B

[

prd

-

i

f i 4 f r
'- Li- l- ‘i- .i- !_

-

ATsTl

UNIX® System V, Release 3

Block and Character Interface (BCI)
Driver Reference Manual

——e—
et
————
f—m— I &I Issue 2
4 Y
— Preliminary
~——

UNIX® System V, Release 3

Block and Character Interface k(BCI)
Driver Reference Manual

JCIL

©1988 AT&T

Work in Progress
All Rights Reserved
Printed in U.S.A

All UNIX System V code is:

©1984 AT&T
All Rights Reserved

Notice

Information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T.

WE is a registered trademark of AT&T.

For ordering information on this document or related learning support materials, see
"Related Learning Support Materials," in "About This Document."
The ordering number for this document is 307-192

Contents

About This Document
Introduction 1-1
How to Use This Document 1-3
Conventions Used in This Document 1-35
Related Learning Support Materials 1-7
How to Make Comments About This Document 1-—12

Driver Routines (D2X)
Introduction D2X-1
Overview of Driver Routines D2X-2
close(D2X) D2X-3
init(D2X) D2X-5
int(D2X) D2X-6
iocti(D2X) D2X-9
open(D2X) D2X-12
print(D2X) D2X-15
proc(D2X) D2X-16
read(D2X) D2X-19
rint(D2X) D2X-20
start(D2X) D2X-22
strategy(D2X) D2X-—-24
write(D2X) D2X-27
xint(D2X) D2X-28

i

Kernel Functions (D3X)
Introduction D3X-1
Summary of Kernel Functions D3X-—4
becopy(D3X) D3X-8
brelse(D3X) D3X-10
btoc(D3X) D3X-12
bzero(D3X) D3X-15
canon(D3X) D3X~-16
clrbuf(D3X) D3X-20
cmn_err(D3X) D3X-22
copyin(D3X) D3X-26
copyout(D3X) D3X-28
ctob(D3X) D3X-31
delay(D3X) D3X-33
dma_breakup(D3X) [3B2, 3B4000 ACP, and SBC Only] D3X-35
drv_rfile(D3X) [3B4000 and 3B1S computers only] D3X-39
fubyte(D3X) [OBSOLETE] D3X-43
fuword(D3X) [OBSOLETE] D3X-45
gete(D3X) D3X-—-48
getcb(D3X) D3X-50
getcf(D3X) D3X-52
geteblk(D3X) D3X-55
getsrama(D3X), getsramb(D3X) [3B4000 Computer Only] D3X-58
getvec(D3X) [3B2 computer only] D3X—60
hdeeqd(D3X) D3X-62
hdelog(D3X) D3X-67
iodone(D3X) D3X-72
iomove(D3X) [OBSOLETE] D3X-75
jowait(D3X) D3X-78
kseg(D3X) D3X-80
logmsg(D3X) [3B15 Computer and 3B4000 Computer Only] D3X-83
logstray(D3X) [3B15 Computer and 3B4000 Computer Only] D3X-85
longjmp(D3X) D3X—87
major(D3X) D3X-89
makedev(D3X) D3X-91
malloc(D3X) D3X-93
mapinit(D3X) D3X—-96
mapwant(D3X) D3X-98
max(D3X) D3X-100
mfree(D3X) D3X-102

iv

min(D3X) D3X-105
minor(D3X) D3X-106
nodev(D3X) D3X-108
nuildev(D3X) D3X-109
physck(D3X) D3X-110
physio(D3X) D3X-114
psignal(D3X) D3X-116
putc(D3X) D3X-118
putcb(D3X) D3X-120
putcf(D3X) D3X-123
signal(D3X) D3X-125
sleep(D3X) D3X-128
spi*(D3X) D3X-133
sptalloc(D3X) D3X-138
sptiree(D3X) D3X-141
subyte(D3X) [OBSOLETE]
suser(D3X) D3X-145
suword(D3X) [OBSOLETE]
timeout(D3X) D3X-—148
ttclose(D3X) D3X-151
ttin(D3X) D3X-153
ttinit(D3X) D3X-156
ttiocom(D3X) D3X-158
toctl(D3X) D3X-162
ttopen(D3X) D3X-164
ttout(D3X) D3X-167
ttread(D3X) D3X-171
trstrt(D3X) D3X-173
tttimeo(D3X) D3X-175
ttwrite(D3X) D3X-177
txput(D3X) D3X-179
ttyflush(D3X) D3X-182
ttywait(D3X) D3X-184
unkseg(D3X) D3X-185
untimeout(D3X) D3X-188
useracc(D3X) D3X-191
vtop(D3X) D3X-195
wakeup(D3X) D3X-199

D3X-143

D3X-146

"Data Structures (D4X)
Introduction D4X-1
bdevsw(D4X) D4X-3
buf(D4X) D4X-5
cblock(D4X) D4X-10
ccblock(D4X) D4X-13
cdevsw(D4X) D4X-15
cfreelist(D4X) D4X—17
chead (D4X) D4X-19
clist (D4X) D4X-20
D_FILE(D4X) [3B1S and 3B4000 computers only] D4X-22
hdedata(D4X) D4X-24
iobuf(D4X) D4X-26
linesw(D4X) D4X-28
proc(D4X) D4X-31
sysinfo(D4X) D4X-33
tty(D4X) D4X-36
user(D4X) D4X-40

System M aintenance Functions (D8X)
Introduction D8X-—1
CLEANUP(DSX) D8X-2
EDTP(D8X) D8X-3
EXCRET(D8X) D8X-—4
GETS(D8X) D8X-6
GETSTAT(D8X) D8X-7
LONGIMP(D8X) D8X-8
NUM_EDT(D8X) D8X-9
PRINTF(D8X) D8X-10
SETIMP(D8X) D8X-11
SSCANF(D8X) D8X-—12
STRCMP(D8X) D8X—13

vi

G lossary
Glossary GL-1

vii

Chapter 1: About This Document

Contents

About This Document

Driver Development Series 1-1
Systems Supported 1-1

Purpose 1-2

Intended Audience 1-2

Prerequisite Skills and Knowledge 1-2

How to Use This Document

Notes on Section D3X 1-3
Organization of Driver Reference Manuals 1—4

1-3

Conventions Used in This Document

Path Name Conventions 1—5
uts 1-6

1-5

Related Learning Support Materials

Related Documents 1-7

How to Order Documents 1—10

Related Training 1-10

How to Receive Training Information 1-11

About This Document 1-—i

How to Make Comments About This Document

1—-ii BCI Driver Reference Manual

About This Document

The AT&T Block and Character Interface (BCI) Driver Reference Manual (shortened hereafter to BCI
Driver Reference Manual) provides manual pages a driver designer uses to write, install, and debug
drivers in the UNIX® System V, Release 3, environment. The manual defines entry point routines
that must be written, the kerel functions that should be used, the data structures with which the BCI
drivers interact, and the standard library functions used to write a diagnostics file. It is a companion
to the AT&T Block and Character Interface (BCI) Driver Development Guide (shortened hereafter to
BCI Driver Development Guide), which includes background information on such topics as how
drivers are configured into the operating system at boot time, how the operating system accesses
driver entry point routines, and the different /O transfer schemes (with or without kernel buffering).

Please note that code samples in the BCI Driver Reference Manual are code fragments and are not
intended to be copied and compiled into drivers.

For more information about this document, see the "How to Use This Document" section in this
chapter. ‘

Driver Development Series

The BCI Driver Reference Manual is part of the AT&T Driver Development Series. The
Block/Character Interface (BCI) Driver Development Guide is a companion document to this manual.
Other documents being developed for this series include the AT&T Portable Driver Interface (PDI)
Reference Manual and the AT&T SCSI Driver Interface (SDI) Reference Manual, which are listed in
the "Related Documents"” section at the end of this chapter.

Systems Supported

This document supports driver development among many different AT&T computers. Although
most of the information presented in this book is applicable to any UNIX System V computer, the
manual contains examples and information specifically for the following computers and releases:

B WE® 321SB Single-Board-Computer (SBC), UNIX System V/VME Release 3.1
8 AT&T 3B2/300 Computer, UNIX System V Release 3.1
B AT&T 3B2/400 Computer, UNIX System V Release 3.1
8 AT&T 3B2/500 Computer, UNIX System V Release 3.1

About This Document 1-1

About This Document

8 AT&T 3B2/600 Computer, UNIX System V Release 3.1
B AT&T 3B15 Computer, UNIX Systern V Release 3.1.1
B AT&T 3B4000 Computer, UNIX System V Release 3.1.1

Note the following about textual references to various systems:

8 The term 3B2 computer is used for information that is the same for all models of the
3B2 computer. The model number is specified only when information is not the same
for all models.

8 The 3B1S5 computer and 3B4000 Master Processor (MP) share the same kernel, so most
driver information that pertains to one pertains to both. When the information is
applicable to only one or the other system, it is so stated.

B The term adjuncts applies to the 3B4000 Adjunct Communications Processor (ACP),

Adjunct Data Processor (ADP), and Enhanced Adjunct Data Processor (EADP).
Information that is applicable to only certain adjuncts is so marked.

Purpose

The BCI Driver Reference Manual provides the manual pages a driver writer needs to write, install,
and debug device drivers in the UNIX System V environment.

Intended Audience

Both this book and the BCI Driver Development Guide are written for advanced C programmers who
write and maintain UNIX system drivers.

Prerequisite Skills and Knowledge

It is assumed that you are proficient with the advanced capabilities of the C programming language
(including bit manipulation, structures, and pointers) and familiar with UNIX system internals. A
number of documents and courses on these topics are available from AT&T. They are listed later in
this chapter.

1-2 BCI Driver Reference Manual

How to Use This Document

The BCI Driver Reference Manual, the most closely related document to the BCI Driver Development
Guide, is divided into four, alphabetically-arranged sections that provide specific information for
driver writers:

D2X describes the system entry point routines that comprise the driver code

D3X describes the kernel functions that are used in BCI driver code. Whereas user-level code
uses system calls and library routines, driver code uses the kemel functions listed here.

D4X describes the kernel data structures that BCI drivers interface

D8X describes the standard library functions used to write a diagnostics file for a 3B2 computer
custom feature card. This section is also applicable to the 3B4000 (ACP). (Section D8X
includes only a small subset of all of the system board firmware functions. More functions
will be documented in later versions of this document.)

A Glossary is also included at the end of this book.

Notes on Section D3X

Certain kernel functions in Section D3X are designated “OBSOLETE” in this book (Tabie 1-1).
These functions are provided for reference, but may not be supported in future system releases.

Table 1-1 OBSOLETE Functions

Function Reason Replaced By
fubyte, fuword | Error retumn code is copyin
indistinguishable from
data ,
iomove Requires driver use of | beopy, copyin, copyout

u.u_segflg and adds an
extra layer to /O
transfers

subyte, saword | Error return code is copyout
indistinguishable from
data

\

Section D3X does not include pages for the panic and printf kernel functions, which were used in
previous UNIX System V releases. AT&T no longer supports the use of these functions because they

About This Document 1-3

How to Use This Document

have been replaced by the cmn_err function. NOTE: The kemel printf function is different from
printf(3S). printf(3S) is supported.

Organization of Driver Reference M anuals

Driver reference manual pages are referenced much like the UNIX System V Reference Manual pages:
the page name is followed by a section number in parentheses. All driver reference manual sections
begin with a "D" to distinguish them as driver reference pages.

Currently, the reference pages for the different interfaces are published in separate volumes. Each
manual contains four sections for the specific interface:

D2 Driver Routines

D3 Kemel Functions used by drivers

D4 System Data Structures accessed by drivers
D8 System Maintenance Functions

Each section number is suffixed with a letter indicating the interface covered. The suffixes used are:

X Block and Character Interface (BCI)
P Portable Device Interface (PDI)
I SCSI Device Interface (SDI)

For example, open(D2X) refers to the driver entry point routine open page. The D in the (D2X)
reference indicates that the routine, function, structure, or command is covered in the BCI Driver
Reference Manual (this document). The number following the D indicates the section number. For
example, open(D2X) refers to the driver entry point open page, which is in Section D2X of the this
book. If a routine, function, structure, or comment is in a UNIX System V Reference Manual, the
section number alone appears in parenthesis. For example, the open(2) system call reference page is
in Section D2X of the UNIX System V Programmer’ s Reference Manual.

The STREAMS interface for writing character drivers is currently documented in books outside the
Driver Development Series. See the list of "Related Documents” at the end of this chapter.

1—-4 BCI Driver Reference Manual

Conventions Used in This Document

Table 1-2 lists the textual conventions used in this book. These conventions are also used in the BCI
Driver Development Guide.

Table 1—-2 Textual Conventions Used In This Book

Item Style Example
C Bitwise Operators (| &) CAPITALIZED OR
C Commands Bold typedef
C typedef Declarations Bold caddr_t
Driver Routines Bold strategy routine
Error Values CAPITALIZED EINTR
File Names italics lusriincludelsys/conf.h
Flag Names CAPITALIZED B_WRITE
Kemel Macros Bold minor
Kemel Functions Bold ttopen
Kernel Function Arguments Italics bp
Keyboard Keys (crRL-4)
Structure Members Bold u_base
Structure Names Constant Width tty structure
Symbolic Constants CAPITALIZED NULL
UNIX System C Commands Bold (section reference) ioctl(2)
UNIX System Shell Commands Bold layers(1)
User-Defined Variabie Italics prefixclose

Path Name Conventions

This document is designed to be applicable for 3B computers. Differences among machines are
documented where appropriate. Because of the nature of the multiprocessing 3B4000 computer, it
must be set up a little differently from the uniprocessing systems (such as the 3B2 or SBC computers).
One of the most apparent places this shows up is in the paths to various files and directories
mentioned in this document. Whenever you see a path name specified, it is the path name of a

About This Document 1-5

Conventions Used in This Document

uniprocessing UNIX system. For the multiprocessing 3B4000 computer, you can assumne that the
path name is the same for the multiprocessing host or that this path name is prefaced by adj/pe#/
where # stands for the adjunct processor number. For example:

/etc/master.d directory means:
on a uniprocessing system: /etc/master.d
on the 3B4000 computer: /adj/pe#/etc/master.d

uts

The UNIX systemn convention stores operating system and driver source code in subdirectories under
the /usr/src/uts directory. To support cross-environment development (developing software for one
system on a different system), the uts directory has subdirectories that specify the system name, with
each UNIX system kernel (3B2, 3B15, SBC, and so forth) having a unique name for this directory.
In addition, each type of 3B4000 adjunct processing element has its own uts subdirectory where
operating system and driver code for that type of adjunct processor is stored.

Table 1-3 Lecation of utzs Subdirectories

Computer Kernel Source Code
SBC /usr/src/uts/3b2100vme
3B2 [usr/src/uts/3b2
3B15 [usr/src/uts/3b15

/usr/src/uts/com
3B4000 MP /ust/src/uts/3b15

/usr/src/uts/com
3B4000 ACP /usr/src/uts/acp
3B4000 EADP /usr/src/uts/eadp
3B4000 ADP /usr/src/uts/adp

1—6 BCI Driver Reference Manual

A file’s exact location in these directories may vary between releases so be sure to consult the
documentation supplied with your computer.

Related Learning Support M aterials

AT&T offers a number of documents and courses to support users of our systems. For a complete
listing of available documents and courses, see:

AT&T Computer Systems Documentation Catalog (300-000)
AT&T Computer Systems Education Catalog (300-002)

The following list highlights documents and courses that are of particular interest to device driver
writers. Most documents listed here are available from the AT&T Customer Information Center
(CuIC). Documents available from CulC have an ordering code number, which is the six-digit
number in parentheses following the document title. In addition to AT&T documents, the following
list includes some commercially-available documents that are also relevant.

This document is the AT&T UNIX System V Block/Character Interface (BCI) Driver Reference Manual.
Its ordering code number is 307-192.

Related Documents

Driver Development

UNIX System V Block/Character Interface (BCI) Driver Development Guide (307-191)
discusses driver development concepts, debugging, performance, installation, and other
related driver topics.

UNIX System V Portable Driver Interface (PDI) Driver Design Reference Manual (305-014)
defines the kemnel routines, functions, and data structures used for developing block drivers
that adhere to the UNIX System V, Release 3, Portable Driver Interface.

UNIX System V SCSI Driver Interface (SDI) Driver Design Reference Manual (305-009)
defines the input/output controls, kemel functions, and data structures used for developing
target drivers to access a SCSI device.

STREAMS

UNIX System V STREAMS Primer (307-299)
provides an introduction to using the STREAMS dnver mterface and accessing STREAMS
devices from user-level code.

About This Document 1-7

Related Learning Support Materials

UNIX System V STREAMS Programmer’s Guide (307-227)
tells how to write drivers and access devices that use the STREAMS driver interface for
character access.

C Programming Language and General Programming

Bentley, Jon Louis, Writing Efficient Programs (320-004), NJ, Prentice-Hall, 1982.
gives suggestions for coding practices that improve program performance. Many of these
ideas can be applied to driver code.

Kemighan, B. and D. Ritchie, C Programming Language, Edition 1. (307-136), NJ, Prentice-Hall,
1978. defines the functions, structures, and interfaces that comprise the C programming
language in different environments. A short tutorial is included.

Lapin, J. E., Portable C and UNIX System Programming, NJ, Prentice-Hall, 1987
discusses how to maximize the portability of C language programs.

UNIX System V Network Programmer’s Guide (307-230)
provides detailed information, with examples, on the Section 3N library that comprises the
UNIX system Transport Level Interface (TLI).

UNIX System V Programmer’ s Guide (307-225)
includes instructions on using a number of UNIX system utilities, including make and the
Source Code Control System (SCCS).

Assembly Langunage

AT&T 3B2/3B5/3B15 Computers Assembly Language Programming Manual (305-000)
a description of the assembly language instructions used by most AT&T computers.

WE 32100 Microprocessor Information Manual, Maxicomputing in Microspace (307-730)
introduces the WE 32100 microprocessor and summarizes its available support products.

Operating System

Bach, Maurice J., Design of the UNIX Operating System (320-044), NJ, Prentice-Hall, 1986
discusses the internals of variou releases of the UNIX System V operating system, including
an explanation of how drivers relate to the rest of the kernel.

UNIX System V Reference Manuals (see the table following for ordering numbers)
~ the standard reference materials for the UNIX operating system. This information is
divided between three books, published separately for each system.

System Administrator’s Reference Manual

administrative commands (Section 1M), special device files (Section 7), and
system-specific maintenance commands (Section 8).

1-8 BCI Driver Reference Manual

Related Learning Support Materials

Programmer’s Reference Manual
programming commands (Section 1), system calls (Section 2}, library routines
(Section 3), file formats (Section 4), and miscellaneous information (Section 5)

User’s Reference Manual
all UNIX system user-level commands (Section 1)

Table 1-4 gives the select codes for the UNIX System V reference manuals that are published for
each AT&T computer covered in this documentation.

Table 1-4 Reference Manual Select Codes

Computer | UNIX System V Reference Manual
System Release Administrator’s | Programmer’s User’s
SBC 3.1 307-056 307-053 307-057
3B2 3.1 305-570 307-013 307-012
3B15 3.1.1 305-205 305-212 305-205 ¥
3B4000 3.1.1 305-205 305-212 305-205 ¥

+ For the 3B15 and 3B4000 computers, UNIX System V Release 3.1.1, the User’s and Administrator’s Reference Manuals are published as

one volume.

Single Board Computer (SBC)

UNIX System VIVME System Builder’s Reference Guide (307-068)
gives important information needed to write drivers for the SBC computer, including the
firmware interface, system operation, trouble shooting, and diagnostics.

Software Packaging

UNIX System V Application Software Packaging Guide (305-001)
a cross product book describing how to write the INSTALL and DEINSTALL scripts
necessary to install a driver (or other software) under the System Administration utility.

About This Document 1-9

Related Learning Support Materials

How to Order Documents

To order the documents mentioned above
B within the continental United States, call 1 (800) 432-6600
B outside the continental United States, call 1 (317) 352-8556
® in Canada, call 1 (800) 255-1242

Related Training

Driver Development

UNIX System V Release 2 Device Drivers (UC/CS1010)
explores device driver mechanisms, operating system supplied functions, and example device
driver source code.

UNIX System V Release 3 Device Drivers (UC/CS1041)
explores device driver mechanisms, operating system supplied functions, and example device
driver source code.

C Programming

C Language for Experienced Programmers (UC/CS1001)
covers all constructs in C language.

Internal UNIX System Calls and Libraries Using C Language (UC/CS1011)
Introduces the techniques used to write C language programs. Topics include the execution
environment, memory management, input/output, record and file locking, process
generation, and interprocess communication (IPC).

Operating System

Concepts of UNIX System Internals (CS1019)
overviews the main structures and concepts used internally by the UNIX operating system.

UNIX System V Release 2 Internals (UC/CS1012)
an in-depth look at the UNIX System V Release 2 internal structures, concepts, and source
code.

UNIX System V Release 3 Internals (UC/CS1042)
an in-depth look at the UNIX System V Release 3 internal structures, concepts, and source
code.

1—-10 BCI Driver Reference Manual ‘

Related Learning Support Materials

How to Receive Training Inform ation

To receive information (such as registration information, schedules and price lists, or ordering
instructions) about UNIX system or AT&T computer training

B within the continental United States, call 1 (800) 247-1212
8 outside the continental United States, call 1 (201) 953-7554

About This Document 1-—11

How to Make Comments About This Document

Although AT&T has tried to make this document fit your needs, we are interested in your
suggestions to improve this document. Comments cards have been provided in the front of the
document for your use. If the comment cards have been removed from this document, or you have
more detailed comments you would like to give us, please send the name of this document and your

comments to:

AT&T

4513 Western Avenue

Lisle, IL 60532

Attn: District Manager--Documentation

1—12 BCI Driver Reference Manual

Section D2X: Driver Routines(D2X)

Contents

Introduction D2X-1
Overview of Driver Routines D2X-2
close(D2X) D2X-3
init(D2X) D2X-5
int(D2X) D2X-6
ioctl(D2X) D2X-9
open(D2X) D2X-12
print(D2X) D2X-15
proc(D2X) | D2X-16

Driver Routines(D2X) D2X-i

read(D2X) D2X-19

rint(D2X) D2X-20
start(D2X) D2X-22
strategy(D2X) D2X-24
write(D2X) 4 D2X-27
xint(D2X) D2X-28

D2X—ii BCI Driver Reference Manual

Introduction

Section D2X describes the system entry-point' routines a driver developer uses to create a driver plus
the proc subroutine that is required for TTY drivers. All reference pages for driver routines have the
(D2X) cross reference code.

Each driver is organized into two parts, the base level and the interrupt level. The base level
interacts with the kernel and the user program; the interrupt level interacts with the device.

Each driver has a prefix that is defined in its master file. This prefix is prepended to the routine
name to form the name of the actual routine in the driver. So, for a driver with the "pre_" prefix, the
driver code may contain routines named pre_open, pre_close, pre_init, pre_int, and so forth.

Driver routines can call subroutines that are assigned names by the driver writer. Subroutines should
be type static, in which case no rules apply for naming subroutines. However, the prefix should be
used in subroutine names to increase code readability.

Because subroutines are variable, planning, writing, and execution of these routines is the
responsibility of the developer.

In this section, reference pages contain the following headings:
B NAME summarizes the routine’s purpose
® SYNOPSIS describes the routine’s entry point in the source code
8 ARGUMENTS describes arguments used to invoke the routine
® DESCRIPTION provides general information about the routine
® DEPENDENCIES lists possible dependent routine conditions
8 SEE ALSO gives sources for further information

1. Drivers with system entry-point routines are called from the switch tables (bdevSwand Cdevsw), when the computer is started, and when a
device generates an interrupt.

Driver Routines(D2X) D2X-1

Overview of Driver Routines

Table D2X-1 lists the driver routines presented in this section. See individual reference pages in this
section for further information.

Table D2X—1 Driver Routine Types

Base Level Routine Types
System Defined Name Routines: Subordinate Driver Routines
Initialization Switch Table Support Routines proc Routine
Routines Accessed Routines
Form: Form: Form: Form:
prefix init() prefix name(args) prefix name (args) | prefix proc (args)
prefix start() name must be: name is developer required for
Character Block selected. [T rfl dnyers
Driver Driver prefix is not needed | Periorming
P P if the routine is canonical
pe pena declared static processing
close close
read strategy
write print
ioctl
Interrupt Level Routine Type
'
Form: | Character driver only
Block or character driver 1 prefixrint (arg)
prefixint (arg) : prefix xint (arg)

D2X—-2 BCI Driver Reference Manual

close(D 2X)

NAME

close — cease access to a device

SYNOPSIS

#include "sys/diskette.h" [3B2 computer only]
#include "sys/pump.h”

#include "sys/file.h"

#include "sys/open.h"

prefixclose(dev, flag, otyp)

dev_t dev;
int flag;
int otyp;
ARGUMENTS
dev device number

flag the flag with which the file was opened. The value does not instruct the driver how to close
the file, rather it is a reference to be used as needed. The flag is taken from the f_flag
member of the file structure which is in file.h. Refer to the open(2) manual page in this
section for a listing of the possible flags.

otyp parameter supplied so that the driver can determine how many times a device was opened
and for what reasons. The flags assume the open routine may be called many times, but the
close routine should only be called on the last close of a device. All flags are defined in
open.h unless otherwise noted.

a

a

a

a

OTYP_BLK - make last close for a block special file
OTYP_CHAR - make last close for a character special file
OTYP_MNT - close (unmount) a file system

OTYP_SWP - close a swapping device

OTYP_LYR - close a layered process. This flag is used when one driver calls
another’s open or close routine. In this case, there is exactly one close for each
open called. This permits software drivers to exist above hardware drivers and
removes any ambiguity from the hardware driver regarding how a device is
used. This flag applies to block and character devices.

Driver Routines(D2X) D2X-3

close(D2X)

0 O_PUMP - close a file that was sent to an intelligent controller on a feature
card circuit board (this value is in pump.h)

@ O_FORMAT - (for the 3B2 computer only) close (unmount) a floppy diskette
opened for formatting (this value is in diskette.h)

DESCRIPTION

The close routine ends the connection between the user process and the previously opened device,
and prepares the device (hardware and software) so that it is ready to be opened again.

A device may be opened simultaneously by multiple processes and the open driver routine called for
each open, but the device will only be closed by the last close(2) call (after all forked processes have
been closed). The kernel calls the driver close routine when the last process using the device issues a
close(2) call or exits. Block disk devices are closed with an unmount system call.

The close routine performs the following activities:
® deallocates buffers for private buffering scheme
B unlocks an unsharable device (that was locked in the open routine).
8 flushes buffers
® notifies device of the close

If an error occurs during close, close should set the u.u_error member of the user (D4X) structure.
See open.h for further information.

IMPORTANT: In a close routine, test u.u_error before assigning a value. If an error exists
already, do not change the value.

A close routine should use the flag parameters specified on the close(2) manual page when
applicable. It should also make the device available for later use by de-allocating resources and
cleaning up data structures.

After calling ttclose(D3X) for a tty(D4X) driver, the driver close routine should disconnect the
link to the terminal and retumn to the caller.

SEE ALSO
BCI Driver Development Guide, Chapter 5, "System and Driver Initialization."

DZX-—4 BCI Driver Reference Manual

init(D2X)
NAME
init — initialize a device
SYNOPSIS

prefixinit()
DESCRIPTION

The operating system executes the init routine during system initialization. init performs the
following activities:

B initializes data structures for device access

B allocates buffers for private buffering scheme

B maps device into virtual address space

B initializes hardware (for example, system generation or resetting the board)
8 initializes any static data associated with the driver

When the init routine is executed, no file systems are accessible. Therefore, init should not access
disk files, such as getting pump code to send to an intelligent controller.

Use init to execute functions when the computer is first brought up; use start(D2X) to execute
functions after the the computer is brought up and root is mounted.

This routine must be used by local bus boot devices. init must never call kernel functions that issue
the sleep(D3X) function or those that access the user(D4X) structure.

SEE ALSO

BCI Driver Development Guide, Chapter 5, "System and Driver Initialization.”
start(D2X) :

Driver Routines(D2X) D2X-5

int(D2X)

NAME

int — process a device interrupt
SYNOPSIS

prefixint(ivec)
int ivec;

ARGUMENT

ivec number or interrupt vector corresponding to the interrupting device. For a 3B2
computer, this number is the physical device number. This number is derived from
the bus position of the circuit board (feature card) generating the interrupt. The
driver translates the input argument into a logical controller number to access the
I/O hardware and locates the status information. For the 3B4000 computer, the
argument must be translated to get the logical controller number.

DESCRIPTION

The driver interrupt handler is entered when a hardware interrupt is received from a driver-controlled
device. The int(D2X) routine is used by both block and character drivers to handle hardware
interrupts. The contents of the routine depend on the device for which you are writing your driver.

The int(D2X) routine is entered when the CPU receives an interrupt from the device controller. It
processes job completions, errors, changes in device status, and spurious interrupts. The int routine
takes one argument that indicates which interrupt vector generated the interrupt.

The int routine for an intelligent controller that does not use individual interrupt vectors for each
subdevice must access the completion queue to determine which subdevice generated the interrupt. It
miust also update the status information, set/clear flags, set/clear error indicators, and so forth to
complete the handling of a job. The code should also be able to handle a spurious completion
interrupt, identified by an empty completion queue (logstray(D3X) is provided for this purpose).
When the routine finishes, it should advance the unload pointer to the next entry in the completion
queue.

If the driver called iowait(D3X) or sleep(D3X) to await the completion of an operation, the int
routine must call iodone(D3X) or wakeup(D3X) to signal the process to resume.

int is only used with hardware drivers, not software drivers.

D2X—6 BCI Driver Reference Manual

in{D2X)

CAUTION: The int routine must never
B contain calls to the sleep(D3X) kernel function
| use functions that call sleep

B drop the interrupt priority level below the level at which the
interrupt routine was entered

B attempt to access the user(D4X) structure

B attempt to access the proc(D4X) structure

When an interrupt routine is called, it usually is not being called to interrupt the currently executing
user process. So, the interrupt routine must not access the currently executing user process or affect it
in any way. For example, the interrupt routine must not access the user or proc structures of the
currently executing user process or call sleep.

Table D2X-2 lists kernel functions that must not be called from a driver interrupt routine. These
functions access the user structure or call sleep.

Table D2X—-2 Unavailable Interrupt Routine Functions (D3X)

canon getvec sptfree | ttread
copyin iomove subyte ttwrite
copyout | iowait suser ttywait
delay kseg suword | unkseg
drv_rfile | longjmp | ttclose useracc
fubyte physck ttiocom
fuword sleep ttioctl
| geteblk sptalloc | ttopen

Establish the goals for your interrupt routine. In general, each interrupt routine contains the
following:

B a record of an interrupt occurrence

® an interpretation of the input argument into a meaningful subdevice number and a
facility to reject any requests for devices that are not served by the device’s controller

W facilities to process interrupts that happened without cause

B proper handling of all possible device errors

Driver Routines(D2X) D2X-7

int(D2X)

In addition, interrupt routines must handle the device-specific tasks that you alone design into the
overall pian for your driver. For example,

block driver dequeue requests, wake up processes sleeping on an I/O request, and
ensure that system generation has completed

terminal driver receive and send characters

printer driver ensure that characters are sent

The interrupt routine finishes whatever task is left undone before it is called.

SEE ALSO

BCI Driver Development Guide, Chapter 10, "Interrupt Routines."”
rint(D2X), xint(D2X), logstray(D3X)

D2X-8 BCI Driver Reference Manual

ioctl(D2X)

NAME
ioctl — control a character device
SYNOPSIS

prefixioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, arg, mode;

ARGUMENTS
dev device number

cmd command argument the driver ioctl routine interprets as the operation to be
performed. The command types vary according to the device.

termio(7) specifies the command types that must work for AT&T terminal drivers.
Terminal drivers typically have a command to read the current ioctl settings and at
least one other that defines new settings. The kemel does not interpret the
command type; so, a driver is free to define its own commands.

Create a unique identifying command so your driver can ascertain a correct
command has been received. This should be done to guard against misuse by users.
For example, AT&T drivers frequently shift a letter eight positions to the left and
then OR in a number to create the command. (See TIOC in termio.h. Notice in
this file how the TCGETA, TCSETA ioctl commands are created by ORing a
number to TIOC.)

The ioctl routine can unshift the command to verify a correct number has been
received from the caller. Be sure to comment the command you create.

arg passes parameters between a user program and the driver.

When used with terminals, the argument is the address of a user program structure
containing driver or hardware settings. Alternatively, the argument may be an
integer that has meaning only to the driver. The interpretation of the argument is
driver dependent and usually depends on the command type; the kernel does not
interpret the argument.

Driver Routines(D2X) D2X-9

~ ioctl(D2X)

mode contains values set when the device was opened.

This mode is optional. However, the driver uses it to determine if the device was
opened for reading or writing. The driver makes this determination by checking the
FREAD or FWRITE setting (values are in file.h).

See the flag argument description of the open routine for further values for the ioctl
routine’s mode argument.

DESCRIPTION

The ioctl(D2X) routine provides character-access drivers with an alternate entry point that can be
used for almost any operation other than a simple transfer of characters in and out of buffers. Most
often, ioctl is used to control device hardware parameters and establish the protocol used by the
driver in processing data.

When the user-level program opens a special device file, it can also pass ioctl arguments. The kernel
looks up the device’s file table entry, determines that this is a character device, and looks up the entry
point routines in cdevsw. The kernel then packages the user request and arguments as integers and
passes them to the driver’s ioctl routine. The kernel itself does no processing of the passed
command, so it is up to the user program and the driver to agree on what the arguments mean.

/O control commands are used to implement the terminal settings passed from getty(1M) and
stty(1), to format disk devices, to implement a trace driver for debugging, and to clean up character
queues. Since the kernel does not interpret the command type that defines the operation, a driver is
free to define its own commands.

Drivers that use an ioctl routine typically have a command to "read" the current ioctl settings, and at
least one other that sets new settings. You can use the mode argument to determine if the device unit
was opened for reading or writing, if necessary, by checking the FREAD or FWRITE setting.

The ioctl routine can be used for transferring large chunks of data, such as when you need to pump
data into the driver itself and not through the driver to the hardware. In this case, the operation
argument is a pointer to a buffer of an appropriate size that contains the data. The buffer itself
should be set up by a user-level process or daemon. The kernel copies it in with the copyin function
then writes it to the device.

To implement I/O control commands for a driver, two steps are required

1 Define the I/O control command names and the associated value in the driver’s header
file and comment the commands.

2 Code the ioctl routine in the driver that defines the functionality for each I/O control
command name that is in the header file.

The ioctl routine is coded with instructions on the proper action to take for each command. It is
basically a switch statement, with each case definition corresponding to an ioctl name to identify the
action that should be taken. However, the command passed to the driver by the user process is an
integer value associated with the command name in the header file.

D2X-—-10 BCI Driver Reference Manual

ioctl(D2X)

It is critical that command definitions and routines be copiously commented. Because there is so
much flexibility in how commands are used, uncommented commands can be very difficult to
interpret at a later time.

Terminal drivers use and support the ioctl commands defined on the termio(7) manual page. For
instance, TCGETA gets the parameters associated with the terminal and stores them in the structure
referenced in the third argument of the routine call. TCSETA sets the parameters associated with the
terminal from the structure referenced in the third argument.

For a complete example of an iectl device driver routine for a networking driver, see the BCI Driver
Development Guide, Chapter 8, "Input/Output Control (ioctl).”

DEPENDENCIES

Drivers using the ioctl routine must have a ¢ under the FLAG column in the master file.
SEE ALSO

BCI Driver Development Guide, Chapter 8, "Input/Output Control (ioctl).”

Driver Routines(D2X) D2X-11

open(D2X)

NAME

open — start access to a device
SYNOPSIS

#include "sys/file.h"
#include "sys/open.h”

prefixopen(dev, flag, otyp)
dev_t dev;

int flag, otyp;
ARGUMENTS

dev device number

flag information passed from the user program open(2) or create(2) system instructs the
driver on how to open the file.

The values for the flag are found in file.h associated with the f_flag member of the
file structure. Valid values are:

FAPPEND open an existing file and set the file pointer to the end of the file
FCREAT open a new file (ignore if the file already exists)

FEXCL open a new file, but fail open if the file already exists (used with
FCREAT)

FNDELAY open the file with no delay (do not block the open even if there is a
problem)

FREAD open the file for read-only permission (if ORed with FWRITE, then
allow both read and write access)

FSYNC grant synchronous write permission to a user program for file access
FTRUNC open an existing file and truncate its length to zero

FWRITE open a file with write-only permission (if ORed with FREAD, then allow
both read and writer access)

D2X—-12 BCI Driver Reference Manual

open(D2X)

otyp parameter supplied so that drivers keep an accurate record of how many times a device is
open and for what reasons.

a

m]

DESCRIPTION

OTYP_BLK - open a block special file for the first time
OTYP_CHAR - open a character special file for the first time
OTYP_MNT - open (mount) a file system

OTYP_SWP - open a swapping device

OTYP_LYR - open a layered process. The OTYP_LYR flag is used when
one driver calls another’s open or close(D2X) routine. In this case there is
exactly one close for each open called. This permits software drivers to exist
above hardware drivers in such a way as to remove any ambiguity from the
hardware driver regarding how a device is being used. This flag applies to
block and character devices.

O_PUMP - open a file that is to be sent to an intelligent controller (this value
is in pump.h)

O_FORMAT - (for the 3B2 computer only) open (mount) a file to format
the diskette (this value is in diskette.h)

The open routine should perform the following activities:

validate the minor portion of the device number accessed by the minor(D3X) macro

set up device for subsequent data transfer

specify whether or not to wait for a hardware connection. Follow the specifications for
the O_NDELAY flag given on the open(2) page of the Programmer’s Reference Manual.
If this flag is set, the open will return without waiting for a hardware connection; this is
used primarily for software drivers. If it is clear, the open will "block” until the
hardware establishes a connection.

verify that if this is an unsharable device, that no other processes are using or sleeping on
the device and to then lock the device. An unsharable device is one that should be
opened by one process as a time.

The kemnel calls the driver open(DD2X) function as a result of an open(2) or mount(2) system call for
the device file. The open routine establishes a connection between the user process issuing the open
call and the device being opened.

Driver Routines(D2X) D2X-13

open(D2X)

The parameters of the driver open routine are the minor device number of the device file and the
flags supplied in the oflag member of the open(2) system call (which map to flag values in the file.h
header file). The minor device number usually corresponds to the unit number of the physical device
being opened.

An open routine should use the flag parameter as specified in the open(2) manual page when
applicable. It should also set the device for subsequent data transfer. When a device is opened
simultaneously by muitiple processes, the operating system calls the open routine for each open.

If an error occurs, the routine sets u.u_error. Read and write parameters are defined in user.A.

An incorrect special device file could cause the driver open routine to be passed an incorrect device
number. Through verification, the minor device number is compared to a variable containing the
number of devices associated with a controller. This variable is assigned in the driver’s initialization
routine or in the master file.

Additional open routine operation is dependent upon the device being opened. For example, the
open routine for a removable media disk drive could lock the disk drive door and cause the disk
controller to select the drive. Or the open routine for a terminal interface controller could turn on
data terminal ready (DTR).

SEE ALSO

Section D4X, "Data Structures(D4X)," of this manual.
BCI Driver Development Guide, Chapter 5, "System and Driver Initialization”
minor(D3X), start(D2X)

D2X-14 BCI Driver Reference Manual

print(D2X)
NAME
print — display a message on a system console
SYNOPSIS '
prefixprint(dev, str)
dev_t dev;
char *str;
ARGUMENTS

dev device number

str character string describing the problem. The nature of the problem contained in str
should be included in the driver output.

DESCRIPTION

Block drivers must provide a print routine to send warning messages from the driver to the console
when abnormal situations are detected by the kernel during execution of the strategy(D2X) routine.
An example of an abnormal situation would be when a disk drive has no more room on the disk.

NOTE: Use the cmn_err(D3X) function to send messages to the console. For further information
on this function, see Section D3X in this manual.

DEPENDENCIES
Drivers using the print routine must have a b under the FLAG column in the master file.
SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Reporting.”

Driver Routines(D2X) D2X-15

proc(D2X)

NAME

proc — process character device-dependent operations

SYNOPSIS

prefixproc(tp, cmd)
struct tty *ip;
int cmd;

ARGUMENTS

o
cmd

pointer to the tty(D4X) structure

an operation that the proc routine performs. Typically, the driver encodes a case statement for
each command with code to perform the operations that are described as follows. Refer to the
proc routine in Appendix D of the BCI Driver Development Guide for an example of how most
of the commands are coded.

T_BLOCK

T_BREAK

send command to the terminal controller to prohibit further input because
the input queue has reached the high water mark (buffer is full). This case
should OR (enable) the TBLOCK flag into the t_state member of the tty
structure.

send a break to a tty device. Typically, this command is not handled in
the proc routine; instead, it is handled in the ioctl routine. Refer to the
ioctl routine in Appendix D of the BCI Driver Development Guide for an
example.

T_DISCONNECT send a command to the terminal controller to request that it disconnect a

T_INPUT
T_OUTPUT

T_PARM

T_RESUME

terminal device (tell it to drop carrier).
prepare a tty device to receive input.

initiate output to the device if the device is not busy or output has not been
suspended.

change parameters in the tty structure of a particular device. The driver
proc routine is called to update the device to the new parameters, if the
device is intelligent enough to use the tty structure information. The shell
layers sxt device driver ioctl routine calls the proc routine of the device with
T_PARM when the tty structure has been changed.

send command to the terminal controller to indicate that terminal output
should be resumed because a character has been received. The
TTSTOP bit in the t_state member of the tty structure should be cleared.

D2X—16 BCI Driver Reference Manual

proc(D2X)

Note that if IXANY is set in the c_iflag of the termio structure, any
character can cause the terminal to resume. See termio(7) for further
information.

T_RFLUSH send command to terminal controller to flush terminal input queue. If
t_state is set to TBLOCK, call the T_UNBLOCK section of the proc
routine.

T_SUSPEND send a character to the terminal controller to suspend output to the terminal
because a character has been received. The driver proc routine
should set the TTSTOP bit in t_state in the tty structure.

T_SWTCH switch between context layers on the shi(1) driver. This case is only used in
conjunction with the sxt.c driver. Typically, this section of code changes
control to channel 0 and wakes up any processes sleeping on:

&t_link->chans[0]

When the SWTCH character (t_cc[VSWTCH]) is input by the terminal
device. The line discipline ttin routine checks to see if an input character is
equal to t_cc[VSWTCH] (normally), and if so, calls ttyflush to
flush the input and output buffers (if NOFLSH isn’t true in t_lflag), and
then calls the device driver proc routine with the command flag T_SWTCH.

T_TIME notifies the driver that delay timing for a BREAK, carriage return, and so
on, has completed.

T_UNBLOCK allows further input when the input queue has gone below the high water
mark. The driver developer resets TTXOFF and TBLOCK in t_state when
T_UNBLOCK is used.

T_WFLUSH clears the transmit buffer characters.
DESCRIPTION

The proc routine is called by the TTY subsystem to process various device-dependent operations.
This routine is required for a character driver that accesses the tty or the linesw structures.

DEPENDENCIES

This routine is used only by character drivers written in the TTY subsystem.

Driver Routines(D2X) D2X-17

proc(D2X)

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
tty(D4X)

D2X-18 BCI Driver Reference Manual

read(D2X)

NAME
read — read data from a character-access device

SYNOPSIS

prefixread(dev)
dev_t dev;

ARGUMENTS
dev device number

DESCRIPTION

When read(2) is executed, the driver initiates and supervises the data transfer from the device to the
user data area. For further information on the user(D4X) structure, see Section D4X in this
manual.

The read routine is accessed through the character device switch table, cdevsw(D4X). This
assumes the driver indicated is a character driver in the master file (even if the driver accesses a block
device). read is used for raw data [/O.

When the device being accessed is truly a character device (not a block device being accessed through
the character device switch table), the transferred data is usually buffered by the driver. For
example, using the tty(D4X) structure to get a cblock(D4X), the ttread and ttwrite(D3X)
functions handle character driver buffering.

Drivers for low-speed character devices, such as terminals and printers, perform semantic processing
of data. These drivers typically use the c1ist(D4X) data structure and the TTY subsystem to
perform buffering. These transfer data in and out of the user data area.

Drivers for high-speed character devices such as network interface boards generally set up their own
buffering schemes.

DEPENDENCIES

Drivers using the read routine must have ¢ under the FLAG column in the master file.
SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."

Driver Routines(D2X) D2X-19

rint(D2X)
NAME

rint — service a receive interrupt

SYNOPSIS
prefixrint(ivec)
int ivec;
ARGUMENT
ivec a number, or interrupt vector, corresponding to the interrupting device.

For the 3B2 computer, this number is the physical device number, The number is
derived from the device bus position generating the interrupt. The driver translates the
input argument into a logical controller number to access the /O hardware and to locate
the status information associated with the interrupting device.

For the 3B4000 computer, the argument must be translated to get the logical controller
number.

DESCRIPTION

A receive interrupt occurs when a device has data to be read. The CPU determines what action to
take by using an entry in the interrupt vector table. The interrupt vector table resides in the kernel in
main memory. Each interrupt known to the machine has a table entry. Each interrupt vector table
entry includes a text address.

Upon receiving an interrupt, the text address value is loaded into the program counter. The CPU
then runs the software located at the text address. A driver indicates the number of interrupts needed
in the master file.

Drivers using the rint routine must also provide xint for transmit interrupts. A driver that uses rint
and xint routines should not use an int routine.

CAUTION: The rint routine must never

B contain calls to the sleep kernel
function

B - use functions that call sleep

8 Jower the interrupt priority level

D2X—-20 BCI Driver Reference Manual

below the level that the interrupt
routine was entered

B attempt to access the user block
(user(D4X) structure)

® attempt to access the proc(D4X)
structure

Because an interrupt is not associated with any user process, any previous local variables set up by the
driver are not available.

Do not call the functions shown in Table D2X-2 from rint.
DEPENDENCIES

Drivers using the rint routine must also call xint for transmit interrupts. The rint/xint pair will be
functional only if the value under the #VEC column is double the value under the #DEV column in
the master file.

SEE ALSO

BCI Driver Development Guide, Chapter 10, "Interrupt Routines."
xint(D2X), int(D2X)

Driver Routines(D2X} D2X-21

rint(D2X)

start(D2X)

NAME
start — start access to a device
SYNOPSIS

prefixstart()
DESCRIPTION

The start routine is called when a computer starts placing a device into a known state. At the time
this routine is called, the developer depends on root being mounted?, and initialization being
complete. The Equipped Device Table (EDT) can be read from a start routine.

The start routine should perform the following activities:
W initialize data structures for device access
8 allocate buffers for private buffering scheme
B download pumpcode to controllers
® map device into virtual address space
® initialize hardware (for example, perform a system generation and reset the board)
® initialize the serial device for character drivers
B initialize any static data associated with the driver

The root file system is available to start; for devices that are not required to bring the system up,
such as a tape controller, the start routine might include the system generation statements allowing
the operating system to access the controller.

If the number of hardware devices is not in the master file, use start to ascertain this count. This
information is determined from the EDT and is used in the open(D2X) routine to verify that the
device number argument is correct.

2. No file system access is permitted on adjuncts.

D2X—-22 BCI Driver Reference Manual

start(D2X)

SEE ALSO

BCI Driver Development Guide, Chapter 5, "System and Driver Initialization.”
init(D2X)

Driver Routines(D2X) D2X-23

strategy(D 2X)

NAME

strategy — handle device input and output

SYNOPSIS

prefixstrategy(bp)
struct buf *bp;

ARGUMENT

bp buffer header data structure pointer.

The pointer is the address of an instance of the buffer header data
structure defined in the system header file buf.A. All information about
the data transfer is contained in the buffer header. It is also used to
return status and error information to the kernel and convey the
information to the user.

For further information on buf(D4X) header data structure, see Section
D4X in this manual.

DESCRIPTION

Block drivers must provide a strategy routine to handle the data transfer. strategy initiates the
transfer. It validates the buffer header information, and generates the device operations required to
start the data transfer. The strategy routine should also perform the following activities:

get and validate the device number for hardware drivers
schedule block I/O request
call subordinate driver routines (if any) that notify controller an I/O operation is waiting

If the device can only handle one operation at a time, strategy must cause the process to
sleep until the device is available. For instance, a sequential access device, like a tape
drive, should only handle one read/write operation at a time.

handle any errors occurring during the read/write operations

log device errors to the Hard Disk Error Log

If an error occurs, set the b_error member of the buf structure and set (OR operation) B_ERROR
into b_flags. Perform a character driver read or write based on the value in b_flags. The test should
be for B_LREAD or "not" B_READ. B_WRITE cannot be tested since it is not a flag, it is zero.

