol directly, that symbol's run time value
(address) must be known when the library is built.

• Imported symbols cannot be referenced directly.

Their addresses are not known when you build the library, and they
can be different for different processes. You can use imported sym­
bols by adding an indirection through a pointer in the library's data.

8-24 PROGRAMMER'S GUIDE

Building a Shared Library

Choosing Library Members

Include Large, Frequently Used Routines
These routines are prime candidates for sharing. Placing them in a

shared library saves code space for individual a.out files and saves memory,
too, when several concurrent processes need the same code. printf(3S) and
related C library routines (which are documented in the Programmer's Refer­
ence Manual) are good examples.

When we built the shared C library...

The printf(3S) family of routines is used frequently.
Consequently, we included printf(3S) and related rou­
tines in the shared C library.

Exclude Infrequently Used Routines
Putting these routines in a shared library can degrade performance, par­

ticularly on paging systems. Traditional a.out files contain all code they
need at run time. By definition, the code in an a.out file is (at least dis­
tantly) related to the process. Therefore, if a process calls a function, it may
already be in memory because of its proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely
to occur, because the surrounding library code may be unrelated to the cal­
ling process. Only rarely will any single a.out file use everything in the
shared C library. If a shared library has unrelated functions, and unrelated
processes make random calls to those functions, the locality of reference
may be decreased. The decreased locality may cause more paging activity
and, thereby, decrease performance. See also nOrganize to Improve Local­
ity.1I

SHARED LIBRARIES 8-25

Building a Shared Library

When we built the shared C library...

Our original shared C library had about 44 KB of text.
After profiling the code in the library, we removed small
routines that were not often used. The current library
has under 29 KB of text. The point is that functions used
only by a few a.out files do not save much disk space by
being in a shared library, and their inclusion can cause
more paging and decrease performance.

Exclude Routines that Use Much Static Data
These modules increase the size of processes. As "How Shared Libraries

are Implemented" and "Deciding Whether to Use a Shared Library" explain,
every process that uses a shared library gets its own private copy of the
library's data, regardless of how much of the data is needed. Library data is
static: it is not shared and cannot be loaded selectively with the provision
that unreferenced pages may be removed from the working set.

For example, getgrent(3C), which is documented in the Programmer's
Reference Manual, is not used by many standard UNIX commands. Some
versions of the module define over 1400 bytes of unshared, static data. It
probably should not be included in a shared library. You can import global
data, if necessary, but not local, static data.

Exclude Routines that Complicate Maintenance
All external symbols must remain at constant addresses. The branch

table makes this easy for text symbols, but data symbols don't have an
equivalent mechanism. The more data a library has, the more likely some
of them will have to change size. Any change in the size of external data
may affect symbol addresses and break compatibility.

Include Routines the Library Itself Needs
It usually pays to make the library self-contained. For example,

printf(3S) requires much of the standard I/O library. A shared library con­
taining printf(3S) should contain the rest of the standard I/O routines, too.

8-26 PROGRAMMER'S GUIDE

..~

Building a Shared Library

This guideline should not take priority over the others in this section.
If you exclude some routine that the library itself needs based on a
previous guideline, consider leaving the symbol out of the library and
importing it.

~.
\I~

Changing Existing Code for the Shared Library
All C code that works in a shared library will also work in an archive

library. However, the reverse is not true because a shared library must
explicitly handle imported symbols. The following guidelines are meant to
help you produce shared library code that is still valid for archive libraries
(although it may be slightly bigger and slower). The guidelines explain
how to structure data for ease of maintenance, since most compatibility
problems involve restructuring data.

Minimize Global Data
All external data symbols are, of course, visible to applications. This

can make maintenance difficult. You should try to reduce global data, as
described below.

First, try to use automatic (stack) variables. Don't use permanent storage
if automatic variables work. Using automatic variables saves static data
space and reduces the number of symbols visible to application processes.

Second, see whether variables really must be external. Static symbols
are not visible outside the library, so they may change addresses between
library versions. Only external variables must remain constant. See the sec­
tion "Use #hide and #export to Limit Externally Visible Symbols" later in
this chapter for further tips.

Third, allocate buffers at run time instead of defining them at compile
time. This does two important things. It reduces the size of the library's
data region for all processes and, therefore, saves memory; only the
processes that actually need the buffers get them. It also allows the size of
the buffer to change from one release to the next without affecting compati­
bility. Statically allocated buffers cannot change size without affecting the
addresses of other symbols and, perhaps, breaking compatibility.

SHARED LIBRARIES 8-27

Building a Shared Library

Define Text and Global Data in Separate Source Flies
Separating text from global data makes it easier to prevent data symbols

from moving. If new external variables are needed, they can be added at
the end of the old definitions to preserve the old symbols' addresses.

Archive libraries let the link editor extract individual members. This
sometimes encourages programmers to define related variables and text in
the same source file. This works fine for relocatable files, but shared
libraries have a different set of restrictions. Suppose external variables were
scattered throughout the library modules. Then external and static data
would be intermixed. Changing static data, such as a string, like hello in
the following example, moves subsequent data symbols, even the external
symbols:

Before

int head =0;

func()
{

p =lIhello";

int tail =0;

Broken Successor

int head =0;

f\mc()

{

p = "hello, world";

int tail = 0;

Assume the relative virtual address of head is 0 for both examples. The
string literals will have the same address too, but they have different
lengths. The old and new addresses of tail thus might be 12 and 20, respec-
tively. If tail is supposed to be visible outside the library, the two versions ~

will not be compatible. }

8-28 PROGRAMMER'S GUIDE

Building a Shared Library

~.

The compilation system sometimes defines and uses static data invisi­
bly to the user (e.g. tables for switch statements). Therefore, it is a
mistake to assume that because you declare no static data in your
shared library that you can ignore the guideline in this section.

Adding new external variables to a shared library may change the
addresses of static symbols, but this doesn't affect compatibility. An a.out
file has no way to reference static library symbols directly, so it cannot
depend on their values. Thus it pays to group all external data symbols and
place them at lower addresses than the static (hidden) data. You can write
the specification file to control this. In the list of object files, make the glo­
bal data files first.

#objects
data1.o

lastdata.o
text1.o
text2.o

If the data modules are not first, a seemingly harmless change (such as a
new string literal) can break existing a.out files.

Shared library users get all library data at run time, regardless of the
source file organization. Consequently, you can put all external variables'
definitions in a single source file without a space penalty.

Initialize Global Data
Initialize external variables, including the pointers for imported sym­

bols. Although this uses more disk space in the target shared library, the
expansion is limited to a single file. mkshlib will give a fatal error if it
finds an uninitialized external symbol.

SHARED LIBRARIES 8-29

Building a Shared Library

Using the Specification File for Compatibility
The way in which you use the directives in the specification file can

affect compatibility across versions of a shared library. This section gives
some guidelines on how to use the directives #branch, #hide, and #export.

Preserve Branch Table Order
You should add new functions only at the end of the branch table.

After you have a specification file for the library, try to maintain compatibil­
ity with previous versions. You may add new functions without breaking
old a.out files as long as previous assignments are not changed. This lets
you distribute a new library without having to re-link all of the a.out files
that used a previous version of the library.

Use #hide and #export to Limit Externally Visible Symbols
Sometimes variables (or functions) must be referenced from several

object files to be included in the shared library and yet are not intended to
be available to users of the shared library. That is, they must be external so
that the link editor can properly resolve all references to symbols and create
the target shared library, but should be hidden from the user's view to
prevent their use. Such unintended and unwanted use may result in com­
patibility problems if the symbols move or are removed between versions of
the shared library.

The #hide and #export directives are the key to resolving this
dilemma. The #hide directive causes mkshlib, after resolving all references
within the shared library, to alter the symbol tables of the shared library so
that all specified external symbols are made static and unaccessible from
user code. You can specify the symbols to be so treated individually and/or
through the use of regular expressions.

The #export directive allows you to specify those symbols in the range
of an accompanying #hide directive regular expression which should
remain external. It is simply a convenience.

It is a fatal error to try to explicitly name the same symbol in a #hide and
an #export directive. For example, the following would result in a fatal
error.

8-30 PROGRAMMER'S GUIDE

Building a Shared Library

#.hide linker
one

#export linker
one

#export may seem like an unnecessary feature since you could avoid
specifying in the #hide directive those symbols that you do not want to be
made static. However, its usefulness becomes apparent when the shared
library to be built is complicated and there are many symbols to be made
static. In these cases, it is more efficient to use regular expressions to make
all external variables static and individually list those symbols you need to
be external. The simple example in the section "Writing the Library
Specification File" demonstrates this point.

Symbols mentioned in the #branch and #init directives are services of
the shared library, must be external symbols, and cannot be made static
through the use of these directives.

When we built the shared C libraryno

Our approach for the shared C library was to hide all
data symbols by default, and then explicitly export sym­
bols that we knew were needed. The advantage of this
approach is that future changes to the libraries won't
introduce new external symbols (possibly causing name
collisions) unless we explicitly export the new symbols.

We chose the symbols to export by looking at a list of all
the current external symbols in the shared C library and
finding out what each symbol was used for. The sym­
bols that were global but were only used in the shared C
library were not exported; these symbols will be hidden
from applications code. All other symbols were expli­
citly exported.

SHARED LIBRARIES 8-31

Building a Shared Library

Importing Symbols
Normally, shared library code cannot directly use symbols defined out­

side a library, but an escape hatch exists. You can define pointers in the
data area and arrange for those pointers to be initialized to the addresses of
imported symbols. Library code then accesses imported symbols indirectly,
delaying symbol binding until run time. Libraries can import both text and
data symbols. Moreover, imported symbols can come from the user's code,
another library, or even the library itself. In Figure 8-4, the symbols
Jibc.ptrl and Jibc.ptr2 are imported from user's code and the symbol
Jibc_malloc from the library itself.

Shared Library

Addresses

a.out File

ptr1

ptr2

Figure 8-4: Imported Symbols in a Shared Library

The following guidelines describe when and how to use imported sym­
bols.

Imported Symbols that the Library Does Not Define
Archive libraries typically contain relocatable files, which allow

undefined references. Although the host shared library is an archive, too, ~

that archive is constructed to mirror the target library, which more closely "
resembles an a.out file. Neither target shared libraries nor a.out files can
have unresolved references to symbols.

8-32 PROGRAMMER'S GUIDE

Building a Shared Library

Consequently, shared libraries must import any symbols they use but do
not define. Some shared libraries will derive from existing archive libraries.
For the reasons stated above, it may not be appropriate to include all the
archive's modules in the target shared library. Remember though that if
you exclude a symbol from the target shared library that is referenced from
the target shared library, you will have to import the excluded symbol.

Imported Symbols that Users Must Be Able to Redefine
Optionally, shared libraries can import their own symbols. At first this

might appear to be an unnecessary complication, but consider the follow­
ing. Two standard libraries, libc and libmalloc, provide a malloc family.
Even though most UNIX commands use the malloc from the C library, they
can choose either library or define their own.

SHARED LIBRARIES 8-33

Building a Shared Library

When we built the shared C library...

Three possible strategies existed for the shared C library.
First, we could have excluded the malloc(3C) family.
Other library members would have needed it, and so it
would have been an imported symbol. This would have
worked, but it would have meant less savings.

Second, we could have included the malloc family and
not imported it. This would have given us more savings
for typical commands, but it had a price. Other library
routines call malloc directly, and those calls could not
have been overridden. If an application tried to redefine
malloc, the library calls would not have used the alter­
nate version. Furthermore, the link editor would have
found multiple definitions of malloc while building the
application. To resolve this the library developer would
have to change source code to remove the custom mal­
loc, or the developer would have to refrain from using
the shared library.

Finally, we could have included malloc in the shared
library, treating it as an imported symbol. This is what
we did. Even though malloc is in the library, nothing
else there refers to it directly; all references are through
an imported symbol pointer. If the application does not
redefine malloc, both application and library calls are
routed to the library version. All calls are mapped to the
alternate, if present.

You might want to permit redefinition of all library symbols in some
libraries. You can do this by importing all symbols the library defines, in
addition to those it uses but does not define. Although this adds a little
space and time overhead to the library, the technique allows a shared
library to be one hundred percent compatible with an existing archive at
link time and run time.

8-34 PROGRAMMER'S GUIDE

Building a Shared Library

Mechanics of Importing Symbols
Let's assume a shared library wants to import the symbol malloc. The

original archive code and the shared library code appear below.

Archive Code

extenl char *lIlil11oc();

export()
{

p =malloc(n);

Shared Library Code

1* see pointers.c an next page *1

extern char *(*_libc_malloc) () ;

export()
{

Making this transformation is straightforward, but two sets of source
code would be necessary to support both an archive and a shared library.
Some simple macro definitions can hide the transformations and allow
source code compatibility. A header file defines the macros, and a different
version of this header file would exist for each type of library. The -I flag
to cc(1) would direct the C preprocessor to look in the appropriate directory
to find the desired file.

SHARED LIBRARIES 8-35

Building a Shared Library

Archive import.h Shared import.h

1*
* Macros for inp:)rtinJ
* symbols. One #define
* per symbol.

*1

#define malloc: (*_li.bc}nalloc)

extern char *lllalloc();

These header files allow one source both to serve the original archive
source and to serve a shared library, too, because they supply the indirec- ~

tions for imported symbols. The declaration of malloc in import.h actually J
declares the pointer Jibc_malloc.

Common Source

#include llimport.h"

extern char *malloc: () ;

exp:>rt()

{

p = malloc(n);

8-36 PROGRAMMER'S GUIDE

Building a Shared Library

Alternatively, one can hide the #include with #ifdef:

Common Source

#ifdef SHLIB
include n:inpxt.h n

#endi.f

extern char *l'lIa1loc() ;

exp:n:t()
{

p = malloc(n);

Of course the transformation is not complete. You must define the
pointer Jibc_malloc.

File pointers.c

char *(*_libc_malloc)() =0;

Note that Jibc_malloc is initialized to zero, because it is an external
data symbol.

Special initialization code sets the pointers. Shared library code should
not use the pointer before it contains the correct value. In the example the
address of malloc must be assigned to Jibc-fllalloc. Tools that build the
shared library generate the initialization code according to the library
specification file.

Pointer Initialization Fragments
A host shared library archive member can define one or many imported

symbol pointers. Regardless of the number, every imported symbol pointer
should have initialization code.

SHARED LIBRARIES 8-37

Building a Shared Library

This code goes into the a.out file and does two things. First, it creates
an unresolved reference to make sure the symbol being imported gets
resolved. Second, initialization fragments set the imported symbol pointers
to their values before the process reaches main. If the imported symbol
pointer can be used at run time, the imported symbol will be present, and
the imported symbol pointer will be set properly.

/~.....\,

Initialization fragments reside in the host, not the target, shared library.
The link editor copies initialization code into a.out files to set imported
pointers to their correct values.

Library specification files describe how to initialize the imported symbol
pointers. For example, the following specification line would set
Jibe_malloe to the address of malloe:

#init pnaIIoc.o
Iibc malloc malloc

When mkshlib builds the host library, it modifies the file pmalloc.o,
adding relocatable code to perform the following assignment statement:

_Iibc_malloc = &malIoc;

When the link editor extracts pmalloe.o from the host library, the relo­
eatable code goes into the a.out file. As the link editor builds the final a.out
file, it resolves the unresolved references and collects all initialization frag­
ments. When the a.out file is executed, the run time startup routines exe­
cute the initialization fragments to set the library pointers.

Selectively Loading Imported Symbols
Defining fewer pointers in each archive member increases the granular­

ity of symbol selection and can prevent unnecessary objects and initializa­
tion code from being linked into the a.out file. For example, if an archive
member defines three pointers to imported symbols, the link editor will
require definitions for all three symbols, even though only one might be
needed.

8-38 PROGRAMMER'S GUIDE

~..

Building a Shared Library

You can reduce unnecessary loading by writing C source files that
define imported symbol pointers singly or in related groups. If an imported
symbol must be individually selectable, put its pointer in its own source file
(and archive member). This will give the link editor a finer granularity to
use when it resolves the reference to the symbol.

Let's look at an example. In the coarse method, a single source file
might define all pointers to imported symbols:

Old pointers.c

tnt (*_libc_ptr1)() =0;
char *(*_libc_malloc) () = 0;
int <*_libc_ptr2)() =0;

Allowing the loader to resolve only those references that are needed
requires multiple source files and archive members. Each of the new files
defines a single pointer:

File Contents
ptrl.c int (*_Iibc_pt:r1) () = 0;

pmalloc.c char * (* libc malIce) () = 0;

ptr2.c int (*_Iibc_pt:r2) () = 0;

Using the three files ensures that the link editor will only look for
definitions for imported symbols and load in the corresponding initializa­
tion code in cases where the symbols are actually used.

Referencing Symbols in a Shared Library from Another Shared
Library

At the beginning of the section "Importing Symbols," there was a state­
ment that "normally shared libraries cannot directly use symbols defined

SHARED LIBRARIES 8-39

Building a Shared Library

outside the shared library." This is true in general, and you should import
all symbols defined outside the shared library whenever possible.

Unfortunately, this is not always possible, for example when floating­
point operations are performed in a shared library to be built. When such
operations are encountered in any C code, the standard C compiler gen­
erates calls to functions to perform the actual operations. These functions
are defined in the C library and are normally resolved invisibly to the user
when an a.out is created since the cc command automatically causes the
relocatable version of the C library to be searched. When building a shared
library, these floating-point routine references must be resolved at the time
the shared library is being built. But, the symbols cannot be imported
because their names and usage are invisible.

The #objects noload directive has been provided to aliow symbol refer­
ences such as these to be resolved at the time the shared library is built,
provided that the symbols are defined in another shared library. If there
are unresolved references to symbols after the object files listed with the
#objects directive have been link edited, the host shared libraries specified
with the #objects noload directive are searched for absolute definitions of
the symbols. The normal use of the directive would be to search the shared
version of the C library to resolve references to floating-point routines.

For this use, the syntax in the specification file would be:

#objects noload
-Ie s

This would cause mkshlib to search for the host shared library libc_s.a in
the default library locations and to use it to resolve references to any sym­
bols left unresolved in the shared library being built. The -L option can be
used to cause mkshlib to look for the specified library in other than the
default locations.

A few notes on usage are in order. When building a shared library
using #objects noload you must make sure that for each symbol with an
unresolved reference there is a version of the symbol with an absolute
definition in the searched host shared libraries before any relocatable ver­
sion of that symbol. mkshlib will give a fatal error if this is not the case
because relocatable definitions do not have absolute addresses and therefore
do not allow complete resolution of the target shared library.

8-40 PROGRAMMER'S GUIDE

Building a Shared Library

When using a shared library built with references to symbols resolved
from another shared library, both libraries must be specified on the cc com­
mand line. The dependent library must be specified on the command line
before the libraries on which it depends. (See the section "Building an
a.out File" for more details.) If you provide a shared library which refer­
ences symbols in another shared library, you should make sure that your
documentation clearly states that users must specify both libraries when
building a.out files.

Finally, as some of the text above hints, it is possible to use #objects
noload to resolve references to any symbols not defined in a shared library
as long as they are defined in some other shared library. We strongly
encourage you to import as many symbols as possible and to use #objects
noload only when absolutely necessary. Probably you will only need to use
this feature to resolve references to floating-point routines generated by the
C compiler.

Importing symbols has several important benefits over resolVing refer­
ences through #objects noload. First, importing symbols is more flexible in
that it allows you to define your own version of library routines. You can
define your own versions with archive versions of a library. Preserving this
ability with the shared versions helps maintain compatibility.

Importing symbols also helps prevent unexpected name space collisions.
The link editor will complain about multiple definitions of a symbol, refer­
ences to which are resolved through the #objects noload mechanism, if a
user of the shared library also has an external definition of the symbol.

Finally, #objects noload has the drawback that both the library you
build and all the libraries on which it depends must be available on all the
systems. Anyone who wishes to create a.out files using your shared library
will need to use the host shared libraries. Also, the targets of all the
libraries must be available on all systems on which the a.out files are to be
run.

Providing Archive Library Compatibility
Having compatible libraries makes it easy to substitute one for the

other. In almost all cases, this can be done without makefile or source file
changes. Perhaps the best way to explain this guideline is by example:

SHARED LIBRARIES 8-41

Building a Shared Library

When we built the shared C library...

We had an existing archive library to use as the base.
This obviously gave us code for individual routines, and
the archive library also gave us a model to use for the
shared library itself.

We wanted the host library archive file to be compatible
with the relocatable archive C library. However, we did
not want the shared library target file to include all rou­
tines from the archive: including them all would have
hurt performance.

Reaching these goals was, perhaps, easier than you
might think. We did it by building the host library in
two steps. First, we used the available shared library
tools to create the host library to match exactly the tar­
get. The resulting archive file was not compatible with
the archive C library at this point. Second, we added to
the host library the set of relocatable objects residing in
the archive C library that were missing from the host
library. Although this set is not in the shared library
target, its inclusion in the host library makes the relocat­
able and shared C libraries compatible.

Tuning the Shared Library Code
Some suggestions for how to organize shared library code to improve

performance are presented here. They apply to paging systems, such as
UNIX System V Release 3.0. The suggestions come from the experience of
building the shared C library.

The archive C library contains several diverse groups of functions.
Many processes use different combinations of these groups, making the pag­
ing behavior of any shared C library difficult to predict. A shared library
should offer greater benefits for more homogeneous collections of code. For ""
example, a data base library probably could be organized to reduce system)
paging substantially, if its static and dynamic calling dependencies were
more predictable.

8-42 PROGRAMMER'S GUIDE

Building a Shared Library

Profile the Code
To begin, profile the code that might go into the shared library.

Choose Library Contents
Based on profiling information, make some decisions about what to

include in the shared library. a.out file size is a static property, and paging
is a dynamic property. These static and dynamic characteristics may
conflict, so you have to decide whether the performance lost is worth the
disk space gained. See "Choosing Library Members" in this chapter for
more information.

Organize to Improve Locality
When a function is in a.out files, it probably resides in a page with

other code that is used more often (see "Exclude Infrequently Used Rou­
tines"). Try to improve locality of reference by grouping dynamically
related functions. If every call of funeA generates calls to funeD and funeC,
try to put them in the same page. eflow(l) (documented in the Programmer's
Reference Manual) generates this static dependency information. Combine it
with profiling to see what things actually are called, as opposed to what
things might be called.

Align for Paging
The key is to arrange the shared library target's object files so that fre­

quently used functions do not unnecessarily cross page boundaries. When
arranging object files within the target library, be sure to keep the text and
data files separate. You can reorder text object files without breaking com­
patibility; the same is not true for object files that define global data. Once
again, an example might best explain this guideline:

SHARED LIBRARIES 8-43

Building a Shared Library

When we built the shared C library...

We used a 3B2 Computer to build the library; the archi­
tecture of the 3B2 Computer uses 2 KB pages. Using
name lists and disassemblies of the shared library target
file, we determined where the page boundaries fell.

After grouping related functions, we broke them into
page-sized chunks. Although some object files and func­
tions are larger than a single page, most of them are
smaller. Then we used the infrequently called functions
as glue between the chunks. Because the glue between
pages is referenced less frequently than the page con­
tents, the probability of a page fault decreased.

After determining the branch table, we rearranged the
library's object files without breaking compatibility. We
put frequently used, unrelated functions together,
because we figured they would be called randomly
enough to keep the pages in memory. System calls went
into another page as a group, and so on. The following
example shows how to change the order of the library's
object files:

Before

#objects

printf.o
fopen.o
mal1oc.o
stranp.o

8-44 PROGRAMMER'S GUIDE

After

#objects

stranp.o
malloc.o
printf.o
fopen.o

~.,..;,

('

~.• -~ . .

Building a Shared Library

Avoid Hardware Thrashing
Finally, you may have to consider the hardware you're using to obtain

better performance. Using the 3B2 Computer, for example, you need to
consider its memory management. Part of the memory management
hardware is an 8-entry cache for translating virtual to physical addresses.
Each segment (128 KB) is mapped to one of the eight entries. Consequently,
segments 0, 8, 16, ... use entry 0; segments I, 9, 17, ... use entry 1; and so on.

You get better performance by arranging the typical process to avoid
cache entry conflicts. If a heavily used library had both its text and its data
segment mapped to the same cache entry, the performance penalty would
be particularly severe. Every library instruction would bring the text seg­
ment information into the cache. Instructions that referenced data would
flush the entry to load the data segment. Of course, the next instruction
would reference text and flush the cache entry, again.

When we built the shared C library...

We avoided the cache entry conflicts. At least with the
3B2 Computer architecture, a library's text and data seg­
ment numbers should differ by something other than
eight.

Checking for Compatibility
The following guidelines explain how to check for upward-compatible

shared libraries. Note, however, that upward compatibility may not always
be an issue. Consider the case in which a shared library is one piece of a
larger system and is not delivered as a separate product. In this restricted
case, you can identify all a.out files that use a particular library. As long as
you rebuild all the a.out files every time the library changes, the a.out files
will run successfully, even though versions of the library are not compati­
ble. This may complicate development, but it is possible.

Checking Versions of Shared Libraries Using chkshlib{1)
Shared library developers normally want newer versions of a library to

be compatible with previous ones. As mentioned before, a.out files will not
execute properly otherwise.

SHARED LIBRARIES 8-45

Building a Shared Library

If you use shared libraries, you might need to find out if different ver­
sions of a shared library are compatible, or if executable files could have
been built with a particular host shared library or can run with a particular
target shared library. For example, you might have a new version of a tar- ~.

get shared library, and you need to know if all the executable files that ran)
with the older version will run with the new one. You might need to find
out if a particular target shared library can reference symbols in another
shared library. A command, chkshlib(l), has been provided to allow you to
do these and other comparisons.

chkshlib takes names of target shared libraries, host shared libraries,
and executable files as input, and checks to see if those files satisfy the com­
patibility criteria. chkshlib checks to see if every library symbol in the first
file that needs to be matched exists in the second file and has the same
address. The following table shows what types of files and how many of
them chkshlib accepts as input.

The rows listed down represent the first input given, and the columns
listed across represent any more inputs given. For example, if the first
input file you give chkshlib is a target shared library, you must give
another input file that is a target or host shared library.

Nothing Executable Target Host

Executable OK No OK· OK·

Target No No OK OK

Host OK No OK OK

• The executable file must be one that was built using a host shared library.

A useful way to confirm this is to use dump -L to find out which

target file(s) gets loaded when the program is run. See dump(l).

• You can also have executable targetl ...targetn and executable hostl ...hostn.

An example of a chkshlib command line is shown below:

chkshlib /shlib/libc_s /lib/libc_s.a

In this example, /shlib/libc_s is a target shared library and /lib/libc_soa is a
host shared library. chkshlib will check to see if executable files built with ~._

/shlib/libc_s.a would be able to run with /lib/libc_s.)

8·46 PROGRAMMER'S GUIDE

Building a Shared Library

Depending on the input it receives, chkshlib checks to find out if:

• an executable file will run with the given target shared library

• an executable file could have been built using the given host shared
library

• an executable file produced with a given host shared library will run
with a given target shared library

• an executable file that ran with an old version of a target shared
library will run with a new version

• a new host shared library can replace the old host shared library; that
is, executable files built with the new host shared library will run
with the old target shared library

• a target shared library can reference symbols in another target shared
library

To determine if files are compatible, you have to determine which
library symbols in the first file need to be matched in the second file.

• For target shared libraries, the symbols of concern are all external,
defined symbols with non-zero values, except for branch labels
(branch labels always start with .bt), and the special symbols etext,
edata, and end.

• For host shared libraries, the symbols of concern are all external
absolute symbols with a non-zero value.

• For executable files, the symbols of concern are all external absolute
symbols with a non-zero value except for the special symbols etext,
edata, and end.

For two files to be compatible, the target pathnames must be identical in
both files (unless the -i option has been specified).

The following table displays the output you will receive when you use
chkshlib to check different combinations of files for compatibility. In this
table filet represents the name of the first file given, and file2,3... represents
the names of any more files given as input.

SHARED LIBRARIES 8-47

Building a Shared Library

Input

filet is executable
file2,3,... (if any) are targets

filet is executable
file2,3 are hosts

filet is host
file2 (if any) is target

filet is target
file2 is host

both files are targets or
both files are hosts

both files are targets and
-0 option is specified.

Output

filet can [may not] execute using file2
filet can [may not] execute using file3

filel may [may not] have been produced using file2
filet may [may not] have been produced using file3

filet can [may not] produce executables which
will run with file2

file2 can [may not] produce executables which
will run with filet

filet can [may not] replace file2
file2 can [may not] replace filet

filel can [may not] include file2

• The -0 option tells chkshlib that the two files are target shared libraries,

the first of which can reference (include) symbols in the other. See

"Referencing Another Shared Library Within A Shared Library" for details.

For more information on chkshlib, see chkshlib(l).

8-48 PROGRAMMER'S GUIDE

_qnanl.single
_qnan2.double
_qnan2.single
_found.double
_round.single
_trap.single
_type.double
_type.single

Building a Shared Library

When we built the shared C library...

When we built the second version of the shared C
library and checked it against the first version, chkshlib
reported that many external symbols had different values
and therefore the second version could not replace the
first. Here is a list of these symbols:

_bigpow
_litpow
_infl.double
Jnfl.single
_inf2.double
_inf2.single
_invalid.double
Jnvalid.single
_qnanl.double

Since these text symbols were not intended to be user
entry points, they were not put in the branch table. So
when new code was added to the shared library the
addresses of these text symbols changed, and hence their
values changed.

We devised the #hide and #export directives to
allow us to explicitly hide the symbols we did not want
to be user entry points. In fact, in the latest C Shared
Library we hid all the symbols, and exported just the
ones we want to be user entry points.

You cannot directly reference these functions, and
these symbols will not be considered incompatible by
chkshlib in checking the latest version of the shared C
library with any subsequent version.

SHARED LIBRARIES 8-49

Building a Shared Library

Dealing with Incompatible Libraries
When you determine that a newer version of a library can't replace the

older version, you have to deal with the incompatibility. You can deal with
it in one of two ways. First, you can rebuild all the a.out files that use your 1,···.,.
library. If feasible, this is probably the best choice. Unfortunately, you
might not be able to find those a.out files, let alone force their owners to
rebuild them with your new library.

So your second choice is to give a different target pathname to the new
version of the library. The host and target pathnames are independent; so
you don't have to change the host library pathname. New a.out files will
use your new target library, but old a.out files will continue to access the
old library.

As the library developer, it is your responsibility to check for compati­
bility and, probably, to provide a new target library pathname for a new
version of a library that is incompatible with older versions. If you fail to
resolve compatibility problems, a.out files that use your library will not
work properly.

You should try to avoid multiple library versions. If too many copies of
the same shared library exist, they might actually use more disk space and
more memory than the equivalent relocatable version would have.

An Example
This section contains an example of a small specialized shared library

and the process by which it is created from original source and built. We
refer to the guidelines given earlier in this chapter.

The Original Source
The name of the library to be built is libmaux (for math auxiliary

library). The interface consists of three functions:

logd floating-point logarithm to a given base; defined in the file
log.c

8-50 PROGRAMMER'S GUIDE

..~

polyd

Building a Shared Library

evaluate a polynomial; defined in the file poly.c

mauxerr

maux_stat return usage counts for the other two routines in a structure;
defined in stats.c,

an external variable:

set to non-zero if there is an error in the processing of any
of the functions in the library and set to zero if there is no
error (unlike errno in the C library),

and a header file:

maux.h declares the return types of the function and the structure
returned by maux_stat.

The source files before any modifications for inclusion in a shared
library are given below.

SHARED LIBRARIES 8-51

Building a Shared Library

I. log.c *1
#include nmaux.h"
#include <math.h>

1*
* Return the log of "x" relative to the base "a".

*
* logd(base, x) := log(x) I log{base);
* where "log" is "log to the base E".

*1

double logd(base, x)
dolble base, x;
{

extern int stats_!ogd;
extern int total_calls;

double logbase;
double logx;

total_ca1ls++;
stats_logd++;

logbase = log((double)base);
logx = log((double)x);
if(logbase == -HOOE II logx == -HOOE) {

mauxerr = 1;
return(O) ;

}

else
mauxerr = 0;

return(logxllogbase) ;

Figure 8-5: File log.c

8-52 PROGRAMMER'S GUIDE

Building a Shared Library

#include "maux.h"
#include <math.h>

1* Evaluate the pol}'IXlllial
* f(x) := a[O] * (x '" n) + a(1] * (x '" (n-1» + ••• + a[n];
it Note that there are N+1 ooefficients I
* 'Ibis uses Honler's Method, which is:
* f(x) := ««(a(O]*x) + a(1])*x) + a[2]) + •••) + a[n];
* It's equivalent, bIt uses many less operations and is ltOre precise. *1

double polyd(a, n, x)
double all;
int n;
double x;
{

extern int stats_polyd;
extexn int total_calls;
double result;
int i;

total_calls++;
stats_polyd++;
if (n < 0) (

mauxerr = 1;
retum(O);

}

result = a[O];
far (i = 1; i <= n; i++)
{

result *= (double)x;
result += (double)a(i];

)

mauxerr = 0;
retuJ::n(result) ;

Figure 8-6: File poly.c

SHARED LIBRARIES 8-53

Building a Shared Library

1* stats.c *1
#include "maux.h"

int total_calls = 0;
int stats_logd =0;
int stats_lX'lyd = 0;

int mauxerr;

1* Retunl structure wi.th usage stats for functions in librazy
* or 0 if space cannot be allocated for the structure *1

struct mstats *
maux_stat()
{

extern char * malloc();
struct mstats * st;

if ((st = (struct mstats *) malloc(sizeof(struct mstats») == 0)
retunl(O);

st->st_lX'lyd = stats_polyd;
st->st_Iogd = stats_logd;
st->st_total = total_calls;
retunl(st);

Figure 8-7: File stats.c

8-54 PROGRAMMER'S GUIDE

Building a Shared Library

sttuet mstats {
int st_polyd;
int st_logd;

int st_total;
};

extem dooble polyd();
extem dooble logd();

extern st::roet mstats * maux_stat();

extern iJJt mauxerr;

Figure 8-8: Header File maux.h

Choosing Region Addresses and the Target Pathname
To begin, we choose the region addresses for the library's .text and .data

sections from the segments reserved for private use on the 3B2 Computer;
note that the region addresses must be on a segment boundary (128K):

. text
•data

OXS0680000
OxSOGaOOOO

Also we choose the pathname for our target library:

/rqy/direct:myll.il:maux_S

Selecting Library Contents
This example is for illustration purposes and so we will include every­

thing in the shared library. In a real case, it is unlikely that you would
make a shared library with these three small routines unless you had many
programmers using them frequently.

SHARED LIBRARIES 8-55

Building a Shared Library

Rewriting Existing Code
According to the guidelines given earlier in the chapter, we need to

first minimize the global data. We realize that total_calls, statsJogd, and
stats-polyd do not need to be visible outside the library, but are needed in
multiple files within the library. Hence, we will use the #hide directive in
our specification file to make these variables static after the shared library is
built.

We need to define text and global data in separate source files. The
only piece of global data we have left is mauxerr, which we will remove
from stats.e and put in a new file maux_defs.e. We will also have to initial­
ize it to zero since shared libraries cannot have any uninitialized variables.

Next, we notice that there are some references to symbols that we do
not define in our shared library (Le. log and malloc). We can import these
symbols. To do so, we create a new header file, import.h, which will be
included in each of log.e, poly.e, and stats.c. The header file defines C
preprocessor macros for these symbols to make transparent the use of
indirection in the actual C source files. We use the Jibmaux_ prefixes on
the pointers to the symbols because those pointers are made external, and
the use of the library name as a prefix helps prevent name conflicts.

1* New header file impart.h *1
#define malloc (*_1:iJ:maux_malloc)
#define log (*_lil:maux_log)

extem char * malloc();

extem cb1ble log();

Now, we need to define the imported symbol pointers somewhere. We
have already created a file for global data maux_defs.e, so we will add the
definitions to it. ~

8-56 PROGRAMMER'S GUIDE

Building a Shared Library

1* Data file maux defs.c *1

int mauxerr = 0;
double (*_lil::.maux_log) () = 0;
char * (*_libnaux}oalloc)() = 0;

Finally, we observe that there are floating-point operations in the code
and we remember that the routines for these cannot be imported. (If we
tried to write the specification file and build the shared library without tak­
ing this into account, mkshlib would give us errors about unresolved refer­
ences.) This means we will have to use the #objects noload directive in
our specification file to search the C host shared library to resolve the refer­
ences.

Writing the Specification File
This is the specification file for libmaux:

SHARED LIBRARIES 8-57

Building a Shared Library

1
,J

1
2
3

malloa
log

mauxezr
#mit maux defs.o

1ilmaux malloc- -
_l:il:maux_log

11#
2 ## lil:maux.sl - 1iJ::maux specification lfile
3 #address.text 0x80680000
4 #address .data OXB06aOOOO
5 #target /~/di.recta:r:yll.il:JDaux_s
6 #branch
7 po1yd
8 10gd
9 maux stat

10 #objects
11 maux defs.o
12 poly. 0

13 log.o
14 stats.o
15 #objects no1oad
16 -lc_s

17 #hide linker •
18 lexpxt linker
19
20
21
22

Figure 8-9: Specification File

Briefly, here is what the specification file does. Lines 1 and 2 are com­
ment lines. Lines 3 and 4 give the virtual addresses for the shared library
text and data regions, respectively. Line 5 gives the pathname of the shared
library on the target machine. The target shared library must be installed
there for a.out files that use it to work correctly. Line 6 contains the
#branch directive. Line 7 through 9 specify the branch table. They assign
the functions polydO, logdO, and maux_statO to branch table entries 1, 2,
and 3. Only external text symbols, such as C functions, should be placed in
the branch table.

8-58 PROGRAMMER'S GUIDE

Building a Shared Library

Line 10 contains the #objects directive. Lines 11 through 14 give the
list of object files that will be used to construct the host and target shared
libraries. When building the host shared library archive, each file listed
here will reside in its own archive member. When building the target
library, the order of object files will be preserved. The data files must be
first. Otherwise, an addition of static data to poly.o, for example, would
move external data symbols and break compatibility.

Line 15 contains the #objects noload directive, and line 16 gives infor­
mation about where to resolve the references to the floating-point routines.

Lines 17 through 19 contain the #hide linker and #export linker direc­
tives, which tell what external symbols are to be left external after the
shared library is built. Together, these #hide and #export directives say
that only mauxerr will remain external. The symbols in the branch table
and those specified in the #init directive will remain external by definition.

Line 20 contains the #init directive. Lines 21 and 22 give imported
symbol information for the object file maux_defs.o. You can imagine
assignments of the symbol values on the right to the symbols on the left.
Thus _libmaux will hold a pointer to malloc, and so on.

Building the Shared Library
Now, we have to compile the .0 files as we would for any other library:

cc -c maux_defs.c poly.c log.c stats.c

Next, we need to invoke mkshlib to build our host and target libraries:

mkshlib -s libmaux.sl -t libmaux_s -h libmaux_s.a

Presuming all of the source files have been compiled appropriately, the
mkshlib command line shown above will create both the host library,
libmaux_s.a, and the target library, Iibmaux_s. Before any a.out files built
with libmaux_s.a can be executed, the target shared library libmaux_s will
have to be moved to Imy/directory/libmaux_s as specified in the
specification file.

Using the Shared Library
To use the shared library with a file x.c which contains a reference to

one or more of the routines in Iibmaux, you would issue the following
command line:

SHARED LIBRARIES 8-59

Building a Shared Library

This command line causes:

• the imported symbol pointer reference to log to be resolved from
libm and

• the imported symbol pointer reference to malloc to be resolved with
the shared version from libc_so

The most important thing to note from the command line, however, is that
you have to specify the C host shared library (in this case with the -Ic_s)
on the command line since libmaux was built with direct references to the
floating-point routines in that library.

8-60 PROGRAMMER'S GUIDE

Summary

This chapter describes the UNIX system shared libraries and explains
how to use them. It also explains how to build your own shared libraries.
Using any shared library almost always saves disk storage space, memory,
and computer power; and running the UNIX system on smaller machines
makes the efficient use of these resources increasingly important. Therefore,
you should normally use a shared library whenever it's available.

SHARED LIBRARIES 8-61

9 Interprocess Communication

Introduction 9-1

Messages 9·2
Getting Message Queues 9-8

• Using msgget 9-8

• Example Program 9·11
Controlling Message Queues 9-15

• Using msgctl 9-15

• Example Program 9·16
Operations for Messages 9-22

• Using msgop 9-22

~
• Example Program 9·25

Semaphores 9·34
Using Semaphores 9-36

Getting Semaphores 9·40

• Using semget 9·40

• Example Program 9-44

Controlling Semaphores 9·48

• Using semetl 9-48

• Example Program 9·50
Operations on Semaphores 9-60

• Using semop 9·60
• Example Program 9·62

~
Shared Memory 9·68

INTERPROCESS COMMUNICATION

Interprocess Communication

Using Shared Memory
Getting Shared Memory Segments

• Using shmget
• Example Program

Controlling Shared Memory
• Using shmctl
• Example Program

Operations for Shared Memory
• Using shmop
• Example Program

II PROGRAMMER'S GUIDE

9·69
9·73
9-73
9·77
9·80
9-81
9·82
9·89
9·89
9·90

Introduction

The UNIX system supports three types of Inter-Process Communication
(IPC):

• messages

• semaphores

• shared memory

This chapter describes the system calls for each type of IPC.

Included in the chapter are several example programs that show the use
of the IPC system calls. All of the example programs have been compiled
and run on an AT&T 3B2 Computer.

Since there are many ways in the C Programming Language to accom­
plish the same task or requirement, keep in mind that the example pro­
grams were written for clarity and not for program efficiency. Usually, sys­
tem calls are embedded within a larger user-written program that makes use
of a particular function that the calls provide.

INTERPROCESS COMMUNICATION 9-1

Messages

The message type of IPC allows processes (executing programs) to com-
municate through the exchange of data stored in buffers. This data is ~."."'"
transmitted between processes in discrete portions called messages.
Processes using this type of IPC can perform two operations:

• sending

• receiving

Before a message can be sent or received by a process, a process must
have the UNIX operating system generate the necessary software mechan­
isms to handle these operations. A process does this by using the msgget(2)
system call. While doing this, the process becomes the owner/creator of the
message facility and specifies the initial operation permissions for all other
processes, including itself. Subsequently, the owner/creator can relinquish
ownership or change the operation permissions using the msgctl(2) system
call. However, the creator remains the creator as long as the facility exists.
Other processes with permission can use msgctlO to perform various other
control functions.

Processes which have permission and are attempting to send or receive .~
a message can suspend execution if they are unsuccessful at performing
their operation. That is, a process which is attempting to send a message
can wait until the process which is to receive the message is ready and vice
versa. A process which specifies that execution is to be suspended is per-
forming a Itblocking message operation." A process which does not allow its
execution to be suspended is performing a "nonblocking message opera-
tion. 1t

A process performing a blocking message operation can be suspended
until one of three conditions occurs:

• It is successful.

• It receives a signal.

• The facility is removed.

9-2 PROGRAMMER'S GUIDE

~.,..'"''''''
~,.,

'.

Messages

System calls make these message capabilities available to processes. The
calling process passes arguments to a system call, and the system call either
successfully or unsuccessfully performs its function. If the system call is
successful, it performs its function and returns applicable information. Oth­
erwise, a known error code (-1) is returned to the process, and an external
error number variable errno is set accordingly.

Before a message can be sent or received, a uniquely identified message
queue and data structure must be created. The unique identifier created is
called the message queue identifier (msqid); it is used to identify or refer­
ence the associated message queue and data structure.

The message queue is used to store (header) information about each
message that is being sent or received. This information includes the fol­
lowing for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified mes­
sage queue. This data structure contains the following information related
to the message queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PIO) of last message sender

• PIO of last message receiver

• last message send time

INTERPROCESS COMMUNICATION 9-3

Messages

• last message receive time

• last change time

All include files discussed in this chapter are located in the lusrlinclude
or lusr/include/sys directories.

The C Programming Language data structure definition for the message
information contained in the message queue is as follows:

st:roet msg
{

struet msq

lang
short
short

};

lnS9_next; 1 ptr to next message on q *1
1IlS9'_type; 1* message type *1
msg'_ts; 1* message tex:t size *1
msq_spot; 1* message text map address *1

It is located in the lusr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as
follows:

9-4 PROGRAMMER"S GUIDE

Messages

};

struct ipc_perm
struct msg
st:ruct msg
uslxrt
ushort
usbJrt

uslxrt
uslxrt
time t
time t
time t

msg-perm;
*1tlS9'_first;
*IllS9_last;
IIlSg_cbytes;
IIlSg-qmml;

msq-qbytes;
IDSq_lspid;
IIlSg_1I:pid;

IDSq_stime;

IDSCJ_rtime;
IDSq_ctilre;

1* operation permission struct *1
1* ptr to first message on q *1
1* ptr to last message on q *1
1* current :# bytes on q *1
1* # of messages an q *1
1* max :# of bytes on q *1
1* pid of last msqsDi *1
1* pid of last msgrcv *1
1* last msgsnd time *1
1* last msgrcv time *1
1* last c:hanle time *1

~"•.'."""",..

It is located in the #include <sys/msg.h> header file also. Note that the
msg-perm member of this structure uses ipc-perm as a template. The
breakout for the operation permissions data structure is shown in Figure
9-1.

The definition of the ipc-!,erm data structure is as follows:

INTERPROCESS COMMUNICATION 9-5

Messages

struct ipc_penn
{

} ;

uidi
gidi
cuidi
ogid;
JOOde;
seq;
key;

1* owner's user id *1
1* owner's group id *1
1* creator's user id *1
1* creator's group id *1
1* access DDdes *1
1* slot usage sequence I1UIIber *1
1* key *1

Figure 9-1: ipc-perm Data Structure

It is located in the #include <sys/ipc.h> header file; it is common for all
IPC facilities.

The msgget(2) system call is used to perform two tasks:

• to get a new msqid and create an associated message queue and data
structure for it

• to return an existing msqid that already has an associated message
queue and data structure

Both tasks require a key argument passed to the msggetO system call.
For the first task, if the key is not already in use for an existing msqid, a
new msqid is returned with an associated message queue and data structure
created for the key. This occurs provided no system tunable parameters
would be exceeded and a control command IPC-CREAT is specified in the
msgflg argument passed in the system call.

There is also a provision for specifying a key of value zero which is
known as the private key (IPC_PRIVATE = 0); when specified, a new msqid
is always returned with an associated message queue and data structure ~/..'.
created for it unless a system tunable parameter would be exceeded. When)
the ipcs command is performed, for security reasons the KEY field for the
msqid is all zeros.

9-6 PROGRAMMER'S GUIDE

Messages

For the second task, if a msqid exists for the key specified, the value of
the existing msqid is returned. If you do not desire to have an existing
msqid returned, a control command (IPC_EXCL) can be specified (set) in the
msgflg argument passed to the system call. The details of using this system
call are discussed in the "Using msgget" section of this chapter.

When performing the first task, the process which calls msgget becomes
the owner Icreator, and the associated data structure is initialized accord­
ingly. Remember, ownership can be changed but the creating process
always remains the creator; see the "Controlling Message Queues" section
in this chapter. The creator of the message queue also determines the initial
operation permissions for it.

Once a uniquely identified message queue and data structure are
created, message operations [msgopOl and message control [msgctlOl can be
used.

Message operations, as mentioned previously, consist of sending and
receiving messages. System calls are provided for each of these operations;
they are msgsndO and msgrcvO. Refer to the 1I0perations for Messages" sec­
tion in this chapter for details of these system calls.

Message control is done by using the msgctl(2) system call. It permits
you to control the message facility in the following ways:

• to determine the associated data structure status for a message queue
identifier (msqid)

• to change operation permissions for a message queue

• to change the size (msg_qbytes) of the message queue for a particular
msqid

• to remove a particular msqid from the UNIX operating system along
with its associated message queue and data structure

Refer to the "Controlling Message Queues" section in this chapter for
details of the msgctlO system call.

INTERPROCESS COMMUNICATION 9-7

Messages

Getting Message Queues
This section gives a detailed description of using the msgget(2) system

call along with an example program illustrating its use.

Using msgget
The synopsis found in the msgget(2) entry in the Programmer's Reference

Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msq.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

All of these include files are located in the lusr/include/sys directory
of the UNIX operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msggetO is a function with two formal arguments that
returns an integer type value, upon successful completion (msqid). The
next two lines:

key_t key;
int msgflg;

declare the types of the formal arguments. key_t is declared by a typedef
in the types.h header file to be an integer. .~

9-8 PROGRAMMER'S GUIDE

Messages

The integer returned from this function upon successful completion is
the message queue identifier (msqid) that was discussed earlier.

As declared, the process calling the msggetO system call must supply
two arguments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is
provided if either

• key is equal to IPC_PRIVATE,

or

• key is passed a unique hexadecimal integer, and a control command
IPC_CREAT is specified in the msgflg argument.

The value passed to the msgflg argument must be an integer type value
and it will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and execution
modes determine the user/group / other attributes of the msgflg argument.
They are collectively referred to as ltoperation permissions." Figure 9-2
reflects the numeric values (expressed in octal notation) for the valid opera­
tion permissions codes.

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Figure 9-2: Operation Permissions Codes

Octal Value
00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/write by others is
desired, the code value would be 00406 (00400 plus 00006). There are

INTERPROCESS COMMUNICATION 9-9

Messages

constants located in the msg.h header file which can be used for the user
operations permissions.

Control commands are predefined constants (represented by all upper-
case letters). Figure 9-3 contains the names of the constants which apply to ~

the msggetO system call along with their values. They are also referred to Y
as flags and are defined in the ipc.h header file.

Control Command
IPC_CREAT
IPC_EXCL

Figure 9-3: Control Commands (Flags)

Value
0001000
0002000

The value for msgflg is therefore a combination of operation permis­
sions and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is accomplished by bitwise DRing a) them with the operation permis­
sions; the bit positions and values for the control commands in relation to
those of the operation permissions make this possible. It is illustrated as '~,\
follows:

Octal Value Binary Value

IPC_CREAT
I ORed by User

msgflg

01000
00400

01400

o000 001 000 000 000
o000 000 100 000 000

o 000 001 100000 000

The msgflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

msqid =msgget (key, (!PC_cm:AT 0400)) ;

msqid = msgqet (key, (!PC_cm:AT !PC EX.CL 0400)) ;

9-10 PROGRAMMER'S GUIDE

Messages

As specified by the msgget(2) page in the Programmer's Reference Manual,
success or failure of this system call depends upon the argument values for
key and msgflg or system tunable parameters. The system call will attempt
to return a new msqid if one of the following conditions is true:

• Key is equal to IPC_PRIVATE (0)

• Key does not already have a msqid associated with it, and (msgflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

msqid = msgget (!PC_PRIVATE, msgflg);

or

msqid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it satisfies the
first condition specified. Exceeding the MSGMNI system tunable parameter
always causes a failure. The MSGMNI system tunable parameter determines
the maximum number of unique message queues (msqid's) in the UNIX
operating system.

The second condition is satisfied if the value for key is not already asso­
ciated with a msqid and IPC_CREAT is specified in the msgflg argument.
This means that the key is unique (not in use) within the UNIX operating
system for this facility type and that the IPC_CREAT flag is set (msgflg I
IPC_CREAT).

IPC_EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a msqid
exists for the specified key provided. This is necessary to prevent the pro­
cess from thinking that it has received a new (unique) msqid when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a
new msqid is returned if the system call is successful.

Refer to the msgget(2) page in the Programmer's Reference Manual for
specific associated data structure initialization for successful completion.
The specific failure conditions with error names are contained there also.

Example Program
The example program in this section (Figure 9-4) is a menu driven pro­

gram which allows all possible combinations of using the msgget(2) system
call to be exercised.

INTERPROCESS COMMUNICATION 9-11

Messages

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require­
ments are pointed out.

This program begins (lines 4-8) by including the required header fites--as .~
specified by the msgget(2) entry in the Programmer's Reference Manual. Note
that the errno.h header file is included as opposed to declaring-ermo- as an -
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and it is perfectly l~gal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation-permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical DRing
of the opperm and flags variables; it is then used in the system call
to pass the msgflg argument /~

• msqid-used for returning the message queue identification number
for a successful system call or the error code (-1) for an unsuccessful
one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command combina­
tions (flags) which are selected from a menu (lines 15-32). All possible com­
binations are allowed even though they might not be viable. This allows
observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags vari­
able (lines 36-51).

The system call is made next, and the result is stored at the address of
the msqid variable (line 53).

9-12 PROGRAMMER'S GUIDE

Messages

Since the msqid variable now contains a valid message queue identifier
or the error code (-1), it is tested to see if an error occurred (line 55). If
msqid equals -1, a message indicates that an error resulted, and the exter­
nal errno variable is displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed
(line 62).

The example program for the msgget(2) system call follows. It is sug­
gested that the source program file be named msgget.c and that the execut­
able file be named msgget.

1 1*'lhis is a program to illustrate
2 **the message get, nsgqet(),

3 **system call capabilities.*1

4 #include
5 #include
6 #include
7 #include
8 #include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/rosg.h>
<ez:nx>.h>

9 I*Start of main C laD;JUage program*1
10 main()

11 {
12 key_t key; 1*<ieclare as lang integer*1
13 int oppe:rm, flags;
14 int msqid, oppenll_flags;
15 I*Enter the desired key*1
16 printf("Enter the desired key in hex = ");
17 seanf("%x", &key);

18 I*Enter the desired octal operation
19 permdssions.*1
20 printf("\nEnter the operaticm\n");
21 printf ("permissions in octal = ");
22 seanf(II~", &opperm);

23
24
25
26
27

1*5et the desired flags.*1
printf ("\nEnter oorresp:md:in:J number to\n");
printf("set the desired flags: \n") ;
printf ("No flags = O\n");
printf (nne_am:AT = 1\n");

INTERPROCESS COMMUNICATION 9-13

Messages

continued

28
29
30

printf("IFe EKa.

printf("IFe=~ and IFe_EKa.
printf(" Flags

= 2\n");
= 3\n");
= ");

I*Incorp:lrate the control fields (flags) with
the operation pennissi.cms*1

switch (flags)
{

case 0: 1+No flags are to be set.*1
oppenn_flags = (oppenn ; 0);
break;

case 1: 1*5et the IFC~ flag.*1
oppem_f14gs =(~ I IFC_~);
break;

case 2: I*Set the IFe EKa. flag.*1
oppenn_flags = (~ I IFC_EKa.) ;
break;

case 3: 1*5et the IFC~ and IFC EKa. f14gs.*1
oppenn_flags =(~ ; IFC_~-l IFC_EKa.);

31 litGet the flag(s) to be set.*1
32 scanf(n%el", &flags);

33 1+Check the values.*1
34 printf ("\nkey =Ox%x, oppenn = 00l0, flags = 00l0\n",
35 key, opperD1, flags);

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52 I.cal.l the mggget system ca11.*1
53 msqid = msgget (key, oppern1_flags);

54 1*PeJ:'fcmn the followiD] if the call is unsuccessful.*1
55 if(msqid == -1)
56 {
57 printf ("\rtlbe msgget system call failed l\n") ;
58 printf ("The en:or number = %el\n", enno);
59

9-14 PROGRAMMER'S GUIDE

~
"~"~

~'

~'

Messages

continued

60 /*Retw:n the us::Pd upon suc:oessful ocmpletion.*/
61 else
62 printf (n\n'lbe msqid = ~n, nsqid);

63 exit(O);
64

Figure 9-4: msggetO System Call Example

Controlling Message Queues
This section gives a detailed description of using the msgctl system call

along with an example program which allows all of its capabilities to be
exercised.

Using msgctl
The synopsis found in the msgctl(2) entry in the Programmer's Reference

Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, ami, b.1f)
int msqid, ami;
st:ruct msqid_ds *b.1f;

INTERPROCESS COMMUNICATION 9-15

Messages

The msgctl(} system call requires three arguments to be passed to it, and it
returns an integer value.

Upon successful completion, a zero value is returned; and when unsuc­
cessful, it returns a -l.

The msqid variable must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msggetO sys­
tem call.

The cmd argument can be replaced by one of the following control
commands (flags):

IPC_STAT return the status information contained in the associated
data structure for the specified msqid, and place it in the
data structure pointed to by the .buf pointer in the user
memory area.

IPC_SET for the specified msqid, set the effective user and group
identification, operation permissions, and the number of
bytes for the message queue.

IPC_RMID remove the specified msqid along with its associated mes­
sage queue and data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or IPC_RMID con­
trol command. Read permission is reqUired to perform the IPC_STAT con­
trol command.

The details of this system call are discussed in the example program for
it. If you have problems understanding the logic manipulations in this pro­
gram, read the msgget(2) section of the "UNIX Programming Manual"; it
goes into more detail than what would be practical for this document.

.~

Example Program
The example program in this section (Figure 9-5) is a menu driven pro­

gram which allows all possible combinations of using the msgctl(2) system
call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require-)
ments are pointed out.

9-16 PROGRAMMER'S GUIDE

Messages

This program begins (lines 5-9) by including the required header files as
specified by the msgctl(2) entry in the Programmer's Reference Manual. Note
in this program that errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self­
explanatory. These names make the program more readable, and it is per­
fectly legal since they are local to the program. The variables declared for
this program and their purpose are as follows:

uid used to store the IPC_SET value for the effective user
identification

gid

mode

used to store the IPC_SET value for the effective group
identification

used to store the IPC_SET value for the operation permis­
sions

rtrn

bytes

msqid

used to store the IPC_SET value for the number of bytes in
the mess,age queue (msg_qbytes)

used to store the return integer value from the system call

used to store and pass the message queue identifier to the
system call

command used to store the code for the desired control command so
that subsequent processing can be performed on it

choice used to determine which member is to be changed for the
IPC_SET control command

msqid_ds used to receive the specified message queue indentifier's
data structure when an IPC_STAT control command is per­
formed

*buf a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT con­
trol command is to place its return values or where the
IPC_SET command gets the values to set

INTERPROCESS COMMUNICATION 9-17

Messages

Note that the msqid_ds data structure in this program (line 16) uses the
data structure located in the msg.h header file of the same name as a tem­
plate for its declaration. This is a perfect example of the advantage of local
variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the msqid_ds type, it must
also be initialized to contain the address of the user memory area data struc­
ture (line 17). Now that all of the required declarations have been
explained for this program, this is how it works.

First, the program prompts for a valid message queue identifier which is
stored at the address of the msqid variable (lines 19, 20). This is required
for every msgctl system call.

Then the code for the desired control command must be enter~d (lines
21-27), and it is stored at the address of the command variable. The code is
tested to determine· the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 37, 38) and the status information returned is printed out
(lines 39-46); only the members that can be set are printed out in this pro­
gram. Note that if the system call is unsuccessful (line 106), the status
information of the last successful call is printed out. In addition, an error
message is displayed and the errno variable is printed out (lines 108, 109).
If the system call is successful, a message indicates this along with the mes­
sage queue identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first thing
done is to get the current status information for the message queue
identifier specified (lines 50-52). This is necessary because this example pro­
gram provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the pro­
gram does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored at the address of the choice vari­
able (line 60). Now, depending upon the member picked, the program
prompts for the new value (lines 66-95). The value is placed at the address
of the appropriate member in the user memory area data structure, and the
system call is made (lines 96-98). Depending upon success or failure, the
program returns the same messages as for IPC_STAT above.

9-18 PROGRAMMER'S GUIDE

Messages

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 100-103), and the msqid along with its associated message
queue and data structure are removed from the UNIX operating system.
Note that the -buE pointer is not required as an argument to perform this
control command, and its value can be zero or NULL. Depending upon the
success or failure, the program returns the same messages as for the other
control commands.

The example program for the msgctlO system call follows. It is sug­
gested that the source program file be named msgctl.c and that the execut­
able file be named msgctl.

1 1*'lt1is is a program to illustrate
2 ..the message oontrol, msqctl () ,
3 **system call capabilities.
4 *1

5 Idnclude necessary header files.*1
6 #include <stdio.h>
7 #include <sys/types.h>
8 #:include <syslipc.h>
9 #:include <syslmsq.h>

10 I*start of main C 1aD;Juage progr&n*1
11 main()
12 {
13 extel:n int erma;
14 int uid, gid, 1OOde, bytes;
15 int rtm, msqid, ocmnand, cb:>ice;
16 stroct msqid_ds msqid_ds, *bJf;
17 bJf ::: &msqid_ds;

18
19
20
21
22
23
24
25
26
27

liiGet the msqid, an:! cxmnand. *1
printf("&Iter the msqid = ");
scanf("~", &msqid);
printf("\nEnter the number far\n");
printf("the desired cxmnand:\n");
printf (nne_STAT 1\n") ;
printf ("ne_SEl' 2\n") ;
printf("ne}~4ID 3\n");
printf ("Entry ") ;

scanf("~", &ccmnand);

INTERPROCESS COMMUNICATION 9-19

Messages

28 I~ the values.*1
29 printf (lI\nmsqid ~t oc:mnand =~" t

30 msqidt oc:mnand);

continued

31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59

60
61
62
63
64
65

66
67

switch (ocmnand)

{

case 1: I*Uoo msgctl () to duplicate
the data structure for

msqid in the msqid}ls area pointed
to by buf and then print it oo.t.*1

rtm = msgctl (nsqidt IFC_STATt

buf);
printf ("\Jtlhe USER m = ~"t

~msg_pexm.uid) ;
printf ("'lhe GRXJP m =~"t

~msg_pexm.gid) ;
printf ("'lhe operation pemi.ssions == 00(0\n1l t

~msg_pexm.na1e) ;
printf (lib EDSg'_qbytes = ~\n" t

~msg-qbytes) ;
break;

case 2: 1*select and chaD:Je the desired
member(s) of the data structure.*1

1*Get the original data for this msqid
data structure first.*1

rtm == msgctl (msqid t IFC_STAT t buf);
printf("\nEnter the rmmber for the\n");
printf("member to be cbanged:\n");
printf("EDSg'_pexm.uid == 1\n");
printf("llS9_peDIl.gid = 2\11");
printf("ms9_pexm.na1e = 3\nll

);

printf("n'sg_qbytes :: 4\n");

printf("&'ltxy = ");

scanf("~" t &cJx:>ice);
1-emly one c:lx>ice is alJ.owed per

pass as an illegal entxy will
cause repetitive failures until

msqid_ds is updated with
!PC STAT.*I

switch(c:lx>ice) {

case 1:

.~

9-20 PROGRAMMER'S GUIDE

Messages

continued

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

printf(,,\nEnter USER 10 = ");

scanf ("%d", &uid);
buf- > msg....Perm.uid = uid;
printf("\nUSER 10 ... %d\n",

buf- > msg....Perm.uid);
break;

case 2:
printf(',\nEnter GROUP 10 ... to);
scanf(to%d", &gid);
buf- > msg....Perm.gid "" gid;
printf(,,\nGROUP 10 = %d\n",

buf- > msgyerm.gid);
break;

case 3:
printf("\nEnter MODE = ");

scanf("%o", &mode);
buf- > msg....Perm.mode "" mode;
printf("\nMODE"" O%o\n",

buf- > msgyerm.mode);
break;

case 4:
printf('\nEnter mSCLbytes = ");
scanf("%d", &bytes);
buf- > msg_qbytes "" bytes;
printf("\nmsg_qbytes "" %d\n",

buf-> msg_qbytes);
break;

96 /·00 the change.·/
97 rtrn ... msgctl(msqid, IPC_SET,
98 buf);
99 break;

100
101
102
103
104
105
106
107
108

case 3: /·Remove the msqid along with its
associated message queue
and data structure.·/

rtrn "" msgctl(msqid, IPC_RMID, NULL);
}
/·Perform the following if the call is unsuccessful.·/
if(rtrn -- -1)
{

printf ('\nThe msgctl system call failed!\n");

INTERPROCESS COMMUNICATION 9-21

Messages

continued

109 printf ("The error number ... %d\n", errno);
110 }
111 '''Return the msqid upon successful completion.'"
112 else
113 printf ("\nMsgctl was successful for msqid ... %d\n",
114 msqid);
115 exit (0);
116

Figure 9-5: msgctlO System Call Example

Operations for Messages
This section gives a detailed description of using the msgsnd(2) and

msgrcv(2) system calls, along with an example program which allows all of
their capabilities to be exercised.

Using msgop
The synopsis found in the msgop(2) entry in the Programmer's Reference

Manual is as follows:

9-22 PROGRAMMER'S GUIDE

Messages

#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *lIISgp;

int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *lIISgp;

int msgsz;
lonq msg1:yp;

int msgflg;

Sending a Message
The msgsnd system call requires four arguments to be passed to it. It

returns an integer value.

Upon successful completion, a zero value is returned; and when unsuc­
cessful, msgsndO returns a-I.

The msqid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msggetO sys­
tem call.

The msgp argument is a pointer to a structure in the user memory area
that contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the
data structure pointed to by the msgp argument. This is the length of the
message. The maximum size of this array is determined by the MSGMAX
system tunable parameter.

INTERPROCESS COMMUNICATION 9-23

Messages

The msgflg argument allows the ''blocking message operation" to be per­
formed if the IPC_NOWAIT flag is not set «msgflg & IPC_NOWAIT)= = 0);
this would occur if the total number of bytes allowed on the specified mes-
sage queue are in use (msg_qbytes or MSGMNB), or the total system-wide l~

number of messages on all queues is equal to the system imposed limit)
(MSGTQL). If the IPC_NOWAIT flag is set, the system call will fail and
return a-I.

The msg_qbytes data structure member can be lowered from MSGMNB
by using the msgctlO IPC_SET control command, but only the super-user
can raise it afterwards.

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the "Using msgget" section of this chapter; it goes into more
detail than what would be practical to do for every system call.

Receiving Messages
The msgrcvO system call requires five arguments to be passed to it, and

it returns an integer value.

Upon successful completion, a value equal to the number of bytes
received is :(eturned and when unsuccessful it returns a -1.

The msqid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msggetO sys­
tem call.

The msgp argument is a pointer to a structure in the user memory area
that will receive the message type and the message text.

The msgsz argument specifies the length of the message to be received.
If its value is less than the message in the array, an error can be returned if
desired; see the msgflg argument.

The msgtyp argument is used to pick the first message on the message
queue of the particular type specified. If it is equal to zero, the first mes­
sage on the queue is received; if it is greater than zero, the first message of
the same type is received; if it is less than zero, the lowest type that is less
than or equal to its absolute value is received.

The msgflg argument allows the Itblocking message operation" to be per- ~,

formed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0); }
this would occur if there is not a message on the message queue of the
desired type (msgtyp) to be received. If the IPC_NOWAIT flag is set, the
system call will fail immediately when there is not a message of the desired

9-24 PROGRAMMER'S GUIDE

Messages

type on the queue. Msgflg can also specify that the system call fail if the
message is longer than the size to be received; this is done by not setting
the MSG_NOERROR flag in the msgflg argument (msgflg &
MSG_NOERROR = 0). If the MSG_NOERROR flag is set, the message is
truncated to the length specified by the msgsz argument of msgrcvO.

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the "Using msgget" section of this chapter; it goes into more
detail than what would be practical to do for every system call.

Example Program
The example program in this section (Figure 9-6) is a menu driven pro­

gram which allows all possible combinations of using the msgsndO and
msgrcv(2) system calls to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require­
ments are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

sndbuf used as a buffer to contain a message to be sent (line 13); it
uses the msgbufl data structure as a template (lines 10-13).
The msgbufl structure (lines 10-13) is a duplicate of the
msgbuf structure contained in the msg.h header file, except
that the size of the character array for msgbuf is tailored to
fit this application. It contains the maximum message size
(MSGMAX) for the computer. For this reason msgbuf can­
not be used directly as a template for the user-written pro~

gram. It is there so you can determine its members.

INTERPROCESS COMMUNICATION 9-25

Messages

rcvbuf

*msgp

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers

i used as a counter for inputting characters from the key­
board, storing them in the array, and keeping track of the
message length for the msgsndO system call; it is also used
as a counter to output the received message for the msgrcvO
system call

c used to receive the input character from the getcharO func­
tion (line 50)

flag used to store the code of IPC_NOWAIT for the msgsndO
system call (line 61)

flags used to store the code of the IPC_NOWAIT or
MSG_NOERROR flags for the msgrcvO system call (line 117)

choice

rtrn

msqid

msgsz

msgflg

msgtyp

used to store the code for sending or receiving (line 30)

used to store the return values from all system calls

used to store and pass the desired message queue identifier
for both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of
flags for receiving

used for specifying the message type for sending, or used to
pick a message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21)
with a pointer which is initialized to point to it (line 22); this will allow the
data structure members that are affected by message operations to be
observed. They are observed by using the msgctlO (IPC_STAT) system call
to get them for the program to print them out (lines 80-92 and lines 161-
168)'J

9-26 PROGRAMMER'S GUIDE

Messages

The first thing the program prompts for is whether to send or receive a
message. A corresponding code must be entered for the desired operation,
and it is stored at the address of the choice variable (lines 23-30). Depend­
ing upon the code, the program proceeds as in the following msgsnd or
msgrcv sections.

msgsnd
When the code is to send a message, the msgp pointer is initialized (line

33) to the address of the send data structure, sndbuf. Next, a message type
must be entered for the message; it is stored at the address of the variable
msgtyp (line 42), and then (line 43) it is put into the mtype member of the
data structure pointed to by msgp.

The program now prompts for a message to be entered from the key­
board and enters a loop of getting and storing into the mtext array of the
data structure (lines 48-51). This will continue until an end of file is recog­
nized which for the getcharO function is a control-d (CTRL-D) immediately
following a carriage return «CR».

The message is immediately echoed from the mtext array of the sndbuf
data structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1
be entered for yes or anything else for no (lines 57-65). It is stored at the
address of the flag variable. If a 1 is entered, IPC_NOWAIT is logically
ORed with msgflg; otherwise, msgflg is set to zero.

The msgsndO system call is performed (line 69). If it is unsuccessful, a
failure message is displayed along with the error number (lines 70-72). If it
is successful, the returned value is printed which should be zero (lines 73­
76).

Every time a message is successfully sent, there are three members of
the associated data structure which are updated. They are described as fol­
lows:

msg_qnum represents the total number of messages on the message
queue; it is incremented by one.

msgJspid contains the Process Identification (PID) number of the last
process sending a message; it is set accordingly.

INTERPROCESS COMMUNICATION 9-27

Messages

msg_stime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) of the last message sent; it is
set accordingly.

These members are displayed after every successful message send opera­
tion (lines 79-92).

msgrcv
If the code specifies that a message is to be received, the program con­

tinues execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to
receive the message is requested, and it is stored at the address of msqid
(lines 100-103).

The message type is requested, and it is stored at the address of msgtyp
(lines 104-107).

The code for the desired combination of control flags is requested next,
and it is stored at the address of flags (lines 108-117). Depending upon the
selected combination, msgflg is set accordingly (lines 118-133). .-)

Finally, the number of bytes to be received is requested, and it is stored
at the address of msgsz (lines 134-137).

The msgrcvO system call is performed (line 144). If it is unsuccessful, a
message and error number is displayed (lines 145-148). If successful, a mes­
sage indicates so, and the number of bytes returned and the msg type
returned (because the value returned may be different from the value
requested) is displayed followed by the received message (lines 153-159).

When a message is successfully received, there are three members of the
associated data structure which are updated; they are described as follows:

msg_qnum contains the number of messages on the message queue; it is
decremented by one.

msgJrpid contains the process identification (PID) of the last process
receiving a message; it is set accordingly.

msg_rtime contains the time in seconds since January 1, 1970, ')
Greenwich Mean Time (GMT) that the last process received
a message; it is set accordingly.

9-28 PROGRAMMER'S GUIDE

~

Messages

The example program for the msgopO system calls follows. It is sug­
gested that the program be put into a source file called msgop.c and then
into an executable file called msgop.

1 I *'l'his is a program to illustrate
2 **the message operations, msgop(},
3 **systeln call capabilities.
4 *1

5 l*Include necessazy header files.*1
6 #include <sbllo.11>
7 #include <sys/types.11>

8 #include <sys/ipc.11>
9 #include <sys/msg.11>

10 struct msgbuf 1 {
11 long mtype;
12 char mteKt[8192];
13 } sndhuf, rcvb1£, *InS9P;

14 I *start of main C 1aD;Juage program*1
15 main()

16 (
17 extezn int en:no;
18 int i, c, flag, flags, choice;
19 int rtzn, msqid, msgsz, msgflg;
20 long mtype, msgt}'p;

21 struct msqid_ds msqid_ds, *buf;
22 l::uf =&msqid_ds;

23 1*5elect the desired operatian.*1
24 printf("Enter the oorresp:mding\n");
25 printf ("code to serxi ar\n");
26 printf("receive a message:\n");
27 printf("5end = 1\n");
28 printf("Receive = 2\n");
29 printf ("Entry = ");
30 scanf ("~", &choice);

31 if(choice == 1) 1*5end a message.*1
32 {

33 msgp = &srx1b1f; I*Point to user send structure.*1

34 printf ("\nEnter the msqid of\n") ;

INTERPROCESS COMMUNICATION 9-29

Messages

35
36
37

38
39
40
41
42
43

44
45

46
47

48
49
50
51

52
53

54
55
56

57
58
59
60
61
62
63
64
65

66
67

68

printf("the message queue to\n");
printf("haJxlle the message =");
scanf("%d,", &msqid);

I*set the message type.*1
printf("\nEnter a positive integer\n");
printf("message type (long) for the\n");
printf("message = ");
scanf("%d,", &msgtyp);

msgp->mtype =DSgtyp;

I *Enter the message to serrl.*1
printf("\nEnter a message: \n");

I*A contxol-d (Ad) teminates as
EDF.*I

I *Get each character of the message
and~ it in the mtext array.*1

for(i = 0; «c =getdhar(» 1= EOF); i++)
sndbuf.Intext[i] =c;

I*Determ:i.ne the message size.*1
msgsz = i + 1;

1*Ecb::> the message to send.*1
for(i =0; i < msgsz; i++)

Pltchar(SIXblf .mtext[i]) ;

I *set the !PC_'tUIlAIT flag if
desired. *1

printf("\nEnter a 1 if you want the\n");
printf ("the !PC_lDilAIT flag set: ") ;
scanf("%d,", &flag);
if(flag = 1)

mggflg := !PC_lDilAIT;

else
msgf1q = 0;

litOleck the msgf1q.*1
printf("\nmsgflg = 00(0\n", msgf1q);

continued

..~

..~

9-30 PROGRAMMER'S GUIDE

Messages

continued

69
70
71
72
73
74
75
76

77
78
79

80
81

82

83
84

85
86
87
88
89
90
91
92
93
94

rtrn = msgsrd(msqid, msgp. rnsgsz. msgflg);
if(rtm == -1)
printf("\nMsgsnd failed. Error =~\n",

erma);
else {

I-Print the value of test which
shalld be zero for successful.-I

printf("\nValue retw:ned = Y.d\n". rtrn);

I_Print the size of the message
sent.-I

printf("\nMsgsz = %d\n", msgsz);

I i!01eck the data structure update ••1

msgctl(msqid, IFC_STAT. but);

I -Print the incremented number of
messages on the queue. *1

printf("\nThe msg_qnum =~\n",

b.tf->msg_qnum) ;

I-Print the process id of the last sender.*1
printf("'!he IDSg_lspid =Y.d\n",

b.tf->msg_lspid) ;
I*Print the last send time ••1
printf ("'!he IDSg_~ =%d\n",

b.tf->msg_stinE) ;

95 if(choice = 2) I*Receive a message .•1
96 {
97 Idnitialize the message pointer
98 to the receive buffer ••1
99 msgp =&rcvb1f;

~," ,

100
101
102
103

104

I.Specify the message queue which contains
the desired message. *1

printf ("\nEnter the msqid = ");
scanf (II~", &msqi.d);

I*Specify the specific message on the queue

INTERPROCESS COMMUNICATION 9-31

Messages

105
106
107

108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137

138
139
140
141
142

continued

by using its type.*1
printf("\nEnter the msgtyp = ");
scanf(II~II, &msgtyp};

l.canfigure the oantrol flags for the

desired actions. *1
printf ("\nEnter the oorresparrling code\nII) ;

printf(lito select the desired flags: \nil);
printf("ti) flags = O\n") ;
printf("MSG_~ = 1\n");
printf ("!PC_tOolAIT = 2\n") ;
printf ("re:;_~ and IFC_N:MAIT = 3\n") ;

printf (" Flags = ") ;
scanf(II~II, &flags);

switch(flags) {

1*5et msgflg by CRin;J it with the appropriate
flags (constants) .*1

case 0:
msgflg =0;
break;

case 1:
msgflg 1= M$_N:DRClR;
break;

case 2:
msgflg I= !PC_tDlAIT;
break;

case 3:
IIS']flg 1= MSG}lJmKR I IFC_tmAIT;
break;

I*Specify the number of bytes to receive.*1
printf("\nEnter the number of bytes\n"};
printf(lito receive (msgsz) = ");
scanf("'€d", &msgsz);

IKlleck the values for the argumants.*1
printf("\nmsqid =«d\n", msqid);
printf("\nm;;gtyp = Xd\n", msgtyp);
printf("\nmsgSZ ='€d\n", msgsz);
printf("\nmsgf1g = 00{0\n", msgflg);

~

~

)

9-32 PROGRAMMER'S GUIDE

Messages

continued

143
144

145
146
147
148
149
150
151
152

153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170

l.call msgrev to receive the nessage.*1
rt:m =msgrev(msqid, msgp, msgsz, msgtyp, msgflg);

if(rt:m == -1) {
printf("\nMsgrcv failed. ");
printf("Error =%i\n", erD1O);

}

else {
printf ("\nMsgctl was successful\n") ;
printf("for msqid =%i\n",

msqid);

I*Print the mmi:ler of bytes received,
it is equal to the return
value.*1

printf("Bytes received =%i\n", rt:m);

I*Print the received nessage.*1
for(i =0; i<=rt:m; i++)

p.1tchar(rcvbuf .mtext[i]};
)

I~ the associated data structure.*1
msgctl (msqid, IFC_STAT, buf);

I*Print the decremented rmmber of messages.*1
printf("\rtI'he IDSg_qnum =%d\n", buf-'>msg_qnuIl\);

I*Print the process id of the last receiver.*1
printf("The msg_lrpid = %i\n", 1::Juf-'>msg_lrpid) ;
I*Print the last nessage receive tine*1
printf ("The msg_rtime =%d\n", 1::Juf-'>msg_rtime) ;

Figure 9-6: msgopO System Call Example

INTERPROCESS COMMUNICATION 9-33

Semaphores

The semaphore type of IPC allows processes to communicate through
the exchange of semaphore values. Since many applications require the use ~
of more than one semaphore, the UNIX operating system has the ability to)
create sets or arrays of semaphores. A semaphore set can contain one or
more semaphores up to a limit set by the system administrator. The tunable
parameter, SEMMSL has a default value of 25. Semaphore sets are created
by using the semget(2) system call.

The process performing the semget(2) system call becomes the
owner / creator, determines how many semaphores are in the set, and sets
the operation permissions for the set, including itself. This process can sub­
sequently relinquish ownership of the set or change the operation permis­
sions using the semctlO, semaphore control, system call. The creating pro­
cess always remains the creator as long as the facility exists. Other
processes with permission can use semctlO to perform other control func­
tions.

Any process can manipulate the semaphore(s) if the owner of the sema­
phore grants permission. Each semaphore within a set can be manipulated
in two ways with the semop(2) system call (which is documented in the
Programmer's Reference Manual):

• incremented

• decremented

To increment a semaphore, an integer value of the desired magnitude is
passed to the semop(2) system call. To decrement a semaphore, a minus (-)
value of the desired magnitude is passed.

The UNIX operating system ensures that only one process can manipu­
late a semaphore set at any given time. Simultaneous requests are per­
formed sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain
value by attempting to decrement the semaphore by one more than that
value. If the process is successful, then the semaphore value is greater than
that certain value. Otherwise, the semaphore value is not. While doing
this, the process can have its execution suspended (IPC_NOWAIT flag not ~
set) until the semaphore value would permit the operation (other processes)
increment the semaphore), or the semaphore facility is removed.

9-34 PROGRAMMER'S GUIDE

Semaphores

The ability to suspend execution is called a "blocking semaphore opera­
tion. 1I This ability is also available for a process which is testing for a sema­
phore to become zero or equal to zero; only read permission is required for
this test, and it is accomplished by passing a value of zero to the semop(2)
system call.

On the other hand, if the process is not successful and the process does
not request to have its execution suspended, it is called a "nonblocking
semaphore operation.1I In this case, the process is returned a known error
code (-1), and the external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate
based on the values of semaphores at different points in time. Remember
also that IPC facilities remain in the UNIX operating system until removed
by a permitted process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop(2), sema­
phore operation, system call.

When a set of semaphores is created, the first semaphore in the set is
semaphore number zero. The last semaphore number in the set is one less
than the total in the set.

An array of these "blocking/nonblocking operations ll can be performed
on a set containing more than one semaphore. When performing an array
of operations, the IIblocking/nonblocking operations ll can be applied to any
or all of the semaphores in the set. Also, the operations can be applied in
any order of semaphore number. However, no operations are done until
they can all be done successfully. This requirement means that preceding
changes made to semaphore values in the set must be undone when a
IIblocking semaphore operationII on a semaphore in the set cannot be com­
pleted successfully; no changes are made until they can all be made. For
example, if a process has successfully completed three of six operations on a
set of ten semaphores but is IIblocked" from performing the fourth opera­
tion, no changes are made to the set until the fourth and remaining opera­
tions are successfully performed. Additionally, any operation preceding or
succeeding the "blocked" operation, including the blocked operation, can
specify that at such time that all operations can be performed successfully,
that the operation be undone. Otherwise, the operations are performed and
the semaphores are changed or one IInonblocking operation" is unsuccessful
and none are changed. All of this is commonly referred to as being "atomi­
cally performed."

INTERPROCESS COMMUNICATION 9-35

Semaphores

The ability to undo operations requires the UNIX operating system to
maintain an array of "undo structures" corresponding to the array of sema­
phore operations to be performed. Each semaphore operation which is to
be undone has an associated adjust variable used for undoing the operation, ~
if necessary.)

Remember, any unsuccessful "nonblocking operation" for a single sema­
phore or a set of semaphores causes immediate return with no operations
performed at all. When this occurs, a known error code (-1) is returned to
the process, and the external variable errno is set accordingly.

System calls make these semaphore capabilities available to
processes.The calling process passes arguments to a system call, and the sys­
tem call either successfully or unsuccessfully performs its funct~on. If the
system call is successful, it performs its function and returns the appropriate
information. Otherwise, a known error code (-1) is returned to the process,
and the external variable errno is set accordingly.

Using Semaphores
Before semaphores can be used (operated on or controlled) a uniquely

identified data structure and semaphore set (array) must be created. The oJ
unique identifier is called the semaphore identifier (semid); it is used to
identify or reference a particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an
array, one structure for each semaphore in the set. The number of sema­
phores (nsems) in a semaphore set is user selectable. The following
members are in each structure within a semaphore set:

• semaphore text map address

• process identification (PIO) performing last operation

• number of processes awaiting the semaphore value to become greater
than its current value

• number of processes awaiting the semaphore value to equal zero

There is one associated data structure for the uniquely identified sema-
phore set. This data structure contains information related to the sema- ~
phore set as follows:)

9-36 PROGRAMMER'S GUIDE

Semaphores

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The C Programming Language data structure definition for the sema­
phore set (array member) is as follows:

struct sen
{

ushort semva.l;
sb:>rt sempid;
ushort semnent;
ushort semzent;

};

1* semaphore text map address *1
1* pid of last operation *1
1* # awaiting semval > cval *1
1* # awaiting semval ::: 0 *1

It is located in the #inc1ude <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data
structure is as follows:

INTERPROCESS COMMUNICATION 9-37

Semaphores

stxuct semid ds
{

struct ipc_penn sem_penn;
sb:uct sem *sem}lase;
ushort sem_nsems;
time_t sem_otime;
time_t sem_ctime;

} ;

1* operation penni.ssion struct *1
1* pt:r to first semaphore in set *1
1* # of semapb:lres in set *1
1* last Senql time *1
1* last change time *1

It is also located in the #include <sys/sem.h> header file. Note that
the sem~ermmember of this structure uses ipc~erm as a template. The
breakout for the operation permissions data structure is shown in Figure
9-1.

The ipc~erm data structure is the same for all IPC facilities, and it is
located in the #include <sys/ipc.h> header file. It is shown in the "Mes-
sages ll section. ')

The semget(2) system call is used to perform two tasks:

• to get a new semid and create an associated data structure and sema­
phore set for it

• to return an existing semid that already has an associated data struc­
ture and semaphore set

The task performed is determined by the value of the key argument passed
to the semget(2) system call. For the first task, if the key is not already in
use for an existing semid and the IPC_CREAT flag is set, a new semid is
returned with an associated data structure and semaphore set created for it
provided no system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0) which is
known as the private key (lPC_PRIVATE = 0); when specified, a new semid
is always returned with an associated data structure and semaphore set ~
created for it unless a system tunable parameter would be exceeded. When
the ipcs command is performed, the KEY field for the semid is all zeros.

9-38 PROGRAMMER'S GUIDE

Semaphores

When performing the first task, the process which calls semgetO
becomes the ownerI creator, and the associated data structure is initialized
accordingly. Remember, ownership can be changed, but the creating pro­
cess always remains the creator; see the "Controlling Semaphores" section
in this chapter. The creator of the semaphore set also determines the initial
operation permissions for the facility.

For the second task, if a semid exists for the key specified, the value of
the existing semid is returned. If it is not desired to have an existing semid
returned, a control command (IPC_EXCL) can be specified (set) in the
semflg argument passed to the system call. The system call will fail if it is
passed a value for the number of semaphores (nsems) that is greater than
the number actually in the set; if you do not know how many semaphores
are in the set, use 0 for nsems. The details of using this system call are dis­
cussed in the "Using semget" section of this chapter.

Once a uniquely identified semaphore set and data structure are created,
semaphore operations [semop(2)] and semaphore control [semctlOl can be
used.

Semaphore operations consist of incrementing, decrementing, and test­
ing for zero. A single system call is used to perform these operations. It is
called semopO. Refer to the "Operations on Semaphores" section in this
chapter for details of this system call.

Semaphore control is done by using the semctl(2) system call. These
control operations permit you to control the semaphore facility in the fol­
lowing ways:

• to return the value of a semaphore

• to set the value of a semaphore

• to return the process identification (PIO) of the last process perform­
ing an operation on a semaphore set

• to return the number of processes waiting for a semaphore value to
become greater than its current value

• to return the number of processes waiting for a semaphore value to
equal zero

• to get all semaphore values in a set and place them in an array in
user memory

INTERPROCESS COMMUNICATION 9-39

Semaphores

• to set all semaphore values in a semaphore set from an array of
values in user memory

• to place all data structure member values, status, of a semaphore set ~

into user memory area "

• to change operation permissions for a semaphore set

• to remove a particular semid from the UNIX operating system along
with its associated data structure and semaphore set

Refer to the "Controlling Semaphores" section in this chapter for details
of the semctl(2) system call.

Getting Semaphores
This section contains a detailed description of using the semget(2) sys­

tem call along with an example program illustrating its use.

Using semget
The synopsis found in the semget(2) entry in the Programmer's Reference '~.'.'"

Manual is asfollows:'~

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int sarget (key, nsems, sarg)
key_t key;
int nsems, semg';

The following line in the synopsis:

int senqet (key, nselDS, semflg)

informs you that semgetO is a function with three formal arguments that
returns an integer type value, upon successful completion (semid). The

9-40 PROGRAMMER'S GUIDE

'~"'". ')

Semaphores

next two lines:

key_t key;
int nsems, semflg;

declare the types of the formal arguments. key_t is declared by a typedef
in the types.h header file to be an integer.

The integer returned from this system call upon successful completion
is the semaphore set identifier (semid) that was discussed above.

As declared, the process calling the semgetO system call must supply
three actual arguments to be passed to the formal key, nsems, and semflg
arguments.

A new semid with an associated semaphore set and data structure is
provided if either

• key is equal to IPC_PRIVATE,

or

• key is passed a unique hexadecimal integer, and semflg awk with
IPC_CREAT is TRUE.

The value passed to the semflg argument must be an integer type octal
value and will specify the following:

mJ access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/alter attributes and execution
modes determine the user/group/other attributes of the semflg argument.
They are collectively referred to as "operation permissions." Figure 9-7
reflects the numeric values (expressed in octal notation) for the valid opera­
tion permissions codes.

INTERPROCESS COMMUNICATION 9-41

Semaphores

Operation Permissions
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

Figure 9-7: Operation Permissions Codes

Octal Value
00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding the octal values for the
operation permissions desired. That is, if read by user and read!alter by
others is desired, the code value would be 00406 (00400 plus 00006). There
are constants #define'd in the sem.h header file which can be used for the
user (OWNER). They are as follows:

SEN A

SEN R

0200
0400

1* alter penni.ssion by owner *1
1* read penni.ssion by owner *1

..~

Control commands are predefined constants (represented by all upper­
case letters). Figure 9-8 contains the names of the constants which apply to
the semget(2) system call along with their values. They are also referred to
as flags and are defined in the ipc.h header file.

Control Command
IPC_CREAT
IPC EXCL

Figure 9-8: Control Commands (Flags)

Value
0001000
0002000

The value for semflg is, therefore, a combination of operation permis­
sions and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This specification is accomplished by bitwise ORing <I) them with the opera­
tion permissions; the bit positions and values for the control commands in
relation to those of the operation permissions make this possible. It is

9-42 PROGRAMMER'S GUIDE

-------------------------- Semaphores

illustrated as follows:

IPC CREAT
CWIORed by User

semflg

Octal Value

01000
00400

o1400

Binary Value

o000 001 000 000 000
o000 000 100 000 000

o000 001 100 000 000

The semflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

semi.d = serrget (key, nsems, (!PC CRFAT 0400)) ;

semi.d = serrget (key, nsems, (!PC CRFAT !PC EXCL : 0400»;

As specified by the semget(2) entry in the Programmer's Reference Manual,
success or failure of this system call depends upon the actual argument
values for key, nsems, semflg or system tunable parameters. The system
call will attempt to return a new semid if one of the following conditions is
true:

II Key is equal to IPC_PRIVATE (0)

iii Key does not already have a semid associated with it, and (semflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

semi.d = senget (IK:_PRIVATE, nsems, semflg);

or

semi.d = senget (0, nsems, semflg);

This alone will cause the system call to be attempted because it satisfies the
first condition specified.

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable parame­
ters will always cause a failure. The SEMMNI system tunable parameter
determines the maximum number of unique semaphore sets (semid's) in the
UNIX operating system. The SEMMNS system tunable parameter deter­
mines the maximum number of semaphores in all semaphore sets system
wide. The SEMMSL system tunable parameter determines the maximum

INTERPROCESS COMMUNICATION 9-43

Semaphores

number of semaphores in each semaphore set.

The second condition is satisfied if the value for key is not already asso­
ciated with a semid, and the bitwise awk of semflg and IPC_CREAT is
"true" (not zero). This means that the key is unique (not in use) within the ~

UNIX operating system for this facility type and that the IPC_CREAT flag is J
set (semflg IIPC_CREAT). SEMMNI, SEMMNS, and SEMMSL apply here
also, just as for condition one.

IPC_EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a semid
exists for the specified key provided. This is necessary to prevent the pro­
cess from thinking that it has received a new (unique) semid when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a
new semid is returned if the system call is successful. Any value for semflg
returns a new semid if the key equals zero (IPC_PRIVATE) and no system
tunable parameters are exceeded.

Refer to the semget(2) manual page for specific associated data structure
initialization for successful completion.

Example Program
The example program in this section (Figure 9-9) is a menu driven pro- ~

gram which allows all possible combinations of using the semget(2) system
call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require­
ments are pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the semget(2) entry in the Programmer's Reference Manual. Note
that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since they are local to
the program. The variables declared for this program and their purpose are
as follows:

• key-used to pass the value for the desired key

9-44 PROGRAMMER'S GUIDE

~,

--------------------------- Semaphores

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperrn_flags-used to store the combination from the logical ORing
of the opperm and flags variables; it is then used in the system call
to pass the semflg argument

• semid-used for returning the semaphore set identification number
for a successful system call or the error code (-1) for an unsuccessful
one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and the control command combinations (flags)
which are selected from a menu (lines 15-32). All possible combinations are
allowed even though they might not be viable. This allows observing the
errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags vari­
able (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57),
and its value is stored at the address of nsems.

The system call is made next, and the result is stored at the address of
the semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier
or the error code (-1), it is tested to see if an error occurred (line 63). If
semid equals -1, a message indicates that an error resulted and the external
errno variable is displayed (lines 65, 66). Remember that the external errno
variable is only set when a system call fails; it should only be tested
immediately following system calls.

If no error occurred, the returned semaphore set identifier is displayed
(line 70).

The example program for the semget(2) system call follows. It is sug­
gested that the source program file be named semget.c and that the execut­
able file be named semget.

INTERPROCESS COMMUNICATION 9-45

Semaphores

1 / *'l'hi.s is a program to illustrate I ~
2 -the semaJilore get, sem:Jet(),

3 **system call capabilities. */

4 #include <stdio.h>
5 #include <syS/types .h>
6 #include <syS/ipc .h>
7 #include <syS/sem.h>
8 #include <enno.h>

9 /*Start of main C language prograIn*/
10 maine)
11 {

12 key_t key; /i!declare as ICD3" integer*/
13 int oppenn, flags, nsE!llS;
14 int semid, oppenn_flags;

15 /*l!hter the desired key*/
16 p:rintf("\nEnter the desired key in hex = It);

17 scanf(tl%x", &key). I)
18 /*Enter the desired octal operation
19 pennissians.*/
20 printf("\nEnter the operation\nlt

);

21 printf("per;mi.ssians in octal =");
22 scanf ("7(0", &qp!nn);

23 /*set the desired flags.*/
24 printf("\nEnter oarrespcniiDJ number to\nn) ;

25 printf("set the desired flags: \n") •
26 printf ("No flags =O\n").
27 printf("IFC_CREAT = 1\n1t

).

28 printf("IFC}~XC[, =2\n").
29 printf("IFC_CREAT and IFC_EXCL = 3\n1t

);

30 printf(tl Flags = ");
31 /*Get the flags to be set.*/
32 scanf(n~n, &flags).

33 / *Errar check::in} (deblgging)*/
34 printf ("\nkey ~, qpmn = 00{0, flags =~\nn, I ~35 key, oppeD!l, flags);
36 /dnoarporate the oont:rol fields (flags) with

37 the operation pemissians.*/
38 switch (flags)

9-46 PROGRAMMER'S GUIDE

Semaphores

continued

~'

39

40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57

{

case 0: I*No flags are to be set.*1
oppenn_flags = (oppenn : 0);
break;

case 1: I *5et the !PC CRFAT flag. *1
oppenn_flags =(~ : IPC_CRFAT) ;

break;

case 2: 1*5et the !PC EXCL flag.*1
oppenn_flags = (o~ : IOC_EXCL) ;
break;

case 3: I *5et the !PC CRFAT and IFC EXCL- -
flags. *1

oppernl_flags = (0J:PElDD : IPC CRFAT IPC_EXCL);

I~t the number of semaphores for this set.*1
printf("\nEnter the number of\n");
printf("desired semaphores for\n");
printf ("this set (25 max) = ");
scanf("%du , &nsems);

~'

58 I~ the en1:zy.*1
59 printf ("\nNsems = %d\nn, nsems);

60 l.call the serrget system call. *1
61 semid =serrget(key, nsans, oppenn_flags) ;

62 1*PeI'farm the follCJ\lliD;J if the call is unsuc:cessful.*1
63 if(semid == -1)
64 {
65 printf ("'!he sem;;et system call failed I\n") ;
66 printf("'!he e:rzor number =%d\n", errno);
67

INTERPROCESS COMMUNICATION 9-47

Semaphores

continued

68 I*Retunl the semi.d upon successful cx:mpletion. *1
69 else
70 printf(n\n'Ihe semi.d = ~It, semi.d);
71 exit(O);
72

Figure 9-9: semgetO System Call Example

Controlling Semaphores
This section contains a detailed description of using the semctl(2) sys- ~..

tern call along with an example program which allows all of its capabilities)
to be exercised.

Using semetl
The synopsis found in the semctl(2) entry in the Programmer's Reference

Manual is as follows:

9-48 PROGRAMMER'S GUIDE

~."('

Semaphores

#include <sys/types.h>
#include <syslipc.h>
#include <sys/sem.h>

int sertetl. (semi.d, SE!ltllUlI\, cm:i, arg)

int semid, cm:i;
int semnum;
mUon semm
{

int val;

st:ruct semid_cis *00.;
ushart array(];

} arg;

The semctl(2) system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value that
has already been created. by using the semget(2) system call.

The semnum argument is used to select a semaphore by its number.
This relates to array (atomically performed) operations on the set. When a
set of semaphores is created, the first semaphore is number 0, and the last
semaphore has the number of one less than the total in the set.

The cmd argument can be replaced by one of the following control
commands (flags):

• GETVAL-return the value of a single semaphore within a sema­
phore set

• SETVAL-set the value of a single semaphore within a semaphore set

• GETPID-return the Process Identifier (PID) of the process that per­
formed the last operation on the semaphore within a semaphore set

• GETNCNT-return the number of processes waiting for the value of
a particular semaphore to become greater than its current value

INTERPROCESS COMMUNICATION 9-49

Semaphores

• GETZCNT-return the number of processes waiting for the value of
a particular semaphore to be equal to zero

• GETALL-return the values for all semaphores in a semaphore set

• SETALL-set all semaphore values in a semaphore set

• IPC_STAT-return the status information contained in the associated
data structure for the specified semid, and place it in the data struc­
ture pointed to by the *buf pointer in the user memory area; arg.buf
is the union member that contains the value of buf

• IPC_SET-for the specified semaphore set (semid), set the effective
user / group identification and operation permissions

• IPC_RMID-remove the specified (semid) semaphore set along with
its associated data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or IPC_RMID con­
trol command. Read/alter permission is required as applicable for the other
control commands.

The arg argument is used to pass the system call the appropriate union ')
member for the control command to be performed:

• arg.val

• arg.buf

• arg.array

The details of this system call are discussed in the example program for
it. If you have problems understanding the logic manipulations in this pro­
gram, read the "Using semget" section of this chapter; it goes into more
detail than what would be practical to do for every system call.

Example Program
The example program in this section (Figure 9-10) is a menu driven pro­

gram which allows all possible combinations of using the semctl(2) system
call to be exercised.

9-50 PROGRAMMER'S GUIDE

Semaphores

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require­
ments are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) entry in the Programmer's Reference Manual Note
that in this program errno is declared as an external variable, and therefore
the errno.h header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as
possible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly legal
since they are local to the program. Those declared for this program and
their purpose are as follows:

• semid_ds-used to receive the specified semaphore set identifier's
data structure when an IPC_STAT control command is performed

• c-used to receive the input values from the scanf(3S) function, (line
117) when performing a SETALL control command

• i-used as a counter to increment through the union arg.array when
displaying the semaphore values for a GETALL (lines 97-99) control
command, and when initializing the arg.array when performing a
SETALL (lines 115-119) control command

• length-used as a variable to test for the number of semaphores in a
set against the i counter variable (lines 97, 115)

• uid-used to store the IPC_SET value for the effective user
identification

• gid-used to store the IPC_SET value for the effective group
identification

• mode-used to store the IPC_SET value for the operation permissions

• rtrn-used to store the return integer from the system call which
depends upon the control command or a -1 when unsuccessful

• semid-used to store and pass the semaphore set identifier to the sys­
tem call

• semnum-used to store and pass the semaphore number to the sys­
tem call

INTERPROCESS COMMUNICATION 9-51

Semaphores

• cmd-used to store the code for the desired control command so that
subsequent processing can be performed on it

• choice-used to determine which member (uid, gid, mode) for the
IPC_SET control command that is to be changed

• arg.val-used to pass the system call a value to set (SETVAL) or to
store (GETVAL) a value returned from the system call for a single
semaphore (union member)

• arg.buf-a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control com­
mand is to place its return values, or where the IPC_SET command
gets the values to set (union member)

• arg.array-used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the
data structure located in the sem.h header file of the same name as a tem­
plate for its declaration. This is a perfect example of the advantage of local
variables.

The arg union (lines 18-22) serves three purposes in one. The compiler
allocates enough storage to hold its largest member. The program can then
use the union as any member by referencing union members as if they were
regular structure members. Note that the array is declared to have 25 ele­
ments (0 through 24).This number corresponds to the maximum number of
semaphores allowed per set (SEMMSL), a system tunable parameter.

The next important program aspect to observe is that although the *buf
pointer member (arg.buf) of the union is declared to be a pointer to a data
structure of the semid_ds type, it must also be initialized to contain the
address of the user memory area data structure (line 24). Because of the
way this program is written, the pointer does not need to be reinitialized
later. If it was used to increment through the array, it would need to be
reinitialized just before calling the system call.

Now that all of the required declarations have been presented for this
program, this is how it works.

9-52 PROGRAMMER'S GUIDE

Semaphores

First, the program prompts for a valid semaphore set identifier, which is
stored at the address of the semid variable (lines 25-27). This is required for
all semctl(2) system calls.

Then, the code for the desired control command must be entered (lines
28-42), and the code is stored at the address of the cmd variable. The code
is tested to determine the control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompt­
ing for a semaphore number is displayed (lines 49, 50). When it is entered,
it is stored at the address of the semnum variable (line 51). Then, the sys­
tem call is performed, and the semaphore value is displayed (lines 52-55). If
the system call is successful, a message indicates this along with the sema­
phore set identifier used (lines 195, 196); if the system call is unsuccessful,
an error message is displayed along with the value of the external errno
variable (lines 191-193).

If the SETVAL control command is selected (code 2), a message prompt­
ing for a semaphore number is displayed (lines 56, 57). When it is entered,
it is stored at the address of the semnum variable (line 58). Next, a message
prompts for the value to which the semaphore is to be set, and it is stored
as the arg.val member of the union (lines 59, 60). Then, the system call is
performed (lines 61, 63). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is
made immediately since all required arguments are known (lines 64-67),
and the PID of the process performing the last operation is displayed.
Depending upon success or failure, the program returns the same messages
as for GETVAL above.

If the GETNCNT control command is selected (code 4), a message
prompting for a semaphore number is displayed (lines 68-72). When
entered, it is stored at the address of the semnum variable (line 73). Then,
the system call is performed, and the number of processes waiting for the
semaphore to become greater than its current value is displayed (lines 74­
77). Depending upon success or failure, the program returns the same mes­
sages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message
prompting for a semaphore number is displayed (lines 78-81). When it is
entered, it is stored at the address of the semnum variable (line 82). Then
the system call is performed, and the number of processes waiting for the
semaphore value to become equal to zero is displayed (lines 83, 86).

INTERPROCESS COMMUNICATION 9-53

Semaphores

Depending upon success or failure, the program returns the same messages
as for GETVAL above.

If the GETALL control command is selected (code 6), the program first
performs an IPC_STAT control command to determine the number of sema­
phores in the set (lines 88-93). The length variable is set to the number of
semaphores in the set (line 91). Next, the system call is made and, upon
success, the arg.array union member contains the values of the semaphore
set (line 96). Now, a loop is entered which displays each element of the
arg.array from zero to one less than the value of length (lines 97-103). The
semaphores in the set are displayed on a single line, separated by a space.
Depending upon success or failure, the program returns the same messages
as for GETVAL above.

If the SETALL control command is selected (code 7), the program first
performs an IPC_STAT control command to determine the number of sema­
phores in the set (lines 106-108). The length variable is set to the number
of semaphores in the set (line 109). Next, the program prompts for the
values to be set and enters a loop which takes values from the keyboard and
initializes the arg.array union member to contain the desired values of the
semaphore set (lines 113-119). The loop puts the first entry into the array
position for semaphore number zero and ends when the semaphore number
that is filled in the array equals one less than the value of length. The sys­
tem call is then made (lines 120-122). Depending upon success or failure,
the program returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is
performed (line 127), and the status information returned is printed out
(lines 128-139); only the members that can be set are printed out in this pro­
gram. Note that if the system call is unsuccessful, the status information of
the last successful one is printed out. In addition, an error message is
displayed, and the errno variable is printed out (lines 191, 192).

If the IPC_SET control command is selected (code 9), the program gets
the current status information for the semaphore s~t identifier specified
(lines 143-146). This is necessary because this example program provides for
changing only one member at a time, and the semctl(2) system call changes
all of them. Also, if an invalid value happened to be stored in the user
memory area for one of these members, it would cause repetitive failures for
this control command until corrected. The next thing the program does is
to prompt for a code corresponding to the member to be changed (lines
147-153). This code is stored at the address of the choice variable (line 154).
Now, depending upon the member picked, the program prompts for the

9-54 PROGRAMMER'S GUIDE

Semaphores

new value (lines 155-178). The value is placed at the address of the
appropriate member in the user memory area data structure, and the system
call is made (line 181). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call
is performed (lines 183-185). The semid along with its associated data struc­
ture and semaphore set is removed from the UNIX operating system.
Depending upon success or failure, the program returns the same messages
as for the other control commands.

The example program for the semctl(2) system call follows. It is sug­
gested that the source program file be named semctI.e and that the execut­
able file be named semetl.

1 I *'I'his is a program to illustrate
2 **the semalilorecontrol.sE!tCtl(),
3 **system call capabilities.
4 *1

5 Idnclude necessaxy header files.*1
6 #include <stdio.11>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/sem.h>

10 I*start of main C 1an;Juage program*1
11 main()

12 {
13 extem int &mO;
14 stru.ct semi.d_ds semi.d_ds ;
15 int c, i, len;rt:h;
16 int uid, gid, IOOde;
17 int retrn, semid, semrmm, aid, choice;
18 unicm semun (
19 int val;
20 stru.ct semi.d_ds *Wf;
21 ushort array[25] ;
22 } arg;

r
\

23
24

Idnitialize the data structure pointer.*1
arg.buf = &semi.d_ds;

INTERPROCESS COMMUNICATION 9-55

Semaphores

26 printf("Enter the semi.d = ");
27 scanf("%el", &semi.d);

continued

)

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45

l*Oloose the desired CCItIIlaIXl. *1
printf("\nEnter the number for\n");
printf("the desired ard:\n");
printf("GENAL = 1\n");
printf("SE'lVAL = 2\n");
printf("<mrPID = 3\n") ;

printf("GEIN:Nl' = 4\n");
printf("GEl'ZCNI' = 5\n");
printf("GE:l'ALL = 6\n");
printf ("SEl'ALL = 7\n") ;
printf("IPC_STAT = 8\n");
printf("IPC_ggr = 9\n");

printf("IPC)~MID = 10\n") ;
printf("Entry = ");
scanf("~", &.aId);

I~ entries.*1
printf (Il\nsemi.d ='(d, ard = %d\n\n",

semid, aid);

J

46 I*set the ocmnarxl and do the call.*1
47 switch (ard)

48 {

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

case 1: loIlGet a specified value.*1
printf("\nEnter the semnmn = ");
scanf("~", &semnum);
I.n> the system call ••1
retrn = sem::tl(semi.d, SemmJm, <;gIVAL, 0);
printf ("\n'lbe semval =~\n", retrn);
break;

case 2: I*set a specified value.*1
printf("\nEnter the semnum =");
scanf(Il~", &semrmm);
printf("\nEnter the value = ");
scanf("~", &arg.va1);

I*n> the system call.*1
retrn = sellctl(semi.d, semrmm, SEIVAL, arg.val);
break;

case 3: loIlGet the process m.*1

)

9-56 PROGRAMMER'S GUIDE

Semaphores

continued

65 retm = saJX:tl.{semi.d. O. GEl'PID. 0);
66 printf("\1tI'he sempid =~\n". retrn);
67 break;

68 case 4: I tlGet the rwmber of processes
69 wai.t:i.ng for the senapb:>re to
70 becane greater than its current
71 value.*1
72 printf ("\nEnter the semnum = ");
73 scanf ("~II. &semnum);

74 I*[b the system call.*1
75 retrn =semctl (semi.d. sermum. GE'lN:Nl', 0);
76 printf{ "\1tI'he senncnt = ~". retrn);
77 break;

~'

~({'~'

...

78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94

95
96
97

98
99

100
101
102
103
104

case 5: I tlGet the number of processes
wai.tinq for the sema.pb:>re

value to becane zero. *1
printf ("\nEnter the sermum = ");
scanf("~". &semnum);
I*[b the system call.*1
retm = semctl{semi.d. semum, GE'1'ZCNI'. 0);
printf("\1tI'he semzc:nt = ~", retI:n);
break;

case 6: I tlGet all of the semaplxlres. *1
I tlGet the mmtler of semaphores in

the semaphore set.*1
retrn = semctl (semi.d, 0, IFC_srAT. arq. tuf) ;

leD]th = arq.I::luf--?-semJ1Sems;
if(retrn = -1)

goto Em«:R;
I tlGet and print all semaphores in the

specified set.*1
retrn = semctl (semid, 0, GEI'ALL, arg.array) ;
for (i = 0; i < length; i++)
{

printf("~", arq.array{il);
1*5eperate each

semaphore.*1
printf("%e". ' ');

}

break;

INTERPROCESS COMMUNICATION 9-57

Semaphores

continued

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
125
127
128
129
130
131
132
133
134
135
136
137
138
139
140

case 7: / *Set all semapbJres in the set. */
/.-Get the number of semapbJres in

the set.*/
retrn = senctl(semid, 0, IPC_STAT, arg.buf);
lerv;Jth =arg.b1f-?sem_nsems;
printf("LeD;th = ~\n", leD3'th);
if(retrn == -1)

goto D9JR;
/*set the semaJiXxre set values.*/
printf("~ter each value: \nil) ;
for(i =0; i < leD3'th ; i++)
{

scanf("~II, &c);

arq.array[i] = c;
}

/*00 the systen call.*/
retrn = senctl(semid, 0, sm'ALL, arq.array);
break;

case 8: /ilGet the status far the semapbJre set.*/
/.-Get and print the current status values.*/
retrn =senctl(semi.d, 0, IPC_STAT, arg.buf);
printf ("\ri.lhe USER m = ~\n",

arq.b1f-?sem_penn.uid) ;
printf ("The GRaJP m =~",

arq.b1fo-?sem_penn.gid) ;
printf ("The operation pexmi.ssians = 00<0\n",

arq .b1fo-?sem_penn.m:x1e) ;
printf ("The number of semaplxJres in set = '€d\n",

arq .b1fo-?sem_nsems) ;
printf ("The last SE!DOP time =~",

arq.b1fo-?sem_oti1re) ;

printf ("The last change time =~\n",

arq .b1fo-?sem_ctime) ;

break;

141 case 9: /*select and ~e the desired
142 mamber of the data structure.*/
143 /.-Get the current status values.*/
144 retrn = senctl(semi.d, 0, IPC_STAT, arq.buf);
145 if(retrn == -1)
146 goto D9JR;
147 /*select the member to chanje.*/

9-58 PROGRAMMER'S GUIDE

~,
"-

Semaphores

continued

~

148
149
150
151
152
153
154
155

156
157
158
159
160
161
162

163
164
165
166
167
168
169

printf(u\nEnter the number for the\n");
printf("member to be chan:Jed:\nU);
printf(Usem_penn.uid ::: 1\n");
printf("sem_penn.gid ::: 2\n");
printf("sem_penn.m:de =3\n");
printf ("EhtJ:y =");
scant (""el", &.choice);
switch(choice) {

case 1: l.change the user 10. *1
printf (u\nEnter USER ID ::: U);

scam (n"el", &.uid);

arg .b1f-'>sem_penn.uid ::: uid;
printf(u\nUSER ID ::: Xd\nu,

arg.buf-->sem_penn.uid) ;
break;

case 2: 1ilChange the group 10.*1
printf("\nEnter GRXlP ID ::: ");

scanf("Xd", &.gid);
arg.b1f-'>sem_penn.gid ::: gid;
printf (u\n:iROUP 10 ::: "el\n",

arg .l::luf-'>sem_penn.gid) ;
break;

170 case 3: l.change the node portion of
171 the operation
172 permissions .•1
173 printf("\nEnter KJDE ::: ");
174 scanf("~", &rode);
175 arg.l::luf-'>sem_peDn.node ::: node;
176 printf("\nKJDE ::: O%o\n",
177 arg .l::luf-'>sem_penn. node) ;
178 break;
179 }
180 1.0:> the chan:Je.•1
181 retrn =SEIlCtl (semi.d, 0, IOC_SE1', arg.blf) ;

182 break;

183 case 10: I.ReDove the semi.d along with its
184 data structure. *1
185 retm ::: SEIlCtl (semi.d, 0, IOC_RMID, 0);
186 }
187 I.Perform the follc::Min:J if the call is unsuccessful .•1

INTERPROCESS COMMUNICATION 9-59

Semaphores

continued

188 if(retrn == -1)
189 {
190 mRCR:
191 printf ("\n\nThe senctl system call failedl\nll);
192 printf ("'!be error number =%d\nll, erma);
193 exit(O);
194 }
195 printf ("\n\Itl'he sem:tl system call was successfu1\n");
196 printf ("for semi.d =%d\n", semi.d);
197 exit (0);
198

Figure 9-10: semctlO System Call Example

Operations on Semaphores
This section contains a detailed description of using the semop(2) sys­

tem call along with an example program which allows all of its capabilities
to be exercised.

Using semop
The synopsis found in the semop(2) entry in the Programmer's Reference

Manual is as follows:

9-60 PROGRAMMER'S GUIDE

Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int SE!OOp (semi.d, sops, nsops)

int semi.d;
struct sembuf **sops;
unsigned nsops;

The semop(2) system call requires three arguments to be passed to it,
and it returns an integer value.

Upon successful completion, a zero value is returned and when unsuc­
cessful it returns a -1.

The semid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the semget(2) sys­
tem call.

The sops argument is a pointer to an array of structures in the user
memory area that contains the following for each semaphore to be changed:

• the semaphore number

• the operation to be performed

• the control command (flags)

The "sops declaration means that a pointer can be initialized to the
address of the array, or the array name can be used since it is the address of
the first element of the array. sembuf is the tag name of the data structure
used as the template for the structure members in the array; it is located in
the #include <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of
structures in the array). The maximum size of this array is determined by
the SEMOPM system tunable parameter. Therefore, a maximum of
SEMOPM operations can be performed for each semop(2) system call.

INTERPROCESS COMMUNICATION 9-61

Semaphores

The semaphore number determines the particular semaphore within the
set on which the operation is to be performed.

The operation to be performed is determined by the following:

• a positive integer value means to increment the semaphore value by
its value

• a negative integer value means to decrement the semaphore value by
its value

• a value of zero means to test if the semaphore is equal to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT-this operation command can be set for any opera­
tions in the array. The system call will return unsuccessfully without
changing any semaphore values at all if any operation for which
IPC_NOWAIT is set cannot be performed successfully. The system
call will be unsuccessful when trying to decrement a semaphore more
than its current value, or when testing for a semaphore to be equal to
zero when it is not.

• SEM_UNDO-this operation command allows any operations in the)
array to be undone when any operation in the array is unsuccessful
and does not have the IPC_NOWAIT flag set. That is, the blocked
operation waits until it can perform its operation; and when it and all
succeeding operations are successful, all operations with the
SEM_UNDO flag set are undone. Remember, no operations are per-
formed on any semaphores in a set until all operations are successful.
Undoing is accomplished by using an array of adjust values for the
operations that are to be undone when the block'- _ operation and all
subsequent operations are successful.

Example Program
The example program in this section (Figure 9-11) is a menu driven pro­

gram which allows all possible combinations of using the semop(2) system
call to be exercised.

From studying this program, you can observe the method of passing -~

arguments and receiving return values. The user-written program require-)
ments are pointed out.

9-62 PROGRAMMER'S GUIDE

-------------------------- Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual Note
that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since the
declarations are local to the program. The variables declared for this pro­
gram and their purpose are as follows:

• sembuf[10]-used as an array buffer (line 14) to contain a maximum
of ten sembuf type structures; ten equals SEMOPM, the maximum
number of operations on a semaphore set for each semop(2) system
call

• *sops-used as a pointer (line 14) to sembuf[10] for the system call
and for accessing the st1ucture members within the array

• rtrn-used to store thei return values from the system call

• flags-used to store the code of the IPC_NOWAIT or SEM_UNDO
flags for the semop(2) system call (line 60)

• i-used as a counter (line 32) for initializing the structure members
in the array, and used to print o;ut each structure in the array (line
79)

• nsops-used to specify the number of semaphore operations for the
system call-must be less than or' equal to SEMOPM

• semid-used to store the desired semaphore set identifier for the sys­
tem call

First, the program prompts for a semaphore set identifier that the sys­
tem call is to perform operations on (lines 19-22). Semid is stored at the
address of the semid variable (line 23).

A message is displayed requesting the number of operations to be per­
formed on this set (lines 25-27). The number of operations is stored at the
address of the nsops variable (line 28).

INTERPROCESS COMMUNICATION 9-63

semaphores

Next, a loop is entered to initialize the array of structures (lines 30-77).
The semaphore number, operation, and operation command (flags) are
entered for each structure in the array. The number of structures equals the
number of semaphore operations (nsops) to be performed for the system ')
call, so nsops is tested against the i counter for loop control. Note that sops
is used as a pointer to each element (structure) in the array, and sops is
incremented just like i. sops is then used to point to each member in the
structure for setting them.

After the array is initialized, all of its elements are printed out for feed­
back (lines 78-85).

The sops pointer is set to the address of the array (lines 86, 87). Sembuf
could be used directly, if desired, instead of sops in the system call.

The system call is made (line 89), and depending upon success or
failure, a corresponding message is displayed. The results of the
operation(s) can be viewed by using the semctlO GETALL control command.

The example program for the semop(2) system call follows. It is sug­
gested that the source program file be named semop.c and that the execut­
able file be named semop.

1 1*Thi.s is a program to illustrate
2 **the semaJi10re operations, seuop(),

3 **system call capabilities.
4 *1

5 I*Include necess.uy header files.*1
6 #include <stdi.o.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/sem.h>

10 1*S'tart of main C language programttl
11 main()

12 {
13 extern int errno;
14 struct sembuf ~[10], *sops;
15 char str:iD;[];
16 int retrn, flags, sem_num, i, semid;
17 unsigned nsops;
18 sops = seub1£; I*Pointer to array sembuf.*1

9-64 PROGRAMMER'S GUIDE

Semaphores

INTERPROCESS COMMUNICATION 9-65

Semaphores

58
59
60

printf ("IFC_tUNArr arxl SEM_UNIX)

printf (" Flags
scanf(lI%d", &flags);

= 3\n");
= ");

continued

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

switch(flags)
{

case 0:
sops->SEm_flg = 0;
break;

case 1:
SCJPS'""'>SEm_flg = IFC)DiAIT;
break;

case 2:
sops->SEm_flg = SEM_UNOO;
break;

case 3:
sops->SEm_fIg = IFC_tUNArr SEM_UNOO;
break;

}

printf("\nFlags = O%o\n", sops->sem_fIg};

78 I*Print out each structure in the array.*1
79 for(i = 0; i < nsops; i++)
80 {
81 printf(u\nsem_num :;: %d\n", sembuf[i].sem_num);
82 printf(tlSEm_op = %d\n", sembuf[i]. sem_op) ;

83 printf ("sem_fIg = %o\n", semb.Jf[i]. san_fIg) ;
84 printf("%e", ' ');
85

86 sops :;: seDiJuf; I *Reset the pointer to
87 sembuf[O].*1

88
89
90
91
92
93
94
95
96

1*1):) the senop system call.*1
retrn :;: seaop(semi.d, sops, nsops);
if(retrn == -1) {

printf(u\nSem:Jp failed. ");
printf(lIErrar =%d\n", errno);

}

else {
printf ("\nSenop was successful\nil) ;

printf("for semi.d :;: %d\n", semid);

9-66 PROGRAMMER'S GUIDE

-------------------------- Semaphores

continued

97
98
99

printf("Value retuxned =Xd\n" t retm);

Figure 9-11: semop(2) System Call Example

INTERPROCESS COMMUNICATION 9-67

Shared Memory

The shared memory type of IPC allows two or more processes (execut­
ing programs) to share memory and consequently the data contained there.
This is done by allowing processes to set up access to a common virtual
memory address space. This sharing occurs on a segment basis, which is
memory management hardware dependent.

This sharing of memory provides the fastest means of exchanging data
between processes. However, processes that reference a shared memory
segment must reside on one processor. Consequently, processes running on
different processors (such as in an RFS network or a multiprocessing
environment) may not be able to use shared memory segments.

A process initially creates a shared memory segment facility using the
shmget(2) system call. Upon creation, this process sets the overall operation
permissions for the shared memory segment facility, sets its size in bytes,
and can specify that the shared memory segment is for reference only
(read-only) upon attachment. If the memory segment is not specified to be
for reference only, all other processes with appropriate operation permis­
sions can read from or write to the memory segment.

There are two operations that can be performed on a shared memory
segment:

• shmat(2) - shared memory attach

• shmdt(2) - shared memory detach

Shared memory attach allows processes to associate themselves with the
shared memory segment if they have permission. They can then read or
write as allowed.

Shared memory detach allows processes to disassociate themselves from
a shared memory segment. Therefore, they lose the ability to read from or
write to the shared memory segment.

The original owner Icreator of a shared memory segment can relinquish
ownership to another process using the shmctl(2) system call. However,
the creating process remains the creator until the facility is removed or the
system is reinitialized. Other processes with permission can perform other ')
functions on the shared memory segment using the shmctl(2) system call.

9·68 PROGRAMMER'S GUIDE

".\'

Shared Memory

System calls, which are documented in the Programmer's Reference
Manual, make these shared memory capabilities available to processes. The
calling process passes arguments to a system call, and the system call either
successfully or unsuccessfully performs its function. If the system call is
successful, it performs its function and returns the appropriate information.
Otherwise, a known error code (-1) is returned to the process, and the
external variable errno is set accordingly.

Using Shared Memory
The sharing of memory between processes occurs on a virtual segment

basis. There is one and only one instance of an individual shared memory
segment existing in the UNIX operating system at any point in time.

Before sharing of memory can be realized, a uniquely identified shared
memory segment and data structure must be created. The unique identifier
created is called the shared memory identifier (shmid); it is used to identify
or reference the associated data structure. The data structure includes the
following for each shared memory segment:

• operation permissions

• segment size

• segment descriptor

• process identification performing last operation

• process identification of creator

• current number of processes attached

• in memory number of processes attached

• last attach time

• last detach time

• last change time

The C Programming Language data structure definition for the shared
memory segment data structure is located in the lusr/include/sys/shm.h
header file. It is as follows:

INTERPROCESS COMMUNICATION 9-69

Shared Memory

1*
** There is a shared mem id data st:IUcture for
** each segment in the system.
*1

struet shmid_ds {
struet ipc_peJ:Ill
int
struet region

char

ushort
ushort
ushort
ushort
time t
time t
time t

};

slmI_peIm;
slmI_segsz;
*shIn_reg;
pad[4];

shm_lpid;
shm_cpi.d;
shIn_nattch;
shm_cnattch;
shm_atime;
shm_dtime;
shm_ctime;

1* operation pennissian struct *1
1* segment size *1
1* ptr to region structure *1
1* for swap <X:JII)atibility *1
1* pid of last slmop *1
1* pid of creator *1
1* used only for shminfo *1
1* used only for shminfo *1
1* last shmat time *1
1* last shm:lt time *1
1* last change time *1

Note that the shm...,perm member of this structure uses ipc...,perm as a
template. The breakout for the operation permissions data structure is
shown in Figure 9-1.

The ipc...,perm data structure is the same for all IPC facilities, and it is
located in the #include <sys/ipc.h> header file. It is shown in the intro­
duction section of "Messages. II

Figure 9-12 is a table that shows the shared memory state information.

9-70 PROGRAMMER'S GUIDE

~'

Shared Memory

Shared Memory States

Lock Bit Swap Bit Allocated Bit Implied State

0 0 0 Unallocated Segment

0 0 1 Incore

0 1 0 Unused

0 1 1 On Disk

1 0 1 Locked Incore

1 1 0 Unused

1 0 0 Unused

1 1 1 Unused

Figure 9-12: Shared Memory State Information

The implied states of Figure 9-12 are as follows:

• Unallocated Segment-the segment associated with this segment
descriptor has not been allocated for use.

• Incore-the shared segment associated with this descriptor has been
allocated for use. Therefore, the segment does exist and is currently
resident in memory.

• On Disk-the shared segment associated with this segment descrip­
tor is currently resident on the swap device.

• Locked Incore-the shared segment associated with this segment
descriptor is currently locked in memory and will not be a candidate
for swapping until the segment is unlocked. Only the super-user
may lock and unlock a shared segment.

• Unused-this state is currently unused and should never be encoun­
tered by the normal user in shared memory handling.

INTERPROCESS COMMUNICATION 9-71

Shared Memory

The shmget(2) system call is used to perform two tasks:

• to get a new shmid and create an associated shared memory segment ""'""
data structure for it)

• to return an existing shmid that already has an associated shared
memory segment data structure

The task performed is determined by the value of the key argument
passed to the shmget(2) system call. For the first task, if the key is not
already in use for an existing shmid and IPC_CREAT flag is set in shmflg, a
new shmid is returned with an associated shared memory segment data
structure created for it prOVided no system tunable parameters would be
exceeded.

There is also a provision for specifying a key of value zero which is
known as the private key (IPC_PRIVATE = 0); when specified, anew shmid
is always returned with an associated shared memory segment data structure
created for it unless a system tunable parameter would be exceeded. When
the ipcs command is performed, the KEY field for the shmid is all zeros.

For the second task, if a shmid exists for the key specified, the value of
the existing shmid is returned. If it is not desired to have an existing
shmid returned, a control command (IPC_EXCL) can be specified (set) in the
shmflg argument passed to the system call. The details of using this system
call are discussed in the "Using shmget" section of this chapter.

When performing the first task, the process that calls shmget becomes
the ownerIcreator, and the associated data structure is initialized accord­
ingly. Remember, ownership can be changed, but the creating process
always remains the creator; see the "Controlling Shared Memory" section in
this chapter. The creator of the shared memory segment also determines
the initial operation permissions for it.

Once a uniquely identified shared memory segment data structure is
created, shared memory segment operations [shmopO] and control
[shmctl(2)] can be used.

Shared memory segment operations consist of attaching and detaching
shared memory segments. System calls are prOVided for each of these
operations; they are shmat(2) and shmdt(2). Refer to the "Operations for
Shared Memory" section in this chapter for details of these system calls.

9-72 PROGRAMMER'S GUIDE

.~

Shared Memory

Shared memory segment control is done by using the shmctl(2) system
call. It permits you to control the shared memory facility in the following
ways:

• to determine the associated data structure status for a shared memory
segment (shmid)

• to change operation permissions for a shared memory segment

• to remove a particular shmid from the UNIX operating system along
with its associated shared memory segment data structure

• to lock a shared memory segment in memory

• to unlock a shared memory segment

Refer to the "Controlling Shared Memory" section in this chapter for
details of the shmctl(2) system call.

Getting Shared Memory Segments

This section gives a detailed description of using the shmget(2) system
call along with an example program illustrating its use.

Using shmget

The synopsis found in the shmget(2) entry in the Programmer's Reference
Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int sl'lm;Jet (key, size, shmflg)
key_t key;
int size, shmflg;

INTERPROCESS COMMUNICATION 9-73

Shared Memory

All of these include files are located in the lusr/include/sys directory
of the UNIX operating system. The following line in the synopsis:

int slmqet (key, size, shmflg)

informs you that shmget(2) is a function with three formal arguments that
returns an integer type value, upon successful completion (shmid). The
next two lines:

key_t key;
int size, shmflg;

declare the types of the formal arguments. The variable key_t is declared
by a typedef in the types.h header file to be an integer.

The integer returned from this function upon successful completion is
the shared memory identifier (shmid) that was discussed earlier.

As declared, the process calling the shmget(2) system call must supply
three arguments to be passed to the formal key, size, and shmflg argu­
ments.

A new shmid with an associated shared memory data structure is pro­
vided if either

• key is equal to IPC_PRIVATE,

or

• key is passed a unique hexadecimal integer, and shmflg awk with
IPC_CREAT is TRUE.

The value passed to the shmflg argument must be an integer type octal
value and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and execution
modes determine the user/group/other attributes of the shmflg argument.
They are collectively referred to as "operation permissions." Figure 9-13
reflects the numeric values (expressed in octal notation) for the valid opera­
tion permissions codes.

9-74 PROGRAMMER'S GUIDE

Operation Permissions
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Figure 9-13: Operation Permissions Codes

Octal Value
00400
00200
00040
00020
00004
00002

Shared Memory

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/write by others is
desired, the code value would be 00406 (00400 plus 00006). There are con­
stants located in the shm.h header file which can be used for the user
(OWNER). They are as follows:

SHM R 0400
SHM W 0200

Control commands are predefined constants (represented by all upper­
case letters). Figure 9-14 contains the names of the constants that apply to
the shmgetO system call along with their values. They are also referred to
as flags and are defined in the ipc.h header file.

Control Command
IPC_CREAT
IPC_EXCL

Figure 9-14: Control Commands (Flags)

Value
0001000
0002000

~."''''r'c .
"

The value for shmflg is, therefore, a combination of operation permis­
sions and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is accamplished by bitwise ORing (I) them with the operation permis­
sions; the bit positions and values for the control commands in

INTERPROCESS COMMUNICATION 9-75

Shared Memory

relation to those of the operation permissions make this possible. It is illus­
trated as follows:

Octal Value Binary Value

~
IPC CREAT 01000 o000 001 000 000 000
I ORed by User 00400 o000 000 100 000 000

shmflg 01400 o000 001 100 000 000

The shmflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

shmid =shnqet {key, size, (!PC_CRFAT 0400» ;

shmid = shnget {key, size, (IPC_CRFAT IPC EXCL I 0400»;

As specified by the shmget(2) entry in the Programmer's Reference
Manual, success or failure of this system call depends upon the argument
values for key, size, and shmflg or system tunable parameters. The system ~

call will attempt to return a new shmid if one of the follOWing conditions is ,)
true:

• Key is equal to IPC_PRIVATE (0).

• Key does not already have a shmid associated with it, and (shmflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

shmid = shnget (!PC_PRIVATE, size, shmflg);

or

shmid =shmget (0 , size, shmflg);

This alone will cause the system call to be attempted because it satisfies the
first condition specified. Exceeding the SHMMNI system tunable parameter
always causes a failure. The SHMMNI system tunable parameter deter­
mines the maximum number of unique shared memory segments (shmids)
in the UNIX operating system.

9-76 PROGRAMMER'S GUIDE

Shared Memory

The second condition is satisfied if the value for key is not already asso­
ciated with a shmid and the bitwise awk of shmflg and IPC_CREAT is
"true II (not zero). This means that the key is unique (not in use) within the
UNIX operating system for this facility type and that the IPC_CREAT flag is
set (shmflg IIPC_CREAT). SHMMNI applies here also, just as for condition
one.

IPC_EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a shmid
exists for the specified key provided. This is necessary to prevent the pro­
cess from thinking that it has received a new (unique) shmid when it has
not. In other words, when both IPC_CREAT and IPC_EXCL are specified, a
unique shmid is returned if the system call is successful. Any value for
shmflg returns a new shmid if the key equals zero (IPC_PRIVATE).

The system call will fail if the value for the size argument is less than
SHMMIN or greater than SHMMAX. These tunable parameters specify the
minimum and maximum shared memory segment sizes.

Refer to the shmget(2) manual page for specific associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained there also.

Example Program
The example program in this section (Figure 9-15) is a menu driven pro­

gram which allows all possible combinations of using the shmget(2) system
call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require­
ments are pointed out.

This program begins (lines 4-7) by including the required header files as
specified by the shmget(2) entry in the Programmer's Reference Manual. Note
that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-explanatory.,
These names make the program more readable, and this is perfectly legal
since they are local to the program. The variables declared for this program
and their purposes are as follows:

INTERPROCESS COMMUNICATION 9·77

Shared Memory

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical ORing
of the opperm and flags variables; it is then used in the system call
to pass the shmflg argument

• shmid-used for returning the message queue identification number
for a successful system call or the error code (-1) for an unsuccessful
one

• size-used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key... an octal
operation permissions code, and finally for the control command combina­
tions (flags) which are selected from a menu (lines 14-31). All possible com­
binations are allowed even though they might not be viable. This allows
observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation '..~,'"
permissions, and the result is stored at the address of the opperm_flags vari-
able (lines 35-50).

A display then prompts for the size of the shared memory segment, and
it is stored at the address of the size variable (lines 51-54).

The system call is made next, and the result is stored at the address of
the shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier
or the error code (-I), it is tested to see if an error occurred (line 58). If
shmid equals -I, a message indicates that an error resulted and the external
errno variable is displayed (lines 60, 61).

If no error occurred, the returned shared memory segment identifier is
displayed (line 65).

The example program for the shmget(2) system call follows. It is sug-
gested that the source program file be named shmget.c and that the execut- ~
able file be named shmget.)

9-78 PROGRAMMER'S GUIDE

~

,.'

~'

Shared Memory

1 I *'Ih:is is a program to illustrate
2 uthe shared neJmY get, slmget(),

3 **~ call capabilities.*/

4 #include <sys/types.h>
5 #include <sys/ipc.h>
6 #include <sys/shm.11>
7 #include <errno. 11>

8 I*Start of main C lan;uage progranl*1
9 main()

10 {
11 key_t key; /*<leclare as lcmg integer*/
12 int opperm, flags;
13 int shmid, size, opperm_flags;
14 /*Enter the desired key*1
15 printf ("Enter the desired key in hex = ");
16 scam("%x", &key);

17 I*Enter the desired octal operaticm
18 permissions.*/
19 printf("\nEnter the operaticm\n");
20 printf("permissicms in octal = ");
21 scanf("~lI, &oppeJ:m);

22 I*set the desired flags.*/
23 printf ("\nEnter oorrespc:m:ii.nJ number to\nll

);

24 printf("set the desired flags: \n") ;
25 printf("No flags = O\n");
26 printf(lIIFC-'l~EAT = 1\n");
27 printf ("IFC_EXCL = 2\n");
28 printf ("IFC_cm:AT and IFC_EXCL = 3\n");
29 printf (II Flags = ");
30 I~ the flag(s) to be set.*/
31 scam(lI"d", &flags);

32 I iIOleck the values. */
33 printf (lI\nkey =~, oppenn =~, flags = O~\n",

34 key, oppenn, flags);

35 /dl'lOOIpOrate the cxmtrol fields (flags) with
36 the operaticm pennissicms*1
37 swi.tell (flags)
38 {
39 case 0: /*No flags are to be set.*/
40 opperm_flags = (oppenn : 0);
41 break;

42 case 1: I.set the IFC cm:AT flag.•/
43 oppenn_flags = (o~ : IPC_cm:AT);

44 break;

INTERPROCESS COMMUNICATION 9·79

Shared Memory

continued

45
46
47
48
49
50

51
52
53
54

55
56

57
58
59
60
61

62
63
64
65
66

67

case 2: 1*5et the !PC EXCL flag.*1
oppenn_flags ::: (~ : !PC_EKCL) ;

break;
case 3: I*set the !PC CM'AT an:! !PC EKCL flags.*1

opperm_flags ::: (~ : !PC_cm:AT-: !PC_EKCL) ;

l*Get the size of the segment in bytes.*1
printf ("\nEnter the segment");
printf ("\nsize in bytes ::: ");
scant ("~" t &size);

1*Ca11 the shm;et system call.*1
shmid ::: shItget (keyt size t opperm_flags) ;

1*Pez'form the fol1cJwiD] if the call is lDlSUCCessful.*1
if(shmid == -1)
{

printf ("\rtI'he shnget system call failed l\n") ;

printf ("The error number = ~\n" t enno);
}

I*Retuxn the shmid upon successful cxxnpletion.*1
else

printf ("\rtI'he shmid =~\n" t shmid);
exit(O);

'J

Figure 9-15: shmget(2) System Call Example

Controlling Shared Memory
This section gives a detailed description of using the shmctl(2) system

call along with an example program which allows all of its capabilities to be ~
exercised.)

9-80 PROGRAMMER'S GUIDE

Shared Memory

Using shmctl
The synopsis found in the shmctl(2) entry in the Programmer's Reference

Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shm:t1 (shmid, arO., b.1f)
int shmid, Old;
st:ruet shmid_<is *b.1f;

The shmct1(2) system call requires three arguments to be passed to it, and
shmctl(2) returns an integer value.

Upon successful completion, a zero value is returned; and when unsuc­
cessful, shmctlO returns a -1.

The shmid variable must be a valid, non-negative, integer value. In
other words, it must have already been created by using the shmget(2) sys­
tem call.

The cmd argument can be replaced by one of following control com­
mands (flags):

• IPC_STAT-return the status information contained in the associated
data structure for the specified shmid and place it in the data struc­
ture pointed to by the ·buf pointer in the user memory area

• IPC_SET-for the specified shmid, set the effective user and group
identification, and operation permissions

• IPC_RMID-remove the specified shmid along with its associated
shared memory segment data structure

• SHM_LOCK-Iock the specified shared memory segment in memory,
must be super-user

INTERPROCESS COMMUNICATION 9-81

Shared Memory

• SHM_UNLOCK-unlock the shared memory segment from memory,
must be super-user.

A process must have an effective user identification of)
OWNER/CREATOR or super-user to perform an IPC_SET or IPC_RMID con-
trol command. Only the super-user can perform a SHM_LOCK or
SHM_UNLOCK control command. A process must have read permission to
perform the IPC_STAT control command.

The details of this system call are discussed in the example program for
it. If you have problems understanding the logic manipulations in this pro­
gram, read the llUsing shmget" section of this chapter; it goes into more
detail than what would be practical to do for every system call.

Example Program
The example program in this section (Figure 9-16) is a menu driven pro­

gram which allows all possible combinations of using the shmctl(2) system
call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require-)
ments are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmct1(2) entry in the Programmer's Reference Manual. Note
in this program that errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self­
explanatory. These names make the program more readable, and it is per­
fectly legal since they are local to the program. The variables declared for
this program and their purposes are as follows:

• uid-used to store the IPC_SET value for the effective user
identification

• gid-used to store the IPC_SET value for the effective group
identification

• mode-used to store the IPC_SET value for the operation permissions

9-82 PROGRAMMER'S GUIDE

Shared Memory

• rtrn-used to store the return integer value from the system call

• shmid-used to store and pass the shared memory segment identifier
to the system call

• command-used to store the code for the desired control command
so that subsequent processing can be performed on it

• choice-used to determine which member for the IPC_SET control
command that is to be changed

• shmid_ds-used to receive the specified shared memory segment
identifier's data structure when an IPC_STAT control command is
performed

• *buf-a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control com­
mand is to place its return values or where the IPC_SET command
gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the
data structure located in the shm.h header file of the same name as a tem­
plate for its declaration. This is a perfect example of the advantage of local
variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the shmid_ds type, it must
also be initialized to contain the address of the user memory area data struc­
ture (line 17).

Now that all of the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid shared memory segment
identifier which is stored at the address of the shmid variable (lines 18-20).
This is required for every shmctl(2) system call.

Then, the code for the desired control command must be entered (lines
21-29), and it is stored at the address of the command variable. The code is
tested to determine the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 39, 40) and the status information returned is printed out
(lines 41-71). Note that if the system call is unsuccessful (line 146), the
status information of the last successful call is printed out. In addition, an
error message is displayed and the errno variable is printed out (lines 148,

INTERPROCESS COMMUNICATION 9-83

Shared Memory

149). If the system call is successful, a message indicates this along with the
shared memory segment identifier used (lines 151-154).

If the IPC_SET control command is selected (code 2), the first thing .~

done is to get the current status information for the shared memory)
identifier specified (lines 90-92). This is necessary because this example pro-
gram provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the pro-
gram does is to prompt for a code corresponding to the member to be
changed (lines 93-98). This code is stored at the address of the choice vari-
able (line 99). Now, depending upon the member picked, the program
prompts for the new value (lines 105-127). The value is placed at the
address of the appropriate member in the user memory area data structure,
and the system call is made (lines 128-130). Depending upon success or
failure, the program returns the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 132-135), and the shmid along with its associated message
queue and data structure are removed from the UNIX operating system. ~

Note that the *buf pointer is not required as an argument to perform this)
control command and its value can be zero or NULL. Depending upon the
success or failure, the program returns the same messages as for the other
control commands.

If the SHM_LOCK control command (code 4) is selected, the system call
is performed (lines 137,138). Depending upon the success or failure, the
program returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system
call is performed (lines 140-142). Depending upon the success or failure,
the program returns the same messages as for the other control commands.

The example program for the shmctl(2) system call follows. It is sug­
gested that the source program file be named shmctl.c and that the execut­
able file be named shmctl.

9-84 PROGRAMMER'S GUIDE

1
2
3
4

/ *'I'hi.s is a program to illustrate
**the shared meuory cx:xntrol, shlIctl () ,
**system call capabilities.

*/

Shared Memory

5 /*Include necessaxy header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>

10 /*Start of m:rin C 1aD3Uage program./
11 main()

12 {
13 extenl int erma;
14 int uid, gid, IOOde;
15 int rtrn, shmid, 0CIlI'tlaI¥i, choice;
16 struct shmid_ds shmid_ds, *buf;
17 buf =&.shmid_ds;

18
19

20
21
22

/.-Get the shmid, am oc:xmand. */
printf ("Enter the shmid =");
scant("~", &shmid);
printf (lI\nEnter the number for\nll

);

printf("the desired cx:mnand:\n");

23
24
25
26
27
28
29

printf (IIIFC_STAT

printf ("IJ?C_SEl'

printf ("IJ?C_RMID
printf (IISHM_I.ro<

printf ("SHM_tlNL<XK
printf("Entry
scanf("~II, &ccmnan1.);

1\n");
2\n");
3\nIl

);

4\n");
5\n");
");

30 /..check the values. */
31 printf (lI\nshmi.d ~, cxmnand =%d\n",
32 shm:i.d, cxmnand);

33
34
35
36
37
38
39

switch (carmand)

{

case 1: / *Use shnct1 () to duplicate
the data structure for

shmid in the shmid_ds area pointed
to by buf am then print it out. */

ran = shnct1(shmid, IFC_STAT,

INTERPROCESS COMMUNICATION 9-85

Shared Memory

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

b.1f) ;
printf ("\n'1he usm m =~\n",

tuf->sl'm_perm.ui.d) ;
printf (liThe GRXJP m = ~",

tuf->sl'm_perm.gi.d) ;
printf ("The creator's m =~II,

tuf->shm_perm. cuid) ;
printf (liThe creator's group m =~\n",

tuf->shm_peDI1.cgid) ;
printf ("The operation pemi.ssians = (»(o\n",

tuf->sl'm_perIn.m:xle) ;
printf ("The slot usage sequence\n");
printf ("number = O%x\n",

tuf->shm_perIn.seq) ;
printf (liThe key=: O%x\n",

tuf->shm_perIn.key) ;
printf (liThe segment size ::: ~\n",

tuf->shm_segsz) ;
printf (liThe pid of last shm:>p = ~\n",

tuf->shm_lpid) ;
printf ("The pid of creator = %d\n",

tuf->shm_cpid) ;

printf ("'!be current :# attached = ~\n",

tuf->shm_nattch) ;

printf ("'D1e in meuoxy :# attached =~\n",

b.1f->shm_cnattach) ;
printf("The last shmat tine = %d\nII ,

blf->shm_atine) ;
printf ("'D1e last shndt tine = ~II,

b.1f->sl'm_dtime) ;

printf(liThe last chaD1e time = ~\n" t

b.1f->shm_ctime) ;

break;

/. Lines 73 - 87 deleted ./

continued

88
89

case 2: /.Select am chiw]e the desired
member(s) of the data structure••/

90
91
92

/ tlGet the original data for this shmid
data structure first.•/

rtJ:n = shmctl (shmid, !PC_STAT t blf);

9-86 PROGRAMMER'S GUIDE

~

~

~

93
94
95
96
97
98
99

100
101
102
103
104

105
106
107
108
109
110
111
112

113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131

Shared Memory

continued

printf("\nEnter the number for the\n");
printf("member to be changed:\n");
printf("shm_peDn.uid = 1\n");
printf("shm_penn. gid =2\n");
printf("shm3leDll.m::xie =3\n");
printf("Entxy = It);

seani(""11", &.choice);
lilQ11yone cb:>ice is allowed per

pass as an illegal entxy will

cause repetitive failures until
shmid_ds is updated with

IFC ~.*I

switeh(choice) {
case 1:

printf("\nEnter USER m = ");
scanf (""11". &\rid);

~shm_perm.uid= uid;
printf("\nUSER m =~\n".

~shm_perm.uid) ;
break;

case 2:
printf("\nEnter GRaJP m =");
seani("~II, &gid);
~shm_perm.gid= gid;
printf("~m = "I1\n",

~sl1n_penn.gid);
break;

case 3:
printf ("\DEnter KDE = ");
scanf("~", &m::xie);
~shm_perm.IIOde = m::xie;
printf("\nKDE = O%o\n",
~shm_penD.m::xie) ;

break;
}

I*Do the change.*1
rtzn = shmct1 (shmid, IFC_SE:r,

buf);

break;

INTERPROCESS COMMUNICATION 9-87

Shared Memory

continued

132 case 3: 1*Rem:Jve the shmid alorq with its
133 associated
134 data structure.*1
135 rtrn = shmctl(shmid, IFC}MID, NULL);
136 break;

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

case 4: 1*UX:k the shared IIeImY segnwmbl
rtrn = sbDct:l. (shmid, SHM_ux:::K, NULL);
break;

case 5: I*Un1ock the shared menDJ:y

segment.*1
rtrn =shmctl(shmid, SHM_UNIJXK, NULL);
break;

}

I*Perfonn the fol1owin;J if the call is unsuccessful.*1
if(rtJ:n = -1)
{

printf ("\Itl'he shIrct1 system call failed I\n") ;
printf ("The error number =3ld\n", erz:no);

}

I*Rebnn the shmid up:xn successful cx::mpletion.*1
else

printf ("\nStmctl was successful for shmid = %d\n",
shmid) ;

exit (O);

Figure 9-16: shmctl(2) System Call Example

9-88 PROGRAMMER'S GUIDE

~~ . .

~'

Shared Memory

Operations for Shared Memory
This section gives a detailed description of using the shmat(2) and

shmdt(2) system calls, along with an example program which allows all of
their capabilities to be exercised.

Using shmop
The synopsis found in the shmop(2) entry in the Programmer's Reference

Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shrlat (shmid. shmaddr. sbnflg)
int shmid;
char *shmaddr;
int shmflg;

int slmr:it (shmaddr)

char *shmaddr;

Attaching a Shared Memory Segment
The shmat(2) system call requires three arguments to be passed to it,

and it returns a character pointer value.

The system call can be cast to return an integer value. Upon successful
completion, this value will be the address in core memory where the pro­
cess is attached to the shared memory segment and when unsuccessful it
will be a-I.

INTERPROCESS COMMUNICATION 9-89

Shared Memory

The shmid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the shmget(2) sys­
tem call.

The shmaddr argument can be zero or user supplied when passed to the ')
shmat(2) system call. If it is zero, the UNIX operating system picks the
address of where the shared memory segment will be attached. If it is user
supplied, the address must be a valid address that the UNIX operating sys-
tem would pick. The following illustrates some typical address ranges;
these are for the 3B2 Computer:

OxcOOcOOOO
OxcOOeOOOO
OxcOlOOOOO
Oxc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. It would
be wise to let the operating system pick addresses so as to improve portabil­
ity.

The shmflg argument is used to pass the SHM_RND and
SHM_RDONLY flags to the shmatO system call.

Further details are discussed in the example program for shmopO. If
you have problems understanding the logic manipulations in this program,
read the "Using shmget ll section of this chapter; it goes into more detail
than what would be practical to do for every system call.

Detaching Shared Memory Segments
The shmdt(2) system call requires one argument to be passed to it, and

shmdt(2) returns an integer value.

Upon successful completion, zero is returned; and when unsuccessful,
shmdt(2) returns a -1.

Further details of this system call are discussed in the example program.
If you have problems understanding the logic manipulations in this pro­
gram, read the lIUsing shmget ll section of this chapter; it goes into more
detail than what would be practical to do for every system call.

Example Program ')
The example program in this section (Figure 9-17) is a menu driven pro-

gram which allows all possible combinations of using the shmat(2) and
shmdt(2) system calls to be exercised.

9-90 PROGRAMMER'S GUIDE

------------------------- Shared Memory

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program require­
ments are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual. Note
that in this program that errno is declared as an external variable, and
therefore, the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

• flags-used to store the codes of SHM_RND or SHM_RDONLY for
the shmat(2) system call

• addr-used to store the address of the shared memory segment for
the shmat(2) and shmdt(2) system calls

• i-used as a loop counter for attaching and detaching

~' • attach-used to store the desired number of attach operations

• shmid-used to store and pass the desired shared memory segment
identifier

• shmflg-used to pass the value of flags to the shmat(2) system call

• retrn-used to store the return values from both system calls

• detach-used to store the desired number of detach operations

This example program combines both the shmat(2) and shmdt(2) system
calls. The program prompts for the number of attachments and enters a
loop until they are done for the specified shared memory identifiers. Then,
the program prompts for the number of detachments to be performed and
enters a loop until they are done for the specified shared memory segment
addresses.

shmat
The program prompts for the number of attachments to be performed,

and the value is stored at the address of the attach variable (lines 17-21).

INTERPROCESS COMMUNICATION 9-91

Shared Memory

A loop is entered using the attach variable and the i counter (lines 23-
70) to perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment
identifier (lines 24-27) and it is stored at the address of the shmid variable
(line 28). Next, the program prompts for the address where the segment is
to be attached (lines 30-34), and it is stored at the address of the addr vari­
able (line 35). Then, the program prompts for the desired flags to be used
for the attachment (lines 37-44), and the code representing the flags is
stored at the address of the flags variable (line 45). The flags variable is
tested to determine the code to be stored for the shmflg variable used to
pass them to the shmat(2) system call (lines 46-57). The system call is exe­
cuted (line 60). If successful, a message stating so is displayed along with
the attach address (lines 66-68). If unsuccessful, a message stating so is
displayed and the error code is displayed (lines 62, 63). The loop then con­
tinues until it finishes.

shmdt
After the attach loop completes, the program prompts for the number of

detach operations to be performed (lines 71-75), and the value is stored at
the address of the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-
95) to perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory
segment to be detached (lines 79-83), and it is stored at the address of the
addr variable (line 84). Then, the shmdt(2) system call is performed (line
87). If successful, a message stating so is displayed along with the address
that the segment was detached from (lines 92,93). If unsuccessful, the error
number is displayed (line 89). The loop continues until it finishes.