D2X-24 BCI Driver Reference Manual

strategy(D2X)

Most strategy routines do not manipulate the user area, although it is possible. Avoid calling
functions that manipulate the user(D4X) structure. These functions (Table D2X-3) are:

Table D2X—3 Unavailable Strategy Routine Functions

copyin longjmp
copyout physck
drv_rfile | physio
fubyte subyte

fuword suser
iomove suword
iowait useracc

strategy uses the following fields in the buf(D4X) structure, but it should not set them. Note,
however, some of these fields can be manipulated with an OR operator.

b_dev
contains the major and minor number of the device where the I/O is to occur. The
minor number is contained in the 8 low order bits, and the major number is contained
in the 5 next low order bits. The 3 high order bits should not be used.

b_blkno
the block number of the device where the /O is to occur.

b_bcount
the number of bytes to be transferred by the /O operation.

b_un.b_addr
the address of the data in the buffer. The data array is SBUFSIZE bytes long.
SBUFSIZE is defined in param.h.

b_flags

indicates the buffer status. If the B_READ bit is set, then the /O operation is to
read from the device. If the bit is not set, the /O operation is to write. The driver
should OR in changes in status.

Driver Routines(D2X) D2X-25

strategy(D2X)

DEPENDENCIES
Drivers using the strategy routine must have 4 under the FLAG column in the master file.
SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
physio(D3X), print(D2XX), and buf(D4X)

D2X~-26 BCI Driver Reference Manual

write(D2X)
NAME

write — write data to a character-access device

SYNOPSIS
prefixwrite(dev)

dev_t dev;

ARGUMENT
dev device number

DESCRIPTION

When write(D2X) is executed, the driver initiates and supervises data transfer from the user data
area to the device.

The write routine is accessed through the character device switch table, cdevsw. This assumes you
indicated the driver is a character driver in the master file (even if the driver is designed to access a
block device). write is used for raw data I/O.

Drivers for low-speed character devices typically use the c1ist(D4X) data structure and the TTY
subsystem to perform buffering. These structures and functions transfer information to the user data
area.

Drivers for high-speed character devices such as network interface boards generally set up their own
buffering schemes.

DEPENDENCIES
Drivers using the write routine must have ¢ under the FLAG column in the master file.
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”

Driver Routines(D2X) D2X-27

xint(D2X)
NAME
xint — service a transmit interrupt
SYNOPSIS
prefixxint(ivec)

int ivec;
ARGUMENT
ivec a number, or interrupt vector, corresponding to the interrupting device.

For the 3B2 computer, this number is the physical device number. This
number is derived from the device bus position generating the interrupt.
The driver translates the input argument into a logical controller number
to access the I/O hardware and to locate the status information associated
with the interrupting device.

For the 3B4000 computer, the argument must be translated to get the
logical controller number.

DESCRIPTION

A transmit interrupt occurs when data is ready to be written to a character device. The CPU
determines the action to take by using an entry in the interrupt vector table.

The interrupt vector table resides in the kernel in main memory. Each interrupt known to the
machine has a table entry. Each interrupt vector table entry has a text address. Upon receiving an
interrupt, the text address value is loaded into the program counter.

The CPU then runs the software located at the text address. A driver indicates the number of
interrupts needed in the master file. See the int(D2X) manual page in this section for further
information on selecting interrupt routines for the 3B4000 computer.

xint is used only with hardware character drivers.

CAUTION: The xint routine must never
® contain calls to the sleep(D3X) kemel function
B yse functions that call sleep

B set the interrupt priority level below the level set when

D2X—-28 BCI Driver Reference Manual

xint(D2X)

the interrupt routine was entered

B attempt to access the user block (user(D4X)
structure)

® attempt to access the proc(D2X) structure

Since an interrupt is not associated with any user process, any previous local variables set up by the
driver are not available.

xint must not call the functions shown in Table D2X-2.
DEPENDENCIES

Drivers using the xint routine must also call rint for receive interrupts. The rint/xint pair will be
functional only if the value under the #VEC column is double the value under the #DEV column in
the master file.

SEE ALSO

BCI Driver Development Guide, Chapter 10, "Interrupt Routines."
rint(D2X), int(D2X)

Driver Routines(D2X) D2X-29

Section D3X: Kernel Functions(D3X)

Contents

Introduction D3X-1
Function Categories D3X-2

Summary of Kernel Functions D3X-4

beopy(D3X) D3X-8

brelse(D3X) D3X-10
btoc(D3X) D3X-12
bzero(D3X) D3X-15
canon(D3X) D3X-16
clrbuf(D3X) D3X-20

Kernel Functions(D3X) D3X-—i

cmn_err(D3X) D3X-22

copyin(D3X) ‘ D3X-26
copyout(D3X) D3X-28
ctob(D3X) D3X-31
delay(D3X) D3X-33
dma_breakup(D3X) [3B2, 3B4000 ACP, and SBC Only] D3X-35
drv_rfile(D3X) [3B4000 and 3B15 computers only] D3X-39
fubyte(D3X) [OBSOLETE] D3X-43
fuword(D3X) [OBSOLETE] D3X-45
getc(D3X) D3X-48
getcb(D3X) D3X-50
getcf(D3X) D3X-52
geteblk(D3X) : D3X-55

D3X—ii BCI Driver Reference Manual

getsrama(D3X), getsramb(D3X) [3B4000 Computer Only]

D3X-58

getvec(D3X) [3B2 computer only] D3X-60
hdeeqd(D3X) D3X-62
hdelog(D3X) D3X-67
iodone(D3X) D3X-72
iomove(D3X) = [OBSOLETE] D3X-75
iowait(D3X) D3X-78
kseg(D3X) D3X-80
logmsg(D3X) [3B15 Computer and 3B4000 Computer Only] D3X-83
logstray(D3X) [3B15 Computer and 3B4000 Computer Only] D3X-85
longjmp(D3X) D3X—-87
major(D3X) D3X-89
makedev(D3X) D3X-91

Kernel Functions(D3X) D3X-iii

malloc(D3X) D3X-93

mapinit(D3X) D3X-96

mapwant(D3X) D3X-98

max(D3X) D3X-100
mfree(D3X) D3X~-102
min(D3X) D3X~—-105
minor(D3X) D3X-106
nodev(D3X) D3X-108
nulldev(D3X) D3X~-109
physck(D3X) D3X-110
physio(D3X) D3X-114
psignal(D3X) D3X-116
putc(D3X) D3X-118

D3X—iv BCI Driver Reference Manual

putch(D3X) D3X-120

putcf(D3X) | D3X-123
signal(D3X) D3X-125
sleep(D3X) D3X-128
spl*(D3X) D3X-133
sptalloc(D3X) D3X-138
sptfree(D3X) D3X-141
subyte(D3X) [OBSOLETE] D3X-143
suser(D3X) D3X-145
suword(D3X) [OBSOLETE] D3X-146
timeout(D3X) D3X-—-148
ttclose(D3X) : D3X-151
ttin(D3X) D3X-153

Kernel Functions(D3X) D3X-v

ttinit(D3X) D3X-156
ttiocom(D3X) D3X—-158
ttioctl(D3X) D3X-162
ttopen(D3X) D3X—-164
ttout(D3X) D3X-167
ttread(D3X) D3X-171
ttrstrt(D3X) D3X-173
tttimeo(D3X) D3X-175
ttwrite(D3X) D3X-177
ttxput(D3X) D3X-179
ttyflush(D3X) D3X-182
ttywait(D3X) D3X-184
unkseg(D3X) D3X-185

D3X-vi BCI Driver Reference Manual

untimeout(D3X) D3X—-188

useracc(D3X) D3X—191
vtop(D3X) D3X-195
wakeup(D3X) D3X-199

Kernel Functions(D3X) D3X-vii

Introduction

Section D3X describes the driver functions serving as library functions for the driver. The functions
are presented on separate pages.

Each driver function manual page contains the following headings
8 NAME summarizes the function’s purpose
B SYNOPSIS describes the function’s entry point in the source code
8 ARGUMENTS describes any arguments required to invoke the function
B DESCRIPTION describes general information about the function

8 RETURN VALUE describes the return values and messages that may result from
invoking the function

® LEVEL indicates from which driver level (base or interrupt) the function can be called

® SEE ALSO indicates functions that are related by usage and sources for further
information

B SOURCE FILE indicates the directory and file name location of the function. Kernel
source file locations are listed by computer type in Table D3X-1.

® EXAMPLE provides an expansion of the information in a usable context

Table D3X—~1 Source File Locations

Computer Kernel Source Code
SBC fust/src/uts/3b2100vme
3B2 /ust/srciuts/3b2
3B15 /usr/srciuts/3b15 or

fusr/src/uts/com
3B4000 MP lusr/src/uts/3b15 or

fusr/src/uts/com
3B4000 ACP fust/src/uts/acp
3B4000 EADP lusr/src/uts/eadp
3B4000 ADP /usr/src/uts/adp

A file’s exact location in these directories may vary between releases, consult the documentation
supplied with your computer.

Kernel Functions(D3X) D3X-1

Introduction

Function Categories
The functions cah be categorized as follows:
Block I/O

8 start I/O, iowait, geteblk,and cirbuf

B finish I/O, iodone and brelse

® read and write raw data for a block device, physck and physio
Character I'O

® read data, getc, getcb, and getcf

B write data, putc, putcf, and putcb
TTY Subsystem

B clear buffers, ttyflush

B delay a process, tttimeo, ttywait, and ttrstrt

I/O control, ttiocom and ttioctl
8 open/close terminal, ttopen, ttinit, and ttclose
® read from a terminal, canon, ttin, and ttread
B write to a terminal, ttout, ttwrite, and ttxput
Memory Management
® allocate memory pages kseg/unkseg, sptalloc/sptfree
B break up a DMA request, dma_breakup
B get starting address and length of the segment descriptor table, getsrama/getsramb

B manage a private buffer scheme malloc, mapinit, mapwant, and mfree

D3X—-2 BCI Driver Reference Manual

Introduction

General
® access a pump code file on a 3B4000 computer, drv_rfile
B clear a buffer, bzero |
® compare integers, max and min
B convert numbers, btoc, ctob, and vtop
8 copy data from a driver to a user program, copyout, subyte, suword, and iomove
® copy data from a user program to a driver, copyin, fubyte, fuwerd, and iomove
B copy in kernel space, bcopy
B display message, cmn_err
B delay/activate a process, delay, sleep/wakeup, and timeout/untimeout
B device number access, major, makedev,and miner
B get interrupt vector on a 3B2 computer, getvec
B log errors, hdeeqd, hdelog, and logstray
8 prevent/allow interrupts, spl*/spix
8 return control to user program with error code set, longjmp
B signal user-level process(es), psignal and signal
B verify user access, suser and useracc

In addition to the previous categories, two functions, nedev and nulldev, are provided for
informational purposes, but are not used directly in a driver.

Kernel Functions(D3X) D3X-3

Summary of Kernel Functions
Table D3X-2 lists the kernel functions and their descriptions in alphabetical order.

Table D3X—-2 Kernel Function Summary

Routine Description Type
beopy(from, to, bcount) copies data between locations in the Gais
kernel, for example, from one
buffer to another
brelse(bp) returns buffer to the kernel Bis
btoc(bytes) returns the number of clicks Gmis
(swappable memory pages) in the
specified number of bytes
bzero(addr,bytes) clears memory for a number of bytes | Gais
canon(zp) performs canonical processing C
clrbuf(bp) erases buffer contents Bs
cmn_err(level, format,args) displays message Gis
copyin(userbuf,driverbuf,cn) copies data from user space to the Ga
driver
copyout(driverbuf,userbuf,cn) | copies data from the driver to user Ga
' space
ctob(clicks) returns the number of bytes in the Gmis
specified number of clicks
(swappable memory pages)
delay(zicks) delays for ticks clock ticks Gs
dma_breakup(strat,bp) breaks up DMA requests Gs
drv_rfile(D_FILE) reads a file into a buffer G
+
a = Written in Assembly Language i = Can be called from an interrupt routine
B = Block driver usable m = Macro
C = Character driver usable $ = Can be called from the strategy routine

G = Generic (usable for block or character)

D3X—-4 BCI Driver Reference Manual

Summary of Kernel Functions

Routine Description Type
fubyte(userbuf) copies a byte from user to driver Ga
fuword(userbuf) copies a word from user to driver Ga
getc(clp) gets first byte from clist Ci

| getcb(cip) gets first cblock on clist Ci
| getcf() gets a free cblock Ci
ngteblk() gets an empty buffer Bs
etsramag(sid) gets starting address of SDT Gms
| getsramb(sid) gets length of SDT Gms
getvec(baddr) gets an interrupt vector for a given virtual G
board address
hdeeqd(dev,pdsno, edtyp) initializes error logging in the hard disk Gis
hdelog(eptr) logs a hard disk error Gis
iodene(bp) signals completion of VO Bis
iomove(cp, bytes,rwflag) moves bytes G
iowait(bp) suspends execution during block /O until B
T/O completion
kseg(pages) allocates memory pages to a process Gs
logmsg(message) log error message Gis
logstray(addr) logs spurious interrupt error Gis
longjmp(env) jumps back Ga
major(dev) returns major number from device number | Gmis
makedev(majnum, minnum) creates a device number Gmis
malloc(mp, size) allocates space from a map structure Gis
mapinit(mp, mapsize) initializes map structure Gmis
mapwant(vaddr) waits for free buffer Gmis
max(intl,int2) returns the larger integer Gais
mfree(mp,size,index) returns space to a map structure Gis
min(intl,int2) returns the smaller integer Gais
minor(dev) returns minor number from device number | Gmis
nodev() returns an error upon access -~
nulldev() performs no operation -
physck(nblocks, rwflag) verifies block exists G
physio(strat,bp,dev,rwflag) calls strategy routine for direct block /O G
psignal(p, signal) sends signal to a process Gis
putc(c,cip) puts byte on clist Ci
putcb(cbp,clp) links a cblock to the clist Ci

Kernel Functions(D3X) D3X-5

Summary of Kernel Functions

sleeping on completion of /O

Routine Description Type
putcf(chbp) puts cblock on free list Ci
_signal(pgrp, signal) sends signal to process group Gis
sleep(event, priority) suspends execution Gs
spl*() suspends or allow interrupts Gais
splx(oldlevel) restore oldlevel of interrupts Gais
sptalloc(size, mode, base,flag) | allocates memory pages Gs
sptfree(vaddr, size,flag) frees allocated memory pages Gs
subyte(userbuf,c) copies a byte from driver to user Ga
suser() verifies superuser permission mode G
suword(userbuf,i) copies a word from driver to user Ga
timeout(ftn,arg, ticks) calls function in ficks clock ticks Gis
ttclose(sp) closes a TTY device C
ttin(tp, code) move character(s) to raw queue Ci
ttinit(zp) opens a closed TTY device; initializes Ci
tty structure with default setting on an
initial open
ttiocom(tp,cmd,arg,mode) changes device parameters C
ttioctl(tp,cmd,arg,mode) sets device parameters C
ttopen(tp) opens a TTY device C
ttout(sp) moves a TTY character from user data Ci
space to an output queue
ttread(sp) moves TTY characters from canonical C
queue to user
ttrstrt(tp) restarts TTY output Ci
tttimeo(tp) time terminal read request G
ttwrite(sp) moves TTY byte from output queue to C
transmit buffer
ttyflush(sp,rwflag) clears a cblock and waken processes Ci

D3X—6 BCI Driver Reference Manual

Summary of Kernel Functions

Routine Description Type
ttywait(sp) suspends TTY processing until /O C
completes
ttxput(tp, ucp, node) - | puts data in TTY output buffer Ci
unkseg(vaddr) frees previously allocated kernel segment | Gs
untimeout(id) cancels timeout with matching [D Gis
useracc(base, count,access) | verify user access to data structures G
vtop(vaddr,p) translates virtual address to physical Gs
wakeup(event) resumes suspended execution Gi

Kernel Functions(D3X) D3X-7

bcopy(D3X)

NAME

bcopy — copy data between address locations in the kernel (byte copy)
SYNOPSIS

#include <sys/types.h>

beopy(from, to, bcount)
caddr_t from, to;
int bcount;

ARGUMENTS
from source address from which the copy is made
to destination address to which copy is made

bcount the number of bytes (characters) moved

DESCRIPTION

This function copies bcount bytes from one kernel address to another. Addresses that are word-
aligned are moved most efficiently. However, the driver developer is not obligated to ensure
alignment. This function automatically finds the most efficient move algorithm by how the addresses
are aligned. If the input and output addresses overlap, the command executes, but the resuits may
not be as expected.

CAUTION: The from and to addresses must be within the kernel space. No range checking is
made. If an address outside of the kernel space is selected, the driver will corrupt
the kernel with undefinable side effects.

Note that beopy should never be used to move data in or out of a user buffer, since it has no
provision for handling page faults. The user address space can be swapped out at any time, and
beopy always assumes that there will be no paging faults. If beopy attempts to access the user buffer
when it is swapped out, the system will crash. It is safe to use beopy to move data within kernel
space, since kemnel space is never swapped out.

D3X—-8 BCI Driver Reference Manual

becopy(D3X)

RETURN VALUE
Under all conditions, 0 (zero) is returned.
LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."”
copyin(D3X), copyout(D3X), fubyte(D3X), fuword(D3X), iomove(D3X), subyte(D3X),
suword(D3X)

SOURCE FILE
milimisc.s
EXAMPLE

In the following example, an I/O request is made for data stored in a RAM disk. If the VO
operation is a read request, the data is copied from the RAM disk to a buffer (line 7). If it is a write
request, the data is copied from a buffer to the RAM disk (line 10). The beopy function is used
since both the RAM disk and the buffer are part of the kernel address space.

1 #define RAMDNBLK 1000 /* Blocks in RAM disk */

2 #define RAMDBSIZ 512 /* Bytes per block */

3 char ramdbiksfRAMDNBLK][RAMDBSIZ); /* Blocks forming RAM disk */
4 ..

5 if (bp->b_flags & B_ READ) /* If read request, copy data from */

6 - /* RAM disk data block to system buffer */

7 beopy(&ramdblks{bp->b_blkno}[0], bp->b_un.b_addr, bp->b_bcount);

8 clse [* else a write copy data from */

9 /* system buffer to RAM disk data block */

10 beopy(bp->b_un.b_addr, &ramdblks{bp->b_blkno][0], bp->b_bcount);

Figure D3X—-1 bcopy — Data Copy

Kernel Functions(D3X) D3X-9

brelse(D3X)

NAME

brelse — return buffer to the bfreelist
SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

brelse(bp)
struct buf *bp;
ARGUMENT
bp pointer to the buffer header described in buf.h. This is the buffer header address being

returned to the kernel’s buffer pool.

DESCRIPTION

This block interface function returns a buffer to the buffer pool. First, brelse wakes up processes
sleeping on the the buffer. After the driver function is finished with the buffer, brelse returns the
buffer header to a list of free buffers and awakens any processes that called sleep(DBX) to wait for a
free buffer on the bfreelist. ,

RETURN VALUE

Under normal conditions, there is no return value. If B_ERROR has been set due to an error in an
earlier I/O transfer, b_error is set to 0 (zero).

LEVEL
Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
geteblk(D3X), cirbuf(D3X), iowait(D3X)

D3X—-10 BCI Driver Reference Manual

brelse(D3X)

SOURCE FILE
os/bio.c
EXAMPLE

In the following example, an I/O request is made, but a buffer has not been allocated. This can take
place in a driver ioctl(D2X) routine that needs to download pump code to a device controller. A
surplus buffer is allocated from the buffer cache (line 3) and cleared of old data (line 4). The new
data is copied into the buffer, and the physical /O is scheduled (device dependent). The driver waits
for the completion of the physical I/O operation (line 8). The buffer is then released (line 14).

1 register struct buf *bp;

bp = geteblk; /* Get an extra (surplus) buffer */
clrbuf(bp); /* Fill buffer with binary zeros */

TN

5 /* Copy data to allocated buffer and */

6 /* schedule physical /O request with device */

7 xxstrategy(bp);

8 iowait(bp); /* Wait for /O request to complete */

9 if ((bp->b_flags &B_ERROR) {= 0) /* If an error occurred with */
10 { /* 1O operation, get any error*/

11 if((u.u_error = bp->b_error) == 0) /* code. Assign to u_error */

12 u.u_error = EIQ; /* If error code not present, set default*/

13} /* endif */

14 brelse(bp); /* Release buffer when done */

Figure D3X—-2 brelse — Releases a Buffer

Kernel Functions(D3X) D3X-11

btoc(D3X)
NAME
btoc — convert bytes to clicks
SYNOPSIS
#include <sys/sysmacros.h>
unsigned
btoc(bytes)
unsigned byzes;
ARGUMENT
bytes quantity of bytes
DESCRIPTION
This macro returns the number of memory pages (clicks) that are needed to contain a specified
number of bytes. For example, if the page size is 2048 bytes, then btoc(3072) returns 2. btoc(0)
returns 0.
RETURN VALUE
A non-negative value is always returned.
LEVEL
Base or Interrupt
SEE ALSO
ctob(D3X), vtop(D3X)
SOURCE FILE

sysmacros.h

D3X—12 BCI Driver Reference Manual

btoc(D3X)

EXAMPLE

Some device controllers accept downloaded microcode. The preferred method of downloading
microcode is to allocate a system buffer to hold the microcode. If the microcode is larger then a
system buffer, break the code into segments the size of a system buffer and do repetitive moves to
download the code. However, some device controllers require all the microcode to be downloaded in
a complete unit (segmentation is not permitted). Then the driver can dynamically allocate a private
buffer (line 30), but the unit of allocation must be in pages or clicks which is converted (line 30).
The microcode is copied to the allocated memory space (line 35). If an invalid address is found, an
error condition is returned (line 38). Otherwise, the microcode is downloaded to the controller (line
44) and the private buffer is deallocated (line 46).

1 struct device /* Physical device registers layout */

2

3 char reserve[4]; /* Reserve space on card */

4 ushort control; /* Physical device control word */

5 char status; /* Physical device status word */

6 char ivec_num; /* Device interrupt vector number in */
7 /* 0xf0; subdevice reporting in 0x0f */

8 paddr_t addr; /* Data address to be read/written */
9 int count; /* Date amount to be read/written */
10 }; /* end device */

11 struct ucode /* Microcode input structure layout */
12 {

13 int count; /* Number of microcode bytes */

14 char *code; /* Microcode location */

15 }; /* end ucode */

16 extern struct device *xx_addr{]; /* Physical device registers */
17 extern int xx_cnt; /* Number of devices */

18 ...

19 xx_ioctl(dev, cmd, arg, flag)

20 dev_t dev;

21 caddr_t arg;

22 {

23 register struct device *1p;

Figure D3X—3 btoc — Converts Bytes (part ! of 2)

Kernel Functions(D3X) D3X-13

btoc(D3X)

24 switch(cmd)

25 {
26
27
28
29

30
31
32
33
34

35
36
37
38
39
40

41
42
43
44
45
46
47
48
49

case XX_DOWNLOAD:

{

register struct *ucp = (struct ucode *)arg; /* Get microcode */
register caddr_t bp; /* private buffer location */

if ((bp = kseg(btoc(ucp->count)) == 0) /* Allocate buffer*/
{ /* If insufficient buffer space memory */

u.u_error = ENOMEM; /* return error condition */
return;
}/* endif */
if (copyin(ucp->code, bp, ucp->count) == -1) /* Copy microcode */
{ /* to allocated buffer area; if invalid address */
unkseg(bp); /* Deallocate buffer area */
u.u_error = EFAULT; /* Return error condition */
return;
} /* endif */

rp = xx_addr[minor(dev) >> 3]; /* Get device registers */
rp->addr = vtop(bp, u.u_procp); /* Setup the location ~ */
rp->count = up_code.buffer_size; /* and size of microcode */

rp->control = XX_DOWNLD; /* and download it */
delay(HZ * 5); /* Wait for completion */
unkseg(bp); /* Deallocate buffer area */

} /* endblock */
break;

Figure D3X-3 btoc — Converts Bytes (part 2 of 2)

D3X-14 BCI Driver Reference Manual

bzero(D3X)
NAME
bzero — clear memory for a given number of bytes

SYNOPSIS
#include <sys/types.h>
bzero(addr, bytes)

caddr_t addr;
int bytes;

ARGUMENTS

addr starting virtual address of memory to be cleared (must be an even-word address)

bytes the number of bytes to clear starting at addr (should be a word-size muitiple number of

bytes)
DESCRIPTION

This function clears a contiguous portion of memory by filling the memory with 0’s (zeroes).

RETURN VALUE

Under normal conditions, a 0 (zero) is returned. Otherwise, a -1 is returned.

LEVEL

Base and Interrupt

SEE ALSO

beopy(D3X), cirbuf(D3X)
SOURCE FILE

mi/misc.s

Kernel Functions(D3X) D3X-15

canon(D3X)

NAME

canon — transfer characters from t_rawq to t_canq

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>
#include <sys/file.h>
#include <sys/termio.h>

canon(p)
struct tty *p;

ARGUMENTS

tp pointer to the current tty structure for the device accessed.
DESCRIPTION

This function moves characters from a terminal’s raw input buiffer to a processed-character buffer and
to handle erase, (BREAK,) { DELETE,) and special character processing (known as canonical processing).
A terminal may select to either process input a line at a time or a character at a time. The difference
as seen by a user program is that for line at a time processing, a read of a terminal does not return
until a whole line of input is accumulated. For character at a time processing, a read returns one
character. Canonical processing is performed for line at a time processing only.

The ICANON variable (set in t_lflag) is enabled to denote that line at a time and canonical
processing be performed, or disabled to denote character at a time processing.

The input buffer (or raw queue t_rawq in the tty structure) contains delimiters to mark the amount
of input to be examined.

D3X—~16 BCI Driver Reference Manual

canon(D3X)

During the transfer of data from the raw queue to the canonical queue, if ICANON is set, the
following character translations are done:

B8 Erase character processing

8 Kill character processing

® End-of-file character processing

® Escaped characters (characters preceded by a backslash ““\’”)

® XCASE processing (uppercase/lowercase presentation)
Refer to termio(7) for further information on these translations.

canon is normally called when the characters in t_rawq are ready to be processed. However, you can
call canon before a delimiter is received in the queue. canon will call sleep to wait on t_rawq (at the
TTIPRI sleep priority). For this reason, canon must never be called from an interrupt routine.

The following flags have special meanings to canon:

Flag Purpose Header File
CANBSIZ Maximum line length for a terminal | param.h
CARR_ON | Carrier is present ty.h
FNDELAY | Open file without delay file.h
TASLP ‘Wakeup process when input is done | #y.h
ICANON Perform canonical processing termio.h
RTO Timeout in progress for raw device | y.h
TACT Timeout in progress for the device tty.h
TTIPRI TTY input priority (28) for sleep tty.h
VEOF Same as termio(7) EOF termio.h
VEOL Same as termio(7) NL termio.h
VEOL2 Same as termio(7) EOL termio.h
VERASE Same as termio(7) ERASE termio.h
VKILL Same as termio(7) KILL termio.h
VMIN Same as termio(7) MIN termio.h
VTIME Same as termio(7) TIME termio.h
XCASE Upper/lowercase presentation mode | termio.h

Traditionally, canen is called by a line discipline read routine to transfer characters if there are no
characters in the t_canq. canon is called from the ttread line discipline routine to do this.

Kernel Functions(D3X) D3X-—-17

canon(D3X)

RETURN VALUE

In general, canon calls sleep if there is not yet a delimiter in the input t_rawq, unless non-canonical
processing is in effect. When a delimiter is present, canon processes characters until the first
delimiter is hit and then returns.

canon returns if
B [CANON is on and characters have been transferred into the t_canq up to and including
the first delimiter, a delimiter being either a “\n”, t_cc[VEOF], t_cc[VEOL], or
t_cc[VEOL2].
B If the delimiter count is 0 and t_state does not have CARR_ON set.

® If the delimiter count is 0 and the mode of the read has no delay (FNDELAY) set. In
this case u.u_error is set to EAGAIN and canon returns -1.

® If ICANON is not set, and the input parameters t_cc[VMIN] (the minimum number of
characters to be input) and t_cc[VTIME] (the time in tenths of seconds to wait between
characters, after the first character has been input) have been satisfied. I t_cc[VTIME]
is non-zero, and t_ce[VMIN] characters have not yet been input, canon calls tttimeo to
schedule a wakeup and then calls sleep.

If canon must call sleep before returning, it passes sleep the address of t_rawgq as the
event and sets a priority of TTIPRI (28).

LEVEL
Base Only

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."”
ttread(D3X), ttin(D3X)

SOURCE FILE
ioftty.c
EXAMPLE

The following example uses canon from a driver read routine.

D3X~—18 BCI Driver Reference Manual

canon(D3X)

1 /* line discipline read routine for xx terminal */

2 xxread(tp)

3 register struct tty *tp;

4

5 register struct clist *tq;

6 tq = &tp->t_canq;

7 /* If no characters to process in the canonical queue, call canon to
8 transfer characters or sleep until a delimiter is present. */
9 if (tg->c_cc == 0)

10 canon(tp);

11 while (u.u_count!=0 && u.u_error==0) {

12 /* transfer characters to user data space from canq */
13

14 }

Figure D3X—4 canon — Example

Kernel Functions(D3X) D3X-19

cirbuf(D3X)
NAME
clrbuf — erase the contents of a buffer (clear buffer)

SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

void
clrbuf(bp)
struct buf *bp;
ARGUMENT
bp pointer to the buf(D4X) structure
DESCRIPTION
The cirbuf function clears the buffer and sets the b_resid member of the buf structure to 0 (zero).

RETURN VALUE

None.

LEVEL

Base and Interrupt

SEE ALSO
geteblk(D3X), brelse(D3X), buf(D4X)

SOURCE FILE

os/bio.c

D3X-20 BCI Driver Reference Manual

clrbufiD3X)

EXAMPLE

In the following example, an I/O request is made, but a buffer has not been allocated. This can take
place in a driver ioctl(D2X) routine that needs to down load pump code to a device controller. A
surplus buffer is allocated from the buffer cache (line 3) and cleared of old data (line 4). The new
data is copied into the buffer, and the physical I/O is scheduled (device dependent). The driver waits
for the completion of the physical I/O operation (line 8). When the I/O operation is finished, an
interrupt is generated, and a wakeup(D3X) call is made. Any error setting made by the interrupt
handler is retrieved, and the buffer is released (line 16).

register struct buf *bp;

1

2 .

3 bp = geteblk; /* Get an extra (surplus) buffer */
4 clrbuf(bp); /* Fill buffer with binary zeros */

5 /* Copy data to allocated buffer and */

6 /* schedule physical I/O request with device */

7 xxstrategy(bp);

8 iowait(bp); /* Wait for I/O request to complete */

9 if ((bp->b_flags & B_ERROR) != 0) /* If an error occurred with */

10 { /* YO operation get any error */
1 if((u.u_error = bp->b_error) == 0)
12 /* code and assign to u_error */

13 u.u_error = EIO;

14 /* If error code not present set default */

15 } /* endif */

16 Drelse(bp); /* Release buffer when finished using it */

Figure D3X-5 cirbuf — Fills Buffer with Binary Zeroes

Kernel Functions(D3X) D3X-21

cmn_err(D3X)

NAME

cmn_err — display an error message or trigger a system panic

SYNOPSIS

#include <sys/cmn_err.h>

cmn_err(level, format, args)

char *format;
int level, args;

ARGUMENTS

level A constant defined in the cmn_err.h header file. level indicates the severity of the error
condition. The four severity level messages are

CE_CONT

CE_NOTE

CE_WARN

CE_PANIC

indicates a message should not be preceded with a label such as
NOTICE, WARNING, or PANIC. This message form is useful
for continuing other messages or for displaying informative
messages not connected with an error.

reports system events that do not necessarily require user action,
but may interest the system administrator. For example, a sector
on a disk needing to be accessed repeatedly before it can be
accessed correctly might be such an event.

reports system events requiring immediate attention. If an action
is not taken, the system may panic. For example, when a
peripheral device does not initialize correctly, this level should be
used.

results in a system panic. Drivers should specify the CE_PANIC
level only under the most severe conditions or for debugging a
driver. A valid use of CE_PANIC is when the the system cannot
continue to function. If the error is recoverable, or not essential to
continued system operation, CE_PANIC should not be specified.

D3X-22 - BCI Driver Reference Manual

format

args

cmn_err(D3X)

An error message to be displayed. Direct the message to a specific destination by
encoding a special character in the first position of the string. Otherwise, the rules for
the string are the same as those for printf strings. The special characters are as follows:

! directs the output of the string only to the putbuf (putbuf is a circular array in
memory accessible with crash(1M) used to store messages for analyzing driver

performance)
displays the message only on the console

A

If a special character is omitted from the first string position, the message is directed to
both the putbuf and to the console. cmn_err appends each format with "n" whether
displaying information on the console and/or writing the format message to putbuf.

The set of arguments passed with the message being displayed. Valid conversion
specifications are %s, %u, %d, %0, %X, and %D. cmn_err acts similar to printf(3S)
in displaying messages on the system console or storing in putbuf.

NOTE: cmn_err does not accept length specifications in conversion specifications. For
example, %3d is ignored.

DESCRIPTION

At times, a driver may encounter error conditions requiring the attention of a primary or secondary
system console monitor. These conditions may mean halting the machine; however, this must be
done with caution. Except during the debugging stage, a driver should never stop the system.

The cmn_err function with the CE_NOTE argument can be used by driver developers as a driver
code debugging tool. However, using cmn_err in this capacity can change system timing
characteristics.

If CE_PANIC is set, cmn_err stops the machine. On the 3B2 computer, the cmn_err function
automatically handles the use of multiple command windows on the computer console.

Kernel Functions(D3X) D3X-23

cmn_err(D3X)

RETURN VALUE
No value is returned.

Any message passed to cmn_err, unless assigned a specific location, is displayed on the console and
assigned to putbuf.

If an unknown level is passed to cmn_err, the following panic error message is displayed:
PANIC: unknown level in cmn_err (levels=level, msg=format)

If there are subsequent panic calls to cmn_err after the first panic message is received, DOUBLE
PANIC will preface the message(s).

LEVEL
Base or Interrupt
SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Reporting.”
print(D2X)

SOURCE FILE

os/prf.c

EXAMPLE
The following example shows that the cmn_err function can record tracing and debugging

information in the putbuf (lines 16 and 17); display problems with a device on the system console
(line 22); or stop the system if a required device malfunctions (line 28).

D3X-24 BCI Driver Reference Manual

cmn_err(D3X)

00~ W bW =

11

12
13
14

15
16
17
18
19
20
21
22
23
24

25
26
27
28

29

struct device /*Physical device registers layout */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
int error; /* Error codes from device */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; /* end device */

extern struct device xx_addr(]; /* Physical device registers */
extern int xx_cnt; /* Number of physical devices */

register struct device *rp;
rp = xx_addr{(minor(dev) >> 4) & 0xf)];
/* Get device registers */

/* Log a message on entry to a function in putbuf */
cmn_err(CE_NOTE, "Ixx_open function called - dev = 0x%x", dev);
cmn_err(CE_CONT, "! flag = 0x%x", flag);
/* Continue previous msg */
/* Display device power failure on system console */
if ((rp->status & POWER) == OFF)
/* If power to device is off */
cmn_err(CE_WARN, "xx_open: Power is OFF on device %d port %d",
((dev >> 4) & 0xf), (dev &0xf));
/* endif */

/* Halt system when a bad VTOC is found for root device */
/* Message is displayed on system console and logged in putbuf */
if (rp->error == BADVTOC && dev == rootdev)
cmn_err(CE_PANIC, "xx_open: Bad VTOC on root device");

/* endif */

Figure D3X—-6 cmn_err Function

Kernel Functions(D3X) D3X-25

copyin(D3X)
NAME

copyin — copy data from a user program to a driver buffer (copy into kernel)

SYNOPSIS

copyin(userbuf, driverbuf, cn)
char *driverbuf, *userbuf;
int cn;

ARGUMENTS
userbuf user program source address from which data is transferred

driverbuf driver destination address to which data is transferred (adequate space must be given)
cn number of bytes transferred

DESCRIPTION

The copyin function copies data from a user program to a driver. Addresses that are word-aligned
are moved most efficiently. However, the driver developer is not obligated to ensure alignment.
This function automatically finds the most efficient move according to address alignment.

By convention, within the UNIX system kernel, when a driver read(D2X) or write(D2X) routine is
entered, the u.u_base member of the user(D4X) data structure contains the buffer address in the
user address space, and the u.u_count member contains the number of bytes remaining to be
transferred. After a read or write call to copyin function completes, the driver should increase the
value of the u.u_base member and decrease the value of the u.u_count member by the number of
bytes transferred.

RETURN VALUE

Under normal conditions a 0 (zero) is returned indicating the copy is successful. Otherwise, a -1 is
returned if one of the following occurs:

B paging fault; the driver tried to access a page of memory for which it did not have read
or write access

B invalid user area or stack area

® invalid address that would have resulted in data being copied into the user block

D3X-26 BCI Driver Reference Manual

copyin(D3X)

If a -1 is returned, set the u.u_error member of the user(D4X) structure to EFAULT.
LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
beopy(D3X), copyout(D3X), fubyte(D3X), faword(D3X), iomove(D3X), subyte(D3X),
suword(D3X)

SOURCE FILE
miimisc.s
EXAMPLE

The following example shows that after an appropriate size buffer (line 2) is allocated from a private
space management map (line 3), data is copied from the user data area to the private buffer (line 4).
If an invalid address is detected in the user data area, the private buffer is released (line 6). and an
error code is returned. Otherwise, the pointer to the user data area is advanced to the next starting
byte of data to be copied (line 12), and the remaining byte count is updated (line 13).

1 while(u.u_count > 0) { /* While data in user data area, */

2 cnt = min(u.u_count, MAXBUF); /* reduce large data output */
3 addr = (caddr_t)malloc(xx_map, cnt); /* Get buffer area from map */
4 if (copyin(u.u_base, addr, cnt) == -1) /* Copy data from */

5 { /* user to allocated buffer */

6 mfree(xx_map, cnt, addr); /* If invalid address found, */

7 /* release buffer and */

8 u.u_error = EFAULT; /* return error code */

9 return;

10 } /* endif */

11

12 u.u_base += cnt; /* Update user data area pointer */

13 u.u_count -= cat; /* Update number bytes remaining */

14 }/* endwhile */

Figure D3X—-7 copyin — Copies Data to Buffer

Kernel Functions(D3X) D3X-27

copyout(D3X)
NAME
copyout — copy data from a driver to a user program (copy out of kernel)

SYNOPSIS

copyout(driverbuf, userbuf, cn)
char *driverbuf, *userbuf;

int cn;

ARGUMENTS

driverbuf source address in the driver from which the data is transferred (adequate space must
be given)

userbuf destination address in the user program to which the data is transferred (adequate
space must be given)

cn number of bytes moved

DESCRIPTION

The copyout function copies data from driver buffers to user data space. By convention, within the
UNIX system kernel, when a driver read(D3X) or write(D3X) routine is entered, the u.u_base
member of the user(D4X) data structure contains the address of the buffer in the user address
space, and the u.u_count member contains the number of bytes remaining to be transferred. After a
read or write call to the copyout function completes, the driver should increase the value of the
u.u_base member and decease the value of the u.u_count member by the number of bytes
transferred.

Addresses that are word-aligned are moved most efficiently. However, the driver developer is not

obligated to ensure alignment. This function automatically finds the most efficient move algorithm
according to address alignment.

D3X-28 BCI Driver Reference Manual

copyout(D3X)

RETURN VALUE

Under normal conditions a 0 (zero) is returned to indicate a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

® memory management fault; the driver tried to access a page of memory for which it did
not have read or write access

® invalid user area or stack area

® invalid address that would have resulted in data being copied into the user block, gate
tables, user .text (addresses where the user does not have write permission)

If a -1 is returned, set the u.u_error member of the user structure to EFAULT.
LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
beopy(D3X), copyin(D3X, fubyte(D3X), fuword(D3X, iomove(D3X), subyte(D3X), suword(D3X)

SOURCE FILE

mlimisc.s

Kernel Functions(D3X) D3X-29

copyout(D3X)

EXAMPLE

The following example shows that a driver iectl(D2X) routine can be used to get or set device
attributes or registers. In the XX_GETREGS condition (line 17), the driver copies the current
device register values to a user data area (line 18). If the specified argument contains an invalid
address, an error code is returned.

NN AW RN

10
11
12
13
14
15
16
17
18
19
20
21
22

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; /* end device */

extern struct device xx_addr({]; /* Physical device registers location */

xx_ioctl(dev, cmd, arg, flag)

dev_t dev;

caddr_t arg;

{

register struct device *rp = &xx_addr{minor(dev) >> 4];
switch(cmd)

case XX_GETREGS: /* Copy device registers to user program */
if (copyout(rp, (struct device *)arg, sizeof(struct device)) == -1)
u.u_error = EFAULT;
/* endif */
break;

Figure D3X—-8 copyout — Specifies User Data Area

D3X—-30 BCI Driver Reference Manual

ctob(D3X)
NAME
ctob — convert clicks to bytes
SYNOPSIS
#include <sys/sysmacros.h>
unsigned
ctob (clicks)
unsigned clicks;
ARGUMENT
clicks number of memory pages
DESCRIPTION

This macro returns the number of bytes in the specified number of memory pages (clicks). For
example, if the page size is 2048 bytes then ctob(2) returns 4096. ctob(0) retums 0.

RETURN VALUE

A non-negative value is always returned. However, the number may be truncated if it exceeds the
capacity of an unsigned byte.

LEVEL

Base or Interrupt

SEE ALSO
btoc(D3X), vtop(D3X)
SOURCE FILE

sysmacros.h

Kernel Functions(D3X) D3X-31

ctob(D3X)

EXAMPLE

In a driver start(D3X) routine, a driver can supply its own private buffer area for buffering user data
(line 10), but the units of allocation must be given in terms of pages or clicks. If sufficient memory
is not available, a message is displayed on the system console, and the system is halted. Otherwise, a
space management map is used to manage the allocation and deallocation request of the private
buffer area. The space management map must first be initialized with the number of slots that are in
the map (line 15). The space management map is used to administer the buffer in terms of bytes
(allocated by kseg(D3X)). Therefore, compute the number of bytes in the pages (line 17). The
allocated private buffer area and its size are assigned to the space management map (line 19).

1 #define XX_MAPSIZE 12 /* In terms of slots */
2 #define XX_BUFSIZE 4 /* In terms of pages */

struct map xx_map{XX_MAPSIZE]; /* Space management map for */
/* aprivate buffer */

3
4

5 ..

6 xx_start()
7

8

register caddr_t bp;
9 register int bytes;
10 if ((bp = kseg(XX_BUFSIZE) == 0) /* Allocate private buffer; if */
11 {/* insufficient memory, display message & halt system */
12 cmn_err(CE_PANIC, " xx_start: kseg failed for %d page buffer allocation”,
13 XX_BUFSIZE);
14 } /* endif */
15 mapinit(xx_map, XX_MAPSIZE); /* Initialize space management map */

16 /* with number of slots in the map */

17 bytes = ctob(XX_BUFSIZE); /* Compute the number of bytes in */
18 /* the pages allocated by kseg */

19 mfree(xx_map, bytes, bp); /* Initialize space management map */

20 /* with total buifer area it is to */

21 /* manage */

22

Figure D3X—9 ctob — Computes Number of Bytes

D3X~-32 BCI Driver Reference Manual

delay(D3X)
NAME
delay — delay process execution for a specified number of clock cycles
SYNOPSIS
delay(ticks)
int ticks;
ARGUMENT

ticks number of clock cycles for a delay. ficks are frequently set as an expression containing
the system variable HZ (one second) defined in param.h.

DESCRIPTION

Occasionally, you may need to wait a given period of time until work is available. The delay
function provides the wait time. The exact time interval that the delay takes effect cannot be
guaranteed, but the value given is a close approximation. The delay function calls timeout(D3X)
schedule and wakeup after the specified amount of time. wakeup(D3X) is called after the interval
elapses. Upon completion of timeout, delay calls sleep(D3X) with the same event address that
wakeup will use after ticks of clock ticks. While delay is active, splhi(D3X) is set. At completion,
the former priority level is returned via splx(D3X).

RETURN VALUE

None.

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events.”

iodone(D3X), iowait(D3X), sleep(D3X), timeout(D3X), ttywait(D3X), untimeout(D3X),
wakeup(D3X)

Kernel Functions(D3X) D3X-33

delay(D3X)

SOURCE FILE
os/clock.c
EXAMPLE

Before a driver I/O routine allocates buffers and stores any user data in them, it checks the status of
the device (line 11). If the device needs some type of manual intervention (such as, needing to be
refilled with paper), a message is displayed on the system console (line 12). The driver waits an
allotted time (line 13) for the problem to be corrected before repeating the procedure.

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short xmit_char; /* Transmit character to device */
}; 7* end device */

AU W=

7 extern struct device xx_addr[]; /* physical device registers location */

register struct device *rp = &xx_addr[minor(dev) >> 4)};
10 /* Get device regs */

\© 0

11 while(rp->status & NOPAPER) /* While printer is out of paper */

11 { /* display message & ring bell on system console */
12 cmn_errf(CE_WARN, "xx_write: NO PAPER in printer %d 07", (dev & 0xf));
13 delay(60 * HZ); /* Wait one minute and try again */

14 }/* endwhile */

Figure D3X—-10 delay — Allows Manual Intervention

D3X~-34 BCI Driver Reference Manual

dma_breakup(D3X)

NAME

[3B2, 3B4000 ACP, and SBC Only]

dma_breakup — break up physio request into manageable data chunks

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sbd.h>
#include <sys/immu.h>
#include <sys/fs/sSdir.h>
#include <sys/psw.h>
#include <sys/pcb.h>
#include <sys/region.h>
#include <sys/sysmacros.h>
#include <sys/conf.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/buf.h>
#include <sys/elog.h>
#include <sys/iobuf.h>
#inclade <sys/systm.h>
#include <sys/inline.h>

dma_breakup(strat, bp)

int (*stran();
struct buf *bp;

ARGUMENTS

strat strategy(D2X) routine to call

bp pointer to the buf structure

DESCRIPTION

This function breaks up a data transfer request from physio(D3X) into chunks of contiguous

memory. This function enhances the capabilities of the Direct Memory Access Controller (DMAC).
The data is broken into 512 byte sectors until the last data bytes are encountered. dma_breakup
executes spl0 around its internal sleep calls on reads and writes after the strategy routine is called.

This may alter previously set spl* calls.

Kernel Functions(D3X)

D3X-35

dma_breakup(D3X) [3B2, 3B4000 ACP, and SBC Only]

The driver must assign the following information before entering this function:

8 b_flags is set to indicate whether the transfer is a read (B_READ) or a write (B_READ
not set).

N u.u_count is set to the number of bytes to transfer.
B u.u_offset is set to the offset into the file from/to which the data is transferred.
8 u.u_base is set to the virtual base address for I/O to and from user space.
RETURN VALUE
No value is returned. However, conditions in dma_breakup cause the following to be set:

B If temporary buffer memory cannot be allocated, b_flags is ORed with B_ERROR and
B_DONE, and b_error is set to EAGAIN (resource temporarily unavailable). All
allocated temporary buffers are deallocated when the transfer completes.

B u.u_segflg is altered

8 u.u_base and u.n_offset are incremented by the number of characters transferred, while
u.u_count is decremented by the number of characters transferred.

®8 If the I/O transfer is incomplete (b_flags does not contain B_LDONE), then b_flags is set
to B_WANTED and sleep(D3X) is called to wait until a buffer can be allocated. The
sleep priority is set to PRIBIO.

8 The sleep code section is surrounded by a spl6-spl0 function set which may alter a
previously set spl* value.

B If B_ERROR is set after the strategy(D2X) routine completes, allocated memory is
freed and dma_breakup returns.

B When the transfer completes, any allocated buffers are freed.
LEVEL
Base Only
SEE ALSO
BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”

SOURCE FILE

io/physdsk.c

D3X~-36 BCI Driver Reference Manual

dma_breakup(D3X) [3B2, 3B4000 ACP, and SBC Only]

EXAMPLE

The following example shows how dma_breakup is used from a driver’s read(D2X) and write(D2X)
routines.