The example program for the shmop(2) system calls follows. It is sug­
gested that the program be put into a source file called shmop.c and then
into an executable file called shmop.

1 I*This is a program to illustrate
2 **the shared meaory operations, shaop() ,

3 **system call capabilities.
4 *1

9-92 PROGRAMMER'S GUIDE

Shared Memory

16 I*Loop for attachments by this process.*1
17 printf("Enter the number of\n");
18 printf("attachments for this\n");
19 printf("process (1-4). \nil);

20 printf (" Attachments =");

~

~

6
7
8
9

10
11
12
13
14
15

21
22

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc:.h>
#include <sys/shm.h>
I *Start of main C language program*1
main()

{

extern int errno;
int flags. addr. i. attach;
int shmid. shmfl9, retrn, detach;

scanf("~II, &attach);
printf ("Number of attaches =~\n", attach);

continued

23 for(i = 1; i <= attach; i++) {

24 I*Enter the shared~ m.*1
25 printf("\nEnter the shmid of\n");
26 printf (lithe shared mem::>xy segmmt to\n II);
27 printf ("be operated an =");
28 scant ("~". &shm:id);
29 printf ("\nshmi.d =~\n", shmid);

~.

30
31
32
33
34
35
36

37
38
39
40

I*Enter the value for shmaddr.*1
printf("\nEnter the value for\n");
printf("the shared~ address\n");
printf("in hexadecimal: \nil) ;
printf (n Shmaddr = ");
scant ("%x", &addr);
printf("'!be desired address = Ox%x\n", addr);

I*Specify the desired flags.*1
printf("\nEnter the oorresp:mding\n");
printf("number for the desired\n"};
printf("flags:\n"};

INTERPROCESS COMMUNICATION 9-93

59 1*00 the shmat system call.*1
60 retrn = (int)shmat(shmid, addr, shmflg);
61 if(retl:n == -1) {
62 printf("\nShmat failed. ");
63 printf("Error = r,d\n", erzno);
64 }
65 else {
66 printf ("\nShmat was successfu1\n");
67 printf{nfor slmid = %d\n", slnnid);
68 printf(liThe address =<bc%x\n", retrn};
69
70

71 1*Ia:>p for detachments by this process.*1
72 printf(nEnter the number of\n");
73 printf(ndetachments for this\n"};
74 printf("process (1-4). \nn);
75 printf (n Detachments = t1);

Shared Memory

41
42
43
44
45

46
47
48

49
50

51
52
53
54

55
56
57
58

76
77
78

printf("SHM_RND = 1\n");
printf(nSHM}UX~~LY = 2\n");
printf(nSHM_RND and SHM}UXE,Y = 3\n");
printf (n Flags = ");
scanf(n%d", &flags);

switch(flags)
{

case 1:
shmflg = SHM_RND;
break;

case 2:
shmflg =SHM}UJCNLY;
break;

case 3:
shmflg = SHM_RND ; SHM)U:X:NLY;
break;

}

printf(n\nF1ags = 00(0\n", shmflg);

scanf("%d", &detach);
printf("Number of attaches = %d\n", detach};
forti = 1; i <= detach; i++) {

continued

'~

)

)

9-94 PROGRAMMER'S GUIDE

Shared Memory

continued

79
80
81
82
83
84
85

86
87
ee
89
90
91
92
93

94
95
96

I*Enter the value for shmaddr.*1
printf("\nEnter the value for\n");
printf("the shared tneItOz:y address\n");
printf ("in hexadecimal: \n") ;
printf(" Shmaddr :;: ");
scanf ("%xII t &addr);
printf("The desired address :;: Ox%x\n" t addr);

1*00 the shlrdt system call.*1
retrn :;: (int)slmit(addr) ;

if(retrn == -1) {
printf("Error ='€d\n", en:no);

}

else {
printf ("\nShm:lt was successful\n II) ;

printf("for address :;: O%x\n", addr);

Figure 9-17: shmopO System Call Example

INTERPROCESS COMMUNICATION 9-95

.. '. .'

i'

\ .. '

~
\'

10 curses/terminfo

Introduction
• Organization of this Chapter

Overview
What is curses?
What is terminfo?
How curses and terminfo Work Together
Other Components of the Screen Management

System

Working with curses Routines
What Every curses Program Needs

• The Header File <curses.h>
• The Routines initscr(), refresh(), endwin()

Compiling a curses Program
Running a curses Program
More about refresh() and Windows
Getting Simple Output and Input

• Output
• Input

Controlling Output and Input
• Output Attributes
• Color Manipulation
• Bells, Whistles, and Flashing Lights
• Input Options

Building Windows and Pads
• Output and Input
• The Routines wnoutrefresh() and doupdate()

10-1

10-1

10-3

10-3

10-5

10-6

10-7

10-11

10-11

10-11

10-13

10-14

10-15

10-16

10-20

10-20

10-31

10-39

10-39

10-44
10-54
10-55

10-60

10-60
10-61

curses/termlnfo

curses/termlnfo

• New Windows
Using Advanced curses Features

• Routines for Drawing Lines and Other Graphics
• Routines for Using Soft Labels
• Working with More than One Terminal

Working with terminfo Routines
What Every terminfo Program Needs
Compiling and Running a terminfo Program
An Example terminfo Program

Working with the terminfo Database
Writing Terminal Descriptions

• Name the Terminal
• Learn About the Capabilities
• Specify Capabilities
• Compile the Description
• Test the Description

Comparing or Printing terminfo Descriptions
Converting a termcap Description to a terminfo

Description

curses Program Examples
The editor Program
The highlight Program
The scatter Program
The show Program
The two Program
The window Program
The colors Program

II PROGRAMMER'S GUIDE

10-66

10-69

10-69

10-71

10-72

10-75

10-75

10-77

10-77

10-81

10-81

10-81

10-82

10-83

10-89

10-90

10-91

10-91

10-93

10-93

10-100

10-102

10-104
10-106

10-109

10-111

\~
'- --

Introduction

Screen management programs are a common component of many com­
mercial computer applications. These programs handle input and output at
a video display terminal. A screen program might move a cursor, print a
menu, divide a terminal screen into windows, change the definitions of
colors, or draw a display on the screen to help users enter and retrieve
information from a database.

This chapter explains how to use the curses library, terminfo database,
and the terminfo support routines to write terminal-independent screen
management programs on a UNIX system. It also contains information on
other UNIX system tools that support the curses I terminfo screen manage­
ment system.

The purpose of this chapter is to explain how to write screen manage­
ment programs as quickly as possible. Therefore, it does not attempt to
cover every detail. Use this chapter to get familiar with the way these rou­
tines work, then use the Programmer's Reference Manual for more informa­
tion.

Before attempting to use curses/terminfo, or to understand this docu-
ment, you should be familiar with the following:

• The C programming language

• The UNIX systemIC language standard 1/0 package stdio(3S)

• "System Calls and Subroutines" and "Input/Output" in Chapter 2 of
the Programmer's Guide

Organization of this Chapter
This chapter has five sections:

• Overview

This section briefly describes curses, terminfo, and other related
UNIX system support tools.

• Working with curses Routines

This section contains a brief description of the routines that make up
the curses(3X) library. These routines write to a screen, read from a
screen, build windows, draw line graphics, use a terminal's soft

curses/termlnfo 10-1

Introduction

labels, manipulate colors, and work with more than one terminal at
the same time. Examples are included.

• Working with terminfo Routines

This section describes a subset of routines in the curses library.
These routines access and manipulate data in the terminfo database.
They are used to set up and handle special terminal capabilities such
as programmable function keys.

• Working with the terminfo Database

This section describes the terminfo database, related support tools,
and their relationship to the curses library.

• curses Program Examples

This section includes programs that illustrate uses of curses routines.

10-2 PROGRAMMER'S GUIDE

Overview

What is curses?
curses(3X) is the library of routines that you use to write screen

management programs on the UNIX system. The routines are C functions
and macros, with an argument syntax modeled after routines in the stan­
dard C library. For example, the routine printwO uses the same arguments
as printf(3S). The only difference is that printw() sends its output to stdscr
(defined in <curses.h >) instead of stdout. The routine getch() and the
standard getc(3S) are related in the same manner. The automatic teller pro­
gram at your bank might use printw() to print its menus and getch() to
accept your request for a withdrawal.

The curses routines are usually located in /usr/lib/libcurses.a. To com­
pile a program using these routines, you must use the cc(l) command and
include -lcurses on the command line to tell the link editor to locate, load,
and link them:

cc file.c -lcurses -0 file

The name curses comes from the cursor optimization that this library of
routines provides. Cursor optimization minimizes the amount a cursor has
to move around a screen to update it. For example, if you designed a screen
editor program with curses routines and edited the sentence

curses/terminfo is a great package for creating screens.

to read

curses/term:i.n:fo is the best package for creating screens.

the program would not output the whole line, but only the part from the
best on. The other characters would be preserved. Because the amount of
data transmitted-the output-is minimized, cursor optimization is also
referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner
appropriate for the terminal on which a curses program is run. This means
that the curses library can do whatever is required to update many different
terminal types. It searches the terminfo database (described below) to find
the correct information about a terminal.

curses/terminfo 10-3

Overview

How does cursor optimization help you and those who use your pro­
grams? First, it saves you programming time when describing how you
want to update a screen. Second, it saves a user's time when the screen is
updated. Third, it reduces the load on your UNIX system's communication ~

lines when the updating takes place. Fourth, you don't have to worry about J
the myriad of terminals on which your program might be run.

Here's a simple curses program. It uses the mandatory # include
<curses.h>, initscr(), and endwinO routines, along with some of the basic
curses routines, to move a cursor to the middle of any terminal screen and
print the character string BullsEye. Each of the curses routines is described
in the following section, "Working with curses Routines". LINES and COLS
are variables declared in < curses.h> .

#include <curses.h>

main(}

{

initscr();

IOOVe (LINES/2 - 1, COLSI2 - 4);
addstr("Bulls") ;
refresh();
addstr("Eye");

refresh();
endwin();

Figure 10-1: A Simple curses Program

10-4 PROGRAMMER'S GUIDE

Overview

What is terminfo?
~ terminfo refers to both of the following:

• It is a group of routines within the curses library that handles certain
terminal capabilities. You can use these terminfo routines to write a
filter or program the function keys, if your terminal has programm­
able keys. Shell programmers can use the command tput(l) to per­
form many of the manipulations provided by these routines.

• It is a database containing the descriptions of many terminals that
can be used with curses programs. These descriptions specify the
capabilities of a terminal and the way it performs various
operations-for example, how many lines and columns it has and
how its control characters are interpreted.

Each terminal description in the database is a separate, compiled file.
You use the source code that terminfo(4) describes to create these
files and the command tic(lM) to compile them.

The compiled files are normally located in the directories
lusr/lib/terminfo/? These directories have single character names,
each of which is the first character in the name of a terminal. For
example, an entry for the AT&T Teletype 5425 is normally located in
the file /usr/lib/terminfo/a/att5425.

Here's a simple shell script that uses the terminfo database.

curses/terminfo 10-5

Overview

Clear the. screen and sbJw the 0,0 position.

t¢ clear

tplt cup 0 0 # or tplt heme
ecb:> "<- this is 0 0"

Slx:M line 5, column 10.

tplt cup 5 10
ecb:> 11<_ this is 5 10"

Figure 10-2: A Shell Script Using terminfo Routines

How curses and terminfo Work Together
A screen management program linked with curses routines uses infor­

mation from the terminfo database at run time. The information tells
curses what it needs to know about the terminal being used-what we'll
call the current terminal from here on.

For example, suppose you are using an AT&T Teletype 5425 terminal to
run the simple curses program shown in Figure 10-1. To put the BullsEye
in the middle of the screen, the program needs to know how many lines
and columns the terminal can display. The description of the AT&T Tele­
type 5425 in the terminfo database has this information. All the curses pro­
gram needs to know before it goes looking for the information is the name
of your terminal.

The initscr() routine at the beginning of a curses program calls the ter­
minfo routine setupterm(). If setupterm() is not told which terminal to set
up for, it looks at the shell environment variable TERM, which is usually)
set and exported by your .profile when you log in (see profile(4». Know-
ing the value of TERM, it then finds and opens the correct terminal
description entry in the terminfo database. Then, when your program calls

10-6 PROGRAMMER'S GUIDE

Overview

a curses routine, information that the routine needs concerning the
terminal's capabilities is available.

Assume that the following example lines are in a .profile:

TERM=5425
exp:>rt TERM
tput ini.t

There can be other statements between them, but these three statements
must appear in this order. The first line stores the terminal name in the
shell environment variable TERM. The second line exports the variable.
The third line is a terminfo routine that initializes the current terminal.
That is, it makes sure that the terminal is set up according to its description
in the terminfo database. If you had these lines in your .profile and you
ran a curses program, the program would get the information that it needs
about your terminal from the file lusr/lib/terminfo/a/attS42S.

Other Components of the Screen Management
System

You have been given a brief look at the main components of the
curses/terminfo method of screen management. This section will complete
the overview by making you familiar with the other components of this sys­
tem.

curses/terminfo 1~7

Overview

Component Brief Description

terminfo Files found under lusr/lib/terminfo/?1*; these files
database contain compiled terminal descriptions. ? is the first

letter of the terminal name, and • is the terminal
name.

tic(lM) terminfo(4) defines terminal description source files.
tic compiles them into terminfo database files.

infocmp(lM) A routine that prints and compares compiled terminfo
description files.

captoinfo(lM) A routine that converts old termcap files to terminfo
database files.

terminfo(4) Defines both the terminfo database files and the rou-
tines used to manipulate and instantiate the strings of
data in those files.

tput(l) A terminfo routine that causes a string from the ter-
minfo database to be sent to the terminal, thus setting
one or more parameters.

curses(3X) A library of C routines that uses information in the
terminfo database. The routines are terminal
independent. They optimize cursor movement and
allow for the easy programming of screen handling
code.

Other manual layers(l), stdio(3S), profile(4), scr_dump(4), term(4),
pages to read term(5)

Figure 10-3: Components of the curses/terminfo Screen Management Sys­
tem

The terminfo database has already been described as one of the main
components of the curses/terminfo screen management system. The rules
for creating a terminal description source file are in the manual page ter- ~

minfo(4). The source file is then compiled using tic. Unless you have)
created a shell environment variable called TERMINFO that indicates a
different path, tic will place the compiled description file into the proper

10-8 PROGRAMMER'S GUIDE

Overview

directory under lusr/lib/terminfo (provided that you have permission to
create or overwrite files in that directory). To use tic simply type:

tic file_name

You may use the -v option to get a running commentary. An integer from
1 to 10 may follow the option (no space) to set the level of verbosity. The
default is 1.

The system uses the shell environment variable TERMINFO to find the
terminal description files. Initializing a terminal will cause TERMINFO to
be set to 1usr/lib1terminfo unless you have already set it to some other
path ($HOME/bin, for example). The system will look for the definition of
a specific terminal under $TERMINFOI?1./ where? is the first letter of the
terminal name, and • is the terminal name.

Once a terminal description file has been compiled, it is no longer
human readable. The routine infocmp translates a compiled description file
back to source statements. Invoking the command without arguments will
print out the description of the terminal defined by the shell environment
variable TERM. A single argument is taken as the name of a terminal you
want to see the source description for. With no options declared (or -1)/
you will see descriptions as defined in terminfo(4). There are options for
seeing the C variable names (-L), the old termcap names (-C)/ and all out­
put in termcap format (-r).

If two arguments are given, infocmp assumes they identify two descrip­
tions you want to compare. If no options are given (or -d), the differences
are printed. You may also ask for a list of capabilities that the two have in
common (-c) or a list of capabilities that neither describes (-n). In all of
the above cases, the output lists the boolean fields first, the numeric fields
second, and the strings third.

infocmp also has options to print, trace, sort, compare files in two
different directories, and output a source file derived from the union of two
or more compiled description files. For more information consult your Sys­
tem Administrator's Reference Manual.

Early versions of the UNIX system used a different method of describ­
ing terminals, called termcap. You can convert a termcap file to a terminfo
file by using captoinfo. If the command is invoked with no arguments, the
shell environment variable TERMCAP is used to get the path and the shell
environment variable TERM to get the terminal. If TERMCAP is null, the
routine tries to convert letc/termcap. If a file name is given as an option,
that is the file that will be converted. The output is to standard out/ and

curses/termlnfo 10-9

Overview

may be piped. Options include a trace mode (-v), one field to a line output
(-I), and changing the output width (-w).

One of the definitions given earlier for terminfo was that it is a group
of routines within curses that allow you to manipulate the data in a termi­
nal description file. This small library of routines is documented later in
this chapter and in the curses(3X) manual page. The command tput(l) will
allow you to perform many of these manipulations from the command line
or in a shell script.

tput can always be given the -Tterminaltype option, but doesn't need it
if the shell environment variable TERM is set. It can be given init, reset,
or longname as special arguments. These initialize, reset, and print out the
name of the terminal, respectively. Finally, you can use the name of a ter­
minfo(4) terminal attribute or capability (called a capname) as an argument.
These capabilities can fall into three categories; boolean, numeric, and
strings. If the capname you specify is a string, you may include, as an argu­
ment, a list of parameters to insert into coded places in the string (instantia­
tion). In Figure 10-2 cup is the capname of the string the computer sends to
your terminal to move the cursor to a particular position. tput calls a rou­
tine that instantiates the 5 and 10 into the proper places in that string, and
then sends the string to your terminal, thus moving the cursor to that posi­
tion.

This completes the overview of the curses/terminfo screen management
system. A more detailed description of each component starts in the next
section. If you elect to skip this and go directly to the manual pages,
remember that the examples at the end of the chapter might still prove use­
ful.

10-10 PROGRAMMER'S GUIDE

.~

.~
.1

Working with curses Routines

This section describes the basic curses routines for creating interactive
screen management programs. It begins by describing the routines and
other program components that every curses program needs to work prop­
erly. Then it tells you how to compile and run a curses program. Finally,
it describes the most frequently used curses routines that

• write output to and read input from a terminal screen

• control the data output and input - for example, to print output in
bold type or prevent it from echoing (printing back on a screen)

• manipulate colors on alphanumeric terminals

• manipulate multiple screen images (windows)

• draw simple graphics

• manipulate soft labels on a terminal screen

• send output to and accept input from more than one terminal.

To illustrate the effect of using these routines, we include simple exam­
ple programs as the routines are introduced. We also refer to a group of
larger examples located in the section "curses Program Examples" in this
chapter. These larger examples are more challenging; they sometimes make
use of routines not discussed here. Keep the curses(3X) manual page
handy.

What Every curses Program Needs
Every curses program needs to include the header file <curses.h> and

call the routines initscr(), refresh() or similar related routines, and
endwin().

The Header File <curses.h>
The header file <curses.h> defines several global variables and data

structures and defines several curses routines as macros.

curses/termlnfo 10-11

Working with curses Routines

To begin, let's consider the variables and data structures defined.
< curses.h > defines all the parameters used by curses routines. It also
defines the integer variables LINES and COLS; when a curses program is
run on a particular terminal, these variables are assigned the vertical and
horizontal dimensions of the terminal screen, respectively, by the routine
initscr() described below. The header file defines the constants OK and
ERR, too. The integer variables COLORS and COLOR_PAIRS are also
defined in <curses.h>. These will be assigned, respectively, the maximum
number of colors and color-pairs the terminal can support. These variables
are initialized by the start_colorO routine. (See the section "Color Manipu­
lation.") Most curses routines have return values; the OK value is returned
if a routine is properly completed, and the ERR value if some error occurs.

LINES and COLS are external (global) C variables that represent the size
of a terminal screen. Two shell environment variables, LINES and
COLUMNS, may be set in a user's shell environment; a curses program
uses the shell environment variables, if they exist, as the default values
for the C variables. If they do not exist, the C variables are set by reading
the terminfo database. To avoid confusion, for the remainder of this
document we will use the $ to distinguish environment variables from
the C variables.

Now let's consider the macro definitions. <curses.h> defines many
curses routines as macros that call other macros or curses routines. For
instance, the simple routine refresh() is a macro. The line

#define refresh() wrefresh(stdscr)

from <curses.h> shows that when refresh is called, it is expanded to call
the curses routine wrefresh(). The latter routine in turn calls the two
curses routines wnoutrefresh() and doupdate(). Many other routines also
group two or three routines together to achieve a particular result.y Macro expansion in curses programs may cause problems with certain

sophisticated C features, such as the use of automatic incrementing vari­
ables.

10-12 PROGRAMMER'S GUIDE

Working with curses Routines

One final point about <curses.h>: it automatically includes <stdio.h>
and the <termio.h> tty driver interface file. Including either file again in
a program is harmless but wasteful.

~ The Routines initscr(), refresh(), endwin()

The routines initscr{), refresh{), and endwin{) initialize a terminal
screen to an "in curses state, It update the contents of the screen, and restore
the terminal to an "out of curses state," respectively. Use the simple pro­
gram that we introduced earlier to learn about each of these routines:

#include <curses.11>

main()

{

initscr(); 1* initialize tenni.nal settin:Js and <curses.11>
data structures and variables *1

1* send nore ootput to tenninal screen *1
1* restore all terminal settings *1

DOVe (LINESI2 - 1 t COLSI2 - 4);
addstr(IlBulls");

refresh(); 1* send output to (update) teIm:i.nal screen *1
addstr(IIEyeIl) ;

refresh();
endwin();

Figure 10-4: The Purposes of initscr{), refresh(), and endwin{) in a Pro­
gram

A curses program usually starts by calling initscr{); the program should
call initscr{) only once. Using the shell environment variable $TERM as
the section IIHow curses and terminfo Work Together" describes, this rou­
tine determines what terminal is being used. It then initializes all the
declared data structures and other variables from <curses.h>. For example,
initscr{) would initialize LINES and COLS for the sample program on
whatever terminal it was run. If the Teletype 5425 were used, this routine

curs8s/termlnfo 10-13

Working with curses Routines

would initialize LINES to 24 and COLS to 80. Finally, this routine writes
error messages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by
routines like move() and addstr() in the sample program. For example, ~

IIDVe (LINES/2 - 1, OOLS/2 - 4);

says to move the cursor to the left of the middle of the screen. Then the
line

addstr("Bulls" };

says to write the character string Bulls. For example, if the Teletype 5425
were used, these routines would position the cursor and write the character
string at (11,36).

All curses routines that move the cursor move it from its home position
in the upper left corner of a screen. The (LINES,COLS) coordinate at this
position is (0,0) not (1,1). Notice that the vertical coordinate is given first
and the horizontal second, which is the opposite of the more common
(x,y) order of screen (or graph) coordinates. The -1 in the sample pro-
gram takes the (0,0) position into account to place the cursor on the
center line of the terminal screen.

Routines like move() and addstr() do not actually change a physical ter­
minal screen when they are called. The screen is updated only when
refresh() is called. Before this, an internal representation of the screen
called a screen buffer or window is updated. This is a very important con­
cept, which we discuss below under "More about refresh() and Windows. II

Finally, a curses program ends by calling endwin(). This routine
restores all terminal settings and positions the cursor at the lower left
corner of the screen.

Compiling a curses Program
You compile programs that include curses routines as C language pro­

grams using the cc(l) command (documented in the Programmer's Reference
Manual), which invokes the C compiler (see Chapter 2 in this guide for
details). /~

10-14 PROGRAMMER'S GUIDE

~..

Working with curses Routines

The routines are usually stored in the library lusr/lib/libcurses.a. To
direct the link editor to search this library, you must use the -I option with
the cc command.

The general command line for compiling a curses program follows:

cc file.c -lcurses -0 file

file.c is the name of the source program; and file is the executable object
module.

Running a curses Program
curses programs count on certain information being in a user's environ­

ment to run properly. Specifically, users of a curses program should usually
include the following three lines in their .profile files:

TERM=current terminal type
export TERM
tp.lt mit

For an explanation of these lines, see the section "How curses and ter­
minfo Work Together" in this chapter. Users of a curses program could also
define the environment variables $LINES, $COLUMNS, and $TERMINFO
in their .profile files. However, unlike $TERM, these variables do not have
to be defined.

If a curses program does not run as expected, you might want to debug
it. Keep a few points in mind.

First, a curses program is interactive and should always have knowledge
of where the cursor is located. It is suggested that you do not use an
interactive debugger as they usually cause changes to the contents of the
screen without telling curses about it.

Second, a curses program outputs to a screen buffer until refresh() or a
similar routine is called. Because visual output from the program is not
immediate, debugging may be confusing.

Third, you cannot set break points on curses routines that are macros,
such as refresh(). You have to set the breakpoint on routines used to define
these macros. For example, you have to use wrefresh() instead of refresh().
See the above section, "The Header File <curses.h>," for more information
about macros.

curses/termlnfo 10-15

Working with curses Routines

More about refresh() and Windows
As mentioned above, curses routines do not update the terminal screen .~

until refresh() is called. Instead, they write to an internal representation of
the screen called a screen buffer or window. When refresh() is called, all
the accumulated output is sent from the window to the current terminal
screen.

<curses.h> supplies a default window called standard screen. The C
name for this is stdscr. It is the size of the current terminal's screen.
<curses.h> defines stdscr to be of the type WINDOW*,'a pointer to a C
structure which is a two-dimensional array of characters representing the
terminal screen. The program always keeps track of what is on the physical
(terminal) screen, as well as what is in stdscr. When refresh() is called, it
compares the two screen images and sends a stream of characters to the ter-
minal that make the physical screen look like stdscr. A curses program con-
siders many different ways to do this, taking into account the various capa-
bilities of the terminal and similarities between what is on the screen and
what is in the window. It optimizes output by printing as few characters as
possible. Figure 10-5 illustrates what happens when you execute the sample ~
curses program given in Figure 10-1. Notice in the figure that the terminal. .,
screen retains whatever garbage is on it until the first refresh() is called.

10-16 PROGRAMMER'S GUIDE

initscrO

move(LINES/2-1,
COLS/1-4)

[2,3]

o
stdscr

stdscr

o

Working with curses Routines

physical screen

(garbage)

physical screen

(garbage)

stdscr physical screen

addstr ("Bulls")

Bulls 0 (garbage)

C
stdscr physical screen

refreshO
Bulls 0 Bulls 0

Figure 10-5: The Relationship between stdscr and a Terminal Screen

curses/termlnfo 10-17

Working with curses Routines

addstr ("Eye")

refreshO

endwinO

stdscr

BullsEye 0

stdscr

BullsEye 0

stdscr

BullsEye 0

physical screen

Bulls 0

physical screen

BullsEye 0

physical screen

BullsEye

o

Figure 10-5: The Relationship Between stdscr and a Terminal Screen (con­
tinued)

You can create other windows and use them instead of stdscr. Win­
dows are useful for maintaining several different screen images. For exam­
ple, many data entry and retrieval applications use two windows: one to
control input and output and one to print error messages that don't mess up
the other window.

It's possible to subdivide a screen into many windows, refreshing each
one of them as desired. When windows overlap, the contents of the current
screen show the most recently refreshed window. It's also possible to create~
a window within a window; the smaller window is called a subwindow. -'
Assume that you are designing an application that uses forms, for example
an expense voucher, as a user interface. You could use subwindows to con-
trol access to certain fields on the form.

10-18 PROGRAMMER'S GUIDE

Working with curses Routines

Some curses routines are designed to work with a special type of win­
dow called a pad. A pad is a window whose size is not restricted by the
size of a screen or associated with a particular part of a screen. You can use
a pad when you have a particularly large window or only need part of the
window on the screen at anyone time. For example, you might use a pad
for an application with a spread sheet.

Figure 10-6 represents what a pad, a subwindow, and some other win­
dows could look like in comparison to a terminal screen.

terminal screen

window window

...--- pad

pad Isub~d I~

~window

I window I

Figure 10-6: Multiple Windows and Pads Mapped to a Terminal Screen

The section "Building Windows and Pads" in this chapter describes the
routines you use to create and use them. If you'd like to see a curses pro­
gram with windows now, you can turn to the window program under the
section "curses Program Examples" in this chapter.

curses/terminfo 10-19

Working with curses Routines

Getting Simple Output and Input

Output
The routines that curses provides for writing to stdscr are similar to

those provided by the stdio(3S) library for writing to a file. They let you

• write a character at a time - addch()

• write a string - addstrO

• format a string from a variety of input arguments - printw()

• move a cursor or move a cursor and print character(s) - move(),
mvaddch(), mvaddstr(), mvprintw()

• clear a screen or a part of it - clear(), erase(), clrtoeol(), clrtobot()

Following are descriptions and examples of these routines.y The curses library provides its own set of output and input functions.
You should not use other I/O routines or system calls, like read(2) and ,~

write(2), in a curses program. They may cause undesirable results when)
you run the program.

10-20 PROGRAMMER'S GUIDE

"'.. '\,.

Working with curses Routines

addch()

SYNOPSIS

#include < curses.h >

int addch(ch)
chtype Chi

NOTES

• addch() writes a single character to stdscr.

• The character is of the type chtype, which is defined in <curses.h>.
chtype contains data and attributes (see "Output Attributes" in this
chapter for information about attributes).

• When working with variables of this type, make sure you declare
them as chtype and not as the basic type (for example, short) that
chtype is declared to be in < curses.h > . This will ensure future com­
patibility.

• addch() does some translations. For example, it converts

a the <NL> character to a clear to end of line and a move to the
next line

a the tab character to an appropriate number of blanks

a other control characters to their "X notation

• addch() normally returns OK. The only time addch() returns ERR is
after adding a character to the lower right-hand corner of a window
that does not scroll.

• addch() is a macro.

curses/terminfo 10-21

Working with curses Routines

EXAMPLE

#include <curses.11>

main()

{

initscr();
addch('a');
refresh();
endwin();

}

The output from this program will appear as follows:

a

$0

Also see the show program under "curses Example Programs" in this
chapter.

10-22 PROGRAMMER'S GUIDE

Working with curses Routines

addstr()

SYNOPSIS

#include < curses.h>
int addstr(str)
char *stri

NOTES

• addstr() writes a string of characters to stdscr.

• addstr() calls addch() to write each character.

• addstr() follows the same translation rules as addch().

• addstrO returns OK on success and ERR on error.

• addstr() is a macro.

EXAMPLE

Recall the sample program that prints the character string BullsEye.
See Figures 10-1, 10-2, and 10-5.

curses/termlnfo 10-23

Working with curses Routines

printw()

SYNOPSIS

#include <curses.h>

int printwCfmt [,arg...])
char ·fmt

NOTES

• printw() handles formatted printing on stdscr.

• Like printf, printw() takes a format string and a variable number of
arguments.

• Like addstr(), printw() calls addch() to write the string.

• printwO returns OK on success and ERR on error.

10-24 PROGRAMMER'S GUIDE

Working with curses Routines

EXAMPLE

#include <curses.h>

nain()
{

char* title = "Not specifiedll
;

int no = 0;

/ * Missing oode.

initscr();

/ * Missing oode.

printw("%5 is not in stock. \nil, title);
printw("Please ask the cashier to order %d for you. \n", no);

refresh();
endwin();

}

The output from this program will appear as follows:

N:>t specified is rot in stock.
Please ask the cashier to oroer 0 for you.

so

curses/terminfo 10-25

Working with curses Routines

move()

SYNOPSIS

#include <curses.h>

int move(y, x);
int y, x;

NOTES

• move() positions the cursor for stdscr at the given row y and the
given column x.

• Notice that move{) takes the y coordinate before the x coordinate.
The upper left-hand coordinates for stdscr are (0,0), the lower right­
hand (LINES - 1, COLS - 1). See the section 'The Routines initscr{),
refresh(), and endwin()" for more information.

• move{) may be combined with the write functions to form

Cl mvaddch(y, x, ch), which moves to a given position and prints a
character

lJ mvaddstr(y, x, str), which moves to a given position and prints
a string of characters

Cl mvprintw{ y, x, fmt [,arg...]),
which moves to a given position and prints a formatted string.

• move{) returns OK on success and ERR on error. Trying to move to
a screen position of less than (O,O) or more than (LINES - 1, COLS ­
1) causes an error.

• move() is a macro.

10-26 PROGRAMMER'S GUIDE

...~

~""'."

"

Working with curses Routines

EXAMPLE

#include <curses.h>

nain()
{

initscr();
addst:r(IlCursar should be here --> if nove() \\1Orks.");
printw(II\n\n\nPress <rn> to end test.");
nove(0 ,25) ;
refresh();
getch(); 1* Gets <rn>; discussed belOW'. *1
endwin();

}

Here's the output generated by running this program:

Cursor sOOuld be here -->Oif m:::we() \tt1Orks.

Press ~ to end test.

After you press <CR>, the screen looks like this:

See the scatter program under "curses Program Examples" in this chapter for
another example of using move().

curses/terminfo 10-27

Working with curses Routines

dear() and erase()

SYNOPSIS

#inc1ude <curses.h>

int c1ear()
int erase()

NOTES

• Both routines change stdscr to all blanks.

• c1ear() also assumes that the screen may have garbage that it doesn't
know about; this routine first calls erase() and then c1earok() which
clears the physical screen completely on the next call to refresh() for
stdscr. See the curses(3X) manual page for more information about
c1earok().

• initscr() automatically calls c1ear().

• c1ear() always returns OK; erase() returns no useful value.

• Both routines are macros.

10-28 PROGRAMMER'S GUIDE

Working with curses Routines

c1rtoeol() and c1rtobot()

SYNOPSIS

#ioclude <curses.h>

iot clrtoeol()
iot clrtobot()

NOTES

• clrtoeol() changes the remainder of a line to all blanks.

• clrtobot() changes the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

curses/termlnfo 10-29

Working with curses Routines

EXAMPLE

#include <curses.ll>

maine)
{

ini.tsar ();
noecho() ;

addst:r("Press any key to delete fran here to the end of the line and on.");
addst:r(n\nDelete this too. \nAnd this. n) ;
nove(O,30) ;
refresh();
getch();
c1rtolx:>t();
refresh();
endwin();

}

Here's the output generated by running this program:

Press <at> to delete fran here 0 to the end of the line am OIl.

Delete this too.
And this.

Notice the two calls to refresh(): one to send the full screen of text to a
terminal, the other to clear from the position indicated to the bottom of a
screen.

Here's what the screen looks like when you press <CR>:

10-30 PROGRAMMER'S GUIDE

Working with curses Routines

Press <CR> to delete fran here

See the show and two programs under "curses Example Programs" for
examples of uses for clrtoeol().

Input
curses routines for reading from the current terminal are similar to

those provided by the stdio(3S) library for reading from a file. They let you

• read a character at a time - getch()

• read a <NL>-terminated string - getstrO

• parse input, converting and assigning selected data to an argument
list - scanw()

The primary routine is getch(), which processes a single input character
and then returns that character. This routine is like the C library routine
getchar()(35) except that it makes several terminal- or system-dependent
options available that are not possible with getcharO. For example, you can
use getch() with the curses routine keypad(), which allows a curses pro­
gram to interpret extra keys on a user's terminal, such as arrow keys, func­
tion keys, and other special keys that transmit escape sequences, and treat
them as just another key. See the descriptions of getch() and keypad() on
the curses(3X) manual page for more information about keypad().

The following pages describe and give examples of the basic routines
for getting input in a screen program.

curses/terminfo 10-31

Working with curses Routines

getch()

SYNOPSIS

#include <curses.h>
int getch()

NOTES

• getch() reads a single character from the current terminal.

• getchO returns the value of the character or ERR on 'end of file,'
receipt of signals, or non-blocking read with no input.

• getch() is a macro.

• See the discussions about echo(), noecho(), cbreak(), nocbreak(),
raw(), noraw(), halfdelay(), nodelay(), and keypad() below and in
curses(3X).

10-32 PROGRAMMER'S GUIDE

Working with curses Routines

EXAMPLE

#include <curses.11>

main()

{

int ch;

initscr();
cbreak(); 1* Explained later in the secticm "Input Options" *1
addstr("Press any character: ") ;
refresh();
ch =getch();
printw("\n\n\nThe character entered was a '%c'. \n", ch);
refresh();
endwin();

The output from this program follows. The first refresh() sends the
addstr() character string from stdscr to the terminal:

Then assume that a w is typed at the keyboard. getch() accepts the
character and assigns it to ch. Finally, the second refresh() is called and the
screen appears as follows:

curses/termlnfo 10-33

Working with curses Routines

Press aIr:! character: w

The character entered was a 'w'.

$0

For another example of getch(), see the show program under "curses
Example Programs" in this chapter.

10-34 PROGRAMMER'S GUIDE

Working with curses Routines

getstr()

SYNOPSIS

#inc1ude <curses.h>

int getstr(str)
char ·str;

NOTES

• getstr() reads characters and stores them in a buffer until a < CR> ,
<NL>, or <ENTER> is received from stdscr. getstrO does not
check for buffer overflow.

• The characters read and stored are in a character string.

• getstrO is a macro; it calls getchO to read each character.

• getstr() returns ERR if getch() returns ERR to it. Otherwise it
returns OK.

• See the discussions about echo(), noecho(), cbreak(), nocbreak(),
raw(), noraw(), halfdelay(), nodelay(), and keypad() below and in
curses(3X).

curses/terminfo 10-35

Working with curses Routines

EXAMPLE

#include <curses.11>

maine)
{

char stx[256] ;

i.nitscr();
cbreak(); 1* EKplained later in the section "Input Options" *1
addstx("Enter a character string tenninated by <CR>: \n\n") ;
refresh()
getstr(str) ;
printw("\n\n\nThe string entered was \n'%9 '\nil, str);
refresh();
endwin();

}

Assume you entered the string 'I enjoy learning about the UNIX sys­
tem.' The final screen (after entering <CR» would appear as follows:

Enter a character st:riD.J tenninated by <CR>:

I enjoy learI'liD3 about the UNDC system.

The striDJ entered was
"I enjoy learning about the UNIX system.'

$0

10-36 PROGRAMMER'S GUIDE

.~

Working with curses Routines

scanw()

SYNOPSIS

#inc1ude <curses.h>

int scanw(fmt [, arg••.])
char *fmt;

NOTES

• scanw() calls getstrO and parses an input line.

• Like scanf(3S), scanw() uses a format string to convert and assign to
a variable number of arguments.

• scanw() returns the same values as scanf().

• See scanf(3S) for more information.

curses/termlnfo 10-37

Working with curses Routines

EXAMPLE

#include <curses.h>

maine)
{

char string[100] ;
float number;

initscr();
cbreak(); 1* Explained later in the *1
echo(); 1* section "Input Options" *1
addstr("Enter a number and a string separated by a carma: ") ;
refresh();
scanw("rof ,roS" ,&number ,string);
clear();
printw("The string was \ "%s\" and the number was rgf.", string ,number) ;
refresh();
endwin();

}

Notice the two calls to refresh{). The first call updates the screen with
the character string passed to addstr{), the second with the string returned
from scanw{). Also notice the call to clear{). Assume you entered the fol­
lowing when prompted: 2, twin. After running this program, your termi­
nal screen would appear, as follows:

The striD;J was "twin" aJX1 the number was 2.000000.

10-38 PROGRAMMER'S GUIDE

Working with curses Routines

Controlling Output and Input

Output Attributes
When we talked about addch(), we said that it writes a single character

of the type chtype to stdscr. chtype has two parts: a part with information
about the character itself and another part with information about a set of
attributes associated with the character. The attributes allow a character to
be printed in reverse video, in bold, in a particular color, underlined, and
so on.

stdscr always has a set of current attributes that it associates with each
character as it is written. However, using the routine attrset() and related
curses routines described below I you can change the current attributes.
Below is a list of the attributes and what they mean:

• A_BLINK - blinking

• A_BOLD - extra bright or bold

• A_DIM - half bright

• A_REVERSE - reverse video

• A_STANDOUT - a terminal's best highlighting mode

• A_UNDERLINE - underlining

• A_ALTCHARSET - alternate character set (see the section "Drawing
Lines and Other Graphics" in this chapter)

• COLOR_PAIR(n) - change foreground and background colors (see
the section on "Color Manipulation" in this chapter)

To use these attributes, you must pass them as arguments to attrsetO and
related routines; they can also be ORed with the bitwise OR (I) to addch().

Not all terminals are capable of displaying all attributes. If a particular
terminal cannot display a requested attribute, a curses program
attempts to find a substitute attribute. If none is possible, the attribute
is ignored.

curses/terminfo 10-39

Working with curses Routines

Let's consider a use of one of these attributes. To display a word in
bold, you would use the following code:

printw("A \olOrd in ");
attrset(A_B:lLD) ;
printw("boldface") ;
attrset(O);

printw(" really stands out.\n") ;

refresh();

Attributes can be turned on singly, such as attrset(A_BOLD) in the
example, or in combination. To turn on blinking bold text, for example,
you would use attrset(A_BLINKI A_BOLD). Individual attributes can be
turned on and off with the curses routines attron() and attroff() without
affecting other attributes. attrset(O) turns all attributes off, including
changes you may have made to foreground and background color.

Notice the attribute called A_STANDOUT. You might use it to make
text attract the attention of a user. The particular hardware attribute used
for standout is the most Visually pleasing attribute a terminal has. Standout
is typically implemented as reverse video or bold. Many programs don't
really need a specific attribute, such as bold or reverse video, but instead
just need to highlight some text. For such applications, the A_STANDOUT
attribute is recommended. Two convenient functions, standout() and stan­
dend() can be used to turn on and off this attribute. standend(), in fact,
turns off all attributes.

In addition to the attributes listed above, there are three bit masks
called A_CHARTEXT, A_ATTRIBUTES, and A_COLOR. You can use these
bit masks with the curses function inch() and the C logical AND (&:)
operator to extract the character, attributes, or color-pair field of a position
on a terminal screen. See the discussion of inch() on the curses(3X) manual
page.

10-40 PROGRAMMER'S GUIDE

Working with curses Routines

Following are descriptions of attrset() and the other curses routines that
you can use to manipulate attributes.

curses/terminfo 10-41

Working with curses Routines

attron(), attrset(), and attroff()

SYNOPSIS

#include <curses.h>
int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

• attron() turns on the requested attribute attrs in addition to any that
are currently on. attrs is of the type chtype and is defined in
<curses.h > .

• attrset() turns on the requested attributes attrs instead of any that are
currently turned on.

• attroff() turns off the requested attributes attrs if they are on.

• The attributes may be combined using the bitwise OR (I).
• All return OK.

EXAMPLE

See the highlight program under "curses Example Programs ll in this
chapter.

10-42 PROGRAMMER'S GUIDE

Working with curses Routines

standout{) and standend()

SYNOPSIS

#include <curses.h>
int standout()
int standend()

NOTES

• standout() turns on the preferred highlighting attribute,
A_STANDOUT, for the current terminal. This routine is equivalent
to attron(A_STANDOUT).

• standend() turns off all attributes. This routine is equivalent to
attrset(0).

• Both always return OK.

EXAMPLE

See the highlight program under "curses Example Programs" in this
chapter.

curses/termlnfo 10-43

Working with curses Routines

Color Manipulation
The curses color manipulation routines allow you to use colors on an

alphanumeric terminal as you would use any other video attribute. You can
find out if the curses library on your system supports the color routines by
checking the file lusr/inc1ude/curses.h to see if it defines the macro
COLOR_PAIR(n).

This section begins with a description of the color feature at a general
level. Then, the use of color as an attribute is explained. Next, the ways to
define color-pairs and change the definitions of colors js explained. Finally,
there are guidelines for ensuring the portability of your program, and a sec­
tion describing the color manipulation routines and macros, with examples.

How the Color Feature Works
Colors are always used in pairs, consisting of a foreground color (used

for the character) and a background color (used for the field the character is
displayed on). curses uses this concept of color-pairs to manipulate colors.
In order to use color in a curses program, you must first define (initialize)
the individual colors, then create color-pairs using those colors, and finally,
use the color-pairs as attributes.

Actually, the process is even simpler, since curses maintains a tableof)
initialized colors for you. This table has as many entries as the number of
colors your terminal can display at one time. Each entry in the table has
three fields: one each for the intensity of the red, green, and blue com-
ponents in that color.

curses uses RGB (Red, Green, Blue) color notation. This notation allows
you to specify directly the intensity of red, green, and blue light to be
generated in an additive system. Some terminals use an alternative nota­
tion, known as HSL (Hue, Saturation, Luminosity) color notation. Termi­
nals that use HSL can be identified in the terminfo database, and curses
will make conversions to RGB notation automatically.

At the beginning of any curses program that uses color, all entries in the
colors table are initialized with eight basic colors, as follows:

10-44 PROGRAMMER'S GUIDE

Working with curses Routines

Intensity of Component
(R)ed (G)reen (B)lue

/* black: 0 * /
/* blue: 1 */
/* green: 2 * /
/* cyan: 3 */
/* red: 4 */
/ * magenta: 5 */
/* yellow: 6 * /
/* white: 7 */

0 0 0
0 0 1000
0 1000 0
0 1000 1000

1000 0 0
1000 0 1000
1000 1000 0
1000 1000 1000

The Default Colors Table

Most color alphanumeric terminals can display eight colors at the same
time, but if your terminal can display more than eight, then the table will
have more than eight entries. The same eight colors will be used to initial­
ize additional entries. If your terminal can display only N colors, where N
is less than eight, then only the first N colors shown in the Colors Table
will be used.

You can change these color definitions with the routine init_colorO, if
your terminal is capable of redefining colors. (See the section "Changing
the Definitions of Colors" for more information.

The following color macros are defined in curses.h and have numeric
values corresponding to their position in the Colors Table.

COWR_BLACK 0
COLOR_BLUE 1
OOIDR_GREEN 2
COIDR_CYAN 3
OOIDR_RED 4
OOIDR_MAGENTA 5
COIDR_YELU:M 6
COIDR_WHITE 7

curses/termlnfo 10-45

0 0
1 6

3 5
0 0
0 0
0 0

Working with curses Routines

curses also maintains a table of color-pairs, which has space allocated for
as many entries as the number of color-pairs that can be displayed on your
terminal screen at the same time. Unlike the colors table, however, there
are no default entries in the pairs table: it is your responSibility to initialize
any color-pair you want to use, with init...pair(), before you use it as an
attribute.

Each entry in the pairs table has two fields: the foreground color, and
the background color. For each color-pair that you initialize, these two
fields will each contain a number representing a color in the colors table.
(Note that color-pairs can only be made from previously initialized colors.)

The following example pairs table shows that a programmer has used
init...,pairO to initialize color-pair 1 as a blue foreground (entry 1 in the
default color table) on yellow background (entry 6 in the default color
table). Similarly, the programmer has initialized color-pair 2 as a cyan fore­
ground on a magenta background. Not-initialized entries in the pairs table
would actually contain zeros, which corresponds to black on black.

Note that color-pair 0 is reserved for use by curses and should not be
changed or used in application programs.

Color-Pair Number Foreground Background
o(reserved)

1
2
3
4
5

Example of a Pairs Table

Two global variables used by the color routines are defined in
<curses.h>. They are COLORS, which contains the maximum number of
colors the terminal supports, and COLOR_PAIRS, which contains the max­
imum number of color-pairs the terminal supports. Both are initialized by
the start_color() routine to values it gets from the terminfo database.

10-46 PROGRAMMER'S GUIDE

Working with curses Routines

Upon termination of your curses program, all colors and/or color-pairs
will be restored to the values they had when the terminal was just turned
on.

Using the COLOR_PAIR(n) Attribute
If you choose to use the default color definitions, there are only two

things you need to do before you can use the attribute COLOR_PAIR(n).
First, you must call the routine start_color<). Once you've done that, you
can initialize color-pairs with the routine init...pair(pair, f, b). The first argu­
ment, pair, is the number of the color-pair to be initialized (or changed), and
must be between I and COLOR_PAIRS-I. The arguments f and b are the
foreground color number and the background color number. The value of
these arguments must be between 0 and COLORS-I. For example, the two
color-pairs in the pairs table described earlier can be initialized in the fol­
lOWing way:

init...,:pai.r (1, <DIQR_BLUE, <DOOR_YE:LI.atl);
initJBir (2, <DIDR_CYAN, COIDR_MAGENl'A);

Once you've initialized a color-pair, the attribute COLOR_PAIR(n) can
be used as you would use any other attribute. COLOR_PAIR(n) is a macro,
defined in <curses.h>. The argument, n, is the number of a previously ini­
tialized color-pair. For example, you can use the routine attron() to turn on
a color-pair in addition to any other attributes you may currently have
turned on:

attron (COIDR_PAIR{ 1) } ;

If you had initialized color-pair 1 in the way shown in the example pairs
table, then characters displayed after you turned on color-pair 1 with
attron() would be displayed as blue characters on a yellow background.

You can also combine COLOR_PAIR(n) with other attributes, for exam­
ple:

attrset(A_BLINK : COIDR_PAIR{ 1)) ;

would turn on blinking and whatever you have initialized color-pair 1 to
be. (attron() and attrset() are described in the "Controlling Input and Out­
put" section of this chapter, and also on the curses(3X) manual page in the
Programmer's Reference Manual.)

curses/terminfo 10.47

Working with curses Routines

Changing the Definitions of Colors
If your terminal is capable of redefining colors, you can change the

predefined colors with the routine init_color(color, r, g, b). The first argu-
ment, color, is the numeric value of the color you want to change, and the .,,",
last three, r, g, and b, are the intensities of the red, green, and blue com- /
ponents, respectively, that the new color will contain. Once you change the
definition of a color, all occurrences of that color on your screen change
immediately.

So, for example, you could change the definition of color 1
(COLOR_BLUE by default), to be light blue, in the following way.

mit_color (OOLOR_BLUE, 0, 700, 1000);

If your terminal is not able to change the definition of a color, use of
init_color() returns ERR.

Portability Guidelines
Like the rest of curses, the color manipulation routines have been

designed to be terminal independent. But it must be remembered that the
capabilities of terminals vary. For example, if you write a program for a ter­
minal that can support sixty-four color-pairs, that program would not be
able to produce the same color effects on a terminal that supports at most '~
eight color-pairs.

When you are writing a program that may be used on different termi-
nals, you should follow these guidelines:

Use at most seven color-pairs made from at most eight colors.

Programs that follow this guideline will run on most color terminals.
Only seven, not eight, color-pairs should be used, even though many
terminals support eight color-pairs, because curses reserves color-pair 0
for its own use.

Do not use color 0 as a background color.

This is recommended because on some terminals, no matter what color
you have defined it to be, color 0 will always be converted to black
when used for a background.

Combine color and other video attributes.

Programs that follow this guideline will provide some sort of highlight- ·1
ing, even if the terminal is monochrome. On color terminals, as many

10-48 PROGRAMMER'S GUIDE

~'

Working with curses Routines

of the listed attributes as possible would be used. On monochrome ter­
minals, only the video attributes would be used, and the color attribute
would be ignored.

Use the global variables COLORS and COLOR-PAIRS rather than con­
stants when deciding how many colors or color-pairs your program
should use.

Other Macros and Routines
There are two other macros defined in <curses.h> that you can use to

obtain information from the color-pair field in characters of type chtype.

• A_COLOR is a bit mask to extract color-pair information. It can be
used to clear the color-pair field, and to determine if any color-pair is
being used.

• PAIR_NUMBER(aUrs) is the reverse of COLOR_PAIR(n). It returns
the color-pair number associated with the named attribute, aUrs.

There are two color routines that give you information about the ~ermi­

nal your program is running on. The routine has_colorsO returns a
Boolean value: TRUE if the terminal supports colors, FALSE otherwise.
The routine can_change_colors() also returns a Boolean value: TRUE if the
terminal supports colors and can change their definitions, FALSE otherwise.

There are two color routines that give you information about the colors
and color-pairs that are currently defined on your terminal. The routine
color_content<) gives you a way to find the intensity of the RGB com­
ponents in an initialized color. It returns ERR if the color does not exist or
if the terminal cannot change color definitions, OK otherwise. The routine
pair_contentO allows you to find out what colors a given color-pair consists
of. It returns ERR is the color-pair has not been initialized, OK otherwise.

These routines are explained in more detail on the curses(3X) manual
page in the Programmer's Reference Manual.

The routines start_colorO, init_colorO, and init.....pairO are described on
the following pages, with examples of their use. You can also refer to the
program colors in the section "curses Program Examples," at the end of this
chapter, for an example of using the attribute of color in windows.

curses/terminfo 10-49

Working with curses Routines

start_color()

SYNOPSIS

#include <curses.h>

int start_color()

NOTES

• This routine must be called if you want to use colors, and before any
other color manipulation routine is called. It is good practice to call
it right after initscr().

• It initializes eight default colors (black, blue, green, cyan, red,
magenta, yellow, and white), and the global variables COLORS and
COLOR_PAIRS. If the value corresponding to COLOR_PAIRS in
the terminfo database is greater than 64, COLOR_PAIRS will be set
to 64.

• It restores the terminal's colors to the values they had when the ter­
minal was just turned on.

• It returns ERR if the terminal does not support colors, OK otherwise.

EXAMPLE

See the example under init.-pair().

10-50 PROGRAMMER'S GUIDE

Working with curses Routines

init-pair()

SYNOPSIS

#include <curses.h>

int init...pair (pair, f, b)
short pair, f, b;

NOTES

• init...,pair() changes the definition of a color-pair.

• Color-pairs must be initialized with init...,pair() before they can be
used as the argument to the attribute macro COLOR_PAIR(n).

• The value of the first argument, pair, is the number of a color-pair,
and must be between 1 and COLOR_PAIRS-I.

• The value of the f (foreground) and b (background) arguments must
be between 0 and COLORS-I.

• If the color-pair was previously initialized, the screen will be
refreshed and all occurrences of that color-pair will change to the
new definition.

• It returns OK if it was able to change the definition of the color-pair,
ERR otherwise.

EXAMPLE

#include <curses.11>

maine)
{

initscr ();
if (start_color () == OK)
{

initJ)Ciir (1, OOLOR_RED, ())IDR_GREEN);

attron (OOLOR_PAIR (1»;

addstr ("Red an Greenll
) ;

getch();
}

endwin();
}

curses/terminfo 10-51

Working with curses Routines

Also see the program colors in the section IIcurses Program Examples.1I

10-52 PROGRAMMER'S GUIDE

'~
\--

I~
I Y

Working with curses Routines

SYNOPSIS

#inc1ude <curses.h>

int init_color(color, r, g, b)
short color, r, g, bi

NOTES

• init_color() changes the definition of a color.

• The first argument, color, is the number of the color to be changed.
The value of color must be between 0 and COLORS-I.

• The last three arguments, r, g, and b, are the amounts of red, green,
and blue (RBG) components in the new color. The values of these
three arguments must be between 0 and 1000.

• When init_colorO is used to change the definition of an entry in the
colors table, all places where the old color was used on the screen
immediately change to the new color.

• It returns OK if it was able to change the definition of the color, ERR
otherwise.

EXAMPLE

#include <curses.h>

maine)
{

initscr();
if (start_color() == OK)
{

initJair (1, <X>I£It_RED, OOIDR_GREEN) ;
attron (c::ou::R_PAIR (1»;
if (init_color (<X>I£It_RED, 0, 0, 1000) =:: OK)

addstr ("BLUE 00 GREEN") ;
else

addstr ("RID 00 GREENIt
);

getch ();
}
eMwin();

curses/terminfo 10-53

Working with curses Routines

Bells, Whistles, and Flashing Lights
Occasionally, you may want to get a user's attention. Two curses rou­

tines were designed to help you do this. They let you ring the terminal's
chimes and flash its screen.

flash() flashes the screen if possible, and otherwise rings the bell.
Flashing the screen is intended as a bell replacement, and is particularly
useful if the bell bothers someone within ear shot of the user. The routine
beep() can be called when a real beep is desired. (If for some reason the
terminal is unable to beep, but able to flash, a call to beep() will flash the
screen.)

beep() and flash()

SYNOPSIS

#include <curses.h>

int flash()
int beep()

NOTES

• flash() tries to flash the terminals screen, if possible, and, if not, tries
to ring the terminal bell.

• beep() tries to ring the terminal bell, if possible, and, if not, tries to
flash the terminal screen.

• Neither returns any useful value.

10-54 PROGRAMMER'S GUIDE

Working with curses Routines

Input Options

The UNIX system does a considerable amount of processing on input
before an application ever sees a character. For example, it does the follow­
ing:

• echoes (prints back) characters to a terminal as they are typed

• interprets an erase character (typically #) and a line kill character
(typically @)

• interprets a CTRL-D (control d) as end of file (EOF)

• interprets interrupt and quit characters

• strips the character's parity bit

• translates <CR> to <NL>

Because a curses program maintains total control over the screen, curses
turns off echoing on the UNIX system and does echoing itself. At times,
you may not want the UNIX system to process other characters in the stan­
dard way in an interactive screen management program. Some curses rou­
tines, noecho() and cbreak(), for example, have been designed so that you
can change the standard character processing. Using these routines in an
application controls how input is interpreted. Figure 10-7 shows some of
the major routines for controlling input.

Every curses program accepting input should set some input options.
This is because when the program starts running, the terminal on which it
runs may be in cbreak(), raw(), nocbreak(), or noraw() mode. Although
the curses program starts up in echo() mode, as Figure 10-7 shows, none of
the other modes are guaranteed.

The combination of noecho() and cbreak() is most common in interac­
tive screen management programs. Suppose, for instance, that you don't
want the characters sent to your application program to be echoed wherever
the cursor currently happens to be; instead, you want them echoed at the
bottom of the screen. The curses routine noecho() is designed for this pur­
pose. However, when noechoO turns off echoing, normal erase and kill
processing is still on. Using the routine cbreak() causes these characters to
be uninterpreted.

curses/termlnfo 10-55

Working with curses Routines

Input Characters
Options Interpreted Uninterpreted

Normal interrupt, quit
,out of curses stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Normal echoing All else
curses 'start up (simulated) undefined.
state'

cbreak() interrupt, quit erase, kill
and echo() stripping EOF

echoing

cbreak() interrupt, quit echoing
and noecho() stripping erase, kill

EOF

nocbreak() break, quit echoing
and noecho() stripping

erase, kill
EOF

nocbreak() See caution below.
and echo()

nlO <CR> to <NL>

nonl() <CR> to <NL>

raw() break, quit
(instead of stripping
cbreak(»

Figure 10-7: Input Option Settings for curses Programs

10-56 PROGRAMMER'S GUIDE

Working with curses Routines

Do not use the combination nocbreak() and noecho(). If you use it
in a program and also use getch(), the program will go in and out of
cbreak() mode to get each character. Depending on the state of the
tty driver when each character is typed, the program may produce
undesirable output.

In addition to the routines noted in Figure 10-7, you can use the curses
routines noraw(), halfdelay(), and nodelay() to control input. See the
curses(3X) manual page for discussions of these routines.

The next few pages describe noecho(), cbreak() and the related routines
echo() and nocbreak() in more detail.

curses/terminfo 10-57

Working with curses Routines

echo() and noecho()

SYNOPSIS

#inc1ude <curses.h>
int echo()
int noecho()

NOTES

• echo() turns on echoing of characters by curses as they are read in.
This is the initial setting.

• noecho() turns off the echoing.

• Neither returns any useful value.

• curses programs may not run properly if you turn on echoing with
nocbreak(). See Figure 10-7 and accompanying caution. After you
turn echoing off, you can still echo characters with addch().

EXAMPLE

See the editor and show programs under "curses Program Examples" in
this chapter.

10-58 PROGRAMMER'S GUIDE

~.
'..

Working with curses Routines

cbreak() and nocbreak()

SYNOPSIS

#include <curses.h>
int cbreakO
int nocbreak()

NOTES

• cbreak() turns on 'break for each character' processing. A program
gets each character as soon as it is typed, but the erase, line kill, and
CTRL-D characters are not interpreted.

• nocbreak() returns to normal 'line at a time' processing. This is typi­
cally the initial setting.

• Neither returns any useful value.

• A curses program may not run properly if cbreak() is turned on and
off within the same program or if the combination nocbreak() and
echo() is used.

• See Figure 10-7 and accompanying caution.

EXAMPLE

See the editor and show programs under "curses Program Examples" in
this chapter.

curses/termlnfo 10-59

Working with curses Routines

Building Windows and Pads
An earlier section in this chapter, "More about refresh() and Windows"

explained what windows and pads are and why you might want to use .')
them. This section describes the curses routines you use to manipulate and
create windows and pads.

Output and Input
The routines that you use to send output to and get input from win­

dows and pads are similar to those you use with stdser. The only difference
is that you have to give the name of the window to receive the action.
Generally, these functions have names formed by putting the letter w at the
beginning of the name of a stdser routine and adding the window name as
the first parameter. For example, addeh('c') would become waddeh(mywin,
,e') if you wanted to write the character e to the window mywin. Here's a
list of the window (or w) versions of the output routines discussed in "Get­
ting Simple Output and Input."

• waddeh(win, ch)

• mvwaddeh(win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, y, x, str)

• wprintw(win, fmt [, arg...J)

• mvwprintw(win, y, x, fmt [, arg...J)

• wmove(win~ y, x)

• wclear(win) and werase(win)

• wclrtoeoUwin) and wclrtobot(win)

• wrefresh()

You can see from their declarations that these routines differ from the
versions that manipulate stdser only in their names and the addition of a
win argument. Notice that the routines whose names begin with mvw take
the win argument before the y, x coordinates, which is contrary to what the)
names imply. See curses(3X) for more information about these routines or
the versions of the input routines geteh, getstr(), and so on that you should
use with windows.

10-60 PROGRAMMER'S GUIDE

Working with curses Routines

All w routines can be used with pads except for wrefresh() and
wnoutrefresh() (see below). In place of these two routines, you have to use
prefresh() and pnoutrefresh() with pads.

~ The Routines wnoutrefresh() and doupdate()
If you recall from the earlier discussion about refresh(), we said that it

sends the output from stdscr to the terminal screen. We also said that it
was a macro that expands to wrefresh(stdscr) (see "What Every curses Pro­
gram Needs" and "More about refresh() and Windows").

The wrefresh() routine is used to send the contents of a window (stdscr
or one that you create) to a screen; it calls the routines wnoutrefresh() and
doupdate(). Similarly, prefresh() sends the contents of a pad to a screen by
calling pnoutrefresh() and doupdate().

Using wnoutrefresh()-or pnoutrefresh() (this discussion will be lim­
ited to the former routine for simplicity)-and doupdate(), you can update
terminal screens with more efficiency than using wrefresh() by itself.
wrefresh() works by first calling wnoutrefresh(), which copies the named
window to a data structure referred to as the virtual screen. The virtual
screen contains what a program intends to display at a terminal. After cal­
ling wnoutrefresh(), wrefresh() then calls doupdate(), which compares the
virtual screen to the physical screen and does the actual update. If you
want to output several windows at once, calling wrefresh() will result in
alternating calls to wnoutrefresh() and doupdate(), causing several bursts
of output to a screen. However, by calling wnoutrefresh() for each window
and then doupdate() only once, you can minimize the total number of char­
acters transmitted and the processor time used. The following sample pro­
gram uses only one doupdate():

curses/terminfo 10-61

Working with curses Routines

#include <curses.h>

main()

{

initscr();
w1 =newwin(2,6,O,3);
w2 =newwin(1,4,S,4);
waddstr (w1, "Bulls");
wnoutrefresh(w1) ;
waddstr{w2, "Eye"};

wnoutrefresh(w2} ;
doopdate ();
eOOwin{);

Notice from the sample that you declare a new window at the begin­
ning of a curses program. The lines

w1 =newwin(2,6,O,3);
w2 =newwin(1,4,S,4);

declare two windows named w1 and w2 with the routine newwin() accord­
ing to certain specifications. newwin() is discussed in more detail below.

Figure 10-8 illustrates the effect of wnoutrefresh() and doupdate() on
these two windows, the virtual screen, and the physical screen:

10-62 PROGRAMMER'S GUIDE

Working with curses Routines

stdscr @ (0,0) virtual screen physical screen

initscrO

DD (garbage)

wl=newwin
(2,6,0,3,)

w2=newwin
(1,4,5,4)

stdscr @ (0,0) virtual screen physical screen

DD (garbage)

wI @ (0,3)

D
stdscr @ (0,0) virtual screen physical screen

DD (garbage)

wI @ (0,3)

D
w2 @ (5,4)

~

Figure 10-8: The Relationship Between a Window and a Terminal Screen

curses/termlnfo 10-63

Working with curses Routines

waddstr (wl,Bulls)

wnoutrefresh (wI)

waddstr (w2,Eye)

stdscr @ (0,0) virtual screen physical screen

D D (garbage) '~

wI @ (0,3) w2 @ (5,4)

IBulls 0 I ~
stdscr @ (0,0) virtual screen physical screen

D D (garbage)

wI @ (0,3) w2 @ (5,4)

IBulls 0 I ~ '~

stdscr @ (0,0) virtual screen physical screen

D D (garbage)

wI @ (0,3) w2 @ (5,4)

IBulls 01 ~
Figure 10-8: The Relationship Between a Window and a Terminal Screen
(continued)

10-64 PROGRAMMER'S GUIDE

Working with curses Routines

stdscr @ (0,0) virtual screen physical screen

~
wnoutrefresh(w2)

D
Bulls

(garbage)

Eye 0

wi @ (0,3) w2 @ (5,4)

IBullsO I~
stdscr @ (0,0) virtual screen physical screen

doupdateO

D
Bulls Bulls

Eye 0 Eye 0

wi @ (0,3) w2 @ (5,4)

~ IBul~O I I EyeO I
stdscr @ (0,0) virtual screen physical screen

endwinO

D
Bulls Bulls

Eye 0 0
Eye

wi @ (0,3) w2 @ (5,4)

IBulls 0 I~
Figure 10-8: The Relationship Between a Window and a Terminal Screen
(continued)

~

curses/terminfo 10-65

Working with curses Routines

New Windows
Following are descriptions of the routines newwin() and subwin(),

which you use to create new windows. For information about creating new
pads with newpad() and subpad(), see the eurses(3X) manual page.

newwin()

SYNOPSIS

#include <eurses.h>
WINDOW *newwin(nlines, ncoIs, begin....Y, begin_x)
int nlines, neols, beginJ, begin_x;

NOTES

• newwin() returns a pointer to a new window with a new data area.

• The variables nlines and neols give the size of the new window.

• beginJ and begin_x give the screen coordinates from (0,0) of the .~
upper left corner of the window as it is refreshed to the current
screen.

EXAMPLE

Recall the sample program using two windows; see Figure 10-8. Also
see the window program under "curses Program Examplesll in this chapter.

10-66 PROGRAMMER'S GUIDE

Working with eurses Routines

subwin()

SYNOPSIS

#include <curses.h>

WINDOW *subwin(orig, nlines, neols, begin....Y, begin_x)
WINDOW *orig;
int nUnes, ncoIs, begin""y, begin_x;

NOTES

• subwin() returns a new window that points to a section of another
window, orig.

• nlines and ncols give the size of the new window.

• beginJ and begio_x give the screen coordinates of the upper left
corner of the window as it is refreshed to the current screen.

• Subwindows and original windows can accidentally overwrite one
another.V Subwindows of subwindows do not work (as of the copyright date of

this Programmer's Guide).

curses/termlnfo 10-67

Working with curses Routines

EXAMPLE

#include <curses.h>

main{)

{

WINIX:M *sub;

initscr{);
bax(stdscr, 'w', 'w'); 1* See the curses(3X) manual page for bax{) *1
mvwaddstr{stdscr,7,10,11------- this is 10,10");
~dddh{stdscr,8,10,':');

mvwaddch{stdscr,9, 10, 'v');
sub = sul:Jwin(stdscr, 10,20, 10, 10) ;
bax{sub,'s','s');
wnoutrefresh{ stdscr) ;
wrefresh{ sub) ;
endw1n{);

This program prints a border of ws around the stdscr (the sides of your termi- ~
nal screen) and a border of s's around the subwindow sub when it is run. For
another example, see the window program under "curses Program Examples" in this
chapter.

10-68 PROGRAMMER'S GUIDE

Working with curses Routines

Using Advanced curses Features
Knowing how to use the basic curses routines to get output and input

and to work with windows, you can design screen management programs
that meet the needs of many users. The curses library, however, has rou­
tines that let you do more in a program than handle I/O and multiple win­
dows. The following few pages briefly describe some of these routines and
what they can help you do-namely, draw simple graphics, use a terminal's
soft labels, and work with more than one terminal in a single curses pro­
gram.

You should be comfortable using the routines previously discussed in
this chapter and the other routines for I/O and window manipulation dis­
cussed on the curses(3X) manual page before you try to use the advanced
curses features.

The routines described under "Routines for Drawing Lines and Other
Graphics" and "Routines for Using Soft Labels" are features that are
new for UNIX System V Release 3.0. If a program uses any of these
routines, it may not run on earlier releases of the UNIX system. You
must use the Release 3.0 version of the curses library on UNIX Sys-
tem V Release 3.0 to work with these routines.

Routines for Drawing Lines and Other Graphics
Many terminals have an alternate character set for drawing simple

graphics (or glyphs or graphic symbols). You can use this character set in
curses programs. curses use the same names for glyphs as the VT100 line
drawing character set.

To use the alternate character set in a curses program, you pass a set of
variables whose names begin with ACS_ to the curses routine waddchO or
a related routine. For example, ACS_ULCORNER is the variable for the
upper left corner glyph. If a terminal has a line drawing character for this
glyph, ACS_ULCORNER's value is the terminal's character for that glyph
OR'd (I) with the bit-mask A_ALTCHARSET. If no line drawing character
is available for that glyph, a standard ASCII character that approximates the
glyph is stored in its place. For example, the default character for
ACS_HLINE, a horizontal line, is a - (minus sign). When a close approxi­
mation is not available, a + (plus sign) is used. All the standard ACS_
names and their defaults are listed on the curses(3X) manual page.

curses/termlnfo 10-69

Working with curses Routines

Part of an example program that uses line drawing characters follows.
The example uses the curses routine box() to draw a box around a menu on
a screen. box() uses the line drawing characters by default or when I(the
pipe) and - are chosen. (See curses(3X).) Up and down more indicators are ~""

drawn on the box border (using ACS_UARROW and ACS_DARROW) if }
the menu contained within the box continues above or below the screen:

J:x:oc(menuwin, N:.S_VLINE, ACS_HLINE};

/* output the up/down an:ows */
wnove(menuwin, maxy, maxx - 5};

/* output up arrow' or lxn'izontal line */
if (IIDreal:x:Jve)

waddch(menuwi.n, N:.S_t.JARRCM);
else

addch(menuwin, ACS_HLlNE:);

/*OUtput down arrow' or horizontal line */
if (IIDrebelOW')

waddch(roonuwin, ACS_DARRCM};

else
waddch(menuwin, ACS_HLINE};

Here's another example. Because a default down arrow (like the lower­
case letter v) isn't very discernible on a screen with many lowercase charac­
ters on it, you can change it to an uppercase V.

if (I (ACS_DARRCM & A_AL'IOfARSET»
ACS_DAR'RCM = 'V';

For more information, see curses(3X) in the Programmer's Reference
Manual.

10-70 PROGRAMMER'S GUIDE

Working with curses Routines

Routines for Using Soft Labels
Another feature available on most terminals is a set of soft labels across

the bottom of their screens. A terminal's soft labels are usually matched
with a set of hard function keys on the keyboard. There are usually eight
of these labels, each of which is usually eight characters wide and one or
two lines high.

The curses library has routines that provide a uniform model of eight
soft labels on the screen. If a terminal does not have soft labels, the bottom
line of its screen is converted into a soft label area. It is not necessary for
the keyboard to have hard function keys to match the soft labels for a
curses program to make use of them.

Let's briefly discuss most of the curses routines needed to use soft
labels: slk_init(), slk_set(), slk_refresh() and slk_noutrefresh(), slk_clear(),
slk_restore(), slk_attron(), slk_attrset(), and slk_attroff().

When you use soft labels in a curses program, you have to call the rou­
tine slkjnt() before initscr(). This sets an internal flag for initscr() to look
at that says to use the soft labels. If initscr() discovers that there are fewer
than eight soft labels on the screen, that they are smaller than eight charac­
ters in size, or that there is no way to program them, then it will remove a
line from the bottom of stdscr to use for the soft labels. The size of stdscr
and the LINES variable will be reduced by 1 to reflect this change. A prop­
erly written program, one that is written to use the LINES and COLS vari­
ables, will continue to run as if the line had never existed on the screen.

slk_init() takes a single argument. It determines how the labels are
grouped on the screen should a line get removed from stdscr. The choices
are between a 3-2-3 arrangement as appears on AT&T terminals, or a 4-4
arrangement as appears on Hewlett-Packard terminals. The curses routines
adjust the width and placement of the labels to maintain the pattern. The
widest label generated is eight characters.

The routine slk_set() takes three arguments, the label number (1-8), the
string to go on the label (up to eight characters), and the justification within
the label (0 = left justified, 1 == centered, and 2 = right justified).

The routine slk_noutrefresh() is comparable to wnoutrefresh() in that
it copies the label information onto the internal screen image, but it does
not cause the screen to be updated. Since a wrefresh() commonly follows,
slk_noutrefresh() is the function that is most commonly used to output the
labels.

curses/termlnfo 10-71

Working with curses Routines

Just as wrefreshO is equivalent to a wnoutrefreshO followed by a
doupdate(), so too the function slk_refresh() is equivalent to a
slk_noutrefresh() followed by a doupdate().

If initscr() uses the bottom line of stdscr to simulate soft labels, the rou- ~
tines slk_attronO, slk_attrsetO, and slk_attroffO can be used to manipulate I
the appearance of the simulated soft labels. If you use these routines to
manipulate the color of the simulated soft labels, keep in mind that soft
labels are shown in reverse video by default. Note that these routines will
have no effect on soft function key labels supplied by the terminal. These
routines are similar to attron(), attrset(), and attroff() (see the section "Con-
trolling Output and Input" in this chapter).

To prevent the soft labels from getting in the way of a shell escape,
slk_clearO may be called before doing the endwinO. This clears the soft
labels off the screen and does a doupdateO. The function slk_restoreO may
be used to restore them to the screen. See the curses(3X) manual page for
more information about the routines for using soft labels.

Working with More than One Terminal
A curses program can produce output on more than one terminal at the

same time. This is useful for single process programs that access a common ~

database, such as multi-player games. .

Writing programs that output to multiple terminals is a difficult busi­
ness, and the curses library does not solve all the problems you might
encounter. For instance, the programs-not the library routines-must
determine the file name of each terminal line, and what kind of terminal is
on each of those lines. The standard method, checking $TERM in the
environment, does not work, because each process can only examine its own
environment.

Another problem you might face is that of multiple programs reading
from one line. This situation produces a race condition and should be
avoided. However, a program trying to take over another terminal cannot
just shut off whatever program is currently running on that line. (Usually,
security reasons would also make this inappropriate. But, for some applica­
tions, such as an inter-terminal communication program, or a program that
takes over unused terminal lines, it would be appropriate.) A typical solu- ."",
tion to this problem requires each user logged in on a line to run a program .7
that notifies a master program that the user is interested in joining the mas-
ter program and tells it the notification program's process 10, the name of
the tty line, and the type of terminal being used. Then the program goes to

10-72 PROGRAMMER'S GUIDE

~ ..

Working with curses Routines

sleep until the master program finishes. When done, the master program
wakes up the notification program and all programs exit.

A curses program handles multiple terminals by always having a
current terminal. All function calls always affect the current terminal. The
master program should set up each terminal, saving a reference to the ter­
minals in its own variables. When it wishes to affect a terminal, it should
set the current terminal as desired, and then call ordinary curses routines.

References to terminals in a curses program have the type SCREEN.. A
new terminal is initialized by calling newterm (type, outfd, infd). newterm
returns a screen reference to the terminal being set up. type is a character
string, naming the kind of terminal being used. outfd is a stdio(3S) file
pointer (FILE.) used for output to the terminal and infd a file pointer for
input from the terminal. This call replaces the normal call to initscr(),
which calls newterm(getenv("TERM"), stdout, stdin).

To change the current terminal, call set_term(sp) where sp is the screen
reference to be made current. set_term() returns a reference to the previous
terminal.

It is important to realize that each terminal has its own set of windows
and options. Each terminal must be initialized separately with newterm().
Options such as cbreak() and noecho() must be set separately for each ter­
minal. The functions endwin() and refresh() must be called separately for
each terminal. Figure 10-9 shows a typical scenario to output a message to
several terminals.

curses/terminfo 10-73

Working with curses Routines

scm:EN *term[1;

for (i;O; i<nterm; i++)
{

set_term(t~[il);

mvaddstr(O, 0, "Important message");
refresh();

Figure 10-9: Sending a Message to Several Terminals

See the two program under "curses Program Examples ll in this chapter
for a more complete example.

10-74 PROGRAMMER'S GUIDE

Working with terminfo Routines

Some programs need to use lower level routines (Le., primitives) than
those offered by the curses routines. For such programs, the terminfo rou­
tines are offered. They do not manage your terminal screen, but rather give
you access to strings and capabilities which you can use yourself to manipu­
late the terminal.

There are three circumstances when it is proper to use terminfo rou­
tines. The first is when you need only some screen management capabili­
ties, for example, making text standout on a screen. The second is when
writing a filter. A typical filter does one transformation on an input stream
without clearing the screen or addressing the cursor. If this transformation
is terminal dependent and clearing the screen is inappropriate, use of the
terminfo routines is worthwhile. The third is when you are writing a spe­
cial purpose tool that sends a special purpose string to the terminal, such as
programming a function key, setting tab stops, sending output to a printer
port, or dealing with the status line. Otherwise, you are discouraged from
using these routines: the higher level curses routines make your program
more portable to other UNIX systems and to a wider. class of terminals.

You are discouraged from using terminfo routines except for the pur­
poses noted, because curses routines take care of all the glitches
present in physical terminals. When you use the terminfo routines,
you must deal with the glitches yourself. Also, these routines may
change and be incompatible with previous releases.

What Every terminfo Program Needs
A terminfo program typically includes the header files and routines

shown in Figure 10-10.

curses/terminfo 10-75

Working with terminfo Routines

#include <curses.h>
#include <tenn.h>

putp(clear_screen) ;

reset_shell_roode();
exi.t(O) ;

Figure 10-10: Typical Framework of a terminfo Program

The header files <curses.h> and <term.h> are required because they
contain the definitions of the strings, numbers, and flags used by the ter-
minfo routines. setupterm() takes care of initialization. Passing this rou- ~
tine the values (char.)O, 1, and (int.)O invokes reasonable defaults. If setup-
term() can't figure out what kind of terminal you are on, it prints an error
message and exits. reset_shell_mode() performs functions similar to
endwin() and should be called before a terminfo program exits.

A global variable like clear_screen is defined by the call to setupterm().
It can be output using the terminfo routines putp() or tputs(), which gives
a user more control. This string should not be directly output to the termi­
nal using the C library routine printf(3S), because it contains padding infor­
mation. A program that directly outputs strings will fail on terminals that
require padding or that use the xon/xoff flow control protocol.

At the terminfo level, the higher level routines like addch() and
getch() are not available. It is up to you to output whatever is needed. For
a list of capabilities and a description of what they do, see terminfo(4); see
curses(3X) for a list of all the terminfo routines.

'~

10-76 PROGRAMMER'S GUIDE

Working with terminfo Routines

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for run­
ning a program with terminfo routines are the same as those for compiling
any other curses program. See the sections "Compiling a curses Program"
and "Running a curses Program" in this chapter for more information.

An Example terminfo Program
The example program termhl shows a simple use of terminfo routines.

It is a version of the highlight program (see "curses Program Examples")
that does not use the higher level curses routines. termhl can be used as a
filter. It includes the strings to enter bold and underline mode and to turn
off all attributes.

~ 1*
'" * A tenninfo level version of the highlight program.

*1

#include <curses.h>
#include <tenn.h>

int ulm:xle = 0; 1* Currently underli.n:ing *1

maineargc, ar:gv)
int argc;
char **ar:gv;

FILE *fd;
int c, c2;
int outch();

if (arge > 2)

{

fprintf(stderr. "Usage: tennhl [file]\n");
exit(1);

if (arge = 2)

{

curs8s/termlnfo 10-77

Working with terminfo Routines

fd = fopen(argv[1], "r ");
if (fd == NULL)

{

perrar(argv[1]) ;
exi.t(2) ;

}

else
{

fd =stdin;
}

setupterm«char*)O, 1, (int*)O);

for (;;)
{

c =getc(fd);
if (c == IDF)

break;
if (c == '\')
{

c2 =getc(fd);
switch (c2)

{

case 'B':
tplts(enter_oold_nOOe, 1, ClUtch);
continue;
case 'U':
tplts (enter_UIXierline_nOOe, 1, ClUtch);

u1Jrode = 1;
continue;
case 'N':
tplts(exi.t_att:rib.lte_m:Xle, 1, outch);
u1Jrode = 0;
contirnle;

}

putch(c);
putch(c2) ;

}

else
pltch(c);

10-78 PROGRAMMER'S GUIDE

continued

Working with terminfo Routines

continued

}

fclose(fd) ;
fflush{stdout) ;
resetteJ:m();
exit(O) ;

1*
* 'lbis function is like prtchar. but it checks for underlining.
*1

p.1tch(c)

int c;

outch(c);
if (u1m:lde && urXlerline_char)
{

outch('\h') ;
tputs(underline_char, 1, outch);

1*
* Oltehar is a function version of pltehar that can be passed to
* tputs as a J:OUtine to call.
*1

outch(c)

int c;

p.1tchar(c) ;

Let's discuss the use of the function tputs(cap, affcnt, outc) in this pro­
gram to gain some insight into the terminfo routines. tputs() applies pad­
ding information. Some terminals have the capability to delay output.
Their terminal descriptions in the terminfo database probably contain
strings like $<20>, which means to pad for 20 milliseconds (see the follow­
ing section "Specify Capabilities" in this chapter). tputs generates enough
pad characters to delay for the appropriate time.

curses/terminfo 10-79

Working with terminfo Routines

tput() has three parameters. The first parameter is the string capability
to be output. The second is the number of lines affected by the capability.
(Some capabilities may require padding that depends on the number of
lines affected. For example, insertJine may have to copy all lines below ,~

the current line, and may require time proportional to the number of lines J
copied. By convention afJcnt is 1 if no lines are affected. The value 1 is
used, rather than 0, for safety, since afJcnt is multiplied by the amount of
time per item, and anything multiplied by 0 is 0.) The third parameter is a
routine to be called with each character.

For many simple programs, afJcnt is always 1 and outc always calls
putchar. For these programs, the routine putp(cap) is a convenient abbrevi­
ation. termhI could be simplified by using putp().

Now to understand why you should use the curses level routines
instead of terminfo level routines whenever possible, note the special check
for the underline_char capability in this sample program. Some terminals,
rather than having a code to start underlining and a code to stop underlin­
ing, have a code to underline the current character. termhl keeps track of
the current mode, and if the current character is supposed to be underlined,
outputs underline_char, if necessary. Low level details such as this are pre-
cisely why the curses level is recommended over the terminfo level. curses .~

takes care of terminals with different methods of underlining and other ter-I
minal functions. Programs at the terminfo level must handle such details
themselves.

termhl was written to illustrate a typical use of the terminfo routines.
It is more complex than it need be in order to illustrate some properties of
terminfo programs. The routine vidattr (see curses(3X» could have been
used instead of directly outputting enter_bold_mode,
enter_underline_mode, and exit_attribute_mode. In fact, the program
would be more robust if it did, since there are several ways to change video
attribute modes.

10-80 PROGRAMMER'S GUIDE

Working with the terminfo Database

The terminfo database describes the many terminals with which curses
programs, as well as some UNIX system tools, like vi(l), can be used. Each
terminal description is a compiled file containing the names that the termi­
nal is known by and a group of comma-separated fields describing the
actions and capabilities of the terminal. This section describes the terminfo
database, related support tools, and their relationship to the curses library.

Writing Terminal Descriptions
Descriptions of many popular terminals are already described in the ter­

minfo database. However, it is possible that you'll want to run a curses
program on a terminal for which there is not currently a description. In
that case, you'll have to build the description.

The general procedure for building a terminal description is as foilows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

S. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build
small parts of the description and test them as you go along. These tests
can expose deficiencies in the ability to describe the terminal. Also, modify­
ing an existing description of a similar terminal can make the building task
easier. (Lest we forget the UNIX motto: Build on the work of others.)

In the next few pages, we follow each step required to build a terminal
description for the fictitious terminal named "myterm. n

Name the Terminal
The name of a terminal is the first information given in a terminfo ter­

minal description. This string of names, assuming there is more than one
name, is separated by pipe symbols (I). The first name given should be the
most common abbreviation for the terminal. The last name given should be
a long name that fully identifies the terminal. The long name is usually the

curses/termlnfo 10-81

Working with the terminfo Database

manufacturer's formal name for the terminal. All names between the first
and last entries should be known synonyms for the terminal name. All
names but the formal name should be typed in lowercase letters and contain
no blanks. Naturally, the formal name is entered as closely as possible to ""
the manufacturer's name. . ')

Here is the name string from the description of the AT&T Teletype 5420
Buffered Display Terminal:

5420: att5420 :AT&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation and the
last is the long name. Also notice the comma at the end of the name string.

Here's the name string for our fictitious terminal, myterm:

~exm:myt:m:mine:fancy: tenninallMy FANCY TeDn:inal,

Terminal names should follow common naming conventions. These
conventions start with a root name, like 5425 or myterm, for example. The
root name should not contain odd characters, like hyphens, that may not be
recognized as a synonym for the terminal name. Possible hardware modes
or user preferences should be shown by adding a hyphen and a 'mode indi-
cator' at the end of the name. For example, the 'wide mode' (which is /~
shown by a -w) version of our fictitious terminal would be described as
myterm-w. term(5) describes mode indicators in greater detail.

Learn About the Capabilities
After you complete the string of terminal names for your description,

you have to learn about the terminal's capabilities so that you can properly
describe them. To learn about the capabilities your terminal has, you
should do the following:

• See the owner's manual for your terminal. It should have informa­
tion about the capabilities available and the character strings that
make up the sequence transmitted from the keyboard for each capa­
bility.

• Test the keys on your terminal to see what they transmit, if this
information is not available in the manual. You can test the keys in
one of the following ways - type:

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow (-) transmits.

10-82 PROGRAMMER'S GUIDE

Working with the terminfo Database

<CR>
<CTRL-D>
sUyecho

or

cat > dev I null
Type in the escape sequences you want to test;
for example, see what \E [H transmits.
<CTRL-D>

• The first line in each of these testing methods sets up the terminal to
carry out the tests. The <CTRL-D> helps return the terminal to its
normal settings.

• See the terminfo(4) manual page. It lists all the capability names you
have to use in a terminal description.

The following section, "Specify Capabilities," gives details.

Specify Capabilities
Once you know the capabilities of your terminal, you have to describe

them in your terminal description. You describe them with a string of
comma-separated fields that contain the abbreviated terminfo name and, in
some cases, the terminal's value for each capability. For example, bel is the
abbreviated name for the beeping or ringing capability. On most terminals,
a CTRL-G is the instruction that produces a beeping sound. Therefore, the
beeping capability would be shown in the terminal description as bel=AG,.

The list of capabilities may continue onto multiple lines as long as
white space (that is, tabs and spaces) begins every line but the first of the
description. Comments can be included in the description by putting a # at
the beginning of the line.

The terminfo(4) manual page has a complete list of the capabilities you
can use in a terminal description. This list contains the name of the capa­
bility, the abbreviated name used in the database, the two-letter code that
corresponds to the old termcap database name, and a short description of
the capability. The abbreviated name that you will use in your database
descriptions is shown in the column titled "Capname."

curses/terminfo 10-83

Working with the terminfo Database

For a curses program to run on any given terminal, its description in the
terminfo database must include, at least, the capabilities to move a cursor
in all four directions and to clear the screen.

A terminal's character sequence (v.alue) for a capability can be a keyed
operation (like CTRL-G), a numeric value, or a parameter string containing
the sequence of operations required to achieve the particular capability. In
a terminal description, certain characters are used after the capability name
to show what type of character sequence is required. Explanations of these
characters follow:

This shows a numeric value is to follow. This character follows a
capability that needs a number as a value. For example, the number
of columns is defined as coI8#80,.

This shows that the capability value is the character string that fol­
lows. This string instructs the terminal how to act and may actually
be a sequence of commands. There are certain characters used in
the instruction strings that have special meanings. These special
characters follow:

This shows a control character is to be used. For example,
the beeping sound is produced by a CTRL-G. This would
be shown as "G.

\E or \e These characters followed by another character show an
escape instruction. An entry of \EC would transmit to the
terminal as ESCAPE-C.

..~

\n

\1

\r

\t

\b

\f

These characters provide a <NL> character sequence.

These characters provide a linefeed character sequence.

These characters prOVide a return character sequence.

These characters provide a tab character sequence.

These characters provide a backspace character sequence.

These characters provide a formfeed character sequence.

10-84 PROGRAMMER'S GUIDE

~'

Working with the terminfo Database

\s These characters provide a space character sequence.

\nnn This is a character whose three-digit octal is nnn, where
nnn can be one to three digits.

$ < > These symbols are used to show a delay in milliseconds.
The desired length of delay is enclosed inside the "less
than/greater than" symbols « ». The amount of delay
may be a whole number, a numeric value to one decimal
place (tenths), or either form followed by an asterisk (*).
The * shows that the delay will be proportional to the
number of lines affected by the operation. For example, a
20-millisecond delay per line would appear as $<20·>.
See the terminfo(4) manual page for more information
about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the
terminal ignores this particular field. This is done by placing a period (.)
in front of the abbreviated name for the capability. For example, if you
would like to comment out the beeping capability, the description entry
would appear as

.bel="G,

With this background information about specifying capabilities, let's add
the capability string to our description of myterm. We'll consider basic,
screen-oriented, keyboard-entered, and parameter string capabilities.

Basic Capabilities
Some capabilities common to most terminals are bells, columns, lines on

the screen, and overstriking of characters, if necessary. Suppose our ficti­
tious terminal has these and a few other capabilities, as listed below. Note
that the list gives the abbreviated terminfo name for each capability in the
parentheses following the capability description:

• An automatic wrap around to the beginning of the next line when­
ever the cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction required to
produce the beeping sound is "G (bel).

• An SO-column wide screen (cols).

curses/termlnfo 10-85

Working with the terminfo Database

• A 30-line long screen (lines).

• Use of xon/xoff. protocol (xon).

By combining the name string (see the section "Name the Terminal ll
) ~

and the capability descriptions that we now have, we get the following gen-
eral terminfo database entry:

nwtennlnwtmlmine l fancyl termi.nalIMy FANCY tenni.nal,
am, bel="'G, cols#80, lineS#30, xon,

Screen-Oriented Capabilities
Screen-oriented capabilities manipulate the contents of a screen. Our

example terminal myterm has the following screen-oriented capabilities.
Again, the abbreviated command associated with the given capability is
shown in parentheses.

• A <CR> is a CTRL-M (cr).

• A cursor up one line motion is a CTRL-K (cuul).

• A cursor down one line motion is a CTRL-J (cudl).

• Moving the cursor to the left one space is a CTRL-'H (cubl). ~

• Moving the cursor to the right one space is a CTRL-L (cufl).

• Entering reverse video mode is an ESCAPE-D (smso).

• Exiting reverse video mode is an ESCAPE-Z (rmso).

• A clear to the end of a line sequence is an ESCAPE-K and should
have a 3-millisecond delay (el).

• A terminal scrolls when receiving a <NL> at the bottom of a page
(ind).

The revised terminal description for myterm including these screen­
oriented capabilities follows:

10-S6 PROGRAMMER'S GUIDE

Working with the terminfo Database

fi!Y1:erm: myt:m lmine :fancy: terminal:My FAteY Tenninal,
am, be1="G, 0015#80, 1ines#30, XOIl,

cr="M, cuu1=~, cud1="J, cub1="H, cuf1="L,
smso=\ED, llJlSC)::\EZ, e1=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities
Keyboard-entered capabilities are sequences generated when a key is

typed on a terminal keyboard. Most terminals have, at least, a few special
keys on their keyboard, such as arrow keys and the backspace key. Our
example terminal has several of these keys whose sequences are, as follows:

• The backspace key generates a CTRL-H (kbs).

• The up arrow key generates an ESCAPE-[A (kcuul).

• The down arrow key generates an ESCAPE-[B (kcudl).

• The right arrow key generates an ESCAPE-[C (kcufl).

• The left arrow key generates an ESCAPE-[D (kcubl).

• The home key generates an ESCAPE-[H (khome).

Adding this new information to our database entry for myterm pro­
duces:

nytermlmytm:mine: fancy: terminal:My FAteY Tenninal,
am, be1="'G, oo1s#80, 1ineS#30, XOIl,

cr="M, cuu1=~, cud1="'J, cub1="H, cuf1="L,
smso=\ED, :cnso=\EZ, e1=\EK$<3>, ind=O
kbs="H, kClm1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khane=\E[H,

curses/terminfo 10-87

Working with the terminfo Database

Parameter String Capabilities
Parameter string capabilities are capabilities that can take parameters ­

for example, those used to position a cursor on a screen or turn on a combi­
nation of video modes. To address a cursor, the cup capability is used and
is passed two parameters: the row and column to address. String capabili­
ties, such as cup and set attributes (sgr) capabilities, are passed arguments in
a terminfo program by the tparm() routine.

The arguments to string capabilities are manipulated with special '%'
sequences similar to those found in a printf(3S) statement. In addition,
many of the features found on a simple stack-based RPN calculator are
available. cup, as noted above, takes two arguments: the row and column.
sgr, takes nine arguments, one for each of the nine video attributes. See
terminfo(4) for the list and order of the attributes and further examples of
sgr.

Our fancy terminal's cursor position sequence requires a row and
column to be output as numbers separated by a semicolon, preceded by
ESCAPE-[and followed with H. The coordinate numbers are I-based rather
than O-based. Thus, to move to row 5, column 18, from (0,0), the sequence
'ESCAPE-[6 ; 19 H' would be output.

Integer arguments are pushed onto the stack with a '%p' sequence fol­
lowed by the argument number, such as '%p2' to push the second argument.
A shorthand sequence to increment the first two arguments is '%i'. To out­
put the top number on the stack as a decimal, a '%d' sequence is used,
exactly as in printf. Our terminal's cup sequence is built up as follows:

or

cup=

\E[
%i

%pl
%d

%p2
%d
H

Meaning
output ESCAPE-[
increment the two arguments
push the 1st argument (the row) onto the stack
output the row as a decimal
output a semi-colon
push the 2nd argument (the column) onto the stack
output the column as a decimal
output the trailing letter

Cllp=\E[~1Yed;Yop:l'AdH,

10-88 PROGRAMMER'S GUIDE

Working with the terminfo Database

Adding this new information to our database entry for myterm pro­
duces:

mytermlmytmlmine Ifancy: tenn:inalIMy FANCY Texminal,
am, bel="G, ools180, lines#30, xon,
cr::"M, cuu1="K, cud1="J, cub1="H, cuf1="L,
smso=\ED, rmso=\E2, el=\EI<$<3>, ind=O
kbs="H, kc:uu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,
cup=\E[%iXp1"d;~,

See terminfo(4) for more information about parameter string capabilities.

Compile the Description
The terminfo database entries are compiled using the tic compiler. This

compiler translates terminfo database entries from the source format into
the compiled format.

The source file for the description is usually in a file suffixed with .ti.
For example, the description of myterm would be in a source file named
myterm.ti. The compiled description of myterm would usually be placed in
lusr/lib/terminfo/m/myterm, since the first letter in the description entry
is m. Links would also be made to synonyms of myterm, for example, to
If/fancy. If the environment variable $TERMINFO were set to a directory
and exported before the entry was compiled, the compiled entry would be
placed in the $TERMINFO directory. All programs using the entry would
then look in the new directory for the description file if $TERMINFO were
set, before looking in the default lusr/lib/terminfo. The general format for
the tic compiler is as follows:

tic [-v] [-c] file

The -v option causes the compiler to trace its actions and output infor­
mation about its progress. The -c option causes a check for errors; it may
be combined with the -v option. file shows what file is to be compiled. If
you want to compile more than one file at the same time, you have to first

curses/terminfo 10-89

Working with the terminfo Database

use cat(l) to join them together. The following command line shows how
to compile the terminfo source file for our fictitious terminal:

tic -v myterm.ti <CR>
(The trace information appears as the compilation
proceeds.)

Refer to the tic(IM) manual page in the System Administrator's Reference
Manual for more information about the compiler.

Test the Description
Let's consider three ways to test a terminal description. First, you can

test it by setting the environment variable $TERMINFO to the path name
of the directory containing the description. If programs run the same on
the new terminal as they did on the older known terminals, then the new
description is functional.

Second, you can test for correct insert line padding by commenting out
xon in the description and then editing (using vi(l» a large file (over 100
lines) at 9600 baud (if possible), and deleting about 15 lines from the middle
of the screen. Type u (undo) several times quickly. If the terminal messes
up, then more padding is usually required. A similar test can be used for ~
inserting a character.

Third, you can use the tput(l) command. This command outputs a
string or an integer according to the type of capability being described. If
the capability is a Boolean expression, then tput sets the exit code (0 for
TRUE, 1 for FALSE) and produces no output. The general format for the
tput command is as follows:

tput [-Ttype] capname

The type of terminal you are requesting information about is identified with
the -Ttype option. Usually, this option is not necessary because the default
terminal name is taken from the environment variable $TERM. The cap­
name field is used to show what capability to output from the terminfo data­
base.

The following command line shows how to output the "clear screen"
character sequence for the terminal being used:

tput clear
(The screen is cleared.)

10-90 PROGRAMMER'S GUIDE

~.

~.

Working with the terminfo Database

The following command line shows how to output the number of
columns for the terminal being used:

tput cols
(The number of columns used by the terminal appears here.)

The tput(l) manual page found in the User's Reference Manual contains
more information on the usage and possible messages associated with this
command.

Comparing or Printing terminfo Descriptions
Sometime you may want to compare two terminal descriptions or

quickly look at a description without going to the terminfo source direc­
tory. The infocmp(lM) command was designed to help you with both of
these tasks. Compare two descriptions of the same terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO=/tmp/old tic 01d5420.ti
TERMINFO=/tmp/new tic new5420.ti
infocmp -A /tmp/old -B /tmp/new -d 5420 5420

compares the old and new 5420 entries.

To print out the terminfo source for the 5420, type

infocmp -I 5420

Converting a termcap Description to a terminfo
Description

The terminfo database is designed to take the place of the termcap
database. Because of the many programs and processes that have
been written with and for the termcap database, it is not feasible to
do a complete cutover at one time. Any conversion from termcap to
terminfo requires some experience with both databases. All entries
into the databases should be handled with extreme caution. These
files are important to the operation of your terminal.

curses/termlnfo 10-91

Working with the terminfo Database

The captoinfo(lM) command converts termcap(4) descriptions to ter­
minfo(4) descriptions. When a file is passed to captoinfo, it looks for
termcap descriptions and writes the equivalent terminfo descriptions on the.
standard output. For example,

captoinfo IetcI termcap

converts the file letc/termcap to terminfo source, preserving comments and
other extraneous information within the file. The command line

captoinfo

looks up the current terminal in the termcap database, as specified by the
$TERM and $TERMCAP environment variables and converts it to
terminfo.

If you must have both termcap and terminfo terminal descriptions,
keep the terminfo description only and use infocmp -C to get the termcap
descriptions. This is recommended because the terminfo entry will be more
complete, descriptive, and accurate than the termcap entry possibly could
be.

If you have been using cursor optimization programs with the
-ltermcap or -ltermlib option in the cc command line, those programs will /~..
still be functional. However, these options should be replaced with the ,
-Icurses option.

10-92 PROGRAMMER'S GUIDE

curses Program Examples

The following examples demonstrate uses of curses routines.

r-" The editor Program
This program illustrates how to use curses routines to write a screen

editor. For simplicity, editor keeps the buffer in stdscr; obviously, a real
screen editor would have a separate data structure for the buffer. This pro­
gram has many other simplifications: no provision is made for files of any
length other than the size of the screen, for lines longer than the width of
the screen, or for control characters in the file.

Several points about this program are worth making. First, it uses the
move(), mvaddstr(), flash(), wnoutrefresh() and clrtoeol() routines. These
routines are all discussed in this chapter under "Working with curses Rou­
tines."

Second, it also uses some curses routines that we have not discussed.
For example, the function to write out a file uses the mvinch() routine,
which returns a character in a window at a given position. The data struc­
ture used to write out a file does not keep track of the number of characters
in a line or the number of lines in the file, so trailing blanks are eliminated
when the file is written. The program also uses the insch(), delch(),
insertln(), and deleteln() routines. These functions insert and delete a
character or line. See curses(3X) for more information about these routines.

Third, the editor command interpreter accepts special keys, as well as
ASCII characters. On one hand, new users find an editor that handles spe­
cial keys easier to learn about. For example, it's easier for new users to use
the arrow keys to move a cursor than it is to memorize that the letter h
means left, j means down, k means up, and I means right. On the other
hand, experienced users usually like having the ASCII characters to avoid
moving their hands from the home row position to use special keys.

Because not all terminals have arrow keys, your curses programs will
work on more terminals if there is an ASCII character associated with
each special key.

curses/termlnfo 10-93

Examples

Fourth, the CTRL-L command illustrates a feature most programs using
curses routines should have. Often some program beyond the control of
the routines writes something to the screen (for instance, a broadcast mes­
sage) or some line noise affects the screen so much that the routines cannot
keep track of it. A user invoking editor can type CTRL-L, causing the
screen to be cleared and redrawn with a call to wrefresh(curscr).

Finally, another important point is that the input command is ter­
minated by CTRL-D, not the escape key. It is very tempting to use escape
as a command, since escape is one of the few special keys available on every
keyboard. (Return and break are the only others.) However, using escape
as a separate key introduces an ambiguity. Most terminals use sequences of
characters beginning with escape (i.e., escape sequences) to control the ter­
minal and have special keys that send escape sequences to the computer. If
a computer receives an escape from a terminal, it cannot tell whether the
user depressed the escape key or whether a special key was pressed.

editor and other curses programs handle the ambiguity by setting a
timer. If another character is received during this time, and if that character
might be the beginning of a special key, the program reads more input
until either a full special key is read, the time out is reached, or a character
is received that could not have been generated by a special key. While this
strategy works most of the time, it is not foolproof. It is possible for the
user to press escape, then to type another key qUickly, which causes the
curses program to think a special key has been pressed. Also, a pause
occurs until the escape can be passed to the user program, resulting in a
slower response to the escape key.

Many existing programs use escape as a fundamental command, which
cannot be changed without infuriating a large class of users. These pro­
grams cannot make use of special keys without dealing with this ambiguity,
and at best must resort to a time-out solution. The moral is clear: when
designing your curses programs, avoid the escape key.

1* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The blffer is kept in stdscr to simplify

* the program.
*1

#mclude <curses.h>

10-94 PROGRAMMER'S GUIDE

Examples

continued

#define CTRL(c) (c) & 037)

main(argc, argv)
int argc;
char **argv;

{

extern void perror(), exit();
int i, n, 1;
int c;
int line =0;
FILE *fd;

if (argc 1= 2)
{

fprintf(s'tderr, "Usage: %s file\n", argv[O]);
exi.t(1);

fd = fopen(argv[1], "r");
if (fd == NULL)
{

perror(argv[1]) ;
exi.t(2) ;

initscr();
cbreak();

IXm1();

noecb:>();

idlok(stdscr, TRUE);
keypad(stdscr, 'lRI.JE);

1* Read in the file *1
while ((c = getc(fd» 1= EDF)
{

if (c == '\n')
line++;

if (line> LJNES - 2)
break;

addch(c);
}

fclose(fd) ;

curses/terminfo 1~95

Examples

nove(O,O) ;
refresh();
edit();

1* write out the file *1
fd =fopen(argv[1], "w");
for (1 =0; 1 < LINES - 1; 1++)
(

n = 1en(1);
far (i =0; i < n; i++)

putc(mvinch(l, i) &.A_~, fd);
putc('\n', fd);

}

fc1ose(fd) ;

endwin();

exit(O) ;

len(lineno)

int 1ineno;
{

int 1inelen = OOLS - 1;

while (line1en >= °&& mvinch(lineno, 1inelen) ")
1ine1en--;

retuJ:n 1inelen + 1;

1* Global value of current cursor position *1
int reM, col;

edit()
{

int c;

for (;;)

continued

10-96 PROGRAMMER'S GUIDE

IIOVe (rc?il, 001);
refresh();
c = getch();

1* Editor ocmnands *1
switch (c)

{

1* hjkl and arrow keys: m::we cursor
* in direction indicated *1

case 'h':
case KEY_LEFI':

if (001 > 0)
001--;

else
flash();

break;

case 'j':
case KEY_IXMN:

if (rc?il < LImS - 1)

rc?il++;

else
flash();

break;

case 'k':
case KEY_UP:

if (:reM > 0)

rc?il--;

else
flash();

break;

case '1':
case KEY_RIGHT:

if (001 < COLS - 1)

001++;
else

flash();

break;

Examples

continued

curses/terminfo 10-97

Examples

continued

1* i: enter inplt IIOde *1
case KEY_IC:
case 'i':

i.nplt();

break;

1* x: delete current character *1
case KEY_IX::
case 'x':

de1ch();

break;

1* 0: open up a new line and enter inI:ut IOOde *1
case KEY_n.:
case '0':

move(++row, 001 =0);
insertln();
i.nplt();

break;

1* d: delete current line *1
case KEY_DL:
case 'd':

deleteln();
break;

1* "L: redraw screen *1
case KEY_CLEAR:
case cmL('L'):

wrefresh(curser) ;
break;

1* w: write and quit *1
case 'w':

retm:n;

10-98 PROGRAMMER'S GUIDE

1* q: quit witb::>ut writinq *1
case 'q':

emwm();

exi.t(2) ;
default:

flash();
break;

1*
* Insert m:xie: accept characters aIX1. insert them.
* Ern with "D or ErC

*1
input()
{

int c;

stamout(};
mvaddstr(LINES - 1, <XlLS - 20. lIINPl1I'KDE");

staIxIem();

nove (reM, 001);
refresh(};
for (t;)
{

c = getch();
if (c == CTRL('D') : I c == KEY_ErC)

break;
insch(c) ;
aove(:row. ++(01);
refresh() t

}

nove(LINES - 1, <XlLS - 20) t
clrtoeo1 ();
nove (reM, (01);
refresh();

Examples

continued

curses/terminfo 10-99

Examples

The highlight Program
This program illustrates a use of the routine attrset(). highlight reads a

text file and uses embedded escape sequences to control attributes. \U turns ',--
on underlining, \8 turns on bold, and \N restores the default output attri-
butes.

Note the first call to scrollok(), a routine that we have not previously
discussed (see curses(3X». This routine allows the terminal to scroll if the
file is longer than one screen. When an attempt is made to draw past the
bottom of the screen, scrollok() automatically scrolls the terminal up a line
and calls refresh().

1*
* highlight: a program to tum \U, \8, and
* \N sequences into highlighted
* outplt, a11owin1lolOrds to be
* displayed umerlined or in bold.
*1

#include <curses.h>

main(argc, argv)

int argc;
char **argv;
{

FILE *fd;
int c, c2;
void exit(), perror();

if (argc 1= 2)
{

fprintf(s'tderr, IfUsage: highlight file\n lf
);

e:xi.t(1) ;

fd = fopen(argv[1], "r");

if (fd == NOLL)

10-100 PROGRAMMER'S GUIDE

~.,

Examples

continued

perror(argv[1]);
exi.t(2) ;

initscr();
scrollok(stdscr, TRUE);
nonl();

while «c =getc(fd» 1= EDF)
{

if (c == '\\')
{

c2 =getc(fd) ;
switch (c2)

{

case 'B':
attrset(A_BJID) ;

continue;
case 'U':

attrset(A_UNDEm.INE) ;

continue;
case 'N':

attrset(O) ;

continue;
}

addch(c);
addch(c2) ;

}

else
addch(c) ;

}

fclose(fd) ;
refresh{);
endwin();

exit(O) ;

curses/terminfo 10-101

Examples

The scatter Program
This program takes the first LINES - tlines of characters from the stan- ~

dard input and displays the characters on a terminal screen in a random ""
order. For this program to work properly, the input file should not contain
tabs or non-printing characters.

1*
* The scatter program.
*1

#include <curses.h>
#include <sys/types.h>

#define MAXLINES 120
#define MAXCDLS 160
char s[MAXLINES] [MAXOOLS] ;

int T[MAXLINES] [MAXOOLS] ;

main()

{

1* Screen Array *1
1* Tag Array - Keeps track of *
* the number of characters *
* printed and their positions.

register int row = 0,001 = 0;
register int c;
int char_count = 0;
time_t t;
void exit(), srand();

initscr();
for(row = O;row < MAXLINES;row++)

for (001 = 0;001 < MAXOOLS; 001++)
s[row] [001]=' ';

001 = row = 0;
1* Read screen in *1
while «c=getchar(») 1= EDF && row < LINES)

if(c 1= '\n')
{

10-102 PROGRAMMER'S GUIDE

Examples

continued

1* Place char in screen array *1
s[row][ool++] =c;
if(c 1= ' ')

char_OOWlt++ ;

}

else

001 = 0;
row++;

time(&t) ;1* Seed the raman rmmber generator *1
srand((unsigned)t) ;

while (char_OOWlt)

{

row = rancH) % LINES;
001 = (rand() » 2) % COLS;
if (T[row][ool] 1= 1 && s[row][ool] 1= ' ')
{

uove(row, 001);
addch(s[row][ool);
T[row][ool] = 1;
char_oouot--;
refresh();

}

erxlwiJ'l();

exi.t(O) ;

curses/termlnfo 10-103

Examples

The show Program
show pages through a file, showing one screen of its contents each time ~

you depress the space bar. The program calls cbreak() so that you can
depress the space bar without having to hit return; it calls noecho() to
prevent the space from echoing on the screen. The nonl() routine, which
we have not previously discussed, is called to enable more cursor optimiza-
tion. The idlok() routine, which we also have not discussed, is called to
allow insert and delete line. (See curses(3X) for more information about
these routines). Also notice that clrtoeol() and clrtobot() are called.

By creating an input file for show made up of screen-sized (about 24
lines) pages, each varying slightly from the previous page, nearly any exer­
cise for a curses() program can be created. This type of input file is called a
show script.

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *cU9V[];
{

FILE *fd;
char l:ineblf[BUFSIZ];
int line;
void donee), pen:or(), exit();

if (arge 1= 2)
(

fprintf(stden:', "usage: %oS file\n", aJ:gV[O]);
exi.t(1);

if ((fd=fopen(argv[1], "r"» = NULL)
(

pen:or(argv[1]);
exit(2) ;

1~104 PROGRAMMER'S GUIDE

Examples

continued

signal (SIGmI', dane);

initscr();
roeclx>();

cbreak();
ronl();

idlok(stdscr, TRUE);

while(1)
(

move(O,O) ;

far (line = 0; line < LINES; line++)
{

if (1 fgets (linebuf, sizeof l:ineOOf. fd»)
(

clrtobot();
done();

}

rrove(line, 0);
printw("%ell, lineb1f);

}

refresh();
if (getch() == 'q')

done();

void dane{)

(

move(LINES - 1, 0);
clrtoeol ();
refresh();
erxlwin();

exi.t(O) ;

curses/termlnfo 10-105

Examples

The two Program
This program pages through a file, writing one page to the terminal ~

from which the program is invoked and the next page to the terminal
named on the command line. It then waits for a space to be typed on either
terminal and writes the next page to the terminal at which the space is
typed.

two is just a simple example of a two-terminal curses program. It does
not handle notification; instead, it requires the name and type of the second
terminal on the command line. As written, the command "sleep 100000"
must be typed at the second terminal to put it to sleep while the program
runs, and the user of the first terminal must have both read and write per­
mission on the second terminal.

#include <curses.h>
#include <signal.h>

~ *IDe, *you;
~ *set_tenn();

FIIE *fd, *fdyou;
char linebuf(512];

main(argc t argv)

int argc;
char **a!:9V;
{

void dane(), exi.t();
\DlSigned sleep();
char ~tenv();

int c;

if (argc 1= 4)
{

fprintf(stderr, "Usage: ~ othertty otherttytype inputfile\n");
exi.t(1);

10-106 PROGRAMMER'S GUIDE

~.,.." .

Examples

continued

fd =fopen(axgv[3], "r");
fdyou = fopen(axgv(1). "w+");
signal (SIGlNT, done); 1* die gracefully *1

me = newtenn(geteI1v("TmM"), stdout. stdin); 1* initialize ~ tty *1
you =newtel:m(axgv[2), fdyou. fdyou) ;1* Initialize the other tenoinal *1

set_tenn(me); 1* set m:xies for my tenninal *1
noecho(); 1* turn off tty echo *1
cbreak(); 1* enter cbreak node *1
nonl(); 1* Allow' linefeed *1
:oodelay(stdscr, '!RUE); 1* No hanq an input *1

set_tenn(you); 1* Set m:xies for other terminal *1
noecho();
cbreak();
nonl();

rxxielay(stdscr , 'IRUE) ;

1* DImp first screen full on ~ terminal *1
dmnpJ)03.ge (me) ;

1* DmIp secxmd screen full an the other teDni:nal *1
dumpJ)03.ge(you) ;

for (;;) 1* for each screen full *1
{

set_tenn(me) ;
c = getch();

if (c == 'q')/* wait for user to read it *1
dane();

if (0 == ' ')
dumpJSge(me) ;

set_tenn(you) ;
c = getch();
if (0 = 'q')/* wait for user to read it *1
dane();

if (c == ' ')
dumpJSge(yoo) ;
sleep(1) ;

curses/termlnfo 10-107

Examples

continued

int line;

set_tecn(tenn) ;
nove(O, 0);
far (line =0; line < LINES - 1; line++) {

if (fqets(linebuf, sizeof lineb1f, fd) == NULL) {
clrtobot();
donee);
}

mvaddst:r(line, 0, linebJ.f);
}

standout();

mvprintw(LINES - 1, 0, "--M:Jre--");
stamend();
refresh(); I. sync screen .1

~)
• Clean up and exit•
• 1

void donee)
{

I. Clean up first tenn:i.nal .1
set_tecn(you) ;
nove(LINES - 1,0) ;1. to lower left carner .1

clrtoeol();
refresh();
endwin();

I. clear 00ttan line .1
I. flush out evexyt:h:in] .1
I. curses clearmp .1

I. Clean up second tenninal .1
set_tecn(me) ;
nove(LINES - 1,0) ;1. to lower left carner .1
clrtoeol(); I. clear bottan line .1
refresh(); I. flush oot evexyt:h:in] .1
endwin(); I. curses cleanup .1
exit(O) ;

10-108 PROGRAMMER'S GUIDE

Examples

The window Program
This example program demonstrates the use of multiple windows. The

main display is kept in stdscr. When you want to put something other than
what is in stdscr on the physical terminal screen temporarily, a new win­
dow is created covering part of the screen. A call to wrefresh() for that
window causes it to be written over the stdscr image on the terminal
screen. Calling refresh() on stdscr results in the original window being
redrawn on the screen. Note the calls to the touchwin() routine (which we
have not discussed - see curses(3X» that occur before writing out a win­
dow over an existing window on the terminal screen. This routine prevents
screen optimization in a curses program. If you have trouble refreshing a
new window that overlaps an old window, it may be necessary to call
touchwin() for the new window to get it completely written out.

#include <curses.h>

WINlXM *an:iwin;

main()

int i, c;
char buf[120];
void exi.t();

initscr();
nanl();

noeclX>();

cbreak();

CIdwin =newwin(3, CDLS, 0, 0) ;1* top 3 lines *1
far (i =0; i < LINES; i++)

mvprintw(i, 0, "This is line Yd of stdscr", i);

curs8s/termlnfo 10-109

Examples

for (;;)

refresh();

c =getch();
switch (e)

case 'e' :1* Enter cxmnand fran keytoard. *1
werase (ardwin) ;

wprintw(aldwin, "Enter ccmnand: n) ;

wmove(ardw:in, 2, 0);
for (i =0; i < COLS; i++)

waddch(ardw:in, ' -') ;
~(ardw:in, 1, 0);
tolcmnn(cmlw.in) ;

wrefresh(aIdwin) ;

wgetstr(aIdwi.n, b.Jf);
tolchwin(stdscr) ;

1*
* '!he cx:moarxl is now in b.Jf.
* It should be processed here.

*1

case 'q':
endwin();

exi.t(O) ;

10-110 PROGRAMMER'S GUIDE

continued

Examples

The colors Program
This program creates two windows. All characters displayed in the first

window will be in red, on a blue background. All characters displayed in
the second window will be in yellow, on a magenta background.

#include <curses. h>

#define PAIR1 1

#define PAIR2 2

main()

{

WINIXW .win1, .win2;

initscr();
if «Btart_color(» == OK)
{

I. create windows .1

win1 =newwin (5, 40, 0, 0).
win2 =newwin (5, 40, 15, 40).

I. create bIo color pairs *1

init-I2ir (PAIR1, OOIJJR_RED. OOIffi_BLUE);

init-PClir (PAIR2, OOIJJR_YEL1.a'l. OOLOR_MAGENl'A);

1* tunl an oolor attributes for each window .1

wattran (win1, OOIJJR_PAIR (PAIR1» ;

wattran (win2, OOIJJR_PAIR (PAIR2»;

1* print sane text in each wirx1cM ani exit .1

waddstr (win1. lI'1l1i.s should be red on blue").
waddstr (win2. lI'1l1i.s should be yellow an aagenta");
Wl'lCAltrefresh (win1) ;
wnoutrefresh (win2);
doopdate();

I. wait for any key before tenn:inating .1

wgetch (win2);

emwin();

curses/terminfo 10-111

11 Common Object File Format (COFF)

~.

The Common Object File Format
(COFF)
Definitions and Conventions

• Sections
II Physical and Virtual Addresses
• Target Machine

File Header
• Magic Numbers
II Flags
II File Header Declaration

Optional Header Information
• Standard UNIX System a.out Header
II Optional Header Declaration

Section Headers
• Flags
a Section Header Declaration
II .bss Section Header

Sections
Relocation Information

• Relocation Entry Declaration
Line Numbers

II Line Number Declaration
Symbol Table

• Special Symbols
• Inner Blocks
• Symbols and Functions
• Symbol Table Entries
• Auxiliary Table Entries

String Table
Access Routines

11·1

11·3

11-3

11-3

11·3

11·4

11·4

11·4

11-5

11-6

11-7

11·8

11-9

11·10

11-12

11·12

11-13

11-13

11-14

11·15

11-16

11-17

11·18

11-20

11-22

11-23

11-35

11-42

11·43

COMMON OBJECT FILE FORMAT (COFF)

\. '

The Common Object File Format (COFF)

This section describes the Common Object File Format (COFF) used on
AT&T computers with the UNIX operating system. COFF is the format of
the output file produced by the assembler, as, and the link editor, ld.

Some key features of COFF are

• applications can add system-dependent information to the object file
without causing access utilities to become obsolete

• space is provided for symbolic information used by debuggers and
other applications

• programmers can modify the way the object file is constructed by
providing directives at compile time

The object file supports user-defined sections and contains extensive
information for symbolic software testing. An object file contains

• a file header

• optional header information

• a table of section headers

• data corresponding to the section headers

• relocation information

• line numbers

• a symbol table

• a string table

Figure 11-1 shows the overall structure.

COMMON OBJECT FILE FORMAT (COFF) 11-1

The Common Object File Format (COFF)

FILE HEADER
Optional Information

Section 1 Header
...

Section n Header
Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1
...

Relocation Info for Sect. n

Line Numbers for Sect. 1
...

Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

Figure 11-1: Object File Format
.~

The last four sections (relocation, line numbers, symbol table, and the string
table) may be missing if the program is linked with the -s option of the Id
command, or if the line number information, symbol table, and string table
are removed by the strip command. The line number information does not
appear unless the program is compiled with the -g option of the cc com­
mand. Also, if there are no unresolved external references after linking, the
relocation information is no longer needed and is absent. The string table
is also absent if the source file does not contain any symbols with names
longer than eight characters.

An object file that contains no errors or unresolved references is con-
sidered executable. ~

11-2 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Definitions and Conventions
~ Before proceeding further, you should become familiar with the follow-

ing terms and conventions.

Sections
A section is the smallest portion of an object file that is relocated and

treated as one separate and distinct entity. In the most common case, there
are three sections named .text, .data, and .bss. Additional sections accom­
modate comments, multiple text or data segments, shared data segments, or
user-specified sections. However, the UNIX operating system loads only
.text, .data, and .bss into memory when the file is executed.

~'

It a mistake to assume that every COFF file will have a certain number
of sections, or to assume characteristics of sections such as their order,
their location in the object file, or the address at which they are to be
loaded. This information is available only after the object file has been
created. Programs manipulating COFF files should obtain it from file
and section headers in the file.

Physical and Virtual Addresses
The physical address of a section or symbol is the offset of that section

or symbol from address zero of the address space. The term physical
address as used in COFF does not correspond to general usage. The physi­
cal address of an object is not necessarily the address at which the object is
placed when the process is executed. For example, on a system with pag­
ing, the address is located with respect to address zero of virtual memory
and the system performs another address translation. The section header
contains two address fields, a physical address, and a virtual address; but in
all versions of COFF on UNIX systems, the physical address is equivalent to
the virtual address.

Target Machine
Compilers and link editors produce executable object files that are

intended to be run on a particular computer. In the case of cross-compilers,
the compilation and link editing are done on one computer with the intent
of creating an object file that can be executed on another computer. The
term target machine refers to the computer on which the object file is des­
tined to run. In the majority of cases, the target machine is the exact same
computer on which the object file is being created.

COMMON OBJECT FILE FORMAT (COFF) 11-3

The Common Object File Format (COFF)

File Header
The file header contains the 20 bytes of information shown in Figure

11-2. The last 2 bytes are flags that are used by Id and object file utilities.

Bytes Declaration Name Description

0-1 unsigned short f_magic Magic number

2-3 unsigned short f_DSCDS Number of sections

4-7 long int f_timdat Time and date stamp indicat-
ing when the file was created,
expressed as the number of
elapsed seconds since 00:00:00
GMT, January 1, 1970

8-11 long int f_symptr File pointer containing the
starting address of the symbol
table

12-15 long int f_Dsyms Number of entries in the sym-
bol table

16-17 unsigned short f_opthdr Number of bytes in the
optional header

18-19 unsigned short f_flags Flags (see Figure 11-3)

Figure 11-2: File Header Contents

Magic Numbers
The magic number specifies the target machine on which the object file

is executable.

'~

Flags
The last 2 bytes of the file header are flags that describe the type of the

object file. Currently defined flags are found in the header file filehdr.h, ,')
and are shown in Figure 11-3.

11-4 PROGRAMMER'S GUIDE

--------------- The Common Object File Format (COFF)

Mnemonic Flag Meaning
F_RELFLG 00001 Relocation information

stripped from the file

F_EXEC 00002 File is executable (Le., no
unresolved external refer-
ences)

F_LNNO 00004 Line numbers stripped from
the file

F LSYMS 00010 Local symbols stripped from
the file

F AR32W 0001000 32 bit word

F_BM32B 0020000 32100 required

F_BM32MAU 0040000 MAU required

Figure 11-3: File Header Flags (3B2 Computer)

File Header Declaration
The C structure declaration for the file header is given in Figure 11-4.

This declaration may be found in the header file filehdr.h.

COMMON OBJECT FILE FORMAT (COFF) 11-5

The Common Object File Format (COFF)

struct filehdr
{

unsigned short
unsigned short

long

long

long

f _magic; 1* magic InlIIlber *1
f_nsa1S; 1* number of section *1

unsigned short f _flags; 1* flags *1
} ;

#define FIUIDR sauct filehdr
#define FIUfSZ sizeof (FILHI:R)

Figure 11-4: File Header Declaration

Optional Header Information
The template for optional information varies among different systems

that use COFF. Applications place all system-dependent information into
this record. This allows different operating systems access to information
that only that operating system uses without forcing all COFF files to save
space for that information. General utility programs (for example, the sym­
bol table access library functions, the disassembler, etc.) are made to work
properly on any common object file. This is done by seeking past this
record using the size of optional header information in the file header field
f_opthdr.

11-6 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Standard UNIX System a.out Header
By default, files produced by the link editor for a UNIX system always

have a standard UNIX system a.out header in the optional header field.
The UNIX system a.out header is 28 bytes. The fields of the optional
header are described in Figure 11-5.

Bytes Declaration Name Description
0-1 short magic Magic number
2-3 short vstamp Version stamp
4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized data in bytes

12-15 long int bsize Size of uninitialized data in
bytes

16-19 long int entry Entry point
20-23 long int text_start Base address of text

24-27 long int data_start Base address of data

Figure 11-5: Optional Header Contents (3B2, 3B5, 3B15 Computers)

Whereas, the magic number in the file header specifies the machine on
which the object file runs, the magic number in the optional header sup­
plies information telling the operating system on that machine how that file
should be executed. The magic numbers recognized by the 3B2/3B5/3BI5
UNIX operating system are given in Figure 11-6.

COMMON OBJECT FILE FORMAT (COFF) 11-7

The Common Object File Format (COFF)

Value Meaning
0407

0410

0413

The text segment is not write-protected or
sharable; the data segment is contiguous with
the text segment.

The data segment starts at the next segment
following the text segment and the text seg­
ment is write protected.

Text and data segments are aligned within
a.out so it can be directly paged.

Figure 11-6: UNIX System Magic Numbers (382, 385, 3815 Computers)

Optional Header Declaration
The C language structure declaration currently used for the UNIX sys­

tem a.out file header is given in Figure 11-7. This declaration may be found
in the header file aouthdr.h. .~

11-8 PROGRAMMER'S GUIDE

--------------- The Common Object File Format (COFF)

typedef struet aouthdr
{

magic;
vstaDp;

tsize;

1* magic number *1
1* version staIIp *1
1* text size in bytes, padded *1

lang dsize; 1* initialized data size *1

lang baize; 1* uninitialized data size *1

lang entry; 1* entry point *1

lang text_start; 1* base of text for this file *1

lanq data start 1* base of data for this file *1

} AWmDR;

Figure 11-7: aouthdr Declaration

Section Headers
Every object file has a table of section headers to specify the layout of

data within the file. The section header table consists of one entry for
every section in the file. The information in the section header is described
in Figure 11-8.

COMMON OBJECT FILE FORMAT (COFF) 11-9

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-7 char s name 8-character null padded sec-
tion name

8-11 long int s..,paddr Physical address of section

12-15 long int s vaddr Virtual address of section

16-19 long int s_size Section size in bytes

20-23 long int s_scnptr File pointer to raw data

24-27 long int s_relptr File pointer to relocation
entries

28-31 long int sJnnoptr File pointer to line number
entries

32-33 unsigned s_nreloc Number of relocation entries
short

34-35 unsigned s_nlnno Number of line number
entries

short
36-39 long int s_f1ags Flags (see Figure 11-9)

Figure 11-8: Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File pointers are
byte offsets that can be used to locate the start of data, relocation, or line
number entries for the section. They can be readily used with the UNIX
system function fseek(3S).

Flags
The lower 2 bytes of the flag field indicate a section type. The flags are

described in Figure 11-9.

11-10 PROGRAMMER'S GUIDE

..~

--------------- The Common Object File Format (COFF)

Mnemonic Flag Meaning
STYP REG OxOO Regular section (allocated, relocated,

loaded)

STYP_DSECT Ox01 Dummy section (not allocated, relo-
cated, not loaded)

STYP_NOLOAD Ox02 Noload section (allocated, relocated,
not loaded)

STYP_GROUP Ox04 Grouped section (formed from input
sections)

STYP_PAD Ox08 Padding section (not allocated, not
relocated, loaded)

STYP_COPY Ox10 Copy section (for a decision function
used in updating fields; not allocated,
not relocated, loaded, relocation and
line number entries processed nor-
mally)

STYP_TEXT Ox20 Section contains executable text

STYP_DATA Ox4O Section contains initialized data

STYP_BSS Ox80 Section contains only uninitialized
data

STYP_INFO Ox200 Comment section (not allocated, not
relocated, not loaded)

STYP_OVER Ox4OO Overlay section (relocated, not allo-
cated, not loaded)

STYP_LIB Ox800 For .lib section (treated like
STYP_INFO)

Figure 11-9: Section Header Flags

COMMON OBJECT FILE FORMAT (COFF) 11-11

The Common Object File Format (COFF)

Section Header Declaration
The C structure declaration for the section headers is described in Fig-

ure 11-10. This declaration may be found in the header file scnhdr.h. .~

struct sc:nlx1r
{

lODJ

S_naDe[8];

s_paddr;
s_vaddr;
s_size;
s_scnptr;

s_lnnoptr;

1* section name *1
1* p1l:YSical address *1
1* virtual address *1
1* section size *1
1* file ptr to section raw data *1

1* file ptr to relocation *1

unsigned short s_nreloc; 1* number of relocation entries *1

} ;

#define SQm[R struct scnhdr
#define samsz sizeof(SQm[R)

Figure 11-10: Section Header Declaration

.bss Section Header
The one deviation from the normal rule in the section header table is

the entry for uninitialized data in a .bss section. A .bss section has a size
and symbols that refer to it, and symbols that are defined in it. At the same
time, a .bss section has no relocation entries, no line number entries, and no
data. Therefore, a .bss section has an entry in the section header table but

11-12 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

occupies no space elsewhere in the file. In this case, the number of reloca­
tion and line number entries, as well as all file pointers in a .bss section
header, are O. The same is true of the STYP_NOLOAD and STYP_DSECT
sections.

Sections
Figure 11-1 shows that section headers are followed by the appropriate

number of bytes of text or data. The raw data for each section begins on a
4-byte boundary in the file.

Link editor SECTIONS directives (see Chapter 12) allow users to, among
other things:

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections

If no SECTIONS directives are given, each input section appears in an
output section of the same name. For example, if a number of object files,
each with a .text section, are linked together the output object file contains
a single .text section made up of the combined input .text sections.

Relocation Information
Object files have one relocation entry for each relocatable reference in

the text or data. The relocation information consists of entries with the for­
mat described in Figure 11-11.

Bytes Declaration Name Description
0-3 long int r_vaddr (Virtual) address of reference

4-7 long int r_symndx Symbol table index

8-9 unsigned short r_type Relocation type

~. Figure 11-11: Relocation Section Contents

COMMON OBJECT FILE FORMAT (COFF) 11-13

The Common Object File Format (COFF)

The first 4 bytes of the entry are the virtual address of the text or data
to which this entry applies. The next field is the index, counted from 0, of
the symbol table entry that is being referenced. The type field indicates the
type of relocation to be applied.

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated. The currently recognized relocation types are
given in Figure 11-12.

Mnemonic Flag

R DIR32 06

R DIR32S 012

Meaning
Reference is absolute; no relocation is
necessary. The entry will be ignored.

Direct 32-bit reference to the symbol's
virtual address.

Direct 32-bit reference to the symbol's
virtual address, with the 32-bit value
stored in the reverse order in the
object file.

Figure 11-12: Relocation Types (3B2, 3B5, 3B15 Computers)

Relocation Entry Declaration
The structure declaration for relocation entries is given in Figure 11-13.

This declaration may be found in the header file reloc.h.

11-14 PROGRAMMER'S GUIDE

~"

---------------- The Common Object File Format (COFF)

struct reloc
{

} ;

#define REUJC struct reloc

#define RELSZ 10

Figure 11-:-13: Relocation Entry Declaration

Line Numbers
When invoked with the -g option, the cc, and £77 commands cause an

entry in the object file for every source line where a breakpoint can be
inserted. You can then reference line numbers when using a software
debugger like sdb. All line numbers in a section are grouped by function
as shown in Figure 11-14.

COMMON OBJECT FILE FORMAT (COFF) 11-15

The Common Object File Format (COFF)

symbol index
physical address
physical address

symbol index
physical address
physical address

Figure 11-14: Line Number Grouping

o
line number
line number

o
line number
line number

The first entry in a function grouping has line number 0 and has, in
place of the physical address, an index into the symbol table for the entry
containing the function name. Subsequent entries have actual line numbers ~.

and addresses of the text corresponding to the line numbers. The line)
number entries are relative to the beginning of the function, and appear in
increasing order of address.

Line Number Declaration
The structure declaration currently used for line number entries is given

in Figure 11-15.

11·16 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

struet lineno
{

unicm

} l_addr;
unsigned short l_lnno; 1* line number *1

} ;

#define LINEN)

#define LIN&SZ
struet li.netx>
6

Figure 11-15: Line Number Entry Declaration

Symbol Table
Because of symbolic debugging requirements, the order of symbols in

the symbol table is very important. Symbols appear in the sequence shown
in Figure 11-16.

COMMON OBJECT FILE FORMAT (COFF) 11-17

The Common Object File Format (COFF)

filename 1

function 1
local symbols
for function 1

function 2
local symbols
for function 2

...
statics

...
filename 2
function 1

local symbols
for function 1

...
statics
...

defined global
symbols

undefined global
symbols

Figure 11-16: COFF Symbol Table

The word statics in Figure 11-16 means symbols defined with the C
language storage class static outside any function. The symbol table consists
of at least one fixed-length entry per symbol with some symbols followed
by auxiliary entries of the same size. The entry for each symbol is a struc­
ture that holds the value, the type, and other information.

Special Symbols
The symbol table contains some special symbols that are generated by

as, and other tools. These symbols are given in Figure 11-17.

11-18 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Symbol Meaning

.file filename

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or union
returned by a function

.xfake dummy tag name for structure, union,
or enumeration

.eos end of members of structure, union, or
enumeration

etext next available address after the end of
the output section .text

edata next available address after the end of
the output section .data

end next available address after the end of
the output section .bss

Figure 11-17: Special Symbols in the Symbol Table

Six of these special symbols occur in pairs. The .bb and .eb symbols
indicate the boundaries of inner blocks; a .bf and .ef pair brackets each
function. An .xfake and .eos pair names and defines the limit of structures,
unions, and enumerations that were not named. The .eos symbol also
appears after named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
invents a name to be used in the symbol table. The name chosen for the
symbol table is .xfake, where x is an integer. If there are three unnamed
structures, unions, or enumerations in the source, their tag names are
.Ofake, .lfake, and .2fake. Each of the special symbols has different infor­
mation stored in the symbol table entry as well as the auxiliary entries.

COMMON OBJECT FILE FORMAT (COFF) 11·19

The Common Object File Format (COFF)

Inner Blocks
The C language defines a block as a compound statement that begins

and ends with braces, {, and}. An inner block is a block that occurs within
a function (which is also a block).

For each inner block that has local symbols defined, a special symbol,
.bb, is put in the symbol table immediately before the first local symbol of
that block. Also a special symbol, .eb, is put in the symbol table immedi­
ately after the last local symbol of that block. The sequence is shown in
Figure 11-18.

.bb
local symbols
for that block
.eb

Figure 11-18: Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs
and associated symbols may also be nested. See Figure 11-19.

11-20 PROGRAMMER'S GUIDE

~.
\.

The Common Object File Format (COFF)

int i;
char c;

lang a;

int x;

lang i;

1* block 4 *1
1* block 1 *1

Figure 11-19: Nested blocks

The symbol table would look like Figure 11-20.

COMMON OBJECT FILE FORMAT (COFF) 11-21

'rhe Common Object File Format (COFF)

.bb for block 1
i
c

.bb for block 2

a
.bb for block 3

x
.eb for block 3
.eb for block 2

.bb for block 4

i
.eb for block 4

.eb for block 1

Figure 11-20: Example of the Symbol Table

Symbols and Functions
For each function, a special symbol .bf is put between the function

name and the first local symbol of the function in the symbol table. Also, a
special symbol .ef is put immediately after the last local symbol of the func­
tion in the symbol table. The sequence is shown in Figure 11-21.

function name
.bf

local symbol
.ef

Figure 11-21: Symbols for Functions

11-22 PROGRAMMER'S GUIDE

~.

--------------- The Common Object File Format (COFF)

Symbol Table Entries
All symbols, regardless of storage class and type, have the same format

for their entries in the symbol table. The symbol table entries each contain
18 bytes of information. The meaning of each of the fields in the symbol
table entry is described in Figure 11-22. It should be noted that indices for
symbol table entries begin at 0 and count upward. Each auxiliary entry also
counts as one symbol.

Bytes Declaration Name Description

0-7 (see text below) n These 8 bytes contain either a
symbol name or an index to a
symbol

8-11 long int n_value Symbol value; storage class
dependent

12-13 short n_scnum Section number of symbol

14-15 unsigned short n_type Basic and derived type
specification

16 char n_sc1ass Storage class of symbol

17 char n_numaux Number of auxiliary entries

Figure 11-22: Symbol Table Entry Format

Symbol Names
The first 8 bytes in the symbol table entry are a union of a character

array and two longs. If the symbol name is eight characters or less, the
(null-padded) symbol name is stored there. If the symbol name is longer
than eight characters, then the entire symbol name is stored in the string
table. In this case, the 8 bytes contain two long integers, the first is zero,
and the second is the offset (relative to the beginning of the string table) of
the name in the string table. Since there can be no symbols with a null
name, the zeroes on the first 4 bytes serve to distinguish a symbol table
entry with an offset from one with a name in the first 8 bytes as shown in
Figure 11-23.

COMMON OBJECT FILE FORMAT (COFF) 11-23

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-7 char n_name 8-character null-padded sym-
bol name

0-3 long n_zeroes Zero in this field indicates the
name is in the string table

4-7 long n_offset Offset of the name in the
string table

Figure 11-23: Name Field

Special symbols generated by the C Compilation System are discussed
above in "Special Symbols."

Storage Classes
The storage class field has one of the values described in Figure 11-24.

These #define's may be found in the header file storclass.h.

Mnemonic Value Storage Class
C EFCN -1 physical end of a function
C NULL 0 -
C_AUTO 1 automatic variable

C EXT 2 external symbol
C_STAT 3 static
C REG 4 register variable
C_EXTDEF 5 external definition
C LABEL 6 label
C ULABEL 7 undefined label

C_MOS 8 member of structure

C ARG 9 function argument
C STRTAG 10 structure tag
C_MOU 11 member of union
C_UNTAG 12 union tag
C_TPDEF 13 type definition

11-24 PROGRAMMER'S GUIDE

---------------- The Common Object File Format (COFF)

Mnemonic Value Storage Class
C_USTATIC 14 uninitialized static
C ENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C FIELD 18 bit field

C BLOCK 100 beginning and end of block
C_FCN 101 beginning and end of function
C EOS 102 end of structure
C FILE 103 filename
C_LINE 104 used only by utility programs
CALlAS 105 duplicated tag
CHIDDEN 106 like static, used to avoid name conflicts

Figure 11-24: Storage Classes

r-'.
\. All of these storage classes except for C_ALIAS and C_HIDDEN are gen-

erated by the cc or as commands. The compress utility, cprs, generates the
C_ALIAS mnemonic. This utility (described in the User's Reference Manual)
removes duplicated structure, union, and enumeration definitions and puts
alias entries in their places. The storage class C_HIDDEN is not used by
any UNIX system tools.

Some of these storage classes are used only internally by the C Compila­
tion Systems. These storage classes are C_EFCN, C_EXTDEF, C._ULABEL,
C_USTATIC, and C_LINE.

Storage Classes for Special Symbols
Some special symbols are restricted to certain storage classes. They are

given in Figure 11-25.

COMMON OBJECT FILE FORMAT (COFF) 11-25

The Common Object File Format (COFF)

Special Symbol Storage Class
.file C FILE
.bb C BLOCK
.eb C BLOCK
.bf C FCN

.ef C FCN

.target C AUTO
xfake C STRTAG, C UNTAG, C ENTAG
.eos C EOS
.text C STAT
.data C STAT
.bss C STAT

Figure 11-25: Storage Class by Special Symbols

Also some storage classes are used only for certain special symbols.
They are summarized in Figure 11-26.

Storage Class
C BLOCK
CyCN
C EOS
C FILE

Special Symbol
.bb, .eb
.bf, .ef
.eos
.file

Figure 11-26: Restricted Storage Classes

Symbol Value Field
The meaning of the value of a symbol depends on its storage class. This

relationship is summarized in Figure 11-27.

11-26 PROGRAMMER'S GUIDE

~.'... '
~ ~/

"

The Common Object File Format (COFF)

Storage Class Meaning of Value
C AUTO stack offset in bytes
C_EXT relocatable address
C_STAT relocatable address
C_REC register number
C LABEL relocatable address
C_MOS offset in bytes
C ARC stack offset in bytes
C_STRTAG 0
C MOU 0
C_UNTAG 0
C TPDEF 0
C ENTAG 0
C_MOE enumeration value
C REGPARM register number
C FIELD bit displacement
C BLOCK relocatable address
C_FCN relocatable address
C EOS size
C_FILE (see text below)

CALlAS tag index
CHIDDEN relocatable address

Figure 11-27: Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries
form a one-way linked list in the symbol table. If there are no more .file
entries in the symbol table, the value of the symbol is the index of the first
global symbol.

Relocatable symbols have a value equal to the virtual address of that
symbol. When the section is relocated by the link editor, the value of these
symbols changes.

COMMON OBJECT FILE FORMAT (COFF) 11-27

The Common Object File Format (COFF)

Section Number Field
Section numbers are listed in Figure 11-28.

Mnemonic Section Number Meaning

N_DEBUG -2 Special symbolic debugging
symbol

NABS -1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1-077777 Section number where symbol
is defined

Figure 11-28: Section Number

A special section number (-2) marks symbolic debugging symbols,
including structure/union/enumeration tag names, typedefs, and the name
of the file. A section number of -1 indicates that the symbol has a value
but is not relocatable. Examples of absolute-valued symbols include ~

automatic and register variables, function arguments, and .eos symbols. J

With one exception, a section number of 0 indicates a relocatable exter­
nal symbol that is not defined in the current file. The one exception is a
multiply defined external symbol (Le., FORTRAN common or an uninitial­
ized variable defined external to a function in C). In the symbol table of
each file where the symbol is defined, the section number of the symbol is 0
and the value of the symbol is a positive number giving the size of the sym­
bol. When the files are combined to form an executable object file, the link
editor combines all the input symbols of the same name into one symbol
with the section number of the .bss section. The maximum size of all the
input symbols with the same name is used to allocate space for the symbol
and the value becomes the address of the symbol. This is the only case
where a symbol has a section number of 0 and a non-zero value.

Section Numbers and Storage Classes
Symbols having certain storage classes are also restricted to certain sec-

tion numbers. They are summarized in Figure 11-29. ,

11-28 PROGRAMMER'S GUIDE

~('

~.... ~
('

~'

-------------- The Common Object File Format (COFF)

Storage Class Section Number
C AUTO NABS
C_EXT N_ABS, N_UNDEF, N_SCNUM
C STAT N SCNUM
C REG NABS
C LABEL N UNDEF, N_SCNUM

C_MOS N_ABS
C ARG NABS
C STRTAG N DEBUG
C_MOU N_ABS
C UNTAG N_DEBUG
C_TPDEF N_DEBUG
C ENTAG N_DEBUG
C MOE NABS
C REGPARM NABS
C FIELD NABS
C_BLOCK N_SCNUM
C FCN N_SCNUM
C_EOS N_ABS
C FILE N DEBUG
C_ALIAS N_DEBUG

Figure 11-29: Section Number and Storage Class

Type Entry
The type field in the symbol table entry contains information about the

basic and derived type for the symbol. This information is generated by the
C Compilation System only if the -g option is used. Each symbol has
exactly one basic or fundamental type but can have more than one derived
type. The format of the 16-bit type entry is

COMMON OBJECT FILE FORMAT (COFF) 11-29

The Common Object File Format (COFF)

d6 d5 d4 d3 d2 dl typ

Bits 0 through 3, called typ, indicate one of the fundamental types
given in Figure 11-30.

Mnemonic Value Type
T NULL 0 type not assigned

T VOID 1 void
T_CHAR 2 character
T SHORT 3 short in~eger
TINT 4 integer

T LONG 5 long integer
T FLOAT 6 floating point
T_DOUBLE 7 double word
T STRUCT 8 structure
T UNION 9 union
T ENUM 10 enumeration

T MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T USHORT 13 unsigned short
T UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 11-30: Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked dl through d6.
These d fields represent levels of the derived types given in Figure 11-31. ~

11-30 PROGRAMMER'S GUIDE

---------------- The Common Object File Format (COFF)

Mnemonic Value Type
DT NON 0 no derived type
DT_PTR 1 pointer
DT FeN 2 function
DT ARY 3 array

Figure 11-31: Derived Types

The following examples demonstrate the interpretation of the symbol
table entry representing type.

char *func () ;

Here func is the name of a function that returns a pointer to a character.
The fundamental type of func is 2 (character), the dl field is 2 (function),
and the d2 field is 1 (pointer). Therefore, the type word in the symbol table
for func contains the hexadecimal number Ox62, which is interpreted to
mean a function that returns a pointer to a character.

short *tabptr[10][25][3];

Here tabptr is a three-dimensional array of pointers to short integers.
The fundamental type of tabptr is 3 (short integer); the dl, d2, and d3 fields
each contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type
entry in the symbol table contains the hexadecimal number Ox7f3 indicating
a three-dimensional array of pointers to short integers.

Type Entries and Storage Classes
Figure 11-32 shows the type entries that are legal for each storage class.

COMMON OBJECT FILE FORMAT (COFF) 11-31

The Common Object File Format (COFF)

d Entry
Storage typ Entry

Class Function? Array? Pointer? Basic Type
C_AUTO no yes yes Any except T_MOE

C_EXT yes yes yes Any except T_MOE

C_STAT yes yes yes Any except T_MOE

C_REG no no yes Any except T_MOE

C LABEL no no no T NULL
C_MOS no yes yes Any except T_MOE

C_ARG yes no yes Any except T_MOE

C STRTAG no no no T STRUCT
C MOU no yes yes Any except T_MOE

C UNTAG no no no T UNION
C_TPDEF no yes yes Any except T_MOE

C ENTAG no no no T ENUM
C MOE no no no T MOE
C_REGPARM no no yes Any except T_MOE

C_FIELD no no no T_ENUM, T_UCHAR,
T_USHORT, T_UNIT,
T_ULONG

C BLOCK no no no T NULL
C_FCN no no no T_NULL
C EOS no no no T_NULL
C FILE no no no T NULL
C_ALIAS no no no T_STRUCT, T_UNION,

T_ENUM

Figure 11-32: Type Entries by Storage Class

11-32 PROGRAMMER'S GUIDE

.,

.~

--------------- The Common Object File Format (COFF)

Conditions for the d entries apply to dl through d6, except that it is
impossible to have two consecutive derived types of function.

Although function arguments can be declared as arrays, they are
changed to pointers by default. Therefore, no function argument can have
array as its first derived type.

Structure for Symbol Table Entries
The C language structure declaration for the symbol table entry is given

in Figure 11-33. This declaration may be found in the header file syms.h.

COMMON OBJECT FILE FORMAT (COFF) 11·33

The Common Object File Format (COFF)

struct syment
{

union

..~

char

struct
{

1* symbol nanle*1

lang

lang 1* location in string table *1

} _n;
unsigned larv:J

short

unsigned short 1* type and derived *1

char

char
} ;

1* storage class *1

#define n name
#define n ZenJeS

#define n offset
#define n_nptr

#define SYMNMLEN 8
#define SYMESZ 18

n. n name
_n. _n_n. _n_zeroes
n. n n. n offset- - - --_n._n_nptr[1l

1* size of a symbol table entry *1

Figure 11-33: Symbol Table Entry Declaration

11-34 PROGRAMMER'S GUIDE

--------------- The Common Object File Format (COFF)

Auxiliary Table Entries
An auxiliary table entry of a symbol contains the same number of bytes

as the symbol table entry. However, unlike symbol table entries, the format
of an auxiliary table entry of a symbol depends on its type and storage class.
They are summarized in Figure 11-34.

Type Entry
Storage Auxiliary

Name Class dl typ Entry Format
.file C FILE DT NON T NULL filename
.text,.data, C_STAT DT_NON T_NULL section
.bss
tagname C_STRTAG DT_NON T_NULL tag name

C_UNTAG
C ENTAG

.eos C_EOS DT_NON T_NULL end of .;truc-
ture

fcname C EXT DT_FCN (Note 1) function
C_STAT

arrname (Note 2) DT ARY (Note 1) array
.bb,.eb C_BLOCK DT_NON T_NULL beginning and

end of block

.bf,.ef C_FCN DT_NON T_NULL beginning and
end of function

name related (Note 2) DT_PTR, T_STRUCT, name related
to structure, DT_ARR, T_UNION, to structure,
union, DT_NON T_ENUM union,
enumeration enumeration

Figure 11-34: Auxiliary Symbol Table Entries

Notes to Figure 11-34:

1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

COMMON OBJECT FILE FORMAT (COFF) 11-35

The Common Object File Format (COFF)

In Figure 11-34, tagname means any symbol name including the special
symbol .xfake, and fcname and arrname represent any symbol name for a
function or an array respectively. Any symbol that satisfies more than one
condition in Figure 11-34 should have a union format in its auxiliary entry.

It is a mistake to assume how many auxiliary entries are associated with
any given symbol table entry. This information is available, and should
be obtained from the D_Dumaux field in the symbol table.

Filenames
Each of the auxiliary table entries for a filename contains a 14-character

filename in bytes 0 through 13. The remaining bytes are O.

Sections
The auxiliary table entries for sections have the format as shown in Fig­

ure 11-35.

Bytes Declaration Name Description
0-3 long int x_senlen section length

4-5 unsigned short x_nreloc number of relocation
entries

6-7 unsigned short x_nUnno number of line numbers

8-17 - - unused (filled with zeroes)

Figure 11-35: Format for Auxiliary Table Entries for Sections

Tag Names
The auxiliary table entries for tag names have the format shown in Fig­

ure 11-36.

11-36 PROGRAMMER'S GUIDE

~
\"

--------------- The Common Object File Format (COFF)

Bytes Declaration Name Description
0-5 - - unused (filled with zeroes)

6-7 unsigned short x_size size of structure, union, and
enumeration

8-11 - - unused (filled with zeroes)

12-15 long int x_endndx index of next entry beyond
this structure, union, or
enumeration

16-17 - - unused (filled with zeroes)

Figure 11-36: Tag Names Table Entries

End of Structures
The auxiliary table entries for the end of structures have the format

shown in Figure 11-37:

Bytes Declaration Name Description
0-3 long int x_tagndx tag index
4-5 - - unused (filled with zeroes)

6-7 unsigned short x_size size of structure, union, or
enumeration

8-17 - - unused (filled with zeroes)

Figure 11-37: Table Entries for End of Structures

Functions
The auxiliary table I?ntries for functions have the format shown in Fig­

ure 11-38:

COMMON OBJECT FILE FORMAT (COFF) 11-37

The Common Object File Format (COFF)

Bytes Declaration Name Description
0-3 long int x tagndx tag index
4-7 long int x_fsize size of function (in bytes)

8-11 long int xJnnoptr file pointer to line number

12-15 long int x_endndx index of next entry beyond
this point

16-17 unsigned short x_tvndx index of the function's address
in the transfer vector table
(not used in UNIX system)

Figure 11-38: Table Entries for Functions

Arrays
The auxiliary table entries for arrays have the format shown in Figure

11-39. Defining arrays having more than four dimensions produces a warn- .~

ing message.)