1 struct dsize {

2 daddr_t nblocks; /* Number of blocks in disk partition */
3 int cyloff;, /* Starting cylinder # of partition */

4 } my_sizes[4] = {

5 20448, 21, /* partition 0 = cyl 21-305 *

6 21888, 1, /* partition 1 = cyl 1-305 */

7 k%

8 /* physical read */

9 my_read(dev)
10 {
11 register int nbiks;

12 nblks = my_sizes[minor(dev) & 0x7].nblocks; /* Get number of blocks */
13 /* blocks in partition */

14 if (physck(nblks, B_READ) /* If request is within ~ */

15 { /* limits for the device, */

16 physio(my_breakup, 0, dev, B_READ); /* schedule /O transfer*/

17 P

18 }

Figure D3X—-11 dma_breakup — Read and Write Access (part / of 2)

Kernel Functions(D3X) D3X-37

dma_breakup(D3X) [3B2, 3B4000 ACP, and SBC Only]

19

20
21
22

23
24
25
26
27
28
29

30
31
32
33
34

35
36
37
38
39
40

/*

physical write */

my_write(dev)

register int nblks;

/*

* %

»

*/

nblks = my_sizes[minor(dev) & 0x7].nblocks; /* Get number of blocks */
/* blocks in partition */
if (physck(nblks, B_WRITE) /* If request is within ~ */
{ /* limits for the device, */
physio(my_breakup, 0, dev, B_WRITE); /* schedule /O transfer */

Break up the request that came from physio into chunks of
contiguous memory. Pass at least 512 bytes (one sector) at a
time (except for the last request).

static
my_breakup(bp)
register struct buf *bp;

{
}

dma_breakup(my_strategy, bp);

Figure D3X—-11 dma_breakup — Read and Write Access (part 2 of 2)

D3X—38 BCI Driver Reference Manual

drv_rfile(D3X) ([3B4000 and 3B15 computers only]
NAME
drv_rfile — access a file from inside a driver (driver read file)
SYNOPSIS
#include <sys/firmware.h>
drv_rfile (D_FILE)
D_FILE *D_FILE;
ARGUMENT
D_FILE pointer to a structure that contains
O pointer to the complete path name of the file read
O entry for drv_rfile to write the buffer address
O entry for drv_rfile to write the buffer size

O entry indicating whether to open or close the file
(open = 0 (zero); close = 1)

D_FILE is defined in systm.h. Table D3X-3 illustrates D_FILE structure members.

Table D3X—3 D_FILE Structure Members

Type Member Description

char *file_name Name of file accessed

char buffer_address Buffer address set to zero before open
int buffer_size Buffer size set to NULL before open
char open_close Open or close flag. open = 0, close = 1

Kernel Functions(D3X)

D3X-39

drv_rfile(D3X) [3B4000 and 3B15 computers only]

DESCRIPTION

This function reads a file into a buffer that it creates. The buffer address and buffer size are
returned. This function should be called twice, once to open and read the file, and again to close the
file. When the file is closed, the buffer is released.

This function is useful for bringing a file into a driver, and for accessing files pumped (downloaded)
to an intelligent controller. drv_rfile can be used with adjuncts through an ioctl routine.

CAUTION: Before drv_rfile is called, the name of the file to be read must reside in kernel space,
not user space.

Before calling drv_rfile with the open flag set, sct buffer_address to NULL. This
field must not be altered between open and close requests. Once drv_rfile has been
given an open request, you must use drv_rfile with a close request when you are done,
to ensure that the buffer is freed correctly. In addition, the open_close flag should not
be changed to one between the open and close calls of drv_rfile.

RETURN VALUE

The normal completion return value is 0 (zero) which is returned after the file is successfully opened
or closed. Otherwise, a -1 is returned when:

R not enough memory is available to read in the file (ENOMEM is placed in u.u_error)

® no such file or directory; the indicated file must exist in the root file system (ENOENT
is placed in u.u_error)

® the file cannot be read from the disk, or the buffer is released (EIO is placed in
u.u_error)

® the file cannot be copied to internal buffer (EFAULT is placed in u.u_error)

Note that the returned buffer_size value should not be manipulated as subsequent calls to drv_rfile
attempt to recreate the buffer and reread the file.

LEVEL

Base Only (Do not call from an interrupt or init routine)

D3X~-40 BCI Driver Reference Manual

SEE ALSO

BCI Driver Development Guide, Chapter 5, "System and Driver Initialization.”

SOURCE FILE

os/sys3.c

EXAMPLE

drv_rfile(D3X) ([3B4000 and 3BI5 computers only]

During system initialization, a driver can download microcode to a controller card in a start(D2X)
(line 4) routine and the D_FILE structure is initialized (lines 9 to 12). '

NN B W

10
11
12

13
14
15
16
17
18
19
20

extern struct device *xx_addr{]; /* Physical device registers location*/
extern int xx_cnt; /* Number of devices */

xx_start()

register struct device *rp;
D_FILE up_code;

/* Initialize microprocessor (up) code structure with */
up_code.file_name = "/dev/xx_up_code"; /* Name of microcode file */
up_code.open_close = 0; /* Request to read the file & */
up_code.buffer_address = NULL; /* allocate buffer for file */
up_code.buffer_size = 0;

if (drv_rfile(&up_code) == -1) /* If file read fails, */
{ /* display warning on system console */

cmn_err(CE_WARN, "!drv_rfile failed for xx_ device : error code is %d",

u.u_error);

} else {

for(rp = xx_addr{0]; rp < xx_addr{xx_cnt]; rp++)

{ /* For all devices, set up the */

rp->addr = vtop(up_code.buffer_address, u.u_procp);

Figure D3X—-12 A Driver Downloads Microcode (part I of 2)

Kernel Functions(D3X)

D3X-41

drv_rfile(D3X) [3B4000 and 3Bl15 computers only]

21
22
23
24

25
26
27
28
29

rp->count = up_code.buffer_size; /* location and size of */
rp->control = XX_DOWNLOAD; /* code and download it */
} /* endfor */
} /* endif */
up_code.open_close = 1; /* Set flag to free buffer space */
drv_rfile(&up_code); /* Free buffer space allocated */
/* for microcode file */

}/* end start */

Figure D3X—12 A Driver Downloads Microcode (part 2 of 2)

D3X—42 BCI Driver Reference Manual

fubyte(D3X) [OBSOLETE]
NAME
fubyte — copy a byte from a user program to a driver (fetch user byte)

SYNOPSIS
char
fubyte(userbuf)
char *userbuf;
ARGUMENT
userbuf address in a user program area that contains the byte to be moved
DESCRIPTION
This function copies a byte from a user program to a driver.
RETURN VALUE

The normal return value is the requested data byte. Otherwise, a -1 is returned if an attempt is made
to overwrite the user(D4X) structure or if an attempt is made to overwrite the user stack.

Under normal conditions fubyte can return a -1 in the normal data flow. Therefore, if the data
accessed by this function may include a -1, use copyin{D3X) instead.

If a -1 is returned indicating an error condition, set u.u_error to EFAULT.
LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

beopy(D3X), copyin(D3X), copyout(D3X), fuword(D3X), iomove(D3X), subyte(D3X),
suword(D3X)

Kernel Functions(D3X) D3X-43

fubyte(D3X) [OBSOLETE]

SOURCE FILE
mi/misc.s
EXAMPLE

The following example illustrates the use of fubyte to move data one byte at a time between the user
data area and a clist(D4X). As long as there is data in the user data area, you can get the next
byte from it (line 7). If the user data area parameter contains an invalid address, an error code is
returned. Otherwise, you add the byte to the last cblock(D4X) in the clist (line 12).

extern struct tty xx_tty[];

1
2
3 register struct tty *tp = &xx_tty[minor(dev)];
4 registerint c;

5 while(u.u_count > 0) /* While there is data in the user data area */
6 {

7 if ((c = fubyte(u.u_base++)) == -1) /* Get a byte. */

8 { /* If an invalid address */

9 u.u_error = EFAULT; /* is found, return error code */
10 retumn,;

11 } /* endif */

12 putc(c, &tp->t_outq); /* Add byte to output clist */

13 u.u_count--; /* Update the number of bytes remaining */
14 } /* endwhile */

Figure D3X—13 fubyte — Moves Bytes

D3X-44 BCI Driver Reference Manual

fuwerd(D3X) [OBSOLETE]

NAME

fuword — copy a word from a user program to the driver (fetch user word)

SYNOPSIS
int
fawerd(userbuf)
int *userbuf;
ARGUMENT

userbuf user program area address that contains byte to be moved to a driver. This address
must be word aligned.

DESCRIPTION

This function copies a single data word from a user program to a driver.

RETURN VALUE

The normal return value is the requested data word. Otherwise, a -1 is returned if an attempt is
made to overwrite the user(D4X) structure or if an attempt is made to overwrite the user stack (a
word alignment error).

Under normal conditions fuword can return a -1 in the normal data flow. Therefore, if the accessed
data may include a -1, use copyin(D3X) instead.

If a -1 (failure) is returned, set u.u_error to EFAULT.
LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), iomove(D3X), subyte(D3X),
suword(D3X)

Kernel Functions(D3X) D3X-45

Suword(D3X) [OBSOLETE]

SOURCE FILE
ml/misc.s
EXAMPLE

When debugging a driver, the ioctl(D2X) routine can be used by superusers to manually set a device
control register. This can change any incorrect settings made by another driver routine. The new
setting is retrieved from the user data area specified by arg (line 24). If arg is an invalid address, an
error code is returned. Otherwise, the device control register is assigned the new setting (line 29).

1 struct device /* Layout of physical device registers */

2 |

3 int control; /* Physical device control word */

4 int status; /* Physical device status word */

5 short recv_char; /* Receive character from device */
6 short xmit_char; /* Transmit character to device */
7 };/* end device */

8 extern struct device xx_addr{]; /* Physical device registers location */
9 .. '

10 xx_ioctl(dev, cmd, arg, flag)

11 dev_t dev;

12 caddr_t arg;

13 {

14 register struct device *rp = &xx_addr[minor(dev) >> 4];
15 registerint c;

16 switch(cmd)

17

18 case XX_SETCNTL:

19 if (u.u_uid && u.u_ruid) /* Only super user can */
20 { /* set control register */

Figure D3X—14 The fuword Function (part I of 2)

D3X—-46 BCI Driver Reference Manual

fuword(D3X)

[OBSOLETE]

21
22
23
24
25
26
27
28
29
30
31

u.u_error = EPERM; /* Return permission denied */
retum;

} /* endif */
if ((c = fuword(arg)) == -1) /* Get control setting */
{ /* 1f invalid address is found,*/
u.u_error = EFAULT; /* return error code */
return;
} /* endif */
rp->control = ¢; /* Set device control register */
break;

Figure D3X—14 The fuword Function (part 2 of 2)

Kernel Functions(D3X) D3X-—-47

getc(D3X)

NAME

getc — get a character from a clist(D4X)
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

int
getc(clp)
struct clist *clp;

ARGUMENT

clp pointer into the clist

DESCRIPTION

The getc function receives, as an argument, a pointer to a clist. It retrieves the first character
from the clist, decreases the clist character count, and returns the character to the calling
routine. If the character taken was the last in the cblock(D4X), the cblock is returned to the
cfreelist(D4X). If processes have called sleep(D3X) to wait for a free cblock from the
cfreelist, they are awakened after the cblock is returned. getc manages priority levels thus
freeing the driver developer from this concern.

Note you should inhibit interrupts before you manipulate the tty(D4X) structure.

RETURN VALUE

The normal return value is the requested character. Otherwise, a -1 is returned when the number of
characters in the clist is less than one.

LEVEL

Base or Interrupt

D3X—48 BCI Driver Reference Manual

getc(D3X)

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
getch(D3X), getcf(D3X), pute(D3X), putch(D3X), putef(D3X), ttin(D3X), ttread(D3X),
clist(D4X)

SOURCE FILE

io/clist.c

EXAMPLE

The following example shows that data can be moved between a clist and a user data area one
byte at a time using getc. As long as there is space in the user data area, and there is data in the
clist, get a single byte from the first cblock in the clist (line 8) and then copy it to the user
data area (line 11).

1 extern struct tty xx_tty(];

2 ..

3 register struct tty *tp = &xx_tty[minor(dev)];

4 registerint c;

5 ..

6 while(u.u_count > 0) /* While there is space in user data area */

7

8 if ((c = getc(&tp->t_canq)) == -1) /* If input queue is empty,*/
9 return; /* return */

10 /* endif */

11 if (subyte(u.u_base++, c) == -1) /* Copy character to user */
12 { /* data area. If invalid */

13 u.u_error = EFAULT; /* address is found then */
14 return; /* return error code */

15 }/* endif */

16 u.u_count--; /* Update remaining size of data area */

17 }/* endwhile */

Figure D3X—15 The getc Function

Kernel Functions(D3X) D3X-49

getcb(D3X)

NAME

getcb — get first eblock(D4X) on a clist(D4X)
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

struct cblock *
getcb(cip)
struct clist *cip;

ARGUMENT

clp pointer to a clist

DESCRIPTION

The getcb function returns the first e¢block on the clist specified by the argument clp. getcb
decreases the clist character count by the number of characters in the cblock and unlinks the
cblock from the clist.

RETURN VALUE

The normal return value is a pointer to the requested cblock. Otherwise, if the clist is empty,
NULL is returned.

LEVEL
Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
gete(D3X), getcf(D3X), putc(D3X), putcb(D3X), putcf(D3X), ttin(D3X), ttread(D3X),
cblock(D4X)

D3X—-50 BCI Driver Reference Manual

getch(D3X)

SOURCE FILE
iolclist.c
EXAMPLE

The following example shows data can be moved in complete cblocks betweena clist and a
user data area using getcb. As long as there is space in the user data area, and blocks are present in
the clist, get the first cblock inthe clist (line 9). Next, compute the bytes in the cblock
and copy the bytes to the user data area (line 15). Finally, the empty cblock is returned to the
cfreelist(D4X) (line 19). If an invalid address is detected, the data transfer returns an error
condition.

extern struct chead cfreelist;
extern struct tty xx_tty[];

1

2

30 ..

4 register struct tty *tp = &xx_ttyminor(dev})];

5 register struct cblock *cp;

6 register int i;

7 while(u.u_count >= cfreelist.c_size) /* While user data area *
8 /* has room for an entire cblock, get */

9

{ .
if((cp = getcb(&tp->t_canq)) == NULL) /* an input cblock */

10 return; /* If clist is empty, then return */
11 /* endif */ .
12 i = ¢p->c_last - cp->c_first; /* Get the number of */
13 /* characters stored in the cblock */
14 /* Copy data to user */
15 copyin (u.u_base, (caddr_t)&cp->c_data[cp->c_first], i);
16 u.u_base += i;/* Increment virtual base addr */
17 u.u_offset +=i; /* Increment file offset */
18 u.u_count -= i; /* Decrement bytes not transferred */

19 putcf(cp); /* Return empty cblock to the cfreelist */
20 u.u_base +=i;

21 if (u.u_error != 0) /* If an invalid address was detected */
22 return; /* Data transfer returns error */

23 /* endif */
24 }/* endwhile */

Figure D3X—16 The getcb Function

Kernel Functions(D3X) D3X-51

getcf(D3X)

NAME

getcf — get a free cblock(D4X)
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

struct cblock *
getcf()

DESCRIPTION

The getef function unlinks a cblock from the cfreelist(D4X) and returns it to the calling
routine. getcf sets the cblock forward pointer to NULL and sets ¢_first to the first character read
in the c_data array and c_last to the last character in the c_data array.

RETURN VALUE

Under normal conditions, a pointer to a cblock is retumed. Otherwise, if the cfreelist is
empty, getcf returns NULL.

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."”

getc(D3X), geteb(D3X), putc(D3X), putch(D3X), putef(D3X), ttin(D3X), ttread(D3X),
cblock(D4X)

SOURCE FILE

iolclist.c

D3X—-52 BCI Driver Reference Manual

getcfiD3X)

EXAMPLE

The following example shows that data can be moved in a complete or a partial cblock between a
user data area and a clist with the use of getcf. As long as there is data in the user data area, get
cblock information (line 8). A free cblock is obtained from the cfreelist (line 10). If the
cfreelist is empty, set the cblock want flag and wait for a free ¢block (line 13). Then copy
the data from the user data area to the allocated cblock (line 16).

If an invalid address is detected in the user data area, return the cblock to the cfreelist (line
18) and return an error code. Otherwise, change the input index ¢_last to the number of the
characters in cblock and change the output index c_first to show that none of the characters have
been removed from the cblock (line 24). Add the cblock to the end of the clist (line 26).
The pointer to the user data area is advanced to the next starting byte of data to be copied (line 27),
and the remaining byte count is updated (line 28). (This example should not be performed in an
interrupt routine.)

1 extern struct chead cfreelist;
2 extern struct tty xx_tty[];

3 register struct tty *tp = &xx_tty[minor(dev)];
4 register struct cblock *cp;
5 registerint size;

6 while(u.u_count >= 0) /* While data in user data area */

7 A

8 size = min(u.u_count, cfreelist.c_size); /* get smaller buffer */

9 oldlevel = spld();

10 while((cp = getcf()) == NULL) /* Get free cblock from freelist */
11 { /* If freelist empty, then */

12 cfreelist.c_flag+ +; /* set cblock want flag */

13 sleep(&cfreelist, TTPRIO); /* and wait for free cblock */

14 /* endwhile */

15 splx(oldlevel);

16 if (copyin(u.u_base, cp->c_data, size) == -1)

17 { /* Copy data from user data area to allocated cblock */

18 putcf(cp); /* If an invalid address is detected, */
19 u.u_error = EFAULT; /* return cblock to cfreelist and */
20 return; /* return an error code */

21 } /* endif */
22 cp->c_last = size; /* Record number of bytes in */

Figure D3X-17 The getcf Function (part 1 of 2)

Kernel Functions(D3X) D3X-53

getcfID3X)

23 /* the cblock */

24 cp->c_first = 0; /* Show none of bytes have been */
25 /* removed from the cblock */

26 putcb(cp, tp->t_outq); /* Link cblock to output queue */
27 u.u_base + = size; /* Update user data area pointer */
28 u.u_count -= size; /* Update number of bytes remaining */

29 }/* endwhile */

Figure D3X—-17 The getcf Function (part 2 of 2)

D3X—-54 BCI Driver Reference Manual

geteblk(D3X)

NAME

geteblk — get an empty block

SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

struct buf*
geteblk()

DESCRIPTION

The geteblk function retrieves a buffer from the buffer cache and returns the buffer header address to
the calling routine. If a buffer header is not available, geteblk sleeps until one is available.

When the driver strategy(DD2X) routine receives a buffer header from the kernel (that is, when the
driver is entered through its strategy, read(D2X), or write(D2X) routines), all the necessary
members are already initialized. However, when a driver routine allocates buffers for its own use,
the routine must set up some of the members before calling the driver strategy routine.

The following list explains the state of these members when the buffer header is received from
geteblk dnd what must be done.

b_flags is set to B_BUSY to indicate that the buffer is in use. The driver must set the
B_READ or B_WRITE flag, depending on the type of transfer. (Leave the B_BUSY
flag set and OR the B_READ or B_WRITE flag in place.)

b_dev is set to NODEV and must be initialized by the driver
b_bcount is set to the buffer (SBUFSIZE) byte number
b_un.b_addr is set to the virtual buffer address when the system is started

b_blkno is not initialized by geteblk, and must therefore be initialized by the driver

Typically, block drivers do not aliocate buffers. The buffer is allocated by the kemel, and the
associated buffer header is used as an argument to the driver strategy routine. However, in order to
implement some driver programs or iectl(D2X) routines, the driver may need its own buffer space.
When this is the case, either declare data space in the driver to be used as a buffer; or borrow buffers
from the buffer cache.

Kernel Functions(D3X) D3X-55§

geteblk(D3X)

If the buffer space is not needed frequently, declaring buffer space in the driver (especially for large
buffers) is wasteful. Additionally, since block drivers are intimately tied to the buffer cache and the
buffer header data structure, using another buffering scheme may require the addition of special case
driver code, again expanding the driver unnecessarily. Therefore, in many instances it is
advantageous to borrow a buffer from the buffer cache and use the existing driver code to implement
special case utilities.

RETURN VALUE

Under normal conditions, a pointer to the buf(D4X) structure is returned. Otherwise, the process
calls sleep(D3X) to wait for a free block. The only possible abnormal return condition occurs if
sleep fails.

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."”
buf(D4X)

SOURCE FILE

os/bio.c

D3X—-56 BCI Driver Reference Manual

geteblk(D3X)

EXAMPLE

In the following example, an /O request is made, but a buffer has not been ailocated. This can take
place in a driver ioctl routine that needs to down load pump code to a device controller. A surplus
buffer is allocated from the buffer cache (line 3) and cleared of old data (line 4). The new data is
copied into the buffer, and the physical /O is scheduled (device dependent). The driver waits for the
completion of the physical I/O operation (line 8). When the /O operation is finished, an interrupt is
generated. Any error setting made by the interrupt handler is retrieved, and the buffer is released
(line 14),

1
2

5 W

register struct buf *bp;

bp = geteblk; /* Get an extra (surplus) buffer */
cirbuf(bp); /* Fill buffer with binary zeros */

/* Copy data to allocated buffer and */
/* Schedule physical I/O request with device */
xxstrategy(bp);
iowait(bp); /* Wait for /O request to complete */
if ((bp->b_flags &B_ERROR) != 0) /* If an error occurred with */
{ /* T/O operation get any error */
if((u.u_error = bp->b_error) == 0) /* code; assign to u.u_error */
u.u_error = EIO; /* If error code not present set default */
} /* endif */
brelse(bp); /* Release buffer when finished using */

Figure D3X—-18 A Surplus Buffer Is Allocated

Kernel Functions(D3X) D3X-57

getsrama(D3X), getsramb(D3X) [3B4000 Com puter Only]
NAME

getsrama, getsramb — get starting address and length of SDT

SYNOPSIS

#include <sys/immu.h>

getsramagsid)
getsramb(sid)

ARGUMENT

- sid word-aligned segment table virtual address

DESCRIPTION

These two macros facilitate physical-to-virtual address translation on computers equipped with a dual
Memory Management Unit (MMU). getsrama returns the starting physical address of the Segment
Descriptor Table (SDT). getsramb returns the length of the SDT. The significance of the function
names are that getsrama gets register A associated with the SRAM (Segmented Random Access
Memory) containing the starting address of the SDT. getsramb gets the value of register B
containing the physical length of the SDT.

Before using these functions, a section number identification descriptor should be generated. This is
done by accessing the v_sid member of the VAR (virtual address referencing) structure defined in
immu.h. Refer to Chapter 4 of the UNIX Microsystem WE®32100 Microprocessor Information Manual,
Maxicomputing in Microspace for a complete description of virtual address referencing (described in
Chapter 1 of this manual).

RETURN VALUE

getsrama returns the SDT starting address; getsramb returns the length of the SDT. No error codes
are generated.

LEVEL

Base or Interrupt

SOURCE FILE

immu.h

D3X-58 BCI Driver Reference Manual

getsrama(D3X), getsramb(D3X) [3B4000 Computer Only]

EXAMPLE

In the following example, maddr points to the virtual address as provided by the user. Lines 7
through 10 take the address and get the physical address of the segment description table and its -
length. This information (psdtpt and psdtin) are passed on to the device. The device uses the
information to translate the user’s virtual address to a physical address so that user memory can be
accessed.

paddr_t maddr;
struct buf *bp;

maddr = paddr(bp);

sid = (*(VAR *)&maddr).v_sid; /* get section ID */

psdtpt = getsrama(sid); /* get physical starting */
/* address of the Segment */
/* Descriptor Table (SDT) */

psdtln = getsramb(sid); /* get length of SDT */

SO0 R WN =

Figure D3X—19 getsrama, getsramb -— Example

Kernel Functions(D3X) D3X-59

getvec(D3X) [3B2 computer only]
NAME
getvec — get an interrupt vector for a virtual board address
SYNOPSIS
unsigned char
getvec(baddr)
int long baddr;
ARGUMENT
baddr a virtual board address
DESCRIPTION

This driver uses this function with the init(D3X) routine to get an interrupt vector for a given virtual
board address.

RETURN VALUE

Under all conditions, a unsigned char numeric value is returned. The only abnormal return value
would be a number not logical for the circumstances. If the board address argument is 0 (zero), a
divide-by-zero error can occur.

LEVEL

Base Only (Do not call from an interrupt routine)

SOURCE FILE

os/machdep.c

D3X-60 BCI Driver Reference Manual

EXAMPLE

getvec(D3X) [3B2 computer only]

With a 3B2 computer, each device that generates an interrupt must be given an interrupt vector
location code. During system initialization, the driver init routine gets the interrupt vector location
code (line 18) and stores the code in a predefined address on the interface card (an address on the
card in the range of 0x0 to 0x200000 can be defined to hold the code).

When a device generates an interrupt, the interface card presents the code to the CPU, which uses it

to locate the interrupt handling routine(s) of the driver.

struct device /* Layout of physical device registers */
{
char reserve[4]; /* Reserve space on card */
ushort control; /* Physical device control word */
char status; /* Physical device status word */

/* 0xf0; subdevice reporting in 0x0f */

paddr_t addr; /* Address of data to be read/written */
int count; /* Amount of data to be read/written */

0 };/* end device */

11 extem struct device *xx_addr{]; /* Location of physical */

1
2
3
4
5
6 char ivec_num; /* Device interrupt vector number in */
7
8
9
1

12 ; /* device registers */

13 ..

14 xx_init()

15 {

16 register struct device *rp = xx_addr{0]; /* Get device register */

17 /* structure */ ‘

18 rp->ivec_num = getvec(xx_addr{0]); /* Get interrupt vector code */

19 }/* end xx_init */

Figure D3X—20 Getting An Interrupt Vector

Kernel Functions(D3X) D3X-61

hdeeqd(D3X)
NAME
hdeeqd — initialize hard disk error logging

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/dir.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/file.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/inode.h>
#include <sys/proc.h>
#include <sys/vtoc.h>
#include <sys’/hdelog.h>
#include <sys/hdeioctl.h>
#include <sys/cmn_err.h>
#include <sys/open.h>

hdeeqd(dev, pdsno, edtyp)
dev_t dev;

daddr_t pdsno;

short edtyp;

ARGUMENTS
dev device number (contairis both the major number and the minor number)

pdsno physical description sector

D3X~-62 BCI Driver Reference Manual

hdeeqd(D3X)

edtyp error device type. The only valid values are
2 EQD_EFC external floppy controller
2 EQD_EHDC external hard disk controller
3 EQD_ID integral disk drive
d EQD_IF integral floppy disk drive
o EQD_TAPE cartridge tape drive
DESCRIPTION

This function initializes information in the hard disk error logging table for the device specified by
dev. This function is called once per device.

NOTE: This function is not part of the default set of kernel functions. Ensure that your system has

created the current operating system with the hde.o object module.

RETURN VALUE

Under all conditions, a 0 (zero) is returned. However, internal errors can occur in hdeeqd causing a
warning message to display on the console. These errors can be

LEVEL

® The internal major device number is greater than or equal to the number of the

controllers (cdevent) which is assigned by /boot when the operating system is loaded.
The message is

WARNING: hdeeqd: major(ddev) = int-major (>=cdevent)
int-major is the internal major device number.

The count of used disk slots in the logging table exceeds the number of available slots.
The message is

WARNING: too few HDE equipped slots
bad block handling skipped for maj/min = ext-major, ext-minor

ext-major and ext-minor are the external device numbers.

Base or Interrupt

Kernel Functions(D3X) D3X-63

hdeeqd(D3X)

SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Reporting.”

SOURCE FILE

iolhde .c

EXAMPLE

When a device is being opened for the first time, the driver open(D2X) or init(D2X) (open in this
example) routine must identify the device and set up controlling information about the device. In

this example, the information is kept on a controlling sector of the disk. If the controlling sector does
not exist, the information is encoded as a static table in the driver.

1 ° #define XX_CNTLBLKNO 0 /* Controlling sector block number */
2 struct device /* Physical device registers layout */

3

4 char reserve[4]; /* Reserve space on card */

5 ushort control; /* Physical device control word */

6 char status; /* Physical device status word */

7 char ivec_num; /* Device interrupt vector */

8 /* number in 0xf0; subdevice reporting in Ox0f */

9 paddr_t addr; /* Data address to be read/written */

10 int count; /* Amount of data to be read/written */

11 }; /* end device */

12 struct xx_ /* Logical device structure */

13 {

14 struct buf *xx_head; /* I/O buffer queue head pointer */
15 struct buf *xx_tail; /* I/O buffer queue tail pointer */

Figure D3X—21 Hard Disk Error Logging is Initialized (part ! of 3)

D3X-64 BCI Driver Reference Manual

hdeeqd(D3X)

16 short xx_flag; /* Logical status flag */

17 struct hdedata xx_edata; /* Disk error log error record */
18 struct iostat xx_stat; /* Unit I/O statistics for */
19 /* establishing an error rate during error logging */
20 };/* end xx_ */

21 struct xx_info /* Information on control sector */

22 {

23 long xx_id; /* of disk device id code */

24 long xx_cyl; /* Total number of cylinders */

25 long xx_trk; /* Number of tracks per cylinder */
26 long xx_sec; /* Number of sectors per track */
27 char xx_serial{12]; /* Device serial number */

28 };/* end xx_info */

29 extern struct xx_ xx_devtab[]; /* Logical device structures table */
30 extern struct device *xx_addr[]; /* Physical device registers location */
31 extern struct xx_info xx_info[]; /* Device control information */

32 extern int Xx_cnt; /* Number of devices */

33 ..

34 xx_open(dev, flag)

35 dev_t dev;

36 int flag;

37 {

38 register struct xx_ *dp;

39 register struct device *rp;

40 register int unit;

41 ..

42 unit = minor(dev) >> 4; /* Get drive unit number */

43 dp = &xx_devtab[unit}; /* Get logical device information */

Figure D3X—21 Hard Disk Error Logging Is Initialized (part 2 of 3)

Kernel Functions(D3X) D3X—-65

hdeeqd(D3X)

If this is the first open, the system call made for this device (line 44), initiates error logging for the
device (line 47 or 61), allocates a system buffer (line 48), and reads the controlling sector from the
xx_strategy routine using (line 48). If an error occurred on the read attempt, it displays an error
message (xx_print) and returns an error condition. Otherwise, saves information from the
controlling sector with beopy(D3X) and indicates the device has been opened. Finally, the system
buffer is released (line 64).

44 if ((dp->xx_flag & XX_OPEN) == 0) /* If first time device opened,*/

45 {

46 register struct buf *bp;

47 hdeeqd(dev, XX_CNTLBLKNO, EQD_ID); /* initialize error logging */
48 bp = geteblk(); /* Get buffer for control sector */

49 bp->b_flags = B_READ; /* Set up buffer to read */

50 bp->b_blkno = XX_CNTLBLKNO,; /* control sector from disk */

51 bp->b_count = 512;

52 bp->b_dev = dev & ("0xf); /* Use partition 0 on disk */

53 xx_strategy(bp); /* Read control sector */

54 iowait(bp); /* Wait for read to complete */

55 if ((bp->b_flags & B_LERROR) !=0)

56 { /* If data error occurred, display message on console */

57 xx_print(dev, "xx_open: cannot read control sector”);

58 u.u_error = bp->b_error; /* Get error code */

59 }else { /* Copy control sector data to info table */

60 beopy(bp->b_un.b_addr, &xx_info[unit], sizeof(struct xx_info));
61 hdeeqd(dev, XX_CNTLBLKNO, EQD_ID); /* Initiate error logging */
62 dp->flag |= XX_OPEN; /* Indicate device open */

63 } /* endif */

64 brelse(bp); /* Release system buffer */

65 }/* endif */

66 if (u.u_error != 0) /* If error found at this point, return */
.67 refurn;

68 /* endif */

Figure D3X—-21 Hard Disk Error Logging Is Initialized (part 3 of 3)

D3X—-66 BCI Driver Reference Manual

hdelog(D3X)
NAME
hdelog — log hard disk error

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/dir.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/file.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/inode.h>
#include <sys/proc.h>
#include <sys/vtoc.h>
#include <sys/hdelog.h>
#include <sys/hdeioctl.h>
#include <sys/cmn_err.h>
#include <sys/open.h>

hdelog(eptr)
struct hdedata *eprr;

ARGUMENTS

eptr pointer to the hdedata structure defined in Adelog.h. The driver developer places

information in the structure before hdelog is called.

DESCRIPTION

This function logs a hard disk error in the error logging queue and displays a warning message on the

console to alert the operator to the problem.

Kernel Functions(D3X) D3X-67

hdelog(D3X)

The console message is

WARNING: severity readtype hard disk error:
maj/min = external-major-num, external-minor-num

Where

severity = marginal or unreadable

readtype = CRC (cyclical redundancy check) or ECC (error check and
correction)

Call hdeeqd(D3X) before this function. hdelog logs disk drive media errors.

NOTE: This function is not part of the default set of kernel functions. Ensure that your system has
created the current operating system with the 4de.o object module.

Before calling this function, values must be assigned to the hdedata structure. These members
include the device number; the disk pack serial number; the physical block address; the type of read
operation CRC or ECC; whether the error is marginal or whether the disk is unreadable; the number
of unreadable tries; the bit width of the corrected error; and a time stamp.

RETURN VALUE

Under all conditions, a 0 (zero) is returned. However, an internal error can occur in hdelog causing
a warning message to display on the console. This error occurs when the error logging table is full.
In this case, the usual disk error warning message is prefaced with

WARNING: HDE queue full, following report not logged

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Reporting.”
hdeeqd(D3X), logstray(D3X)

D3X—68 BCI Driver Reference Manual

hdelog(D3X)

SOURCE FILE
io/hde.c
EXAMPLE

A driver interrupt routine is responsible for checking for data transfer errors (these errors are called
data checks). When a data check occurs (reported by the device in the status or error register), the
driver determines if there have been sufficient attempts at resolving the error. If there has, the driver
abandons the I/O request by marking the buffer as being in error, logging an unresolved error (line
58), and marking the /O operation complete with (line 59). When an error persists in spite of
multiple attempts to resolve it, the driver logs marginal errors (line 72) and attempts the /O
operation again. The driver may try to resolve the error with software by using the error correction
bits in an ECC (Error Check and Correction) register.

1 struct device /* Layout of physical device registers */

2

3 char reserve[4]; /* Reserve space on card */

4 ushort control; /* Physical device control word */

5 char status; /* Physical device status word */

6 char ivec_num; /* Device interrupt vector number in */
7 /* 0xf0; subdevice reporting in 0x0f */

8 paddr_t addr; /* Address of data read/written */

9 int count; /* Amount of data read/written */

10 }; /* end device */

11 struct xx_ /* Logical device structure */

12 {

13 struct buf *xx_head; /* T/O buffer queue head pointer */
14 struct buf *xx_tail; /* /O buffer queue tail pointer */

15 short xx_flag; /* Logical status flag */

16 struct hdedata xx_edata; /* Hard disk error record */
17 struct iostat xx_stat; /* Unit /O statistics for */

18 /* establishing an error rate during error logging */

19 };/* end xx_*/

Figure D3X—-22 hdelog — Logs Media Errors (part I of 3)

Kernel Functions(D3X) D3X-69

hdelog(D3X)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
2
43
44
45
46
47
48
49
50
51
52
53

struct xx_info /* Information on control sector of disk */
{
long xx_id; /* Device id code */
long xx_cyl; /* Total number of cylinders */
long xx_trk; /* Number of tracks per cylinder */
long xx_sec; /* Number of sectors per track */
char xx_serial[12]; /* Device serial number */
; /* end xx_info */
extern struct xx_ xx_devtab[]; /* Logical device structures table */

extern struct device *xx_addr{]; /* Physical device registers location */
extern struct xx_info xx_info[]; /* Device control information */
extern int xx_cnt; /* Number of devices */

xx_int(board)
int board;
{

register struct device *rp = xx_addr[board]; /* Get device registers */

register struct xx_ *dp;

register struct buf *bp;
register int unit;

unit = (board << 4) | (rp->ivec_num & 0xf); /* Construct unit number */
dp = &xx_devtab[unit];
if ((rp->status & DATACHK) != 0) /* If data check error occurred, */
{ /* then */ ~
if (+-+dp->xx_edata.badrtent > XX_MAXTRY) /* If sufficient */
{ /* attempts have been made, then abandon the /O request */
bp = dp->xx_head; /* Get buffer from VO queue */
dp->xx_head = bp->av_forw; /* Remove buffer from /O queue */
bp->b_flags |= B_LERROR; /* Mark buffer as being in error */
bp->b_error = EIO; /* Supply error condition */
/* Supply information needed for error logging */
dp->xx_edata.diskdev = bp->b_dev; /* The device number */
dp->xx_edata.blkaddr = bp->b_blkno; /* The block number in error*/
dp->xx_edata.readtype = HDEECC; /* Error type: error check */

Figure D3X—22 hdelog — Logs Media Errors (part 2 of 3)

D3X~—-70 BCI Driver Reference Manual

hdelog(D3X)

54 dp->xx_edata.severity = HDEUNRD); /* Data was unreadable */
55 dp->xx_edata.bitwidth = 0;

56 dp->xx_edata.timestmp = time; /* Time recording occurred */

57 beopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12);

58 hdelog(&dp->xx_edata); /* Log abandoned /O operations ~ */

59 iodone(bp); /* Mark I/O operation complete ~ */

60 } else if(dp->xx_edata.badrtent > 1) { /* If more then one retry, */

61 /* log error as marginal */

62 bp = dp->xx_head; /* Get buffer from /O queue but */

63 /* leave on I/O queue so that I/O operation is repeated */

64 /* Supply information needed for error logging */

65 dp->xx_edata.diskdev = bp->b_dev; /* The device number */

66 dp->xx_edata.blkaddr = bp->b_blkno; /* The error block number*/
67 dp->xx_edata.readtype = HDEECC; /* Error type: error check
*/

68 dp->xx_edata.severity = HDEMARG:; /* Marginal error */

69 dp->xx_edata.bitwidth = 0;

70 dp->xx_edata.timestmp = time; /* Time recording occurred */
71 beopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12);

72 hdelog(&dp->xx_edata); /* Log data check error */

73 } /* endif */
74} /* endif */
75 ...

Figure D3X—22 hdelog — Logs Media Errors (part 3 of 3)

Kernel Functions(D3X) D3X-71

iodone(D3X)

NAME

iodone — resume execution suspended pending block I/O
SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

iodone(bp)
struct buf *bp;
ARGUMENT

bp pointer to the block interface buffer structure defined in buf.k. This is the address of the
buffer header associated with the buffer where the I/O occurred.

DESCRIPTION

iodone is called by the driver interrupt routine when the data transfer is complete. iodone does the
following:

¥ awakens the process(es) that called sleep(D3X) to wait for the buffer header if /O is
synchronous

B releases the block if I/O is asynchronous and awakens processes awaiting asynchronous
IO

® marks b_flags of buffer with B_DONE
RETURN VALUE
| Under all conditions, no value is returned.
LEVEL
Base or Interrupt
SEE ALSO
BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events.”

delay(D3X), iowait(D3X), sleep(D3X), timeout(D3X), ttywait(D3X), untimeout(D3X),
wakeup(D3X)

D3X-72 BCI Driver Reference Manual

iodone(D3X)

SOURCE FILE

os/bio.c

EXAMPLE

Generally, the first validation test performed by any block device strategy(D2X) routine is a check
for an end-of-file (EOF) condition. The strategy routine is responsible for determining an EOF
condition when the device is accessed directly (for example, physio(D3X)). If a read request is made
for one block beyond the limits of the device (line 8), it will report an EOF condition. Otherwise, if
the request is outside the limits of the device, the routine will report an error condition. In either
case, report the I/O operation as complete (line 20).

~N O\ W W N -

— \O 00

11
12

13
14
15

16
17
18
19

#define RAMDNBLK 1000 /* Number of blocks in RAM disk */
#define RAMDBSIZ 512 /* Number of bytes per block */
char ramdblksf RAMDNBLK][RAMDBSIZ]; /* Blocks that form the RAM disk */

ramdstrategy(bp)
register struct buf *bp;

{
register daddr_t blkno = bp->b_blkno; /* Get requested block number */

if (blkno < 0 | blkno >= RAMDNBLK) /* If requested block is */
{ /* outside of the RAM disk limits, test for EOF condition */
/* which could result from a direct (physio) request */

if (blkkno == RAMDNBLK && bp->b_flags & B_READ) /* If read */
{ /* is being made for one block beyond RAM disk limits then */

bp->b_resid -= bp->b_bcount; /* Mark an EOF condition. */

/* The return value for read system call computed by */
/* taking the difference between b_count and b_resid */
}else { /* Otherwise, an /O attempt is being */

bp->b_error = ENXIO; /* made beyond limits of the RAM ¥/
bp->b_flags |= B_.ERROR; /* disk; return error condition */
} /* endif */

Figure D3X—23 iodone — Marks a Completed Operation (part ! of 2)

Kernel Functions(D3X) D3X-73

iodone(D3X)

20 iodone(bp); /* Mark I/O operation as being completed (B_DONE) */
21 /* and awaken any processes waiting for this /O operation */

22 /* or release buffer for asynchronous (B_ASYNC) request */

23 return;

24 }/* endif */

25 ..

Figure D3X—-23 iodone — Marks a Completed Operation (part 2 of 2)

D3X—-74 BCI Driver Reference Manual

iomove(D3X) [OBSOLETE]
NAME
iomove — move bytes
SYNOPSIS
iomove(cp, bytes, rwflag)

int caddr_t cp;
int bytes, rwflag;

ARGUMENTS

cp bytes are moved to or from this address.

bytes number of bytes to move. If bytes is omitted or set to 0 (zero), no bytes are moved.
rwflag indicates whether a block access is a read or a write. Set to B_WRITE to move bytes

from a user to a driver. Set to B_READ to move bytes from a driver to a user.

DESCRIPTION

This function copies bytes from user space to a driver, or from a driver to user space. The u.u_segflg
(described in user.h) determines how the copy is made. This function cannot be called from the
driver init(D3X) routine.

In addition to moving data, iomove adds the number of bytes moved to u.u_base and u.u_offset.
iomove also decreases u.u_count by the number of bytes moved.

RETURN VALUE

Under all conditions, no value is retuned. However, if rwflag is B_WRITE and u.u_segflg is not
equal to 1, and the move fails, then the following occurs

8 u.u_error is set to EFAULT

% u.u_base, u.u_offset, and u.u_count are not changed

Kernel Functions(D3X) D3X-75§

iomove(D3X) [OBSOLETE]

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, Input/Output Operations."
beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), faword(D3X), subyte(D3X)
suword(D3X)

SOURCE FILE
os/move.c
EXAMPLE

With a RAM disk, direct I/O requests can be handled in the driver’s read(D2X) and write(D2X)
routines, as long as the I/O requests are for one or more complete blocks of information.

For either a read or write request, a test is made to determine if the I/O request is in the limits of the
RAM disk (physck(D3X)).

For a read request, the number of blocks the user data area can contain is computed (line 15). The
user data area must be large enough to contain at least one complete block. If it cannot, an error
condition will be returned. Otherwise, compute the starting block number (line 19). Copy the
requested number of blocks from the RAM disk to the user data area (line 20).

#define RAMDNBLK 1000 /* Number of blocks in RAM disk */
#define RAMDBSIZ 512 /* Number of bytes per block */
char ramdblksf RAMDNBLK][RAMDBSIZ]; /* Blocks forming the RAM disk */

W N

ramdread(dev) /* Direct read request from a block device */
dev_t dev; ‘
{
register daddr_t blkno; /* Starting block number */
register int nblks; /* Block number to be read with (physio)*/
/* T/O from or to a block device, the data must be */
0 /* moved as single complete block or multiples of*/
1 /* complete blocks. */

e O 0NN B

Figure D3X—24 The iomove Function (part I of 2)

D3X—-76 BCI Driver Reference Manual

iomove(D3X) [OBSOLETE]

12
13

14
15
16
17
18

19
20
21
22
23

24
25
26
27
28
29
30
31

32
33

34
35
36
37
38

39
40
41
42

if (physck(RAMDNBLK,B_READ)) /* If the read request is in */
{ /* the limits of the RAM disk, copy data to user */

if ((nblks = u.u_count/ RAMDBSIZ)) <= 0)

{ /* Determine number of blocks to be copied; if user data */
u.u_error = EFAULT; /* area cannot hold complete block from */
return; /* RAM disk, return error condition*/

} /* endif */

blkno = u.u_offset / RAMDBSIZ; /* Compute starting block number */
iomove(&ramdbiks[blkno][0], (nblks * RAMDBSIZ), B_READ);
/* Copy data to user */
} /* endif */
} /* end ramdread */

ramdwrite(dev) /* Direct write request to a block divide */

dev_t dev;

{

register daddr_t blkno; /* Starting block number */

register int nblks; /* Number of blocks written; with direct */

/* /O from or to block device, the data must be */
/* moved as single complete block or multiples of */
/* complete blocks. */

if (physck(RAMDNBLK,B_WRITE)) /* If the write request in the limits */
{ /* of the RAM disk, copy data to user*/

if (u.u_count % RAMDBSIZ != 0) /* See if there are one or more */

{ /* complete blocks to be copied; if not, then */
u.u_error = EFAULT; /* return an error condition. */
return;

}/* endif */

blkno = u.u_offset / RAMDBSIZ; /* Compute starting block number */
iomove(&ramdbiks[blkno][0], u.u_count, B_WRITE);/*copy data */ -
}/* endif */
} /* ramdwrite */

Figure D3X—24 The iomove Function (part 2 of 2)

Kernel Functions(D3X) D3X-77

iowait(D3X)
NAME

iowait — suspend execution pending completion of a block I/O request
(input/output wait)

SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

iowait(bp)
struct buf *bp;
- ARGUMENT
bp pointer to the block interface buffer structure, buf.h, where the awaited data transfer
takes place
DESCRIPTION

The kernel provides functions to suspend (iewait) and continue (iodone(D3X)) execution during
block I/O. The iowait function is called by driver routines that have allocated their own buffers and
are waiting for data transfer to complete.

- Until b_flags contains B_DONE, iowait calls sleep(D3X) with the event argument set to a pointer to
the buf(D4X) structure to wait for /O completion. iowait is awakened by a corresponding call to
iodene when the transfer completes. Do not call iowait from the driver init(D2X) or interrupt
routine.

RETURN VALUE

Under all conditions, no value is returned. However, this function returns any errors in u.u_error
that may have occurred while a process is waiting for I/O operations to complete on the buf
structure. If an error is encountered, but b_error equals 0 (zero), u.u_error is set to EIO.

LEVEL

Base Only (Do not call from an interrupt routine)

D3X-78 BCI Driver Reference Manual

iowait(D3X)

SEE ALSO

BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events."
delay(D3X), iodone(D3X), sleep(D3X), timeout(D3X), ttywait(D3X), untimeout(D3X),
wakeup(D3X)

SOURCE FILE

os/bio.c -
EXAMPLE

In the following example, an I/O request is made, but a buffer has not been allocated. This can take
place in a driver ioctl(D2X) routine that needs to down load pump code to a device controller. A
surplus buffer is allocated from the buffer cache (line 3) and cleared of old data (line 4). The new
data is copied into the buffer, and the physical /O is scheduled (device dependent). The driver waits
for the completion of the physical VO operation (line 8). When the I/O operation is finished, an
interrupt is generated. Any error setting made by the interrupt handler is retrieved, and the buffer is
released (line 14).

—

register struct buf *bp;

3 bp = geteblk; /* Get an extra (surplus) buffer */
4 clrbuf(bp); /* Fill buffer with binary zeros */

5 /* Copy data to allocated buffer and */

6 /* schedule physical I/O request with device = */

7 xxstrategy(bp);

8 iowait(bp); /* Wait for /O request to complete */

9 if ((bp->b_flags &B_ERROR) != 0) /* If an error occurred with ~ */

10 { /* VO operation, get any error ~ */
11 if((u.u_error = bp->b_error) == 0) /* code; assign to u.u_error */
12 u.u_error = EIQ; /* If error code not present, set default */

13 } /* endif */
14 brelse(bp); /* Release buffer when finished using it */

Figure D3X—-25 The iowait Function

Kernel Functions(D3X) D3X--79

kseg(D3X)
NAME
kseg — allocate memory pages

SYNOPSIS

char *
kseg(pages)
int pages;

ARGUMENT

pages the number of memory pages. pages must be in the range of 1 to 64. The number of
pages per page table (segment) is 64 (defined by NPGPT in immu.h). For the call to
succeed, the amount of available resident and swappable memory minus the pages must
be greater than or equal to the minimum memory value. (The minimum resident
memory is in tune.t_minarmem and the minimum swappable memory is in
tune.t_minasmem. Both values are defined in tuneable.h.)