Bytes Declaration Name Description
0-3 long int x_tagndx tag index
4-5 unsigned short xJnno line number of declaration

6-7 unsigned short x_size size of array
8-9 unsigned short x dimen(O] first dimension
10-11 unsigned short x_dimen(l] second dimension

12-13 unsigned short x dimen(2] third dimension
14-15 unsigned short x dimen(3] fourth dimension
16-17 - - unused (filled with zeroes)

Figure 11-39: Table Entries for Arrays

11-38 PROGRAMMER'S GUIDE

~.

---------------- The Common Object File Format (COFF)

End of Blocks and Functions
The auxiliary table entries for the end of blocks and functions have the

format shown in Figure 11-40:

Bytes Declaration Name Description
0-3 - - unused (filled with zeroes)

4-5 unsigned short xJnno C-source line number

6-17 - - unused (filled with zeroes)

Figure 11-40: End of Block and Function Entries

Beginning of Blocks and Functions
The auxiliary table entries for the beginning of blocks and functions

have the format shown in Figure 11-41:

Bytes Declaration Name Description
0-3 - - unused (filled with zeroes)

4-5 unsigned short xJnno C-source line number

6-11 - - unused (filled with zeroes)

12-15 long int x_endndx index of next entry past this
block

16-17 - - unused (filled with zeroes)

Figure 11-41: Format for Beginning of Block and Function

Names Related to Structures, Unions, and Enumerations
The auxiliary table entries for structure, union, and enumeration sym­

bols have the format shown in Figure 11-42:

COMMON OBJECT FILE FORMAT (COFF) 11-39

The Common Object File Format (COFF)

Bytes Declaration Name Description
0-3 long int x tagndx tag index
4-5 - - unused (filled with zeroes)

6-7 unsigned short x_size size of the structure, union, or
enumeration

8-17 - - unused (filled with zeroes)

Figure 11-42: Entries for Structures, Unions, and Enumerations

Aggregates defined by typedef mayor may not have auxiliary table
entries. For example,

typedef st:ruct people SlUDENl'j

struct people
{

char name[20] ;
long id;

} ;

typedef st:ruct people EmJImEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table
but symbol STUDENT will not because it is a forward reference to a struc­
ture.

Auxiliary Entry Declaration
The C language structure declaration for an auxiliary symbol table entry

is given in Figure 11-43. This declaration may be found in the header file .~

syms.h. }

11-40 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

union auxent

struct
{

long x_tagndx;
union

struct
{

unsigned s1x>rt x_lnno;
unsigned s1x>rt x_size;

} x_lnsz;
ICD] x_fsize;

} x_misc;
union

struct

unsigned s1x>rt x_dimen[DIMNUM] ;

} x_ary;
} x_fcnary;
unsigned short x_tvmx;

} X_syI!l;

struct
{

char x_fname[FIU+tLEN] ;

} x_file;
struct
{

long x_scn1en;
unsigned s1x>rt x_nreloc;
unsigned s1x>rt x_nli.nno;

} x_sen;

COMMON OBJECT FILE FORMAT (COFF) 11-41

The Common Object File Format (COFF)

continued

struet
{

lav:r x_tvfill;
unsigned short x_tvlen;
unsigned sb:n:t x_tvran[2];

} x_tv;
}

#define:FIUK.m 14
#define DIMNUM 4

#define ADXENl' union auxent
#define ADXESZ 18

Figure 11-43: Auxiliary Symbol Table Entry

String Table
Symbol table names longer than eight characters are stored contiguously

in the string table with each symbol name delimited by a null byte. The
first four bytes of the string table are the size of the string table in bytes;
offsets into the string table, therefore, are greater than or equal to 4. For
example, given a file containing two symbols (with names longer then eight
characters, long_name_l and another_one) the string table has the format as
shown in Figure 11-44:

11-42 PROGRAMMER'S GUIDE

---------------- The Common Object File Format (COFF)

'I' '0' In' 'g'

, , In' 'a' 'm'-

Ie' , ,
'I' '\0'-

'a' In' '0' It'

'h' Ie' 'r' , ,
-

'0' In' Ie' '\0'

Figure 11-44: String Table

The index of long_name_1 in the string table is 4 and the index of
another_one is 16.

Access Routines
UNIX system releases contain a set of access routines that are used for

reading the various parts of a common object file. Although the calling pro­
gram must know the detailed structure of the parts of the object file it
processes, the routines effectively insulate the calling program from the
knowledge of the overall structure of the object file.

The access routines can be divided into four categories:

1. functions that open or close an object file

2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular sec­
tion of the object file

4. a function that returns the symbol table index for a particular sym­
bol

COMMON OBJECT FILE FORMAT (COFF) 11-43

The Common Object File Format (COFF)

These routines can be found in the library libld.a and are listed in Sec­
tion 3 of the Programmer's Reference Manual. A summary of what is available
can be found in the Programmer's Reference Manual under Idfcn(4).

11·44 PROGRAMMER'S GUIDE

12 The Link Editor

The Link Editor
Memory Configuration
Sections
Addresses
Binding
Object File

Link Editor Command Language
Expressions
Assignment Statements
Specifying a Memory Configuration
Section Definition Directives

• File Specifications
• Load a Section at a Specified Address
• Aligning an Output Section
• Grouping Sections Together
• Creating Holes Within Output Sections
• Creating and Defining Symbols at Link-Edit

Time
• Allocating a Section Into Named Memory
• Initialized Section Holes or .bss Sections

Notes and Special Considerations
Changing the Entry Point
Use of Archive Libraries
Dealing With Holes in Physical Memory
Allocation Algorithm
Incremental Link Editing

12-1

12-1

12·2

12·2

12·2

12-3

12-4

12-4

12·5

12·7

12-9

12-10

12-11

12-12

12·13

12·16

12-18

12-20

12-20

12-23

12-23

12-23

12-25

12-27

12-27

THE LINK EDITOR

The Link Editor

DSECT, COPY, NOLOAD, INFO, and OVERLAY
Sections

Output File Blocking
Nonrelocatable Input Files

12-29

12-31

12-31

Syntax Diagram for Input Directives 12-33

II PROGRAMMER'S GUIDE

~,
\"

~.... ,.. "
~:"",

The Link Editor

In Chapter 2 there was a discussion of link editor command line options
(some of which may also be provided on the cc(l) command line). This
chapter contains information on the Link Editor Command Language.

The command language enables you to

• specify the memory configuration of the target machine

• combine the sections of an object file in arrangements other than the
default

• bind sections to specific addresses or within specific portions of
memory

• define or redefine global symbols

Under most normal circumstances there is no compelling need to have
such tight control over object files and where they are located in memory.
When you do need to be very precise in controlling the link editor output,
you do it by means of the command language.

Link editor command language directives are passed in a file named on
the Id(l) command line. Any file named on the command line that is not
identifiable as an object module or an archive library is assumed to contain
directives. The following paragraphs define terms and describe conditions
with which you need to be familiar before you begin to use the command
language.

Memory Configuration
The virtual memory of the target machine is, for purposes of allocation,

partitioned into configured and unconfigured memory. The default condi­
tion is to treat all memory as configured. It is common with microprocessor
applications, however, to have different types of memory at different
addresses. For example, an application might have 3K of PROM (Pro­
grammable Read-Only Memory) beginning at address 0, and 8K of ROM
(Read-Only Memory) starting at 20K. Addresses in the range 3K.to 20K-l
are then not configured. Unconfigured memory is treated as reserved or
unusable by Id(l). Nothing can ever be linked into unconfigured memory.
Thus, specifying a certain memory range to be unconfigured is one way of
marking the addresses (in that range) illegal or nonexistent with respect to

THE LINK EDITOR 12·1

The Link Editor

the linking process. Memory configurations other than the default must be
explicitly specified by you (the user).

Unless otherwise specified, all discussion in this document of memory, ~..
addresses, etc. are with respect to the configured sections of the address J
space.

Sections
A section of an object file is the smallest unit of relocation and must be

a contiguous block of memory. A section is identified by a starting address
and a size. Information describing all the sections in a file is stored in sec­
tion headers at the start of the file. Sections from input files are combined
to form output sections that contain executable text, data, or a mixture of
both. Although there may be holes or gaps between input sections and
between output sections, storage is allocated contiguously within each out­
put section and may not overlap a hole in memory.

Addresses
The physical address of a section or symbol is the relative offset from

address zero of the address space. The physical address of an object is not
necessarily the location at which it is placed when the process is executed.
For example, on a system with paging, the address is with respect to address
zero of the virtual space, and the system performs another address transla­
tion.

Binding
It is often necessary to have a section begin at a specific, predefined

address in the address space. The process of specifying this starting address
is called binding, and the section in question is said to be bound to or
bound at the required address. While binding is most commonly relevant
to output sections, it is also possible to bind special absolute global symbols
with an assignment statement in the ld(l) command language.

12-2 PROGRAMMER'S GUIDE

The Link Editor

Object File
Object files are produced both by the assembler (typically as a result of

calling the compiler) and by Id(l}. Id(l} accepts relocatable object files as
input and produces an output object file that mayor may not be relocatable.
Under certain special circumstances, the input object files given to Id(l} can
also be absolute files.

Files produced from the compilation system may contain, among others,
sections called .text and .data. The .text section contains the instruction
text (executable instructions), .data contains initialized data variables. For
example, if a C program contained the global (Le., not inside a function)
declaration

int i = 100;

and the assignment

i = 0;

then compiled code from the C assignment is stored in .text, and the vari­
able i is located in .data.

THE LINK EDITOR 12-3

Link Editor Command Language

Expressions
Expressions may contain global symbols, constants, and most of the

basic C language operators. (See Figure 12-2, "Syntax Diagram for Input
Directives.") Constants are as in C with a number recognized as decimal
unless preceded with 0 for octal or Ox for hexadecimal. All numbers are
treated as long integers's. Symbol names may contain uppercase or lower­
case letters, digits, and the underscore, _. Symbols within an expression
have the value of the address of the symbol only. Id(1) does not do symbol
table lookup to find the contents of a symbol, the dimensionality of an
array, structure elements declared in a C program, etc.

Id(1) uses a lex-generated input scanner to identify symbols, numbers,
operators, etc. The current scanner design makes the following names
reserved and unavailable as symbol names or section names:

ADDR BLOCK GROUP NEXT RANGE SPARE)ALIGN COMMON INFO NOLOAD REGIONS PHY
ASSIGN COpy LENGTH ORIGIN SECTIONS TV
BIND DSECT MEMORY OVERLAY SIZEOF

addr block length origin sizeof
align group next phy spare
assign I 0 range
bind len org s

The operators that are supported, in order of precedence from high to
low, are shown in Figure 12-1:

12-4 PROGRAMMER'S GUIDE

Link Editor Command Language

symbol

! - - (UNARY Minus)
* 1 %
+ - (BINARY Minus)
» «

!= > < <= >=
&
I
&&
I
= +=

Figure 12-1: Operator Symbols

*= 1=

The above operators have the same meaning as in the C language. Opera­
tors on the same line have the same precedence.

Assignment Statements
External symbols may be defined and assigned addresses via the assign­

ment statement. The syntax of the assignment statement is

symbol = expression;

or

symbol op= expression;

where op is one of the operators +, -, *, or I. Assignment statements must
be terminated by a semicolon.

All assignment statements (with the exception of the one case described
in the following paragraph) are evaluated after allocation has been per­
formed. This occurs after all input-file-defined symbols are appropriately
relocated but before the actual relocation of the text and data itself. There­
fore, if an assignment statement expression contains any symbol name, the
address used for that symbol in the evaluation of the expression reflects the
symbol address in the output object file. References within text and data (to
symbols given a value through an assignment statement) access this latest

THE LINK EDITOR 12-5

Link Editor Command Language

assigned value. Assignment statements are processed in the same order in
which they are input to ld(l).

Assignment statements are normally placed outside the scope of '~,

section-definition directives (see "Section Definition Directives" under "Link)
Editor Command Language"). However, there exists a special symbol, called
dot, ., that can occur only within a section-definition directive. This symbol
refers to the current address of ld(l)'s location counter. Thus, assignment
expressions involving. are evaluated dUring the allocation phase of ld(l).
Assigning a value to the. symbol within a section-definition directive can
increment (but not decrement) ld(l)'s location counter and can create holes
within the section, as described in "Section Definition Directives. lt Assign-
ing the value of the. symbol to a conventional symbol permits the final
allocated address (of a particular point within the link edit run) to be saved.

align is provided as a shorthand notation to allow alignment of a sym­
bol to an n-byte boundary within an output section, where n' is a power of
2. For example, the expression

align(n)

is equivalent to

(. + n - 1) &- (n - 1)

SIZEOF and ADDR are pseudo-functions that, given the name of a sec­
tion, return the size or address of the section respectively. They may be
used in symbol definitions outside of section directives.

Link editor expressions may have either an absolute or a relocatable
value. When Id(l) creates a symbol through an assignment statement, the
symbol's value takes on that type of expression. That type depends on the
follOWing rules:

• An expression with a single relocatable symbol (and zero or more
constants or absolute symbols) is relocatable.

• The difference of two relocatable symbols from the same section is
absolute.

• All other expressions are combinations of the above.

12-6 PROGRAMMER'S GUIDE

~
~ ~'

Link Editor Command Language

Specifying a Memory Configuration
MEMORY directives are used to specify

1. The total size of the virtual space of the target machine.

2. The configured and unconfigured areas of the virtual space.

If no directives are supplied, Id(l} assumes that all memory is configured.
The size of the default memory is dependent upon the target machine.

By means of MEMORY directives, an arbitrary name of up to eight char­
acters is assigned to a virtual address range. Output sections can then be
forced to be bound to virtual addresses within specifically named memory
areas. Memory names may contain uppercase or lowercase letters, digits,
and the special characters $, ., or _. Names of memory ranges are used by
Id(l) only and are not carried in the output file symbol table or headers.

When MEMORY directives are used, all virtual memory not described in
a MEMORY directive is considered to be unconfigured. Unconfigured
memory is not used in Id(l)'s allocation process; hence nothing except
DSECT sections can be link edited or bound to an address within
unconfigured memory.

As an option on the MEMORY directive, attributes may be associated
with a named memory area. In future releases this may be used to prOVide
error checking. Currently, error checking of this type is not implemented.

The attributes currently accepted are

1. R: readable memory

2. W: writable memory

3. X: executable, Le., instructions may reside in this memory

4. I: initializable, Le., stack areas are typically not initialized

Other attributes may be added in the future if necessary. If no attributes
are specified on a MEMORY directive or if no MEMORY directives are sup­
plied, memory areas assume the attributes of R, W, X, and I.

THE LINK EDITOR 12-7

Link Editor Command Language

The syntax of the MEMORY directive is

MDDRY
(

name1 (attr)
name2 (attr)
etc.

origin =n 1, len;th =n2
origin =n3, len;th =n4

The keyword origin (or org or 0) must precede the origin of a memory
range, and length (or len or I) must precede the length as shown in the
above prototype. The origin operand refers to the virtual address of the
memory range. origin and length are entered as long integer constants in
either decimal, octal, or hexadecimal (standard C syntax). origin and length
specifications, as well as individual MEMORY directives, may be separated '1,
by white space or a comma.

By specifying MEMORY directives, ld(l) can be told that memory is
configured in some manner other than the default. For example, if it is
necessary to prevent anything from being linked to the first OxlOOOO words
of memory, a MEMORY directive can accomplish this.

valid : orq = Ox10000, len =OxFEOOOO

12-8 PROGRAMMER'S GUIDE

Link Editor Command Language

Section Definition Directives
The purpose of the SECTIONS directive is to describe how input sec­

tions are to be combined, to direct where to place output sections (both in
relation to each other and to the entire virtual memory space), and to per­
mit the renaming of output sections.

In the default case where no SECTIONS directives are given, all input
sections of the same name appear in an output section of that name. If two
object files are linked, one containing sections sl and s2 and the other con­
taining sections s3 and s4, the output object file contains the four sections
sl, s2, s3, and s4. The order of these sections would depend on the order in
which the link editor sees the input files.

The basic syntax of the SECTIONS directive is

secnaIIe1

file_specifications t

assigment_statements
}

secnaIIe2 :

file_specifications t

assigment_statements

etc.
}

The various types of section definition directives are discussed in the
remainder of this section.

THE LINK EDITOR 12-9

Link Editor Command Language

File Specifications
Within a section definition, the files and sections of files to be included

in the output section are listed in the order in which they are to appear in ~.
the output section. Sections from an input file are specified by

filename (secname)

or

filename (secnam1 s~ . • •)

Sections of an input file are separated either by white space or commas as
are the file specifications themselves.

filename [~]

may be used in the same way to refer to all the uninitialized, unallocated
global symbols in a file.

If a file name appears with no sections listed, then all sections from the
file (but not the uninitialized, unallocated globals) are linked into the
current output section. For example,

outsec1:
{

fUe1.o (sec1)
fUe2.o
fUe3.o (sec1, sec2)

According to this directive, the order in which the input sections appear in
the output section outsecl would be ')

12-10 PROGRAMMER'S GUIDE

Link Editor Command Language

1. section secl from file filel.o

2. all sections from file2.o, in the order they appear in the file

3. section secl from file file3.o, and then section sec2 from file file3.o

If there are any additional input files that contain input sections also named
outsecl, these sections are linked following the last section named in the
definition of outsecl. If there are any other input sections in filel.o or
file3.o, they will be placed in output sections with the same names as the
input sections unless they are included in other file specifications.

The code

*(secname)

may be used to indicate all previously unallocated input sections of the
given name, regardless of what input file they are contained in.

Load a Section at a Specified Address
Bonding of an output section to a specific virtual address is accom­

plished by an Id(l) option as shown in the following SECTIONS directive
example:

SEJ:TIONS

{

outsec addr:
{

}

etc.

The addr is the bonding address expressed as a C constant. If outsec does
not fit at addr (perhaps because of holes in the memory configuration or
because outsec is too large to fit without overlapping some other output sec­
tion), Id(l) issues an appropriate error message. addr may also be the word
BIND, followed by a parenthesized expression. The expression may use the

THE LINK EDITOR 12-11

Link Editor Command Language

pseudo-functions SIZEOF, ADDR or NEXT. NEXT accepts a constant and
returns the first multiple of that value that falls into configured unallocated
memory; SIZEOF and ADDR accept previously defined sections.

As long as output sections do not overlap and there is enough space,
they can be bound anywhere in configured memory. The SECTIONS direc­
tives defining output sections need not be given to Id(l) in any particular
order, unless SIZEOF or ADDR is used.

Id(l) does not ensure that each section's size consists of an even number
of bytes or that each section starts on an even byte boundary. The assem­
bler ensures that the size (in bytes) of a section is evenly divisibl~ by 4.
ld(l) directives can be used to force a section to start on an odd byte boun­
dary although this is not recommended. If a section starts on an odd byte
boundary, the section's contents are either accessed incorrectly or are not
executed properly. When a user specifies an odd byte boundary, ld(l) issues
a warning message.

Aligning an Output Section
It is possible to request that an output section be bound to a virtual

address that falls on an n-byte boundary, where n is a power of 2. The
ALIGN option of the SECTIONS directive performs this function, so that
the option

ALIGN(n)

is equivalent to specifying a bonding address of

(• + n - 1) &- (n - 1)

For example,

12-12 PROGRAMMER'S GUIDE

Link Editor Command Language

outsec ALIGN(0x20000)
{

}

etc.

The output section outsec is not bound to any given address but is placed at
some virtual address that is a multiple of Ox20000 (e.g., at address OxO,
Ox20000, Ox40000, Ox60000, etc.).

Grouping Sections Together
The default allocation algorithm for Id(l)

1. Links all input .init sections together, followed by .text sections,
into one output section. This output section is called .text and is
bound to an address of OxO plus the size of all headers in the output
file.

2. Links all input .data sections together into one output section. This
output section is called .data and, in paging systems, is bound to an
address aligned to a machine dependent constant plus a number
dependent on the size of headers and text.

3. Links all input .bss sections together with all uninitialized, unallo­
cated global symbols, into one output section. This output section is
called .bss and is allocated so as to immediately follow the output
section .data. Note that the output section .bss is not given any par­
ticular address alignment.

Specifying any SECTIONS directives results in this default allocation
not being performed. Rather than relying on the Id(l) default algorithm, if
you are manipulating COFF files, the one certain way of determining
address and order information is to take it from the file and section headers.

THE LINK EDITOR 12-13

Link Editor Command Language

The default allocation of Id(1) is equivalent to supplying the following
directive:

.text sizeof_headers : { *(.init) *(.text) }

GROOP BIND(NEK'l'(align_value) +

«SIZEDF(•text) + AIDR(. text» " Ox2000»

•data { }
.bss { }

where align_value is a machine dependent constant. The GROUP command
ensures that the two output sections, .data and .bss, are allocated (e.g.,
grouped) together. Bonding or alignment information is supplied only for
the group and not for the output sections contained within the group. The
sections making up the group are allocated in the order listed in the direc­
tive.

If .text, .data, and .bss are to be placed in the same segment, the follow­
ing SECTIONS directive is used:

12-14 PROGRAMMER'S GUIDE

~.'"\'" '

Link Editor Command Language

GRaJp

{

.text { }

.data { }

.bss { }

Note that there are still three output sections (.text, .data, and .bss), but
now they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting
address or aligned simply by adding a field to the GROUP directive. To
bind to OxCOOOO, use

GROUP OxCOOOO : {

To align to OxlOOOO, use

GROUP ALIGN(Ox10000) : {

With this addition, first the output section .text is bound at OxCOOOO (or is
aligned to OxlOOOO); then the remaining members of the group are allo­
cated in order of their appearance into the next available memory locations.

When the GROUP directive is not used, each output section is treated as
an independent entity:

THE LINK EDITOR 12-15

Link Editor Command Language

.text : { }

.data ALIGN(0x20000)

.bss : { }
{ }

The .text section starts at virtual address OxO (if it is in configured memory)
and the .data section at a virtual address aligned to Ox20000. The .bss sec­
tion follows immediately after the .text section if there is enough space. If
there is not, it follows the .data section. The order in which output sections
are defined to Id(1) cannot be used to force a certain allocation order in the
output file.

Creating Holes Within Output Sections
The special symbol dot, ., appears only within section definitions and '1

assignment statements. When it appears on the left side of an assignment
statement,. causes Id(l)'s location counter to be incremented or reset and a
hole left in the output section. Holes built into output sections in this
manner take up physical space in the output file and are initialized using a
fill character (either the default fill character (OxOO) or a supplied fill charac-
ter). See the definition of the -f option in "Using the Link Editor" and the
discussion of filling holes in "Initialized Section Holes" or .bss Sections." in
this chapter.

Consider the follOWing section definition:

12-16 PROGRAMMER'S GUIDE

Link Editor Command Language

c:utsec:
{

• += Ox1000;
f1.o (.text)

• += Ox100;
f2.o (. text)

· = align (4);

f3.o (.text)

The effect of this command is as follows:

1. A Oxl000 byte hole, filled with the default fill character, is left at the
beginning of the section. Input section £1.0 (.text) is linked after
this hole.

2. The .text section of input file £2.0 begins at OxtOO bytes following
the end of fl.o (.text).

3. The .text section of £3.0 is linked to start at the next full word boun­
dary follOWing the .text section of £2.0 with respect to the begin­
ning of outsec.

For the purposes of allocating and aligning addresses within an output
section, Id(l) treats the output section as if it began at address zero. As a
result, if, in the above example, outsec ultimately is linked to start at an odd
address, then the part of outsec built from £3.0 (.text) also starts at an odd
address-even though £3.0 (.text) is aligned to a full word boundary. This
is prevented by specifying an alignment factor for the entire output section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the sections it
generates to a full word length making explicit alignment specifications
unnecessary. This also holds true for the compiler.

THE LINK EDITOR 12-17

Link Editor Command Language

Expressions that decrement. are illegal. For example, subtracting a
value from the location counter is not allowed since overwrites are not
allowed. The most common operators in expressions that assign a value to .
are += and align. ')

Creating and Defining Symbols at Link-Edit Time
The assignment instruction of Id(1) can be used to give symbols a value

that is link-edit dependent. Typically, there are three types of assignments:

1. Use of • to adjust ld(l)'s location counter during allocation.

2. Use of . to assign an allocation-dependent value to a symbol.

3. Assigning an allocation-independent value to a symbol.

Case 1) has already been discussed in the previous section.

Case 2) provides a means to assign addresses (known only after allocation)
to symbols. For example,

cutsc1: {... }
cutsc2:
{

file1.o (s1)
s2_start = .
file2.o (s2)
s2_end = • - 1;

The symbol s2_start is defined to be the address of file2.o(s2), and s2_end is
the address of the last byte of file2.o(s2).

12-18 PROGRAMMER'S GUIDE

Link Editor Command Language

Consider the following example:

outsc1:
{

file1.o (.data)

mark = .;
• += 4;
file2.o (.data)

In this example, the symbol mark is created and is equal to the address
of the first byte beyond the end of filel.o's .data section. Four bytes are
reserved for a future run-time initialization of the symbol mark. The type
of the symbol is a long integer (32 bits).

Assignment instructions involving. must appear within SECTIONS
definitions since they are evaluated during allocation. Assignment instruc­
tions that do not involve. can appear within SECTIONS definitions but
typically do n~t. Such instructions are evaluated after allocation is com­
plete. Reassignment of a defined symbol to a different address is dangerous.
For example, if a symbol within .data is defined, initialized, and referenced
within a set of object files being link-edited, the symbol table entry for that
symbol is changed to reflect the new, reassigned physical address. How­
ever, the associated initialized data is not moved to the new address, and
there may be references to the old address. The Id(l) issues warning mes­
sages for each defined symbol that is being redefined within an ifile. How­
ever, assignments of absolute values to new symbols are safe because there
are no references or initialized data associated with the symbol.

THE LINK EDITOR 12-19

Link Editor Command Language

Allocating a Section Into Named Memory
It is possible to specify that a section be linked (somewhere) within a

specific named memory (as previously specified on a MEMORY directive).
(The > notation is borrowed from the UNIX system concept of redirected
output.) For example,

MEMJRY
{

mem1:
mem2 (1&1):

mem3 (1&1):

mem1:

o=OxOOOOOO
o=0x020000
o=0x070000
o=Ox120000

1=Ox10000
1=Ox40000
l=Ox40000
1=OX04000

wtsec1: { f1.o(.data) } > mem1
outsee2: { f2.o(.data) } > mem3

This directs ld(l) to place outsecl anywhere within the memory area named
meml (Le., somewhere within the address range OxO-OxFFFF or Ox120000­
Ox123FFF). The outsec2 is to be placed somewhere in the address range
Ox70000-0xAFFFF.

Initialized Section Holes or .bss Sections
When holes are created within a section (as in the example in "Creating

Holes within Output Sections"), ld(l) normally puts out bytes of zero as fill.
By default, .bss sections are not initialized at all; that is, no initialized data
is generated for any .bss section by the assembler nor supplied by the link
editor, not even zeros.

12·20 PROGRAMMER'S GUIDE

Link Editor Command Language

Initialization options can be used in a SECTIONS directive to set such
holes or output .bss sections to an arbitrary 2-byte pattern. Such initializa­
tion options apply only to .bss sections or holes. As an example, an applica­
tion might want an uninitialized data table to be initialized to a constant
value without recompiling the .0 file or a hole in the text area to be filled
with a transfer to an error routine.

Either specific areas within an output section or the entire output sec­
tion may be specified as being initialized. However, since no text is gen­
erated for an uninitialized .bss section, if part of such a section is initial­
ized, then the entire section is initialized. In other words, if a .bss section
is to be combined with a .text or .data section (both of which are initialized)
or if part of an output .bss section is to be initialized, then one of the fol­
lOWing will hold:

1. Explicit initialization options must be used to initialize all .bss sec­
tions in the output section.

2. Id(l) will use the default fill value to initialize all .bss sections in
the output section.

Consider the following Id(l) ifile:

THE LINK EDITOR 12-21

Link Editor Command Language

sec1:
{

£1.0
• =+ 0x200;
£2.0 Ltext)

} :: 0xDFFF
sec2:
{

£1.0 (.bas)

£2.0 (.bas) :: Ox1234
}

sec3:
{

£3.0 (.bss)

} :: 0xE'FFF
seo4: { £4.0 (.bss) }

In the example above, the Ox200 byte hole in section sect is filled with
the value OxDFFF. In section sec2, fl.o{.bss) is initialized to the default fill
value of OxOO, and f2.o{.bss) is initialized to Ox1234. All .bss sections within
sec3 as well as all holes are initialized to OxFFFF. Section sec4 is not initial­
ized; that is, no data is written to the object file for this section.

12-22 PROGRAMMER'S GUIDE

Notes and Special Considerations

Changing the Entry Point
The UNIX system a.out optional header contains a field for the (pri­

mary) entry point of the file. This field is set using one of the following
rules (listed in the order they are applied):

The value of the symbol specified
with the -e option, if present, is used.

1. The value of the symbol _start, if present, is used.

2. The value of the symbol main, if present, is used.

3. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field
through the -e option or by using an assignment instruction in an Hile of
the form

start = expressicm;

If Id(l) is called through cc(I), a startup routine is automatically linked
in. Then, when the program is executed, the routine exit(l) is called after
the main routine finishes to close file descriptors and do other cleanup. The
user must therefore be careful when calling Id(l) directly or when changing
the entry point. The user must supply the startup routine or make sure that
the program always calls exit rather than falling through the end. Other­
wise, the program will dump core.

Use of Archive Libraries
Each member of an archive library (e.g., libc.a) is a complete object file.

Archive libraries are created with the ar(l) command from object files gen­
erated by cc or as. An archive library is always processed using selective
inclusion: only those members that resolve existing undefined-symbol
references are taken from the library for link editing. Libraries can be
placed both inside and outside section definitions. In both cases, a member
of a library is included for linking whenever:

THE LINK EDITOR 12-23

Notes and Special Considerations

1. There exists a reference to a symbol defined in that member.

2. The reference is found by Id(l) prior to the actual scanning of the

~~ ~

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the library member are
included in the output section being defined. When a library member is
included by searching the library outside of a SECTIONS directive, all input
sections from the library member are included into the output section with
the same name. If necessary, new output sections are defined to provide a
place to put the input sections. Note, however, that

1. Specific members of a library cannot be referenced explicitly in an
ifile.

2. The default rules for the placement of members and sections cannot
be overridden when they apply to archive library members.

The -I option is a shorthand notation for specifying an input file com­
ing from a predefined set of directories and having a predefined name. By
convention, such files are archive libraries. However, they need not be so. ')
Furthermore, archive libraries can be specified without using the -I option
by simply giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a member to be
extracted from the library it must satisfy a reference that is known to be
unresolved at the time the library is searched. Archive libraries can be
specified more than once. They are searched every time they are encoun­
tered. Archive files have a symbol table at the beginning of the archive.
Id(l) will cycle through this symbol table until it has determined that it
cannot resolve any more references from that library.

Consider the following example:

1. The input files filel.o and file2.o each contain a reference to the
external function FCN.

2. Input filel.o contains a reference to symbol ABC.

3. Input file2.o contains a reference to symbol XYZ.

4. Library liba.a, member 0, contains a definition of XYZ.

12-24 PROGRAMMER'S GUIDE

------------------ Notes and Special Considerations

5. Library libe.a, member 0, contains a definition of ABC.

6. Both libraries have a member 1 that defines FCN.

~ If the ld(l) command were entered as

Id filel.o -Ia file2.o -Ic

then the FCN references are satisfied by liba.a, member 1, ABC is obtained
from libe.a, member 0, and XYZ remains undefined (because the library
liba.a is searched before file2.o is specified). If the Id(l) command were
entered as

Id filel.o file2.o -Ia -Ie

then the FCN references are satisfied by liba.a, member 1, ABC is obtained
from libe.a, member 0, and XYZ is obtained from liba.a, member o. If the
Id(l) command were entered as

Id filel.o file2.o -Ie -Ia

then the FCN references are satisfied by libe.a, member 1, ABC is obtained
from libe.a, member 0, and XYZ is obtained from liba.a, member O.

The -u option is used to force the linking of library members when the
link edit run does not contain an actual external reference to the members.
For example,

Id -u routl -Ia

creates an undefined symbol called routl in Id(l)'s global symbol table. If
any member of library liba.a defines this symbol, it (and perhaps other
members as well) is extracted. Without the -u option, there would have
been no unresolved references or undefined symbols to cause Id(l) to search
the archive library.

Dealing With Holes in Physical Memory
When memory configurations are defined such that unconfigured areas

exist in the virtual memory, each application or user must assume the
responsibility of forming output sections that will fit into memory. For
example, assume that memory is configured as follows:

THE LINK EDITOR 12-25

Notes and Special Considerations

MEMlRY
{

mem1:
mem2:
mem3:

o = OxOOOOO
o = Ox40000
o = Ox20000

1 =0x02000
1 =OXOSOOO
1 =Ox10000

Let the files fl.o, £2.0, ... fn.o each contain three sections .text, .data,
and .bss, and suppose the combined .text section is Ox12000 bytes. There is
no configured area of memory in which this section can be placed.
Appropriate directives must be supplied to break up the .text output section
so Id(l) may do allocation. For example,

txt1:
{

£1.0 (. text)

£2.0 (. text)

£3.0 (. text)
}

txt2:
{

£4.0 (.text)

£5.0 (.text)

£6.0 (. text)

}

etc.

12-26 PROGRAMMER'S GUIDE

Notes and Special Considerations

Allocation Algorithm
An output section is formed either as a result of a SECTIONS directive,

by combining input sections of the same name, or by combining .text and
.init into .text. An output section can have zero or more input sections
comprising it. After the composition of an output section is determined, it
must then be allocated into configured virtual memory. Id(l) uses an algo­
rithm that attempts to minimize fragmentation of memory, and hence
increases the possibility that a link edit run will be able to allocate all out­
put sections within the specified virtual memory configuration. The algo­
rithm proceeds as follows:

1. Any output sections for which explicit bonding addresses were
specified are allocated.

2. Any output sections to be included in a specific named memory are
allocated. In both this and the succeeding step, each output section
is placed into the first available space within the (named) memory
with any alignment taken into consideration.

~ 3. Output sections not handled by one of the above steps are allocated.

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in the
order they appear to Id(1). Otherwise, output sections are allocated in the
order they were defined or made known to Id(1) into the first available
space they fit.

Incremental Link Editing
As previously mentioned, the output of Id(l) can be used as an input

file to subsequent Id(1) runs providing that the relocation information is
retained (-r option). Large applications may find it desirable to partition
their C programs into subsystems, link each subsystem independently, and
then link edit the entire application. For example,

THE LINK EDITOR 12-27

Notes and Special Considerations

Step 1:

Id -r -0 outfiIe1 ifiIe1 infiIe1.0

ss1:
{

£1.0
£2.0

£n.o

Step 2:

Id -r -0 outfiIe2 ifiIe2 infiIe2.0

ss2:
{

q1.0
q2.0

911·0

12-28 PROGRAMMER'S GUIDE

------------------ Notes and Special Considerations

Step 3:

ld -a -0 final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a form of
incremental link editing whereby it is necessary to relink only a portion of
the total link edit when a few files are recompiled.

To apply this technique, there are two simple rules

I. Intermediate link edits should contain only SECTIONS declarations
and be concerned only with the formation of output sections from
input files and input sections. No binding of output sections should
be done in these runs.

2. All allocation and memory directives, as well as any assignment
statements, are included only in the finalld(l) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY
Sections

Sections may be given a type in a section definition as shown in the fol­
lowing example:

name1 Ox200000 (~)

name2 Ox400000 (COPY')

name3 Ox600000 (taDAD)

naxre4 (nm:»

nameS Ox900000 (0Vl!1U.AY)

{ file1.o }
{ file2.o }
{ file3.o }
{ file4.o }
{ fileS.o }

THE LINK EDITOR 12-29

Notes and Special Considerations

The DSECT option creates what is called a dummy section. A dummy
section has the following properties:

1. It does not participate in the memory allocation for output sections.
As a result, it takes up no memory and does not show up in the '~
memory map generated by Id(1).

2. It may overlay other output sections and even unconfigured
memory. DSECTs may overlay other DSECTs.

3. The global symbols defined within the dummy section are relocated
normally. That is, they appear in the output file's symbol table with
the same value they would have had if the DSECT were actually
loaded at its virtual address. DSECT-defined symbols may be refer­
enced by other input sections. Undefined external symbols fouhd
within a DSECT cause specified archive libraries to be searched and
any members which define such symbols are link edited normally
(Le., not as a DSECT).

4. None of the section contents, relocation information, or line number
information associated with the section is written to the output file.

In the above example, none of the sections from filel.o are allocated, but all
symbols are relocated as though the sections were link edited at the
specified address. Other sections could refer to any of the global symbols
and they are resolved correctly.

A copy section created by the COPY option is similar to a dummy sec­
tion. The only difference between a copy section and a dummy section is
that the contents of a copy section and all associated information is written
to the output file.

An INFO section is the same as a COPY section but its purpose is to
carry information about the object file whereas the COPY section may con­
tain valid text and data. INFO sections are usually used to contain file ver­
sion identification information.

A section with the type of NOLOAD differs in only one respect from a
normal output section: its text and/or data is not written to the output file.
A NOLOAD section is allocated virtual space, appears in the memory map,
etc.

12-30 PROGRAMMER'S GUIDE

Notes and Special Considerations

An OVERLAY section is relocated and written to the output file. It is
different from a normal section in that it is not allocated and may overlay
other sections or unconfigured memory.

Output File Blocking
The BLOCK option (applied to any output section or GROUP directive)

is used to direct ld(l) to align a section at a specified byte offset in the out­
put file. It has no effect on the address at which the section is allocated nor
on any part of the link edit process. It is used purely to adjust the physical
position of the section in the output file .

.text BU:X:K(Ox(00) : { }

.data ALIGN(0x20000) BU:X:K(0x200) {}

With this SECTIONS directive, ld(l) assures that each section, .text and
.data, is physically written at a file offset, which is a multiple of Ox200 (e.g.,
at an offset of 0, Ox200, Ox400, and so forth, in the file).

Nonrelocatable Input Files
If a file produced by Id(1) is intended to be used in a subsequent ld(l)

run, the first ld(l) run should have the -r option set. This preserves reloca­
tion information and permits the sections of the file to be relocated by the
subsequent run.

If an input file to Id(l) does not have relocation or symbol table infor­
mation (perhaps from the action of a strip(l) command, or from being link
edited without a -r option or with a -s option), the link edit run continues
using the nonrelocatable input file.

THE LINK EDITOR 12-31

Notes and Special Considerations

For such a link edit to be successful (i.e., to actually and correctly link
edit all input files, relocate all symbols, resolve unresolved references, etc.),
two conditions on the nonrelocatable input files must be met.

1. Each input file must have no unresolved external references.

2. Each input file must be bound to the exact same virtual address as it
was bound to in the Id(l) run that created it.

If these two conditions are not met for all nonrelocatable input files, no
error messages are issued. Because of this fact, extreme care must be
taken when supplying such input files to ld(l).

12-32 PROGRAMMER'S GUIDE

Syntax Diagram for Input Directives

Directives

<ifile>
<cmd>

<memory>

< memory_spec>

<attributes>
< origin_spec>
<lenth_spec>
<origin>
<length>

Expanded Directives

{<cmd>}
<memory>
<sections>
<assignment>
<filename>
<£lags>

rEMORY { <memory_s~ec>
[,] <memory_spec> J }

<name> [<attributes>]:
<origin_spec> [,] <length_spec>
({RIWIXII))
< origin> = < long>
<length> = <long>
ORIGIN 10 Iorg Iorigin
LENGTH III len Ilength

~ Figure 12-2: Syntax Diagram for Input Directives

Two punctuation symbols, square brackets and curly braces, do double
duty in this diagram.

Where the actual symbols, [] and {} are used, they are part of the syn­
tax and must be present when the directive is specified.

Where you see the symbols [and] (larger and in bold), it means the
material enclosed is optional.

Where you see the symbols {and } (larger and in bold), it means mul­
tiple occurrences of the material enclosed are permitted.

THE LINK EDITOR 12-33

Syntax Diagram for Input Directives

Directives Expanded Directives

<sections>

< sec_or..$roup >
<group>

< sectionJist>

SECTIONS {{< sec_or..$roup> } }

<section> I<group> I <library>
GROUP <group options> : {
< sectionJist> }1< mem_spec>]
<section> {[,] <section> }

<section> <name> <sec_options> :
{ <statement> }
[<fill>] [<mem_spec>]

<group_options> [<addr>] I[<align_option>] [<block_option>]

< sec_options>

<addr>
< alignoption>
<align>
<block_option>
<block>
<type_option>

<fill>
<mem_spec>

<statement>

[<addr>] I[<aligp option>]
[<block_option>J[<type_option>]
<long> I<bind>(<expr>)
<align> (<expr>)
ALIGN Ialign
<block> (<long>)
BLOCK Iblock
(DSECT) I(NOLOAD) I(COpy)
I(INFO) I(OVERLAY)
= <long>
> <name>
> <attributes>
<filename>
<filename> «nameJist» I[CC ~.{MON]

• (<name_list>) I[COMMON]
<assignment>
<library>
null

Figure 12-2: Syntax Diagram for Input Directives (continued)

12-34 PROGRAMMER'S GUIDE

----------------- Syntax Diagram for Input Directives

Directives

<name_list>

<library>
<bind>
<assignment>
<lside>
< assign_op >
<end>
<expr>

<binary_op>

<term>

<unary_op>
<phy>
<sizeof>

Expanded Directives

<section_name> [,1 { <section_name> }

-l<name>
BIND 1bind
<lside> <assign_op> <expr> <end>
<name> I.
= 1+= 1-= 1*= I/ =0

; 1 ,

<expr> <binary_op> <expr>
<term>
*1/1%
+1-
» 1«
==I!=I>I<I<=I>=
&
1

&&
II
<long>
<name>
<align> (<term>)
(<expr>)
<unary_op> <term>
<phy> «lside»
<sizeof> (< sectionname >)
< next> (<long»
<addr>(< sectionname >)
!I-
PHY Iphy
SIZEOF Isizeof

Figure 12-2: Syntax Diagram for Input Directives (continued)

THE LINK EDITOR 12-35

Syntax Diagram for Input Directives

Directives Expanded Directives

< sectionname>

<path_name>

<next>
<addr>
<flags>

<name>
<long>
<wht_space>
<filename>

..~

NEXT Inext
ADDR laddr
-e<wht_space> <name>
-f<wht_space> <long>
-h< wht_space > <long>
-l<name>
-m
-0 <wht_space> <filename>
-r
-s
-t

-u<wht_space> <name>
-z
-H
-L<path_name>
-M
-N
-5
-v
-VS<wht_space> <long>
-a
-x
Any valid symbol name
Any valid long integer constant
Blanks, tabs, and newlines
Any valid UNIX operating system
filename. This may include a
full or partial path name.
Any valid section name,
up to 8 characters
Any valid UNIX operating system
path name (full or partial)

Figure 12-2: Syntax Diagram for Input Directives (continued)

12·36 PROGRAMMER'S GUIDE

13 make

Introduction

Basic Features

Description Files and Substitutions
Comments
Continuation Lines
Macro Definitions
General Form
Dependency Information
Executable Commands
Extensions of $-, $@, and $ <
Output Translations

Recursive Makefiles
Suffixes and Transformation Rules
Implicit Rules
Archive Libraries

Source Code Control System
Filenames: the Tilde
The Null Suffix
include Files
SCCS Makefiles
Dynamic Dependency Parameters

13·1

13-2

13-8

13-8

13-8

13·8

13-9

13-9

13-9

13·10
13-11

13-12

13-12
13-13

13-15

13-18

13-19

13-20

13-20

13-20

make

make

Command Usage
The make Command
Environment Variables

Suggestions and Warnings

Internal Rules

Ii PROGRAMMER'S GUIDE

13-22
13-22
13-23

13-25

13-26

Introduction

The trend toward increased modularity of programs means that a project
may have to cope with a large assortment of individual files. There may
also be a wide range of generation procedures needed to turn the assort­
ment of individual files into the final executable product.

make(l) provides a method for maintaining up-to-date versions of pro­
grams that consist of a number of files that may be generated in a variety of
ways.

An individual programmer can easily forget

• file-to-file dependencies

• files that were modified and the impact that has on other files

• the exact sequence of operations needed to generate a new version of
the program

In a description file, make keeps track of the commands that create files
and the relationship between files. Whenever a change is made in any of
the files that make up a program, the make command creates the finished
program by recompiling only those portions directly or indirectly affected
by the change.

The basic operation of make is to

• find the target in the description file

• ensure that all the files on which the target depends, the files needed
to generate the target, exist and are up to date

• create the target file if any of the generators have been modified
more recently than the target

The description file that holds the information on interfile dependencies
and command sequences is conventionally called makefile, Makefile, or
s.[mM]akefile. If this naming convention is followed, the simple command
make is usually sufficient to regenerate the target regardless of the number
files edited since the last make. In most cases, the description file is not
difficult to write and changes infrequently. Even if only a single file has
been edited, rather than typing all the commands to regenerate the target,
typing the make command ensures the regeneration is done in the
prescribed way.

make 13-1

Basic Features

The basic operation of make is to update a target file by ensuring that
all of the files on which the target file depends exist and are up to date. ~

The target file is regenerated if it has not been modified since the depen-)
dents were modified. The make program searches the graph of dependen-
cies. The operation of make depends on its ability to find the date and time
that a file was last modified.

The make program operates using three sources of information:

• a user-supplied description file

• filenames and last-modified times from the file system

• built-in rules to bridge some of the gaps

To illustrate, consider a simple example in which a program named
prog is made by compiling and loading three C language files x.c, y.c, and
z.c with the math library. By convention, the output of the C language
compilations will be found in files named x.o, y.o, and z.o. Assume that the
files x.c and y.c share some declarations in a file named defs.h, but that z.c
does not. That is, x.c and y.c have the line ')

#include "defs .h"

The following specification describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -1m -0 ~

X.o y.o: defs.h

If this information were stored in a file named makefile, the command

make

would perform the operations needed to regenerate prog after any changes
had been made to any of the four source files x.c, y.c, z.c, or defs.h. In the
example above, the first line states that prog depends on three .0 files.
Once these object files are current, the second line describes how to load
them to create prog. The third line states that x.o and y.o depend on the
file defs.h. From the file system, make discovers that there are three .c files
corresponding to the needed .0 files and uses built-in rules on how to gen­
erate an object from a C source file (Le., issue a cc -c command).

13-2 PROGRAMMER'S GUIDE

~\'-

Basic Features

If make did not have the ability to determine automatically what needs
to be done, the following longer description file would be necessary:

prog: x.o y.o Z.o
oc X.o y.o Z.o -1m -0 prog

x.o: x.e defs.h
oc ~ x.e

y.o: y.e defs.h
oc ~ y.e

z.o: z.e
oc ~ z.e

If none of the source or object files have changed since the last time
prog was made, and all of the files are current, the command make
announces this fact and stops. If, however, the defs.h file has been edited,
x.e and y.e (but not z.e) are recompiled; and then prog is created from the
new x.o and y.o files, and the existing z.o file. If only the file y.e had
changed, only it is recompiled; but it is still necessary to reload prog. If no
target name is given on the make command line, the first target mentioned
in the description is created; otherwise, the specified targets are made. The
command

make x.o

would regenerate x.o if x.e or defs.h had changed.

A method often useful to programmers is to include rules with
mnemonic names and commands that do not actually produce a file with
that name. These entries can take advantage of make's ability to generate
files and substitute macros (for information about macros, see "Description
Files and Substitutions" below.) Thus, an entry "save" might be included to
copy a certain set of files, or an entry "clean" might be used to throwaway
unneeded intermediate files.

make 13-3

Basic Features

If a file exists after such commands are executed, the file's time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further deci­
sions.

You can maintain a zero-length file purely to keep track of the time at
which certain actions were performed. This technique is useful for main­
taining remote archives and listings.

A simple macro mechanism for substitution in dependency lines and
command strings is used by make. Macros can either be defined by
command-line arguments or included in the description file. In either case,
a macro consists of a name followed by an equals sign followed by what the
macro stands for. A macro is invoked by preceding the name by a dollar
sign. Macro names longer than one character must be parenthesized. The
following are valid macro invocations:

$(CFLAGS)

$2
$(xy)

$Z

$(Z)

The last two are equivalent.

$., $@, $?, and $< are four special macros that change values during
the execution of the command. (These four macros are described later in
this chapter under "Description Files and Substitutions.") The following
fragment shows assignment and une of some macros:

13-4 PROGRAMMER'S GUIDE

~\

Basic Features

OBJECTS =x.o y.o Z.o
LIBES =-1m
prog: $ (OBJECTS)

cc $ (ORJECl'S) $ (LIBES) -0 prog

The command

make LIBES="-11 -1m"

loads the three objects with both the lex (-11) and the math (-1m) libraries,
because macro definitions on the command line override definitions in the
description file. (In UNIX system commands, arguments with embedded
blanks must be quoted.)

As an example of the use of make, a description file that might be used
to maintain the make command itself is given. The code for make is spread
over a number of C language source files and has a yacc grammar. The
description file contains the following:

make 13-5

Basic Features

Description file for the make ocmnand

FILES =Makefile defs.h main.c da1ame.c misc.c
files.c dosys.c gram.y

~ =main.o daname.o misc.o files.o
dosys.o gram.o

LIBES= -lId
LIN!' = lint -p
CE'LAGS = -0
LP =/usr/bin/lp

make: $ (OBJECI'S)

$(CC) $(CE'LAGS) $(~) $(I.lmS) ~ make

~ize make

$(ORJEX:TS): defs.h

clearmp:
-:em *.0 gram.c
-du

install:
~ize make /usr/bin/uake
cp make Iusr/bin/make &&. rm make

lint dosys.c doname.c files.c main.c mi.sc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

print files that are cut-of-oate
with respect to "print" file.

print: $ (FILES)
pr $? : $(LP)

touch print

The make program prints out each command before issuing it.

13-6 PROGRAMMER'S GUIDE

Basic Features

The following output results from typing the command make in a direc­
tory containing only the source and description files:

cc -0 -c main.e
cc -0 -c doname.e

CC -0 -c misc.e
CC -0 -c files.e
CC -0 -c dosys. e
yacc gram.y
mY' y.tab.e gram.e
CC -0 -c gram.e
cc main.o doname.o mise.o files.o dosys.o

gram.o -lld -0 make

13188 + 3348 + 3044 =19580

The string of digits results from the size make command. The printing of
the command line itself was suppressed by an at sign, @, in the description
file.

make 13-7

Description Files and Substitutions

The following section will explain the customary elements of the
description file.

Comments
The comment convention is that a sharp, #, and all characters on the

same line after a sharp are ignored. Blank lines and lines beginning with a
sharp are totally ignored.

Continuation Lines
If a noncomment line is too long, the line can be continued by using a

backslash. If the last character of a line is a backslash, then the backslash,
the new line, and all following blanks and tabs are replaced by a single
blank.

Macro Definitions
A macro definition is an identifier followed by an equal sign. The

identifier must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (lead­
ing blanks and tabs are stripped). The following are valid macro
definitions:

2 = xyz
abc = -11 -ly -1m
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as its value. Remember, however, that
some macros are explicitly defined in make's own rules. (See Figure 13-2 at
the end of the chapter.)

13·8 PROGRAMMER'S GUIDE

Description Flies and Substitutions

General Form
The general form of an entry in a description file is

target1 [target2 ...] : [:] [dependent1 ...] [; cxmnands] [# •.•]
[\t cxmnands] [# ..•]

Items inside brackets may be omitted and targets and dependents are
strings of letters, digits, periods, and slashes. Shell metacharacters such as •
and? are expanded when the line is evaluated. Commands may appear
either after a semicolon on a dependency line or on lines beginning with a
tab immediately following a dependency line. A command is any string of
characters not including a sharp, #, except when the sharp is in quotes.

Dependency Information
A dependency line may have either a single or a double colon. A target

name may appear on more than one dependency line, but all of those lines
must be of the same (single or double colon) type. For the more common
single-colon case, a command sequence may be associated with at most one
dependency line. If the target is out of date with any of the dependents on
any of the lines and a command sequence is specified (even a null one fol­
lowing a semicolon or tab), it is executed; otherwise, a default rule may be
invoked. In the double-colon case, a command sequence may be associated
with more than one dependency line. If the target is out of date with any
of the files on a particular line, the associated commands are executed. A
built-in rule may also be executed. The double colon form is particularly
useful in updating archive-type files, where the target is the archive library
itself. (An example is included in the "Archive Libraries" section later in
this chapter.)

Executable Commands
If a target must be created, the sequence of commands is executed. Nor­

mally, each command line is printed and then passed to a separate invoca­
tion of the shell after substituting for macros. The printing is suppressed in
the silent mode (-5 option of the make command) or if the command line

make 13-9

Description Flies and Substitutions

in the description file begins with an @ sign. make normally stops if any
command signals an error by returning a nonzero error code. Errors are
ignored if the -i flag has been specified on the make command line, if the
fake target name .IGNORE appears in the description file, or if the com- .~
mand string in the description file begins with a hyphen. If a program is
known to return a meaningless status, a hyphen in front of the command
that invokes it is appropriate. Because each command line is passed to a
separate invocation of the shell, care must be taken with certain commands
(e.g., cd and shell control commands) that have meaning only within a sin-
gle shell process. These results are forgotten before the next line is exe-
cuted.

Before issuing any command, certain internally maintained macros are
set. The $@ macro is set to the full target name of the current target. The
$@ macro is evaluated only for explicitly named dependencies. The $7
macro is set to the string of names that were found to be younger than the
target. The $7 macro is evaluated when explicit rules from the makefile are
evaluated. If the command was generated by an implicit rule, the $< macro
is the name of the related file that caused the action; and the $. macro is the
prefix shared by the current and the dependent filenames. If a file must be
made but there are no explicit commands or relevant built-in rules, the '~

commands associated with the name DEFAULT are used. If there is no such }
name, make prints a message and stops.

In addition, a description file may also use the following related macros:
$(@D), $(@F), $(.D), $(.F), $(<D), and $(<F) (see below).

Extensions of $*, $@, and $<
The internally generated macros $., $@, and $< are useful generic

terms for current targets and out-of-date relatives. To this list has been
added the following related macros: $(@D), $(@F), $(*D), $(.F), $(<D), and
$(<F). The D refers to the directory part of the single character macro.
The F refers to the filename part of the single character macro. These addi­
tions are useful when building hierarchical makefiles. They allow access to
directory names for purposes of using the cd command of the shell. Thus, a
command can be

cd $(<D)i $(MAKE) $(<F)

13·10 PROGRAMMER'S GUIDE

~'

------------------ Description Flies and Substitutions

Output Translations
Macros in shell commands are translated when evaluated. The form is

as follows:

$ (macro: string1=string2)

The meaning of $(macro) is evaluated. For each appearance of stringt in
the evaluated macro, string2 is substituted. The meaning of finding stringt
in $(macro) is that the evaluated $(macro) is considered as a series of strings
each delimited by white space (blanks or tabs). Thus, the occurrence of
stringt in $(macro) means that a regular expression of the following form
has been found:

. • <string1> [TABIBLANK]

This particular form was chosen because make usually concerns itself
with suffixes. The usefulness of this type of translation occurs when main­
taining archive libraries. Now, all that is necessary is to accumulate the
out-of-date members and write a shell script, which can handle all the C
language programs (Le., those files ending in .c). Thus, the following frag­
ment optimizes the executions of make for maintaining an archive library:

$(LIB): $(LIB) (a.o) $(LIB) (b.o) $(LIB) (c.o)
$(CC) -c $(CE'LAGS) $(?: .o=.c)
$(AR) $(ARFI...AGS) $(LIB) $?
nn $?

A dependency of the preceding form is necessary for each of the
different types of source files (suffixes) that define the archive library.
These translations are added in an effort to make more general use of the
wealth of information that make generates.

make 13·11

Recursive Makefiles
Another feature of make concerns the environment and recursive invo­

cations. If the sequence $(MAKE) appears anywhere in a shell command
line, the line is executed even if the -n flag is set. Since the -n flag is
exported across invocations of make (through the MAKEFLAGS variable),
the only thing that is executed is the make command itself. This feature is
useful when a hierarchy of makefile(s) describes a set of software subsys­
tems. For testing purposes, make -n ... can be executed and everything
that would have been done will be printed including output from lower
level invocations of make.

Suffixes and Transformation Rules
make uses an internal table of rules to learn how to transform a file

with one suffix into a file with another suffix. If the -r flag is used on the
make command line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUF­
FIXES. make searches for a file with any of the suffixes on the list. If it
finds one, make transforms it into a file with another suffix. The transfor- .~
mation rule names are the concatenation of the before and after suffixes.
The name of the rule to transform a .r file to a .0 file is thus .r.o. If the rule
is present and no explicit command sequence has been given in the user's
description files, the command sequence for the rule .r.o is used. If a com-
mand is generated by using one of these suffixing rules, the macro $. is
given the value of the stem (everything but the suffix) of the name of the
file to be made; and the macro $< is the full name of the dependent that
caused the action.

The order of the suffix list is significant since the list is scanned from
left to right. The first name formed that has both a file and a rule associated
with it is used. If new names are to be appended, the user can add an entry
for .SUFFIXES in the description file. The dependents are added to the
usual list. A .SUFFIXES line without any dependents deletes the current
list. It is necessary to clear the current list if the order of names is to be
changed.

13-12 PROGRAMMER'S GUIDE

Recursive Makefiles

Implicit Rules
make uses a table of suffixes and a set of transformation rules to supply

default dependency information and implied commands. The default suffix
list is as follows:

.0 Object file

.c e source file

.c- sees e source- file

.f FORTRAN sou.rce file

.f- sees FORTRAN source file

.s Assembler source file

.s- sees Assembler source file

.y yacc source grammar

~
.y- sees yacc source grammar

.1 lex source grammar

.1- sees ex source grammar

.h Header file

.h- sees header file

.sh Shell file

.sh- sees shell filE~

Figure 13-1 summarizes the default transformation paths. If there are two
paths connecting a pair of suffixes, the longer one is used only if the inter­
mediate file exists or is named in the description.

make 13-13

Recursive Makefiles

.0

)f
.y .1

.f .s .y .1

Figure 13-1: Summary of Default Transformation Path

If the file x.o is needed and an x.c is found in the description or direc-
tory, the x.o file would be compiled. If there is also an x.I, that source file)
would be run through lex before compiling the result. However, if there is
no x.c but there is an x.I, make would discard the intermediate C language
file and use the direct link as shown in Figure 13-1.

It is possible to change the names of some of the compilers used in the
default or the flag arguments with which they are invoked by knowing the
macro names used. The compiler names are the macros AS, CC, F77, YACC,
and LEX. The command

make CC=newcc

will cause the newcc command to be used instead of the usual C language
compiler. The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with optional
flags. Thus

make "CFLAGS=-g"

causes the cc command to include debugging information.

13-14 PROGRAMMER'S GUIDE

~

"

Recursive Makefiles

Archive Libraries
The make program has an interface to archive libraries. A user may

name a member of a library in the following manner:

~jlib(Object.o)

or
~jlib((entrypt))

where the second method actually refers to an entry point of an object file
within the library. (make looks through the library, locates the entry point,
and translates it to the correct object filename.)

To use this procedure to maintain an archive library, the following type
of makefile is required: .

projlib:: projlib(pfile1.o)
S(CC) ~ -0 pfile1.c
S(AR) S(ARFLAGS) projlib pfile1.o
:m1 pfile1.o

projlib:: projlib(pfile2.o)
S(CC) ~ -0 pfile2.c
S(AR) $(ARFLAGS) projlib pfile2.o

:on pfile2.o

• • • and so on far each object ...

This is tedious and error prone. Obviously, the command sequences for
adding a C language file to a library are the same for each invocation; the
filename being the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building
libraries. The handle for the rule is the .a suffix. Thus, a .c.a rule is the
rule for compiling a C language source file, adding it to the library, and
removing the .0 cadaver. Similarly, the .y.a, the .s.a, and the .I.a rules
rebuild yacc, assembler, and lex files, respectively. The archive rules
defined internally are .c.a, .c-.a, .f.a, .f-.a, and .s-.a. (The tilde, -, syntax

make 13-15

projlib:

Recursive Makefiles

will be described shortly.) The user may define other needed rules in the
description file.

The above two-member library is then maintained with the following
shorter makefile:

projlib(pfile1.0) projlib(pfile2.0)
@eCOO projlib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual .c.a rule is as follows:

.c.a:
$(CC) --c $(CF'LAGS) $<

$(AR) $(ARFLAGS) S@ $-.0

:r:m --£ $-.0

Thus, the $@ macro is the .a target (projlib); the $< and $. macros are set
to the out-of-date C language file; and the filename minus the suffix, respec­
tively (pfilel.c and pfilel). The $< macro (in the preceding rule) could
have been changed to $•.c.

It might be useful to go into some detail about exactly what make does !~

when it sees the construction }

projlib: projlib(pfile1.0)
@eCho projlib up-to-date

Assume the object in the library is out of date with respect to pfilel.c. Also,
there is no pfilel.o file.

1. make projlib.

2. Before makeing projlib, check each dependent of projlib.

3. projlib(pfilel.o) is a dependent of projlib and needs to be gen­
erated.

4. Before generating projlib(pfilel.o), check each dependent of
projlib(pfilel.o). (There are none.)

5. Use internal rules to try to create projlib(pfilel.o). (There is no
explicit rule.) Note that projlib(pfilel.o) has a parenthesis in the
name to identify the target suffix as .a. This is the key. There is no
explicit .a at the end of the projlib library name. The parenthesis
implies the .a suffix. In this sense, the .a is hard-wired into make.

13-16 PROGRAMMER'S GUIDE

Recursive Makefiles

6. Break the name projlib(pfilel.o) up into projlib and pfilel.o.
Define two macros, $@ (=projlib) and $. (=pfilel).

7. Look for a rule .X.a and a file $·.X. The first .X (in the .SUFFIXES
list) which fulfills these conditions is .c so the rule is .c.a, and the
file is pfilel.c. Set $< to be pfilel.c and execute the rule. In fact,
make must then compile pfilel.c.

8. The library has been updated. Execute the command associated
with the projlib: dependency; namely

@eCho projlib up-to-date

It should be noted that to let pfilel.o have dependencies, the following
syntax is required:

projlib(pfile1.o) : $(INCDIR)/stdio.h pfile1.c

There is also a macro for referencing the archive member name when this
form is used. The $% macro is evaluated each time $@ is evaluated. If
there is no current archive member, $% is null. If an archive member exists,

~ then $% evaluates to the expression between the parenthesis.

make 13-17

Source Code Control System Filenames: the
Tilde

The syntax of make does not directly permit referencing of prefixes.
For most types of files on UNIX operating system machines, this is accept­
able since nearly everyone uses a suffix to distinguish different types of
files. The sees files are the exception. Here, s. precedes the filename part
of the complete path name.

To allow make easy access to the prefix s. the tilde, -, is used as an
identifier of sees files. Hence, .c-.o refers to the rule which transforms an
sees e language source file into an object file. Specifically, the internal
rule is

.c- .0:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $•• c
--nn -f $ •• c

Thus, the tilde appended to any suffix transforms the file search into an
sees filename search with the actual suffix named by the dot and all char- '~
acters up to (but not including) the tilde.

The following sees suffixes are internally defined:

.c­

.f-

.y­

.1-

.5-

.sh-

.h-

The following rules involving sees transformations are internally defined:

c-·
f-·

.sh-:

.c-.a:

.c-.c:

.c-.o:

.f-.a:

.f-.f:

13-18 PROGRAMMER'S GUIDE

sees Filenames

.f-.o:

.s-.a:

.s-.s:

.s-.o:

.y-.c:

.y-.o:

.1-.1:

.1-.0:

.h-.h:

Obviously, the user can define other rules and suffixes, which may prove
useful. The tilde provides a handle on the sees filename format so that
this is possible.

The Null Suffix
There are many programs that consist of a single source file. make han­

dles this case by the null suffix rule. Thus, to maintain the UNIX system
program cat, a rule in the makefile of the following form is needed:

.c:
$(CC) $(CFLtGS) $< -0 S@

In fact, this .c: rule is internally defined so no makefile is necessary at
all. The user only needs to type

make cat dd echo date

(these are all UNIX system single-file programs) and all four e language
source files are passed through the above shell command line associated
with the .c: rule. The internally defined single suffix rules are

.c:

.c-:

.f:

.f-:

.sh:

.sh-:

Others may be added in the makefile by the user.

make 13·19

sees Filenames

include Files
The make program has a capability similar to the #include directive of

the e preprocessor. If the string include appears as the first seven letters of
a line in a makefile and is followed by a blank or a tab, the rest of the line
is assumed to be a filename, which the current invocation of make will
read. Macros may be used in filenames. The file descriptors are stacked for
reading include files so that no more than 16 levels of nested includes are
supported.

sees Makefiles
Makefiles under sees control are accessible to make. That is, if make is

typed and only a file named s.makefile or s.Makefile exists, make will do a
get on the file, then read and remove the file.

Dynamic Dependency Parameters
The parameter has meaning only on the dependency line in a makefile.

The $$@ refers to the current "thing" to the left of the colon (which is $@).
Also the form $$(@F) exists, which allows access to the file part of $@.
Thus, in the following:

cat: $S@.c

the dependency is translated at execution time to the string cat.c. This is
useful for building a large number of executable files, each of which has
only one source file. For instance, the UNIX software command directory
could have a makefile like:

a-IDS = cat dd echo date anp cx:mn chown

$(a-IDS): $$@.c
$(0::) -0 $? -0 S@

13-20 PROGRAMMER'S GUIDE

sees Filenames

Obviously, this is a subset of all the single file programs. For multiple
file programs, a directory is usually allocated and a separate makefile is
made. For any particular file that has a peculiar compilation procedure, a
specific entry must be made in the makefile.

The second useful form of the dependency parameter is $$(@F). It
represents the filename part of $$@. Again, it is evaluated at execution
time. Its usefulness becomes evident when trying to maintain the
/usr/include directory from a makefile in the /usr/src/head directory.
Thus, the /usr/src/head/makefile would look like

nmm = /usr/include

IN:LUDES = \
$(nmm)/stdio.h \
$(nmm)/pwd.h \
$(nmm)/dir.h \
$(nmm)/a.out.h

$(m:wo~): $$(@F)

cp $? ~
clm:x1 0444 f@

This would completely maintain the /usr/include directory whenever
one of the above files in /usr/src/head was updated.

make 13-21

Command Usage

The make command description is found under make(l) in the
Programmer's Reference Manual.

The make Command
The make command takes macro definitions, options, description

filenames, and target filenames as arguments in the form:

make [options] [macro definitions] [targets]

The following summary of command operations explains how these
arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal
signs) are analyzed and the assignments made. Command-line macros over­
ride corresponding definitions found in the description files. Next, the
option arguments are examined. The permissible options are as follows:

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

-s Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in the
description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ sign are printed.

-t Touch the target files (causing them to be up to date) rather than
issue the usual commands.

-q Question. The make command returns a zero or nonzero status
code depending on whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descrip­
tions.

-k Abandon work on the current entry if something goes wrong, but
continue on other branches that do not depend on the current
entry.

13·22 PROGRAMMER'S GUIDE

Command Usage

-e Environment variables override assignments within makefiles.

-f Description filename. The next argument is assumed to be the name
of a description file. A filename of - denotes the standard input. If
there are no -£ arguments, the file named makefile or Makefile or
s~mM]akefilein the current directory is read. The contents of the
description files override the built-in rules if they are present.

The following two arguments are evaluated in the same manner as flags:

.DEFAULT If a file must be made but there are no explicit com­
mands or relevant built-in rules, the commands associ­
ated with the name .DEFAULT are used if it exists.

.PRECIOUS Dependents on this target are not removed when quit or
interrupt is pressed.

Finally, the remaining arguments are assumed to be the names of tar­
gets to be made and the arguments are done in left-to-right order. If there
are no such arguments, the first name in the description file that does not
begin with a period is made.

Environment Variables
Environment variables are read and added to the macro definitions each

time make executes. Precedence is a prime consideration in doing this
properly. The following describes make's interaction with the environ­
ment. A macro, MAKEFLAGS, is maintained by make. The macro is
defined as the collection of all input flag arguments into a string (without
minus signs). The macro is exported and thus accessible to further invoca­
tions of make. Command line flags and assignments in the makefile update
MAKEFLAGS. Thus, to describe how the environment interacts with make,
the MAKEFLAGS macro (environment variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null
string. Otherwise, each letter in MAKEFLAGS is assumed to be an
input flag argument and is processed as such. (The only exceptions
are the -£, -p, and -r flags.)

make 13-23

Command Usage

2. Read the internal list of macro definitions.

3. Read the environment. The environment variables are treated as
macro definitions and marked as exported (in the shell sense). ~

4. Read the makefile(s}. The assignments in the makefile(s} overrides
the environment. This order is chosen so that when a makefile is
read and executed, you know what to expect. That is, you get what
is seen unless the -e flag is used. The -e is the line flag, which
tells make to have the environment override the makefile assign­
ments. Thus, if make -e ... is typed, the variables in the environ­
ment override the definitions in the makefile. Also MAKEFLAGS
override the environment if assigned. This is useful for further
invocations of make from the current makefile.

It may be clearer to list the precedence of assignments. Thus, in order
from least binding to most binding, the precedence of assignments is as fol­
lows:

1. internal definitions

2. environment '~
3. makefile(s}

4. command line

The -e flag has the effect of rearranging the order to:

1. internal definitions

2. makefile(s}

3. environment

4. command line

This order is general enough to allow a programmer to define a makefile or
set of makefiles whose parameters are dynamically definable.

13-24 PROGRAMMER'S GUIDE

Suggestions and Warnings

The most common difficulties arise from make's specific meaning of
dependency. If file x.c has a

#include "defs.h"

line, then the object file x.o depends on defs.h; the source file x.c does not.
If defs.h is changed, nothing is done to the file x.c while file x.o must be
recreated.

To discover what make would do, the -n option is very useful. The
command

make -0

orders make to print out the commands that make would issue without
actually taking the time to execute them. If a change to a file is absolutely
certain to be mild in character (e.g., adding a comment to an include file),
the -t (touch) option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the modification times
on the affected file. Thus, the command

make -ts

(touch silently) causes the relevant files to appear up to date. Obvious care
is necessary because this mode of operation subverts the intention of make
and destroys all memory of the previous relationships.

make 13-25

Internal Rules

The standard set of internal rules used by make are reproduced below.

#
SUFFIXES REXXGNIZED BY MAKE
#

•SUFFIXES: .0 .c .c- .y .y- .1 .1- .s .s- .h .h- .sh .sh- .f .f­

#
PREDEFINED MACROS
#

MAKE=make
AR=ar

ARFLAGS=-rv
AS:::as

ASFLAGS=

CC==cc
CFLAGS=-o
F77=f77
F77FJ..,N;S=
GEl'--get

GFLAGS=

LEK=lex
LFLAGS=
LD=ld
LDFLAGS=

YN:r.=yacc

YFLAGS=
#
SJN;LE SUFFIX RULES

#

.c:
$(OC) $(CF'LAGS) $ (IDFLAGS) $< -0 S@

$(GE.'T) $(GF'LAGS) $<

$(OC) $(CF'LAGS) $ (IDFLAGS) h.c -0 $*

-rm -f $*.c

.f:
$(F77) $ (F77FLAGS) $ (IDFUlGS) $< -0 S@

13-26 PROGRAMMER'S GUIDE

$(GEr) $(GFLAGS) $<

$(F77) $(F77FLAGS) $(LDFLAGS) $< -0 $*

-nn -f $*.f

.sh:
cp $< ~; chm::xi 0777 $@

sh-'
$(GET) $(GFLAGS) $<

cp h.sh $*; chm::xi 0777 $@

-nn -f h.sh
#

I:XlJBLE SUFFIX RULES

#

.C-.C .f-.f .s-.s .sh-.sh .y-.y .1-.1 .h- .h:
$(GEr) $(GFLAGS) $<

.c.a:
$(OC) -c $(CFLAGS) $<

$(AR) $(ARFLAGS) $@ h.o

nn -f $*.0

.c- .a:
S(GEr) $(GFLAGS) $<

S(CC) -e $(CFLAGS) $*.c

S(AR) $(ARFLAGS) $@ h.o

nn -f $*. [00]

.c.o:
$(CC) $(CFLAGS) -e $<

.c- .0:
$ (GET) $(GFLAGS) $<

$(CC) $(CFLAGS) -c S*.C

-nn -f $*.c

.f.a:
$ (F77) S(F77FLAGS) $ (LDFLAGS) -e $*. f
$(AR) $(ARFLAGS) $@ $*.0

-nn -f h.o

Internal Rules

continued

make 13·27

Internal Rules

.f-.a:
$ (GEl') $(GFLAGS) $<

$(F'77) $ (F77FLAGS) $ (IDFLAGS) -e h.f

$(AR) $(ARFLAGS) !@ $*.0

-:rm -f $*. [fo]

.f.o:
$(F'77) $ (F77FLAGS) $ (IDFLAGS) -e h.f

.f-.o:
$ (GEl') $(GFLAGS) $<

$ (F'77) $ (F77FLAGS) $ (IDFLAGS) -e $*. f
-:rm -f h.f

.s- .a:
$(GEl') $(GFLAGS) $<

$(AS) $(ASFLAGS) -0 $*.0 $*.s

$(AR) $(ARFLAGS) !@ $*.0

-:rm -f h. [so]

.s.o:

$(AS) $(ASFLAGS) -0 !@ $<

.s-.o:

$ (GEl') $(GFLAGS) $<

$(AS) $(ASE'LAGS) -0 h.o h.s

-:rm -f $*.s

.1.e
$(LEX) $(LFLAGS) $<

IllIT 1ex.yy.e f@

.1- .e:
$(GEr) $(GFLAGS) $<

$(LEX) $(LFLAGS) $*.1

IllIT 1ex.yy.e f@

.1.0:
$(LEX) $(LFLAGS) $<

$ (a:::) $(CFLtlGS) -c 1ex.yy.c
:rm 1ex.yy.c
IllIT 1ex.yy.o !@

-:rm -f $*.1

13-28 PROGRAMMER'S GUIDE

continued

~... , .. ,.'.

('

.1-.0:
$ (GET) $(GFLAGS) $<

$(LEX) $(LFLAGS) $*.1

$(CC) $(CE'LAGS) -e 1ex.yy.e

rm -f 1ex.yy.e $*.1

IIIV' 1ex.yy.o $*.0

.y.e
$ (YADC) $(YFLAGS) $<

IIIV' y.tab.e f@

.y-.e:

$ (GET) $(GFLAGS) $<

S(YADC) $(YFLAGS) $*.y

mv y.tab.e $*.e
-rm -f h.y

.y.o:
$(YADC) $ (YFLAGS) $<

$(CC) $(CE'LAGS) -e y. tah.e

rm y.tab.e

IIIV' y.tab.o f@

.y-.o:

S(GET) S(GFLAGS) $<

S(YAOC) $(YFLAGS) S*.y
S(CC) S(CF'LAGS) -e y.tah.e

rm -f y.tab.e S*.y

mv y.tab.o h.o

Figure 13-2: make Internal Rules

Internal Rules

continued

make 13-29

(),.....•,'••••
.~

\,

14 Source Code Control System (SCCS)

Introduction

SCCS For Beginners
Terminology
Creating an SCCS File via admin
Retrieving a File via get
Recording Changes via delta
Additional Information about get
The help Command

Delta Numbering

SCCS Command Conventions
x.files and z.files
Error Messages

SCCS Commands
The get Command

• ID Keywords
• Retrieval of Different Versions
• Retrieval With Intent to Make a Delta
• Undoing a get -e
• Additional get Options
• Concurrent Edits of Different SID
• Concurrent Edits of Same SID

14-1

14·2

14-2

14-2

14·3
14-4

14-5

14-6

14-7

14-10

14-11

14-11

14-12

14-13

14-14

14-15
14-16

14·18

14·18

14-18

14-21

SOURCE CODE CONTROL SYSTEM (SeeS)

Source Code Control System (SCCS)

• Keyletters That Affect Output
The delta Command
The admin Command
Creation of SCCS Files

• Inserting Commentary for the Initial Delta
• Initialization and Modification of secs File

Parameters
The prs Command
The sad Command
The help Command
The rmdel Command
The cdc Command
The what Command
The sccsdiff Command
The comb Command
The val Command
The vc Command

sees Files
Protection
Formatting
Auditing

II PROGRAMMER'S GUIDE

14-21

14-23

14-26

14-26

14-27

14-27

14-29

14-31

14-31

14-32

14-33

14-34
14-35

14-35

14-36

14-37

14-38

14-38

14-39

14·40

Introduction

The Source Code Control System (SCCS) is a maintenance and enhance­
ment tracking tool that runs under the UNIX system. SCCS takes custody
of a file and, when changes are made, identifies and stores them in the file
with the original source code and/or documentation. As other changes are
made, they too are identified and retained in the file.

Retrieval of the original or any set of changes is possible. Any version
of the file as it develops can 1?e reconstructed for inspection or additional
modification. History data can be stored with each version: why the
changes were made, who made them, when they were made.

This guide covers the following:

• SCCS for Beginners: how to make, retrieve, and update an SCCS file

• Delta Numbering: how versions of an SCCS file are named

• SCCS Command Conventions: what rules apply to SCCS commands

• SCCS Commands: the fourteen SCCS commands and their more use­
ful arguments

• SCCS Files: protection, format, and auditing of SCCS files

Neither the implementation of SCCS nor the installation procedure for
SCCS is described in this guide.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-1

sees For Beginners

Several terminal session fragments are presented in this section. Try
them all. The best way to learn sees is to use it. .~

Terminology
A delta is a set of changes made to a file under sees custody. To iden­

tify and keep track of a delta, it is assigned an SID (SeeS IDentification)
number. The SID for any original file turned over to sees is composed of
release number 1 and level number I, stated as 1.1. The SID for the first set
of changes made to that file, that is, its first delta is release 1 version 2, or
1.2. The next delta would be 1.3, the next 1.4, and so on. More on delta
numbering later. At this point, it is enough to know that by default sees
assigns SIDs automatically.

Creating an secs File via admin
Suppose, for example, you have a file called lang that is simply a list of '~/

five programming language names. Use a text editor to create file lang con- ~
taining the following list.

e
PL/I
FORTRAN
COBOL
ALGOL

Custody of your lang file can be given to sees using the admin com­
mand (Le., administer sees file). The following creates an sees file from
the lang file:

admin -ilang s.lang

All sees files must have names that begin with 5., hence s.lang. The-i
keyletter, together with its value lang, means admin is to create an sees '
file and initialize it with the contents of the file lang.

14-2 PROGRAMMER'S GUIDE

SCCS For Beginners

The admin command replies

No id keywords (an?)

This is a warning message that may also be issued by other sees com­
mands. Ignore it for now. Its significance is described later with the get
command under "sees Commands." In the following examples, this warn­
ing message is not shown although it may be issued.

Remove the lang file. It is no longer needed because it exists now
under sees as s.lang.

rm lang

Retrieving a File via get
Use the get command as follows:

get s.lang

This retrieves s.lang and prints

1.1
5 lines

This tells you that get retrieved version 1.1 of the file, which is made up of
five lines of text.

The retrieved text has been placed in a new file known as a "g.file."
sees forms the g.file name by deleting the prefix s. from the name of the
sees file. Thus, the original lang file has been recreated.

If you list, Is(I), the contents of your directory, you will see both lang
and s.Iang. sees retains s.Iang for use by other users.

The get s.lang command creates lang as read-only and keeps no infor­
mation regarding its creation. Because you are going to make changes to it,
get must be informed of your intention to do so. This is done as follows:

get -e s.Iang

get -e causes sees to create lang for both reading and writing (edit­
ing). It also places certain information about lang in another new file,
called the "p.file" (p.lang in this case), which is needed later by the delta
command.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-3

sees For Beginners

get -e prints the same messages as get, except that now the SID for the
first delta you will create is issued:

1. 1
new delta 1.2
5 lines

Change lang by adding two more programming languages:

SNOBOL
ADA

Recording Changes via delta
Next, use the delta command as follows:

delta s.lang

delta then prompts with

carments?

Your response should be an explanation of why the changes were made.
For example,

added more languages

delta now reads the p.file, p.lang, and determines what changes you
made to lang. It does this by doing its own get to retrieve the original ver­
sion and applying the diff(l) command to the original version and the
edited version. Next, delta stores the changes in s.Iang and destroys the no
longer needed p.lang and lang files.

When this process is complete, delta outputs

1.2
2 inserted
o deleted
5 unchanged

14-4 PROGRAMMER'S GUIDE

OJ

SCCS For Beginners

The number 1.2 is the SID of the delta you just created, and the next
three lines summarize what was done to s.lang.

Additional Information about get
The command,

get s.lang

retrieves the latest version of the file s.lang, now 1.2. sees does this by
starting with the original version of the file and applying the delta you
made. If you use the get command now, any of the following will retrieve
version 1.2.

get s.lang
get -rl s.lang
get -rl.2 s.lang

The numbers following -r are SIDs. When you omit the level number
of the SID (as in get -rl s.lang), the default is the highest level number
that exists within the specified release. Thus, the second command requests
the retrieval of the latest version in release I, namely 1.2. The third com­
mand specifically requests the retrieval of a particular version, in this case
also 1.2.

Whenever a major change is made to a file, you may want to signify it
by changing the release number, the first number of the SID. This, too, is
done with the get command.

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before
release 2. get also interprets this as a request to change the release number
of the new delta to 2, thereby naming it 2.1 rather than 1.3. The output is

1.2
new delta 2.1
7 lines

which means version 1.2 has been retrieved, and 2.1 is the version delta
will create. If the file is now edited, for example, by deleting eOBOL from
the list of languages, and delta is executed

SOURCE CODE CONTROL SYSTEM (SCCS) 14·5

sees For Beginners

delta s.lang
oc:mnents? deleted cobol from list of languages

you will see by delta's output that version 2.1 is indeed created.

2.1
o inserted
1 deleted
6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another
new release can be created in a similar manner.

The help Command
If the command

get lang

is now executed, the following message will be output:

ERROR [lang]: not an sees file (co1)

The code col can be used with help to print a fuller explanation of the mes­
sage.

help col

This gives the following explanation of why get lang produced an error
message:

co1:
"not an sees file"
A file that you think is an sees file
does not begin with the characters liS. II •

help is useful whenever there is doubt about the meaning of almost any
sees message.

14-6 PROGRAMMER'S GUIDE

Delta Numbering

Think of deltas as the nodes of a tree in which the root node is the ori­
ginal version of the file. The root is normally named 1.1 and deltas (nodes)
are named 1.2, 1.3, etc. The components of these SIDs are called release and
level numbers, respectively. Thus, normal naming of new deltas proceeds
by incrementing the level number. This is done automatically by sees
whenever a delta is made.

Because the user may change the release number to indicate a major
change, the release number then applies to all new deltas unless specifically
changed again. Thus, the evolution of a particular file could be represented
by Figure 14-1.

Figure 14-1: Evolution of an sees File

This is the normal sequential development of an sees file, with each delta
dependent on the preceding deltas. Such a structure is called the trunk of
an sees tree.

There are situations that require branching an sees tree. That is,
changes are planned to a given delta that will not be dependent on all pre­
vious deltas. For example, consider a program in production use at version
1.3 and for which development work on release 2 is already in progress.
Release 2 may already have a delta in progress as shown in Figure 14-1.
Assume that a production user reports a problem in version 1.3 that cannot
wait to be repaired in release 2. The changes necessary to repair the trouble
will be applied as a delta to version 1.3 (the version in production use).
This creates a new version that wili then be released to the user but will not
affect the changes being applied for release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.).
This new delta is the first node of a new branch of the tree.

Branch delta names always have four SID components: the same release
number and level number as the trunk delta, plus a branch number and
sequence number. The format is as follows:

release.level.branch.sequence

SOURCE CODE CONTROL SYSTEM (SeeS) 14-7

Delta Numbering

The branch number of the first delta branching off any trunk delta is
always 1, and its sequence number is also 1. For example, the full SID for a
delta branching off trunk delta 1.3 will be 1.3.1.1. As other deltas on that
same branch are created, only the sequence number changes: 1.3.1.2, 1.3.1.3,
etc. This is shown in Figure 14-2.

Figure 14-2: Tree Structure with Branch Deltas

The branch number is incremented only when a delta is created that
starts a new branch off an existing branch, as shown in Figure 14-3. As this
secondary branch develops, the sequence numbers of its deltas are incre­
mented (1.3.2.1, 1.3.2.2, etc.), but the secondary branch number remains the
same.

14-8 PROGRAMMER'S GUIDE

~.

Delta Numbering

Figure 14-3: Extended Branching Concept

The concept of branching may be extended to any delta in the tree, and
the numbering of the resulting deltas proceeds as shown above. secs
allows the generation of complex tree structures. Although this capability
has been provided for certain specialized uses, the SCCS tree should be kept
as simple as possible. Comprehension of its structure becomes difficult as
the tree becomes complex.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-9

SCCS Command Conventions

SCCS commands accept two types of arguments:

• keyletters

• filenames

Keyletters are options that begin with a minus sign, -, followed by a
lowercase letter and, in some cases, a value.

File and Ior directory names specify the file(s) the command is to pro­
cess. Naming a directory is equivalent to naming all the SCCS files within
the directory. Non-SCCS files and unreadable files (because of permission
modes via chmod(l» in the named directories are silently ignored.

In general, filename arguments may not begin with a minus sign. If a
filename of - (a lone minus sign) is specified, the command will read the
standard input (usually your terminal) for lines and take each line as the
name of an sces file to be processed. The standard input is read until
end-of-file. This feature is often used in pipelines with, for example, the
commands find(l) or Is(I).

Keyletters are processed before filenames. Therefore, the placement of
keyletters is arbitrary-that is, they may be interspersed with filenames.
Filenames, however, are processed left to right. Somewhat different con­
ventions apply to help(I), what(I), sccsdiff(I), and val(I), detailed later
under "secs Commands. II

Certain actions of various sces commands are controlled by flags
appearing in sces files. Some of these flags will be discussed, but for a
complete description see admin(l) in the Programmer's Reference Manual.

The distinction between real user (see passwd(l» and effective user will
be of concern in discussing various actions of SCCS commands. For now,
assume that the real and effective users are the same-the person logged
into the UNIX system.

14-10 PROGRAMMER'S GUIDE

.~

.~

SCCS Command Conventions

x.files and z.files
All sees commands that modify an sees file do so by writing a copy

called the "x.file." This is done to ensure that the sees file is not damaged
if processing terminates abnormally. sees names the x.file by replacing the
s. of the sees filename with x.. The x.file is created in the same directory
as the sees file, given the same mode (see chmod(l», and is owned by the
effective user. When processing is complete, the old sees file is destroyed
and the modified x.file is renamed (x. is relaced by s.) and becomes the new
sees file.

To prevent simultaneous updates to an sees file, the same modifying
commands also create a lock-file called the "z.file." sees forms its name by
replacing the s. of the sees filename with a z. prefix. The z.file contains
the process number of the command that creates it, and its existence
prevents other commands from processing the sees file. The z.file is
created with access permission mode 444 (read only) in the same directory
as the sees file and is owned by the effective user. It exists only for the
duration of the execution of the command that creates it.

In general, users can ignore x.files and z.files. They are useful only in
the event of system crashes or similar situations.

Error Messages
sees commands produce error messages on the diagnostic output in

this format:

ERROR [name-of-file-beiD]-processed]: message text (code)

The code in parentheses can be used as an argument to the help command
to obtain a further explanation of the message. Detection of a fatal error
during the processing of a file causes the sees command to stop processing
that file and proceed with the next file specified.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-11

SCCS Commands

This section describes the major features of the fourteen sees com­
mands and their most common arguments. Full descriptions with details of
all arguments are in the Programmer's Reference Manual.

Here is a quick-reference overview of the commands:

get

unget

delta

admin

prs

sad

help

rmdel

cdc

what

sccsdiff

comb

val

vc

retrieves versions of sees files

undoes the effect of a get -e prior to the file being deltaed

applies deltas (changes) to sees files and creates new ver­
sions

initializes sees files, manipulates their descriptive text, and
controls delta creation rights

prints portions of an sees file in user specified format

prints information about files that are currently out for edit

gives explanations of error messages

removes a delta from an sees file allows removal of deltas
created by mistake

changes the commentary associated with a delta

searches any UNIX system file(s) for all occurrences of a spe­
cial pattern and prints out what follows it useful in finding
identifying information inserted by the get command

shows differences between any two versions of an sees file

combines consecutive deltas into one to reduce the size of
an sees file

validates an sees file

a filter that may be used for version control

14-12 PROGRAMMER'S GUIDE

~

"

----------------------- SCCS Commands

The get Command
The get(l) command creates a file that contains a specified version of an

sees file. The version is retrieved by beginning with the initial version
and then applying deltas, in order, until the desired version is obtained.
The resulting file is called the "g.file." It is created in the current directory
and is owned by the real user. The mode assigned to the g.file depends on
how the get command is used.

The most common use of get is

get s.abc

which normally retrieves the latest version of file abc from the sees file
tree trunk and produces (for example) on the standard output

1.3
67 lines
No id keywords (an7)

meaning version 1.3 of file s.abc was retrieved (assuming 1.3 is the latest
trunk delta), it has 67 lines of text, and no 10 keywords were substituted in
the file.

The generated g.file (file abc) is given access permission mode 444 (read
only). This particular way of using get is intended to produce g.files only
for inspection, compilation, etc. It is not intended for editing (making del­
tas).

When several files are specified, the same information is output for each
one. For example,

get s.abc s.xyz

produces

SOURCE CODE CONTROL SYSTEM (SeCS) 14-13

SCCS Commands

a.abc:
1.3
67 lines
No id keywords (an7)

s.xyz:
1.7
85 linea
No id keywords (an7)

ID Keywords
In generating a g.file for compilation, it is useful to record the date and

time of creation, the version retrieved, the module's name, etc. within the
g.file. This information appears in a load module when one is eventually '~,\

created. SCCS provides a convenient mechanism for doing this automati- 'J
cally. Identification (10) keywords appearing anywhere in the generated
file are replaced by appropriate values according to the definitions of those
10 keywords. The format of an ID keyword is an uppercase letter enclosed
by percent signs, %. For example,

%1%

is the 10 keyword replaced by the SID of the retrieved version of a file.
Similarly, %H% and %M% are the names of the g.file. Thus, executing get
on an SCCS file that contains the PL/I declaration,

DCl 10 CHAR(100) VAR INIT('%M% %1% %H%');

gives (for example) the following:

DCl 10 CHAR(lOO) VAR INIT('MODNAME 2.3 07/18/85');

When no ID keywords are substituted by get, the following message is
issued:

No id keywords (cm7)

14·14 PROGRAMMER'S GUIDE

SCCS Commands

This message is normally treated as a warning by get although the pres­
ence of the i flag in the sees file causes it to be treated as an error. For a
complete list of the approximately twenty ID keywords provided, see get(l)
in the Programmer's Reference Manual.

Retrieval of Different Versions
The version of an sees file get retrieves is the most recently created

delta of the highest numbered trunk release. However, any other version
can be retrieved with get -r by specifying the version's SID. Thus,

get -rl.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the standard
output

1.3
64 lines

A branch delta may be retrieved similarly,

get -rl.5.2.3 s.abc

~ which produces (for example) on the standard output

1.5.2.3
234 lines

When a SID is specified and the particular version does not exist in the
sees file, an error message results.

Omitting the level number, as in

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the
given release. Thus, the above command might output,

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the
highest level number within the highest-numbered existing release that is
lower than the given release. For example, assume release 9 does not exist
in file s.abc and release 7 is the highest-numbered release below 9. Execut­
ing

SOURCE CODE CONTROL SYSTEM (SCeS) 14-15

sces Commands

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below
release 9. Similarly, omitting the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence
number on the given branch. (If the given branch does not exist, an error
message results.) This might result in the following output:

4.3.2.8
89 lines

get -t will retrieve the latest (top) version of a particular release when
no -r is used or when its value is simply a release number. The latest ver­
sion is the delta produced most recently, independent of its location on the
SCCS file tree. Thus, if the most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta
3.5), the same command might produce

3.2.1.5
46 lines

Retrieval With Intent to Make a Delta
get -e indicates an intent to make a delta. First, get checks the follow­

ing.

1. The user list to determine if the login name or group 10 of the per­
son executing get is present. The login name or group 10 must be
present for the user to be allowed to make deltas. (See "The admin
Command" for a discussion of making user lists.)

14-16 PROGRAMMER'S GUIDE

------------------------ SCCS Commands

2. The release number (R) of the version being retrieved satisfies the
relation

floor is less than or equal to R, which is
less than or equal to ceiling

to determine if the release being accessed is a protected release. The
floor and ceiling are flags in the sees file representing start and
end of range.

3. The R is not locked against editing. The lock is a flag in the sees
file.

4. Whether multiple concurrent edits are allowed for the sees file by
the j flag in the sees file.

A failure of any of the first three conditions causes the processing of the
corresponding sees file to terminate.

If the above checks succeed, get -e causes the creation of a g.file in the
current directory with mode 644 (readable by everyone, writable only by
the owner) owned by the real user. If a writable g.file already exists, get
terminates with an error. This is to prevent inadvertent destruction of a
g.file being edited for the purpose of making a delta.

Any 10 keywords appearing in the g.file are not substituted by get -e
because the generated g.file is subsequently used to create another delta.
Replacement of 10 keywords causes them to be permanently changed in the
sees file. Because of this, get does not need to check for their presence in
the g.file. Thus, the message

No id kE!}"AlOrds (an7)

is never output when get -e is used.

In addition, get -e causes the creation (or updating) of a p.file that is
used to pass information to the delta command.

The following

get -e s.abc

r-" produces (for example) on the standard output

1.3
new delta 1.4
67 lines

SOURCE CODE CONTROL SYSTEM (SCCS) 14-17

SCCS Commands

Undoing a get -e
There may be times when a file is retrieved for editing in error; there is

really no editing that needs to be done at this time. In such cases, the
unget command can be used to cancel the delta reservation that was set up.

Additional get Options
If get -r and/or -t are used together with -e, the version retrieved for

editing is the one specified with -r and/or -to

get -i and -x are used to specify a list (see get(l) in the Programmer's
Reference Manual for the syntax of such a list) of deltas to be included and
excluded, respectively. Including a delta means forcing its changes to be
included in the retrieved version. This is useful in applying the same
changes to more than one version of the sees file. Excluding a delta
means forcing it not to be applied. This may be used to undo the effects of
a previous delta in the version to be created.

Whenever deltas are included or excluded, get checks for possible
interference with other deltas. Two deltas can interfere, for example, when
each one changes the same line of the retrieved g.file. A warning shows .')
the range of lines within the retrieved g.file where the problem may exist.
The user should examine the g.file to determine what the problem is and
take appropriate corrective steps (e.g., edit the file).V gel-i and gel-x should be used with extreme care.

get -k is used either to regenerate a g.file that may have been acciden­
tally removed or ruined after get -e, or simply to generate a g..file in which
the replacement of 10 keywords has been suppressed. A g.file generated by
get -k is identical to one produced by get -e, but no processing related to
the p.file takes place.

Concurrent Edits of Different SID
The ability to retrieve different versions of an sees file allows several

deltas to be in progress at any given time. This means that several get -e
commands may be executed on the same file as long as no two executions
retrieve the same version (unless multiple concurrent edits are allowed).

14-18 PROGRAMMER'S GUIDE

------------------------ sces Commands

The p.file created by get -e is named by automatic replacement of the
SCCS filename's prefix s. with po. It is created in the same directory as the
SCCS file, given mode 644 (readable by everyone, writable only by the
owner), and owned by the effective user. The p.file contains the following
information for each delta that is still in progress:

.. the SID of the retrieved version

II the SID given to the new delta when it is created

I) the login name of the real user executing get

The first execution of get -e causes the creation of a p.file for the
corresponding SCCS file. Subsequent executions only update the p.file with
a line containing the above information. Before updating, however, get
checks to assure that no entry already in the p.file specifies that the SID of
the version to be retrieved is already retrieved (unless multiple concurrent
edits are allowed). If the check succeeds, the user is informed that other
deltas are in progress and processing continues. If the check fails, an error
message results.

It should be noted that concurrent executions of get must be carried out
from different directories. Subsequent executions from the same directory
will attempt to overwrite the g.file, which is an sees error condition. In
practice, this problem does not arise since each user normally has a different
working directory. See "Protection" under "sccs Files" for a discussion of
how different users are permitted to use SCCS commands on the same files.

Figure 14-4 shows the possible SID components a user can specify with
get (left-most column), the version that will then be retrieved by get, and
the resulting SID for the delta, which delta will create (right-most column).

SID -b Key- SID SID of Delta
Specified Letter Other Retrieved To be Created
in get. Usedt Conditions by get by delta

none:J: no R defaults to mR mR.mL mR.(mL+l)

none:J: yes R defaults to mR mR.mL mR.mL.(mB+1)

~
R no R> mR mR.mL R.l§

R no R=mR mR.mL mR.(mL+l)

SOURCE CODE CONTROL SYSTEM (SeCS) 14-19

sces Commands

SID -b Key- SID SID of Delta
Specified Letter Other Retrieved To be Created
in get. Usedt Conditions by get by delta

R yes R> mR mR.mL mR.mL.(mB+1).1

R yes R=mR mR.mL mR.mL.(mB+1).1

R R< mRandR hR.mL" hR.mL.(mB+1).1
does not exist

R Trunk successor R.mL R.mL.(mB+1).1
number in
release> R
and R exists

R.L. no No trunk R.L R.(L+1)
successor

R.L. yes No trunk R.L R.L.(mB+1).1
successor

R.L Trunk successor R.L R.L.(mS+1).1

'Jin release ~ R

R.L.B no No branch R.L.B.mS R.L.B.(mS+1)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+1).1
successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+l)
successor

R.L.B.S yes No branch R.L.B.S R.L.(mB+1).1
successor

R.L.B.S Branch successor R.L.B.S R.L.(mB+1).1

Figure 14-4: Determination of New SID

• R, L, B, and S mean release, level, branch, and sequence numbers in the SID, and m
means maximum. Thus, for example, R.mL means the maximum level number within
release R. R.L.(mB+I).1 means the first sequence number on the new branch (Le.,
maximum branch number plus I) of level L within release R. Note that if the SID
specified is R.L, R.L.B, or R.L.B.S, each of these specified SID numbers must exist.

14-20 PROGRAMMER'S GUIDE

SCCS Commands

t The -b keyletter is effective only if the b flag (see admin(t) is present in the file.
An entry of - means irrelevant.

This case applies if the d (default SID) flag is not present. If the d flag is present in
the file, the SID is interpreted as if specified on the command line. Thus, one of the
other cases in this figure applies. .

§ This is used to force the creation of the first delta in a new release.

hR is the highest existing release that is lower than the specified, nonexistent rplease
R.

Concurrent Edits of Same SID
Under normal conditions, more than one get -e for the same SID is not

permitted. That is, delta must be executed before a subsequent get -e is
executed on the same SID.

Multiple concurrent edits are allowed if the j flag is set in the sees file.
Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

get -e s.abc
1. 1
new delta 1.1.1.1
5 lines

without an intervening delta. In this case, a delta after the first get will
produce delta 1.2 (assuming 1.1 is the most recent trunk delta), and a delta
after the second get will produce delta 1.1.1.1.

Keyletters That Affect Output
get -p causes the retrieved text to be written to the standard output

rather than to a g.file. In addition, all output normally directed to the stan­
dard output (such as the SID of the version retrieved and the number of
lines retrieved) is directed instead to the diagnostic output. get -p is used,
for example, to create a g.file with an arbitrary name, as in

get -p s.abc > arbitrary-file-name

SOURCE CODE CONTROL SYSTEM (SCCS) 14-21

SCCS Commands

get -s suppresses output normally directed to the standard output, such
as the SID of the retrieved version and the number of lines retrieved, but it
does not affect messages normally directed to the diagnostic output. get-s
is used to prevent nondiagnostic messages from appearing on the user's ter­
minal and is often used with -p to pipe the output, as in

get -p -s s.abc I pg

get -g suppresses the retrieval of the text of an sees file. This is useful
in several ways. For example, to verify a particular SID in an sees file

get -g -r4.3 s.abc

outputs the SID 4.3 if it exists in the sees file s.abc or an error message if it
does not. Another use of get -g is in regenerating a p.file that may have
been accidentally destroyed, as in

get -e -g s.abc

get -I causes sees to create an 1I1.file.1I It is named by replacing the s.
of the sees filename with 1., created in the current directory with mode
444 (read only) and owned by the real user. The l.file contains a table ~

(whose format is described under get(1) in the Programmer's Reference)
Manual) showing the deltas used in constructing a particular version of the
sees file. For example

get -r2.3 -I s.abc

. generates an l.file showing the deltas applied to retrieve version 2.3 of file
s.abc. Specifying p with -I, as in

get -Ip -r2.3 s.abc

causes the output to be written to the standard output rather than to the
l.file. get -g can be used with -1 to suppress the retrieval of the text.

get -m identifies the changes applied to an sees file. Each line of the
g.file is preceded by the SID of the delta that caused the line to be inserted.
The SID is separated from the text of the line by a tab character.

get -0 causes each line of a g.file to be preceded by the value of the
%M% ID keyword and a tab character. This is most often used in a pipeline ~

with grep(l). For example, to find all lines that match a given pattern in }
the latest version of each sees file in a directory, the following may be exe-
cuted:

14-22 PROGRAMMER'S GUIDE

SCCS Commands

get -p -0 -s directory I grep pattern

If both -m and -0 are specified, each line of the generated g.file is pre­
ceded by the value of the %M% ID keyword and a tab (this is the effect of
-0) and is followed by the line in the format produced by -m. Because use
of -m and/or -0 causes the contents of the g.file to be modified, such a
g.file must not be used for creating a delta. Therefore, neither -m nor -0

may be specified together with get -e.

See get(l) in the Programmer's Reference Manual for a full description of
additional keyletters.

~.

The delta Command
The delta(l) command is used to incorporate changes made to a g.file

into the corresponding sees file-that is, to create a delta and, therefore, a
new version of the file.

The delta command requires the existence of a p.file (created via get
-e). It examines the p.file to verify the presence of an entry containing the
user's login name. If none is found, an error message results.

get -e performs. If all checks are successful, delta determines what has
been changed in the g.file by comparing it via diff(l) with its own tem­
porary copy of the g.file as it was before editing. This temporary copy of
the g.file is called the d.file and is obtained by performing an internal get
on the SID specified in the p.file entry.

The required p.file entry is the one containing the login name of the
user executing delta, because the user who retrieved the g.file must be the
one who creates the delta. However, if the login name of the user appears
in more than one entry, the same user has executed get -e more than once
on the same sees file. Then, delta -r must be used to specify the SID that
uniquely identifies the p.file entry. This entry is then the one used to
obtain the SID of the delta to be created.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-23

SCCS Commands

In practice, the most common use of delta is

delta s.abc

which prompts

ccmnents?

to which the user replies with a description of why the delta is being made,
ending the reply with a newline character. The user's response may be up
to 512 characters long with newlines (not intended to terminate the
response) escaped by backslashes, \.

If the sees file has a v flag, delta first prompts with

MRs?

(Modification Requests), on the standard output. The standard input is then
read for MR numbers, separated by blanks and/or tabs, ended with a new­
line character. A Modification Request is a formal way of asking for a
correction or enhancement to the file. In some controlled environments
where changes to source files are tracked, deltas are permitted only when
initiated by a trouble report, change request, trouble ticket, etc., collectively
called MRs. Recording MR numbers within deltas is a way of enforcing the
rules of the change management process.

delta -y and/or -m can be used to enter comments and MR numbers
on the command line rather than through the standard input, as in

delta -y"descriptive commenttl -m"mrnuml mrnum2" s.abc

In this case, the prompts for comments and MRs are not printed, and
the standard input is not read. These two keyletters are useful when delta
is executed from within a shell procedure (see sh(l) in the Programmer's
Reference Manual).

delta -m is allowed only if the sees file has a v flag.

No matter how comments and MR numbers are entered with delta, they.,"""
are recorded as part of the entry for the delta being created. Also, they ,J
apply to all sees files specified with the delta.

14-24 PROGRAMMER'S GUIDE

sees Commands

If delta is used with more than one file argument and the first file
named has a v flag, all files named must have this flag. Similarly, if the first
file named does not have the flag, none of the files named may have it.

When delta processing is complete, the standard output displays the SID
of the new delta (from the p.file) and the number of lines inserted, deleted,
and left unchanged. For example:

1.4
14 inserted
7 deleted
345 unchanged

If line counts do not agree with the user's perception of the changes
made to a g.file, it may be because there are various ways to describe a set
of changes, especially if lines are moved around in the g.file. However, the
total number of lines of the new delta (the number inserted plus the
number left unchanged) should always agree with the number of lines in
the edited g.file.

If you are in the process of making a delta, the delta command finds no
~ ID keywords in the edited g.file, the message

No id keywords (an7)

is issued after the prompts for commentary but before any other output.
This means that any ID keywords that may have existed in the secs file
have been replaced by their values or deleted during the editing process.
This could be caused by making a delta from a g.file that was created by a
get without -e (ID keywords are replaced by get in such a case). It could
also be caused by accidentally deleting or changing ID keywords while edit­
ing the g.file. Or, it is possible that the file had no ID keywords. In any
case, the delta will be created unless there is an i flag in the secs file
(meaning the error should be treated as fatal), in which case the delta will
not be created.

After the processing of an sces file is complete, the corresponding
p.file entry is removed from the p.file. All updates to the p.file are made to
a temporary copy, the "q.file," whose use is similar to the use of the x.file
described earlier under "sces Command Conventions.1t If there is only one
entry in the p.file, then the p.file itself is removed.

SOURCE CODE CONTROL SYSTEM (SCeS) 14-25

SCCS Commands

In addition, delta removes the edited g.file unless -n is specified. For
example

delta -n s.abc

will keep the g.file after processing.

delta -s suppresses all output normally directed to the standard output,
other than ccmnents? and MRs? Thus, use of -s with -y (and/or -m)
causes delta to neither read the standard input nor write the standard out­
put.

The differences between the g.file and the d.file constitute the delta and
may be printed on the standard output by using delta -po The format of
this output is similar to that produced by diff(l).

The admin Command
The admin(l) command is used to administer sees files-that is, to

create new sees files and change the parameters of existing ones. When an
sees file is created, its parameters are initialized by use of keyletters with
admin or are assigned default values if no keyletters are supplied. The')
same keyletters are used to change the parameters of existing sees files.

Two keyletters are used in detecting and correcting corrupted sees files
(see "Auditing" under "SeeS Filesll

).

Newly created sees files are given access permission mode 444 (read
only) and are owned by the effective user. Only a user with write permis­
sion in the directory containing the sees file may use the admin command
on that file.

Creation of SCCS Files
An sees file can be created by executing the command

admin -ifirst s.abc

in which the value first with -i is the name of a file from which the text of
the initial delta of the sees file s.abc is to be taken. Omission of a value ')
with -i means admin is to read the standard input for the text of the initial
delta.

14-26 PROGRAMMER'S GUIDE

SCCS Commands

The command

admin -i s.abc < first

is equivalent to the previous example.

If the text of the initial delta does not contain ID keywords, the message

No id keywords (an?)

is issued by admin as a warning. However, if the command also sets the i
flag (not to be confused with the -i keyletter), the message is treated as an
error and the sees file is not created. Only one sees file may be created
at a time using admin -i.

admin -r is used to specify a release number for the first delta. Thus:

admin -ifirst -r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1.
Because -r has meaning only when creating the first delta, its use is permit­
ted only with -i.

Inserting Commentary for the Initial Delta
When an sees file is created, the user may want to record why this was

done. Comments (admin -y) and/or MR numbers (-m) can be entered in
exactly the same way as a delta.

If -y is omitted, a comment line of the form

date and time created YY /MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (admin -m), the v flag must be
set via -f. The v flag simply determines whether MR numbers must be
supplied when using any sees command that modifies a delta commentary
(see sccsfile(4) in the Programmer's Reference Manual) in the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that -y and -m are effective only if a new sees file is being created.

Initialization and Modification of SCCS File Parameters
Part of an sees file is reserved for descriptive text, usually a summary

of the file's contents and purpose. It can be initialized or changed by using
admin -to

SOURCE CODE CONTROL SYSTEM (SCCS) 14-27

SCCS Commands

When an sees file is first being created and -t is used, it must be fol­
lowed by the name of a file from which the descriptive text is to be taken.
For example, the command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc.

When processing an existing sees file, -t specifies that the descriptive
text (if any) currently in the file is to be replaced with the text in the named
file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the sees file is to be replaced by the
contents of desc. Omission of the filename after the -t keyletter as in

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized or changed by admin -f, or
deleted via -d.

sees file flags are used to direct certain actions of the various com- /~

mands. (See admin(l) in the Programmer's Reference Manual for a description)
of all the flags.) For example, the i flag specifies that a warning message
(stating that there are no ID keywords contained in the sees file) should be
treated as an error. The d (default SID) flag specifies the default version of
the sees file to be retrieved by the get command.

admin -f is used to set flags and, if desired, their values. For example

admin -ifirst -fi -fmmodname s.abc

sets the i and m (module name) flags. The value modname specified for the
m flag is the value that the get command will use to replace the %M% ID
keyword. (In the absence of the m flag, the name of the g.file is used as the
replacement for the %M% ID keyword.) Several -f keyletters may be sup­
plied on a single admin, and they may be used whether the command is
creating a new sees file or processing an existing one.

admin -d is used to delete a flag from an existing sees file. As an
example, the command

admin -dm s.abc

removes the m flag from the sees file. Several -d keyletters may be used
with one admin and may be intermixed with -f.

14-28 PROGRAMMER'S GUIDE

~.

SCCS Commands

sees files contain a list of login names and/or group IDs of users who
are allowed to create deltas. This list is empty by default, allowing anyone
to create deltas. To create a user list (or add to an existing one), admin -a
is used. For example,

admin -axyz -awql -a1234 s.abc

adds the login names xyz and wql and the group 10 1234 to the list. admin
-a may be used whether creating a new sees file or processing an existing
one.

admin -e (erase) is used to remove login names or group IDs from the
list.

The prs Command
The prs(l) command is used to print all or part of an sees file on the

standard output. If prs -d is used, the output will be in a format called
data specification. Data specification is a string of sees file data keywords
(not to be confused with get 10 keywords) interspersed with optional user
text.

Data keywords are replaced by appropriate values according to their
definitions. For example,

:1:

is defined as the data keyword replaced by the SID of a specified delta.
Similarly, :F: is the data keyword for the sees filename currently being
processed, and :C: is the comment line associated with a specified delta. All
parts of an sees file have an associated data keyword. For a complete list,
see prs(l) in the Programmer's Reference Manual.

There is no limit to the number of times a data keyword may appear in
a data specification. Thus, for example,

prs -dn: I: this is the top delta for :F: : I: II s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

SOURCE CODE CONTROL SYSTEM (SCCS) 14-29

SCCS Commands

Information may be obtained from a single delta by specifying its SID
using prs -r. For example,

prs -dll:F:: :1: comment line is: :C: lI -rI.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If -r is not specified, the value of the SID defaults to the most recently
created delta.

In addition, information from a range of deltas may be obtained with -I
or -e. The use of prs -e substitutes data keywords for the SID designated
via -r and all deltas created earlier, while prs -I substitutes data keywords
for the SID designated via -r and all deltas created later. Thus, the com­
mand

prs -d: I: -rIA -e s.abc

may output

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d: I: -rIA -I s.abc

may produce

14-30 PROGRAMMER'S GUIDE

------------------------ SCCS Commands

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the sees file may be
obtained by specifying both -e and -1.

The sact Command
sact(l) is like a special form of the prs command that produces a report

about files that are out for edit. The command takes only one type of argu­
ment: a list of file or directory names. The report shows the SID of any file
in the list that is out for edit, the SID of the impending delta, the login of
the user who executed the get -e command, and the date and time the get
-e was executed. It is a useful command for an administrator.

The help Command
The help(l) command prints the syntax of sees commands and of mes­

sages that may appear on the user's terminal. Arguments to help are simply
sees commands or the code numbers that appear in parentheses after sees
messages. (If no argument is given, help prompts for one.) Explanatory
information is printed on the standard output. If no information is found,
an error message is printed. When more than one argument is used, each is
processed independently, and an error resulting from one will not stop the
processing of the others. For more information, see help(l) in the UNIX
System V User's Reference Manual.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-31

SCCS Commands

Explanatory information related to a command is a synopsis of the com­
mand. For example,

help geS rmdel

produces

geS:
"nonexistent sid"
The specified sid does rot exist in the
given file.
Check for typos.

ntdel:
xm:Iel ~m name •••

The rmdel Command
The rmdel(l) command allows removal of a delta from an sees file. Its

use should be reserved for deltas in which incorrect global changes were
made. The delta to be removed must be a leaf delta. That is, it must be the
most recently created delta on its branch or on the trunk of the sees file
tree. In Figure 14-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed.
Only after they are removed can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write per­
mission in the directory containing the sees file. In addition, the real user
must be either the one who created the delta being removed or the owner
of the sees file and its directory.

The -r keyletter is mandatory with rmdel. It is used to specify the
complete SID of the delta to be removed. Thus,

rmdel -r2.3s.abc)

specifies the removal of trunk delta 2.3.

14-32 PROGRAMMER'S GUIDE

------------------------ SCCS Commands

Before removing the delta, rmdel checks that the release number (R) of
the given SID satisfies the relation:

floor less than or equal to R less than or equal to ceiling

The rmdel command also checks the SID to make sure it is not for a ver­
sion on which a get for editing has been executed and whose associated
delta has not yet been made. In addition, the login name or group ID of
the user must appear in the file's user list (or the user list must be empty).
Also, the release specified cannot be locked against editing. That is, if the 1
flag is set (see admin(l) in the Programmer's Reference Manual), the release
must not be contained in the list. If these conditions are not satisfied, pro­
cessing is terminated, and the delta is not removed.

Once a specified delta has been removed, its type indicator in the delta
table of the sees file is changed from D (delta) to R (removed).

The cdc Command
The cdc(l) command is used to change the commentary made when the

delta was created. It is similar to the rmdel command (e.g., -r and full SID
are necessary), although the delta need not be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta 3.4 is to be changed. New commen­
tary is then prompted for as with delta.

The old commentary is kept, but it is preceded by a comment line indi­
cating that it has been superseded, and the new commentary is entered
ahead of the comment line. The inserted comment line records the login
name of the user executing cdc and the time of its execution.

The cdc command also allows for the insertion of new and deletion of
old ("!" prefix) MR numbers. Thus,

cdc -rl.4 s.abc
MRs? mrnum3 !mrnuml (The MRs? prompt appears only

if the v flag has been set.)
ccmnents? deleted wrong MR number and inserted correct MR number

inserts mrnum3 and deletes mrnuml for delta 1.4.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-33

sces Commands

An MR (Modification Request) is described above under the delta com­
mand.

The what Command
The what(l) command is used to find identifying information within

any UNIX file whose name is given as an argument. No keyletters are
accepted. The what command searches the given file(s) for all occurrences
of the string @(#), which is the replacement for the %Z% 10 keyword (see
get(l». It prints on the standard output whatever follows the string until
the first double quote, n, greater than, >, backslash, \, newline, or nonprint­
ing NUL character.

For example, if an sees file called s.prog.c (a e language program) con­
tains the following line:

char id[]= "»r"";
and the command

get -r3.4 s.prog.c

is used, the resulting g.file is compiled to produce prog.o and a.out. Then,
the command

what prog.c prog.o a.out

produces

14-34 PROGRAMMER'S GUIDE

SCCS Commands

prog.c:
prog.c: 3.4

prog.o:
prog.c: 3.4

a.01t:
prog.c: 3.4

The string searched for by what need not be inserted via an ID keyword of
get; it may be inserted in any convenient manner.

The sccsdiff Command
The sccsdiff(l) command determines (and prints on the standard out­

put) the differences between any two versions of an sees file. The versions
to be compared are specified with sccsdiff -r in the same way as with get
-r. SID numbers must be specified as the first two arguments. Any follow­
ing keyletters are interpreted as arguments to the pr(l) command (which
prints the differences) and must appear before any filenames. The sees
file(s) to be processed are named last. Directory names and a name of - (a
lone minus sign) are not acceptable to sccsdiff.

The following is an example of the format of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

The differences are printed the same way as by diff(l).

The comb Command
The comb(l) command lets the user try to reduce the size of an sees

file. It generates a shell procedure (see sh(l) in the Programmer's Reference
Manual) on the standard output, which reconstructs the file by discarding
unwanted deltas and combining other specified deltas. (It is not recom­
mended that comb be used as a matter of routine.)

SOURCE CODE CONTROL SYSTEM (SCeS) 14-35

SCCS Commands

In the absence of any keyletters, comb preserves only leaf deltas and
the minimum number of ancestor deltas necessary to preserve the shape of
an SCCS tree. The effect of this is to eliminate middle deltas on the trunk
and on all branches of the tree. Thus, in Figure 14-3, deltas 1.2, 1.3.2.1, 1.4, .~..
and 2.1 would be eliminated. .

Some of the keyletters used with this command are:

comb -s This option generates a shell procedure that produces a
report of the percentage space (if any) the user will save.
This is often useful as an advance step.

comb -p This option is used to specify the oldest delta the user wants
preserved.

comb -c This option is used to specify a list (see get(l) in the
Programmer's Reference Manual for its syntax) of deltas the
user wants preserved. All other deltas will be discarded.

The shell procedure generated by comb is not guaranteed to save space. A
reconstructed file may even be larger than the original. Note, too, that the
shape of an SCCS file tree may be altered by the reconstruction process.

The val Command
The val(l) command is used to determine whether a file is an SCCS file

meeting the characteristics specified by certain keyletters. It checks for the
existence of a particular delta when the SID for that delta is specified with
-r.

The string following -y or -m is used to check the value set by the t or
m flag, respectively. See admin(l) in the Programmer's Reference Manual for
descriptions of these flags.

The val command treats the special argument - differently from other
SCCS commands. It allows val to read the argument list from the standard
input instead of from the command line, and the standard input is read
until an end-of-file (CTRL-D) is entered. This permits one val command
with different values for keyletters and file arguments. For example,

val - -yc -mabc s.abc -mxyz -ypll s.xyz

first checks if file s.abc has a value c for its type flag and value abc for the
module name flag. Once this is done, val processes the remaining file, in
this case s.xyz.

14-36 PROGRAMMER'S GUIDE

SCCS Commands

The val command returns an 8-bit code. Each bit set shows a specific
error (see val(l) for a description of errors and codes). In addition, an
appropriate diagnostic is printed unless suppressed by -so A return code of
o means all files met the characteristics specified.

The vc Command
The vc(l) command is an awk-like tool used for version control of sets

of files. While it is distributed as part of the sees package, it does not
require the files it operates on to be under sees control. A complete
description of vc may be found in the Programmer's Reference Manual.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-37

sees Files

This section covers protection mechanisms used by sees, the format of
sees files, and the recommended procedures for auditing sees files. .,~

Protection
sees relies on the capabilities of the UNIX system for most of the pro­

tection mechanisms required to prevent unauthorized changes to sees
files-that is, changes by non-SeeS commands. Protection features pro­
vided directly by sees are the release lock flag, the release floor and ceiling
flags, and the user list.

Files created by the admin command are given access permission mode
444 (read only). This mode should remain unchanged because it prevents
modification of sees files by non-SeeS commands. Directories containing
sees files should be given mode 755, which allows only the owner of the
directory to modify it.

sees files should be kept in directories that contain only sees files and
any temporary files created by sees commands. This simplifies their pro- .~
tection and auditing. The contents of directories should be logical .
groupings-subsystems of the same large project, for example.

sees files should have only one link (name) because commands that
modify them do so by creating a copy of the file (the x.file; see "sees Com­
mand Conventions"). When processing is done, the old file is automatically
removed and the x.file renamed (5. prefix). If the old file had additional
links, this breaks them. Then, rather than process such files, sees com­
mands will produce an error message.

When only one person uses sees, the real and effective user IDs are the
same; and the user 10 owns the directories containing sees files. There­
fore, sees may be used directly without any preliminary preparation.

When several users with unique user IDs are assigned sees responsibil­
ities (e.g., on large development projects), one user-that is, one user 10­
must be chosen as the owner of the sees files. This person will administer
the files (e.g. use the admin command) and will be sees administratorfor,~
the project. Because other users do not have the same privileges and per- ,
missions as the sees administrator, they are not able to execute directly
those commands that require write permission in the directory containing
the sees files. Therefore, a project-dependent program is required to

14-38 PROGRAMMER'S GUIDE

sees Flies

provide an interface to the get, delta, and, if desired, rmdel and cdc com­
mands.

The interface program must be owned by the sees administrator and
must have the set user 10 on execution bit on (see chmod(l) in the User's
Reference Manual). This assures that the effective user 10 is the user 10 of
the sees administrator. With the privileges of the interface program dur­
ing command execution, the owner of an sees file can modify it at will.
Other users whose login names or group IDs are in the user list for that file
(but are not the owner) are given the necessary permissions only for the
duration of the execution of the interface program. Thus, they may modify
sees only with delta and, possibly, rmdel and cdc.

A project-dependent interface program, as its name implies, can be cus­
tom built for each project. Its creation is discussed later under "An sees
Interface Program."

Formatting
sees files are composed of lines of Asell text arranged in six parts as

follows:

Checksum

Delta Table

User Names

Flags

a line containing the logical sum of all the characters
of the file (not including the checksum itself)

information about each delta, such as type, SID, date
and time of creation, and commentary

list of login names and/or group IDs of users who are
allowed to modify the file by adding or removing del­
tas

indicators that control certain actions of secs com­
mands

Descriptive Text usually a summary of the contents and purpose of the
file

Body the text administered by sees, intermixed with inter­
nal secs control lines

SOURCE CODE CONTROL SYSTEM (SeeS) 14-39

sees Flies

Details on these file sections may be found in sccsfile(4). The checksum
is discussed below under "Auditing."

Since sees files are ASCII files they can be processed by non-SeeS ~

commands like ed(I), grep(I), and cat(1). This is convenient when an sees J
file must be modified manually (e.g., a delta's time and date were recorded
incorrectly because the system clock was set incorrectly), or when a user
wants simply to look at the file.

Y
AUTION

Extreme care should be exercised when modifying sees files with non­
sees commands.

Auditing
When a system or hardware malfunction destroys an sees file, any

command will issue an error message. Commands also use the checksum
stored in an sees file to determine whether the file has been corrupted
since it was last accessed (possibly by having lost one or more blocks or by
having been modified with ed(I». No sees command will process a cor­
rupted sees file except the admin command with -h or -z, as described
below.

sees files should be audited for possible corruptions on a regular basis.
The simplest and fastest way to do an audit is to use admin -h and specify
all sees files:

admin -h s.filel s.file2 ...
or

admin -h directoryl directory2

If the new checksum of any file is not equal to the checksum in the first
line of that file, the message

oorrupted file (006)

is produced for that file. The process continues until all specified files have
been examined. When examining directories (as in the second example
above); the checksum process will not detect missing files. A simple way to
learn whether files are missing from a directory is to execute the Is(I)

14-40 PROGRAMMER'S GUIDE

SCCS Flies

command periodically, and compare the outputs. Any file whose name
appeared in a previous output but not in the current one no longer exists.

When a file has been corrupted, the way to restore it depends on the
extent of the corruption. If damage is extensive, the best solution is to con­
tact the local UNIX system operations group and request that the file be
restored from a backup copy. If the damage is minor, repair through edit­
ing may be possible. After such a repair, the admin command must be exe­
cuted:

admin -z s.ftle

The purpose of this is to recompute the checksum and bring it into
agreement with the contents of the file. After this command is executed,
any corruption that existed in the file will no longer be detectable.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-41

~.

"

15 sdb-the Symbolic Debugger

Introduction

Using sdb
Printing a Stack Trace
Examining Variables
Source File Display and Manipulation

• Displaying the Source File
• Changing the Current Source File or Function
• Changing the Current Line in the Source File

A Controlled Environment for Program Testing
• Setting and Deleting Breakpoints
• Running the Program
• Calling Functions

Machine Language Debugging
• Displaying Machine Language Statements
• Manipulating Registers

Other Commands
An sdb Session

15-1

15-2

15-3

15·3

15-6

15·6

15-7

15-7

15-8

15-8

15·10

15-11

15-11

15-11

15-12

15-12

15-13

sdb-THE SYMBOLIC DEBUGGER

~\. .. :J

Introduction

This chapter describes the symbolic debugger, sdb(l), as implemented
for C language and Fortran 77 programs on the UNIX operating system.
The sdb program is useful both for examining core images of aborted pro­
grams and for providing an environment in which execution of a program
can be monitored and controlled.

The sdb program allows interaction with a debugged program at the
source language level. When debugging a core image from an aborted pro­
gram, sdb reports which line in the source program caused the error and
allows all variables to be accessed symbolically and to be displayed in the
correct format.

When executing, breakpoints may be placed at selected statements or
the program may be single stepped on a line-by-line basis. To facilitate
specification of lines in the program without a source listing, sdb provides a
mechanism for examining the source text. Procedures may be called
directly from the debugger. This feature is useful both for testing indivi­
dual procedures and for calling user-provided routines, which provide for­
matted printouts of structured data.

sdb-THE SYMBOLIC DEBUGGER 15-1

Using sdb

In order to use sdb to its full capabilities, it is necessary to compile the
source program with the -g option. This causes the compiler to generate ~

additional information about the variables and statements of the compiled)
program. When the -g option has been specified, sdb can be used to obtain
a trace of the called functions at the time of the abort and interactively
display the values of variables.

A typical sequence of shell commands for debugging a core image is

cc -g prgm.c -0 prgm
prgm
Bus error - oore c:i\mped
sdb prgm
main: 25: x[i] = 0;

OJ
The program prgm was compiled with the -g option and then executed.

An error occurred, which caused a core dump. The sdb program is then
invoked to examine the core dump to determine the cause of the error. It
reports that the bus error occurred in function main at line 25 (line
numbers are always relative to the beginning of the file) and outputs the
source text of the offending line. The sdb program then prompts the user
with an ., which shows that it is waiting for a command.

It is useful to know that sdb has a notion of current function and
current line. In this example, they are initially set to main and 25, respec­
tively.

Here sdb was called with one argument, prgm. In general, it takes
three arguments on the command line. The first is the name of the execut­
able file that is to be debugged; it defaults to a.out when not specified. The
second is the name of the core file, defaulting to core; and the third is the ~

list of the directories (separated by colons) containing the source of the pro-)
gram being debugged. The default is the current working directory. In the
example, the second and third arguments defaulted to the correct values, so
only the first was specified.

15-2 PROGRAMMER'S GUIDE

~.

Using sdb

If the error occurred in a function that was not compiled with the -g
option, sdb prints the function name and the address at which the error
occurred. The current line and function are set to the first executable line
in main. If main was not compiled with the -g option, sdb will print an
error message, but debugging can continue for those routines that were
compiled with the -g option.

Figure 15-1 at the end of the chapter, shows a more extensive example
of sdb use.

Printing a Stack Trace
It is often useful to obtain a listing of the function calls that led to the

error. This is obtained with the t command. For example:

*t
sub(x=2 ,y=3) [prgm.c: 25]
inter(i=16012} [prgm.c:96]
main(argc=1,argv=Ox7fffff54,envp=0x7fffff5c) [p:gm.c: 15]

This indicates that the program was stopped within the function sub at line
25 in file prgm.c. The sub function was called with the arguments x=2 and
y=3 from inter at line 96. The inter function was called from main at line
15. The main function is always called by a startup routine with three
arguments often referred to as argc, argv, and envp. Note that argv and
envp are pointers, so their values are printed in hexadecimal.

Examining Variables
The sdb program can be used to display variables in the stopped pro­

gram. Variables are displayed by typing their name followed by a slash, so

*errflagl

causes sdb to display the value of variable errflag. Unless otherwise
specified, variables are assumed to be either local to or accessible from the
current function. To specify a different function, use the form

*sub:iI

to display variable i in function sub. FORTRAN 77 users can specify a com­
mon block variable in the same manner, provided it is on the call stack.

sdb-THE SYMBOLIC DEBUGGER 15-3

Using sdb

The sdb program supports a limited form of pattern matching for vari­
able and function names. The symbol • is used to match any sequence of
characters of a variable name and ? to match any single character. Consider
the following commands

The first prints the values of all variables beginning with x, the second
prints the values of all two letter variables in function sub beginning with
y, and the last prints all variables. In the first and last examples, only vari­
ables accessible from the current function are printed. The command

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined
by its type as declared in the source program. To request a different format,
a specifier is placed after the slash. The specifier consists of an optional
length specification followed by the format. The length specifiers are:

b~~ ~
h two bytes (half word)

I four bytes (long word)

The length specifiers are effective only with the formats d, 0, x, and u. If
no length is specified, the word length of the host machine is used. A
number can be used with the s or a formats to control the number of char­
acters printed. The s and a formats normally print characters until either a
null is reached or 128 characters have been printed. The number specifies
exactly how many characters should be printed.

There are a number of format specifiers available:

c character

d decimal

u decimal unsigned

o octal

15·4 PROGRAMMER'S GUIDE

Using sdb

x hexadecimal

f 32-bit single-precision floating point

~ g 64-bit double-precision floating point

s Assume variable is a string pointer and print characters starting at the
address pointed to by the variable until a null is reached.

a Print characters starting at the variable's address until a null is
reached.

p Pointer to function.

i Interpret as a machine-language instruction.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

sdb also knows about structures, arrays, and pointers so that all of the
following commands work.

*array[2] [3]1
*sym.idl
*psym->usagel
*xsym[20] .p->usage/

The only restriction is that array subscripts must be numbers. Note that as a
special case:

*psym[O]

displays the structure pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

*10241

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal so the above command is equivalent to
both

*020001

and

sdb-THE SYMBOLIC DEBUGGER 15-5

Using sdb

It is possible to mix numbers and variables so that

*1000.x!

refers to an element of a structure starting at address 1000, and

*100(}->x!

refers to an element of a structure whose address is at 1000. For commands
of the type *1000.xl and *1000->x/, the sdb program uses the structure
template of the last structured referenced.

The address of a variable is printed with =, so

displays the address of i. Another feature whose usefulness will become
apparent later is the command

*.1

which redisplays the last variable typed.

Source File Display and Manipulation
The sdb program has been designed to make it easy to debug a program

without constant reference to a current source listing. Facilities are pro­
vided that perform context searches within the source files of the program
being debugged and that display selected portions of the source files. The
commands are similar to those of the UNIX system text editor ed(l). Like
the editor, sdb has a notion of current file and line within the current file.
sdb also knows how the lines of a file are partitioned into functions, so it
also has a notion of current function. As noted in other parts of this docu­
ment, the current function is used by a number of sdb commands.

Displaying the Source File
Four commands exist for displaying lines in the source file. They are

useful for perusing the source program and for determining the context of
the current line. The commands are:

15-6 PROGRAMMER'S GUIDE

p

w

~\,0 .

Using sdb

Prints the current line.

Window; prints a window of ten lines around the current
line.

z Prints ten lines starting at the current line. Advances the
current line by ten.

control-d Scrolls; prints the next ten lines and advances the current
line by ten. This command is used to cleanly display long
segments of the program.

When a line from a file is printed, it is preceded by its line number.
This not only gives an indication of its relative position in the file, but it is
also used as input by some sdb commands.

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the
forms

may be used. The first causes the file containing the named function to
become the current file, and the current line becomes the first line of the
function. The other form causes the named file to become current. In this
case, the current line is set to the first line of the named file. Finally, an e
command with no argument causes the current function and file named to
be printed.

Changing the Current Line in the Source File
The z and control-d commands have a side effect of changing the

current line in the source file. The following paragraphs describe other
commands that change the current line.

There are two commands for searching· for instances of regular expres­
sions in source files. They are

*/regular expression!
*?regular expression?

The first command searches forward through the file for a line containing
a string that matches the regular expression and the second searches

sdb-THE SYMBOLIC DEBUGGER 15-7

Using sdb

backwards. The trailing I and? may be omitted from these commands.
Regular expression matching is identical to that of ed(I).

The + and - commands may be used to move the current line forward
or backward by a specified number of lines. Typing a new-line advances
the current line by one, and typing a number causes that line to become the
current line in the file. These commands may be combined with the display
commands so that

*+15z

advances the current line by 15 and then prints ten lines.

A Controlled Environment for Program Testing
One very useful feature of sdb is breakpoint debugging. After entering

sdb, breakpoints can be set at certain lines in the source program. The pro­
gram is then started with an sdb command. Execution of the program
proceeds as normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports the breakpoint
where the program stopped. Now, sdb commands may be used to display
the trace of function calls and the values of variables. If the user is satisfied
the program is working correctly to this point, some breakpoints can be
deleted and others set; then program execution may be continued from the
point where it stopped.

A useful alternative to setting breakpoints is single stepping. sdb can
be requested to execute the next line of the program and then stop. This
feature is especially useful for testing new programs, so they can be verified
on a statement-by-statement basis. If an attempt is made to single step
through a function that has not been compiled with the -g option, execu­
tion proceeds until a statement in a function compiled with the -g option is
reached. It is also possible to have the program execute one machine level
instruction at a time. This is particularly useful when the program has not
been compiled with the -g option.

Setting and Deleting Breakpoints
Breakpoints can be set at any line in a function compiled with the -g

option. The command format is:

15-8 PROGRAMMER'S GUIDE

Using sdb

*12b
*proc: 12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line
numbers are relative to the beginning of the file as printed by the source
file display commands. The second form sets a breakpoint at line 12 of
function proc, and the third sets a breakpoint at the first line of proc. The
last sets a breakpoint at the current line.

Breakpoints are deleted similarly with the d command:

*12d
*proc: 12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted
interactively. Each breakpoint location is printed, and a line is read from
the user. If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command,
and the D command deletes all breakpoints. It is sometimes desirable to
have sdb automatically perform a sequence of commands at a breakpoint
and then have execution continue. This is achieved with another form of
the b command.

*12b t;x/

causes both a trace back and the value of x to be printed each time execu­
tion gets to line 12. The a command is a variation of the above command.
There are two forms:

*proc:a
*proc: 12a

The first prints the function name and its arguments each time it is called,
and the second prints the source line each time it is about to be executed.
For both forms of the a command, execution continues after the function
name or source line is printed.

sdb-THE SYMBOLIC DEBUGGER 15-9

Using sdb

Running the Program
The r command is used to begin program execution. It restarts the pro­

gram as if it were invoked from the shell. The command

runs the program with the given arguments as if they had been typed on
the shell command line. If no arguments are specified, then the arguments
from the last execution of the program within sdb are used. To run a pro­
gram with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as INTERRUPT or QUIT occurs, or the program
terminates. In all cases after an appropriate message is printed, control
returns to the user.

The c command may be used to continue execution of a stopped pro­
gram. A line number may be specified, as in:

*proc: 12c

This places a temporary breakpoint at the named line. The breakpoint is '~.'

deleted when the c command finishes. There is also a C command that con-)
tinues but passes the signal that stopped the program back to the program.
This is useful for testing user-written signal handlers. Execution may be
continued at a specified line with the g command. For example:

"'17 g

continues at line 17 of the current function. A use for this command is to
avoid executing a section of code that is known to be bad. The user should
not attempt to continue execution in a function different than that of the
breakpoint.

The s command is used to run the program for a single statement. It is
useful for slowly executing the program to examine its behavior in detail.
An important alternative is the S command. This command is like the s
command but does not stop within called functions. It is often used when
one is confident that the called function works correctly but is interested in
testing the calling routine.

15-10 PROGRAMMER'S GUIDE

Using sdb

The i command is used to run the program one machine level instruc­
tion at a time while ignoring the signal that stopped the program. Its uses
are similar to the s command. There is also an I command that causes the
program to execute one machine level instruction at a time, but also passes
the signal that stopped the program back to the program.

Calling Functions
It is possible to call any of the functions of the program from sdb. This

feature is useful both for testing individual functions with different argu­
ments and for calling a user-supplied function to print structured data.
There are two ways to call a function:

*proc(arg1, arg2,)
*proc(arg1, arg2,)/m

The first simply executes the function. The second is intended for calling
functions (it executes the function and prints the value that it returns). The
value is printed in decimal unless some other format is specified by m.
Arguments to functions may be integer, character or string constants, or
variables that are accessible from the current function.

An unfortunate bug in the current implementation is that if a function
is called when the program is not stopped at a breakpoint (such as when a
core image is being debugged) all variables are initialized before the func­
tion is started. This makes it impossible to use a function that formats data
from a dump.

Machine Language Debugging
The sdb program has facilities for examining programs at the machine

language level. It is possible to print the machine language statements asso­
ciated with a line in the source and to place breakpoints at arbitrary
addresses. The sdb program can also be used to display or modify the con­
tents of the machine registers.

Displaying Machine Language Statements
To display the machine language statements associated with line 25 in

function main, use the command

*main:25?

sdb-THE SYMBOLIC DEBUGGER 15-11

Using sdb

The? command is identical to the I command except that it displays from
text space. The default format for printing text space is the i format, which
interprets the machine language instruction. The control-d command may
be used to print the next ten instructions. ~

Absolute addresses may be specified instead of line numbers by append-
ing a: to them so that

*Ox1024:?

displays the contents of address Oxl024 in text space. Note that the com­
mand

*Ox1024?

displays the instruction corresponding to line Oxl024 in the current func­
tion. It is also possible to set or delete a breakpoint by specifying its abso­
lute address;

*Ox1024:b

sets a breakpoint at address Oxl024.

Manipulating Registers ')
The x command prints the values of all the registers. Also, individual

registers may be named by appending a % sign to their name so that

displays the value of register r3.

Other Commands

To exit sdb, use the q command.

The! command (when used immediately after the • prompt) is identical
to that in ed(l) and is used to have the shell execute a command. The! can
also be used to change the values of variables or registers when the pro­
gram is stopped at a breakpoint. This is done with the command

*variable lvalue
*r3lvalue

15-12 PROGRAMMER'S GUIDE

Using sdb

which sets the variable or the named register to the given value. The value
may be a number, character constant, register, or the name of another vari­
able. If the variable is of type float or double, the value can also be a
floating-point constant (specified according to the standard C language for­
mat).

An sdb Session
An example of a debugging session using sdb is shown in Figure 15-1.

Comments (preceded by a pound sign, #) have been added to help you see
what is happening.

sdb myoptim - .: •• Ic::x:moon # enter sdb cannaIXl

source path: .: • .Ic::x:moon
No oore inage
*wi.IXIc:M:b # set a breakpoint at start of wi.IXIc:M
Ox80802462 (window:1459+2) b

*r < m.s > out.m.s # run the program
Breakpoint at
Ox80802462 in wi.ndcM: 1459: wiD:!ow(size, func) register int size;
boolean(*func)(); {
*t # print stack trace
wi.mow(size::2,func=w2opt) [optim.c: 1459]
peep() [peep.c: 34]

pseudo(s::.def"Imain; "I.va.l"I. ; "I.scl"I-1 ; "I.endef) [local.c: 483 J
yylex() [local.c:229]
mrin(argc::O ,argV=OXC00201bc, -1073610300) [optim.c: 227]
*z # print 10 lines of source
1459: wi.mow(size, func) register int size; boolean (*func)();
1460:
1461: extezn OODE *initw();
1462: register tmE *p1;
1463: register int i;
1464:
1465: TRACE(window);
1466:
1467: 1* find first window *1
1468:

*s # step
window: 1459: window(size, func) register int size; boolean (*func) ();
*s # step
window: 1465: TRACE(window) ;
*s # step

sdb-THE SYMBOLIC DEBUGGER 15-13

Using sdb

win:loIrI: 1469:

*s
win:loIrI: 1470:

*5
win:loIrI: 1475:
*pl
OXS0B86b38

wsize =size;
step

if «pI = initw(nO.forw» == NULL)
step tlu:oo.gh procedure call

for (opf =pf->back; ; opf = pf->back) {
shc:M variable pI

continued

.~

II replace pI with pl->farw
shc:M p1

*x # print the register contents
rOl OXS0886b38 rll 0 r21 Oxa088796c
r31 OXS0885830 r41 0xc0020470 r51 OxcO0203fO
r61 0xc0020478 r71 0xS0886b38 r81 2
apI 0xc00202dc fp/ 0xc0020308 sp/ 0xc0020308

pswl Ox201f73 f£1 0x808024bO
0x808024bO (win::low: 1475): MJVW OXBOB8Od8c t %rO [-Ox7f77f274 t %rO]

*pl[0] # dereference the pointer
pI [0] •forwl OXS0886b6C
pl[O] .back! OXSOB86aC8
pl[O].ops[O]1~
pl[0].un:iqidI 0
pl[O].op! 123
pl[O].nlivel 3588
pl[O].ndead/ 4096
*pl->forw[0] II dereference the pointer
pl->forw[O].forwl OxS0886caO
pl->forw[0] .back! 0xS0886b38
pl->forw[O].ops[O]1 call
pl->forw[O].uniqidl 0
pl->forw[O].op! 9
pl->farw[O].nlivel 3584
pl->farw[O].ndeadI 4099

*pllpl->farw
*p1
OxS0886b6c

cont:i.rme
BreaJq:oint at
OXS0802462 in win::Jow: 1459: windc:M(size, £unc) register int size;
boolean (*func)(); {
*s # step
window: 1459: w:indow(size, func) register int size; boolean (*func) () ;

*s # step
window: 1465: 'l'IW:E(wi:ndow) ;

*size # shc:M function argument size
3

15-14 PROGRAMMER'S GUIDE

Using sdb

continued

*D
All breakpoints deleted
*C

Process terminated

*<I
$

delete all breakpoints

oantirnle

quit sdb

,.~....r.w\

Figure 15-1: Example of sdb Usage

sdb-THE SYMBOLIC DEBUGGER 15-15

16 lint

Introduction

Usage

lint Message Types
Unused Variables and Functions
Set/Used Information
Flow of Control
Function Values
Type Checking
Type Casts
Nonportable Character Use
Assignments of longs to ints
Strange Constructions
Old Syntax
Pointer Alignment
Multiple Uses and Side Effects

16-1

16·2

16-4

16-4

16-5

16-5

16-6

16·7

16-8

16-9

16-9

16-10

16·11

16-12

16·12

lint

r)--

Introduction

The lint program examines C language source programs detecting a
number of bugs and obscurities. It enforces the type rules of C language
more strictly than the C compiler. It may also be used to enforce a number
of portability restrictions involved in moving programs between different
machines and/or operating systems. Another option detects a number of
wasteful or error prone constructions, which nevertheless are legal. lint
accepts multiple input files and library specifications and checks them for
consistency.

lint 16-1

Usage

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files
are the files to be checked which end with .c or .In; and library-descriptors
are the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppress messages about assignments of long values to vari­
ables that are not long.

-b Suppress messages about break statements that cannot be
reached.

-c Only check for intra-file bugs; leave external information in
files suffixed with .In.

-h Do not apply heuristics (which attempt to detect bugs,
improve style, and reduce waste).

-n Do not check for compatibility with either the standard or the
portable lint library.

-0 name Create a lint library from input files named llib-lname.In.

-p Attempt to check portability.

-u Suppress messages about function and external variables used
and not defined or defined and not used.

-v Suppress messages about unused arguments in functions.

-x Do not report variables referred to by external declarations
but never used.

When more than one option is used, they should be combined into a single
argument, such as -ab or -xha.

The names of files that contain C language programs should end with
the suffix .e, which is mandatory for lint and the C compiler.

16-2 PROGRAMMER'S GUIDE

Usage

lint accepts certain arguments, such as:

-1m

These arguments specify libraries that contain functions used in the C
language program. The source code is tested for compatibility with these
libraries. This is done by accessing library description files whose names
are constructed from the library arguments. These files all begin with the
comment:

1* LINTLIBRARY *1

which is followed by a series of dummy function definitions. The critical
parts of these definitions are the declaration of the function return type,
whether the dummy function returns a value, and the number and types of
arguments to the function. The VARARGS and ARGSUSED comments can
be used to specify features of the library functions. The next section, "lint
Message Types," describes how it is done.

lint library files are processed almost exactly like ordinary source files.
The only difference is that functions which are defined in a library file but
are not used in a source file do not result in messages. lint does not simu­
late a full library search algorithm and will print messages if the source files
contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard
library file that contains descriptions of the programs that are normally
loaded when a C language program is run. When the -p option is used,
another file is checked containing descriptions of the standard library rou­
tines which are expected to be portable across various machines. The-n
option can be used to suppress all library checking.

lint 16-3

lint Message Types

The following paragraphs describe the major categories of messages
printed by lint. ~

Unused Variables and Functions
As sets of programs evolve and develop, previously used variables and

arguments to functions may become unused. It is not uncommon for exter­
nal variables or even entire functions to become unnecessary and yet not be
removed from the source. These types of errors rarely cause working pro­
grams to fail, but are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused variables and
functions can occasionally serve to discover bugs.

lint prints messages about variables and functions which are defined
but not otherwise mentioned, unless the message is suppressed by means of
the -u or -x option.

Certain styles of programming may permit a function to be written with
an interface where some of the function's arguments are optional. Such a .~
function can be designed to accomplish a variety of tasks depending on
which arguments are used. Normally lint prints messages about unused
arguments; however, the -Y option is available to suppress the printing of
these messages. When -y is in effect, no messages are produced about
unused arguments except for those arguments which are unused and also
declared as register arguments. This can be considered an active (and
preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function
by adding the comment:

1* ARGSUSED *1

to the source code before the function. This has the effect of the -y option
for only one function. Also, the comment:

1* VARARGS *1

can be used to suppress messages about variable number of arguments in .~.

calls to a function. The comment should be added before the function 1
definition. In some cases, it is desirable to check the first several arguments
and leave the later arguments unchecked. This can be done with a digit
giving the number of arguments which should be checked. For example:

16-4 PROGRAMMER'S GUIDE

lint Message Types

1* VARARGS2 *1

will cause only the first two arguments to be checked.

When lint is applied to some but not all files out of a collection that are
to be loaded together, it issues complaints about unused or undefined vari­
ables. This information is, of course, more distracting than helpful. Func­
tions and variables that are defined may not be used; conversely, functions
and variables defined elsewhere may be used. The -u option suppresses
the spurious messages.

Set/Used Information
lint attempts to detect cases where a variable is used before it is set.

lint detects local variables (automatic and register storage classes) whose
first use appears physically earlier in the input file than the first assignment
to the variable. It assumes that taking the address of a variable constitutes a
"use" since the actual use may occur at any later time, in a data dependent
fashion.

The restriction to the physical appearance of variables in the file makes
the algorithm very simple and quick to implement since the true flow of
control need not be discovered. It does mean that lint can print error mes­
sages about program fragments that are legal, but these programs would
probably be considered bad on stylistic grounds. Because static and external
variables are initialized to zero, no meaningful information can be
discovered about their uses. The lint program does deal with initialized
automatic variables.

The set/used information also permits recognition of those local vari­
ables that are set and never used. These form a frequent source of
inefficiencies and may also be symptomatic of bugs.

Flow of Control
lint attempts to detect unreachable portions of a program. It will print

messages about unlabeled statements immediately following goto, break,
continue, or return statements. It attempts to detect loops that cannot be
left at the bottom and to recognize the special cases while(l) and fori;;) as
infinite loops. lint also prints messages about loops that cannot be entered
at the top. Valid programs may have such loops, but they are considered to

lint 16-5

lint Message Types

be bad style. If you do not want messages about unreached portions of the
program, use the -b option.

lint has no way of detecting functions that are called and never return.
Thus, a call to exit may cause unreachable code which lint does not detect.
The most serious effects of this are in the determination of returned func­
tion values (see "Function Values"). If a particular place in the program is
thought to be unreachable in a way that is not apparent to lint, the com­
ment

1* N:>TREAOIED *1

can be added to the source code at the appropriate place. This comment
will inform lint that a portion of the program cannot be reached, and lint
will not print a message about the unreachable portion.

Programs generated by yacc and especially lex may have hundreds of
unreachable break statements, but messages about them are of little impor­
tance. There is typically nothing the user can do about them, and the
resulting messages would clutter up the lint output. The recommendation
is to invoke lint with the -b option when dealing with such input.

Function Values
Sometimes functions return values that are never used. Sometimes pro­

grams incorrectly use function values that have never been returned. lint
addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return ;

statements is cause for alarm; lint will give the message

function name has rebD:n(e) and retlnn

The most serious difficulty with this is detecting when a function re~urn is
implied by flow of control reaching the end of the function. This can be
seen with a simple example:

16-6 PROGRAMMER'S GUIDE

..~

lint Message Types

f (a) {
if (a) retw:n (3);
g ();
}

Notice that, if a tests false, f will call g and then return with no defined
return value; this will trigger a message from lint. If g, like exit, never
returns, the message will still be produced when in fact nothing is wrong.
A comment

/*~/

in the source code will cause the message to be suppressed. In practice,
some potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value
that is sometimes or never used. When the value is never used, it may con­
stitute an inefficiency in the function definition that can be overcome by
specifying the function as being of type (void). For example:

(void) fprintf (stderr ,1IFi.le busy. TI:y again later I\n") ;

When the value is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The opposite problem, using a function value when the function does
not return one, is also detected. This is a serious problem.

Type Checking
lint enforces the type checking rules of C language more strictly than

the compilers do. The additional checking is in four major areas:

• across certain binary operators and implied assignments

• at the structure selection operators

• between the definition and uses of functions

• in the use of enumerations

lint 16-7

lint Message Types

There are a number of operators which have an implied balancing
between types of the operands. The assignment, conditional (?:), and rela­
tional operators have this property. The argument of a return statement and
expressions used in initialization suffer similar conversions. In these opera­
tions, char, short, int, long, unsigned, 80at, and double types may be freely
intermixed. The types of pointers must agree exactly except that arrays of
xs can, of course, be intermixed with pointers to xs.

The type checking rules also require that, in structure references, the
left operand of the - > be a pointer to structure, the left operand of the.
be a structure, and the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is done for refer­
ences to unions.

Strict rules apply to function argument and return value matching. The
types float and double may be freely matched, as may the types char, short,
int, and unsigned. Also, pointers can be matched with the associated
arrays. Aside from this, all actual arguments must agree in type with their
declared counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and that the
only operations applied are =, initialization, ==, !=, and function arguments
and return values.

If it is desired to turn off strict type checking for an expression, the
comment

1* N:>STRIcr *1

should be added to the source code immediately before the expression. This
comment will prevent strict type checking for only the next line in the pro­
gram.