DESCRIPTION

This function allocates memory pages to a process. The memory is allocated from the sptmap
structure described in map.h. kseg returns the new kernel segment virtual address in bytes. The
memory segment is initialized with zeros. The allocated memory is guaranteed to have segment
alignment and to always be resident in memory (it is never reclaimed and paged out). This function
is generally run from the driver init(D2X) or start(D2X) routines to allocate memory before starting.
unkseg(D3X) is used to release the memory allocated with kseg.

NOTE: kseg uses an entire segment of the kernel map; therefore group your kseg requests rather
than calling it each time you need a single page of memory.

D3X—80 BCI Driver Reference Manual

kseg(D3X)

RETURN VALUE

Under normal conditions, the new memory address is returned. Otherwise, NULL is returned if
B pages is not in the range of 1 to 64
8 memory cannot be allocated from the map by the segment virtual address
8 there is insufficient physical memory

The first two instances cause a direct return to the caller. The third instance causes a message to
display followed by an immediate return to the caller. The message is

NOTICE: kseg - insufficient memory to allocate pages pages -
system call failed

In addition, if the computer loses track of memory, the computer panics with the message
PANIC: kseg - ptmemall failed

ptmemall is an internal kernel function that allocates physical memory pages.

If insufficient memory is available, kseg will sleep waiting for available memory.

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”

malloc(D3X), mapinit(D3X), mapwant(D3X), mfree(D3X), sptalloc(D3X), sptfree(D3X),
unkseg(D3X)

SOURCE FILE

os/mmgt.c

Kernel Functions(D3X) D3X-81

kseg(D3X)

EXAMPLE

In a driver start(D2X) routine, a driver can supply its own private buffer area for buffering user data
using kseg, but the units of allocation must be given in terms of pages or clicks. If sufficient memory
is not available, a message is displayed on the system console, and the system is halted. Otherwise, a
space management map manages the allocation and deallocation request of the private buffer area.
The space management map must first be initialized with the number of map slots (line 15). The
space management map is used to administer the buffer in terms of bytes (allocated by kseg).
Therefore, compute the number of bytes in the pages (line 17). The allocated private buffer area and
its size is assigned to the space management map using (line 19).

1 #define XX MAPSIZE 12 /* In terms of slots */

2 #define XX_BUFSIZE 4 /* In terms of pages */

3 struct map xx_map[XX_MAPSIZE]; /* Space management map */
4 /* for a private buffer */

5

6 xx_start()

7 .

8 register caddr_t bp;

9 register int bytes;

10 if ((bp = kseg(XX_BUFSIZE) == 0) /* Allocate private buffer; if */

11 { /* insufficient memory buffer, display message & halt system */

12 cmn_err(CE_PANIC, " xx_start: kseg failed for %d page buffer allocation”,
13 XX_BUFSIZE);

14 }/* endif */

15 mapinit(xx_map, XX_MAPSIZE); /* Initialize space management map */

16 /* with number of slots in the map */

17 bytes = ctob(XX_BUFSIZE); /* Compute the number of bytes in */
18 /* the pages allocated by kseg */

19 mfree(xx_map, bytes, bp); /* Initialize space management map */

20 /* with total buffer area it isto */

21 /* manage */

22

Figure D3X—-26 kseg Allocates Memory Pages

D3X—82 BCI Driver Reference Manual

logmsg(D3X) [3B15 Computer and 3B4000 Computer Only]
NAME

logmsg — log an error message

SYNOPSIS

#include <sys/param.h>
#include <sys/types.h>
#include <sys/erec.h>
#include <sys/err.h>

logmsg(message)
char *message;

ARGUMENT

message A message of up to 256 characters enclosed in double quotes

DESCRIPTION

This function is used to place an error message in the /usr/adm/errfile error file that is accessible by
the errpt(1M) error report command. The message can be up to 256 characters long and must be
enclosed in double quotes (). logmsg provides a means of logging errors outside the range of
existing error types and when a console may not be available on the computer. This function is
frequently used in conjunction with cmn_err(D3X) to ensure that an error message is displayed and
retained for further analysis. (The number of characters in the string is determined by the EMSGSZ
constant defined in erec.h.) Messages over 256 characters are truncated.

logmsg automatically appends the message with a NULL character.

The following pieces of information are provided in the error message automatically:
® The error type (E_MSG)
B The time that the error occurred
® The BIC ID if the computer is a 3B4000 adjunct processor

logmsg puts the message in the error slot table (the errslot structure defined in err.r). The error
slot table consists of 8 slots on the 3B4000 MP or 3B4000 EADP. Immediately after the message is
placed in the table, the UNIX operating system error handler background program extracts the
message from the table and puts it into /usr/adm/errfile. Even on a fully loaded system, the
possibility of running out of error slots is minuscule. The message string is logged into the error siot
with the E_MSG error record type (general message to be logged) defined in erec.h.

Kernel Functions(D3X) D3X-83

logmsg(D3X) [3B15 Computer and 3B4000 Computer Only]

When logmsg. is called, any processes sleeping on &err.e.org are awakened and err.e_flags is set to
“not” E_SLP.

RETURN VALUE

None.
LEVEL
Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Reporting."”
cmn_err{D3X)

SOURCE FILE
iolerrlog.c
EXAMPLE

This example shows a use of logmsg.

1 /* Log error to /usr/adm/errfile */

2 logmsg("MYDRIVER: Invalid ioctl received”);
3 cmn_err(CE_NOTE,"MYDRIVER: Invalid ioctl received");

Figure D3X—27 logmsg — Logging an Error

D3X—84 BCI Driver Reference Manual

logstray(D3X) [3B15 Computer and 3B4000 Computer Only]

NAME
logstray — log a spurious interrupt
SYNOPSIS

#include <sys/param.h>
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/dir.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/utsname.h>
#include <sys/sysmacros.h>
#include <sys/elog.h>
#include <sys/edt.h>
#include <sys/erec.h>
#include <sys/systm.h>
#include <sys/map.h>
#include <sys/err.h>
#include <sys/inline.h>
#include <sys/iobuf.h>
#include <sys/dfdrv.h>

logstray(addr)
int addr;

ARGUMENT

addr the address of any problem source included in an error record. In an interrupt routine,

this argument can be the interrupt vector number.

Kernel Functions(D3X) D3X-85

logstray(D3X) [3B15 Computer and 3B4000 Computer Only]

DESCRIPTION

This function logs errors for which no logical reason can be found. This type of error is referred to as
a stray error. This function helps the driver developer define a unusual error type. An error record
header is built with the following elements from the errhdr structure in erec.h:

8 the E_STRAY label in the e_type member
B the current time in the e_time member

8 for 3B4000 computer Adjunct processors, the ABUS address is placed in the e_bicid
member

The error log is in /usr/adm/errfile and the errpt(1M) command is used to print the log.

Any background error logging programs waiting to read /dev/error are awakened. This function is
not part of the default set of kernel functions. Ensure that your system has created the current
operating system with the errlog.o object module.

RETURN VALUE

No value is returned. If memory cannot be allocated for the error log, logstray returns to the caller
without creating an error log and without passing any return value.

LEVEL

Interrupt only

SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Reporting.”
hdeeqd(D3X), hdelog(D3X)

'SOURCE FILE

iolerrlog.c

D3X-86 BCI Driver Reference Manual

longjm p(D3X)
NAME

longjmp — stop a system call and return the EINTR error message

SYNOPSIS

#include <sys/types.h>

void longjmp(env)
label_t env;

ARGUMENT

env the stack environment address

DESCRIPTION

This function returns control to a sane location (the address in n.u_gsav). u.u_gsav is set
automatically for the longjmp call when the driver is entered from a system entry point routine.

This function is a part of the kernel. It is not the same as the longjmp system call (part of the
setjmp(3C) call). Both the code and the number of arguments are different.

longjmp is useful when your code has entered many successive layers of subroutines and you wish to
return immediately to an upper layer. If an error occurs during processing in a subroutine, for
example, the normal exit method is to return a negative value, and have the calling subroutine detect
the error and set another negative return value, and so forth, until the first caller is made aware of
the error. longjmp provides a quick return to the user program that issued the call to the driver.

When the sleep(D3X) process is terminated prematurely by a signal, it is necessary to abort the
system call and return to a sane point in the user process. The kemel longjmp function provides this
capability by transferring control in the kernel back to the user process. The effect seen by the user is
the system call returns an error (error code EINTR in errno). Thus, when a process that called sleep
receives a signal, the sleep function does not normally return to the routine that called it, but executes
longjmp.

Drivers calling sleep must occasionally perform cleanup operations before longjmp is called. Typical
items that need cleaning up are locked data structures that should be unlocked when the system call is
finished. If the sleep priority argument is ORed with the defined constant PCATCH, the sleep
function does not call longjmp on receipt of a signal; instead, it returns the value 1 to the calling
routine. If the process that called sleep is awakened by an explicit wakeup(D3X) call rather than by
a signal, the sleep call returns 0 (zero).

Kernel Functions(D3X) D3X-87

longjmp(D3X)

The u.u_gsav area is always set up before a driver is called. Therefore, a driver can always use
longjmp with u.u_gsav to stop normal processing when an error is detected in the base level.

RETURN VALUE

None

LEVEL

Base Only (Do not call from an interrupt routine)
SOURCE FILE

mi/cswitch.s

EXAMPLE

" Any driver that waits for the completion of an /O request with a priority greater then PZERO (25)
can have the I/O request aborted upon receiving any signal. (PZERO is defined in param.h.)
However, some drivers, especially in communication networks, need to clear the device of the /O
operation before a stop can take place. This is accomplished by setting the PCATCH bit in the
priority field. If the return code value from sleep is equal to 1, then the wakeup is due to receiving a
signal (line 3). The driver can do the necessary cleanup code (replace line 5 with your cleanup code)
and stop the I/O request (line 6).

1 #define XX_PRIORITY ((PZERO + 1) |PCATCH) /* Can only catch */
2 /* signals with a priority > PZERO */

3 if (sleep(&event, XX _PRIORITY) == 1) /* If return from sleep */
4

{ /* is due to signal being sent to the process, do */
5 /* do necessary cleanup driver code */

6 longjmp(u.u_gsav); /* Stop system call I/O request */

7 } /* endif */

Figure D3X—28 Stopping a System Call

D3X—-88 BCI Driver Reference Manual

major(D3X)
NAME
major — return the internal major number from a device number

SYNOPSIS
#include <sys/types.h>
#include <sys/sysmacros.h>
int
major(dev)
dev_t dev;
ARGUMENT
dev internal device number (contains both the major number and the minor number)

DESCRIPTION

This macro extracts the internal major number from a device number. An internal major number is
returned only if your driver is compiled into an object file using the cc(1) -DINKERNEL option.

RETURN VALUE

The internal major number.
LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 3, "Drivers in the UNIX Operating System."
makedev(D3X), minor(D3X)

SOURCE FILE

sysmacros.h

Kernel Functions(D3X) D3X-—-89

major(D3X)

EXAMPLE

1 dev_tdev;

2 cmn_err(CE_NOTE, Driver Started. Internal Major# = %d,

3 Internal Minor# = %d",major(dev), minor(dev));

Figure D3X—29 The major Function

D3X-90 BCI Driver Reference Manual

makedev(D3X)

NAME

makedev — make a device number from an external major and external
minor device number

SYNOPSIS

#include <sys/types.h>
#include <sys/sysmacros.h>

dev_t
makedev(majnum, minnum);
int majnum, minnum;

ARGUMENTS

majnum major number

minnum minor number

DESCRIPTION

This macro creates a device number from an external major and external minor device number.
RETURN VALUE

The external device number (contains both the major number and the minor number).

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 3, "Drivers in the UNIX Operating System."”
major(D3X), minor(D3X)

Kernel Functions(D3X) D3X-91

makedev(D3X)

SOURCE FILE

sysmacros.h

EXAMPLE

1 register int i, j;
2 dev_t ddev;
3 ddev = makedev(j, idmkmin(i)); /*idmkmin is a driver routine */

Figure D3X—30 The makedev Function

D3X-92 BCI Driver Reference Manual

malloc(D3X)

NAME

malloc — allocate space from a private space management map

SYNOPSIS

#include <sys/map.h>

uint

malloc(mp, size)
struct map *mp;
int size;

ARGUMENTS

mp memory map from where the resource is drawn

size number of units of the resource

DESCRIPTION

Drivers may define private space management maps for allocation of memory space, in terms of
arbitrary units, using malloc. The system maintains the map structure by size and index, computed
in units appropriate for the memory map. For example, units may be byte addresses, pages of
memory, or blocks. The elements of the memory map are sorted by index, and the system uses the
size member to combine adjacent objects into one memory map entry. The system allocates objects
from the memory map on a first-fit basis. The normal return value is an unsigned integer set to the
value of m_addr from the map structure.

mallec allocates memory from a map; it does not allocate the map itself.
RETURN VALUE

Under normal conditions, malloc returns the address of the buffer (as an unsigned integer).
Otherwise, malloc function returns a 0 (zero) if all memory map entries are already allocated.

Kernel Functions(D3X) D3X-93

malloc(D3X)

LEVEL

Base or Interrupt (only if mapwant is not set)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."
dma_breakup(D3X), getsrama(D3X), getsramb(D3X), kseg(D3X), mapinit(D3X),
mapwant(D3X), mfree(D3X), sptalloc(D3X), sptfree(D3X), unkseg(D3X)

SOURCE FILE
os/malloc.c
EXAMPLE

A driver can supply its own private buffer area for storing user data. When an /O request is made,
the necessary user data buffer space can be allocated from the private buffer area by the means of a
space management memory map. If the space allocation cannot be satisfied, then the space want flag
is set (line 15). The driver waits for space to be returned to the space management memory map
(line 16). The data is copied from the user data area to the allocated buffer (line 21). If an invalid
address is detected in the user data area, the allocated buffer is released (line 24), and an error code
is returned. '

In the following example, the use of the spi*(D3X) function is inherent to the design of this driver.
It is not required by the kernel to protect a private map structure for general use.

1 #define XX_MAPPRIO (PZERO + 6)

2 #define XX_MAPSIZE 12

3 #define XX_BUFSIZE 2560

4 #define XX_MAXSIZE (XX_BUFSIZE / 4)

5 struct map xx_map[XX_MAPSIZE]; /* Private buffer space map */
6 char xx_buffer XX_BUFSIZE]; /* driver xx_ buffer area */

7 ..

8 register caddr_t addr;

9 registerint size;

10 size = min(u.u_count, XX_MAXSIZE); /* Break large I/O request */
11 /* into small ones */
12 oldlevel = spl4();

Figure D3X—31 Allocating Space from a Private Map (part I of 2)

D3X—-94 BCI Driver Reference Manual

malloc(D3X)

13 while((addr = (caddr_t)malloc(xx_map, size}) == NULL) /* Get buffer */

14 { /* if space is not available, then */

15 mapwant(xx_map)+ +; /* request a wakeup when space is */

16 sleep(xx_map, XX_MAPPRIO); /* returned. Wait for space; mfree */
17 /* will check mapwant and supply */

18 /* the wakeup call. */

19 } /* endwhile */
20 spix(oldlevel);

21 if (copyin(u.u_base, addr, size) == -1) /* Move data to buffer*/

2 /* 1f invalid address is found, */

23 oldlevel = spld();

24 mfree(xx_map, size, addr); /* return buffer to map */
25 spix(oldlevel);

26 u.u_error = EFAULT; /* and return error code */
27 return;

28 } /* endif */

Figure D3X—-31 Allocating Space from a Private Map (part 2 of 2)

Kernel Functions(D3X) D3X-95

m ap_init(D 3X)

NAME

mapinit — initialize a private space management map
SYNOPSIS

#include <sys/map.h>

mapinit(mp, mapsize)
struct map *mp;
int mapsize;

ARGUMENTS
mp memory map from where the resource is drawn

mapsize number of entries for the memory map table

DESCRIPTION

The driver must initialize the map structure by calling mapinit. Two memory map table entries are
reserved for internal system use and they are not available for memory map use. The mapinit macro
does not cause the memory map entries to be labeled available. This must be done through
miree(D3X) before objects can actually be allocated from the memory map.

Through the mapinit macro drivers may define private space management map for allocation of
memory space. The system maintains the memory map list structure by size and index, computed in
units appropriate for the memory map. Units may be byte addresses, pages of memory, or blocks.
The elements of the memory map are sorted by index. The system uses the size member so that
adjacent objects are combined into one memory map entry. The system allocates objects from the
memory map on a first-fit basis.

RETURN VALUE

None

D3X—-96 BCI Driver Reference Manual

mapinit{D3X)

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."
kseg(D3X), malloc(D3X), mapwant(D3X), mfree(D3X), sptailoc(D3X), sptfree(D3X),
unkseg(D3X) :

SOURCE FILE
map.h
EXAMPLE

A driver can supply its own private buffer area for buffering user data. A space management
memory map can be used to manage the allocation and deallocation request of the private buffer
area. The space management must first be initialized with the number of slots that are in the
memory map (line 6). The private buffer area that is managed by the space management memory
map is assigned to the memory map (line 8).

#define XX_MAPSIZE 12
#define XX_BUFSIZE 2560

N —

struct map xx_map{XX_MAPSIZE]; /* Private buffer for space map */
- char xx_buffer[XX_BUFSIZE]; /* Driver xx_ buffer area */

mapinit(xx_map, XX_MAPSIZE); /* Initialize space management map */
/* with number of slots in the map */
mfree(xx_map, XX_BUFSIZE, xx_buffer); /* Initialize map */
/* with total buffer area it is to manage */

O 00 N W

Figure D3X—-32 Initializing the map Structure

Kernel Functions(D3X) D3X—-97

mapwant(D3X)
NAME
mapwant — wait for free memory
SYNOPSIS
mapwant(vaddr)
unsigned int vaddr;
ARGUMENT
vaddr virtual address of the first available buffer
DESCRIPTION
This macro is called when a previous call to mallec(D3X) fails and the driver wishes to wait for a
free buffer to become available. (After a buffer is freed, the driver developer must call malloc
again.)
RETURN VALUE
None
LEVEL
Base Only (Do not call from an interrupt routine)
SEE ALSO
- BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
kseg(D3X), malloc(D3X), mapinit(D3X), mfree(D3X), sptalloc(D3X), sptfree(D3X),
unkseg(D3X)
SOURCE FILE

map.h

D3X—-98 BCI Driver Reference Manual

mapwant(D3X)

EXAMPLE

A driver can supply its own private buffer area for storing user data. When an /O request is made,
the necessary buffer space for the user data can be allocated from the private buffer area by the
means of a space management map using malloc. If the space allocation cannot be satisfied, then the
space want flag is set (line 15), and the driver waits for space to be returned to the space management
map (line 16).

#define XX_MAPPRIO (PZERO + 6)

#define XX_MAPSIZE 12

#define XX_BUFSIZE 2560

#define XX_MAXSIZE (XX_BUFSIZE / 4)

struct map xx_map[XX_MAPSIZE]; /* Map for a private buffer */
char xx_buffer[XX_BUFSIZE]; /* Driver xx_ private buffer */

register caddr_t addr;

register int size;

10 size = min(u.u_count, XX_MAXSIZE); /* Break large I/O request */
11 /* into small ones */

12 oldlevel = spld();

13 while((addr = (caddr_t)malloc(xx_map, size)) == NULL)

14 { /* Get a buffer, if space is not available, */

NeRNe SRR I e NV R S B S R

15 mapwant(xx_map)+ +; /* request a wakeup when space is */
16 sleep(xx_map, XX_MAPPRIO); /* returned. Wait. mfree */
17 /* will check mapwant and supply the wakeup call. */

18 } /* endwhile */
19 spix(oldievel);

Figure D3X—-33 mapwant — Waits for Memory

Kernel Functions(D3X) D3X-99

max(D3X)
NAME
max — return the larger of two integers

SYNOPSIS
max(intl, int2)

int intl, int2;

ARGUMENTS

intl, inr2 both arguments are integers to be compared
DESCRIPTION

This function returns the larger of two integers.
RETURN VALUE

The larger of the two numbers.

LEVEL

Base or Interrupt

SEE ALSO

min(D3X)

SOURCE FILE

miimisc.s

D3X—-100 BCI Driver Reference Manual

max(D3X)

EXAMPLE

1 extern int tthiwat[]; /* High water marks for cblock allocation base */
2 /* Baud rate (t_cflag & CBAUD) */

3 extern struct tty xx_tty(];

4 ...

5 register struct tty *tp = xx_tty[minor(dev)];

6 register int maxsize;

.Y

maxsize = max(u.u_count, tthiwat[tp->t_cflag & CBAUD]);
8 /* Get larger allowed buffer size */

Figure D3X—-34 The max Function

Kernel Functions(D3X) D3X-101

mfree(D3X)
NAME
mfree — free space back into a private space management map
SYNOPSIS
#include <sys/map.h>
mfree(mp, size, index)
struct map *mp;
int size, index;
ARGUMENTS
mp map pointer
size number of units being freed

index index of the first unit of the allocated resource

DESCRIPTION

This function releases space back into a private space management map. It is the opposite of
malloc(D3X), which allocates space that is controlled by a private map structure.

Drivers may define private space management buffers for allocation of memory space, in terms of
arbitrary units, using the malloc and mfree functions and the mapinit(D3X) macro. The drivers
must include the file map.h. The system maintains the memory map list structure by size and index,
computed in units appropriate for the memory map. For example, units may be byte addresses,
pages of memory, or blocks. The elements of the memory map are sorted by index, and the system
uses the size member so that adjacent objects are combined into one memory map entry. The system
allocates objects from the memory map on a first-fit basis. mfree frees up unallocated memory for

re-use.

D3X—-102 BCI Driver Reference Manual

mfree(D3X)

RETURN VALUE

Under normal conditions, no value is returned. Otherwise, if the m_addr member of the map
structure is returned as 0 (zero), the following waming message is displayed on the console

WARNING: mfree map overflow mp lost size items at index
Where

8 mp = the hexadecimal address of the map structure

| size = the decimal number of buffers freed

® index = the decimal address to the first buffer unit freed
LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."
kseg(D3X), malloc(D3X), mapinit(D3X), mapwant(D3X), sptalloc(D3X), sptfree(D3X),
unkseg(D3X)

SOURCE FILE

os/malloc.c

EXAMPLE

A driver can supply its own private buffer area for storing user data. When an I/O request is made,
the necessary user data buffer space can be allocated from the private buffer area by the means of a
space management memory map. If the space allocation cannot be satisfied, then the space want flag
is set (line 15), and the driver waits for space to be returned to the space management memory map
(line 16). The data is copied from the user data area to the allocated buffer (line 20). If an invalid
address is detected in the user data area, the allocated buffer is released (line 23), and an error code
is returned.

Kernel Functions(D3X) D3X-103

mfree(D3X)

27

#define XX_MAPPRIO (PZERO + 6)
#define XX_MAPSIZE 12

#define XX_BUFSIZE 2560

#define XX_MAXSIZE (XX_BUFSIZE / 4)

struct map xx_map[{XX_MAPSIZE]; /* Private buffer map */

char xx_buffer[XX_BUFSIZE]; /* Driver xx_ buffer area */

register caddr_t addr;
register int size;

size = min(u.u_count, XX_MAXSIZE); /* Break large I/O request */

/* into small ones */

oldlevel = spl4(); ‘

while((addr = (caddr_t)malloc(xx_map, size)) == NULL)

{ /* Get a buffer, if space is not available, */
mapwant(xx_map)+ +; /* request wakeup when space is */
sleep(xx_map, XX_MAPPRIO); /* returned. Wait. mfree */
/* will check mapwant and supply the wakeup call. */

} /* endwhile */ ’

splx(oldlevel);

if (copyin(u.u_base, addr, size) == -1)/* Move data to buffer*/
{ /* If invalid address is found, */
oldlevel = spl4();
mfree(xx_map, size, addr); /* return buffer to map */
splx(oldlevel);
u.u_error = EFAULT; /* and return error code */
return;
}/* endif */

Figure D3IX—-35 Returning Buffer to Space Management Map

D3X—-104 BCI Driver Reference Manual

min(D3X)
NAME
min — return the lesser of two integers

SYNOPSIS

min(int!, int2)
int intl, int2;

ARGUMENTS

intl, int2 both arguments are integers to be compared

DESCRIPTION

This function returns the lesser of two integers.

RETURN VALUE

The lesser of the two numbers.

LEVEL

Base or Interrupt
SEE ALSO
max(D3X)
SOURCE FILE

mi/misc.s

EXAMPLE

The following example illustrates a use of min.

LEEC

size = min(u.u_count, cfreelist.c_size);

/% Get smaller buffer size */

Kernel Functions(D3X) D3X-105

minor(D3X)
NAME

minor — return the internal minor device number from a device number

SYNOPSIS

#include <sys/types.h>
#include <sys/sysmacros.h>

int minor(dev)

dev_t dev;

ARGUMENT
dev device number (contains both the internal major and the internal minor device numbers)
DESCRIPTION

This macro returns the internal minor device number. (An internal minor number is returned only if
your driver is compiled into an object file with using the cc(1) -DINKERNEL option.)

RETURN VALUE

The internal minor number.
LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 3, "Drivers in the UNIX Operating System."
major(D3X), makedev(D3X)

SOURCE FILE

sysmacros.h

D3X—-106 BCI Driver Reference Manual

minor(D3X)

EXAMPLE

In the following example, the internal minor device number is defined by the driver writer. It
contains the number of physical devices controlled by the driver; the physical location of the device;
and the possible number of subdevices.

The internal minor number is extracted from the device number (line 14) and is used for the
following:

B accesses the device logical structure, such as a tty structure
® determines if the physical device slot is equipped

B gets the address of the device registers

1 struct device /* Physical device registers layout */

2

3 int control; /* Physical device control word */

4 int status; /* Physical device status word ¥/

5 short recv_char; /* Receive character from device */
6 short xmit_char; /* Transmit character to device */
7 }; /* end device */

8 extern struct device xx_addrf]; /* Physical device registers location */
9 extern int xx_cnt; /* Number of physical devices */
10 extern struct tty xx_tty[];

11

12 register struct tty *tp = xx_tty[minor(dev)]; /* Get device’s tty struct */
13 register struct device *1p;

14 if ((minor(dev) >> 3) > xx_cnt) {/* I device number is out */
15 u.u_error = ENXIO; /* equipped device range, return error*/
16 return;

17 } /* endif */

18 rp = &xx_addr[{minor(dev) >> 3]; /* Get device registers */

Figure D3X—-36 The minor Function

Kernel Functions(D3X) D3X-107

nodev(D3X)

NAME

nodev — indicate a driver routine is missing

SYNOPSIS

nodev()

{
}

DESCRIPTION

u.u_error = ENODEYV;

This function is an internal function that marks the point(s) in the cdevsw(D3X) or bdevsw(D3X)
where a driver’s primary routine was omitted. The description of this function is provided for
informational purposes, but the nodev function should not be used by the driver developer.

RETURN VALUE

Each time nodev is accessed, u.u_error is set to ENODEYV.

LEVEL

Not called from a driver.

SOURCE FILE

os/subr.c

D3X—-108 BCI Driver Reference Manual

nulldev(D3X)

NAME

nulldev — perform no operation
SYNOPSIS

nulldev()

{
}

ARGUMENT

none

DESCRIPTION

This function indicates that a driver routine is not necessary for this particular operation (for
example, driver open(D2X) routine for /dev/kmem.

RETURN VALUE

None

LEVEL

Not called from a driver.

SOURCE FILE

os/subr.c

Kernel Functions(D3X) D3X-109

physck(D3X)
NAME
physck — verify the requested block exists
SYNOPSIS
#include <sys/types.h>
physck(nblocks, rwflag)

daddr_t nblocks;
int rwflag;

* ARGUMENTS

nblocks number of physical blocks in the partition

rwflag flag indicating whether the access is a read (B_READ) or a write (B_WRITE)

DESCRIPTION

physck is used in the block driver read(D2X) and write(D2X) routines to verify the user-requested
block exists on the requested device.

The driver read and write routines are called through the cdevsw table to perform unbuffered I/O;
that is, data is transferred directly between the device and user data space. The kemel provides
physck to help the driver perform unbuffered I/O operations while maintaining the buffer header as
the interface structure. This function is called by both the driver read routine and the driver write
routine. The physck and physio(D3X) functions perform almost all the work needed to be done by a
block driver read and write routines.

If nblocks would take a disk read over the end of a disk partition (physck calculates this value from
information in the user structure), u.u_count is decreased by the number of bytes past the end of
the partition and the read request is truncated accordingly.

If a write request is calculated by physck to extend beyond the nblocks boundary, u.u_error is set to
ENXIO and 0 is returned.

NOTE: physck calls spl0:=This may alter previously set spl* calls in your driver.
RETURN VALUE

Under normal conditions, 1 is returned indicating that the block exists. Otherwise, a 0 (zero) is
returned and u.u_error is set to ENXIO. '

D3X—-110 BCI Driver Reference Manual

physck(D3X)

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
physio(D3X)

SOURCE FILE
os/physio.c
EXAMPLE

In the following example, direct /O is requested, and a test is made to determine if the I/O request is
in the limits of the subdevice or the device partition (line 20). If the request is within the limits, the
direct transfer of data to or from the user data area is scheduled with the device strategy(D2X)
routine through the physio function (line 22).

Kernel Functions(D3X) D3X-111

physck(D3X)

1 struct dsize {

2 daddr_t nblocks; /* Disk partition block number */
3 int cyloff; /* Starting cylinder # of partition */
4 } DISKsizes[16] = {

5 20448, 21, /* partition 0 = cyl 21-305 */
6 12888, 126, /* " 1= cyl 126-305 */
7 9360, 175, /* " 2= cyl175-305 */
8 7200, 205, /* " 3 =cyl 205-305 */
9 3600, 255, /* " 4= cyl 255-305 */
10 21816, 3, /* " S=c¢cyl2-305 */
11 21888, 1, /* " 6=cyl1-305 */
12 72, 1, /* " T=g¢yll */

13 k

14 DISKread(dev) /* Direct read request from a block device */
15 dev_t dev;

16 {

17 register int nblks;

18 nblks = DISKsizes[minor(dev) & 0x7].nblocks;

19 /* Get number of blocks in the partition */

20 if (physck(nblks, B_READ)) /* If read request in limits of the */
21 { /* disk partition, schedule a direct /O */

22 physio(DISKstrategy, 0, dev, B_READ); /* transfer user area */

Figure D3X—37 physck — Verifies Block Exists (part I of 2)

D3X~—-112 BCI Driver Reference Manual

physck(D3X)

23
24

25
26
27
28

29
30
31
32
33
34
35

36

} /* endif */
} /* end DISKread */

DISKwrite(dev) /* Direct write request to a block device */
dev_t dev;

{

register int nblks;

nblks = DISKsizes[minor(dev) & 0x7].nblocks;
/* Get number of blocks in the partition */
if (physck(nblks, B_.WRITE)) /* If write request in limits */
{ /* of the disk partition, then */
physio(DISKstrategy, 0, dev, B_WRITE); /* schedule direct */
/* VO transfer from the user data area */
} /* endif */

}/* end DISKwrite */

Figure D3X—37 physck — Verifies Block Exists (part 2 of 2)

Kernel Functions(D3X) D3X-113

physio(D3X)
NAME
physio — call strategy(DD2X) routine to process block interface 'O
SYNOPSIS
#include <sys/types.h>
physio(strat, bp, dev, rwflag)
int (*strat)();

struct buf bp*;
int dev, rwflag;

ARGUMENTS

strat address of the driver strategy routine

bp address of a buffer header. When called from a driver read(D2X) or write(D2X)
routine, this argument is always 0 (zero). The physie function supplies the buf(D4X)
header.

dev device number. The external device number received as an argument to the driver read

or write routine should be used here. The translation to an internal device number
through the minor(D3X) macro should be taken care of by the strategy routine.

rwflag flag indicating whether the access is a read (B_READ) or a write (B_WRITE). Note
that B_WRITE cannot be directly tested as it is 0.

DESCRIPTION

The physie function sets up a buiffer header describing the user data space. It then locks only the
pages you need in memory, calls the driver strategy routine, and calls sleep(D3X) to wait on the
address of the buffer header. When the transfer is complete, physio is awakened by the driver
interrupt level through iodone(D3X). It updates information on the user(D4X) data structure and
returns to the driver read or write routine.

The block driver read and write routines are called through the cdevsw table to perform unbuffered
I/O; that is, data is transférfed directly between the device and user data space. The kernel provides
physio to help the driver perform unbuffered I/O while maintaining the buffer header as the interface
structure. physio is called by the driver read and write routines. With the physck(D3X) function,
these two functions perform almost all the work to be done by a block driver’s read and write
routines.

D3X—114 BCI Driver Reference Manual

physio(D3X)

physio automatically handles memory page locking to ensure that the pages impacted by I/O are not
swapped out. In addition, physie provides automatic page fault checking during I/O.

NOTE: physio calls spl0. This may alter previously set spl* calls in your driver.

RETURN VALUE

Under normal conditions, no value is returned. Otherwise, physio returns any error value that
occurred in u.u_error. If an error occurred and b_error contains 0 (zero), u.u_error is set to EIO.
In addition, an error in direct memory access (DMA) causes u.u_error to be set to EFAULT.
LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
physck(D3X), strategy(D2X)

SOURCE FILE
os/physio.c
EXAMPLE

Refer to the example for physck(D3X) for an example of physio.

Kernel Functions(D3X) D3X-115

psignal(D3X)

NAME

psignal — send signal to a process
SYNOPSIS

#include <sys/signal.h>

psignal(p, signal)
struct proc *p;
int signal;
ARGUMENTS
p pointer to the proc(D4X) structure of the process being signaled

signal signal sent; signal must be in the range of 1 to (NSIG-1). NSIG and valid signals are
listed in signal.h.

DESCRIPTION

This function is called by drivers to send a signal to a single process. psignal sends a signal to the
process whose proc structure address is passed as the argument p. If the process being sent the
signal has called sleep(D3X) to wait at a priority higher than PZERO, psignal makes the process
executable (if PZERO has not been ORed with PCATCH). PZERO is defined in param.h and
p_pri is explained on the proc(D4X) structure manual page.

Some drivers need to signal processes of the occurrence of certain events. For example, when a user
presses the key, the driver controlling the device that receives the must signal all
processes associated with the device that the key has been received.

RETURN VALUE

None

D3X—-116 BCI Driver Reference Manual

psignal(D3X)

LEVEL

Base or Interrupt
SEE ALSO
signal(D3X)
SOURCE FILE
oslsig.c
EXAMPLE

In the following example, a base level routine detects the telephone carrier to a modem has stopped
(line 15). The routine signals this event to the process (line 17).

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */

short modem_statusy/* Modem carrier (upper 8 bits) & */
/* ring (lower 8 bits) status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */

}; /* end device */ '

=R JBEN B e NNV, BN S U I S B

10 extern struct device xx_addr[]; /* Physical device register location */

12 register struct device *rp = &xx_addr{minor(dev) >> 3]; /* Get device regs */
13 registerint port = minor(dev) & 0x07; /* Get port number */

15 if ((rp->modem_status & (0x0100 << port)) == 0)

16 { /* If carrier to the modem has been dropped, */

17 psignal(u.u_procp, SIGHUP); /* send hangup signal to process */
18 retum;

19 }/* endif */

“* ~Figure D3X—38 Sending a Hangup Signal to a Process

Kernel Functions(D3X) D3X-117

putc(D3X)

NAME

putc — put character on a clist(D4X)
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

putc(c, cip)
char c;
struct clist *clp;

ARGUMENTS

¢ character to be placed ona clist

clp pointer to the clist data structure

DESCRIPTION

The putc function places a character onto the specified clist. If a new cblock(D4X) is needed
because there are none allocated for the clist or because the last clist is full, putc retrieves a
new cblock from the cfreelist(D4X).

4

™Y k 8¢ 0
RETURN VALUE

Under normal conditions, pute links the cblock to the clist, places the character in the
cblock, and increases the clist character count. Otherwise, if the cfreelist is empty, putc
. returns a -1. This tells the calling process it must call sleep(D3X) to wait on the cfreelist.

LEVEL

Base or Interrupt

D3X—-118 BCI Driver Reference Manual

putc(D3X)

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."”
clist(D4X), gete(D3X), getch(D3X), getcf(D3X), putch(D3X), putcf(D3X)

SOURCE FILE
iolclist.c
EXAMPLE

The following example shows data can be moved one byte at a time between the user data area and a
clist using putc. As long as there is data in the user data area, obtain the next byte (line 7). If
the user area contains an invalid address, fubyte returns an error code. Otherwise, add the byte to
the last cblock in the clist (line 12).

extern struct tty xx_tty(];

1
2
3 register struct tty *tp = &xx_tty[minor(dev)];
4 registerint c;

5 while(u.u_count > 0) /* While there is data in the user data area, */

6

7 if ((c = fubyte(u.u_base++)) == -1) /* Get byte from user data */
8 { /* area. If an invalid address is found, */

9 u.u_error = EFAULT; /* return error code */

10 return;

1 } /* endif */

12 putc(c, &tp->t_outq); /* Add byte to output clist */

13 u.u_count--; /* Update number of bytes remaining */

14 } /* endwhile */

Figure D3X—39 One Byte Data Move

Kernel Functions(D3X) D3X-119

putcb(D3X)

NAME

putcb — link a cblock(D4X) to the clist(D4X)
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

putcb(cbp, cip)
struct cblock *chp;
struct clist *clp;

ARGUMENTS
cbp pointer to cblock data structure
clp pointer to clist data structure

DESCRIPTION

The putcb function is passed as arguments of a pointer to a ¢block and a pointertoa clist. It
links the cblock to the clist and increases the character count in the ¢list head by the
number of the characters in the cblock.

RETURN VALUE

putcb always returns a 0 (zero).

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”

cblock(D4X), clist(D4X), getc(D3X), getch(D3X), getcf(D3X), pute(D3X), putef(D3X)

i

D3X—120 BCI Driver Reference Manual

putchb(D3X)

SOURCE FILE

iolclist.c

EXAMPLE

The following example shows data can be moved in a complete or a partial cblock between a user
data area and a clist using putcb. As long as there is data in the user data area, obtain a
cblock worth of information (line 8).

Get a free cblock from the cfreelist(D4X) (line 10). If the cfreelist is empty, set the
cblock want flag and wait for a free cblock (line 13). Copy the data from the user data area to
the allocated cblock (line 16). If an invalid address is detected in the user data area, return the
cblock to the cfreelist (line 18) and return an error code. Otherwise, change the input index
c_last to the number of the characters in cblock (line 22). Change the output index ¢_first to
show that no characters have been removed from the cblock (line 24). Add the cblock to the
end of the clist (line 26). The pointer to the user data area is advanced to the next starting byte
of data to be copied (line 27), and the remaining byte count is updated (line 28).

1 extern struct chead cfreelist;
2 extern struct tty xx_tty[];

3 register struct tty *tp = &xx_tty[minor(dev)};
4 register struct cblock *cp;
5 register int size;

6 while(u.u_count >= 0) /* While there is data in the user data area, */

7 A

8 size = min(u.u_count, cfreelist.c_size); /* Get smaller buffer size */
9 oldlevel = spl4();

10 while((cp = getcf()) == NULL) /* Get free cblock from freelist */
11 { /* I freelist is empty, then *

12 cfreelist.c_flag++; /* set cblock want flag */

13 sleep(&cfreelist, TTPRIO); /* and wait for a free cblock */

14 } /* endwhile */
15 stpx(oldlevel);

Figure D3X—40 The putcb Function (part / of 2)

Kernel Functions(D3X) D3X-121

putch(D3X)

16
17
18
19
20
21
22
23
24
25
26
27
28
29

if (copyin(u.u_base, cp->c_data, size) == -1) /* Copy data from */
{ /* user data area to allocated cblock */
putcf(cp); /* If an invalid address is detected, */
u.u_error = EFAULT; /* return cblock to cfreelist */
return; /* and return an error code */
} /* endif */
cp->c_last = size; /* Record the number of bytes stored in the */
/* cblock */
cp->c_first = 0; /* Show that none of the bytes have been */
/* removed from the cblock */
putcb(cp, tp->t_outq); /* Link cblock to output queue */
u.u_base += size; /* Update pointer to user data area */
u.u_count -= size; /* Update number bytes remaining */

} /* endwhile */

Figure D3X~40 The putcb Function (part 2 of 2)

D3X~-122 BCI Driver Reference Manual

putcf(D3X)
NAME
putcf — put cblock(D4X) on free list
SYNOPSIS
putcf(cbp)
struct cblock *cbp;
ARGUMENT
cbp pointer to cblock data structure
DESCRIPTION
A pointer to a cblock is passed to the putcf function. The putef function returns the cblock to
the cfreelist(D4X). The function also awakens any processes that called sleep(D3X) to wait on
the cfreelist.
RETURN VALUE
None
LEVEL
Base or Interrupt
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
cblock(D4X), gete(D3X), getcb(D3X), getcf(D3X), pute(D3X), putch(D3X)

SOURCE FILE

iofclist.c

Kernel Functions(D3X) D3X-123

putcfiD3X)

EXAMPLE

The following example shows data can be moved in complete cblocks between a clist(D4X)
and a user data area. As long as there is space in the user data area, and there are blocks present in
the clist, obtain the first cblock in the clist (line9). Compute the bytes in the c¢block
and copy the bytes to the user data area (iomove(D3X)). Return the empty cblock to the
cfreelist (line 18). If an invalid address is detected, the data transfer (line 14) returns an error
condition. '

extern struct chead cfreelist;
extern struct tty xx_tty(];

register struct tty *tp = &xx_tty[minor(dev)];
register struct cblock *cp;
register int i,

A R W=

7 while(u.u_count >= cfreelist.c_size) /* While user data area */

8 { /* has room for an entire cblock */

9 if({cp = getcb(&tp->t_canq)) == NULL) /* get an input cblock. */
10 return; /* If clist is empty, return */

11 /* endif */

12 i = cp->c_last - cp->c_first; /* Get number char stored in cblock */
13 /* Copy data to user */

14 copyin (u.u_base, (caddr_t)&cp->c_data[cp->c_first), i);

15 u.u_base += i, /*Increment virtual base addr */

16 u.u_offset += 1i; /*Increment file offset */

17 u.u._count -= i; /*Decrement bytes not transferred */

18 putcf(cp); /* Return empty cblock to the cfreelist */

19 if (u.u_error != 0) /* If invalid address detected ~ */

20 retum; /* during data transfer, return */

21 /* endif */

22} /* endwhile */

Figore D3X—-41 Complete cblock Data Move

D3X-124 BCI Driver Reference Manual

signal(D3X)

NAME

signal — send signal to process group
SYNOPSIS

#include <sys/signal.h>
signal(pgrp, signal)
int pgrp, signal;
ARGUMENTS
pgrp identification number of the process group being signaled

signal signal to send to the process group; refer to signal.h for a list of the appropriate signal
values

DESCRIPTION

Some drivers need to signal processes on the occurrence of certain events. For example, when a user
presses the key, the driver controlling the device that receives the character must signal all
processes associated with the device that was received. The kernel provided functions, signal
and psignal(D3X), are used by drivers for this purpose. The signal function is called to send signals
to all the processes associated with a certain process group. All signals are defined in the system
header file signal.h.

RETURN VALUE
None

LEVEL

Base or Interrupt
SEE ALSO

psignal(D3X) . -

Kernel Functions(D3X) D3X-—-12§

signal(D3X)

SOURCE FILE
os/sig.c
EXAMPLE

In a terminal receive interrupt routine (rint(D2X)), data is retrieved from the device receive
character register. The data word contains the port that transmitted the character, and is used to
locate the corresponding tty(D4X) structure.

If the received data word is marked with a framing error (the data is not received correctly), but the
character portion is binary 0’s (zeros), this signifies a key was pressed (line 22). Therefore,
send an interrupt signal to all processes in the process group (line 24).

struct device /* Physical device register location */

{
int control; /* Physical device control word */
int status; /* Physical device status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */

}; 7* end device */

NN RN

8 extern struct tty xx_tty[]; /* Logical device structure */
9 extern struct device xx_addr{]; /* Physical device registers */

10 extern int xx_cnt; /* Physical device number */
11 ...

12 xx_rint(board)

13 int board; /* The hardware board causing interrupt */
14 {

15 register struct device *rp = xx_addr[board]; /* Get device registers */
16 register struct tty *tp;
17 register int ¢, port;

18 while((c = rp->recv_char) & DATAVALID) != 0) /* While valid data */
19 { /* in the input register, retrieve it */

20 port = (c >> 8) & 0x7; /* Get terminal’s port number */

21 tp = &xx_tty[(board << 3) & port]; /* Get corresponding structure */

Figure D3X—42 Sending Signal to Process Group (part [of 2)

D3X~—-126 BCI Driver Reference Manual

signal(D3X)

22
23
24
25
26
27
28
29

if ((c & FRERROR) !=0 && (c & Oxff) == 0) /* If BREAK sent, */

{ /* send an INTERRUPT signal to all processes */
signal(tp->t_pgrp, SIGINT); /* in terminal group and throw */
ttyflush(tp, (FREAD | FWRITE)); /* away input and output data.*/

continue;
} 1* endif */
} /* endwhile */

Figure D3X—-42

Sending Signal to Process Group (part 2 of 2)

Kernel Functions(D3X) D3X-127

sleep(D3X)

NAME

sleep — suspend process activity pending execution of an event

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>

sleep(event, priority)
caddr_t event;
int priority;

ARGUMENTS
event address (signifying an event) for which the process will wait to be updated

priority priority value that is assigned to the process when it is awakened. If priority is ORed
with the defined constant PCATCH, the sleep function does not call lengjmp(D3X) on
receipt of a signal. Instead, it returns the value 1 to the calling routine.

DESCRIPTION

This function suspends execution of a process to await certain events such as reaching a known system
state in hardware or software. For instance, when a process wants to read a device and no data is
available, the driver may need to call sleep to wait for data to become available before returning to
the kernel. This causes the kernel to suspend executing the process that called sleep and schedule
another process. The process that called sleep can be restarted by a call to the wakeup(D3X)
function with the same event specified as that used to call sleep.

A driver(with data stored in local variables) may call sleep while waiting for an event to occur.
Make sure another process will not interrupt the driver and overwrite the local variables.

The event address used when calling sleep should be the address of a kernel data structure or one of
the driver’s own data structures. The sleep address is an arbitrary address that has no meaning except
to the corresponding wakeup function call. This does not mean that any arbitrary kemel address
should be used for sleep. Doing this could conflict with other, unrelated sleep/wakeup operations in
the kernel. A kernel address used for sleep should be the address of a kernel data structure directly
associated with the driver I/O operation (for example, a buffer assigned to the driver).

A driver should never use the address of the user(D4X) structure for sleep.

Before a process calls sleep, the driver usually sets a flag in a driver data structure indicating the
reason why sleep is being called.

D3X—-128 BCI Driver Reference Manual

sleep(D3X)

The priority argument, called the sleep priority, is used for scheduling purposes when the process
awakens. This parameter has critical effects on how the process that called sleep reacts to signals.
The sleep priorities range from 0 to 39, where higher numerical values indicate lower priority levels.
If the numerical value of the sleep priority is less than or equal to the constant PZERO (generally set
to 25 and defined in the param.h header file), then the sleeping processes will not be awakened by a
signal. However, if the numerical value is greater than PZERO (values 26 to 39), the system
awakens the process that called sleep prematurely (that is, before the event on which sleep was called
occurred) on receipt of a non-ignored signal. it returns the value 1 to the calling routine.

To pick the correct sleep priority, base your decision on whether or not the process should be
awakened on the receipt of a signal. If the driver calls sleep for an event that is certain to happen,
the driver should use a priority numerically less than PZERO. (However, you should only use
priorities less than or equal to PZERO if your driver is crucial to system operation.)

If the driver calls sleep while it awaits an event that may not happen, use a priority numerically
greater than PZERO. An example of an event that may not happen is the arrival of data from a
remote device. When the system tries to read data from a terminal, the terminal driver might call
sleep to suspend the current process while waiting for data to arrive from the terminal. H data never
arrives, the sleep call will never be answered. When a user at the terminal presses the key or
hangs up, the terminal driver interrupt handler sends a signal to the reading process, which is still
executing sleep. The signal causes the reading process to finish the system call without having read
any data. If sleep is called with a priority value that is not awakened by signals, the process can be
awakened only by a specific wakeup call. If that wakeup call never happened (the user hung up the
terminal), then the process executes sleep until the system is rebooted.

Drivers calling sleep must occasionally perform cleanup operations before longjmp is called. Typical
items that need cleaning up are locked data structures that should be unlocked when the system call
completes. This is done by ORing priority with PCATCH and executing sleep. If sleep returns a 1,
then you can cleanup any locked structures and then call longjmp to return to the address in
u.u_gsav (and automatically set u.u_error to EINTR).