Type Casts
The type cast feature in C language was introduced largely as an aid to

producing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. lint will print a message as a result of
detecting this. Consider the assignment

16-8 PROGRAMMER'S GUIDE

lint Message Types

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer.
The programmer obviously had a strong motivation for doing this and has
clearly signaled his intentions. Nevertheless, lint will continue to print
messages about this.

Nonportable Character Use
On some systems, characters are signed quantities with a range from

-128 to 127. On other C language implementations, characters take on
only positive values. Thus, lint will print messages about certain comparis­
ons and assignments as being illegal or nonportable. For example, the frag­
ment

char c;

if ((c = getchar(» < 0) ..•

will work on one machine but will fail on machines where characters
always take on positive values. The real solution is to declare c as an
integer since getchar is actually returning integer values. In any case, lint

nonp:>rtable character canparison

A similar issue arises with bit fields. When assignments of constant
values are made to bit fields, the field may be too small to hold the value.
This is especially true because on some machines bit fields are considered as
signed quantities. While it may seem logical to consider that a two-bit field
declared of type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which will trun­

cate the contents. This may happen in programs which have been incom­
pletely converted to use typedefs. When a typedef variable is changed
from int to long, the program can stop working because some intermediate
results may be assigned to ints, which are truncated. The -a option can be
used to suppress messages about the assignment of longs to ints.

lint 16-9

lint Message Types

~trange Constructions
Several perfectly legal, but somewhat strange, constructions are detected

by lint. The messages hopefully encourage better code quality, clearer style,
and may even point out bugs. The -h option is used to suppress these
checks. For example, in the statement

*p++ ;

the • does nothing. This provokes the message

null effect

from lint. The following program fragment:

unsigned x ;
if{ x < 0) •••

results in a test that will never succeed. Similarly, the test

if(x > 0) •••

is equivalent to

if(x 1= 0

which may not be the intended action. lint will print the message

degenerate unsigned canparisan

in these cases. If a program contains something similar to

if(1 1= 0) ••.

lint will print the message

oonstant in oanditional cxmtext

since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence.
Bugs which arise from misunderstandings about the precedence of operators
can be accentuated by spacing and formatting, making such bugs extremely
hard to find. For example, the statements

if(x&.077 == 0) •••

and

16-10 PROGRAMMER'S GUIDE

.~

lint Message Types

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize
such expressions, and lint encourages this by an appropriate message.

Old Syntax
Several forms of older syntax are now illegal. These fall into two

classes: assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) could cause
ambiguous expressions, such as:

a =-1 ;

which could be taken as either

a=-1 ;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer and preferred operators (e.g., +=,
-=, ...) have no such ambiguities. To encourage the abandonment of the
older forms, lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initialization

int x (-1) ;

looks somewhat like the beginning of a function definition:

intx(y){ ...

and the compiler must read past x in order to determine the correct mean­
ing. Again, the problem is even more perplexing when the initializer
involves a macro. The current syntax places an equals sign between the
variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

lint 16-11

lint Message Types

Pointer Alignment
Certain pointer assignments may be reasonable on some machines and

illegal on others due entirely to alignment restrictions. lint tries to detect
cases where pointers are assigned to other pointers and such alignment
problems might arise. The message

possible pointer alignment problem

results from this situation.

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subex­

pressions may be highly machine dependent. For example, on machines in
which the stack runs backwards, function arguments will probably be best
evaluated from right to left. On machines with a stack running forward, left
to right seems most attractive. Function calls embedded as arguments of
other functions mayor may not be treated similarly to ordinary arguments.
Similar issues arise with other operators that have side effects, such as the
assignment operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of com­
plicated expressions up to the local compiler. In fact, the various C com­
pilers have considerable differences in the order in which they will evaluate
complicated expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the result is explicitly
undefined.

lint checks for the important special case where a simple scalar variable
is affected. For example, the statement

a[i] = b[i++];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

16-12 PROGRAMMER'S GUIDE

17 C Language

Introduction

Lexical Conventions
Comments
Identifiers (Names)
Keywords
Constants

D Integer Constants
• Explicit Long Constants
• Character Constants
• Floating Constants
• Enumeration Constants

String Literals
Syntax Notation

Storage Class and Type
Storage Class
Type
Objects and lvalues

Operator Conversions
Characters and Integers
Float and Double
Floating and Integral
Pointers and Integers
Unsigned

17-1

17-2

17-2
17-2

17-2

17-3

17-3

17-3

17-3

17-4

17-4

17-5

17-5

17-6
17-6

17-6

17-8

17-9
17-9
17-9

17-9

17-10

17-10

C LANGUAGE

C Language

Arithmetic Conversions 17-10

Void 17-11

.~
Expressions and Operators 17-12

Primary Expressions 17-12

Unary Operators 17-15

Multiplicative Operators 17-16

Additive Operators 17-17

Shift Operators 17-18

Relational Operators 17-18

Equality Operators 17-19

Bitwise AND Operator 17-19

Bitwise Exclusive OR Operator 17-19

Bitwise Inclusive OR Operator 17-20

Logical AND Operator 17-20

Logical OR Operator 17-20

Conditional Operator 17-21

Assignment Operators 17-21

Comma Operator 17-22 'J
Declarations 17-23

Storage Class Specifiers 17-23

Type Specifiers 17-24

Declarators 17-25

Meaning of Declarators 17-25

Structure and Union Declarations 17-28

Enumeration Declarations 17-31

Initialization 17-32
Type Names 17-34

Implicit Declarations 17-35

typedef 17-36

Statements 17-37 'JExpression Statement 17-37

II PROGRAMMER'S GUIDE

Compound Statement or Block
Conditional Statement
while Statement
do Statement
for Statement
switch Statement
break Statement
continue Statement
return Statement
goto Statement
Labeled Statement
Null Statement

External Definitions
External Function Definitions
External Data Definitions

Scope Rules
Lexical Scope
Scope of Externals

Compiler Control Lines
Token Replacement
File Inclusion
Conditional Compilation
Line Control
Version Control

Types Revisited
Structures and Unions
Functions
Arrays, Pointers, and Subscripting

C Language

17-37

17-38

17-38

17-38

17-38

17-39
17-41

17-41

17-41

17-42

17-42

17-42

17-43

17-43

17-44

17-45

17-45

17-46

17-47

17-47

17-48

17-48

17-50

17-50

17-51
17-51

17-52

17-53

C LANGUAGE iii

C Language

Explicit Pointer Conversions

Constant Expressions

Portability Considerations

Syntax Summary
Expressions
Declarations
Statements
External Definitions
Preprocessor

Iv PROGRAMMER'S GUIDE

17-54

17-55

17-56

17-57

17-57

17-59

17-62

17-63
17-64

~.,.,... ,.

\'

Introduction

This chapter contains a summary of the grammar and syntax rules of the
C Programming Language. The implementation described is that found on
the AT&T line of 3B Computers. A consistent attempt is made to point out
where other implementations may differ.

C LANGUAGE 17-1

Lexical Conventions

There are six classes of tokens: identifiers, keywords, constants, string
literals, operators, and other separators. Blanks, tabs, new-lines, and com- ~
ments (collectively, "white space") as described below are ignored except as .
they serve to separate tokens. Some white space is required to separate oth-
erwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character,
the next token is taken to include the longest string of characters that could
possibly constitute a token.

Comments
The characters /. introduce a comment that terminates with the charac­

ters ./. Comments do not nest.

Identifiers (Names)
An identifier is a sequence of letters and digits. The first character must

be a letter. The underscore C) counts as a letter. Uppercase and lowercase
letters are different. There is no limit on the length of a name. Other
implementations may collapse case distinctions for external names, and may
reduce the number of significant characters for both external and non­
external names.

Keywords
The following identifiers are reserved for use as keywords and may not

be used otherwise:

asm default float register switch
auto do for return typedef
break double goto short union
case else if sizeof unsigned

)char enum int static void
continue external long struct while

Some implementations also reserve the word fortran.

17-2 PROGRAMMER'S GUIDE

~'

Lexical Conventions

Constants
There are several kinds of constants. Each has a type; an introduction to

types is given in "Storage Class and Type'"

Integer Constants
An integer constant consisting of a sequence of digits is taken to be

octal if it begins with 0 (digit zero). An octal constant consists of the digits
o through 7 only. A sequence of digits preceded by Ox or OX (digit zero) is
taken to be a hexadecimal integer. The hexadecimal digits include a or A
through f or F with values 10 through 15. Otherwise, the integer constant
is taken to be decimal. A decimal constant whose value exceeds the largest
signed machine integer is taken to be long; an octal or hex constant that
exceeds the largest unsigned machine integer is likewise taken to be long.
Otherwise, integer constants are into

Explicit Long Constants
A decimal, octal, or hexadecimal integer constant immediately followed

by I (letter ell) or L is a long constant. As discussed below, on AT&T 3B
Computers integer and long values may be considered identical.

Character Constants
A character constant is a character enclosed in single quotes, as in 'x'.

The value of a character constant is the numerical value of the character in
the machine's character set. Certain nongraphic characters, the single quote
(') and the backslash (\), may be represented according to the table of escape
sequences shown in Figure 17-1:

C LANGUAGE 17-3

Lexical Conventions

new-line NL (LF) \n
horizontal tab HI' \t
vertical tab vr \v
backspaceBS \b
carriage ret:uzn CR \r

farm feedFF \f
backslash\ \\
s:iD;Jle quote \'
bit pattem ddd \ddd

Figure 17-1: Escape Sequences for Nongraphic Characters

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal
digits that are taken to specify the value of the desired character. A special
case of this construction is \0 (not followed by a digit), which indicates the
ASCII character NUL. If the character following a backslash is not one of
those specified, the behavior is undefined. An explicit new-line character is
illegal in a character constant. The type of a character constant is into

Floating Constants
A floating constant consists of an integer part, a decimal point, a frac­

tion part, an e or E, and an optionally signed integer exponent. The integer
and fraction parts both consist of a sequence of digits. Either the integer
part or the fraction part (not both) may be missing. Either the decimal
point or the e and the exponent (not both) may be missing. Every floating
constant has type double.

Enumeration Constants
Names declared as enumerators (see "Structure, Union, and Enumeration

Declarations" under "Declarations") have type into

17-4 PROGRAMMER'S GUIDE

Lexical Conventions

String Literals
A string literal is a sequence of characters surrounded by double quotes,

as in "...". A string literal has type "array of char ll and storage class static
(see "Storage Class and Type") and is initialized with the given characters.
The compiler places a null byte (\0) at the end of each string literal so that
programs that scan the string literal can find its end. In a string literal, the
double quote character (II) must be preceded by a \; in addition, the same
escapes as described for character constants may be used.

A \ and the immediately following new-line are ignored. All string
literals, even when written identically, are distinct.

Syntax Notation
Syntactic categories are indicated by italic type and literal words and

characters by bold type. Alternative categories are listed on separate lines.
An optional entry is indicated by the subscript 1I0pt,1I so that

{ expressionopt }

indicates an optional expression enclosed in braces. The syntax is summar­
ized in "Syntax Summary" at the end of the chapter.

C LANGUAGE 17-5

Storage Class and Type

The C language bases the interpretation of an identifier upon two attri­
butes of the identifier: its storage class and its type. The storage class
determines the location and lifetime of the storage associated with an
identifier; the type determines the meaning of the values found in the
identifier's storage.

Storage Class
There are four declarable storage classes:

• automatic

• static

• external

• register

Automatic variables are local to each invocation of a block (see lfCompound
Statement or Block" in "Statementslf) and are discarded upon exit from the
block. Static variables are local to a block but retain their values upon reen­
try to a block even after control has left the block. External variables exist
and retain their values throughout the execution of the entire program and
may be used for communication between functions, even separately com­
piled functions. Register variables are (if possible) stored in the fast regis­
ters of the machine; like automatic variables, they are local to each block
and disappear on exit from the block.

Type
The C language supports several fundamental types of objects. Objects

declared as characters (char) are large enough to store any member of the
implementation's character set. If a genuine character from that character
set is stored in a char variable, its value is equivalent to the integer code for
that character. Other quantities may be stored into character variables, but
the implementation is machine dependent. In particular, char may be '~
signed or unsigned by default. In this implementation the default is
unsigned.

17-6 PROGRAMMER'S GUIDE

Storage Class and Type

Up to three sizes of integer, declared short int, int, and long int, are
available. Longer integers provide no less storage than shorter ones, but
the implementation may make either short integers or long integers, or
both, equivalent to plain integers. Plain integers have the natural size sug­
gested by the host machine architecture. The other sizes are provided to
meet special needs. The sizes for the AT&T 3B Computer are shown in Fig­
ure 17-2.

AT&T 3B Computer
(ASCII)

char
int
short
long
float
double

float range

double range

8 bits
32
16
32
32
64

±10 ±38

±10 ±38

Figure 17-2: AT&T 3B Computer Hardware Characteristics

The properties of enum types (see lIStructure, Union, and Enumeration
Declarations" under lIDeclarations") are identical to those of some integer
types. The implementation may use the range of values to determine how
to allot storage.

Unsi~ed integers, declared unsigned, obey the laws of arithmetic
modulo 2 where n is the number of bits in the representation.

Single-precision floating point (float) and double precision floating
point (double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be .interpreted as
numbers, they will be referred to as arithmetic types. Char, int of all sizes
whether unsigned or not, and enum will collectively be called integral
types. The float and double types will collectively be called floating types.

C LANGUAGE 17-7

Storage Class and Type

The void type specifies an empty set of values. It is used as the type
returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually
infinite class of derived types constructed from the fundamental types in
the following ways:

• arrays of objects of most types

• functions that return objects of a given type

• pointers to objects of a given type

• structures containing a sequence of objects of various types

• unions capable of containing anyone of several objects of various
types

In general these methods of constructing objects can be applied recursively.

Objects and Ivalues
An object is a manipulatable region of storage. An lvalue is an expres­

sion referring to an object. An obvious example of an lvalue expression is
an identifier. There are operators that yield lvalues: for example, if E is an
expression of pointer type, then *E is an lvalue expression referring to the
object to which E points. The name "lvalue" comes from the assignment
expression Et = E2 in which the left operand Et must be an lvalue expres­
sion. The discussion of each operator below indicates whether it expects
lvalue operands and whether it yields an lvalue.

17-8 PROGRAMMER'S GUIDE

.~

~.

Operator Conversions

A number of operators may, depending on their operands, cause conver­
sion of the value of an operand from one type to another. This part
explains the result to be expected from such conversions. The conversions
demanded by most ordinary operators are summarized under"Arithmetic
Conversions." The summary will be supplemented as required by the dis­
cussion of each operator.

Characters and Integers
A character or a short integer may be used wherever an integer may be

used. In all cases the value is converted to an integer. Conversion of a shorter
integer to a longer integer preserves sign. On the 3B Computers sign exten­
sion of char variables does not occur. It is guaranteed that a member of the
standard character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII
set are all non-negative. However, a character constant specified with an
octal escape suffers sign extension and may appear negative; for example,
'\377' has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

Float and Double
All floating arithmetic in C is carried out in double precision. When­

ever a float appears in an expression it is lengthened to double by zero pad­
ding its fraction. When a double must be converted to float, for example
by an assignment, the double is rounded before truncation to float length.
This result is undefined if it cannot be represented as a float.

Floating and Integral
Conversions of floating values to integral type are rather machine

dependent. In particular, the direction of truncation of negative numbers
varies. The result is undefined if it will not fit in the space provided.

C LANGUAGE 17-9

Operator Conversions

Conversions of integral values to floating type behave well. Some loss
of accuracy occurs if the destination lacks sufficient bits.

Pointers and Integers
An expression of integral type may be added to or subtracted from a

pointer; in such a case, the first is converted as specified in the discussion of
the addition operator. Two pointers to objects of the same type may be sub­
tracted; in this case, the result is converted to an integer as specified in the
discussion of the subtraction operator.

Unsigned
Whenever an unsigned integer and a plain integer are combined, the

plain integer is converted to unsigned and the result is unsigned. The
value is the least unsigned integer congruent to the signed integer (modulo
2wordsize). In a 2's complement representation, this conversion is concep­
tual; and there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the ')
result is the same numerically as that of the unsigned integer. Thus, the
conversion amounts to padding with zeros on the left.

Arithmetic Conversions
A great many operators cause conversions and yield result types in a

similar way. This pattern will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to int, and
any operands of type unsigned char or unsigned short are con­
verted to unsigned into

2. Then, if either operand is double, the other is converted to double
and that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is con-
verted to unsigned long and that is the type of the result. ')

4. Otherwise, if either operand is long, the other is converted to long
and that is the type of the result.

17-10 PROGRAMMER'S GUIDE

~\'" "

Operator Conversions

5. Otherwise, if one operand is long, and the other is unsigned int,
they are both converted to unsigned long and that is the type of the
result.

6. Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the
result.

Void
The (nonexistent) value of a void object may not be used in any way,

and neither explicit nor implicit conversion may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used
only as an expression statement (see "Expression StatementU under "State­
ments") or as the left operand of a comma expression (see "Comma Opera­
tor" under "Expressions").

An expression may be converted to type void by use of a cast. For
example, this makes explicit the discarding of the value of a function call
used as an expression statement.

C LANGUAGE 17-11

Expressions and Operators

The precedence of expression operators is the same as the order of the
major subsections of this section, highest precedence first. Thus, for exam­
ple, the expressions referred to as the operands of + (see "Additive Opera­
tors") are those expressions defined under "Primary Expressions", "Unary
Operators", and "Multiplicative Operators". Within each subpart, the opera­
tors have the same precedence. Left- or right-associativity is specified in
each subsection for the operators discussed therein. The precedence and
associativity of all the expression operators are summarized in the grammar
of "Syntax Summaryl!.

Otherwise, the order of evaluation of expressions is undefined. In par­
ticular, the compiler considers itself free to compute subexpressions in the
order it believes most efficient even if the subexpressions involve side
effects. Expressions involving a commutative and associative operator (., +,
&, I, A) may be rearranged arbitrarily even in the presence of parentheses;
to force a particular order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows; ~

treatment of division by 0 and all floating-point exceptions varies between .)
machines and is usually adjustable by a library function.

Primary Expressions
Primary expressions involving ., ->, subscripting, and function calls

group left to right.

primary-expression:
identifier
constant
string literal
(expression)
primary-expression [expression }
primary-expression (expression-listopt)
primary-expression . identifier
primary-expression -> identifier

17-12 PROGRAMMER'S GUIDE

Expressions and Operators

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared
as discussed below. Its type is specified by its declaration. If the type of
the identifier is lIarray of ...", then the value of the identifier expression is a
pointer to the first object in the array; and the type of the expression is
"pointer to ...11. Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier that is declared "function returning ...", when used
except in the function-name position of a call, is converted to "pointer to
function returning ...".

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int and floating con­
stants have type double.

A string literal is a primary expression. Its type is originally "array of
char", but following the same rule given above for identifiers, this is
modified to "pointer to char" and the result is a pointer to the first character
in the string literal. (There is an exception in certain initializers; see "Ini­
tialization ll under "Declarations.")

A parenthesized expression is a primary expression whose type and
value are identical to those of the unadorned expression. The presence of
parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a
primary expression. The intuitive meaning is that of a subscript. Usually,
the primary expression has type "pointer to ...11, the subscript expression is
int, and the type of the result is "... ". The expression El[E2] is identical
(by definition) to *«El)+(E2)). All the clues needed to understand this
notation are contained in this subpart together with the discussions in
"Unary Operators" and "Additive Operators" on identifiers, * and +, respec­
tively. The implications are summarized under "Arrays, Pointers, and Sub­
scripting" under "Types Revisited. 1I

C LANGUAGE 17-13

Expressions and Operators

A function call is a primary expression followed by parentheses contain­
ing a possibly empty, comma-separated list of expressions that constitute the
actual arguments to the function. The primary expression must be of type
"function returning ...", and the result of the function call is of type" ... ".
As indicated below, a hitherto unseen identifier followed immediately by a
left parenthesis is contextually declared to represent a function returning an
integer.

Any actual arguments of type float are converted to double before the
call. Any of type char or short are converted to into Array names are con­
verted to pointers. No other conversions are performed automatically; in
particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see
"Unary Operators" and "Type Names ll under "Declarations."

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A function
may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The .~
order of evaluation of arguments is undefined by the language; take note
that the various compilers differ. Recursive calls to any function are permit-
ted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union, and the
identifier must name a member of the structure or union. The value is the
named member of the structure or union, and it is an lvalue if the first
expression is an lvalue.

A primary expression followed by an arrow (built from - and» fol­
lowed by an identifier is an expression. The first expression must be a
pointer to a structure or a union and the identifier must name a member of
that structure or union. The result is an lvalue referring to the named
member of the structure or union to which the pointer expression points.
Thus the expression El-> MOS is the same as (.El).MOS. Structures and
unions are discussed in "Structure, Union, and Enumeration Declarations"
under "Declarations. II

17-14 PROGRAMMER'S GUIDE

Expressions and Operators

Unary Operators
Expressions with unary operators group right to left.

unary-expression:
• expression
& lvalue
- expression
! expression
- expression
++ lvalue
--[value
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary • operator means "indirection"; the expression must be a pointer,
and the result is an lvalue referring to the object to which the expression
points. If the type of the expression is "pointer to ...," the type of the result
is II ••• It.

The result of the unary & operator is a pointer to the object referred to
by the lvalue. If the type of the lvalue is "... ", the type of the result is
"pointer to ...".

The result of the unary - operator is the negative of its operand. The
usual arithmetic conversions are performed. The neHative of an unsigned
quantity is computed by subtracting its value from 2 where n is the
number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its
operand is zero, zero if the value of its operand is nonzero. The type of the
result is into It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

C LANGUAGE 17-15

Expressions and Operators

The object referred to by the lvalue operand of prefix ++ is incre­
mented. The value is the new value of the operand but is not an lvalue.
The expression ++x is equivalent to x += 1. See the discussions "Additive
Operators" and "Assignment Operators" for information on conversions.

The lvalue operand of prefix -- is decremented analogously to the
prefix ++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the
object referred to by the lvalue. After the result is noted, the object is incre­
mented in the same manner as for the prefix ++ operator. The type of the
result is the same as the type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value of the
object referred to by the lvalue. After the result is noted, the object is
decremented in the manner as for the prefix -- operator. The type of the
result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This construc­
tion is called a cast. Type names are described in "Type Names" under
"Declarations."

The sizeof operator yields the size in bytes of its operand. (A byte is
undefined by the language except in terms of the value of sizeof. However,
in all existing implementations, a byte is the space required to hold a char.)
When applied to an array, the result is the total number of bytes in the
array. The size is determined from the· declarations of the objects in the
expression. This expression is semantically an unsigned constant and may
be used anywhere a constant is required. Its major use is in communication
with routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name.
In that case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type »-2.

Multiplicative Operators

The multiplicative operators ., I, and % group left to right. The usual
arithmetic conversions are performed.

17-16 PROGRAMMER'S GUIDE

".'\

Expressions and Operators

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The. operator is associative,
and expressions with several multiplications at the same level may be rear­
ranged by the compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the
first expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form
of truncation is machine-dependent if either operand is negative. On all
machines covered by this manual, the remainder has the same sign as the
dividend. It is always true that (a/b)*b + a%b is equal to a (if b is not 0).

Additive Operators
The additive operators + and - group left to right. The usual arith­

metic conversions are performed. There are some additional type possibili­
ties for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter
is in all cases converted to an address offset by multiplying it by the length
of the object to which the pointer points. The result is a pointer of the
same type as the original pointer that points to another object in the same
array, appropriately offset from the original object. Thus if P is a pointer to
an object in an array, the expression P+l is a pointer to the next object in
the array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at
the same level may be rearranged by the compiler.