CAUTION: If sleep is called from the driver strategy(D2X) routine, you should OR the priority
argument with PCATCH or select a priority of PZERO or less. Should neither be
used, catastrophic results could occur if sleep ever needed to call longjmp (since the
state of the user structure is not stable in the strategy routine).

RETURN VALUE

If the sleep priority argument is ORed with the defined constant PCATCH, the sleep function does
not call longjmp on receipt of a signal; instead, it returns the value 1 to the calling routine. If the
process put in a wait state by sleep is awakened by an explicit wakeup call rather than by a signal,
the sleep call returns 0 (zero).

Kernel Functions(D3X) D3X-129

sleep(D3X)

LEVEL
Base Only (Do not call from an interrupt routine)
SEE ALSO

BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events."
delay(D3X), iodone(D3X), iowait(D3X), timeout(D3X), ttywait(D3X), untimeout(D3X),
wakeup(D3X)

SOURCE FILE

os/sip.c

EXAMPLE

Sometimes a driver must suspend the execution of the current process while it waits for the
availability of a hardware or software resource. When a request is made for a buffer area in a private
space management memory map (line 9), and the space allocation cannot be satisfied, the space want
flag is set (line 11). The driver waits for space to be returned to the space management memory map
(line 12).

1 struct map xx_map{XX_MAPSIZE]; /* Private buffer map */

2 char xx_buffer{XX_BUFSIZE]; /* Driver xx_ private buffer area */

30 ..

4 register caddr_t addr;

5 register int size;

6 size = min(u.u_count, XX_MAXSIZE); /* Break large I/O request into */
7 /* small ones */

8 oldlevel = spl4();

9 while((addr = (caddr_t)malloc(xx_map, size)) == NULL) /* Get buffer */
10 { /* If space is not available, request a wakeup */

11 mapwant(xx_map)+ +; /* when space is returned */

12 sleep(xx_map, XX_MAPPRIO); /* Wait for space; mfree */
13 /* will check mapwant and supply */

14 /* the wakeup call. */

15 } /* endwhile */
16 spix(oldlevel);

T

Figure D3X—43 sleep Suspends Process Activity

When a request is made for a cblock (line 2), and the cfreelist is empty, set the cblock
want flag. The driver waits for a free cblock (line 5), as shown below.

D3X-130 BCI Driver Reference Manual

sleep(D3X)

~N O W -

oldlevel = spl4();

while((cp = getcf()) == NULL) /* Get free cblock from freelist */

{ /* 1f freelist is empty, */
cfreelist.c_flag+ +; /* set cblock want flag */
sleep(&cfreelist, TTIPRI); /* and wait for a free cblock */

} /* endwhile */

splx(oldievel);fl

Figure D3X~44 Driver Waiting for a Free cblock

Kernel Functions(D3X) D3X-131

sleep(D3X)

~ In a driver open(D2X) routine, when a terminal device does not have carrier from a modem (line
24), the driver waits for carrier to be established (line 27), as shown below.

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short modem_statusy/* Modem carrier (upper 8 bits) */
/* and ring (lower 8 bits) status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; /* end device */

O 00N W AWM~

10 extern struct device xx_addr[]; /* Physical device register location */
11 extern struct tty xx_tty[]; /* Logical device structure location */

13 register struct tty *tp = &xx_tty[minor(dev)];
14 register struct device *rp = &xx_addr{minor(dev) >> 3]; /* Get device regs */
15 register int port = minor(dev) & 0x07; /* Get port number */

17 oldlevel = spl6();
18 if ((rp->modem_status & (0x0100 << port)) != 0) /* If carrier */

19 { /* to the modem */

20 tp->t_state = CARR_ON; /* indicate carrier established */
21 } else {

22 tp->t_state &="CARR_ON; /* else indicate carrier dropped */

23 } /* endif */

24 while((tp->t_state & CARR_ON) == 0) /* While carriernot */

25 { /* established, indicate driver */
26 tp->t_state |= WOPEN; /* waiting for carrier */
27 sleep((caddr_t)&tp->t_canq, TTIPRI); /* wait for carrier */

28 } /* endwhile */
29 spix(oldlevel);

Figure D3X—45 Driver Waiting for a Carrier

D3X—132 BCI Driver Reference Manual

spl*(D3X)
NAME

spl — block/allow interrupts

SYNOPSIS

#include <sys/inline.h>

int oldlevel;
oldlevel = spl0();
oldlevel = spll();
oldlevel = spld();
oldlevel = spl5();
oldlevel = spl6();
oldlevel = spl7();
oldlevel = splhi();
oldlevel = splni();
oldlevel = splpp();
oldlevel = splstrm();
oldlevel = spltty();

splx(oldievel)
int oldlevel;

ARGUMENT

oldlevel last set priority value (only splx has an input argument)

DESCRIPTION

When a process is executing code in a driver, the system will not switch context from that process to
another executing process unless it is explicitly told to do so by the driver. This protects the integrity
of the kernel and driver data structures. However, the system does allow devices to interrupt the
processor and handle these interrupts immediately.

The integrity of system data structures would be destroyed if an interrupt handler were to manipulate
the same data stryctures as a process executing in the driver. To prevent such problems, the kernel
provides the spl* functions allowing a driver to set processor execution levels, prohibiting the
handling of interrupts below the level set.

The selection of the appropriate spl* function is important. The execution level to which the
processor is set must be high enough to protect the region of code; but this level should not be so high
that it unnecessarily locks out interrupts that need to be processed quickly. A hardware device is
assigned to one of two interrupt priority levels depending on whether it is a character device or a

Kernel Functions(D3X) D3X-133

spl*(D3X)

block device. By using the appropriate spl* function, a driver can inhibit interrupts from its device
or other devices at the same or lower interrupt priority levels. -

When sleep(D3X) has been called to wait on the cfreelist(D4X) or fora cblock(D4X), use
spld, spl3, or spltty. When you are protecting a driver from interrupting itself, use spl6é for block
drivers, or spld, splS, or spitty for a character driver.

The specific interrupt priority levels (Table D3X-3) for each computer are (these values are defined
in mi/misc.s and additionally for the 3B4000 computer and adjunct processors in inline.h).

Table D3X—4 spl Interrupt Priority Levels

3B2 and 3BI1S and
spl* SBC | 3B4000 ACP | 3B4000 MP | 3B4000 EADP | Purpose
spl0 0 0 0 0 Allow all interrupts to be serviced
spil 5 8 1 8 Mask context and process switch

interrupts

spld4 8 10 7 11 Mask character device interrupts
spls 10 10 7 11 Mask character device interrupts
splé 16 12 10 11 Mask block device interrupts
spl7 15 15 15 15 Mask all interrupts
splhi 15 15 15 15 Mask all interrupts
splnit 12 12 10 - Mask network interface interrupts
splppt 10 10 -- 11 Mask ports board interrupts
splstrm - 8 8 8 Mask STREAMS device interrupts
spltty 13 13 7 7 Mask TTY device interrupts

t

Values for spini and spipp do not apply to the SBC.

The spl* command changes the state of the Processor Status Word (PSW). The PSW stores the

current processor execution level, in addition to information relating to the operating system
“internals. The spl* commands block out interrupts that come in at a priority level at or below the

interrupt priority level as shown in Table D3X-4.

The spl* functions are as follows

spl0 Restores all interrupts when executing on the base level. A driver routine may use spl0
when the routine-has been called through a system call; that is, if it is known that the
level being restored is indeed at base level.

spil Used in context and process switch drivers to protect critical code.

spl4 Used in character drivers to protect critical code.

D3X-~134 BCI Driver Reference Manual

spl*(D3X)

spls Used in character drivers to protect critical code (this function has the same effect as
spl4.

splé Used in block drivers to protect critical code.

spl7 Used in any type of driver to mask out all interrupts including the clock, and should be
used very sparingly.

splhi Used in any type of driver to mask out all interrupts including the clock, and should be

used very sparingly. (This function is identical to spl7.)

splpp Used by drivers accessing a ports board to protect critical code. (This function is
identical to spl4 and splS5.)

spltty Used by a TTY driver to protect critical code.

splx Used to terminate a section of protected critical code. This function restores the interrupt
level to the previous level specified by its argument oldlevel.

IMPORTANT: spl* functions should not be used in interrupt routines unless you save the old
interrupt priority level in a variable as it was returned from an spl* call. Later,
splx must be used to restore the saved old level. Never drop the interrupt priority
level below the level at which an interrupt routine was entered. For example, if an
interrupt routine is serviced at an interrupt priority level of 10 (spl5), do not call
spl0 through spld or the stack may become corrupted.

RETURN VALUE

All spl* functions (except splx) return the former priority level.

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events."”
SOURCE FILE

miimisc.s

Kernel Functions(D3X) D3X-135

spl*(D3X)

EXAMPLE

If more then one driver routine (for example, base-level and interrupt-level routines) is permitted to
manipulate system data structures at the same time, the integrity of the data can be destroyed. Or
when a base level routine suspends the execution of the current process by calling the sleep routine,
the driver must guarantee the wakeup(D3X) call does not take place before the call to sleep has
completed.

To prevent such problems, the driver must make critical sections of code appear as one atomic
operation. This is accomplished by not honoring (disable) interrupts at the appropriate level during
the execution of critical sections of code.

‘Whenever a base level routine updates a system data structure that can also be updated by a interrupt
level routine, the appropriate level of interrupts are disabled (line 3). The data structure is then
updated (line 7), and the former interrupt levels are enabled (line 8), as shown in the next figure.

1 if (copyin(u.u_base, addr, size) == -1) /* Move to allocated buffer */
2 { /* If invalid address found */

3 oldlevel = spl4(); /* since an interrupt routine can also */

4 /* return buffers to the map, disable the */

5 /* appropriate level of interrupts before)

6 /* the buffer is returned to the map */

7 mfree(xx_map, size, addr); /* Return buffer to management map */
8 splx(oldlevel); /* Enable former interrupt level */

9 u.u_error = EFAULT; /* Return error code */

10 return;

11 } /* endif */

Figure D3X—-46 Enabling Interrupts

D3X—-136 BCI Driver Reference Manual

spi*(D3X)

Whenever a driver makes a request for a system resource that may not be available, the driver first
disables the appropriate level of interrupts (line 1) before the making the request (line 4). If the
resource is not available, the driver sets the want flag and waits for the resource to become available
(line 7). After the resource is made available, the driver enables the former interrupt levels (line 9),
as shown in the following figure.

N =le R e N N T R S

oldlevel = spitty(); /* Disable ail interrupts through tty level. */

/* This ensures a test on the want flag cannot */

/* take place before the call to sleep has completed */
while((cp = getcf()) == NULL) /* Get a free cblock from freelist */
{ /* If freelist is empty, then */

cfreelist.c_flag+ +; /* set cblock want flag */
sleep(&cfreelist, TTPRIO); /* and wait for a free cblock */
} /* endwhile */
spix(oldlevel); /* Return to old spl level */

Figure D3X—47 Driver Enables Former Interrupt Levels

Kernel Functions(D3X) D3X-137

sptalloc

NAME

(D3X)

sptalloc — allocate memory pages

SYNOPSIS

#include <sys/immu.h>

int

sptalloc(size, mode, base, flag)
int size, mode, base, flag;

ARGUMENTS
size the number of pages allocated
mode page descriptor table entry field mask. Possible values (defined in immu.h) are

base

flag

a

o

a

a

PG_ADDR physical page address
PG_LOCK page lock bit (software)
PG_NDREF need-reference bit (software)
PG_REF reference bit

PG_COPYW copy-on-write bit
PG_LAST last-page bit

PG_M modify bit

PG_P page-present bit (the usual case)

pointer to page descriptor entry (or entries). If multiple pages are being allocated, base is
the pointer to the first entry. If base is NULL (the usual case), the system page
descriptor entries that were setup to map the two megabytes of virtual space are used.

indicates whethier the function allocating memory can call sleep(D3X). Valid nonzero
values are NOSLEEP (defined in immu.h) and SE_NOSLP (defined in stream.h). Zero is
also a valid value. When zero is set, the function can sleep to get memory. When a
non-zero value is set, the function cannot sleep.

D3X—138 BCI Driver Reference Manual

sptalloc(D3X)

DESCRIPTION

This function allocates and links virtual memory pages for the 3B2 computer, 3B4000 computer, and
the SBC. The normal return value is the kernel virtual address of the allocate space. Allocated space
is virtually, but not physically contiguous (where its alignment is unimportant and small area are
being allocated). sptalloc is much more efficient than kseg(D3X) (both functions allocate from the
same map).

Except for page alignment, using sptalloc does not guarantee any alignment of allocated space.

On the SBC only, sptalloc is used to make certain types of peripherals such as graphics boards appear
in the kernel virtual address space. Only SBC A24 peripherals will need to use sptalloc.

On the SBC, call sptalloc as follows:

vaddr =sptalloc(btoc(size), (PG_P|PG_LOCK), btoc(paddr), 0);
Where

vaddr a return address used to access the board

size the number of bytes to map (round up to a 2K boundary)

paddr physical address (create for the A24 board (4 bytes) by setting the high-order byte to
0x00 and the setting the low three bytes to the 3-byte A24 address)

PG_* the mapping pages will be present and locked and the rest of the kernel does not have
access to them.

0 the call will return failure immediately if the page tables are exhausted.
RETURN VALUE

Under normal conditions, the kernel virtual address of the allocated buffer is returned. Otherwise,
NULL is returned when either virtual or physical memory cannot be allocated.

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."

kseg(D3X), malloc(D3X), mapinit(D3X), mapwant(D3X), mfree(D3X), sptfree(D3X),
unkseg(D3X)

Kernel Functions(D3X) D3X-139

sptalloc(D3X)

SOURCE FILE

os/page.c

D3X—-140 BCI Driver Reference Manual

sptfree(D3X)
NAME
sptfree — free allocated memory

SYNOPSIS
sptfree(vaddr, size, flag)
unsigned int vaddr;
int size, flag;
ARGUMENTS
vaddr base virtual address of memory to be released
size number of pages to be released

flag set to one to indicate memory should be freed (an area is to be released into the map).
When flag is set to zero, it indicates that no memory is to be freed.

DESCRIPTION

This function releases memory or performs garbage cleanup to free allocated memory for re-use.
This function is called after sptalloc(D3X) to free allocated memory.

RETURN VALUE

None

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "InputJOutput Operations."

kseg(D3X), malloc(D3X), mapinit(D3X), mapwant(D3X), mfree(D3X), sptalloc(D3X),
unkseg(D3X)

Kernel Functions(D3X) D3X-—-141

sptfree(D3X)

SOURCE FILE

os/page.c

D3X—~142 BCI Driver Reference Manual

subyte(D3X) [OBSOLETE]

NAME

subyte — copy a byte from a driver to the user data space

SYNOPSIS
subyte(userbuf, c)
char *userbuf, c;
ARGUMENTS
userbyf address of the user buffer
c byte to be copied
DESCRIPTION
The subyte function copies a byte from the driver buffer to user space.

When a driver read(D2X) or write(D2X) (not ioctl(D2X)) routine is entered, the u.u_base member
of the user(D4X) structure contains the address of the buffer in the user address space, and the
u.u_count member contains the number of bytes remaining to be transferred. After the subyte
function completes, the driver should increase the value of the u.u_base member and decrease the
value of the u.u_count member by the number of bytes transferred.

RETURN VALUE

subyte returns 0 (zero) if the transfer is successful. If a -1 is returned (an error occurred), set
u.u_error to EFAULT to indicate that userbuf is a bad address.

LEVEL
Base Only (Do not call from an interrupt routine)
SEE ALSO

beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), fuword(D3X), iomove(D3X),
saword(D3X)

Kernel Functions(D3X) D3X-—143

subyte(D3X) [OBSOLETE]

SOURCE FILE
mi/misc.s
EXAMPLE

Data can be moved between a c1ist(D4X) and a user data area one byte at a time. As long as
there is space in the user data area, and there is data in the clist, obtain a single byte from the
first cblock(D4X) in the clist (line 8) and copy it to the user data area (line 11).

1 extern struct tty xx_tty[];

2 ..

3 register struct tty *tp = &xx_tty[minor(dev)];

4 registerint c;

5 ..

6 while(u.u_count > 0) /* While space in user data area */

7 .

8 if ((c = getc(&tp->t_canq)) == -1) /* If input queue is empty, */
9 return; /* return */

10 /* endif */

11 if (subyte(u.u_base++, c) == -1) /* Copy character to user */
12 /* data area. If invalid */

13 u.u_error = EFAULT; /* address is found, then */
14 return; /* return error code */

15 } /* endif */

16 u.u_count--; /* Update remaining size of data area */

17 } /* endwhile */

Figure D3X—-48 Copying a Byte to User Data Space

D3X-144 BCI Driver Reference Manual

suser(D3X)
NAME
suser — verify superuser permission mode
SYNOPSIS
susei()
DESCRIPTION
This function determines if the current user has superuser permissions.
RETURN VALUE

If the current user is superuser, 1 is returned. Otherwise, 0 (zero) is returned and u.u_error is set to
EPERM (not owner).

LEVEL

Base Only (Do not call from an interrupt routine)
SEE ALSO

useracc(D3X)

SOURCE FILE

osifio.c

EXAMPLE

The use of suser is straight forward, easy to use, and viable for many situations. The following
example shows such a test.

1 if (suser()==0) /*Only superuser has access */
2

3 return; /*Retumn if permission denied */
4} /* endif */

Figure D3X—49 Determining if User is a Superuser

Kernel Functions(D3X) D3X-145

suword(D3X) [OBSOLETE]
NAME
suword — copy a word of data from a driver to user data space
SYNOPSIS

‘ saword(userbuf, i)

int *userbuf, i;

ARGUMENTS
userbuf address of the user buffer
i integer to be copied
DESCRIPTION
The suword function copies a single word from the driver buffer to user space.
When a driver read(D2X) or write(D2X) (not ioctl(D2X)) routine is entered, the u.u_base member
of the user(D4X) data structure contains the address of the buffer in the user address space. The
u.u_count member contains the number of bytes remaining to be transferred.

After suword completes, the driver should increase the value of the u.u_base member and decrease
the value of the u.u_count member by the number of bytes transferred.

RETURN VALUE

suword returns a 0 (zero) if the transfer is successful. If a -1 is returned (an error occurred), set
u.u_error to EFAULT to indicate that userbuf is a bad address.

LEVEL
Base Only (Do not call from an interrupt routine)
SEE ALSO

beopy(D3X), copyin(D3X), copyout(D3X), fubyte(D3X), faword(D3X), iomove(D3X),
subyte(D3X)

SOURCE FILE

miimisc.s

D3X—-146 BCI Driver Reference Manual

EXAMPLE

suword(D3X)

[OBSOLETE]

To debug a driver, a driver ioctl routine can be used to examine settings in the device registers such
as the device status word. If a request is made for a device status word and the arg parameter
contains a NULL pointer (line 19), return the value of the status word as the return code value of the
ioctl system call (line 20). Otherwise, copy the value of the status word to the user data area

specified by arg (line 23). If arg contains an invalid address, an error code is returned.

NN B W=

8

9

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /™ Physical device status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; /* end device */

extern struct device xx_addr(]; /* Physical device register location */

xx_ioctl{dev, cmd, arg, flag)

dev_t dev;

caddr_t arg;

{

register struct device *rp = &xx_addr{minor(dev) >> 4];

switch(cmd)
{
case XX_GETSTATUS:
if (arg == NULL){ /* If arg contains null pointer,*/
u.u_rvall = rp->status; /* provide device status word */
/* as the return code from iocti(2) */
/* system call */
} else if(suword(arg, rp->status) == -1) { /* Copy device */
/* status word to user data area */
u.u_error = EFAULT; /* If invalid address found, */
return; /* then return error code */
} /* endif */
break;

Figure D3X—-50 suword — Copies an Integer

Kernel Functions(D3X)

D3X-147

timeout(D3X)

NAME

timeout — execute a function after a specified length of time

SYNOPSIS

timeout(ftn, arg, ticks)
int ((void)*fin)();
intarg, ticks;

ARGUMENTS
Sfin kernel function to invoke when the time increment expires

arg argument to the function

ticks number of clock ticks to wait before the function is called

DESCRIPTION

The timeout function calls the specified function after a specified time interval. Control is
immediately returned to the caller. This is useful when an event is known to occur within a specific
time frame, or when you want to wait for I/O processes when an interrupt is not available or might
cause problems. For example, some robotics applications do not provide a status flag for determining
when to pump information to the robot’s controller. By using timeout, the driver can wait a.
predetermined interval and then begin transferring data to the robot.

The exact time interval over which the timeout takes effect cannot be guaranteed, but the value given
is a close approximation. The function called by timeout must adhere to the same restrictions as a
driver interrupt handler. It can neither access the user(D4X) structure, nor use previously set local
variables.

D3X—-148 BCI Driver Reference Manual

timeout{D3X)

RETURN VALUE

Under normal conditions, an integer timeout identifier is returned (which may, in unusual
circumstances, be set to 0). Otherwise, if the timeout table is fuil, the following panic message
results:

PANIC: Timeout table overflow

The timeout function returns an identifier that may be passed to the untimeout(D3X) function to
cancel a pending request.

NOTE: No value is returned from the called function.

Kernel Functions(D3X) D3X-149

timeout(D3X)

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events."
delay(D3X), iodone(D3X), iowait(D3X), sleep(D3X), ttywait(D3X), untimeout(D3X),
wakeup(D3X)

SOURCE FILE
os/clock.c, osladp_clock.c
EXAMPLE

The following is an example of the timeout function.

timeout(xx_scan, 0, HZ/3); /% Schedule scan of modem status words =/
/% in one third of a second */

D3X—150 BCI Driver Reference Manual

ttclose(D3X)

NAME

ttclose — close a TTY device

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttclose(tp)
struct tty *ip;
ARGUMENT

tp address of the tty(D4X) structure associated with the device being closed

DESCRIPTION
The line discipline close function, ttclose, is called by the device driver close(D2X) routine.

The ttclose function dissociates the device from the process that opened it and resets the ISOPEN flag
in the device internal state register (tp->t_state). ttclose calls ttioctl which calls the driver
proc(D2X) routine with T_RESUME set to transmit any characters in the device transmit buffer
(tp->t_tbuf) out to the terminal, clears out all the TTY buffers and queues, and returns to the
cfreelist(D4X) all cblock(s) allocated to the device. A

Kernel Functions(D3X) D3X-151

ttclose(D3X)

RETURN VALUE

None

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."”
ttopen(D3X)

SOURCE FILE
io/ttl .c
EXAMPLE

On the last close of a terminal device, the driver close(D2X) routine terminates the logical data
connection and disassociates the device from a process that is specified in the tty structure (ttclose).
In order to allow other protocols, a driver must access the ttclose routine indirectly through the
line discipline switch table (I_close is defined in conf.k) (line 6). The t_line member of the tty
structure contains the line discipline (in this case O (zero)) and serves as the index to the line
discipline switch table. After the logical data connection is terminated, the driver would break the
physical connection (such as instructing the modem to drop carrier).

1 extern struct tty xx_tty[]; /* Location of logical device structure */

2 xx_close(dev)

3 dev_tdev;

4 {

5 register struct tty *tp = xx_tty[minor(dev)]; /* Get device tty structure */
6 (*linesw{tp->t_line].l_close)(tp); /* Break logical data connection */
7

Figure D3X—-51 Data Connection is Terminated

D3X-152 BCI Driver Reference Manual

ttin(D 3X)

NAME

ttin — move a TTY character to the raw queue
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttin(tp, code)
struct tty *ip;
int code;
ARGUMENTS
tp pointer to the tty(D4X) structure for a device
code [optional] set to L_BREAK if the key was entered. Upon receiving this code,

ttin signals the processes identified by t_pgrp that the key was received and then calls
ttyflush to release all buffers and wake up any processes sleeping on t_outq, t_oflag, and
t_rawq.

DESCRIPTION

The ttin function works through the tty receive buffer to convert newline, carriage return, and
uppercase characters and place them in the raw queue t_rawq. The mode members of the tty
structure, define how these characters are converted.

The following paragraphs describe the highlights of what ttin performs. Refer to the Driver
Development Guide appendix for further information.

If the number of characters in the raw queue exceeds the high water mark, ttin calls the driver
proc(D2X) routine (with the T_BLOCK flag set) to send a stop character to the device. The high
water mark is explained in the Glossary of this manual. When the raw queue character count exceeds
the TTYHOG level of 256 characters, ttin calls ttyflush to flush the tty input queues. TTYHOG
is defined in the #ty.h header file of this manual. If the interrupt character (typically) or
the quit character is found, ttin sends the appropriate signal to the process group associated with the
device. If processes associated with the device are sleeping and ttin finds a line delimiter character,
ttin awakens the sleeping process.

The ttin function also transmits characters to the terminal for display, if ECHO is enabled.

Kernel Functions(D3X) D3X-153

ttin(D3X)

When the terminal operates in raw or non-canonical mode, the fifth and sixth elements of the tty
structure control character array indicate the number of characters needed, and the amount of time
waited before processes associated with the device should be awakened. If the minimum character
count has been met, ttin awakens processes associated with the terminal.

RETURN VALUE
None
LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
getc(D3X), getch(D3X), getef(D3X), pute(D3X), putch(D3X), putcf(D3X), ttread(D3X)

SOURCE FILE
iolttl .c
EXAMPLE

When a driver is controlling a terminal device, it should use the TTY subsystem. This subsystem is a
set of routines that provide terminal interface. Using the clist(D4X) and TTY data structures, the
TTY subsystem provides both buffering and semantic processing of character data. All the
information needed to perform I/O operations to a terminal is maintained in the tty structure.
Therefore, a tty structure exists for every possible terminal device in the system.

After a driver receive interrupt routine validates an input character, it stores the character in the
receive buffer (t_rbuf) (line 24). When the receive buffer is filled (line 25), it is added to the raw
queue and a new receive buffer is allocated (ttin) (line 29). In order to allow other protocols, a
driver must access the ttin routine indirectly through the line discipline switch table (I_input is
defined in conf.h). The t_line member of the tty structure (line 29) contains the line discipline (in
this case 0 (zero)) and serves as the index to the line discipline switch table.

D3X—-154 BCI Driver Reference Manual

ttin(D3X)

NOYW W N

8

9

10
11
12
13
14
15
16
17

18
19
20
21

22
23

24
25
26
27
28

29
30
3
32
33

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
};/* End device */

extern struct tty xx_fty[]; /* Logical device structure location */
extern struct device xx_addr(]; /* Physical device register location */

extern int xx_cnt; /* Number of physical devices */
xx_rint(board)

int board; /* The hardware board causing interrupt */

{

register struct device *rp = xx_addr{board]; /* Get device registers */
register struct tty *tp;
register int ¢, port;

while((c = rp->recv_char) & DATAVALID) != 0) /* While valid data */
{ /* in input register, retrieve it */
port = (c >> 8) & 0x7; /* Get terminal’s port number */
tp = &xx_tty[(board << 3) & port]; /* Get corresponding tty structure */

/* After the character has been checked for errors and stripped to */
/* proper bit size, character is stored in receive buffer. */

tp->t_rbuf.c_ptr++ = c; / Store input character in receive buffer */
if (--tp->t_rbuf.c_count == 0) /* If the receive buffer is full, */
{ /* reset c_ptr to first character in the receive buffer. The */
/* driver must do operation to ensure the buffer added */
tp->t_rbuf.c_ptr -= tp->t_rbuf.c_size; /* to raw queue correctly */

(*linesw(tp->t_line].l_input)(tp); /* Add receive buffer to */
/* raw queue; get empty receive buffer */
} /* endif */
} /* endwhile */

Figure D3X—-52 ttin — Moves Character to Raw Queue

Kernel Functions(D3X)

D3X-155

ttinit(D3X)

NAME

ttinit — initialize line discipline 0
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttinit(1p)

struct tty *1p;
ARGUMENT
tp pointer to the tty(D4X) structure associated with the device being opened
DESCRIPTION
The TTY subsystem provides two functions, ttinit(D3X) and ttopen(D3X), for the driver open(D2X)
routine. The driver calls ttinit function the first time a device is opened. ttinit resets the t_line,

t_iflag, t_oflag, and t_lflag members of the tty data structure. It also sets the default control
modes (t_cflag) and control characters (t_cc).

NOTE: ttinit is only usable for resetting line dlscxphne 0. Use on any other line dlsmphne requires
resetting t_line to a new value after ttinit is called.

RETURN VALUE
None
LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
open(D2X), ttopen(D3X)

D3X—156 BCI Driver Reference Manual

ttinit(D3X)

SOURCE FILE

ioltty.c
EXAMPLE

When a driver open routine is called for a terminal device, the logical state of the device is checked.
If the device has not previously been opened (ISOPEN) and is not currently being opened, the tty
structure is initialized to its default values (line 13). The address to the device command processing
routine is provided for the line discipline routines; and the hardware is initialized to the present baud
rate and error checking settings specified in the tty structure. The defaults from ttinit are 300 baud
and 8 bit characters. These defaults enable receiver, and hang-up on last close.

- \O 00 N1 O\ BN -
—_0

pd kb ek ok ek
NN BN

18

-
o)

extern struct tty xx_tty[]; /* Location of logical device structures */

xx_open(dev, flag)

dev_t dev;

{

register struct tty *tp;

register struct device *rp = &xx_addr{minor(dev) >> 3]; /* Get device regs */
register int port = minor(dev) & 0x07; /* Get port number */

tp = &xx_tty[minor(dev)]; ’
if ((tp->t_state & (ISOPEN | WOPEN)) == 0) /* If device not open */
{ /* and waiting to be opened, */
ttinit(tp); /* initialize tty structure with default values */
tp->t_proc = xx_proc; /* Provide line discipline routines */
/* access to the driver command processing routine */
/* The appropriate device registers would be set to match the */
/* walues stored in the tty structure - hardware dependent. */
} /* endif */

Figure D3X—-53 Initializing tty Structure Default Values

Kernel Functions(D3X) ‘ D3X—-157

ttiocom (D3X)

NAME

ttiocom — change device parameters
SYNOPSIS

#include <sys/types.h>

#include <sys/tty.h>
#include <sys/termio.h>

ttiocom(tp, cmd, arg, mode)
struct tty *ip;
int cmd, arg, mode;

ARGUMENTS
tp pointer to the tty(D4X) structure associated with the device to be controlled
cmd command regulates a device’s input or output controls; refer to termio(7) for more

information on the commands described here

Valid commands (listed in alphabetic order) are

TCSBRK Waits for the output to drain. If arg is 0, then sends a
character
TCFLSH If arg is 0, flushes the input queue; if 1, flushes the output queue;

if 2, flushes both the input and output queues.

TCGETA Gets the parameters associated with the terminal and stores in the
termio structure referenced by arg.

TCSETA Sets the parameters associated with the terminal from the
structure referenced by arg. The change is immediate.

D3X—158 BCI Driver Reference Manual

ttiocom(D3X)

TCSETAW The same as TCSETA except that you wait for the output to
drain before setting the new parameters. This form should be
used when changing parameters that will affect output.

TCXONC Starts/stops control. If arg is 0, suspends output; if 1, restarts
suspended output.
arg Flag indicates which subordinate form of a command should be selected, or pointer to the

termio structure associated with the device

mode Contains the value of the f_flag member of the associated special device file (see file.h)

Note that the ttiocom function determines if an integer or an address is present in arg by the value of
the cmd argument.

DESCRIPTION

Changing the many parameters associated with terminal devices requires close cooperation between
the driver and the TTY subsystem. The ttiocom function provides access to reading and changing the
various TTY parameters contained in the tty structure. Changing such parameters usually require
that device registers also be altered. The driver is responsible for changing these registers.

A request to read or change terminal parameters is initiated by an ioctl(2) system call from a user
process. This causes the driver ioctl(D2X) routine to be called. The driver locates the tty structure
associated with the device and calls the common ioctl routine ttiocom.

Internally, ttiocom calls ttioctl(D3X). These two functions together affect the appropriate parameter
settings and return to the driver. Although ttiecom and ttioctl are together involved in parameter
access, each has a different purpose. ttiocom is a general-purpose function providing common
parameter handling. ttioctl is specialized in that it deals with parameters related to buffering and
character processing. That is, it is associated with the terminal protocol or line discipline.

RETURN VALUE

Under normal conditions, 0 (zero) is returned. Otherwise, 1 is returned to indicating the device
registers must also be changed (1 is not an error code).

The following error values (set in u.u_error) are also possible:
EFAULT bad address. This value is set under the following conditions
TCGETA copyout failed
TCSETA copyin failed

Kernel Functions(D3X) D3X-159

ttiocom(D3X)

EINVAL invalid argument. This value is set under the following conditions:
TCFLSH arg not in the range of 0 to 2

TCSETA line discipline value in the c_line member of the termio structure
not in the range of 0 to 2

TCXONC arg not in the range of 0 to 3
LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO
BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
ioctl(D2X), ttioctl(D3X)

SOURCE FILE
ioftty.c
EXAMPLE

A process can get or set terminal parameters with the ioctl(2) system call. All standard termio(7)
commands access parameters in one or more of the members in the tty structure, and possible
changes to these parameters are made first (line 16). If changes are made in the parameters of the
tty structure then the device registers may also need to be altered; the driver would make the
necessary changes upon return from the ttiocom function. The line discipline switch table is net to be
used for a line discipline 0 ioctl request.

- NOTE: The ttioctl function is used internally with the other TTY subsystem routines for allocating
and deallocating needed buffers, but provides nothing for the driver.

D3X~-160 BCI Driver Reference Manual

ttiocom(D3X)

OO0 ~JNhWn S~ WM~

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

26
27

extern struct device xx_addr{]; /* Physical device register location */
extern struct tty xx_tty[]; /* Logical device structure location */

xx_ioctl(dev, cmd, arg, flag)
dev_t dev;
caddr_t arg;

switch(cmd)

/* Driver specific commands would be handled by the case ~ */

/* statements, such as getting the device registers. */

default: /* Handle termio(7) commands; if invalid command is */
/* present ttiocom will update u.u_error with EINVAL */

{ .

register struct tty *tp = &xx_tty[minor(dev)]; /* Get tty structure */

if (ttiocom(tp, cmd, arg, flag) == 1) /* Get/set tty parameters; */
{ /* If tty parameters are changed, then */
/* change the necessary device registers. */
register struct device *rp;
rp = &xx_addr[minor(dev) >> 3]; /* Get device regs */
/* Changes usually determined by examining parameter */
/* settings in t_iflag, t_oflag, t_cflag, and t_Iflag members */
/* of tty structure for changes like baud rate, parity type, */
/* testing, etc. -- hardware dependent. */
} /* endif */

} /* endswitch */
} /* end xx_ioctl */

Figure D3X—54 Changing Device Parameters

Kernel Functions(D3X) D3X-161

ttiocti(D 3X)

NAME

ttioctl — set device parameters

SYNOPSIS

#include <sys/types.h>

#include <sys/tty.h>

#include <sys/termio.h>
ttioctl(¢p, cmd, arg, mode)

struct tty *zp;
int cmd, arg, mode;

ARGUMENTS
tp pointer to the tty(D4X) structure associated with the device controlled
cmd ttioctl cmds are
0 LDOPEN allocates a receive buffer, a single cblock, to the t_rbuf
character control block (ccblock), and calls the driver proc
routine with the T_INPUT command so input can be initiated.
0 LDCLOSE resumes output by calling the driver proc(D2X) routine with the
T_RESUME command, flushes the receive buffer (t_rbuf), and
deallocates the cblocks assigned to the receive and transmit
character control blocks (t_rbuf and t_tbuf).
o LDCHG moves the entire character list of ¢blocks on the canonical
queue to the raw queue if ICANON has been changed by a
previous ioctl callin the t_Ilflag member of the tty structure.
arg flag indicates which subordinate form of a command should be selected, 0 is for

LDOPEN and LDCLOSE. arg is the previous value of t_lflag if cmd is LDCHG.

mode contains the value of the f_flag member of the associated special device file (see file.h)

Note that ttioctl function determines if an integer or an address is present in arg by the value of the
cmd argument.

D3X~-162 BCI Driver Reference Manual

ttiocti(D3X)

DESCRIPTION

Changing the many parameters associated with terminal devices requires close cooperation between
the driver and the TTY subsystem. The ttioctl function provides access to reading and changing the
various TTY parameters contained in the tty structure. Changing such parameters usually requires
that device registers also be altered. The driver is responsible for this.

Internally, ttioctl is called by ttiocom(D3X). These two functions both affect the appropriate
parameter settings and return to the driver. ttioctl is specialized because it deals with parameters

related to buffering and character processing. It is associated with the terminal protocol or line
discipline.

RETURN VALUE

None

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
ioctl(D2X), ttiocom(D3X)

SOURCE FILE

iolttl .c

Kernel Functions(D3X) D3X-163

ttopen (D3X)

NAME

ttopen — open a TTY device
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttopen(:p)

struct tty *1p;
ARGUMENT
tp pointer to the tty(D4X) structure associated with a device
DESCRIPTION

The TTY subsystem provides the ttinit(D3X) and ttopen(D3X) functions for the driver open(D2X)
routine. The driver calls ttinit the first time a device is opened to set the tty structure to default
values (including setting the line discipline to zero). The ttopen function is called each time the
driver open(D2X) routine is called.

ttopen establishes the connection between the process and the device (t_pgrp). It also allocates and
initializes a cblock(D4X) for the receive buffer (t_rbuf) of the tty structure. To take care of
any initialization peculiar to the device hardware, ttopen calls ttioctl which calls the driver
proc(D2X) routine with T_INPUT set.

RETURN VALUE

None. ttopen sets t_state to ISOPEN.

LEVEL

Base Only (Do not call from an interrupt routine)
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
linesw(D4X), open(D2X), ttclose(D3X), ttinit(D3X)

D3X-164 BCI Driver Reference Manual

ttopen(D3X)

SOURCE FILE
iolttl .c
EXAMPLE

When a terminal device is being opened, the driver open routine is responsible for establishing a
physical and logical data connection. After the default settings are made in the tty structure, and
the device registers have been set (see ttinit), the driver determines if a physical connection has been
made by testing carrier from the modem (line 20). If a carrier is present (line 22), the tty structure
indicates a physical connection has been made (line 24). Otherwise, the tty structure indicates a
physical connection has not been made.

If the process wishes to wait for carrier, and carrier is not present, the driver waits for carrier (line
30). The last driver operation open routine is to establish a logical data connection and associate the
device to a process by making the appropriate settings in the tty structure (line 33). In order to
allow other protocols, a driver must access the ttopen routine indirectly through the line discipline
switch table (1_open is defined in conf.h). The t_line member of the tty structure contains the line
discipline (in this case 0 (zero)) and serves as the index to the line discipline switch table.

Interrupts are disabled during the ttopen call to insure all parameter settings in the tty structure are
made before any testing and resetting of them is done by the driver interrupt and/or polling routines.

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short modem_status; /* Modem carrier (upper 8 bits) */
/* and ring (lower 8 bits) status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; /* end device */

O 00 0O\ B WD e

10 extern struct device xx_addr{]; /* Physical device register location */
11 extern struct tty xx_tty[]; /* Logical device structure location */

13 xx_open(dev, flag)
14 dev_t dev;

Figure D3X—-55 Opening a tty Device (part [of 2)

Kernel Functions(D3X) D3X-165

ttopen(D3X)

15 {

16 register struct tty *tp = &xx_tty[minor(dev)];

17 register struct device *rp = &xx_addr{minor(dev) >> 3]; /* Get device regs */
18 ...

19 oldlevel = spl6();

20 if ((rp->modem_status & (0x0100 << port)) != 0) /* If a carrier */

21 { /* to the modem */

22 tp->t_state |= CARR_ON; /* indicate carrier established */
23 } else {

24 tp->t_state &="CARR_ON; /* else indicate carrier dropped */

25 }/* endif */

26 if ((flag & FNDELAY) == 0) { /* If process waits for carrier */

27 while((tp->t_state & CARR_ON) == 0) /* while carrier not present */
28 { /* indicate process is waiting */

29 tp->t_state |= WOPEN; /* for carrier */

30 sleep((caddr_t)&tp->t_canq, TTIPRI); /* Wait for carrier */

31 } /* endwhile */ _

32 } /* endif */
33 (*linesw[tp->t_line].l_open)(tp); /* Establish logical connection */
34 splx(oldlevel);

Figure D3X—55 Opening a tty Device (part 2 of 2)

D3X—-166 BCI Driver Reference Manual

ttout(D3IX)

NAME

ttout — move a TTY character from t_outq to t_tbuf

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttout(rp)
struct tty *up;

ARGUMENT

tp pointer to the tty(D4X) structure associated with the device

DESCRIPTION

The ttout function is called by the driver transmit interrupt (xint(D2X)) routine. ttout is passed the
address of the tty structure associated with the device. ;

" The ttout function moves characters from the output queue to the transmit buffer in preparation for
output by the driver. The ttout function implements the actual timing delays needed during output.
When it detects a delay in the output queue, it uses the timeout(D3X) function to arrange for an
entry, after the appropriate time has elapsed. This delayed entry invokes the driver proc(D2X)
routine with T_TIME set to resume output. The ttout function also awakens a process which was
asleep as a result of ttwrite(D3X) when a sufficient number of characters have been transmitted; that
is, when the number of characters in the output queue is less than the low water mark. Low water
mark is defined in the Glossary of this manual.

RETURN VALUE

Under normal conditions, 0 (zero) is returned when there is no more data to process. Two special
processing flags cause the CPRES value to be returned. (CPRES is set to octal 100000 in #y.h). The
flags are

B EXTPROC is set by intelligent controller drivers to indicate that further processing will
be handled by the controller (EXTPROC is defined in #ty.h)

B OPOST is set by a driver (in the t_oflag of the tty structure) to indicate that output
characters are post-processed as indicated by the other flags in the same structure
member. (OPOST is defined in termio.k and described in the Administrator’s Reference
Manual under termio(7).)

Kernel Functions(D3X) D3X-167

ttout(D3X)

LEVEL
Base or Interrupt
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
linesw(D4X), ttin(D3X)

SOURCE FILE
io/ttl .c
EXAMPLE

A driver transmit routine is entered when a device is ready to receive data (line 23). While the
device is ready to receive data and the transmit register is free (line 25), get a character from the
transmit buffer (t_tbuf) and place it in the transmit register (line 29). The state of the tty structure
is changed to show a character is present in the transmit register (line 33) and the driver proc routine
is called to complete the output (line 34).

The proc routine determines the output port (line 58). If output is blocked or there is no output for
that port (line 59) then retum. When the transmit buffer (t_tbuf) is empty, it is returned to the free
list and a new transmit buffer is allocated from the output queue (line 61). The output character is

transmitted to the device and the state of the tty structure is changed to show the transmit register

is empty.

In order to allow other protocols, a driver must access the ttout function indirectly through the line
discipline switch table (1_output is defined in conf.). The t_line member of the tty structure
contains the line discipline (in this case 0 (zero)) and serves as the index to the line discipline switch
table.

struct device /* Layout of physical device registers */
{ :
int control; /* Physical device control word */
int status; /* Physical device status word = */
short modem_status;/* Modem carrier (upper 8 bits) */

/* and ring (lower 8 bits) status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */

}; /* End device */

0 extern struct device xx_addr([]; /* Physical device register location */

= OOV AR WN =

Figure D3X—-56 A Driver Accesses ttout Function (part I of 3)

D3X—-168 BCI Driver Reference Manual

ttout(D3X)

11 extern struct tty xx_tty[]; /* Logical device structure location */
12 ..

13 xx_xint(board)

14 int board; /* Board that caused the interrupt */

15 {

16 register struct tty *tp;

17 register struct device *rp = &xx_addr{board]; /* Get device regs */
18 register struct ccblock *cp;

19 registerint port;

20 port = rp->status & 0x7; /* Get terminal’s port number */

21 tp = &xx_tty[(board << 3) & port]; /* Get tty structure */

22 cp = &tp->t_tbuf; /* Get transmit buffer */

23 while((rp->status & XX_TXRDY) != 0) /* While device is ready for */
24 { /* a character to be transmitted */

25 if (tp->t_state & "BUSY) /* If xmit_char register is clear */

26 { /* and there is more data to send, */

27 if (cp->c_count > 0) /* If there data in tbuf of the */

28 { /* tty structure, then give device the next */

29 rp->xmit_char = *cp->c_ptr+ +; /* character for transmission */
30 cp->c_count--; /* update counter of number of */

31 /* characters remaining for output */

32 }/* endif */

33 tp->t_state &= "BUSY; /* Indicate xmit_char register is primed */
34 xx_proc(tp, T_OUTPUT); /* test if output is blocked and if */

35 /* not, enable controller for transmission */

36 }else { ;

37 rp->control |= XX_TXDONE; /* Indicate data for port has been */
38 break; /* transmitted; terminate loop */

39 } /* endif */
40 }/* endwhile */
41 }/* end xx_xint */

Figure D3X—-56 A Driver Accesses ttout Function (part 2 of 3)

Kernel Functions(D3X) D3X-—-169

ttout(D3X)

42
43

45
46
47
48

49
50
51
52
53

54
55

56
57

58

59
60
61
62
63

65
66
67
68

xx_proc(tp, cmd) /* Driver command processing routine */

register struct tty *tp;

int cmd;

{

register int dev = tp - xx_tty; /* Compute minor device number */

register struct device *rp = &xx_addr[dev >> 3]; /* Get device regs */

register int portmask = 0x0100 << (dev & 0x7); /* Setup output port mask */

switch(cmd)

case T_OUTPUT: /* Perform output processing of data to the device */
resume_output:

{
register struct ccblock *cp = &tp->t_tbuf;

if ((tp->t_state & (BUSY | TTSTOP)) != 0) /* If no datato */
break; /* transmit or output blocked by <cntl>S, do nothing */

rp->xmit_char |= portmask; /* Enable controller to transmit character */

if (cp->c_ptr == NULL | cp->c_count == 0) /* If no tbuf or */
{ /* tbuf empty, get a new one */
if ((*linesw[tp->t_line].l_output)(tp) & CPRES) == 0) /* If */
: break; /* no more output data, terminate output */
} /* endif */

tp->t_state |= BUSY; /* Indicate more output data in tbuf */
/* and xmit_char register is clear */
break;
} /* end T_OUTPUT case */

Figure D3X—-56 A Driver Accesses ttout Function (part 3 of 3)

D3X—-170 BCI Driver Reference Manual

ttread (D 3X)

NAME

ttread — process an input TTY character

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttread(rp)
struct tty *up;
ARGUMENT
tp pointer to the tty(D4X) structure associated with the device from which the character is
read
DESCRIPTION

The driver read(D2X) routine receives a device number as an argument. It uses this device number
to determine the tty structure for the device being read. Then it uses the address of the tty
structure as an argument to ttread.

After canonical processing, ttread transfers data from the canonical queue to user data space. If
transmission from the terminal is blocked (t_state & TBLOCK) because the number of characters in
the raw input queue is above the high water mark, and if the read causes that number to go below a
safe level, ttread calls the driver proc(D2X) routine with T_UNBLOCK set to resume transmission
from the terminal.

RETURN VALUE

Under normal conditions, no value is returned. Otherwise, ttread sets u.u_error to EFAULT if an
error occurs when data is being transferred to the user data area. It is the driver’s responsibility to
check u.u_error when ttread is called.

LEVEL
Base Only (Do not call from an interrupt routine)
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
getc(D3X), getch(D3X), getef(D3X), linesw(D4X), pute(D3X), putch(D3X), putcf(D3X),
read(D2X), ttin(D3X)

Kernel Functions(D3X) D3X-171

ttread(D3X)

SOURCE FILE
io/ttl .c
EXAMPLE

When a process requests data from a terminal device, the driver read routine locates the tty
structure associated with the device. The character data is copied from the input queues to the user
data area (line 7). In order to allow other protocols, a driver must access the ttread function
indirectly through the line discipline switch table (I_read is defined in conf.h). The t_line member of
the tty structure contains the line discipline (in this case 0 (zero)) and serves as the index to the line
discipline switch table.

1 extern struct tty xx_tty[]; /* Logical device structures location */

2 ...

3 xx_read(dev)

4 dev_t dev;

5 {

6 register struct tty *tp = &xx_tty[minor(dev)];

7 (*linesw[tp->t_line].l_read)(tp); /* Copy input character data */
8 /* queues to user data area */

9 }/* end xx_read */

Figure D3X~57 Processing an Input TTY Character

D3X—172 BCI Driver Reference Manual

ttrstrt(D 3X)
NAME
ttrstrt — restart TTY output after delay timeout
SYNOPSIS
ttrstrt(zp)
struct tty *p;
ARGUMENT

tp pointer to the tty(D4X) structure

DESCRIPTION

This function restarts TTY output following a delay timeout. ttrstrt calls the driver proc routine
with the T_TIME flag set.

RETURN VALUE

None

LEVEL
Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
timeout(D3X)

SOURCE FILE

ioltty.c
EXAMPLE

When a TCSBRK command is issued in a ioctl(2) system call, the line discipline routine
ttiocom(D3X) calls the driver proc routine with the T_BREAK command (enters the xx_proc
routine at line 33). The driver proc routine sends a break to the device (line 34). After the break is
sent, output must be suspended for 250 milliseconds (HZ divided by 4). The timeout(D3X) function
is used to call ttrstrt after the 250 milliseconds have elapsed (line 37). The ttrstrt function calls the
driver prec routine with the T_TIME command so that output can be resumed (this call enters
xx_proc at line 23). Refer to the following figure (lines 52 to 67) for the code for the T_OUTPUT
case that is shown as comments in lines 29 and 30 of this example.

Kernel Functions(D3X) D3X-173

ttrsert(D3X)

VOO bW

struct device /* Layout of physical device registers */
{
int control; /* Physical device control word */
int status; /* Physical device status word */
short modem_status;/* Modem carrier (upper 8 bits) */
/* and ring (lower 8 bits) status word */
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */
}; 7* end device */
extern struct device xx_addr({]; /* Physical device registers */
extern struct tty xx_tty[]; /* Logical device structures location */

xx_proc(tp, cmd) /* Driver command processing routine */
register struct tty *tp;
int cmd;
{
register int dev = tp - xx_tty; /* Compute minor device number */
register struct device *rp = &xx_addr{dev >> 3]; /* Get device regs */
register int portmask = 0x0100 << (dev & 0x7);

/* Setup output port mask */

switch(cmd)

{

case T_TIME: /* End timeout condition for T_BREAK */
tp->t_state &= "TIMEOUT; /* Indicate timeout condition completed */
goto resume_output; /* Resume normal character output */

case T_OUTPUT: /* Perform output processing of data to the device */
resume_output:
/* Transmit next tbuf character of the tty structure */
/* See ttout reference page example program code *
break;

case T_BREAK: /* Send a BREAK to a device */
rp->control [= XX_BRK; /* Enable a break to be sent */
rp->xmit_char |= portmask; /* Enable controller & specify port */
tp->t_state |= TIMEOUT; /* Show timeout condition in progress */
timeout(ttrstrt, tp, HZ/4); /* Disable timeout condition 1/4 of */
/* a second (HZ) or 250 milliseconds */
break;

Figure D3X—58 Restarts TTY Output After a Delay

D3X—-174 BCI Driver Reference Manual

tttimeo (D 3X)

NAME

tttimeo — time a character at a time terminal read request

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>
#include <sys/termio.h>

tttimeo(zp)
struct tty *p;

ARGUMENT

tp pointer to the current tty structure

DESCRIPTION

This function times a character at a time terminal read request. A terminal may select to process
characters a character at a time or a line at a time. Canonical processing is used on the latter. One
method of handling characters that are received one at a time, is to set a time limit to wait until a
character is received. This lets the program interpreting the input differentiate between characters
keyed in and those that are transmitted by terminal protocol. The TIME constant defined in
termio(7) provides more insight into timing data input.

The time limit is expressed in tenths of a second and is set in the constant t_cc[VTIME] variable of
the tty structure. tttimeo is called by a subroutine set up to receive characters after t_cc[VITIME]
tenths of seconds. After tttimeo is called, the caller must turn on IASLP in t_state and then cail
sleep using (caddr_t)&tp->t_rawq as the sleep event address and TTIPRI as the sleep priority.

tttimeo requires the following for input:
8 RTO (timeout flag) must be disabled (in t_state in the tty structure)
B TACT (timeout in progress) must be set (in t_state)
® VTIME must be greater than zero
® ICANON must be disabled (in t_lflag of the tty structure)

tttimeo works by setting t_state to RTO and TACT, and then calling timeout to restart tttimeo in
VTIME times HZ/10 ticks. When tttimeo is restarted, t_state is checked for RTO. If itis on,
t_state is then checked for IASLP. If IASLP is on, tttimeo turns off IASLP in t_state, and wakes up
any processes sleeping on the t_rawq raw input buffer.

Kernel Functions(D3X) D3X-175

tttimeo(D3X)

RETURN VALUE

tttimeo returns prematurely if t_state is set to ICANON or t_cc[VTIME] is zero, or if t_rawg.c_cc
is zero and t_cc[VMIN] is on (timing does not begin until the first character is input). If the system
callout table is corrupted (and presumably the system in general), timeout panics the system. Upon
completion, t_delct is set to 1.

LEVEL

Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
canon(D3X), timeout(D3X)

SOURCE FILE
io/ttl .c
EXAMPLE

The following example shows the use of tttimeo (line 14) in a terminal input routine.

1 /* line discipline input routine - transfer characters into rawq */
2 xxin(tp, code)

3 register struct tty *tp;

4

5 /* transfer characters into rawq from t_rbuf, doing any input
6 translations necessary at this point. Echo character out to
7 outq if appropriate */

8 if (!(flg&ICANON)) {

9 tp->t_state &= "RTO;

10 if (tp->t_rawq.c_cc >= tp->t_cc[VMIN])

11 tp->t_delct = 1;

12 else if (tp->t_cc[VTIME]) {

13 if (I(tp->t_state&TACT))

14 tttimeo(tp);

15 }

16

17 }

Figure D3X—-59 tttimeo Function

D3Xf 176 BCI Driver Reference Manual

ttwrite(D3X)

NAME

ttwrite — move a TTY character from user address space to the output queue

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttwrite(tp)
struct tty *ip;

- ARGUMENT

tp pointer to the tty(D4X) structure associated with the device

DESCRIPTION

Displaying a character on the screen of a terminal is simpler than reading information from the
keyboard since only one queue, the output queue (t_outq), is involved. Still, activities at both base
and interrupt levels are involved. A transmit buffer provides the buffering of characters between the
base and interrupt portions.

A terminal driver’s write(D2X) routine cails ttwrite to move the characters output from the user data
space to the output queue. ttwrite also calls the driver’s access routine to initiate actual output.

Once initiated, output is sustained by interrupts from the device. A transmit complete interrupt
causes control to be passed to the driver transmit interrupt handler. The driver outputs the next
character in the transmit buffer to the device. If the output buffer is empty, ttout(D3X) is called to
move characters from the output queue to the buffer. '

The driver write routine receives the device number as an argument. It uses this to determine the
tty structure for the device being written. This is then passed to ttwrite.

The ttwrite function transfers characters from user data space to the output queue as long as the
output queue high water mark has not been exceeded. The characters are processed as they are put
on the output queue to expand tabs and to add appropriate delays for newline, carriage return, and

- backspace characters. When the high water mark is reached, ttwrite calls sleep(D3X) to wait on the
output queue. The ttwrite function calls the driver proc(D2X) routine with T_OUTPUT set to
initiate or resume output to the device.

Kernel Functions(D3X) D3X-177

ttwrite(D3X)

EXAMPLE

When a process requests data be transferred to a terminal device, the driver write routine locates the
tty structure associated with the device. The data is copied from the user data area to the output
queues (line 7) with a call through the line switch table 1linesw(D4X).

1 externstruct tty xx_tty{]; /* Location of logical device structures */
2 ..
3 xx_write(dev)
4 dev_t dev;
5 {
6 register struct tty *tp = &xx_tty{minor(dev)};
7 (*linesw{tp->t_line}.l_write)(tp);
8 /* Copy character data from user data area to output queues */
9 }/* end xx_write */
Figure D3X—-60 The ttwrite Function
RETURN VALUE

Under normal conditions, no value is returned. Otherwise, ttwrite sets u.u_error to EFAULT if an
error occurs when data is being transferred from the user data area.

An EFAULT (bad address) error can be returned in u.u_error if the remaining characters cannot be

written from user program space (u.u_base) to a cblock(D4X). This indicates that the ublock is
corrupted, or that the cblock addresses are garbled.

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
linesw(D4X)

SOURCE FILE

iolttl .c

D3X-178 BCI Driver Reference Manual

ttxput(D3X)

NAME

ttxput — put characters into the TTY output buffer (t_outq)
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttxput(tp, ucp, ncode)
struct tty *ip;
union {

ushort ch;

struct cblock *ptr;
} ucps
int ncode;

ARGUMENTS

tp pointer to the tty(D4X) structure for the terminal being addressed

ucp either an unsigned shert with the character to be output in the least significant byte, or a
pointer to a cblock(D4X) structure containing the characters to be output on the
terminal screen.

ncode set to zero if ucp is an unsigned short, or set to the number of characters to be output if
ucp is a pointer to a cblock.

DESCRIPTION

This function transfers characters passed to it to the output queue, t_outq. ttxput also does output
character translation if

B t_state does not have EXTPROC (external processing) on and t_oflag has OPOST set.

B t_state has EXTPROC set, but t_lflag has XCASE set. XCASE processing is always
done in ttxput if EXTPROC is set.

ttxput places all characters passed to it into t_outq. In addition, if EXTPROC is not on and OPOST
is set, ttxput performs the output processing described under the t_oflag member of the tty
structure. This structure is documented under termio(7). This processing includes any translations of
characters to the t_outq (for example, translating a ‘‘\n” to both ‘“‘\n” and ‘“\r”’), and setting up for
any delays necessary in outputting a special character like vertical tab, form feed, or carriage retum.
The delaying technique is then left to the line discipline output routine. ttxput places a QESC
"character” into the t_outq followed by the actual character ORed with an octal 0200, if the character

Kernel Functions(D3X) D3X-179

txput(D3X)

isa delayed character. When processing a QESC character, the line discipline output routine should
perform any appropriate delaying technique after outputting the character.

ttxput is called from any routine wishing to output a character to the terminal. The line discipline
input routine calls ttxput to echo characters to the terminal if the ECHO bit of t_lflag is set. The
line discipline write routine also calls ttxput to output characters to the terminal.

RETURN VALUE

ttxput returns after placing the character(s) onto the output queue with any appropriate translations
defined by t_oflag.

LEVEL
Base or Interrupt

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
ttin(D3X), ttwrite(D3X)

SOURCE FILE
io/ttl .c

EXAMPLE

The following example uses ttxput (line 14) in a terminal input routine to echo characters to the
terminal. :

D3X—-180 BCI Driver Reference Manual

txput(D3X)

OO0 W -

—
o

11
12
13
14
15
16
17
18
19

/* line discipline input routine - transfer
* characters to rawq from rbuf
*/

xxin(tp, code)

register struct tty *tp;

register c;
cp = tp->t_rbuf.c_ptr;
c = *cpt+;
/* transfer characters from t_rbuf to t_rawq performing input
translation if necessary */
if (flg&ECHO) {

/* place character - ’c’ - on t_outq */

txput(tp, c, 0);

/* initiate physical output */

(*tp->t_proc)(tp, T_OUTPUT);

/* check to see if non-canonical timing should be done */

}

Figure D3X-61 ttxput — Echoing Input Characters

Kernel Functions(D3X) D3X-181

ttyflush(D3X)

NAME
ttyflush — release TTY buifers

SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttyflush(zp, rwflag)
struct tty *p;
int rwflag;
ARGUMENTS
p -pointer to the tty(D4X) structure associated with the device

rwflag flag indicates whether use is in conjunction with a read or write operation. Valid values
for this flag are FREAD and FWRITE.

DESCRIPTION
This function releases TTY buffers. If cmd is FREAD, ttyflush -
1 releases the buffers in t_canq and t_rawq to the cfreelist(D4X)
2 calls the driver proc(D2X) routine with T_RFLUSH set
3 awakens any processes sleeping on t_rawq
If cmd is FWRITE, ttyflush
1 releases the buffers in t_outq to the cfreelist
2 calls the driver proc routine with T_WFLUSH set
3 awakens any processes sleeping on t_outq
RETURN VALUE

None

D3X-—182 BCI Driver Reference Manual

ttyflush(D3X)

LEVEL

Base or Interrupt
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."
cblock(D4X) cirbuf(D3X)

SOURCE FILE

io/tty.c

Kernel Functions(D3X) D3X-183

ttywait(D3X)

NAME

ttywait — delay a process until character I/O operation is complete
SYNOPSIS

#include <sys/types.h>
#include <sys/tty.h>

ttywait(rp)
struct tty *1p;
ARGUMENT
tp pointer to the tty(D4X) structure associated with the device
DESCRIPTION
This function delays the execution of a process until the output of the Universal Asynchronous
Receiver-Transmitter (UART) is drained (approximately 13 bit times, depending on baud rate). A
UART is a circuit board chip that conveys bytes of data between a serial communications line and a
microprocessor (for example between a 3B computer and a TTY device).
RETURN VALUE
None
LEVEL
Base Only (Do not call from an interrupt routine)
SEE ALSO
BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."

delay(D3X), iodone(D3X), iowait(D3X), sleep(D3X), timeout(D3X), untimeout(D3X),
wakeup(D3X)

SOURCE FILE

ioltty.c

D3X—-184 BCI Driver Reference Manual

unkseg(D3X)
NAME
unkseg — free previously allocated kernel segment
SYNOPSIS
unkseg(vaddr)
char *vaddr;
ARGUMENT
vaddr the starting virtual address of the memory to be released (returned by kseg(D3X))
DESCRIPTION

This function releases memory pages that were previously allocated by kseg(D3X). This function is
not available on 3B2 swapping operating systems.

RETURN VALUE

None

LEVEL

Base Only (Do not call from an interrupt routine)

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations."

kseg(D3X), malloc(D3X), mapinit(D3X), mapwant(D3X), mfree(D3X), sptalloc(D3X),
sptfree(D3X)

SOURCE FILE

os/mmgt.c

Kernel Functions(D3X) D3X-185

unkseg(D3X)

EXAMPLE

Some device controllers accept downloaded microcode. The preferred method of downloading
microcode is to allocate a system buffer to hold the microcode. If the microcode is larger then a
system buffer, break the code into segments the size of a system buffer and do repetitive moves to
download the code. However, some device controllers may require all the microcode to be
downloaded in a complete unit (segmentation is not permitted). Then the driver can dynamically
allocate a private buffer using kseg (line 30), but the unit of allocation must be in pages or clicks
which is converted with btoc(D3X). The microcode is copied to the allocated memory space

(line 35). If an invalid address is found, an error condition is returned. Otherwise, the microcode is
downloaded to the controller and the private buffer is deallocated (line 46).

1 struct device /* Physical device register layout */

2 |

3 char reserve[4]; /* Reserve space on card */

4 ushort control; /* Physical device control word */

5 char status; /* Physical device status word */

6 char ivec_num;/* Device interrupt vector number */
7 /* 0xf0; subdevice reporting in 0x0f */

8 paddr_t addr; /* Address of data to be read/written */
9 int count; /* Amount of data to be read/written */
10 };/* end device */

11 struct ucode /* Layout of microcode input structure */
12 {

13 int count; /* Number of bytes in microcode */
14 char *code; /* Location of the microcode */

15 };/* end ucode */
16 extern struct device *xx_addrf]; /*Physical register location */
17 extern int xx_cnt; /* Number of devices */

19 xx_ioctl(dev, cmd, arg, flag)
20 dev_t dev;

21 caddr_t arg;

22 {

23 register struct device *1p;

24 switch(cmd)

Figure D3X—-62 The unkseg Function (part I of 2)

D3X—-186 BCI Driver Reference Manual

unkseg(D3X)

26 case XX_DOWNLOAD:

27 {

28 register struct *ucp = (struct ucode *)arg; /* Get microcode */
29 register caddr_t bp; /* location of private buffer */

30 if ((bp = kseg(btoc(ucp->count)) == 0) /* Allocate buffer */
31 - { /* I insufficient memory for buffer space, */

32 u.u_error = ENOMEM; /* return error condition */

33 retum;

34 } /* endif */

35 if (copyin(ucp->code, bp, ucp->count) == -1) /* Copy microcode */
36 { /* to allocated buffer area; if invalid address found */

37 unkseg(bp); /* Deallocate buffer area */

38 u.u_error = EFAULT; /* Return error condition */

39 return;

40 } /* endif */

41 rp = xx_addr{minor(dev) >> 3]; /* Get device registers */

42 rp->addr = vtop(bp, u.u_procp); /* Set up the location */

43 p->count = up_code.buffer_size; /* and size of microcode */
44 mp->control = XX_DOWNLD; /* and download it */
45 delay(HZ * 5); /* Wait for completion */

46 unkseg(bp); /* Deallocate buffer area */

47 } /* endblock */ -

48 break;

49

Figure D3X—62 The unkseg Function (part 2 of 2)

Kernel Functions(D3X) D3X-187

untimeout(D 3X)
NAME
untimeout — cancel previous timeout(D3X) function call
SYNOPSIS
untimeout(id)
int id;
ARGUMENT
id identification value generated by a previous timeout function call
DESCRIPTION
The untimeout function cancels a pending timeout request.
RETURN VALUE
Under any conditions, no value is returned on a 3B2 computer. Under normal conditions on an
3B4000 computer, 1 is returned. Otherwise on an 3B4000 computer, 0 (zero) is returned if the
process associated with id is not found.
LEVEL
Base or Interrupt
SEE ALSO

BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events."
delay(D3X), iodone(D3X), iowait(D3X), sleep(D3X), timeout(D3X), ttywait(D3X), wakeup(D3X)

SOURCE FILE

os/clock.c, osladp_clock.c

D3X—188 BCI Driver Reference Manual

untimeout(D3X)

EXAMPLE

A driver may have to repeatedly request outside help from a computer operator. The timeout
function is used to delay a certain amount of time between requests. However, once the request is
honored, the driver will want to cancel the timeout operation. This is done with the untimeout
function.

In a driver open(D2X) routine, after the input arguments have been verified, the status of the device
is tested. If the device is not on-line, a message is displayed on the system console. The driver
schedules a wakeup call (line 41) and waits for 5 minutes (line 42). If the device is still not ready,
the procedure is repeated.

When the device is made ready, an interrupt is generated. The driver interrupt handling routine
notes there is a suspended process. It cancels the timeout request (line 61) and wakens the suspended
process (line 63).

1 struct mtu_device /* Layout of physical device registers */

2 { ‘

3 int control; /* Physical device control word */

4 int status; /* Physical device status word */

5 int byte_cnt; /* Number of bytes to be transferred */
6 paddr_t baddr: /* DMA starting physical address */
7 }; /* end device *

8 struct mtu /* Magnetic tape unit logical structure */
9

10 struct buf *mtu_head; /* Pointer to I/O queue head */
11 struct buf *mtu_tail; /* Pointer to buffer /O queue tail */
12 int mtu_flag; /* Logical status flag */

13 int mtu_to_id; /* Time out id number */

14

15 };/* end mtu */

16 extern struct mtu_device *mtu_addr{]/* Location of device registers */

17 extern struct mtu mtu_tbl[]; /* Location of device structures */
18 externint mtu_cnt;

19 ..

20 mtu_open(dev, flag)

21 dev_t dev;

22 {

23 register struct mtu *dp;
24 register struct mtu_device *rp;

Figure D3X—-63 The untimeout Function (part I of 2)

Kernel Functions(D3X) D3X-189

untimeout(D3X)

25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65

if ((minor(dev) >> 3) > mtu_cnt) { /* If device does not exist, */
u.u_error = ENXIO; /* then retumn error condition */
return;
} /* endif */
dp = &mtu_tbi[minor(dev)]; /* Get logical device struct */
if (dp->mtu_flag & MTU_BUSY) != 0) { /* If device is in use, */
u.u_error = EBUSY; /* return busy status */
return;
}/* endif */
dp->mtu_flag = MTU_BUSY,; /* Indicate device in use & clear flags */
rp = xx_addr[minor(dev) >> 3]; /* Get device regs */
oldlevel2 = splhi();
while((rp->status & MTU_LOAD) == 0) /* While tape not loaded, */
{ /* display mount request on console */
cmn_err(CE_NOTE, "!'Tape MOUNT request for drive %d", minor(dev) & 0x3);
* dp->mtu_flag |= MTU_WAIT; /* Indicate process suspended */
dp->mtu_to_id = timeout(wakeup, dp, 5*60*HZ); /* Wait 5 min */
if (sleep(dp, (PCATCH | PZERO + 2)) == 1) /* Wait on tape load */
{ /* If user aborts process, release */
dp->mtu_flag = 0; /* tape device by clearing flags */
untimeout(dp->mtu_to_id);
spix(oldlevel2);
longjmp(u.u_gsav); /* Abort open(2) system call */
}/* endif */
} /* endwhile */
spix(oldlevel2);
} /* end mtu_open */

mtu_int(cntr)

int cntr; /* Controller that caused the interrupt */

{

register struct mtu_device *rp = xx_addr{entr]; /* Get device regs */
register struct mtu *dp = &mtu_tbl[cntr << 3 | (rp->status & 0x3)];

1f ((dp->mtu_flag & MTU_WAIT) != 0) /* If process is suspended */

{ /* waiting for tape mount, */
untimeout(dp->mtu_to_id); /* cancel timeout request */
dp->flag &= "MTU_WALIT; /* Clear wait flag */
wakeup(dp); /* Awaken suspend process */

} /* endif */

Figure D3X—63 The untimeout Function (part 2 of 2)

D3X—-190 BCI Driver Reference Manual

useracc(D3X)

NAME

useracc — verify whether user has access to memory
SYNOPSIS

#include <sys/types.h>
#include <sys/buf.h>

useracc(base, count, access)
caddr_t base;
int count, access;

ARGUMENTS
base the start address of the user data area (the u.u_base member of the user structure).
count the size of the data transfer in bytes (for example, the u.u_count member of the

user(D4X) structure).

access a flag to determine whether the access is a read or write. The defined constant B_READ
specifies a write into memory (the user is performing a read operation). This requires
that the user have write access permission for the specified data area. The defined

constant B_WRITE specifies a read from memory. It requires read access permission for
the data area. (B_READ and B_WRITE are defined in the system header file buf.h.)

DESCRIPTION

For raw I/O, a driver must verify that a user has access permission to the memory area specified in a
read(D2X), write(D2X), or ioctl(D2X) system call. The kernel function useracc performs this
verification. It is not necessary to use useracc for buffered I/O (including use of the copyin(D3X)
and copyout(D3X) functions).

RETURN VALUE

Under normal conditions, 1 is returned. Otherwise, 0 (zero) is returned if the user does not have the
proper access permission to the memory specified. If 0 is returned, set u.u_error to EFAULT.

LEVEL

Base Only (Do not call from an interrupt routine)

Kernel Functions(D3X) D3X-191

useracc(D3X)

SEE ALSO

suser(D3X)

SOURCE FILE

os/probe.c

EXAMPLE

With a RAM disk, direct I/O requests can be handled in the driver read and write routines, as long
as the I/O requests are for one or more complete blocks of information.

For either a read(2) or write(2) request, a test is made to determine if the I/O request is in the limits
of the RAM disk (line 12). With a demand paging system, the driver must ensure that the user’s
program data pages are in memory (lines 19 and 48). If invalid pages are found, the driver returns
the error condition if useracc has not already updated u.u_error.

WA s WN~=

10

12
13
14
15
16
17
18

#define RAMDNBLK 1000 /* RAM disk block number */

#define RAMDBSIZ 512 /* Bytes per block */

char ramdblksf RAMDNBLK][RAMDBSIZ]; /* Blocks forming RAM disk */
ramdread(dev) /* Block device direct read request */

dev_t dev;

register daddr_t blkno; /* Starting block number */
register int nblks; /* Blocks to be read (with direct (physio)*/
/* /O from or to a block device, the data must be */
/* moved as a single complete block or multiples of */
/* complete blocks). */
if (physck(RAMDNBLK,B_READ)) /* If read request in the limits */
{ /* of the RAM disk, copy data to user */

if ((nblks = u.u_count / RAMDBSIZ)) <= 0) /* Determine */

{ /* number of blocks that can be copied. If user data */
u.u_error = EFAULT; /* area cannot hold complete block from*/
return; /* the RAM disk, return error condition */

}/* endif */

Figure D3X—~64 The useracc Function (part I of 3)

D3X-192 BCI Driver Reference Manual

useracc(D3X)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47

if (useracc(u.u_base, u.u_count, B_READ) == 0)

{ /* Ensure process data pages are in core; */
if (u.u_error == 0) /* if not and u_error does not provide */

u.u_error = EFAULT; /* reason, return fault error condition */

return;

} /* endif */

blkno = u.u_offset / RAMDBSIZ;

/* Compute starting block number and copy data to user */

copy (u.u_base, (caddr_t)&ramdblks{blkno][0], (nbilks * RAMDBSIZ));

u.u_base +=1; /* Increment virtual base addr */

u.u_offset += i; /* Increment file offset */

u.u_count -= i; /* Decrement bytes not transferred */

} /* endif */

} /* end ramdread */
ramdwrite(dev) /* Direct write request to a block divide */
dev_t dev;

register daddr_t bikno; /* Starting block number */

register int nblks; /* Number of blocks to be written; */
/* with direct I/O from or to a block device, the data must be */
/* moved as a single complete block or multiples.of */
/* complete blocks. */ :

if (physck(RAMDNBLK,B_WRITE)) /* If write request in limits */
{ /* of the ram disk, then copy data to user */

if (u.u_count % RAMDBSIZ != 0) /* Ensure there are one */

{ /* or more complete blocks to be copied. If not, then */
u.u_error = EFAULT; /* return an error condition. */
return;

} /* endif */

Figure D3X—64 The useracc Function (part 2 of 3)

Kernel Functions(D3X)

D3X-193

useracc(D3X)

48
49
50
51
52
53
54
55
56
57
58
59
60

if (useracc(u.u_base, u.u_count, B_WRITE) == 0)
{ /* Ensure process data pages are in core */
if (u.u_error == 0) /* If not and u_error gives no */
u.u_error = EFAULT; /* reason, return fault error condition */
return;
} 7* endif */
blkno = u.u_offset / RAMDBSIZ,;
/* Compute starting block number and copy data to user */
copy (u.u_base, (caddr_t)&ramdblks[blkno][0], u.u_count);

‘u.u_base += i; /* Increment virtual base addr */

u.u_offset += i; /* Increment file offset */
u.u_count -= i; /* Decrement bytes not transferred */

} /* endif */

61 }/* ramdwrite */

Figure D3X—-64 The useracc Function (part 3 of 3)

D3X-194 BCI Driver Reference Manual

vtop (D 3X)
NAME
vtop — convert virtual to physical translation
SYNOPSIS
#include <sys/types.h>
paddr_t
vtop(vaddr, p)

char *vaddr;
struct proc *p;

ARGUMENTS
vaddr virtual address to convert
D pointer to the proc(D4X) structure used by vtop to locate the information tabies used

for memory management. To indicate that the address is in kemnel virtual space or in the
driver itself, set p to NULL. Block drivers that can transfer data directly in and out of
user memory space must set p to the b_proc member of the buf(D4X) structure.

DESCRIPTION

This function converts a virtual address to a physical address. When a driver receives a memory
address from the kernel, that address is virtual. Generally, memory management is performed by the
CPU. However, devices that access memory directly (DMA), deal only with physical memory
addresses. In such cases, the driver must provide the device with physical memory addresses.

The virtual address is the memory address being translated. The vtop function returns the translated
address.

Note that vtop can only be used to translate a user address in the currently active process. As a
result, it cannot be used in an interrupt handler or a time-out entry.

Kernel Functions(D3X) D3X-195

vtop(D3X)

RETURN VALUE
Under normal conditions, a physical address is returned. Otherwise, the following can be returned:
8 -1, if vtop is called with one argument and the physical address is incorrect.
8 0 (zero), if vtop is called with two arguments and the physical address is incorrect.
Should an error oécur during address conversion, the following panic message is displayed:
PANIC: svirtophys - movtrw failed.

svirtophys is an internal function called by vtop. movtrw is an assembler instruction that handles the
conversion between virtual and physical addresses.

LEVEL

If the p argument is set to NULL, vtop can be called from an interrupt routine. Otherwise, vtop can
only be used in base level routines.

SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
btoc(D3X), ctob(D3X), getsrama(D3X), and getsrambh(D3X)

SOURCE FILE

os/machdep.c (3B2 computer) or mi/misc.s (3B4000 computer)

D3X-196 BCI Driver Reference Manual

vtop(D3X)

EXAMPLE

1 struct mtu_device /* Physical device register layout */

2 |

3 int control; /* Physical device control word */

4 int status; /* Physical device status word */

5 int byte_cnt; /* Number of bytes to be transferred */
6 paddr_t baddr: /* DMA starting physical address */
7 }; /* end device */

8 struct mtu /* Magnetic tape unit logical structure */

9 {

10 struct buf *mtu_head; /* Pointer to /O queue head */

11 struct buf *mtu_tail; /* Pointer to buffer /O queue tail */
12 int mtu_flag; /* Logical status flag */

13 int mtu_to_id; /* Time out id number */

14 ..

15 };/* end mtu ¥/

16 extern struct mtu_device *mtu_addr(]y/* Physical device register location */

17 extern struct mtu mtu_tblf}; /* Logical device structure location */
18 externint mtu_cnt;
19

20 mtu_iostart(rp, dp)

21 register struct mtu *dp;

22 register struct mtu_device *rp;
23 {

24 register struct buf *bp;

25 register int dev;

26 if (dp->mtu_flag & MTU_ACTIVE) != 0) /* If device is */

27 return; /* currently performing an I/O operation, retum */

28 /* endif */

29 if ((bp = dp->mtu_head) == NULL) /* Get next buffer in /O queue */
30 return; /* If none, return */

Figure D3X—65 The vtop Function (part I of 2)

With direct memory access devices, the starting DMA address of a data areca must be the physical
address and not the virtual address, since the device does not have access to the virtual-to-physical
translation (segment and/or page) tables. Therefore, at the start of an I/O operation, the driver
provides the physical address plus the byte count. The device is then activated to perform the
requested read or write operation (lines 40 to 46).

Kernel Functions(D3X) D3X-197

vtop(D3X)

31 if (bp->b_flags & B_PHYS) != 0) /* If direct transfer to user */
32 { /* program uses page tables associated */

33 rp->baddr = vtop(bp->b_un.b_addr, bp->b_proc) /* with process */
34 } else {

35 rp->baddr = vtop(bp->b_un.b_addr, u.u_procp);

36 /* Buffer in kernel space, any page tables will suffice */

37 } /* endif */

38 rp->byte_cnt = bp->b_count; /* Number of bytes to transfer */
39 dev = dp - mtu_tbl & 0x3; /* Compute subdevice number */
40 if (bp->b_flags & B_LREAD) /* If a read request, then start */

41 rp->control = MTU_RD_CMD | dev; /* a read transfer of data */

42 else

43 rp->control = MTU_WR_CMD | dev; /* else start write data transfer */
4 /* endif */

45 dp->mtu_flag |= MTU_ACTIVE; /* Indicate device active with I/O request *

46 }/* end mtu_start */

Figure D3X—65 The vtop Function (part 2 of 2)

D3X—198 BCI Driver Reference Manual

wakeup(D3X)

NAME

wakeup — resume suspended process execution

SYNOPSIS

#include <sys/types.h>

wakeup(event)
caddr_t event;

ARGUMENT

event unique address that is the same address used by sleep(D3X) to suspend process execution

DESCRIPTION

The wakeup function awakens all processes that called sleep with an address as the event argument.
This lets the processes execute according to the scheduler. You must ensure that you use the same
event for both sleep and wakeup. It is recommended for code readability and for efficiency to have a
one-to-one correspondence between events and sleep addresses. Also, there is usually one bit in the
driver flag member that corresponds to each reason for calling sleep.

Whenever a driver calls wakeup, it should test to ensure the event on which the driver called sleep
occurred. There is an interval between the time the process that called sleep is awakened and the
time it resumes execution where the state forcing the sleep may have been reentered. This can occur
because all processes waiting for an event are awakened at the same time. The first process given
control by the scheduler usually gains control of the event. All other processes awakened should
recognize that they cannot continue and should reissue sleep.

RETURN VALUE
None
LEVEL

Base or Interrupt
SEE ALSO
BCI Driver Development Guide, Chapter 9, "Synchronizing Hardware and Software Events."

delay(D3X), iodone(D3X), iowait(D3X), sleep(D3X), timeout(D3X), ttywait(D3X),
untimeout(D3X)

Kernel Functions(D3X) D3X-199

wakeup(D3X)

SOURCE FILE

osl/slp.c
EXAMPLE

Sometimes a driver must suspend the execution of the current process with sleep while it waits for the
availability of a hardware resource. It is the driver’s responsibility to resume the suspended process
with wakeup when the hardware resource is made available.

In a driver open(D2X) routine, when a terminal device does not have carrier from a modem, the
driver waits for carrier to be established with sleep. The driver scan routine checks the status of the
modems. (The scan routine (line 35) is a subordinate driver routine.) If a port is not open or is not
waiting to be opened, skip it. When a modem carrier lead is on, but the tty(D4X) structure shows
processes using the port waiting for carrier, awaken all suspended processes (line 46) and set the
carrier-on flag (line 47).

1 struct device /* Layout of physical device registers */

2 |

3 int control; /* Physical device control word *

4 int status; /* Physical device status word */

5 short modem_statusy* Modem carrier (upper 8 bits) & ring */
6 /* (lower 8 bits) status word */

7 short recv_char; /* Receive character from device */

8 short xmit_char; /* Transmit character to device */

9

}; /* end device */

10 extern struct device xx_addr{]; /* Physical device register location */
11 extern struct tty xx_tty[]; /* Logical device structure location */

13 xx_open(dev, flag)
14 dev_t dev;
15 int flag;

Figure D3X—-66 The wakeup Function (part I of 2)

D3X—200 BCI Driver Reference Manual

wakeup(D3X)

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

36 .

37
38
39
40
41
a2
43
44
45
46
47
48
49

{

register struct tty *tp = &xx_tty[minor(dev)];

register struct device *rp = &xx_addr{minor(dev) >> 3]; /* Get device regs */
register int port = minor(dev) & 0x07; /* Get port number */

oldlevel = spl6();
if ((rp->modem_status & (0x0100 << port)) != 0)
{ /* If carrier to the modem, */

tp->t_state |= CARR_ON; /* Indicate carrier established */
}else {

tp->t_state &= "CARR_ON; /* else indicate carrier dropped */
} /* endif */

while((tp->t_state & CARR_ON) == 0) /* While carrier is not */
{ /* established; indicate driver */
tp->t_state |= WOPEN; /* Waiting for carrier */
sleep((caddr_t)&tp->t_canq, TTIPRI); /* Wait for carrier */
} /* endwhile */
splx(oldlevel)

xx_scan()
/* If port is open or */
/* s waiting for carrier, then */
continue; /* Skip this port */
[* endif */
rp = &xx_addr[port >> 3]; /* Get device registers */
mask = 0x0100 << (port & 0x7); /* Set up mask to test modem status word */
if (rp->modem_status & mask) != 0)
{ /* I modem for port has carrier, */
if ((tp->t_state & CARR_ON) == () /* But processes waiting */
{ /* for carrier, awaken */
wakeup(&tp->t_canq); /* All suspended processes */
tp->t_state |= CARR_ON; /* Show carrier established */
} /* endif */

Figure D3X—-66 The wakeup Function (part 2 of 2)

Refer to line 63 of the example for untimeout(D3X) for another wakeup example.

Kernel Functions(D3X) D3X-201

Section D4X: Data Structures (D4X)

Contents

Introduction D4X-1
bdevsw(D4X) ' ' D4X-3
buf(D4X) D4X-5
cblock(D4X) . D4X- 10
ccblock(D4X) D4X-13
cdevsw(D4X) D4X—-15
cfreelist(D4X) D4X-17
chead (D4X) D4X-19
clist (D4X) D4X-20

Data Structures (D4X) D4X-—i

D_FILE(D4X) [3B15 and 3B4000 computers only]

D4X-22

hdedata(D4X) D4X-24
iobuf(D4X) D4X~-26
linesw(D4X) D4X-28
proc(D4X) D4X-31
sysiﬁfo(D4X) D4X-33
tty(D4X) D4X-36
user(D4X)

D4X—ii BCI Driver Reference Manual

D4X-40

Introduction

Section D4X describes the data structures used by drivers to share information between the driver and
the kernel. All BCI driver data structures are identified with the (D4X) cross reference code.

Driver data structures are used as buffers for holding data passed between user data space and the
device, as flags for indicating error device status, or as pointers to link buffers.

This section includes both general system data structures, such as the user area and the process table,
and specific driver data structures, such as buf and clist. For ease of access, data structures are
listed in alphabetical order.

The following structures are described:

bdevsw contains system entry-points for block driver routines

buf passes information between the block driver and the user program (also known as
the buffer structure)

The following structures are used together for buffering character data:
m! cblock accesses character data array
O ccblock acts as temporary buffer for unqueued characters
O cfreelist links a list of cblocks
O chead heads the ¢freelist pool of cblocks

80 clist passes information between most character drivers and the user
program

cdevsw contains system entry-points character driver routines
D_FILE is a pointer used with the drv_rfile(D3X) function
hdedata temporarily stores error information

7

iobuf used to store private driver state information and to set up an internal queue for
outstanding device I/O requests

linesw contains entry points to the line discipline protocols for character driver
processing and buffering

proc process table structure locates the code, data, and stack information of a process.
The scheduler also uses the proc structure in selecting processes to run.

Data Structures (D4X) D4X-1

Introduction

B sysinfo indicates the number of times the rint and xint driver interrupt routines are
entered

® TTY controls character transfers between a tty terminal driver and user data space

® user defines the process and its current state

IMPORTANT: The number of bytes in a structure may change at any
time. Therefore, rely only on the structure members listed
in this section and not on unlisted members or the position
of a member in a structure.

On each manual reference page, each structure is organized by the following headings:
8 DESCRIPTION provides general information about the structure
8 STRUCTURE MEMBERS lists all accessible structure members
8 SOURCE FILE indicates the path name location of the structure definition.

® SEE ALSO gives sources for further information

D4X—-2 BCI Driver Reference Manual

bdevsw (D 4X)

DESCRIPTION

The bdevsw (block device switch table) data structure provides kemel entry points into a driver.
bdevsw is constructed by the self-configuration process. bdevsw should not be used directly by a
driver.

The bdevsw table allows the kernel to map the names of the devices to the device driver. It is used
for block special files. The table includes pointers to functions used to implement user requests as
shown in Figure D4X-1.

File
System |mount(2) umount (2)
Calls open (2) close (2) read(2) write(2)

USER
KERNEL

buffer cache

/

Block Device Switch Table{ bdevsw)

Major | ¢ open |d_close |d_strategy [+ d_print

Device#
0 < o ° ®
1 o
2 ° [< ®

Device Driver

Figure D4X—1 bdevsw Structure

Data Structures (D4X) D4X-3

bdevsw(D4X)

STRUCTURE MEMBERS

Type Member Description

int (*d_open)(); /* Accesses driver open routine */
int (*d_close)(); /* Accesses driver close routine */
int (*d_strategy)(); /* Accesses driver strategy routine */
int (*d_print)(); /* Accesses driver print routine */
SOURCE FILE

conf.h

SEE ALSO

BCI Driver Development Guide, Chapter 3, "Drivers in the UNIX Operating System."

D4X—-4 BCI Driver Reference Manual

buf(D4X)

DESCRIPTION

buf is the basic data structure for the system buffer cache used for block I/O transfers. Each buffer
in the buffer cache has an associated buffer header. The header contains all the buffer control and
status information. The buffer header pointer is the sole argument to a block driver strategy(D2X)
routine. Do not depend on the size of the buf structure when writing a driver.

It is important to note that a buffer header may be linked in multiple lists simultaneously. Because of
this, most of the members in the buffer header cannot be changed by the driver, even when the buffer
header is in one of the driver’s work lists.

Buffer headers are also used by the system for unbuffered or physical /O for block drivers. In this
case, the buffer describes a portion of user data space that is locked into memory.

In Figure D4X-2, two linked lists of buffers are illustrated. The top illustration is the bfreelist,
the list of available buffers. The bottom illustration is a queue of allocated buffers. The lined areas
indicate other buffer members.

buf structure

av_forw e

av_back S o o o

Y%

b_forw _,m ‘
mi b:forw I

allocated buffers

Figure D4X—-2 buf Structure

Data Structures (D4X) D4X-5

buf(D4X)

STRUCTURE MEMBERS
Type Member Description
int b_flags; /* Buffer status */

struct buf *b_forw; /* Links the buffer into driver work lists */
struct buf *b_back; /* Links the buffer into driver work lists */
struct buf *av_forw; /* Position of buffer in free list */
struct buf *av_back; /* Position of buffer in free list */

dev_t b_dev; /* Major and minor device numbers */
unsigned b_bcount; /* Number of bytes to be transferred */
caddr_t b_addr; /* Buffer’s virtual address */

daddr_t ‘b_blkno; /* Logical block number */

char b_error; /* u.u_error error code number */
unsigned int b_resid; /* Number of bytes not transferred */
time_t b_start; /* /O start time */

struct proc *b_proc; /* Process table entry address */

The paddr macro (defined in buf.h) provides access to the b_un.b_addr member of the buf
structure. (b_un is-a union that contains b_addr.)

The following example (Figure D4X-3) uses the paddr macro. The paddr macro is "passed” a
pointer to a buffer header structure and "returns” the pointer to the buffer.

1 #include "sys/fs/sSparam.h"

2 copy.the_data(bp)
3 struct buf *bp;
4

5 /* copy all the data from a buffer into user address space */
6 copyout(paddr(bp),u.u_base,SBUFSIZE);

7}

Figure D4X—-3 The paddr macro

D4X—6 BCI Driver Reference Manual

bufiD4X)

Refer to Table D4X-1 for structure member field use.

Table D4X—1 buf Structure Member Use

Member | Use

b_flags driver setable - Do not clear
b_forw read only
b_back read only
av_forw read only
av_back | read only
b_dev read only
b_bcount | read only
b_addr read only
b_blkno read only
b_error driver setable
b_resid driver setable
b_start driver setable
b_proc read only

CAUTION: The driver must never clear the b_flags member. If this is
done, unpredictable results can occur including loss of disk
sanity and the possible failure of other kemel processes.

The members of the buffer header available to test or set by a driver are as follows:

m b_flags stores the buffer status and tells the driver whether to read or write to the device.

Valid flags are as follows:
o B_BUSY indicates the buffer is in use
g B_DONE indicates the data transfer has completed

o B_ERROR indicates an I/O transfer error

o B_PHYS indicates the buffer header is being used for
physical (direct) /O to a user data area. The
b_un member contains the starting address of the
user data area.

Data Structures (D4X) D4X-7

bufiD4X)

o B_READ indicates data is to be read from the peripheral
device into main memory

0 B_WANTED indicates the buffer is sought for allocation

g B_WRITE indicates the data is to be transferred from main
memory to the peripheral device. B_LWRITE is a
pseudo flag that occupies the same bit location as
B_READ. B_WRITE cannot be directly tested; it
is only detected as the “not” form of B_READ.

® b_forw and b_back can be used by the driver to link the buffer into driver work lists.
B av_forw and av_back maintain the position of the buffer on the buffer cache fre list.
B b_dev contains the external major and minor device numbers of the device accessed.
8 b_bcount specifies the number of bytes to be transferred

® b_un.b_addr is the virtual address of the data buffer controlled by the buffer header.
Data is read from the device to this starting address or is written to the device from this
starting address.

® b_blkne identifies which logical block on the device (the device is defined by the minor
device number) is to be accessed. The driver may have to convert this logical block
number to a physical location such as a cylinder, track, and sector of a disk.

B b_error holds the error code that is eventually assigned to the u.u_error member of the
user data structure by the kernel. It is set in conjunction with the B_ERROR flag (set
by the operating system in the b_flags member).

B b_resid indicates the number of bytes not transferred because of an error.

B b_start holds the I/O operation start time. It can be used to measure device response
time. See BCI Driver Development Guide, Chapter 14, "Performance Considerations."

N b_proc contains the process table entry address for the process requesting an unbuffered
(direct) data transfer to a user data area (this member is set to 0 (zero) when the transfer
is buffered). The process table entry performs proper virtual to physical address
translation of the b_un member.

D4X—-8 BCI Driver Reference Manual

buf(D4X)

geteblk Impact on the buf Structure

The geteblk(D3X) function allocates buffers. geteblk retrieves a buffer from the system buffer cache
and returns the buffer header address to the calling routine. If a buffer header is not available,
geteblk will sleep until one is available. When the buffer is obtained through geteblk(D3X), the
driver may set the buf structure members as follows:

b_flags set B_BUSY if the buffer is in use and set B_READ
or B_WRITE depending on the transfer type (if a
transfer was performed)

b_dev set to the device number

b_bcount set to the number of bytes in the buffer

b_blkno set to the block on the device to be accessed
b_proc set to 0 when the transfer is buffered
SOURCE FILE
buf.h
SEE ALSO

BCI Driver Development Guide, Chapter 6, "Input/Output Operations.”
BCI Driver Development Guide, Chapter 4, "Header Files and Data Structures. "
strategy(D2X), physio(D3X), brelse(D3X), clrbuf(D3X), geteblk(D3X) iobuf(D4X)

Data Structures (D4X) D4X-9

eblock(D4X)

DESCRIPTION

Character data is stored in an array which is part of a ¢block structure. cblocks are linked
together to form the clist (queue). cblock also contains indices to the first and last valid
characters in the array.

The number of data characters in a cblock is set by the CLSIZE variable. The current value for
CLSIZE is 64. Hence, a single cblock can contain up to 64 characters.

A cblock contains a pointer to the next cblock on a linked list (c_next), a small character array
to contain data (c¢_data), and a set of offsets (c_first and c_last) indicating the position of the valid
data in the cblock (see Figure D4X-4).

If there is not enough room in the ¢block for all data, a new cblock is removed from the
cfreelist and added to the end of the queue. f a cblock on a queue is empty, it is removed
from the queue and placed on the cfreelist.

c_next -

c_first c_last

61141213163
c_data

Figure D4X—4 cblock Structure

D4X—10 BCI Driver Reference Manual

cblock(D4X)

STRUCTURE MEMBERS

Type Member Description

struct cblock *c_next; /* Pointer to the next cblock */
char c_first; /* Index to the c_data array */

/* of the next character to be */

/* read from the c1list */
char c_last; /* Index to the c_data array */

/* of the next character to be */

/* written to the clist */
char c_data[CLSIZE]; /* ¢block data */

Data Structures (D4X) D4X-11

cblock(D4X)

SOURCE FILE
tty.h
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."”
ccblock(D4X), cfreelist(D4X), chead(D4X), clist(D4X)

D4X—-12 BCI Driver Reference Manual

ccblock(D4X)

DESCRIPTION

A data structure used by the character I/O subsystem is the character control block, ¢cblock.
ccblock is a temporary buffer for characters not in a queue.

The c_ptr member points to the character buffer (c_data) of a cblock. The ¢_count and c_size
members are initialized to the size of the cblock character array (64 characters). The ¢_count
member is then decreased by the number of characters in the c¢block character buffer. The
difference between the two members indicates the number of characters in the buffer.

See Figure D4X-5.

ccblock
c_ptr
c_count (60)
c_size (64)

Figure D4X~-5 ccblock Structure

The ccblock structure members are manipulated via the t_tbuf and the t_rbuf members of the
tty(D4X) structure. For example, the following code example (see Figure D4X-6) accesses ¢_count
‘and c_size members of the ceblock structure.

1 struct tty *tp; /* tp is a pointer to the tty structure */
2 tp->t_tbuf.c_size -= tp->t_tbuf.c_count; /* Decrement c_size
3 by c_count */

Figure D4X—6 Access in cchlock Structure

Data Structures (D4X) D4X-—13

ccblock(D4X)

STRUCTURE MEMBERS

Type Member Description

caddr_t c_ptr; /* Buffer address */
ushort c_count; /* Character count */
ushort c_size; /* Buffer size */

SOURCE FILE
ty.h
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
cblock(D4X), cfreelist(D4X), chead(D4X), clist(D4X)

D4X—-14 BCI Driver Reference Manual

cdevsw(D4X)

DESCRIPTION

The cdevsw (character device switch table) data structure provides driver entry points for the
kemel. cdevsw is used for character special files. cdevsw is constructed by the self-configuration
process. cdevsw should not be used by a driver. The structure members section illustrates how the
switch table appears in memory and in the /urix file.

The caevsw table allows the kernel to map the names of devices to the device driver (see
Figure D4X-7). The table includes pointers to functions used to implement user requests.