C LANGUAGE 17-17

Expressions and Operators

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral
type may be subtracted from a pointer, and then the same conversions for

~~~. ~
If two pointers to objects of the same type are subtracted, the result is

converted (by division by the length of the object) to an int representing
the number of objects separating the pointed-to objects. This conversion
will in general give unexpected results unless the pointers point to objects
in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

Shift Operators
The shift operators < < and > > group left to right. Both perform the

usual arithmetic conversions on their operands, each of which must be
integral. Then the right operand is converted to int; the type of the result
is that of the left operand. The result is undefined if the right operand is
negative or greater than or equal to the length of the object in bits.

shift-expression:)
expression < < expression
expression > > expression

The value of El < <E2 is El (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value of E1> > E2 is El right-shifted E2 bit
positions. The right shift is guaranteed to be logical (0 fill) if E1 is
unsigned; otherwise, it may be arithmetic.

Relational Operators
The relational operators group left to right.

relationaI-expression:
expression < expression
expression > expression
expression <= expression
expression > = expression

The operators < (less than), > (greater than), <= (less than or equal to),
and > = (greater than or equal to) all yield 0 if the specified relation is false
and 1 if it is true. The type of the result is int. The usual arithmetic

17-18 PROGRAMMER'S GUIDE



Expressions and Operators

conversions are performed. Two pointers may be compared; the result
depends on the relative locations in the address space of the pointed-to
objects. Pointer comparison is portable only when the pointers point to
objects in the same array.

Equality Operators

equality-expression:
expression == expression
expression 1= expression

The == (equal to) and the != (not equal to) operators are exactly analogous
to the relational operators except for their lower precedence. (Thus
a<b == c<d is 1 whenever a<b and c<d have the same truth value.)

A pointer may be compared to an integer only if the integer is the con­
stant O. A pointer to which 0 has been assigned is guaranteed not to point
to any object and will appear to be equal to O. In conventional usage, such
a pointer is considered to be null.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rear­
ranged. The usual arithmetic conversions are performed. The result is the
bitwise AND function of the operands. The operator applies only to
integral operands.

Bitwise Exclusive OR Operator

exclusive-Dr-expression:
expression A expression

The" operator is associative, and expressions involving A may be rear­
ranged. The usual arithmetic conversions are performed; the result is the
bitwise exclusive OR function of the operands. The operator applies only to
integral operands.

C LANGUAGE 17-19



Expressions and Operators

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression Iexpression

The I operator is associative, and expressions involving I may be rear­
ranged. The usual arithmetic conversions are performed; the result is the
bitwise inclusive OR function of its operands. The operator applies only to
integral operands.

Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands
evaluate to nonzero, 0 otherwise. Unlike &, && guarantees left to right
evaluation; moreover, the second operand is not evaluated if the first /~

operand evaluates to O. )

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always into

Logical OR Operator

logical-or-expression:
expression II expression

The II operator groups left to right. It returns 1 if either of its operands
evaluates to nonzero, 0 otherwise. Unlike I, II guarantees left to right
evaluation; moreover, the second operand is not evaluated if the value of
the first operand evaluates to nonzero.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always into )

17·20 PROGRAMMER'S GUIDE



~.. "'"(' ,

Expressions and Operators

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is
evaluated; and if it is nonzero, the result is the value of the second expres­
sion, otherwise that of third expression. If possible, the usual arithmetic
conversions are performed to bring the second and third expressions to a
common type. If both are structures or unions of the same type, the result
has the type of the structure or union. If both pointers are of the same
type, the result has the common type. Otherwise, one must be a pointer
and the other the constant 0, and the result has the type of the pointer.
Only one of the second and third expressions is evaluated.

Assignment Operators
There are a number of assignment operators, all of which group right to

left. All require an lvalue as their left operand, and the type of an assign­
ment expression is that of its left operand. The value is the value stored in
the left operand after the assignment has taken place. The two parts of a
compound assignment operator are separate tokens.

assignment-expression:
lvalue = expression
lvalue += expression
lvalue -= expression
lvalue .= expression
lvalue I = expression
lvalue %= expression
lvalue > > = expression
lvalue < <= expression
lvalue &= expression
lvalue A= expression
lvalue 1= expression

C LANGUAGE 17-21



Expressions and Operators

In the simple assignment with =, the value of the expression replaces
that of the object referred to by the lvalue. If both operands have arith­
metic type, the right operand is converted to the type of the left preparatory
to the assignment. Second, both operands may be structures or unions of
the same type. Finally, if the left operand is a pointer, the right operand
must in general be a pointer of the same type. However, the constant 0
may be assigned to a pointer; it is guaranteed that this value will produce a
null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form Et op = E2 may be inferred
by taking it as equivalent to Et = Et op (E2); however, Et is evaluated only
once. In += and -=, the left operand may be a pointer, in which case the
(integral) right operand is converted as explained in "Additive Operators.'l
All right operands and all nonpointer left operands must have arithmetic
type.

Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and
the value of the left expression is discarded. The type and value of the
result are the type and value of the right operand. This operator groups left
to right. In contexts where comma is given a special meaning, e.g., in lists
of actual arguments to functions (see "Primary Expressionsll

) and lists of ini­
tializers (see I1Initialization" under "Declarations"), the comma operator as
described in this subpart can only appear in parentheses. For example,

f(a, (t=3, 1+2), c)

has three arguments, the second of which has the value 5.

17-22 PROGRAMMER'S GUIDE



Declarations

Declarations are used to specify the interpretation that C gives to each
identifier; they do not necessarily reserve storage associated with the
identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being declared.
The decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiersopt
sc-specifier decl-specifiersopt

The list must be self-consistent in a way described below.

Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage class
specifier" only for syntactic convenience. See "typedef" for more informa­
tion. The meanings of the various storage classes were discussed in
"Names."

The auto, static, and register declarations also serve as definitions in
that they cause an appropriate amount of storage to be reserved. In the
extern case, there must be an external definition (see "External Definitions")
for the given identifiers somewhere outside the function in which they are
declared.

C LANGUAGE 17-23



Declarations

A register declaration is best thought of as an auto declaration, together
with a hint to the compiler that the variables declared will be heavily used.
Only the first few such declarations in each function are effective. More-
over, only variables of certain types will be stored in registers. One other ~.

restriction applies to variables declared using register storage class: the J
address-of operator, &, cannot be applied to them. Smaller, faster programs
can be expected if register declarations are used appropriately.

At most, one sc-specifier may be given in a declaration. If the sc­
specifier is missing from a declaration, it is taken to be auto inside a func­
tion, extern outside. Exception: functions are never automatic.

Type Specifiers
The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction
with int; the meaning is the same as if int were not mentioned. The word
long may be specified in conjunction with float; the meaning is the same as
double. The word unsigned may be specified alone, or in conjunction with
int or any of its short or long varieties, or with char.

17-24 PROGRAMMER'S GUIDE



Declarations

Otherwise, at most one type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or unsigned is not permitted with
typedef names. If the type-specifier is missing from a declaration, it is
taken to be into

Specifiers for structures, unions, and enumerations are discussed in
"Structure, Union, and Enumeration Declarations." Declarations with
typedef names are discussed in lttypedef. II

Declarators
The declarator-list appearing in a declaration is a comma-separated

sequence of declarators, each of which may have an initializer:

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializeropt

Initializers are discussed in IIInitialization.1I The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators
refer. Declarators have the syntax:

declarator:
identifier
( declarator )
• declarator
declarator ( )
declarator [ constant-expressionopt]

The grouping is the same as in expressions.

Meaning of Declarators
Each declarator is taken to be an assertion that when a construction of

the same form as the declarator appears in an expression, it yields an object
of the indicated type and storage class.

C LANGUAGE 17-25



Declarations

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but
the binding of complex declarators may be altered by parentheses. See the
examples below.

N ow imagine a declaration

T01

where T is a type-specifier (like int, etc.) and 01 is a declarator. Suppose
this declaration makes the identifier have type II ••• T ,u where the" ... " is
empty if 01 is just a plain identifier (so that the type of x in "int Xli is just
int). Then if 01 has the form

the type of the contained identifier is tI ••• pointer to T .11

If 01 has the form

00
then the contained identifier has the type" ... function returning T."

If 01 has the form

O[constan t-expression]

or

O[]

then the contained identifier has type t1 ••• array of T. II In the first case, the
constant expression is an expression whose value is determinable at compile
time, whose type is int, and whose value is positive. (Constant expressions
are defined precisely in "Constant Expressions. lI

) When several "array ofll

specifications are adjacent, a multi-dimensional array is created; the constant
expressions that specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is
external and the actual definition, which allocates storage, is given else-
where. The first constant expression may also be omitted when the declara- ~

tor is followed by initialization. In this case the size is calculated from the )
number of initial elements supplied.

17-26 PROGRAMMER'S GUIDE



Declarations

An array may be constructed from one of the basic types, from a
pointer, from a structure or union, or from another array (to generate a
multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permit­
ted. The restrictions are as follows: functions may not return arrays or
functions although they may return pointers; there are no arrays of func­
tions although there may be arrays of pointers to functions. Likewise, a
structure or union may not contain a function; but it may contain a pointer
to a function.

As an example, the declaration

iot i, *ip, £0, *fipO, (*pfi)O;

declares an integer i, a pointer ip to an integer, a function £ returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to
a function, which returns an integer. It is especially useful to compare the
last two. The binding of *fipO is *(fipO). The declaration suggests, and the
same construction in an expression requires, the calling of a function fip,
and then using indirection through the (pointer) result to yield an integer.
In the declarator (*pfi)O, the extra parentheses are necessary, as they are
also in an expression, to indicate that indirection through a pointer to a
function yields a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float
numbers. Finally,

~aticintx3d[3H5H7b

declares a static 3-dimensional array of integers, with rank 3x5x7. In com­
plete detail, x3d is an array of three items; each item is an array of five
arrays; each of the latter arrays is an array of seven integers. Any of the
expressions x3d, x3d[il x3d[i][jl x3d[iHj][k] may reasonably appear in an
expression. The first three have type "arraylt and the last has type into

C LANGUAGE 17-27



Declarations

Structure and Union Declarations
A structure is an object consisting of a sequence of named members.

Each member may have any type. A union is an object that may, at a given
time, contain anyone of several members. Structure and union specifiers
have the same form.

struct-or-union-specifier:
struct-or-union ( struct-decl-list )
struct-or-union identifier ( struct-decl-list )
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified
number of bits. Such a member is also called a field; its length, a non­
negative constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

17-28 PROGRAMMER'S GUIDE

'J



Declarations

Within a structure, the objects declared have addresses that increase as
the declarations are read left to right. Each non-field member of a structure
begins on an addressing boundary appropriate to its type; therefore, there
may be unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field that does not fit into
the space remaining in a word is put into the next word. No field may be
wider than a word. (See Figure 17-2 for sizes of basic types on 3B Comput­
ers.)

A struct-declarator with no declarator, only a colon and a width, indi­
cates an unnamed field useful for padding to conform to externally-imposed
layouts. As a special case, a field with a width of 0 specifies alignment of
the next field at an implementation dependent boundary.

The language does not restrict the types of things that are declared as
fields. Moreover, even int fields may be considered to be unsigned. For
these reasons, it is strongly recommended that fields be declared as
unsigned where that is the intent. There are no arrays of fields, and the
address-of operator, &, may not be applied to them, so that there are no
pointers to fields.

A union may be thought of as a structure all of whose members begin at
offset 0 and whose size is sufficient to contain any of its members. At most,
one of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier ( struct-decl-list )
union identifier ( struct-decl-list )

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form
of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure
tags also permit the long part of the declaration to be given once and used
several times. It is illegal to declare a structure or union that contains an
instance of itself, but a structure or union may contain a pointer to an
instance of itself.

C LANGUAGE 17-29



Declarations

The third form of a structure or union specifier may be used prior to a
declaration that gives the complete specification of the structure or union in
situations in which the size of the structure or union is unnecessary. The
size is unnecessary in two situations: when a pointer to a structure or union '7
is being declared and when a typedef name is declared to be a synonym for
a structure or union. This, for example, allows the declaration of a pair of
structures that contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the same
structure, but the same name may be used in several different structures in
the same scope.

A simple but important example of a structure declaration is the follow­
ing binary tree structure:

struct tnode
{

char twoJ:d[ 20) ;

int count;
struet tnxie -left;
struet tnode -right;

} ;

which contains an array of 20 characters, an integer, and two pointers to
similar structures. Once this declaration has been given, the declaration

struct tnode s, .Spi

declares S to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp-> count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

17-30 PROGRAMMER'S GUIDE

')



~t,::'

Declarations

s.right-> tword[O]

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the asso­
ciated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from
each other and from those of ordinary variables.

The role of the identifier in the enurn-specifier is entirely analogous to
that of the structure tag in a struct-specifier; it names a particular enumera­
tion. For example,

C LANGUAGE 17-31



Declarations

enum color { chartreuse, bJrgundy, c1aret=20, winedark };

enum color *Cp, col;

col = claret;
cp =&001;

if (*cp == bJrgundy)

makes color the enumeration-tag of a type describing various colors, and
then declares cp as a pointer to an object of that type and col as an object of
that type. The possible values are drawn from the set (O,1,20,21}.

Initialization
A declarator may specify an initial value for the identifier being

declared. The initializer is preceded by = and consists of an expression or a
list of values nested in braces.

initializer:
= expression
= ( initializer-list }
= ( initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
( initializer-list }
( initializer-list , }

All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in "Constant Expressions," or ~

expressions that reduce to the address of a previously declared variable, pos- )
sibly offset by a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and previously
declared variables and functions.

17-32 PROGRAMMER'S GUIDE



Declarations

Static and external variables that are not initialized are guaranteed to
start off as zero. Automatic and register variables that are not initialized are
guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arith­
metic type), it consists of a single expression, perhaps in braces. The initial
value of the object is taken from the expression; the same conversions as for
assignment are performed.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a brace-enclosed, comma-separated list of initializers
for the members of the aggregate written in increasing subscript or member
order. If the aggregate contains subaggregates, this rule applies recursively
to the members of the aggregate. If there are fewer initializers in the list
than there are members of the aggregate, then the aggregate is padded with
zeros. It is not permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left
brace, then the succeeding comma-separated list of initializers initializes the
members of the aggregate; it is erroneous for there to be more initializers
than members. If, however, the initializer does not begin with a left brace,
then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the
next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string
literal. In this case successive characters of the string literal initialize the
members of the array.

For example,

int x[) = {1, 3, 5 };

declares and initializes x as a one-dimensional array that has three members,
since no size was specified and there are three initializers.

float y[41[3] <=

{
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of
the array y[01 namely y[Ol[01 y[Ol[11 and y[O][2]. Likewise, the next two
lines initialize y[l] and y[2]. The initializer ends early and therefore y[3] is

C LANGUAGE 17-33



1, 3, 5, 2, 4, 6, 3, 5, 7

( 1 ), ( 2 ), ( 3 ), ( 4 )

Declarations

initialized with O. Precisely, the same effect could have been achieved by

float y[4][3] =
(

};

The initializer for y begins with a left brace but that for y[O] does not;
therefore, three elements from the list are used. Likewise, the next three
are taken successively for y[l] and y[2]. Also,

float y[4][3] =
(

};

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest O.

Finally,

char msg[] = ItSyntax error on line %s\oIt;

shows a character array whose members are initialized with a string literal. '~.

The length of the string (or size of the array) includes the terminating NUL )
character, \0.

Type Names
In two contexts (to specify type conversions explicitly by means of a cast

and as an argument of sizeof), it is desired to supply the name of a data
type. This is accomplished using a "type name," which in essence is a
declaration for an object of that type that omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
( abstract-declarator)
• abstract-declarator
abstract-declarator ( )
abstract-declarator [ constant-expressionopt

17-34 PROGRAMMER'S GUIDE



Declarations

To avoid ambiguity, in the construction

( abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it
is possible to identify uniquely the location in the abstract-declarator where
the identifier would appear if the construction were a declarator in a
declaration. The named type is then the same as the type of the hypotheti­
cal identifier. For example,

int

int *
int *[3]

int (* )[3]

int *( )

int (*)( )

int (*[3])( )

name respectively the types "integer," "pointer to integer," "array of three
pointers to integers," "pointer to an array of three integers," "function
returning pointer to integer," "pointer to function returning an integer," and
"array of three pointers to functions returning an integer."

Implicit Declarations
It is not always necessary to specify both the storage class and the type

of identifiers in a declaration. The storage class is supplied by the context
in external definitions and in declarations of formal parameters and struc­
ture members. In a declaration inside a function, if a storage class but no
type is given, the identifier is assumed to be int; if a type but no storage
class is indicated, the identifier is assumed to be auto. An exception to the
latter rule is made for functions because auto functions do not exist. If the
type of an identifier is "function returning ... ," it is implicitly declared to be
extern.

C LANGUAGE 17-35



Declarations

In an expression, an identifier followed by ( and not already declared is
contextually declared to be "function returning int."

typedef
Declarations whose "storage class" is typedef do not define storage but

instead define identifiers that can be used later as if they were type key­
words naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appear­
ing as part of any declarator therein becomes syntactically equivalent to the
type keyword naming the type associated with the identifier in the way
described in "Meaning of Declarators." For example, after

typedef int MILES, •KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is
"pointer to int," and that of z is the specified structure. The zp is a pointer
to such a structure.

The typedef does not introduce brand-new types, only synonyms for
types that could be specified in another way. Thus in the example above
distance is considered to have exactly the same type as anyother int object.

17-36 PROGRAMMER'S GUIDE



Statements

Except as indicated, statements are executed in sequence.

Expression Statement
Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

Compound Statement or Block
So that several statements can be used where one is expected, the com­

pound statement (also, and equivalently, called "block") is provided:

compound-statement:
( declaration-listopt statement-listopt}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is pushed down for the duration of the block, after which
it resumes its force.

Any initializations of auto or register variables are performed each time
the block is entered at the top. It is currently possible (but a bad practice)
to transfer into a block; in that case the initializations are not performed.
Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage

~ so initialization is not permitted.
\

C LANGUAGE 17-37



Statements

Conditional Statement
The two forms of the conditional statement are

if ( expression ) statement
if ( expression) statement else statement

In both cases, the expression is evaluated; if it is nonzero, the first substate­
ment is executed. In the second case, the second substatement is executed if
the expression is O. The else ambiguity is resolved by connecting an else
with the last encountered else-less if.

while Statement
The while statement has the form

while ( expression ) statement

The substatement is executed repeatedly so long as the value of the expres­
sion remains nonzero. The test takes place before each execution of the
statement.

do Statement
The do statement has the form

do statement while ( expression ) ;

The substatement is executed repeatedly until the value of the expression
becomes o. The test takes place after each execution of the statement.

for Statement
The for statement has the form:

for ( exp-lopt ; exp-2opt ; exp-30pt ) statement

Except for the behavior of continue, this statement is equivalent to

17-38 PROGRAMMER'S GUIDE



Statements

exp-l ;
while ( exp-2 )
{

statement
exp-3 ;

Thus the first expression specifies initialization for the loop; the second
specifies a test, made before each iteration, such that the loop is exited when
the expression becomes O. The third expression often specifies an incre­
menting that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes
the implied while clause equivalent to while(l); other missing expressions
are simply dropped from the expansion above.

switch Statement
The switch statement causes control to be transferred to one of several

statements depending on the value of an expression. It has the form

switch ( expression ) statement

The usual arithmetic conversion is performed on the expression, but the
result must be into The statement is typically compound. Any statement
within the statement may be labeled with one or more case prefixes as fol­
lows:

case constant-expression:

where the constant expression must be into No two of the case constants in
the same switch may have the same value. Constant expressions are pre­
cisely defined in "Constant Expressions."

There may also be at most one statement prefix of the form

default:

which properly goes at the end of the case constants.

C LANGUAGE 17-39



Statements

When the switch statement is executed, its expression is evaluated and
compared in turn with each case constant. If one of the case constants is
equal to the value of the expression, control is passed to the statement fol­
lowing the matched case prefix. If no case constant matches the expression
and if there is a default prefix, control passes to the statement prefixed by
default. If no case matches and if there is no default, then none of the
statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which
continues unimpeded across such prefixes. That is, once a case constant is
matched, all case statements (and the default) from there to the end of the
switch are executed. To exit from a switch, see "break Statement."

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initializations of
automatic or register variables are ineffective. A simple example of a com­
plete switch statement is:

switch (0) {

case '0':
oflaq = 'mDE;
break;

case 'p':
pflaq = 'mDE;
break;

case 'r':
rflaq = 'mDE;
break;

default:
(void) fprintf(stdeI'r, "Unknown option\n");
exi.t(2) ;

17-40 PROGRAMMER'S GUIDE



Statements

break Statement
The statement break; causes termination of the smallest enclosing

while, do, for, or switch statement; control passes to the statement follow­
ing the terminated statement.

continue Statement
The statement continue; causes control to pass to the loop-continuation

portion of the smallest enclosing while, do, or for statement; that is to the
end of the loop. More precisely, in each of the statements

while (. •• )
{

cx:mtin:
}

do
{

cx:mtin: ;
} while ( ... );

for ( ... )
{

cx:mtin:

~'

a continue is equivalent to goto contin. (Following the cantin: is a null
statement; see "Null Statement.")

return Statement
A function returns to its caller by means of the return statement, which

has one of the forms

return;
return expression ;

In the first case, the returned value is undefined. In the second case, the
value of the expression is returned to the caller of the function. If required,
the expression is converted, as if by assignment, to the type of function in

C LANGUAGE 17-41



Statements

which it appears. Flowing off the end of a function is equivalent to a
return with no returned value.

goto Statement
Control may be transferred unconditionally by means of the statement

gata identifier;

The identifier must be a label (see "Labeled Statement") located in the
current function.

Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as
a target of a gata. The scope of a label is the current function, excluding
any subblocks in which the same identifier has been redeclared. See "Scope /~

Rules." )

Null Statement
The null statement has the form

A null statement is useful to carry a label just before the} of a compound
statement or to supply a null body to a looping statement such as while.

17-42 PROGRAMMER'S GUIDE



External Definitions

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or
perhaps static, and a specified type. The type-specifier (see "Type Specifiers"
in "Declarationsll

) may also be empty, in which case the type is taken to be
into The scope of external definitions persists to the end of the file in
which they are declared just as the effect of declarations persists to the end
of a block. The syntax of external definitions is the same as that of all
declarations except that only at this level may the code for functions be
given.

External Function Definitions
Function definitions have the form

function-definition:
decl-specifiersopt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static;
see IIScope of Externalsll in "Scope Rules" for the distinction between them.
A function declarator is similar to a declarator for a "function returning ... "
except that it lists the formal parameters of the function being defined.

function-declarator:
declarator ( parameter-listopt )

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-listopt compound-statement

The identifiers in the parameter list, and only those identifiers, may be
declared in the declaration list. Any identifiers whose type is n.ot given are
taken to be into The only storage class that may be specified is register; if it
is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

C LANGUAGE 17-43



External Definitions

A simple example of a complete function definition is

/~
" '

int max(a, b, c)
int a, b, C;

int m;

m = (a > b) ? a : b;
return«m> c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function-declarator;
int a, b, c; is the declaration-list for the formal parameters; { ... } is the block
giving the code for the statement.

The C program converts all float actual parameters to double, so formal '~.'.

parameters declared float have their declaration adjusted to read double. }
All char and short formal parameter declarations are similarly adjusted to
read into Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the
array, declarations of formal parameters declared lIarray of ... n are adjusted
to read lIpointer to ...."

External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static,
but not auto or register.

17-44 PROGRAMMER'S GUIDE



~.

Scope Rules

A C program need not all be compiled at the same time. The source
text of the program may be kept in several files, and precompiled routines
may be loaded from libraries. Communication among the functions of a
program may be carried out both through explicit calls and through mani­
pulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be
called the lexical scope of an identifier, which is essentially the region of a
program during which it may be used without drawing "undefined
identifier" diagnostics; and second, the scope associated with external
identifiers, which is characterized by the rule that references to the same
external identifier are references to the same object.

Lexical Scope
The lexical scope of identifiers declared in external definitions persists

from the definition through the end of the source file in which they appear.
The lexical scope of identifiers that are formal parameters persists through
the function with which they are associated. The lexical scope of identifiers
declared at the head of a block persists until the end of the block. The lexi­
cal scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of
a block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations" in
"Declarations") that tags, identifiers associated with ordinary variables, and
identities associated with structure and union members form three disjoint
classes which do not conflict. Members and tags follow the same scope
rules as other identifiers. The enum constants are in the same class as ordi­
nary variables and follow the same scope rules. The typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner
blocks, but an explicit type must be given in the inner declaration:

C LANGUAGE 17-45



Scope Rules

int distance;

The int must be present in the second declaration, or it would be taken to
be a declaration with no declarators and type distance.

Scope of Externals
If a function refers to an identifier declared to be extern, then some­

where among the files or libraries constituting the complete program there
must be at least one external definition for the identifier. All functions in a
given program that refer to the same external identifier refer to the same
object, so care must be taken that the type and size specified in the
definition are compatible with those specified by each function that refer­
ences the data.

It is illegal to explicitly initialize any external identifier more than once
in the set of files and libraries comprising a multi-file program. It is legal to
have more than one data definition for any external non-function identifier;
explicit use of extern does not change the meaning of an external declara­
tion.

In restricted environments, the use of the extern storage class takes on
an additional meaning. In these environments, the explicit appearance of
the extern keyword in external data declarations of identities without ini­
tialization indicates that the storage for the identifiers is allocated else­
where, either in this file or another file. It is required that there be exactly
one definition of each external identifier (without extern) in the set of files
and libraries that make up a multi-file program.

Identifiers declared static at the top level in external definitions are not
visible in other files. Functions may be declared static.

17-46 PROGRAMMER'S GUIDE



CompOier Control lines

The C compilation system contains a preprocessor capable of macro sub­
stitution, conditional compilation, and inclusion of named files. Lines
beginning with # communicate with this preprocessor. There may be any
number of blanks and horizontal tabs between the # and the directive, but
no additional material (such as comments) is permitted. These lines have
syntax independent of the rest of the language; they may appear anywhere
and have effect that lasts (independent of scope) until the end of the source
program file.

Token Replacement
A control line of the form

#define identifier token-stringopt
causes the preprocessor to replace subsequent instances of the identifier
with the given string of tokens. Semicolons in or at the end of the token­
string are part of that string. A line of the form

#define identifier(identifier, ... ) token-stringopt

where there is no space between the first identifier and the (, is a macro
definition wi th arguments. There may be zero or more formal parameters.
Subsequent instances of the first identifier followed by a (, a sequence of
tokens delimited by commas, and a ) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal param­
eter list of the definition is replaced by the corresponding token string from
the call. The actual arguments in the call are token strings separated by
commas; however, commas in quoted strings or protected by parentheses do
not separate arguments. The number of formal and actual parameters must
be the same. Strings and character constants in the token-string are scanned
for formal parameters, but strings and character constants in the rest of the
program are not scanned for defined identifiers to replace.

In both forms the replacement string is rescanned for more defined
identifiers. In both forms a long definition may be continued on another
line by writing \ at the end of the line to be continued. This facility is most
valuable for definition of "manifest constants," as in

C LANGUAGE 17-47



Complier Control Lines

#define TABSIZE 100

int table[TABSlZE];

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #undef, then the two token-strings are compared textually. If
the two token-strings are not identical (all white space is considered as
equivalent), then the identifier is considered to be redefined.

File Inclusion
A control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file .filename. ')
The named file is searched for first in the directory of the file containing
the #include, and then in a sequence of specified or standard places. Alter-
natively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of the
#include. (How the places are specified is not part of the language. See
cpp(1) for a description of how to specify additional libraries.)

#includes may be nested.

Conditional Compilation
A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in "Constant Expressions"; the following
additional restrictions apply here: the constant expression may not contain
sizeof, casts, or an enumeration constant.)

17-48 PROGRAMMER'S GUIDE



Complier Control Lines

A restricted-constant expression may also contain the additional unary
expression

defined identifier

or

defined (identifier)

which evaluates to one if the identifier is currently defined in the prepro­
cessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are
replaced by their token-strings (except those identifiers modified by
defined) just as in normal text. The restricted-constant expression will be
evaluated only after all expressions have finished. During this evaluation,
all undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; Le.,
whether it has been the subject of a #define control line. It is equivalent to
#if defined (identifier).

A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It
is equivalent to #if !defined (identifier).

All three forms are followed by an arbitrary number of lines, possibly
containing a control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif
are ignored. If the checked condition is false, then any lines between the
test and a #else or, lacking a #else, the #endif are ignored.

C LANGUAGE 17-49



Complier Control Lines

Another control directive is

#elif restricted-constant-expression

An arbitrary number of #elif directives can be included between #if,
#ifdef, or #ifndef and #else, or #endif directives. These constructions
may be nested.

Line Control
For the benefit of other preprocessors that generate C programs, a line

of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the
line number of the next source line is given by the constant and the current
input file is named by "filename". If "filename" is absent, the remembered file
name does not change.

Version Control
This capability, known as S-lists, helps administer version control infor­

mation. A line of the form

#ident "version"

puts any arbitrary string in the .comment section of the a.out file. It is usu­
ally used for version control. It is worth remembering that .comment sec­
tions are not loaded into memory when the a.out file is executed.

17-50 PROGRAMMER'S GUIDE



~,

"

~
\.

~,tV
"

Types Revisoted

This part summarizes the operations that can be performed on objects of
certain types.

Structures and Unions
Structures and unions may be assigned, passed as arguments to func­

tions, and returned by functions. Other plausible operators, such as equal­
ity comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of
the -> or the. must specify a member of the aggregate named or pointed
to by the expression on the left. In general, a member of a union may not
be inspected unless the value of the union has been assigned using that
same member. However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several structures
that share a common initial sequence and if the union currently contains
one of these structures, it is permitted to inspect the common initial part of
any of the contained structures. For example, the following is a legal frag­
ment:

C LANGUAGE 17-51



Types Revisited

union
{

struct
{

int
} n;
struct
{

int
int

} ni;
struct
{

int
float

} nf;

type;

type;
int:node;

type;
float:node ;

} u;

u'nf .type =E'UlM';
U'nf .floatrxxie = 3.14;

if (u.n.type == ~)
••• sin(u.nf.float:node}

Functions
There are only two things that can be done with a function: call it or

take its address. If the name of a function appears in an expression not in
the function-name position of a call, a pointer to the function is generated.
Thus, to pass one function to another, one might say

int f( );

g(f) ;

Then the definition of g might read

17-52 PROGRAMMER'S GUIDE



------------------------- Types Revisited

g(funcp)

int (*funcp)( );

(*funcp) ( );

Notice that f must be declared explicitly in the calling routine since its
appearance in g(f) was not followed by (.

Arrays, Pointers, and Subscripting
Every time an identifier of array type appears in an expression, it is con­

verted into a pointer to the first member of the array. Because of this
conversion, arrays are not Ivalues. By definition, the subscript operator [) is
interpreted in such a way that EI[E2] is identical to *«EI)+(E2». Because
of the conversion rules that apply to +, if EI is an array and E2 an integer,
then EI[E2] refers to the E2 -th member of EI. Therefore, despite its asym­
metric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If
E is an n-dimensional array of rank iXjx ... xk, then E appearing in an
expression is converted to a pointer to an (n-l)-dimensional array with
rank jx ... xk. If the * operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n-l)­
dimensional array, which itself is immediately converted into a pointer.

For example, consider iot x[3][S]; Here x is a 3x5 array of integers.
When x appears in an expression, it is converted to a pointer to (the first of
three) 5-membered arrays of integers. In the expression x[i~ which is
equivalent to *(x+i), x is first converted to a pointer as described; then i is
converted to the type of x, which involves multiplying i by the length the
object to which the pointer points, namely 5-integer objects. The results are
added and indirection applied to yield an array (of five integers) which in
turn is converted to a pointer to the first of the integers. If there is another

C LANGUAGE 17-53



Types Revisited

subscript, the same argument applies again; this time the result is an
integer.

fi
Arrbays in C arhe stdoreld rOW-Whise

l
(ladst subscripthvaries fastesft) and the ~,.

'rst su script in t e ec aration e ps etermine t e amount 0 storage con- 'J
sumed by an array. Arrays play no other part in subscript calculations.

Explicit Pointer Conversions
Certain conversions involving pointers are permitted but have

implementation-dependent aspects. They are all specified by means of an
explicit type-conversion operator, see "Unary Operators" under "Expressions"
and "Type Names" under "Declarations."

A pointer may be converted to any of the integral types large enough to
hold it. Whether an int or long is required is machine dependent. The
mapping function is also machine dependent but is intended to be
unsurprising to those who know the addressing structure of the machine.

An object of integral type may be explicitly converted to a pointer. The
mapping always carries an integer converted from a pointer back to the
same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type.
The resulting pointer may cause addressing exceptions upon use if the sub­
ject pointer does not refer to an object suitably aligned in storage. It is
guaranteed that a pointer to an object of a given size may be converted to a
pointer to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes)
of an object to allocate, and return a char pointer; it might be used in this
way.

extenl char *a1loc( );
double *<ip;

dp = (double *) alloc(sizeof(double) ) ;
~p = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function .~.:,.
is portable.

17·54 PROGRAMMER'S GUIDE



Constant Expressions

In several places C requires expressions that evaluate to a constant:
after case, as array bounds, and in initializers. In the first two cases, the
expression can involve only integer constants, character constants, casts to
integral types, enumeration constants, and sizeof expressions, possibly con­
nected by the binary operators

+ - • I % & I" < < > > == != < > <= > .... && II
or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions
as discussed above, one can also use floating constants and arbitrary casts
and can also apply the unary & operator to external or static objects and to
external or static arrays subscripted with a constant expression. The unary
& can also be applied ilnplicitly by appearance of unsubscripted arrays and
functions. The basic rule is that initializers must evaluate either to a con­
stant or to the address of a previously declared external or static object plus
or minus a constant.

C LANGUAGE 17-55



Portability Considerations

Certain parts of C are inherently machine dependent. The following
list of potential trouble spots is not meant to be all-inclusive but to point ~
out the main ones. J

Purely hardware issues like word size and the properties of floating
point arithmetic and integer division have proven in practice to be not
much of a problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the
others are only minor problems.

The number of register variables that can actually be placed in registers
varies from machine to machine as does the set of valid types. Nonetheless,
the compilers all do things properly for their own machine; excess or
invalid register declarations are ignored.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter)
character constants may be permitted. The specific implementation is very
machine dependent because the order in which characters are assigned to a
word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on
some machines and left to right on other machines. These differences are
invisible to isolated programs that do not indulge in type punning (e.g., by
converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed
storage layouts.

17-56 PROGRAMMER'S GUIDE



Syntax Summary

This summary of C syntax is intended more for aiding comprehension
than as an exact statement of the language.

Expressions
The basic expressions are:

expression:
primary
• expression
& Ivalue
- expression
! expression
- expression
++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
sizeof expression
sizeof (type-name)
( type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string literal
( expression )
primary ( expression-listopt )
primary [ expression ]
primary . identifier
primary - > identifier

C LANGUAGE 17-57



Syntax Summary

lvalue:
identifier
primary [ expression ]
lvalue . identifier
primary - > identifier
• expression
( lvalue )

The primary-expression operators

() [] . ->
have highest priority and group left to right. The unary operators

• & - ! - ++ -- sizeof (type-name)

have priority below the primary operators but higher than any binary
operator and group right to left. Binary operators group left to right; they
have priority decreasing as indicated below.

binop:
• I %

+
» «
< > <= >=

!=
&

I
&&
II

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to
left.

asgnop:
= += -= .= 1= %= »= «= &= A= 1=

The comma operator has the lowest priority and groups left to right.

17-58 PROGRAMMER'S GUIDE



~.

Declarations

declaration:
decl-specifiers init-declarator-listopt;

deel-specifiers:
type-specifier deel-specifiers0 t
sc-specifier deel-specifiersopt p

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

Syntax Summary

C LANGUAGE 17-59



Syntax Summary

enum-specifier:
enum ( enum-list )
enum identifier ( enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializeropt

declarator:
identifier
( declarator)
• declarator
declarator ( )
declarator [ constant-expressionopt]

struct-or-union-specifier:
struct ( struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union ( struct-decl-list )
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

17-60 PROGRAMMER'S GUIDE



struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
( abstract-declarator)
• abstract-declarator
abstract-declarator ( )
abstract-declarator [ constant-expressionopt ]

typedef-name:
identifier

Syntax Summary

C LANGUAGE 17-61



Syntax Summary

Statements

compound-statement:
{declaration-listopt statement-listopt}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if ( expression ) statement
if ( expression ) statement else statement
while ( expression) statement
do statement while ( expression ) ;
for ( expopt; expopt; expopt) statement
switch ( expression) statement
case constant-expression: statement
default: statement
break;
continue;
return;
return expression ;
goto identifier ;
identifier: statement

17-62 PROGRAMMER'S GUIDE



------------------------ Syntax Summary

External Definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifieropt function-declarator function-body

function-declarator:
declarator ( parameter-listopt)

parameter-list:
identifier
identifier I parameter-list

function-body:
declaration-listopt compound-statement

data-definition:
extern declaration ;
static declaration;

C LANGUAGE 17-63



Syntax Summary

Preprocessor

#define identifier token-stringo t
#define identifier ( identifier, . ..~ token-stringo t
#undef identifier p
#inc1ude "filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#elif restricted-constant-expression
#else
#endif
#line constant "filename"
#ident "version"

17-64 PROGRAMMER'S GUIDE



~,.
Appendix A: Floating Point Operations

Introduction
This appendix contains information useful to the programmer who uses

floating point extensively.

The C Programming Language Utilities support a subset of the IEEE
Standard for Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985). The C
compiler uses the IEEE standard single- and double-precision data types,
operations, and conversions. For more details on the subset of the IEEE
standard supported by the C Programming Language Utilities see lIIEEE
Requirements ll in this appendix.

Library functions are provided for the programmer who needs the full
range of IEEE support. Most programmers won't need any special functions
to use floating point operations in their programs, but those who do require
extra detail about floating point operations can find it in this appendix.

This appendix contains sections on the following topics:

• IEEE Arithmetic

• Floating Point Exception Handling

• Conversion Between Binary and Decimal Values

• Single-Precision Floating Point Operations

• Implicit Precision of Subexpressions

• IEEE Requirements

All floating point operations can potentially have side effects, in the
sense that they can set the exception sticky bits or cause a floating
point trap. The optimizer removes floating point operations without
regard to these side effects if the result of those operations is otherwise
unused. If a program fragment intentionally produces such side
effects, the optimizer might alter the behavior of the program frag­
ment.

FLOATING POINT OPERATIONS A-1



Appendix A: Floating Point Operations

IEEE Arithmetic
This section provides information to those programmers who need to

know the details of floating point representation, the environment of the 3B
Computer family, and exception handling. Most users need not be con­
cerned with the details of the floating point environment. Note that some
programs which used to dump core will proceed with computations with
diagnostic values or floating point "infinities."

The floating point subsystem of the computers in the 3B Computer family
are based on the Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985. For more information about this standard, write to IEEE
Service Center, 445 Hoes Lane, Piscataway, NI, 08854, or call (201)
981-0060

Data Types and Formats

Single-Precision
Single-precision floating point numbers have the following format:

31 30 23

ISIGN I EXPONENT

22 0
FRACTION

binary point

Field Position Full Name
sign 31 sign bit (O==positive, 1==negative)
exponent 30-23 exponent (biased by 127)
fraction 22-0 fraction (bits to right of binary point)

A-2 PROGRAMMER'S GUIDE



Appendix A: Floating Point Operations

Double-Precision
Double-precision floating point numbers have the following format:

63 62 52

ISIGN I EXPONENT

51 0
FRACTION

binary point

~.,.... ,.•,:.

Field Position Full Name
sign 63 sign bit (O==positive, 1==negative)
exponent 62-52 exponent (biased by 1023)
fraction 51-0 fraction (bits to right of binary point)

Normalized Numbers
A number is normalized if the exponent field contains some value other

than all l's or all O's.

~ The exponent field contains a biased exponent, where the bias is 127 in
single-precision, and 1023 in double-precision. Thus, the exponent of a nor­
malized floating point number is in the range -126 to 127 inclusive for
single-precision, and in the range -1022 to 1023 inclusive for double­
precision.

There is an implicit bit associated with both single- and double­
precision formats. The implicit bit is not explicitly stored anywhere (thus
its name). Logically, for normalized operands the implicit bit has a value of
1 and resides immediately to the left of the binary point (in the 20 position).
Thus the implicit bit and fraction field together can represent values in the
range 1 to 2-2-23 inclusive for single-precision, and in the range 1 to
2-2-52 inclusive for double-precision.

Thus normalized single-precision numbers can be in the range (plus or
minus) 2-126 to (2_2-23)2127 inclusive.

Normalized double-precision numbers can be in the range (plus or
minus) 2_-1022 to (2_2-52)21023 inclusive.

FLOATING POINT OPERATIONS A-3



Appendix A: Floating Point Operations

Denormalized Numbers
A number is denormalized if the exponent field contains all O's and the

fraction field does not contain all O's. /~

Thus denormalized single-precision numbers can be in the range (plus
or minus) 2-1262-22=2-148 to (1-2-22)2-126 inclusive.

Denormalized double-precision numbers can be in the range (plus or
minus) 2-10222-51=2-1073 to (1-2-51 )2-1022 inclusive.

Maximum and Minimum Representable Floating Point Values
The maximum and minimum representable values in floating point for­

mat are defined in the header file values.h:

#define MAXDOUBLE
#define MAXFLOAT
#define MINDOUBLE
#define MINFLOAT

1.79769313486231470e+308
«float)3.40282346638528860e+38)
4.94065645841246544e-324
«float)1.40129846432481707e-45)

Special-Case Values ~

The following table gives the names of special cases and how each is
represented.

Value Name Sign Exponent Fraction
MSB Rest of Fraction

NaN (non-trapping) X Max 0 Nonzero
Trapping NaN X Max 1 X

Positive Infinity 0 Max Min
Negative Infinity 1 Max Min
Positive Zero 0 Min Min
Negative Zero 1 Min Min
Denormalized Number X Min Nonzero
Normalized Number X NotMM X

A·4 PROGRAMMER'S GUIDE



---------------- Appendix A: Floating Point Operations

Key:

x
Max

Min

NotMM

Nonzero

MSB

don't care

maximum value that can be stored in the field (all l's)

minimum value that can be stored in the field (all D's)

field is not equal to either Min or Max values

field contains at least one "Ill bit

Most Significant Bit

The algorithm for classification of a value into special cases follows:

If (Exponent==Max)
If (Fraction==Min)

Then the number is Infinity (Positive or Negative
as determined by the Sign bit).

Else the number is NaN (Trapping if FractionMSB==O,
non-Trapping if FractionMSB==1).

Else If (Exponent==Min)
If (Fraction==Min)

Then the number is Zero (Positive or Negative
as determined by the Sign bit).

Else the number is Denormalized.
Else the number is Normalized.

When the MAD generates a NaN, the fraction contains all ones.

NaNs and Infinities
The floating point functions provide two kinds of special representation:

• Infinity - Positive infinity in a format compares greater than all
other representable numbers in the same format. Arithmetic opera­
tions on infinities are quite intuitive. For example, adding any
representable number to infinity is a valid operation the result of
which is positive infinity. Subtracting positive infinity from itself is
invalid. If some arithmetic operation overflows, and the overflow trap
is disabled, in some rounding modes the delivered result is infinity.

FLOATING POINT OPERATIONS A·5



FP_RP 1,
FP_RM 2,
FP RZ - 3

} fp_;nd;

Appendix A: Floating Point Operations

• Not-a-Number - These floating point representations are not
numbers. They can be used to carry diagnostic information. There
are two kinds of NaNs: signaling NaNs and quiet NaNs. Signaling
NaNs raise the invalid operation exception whenever they are used
as operands in floating point operations. Quiet NaNs propagate
through most operations without raising any exception. The result of
these operations is the same quiet NaN. NaNs are sometimes pro­
duced by the arithmetic operations themselves. For example, 0.0
divided by 0.0 when the invalid operation trap is disabled produces a
quiet NaN.

The header file ieeefp.h defines the 3B Computer family interface for
the floating point exception and environment control. This header defines
three interfaces:

• Rounding Control

• Exception Control

• Exception Handling

Rounding Control
The floating point arithmetic provides four rounding modes which

affect the result of most floating point operations. These modes are also
defined in the header ieeefp.h:

typedef enum fp_rnd (
FP_RN - 0, /- round to nearest representable

number, tie -> even -/
/- round toward plus infinity -/
/- round toward minus infinity -/
/- round toward zero (truncate) -/

A-6 PROGRAMMER'S GUIDE



Appendix A: Floating Point Operations

You can check the current rounding mode with the function:

fp_rnd fpgetround(); /* return current rounding mode */

You can change the rounding mode for floating point operations with the
function:

fp_rnd fpsetround(round); / * set rounding mode, return previous */
fp_rnd round;

(For more information, see fpgetround(3C) in the Programmer's Reference
Manual.)

The default rounding mode in the 3B Computer family is round-to­
nearest. In C and FORTRAN (F77), floating point to integer conversions are
always done by truncation, and the current rounding mode has no effect on
these operations.

Exceptions, Sticky Bit, and Trap Bits
Floating point operations can lead to certain exceptional conditions:

divide by zero is a common example. There are five types of floating point
exceptions:

• Divide by zero exception

This exception happens when a non-zero number is divided by float­
ing point zero.

• Invalid operation exception

All operations on signaling NaNs raise an invalid operation excep­
tion. Zero divided by zero, infinity subtracted from infinity, infinity
divided by infinity all raise this exception. When a quiet NaN is
compared with the greater or lesser predicates, an invalid exception is
raised.

• Overflow exception

This exception occurs when the result of any floating point operation
is too large in magnitude to fit in the intended destination.

• Underflow exception ix underflow exception

When the underflow trap is enabled, underflow exception is signaled
when the result of some operation is a tiny non-zero number smaller
than the smallest representable number in that format. When the

FLOATING POINT OPERATIONS A-7



Appendix A: Floating Point Operations

underflow trap is disabled, an underflow exception occurs only when
both tininess and loss of accuracy are detected.

• Inexact or imprecise exception

This exception is signaled if the rounded result of an operation is not
identical to the infinitely precise result. Inexact exceptions are quite
common. 1.0 I 3.0 is an inexact operation. Inexact exceptions also
occur when the operation overflows without an overflow trap.

The above examples do not constitute an exhaustive list of the conditions
when an exception can occur.

,. invalid operation exception .,
,. overflow exception .,
,. underflow exception .,
,. divide-by-zero exception .,
,. imprecise (loss of precision).'

There is a sticky bit associated with each of these exceptions. Whenever
any of these exceptions occur, the corresponding sticky bit is set (=1). The
sticky bits are all cleared at the start of a process. After that, they are never
cleared by the floating point system, but are set to remember that an excep­
tion occurred.

You can check the status of the sticky bits by using the function:

fp_except fpgetstickyO; ,. return logged exceptions .,

fp_except can have combinations of the follOWing values:

#define fp_except int
#define FP_X_INV OxlO
#define FP_X_OFL Ox08
#define FP_X_UFL Ox04
#define FP_X_DZ Ox02
#define FP_X_IMP OxOl

You can change the sticky bits by using the function:

fp_except fpsetsticky(sticky); ,. set logged exceptions, return previous .,
fp_except sticky;

There is also a trap-enable bit (mask bit) associated with each exception. ~

When an exception occurs, if the corresponding trap bit is enabled (=1), a )
trap takes place. These traps are precise traps; that is, the result of the
operation is not written when the trap takes place. You can check the status
of these mask bits by using the function:

A-a PROGRAMMER'S GUIDE



---------------- Appendix A: Floating Point Operations

fp_except fpgetmask(); /. current exception mask ./

You can also selectively enable or disable any of the exceptions by cal­
ling the function:

fp_except fpsetmask(mask); /- set mask, return previous -/
fp_except mask;

with appropriate mask values.

You should make sure that the sticky bit corresponding to the excep­
tion being enabled is cleared.

In this compilation system, all the exceptions are masked by default.
This behavior is different from earlier issues of the C Programming
Language Utilities. This change was made to conform to the IEEE require­
ments.

Floating Point Exception Handling
When the trap is enabled, floating point exceptions are signaled through

the standard UNIX system signaling mechanism: that is, a SIGFPE is sent to
the user process. A user who intends to handle the trap and proceed with
the program must include the file ieeefp.h in at least one module of the
program. The user can attach a handler to SIGFPE by calling the signal(2)
routine.

When a floating point exception handler is entered, two global variables
are established:

_fpftype

_fpfault

floating point fault type

_fpftype identifies the primary exception type. Possible
values for _fpftype are FP_UFLW, FP_DIVZ, INT_DIVZ etc.
(See the header file ieeefp.h.)

pointer to floating point exception structure

_fpfault points to a structure which provides all other infor­
mation about the floating point operation. The information
_fp_fault points to includes the type of operation being per­
formed, the types and values of the operands, the type of a
trapped value (if any), and the desired type of the result:

FLOATING POINT OPERATIONS A-9



Appendix A: Floating Point Operations

strud fp_fault {
fp_op operation;
fp_dunion operand(2];
fp_dunion t_value;
fp_dunion result;

l;

extern strud fp_fault • _fpfault;

The operation field identifies the floating point operation that raised the
exception. The possible values are included in ieeefp.h. fp_dunion is a
discriminated union that contains information about the type and format of
the operands (or result) (for example, whether the operand is in single-
precision or double-precision). It also contains the actual values.See')
ieeefp.h for exact definitions of fp_op and fp_dunion.

A user handler has the information about the floating point operation,
the operands, the computed result, and the format in which the result is to
be returned. The user handler can supply a result (by assignment to
_fpfault->result) in the right format, and when the handler returns, this
result is used to complete the floating point operation. If no result is
assigned by the user handler, a default result of 0.0 is used.

Conversion Between Binary and Decimal Values
There are four functions in the C library which allow the programmer

to convert binary values to binary coded decimal (BCD) values, and vice
versa. These functions are _s2dec, _d2dec, _dec2s, and _dec2d. They are
described in this chapter and on the decconv(3C) manual page in the
Programmer's Reference Manual.

A-10 PROGRAMMER'S GUIDE



Appendix A: Floating Point Operations

The _s2dec function returns a decimal floating point value, given a
pointer to a single-precision binary floating point number and a precision
specification.

void _s2dec (x, d, p)
float Ifo X;

decimal Ifod;
int p;

On input, the value of the Hen field in the decimal should be set to tell
how many decimal digits should be output in the mantissa for rounding
purposes. If the Hen field is not in the range 1 ~ ilen ~ 9/ a NaN is
returned. If the input binary value x is a NaN or infinity, the returned
decimal d will be a NaN or infinity with the appropriate sign. The
exponential component of the returned decimal value is always two digits.

The parameter p (0 ~ p ~ ilen) specifies how many of the digits in the
output decimal mantissa string are to be considered to be to the right of the
implicit decimal point. If p is out of range, a NaN is returned.

The _d2dec function works like the _s2dec function except that it takes
a pointer to a double-precision value for x. The Hen field must be in the
range of 1 ~ ilen ~ 17/ and the exponential component of the returned
decimal will contain three digits.

void _d2dec (x, d, p)
double Ifo X;

decimal Ifod;
int p;

The _dec2s function returns a single-precision binary floating point
value, given a decimal value, value and a precision specification.

void _dec2s (x, d, p)
decimal Ifod;
float Ifo X;

int p;

The parameter p (0 ~ p ~ ilen) tells how many of the digits in the
mantissa string are to be considered to be to the right of an implicit decimal
point.

FLOATING POINT OPERATIONS A·11



Appendix A: Floating Point Operations

Because the decimal format can represent a larger range of numbers
than the binary formats, this conversion may overflow or underflow. Upon
overflow or underflow, a signed infinity (signed zero) is returned, and the ~"

appropriate sticky bit is set. )

The mantissa and exponent strings may contain leading zero characters.
But, once all leading 0 characters are removed, the mantissa string should
have a length >0 and ~9. The exponent string should have a length >0
and ~2. The special case of d == 0 (decimal) is detected, in which case the
last 0 characters in the string are not removed.

The _dec2d function is analogous to the _dec2s function except that it
returns a double-precision value. After leading zero characters are removed,
the mantissa string should contain no more than 17 digits and the exponent
string should contain no more than three digits.

void _dec2d (x, d, p)
decimal ltd;
double ltx;
int p;

The conversion library functions use the round control, mask,and')
sticky bits just like any other floating point operation. Rounding is per-
formed according to the current rounding mode. The default mode is
round-to-nearest.

The conversion functions will set the following sticky bits, if appropri­
ate:

• overflow

• underflow

• inexact result

• invalid operation

If a trap occurs, the usual trap handling conventions are used. Thus, a trap
handler which the user may have attached via signal(2) will also catch
exceptions encountered during conversions between binary and decimal
values. When a trap occurs, the following happens:

• the global variable _fpftype will be set to FP_CONY

A-12 PROGRAMMER'S GUIDE



Appendix A: Floating Point Operations

II the global variable _fpfault will point to the floating point exception
structure

~ • the user's trap handler will be called

If the conversion was to decimal, the source operand will be either single­
or double-precision and the intermediate result (the t_value field) will be
decimal.

If the conversion was from decimal, the source operand will be decimal
and the result type will indicate the size of the expected result (Le., single
or double). The t_value field will be the same size as the result size unless
an overflow or underflow occurred. In the case of an overflow or an
underflow, an extended precision value will be returned with the exponent
adjusted by 192 for the single-precision case or 1536 for the double­
precision case.

If the trap handler does not supply a return value when a trap occurs,
the default zero value will be returned.

~ Single-Precision Floating Point Operations
According to The C Programming Language, all floating point operations

are performed in double-precision arithmetic. This can have severe perfor­
mance penalties on some programs that use single-precision float variables.
For example, the statements

float a,b;
a += b;

lead to code that looks like

convert b to double
convert a to double
add in double-precision
convert to float and store result back in a

The proposed ANSI standard for C has a provision that allows expres­
sions to be evaluated in single-precision arithmetic if there is no double (or
larger in size) operand in the expression. The C compiler supports an
option, -F (given to cc) which enables float arithmetic to be done in single­
precision. Given this option the previous statement can potentially be
translated into a single instruction.

FLOATING POINT OPERATIONS A-13



Appendix A: Floating Point Operations

Floating point constants are double-precision, unless explicitly stated to
be float. For example, in the statements

float a,b;

a = b + 1.0;

because the constant 1.0 is of the size double-precision, b is promoted to
double before the addition and the result is converted back to float, even if
the -F option is specified. However, the constant can be explicitly cast to
float:

a = b + (float) 1.0;

In that case, given the -F option, the statement can be potentially compiled
to a single instruction.

Using the -F option can result in loss of precision. Also, long int vari­
ables (same as int on AT&T 3B Computers) have more precision than float
variables. (They have a much smaller range). Consider the following exam­
ple:

int i,j;
i Ox7ffffff;

j i • 1.0;
printf(ltj co %x\n lt, j);

j ... i • (float) 1.0;
printf(ltj ... %x\n lt, j);

When compiled with -F , the first printf statement outputs 7ffffff, while
the second one prints 8000000. Without the -F option both statements
print 7ffffff.

Also, function return values and arguments of type float/ double are
always in double-precision, so that if an expression contains functions and)
float variables, some unwanted type conversion may take place.

A-14 PROGRAMMER'S GUIDE



Appendix A: Floating Point Operations

Whether a computation can be done in single-precision is decided at the
lowest subexpression level. Consider the following:

float s;
double d;

d = d + s • s;

If the -F option is specified, s • s is computed to produce a single­
precision result, which is promoted to double-precision and added to d.

The IEEE P854 task force which treats format independent floating
point environment issues may disallow the multiplication to be carried
in single-precision in this context; a future release of the C Program­
ming Language Utilities may be modified to take that into account.

Single-Precision Math Libraries
The C Programming Language Utilities contain two single-precision

math libraries. The first and most commonly useful, libsm, is a regular
single-precision math library that contains the sin, cos, tan, asin, acos, atan,
exp, log, loglO, pow, and sqrt functions. Most internal computations use
single-precision arithmetic.

You can improve run-time performance by using this single-precision
math library whenever possible. However, it only contains a subset of the
functions in libm, so you must be certain to search libm as well as libsm if you
need it to resolve all references. When using this single-precision math
library, you should use the -F option to cc (described above) as well.

The other single-precision library, libsfm, is a special-purpose single­
precision assembly source math library that contains the functions sin, cos,
tan, asin, acos, atan, exp, log, loglO, pow, and sqrt. The routines in this
source library are in-line expanded by the optimizer to provide faster execu­
tion by reducing the overhead of argument passing, function calling and
returning, and return value passing. The source library is designed for
applications that desire an increase in speed at the potential cost of size.

libsfm should be used only when necessary and with extreme caution.
This library is a special purpose library which does not do domain
reduction or error checking. In other words, these functions never call
matherr, and arguments aren't reduced to be within a finite range.

FLOATING POINT OPERATIONS A-15



Appendix A: Floating Point Operations

Inputs to the sin and cos must be in the range: - ; ~ x ~ ; ; For

tan, the range is - ; < x < ; ; For sqrt, log, and log10, inputs must be ,''J
greater than O.

Implicit Precision of Subexpressions
Even though the MAU provides double-extended-precision as quickly as

double-precision arithmetic, the C Programming Language Utilities adhere
to the C requirement of doing computations in double-precision to maintain
a high degree of source level portability.

Suppose two double-precision numbers are multiplied and the result is
divided by a third. If intermediate results are stored in double-extended, it
can hide a floating point overflow exception which would occur on
machines not supporting double-extended. The proposed ANSI standard
for C (X3Jll/85-102) requires a new data type called long double, which
would map to double-extended format on IEEE machines supporting it.
The C Programming Language Utilities will be upgraded to include long ~,

doubles when the proposed ANSI standard is an accepted standard. )

IEEE Requirements
All arithmetic computations generated by the C compiler strictly con­

form to IEEE requirements. The following is a discussion of some topics
where the C Programming Language Utilities falls short of completely
meeting the ANSI/IEEE Std 754-1985 requirements or the spirit of the
requirements.

Remainder and Round to Integral
Both these operations are available at the hardware level, but they do

not have a direct mapping to C level source code. Floating point remainder
is not defined in C, and the library function fmod(3M) is not the same as
remainder. You can, however, access these operations through asms.

Conversion of Floating Point Formats to Integer
IEEE requires floating point to integer format conversions to be effected

by current rounding mode. However, C language requires these conversions 1,·
to be done by truncation (which is the same as round-to-zero). In the C Pro­
gramming Language Utilities floating point to integer conversions are done
by truncation.

A·16 PROGRAMMER'S GUIDE



~\' .

Appendix A: Floating Point Operations

Conversion of floating point numbers to integers should signal integer
overflow or invalid operation for overflow condition. In the current imple­
mentation the integer overflow flag is set, but there is no way to enable the
overflow trap. Enabling the integer overflow trap would result in a sub­
stantial performance penalty due to stalled pipeline effects.

Square Root
IEEE requires the square root of a negative non-zero number to raise

invalid operation; whereas UNIX system compatibility requires square root
to generate a matherrO exception with errno set to EDOM. The sqrt(3F)
routine in the C Programming Language Utilities generates EDOM error for
negative non-zero inputs. Other than that, the operation conforms to IEEE
requirements. However, if there is no MAU present, the square root library
may not return correctly rounded results.

Compares and Unordered Condition
In addition to the usual relationships between floating point values (less

than, equal, greater than), there is a fourth relationship: unordered. The
unordered case arises when at least one operand is a NaN. Every NaN com­
pares unordered with everything, including itself.

The C Programming Language Utilities provides the following predi­
cates required by IEEE between floating point operands:

>=
!= <
> <=

While there is no predicate to test for unordered, there are the
routines/ macros isnan(3C) which return TRUE if the argument is an NaN.

The relations>, >=, <, and <= raise invalid operation for unordered
operands. The compiler generated code does not guard against the unor­
dered outcome of a comparison. If the trap is masked, for unordered condi­
tions the path taken is the same as if the conditional is true. This is the
wrong path.

For the predicates == and !=, unordered condition does not lead to
invalid operation. The path taken for unordered condition is the same as
when the operands are non-equal. This is the right path.

FLOATING POINT OPERATIONS A-17



Appendix A: Floating Point Operations

(a > b) is not the same as ( !(a <= b) ) in IEEE. The difference occurs
when b or a compares unordered. The C compiler generates the same code
for both cases.

NaNs and Infinities in Input/Output
Floating point numbers which are NaNs or infinities are printed as

such. NaNs are printed with their diagnostic values.

Ideally, whatever printf outputs, scanf should be able to read using the
same format. In this release, scanf does not recognize NaNs and infinities
for floating point formats. However, since these special cases serve mostly as
diagnostics for erroneous floating point computation, outputting these cases
was considered more important than being able to read them.

Conversion to and from Decimal
While IEEE requires functions for converting to and from decimal, it

does not specify the format of decimal numbers. The routines on the
decconv(3C) manual page provide a form of binary coded decimal (BCD)
number as found in many commercial floating point processors. For C pro­
grammers, the printf(3C) and scanf(3C) routines are probably more
relevant. The accuracy of conversion in these routines meets the IEEE
requirements. However, these routines always work in the round-to-nearest
modes. The current rounding mode has no effect on them.

A-18 PROGRAMMER'S GUIDE

..~



Glossary
Ada Named after the Countess of Lovelace, the

nineteenth century mathematician and computer
pioneer, Ada is a high-level general-purpose pro­
gramming language developed under the sponsor­
ship of the U.S. Department of Defense. Ada was
developed to provide consistency among programs
originating in different branches of the military.
Ada features include packages that make data objects
visible only to the modules that need them, task
objects that facilitate parallel processing, and an
exception handling mechanism that encourages
well-structured error processing.

ANSI standard ANSI is the acronym for the American National
Standards Institute. ANSI establishes guidelines in
the computing industry, from the definition of
ASCII to the determination of overall datacom sys­
tem performance. ANSI standards have been esta­
blished for both the Ada and FORTRAN program­
ming languages, and a standard for C has been pro­
posed.

a.out file a.out is the default file name used by the link editor
when it outputs a successfully compiled, executable
file. a.out contains object files that are combined to
create a complete working program. Object file for­
mat is described in Chapter 11, "The Common Object
File Format,1I and in a.out(4) in the Programmer's
Reference Manual.

application program An application program is a working program in a
system. Such programs are usually unique to one
type of users' work, although some application pro­
grams can be used in a variety of business situations.
An accounting application, for example, may well be
applicable to many different businesses.

archive An archive file or archive library is a collection of
data gathered from several files. Each of the files
within an archive is called a member. The command
ar(l) collects data for use as a library.

GLOSSARY G-1



Glossary

argument

ASCII

assembler

An argument is additional information that is passed
to a command or a function. On a command line, an
argument is a character string or number that fol­
lows the command name and is separated from it by
a space. There are two types of command-line argu­
ments: options and operands. Options are immedi­
ately preceded by a minus sign (-) and change the
execution or output of the command. Some options
can themselves take arguments. Operands are pre­
ceded by a space and specify files or directories that
will be operated on by the command. For example,
in the command

pr -t -h Heading file

all of the elements after the pr are arguments. -t
and -h are options, Heading is an argument to the
-h option, and file is an operand.

For a function, arguments are enclosed within a pair
of parentheses immediately following the function
name. The number of arguments can be zero or
more; if more than two are present they are
separated by commas and the whole list enclosed by
the parentheses. The formal definition of a function,
such as might be found on a page in Section 3 of the
Programmer's Reference Manual, describes the number
and data type of argument(s) expected by the func­
tion.

ASCII is an acronym for American Standard Code
for Information Interchange, a standard for data
representation that is followed in the UNIX system.
ASCII code represents alphanumeric characters as
binary numbers. The code includes 128 upper- and
lower-case letters, numerals, and special characters.
Each alphanumeric and special character has an
ASCII code (binary) equivalent that is one byte long.

The assembler is a translating program that accepts
instructions written in the assembly language of the
computer and translates them into the binary
representation of machine instructions. In many

G-2 PROGRAMMER'S GUIDE



assembly language

BASIC

branch table

buffer

byte

byte order

C

Glossary

cases, the assembly language instructions map 1 to 1
with the binary machine instructions.

A programming language that uses the instruction
set that applies to a particular computer.

BASIC is a high-level conversational programming
language that allows a computer to be used much
like a complex electronic calculating machine. The
name is an acronym for Beginner's All-purpose Sym­
bolic Instruction Code.

A branch table is an implementation technique for
fixing the addresses of text symbols, without forfeit­
ing the ability to update code. Instead of being
directly associated with function code, text symbols
label jump instructions that transfer control to the
real code. Branch table addresses do not change,
even when one changes the code of a routine. Jump
table is another name for branch table.

A buffer is a storage space in computer memory
where data are stored temporarily into convenient
units for system operations. Buffers are often used
by programs, such as editors, that access and alter
text or data frequently. When you edit a file, a copy
of its contents are read into a buffer where you make
changes to the text. For the changes to become part
of the permanent file, you must write the buffer con­
tents back into the permanent file. This replaces the
contents of the file with the contents of the buffer.
When you quit the editor, the contents of the buffer
are flushed.

A byte is a unit of storage in the computer. On
many UNIX systems, a byte is eight bits (binary
digits), the equivalent of one character of text.

Byte order refers to the order in which data are
stored in computer memory.

The C programming language is a general-purpose
programming language that features economy of
expression, control flow, data structures, and a
variety of operators. It can be used to perform both

GLOSSARY G-3



Glossary

high-level and low-level tasks. Although it has been
called a system programming language, because it is
useful for writing operating systems, it has been
used equally effectively to write major numerical,
text-processing, and data base programs. The C pro­
gramming language was designed for and imple­
mented on the UNIX system; however, the language
is not limited to anyone operating system or
machine.

C compiler

C preprocessor

CCS

The C compiler converts C programs into assembly
language programs that are eventually translated
into object files by the assembler.

The C preprocessor is a component of the C Compi­
lation System. In C source code, statements pre­
ceded with a pound sign (#) are directives to the
preprocessor. Command line options of the cc(l)
command may also be used to control the actions of
the preprocessor. The main work of the preproces­
sor is to perform file inclusions and macro substitu­
tion.

CCS is an acronym for C Compilation System, which
is a set of programming language utilities used to
produce object code from C source code. The major
components of a C Compilation System are a C
preprocessor, C compiler, assembler, and link editor.
The C preprocessor accepts C source code as input,
performs any preprocessing reqUired, then passes
the processed code to the C compiler, which pro­
duces assembly language code that it passes to the
assembler. The assembler in turn produces object
code that can be linked to other object files by the
link editor. The object files produced are in the
Common Object File Format (COFF). Other com­
ponents of CCS include a symbolic debugger, an
optimizer that makes the code produced as efficient
as possible, productivity tools, tools used to read and
manipulate object files, and libraries that provide
runtime support, access to system calls,
input/output, string manipulation, mathematical
functions, and other code processing functions.

G-4 PROGRAMMER'S GUIDE



~'

COBOL

COFF

command

command line

Glossary

COBOL is an acronym for Cammon Business
Oriented Language. COBOL is a high-level pro­
gramming language designed for business and com­
mercial applications. The English-language state­
ments of COBOL provide a relatively machine­
independent method of expressing a business­
oriented problem to the computer.

COFF is an acronym for Common Object File For­
mat. COFF refers to the format of the output file
produced on some UNIX systems by the assembler
and the link editor. This format is also used by
other operating systems. The following are some of
its key features:

o Applications may add system-dependent infor­
mation to the object file without causing access
utilities to become obsolete.

o Space is provided for symbolic information used
by debuggers and other applications.

o Users may make some modifications in the
object file construction at compile time.

A command is the term commonly used to refer to
an instruction that a user types at a computer termi­
nal keyboard. It can be the name of a file that con­
tains an executable program or a shell script that can
be processed or executed by the computer on
request. A command is composed of a word or
string of letters and Ior special characters that can
continue for several (terminal) lines, up to 256 char­
acters. A command name is sometimes used inter­
changeably with a program name.

A command line is composed of the command name
followed by any argument(s) required by the com­
mand or optionally included by the user. The
manual page for a command includes a command
line synopsis in a notation designed to show the
correct way to type in a command, with or without
options and arguments.

GLOSSARY G-5



Glossary

compiler

core

core file

core image

curses

data symbol

data base

A compiler transforms the high-level language
instructions in a program (the source code) into
object code or assembly language. Assembly
language code may then be passed to the assembler
for further translation into machine instructions.

Core is a (mostly archaic) synonym for primary
memory.

A core file is an image of a terminated process saved
for debugging. A core file is created under the
name "core" in the current directory of the process
when an abnormal event occurs resulting in the pro­
cess' termination. A list of these events is found in
the signal(2) manual page in section 2 of the
Programmer's Reference Manual.

Core image is a copy of all the segments of a run­
ning or terminated program. The copy may exist in
main storage, in the swap area, or in a core file.

curses(3X) is a library of C routines that are
designed to handle input, output, and other opera­
tions in screen management programs. The name
curses comes from the cursor optimization that the
routines provide. When a screen management pro­
gram is run, cursor optimization minimizes the
amount of time a cursor has to move about a screen
to update its contents. The program refers to the
terminfo(4) data base at run time to obtain the infor­
mation that it needs about the screen (terminal)
being used. See terminfo(4) in the Programmer's
Reference Manual.

A data symbol names a variable that mayor may not
be initialized. Normally, these variables reside in
read/write memory during execution. See text sym­
bol.

A data base is a bank of information on a particular
subject or subjects. On-line data bases are designed
so that by using subject headings, key words, or key
phrases you can search for, analyze, update, and
print out data.

G-6 PROGRAMMER'S GUIDE



~.

debug

default

delimiter

directory

dynamic linking

Glossary

Debugging is the process of locating and correcting
errors in computer programs.

A default is the way a computer will perform a task
in the absence of other instructions.

A delimiter is an initial character that identifies the
next character or character string as a particular kind
of argument. Delimiters are typically used for
option names on a command line; they identify the
associated word as an option (or as a string of
several options if the options are bundled). In the
UNIX system command syntax, a minus sign (-) is
most often the delimiter for option names, for exam­
ple, -s or -n, although some commands also use a
plus sign (+).

A directory is a type of file used to group and organ­
ize other files or directories. A directory consists of
entries that specify further files (including direc­
tories) and constitutes a node of the file system. A
subdirectory is a directory that is pointed to by a
directory one level above it in the file system organi­
zation.

The Is(1) command is used to list the contents of a
directory. When you first log onto the system, you
are in your home directory ($HOME). You can
move to another directory by using the cd(1) com­
mand and you can print the name of the current
directory by using the pwd(1) command. You can
also create new directories with the mkdir(1) com­
mand and remove empty directories with rmdir(1).

A directory name is a string of characters that
identifies a directory. It can be a simple directory
name, the relative path name or the full path name
of a directory.

Dynamic linking refers to the ability to resolve sym­
bolic references at run time. Systems that use
dynamic linking can execute processes without
resolving unused references. See static linking.

GLOSSARY G-7



Glossary

environment

executable file

exit

An environment is a collection of resources used to
support a function. In the UNIX system, the shell
environment is composed of variables whose values
define the way you interact with the system. For
example, your environment includes your shell
prompt string, specifics for backspace and erase char­
acters, and commands for sending output from your
terminal to the computer.

An environment variable is a shell variable such as
$HOME (which stands for your login directory) or
$PATH (which is a list of directories the shell will
search through for executable commands) that is part
of your environment. When you log in, the system
executes programs that create most of the environ­
mental variables that you need for the commands to
work. These variables come from /etc/profile, a file
that defines a general working environment for all
users when they log onto a system. In addition, you
can define and set variables in your personal .profile
file, which you create in your login directory to
tailor your own working environment. You can also
temporarily set variables at the shell level.

An executable file is a file that can be processed or
executed by the computer without any further trans­
lation. That is, when you type in the file name, the
commands in the file are executed. An object file
that is ready to run (ready to be copied into the
address space of a process to run as the code of that
process) is an executable file. Files containing shell
commands are also executable. A file may be given
execute permission by using the chmod(l) command.
In addition to being ready to run, a file in the UNIX
system needs to have execute permission.

A specific system call that causes the termination of
a process. The exit(2) call will close any open files
and clean up most other information and memory
which was used by the process.

G-8 PROGRAMMER'S GUIDE



expression

exported symbol

~..;<....

"

Glossary

exit status: return code
An exit status or return code is a code number
returned to the shell when a command is terminated
that indicates the cause of termination.

A symbol that a shared library defines and makes
available outside the library. See imported symbol.

An expression is a mathematical or logical symbol or
meaningful combination of symbols. See regular
expression.

file A file is an identifiable collection of information
that, in the UNIX system, is a member of a file sys­
tem. A file is known to the UNIX system as an
inode plus the information the inode contains that
tells whether the file is a plain file, a special file, or
a directory. A plain file may contain text, data, pro­
grams or other information that forms a coherent
unit. A special file is a hardware device or portion
thereof, such as a disk partition. A directory is a
type of file that contains the names and inode
addresses of other plain, special or directory files.

file and record locking~·

The phrase "file and record locking" refers to
software that protects records in a data file against
the possibility of being changed by two users at the
same time. Records (or the entire file) may be
locked by one authorized user while changes are
made. Other users are thus prevented from working
with the same record until the changes are com­
pleted.

file descriptor A file descriptor is a number assigned by the operat­
ing system to a file when the file is opened by a pro­
cess. File descriptors 0, 1, and 2 are reserved; file
descriptor 0 is reserved for standard input (stdin), 1
is reserved for standard output (stdout), and 2 is
reserved for standard error output (stderr).

GLOSSARY G-g



Glossary

file system

filter

flag

fork

A UNIX file system is a hierarchical collection of
directories and other files that are organized in a
tree structure. The base of the structure is the root
(I) directory; other directories, all subordinate to the
root, are branches. The collection of files can be
mounted on a block special file. Each file of a file
system appears exactly once in the inode list of the
file system and is accessible via a single, unique path
from the root directory of the file system.

A filter is a program that reads information from
standard input, acts on it in some way, and sends its
results to standard output. It is called a filter
because it can be used as a data transformer in a
pipeline. Filters are different from editors and other
commands because filters do not change the contents
of a file. Examples of filters are grep(l) and tail(l),
which select and output part of the input; sort(l),
which sorts the input; and wc(l), which counts the
number of words, characters, and lines in the input.
sed(l) and awk(l) are also filters but they are called
programmable filters or data transformers because a
program must be supplied as input in addition to
the data to be transformed.

A flag or option is used on a command line to signal
a specific condition to a command or to request par­
ticular processing. UNIX system flags are usually
indicated by a leading hyphen (-). The word option
is sometimes used interchangeably with flag. Flag is
also used as a verb to mean to point out or to draw
attention to. See option.

fork(2) is a system call that divides a new process
into two, the parent and child processes, with
separate, but initially identical, text, data, and stack
segments. After the duplication, the child (created)
process is given a return code of 0 and the parent is
given the process id of the newly created child as
the return code.

'~
J

'J

G-10 PROGRAMMER'S GUIDE



~..,.' .. ",:r- .
"

FORTRAN

function

header file

high-level language

host machine

Glossary

FORTRAN is an acronym for FORmula TRANslator.
FORTRAN is a high-level programming language
originally designed for scientific and engineering
calculations but now also widely adapted for many
business uses.

A function is a task done by a computer. In most
modern programming languages, programs are made
up of functions and procedures which perform small
parts of the total job to be done.

A header file is used in programming and in docu­
ment formatting. In a programming context, a
header file is a file that usually contains shared data
declarations that are to be copied into source pro­
grams as they are compiled. A header file includes
symbolic names for constants, macro definitions,
external variable references and inclusion of other
header files. The name of a header file customarily
ends with '.h' (dot-h). Similarly, in a document for­
matting context, header files contain general format­
ting macros that describe a common document type
and can be used with many different document
bodies.

A high-level language is a computer programming
language such as C, FORTRAN, COBOL, or PASCAL
that uses symbols and command statements
representing actions the computer is to perform, the
exact steps for a machine to follow. A high-level
language must be translated into machine language
by a compilation system before a computer can exe­
cute it. A characteristic of a high-level language is
that each statement usually translates into a series of
machine language instructions. The low-level
details of the computer's internal organization are
left to the compilation system.

A host machine is the machine on which an a.out
file is built.

GLOSSARY G-11



interrupt

Glossary

imported symbol A symbol used but not defined by a shared library.
See exported symbol.

interpreted language An interpreted language is a high-level language /~

that is not translated by a compilation system and
stored in an executable object file. The statements of
a program in an interpreted language are translated
each time the program is executed.

Interprocess Communication
Interprocess Communication describes software that
enables independent processes running at the same
time, to exchange information through messages,
semaphores, or shared memory.

An interrupt is a break in the normal flow of a sys­
tem or program. Interrupts are initiated by signals
that are generated by a hardware condition or a peri­
pheral device indicating that a certain event has
happened. When the interrupt is recognized by the
hardware, an interrupt handling routine is executed.
An interrupt character is a character (normally
ASCII) that, when typed on a terminal, causes an
interrupt. You can usually interrupt UNIX programs
by pressing the delete or break keys, by typing
Control-d, or by using the kill(l) command.

I/O (Input/Output)

kernel

lexical analysis

I/O is the process by which information enters
(input) and leaves (output) the computer system.

The kernel (comprising 5 to 10 percent of the operat­
ing system software) is the basic 1'( .Iident software
on which the UNIX system relies. It is responsible
for most operating system functions. It schedules
and manages the work done by the computer and
maintains the file system. The kernel has its own
text, data, and stack areas.

Lexical analysis is the process by which a stream of
characters (often comprising a source program) is
subdivided into its elementary words and symbols
(called tokens). The tokens include the reserved
words of the language, its identifiers and constants,
and special symbols such as =, :=, and;. Lexical

G-12 PROGRAMMER'S GUIDE



library

link editor

magic number

makefile

manual page

Glossary

analysis enables you to recognize, for example, that
the stream of characters 'print("hello, universe")' is to
be analyzed into a series of tokens beginning with
the word 'print' and not with, say, the string
'print("h.' In compilers, a lexical analyzer is often
called by the compiler's syntactic analyzer or parser,
which determines the statements of the program
(that is, the proper arrangements of its tokens).

A library is an archive file that contains object code
and/or files for programs that perform common
tasks. The library provides a common source for
object code, thus saving space by providing one copy
of the code instead of requiring every program that
wants to incorporate the functions in the code to
have its own copy. The link editor may select func­
tions and data as needed.

A link editor, or loader, collects and merges
separately compiled object files by linking together
object files and the libraries that are referenced into
executable load modules. The result is an a.out file.
Link editing may be done automatically when you
use the compilation system to process your programs
on the UNIX system, but you can also link edit pre­
viously compiled files by using the ld(l) command.

The magic number is contained in the header of an
a.out file. It indicates what the type of the file is,
whether shared or non-shared text, and on which
processor the file is executable.

A makefile is a file that lists dependencies among
the source code files of a software product and
methods for updating them, usually by recompila­
tion. The make(1) command uses the makefile to
maintain self-consistent software.

A manual page, or "man page" in UNIX system jar­
gon, is the repository for the detailed description of
a command, a system call, subroutine or other UNIX
system component.

GLOSSARY G-13



Glossary

null pointer

object code

optimizer

option

parent process

parse

PASCAL

A null pointer is a C pointer with a value of o.
Object code is executable machine-language code
produced from source code or from other object files
by an assembler or a compilation system. An object
file is a file of object code and associated data. An
object file that is ready to run is an executable file.

An optimizer, an optional step in the compilation
process, improves the efficiency of the assembly
language code. The optimizer reduces the space
used by and speeds the execution time of the code.

An option is an argument used in a command line to
modify program output by modifying the execution
of a command. An option is usually one character
preceded by a hyphen (-). When you do not specify
any options, the command will execute according to
its default options. For example, in the command
line

Is -a -1 directory

-a and -I are the options that modify the Is(l) com­
mand to list all directory entries, including entries
whose names begin with a period (.), in the long
format (including permissions, size, and date).

A parent process occurs when a process is split into
two, a parent process and a child process, with
separate, but initially identical text, data, and stack
segments.

To parse is to analyze a sentence in order to identify
its components and to determine their grammatical
relationship. In computer terminology the word has
a similar meaning, but instead of sentences, program
statements or commands are analyzed.

PASCAL is a multipurpose high-level programming
language often used to teach programming. It is
based on the ALGOL programming language and
emphasizes structured programming.

G-14 PROGRAMMER'S GUIDE



path name

permissions

pipe

Glossary

A path name is a way of designating the exact loca­
tion of a file in a file system. It is made up of a
series of directory names that proceed down the
hierarchical path of the file system. The directory
names are separated by a slash character (/). The
last name in the path is either a file or another direc­
tory. If the path name begins with a slash, it is
called a full path name; the initial slash means that
the path begins at the root directory.

A path name that does not begin with a slash is
known as a relative path name, meaning relative to
the present working directory. A relative path name
may begin either with a directory name or with two
dots followed by a slash (•. /). One that begins with
a directory name indicates that the ultimate file or
directory is below the present working directory in
the hierarchy. One that begins with .. / indicates
that the path first proceeds up the hierarchy; .. / is
the parent of the present working directory.

Permissions are a means of defining a right to access
a file or directory in the UNIX file system. Permis­
sions are granted separately to you, the owner of the
file or directory, your group, and all others. There
are three basic permissions:

D Read permission (r) includes permission to cat,
pg, Ip, and cp a file.

D Write permission (w) is the permission to
change a file.

D Execute permission (x) is the permission to run
an executable file.

Permissions can be changed with the UNIX system
chmod(l) command.

A pipe causes the output of one command to be used
as the input for the next command so that the two
run in sequence. You can do this by preceding each
command after the first command with the pipe

GLOSSARY G-15



Glossary

symbol ( I), which indicates that the output from the
process on the left should be routed to the process
on the right. For example, in the command

who Iwc -I,

portable

preprocessor

process

the output from the who(l) command, which lists
the users who are logged on to the system, is used as
input for the word-count command, wc(l), with the
I option. The result of this pipeline (succession of
commands connected by pipes) is the number of
people who are currently logged on to the system.

Portability describes the degree of ease with which a
program or a library can be moved or ported from
one system to another. Portability is desirable
because once a program is developed it is used on
many systems. If the program writer must change
the program in many different ways before it can be
distributed to the other systems, time is wasted, and
each modification increases the chances for an error.

Preprocessor is a generic name for a program that
prepares an input file for another program. For
example, neqn(l) and tbl(l) are preprocessors for
nroff(l). grap(l) is a preprocessor for pic(l). cpp(l)
is a preprocessor for the C compiler.

A process is a program that is at some stage of execu­
tion. In the UNIX system, it also refers to the execu­
tion of a computer environment, including contents
of memory, register values, name of the current
working directory, status of files, information
recorded at login time, etc. Every time you type the
name of a file that contains an executable program,
you initiate a new process. Shell programs can cause
the initiation of many processes because they can
contain many command lines.

The process id is a unique system-wide identification
number that identifies an active process. The pro­
cess status command, ps(l), prints the process ids of
the processes that belong to you.

G-16 PROGRAMMER'S GUIDE



program

regular expression

routine

semaphore

shared library

shared memory

shell

Glossary

A program is a sequence of instructions or com­
mands that cause the computer to perform a specific
task, for example, changing text, making a calcula­
tion, or reporting on the status of the system. A
subprogram is part of a larger program and can be
compiled independently.

A regular expression is a string of alphanumeric
characters and special characters that describe a char­
acter string. It is a shorthand way of describing a
pattern to be searched for in a file. The pattern­
matching functions of ed(l) and grep(l), for exam­
ple, use regular expressions.

A routine is a discrete section of a program to
accomplish a set of related tasks

In the UNIX system, a semaphore is a sharable short
unsigned integer maintained through a family of
system calls which include calls for increasing the
value of the semaphore, setting its value, and for
blocking waiting for its value to reach some value.
Semaphores are part of the UNIX system IPC facility.

Shared libraries include object modules that may be
shared among several processes at execution time.

Shared memory is an IPC (interprocess communica­
tion) facility in which two or more processes can
share the same data space.

The shell is the UNIX system program-sh(1)­
responsible for handling all interaction between you
and the system. It is a command language inter­
preter that understands your commands and causes
the computer to act on them. The shell also estab­
lishes the environment at your terminal. A shell
normally is started for you as part of the login pro­
cess. Three shells, the Bourne shell, the Korn shell
and the C shell, are popUlar. The shell can also be
used as a programming language to write procedures
for a variety of tasks.

GLOSSARY G-17



Glossary

signal: signal number

source code

standard error

standard input

A signal is a message that you send to processes or
processes send to one another. The most common ~/

signals you might send to a process are ones that J
would cause the process to stop: for example, inter-
rupt, quit, or kill. A signal sent by a running pro-
cess is usually a sign of an an exceptional occurrence
that has caused the process to terminate or divert
from the normal flow of control.

Source code is the programming-language version of
a program. Before the computer can execute the
program, the source code must be translated to
machine language by a compilation system or an
interpreter.

Standard error is an output stream from a program.
It is normally used to convey error messages. In the
UNIX system, the default case is to associate stan­
dard error with the user's terminal.

Standard input is an input stream to a program. In
the UNIX system.. the default case is to associate
standard input with the user's terminal.

standard output Standard output is an output stream from a program.
In the UNIX system, the default case is to associate
standard output with the user's terminal.

stdio: standard input-output
stdio(3S) is a collection of functions for formatted
and character-by-character input-output at a higher
level than the basic read, write, and open operations.

static linking
Static linking refers to the requirement that symbolic
references be resolved before run time. See dynamic
linking.

stream
o A stream is an open file with buffering pro­

vided by the stdio package.

G-18 PROGRAMMER'S GUIDE



string

strip

subroutine

symbol table

symbol value

syntax

Glossary

o A stream is a full duplex, processing and data
transfer path in the kernel. It implements a
connection between a driver in kernel space
and a process in user space, providing a general
character input/output interface for the user
processes.

A string is a contiguous sequence of characters
treated as a unit. Strings are normally bounded by
white space(s), tab(s), or a character designated as a
separator. A string value is a specified group of
characters symbolized to the shell by a variable.

strip(l) is a command that removes the symbol table
and relocation bits from an executable file.

A subroutine is a program that defines desired
operations and may be used in another program to
produce the desired operations. A subroutine can be
arranged so that control may be transferred to it
from a master routine and so that, at the conclusion
of the subroutine, control reverts to the master rou­
tine. Such a subroutine is usually called a closed
subroutine. A single routine may be simultaneously
a subroutine with respect to another routine and a
master routine with respect to a third.

A symbol table describes information in an object
file about the names and functions in that file. The
symbol table and relocation bits are used by the link
editor and by the debuggers.

The value of a symbol, typically its virtual address,
used to resolve references.

o Command syntax is the order in which com­
mand names, options, option arguments, and
operands are put together to form a command
on the command line. The command name is
first, followed by options and operands. The
order of the options and the operands varies
from command to command.

GLOSSARY G-19



system call

target machine

Glossary

o Language syntax is the set of rules that describe
how the elements of a programming language
may legally be used.

A system call is a request by an active process for a
service performed by the UNIX system kernel, such
as I/O, process creation, etc. All system operations
are allocated, initiated, monitored, manipulated, and
terminated through system calls. System calls allow
you to request the operating system to do some work
that the program would not normally be able to do.
For example, the getuid(2) system call allows you to
inspect information that is not normally available
since it resides in the operating system's address
space.

A target machine is the machine on which an a.out
file is run. While it may be the same machine on
which the a.out file was produced, the term implies
that it may be a different machine.

TCP /IP (Transmission Control Protocol/Internetwork Protocol)
TCP/IP is a connection-oriented, end-to-end reliable
protocol designed to fit into a layered hierarchy of
protocols that support multi-network applications. It
is the Department of Defense standard in packet net­
works.

terminal definition

terminfo

A terminal definition is an entry in the terminfo(4)
data base that describes the characteristics of a termi­
nal. See termin£o(4) and curses(3X) in the
Programmer's Reference Manual.

o a group of routines within the curses library
that handle certain terminal capabilities. For
example, if your terminal has programmable
function keys, you can use these routines to
program the keys. ~

o a data base containing the compiled descriptions
of many terminals that can be used with
curses(3X) screen management programs. These

G-20 PROGRAMMER'S GUIDE



text symbol

tool

trap

Glossary

descriptions specify the capabilities of a termi­
nal and how it performs various operations ­
for example, how many lines and columns it
has and how its control characters are inter­
preted. A curses(3X) program refers to the data
base at run time to obtain the information that
it needs about the terminal being used.

See curses(3X) in the Programmer's Reference Manual.
terminfo(4) routines can be used in shell programs,
as well as C programs.

A text symbol is a symbol, usually a function name,
that is defined in the .text portion of an a.out file.

A tool is a program, or package of programs, that
performs a given task.

A trap is a condition caused by an error where a pro­
cess state transition occurs and a signal is sent to the
currently running process.

UNIX operating system
The UNIX operating system is a general-purpose,
multiuser, interactive, time-sharing operating system
developed by AT&T. An operating system is the
software on the computer under which all other
software runs. The UNIX operating system has two
basic parts:

o The kernel is the program that is responsible
for most operating system functions. It
schedules and manages all the work done by
the computer and maintains the file system. It
is always running and is invisible to users.

o The shell is the program responsible for han­
dling all interaction between users and the com­
puter. It includes a powerful command
language called shell language.

GLOSSARY G-21



Glossary

userid

utility

variable

white space

window

The utility programs or UNIX system commands are
executed using the shell, and allow users to com-
municate with each other, edit and manipulate files, ""'.
and write and execute programs in several program- }
ming languages.

A userid is an integer value, usually associated with
a login name, used by the system to identify owners
of files and directories. The userid of a process
becomes the owner of files created by the process
and descendent (forked) processes.

A utility is a standard, permanently available pro­
gram used to perform routine functions or to assist a
programmer in the diagnosis of hardware and
software errors, for example, a loader, editor, debug­
ging, or diagnostics package.

o A variable in a computer program is an object
whose value may change during the execution
of the program, or from one execution to the ')
next.

o A variable in the shell is a name representing a
string of characters (a string value).

o A variable normally set only on a command line
is called a parameter (positional parameter and
keyword parameter).

o A variable may be simply a name to which the
user (user-defined variable) or the shell itself
may assign string values.

White space is one or more spaces, tabs, or newline
characters. White space is normally used to separate
strings of characters, and is required to separate the
command from its arguments on a command line.

A window is a screen within your terminal screen
that is set off from the rest of the screen. If you
have two windows on your screen, they are
independent of each other and the rest of the screen.

G-22 PROGRAMMER'S GUIDE



word

Glossary

The most common way to create windows on a
UNIX system is by using the layers capability of the
TELETYPE 5620 Dot-Mapped Display. Each window
you create with this program has a separate shell
running it. Each one of these shells is called a layer.

If you do not have this facility, the shl(1) command,
which stands for shell layer, offers a function similar
to the layers program. You cannot create windows
using shl(I), but you can start different shells that
are independent of each other. Each of the shells
you create with shl(l) is called a layer.

A word is a unit of storage in a computer that is
composed of bytes of information. The number of
bytes in a word depends on the computer you are
using. The AT&T 3B Computers, for example, have
32 bits or 4 bytes per word, and 16 bits or 2 bytes
per half word.

GLOSSARY G-23



~..""""'"
I, ]J

~"';1



",.
Index

A
accept 6: 38

access permissions 7: 4

access routines 11: 43

A_COLOR 10: 49

add-books 3: 38

addch 10: 20-21, 23-24, 39, 58, 76

additive operators 17: 17

addr 4: 49, 51

address

physical 11: 3, 16; 12: 2

virtual 11: 3, 14

addscr 3: 46

addstr 10: 14, 20, 23-24, 38

admin 14: 2-3, 26-29, 38, 40-41

advisory locking 7: 2

algorithm 12: 27

ALIGN 12: 12

align 12: 6

a.out 2: 11,67; 3: 21; 8: 2, 4, 9-12, 14, 25,

32,38, 40-41, 50,58; 11: 7; 12: 23

application programming 1: 8; 3: 1-2

ar 2: 70; 12: 23

archive 2: 70

archive library 8: 2-3,5-7,9-10, 12, 28, 33;

12: 23-24; 13: 11, 15

compatibility 8: 41

arg 9: 50, 52

argc 2: 14, 17

argument 2: 16; 16: 3-4

command line 2: 14, 16; 4: 47

argv 2: 14, 16-17

arithmetic conversion 17: 10, 15-19

arithmetic types 17: 7

array 2: 14; 11: 38; 15: 5; 17: 53

as 11: 1; 12: 17

ASCII character-coded integer values 2: 23

assembly language 2: 5, 8, 51; 12: 17

assignment operator 16: 11; 17: 21

assignment statement 12: 5-6

attroff 10: 42

aUron 10: 42, 47

aUrset 10: 39-40, 42, 47, 100

auto 17: 23-24

auxiliary symbol table 11: 35-37, 40, 42

awk 2: 6; 3: 6-7; 4: 1-31, 33-52, 54-64

arrays 4: 33

built-in variables 4: 20

error messages 4: 11

fields 4: 4

functions 4: 9

pattern ranges 4: 19

patterns 4: 7

regular expressions 4: 15

statements 4: 30

string functions 4: 23

strings 4: 23

user-defined functions 4: 36

B
BASIC 2: 5, 10

.bb 11: 20

bc 2: 7
beep 10: 54

bessel 3: 27

.bE 11: 22

binding 12: 2

bit masks 10: 40

INDEX 1-1



Index

block 11: 20, 39; 17: 37

inner 11: 20

nested 11: 21

box 10: 70

branch delta 14: 8-9, 16

branch table 8: 12, 26, 30

branch table specifications 8: 20

break statement 16: 5-6; 17: 41

breakpoint 11: 15; 15: 1, 8-12

.bss 11: 12,28; 12: 13-14, 16, 20-22,26

buf 9: 52

bug 15: 11; 16: 4-5, 7

BullsEye 10: 4, 6

c
C compiler 16: 11-12

C compiler control lines 17: 47-48

C language 2: 3,7, 10, 13, 18,51; 5: 1, 19

can_change_colors 10: 49

captoinfo 10: 8-9, 92

cbreak 10: 55, 59, 104

cc 2: 9-12, 54

cdc 14: 33

cflow 2: 51, 53-54; 8: 43

char 16: 8; 17: 6, 9

character 17: 9

character constant 17: 3-4

checksum 14: 40

child process 2: 39; 7: 16

chkshlib 8: 46-49

chmod 7: 19; 14: 10

chtype 10: 21, 39

clear 10: 20, 28

clearok 10: 28

clear_screen 10: 76

close 4: 42

clrtobot 10: 20, 29, 104

clrtoeol 10: 20, 29, 31, 104

1-2 PROGRAMMER'S GUIDE

cmd 9: 16, 49, 53

COBOL 2: 4

codes, operation permission 9: 9

COFF. See Common Object File Format 11:

1

color

HSL notation 10: 44

initializing 10: 45

RGB notation 10: 44, 49

color manipulation 10: 44

color_content 10: 49

COLOR]AIR 10: 47

color-pair 10: 44

initializing 10: 47

color-pairs table 10: 46

colors program 10: 49, 111

colors table 10: 44

default 10: 45

redefining 10: 48

comb 14: 35

comma operator 17: 22

command language 12: 1

link editor 12: 4

commands, executable 13: 9

comment 17: 2

Common Object File Format (COFF) 2: 8; 3:

22; 11: 1, 3, 6; 12: 13

symbol table 11: 18

compiler diagnostics 2: 10

compiling C programs 2: 9

compound statement (block) 17: 37

conditional operator 17: 21

conditional statement 17: 38

constant 17: 3-4, 13

character 17: 3·4

decimal 17: 3

enumeration 17: 4

floating 17: 4

integer 17: 3



octal 17: 3

constant expression 17: 26, 55

continue statement 16: 5; 17: 41

control command 9: 10-11,42,50,53-54,75

control-d 15: 12

conversion 17: 9

arithmetic 17: 10

characters and integers 17: 9

float and double 17: 9

floating and integral 17: 9

pointers and integers 17: 10

unsigned integer 17: 10

COpy section 12: 30

cpp 2: 31

cross-compiler 11: 3

cll 3: 19

ctrace 2: 54-55, 57

ctype 2: 22

curses 2: 7, 32; 3: 20; 10: 1-4, 6-8, 10-13,

15-16, 19-20, 31, 56, 69, 71-72, 80, 93-94

curses library 10: 5

<curses.h> 10: 3-4, 11-13, 16, 21, 76

cursor optimization 10: 3

cxref 2: 58, 62

D
.data 12: 13-14, 16, 19, 26, 31

data structure 9: 36-39

data symbol 8: 28

dc 2:7

deadlock 7: 17, 20

debug 15:6,13

decimal constant 17: 3

declaration 17: 23, 59

auto 17: 23

enumeration 17: 31

implicit 17: 35

register 17: 23

Index

static 17: 23

structure 17: 28

union 17: 28

declarator 17: 25-26

delta 14: 1-6, 16, 18, 21, 23-26, 33

delta 14: 2, 7-9, 18

branch 14: 8, 16

numbering 14: 7

trunk 14: 16

dependency 13: 9

derived type 11: 31

description file 13: 8-10

desk calculator 6: 45, 48

diff 14: 23

digit 17: 3-4

do statement 17: 38

double 16: 8; 17: 14

doupdate 10: 12, 61-62, 72

DSECT 12: 30

dummy section 12: 30

dump 8: 14, 46

E
.eb 11: 20

echo 2: 42; 10: 58

ed 14: 40; 15: 6

editor 10: 93-94

editor program 10: 93

.ef 11: 22

else statement 17: 38

end-marker, yacc 6: 6

endwin 10: 4, 11, 13-14, 26

entry point 12: 23

enumeration constant 17: 4

enumeration declaration 17: 31

environ 2: 17

environment, yacc 6: 32

environment variable 13: 23

INDEX 1·3



Index

envp 2: 17

.eos 11: 28

epsilon 6:5

equality operator 17: 19

erase 10: 20, 28

errno 2: 44; 9: 3, 17-18

error 6: 28-30, 38

error handling, yacc 6: 28

error message 14: 11; 16: 5

exec 2: 38-42

execle 2: 39

exedp 2: 39

executable object module 2: 38

execv 2: 39

execve 2: 39

execvp 2: 39

exit 2: 12, 35; 12: 23; 16: 6

expression 17: 11-13, 57

primary 17: 12

expression operator 17: 12

expression statement 17: 37

extern 17: 24,43,46

external data definition 17: 44

external definition 17: 43, 63

external function definition 17: 43

external symbol 8: 28

F
fdose 2: 35

fcnt! 7: 6, 9, 14-17

fcntl.h 3: 17

fgets 2: 27

field

awk 4: 4

section number 11: 28

symbol value 11: 26

field variable 4: 28

file, description 13: 8

1-4 PROGRAMMER'S GUIDE

file descriptor 2: 33

file header 11: 4-7

file inclusion 17: 48

file locking 3: 14-15; 7: 1, 20

file retrieval 14: 3

flash 10: 54

float 16: 8; 17: 14

floating constant 17: 4

fopen 2: 34-35

for statement 16: 5; 17: 38

fork 2: 38-39, 41-42

format specifier 15: 4

FORTRAN 2: 4, 7, 10; 5: 9

fprintf 2: 34

function 2: 19-20; 11: 22,37-39; 16: 4-6;

17: 52

bessel 3: 27

conversion 2: 24

hyperbolic 3: 28

string handling 2: 20

trigonometric 3: 27

function call 15: 3, 11; 16: 12; 17: 14

function name 2: 24

G
get 3: 18; 14: 3-5, 13-18, 21-23, 25, 28, 33-34

getc 2: 35; 10: 3

getch 10: 3,31-33,35, 60, 76

getchar 5: 10; 10: 31; 16: 9

getline 4: 44-45,47

gets 2: 25, 27-28, 34

getstr 10: 31, 35, 37, 60

global data 8: 28-29, 56

goto statement 16: 5; 17: 42

graphics 10: 69

gsub 4: 24



~("

H
halfdelay 10: 57

hardware and performance 8: 45

has_colors 10: 49

header

optional 11: 6, 8

section 11: 9-12

header file 2: 30

<curses.h> 10: 11

header files 10: 75-76

help 14: 6, 31

hexadecimal digit 17: 3

highlight 10: 100

highlight program 10: 100

host shared library 8: 10, 22-23, 37, 40, 47,

50

I
idlok 10: 104

if statement 17: 38

implicit declaration 17: 35

imported symbol 8: 38

inch 10: 40

include 13: 20

index 4: 25

INFO section 12: 30

infocmp 10: 8-9, 91

.init 12: 13, 27

init 10: 10

init_color 10: 45, 48, 53

initialization 14: 27; 16: 11; 17: 32-33

init-pair 10: 46-47, 51

initscr 10: 4, 6, 11-13, 26, 28, 71

inner block 11: 20

input 5: 10

input files, nonrelocatable 12: 31

insertJine 10: 80

Index

int 16: 8-9; 17: 3-4, 15, 18

integer 17: 7, 9-10, 19

plain 17: 10

unsigned 17: 7, 10

integer constant 17: 3

integer values, ASCII character-coded 2: 23

interface 2: 13

Inter-Process Communication (IPC) 3: 18-19;

9: 1

interrupts 2: 44.

intro 2: 44

I/O 2: 3, 33, 35; 5: 10, 15; 10: 39, 60, 69

I/O subroutines 2: 19-20

IPe. See Inter-Process Communication 9: 1

ipc-perm 9: 6

K
key 9: 6-7, 9, 11-12, 38

keyboard-entered capabilities 10: 87

keyletters 14: 21

keypad 10:31

keyword 14: 27, 29, 31; 17: 2

kill 2: 44

L
labeled statement 17: 42

labels 10: 71

soft 10: 71

languages

assembly language 2: 5

BASIC 2: 5

C 2:3

COBOL 2: 4

FORTRAN 2: 4

Pascal 2: 4

special purpose, awk 2: 6

INDEX 1·5



Index

special purpose, bc 2: 7

special purpose, curses 2: 7

special purpose, de 2: 7

special purpose, lex 2: 7

special purpose, M4 2: 7

special purpose, yacc 2: 7

lck 7: 14

-Icurses 10: 3
Icurses 2: 32; 10: 15

Id 2: 11; 11: 1; 12: 1-4, 6-8, 11, 13, 16-20,

23-24, 26-27, 30-32

Idfcn 3: 26

Idopen 3: 26

length 4: 25; 12: 8

lex 2: 7, 51; 3: 7-11; 5: 1-16, 18-21; 6: 12;

16: 6

actions 5: 6

definitions 5: 12

fundamentals 5: 3

regular expressions 5: 3-4

specification 5: 1

subroutines 5: 14

toolS: 1

usage 5: 7

lexical analysis 6: 10, 50

lexical analyzer 5: 2, 5, 19; 6: 1-2,4,6-7,

10-12, 36, 42, 45

lexical conventions 17: 2

lexical scope 17: 45

.lib 8: 2

libc.a 2: 18

liber 3: I, 37

library 2: 30

archive 8: 2; 12: 23; 13: 15

curses 10: 1

host 8: 22, 37

math 3: 26

networking 8: 3-4, 17-18

object file 2: 32; 3: 23

1-6 PROGRAMMER'S GUIDE

shared 3: 29; 8: 2-3

target 8: 18,22

library files 16: 3

library members 8: 25

library specification file 8: 19-20

line control 17: 50

line numbers (COFF) 11: 16-17

link editor 2: 8-12, 17,32, 38; 3: 21; 12: 1-

14, 16-23,26-36

link editor command language 12: 1,4

lint 2: 63; 3: 31; 16: 1-12

lint usage 16: 2

local symbols 11: 20

lock 7: 6, 8, 12, 14, 16-18

read 7: 2,4, 10

record 7: 6, 10-11

write 7: 2, 4, 10

lockf 3: 17; 7: 6,8-9, 11-12, 16-17

locking 7: 1, 5

advisory 7: 2, 19

file and record 7: 1,20

mandatory 7: 3, 18-19

long 16: 8-9; 17: 3

longname 10: 10

Is 7: 19; 14: 40

Iseek 7: 9

lvalue 17: 8, 14-16, 21

M
M4 2: 7

machine language 15: 11

macros, make 13: 4, 9-11, 14, 16-17

mail 7: 4

main 2: 14; 5: 19; 6: 32; 8: 38; 15: 3

make 2: 68-70; 3: 33-34; 13: 1-26

makefile 3: 33; 13: 1-2, 10, 15-16, 19-21,

23-24

mallinfo 3: 13



r"

malloc 3: 13; 8: 34-36. 38

mallopt 3: 13-14

mandatory locking 7: 3, 18

mark 12: 19

match 4: 25

math library 3: 26

member 17: 30

memory 3: 13; 8: 45; 9: 68; 12: 1, 7-8, 20,

25-27

memory configuration 12: 1, 7

message 9: 2-4, 6-7, 22; 16: 4-12

message queue 9: 4, 6, 15, 18

message queue identifier (msqid) 9: 3, 18

mkshlib 8: 1, 16, 19,22,40,57

mode 2: 34

modification request 14: 24

module 2: 38

move 10: 14, 20, 26

msgctl 9: 2, 7, 15-16, 18-19,22, 26

msgflg 9: 9

msgget 9: 2, 6, 8-11, 13, 16

msgop 3: 19; 9: 7,22,29,33

msgrcv 9: 22, 27-28

msgsnd 9: 22-23, 27

msqid 9: 6-9, 11-12

multiplicative operators 17: 16

mvaddch 10: 20, 26

mvaddstr 10: 20, 26

mvinch 10: 93

mvprintw 10: 20

N
name 17: 2

tag 11: 36

name field 11: 24

nested block 11: 21

newwin 10: 66

nm 2: 71-76

Index

nobreak 10: 55

nocbreak 10: 58-59

nodelay 10: 57

noecho 10: 55, 58, 104

NOLOAD section 12: 30

noraw 10: 57

null statement 17: 42

o
object 17: 8, 15, 17

object file 2: 8; 3: 26; 8: 21; 11: 1-4, 7, 9,

13, 15; 12: 1-3, 5

relocatable 12: 3

object file format 11: 2

octal constant 17: 3

octal value 9: 9, 42

op 3: 19

open file 7: 4

operation permissions 9: 42, 75

operator

additive 17: 17

assignment 17: 21

comma 17: 22

conditional 17: 21

equality 17: 19

multiplicative 17: 16

relational 17: 18

operator conversion 17: 9

opterr 2: 53

optional header 11: 6, 8

origin 12: 8

output 5: 10

output file blocking 12: 31

output section 11: 13

outsec 12: 11, 17

outsec1 12: 10, 20

OVERLAY section 12: 31

INDEX 1-7



Index

p
pad 10: 19

pads 10: 19,60-61

paging 8: 42-43

pair_content 10: 49

PAIR_NUMBER 10: 49

parameter 13: 20

parameter string capabilities 10: 88

parent process 2: 39; 7: 16

parent process 10 (PPID) 2: 37

parse 2: 7; 6: 1, 13-15, 17, 19,23,28-29; 17:

2
passwd 14: 10

pathname 2: 34

pattern matching 15: 4

pattern ranges, awk 4: 19

patterns, awk 4: 7, 12, 18

patterns awk 2: 6

pelose 2: 42

permissions 7: 4

perror 2: 44

physical address 11: 3, 16; 12: 2

pid 2: 44

pipe 2: 42; 4: 41

pointer 2: 16; 15: 5; 16: 8, 12; 17: .10, 13-

15, 17-19, 21, 53

pointer alignment 16: 12

pointer conversion 17: 54

popen 2:42
popen pipe 2: 43

portability 10: 48; 17: 56

pr 14: 35

preprocessor 2: 7, 31; 17: 64

prgm 15: 2

primary expression 17: 12-14

printf 2: 34; 4: 39-40; 8: 4, 26; 10: 3, 24,

76,88

awk 4: 7

printw 10: 3, 20, 24

1-8 PROGRAMMER'S GUIDE

process 2: 37-38; 7: 2; 9: 2

child 7: 16

parent 7: 16

process 10 (PID) 2: 37

prof 2: 64

.profile 10: 6-7, 15

program

colors 10: 49, 111

editor 10: 93

highlight 10: 100

scatter 10: 102

show 10: 104

two 10: 106

window 10: 109

programming

application 1: 8; 3: 1-2

single-user 1: 7

programming environment 1: 7

programming language 2: 2-3

prs 14: 29

ps 2: 37

putchar 5: 10; 10: 80

putp 10: 76, 80

R
raw 10: 55

read lock 7: 2,4, 10, 15

record 4: 44; 7: 2, 10, 12

record locking 3: 14-15; 7: 4, 6, 10-11, 19-20

recursive 6: 34-35

reduce 6: 13-14

refresh 10: 11, 13-16, 26,28,30, 33, 38, 100

register declaration 17: 23-24

registers, sdb 15: 12

regular expression 15: 7

relational operator 17: 18·19

relocatable symbols 11: 27

relocation 11: 13



relocation entry 11: 14

relocation types 11: 14

reset 10: 10

restate 2: 69

return statement 16: 5; 17: 41

rmdel 14: 32-33

5
sact 14: 31

saving space 8: 6-7

scanf 10: 37

scanw 10: 31, 37-38

scatter program 10: 102

SCCS. See Source Code Control System 14: 1

SCCS (Source Code Control System) 2: 77

sccsdiff 14: 35

sccsfile 14: 40

schmctl 9: 82-83

scope 17: 45-46

screen management programs 10: 1

screen-oriented capabilities 10: 86

scrollok 10: 100

sdb 2: 8, 11, 66-67; 3: 30-31; 6: 33; 8: 14;

15: 1-13, 15

section 11: 3, 10, 13, 36; 12: 2

COpy 12: 29-30

DSECT 12: 29

INFO 12: 29-30

NOLOAD 12: 29-30

OVERLAY 12: 29, 31

section definition directives 12: 9

section header 12: 2

section header (COFF) 11: 9-12

section number (COFF) 11: 28-29

semaphore 9: 34-43, 45, 48-49, 51, 53, 55, 60,

62-64,67

semaphore set 9: 36-37, 39

semaphore set identifier 9: 63

Index

semctl 9: 34, 39-40, 48-49, 53-55

semflg 9: 41-42

semget 9: 34, 38-40, 44-45, 48, 61

semid 9: 39, 41, 44-45, 49

semnum 9: 49

semop 3: 19; 9: 34-35, 39, 60-61

set_term 10: 73

setupterm 3: 20; 10: 6, 76

shared library 3: 29; 8: 1-23, 25-33, 35-37,

39-42, 44-46, 55-61

branch table 8: 13

building 8: 16, 59

compatibility 8: 45

contents 8: 19

debugging 8: 14

example 8: 50

global data 8: 27

gUidelines 8: 24

source files 8: 51

space 8: 7, 13

shared memory 9: 68-69, 71-73

operations 9: 89

shared memory identifier, shmid 9: 69

shell 1: 5, 9; 2: 16, 37; 4: 49

shift operator 17: 18

shkshlib 8: 45

shlib 8: 18

shmat 9: 89

shmctl 9: 81, 84, 88

shmdt 9: 89-90

shmget 9: 68, 72-74, 77-80

shmid 9: 69, 90

shmop 3: 19; 9: 89-90, 92, 95

short 16: 8

show program 10: 104

signals 2: 44, 46

single process program 10: 72

single-user programmer 1: 7; 2: 77

size 2: 66

INDEX 1-9



Index

sizeof 17: 16

sleep 7: 12

slk_attroff 10: 72

slk_attron 10: 72

slk_attrset 10: 72

slk_c1ear 10: 72

slk_init 10: 71

slkJnt 10: 71

slk_noutrefresh 10: 71-72

slk_refresh 10: 72

slk_set 10: 71

sops 9: 61, 64

source code 8: 5-6; 16: 3

Source Code Control System (SCCS) 2: 77;

3: 34-36; 13: 18-19; 14: 1-41

command conventions 14: 10

commands 14: 11-12

comments 14: 27

file retrieval 14: 15-16

files 14: 38

formatting 14: 39

makefiles 13: 20

source file 8: 51, 56; 15: 6-7

shared library 8: 51-55

special symbol 11: 18-20, 26

specification file 8: 30, 57-58

specifications

lex 5: 1

yacc 6: 34

specifier 15: 4; 17: 25

format 15: 4

type 17: 24

sprintf 2: 39; 4: 26

srcdir 2: 67

standend 10: 40, 43

standout 10: 40, 43

start_color 10: 12, 46-47, 50

statement 16: 5, 12; 17: 62

conditional 17: 38

1-10 PROGRAMMER'S GUIDE

expression 17: 37

static data 8: 26

static declaration 17: 23

stderr 2: 33-34, 42, 44

stdin 2: 33-34, 42

stdio 10: 1, 20, 31

<stdio.h> 10: 13

stdio.h 2: 28, 30, 33-34

stdout 2: 33-34, 42, 55; 10: 3

stdscr 10: 3, 16, 18, 20-21, 23-24, 26, 28, 39,

60,71, 93, 109

storage class 11: 25-29, 31-32; 17: 6, 35-36,

43-44

restricted 11: 26

storage class specifiers 17: 23

strcmp 8: 14

stream 2: 28

streams 2: 33

string literal 17: 5, 13

string operations 2: 20-21

string table 11: 42-43

strip 2: 66; 11: 2

structure declaration 17: 28, 30

structure tag 17: 29-30

sub 4: 24

subroutine 2: 7, 17, 24,32-33,35, 38

subscript 17: 53

substr 4: 27

subwin 10: 66-67

suffixes 13: 12-13

superuser 7: 4

switch statement 17: 39-40

symbol 8: 32; 11: 22

data 8: 28

external 8: 28, 30

imported 8: 32, 38

local 11: 20

special 11: 18-19

static library 8: 29



~.., ..

\

symbol name 11: 23

symbol table 11: 16-19,22-23,29,31,33-35

symbol value field 11: 26

symbolic debugger, sdb 15: 1

syntax 16: 11; 17: 5,57

system 2: 38-39, 41; 4: 49

system call 2: 17,24,32-33, 35-36; 9: 2, 7,

9-12, 16,34

msgctl 9: 18-19, 22

msgget 9: 13, 15

msgrcv 9: 28

semctl 9: 55,60

semop 9: 64, 67

shmctl 9: 84, 88

shmget 9: 74, 79-80

shmop 9: 92, 95

smgget 9: 11

systems programmers 1: 8

T
table

auxiliary symbol 11: 35

branch 8: 11

entry 11: 38

string 11: 42-43

symbol 11: 23

tag, structure 17: 29-30

tag name 11: 36-37

target file 13: 2

target library 8: 10-11, 18, 22, 32, 43, 47, 50

target machine 11: 3-4; 12: 1, 7

target shared library 8: 23

TERM 10: 7, 9, 90

termcap 10: 9, 83, 91-92

<term.h> 10: 76

termhl 10: 77, 80

terminal capabilities 10: 82

basic 10: 85

Index

keyboard-entered 10: 87

parameter string 10: 88

screen-oriented 10: 86

terminal description 10: 81, 90

TERMINFO 10: 9, 89-90

terminfo 3: 19; 10: 1-3, 5-10, 13,75-77,79,

81, 83, 92

terminfo database 10: 1. 46

<termio.h> 10: 13

.test 12: 13-14

.text 12: 16-17,26-27, 31

tic 3: 20; 10: 5, 8-9, 89-90

tilde 13: 18-19

token replacement 17: 47

tools 1: 4

lex 5: 1

project control, make 3: 33

project control, sees 3: 34

prototyping 1: 5

yacc 6: 1

touchwin 10: 109

tparm 10: 88

tput 10: 8, 10, 80, 90-91

tputs 10: 76, 79

tree structure 14: 8

trunk delta 14: 16

two program 10: 106

type 17: 6

derived 11: 31

type cast 16: 8

type checking 16: 7-8

type entry 11: 29, 31-32

type name 17: 34

type specifier 17: 24

typedef 11: 40; 17: 30, 36

INDEX 1-11



Index

u
unary operator 17: 15

underline_char 10: 80

union 6: 40

union declaration 17: 28

unlock 7: 14

unput 5: 15

unsigned 16: 8; 17: 7, 16,29

unsigned integer 17: 7, 10

v
val 14: 36

variable 15: 3; 16: 4-5, 12

environment 13: 23

vc 14: 37

version control 17: 50

vi 2: 37

video attributes 10: 44

virtual address 11: 3, 14, 27; 12: 7

void 17: 11

w
wait 2: 40-41

we 2: 42

what 14: 34

while statement 16: 5; 17: 38

WINDOW 10: 16

window program 10: 109

windows 10: II, 18-19,60

wnoutrefresh 10: 12, 61-62, 71

wrefresh 10: 12, 15, 109

write lock 7: 2,4, 10

1·12 PROGRAMMER'S GUIDE

y
yacc 2: 7, 51; 3: 5-8, 10-12; 5: 8, 12, 14, 16,

19-20; 6: 1-15, 17-42,44-45,48-50,57;

16: 6

actions 6: 6

actions, reduce 6: 13

end-marker 6: 6

error handling 6: 28

specifications 6: 4, 34-37

YYERROR 6: 38, 49,57

yyparse 3: 10; 6: 32, 38

yytext 5: 6, 8-11, 15

.~..,
':.J



--
ATs.T

UNIX® System V Release 3.2 Document Set

COMPLETE LIST OF AVAILABLE DOCUMENTS:
AT&T Computer Systems Documentation Catalog (300-000)

GENERAL:
Owner/Operator Manual (305-665)
User's Guide (307-231); • 3.2 Update (305-660)
User's and System Administrator's Reference Manual (305-646);

• 3.2 Updates (305-649), (305-648)
User Interface Utilities Release 1.1 Release Notes (305-653)
Framed Access Command Environment (FACE) User's Guide (305-651)

SYSTEM ADMINISTRATION:
System Administrator's Guide (305-645); .3.2 Update (305-650);

• Update for Release 1.2 of Remote File Sharing (RFS) Utilities (305-656)
System Performance Analysis Utilities (SPAU) Guide (305-607)
2K File System Utilities Release 1.0 Release Notes (305-657)

PROGRAMMING:
Programmer's Guide (308-139); .3.2 Update (305-662)
Programmer's Reference Manual (307-013); .3.2 Update (305-663)
C Programming Language Utilities (CPLU) Issue 4.2 Release Notes (308-198)
Advanced Programming Utilities (APU) Issue 1.1 Release Notes (307-008)
Form and Menu Language Interpreter (FMLI) Programmer's Guide (305-652)
Extended Terminal Interface (ETI) Release 1.0 Release Notes (305-664)
Extended Terminal Interface (ETI) Programmer's Guide (305-658)

PERIPHERALS:
Small Computer System Interface Installation Manual (305-011)
Small Computer System Interface Operations Manual (305-012)

NETWORKING:
Networking Support Utilities Release 1.2 Release Notes (305-654)
Network Programmer's Guide (307-230)
Remote File Sharing Utilities Release 1.2 Release Notes (305-655)
STARLAN NETWORK Introduction (989-100)
STREAMS Primer (307-229)
STREAMS Programmer's Guide (307-227); .3.2 Update (305-661)

ORDERING INFORMATION:

Copies of these documents can be ordered by calling:

1·800·432·6600 (inside the continental USA)
1-317-352-8556 (outside the continental USA)

Or write to: AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219



GENERAL

Owner/Operator Manual (305-665)
This illustrated document explains how
to set up your 3B2 Computer. It
describes the 3B2's standard and
optional hardware and software,
introduces some basic computer
concepts, and explains how to do tasks,
such as assigning lagins and passwords
with the setup command. The
document also describes how to
implement security measures, install
utilities packages, and use the System
Administration menus.

User's Guide (307-231);.3.2 Update
(305-660)
This document presents an overview of
the UNIX operating system; it includes
tutorials on the line editor (ed), the
screen editor (vi), shell programming,
electronic mail, sending and receiving
files, and networking.

User's and System Administrator's
Reference Manual (305-646); • 3.2
Updates (305-649), (305-648)
This document describes each of the
UNIX system user and administrator
commands. Each description includes a
synopsis of the command's syntax and
an explanation of how it is used; also
supplied, where appropriate, are
diagnostic indications, warnings,
examples of use, and where to find
related information.

SYSTEM ADMINISTRATION

System Administrator's Guide
(305-645); • 3.2 Update (305-650);
• RFS 1.2 Update (305-656)
This document explains how to perform
administrative tasks. Tasks are
organized by major subject areas: the
processor, the file system, user services,
disk, tape, printer, tty management, and
networking, among others. Appendices
cover device names and disk
partitioning, directories and files used by
the administrator, and error messages.

System Performance Analysis Utilities
(SPAU) Guide (305-607)
This document describes commands for

User Interface Utilities Release 1.1
Release Notes (305-653)
This document contains release notes
for release 1.1 of the Form and
Language Menu Interpreter (FMLI) and
Framed Access Command Environment
(FACE) user interface. These products
are supported on the AT&T 3B2 series
of computers running UNIX System V
Release 2.0 or later.

Framed Access Command
Environment (FACE) User's Guide
(305-651)
This document describes how to use the
FACE interface to the UNIX system,
which provides an electronic "office"
from which you can easily select
commands that complete many
conventional office tasks, such as
organizing your file cabinet, collaborating
on projects, and working on several
tasks at once. The document also
explains how to access spreadsheet,
word processing, business graphics, or
UNIX system applications, by selecting
them from the FACE Services menu (if
they have been added to the FACE
system), or through the UNIX system
shell.

collecting and examining system usage
data. It explains how this data can be
used to analyze the present performance
of the computer and to determine load
balancing and system-tuning strategies
that will improve performance.

2K File System Utilities Release 1.0
Release Notes (305-657)
This document describes the 2K file
system, a new file system type for 3B2
Computers running UNIX System V
Release 3.2. The document shows how
a 2K file system can improve system
performance for some applications
performing large data transfers.



PROGRAMMING

Programmer's Guide (308-139);
• 3.2 Update (305-662)
This document is divided into two parts.
Part 1 discusses the UNIX system
programming environment and utilities
(e.g., compilers, debuggers). Part 2
provides details of the C language, the
Common Object File Format, and the
link editor. It also includes tutorials on:
shared libraries, curses/terminfo, File
and Record Locking, Inter-Process
Communication facilities, awk, lex, yacc,
lint, SCCS, sdb, and make.

Programmer's Reference Manual
(307-013); • 3.2 Update (305-663)
This document provides manual pages
describing the programming features of
UNIX System V: commands, system
calls, subroutines, libraries, file formats,
macro packages, and character set
tables. Syntax and examples are given
as appropriate.

C Programming Language Utilities
Issue 4.2 Release Notes (308-198)
This document contains installation and
other information specifically relating to
CPLU Issue 4.2 on a 382 Computer.

Advanced Programming Utilities
Issue 1.1 Release Notes (307-008)
This document provides installation and
other specific information about APU
Issue 1.1 on the 382 Computer. APU
contains lint, lex, yacc, sdb, make,

PERIPHERALS

Small Computer System Interface
Installation Manual (305-011)
This document describes how to add a
Small Computer System Interface (SCSI)
8us to a 382 Computer and how to add
external SCSI peripherals to the bus.
Illustrations support the installation
procedures.

Small Computer System Interface
Operations Manual (305-012)
This document explains how to set up

SCCS, commands to handle shared
libraries, and more.

Form and Menu Language Interpreter
(FMLI) Programmer's Guide (305-652)
This document describes a high-level
"shell-like" language for defining forms,
menus, and other types of frames, as
well as screen labeled keys, a message
line, a command line, and a banner.
The Interpreter handles the details of
frame creation, placement, navigation
between frames, and processing the use
of forms and menus.

Extended Terminal Interface
1.0 Release Notes (305-664)
This document explains how to install
the Extended Terminal Interface (ETI)
software on a 382 Computer and
presents usage notes.

Extended Terminal Interface
Programmer's Guide (305-658)
This document shows how to write C
language programs that call the
Extended Terminal Interface (ETI)
routines to create display and change
forms, menus, and panels (windows with
depth relationships). Also included is a
description of how the ETI routines
interact with curses routines and the
terminfo database. It contains manual
pages for the high-level ETI function
libraries, the low-level curses(3X)
library, and the tam(3X) transition library.

and use the Small Computer System
Interface (SCSI) on the 382 Computer.
It describes the hardware and software
that are available with the different SCSI
packages. In addition, operation
information is given for associated
peripherals. Special instructions tell how
to back up and restore file systems
using the different SCSI devices.
Appendices cover topics such as default
partitioning and error messages.



NETWORKING

Networking Support Utilities Release
1.2 Release Notes (305-654)
This document explains how to install
the Networking Support Utilities, which
supplement the Essential Utilities by
extending system capabilities to support
networking applications. This product is
required if your system has Remote File
Sharing, STREAMS mechanisms and
tools, the Transport Interface, Media­
Independent uucp, and the Listener.

Network Programmer's Guide (307-230)
This document introduces the AT&T
Transport Interface, its capabilities, and
its applications. It covers: the goals of
the transport interface, with discussions
of OSI, transport protocols, and
STREAMS; the transport interface
routines in the Network Services Library;
and the key areas of the development of
applications that interface to transport
protocols (with illustrated examples).

Remote File Sharing Utilities Release
1.2 Release Notes (305-655)
This document explains how to install
the Remote File Sharing Utilities
package, which provides the facilities
needed to share remote files
transparently among computers. It
requires the Networking Support Utilities
and a Transport Provider (such as the
STARLAN NETWORK).

STARLAN NETWORK Introduction
(989-100)
This document describes the STARLAN
NETWORK, a baseband, 1 megabit per
second, local area network that provides
simple, reliable connections (logical and
physical) between two or more devices

© Copyright 1988 AT&T.
UNIX is a registered trademark of AT&T.

on the network. The document explains
how the STARLAN NETWORK can
solve information-sharing problems. It
lists a broad range of computers and
terminals that can be linked to the
STARLAN NETWORK, and explains
how to share data among them while still
controlling access to files. A case study
introduces the hardware and software,
and shows how to expand the network
using Network Extension Units, Room
Stars, and Closet Stars.

STREAMS Primer (307-229)
This document presents a high-level
technical overview of STREAMS. It
includes a summary of the STREAMS
mechanism, a description of the
applications and benefits of STREAMS,
illustrations and definitions of STREAMS
terminology, a simple example
(discussed from both the applications
and systems programmers' points of
view), a discussion of the facilities
provided by STREAMS, and a
comparison of certain features of
character input/output device drivers to
STREAMS modules and drivers.

STREAMS Programmer's Guide
(307-227); • 3.2 Update (305-661)
This document describes the user-level
STREAMS facilities available to
applications programmers, how to use
STREAMS facilities to write UNIX
system kernel modules and device
drivers, and it includes a summary of
kernel-level data structures, STREAMS
message types, and specifications of
kernel utility routines.


	Table of Contents
	Introduction
	1 Overview
	2 Programming Basics
	3 Application Programming
	4 awk
	5 lex
	6 yacc
	7 File and Record Locking
	8 Shared Libraries
	9 IPC
	10 curses/terminfo
	11 COFF
	12 The Link Editor
	13 make
	14 SCCS
	15 sdb
	16 lint
	Appendix A: Floating Point Operations
	Glossary
	Index
	31-document-set