System)
Calls Lopen (2) close(2) ioctl(2) read(2) write(2)

USER
KERNEL

Character Device Switch Table (cdevsw)
Major d_open | d_close | d_ioctl | d_read | d_write

Device#
0 < o < < <
1 ° ° ° o °
2 ° ° ° ° °

Device Driver

Figure D4X—7 cdevsw Structure

Data Structures (D4X) D4X-—-15

cdevsw(D4X)

STRUCTURE MEMBERS

Type Member Description

int (*d_open)(); /* Accesses driver open routine */
int (*d_close)(); /* Accesses driver close routine */
int (*d_read)(); /* Accesses driver read routine */
int (*d_write)(); /* Accesses driver write routine */

int (*d_ioct)(); /* Access driver ioctl routine */
SOURCE FILE

conf.h

SEE ALSO

Section D2X, "Driver Routines (D2X)," of this manual.
BCI Driver Development Guide, Chapter 2, "Drivers in the UNIX Operating System.”

D4X—-16 BCI Driver Reference Manual

cfreelist(D4X)

DESCRIPTION

cblocks are drawn from the cfreelist pool. cfreelist is headed by the chead data
structure whose members are listed on this page. The size of cfreelist is determined by the
NCLIST tunable parameter defined in the kerne! master file.

The c_flag member indicates a process is waiting for a ¢cblock. When a character device needs a
cblock and the cfreelist is empty, the device must set the c_flag member of the chead
structure to a non-zero value and sleep on the address of the cfreelist.

The cfreelist is a singly linked list (c_next) of cblocks(D4X). (See Figure D4X-8.) The
c_size variable in the clist head structure indicates the size of the cblock character buffer.
Since the cfreelist is limited in size and shared by all TTY devices, it is possible for the
cfreelist to be empty when a cblock is needed by a TTY device. When this occurs, the
process needing a cblock must use sleep(D3X) to wait on the cfreelist (see Figure D4X-9).
This must not be done from the driver’s interrupt level.

struct :

chead cfreelist cblock cblock cblock

c_next 3 ¢_next ————> c_next -————)1 c_next

c_size (64) c_first | c_last c_first | c_last c_first | c_last
c_flag , c_data ' c_data c_data

Figure D4X—8 cfreelist Structure

cfreelist.c_flag = 1;
sleep(&cfreelist, tty_priority);

N

Figure D4X—-9 Waiting for an Available cfreelist Buffer

Data Structures (D4X) D4X-17

cfreelist(D4X)

STRUCTURE MEMBERS

Type Member Description

struct cblock *c_next; /* Singly linked list */

int c_size; /* Size of the cblock character buffer */
int c_flag; /* Indicates process waiting for a cblock */
SOURCE FILE

ty.h

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
cblock(D4X), ccblock(D4X), chead(D4X), clist(D4X)

D4X—18 BCI Driver Reference Manual

chead (D4X)

DESCRIPTION

The pool from which cblocks(D4X) are drawn is the cfreelist. The chead structure points
to the beginning of the cfreelist.

cfreelist is a singly linked list of cblocks. c_next points to the next available cblock in the
queue. The c_size indicates the cblock character buffer size. There is a maximum of 64 bytes.
c_flag indicates if a process is waiting for a cblock. (See Figure D4X-10.)

When a cblock is needed, an available cblock is removed from the cfreelist and added to
the end of the queue. Since the cfreelist is limited in size and shared by all TTY devices, it is
quite possible for cfreelist to be empty when a cblock is needed by a TTY device. When
cfreelist is empty, the device must set ¢_flag to a non-zero value and sleep on the address of the

cfreelist.
struct
chead cfreelist cblock cblock cblock
c_next ————t—3> c_next c_next c_next
c_size (64) c_first | c_last c_first | c_last c_first | c_last
c_flag c_data c_data c_data
Figure D4X—-10 chead Structure
STRUCTURE MEMBERS
Type Member Description
struct cblock *c_next; /* Singly linked list */
int c_size; /* Size of the cblock character buffer */
int c_flag; /* Indicates process waiting for a cblock */
SOURCE FILE
ity.h
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”

cblock(D4X), ccblock(D4X), cfreelist(D4X), clist(D4X)

Data Structures (D4X) D4X-19

clist (D4X)

DESCRIPTION

Character I/O is usually buffered in data structures that form a linked list queue called a character
list, or clist. The clist isthe head of a linked list queue of cblocks. It stores small
quantities of data shared between a device and a user data area. ‘

Typically, the terminal speed sends data at a slower rate than data can be sent to the user program.
A character driver accumulates characters from the terminal in a clist and then passes the data to
the user program.

clist contains a total count on the number of characters in the queue (c_cc) and pointer to the first
(c_cf) and last (c_cl) eblocks in the queue. The cblocks form a singly linked list (c_next).
Each cblock contains a buffer of up to 64 characters (c_data) and maintain indexes which point to
the first (c_first) and last (c_last) character in the buffer.

This clist structure contains 172 bytes. This number is indicated by the value in ¢_cc member
(See Figure D4X-11).

clist
cee (172)
c_cf c_cl
cblock
c_next c_next
c_first c_last c_first c_last
011213 63 0111213 63
c_data c¢_data

Figure D4X—11 clist Structure

D4X—-20 BCI Driver Reference Manual

clist (D4X)

STRUCTURE MEMBERS

Type Member Description

int c_CC; /* Number of Characters in the clist */
struct cblock *c_cf; /* Pointer to the first cblock */

struct cblock *c_cl; /* Pointer to the last cblock */
SOURCE FILE

tty.h

SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
cblock(D4X), ceblock(D4X), cfreelist(D4X), chead(D4X)

Data Structures (D4X) D4X-21

D_FILE(D4X) [3B15 and 3B4000 computers only]

DESCRIPTION

The D_FILE data structure is a pointer used in conjunction with the drv_rfile(D3X) function.
drv_rfile reads a file into a buffer that it creates. The buffer address and buffer size are returned.

drv_rfile is useful for bringing a file into a driver, and for accessing files pumped (downloaded) to an
intelligent controller. '

drv_rfile should be called twice, once to open and read the file, and again to close the file. When
the file is closed, the buffer is released.

IMPORTANT: Before drv_rfile is called, the name of the file read must reside in kernel space; not
user space. D_FILE points to the complete path name of the file read, the entries where drv_rfile
writes the buffer address, the buffer size, and if the file should be opened or closed. drv_rfile cannot
be used in a driver’s init routine. (It can be used in the start routine.)

Before calling drv_rfile with the open flag set, set buffer_address to NULL. This field must not be
altered between open and close requests. Once drv_rfile has been given an open request, drv_rfile
must close the request when completed to ensure that the buffer is freed correctly. In addition, the
open_close flag should not be changed between the open and close calls of drv_rfile.

drv_rfile returns (-1) if an error occurred; it also sets u.u_error as follows:

ENOENT no file name or path too long
EFAULT cannot copy filename to internal buffer
ENOMEM cannot acquire buffer space as drv_rfile uses kseg(D3X)

EIO Read of file failed. drv_rfile will clean up. There is no need to issue a second call to
close a file.

NOTE: u.u_error may have additional values if drv_rfile returns -1 because it called another
kernel routine. For a D_FILE code example, see the drv_rfile(D3X) reference page in
this manual.

D4X—22 BCI Driver Reference Manual

D_FILE(D4X) [3B15 and 3B4000 computers only]

STRUCTURE MEMBERS

Type Member Description

char *file_name; /* Name of file accessed */

char *buffer_address; /* Buffer address set to zero before open */
int buffer_size; /* Buffer size set to NULL before open */
char open_close; /* Open or close flag. open = 0, close = 1 */
SOURCE FILE

systm.h

SEE ALSO

drv_rfile(D3X), kseg(D3X)

Data Structures (D4X) D4X-23

hdedata(D4X)

DESCRIPTION

The hdedata data structure temporarily stores hard disk error information sent to an error queue.
An hdedata structure is initialized for every disk on the system by driver calls to hdeeqd(D3X)
when the system is booted. An error queue is also initialized by hdeeqd.

When the disk driver finds an érror, it calls the hdelog(D3X) function with the error information.
hdelog passes the hdedata structure for the error to the error queue. This error queue is a queue
of bad block reports that have not been remapped. This queue resides in the kernel and not on the
disk.

After a number or errors are accumulated, an administrator examines the list of errors collected in
the queue. If any of the errors need to be "fixed”, he or she remaps the bad block. Remapping
means that the block address is rewritten to a defect table on the disk. PD sector information points
to this defect table.

See the BCI Driver Development Guide, Chapter 11, "Error Reporting”, for further information.

Figure D4X-12 illustrates the logging of hard disk errors.

Driver [>| hdelog- [~ error queue

$

hdedata
structure

Figure D4X—-12 Logging a Queue Error
When an error is encountered, the following message appears on the console:

WARNING: severity readtype hard disk error:
maj/min = external-major-num, external-minor-num

D4X—-24 BCI Driver Reference Manual

hdedata(D4X)

STRUCTURE MEMBERS

Type
dev_t

char
daddr_t

char

char
char
char
time_t

Member
diskdev;

dskserno[12];
blkaddr;

readtype;

severity;
badrtent;
bitwidth;
timestmp;

Description

/* Major/minor disk device number */

/* (major number for character device) */

/* Disk pack serial number (can be all zeros) */
/* Physical block address */

/* in machine-independent form */

/* Error type: CRC (cyclical redundancy check */
/* or ECC(error check and correction) */

/* Severity type: marginal or unreadable */

/* Number of unreadable tries */

/* Bitwidth of corrected error: 0 if CRC */

/* Time stamp */

The disk pack serial number is not currently evaluated, but it must contain a value. Set to all zeros.

SOURCE FILE

hdelog.h

SEE ALSO

BCI Driver Development Guide, Chapter 11, "Error Handling and Reliability.”
hdeeqd(D3X), hdelog(D3X)

Data Structures (D4X) D4X-—-25

iobuf(D4X)
DESCRIPTION

The iocbuf structure provides a template for a private /O queue to manage a specific device’s
outstanding I/O requests, and fields to store device state information. The iobuf structure stores
such information as the device number, an error count, the device’s local bus address, and provides
pointers to the av_forw and av_back fields in the buf structure. These pointers can be used to

" create an internal request queue.

3B15 computer and 3B4000 master processor IDFC device controllers use the iobuf structure
specifically. Each IDFC controller has an iobuf structure, which contains private state data and
two list heads: the b_forw/b_back list and the d_actf/d_actl list. The b_forw/b_back list is doubly
linked and has all the buffers currently associated with that major device. The d_actf/d_actl list is
private to the controller but is always used for the head and tail of the I/O queue for the device.
Various routines in bio.c look at b_forw/b_back (notice they are the same as in the buf structure)
but the rest is private to each device controller.

STRUCTURE MEMBERS

Type Member Description

int b_flags; /* see buf.h */

struct buf *b_forw; /* first buffer for this dev */

struct - buf *b_back; /* last buffer for this dev */

struct buf *b_actf; /* head of /O queue (b_forw)*/
struct buf *b_actl; /* tail of /O queue (b_back)*/
dev_t b_dev; /* major+ minor device name */
char b_active; /* busy flag */

char b_errent; /* error count (for recovery) */

int jrgsleep; /* process sleep counter on jrq full */
struct eblock *io_erec; /* error record */

int io_nreg; /* number of regs to log on errors */
paddr_t io_addr; /* local bus address */

physadr io_mba; /* mba address */

struct iostat *io_stp; /* unit I/O statistics */
time_t io_start;

int sgreq; /* SYSGEN required flag */

int qent; /* outstanding job request counter */
int io_sl; /* space for drivers to leave things */
int i0_s2; /* space for drivers to leave things */
SOURCE FILE

iobuf.h

D4X-26 BCI Driver Reference Manual

iobuff{D4X)

SEE ALSO

BCI Driver Development Guide, Chapter 4, "Header Files and Data Structures.”
buf(D4X)

Data Structures (D4X) D4X-27

linesw(D4X)

DESCRIPTION

Line discipline is a term describing input/output character interpretation between the operating system
and a terminal. It is the method by which characters are processed as they are sent and received from
a terminal. The routines called by each attribute of a line discipline manipulate data in
clists(D4X). The routines in linesw are invoked by the terminal driver.

Line refers to the phone line or cable that connects the character device to a controller. Discipline
refers to the rules for character processing. Line discipline modules are called by terminal drivers to
handle interactive use of the UNIX operating system. (See tty(D4X) for a diagram.) The
functions of a line discipline are as follows:

8 forms lines from input strings

B processes erase and kill characters (typically, backspace and at sign) causing prewously
entered information to be erased

8 echos received characters to the terminal
B handles output character processing, including tab expansion.

B sends signals when the phone is hung up, the line is broken, or when a character such as
- (delete) causes a process to stop.

B includes a raw (transparent) mode so characters can be sent directly from terminal to
user process without any input processing.

linesw is an internal table containing a list of the routines supported for each line discipline.

D4X-28 BCI Driver Reference Manual

linesw(D4X)

Figure D4X-13 illustrates how linesw translates a request for a line discipline function into a
request for a tt*(D3X) function.

driver line switch line
cdevsw routines table(Linesw) disciplines
open open 1_open ttopen | nuildev | nulldev
close close 1_close ttclose | nulldev | nulldev
read read I_read ttread nulldev | nulldev
write write I_write ttwrite | nulldev | nulldev
ioctl ttioctl 1_ioctl ttioctl | nulldev | nulldev
ttiocom T L_input ttin xtin sxtin
proc 1_output ttout xtout | sxtout
\ 1_mdmint nulldev | nulldev | nulldev
t_line 0 1 2

Figure D4X~—-13 linesw Structure
Valid line discipline values are 0, 1, and 2. These values represent
® Line discipline O is the TTY driver standard value

® Line discipline 1 is a special protocol for AT&T bit-mapped graphics terminals, such as
the AT&T 630

B Line discipline 2 is used with shi(1), the shell layers(1) command

The TTY routines comprise the default, system-supplied line discipline, and line discipline (zero) (the
first entry in the linesw). To allow other protocols, drivers must access the TTY routines
indirectly through the line discipline switch table. The t_line member of the tty structure indexes
the line discipline switch table.

There are eight members in the linesw structure. Each member handles a different attribute of
character processing between a character driver and a terminal. The 1_mdmint member provides for
a modem interrupt handler, but is not presently used. This member is made non-functional by
containing the address to the nulldev(D3X) function.

Data Structures (D4X) D4X—29

linesw(D4X)

STRUCTURE MEMBERS

Type Member Description

int (*1_open)(); /* Starts access to a terminal */

int (*I_close)(}; /* Discontinues access to a terminal */
int (*L_read)(); /* Reads information from a terminal */
int (*L_write)(); /* Writes information to a terminal */
int (*Lioctl)(); /* Handles /O control functions */

int (*_input)(); /* Handles input interrupts */

int (*I_output)(); /* Handles output interrupts */

int

(*I_mdmint)(); /* Handles modem interrupts */

The linesw structure is initialized by the lboot program as shown (see Figure D4X-14).

1 linesw[]={
2 ttopen, ttclose, ttread, ttwrite, ttioctl, ttin, ttout, nulldev,
e
Figure D4X—-14 linesw Initialization
. SOURCE FILE
conf.h
SEE ALSO

Section D3X, "Kernel Functions (D3X)," in this manual.
BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem."

D4X—-30 . BCI Driver Reference Manual

proc(D4X)

DESCRIPTION

Each process is allocated a proc (process table) data structure containing the information defining
the process and its state to the kernel. The proc structure contains required kernel information
pointing to storage outside the kernel (see Figure D4X-15).

KERNEL Process Table
__________________ . fmf/ 4
——————————— Phe P e
e
proc| P-pri p_pgrp | p_pid puid | _--
\ VAN /

INFORMATION FOR
SENDING SIGNALS

INFORMATION USED BY

SCHEDULER FOR SELECTING

PROCESSES TO RUN

Figure D4X—15 proc Structure

Since proc structures are defined by the kemel, they are subject to change from one software release
to another.

Data Structures (D4X) D4X-31

proc(D4X)

Since some drivers require access to certain fields of this structure, the following fields are not subject
to change:

STRUCTURE MEMBERS

Type Member Description
char p_pri; /* The CPU priority of a process used by the */

/* scheduler determines which process gets to execute. */
short p_pgrp; /* Process group identification number */

/* determines which processes should receive a */

/* HANGUP or BREAK signal, detected by a driver. */
short p_pid; /* Process identification number */
ushort p_uid; /* Process user id */

CAUTION: A driver should never modify this structure directly.

SOURCE FILE

proc.h

D4X—32 BCI Driver Reference Manual

sysinfo(D4X)

DESCRIPTION

The sysinfo (system information) data structure is used by character drivers with the rint(D2X)
and xint(D2X) driver interrupt routines. Drivers use the structure, which is accessed through code,
to indicate the number of times rint or xint are entered. There are other member in this structure,
but they are not used directly by the driver.

When a hardware or software interrupt occurs, sysinfo members are increased depending on the
type of interrupt (see Figure D4X-16).

TP EDE

USER
rint or xint
interrupt increments
cdevsw sysinfo
sysinfo
KERNEL rcvint | xmtint
driver routines !
interrupt
{} (xint or rint)
DEVICE hardware/software

Figure D4X—16 sysinfo Structure

System activity can be accessed at the special request of a user. The sadc(1M) and sar(1M)
commands also can access the the sysinfo structure. For further information on these maintenance
commands, see the Administrator’s Reference Manual.

Data Structures (D4X) D4X-33

sysinfo(D4X).

A user programming example using the sysinfo structure is shown in Figure D4X-17.

WO A WN =

e
N - O

unixfile = ldopen("/unix",NULL); /* open /unix */

ldtbseek(unixfile); - /* seek to start of symb tab */
index = ldtbindex(unixfile); /* go to 1st symbol */
while (1) {

Idtbread(unixfile,index,symbolstruct); /* read tab entry */
if (!strcmp(symbolstruct.name,"sysinfo"))

break; /* found it */
index = ldtbindex(unixfile); /* go to next symbol */
}
memfile = open("/dev/mem”,0O_RDONLY);/* open /dev/mem */
Iseek(memfile,symbolstruct. address); /* go to address of sysinfo */

read(memfile, &sysinfostruct,sizeof(sysinfostruct); /* read sysinfo */

Figure D4X—17 sysinfo Code Example

The example program performs the following functions:

B Opens the /unix file (line 1) and reads its symbol table (done via the 1d* library functions
(lines 2, 3, and 5); see Section 3X of the Programmer’s Reference Manual).

B Searches the symbol table for the address of the sysinfo structure (line 6).

8 Opens /devimem (the file that is a window into memory) (line 10). Root permission is
required to read /dev/mem.

N Uses the address found in the symbol table to copy the sysinfo structure out of
memory into the current program (line 12).

STRUCTURE MEMBERS

Type Member Description

long rcvint; - /* Increment on entry to rint */
long xmtint; /* Increment on entry to xint */
SOURCE FILE

sysinfo.h

D4X—-34 BCI Driver Reference Manual

sysinfo(D4X)

SEE ALSO
rint(D2X), xint(D2X)

Data Structures (D4X) D4X-35

tty(D4X)

DESCRIPTION

Character queues and buffers for a TTY driver are associated with a given TTY device through the
tty (terminal) structure. The tty structure maintains all information relevant to the TTY device.

The TTY subsystem is a series of buffers in which data is manipulated. The subsystem is designed to
convert raw terminal data into data usable by a user program (see Figure D4X-18).

To make the data usable, the TTY functions handle occurrences of the user pressing or
(DELETE) , (BACKSPACE) , or other special characters. By pressing a keyboard key, an interrupt is
generated and ttin(D3X) is called from a device-dependent driver routine. ttin performs the
following:

8 conveys data from the t_rbuf receive buffer to the t_rawq raw data buffer
® echos characters to the t_outq output buffer
® resolves and key entries, signaling processes if necessary
The ttread(D3X) function is called to convey the data from t_cangq to the user process.
The ttwrite(D3X) routine conveys the data from the user program to the t_outq output buffer.

The ttout(D3X) routine is called to convey the data from the t_outq output buffer to the t_tbuf
transmit buffer.

Finally, a driver device dependent output routine sends the data to the terminal screen.

D4X—-36 BCI Driver Reference Manual

Device dependent

ttwrite ttout output routine
t_outq t_tbuf
i
User Process : ttxput
A 1 Y
If ECHO is on
ttread A
| TN
1 L)|
t_canq t_rawq [< t_rbuf [
canon ttin Device dependent
input routine
Figure D4X—18 tty Structure

STRUCTURE MEMBERS
Type Member Description
struct clist t_rawg; " Dewvice raw input queue head */
struct clist t_canqg; /* Device canonical queue head */
struct clist t_outq; /* Device output queue */
struct ceblock t_tbuf; /* Device transmit buffer */
struct ceolock t_rbuf; * Device receive buffer */
int t_proc; /* proc routine address */
ushort t_iflag; ™ Input mode */
ushort t_oflag; /* Output mode */
ushort t_cflag; /* Control mode */
ushort t_Iflag; /* Local mode */
short t_state; /* Device and driver internal state */
short t_pgrp;
char t_line; /* Line discipline type */
char t_delct; /* Number of delimiters */
unsigned char t_cc[NCC]; /* Control characters */

The following elements of the tty structure are significant:

8 t_rawq poinrs to the first cblock of the device’s raw input queue (before character
processing is performed), a clist(D4X) structure

& t_cangq points to the first cblock of the device’s canonical queue (after character
processing is performed), a clist structure

Data Structures (D4X) D4X-37

miD4X.

t_outq pornts to the first cblock of the device's output queue, a clist structure

t_tbuf is the device’s transmit buffer

t_rbuf is the device's receive buffer

t_proc holds the address of a proc(D2X) driver routine. Each device driver for a TTY
device must provide a special hardware-specific access or proc routine.

modes are four members of the tty structure that specify the ioctl flags listed in
termio(7) modes. The t_iflag element holds the input modes specified in the c_iflag
element of the termio structure. The t_oflag, t_cflag, and t_Iflag elements hold
output modes, control modes, and local modes as specified in the c_oflag, c_cflag, and
c_Iflag elements of the termio structure. The contents of these fields are defined on
the termio(7) manual page.

t_state maintains the internal state of the device and the driver. Each of the 16 bits of
this member is assigned to one of the items in the following list. Thus, the state is a
composite of one or more of the items below. Note that the t_state member 1s fully
utilized and cannot be extended for additional state information that a particular driver
may need. The states are as follows:

BUSY
CARR_ON
CLESC
EXTPROC
[ASLP

ISOPEN
OASLP

RTO

TACT
TBLOCK

TIMEOUT
TTIOW

indicates output is in progress

software image of the carrier-present signal

indicates the last character processed was an escape character

indicates a peripheral device is performing semantic processing cf cata

indicates the processes associated with the device should be awakened
when input completes

indicates the device is open

indicates the processes associated with the device should be awakened
when output completes

indicates a imeout is in progress for a device operating in raw mode;
that is, where no canonical processing is taking place

indicates a timeout is in progress for the device

indicates the driver has sent a control character to the terminal to block
transmission from the terminal

indicates a delay timeout is in progress

indicates the process associated with the device is sleeping, awaiting the
completion of output to the terminal

D4X—-38 BCI Driver Reference Manual

inviD1X,

TTSTOP indicates output has been stopped by a | CTRL-s character (ASCII DC3)
received from the termunal

TTXOFF indicates the Central Processing Unit (CPU) has hit the high water mark
in receiving data rrom a TTY device. You now want the termimnal to
send a | CTRL-s : character to stop output. Calls the dnver proc routine
with T_BLOCK as the cmd argument.

ITTXON indicates the data processed by the CPU has hit the low water mark.
Therefore, a | CTRL-q ! character should be sent when the transmitter is
ready. Calls the driver proc routine with T_UNBLOCK as the cmd

argument.
WOPEN indicates the driver is waiting for an open to complete

8 t_pegrp identifies the process group associated with the device. It is needed to send
signals to the process group.

® t_line holds the line discipline type specified in the c_line element of the termio
structure

8 t_delct used by the TTY subsystem to keep track of the number of delimiters found
while performing semantic processing of data

® t_cc[NCC] an array holding the control characters specified in the c_cc member of
termio

A character device driver using the TTY subsystem must declare an instance of the tcy structure for
each subdewvice under its control.

SOURCE FILE
mv.h
SEE ALSO

BCI Driver Development Guide, Chapter 7, "Drivers in the TTY Subsystem.”
linesw(D4X)

Data Structures (D4X) D4X-39

user(D4X)

DESCRIPTION

Each process is allocated a user data structure (also known as a user block) to contain information
derining the user process and its state to the kernel.

The user structure must never be accessed from a driver interrupt level as there is no certainty
which user block is accessed. When a random interrupt occurs, there can be no assurance the user
block vou manipulate is the one associated with the interrupt event. In addition. in some computers
such as the 3B2 computer, the user block may be swapped out.

The user structure contains information that is needed only when the process is running. The
u.u_base member specifies the virtual address for /O to and from the user data area. Information is
transferred from the individual user block to the kemnel user structure (see Figure D4X-19).

Data

Stack

User Block

LSER ,
KERNEL !

currently running -

User Block) process

Data

System Stack

Figure D4X~—19 user Structure

The user structure for the current process is always a fixed address in the operating system address
space. The kernel can look for the user structure only for the currently running process. Since the
user structure is basic to the kemel, it is subject to change from one software release to another.
Since some drivers require access to certain fields of this data structure, the following fields will not
be subject to change.

D4X—-40 BCI Driver Reference Manual

usertD4X,

STRUCTURE MEMBERS

Type Member Description

caddr_t u_base; ™ /O base address */

unsigned u_count; * Byvtes remaiming for VO **

char u_error: “* Return error code *’

ushort u_gid: * Effective group ID */

off _t u_otfset; * Offset into file for 'O */

struct proc u_procp; /" proc structure pointer */

label_t u_gsav; /* Quits and interrupts variable */
ushort u_rgd: * Real group ID ™/

ushort u_ruid; /* Real user [D */

char u_segflg;, /™ User or kernel L'O flag */

short u_tryp; /* 3B2 tty structure pgrp pointer */
ushort u_ttyp; = 3B4000 tty structure pgrp pointer */
ushort u_wd; /* Effective user ID */

In addition to the above structure members, the u.u_r union is used to return values to system calls.

The members of the user structure are described as follows:

u_base specifies the virtual base address for L'O to
and from user data space.

u_count specifies the number of bytes not yet
transferred during an /O transaction.

u_error returns an error code (see errno.h) to the
kernel which 1s then passed on to the user.
This is set by a driver to indicate an error
condition. See intro(2) in the Programmer’s
Reference Manual for a description of
available error codes for setting error codes.
Also see copyin(D3X) for an exampie of the
u.u_error member.

u_offset specifies the offset into the file from which or
to which data is being transferred.

u_procp " address of the proc structure associated with
this user structure.

u_r returns values to system calis.

Data Structures (D4X) D4X-41

usertD4X,

u_gsav

u_ruid and u_rgid

u_segflg

u_ttyp

u_uid and u_gid

field used as an argument to the kemnel
longjmp(D3X) function. This field is set up
automatically before a driver is called.
Therefore, a driver can use longjmp with
u.u_gsav to stop normal processing when an
error is detected in the base level. The base
level consists of the routines in a driver that
interact with the kernel.

identifies the real user and group [Ds.

determines what type of /O transfer is to
occur. The driver should set this field to | to
indicate data movement within the kernel
space: set it to (zero) to indicate data
movement between kernel space and user
space. Always save the previous value of
u.u_segflg before changing it and restore the
previous value when you have completed vour
/O transfer.

address of the the tty structure for the
controlling terminal.

processes effective user and group
identification members. u.2_uid and u.u_gid
may be used to provide a process identified by
the user and group identification members
(u.u_ruid and u.u_rgid) with the access
permissions of another process or process

group.

D4X-42 BCI Driver Reference Manual

usertD4X,

Tahle D4X-2 lists user structure members that do not vary between LNIX System releases
ind that can be set or read.

Table D4X—2 user Structure Member Uses

Member Use

u_base - dnver setable
" u_count dniver setable

u_error dnver setable !

u_gid ' read onlvy
u_offset ' dnver setable |
‘u_procp : read only !
.u_gsav ' read only j
-u_rgid | read only
~u_ruid | readonly |
_u_segflg | driver setable :
“u_ttyp | drver setable :
. u_uid " read onlv
SOURCE FILE
user.h
SEE ALSO

BCI Driver Development Guide, Chapter 4, "Header Files and Data Structures ~

Data Structures (D4X) D4X-43

Section D8X: System Maintenance Functions (D8X)

Contents

Introduction D8X -1
CLEANUP(DSX) D8X -2
EDTP(D8X) D8X -3
EXCRET(D8X) D8X -4
GETS(D8X) D8X-6
GETSTAT(D8X) D8X~7
LONGJMP(D8X) D8X -8
NUM_EDT(D8X) - D8X-9

PRINTF(D8X) D8X-10

'System Maintenance Functions (D8X) D8X-—i

SETJMP(D8X) D8X-11

SSCANF(D8X) D8X-12

STRCMP(D8X) D8X-13

D8X—ii BCI Driver Reference Manual

Introduction

Section D8X lists a subset of the standard library macros used to write or maintain a diagnostucs file
for a 3B2 computer or 3B4000 ACP feature card (circuit board). The subset provided is the
munimum number of macros required to write or maintain diagnostics files. Information on other
macros will be provided in subsequent releases of this manual. In addition. because little information
is known about the macros described in this section, most of the headings provided in Section D3X
are not provided. This section augments the information provided the BCI Driver Developmen: Guide
in Appendix B, "Wrnting 3B2 Computer Diagnostics Files".

A diagnostic file passes information to an intelligent controller so that the system initialization
software can ensure the integrity of a 3B2 computer or 3B4000 ACP feature card (circuit board).
Each hardware driver requires two diagnostics files and these files are stored in the - dgn directory.
Both file names are in upper case and both have the same name as the driver’s master file name.
except that one file is prefaced with X. The X. file contains feature card object code for the
diagnostic tests.

Table D8X—-1 Function Summary

Function Description

CLEANTUP() initialize board registers
EDTP(element) return pointer to element of the EDT
EXCRET() set up return point for exception
GETS(ptr) get string from standard input
GETSTATY() return value of current console character
LONGIMP(array) return to point set by SETIMP
NUM_EDT() return number of entnies in EDT
PRINTEF('string %eoprions”,argl,arg2) display message

SETIMP(array) set sane return point
SSCANF(string, "%options”,argl,arg2) read from siring

STRCMP(siringl , string2) compare strings

System Maintenance Functions (D8X) D8X-1

CLEANLUP(DS8X)

SYNOPSIS

#include <sys/firmware.h>

CLEANLUP();

DESCRIPTION

CLEANTUP initializes the control status register (CSR), the direct memory access (DMA) controller,
the sanity and interval time, and the floppy disk interrupts.

D8X -2 BCI Driver Reference Manual

EDTP(DS8X)

SYNOPSIS

#include <sys/edt.h>
#include <sys/firmware.h>

int
EDTP(element);

DESCRIPTION

EDTP returns a pointer to the elemen: of the equipped device table (EDT) The element argument
can be any number berween 0 and NUM_EDT-1.

-EDTP is used with NUM_EDT(D8X) to get the maximum number of entries in the EDT. The
return value from EDTP should be assigned to the edt_peinter member of the edt structure
(defined in edr.h). The following example returns a pointer to the last device in the EDT.

#include <sys/edt.h>
#inc.ude <firmware.h>

struct edt *edt_pointer;

int N;
N = NUM_EDT; /% Set N to maximum number of devices in EDT =/
edt _pointer = EDTP(N - 1); /#* point edt_pointer at last EDT entry »/

Figure D8X—-1 EDTP(D8X) Example

System Maintenance Functions (D8X) D8X-3

EXCRET(DS8X)

SYNOPSIS

#include <sys/firmware.h>

char
EXCRET(;

extern myexec_handler(};
extern myvinr_handlert(j;

EXC_HAND=myexec_nandier;
INT_HAND=myinr_handler;

DESCRIPTION

In diagnostics programming, you may wish to force an exception on a board to ensure that the
hardware can actually handle it as expected. The EXCRET macro sets up a return point to return to
should an exception occur. Using EXCRET requires one of the following methods:

8 Execute the exception and the call to EXCRET in the same routine.

® Use SETIMP(D8X) and LONGIJMP(D8X); immediately after the call to the exception
routine, test the return flag (the flag must be declared extern). If an exception occurred
(indicated by the return flag), call LONGJMP to return to the point set by SETIMP.

EXC_HAND and INT_HAND control how the exception is handled. These are explained as follows:

EXC_HAND if an exception occurs, control is passed to the routine set in EXC_HAND.
When the exception handler returns, control passes to the instruction
immediately after the last call to EXCRET.

INT_HAND if an interrupt occurs, the routine specified in INT_HAND is called and
executed. ~A retumn from the process is executed after a normal return by the
exception handler. This lets program flow continue where it left off before
the interrupt was serviced.

Default exception and interrupt handlers print an error message and fail the diagnostic. EXCRET
should be called prior to any exception and within the same routine as the expected exception.

D8X—-4 BCI Driver Reference Manual

EXCRET'DSX;

Two lewations are provided for storing addresses of interrupt and exception hanclers tor diagnostics.
These two locations are referenced using

phase()

{

extern ay_int_handler();
extern my_exc_handler();

WD

5 INT_HAND=my_int_handler;
6 EXC_HAND=my_exc_nandler;

7 EXCRET,;

Figure D8X-2 Using EXCRET(D8X)

System Maintenance Functions (D8X) D8X-5

GETS(D8X

SYNOPSIS

#include <sys/firmware.h>

short
GETS(buf);
char *buf;

DESCRIPTION

GETS returns a NULL terminated string from standard input with the carriage return stripped out.
The string is placed in buf. GETS is disabled when the INPUT/OUTPUT flag is OFF.

Input to GETS is limited to 79 characters (GETS_SIZE -1 for the NULL character). GETS_SIZE is
defined in firmware.h and is typically set to 80. Input that exceeds this limit results in the following
waming message being displayed:

max input of 80 characters, re-enter line

D8X—-6 BCI Driver Reference Manual

GETSTAT(DS8X)

SYNOPSIS

#include <sys/firmware.h>

char
GETSTAT();

DESCRIPTION

GETSTAT returns the value of the current character in the console receiver if one is present:
otherwise, a zero is returned. The returned vaiue allows a phase to build its own console driver
indirectly or to implement a kill character, such as break, by periodic polling.

GETSTAT is used as follows:

c=GETSTAT();

System Maintenance Functions (D8X) D8X-7

LONGJMP(DS8X)

SYNOPSIS

#include <sys/firmware h>

long
LONGJMP(array),

DESCRIPTION

.. LONGJMP returns control to the point at which a previous SETIMP(D8X) call was made. array is a

12-element array of integers. A one-to-one correspondence exists with the garray name between the
LONGJMP and the SETIMP calls.

D8X—-8 BCI Driver Reference Manual

NUM_EDT(D8X)

SYNOPSIS
#include <sys/firmware.h>

int
NUM_EDT();

DESCRIPTION

NUM_EDT returns the number of entries in the equipped device table (EDT).

System Maintenance Functions (D8X) D8X-9

PRINTF(DS8X)

SYNOPSIS

#include <sys/firmware.h>

short
PRINTF("string %options”,argl,arg);

DESCRIPTION

PRINTF is subset of printf(3S). PRINTF supports the %-, %O, %c, %S, %d, %o, %X, and %u
specifications.

D8X~-10 BCI Driver Reference Manual

SETJMP(D8X)

SYNOPSIS

#include <sys/firmware.h>
int array [12];

long
SETJMP(array);

DESCRIPTION

SETIMP sets a point to which LONGJMP(D8X) can retum control. SETJMP saves all registers. If
SETIMP returns true, then a LONGJMP has occurred. If SETIMP returns false, then this 1s the rirst
call to SETIMP. -

When first executed, SETJIMP saves the state of the stack and register variables in array and rerumns
0. Afrer setup, any call to LONGJIMP transiers controi to program counter that was stored by the
SETIMP call. After LONGJIMP is executed, SETJMP returns 1. Any number of jump buffers may
be used for independent LONGJMP calls. Using 0 (NULL) for the jump buffer selects a global
default jump buffer. This macro has different arguments than does the setjmp(3C) system call.

System Maintenance Functions (D8X) D8X-11

SSCANF(DS8X)

SYNOPSIS

#include <sys/firmware.h>

long

SSCANF(string, "%options”.argl, ... argn).
char *string,

short *arg/, ... *argn;

DESCRIPTION

SSCANTF is a modified version of sscanf(3S). The options recognized are %s for strings, %c¢ for
chars. %D for long decimal. %d for short decimal. %X for long hex, and %x for short hex.
Delimuters in input are space, tabs, commas, or dashes.

NOTE: Ensure that the type of the argument matches the type of the option. For example

short short_parm;
ilong long_parm;
SSCANF(string, "%d %D", &short_parm, &long_parn);

D8X-12 BCI Driver Reference Manual

STRCM P(DS8X)

SYNOPSIS

#include <sys/firmware.h>

char
STRCMP(stringl, string2):.

DESCRIPTION

STRCMP is a subset of stremp(3F). Zero is returned for equal, -1 if szring/ is less, and 1 if string]
is greater.

System Maintenance Functions (D8X) D8X-13

GL: Glossary

Contents

Introduction GL-1
Terms and Definiions GL-2

Glossary GL-i

Glossary

Introduction

This glossary is an alphabetical listing of terms and their definitions. The purpose of the glossary is
to define specific system names, programming terms, and driver concepts for device driver writers.

In this glossary, notations are used for some entries to describe the location of the entry.

For structures. the definition gives the structure name followed by the header file in which the
structure is defined. For example, ccblock(D4X) structure location is denoted in the glossary
definition as: Location: . A"

For flags, the definition gives the flag name followed by the associated structure and header file in
which it is defined. For example, CARR_ON is a flag or value that is assigned to the structure
member tty and its location is denoted in the glossary definition as:

"Location: t_static-tty-rzy.h".

Any reverences to header files are found in the ‘usr/include/sys directory. All referencss to source
code are found in the /usr/src/uts/ computer (source code requires a special licensing agreement from
AT&T). Consult the directory appropriate to the type of processor you are using.

NOTE: Source files have special reserve suffixes to denote the programming language in which the
driver code is written. The .c denotes a file wnitten in the C programming laniguage. The .s
denotes a file written in assembier language.

Glossary GL-1

Terms and Definitions

ACP See Adjunct Communications Processor
ACU See automatic cailing unit

Adjunct Data Processor

An adjunct data processing element that is housed in the ABUS cabinet and is plugged directly into
the ABUS physical interface. The ADP containing a BIC, 2 WE® 32100 chip set running at 14
MHz, one SCSI port, and four megabytes of random access memory. The ADP provides
computational and file service. See a/so Enhanced Adjunct Data Processor (EADP), Adjunct
Communications Processor (ACP), and MP.

Adjunct Communications Processor (ACP)

An adjunct processing element that provides terminal support, networking connectivity,
computational power, and printer interfaces for 3B4000 computer configurations. Unlike other
adjuncts, the ACP is housed in a separate cabinet and connected to the appropriate ABUS slot by an
XBI circuit board and XBUS cable.

ADP See Adjunct Communications Processor
AIC See alarm interface unit

alarm interface unit (AIC)

A UN-type circuit board that provides a series of alarm indications and the ability to access the
computer from either the system console or a remote terminal. The AIC provides the following:
external signaling of five alarm types, a sanity timer, non-volatile random access memory, a control
and status register, and two RS-232C ports for the remote control feature.

alignment

The position in memory of a unit of data such as a word or half-word on an integral boundary. A
data unit is properly aligned if its address is completely divisible by the data unit’s size in characters.
For example, a word is correctly aligned if its address is divisible by four. A half-word is aligned if
its address is divisible by two.

GL-2 BCI Driver Reference Manual

allocated resource
A privite map structure after memory has been allocated using the malloc command.

asm macro
The macro that defines a number of svstem functions used to improve driver execution speed. They
are assembler language code sections (instead of C code). Location: inline.h.

asynchronous

An event occurring in an unpredictable fashion. A signal is an example of an asvnchronous event.
A signal can occur when something in the system fails. but it is not known when the failure will
occur. This term is sometimes defined to be the interrupt level of driver.

automatic calling unit (ACU)
A dewice that permits processors to dial calls automatically over the communications network.

av_back

The buf(D4X) structure member that links the buffer to a free list. When no [/O transfer is
currently scheduled. buf structures are linked together on an available list through the av_forw and
av_back pointers. When a buf structure is needed for an 'O transfer, the first buf structure is
taken from the available list. If no buf structures are available, the process needing a buf
structure calls sleep, using the address of the head of the available list (bfreelist) as the event
argument to sleep. Location: buf—buf.h

av_forw

The buf(D4X) structure member that links the buffer to a free list. When no L'O transfer is
currently scheduled, a buf structure on the active O queue uses the av_forw pointer to maintain its
place in the queue. The buf structures where no IO transfer is currently scheduled are linked
together on an available list via the av_forw and av_back pointers. When a buf structure is needed
for an /O transfer, the first buf structure is taken from the available list. If no buf structures are
available, the process needing a buf structure calls sleep, using the address of the head of the list of
available buffers (bfreelist). Location: buf—buf.h

awaken
The command that restarts a suspended process. Related commands are untimeout(D3X) and

wakeup(D3X). -

b_addr
The buf(D4X) structure member that contains the buffer’s virtual address. Location: buf—buf.h

Glossary GL-3

b_bcount
The buf(D4X) structure member that specifies the number of characters (bytes) to be transferred.

Location: buf—>buf.h

b_blkno
The buf(D4X) structure member that identifies which logical block on the device (defined by the
minor device number) is to be accessed. Location: buf—buf.h

B_BUSY
The flag that indicates a buffer is in use. Location: b_flags—buf—buf.h

b_dev
The buf(D4X) structure member contains the major and minor device numbers of the device being
accessed. Location: buf—buf.h

B_DONE
The flag that indicates the transfer has completed. Location: b_flags—buf—buf.h

b_error

The buf(D4X) structure member that holds the error code assigned by the kemel to the u_error
member of the user data structure. This member is set with the B_ERROR flag. Location: buf—
buf.h)

B_ERROR
The flag that indicates an error occurred during an I/O transfer. Location: b_flags—buf—buf.h

b_flags
The puf(D4X) structure member that stores the status of the buffer and tells the driver whether the
device is to be read from or written to. Location: buf—buf.h

B_PHYS -
The flag that indicates the buffer is being used for physical (direct) /O to a user data area. The
b_un field contains the starting address for the user data. Location: b_flags—buf—buf.h

b_proc
The buf(D4X) structure member that contains the process table entry address for the process that is
requesting a data transfer (when the transfer is unbuffered). This member is set to O (zero) when the

GL—-4 BCI Driver Reference Manual

transter 15 ouffered. The process table entry performs proper virtual to physical address translation of
the b_un member. Location: buf—buf.h

B_READ
The flag that indicates data is to be read from a peripheral device into main memory. Location:
b_flags—buf—buf.h

b_resid
The buf(D<4X) structure member that indicates the number of characters (bytes) not transferred
because of an error. Location: buf—buf.h

b_start

The buf(D4X) structure member that holds the start time of the VO operation. This member
measures device response time. The system constant Ibelt initiates this member. Location: buf—
buf.h

b_un.b_addr

The buf(D4X) structure membper that contains the virtual address of the buffer controlied by the
buffer header. Data is written from this address to the device, or read to the address from the device.
Location: buf—buf.h

B_WANTED
The flag that indicates the buffer is sought for allocation. Location: b_flags—buf-—bui'h

B_WRITE

The flag that indicates the data is to be transferred from main memory to the peripheral device (the
pseudo flag that occupies the same bit location as B_READ). This value does not exist, it can only
be tested as the “*not’’ state of B_READ. Location: b_flags—buf—buf.h

badrtcnt
The hdedata(D4X) structure member that indicates the number of unreadable tnes made to a hard
disk. Location: hdelog.h

base address

The address where a buffer is declared in memory. This can be a private map structure, or svstem
buffers such as the user structure. In the latter case, the u.u_base member points to the base
address of the user buffer.

Glossary GL-3

base level

The code that synchronously interacts with a user program. The driver’s initialization and switch
table entrv point routines constitute the base level. It is one of two logical parts of a driver. See also
interrupt level.

BCI See block and character interface

becopy(D3X)
The function that copies data between kernel addresses. This routine should never be used to copy
data to or from an address in user space. Location: mi/misc.s

bdevsw(D4X)
The block driver switch table that is constructed during automatic configuration and exists only in
memory or in the ‘unix file (the structure is defined in conf.h).

bfreelist

The structure that points to a list of available (free) buf structures. The bfreelist address is
used by processes accessing block devices as the evenr argument to sleep(D3X) when no free buf
structures are available.

BIC See bus interface circuit

blkaddr
The ndedata(D4X) structure member that is a physical block address of a hard disk error in
machine-dependent form. Location: hdelog.n

block
The basic unit of data for O access. A block is measured in bytes. The size of a block differs
between computers, file system sizes, or devices.

block and character interface
A collection of driver routines, kernel functions, and data structures that provide a standard interface
tor wniting UNIX System V, Release 3 block and character drivers.

block data transfer
The method of transferring data in units (blocks) between a biock device such as a magnetic tape
drive or disk drive and a user program.

GL-6 BCI Driver Reference Manual

block device
A dewvice. such as a magnetic tape drive or disk drive that conveys data in blocks through the buffer
management code (for example, the buf structure). See also character device.

block device switch table

The table constructed during automatic configuration that contains the address of each block driver
base-level routine (open(D2X). close(D2X), strategy(D2X), and print(D2X)). This table is called
bdevsw and its structure 1s defined in conf.h.

block driver

A dnver for a device, such as a magnetic tape device or disk drive, that conveys data in biocks
through the buffer management code (for example, the buf structure). One driver is written for
each major number employved by block devices. On most systems, there are generally few block
drivers.

bleck 'O
A data transfer method used by drivers for block access devices. Block I/O uses the system butfer
cache as an intermediate data storage area between user memory and the device .

boot
The process of starting the operating system. The boot process consists of self-configuration and
system imitialization.

boeot device
The oot aevice stores the boot code and necessary file systems to start the operating system.

bootable object file
A file that is created and used to build a new version of the operating system.

bootstrap
The process of bringing up the operating system by its own action. The first few instructions load the
rest of the operating system into the computer.

brelse(D3X)
The function that releases unneeded buffers for block driver use. Location: os/bio.c

btoc(D3X)
The macro that converts bytes to clicks (pages). Location: sysmacros.h

Glossary GL-7

buf(D4X)
The structure that provides buffering for block driver data transfers. Location: buf.h

buf.h
The header file that defines the buf structure. Location: buf.A

buffer

A staging area for input-output (I/O) processes where arbitrarv-length transactions are collected into
convenient units for system operations. A buffer consists of two parts: a memory array that contains
data from the disk and a buffer header that identifies the buffer.

buffer_address ,
The D_FILE(D4X) structure member that contains the buffer address, which is set to (zero) before
an open is called. Location: system.h

buffer_size
The D_FILE(D4X) structure member that sets the buffer size to NULL. Location: sysrtem.h

bus interface circuit (BIC)

A hardware interface between a bus and a processor. The BIC handles the sending and receiving of
packets and distributed bus arbitration on the ABUS. A parallel interface connects each BIC to its
processor.

BUSY
The flag that indicates output is in progress. Location: t_state—tty—y.h

bzero(D3X)
The function that fills a buffer with zeros (clearing it) so that the buffer can be used for another
purpose.. Location: mi/misc.s

c_cc
The clist structure member that contains the number of charactersina clist. Location:
clist—iy.h. Also, the termio structure member that contains the control characters contained
in the termio structure. Location: termio—termio.h

c_cf
The clist(D4X) structure member that points to the first cblock. Location: clist—ity.h

GL-8 BCI Driver Reference Manual

c_cflag

The ter=io structure member that describes the terminal hardware control modes. c¢_cflag is
represented in the tty structure by the t_cflag member. See also termio(7). Locanon: termio—
termio.h

c_cl
The clist(D4X) structure member that points to the last cblock. Location: clist—in.h

c_count

The ceblock(D4X) structure member that is initialized to the size of the cblock character arrav.
This member is decreased by the number of characters in the cblock character butfer. The
difference between c_count and c_size is used to indicate the number of characters in the buifer.
Location: ccblock—inv.h

c_data
The cblock structure member that contains the data in the cblock. The maximum number of
data characters in a cblock is defined by the CLSIZE constant. Location: cblock—iry.h

c_first
The clist(D4X) structure member that indexes the first character in the c_data array of a
cblock. Locaton: clist—iyv.h

c_flag
The cnead(D4X) structure member that indicates a process is waiting for a cblock. Location:
chead—iry.h

c_iflag

The termio structure member that describes the basic terminal input control modes. c_iflag is
represented in the tty structure by the t_iflag member. See also termio(7). Location: termio—
termio.h

c_last o
The cblock(D4X) structure member that indexes to the last character in a ¢_data array of a
cblock. Location: cblock—ity.h

Glossary GL-9

c_lflag

The termio structure member used by the line discipline to control terminal functions. c¢_Iflag is
represented in the tty structure by the t_lflag member. See also termio(7). Location: termio—
termio.h :

c_line

The termio structure member that contains the line discipline value. The t_line member of the
tty structure has the same purpose and value. Valid line discipline values are: 0, 1, and 2. The
default standard value is 0. 1 is for a special protocol for AT&T 630 terminals and 2 is for use with
shl(1), the shell layers(1) command. Location: termio—rermio.h

c_next
The cblock(D4X) structure member that points to the next cblock. Location: cblock—itv.A

c_oflag
The termio structure member that specifies the system treatment of output. c_oflag is represented
in the tty structure by the t_oflag member. See also termio(7). Location: termio—rtermio.h

c_ptr
The ccblock(D4X) structure member that points to the c_data character buffer. Location:
ccblock—itv.h

c_size

The chead(I2+X) structure member that indicates the size of the cblock character butfer. The
c_count and c_size members are initialized to the size of the cblock character array

(64 characters — CLSIZE). The c_count member is then decreased by the number of characters in
the cblock character buffer. The difference between the two values indicates the number of
characters in the buffer. Location: chead—iy.A

cache

A section of computer memory where the most recently used buffers, inodes, pages, and so on are
stored for quick access. A separate controller is normally assigned to handle the cache 1'O requests
to leave the main processor free for other activity.

caddr_t \
The character pointer data type used for memory addresses. Location: types.h

canon(D3X)
The function that transfers characters from t_rawq to t_canq. Location: rty.c

GL-10 BCI Driver Reference Manual

canonical processing

Terminal character processing tn which the erase character, delete. and other commands are applied
to the dara received from a terminal before the data is sent to a receiving program. This type of
processing can be thought of as "what the user reallv meant” when the data was keved in at the
terminal. Other terms used in this context are canonical queue. which is a buffer used to retain
informaton while it is being canonically processed, and canonical mode, which is the state where
canonical processing takes place. See also raw mode.

carrier

The continuous signal intermixed with another signal. The first (carrier) signal acts as a standard so
that the second signal can be determined. The second signal is used for carrving data. A carrier is

used by modems to convey data across phone lines. The modem indicates to the computer that the

carrier is present by asserting the RS-232C received line signal detected signal lead to the computer.
The 3B computers recognize the carrier signal when the carrier detect lead of the RS-232C intertace
is high.

CARR_ON
The flag that contains the signal software image indicating that a carner is present for a terminal.
Location: t_state—tty—irv. h

cblock(D4X)
The character block structure that contains a block of data used when a driver is accessing data from
or to a terminal. Location: try.h

cecblock(D4X)
The character control block structure that is used as a temporarv buffer for characters not in a queue.
Location: ry.h

cdevsw(D4X)
The character driver switch table is constructed during automatic configuration and exists in memory
and in the /unix file. Location: conf.h.

CE_CONT

The flag indicates that the message being passed to the emn_err function should be displayed without
a label such as NOTICE, PANIC, or WARNING. This display form appends the last message sent
or displays an informative message not associated with an error. Location: cmn_err.h

Glossary GL-11

CE_NOTE
The flag indicates that the message being passed to the emn_err function should be dispiaved
prefaced with “NOTICE:”. Location: cmn_err.h

CE_PANIC

The flag indicates that the message being passed to the ecmn_err function should be displayed
prefaced with “"PANIC:”. Specifying CE_PANIC with cmn_err causes the computer to begin a
panic. If a secondary panic state occurs while a panic message is being processed, the message is
pretaced with "DOUBLE PANIC:”. Location: ¢cmn_err.h

CE_WARN
The flag indicates that the message being passed to the cmn_err function should be displaved
prefaced with “WARNING:”. Location: cmn_err.h

cfreelist(I4dX)
The structure that contains a list of the free cblocks. cfreelist is declared to be a structure
the same as chead. Location: ity.h

character device
The device, such as a terminal or printer that conveys data character by character. See also block
device.

character driver

The driver that conveys data character by character between the device and the user program.
Character drivers usually written for with terminals, printers, and network devices, although block
devices such as tapes and disks also support character-access.

character 'O
The process of reading and writing to/from a terminal.

chead(D4X)
The structure indicates the start of the cfreelist. Location: ny.4

child process
When a process executes a fork(2) system call to create a new process, the new process is called a
child process.

GL-12 BCI Driver Reference Manual

CLESC
The flag that indicates the last character processed was an escape character. Locaton: t_state—
Tty—Iinv A

clist(D4X)

The structure that contains pointers to the first and last cblocks. A clist is used as a way of
stonng small quanuties of data when a dniver is moving data between a device controller and a
terminal. Location: v A

close(D2X)

The base level routine that is used to end access to an open device. This routine is called only at the
end of a device cycle and only if no other processes have the device open. The close routine
examines the file table to ensure that the device is not being accessed, and then reinitializes the driver
data structures and the dewvice itself.

close(2)
The system call that releases a file descriptor when its use is no longer required.

clrbuf(D3X)
The function that is used by a block driver for zeroing a buffer in the buf structure. Locanon:
os/bio.c

CLSIZF

The constant that specifies the number of data characters in a cblock is set by the CI1.SIZE
constant. The current value for CLSIZE is 64. A single cblock can contain up to 64 characters.
Location: 11v.A

cmn_err(D3X)
The function that displays a message on the system console and stores the message in putbuf, or for
causing the computer to panic. Location: os/prf.c

cmn_err.h o

The header file that contains the four cmn_err severity-level definitions. These definitions define

whether a message to be displayed on the system console does or does not cause a panic on the
system. Location: cmn_err.h

common synchronous interface (CSI)
A set of functions designed to be used in drivers for virtual protocol machine (VPM) devices.

Glossary GL-13

conf.h
The header file that contains the structure of the block device switch table (bdevsw), the character
device switch table (cdevsw), and the line discipline switch table (1inesw). Location: conf.h

control and status register (CSR)
Memory locations providing communication between the device and the driver. The driver sends
control information to the to the CSR, and the device reports its current status to it.

controller

The circuit board that connects a device such as a terminal or disk drive to a computer. A controller
converts software commands from a driver into hardware commands that the device understands.
For example, on a disk drive, the controller accepts a request to read a file and converts the request
into hardware commands to have the reading apparatus move to the precise location and send the
informaton until a delimuter is reached.

copyin(D3X)
The function that copies data from a user program to a driver buffer. Location: ml/misc.s

copyout(D3X)
The function that copies data from a driver to user program space. Location: mi/misc.s

crash(1M)
A command that is used to analyze the core image.

CRC See cvclic redundancy check

critical code

A section of code is critical if execution of arbitrary interrupt handlers could result in consistency
problems. The kernel raises the processor execution level to prevent interrupts during a critical code
section.

CSI See common synchronous interface
CSR See control status register

ctob(D3X)
The macro that converts the clicks (pages) to bytes. Location: sysmacros.h

GL-14 BCI Driver Reference Manual

cyclic redundancy check (CRC)

A way to check the transter of information over a channel. Binary code is sent over a channel in
lengths. Each piece of code is divided by a fixed divisor. The result is added to the end of the
message. When the message is received. the computer calculates the remainder and checks it against
the transmitted remainder.

data structure

The memory storage area that holds dissimilar data types such as integers and strings. The data
structures associated with dnivers are used as butfers for holding data being moved between user data
space and the device, as tlags for indicating error device status, as pointers to link buffers together,
and so on.

data terminal ready (DTR)
The signal that a terminal device sends to a host computer to indicate that a terminal is ready t:
receive data.

debug monitor (DEMON)
A low-level utility for venfying hardware and debugging software or firmware.

delay(D3X)
A function that is used by a block or character driver to delay the execution of a process for a
specifiec time interval. Location: os/clock.c

demand paging

The implementation of demand paging allows processes to execute even though their entire virtual
address space is not loaded in memory; so the virtual size of a process can exceed the amount of
physical memory available in a system.

DEMON See debug monitor

device number

The value used by the operating system to designate a device. The device number contains the major
number and the minor number. If it is denoted as internal, than the device number is logical and is
known only to the kernel. External device numbers are half system-derived (the major number) and
half created by the driver developer (the minor number).

.dev-t
The C programming language data type declaration that is used to store the driver major and the
minor device numbers. The data declaranon is of the integer type short. Location: types.h

Glossary GL-15

diagnostic
A software routine for testing, identifying, and isolating a hardware error. A message Is generated to
notity the tester of the results.

direct memory access controller (DMAC)
The WE32104'WE32204 chips that handle the access of data to and from memory, bvpassing the
CPL.

diskdev
The hdedata(D4X) structure member that contains the major/minor disk device number for the
hard disk error. Location: hdelog.h

diskette . h
The header file for the 3B2 computer that contains structures and symbolic constants for floppy
diskette access on the 3B2 computer. Location: diskerre.h

dma_breakup(D3X)
The tunction that breaks up physio requests into manageable data blocks. Location: physdsk.c

DMAC See direct memory access controller

driver

The set of routines and data structures installed in the kemnel that provide an interface between the
kernel and a device. A dnver provides all of the necessary programming so an interfaced device
appears as a file to the rest of the UNIX operating system.

driver entry points
Driver routines that are activated during system initialization.

driver initialization

Svstem initialization uses only the appropriate routines from the driver code and the information
from the master file to initialize the drivers. Information such as the major/minor numbers that is so
important when accessing driver switch table entry points is irrelevant when initializing a driver.

driver prefix
The unique two, three, or four digit prefix that is assigned in the driver master file and used as a
prefix for driver routines.

GL-16 BCI Driver Reference Manual

driver routines
System structures and kernel functions used by the dnver.

drv_rfile(D3X)
The 3B135 and 3B4000 computer function that reads a dniver file. Location: osisys3.c

drvinstall(1M)
The command that assigns the sequential major numbers file to the approprate field in the master
file.

dskserno
The hdedata(D4X) structure member that contains the disk pack serial number of the disk where
the error is logged. Location: hdelog.h

DTR See data terminal ready

DUART dual universal asvnchronous receiver transmitter. See universal asynchronous receiver
transrrutter

EADP see Enhanced Adjunct Data Processor
ECC See error correction code
EDT See equipped device table

EFAULT
The error message value that indicates a bad address. See also intro(2). Location: errno.h

EINTR
The error message value that indicates an interrupted system call. See also intro(2) in the BCI Driver
Reference Manual. Locaton: errno.h

EINVAL
The error message value that indicates an invalid argument. See also intro(2). Location: errno.h

Glossary GL-17

EIO See error in 'nputoutput
ELB See extended local bus
ELBU See extended local bus unit

Enhanced Adjunct Data Processor (EADP)

An adjunct processing element supporting two Small Computer System Interfaces (SCSI) (to two
SCSI buses), eight or sixteen megabytes of memory. and a local BIC. Two EADPs may share a
common penpheral.

enhanced ports (EPORTS)

EPORTS provides eight 8-pin modular jacks for senal RS-232C interface. EPORTS also includes
software that must be installed before the hardware can be recognized by the system. The software
contains diagnostic programs, enhanced ports driver, simple administration menus, and support files.

ENODEV
The error message value that indicates that there is no such device. See also intro(2) in the BC/
Driver Reference Manual. Location: errno.h

EPERM

The error that indicates an attempt to modify a file forbidden except to its owner or superuser. It
also returns for attempts by ordinary users to do things allowed only by the superuser. See aiso
intro(2) in the BCI Driver Reference Manual. Location: errno.h

EQD_EFC
The error that indicates a device error for an external floppy controller. For further information, see
the hdeeqd(D3X) function.

EQD_EHDC
The error that indicates a device error for an external hard disk controller. For further information,
see the hdeeqd function.

EQD_ID
The error that indicates a device error for an integral disk drive. For further information, see the
hdeeqd funcuon.

GL~—-18 BCI Driver Reference Manual

EQD_it
The error that indicates a device error for an integral floppy drive. For further intocrmanon, see the
hdeeqd runcton.

EQD_TAPE
The error that indicates a device error for a cartridge tape device. For further informanon. see the
hdeeqd function.

equipped device table (EDT)

A list generated by the computer at boot time with an entrv for each attached peripheral device. This
list allows the computer to know what devices are active. See the BCI Driver Development Guide.
Appendix A, The Equipped Device Table (EDT) for instructions on adding devices.

error correction code (ECC))

A generic term applied to coding schemes that allow for the correction of errors in one or more bits
of a word of data. The error-correcting circuitry on an EADP/ADP provides single bit error
detection and correction, an multiple bit error detection for RAM.

error in input/output (EIO)
An error that may occur on a call following the one to which it actually applied. This is a physical
L O error. See also intro(2). Location: errno.h

etc master.d

A dirccrory that contains dniver information files. The information supplies driver detinitions and
parameters used when a computer is configured. A master file is an individual file in this directory
associated with a driver. Information in the master file 1s only used if there is a corresponding
bootable object file in the ‘boor directory.

‘ercisvstem
A file that contains statements indicating whether a driver should be included or excluded during
configuration.

extended local bus (ELB)
An extension to the local bus providing additional L/O slots.

extended local bus unit (ELBU)
A 3B4000 computer Master Processor or 3B15 computer card cage for UN-type circuit boards that
provides local bus /O slots in addition to those in the basic controt unit and the growth control umt.

Glossary GL-19

external major numbers

External major numbers for software devices are static and are assigned sequentially to the
appropriate tield in the master file by the drvinstall(1M) command; external major numbers for
hardware drivers correspond to the board slot and are dynamically assigned by the Iboot process as
svstermn boot time.

external minor number
Part of the name of the device file usually corresponds to the unit number of the device to be
accessed via the file, or specifically, the minor number.

EXTPROC

The flag that indicates a peripheral is performing semantic processing of data. Semantic processing
entails input validation of the characters received from a character device. Location: t_state—
tey—irv.h

FAPPEND
The flag that indicates a file is open. This value is passed to the driver open(D2X) routine by the
kernel. Location: file.h

FCREAT
The constant that opens a new file. This value is passed to the driver open routine by the kernel.
Location: file.h

FEXCL
The constant that causes an open(D2X) to fail if a file already exists if used with FCREAT. This
value is passed to the driver open routine by the kernel. Location: file.h

file.h
The header file that contains definitions used for opening and accessing a file. Location: file.h

file_name
The D_rILE(D4X) structure member that contains the name of the file to be accessed. Location:
system.h s

file service
The use of an EADP/ADP and MP for file system storage and manipulation.

GL-20 BCI Driver Reference Manual

firmware

. Computer circuitry, such as silicon chips. that contains commands that can be read. but not deleted.
Firmware. also known as read-only memoryv (ROM), generally contains commands that are used to
boot the operating system.

firmware.h

The header file that contains pointers to a computer’s firmware. Some of these pointers include
random access memory start addresses. structures for systern generation, booting, ervor handling, and
for sending pumpcode to an intelligent controller. Location: firmware.h

FNDELAY(D2X)
The constant that indicates non-blocking 'O permission has been granted to a user program for file
access. This value is passed to the driver open(D2X) routne by the kernel. Location: file.h

FREAD(D2X)
The constant that indicates read permission has been granted to a user program for file access. This
value is passed to the driver open(D2X) routine by the kernel. Location: file.h

FSYNC(D2X)
The constant that indicates synchronous write permission is granted to a user program for file access.
This value 1s passed to the driver open(D2X) routine by the kernel. Location: file.n

FTRUNC!D2X)
The constant that opens an existing file and truncates its length to zero. This value is passed to the
dniver open routine by the kernel. Location: file.h

fubyte(D3X)
The function that copies a character (byte) from user program space to a driver. This is an obsolete
function. Location: mi/misc.s

fuword(D3X)
The function that copies 2 word of data from user program space to a driver. This is an obsolete
function. Location: mi/misc.s

Glossary GL-21

FWRITE
The constant that indicates write permission has been granted to a user program for file access. This
value is passed to the driver open(D2X) routine by the kemel. Location: file.h

getc(D3X)
The function that gets a character from a clist. Location: io/clist.c

getcb(D3X)
The function that gets the first cblock ona clist. Location: jo/clist.c

getef(D3X)
The function that gets a free cblock. Location: ioiclist.c

geteblk(D3X)
The function that gets an empty block. Location: os/bio.c

getmajor(1M)
The command that returns the major number for the specified device.

getsrama(D3X)

The function that gets the starting address of the segment descriptor table (SDT). It is used on the
3B15 computer and the 3B4000 MP to access the proper memory management unit (MMU') when
doing direct memory access (DMA). Location: immu.h

getsramb(D3X)

The function that gets the length of segment descriptor table (SDT). It is used on the 3B15 computer
and the 3B4000 MP to access the proper memory management unit (MMU) when doing direct
memory access (DMA). Location: immu.h

getvec(D3X)
The function for the 3B2 computer that gets an interrupt vector given a virtual board address.
Location: os/machdep.c ’

header file
A file that tes declarations together for a set of programs. It guarantees all source files are supplied
with the same definitions and declaratons.

GL-22 BCI Driver Reference Manual

hdeeqd! D>X)
The runction that initiates hard disk error logging. Location: iorhde.c

hdelog(D3X)
The runction that logs hard disk errors to a table in the kemel and to the console. Locaton: :orhde.c

high water mark
The point at which data being processed in the output clists is transmitted to the terminal.

[ASLP
The flag that indicates the processes associated with the device should be awakened when input
completes. Location: t_state—tty—:nv.h

IDFC See integral disk file controller

IDUART integral dual universal asynchronous receiver transmitter. See universal asynchronous
receiver transmitter

init(D2X) :
The rounne that initializes a device. init is called by the operating system when the computer is
started.

initialization entry points
Driver initialization routines that are executed during system initialization. See also init and start.

input/output accelerator (I0A)
A UN-type circuit board that directs peripheral controllers to interface with the 3B15 computer or
3B4000 Master Processor local bus and main memory.

int(D2X)
The routine processes a device interrupt. The driver interrupt handler is entered when a hardware
interrupt is received from a driver-controlled device.

Glossary GL-23

integral disk file controller (IDFC)

A UN-tvpe circuit board that interfaces to a storage module device controller (SMDC), which
interfaces FSD disk drives to the 3B4000 Master Processor or the 3B15 computer. The [DFC resides
in an YO slot on the primarv local bus.

interface
The routines. data structures, command arguments, major and minor numbers. and master and
system files used to develop a dniver.

internal major numbers
An index into the switch tables. Internal major numbers are assigned by the self-configuration
process when the drivers are loaded, and probably change every time the system is booted.

internal minor numbers
The internal minor number is assigned by the driver writer (although there are conventions enforced
for some types of devices by some utilities), and usuallv refers to subdevices of the device.

interprocess communication (IPC)
A set of facilities supported through software that enables independent processes. running at the same
time, to exchange information through messages, semaphores, or shared memory.

interrupt entry points

Dnver interrupt routines that are activated when an interrupt is received from a hardware device.
The svstem accesses the interrupt vector table, determunes the major number of the device, ana passes
control to the appropnate interrupt routine.

interrupt priority level (IPL)

The interrupt priority level (1 to 15) at which the device requests that the CPU call an interrupt
process. This priority can be overridden in the driver’s int routine for critical sections of code with
the spin(D3X) funcdon.

interrupt vector
Interrupts from a device are sent to the device’s interrupt vector, activating the interrupt entry point
for the device. -

IOA See inpuvoutput accelerator

GL-24 BCI Driver Reference Manual

ioctl(DX}
The charucter dniver base level routine that conveys hardware or software control information to a
character device.

iodone({ D3X)
The function used by a block driver for resuming the execution of a process after a block ['O request
has completed. Location: os bio.c

iomove(D3X)

A function used for copying data. The routine decides whether the source and target addresses are
within kernel or user program space and calls beopy(D3X), copyin(D3X), or copyout(D3X)
accordingly. This is an obsolete function. Location: os/move.c

iowait(D3X)
The function used by a block driver for suspending execution of a process until a request for input or
output completes. Locaton: osibio.c

IPC See interprocess communication
IPL See interrupt priority level

[SOPE™
The tlag that indicates a device is open. Location: t_state—tty—irv.h

ivec See interrupt vector

kernel buffer cache
A linked list of buffers used to minimize the number of times a block-type device must be accessed.

kseg(D3X) -
The function that makes memory pages available for a driver’s use. Location: os/mmgr.c

1_close .
The linesw(D4X) structure member that invokes the ttclose(D3X) function (for line discipline
zero) to discontinue access to a terminal. Location: linesw—conf.h

Glossary GL-25

1_input
The linesw!D=YX) structure member that invokes the ttin function (for line discipline zero) to
service an input interrupt frrom a terminal. Location: linesw—conf.h

I_ioctl
The linesw(D4X) structure member that invokes the ttioctl(D3X) function (for line discipline
zero) to service an ioctl request for a terminal. Location: linesw—conf.h

|_mdmint
The linesw(D4X) structure member handles modem interrupts. In line discipline zero, this
member is set to nulldev and is non-functional. Location: 1inesw—conf.h

1_open
The 1linesw(D4X) structure member that invokes the ttopen(D3X) function (for line discipline
zero) to service an open request for a termunal. Location: linesw——conf.h

1_output
The 1linesw(D4X) structure member that invokes the ttout(D3X) function (for line discipline zero)
to service an output interrupt for a terminal. Location: linesw—conf.h

|I_read
The linesw(D4X) structure member that invokes the ttread(D3X) function (for line discipline
zero) to service a read request from a termunal. Location: linesw—conf.h

1_write
The linesw(D4X) structure member that invokes the ttwrite(D3X) function (for line discipline
Zero) to service a write request to a termunal. Location: linesw—conf.h

layers(1) _
The UNIX system user command that provides multiple command windows on a terminal.

LBE See local bus extender

Ibolt
The system variable of time_t type that contains the number of Hertz (HZ) clock ticks since system
boot time. [t can be used to determine a precise relative time. For example, a driver can determine

GL-26 BCI Driver Reference Manual

the elapsec time for an [O operation by taking the difference between the recordecd starting ime
Ibolt value and the completion tme lbolt value.

Iboot i .
The Iboot program runs when the system is booted and reads the #VEC field in the dnver’s master
tile to determine the number of interrupt vectors per controller and assigns numbers accordingly.

line discipline switch tabie

Line discipline interprets input and output characters between the operating system and a terminal.
The line discipline switch table, 1inesw(D4X), is a list of pointers to the character driver processing
kernel routines that interpret and buffer the characters received from and sent to a terminal. The
linesw structure s defined in ‘usrinciude sys/conf.h. The protocols for processing and butfering
characters are referred to as a line discipline. Valid line discipline values are: 0. 1, and 2. Line
discipline 0 is the defaulit standard value, 1 is for a special protocol for AT&T 630 terminals, and 2 is
for use with shi(1), the shell layers(1) command. The line discipline switch table i1s defined tn conf. A
header file. For further information, see the BCI Driver Development Guide, Chapter 7, "Drvers in
the TTY Subsystem.”

line discipline zero
See line discipline switch table.

linesw(D4X)
See linc discapline switch table.

local bus extender (LBE)

A circuit board that provides the interface between the 3B4000 Master Processor or the 3B15
computer and the bus extension facilities. The LBE is optional, but if purchased, it must be located
in the basic control umt of the basic cabinet.

logical controller numbers
Numbers that are assigned sequentially by the central controller firmware at self-configuration time.

logmsg(D3X)
The function that logs an error message. Location: erriog.c

logstray(D3X)
The funcuon that logs spurious (nonlocatable) errors and interrupts. Location: io/errlog.c

Glossary GL-27

longjmp(D3X)
The function that transfers program control from the current point of execution back to a previous
point quickly. Location: ml/cswurch.s

low water mark
The point at which more data is requested from a terminal because the amount of data being
processed in the character lists has fallen creating room for more.

MAJOR table
The MAJOR table maps internal major numbers to the external major number. Each tabie is a
character array that is 128 entries long.

major(D3X)
The macro that obtains an internal major device number from a device number. Location:
svsmacros.h '

major number

The number that identifies a device class. Internal major numbers are known only to the kernel and
are logical values. The bdevsw and cdevsw switch tables are referenced by the internal major
number. External major numbers are found in two ways. If the major number is associated with a
hardware device, the number is created when the computer is automatically configured and accessed
with the getmajor(M) command, If the major number is associated with a software driver, the
number is created by drvinstall(1M).

makedev(D3X)
The macro that creates an external device number from a major number and a minor number.
Location: sysmacros.h

malloc(D3X) .
The function that allocates a private map structure. Location: os/malloc.c

manufacturer’s defect table (MDT) ,
A disk defect table supplied by the manufacturer of a given disk.

map.h
The header file that is used when declaring private map structures. The header file provides the
definition of the mapinit function. Location: map.h

GL-28 BCI Driver Reference Manual

mapinitt D3X)
The macro that initializes a private space management map. Location: map.h

mapwant(D3X)
The macro that requests a free buffer for a private space management map. Location: map.h

master file

The file that supplies information to the system initialization software to describe the attributes of a
driver. Thus file also contains the dniver prefix and device number, and whether it is a software or
hardware dniver.

Master Processor (MP)

The controlling processor that interfaces with the adjuncts on the ABUS thru the XBUS connection
and a remote BIC. The MP contains a WE 32100 chip set running at 14 MHz. and 8 or 16
megabytes of random access memory. The MP is the single point of control for bootstrap, system
configuration, centralized resource service, and maintenance.

max(D3X)
The function that returns the larger of two numbers. Location: mi/misc.s

MDT See manufacturer’s defect tabie

member
A field or element of a structure.

memory management
The memory management scheme of the UNIX operating system imposes certain restrictions on
drivers that transfer data between devices.

memory management unit (MMU)

WE 32101 and WE 32201 chips provide support for running the paging scheme of memory
management. The chips make use of tables maintained by the kemel for performing address
translations. '

Glossary GL-29

mfree(D3X:
The function that rrees a space In private memory. Location: os malloc.c

min(D3X)
The function that returns the smaller of two numbers. Location: ml/misc.s

MINOR table
The table that maps internal minor numbers to the external major number. Each table is a character
array that is 128 entries long.

minor(D3X)
The macro that obtains an intermal minor device number from a device number. Location:
sysmacros.h

minor device number

A number used to identify a specific device on a controller. An internal minor number is known
only to the kernel and 1s a logical number. An external minor number is created by the driver
developer and is usually a collection of information about the device.

mknod(1M)
The command that creates special device files or nodes that are used by the svstem to access the
device.

MMU See memory management unit

modem

A contraction of modulator-demodulator. A modulator converts digital signals from the computer
into tones that can be transmitted across phone lines. A demodulator converts the tones received
from the phone lines into digital signals so that the computer can process the data.

MP See Master Processor

multiprocessor

Multiprocessor architecture contains two or more CPUs that share common memory and pernipherals.
A multiprocessing computer can provide greater throughput, because processes can run concurrentiy
on different processors.

GL-30 BCI Driver Reference Manual

NCC

The constant that indicates the maximum number of control characters defined in the t_cc member of
tty structure (in rry.h). The valid control characters are described in termio(7) and contained in the
c_cc array of the termio structure. The detault value for NCC is 8. Location: rermio.h

nodev(D3X)

The function that indicates that a driver base-level routine was omitted. nodev piaces the ENODEV
error message in u.u_error when nodev is calied. When the cdevsw and bdevsw switch tables are
built, the kernel interrogates each dnver to determine the names of the base level routines. A
character driver normally has five base-level routines: open(D2X), close(D2X), read(D2X),
write(D2X). and ioctl(D2X). A block dniver normally has four base-level routines: open, close,
strategy(D2X), and print(D2X). When one of the base-level routines does not exist in the driver,
the kernel substitutes nodev in the routine’s position in the switch table. Location: os/subr.c

NULL .
The constant that indicates a 0 (zero). Location: param.h

OASLP
The flag that indicates the processes associated with the device should be awakened when output
completes. Location: t_state—tty—iry.h

open(D2X)
The dnver switch table entry point routine that is called by the system when a user pr..gram invokes
the opent.) instruction. The kemel then executes the driver’s open routine.

open_close
The p_rILE(D4X) structure member that sets an open or close flag. Location: system.h

open.h
The header file that contains constants specifving a driver open routine. Location: open.h

OPOST
The flag that indicates output characters are post-processed as indicated by the other flags in the same
structure. Location: rermio.h

otyp
The argument used in the open(D2X) a routine. The possible vaiues for otyp are described in

open.h. Location: system.h

Glossary GL-31

page descriptor (PD)
The base address of a memory page used by the memory management unit (MMU) to map pages
within paged segments from virtual to physical memory.

page descriptor table (PDT)
A table containing a list of page descriptors (PDs) used by the memory management unit (MMU) to
map pages within paged segments from virtual to physical memory.

p_pgrp
The proc(D4X) structure member that contains the process group identification number. The

number is used to determine which processes should receive a HANGUP or BREAK signal. A
driver detects these signals. Location: proc—proc.A

p_pid
The proc(D4X) structure member that contains the process identification number. Location:
proc—proc.h

p_pri

The proc(D4X) structure member that contains the priority of a process. The value is used by the
scheduler to determine which process gets to execute from a number of executable processes.
Location: proc—proc.h

p_uid
The real user [D of a process. Location: chead—itv.h

panic

The state where an unrecoverable error has occurred. In most cases, when a panic occurs, a message
is displaved on the console to indicate the cause of the problem. The computer must be rebooted or
repaired to remedy the problem.

param.h ,
The header file that contains definitions for constants that change infrequently. Examples of such
constants are HZ, NULL, and PZERO. Location: param.h

parent process
Almost every process is created when another process executes a fork(2) system call. This process is
called the parent process. The newly created process is called the child process.

GL-32 BCI Driver Reference Manual

PCATCH
The constant that instructs the kernel sleep(D3X) routine not to call the kernel longjmp routine. but
to rerurn value 1 to the calling routine. Location: param.h

PCB See process control block
PD See page descriptor

PDI See portable driver interface
PDT See page descriptor table

physck(D3X)
The function that verifies a requested block exists on the device. Location: os/physio.c

physio(D3X)
The function that processes an 'O request. Location: os/physio.c

PIR See programmed interrupt rec::=sts

portabie iriver interface (PDI)

A collection of driver routines. kernel functions. and data structures that provide a standard interface
for writing UNIX System V block drivers. PDI is usable on all 3B2, 3B1S5, and 3B4000 computers
running UNIX System V Release, 2.0.5, 3.0, 3.1, or later.

prefix

A two-, three-, or four-character name that uniquely identifies a dniver’s routines to the kernel. The
prefix name starts each routine in a block or character driver. For example, a RAM disk might be
given the ramd prefix. If it is a block driver, the routines are ramdopen, ramdclose, ramdstrategy,
and ramdprint. The prefix must be registered with AT&T.

print(D2X) :
. The routine that uses the minor number to determine what part of the device is not performing
" correctly.

Glossary GL-33

proc(D2X)
The routine that processes various character device-dependent operations. This routine is required
for a character dnver that accesses the tty or linesw structures.

proc(D4X)
The structure that contains informanon required by the operating system for a process
Location: proc.h

process
An instance of a program in execution.

process control block (PCB)
- An operating system structure that stores process information.

process ID (PID)
The kemnel identifies each process by its [D.

proc.h
The header file contains the proc structure used only by the kemnel for storing information about the
currently running process. Location: proc.h

programmed interrupt request (PIR)
An interTupt sent DV a software device.

psignal(D3X)
The function that sends a signal to a single process. Location: os/sig.c

pumpcode
Executable code that is downloaded to the controller.

putc(D3X) -
The function that places a character on a clist. Location: ioiclist.c

putcb(D3X)
The function that links a cblock toa clist. Location: io/clist.c

GL-34 BCI Driver Reference Manual

putcf(D3X)
The tunction that places a cblock on the free list. Location: io:clist.c

putbuf

A buffer. accessible with crash(1M). that records messages displayed with cmn_err(D3X). A
message is placed in putbuf routinely each ime cmn_err is called, or exclusively, if an exclamaton
mark (!) is encoded in the first position of the message. putbuf can be avoided by encoding a caret
(") in the first position of the message.

PZERO

The constant that indicates the point in the range of sleep(D3X) priority values that determines
whether the svstem will awaken a sleeping process on receipt of a signal. PZERO is generally set to
25. Priority values with a range of 0 to PZERO. keep the system from awakening sleeping processes
receiving a signal. Priority values with a range of PZERO~1 to 39 cause the system to awaken a
sleeping process when a signal is recetved. When a sleeping process is awakened on a signal, the
process is awakened before the event on which it was sleeping occurs. Location: param.h

raw IO

Movement of data directlv between user address spaces and the device. Raw U/O is used primarily for
administrative functions where the speed of a specific operation is more important than overall system
performance.

raw mode
The method of transmitting data from a terminal to a user without processing. This mode is defined
in the i:nc discipline modules. See also canonical processing.

rcvint
A member of the sysinfo(D4X) structure. It increments the entry to rint(D2X). Location:
sysinfo—sysinfo.h

read(D2X)
The routine for the cdevsw(D4X) table that copies information from a character device to a user
address space.

read(2)
The system call that reads data from a file. It is only used in user programs and not in a driver.

Glossary GL-35

readtype
The ncdedata(D<X) structure member that indicates either a CRC or ECC hard disk error.
Location: hdelog.n

remote file sharing (RFS)
Transparent sharing of directory structures by independent machines.

RFS See remote file sharing

rint(D2X)
The routine that services a receive interrupt. A receive interrupt occurs when a device has data ready
to be read.

routine

A section of C programming language or assembler code handling a specific task. Driver routines
differ from a complete program or other types of routines because driver routines do not include the
svatax required to identify a program to the system. In the C programming language, a program is
identified by the use of the main() function. A drniver routine does not contain main().

RTO
The flag that indicates a imeout is in progress for a device operating in raw mode. Location:
t_state—tty—rn A

SCCS See Source Code Control System
SCSI See Small Computer System Interface

SCSI driver interface (SDI)
A collection of machine-independent input/output controls, functions, and data structures, that
provide a standard interface for writing SCSI target drivers to access a SCSI device.

SCSI local interface circuit (SLIC)
A UN-type circuit board that provides the interface between two Small Computer System Interface
buses and the primary local bus on the 3B4000 Master Processor or the 3B15 computer.

GL-36 BCI Driver Reference Manual

SD See scgment descriptor

SDI See SCSI driver interface

SDT See segment descriptor table
SGS See Software Generation System

segment descriptor (SD)
The base address of a paged segment that is used by the memory management unit (MMU) to map
contiguous segments from virtual to physical memory.

segment descriptor table (SDT)
A table of segment descriptors (SDs) used by the memory management unit (M'\/TU) to map
contiguous segments from virtual to physical memory.

self-configuration

Self-configuration refers to the construction of the specific kernel for the computer. Because dnivers
function as part of the kemnel. vou need to create or modify self-configuration files anc reconfigure
the svstem to install your driver. .

semantic processing _
Semantic processing entails input validation of the characters received from a character device.

severity
The hdedata(D4X) structure member that indicates hard disk error severity; an error is either
marginal or unreadable. Location: hdelog.h

shi(1)

The system user command lets a user have multiple simultaneous sheil command line prompts (called
layers). On terminals equipped with muitiple windowing capability (such as the Teletype 4425), after
a number of windows are created, shl allows a user to be abie to execute shell commands from each
window. shl is terminal independent. Each window (layer) is given a unique process ID.

signal(D3X)
The function that sends a signal to a process group. Location: os/sig.c

Glossary GL-37

signal .h
The header file contains signal values described in the signal(2) system call. Location: signal.a

single board computer (SBC)
The WE 321SB single board computer (SBC). A computer on a single circuit board that permits
installable device dnivers.

sleep(D3X)

The function that suspends the execution of a process until an event occurs. sleep is normally given

the address of a structure as its argument. This structure may be a repository for data from an 'O

request. When an I/O request completes, the driver checks for processes that have called sleep with

the address of the structure. The wakeup(D3X) routine is called by the driver to awaken the sleeping

processes. Location: os/sip.c -

SLIC See SCSI local interface circuit

Small Computer System Interface (SCSI)

In the 3B4000 or 3B15 computer, SCSI refers to the disk and tape interface supported by the SCSI
local interface circuit (SLIC) and an EADP/ADP or ACP. See also SCSI controller, SCSI device.
SCSI host adapter, SCSI local interface circuit (SLIC), and SCSI peripheral cabinet.

Software Generation System (SGS)
A package of tools designed to aid in program development.

Source Code Control System (SCCS)
A utility for tracking, maintaining, and controlling access to source code files.

special device file

The file that identifies the device’s access type (block or character), the external major and minor
numbers of the device, the device name used by user-level programs, and securnty control {owner,
group, and access permissions) for the device.

spi*(D3X)

A series of functions used to suppress or restore the interrupt level for the execution of critical code.
spl1, spld, splS, spl6, spl7, splhi, splpp, and spitty suppress some or all interrupts so that critical
code can be executed without the danger of having an interrupt disrupt execution. spl0 restores the
state where all interrupts are serviced. splx returns the interrupt state to a previous state. Location:
mi/misc.s

GL-38 BCI Driver Reference Manual

spthitD>X) v
The ruriction that ensures interrupts do not occur while critical regions of code are executing. spihi
blocks all interrupts. Location: mi‘misc.s

splx

The function that restores the previous interrupt inhibit level. For example. if a previous spl4 call
was made. and then splhi was called. the dnver program should return to the spl4 state. splx is used
to ensure that the correct level is reached. Location: mi/misc.s

sptalloc(D3X)
The function that allocates pages of memorv. Location: os/page.c

sptfree(D3X)
The function that frees previously allocated pages of memory. Location: os/page.c

start(D2X)
A system initialization driver entry point routine.

strategy(D2X)

The block dniver routine that transmits data between the buffer cache and the device. One of the
tunctions of the strategy routine is to schedule reads and writes for maximum dewice efficiency. For
example, on a hard disk, the heads take a certain amount of time to move in and out to access data.
The strategy routine may group read and write requests together by the relative heud position that
each request is calling, while the disk heads are moving back for a new movement command to be
issued by the disk controller. When the disk heads are ready, the read and wnte requests are given to
the controller, and sorted by the data’s position on the disk relative to how the disk head moves. The
heads are then allowed to move in a coordinated way allowing the data to be read and written in the
most efficient manner. In addition to scheduling, strategy may validate the block number contained
in the read or write request, and also check the device for the end-of-file condinon.

STREAMS

A modular system used to build device drivers and protocol handlers that reside in the kernel.
STREAMS allow modules to pass messages to impiement a full-dupiex connection between the kemel
and the dewvice. o

subyte(D3X)
The function that copies a character (byte) from a driver to user program space. This is an obsolete
funcnon. Location: mi/misc.s

Glossary GL-39

suser(D3X} -
The function checks to see if the current process has superuser permissions. Location: os.fio.c

suword(D3X) v
The function that copies a word of data from a driver to user program space. This is an obsolete
function. Location: mi/misc.s

switch table
The operating system that has two switch tables, cdevsw(D4X) and bdevsw(D4X). These tables
hold the entry point routines for character and block drivers and are activated by /O system calls.

switch table entry points
Driver routines that are activated through bdevsw or cdevsw switch tables.

sxt driver
The shell layers shl(1) device driver.

synchronous
Events occurring at fixed, regular, or predictable intervals.

synchronous device
A device that comrnunicates with the CPU in a fixed, regular, or predictable way.

sysadm(1M)
The system administrative command that contains menus for perforrning many operations and
administrative tasks.

sysinfo(D4X)
The structure used by character drivers rint(D2X) and xint(D2X) driver interrupt routines to indicate
the number of times each routine is entered. Location: sysinfo.h

system initialization
The routines from the driver code and the information from the master file to initalize that initialize
the system (including device drivers).

GL—-40 BCI Driver Reference Manual

T_BLOCK

The constant that indicates that the driver proc(D2X) routine should block further input because the
input queue has reached the high water mark. T_BLOCK tumns off TTXON and tums on TTXOFF
and TBLOCK in the t_state member of the tty structure (in the driver proc routine). Locaton:
m.h

T_BREAK

The constant that indicates that the driver proc(D2X) routine shouid send a break character to a
terminal device. The driver sets the t_state member of the tty structure to TIMEOUT and initiates
delay iming. Refer to the proc routine in Appendix D for an example of how T_BREAK is used.
Location: trv.h

t_canq
The tty(D4X) structure member that contains data accepted from a terminal after canonical
processing (erase character, deletes, and so on) has taken place. Locaton: tty—my.h

t_cc
The tty(D4X) structure member that contains an array of control characters. Location: tty—
tv.h

t_cflag
The tcyiD4X) structure member that corresponds to the control modes flag (c¢_cflag! defined in the
termio structure. See aiso termio(7). Location: tty—uy.h

t_delct

The try(D4X) structure member used by the tty subsystem to keep track of the number of
delimiters found while performing semantic processing of data from a terminal. Semantic processing
entails input validation of the characters received from a character device. Location: tty—inv.h

T_DISCONNECT
The constant that indicates that the driver proc(D2X) routine should disconnect a tty device.
Location: tty.h

t_iflag
The tty(D4X) structure member that corresponds to the input modes c_iflag defined in the termio
structure and described in termio(7). Location: tty—ttyv.h

Glossary GL-41

T_INPLT
The constant that (ndicates the driver proc(D2X) routine should flag a terminal device to receive
input. Location: imy.h

t_lflag

The tty(D4X) structure member that corresponds to the local modes ¢_lflag defined in the termio
structure. See also termio(7).

Locaton: tty—iuv.h

t_line
The tty(D4X) structure member that holds the line discipline type specified in the ¢_line member
of the termio structure. Refer to termio(7) for more information.

‘ t_oflag
The tty(D4X) structure member that corresponds to the output modes c_oflag defined in the
termio structure. See also termio(7). Location: tty—iyv.h

T_OUTPLT

The constant that indicates the driver proc(D2X) routine should initiate output to the terminal
device. This condition is not set if the device is busy or if output has been suspended. Location:
m.h

t_outq
The tty(D4X) structure member that contains all of the data that is accepted from a terminal.
Location: tty—iy.h

t_pgrp .
The tty(D4X) structure member that identifies the process group associated with the device. This

member is needed to send signals to the process group. Location: tty—iryv.h

t_proc
The tty(D4X) structure member that holds the address of a character driver proc routine.
Location: tty—ity.h

GL~-42 BCI Driver Reference Manual

t_rawq
The ==viD4X) structure member that contains the data being sent to a terminal. Location: tty—
m.h

t_rbuf
The tty(D4X) structure member that is the receive buffer for a TTY device. Location: tty—mn.A

T_RESUME

The constant that indicates the driver proc(D2X) routine should resume output on a terminal because
a i CTRL-q: character has been received. The TTSTOP bit in the t_state :m.ember of the tty structure
should be cleared. Locatnon: tnv.h

T_RFLUSH
This constant is the same as T_UNBLOCK if TBLOCK is set in the t_state member of the tty
structure; otherwise, this indicator means nothing. Location: i.h

t_state

The tty(D4X) structure member that maintains the internal state of the device and the driver.

Note the t_state member is fully utilized and cannot be extended for additional state information that
a particular driver may need. Location: tty—ity.h

T_SUSPEND

The constant that indicates that the driver proc(D2X) routine should suspend output to a terminal
because '+ CTRL-s | character has been received. The TTSTOP bit in the t_state member of the tty
structure should be set. Location: ttry.h

t_tbuf
The tty(D4X) structure member is the transmit buffer for a TTY device. Location: tty—ityv.h

T_TIME
The constant that indicates the driver proc{(D2X) routine should delay timing because a BREAK,
carriage return, and so on, has compieted. Location: rry.A

T_UNBLOCK ,
The constant that indicates the driver proc(D2X) routine should allows more input because the input

"-queue has gone below the high-water mark. The driver proc routine resets TTXOFF and TBLOCK
in the t_state member of the tty structure. Locaton: rty.h

Glossary GL-43

T_WFLUSH ,
The constant that indicates the driver proc(D2X) routine should clear out the characters in the
transmut burter. Location: v A

TACT
The flag that indicates a timeout is in progress for a TTY device. Location: t_state—tty—itv.h

TBLOCK
The flag that indicates the driver has sent a control character to the terminal to block transmission
from the terminal. Location: t_state—tty—itv.h

TCFLSH
The constant that flushes the input or output queue for a TTY device. It is used by ttiocom(D3X)
and is described in the Administraror's Reference Manua! under termio(7). Location: termio.h

TCGETA
The constant that gets and stores the parameters for a terminal. (This constant is used by ttiocom
and is described in the Administraror's Reference Manual under termio(7).) Location: termio.h

TCSBRK

This constant 1s used as a case condition in the ttiocom function. When an ioct(2) system cal!
accesses TCSBRK., ttiocom calls ttywait(D3X) to allow the UART to drain. If the argument o the
ioctl command 15 zero, the dnver proc(D2X) routine is called with the T_BREAK argument to send
a break character tc the device and to initiate delay timing. If the ioctl argument is other than zero
and after the proc routine compietes, control returns to the caller. Location: termio.h

TCSETA
The constant that sets parameters for a terminal from a structure. This constant is used by ttiocom
and is described in the Administrator’ s Reference Manual under termio(7). Location: rermio.h

TCSETAW ,4
This constant is a case condition in the ttiocom function that is used to wait for output to drain from
a UART and to flush the read and write buffers before new parameters are set. Location: rermio.h

GL-44 BCI Driver Reference Manual

TCXONC
The constant that suspends output or restarts suspended output. This constant is used by ttiecom and
is described in the Admunistraior’s Reference Manual under termio(7). Location: termio.h

termio.h
The header file that contains information relevant to accessing a TTY device. Location: rermio.h

TIMEOUT
The flag that indicates a delay timeout is in progress. Location: t_state—tty—iry.h

timeout(D3X)
The function that suspends the execution of a process for a designated time interval. Location:
osiclock.c

timestmp
The ndedata(D4X) structure member that puts a ime stamp on a hard disk error logging table
entrv. Locaton: hdelog.h

trace(7)
A special file that allows event records generated within the kernel to be passed to a user program so
that the acuvity of a driver or other system routines can be monitored for debuggng purposes.

ttclose(D3X)
The runction that closes a TTY device. Location: io/tz] .c

ttin(D3X)
The function that moves a character from the t_rbuf to the raw queue. Location: io/rt/ .c

ttinit(D3X)
The function that initializes a tty structure. Location: io/try.c

ttiocom(D3X)
The function that examines the parameters of a TTY device. Location: io/tty.c

ttioctl(D3X)
The function that changes the parameters of a TTY device. Location: io/tt] .c

Glossary GL-45

TTIOW
The flag that indicates the process associated with the device is sleeping, awaiting completion of
output to the terminal. Location: t_state—tcy—n.h

ttopen(D3X)
The tunction that opens a TTY device. Location: 1o0:11/.c

ttout(D3X)
The function that moves a TTY character output queue to t_tbuf. Location: io/1t/ .c

ttread(D3X)
The function that processes an input TTY character. Location: io/ftl .c

ttrstrt(D3X)
The function that restarts TTY output after a delay timeout. Location: io/#t!.c

tttimeo(D3X)
The function that times a character device terminal read request. Location: #t/.c

ttwrite(D3X)
The function that moves a TTY character user data space to the t_outq device. Location: :o 11/ .c

TTSTOP
The tlag that indicates output has been stopped by a (CTRLs | character received from the terminal.
Location: t_state—tty—iry.h

TTXOFF
The flag that indicates the CPU has hit the high water mark in receiving data from a TTY device.
Calls the driver proc routine with T_BLOCK as the cmd argument. Location: t_state—tty—:y.h

TTXON -
The flag that indicates the data processed by the CPU has hit the low-water mark. Calls the driver
proc routine with T_UNBLOCK as the cmd argument. Locaton: t_state—tty—iy.h

GL-46 BCI Driver Reference Manual

ttxput(D3X)
The function that puts characters into the TTY output buifer (t_outq). Location: z/.c

tey(D4X)
The structure that maintains all information relevant to a TTY device. Location: irv.h.

tmy.h
The header file that contains a structure used for buffering data between a terminal device and a
character driver. Locaton: 11y A

ttyflush(D3X)
The function that clears the /O queues used in a character driver. Location: io/iry.c

TTYHOG
The constant that defines the maximum number of characters allowed in a TTY device's raw queue.
Location: rv.h

ttywait(D3X)
The function that delays a process until an 'O operation has completed. Location: ioitry.c

rvpes.h
The heacer file that contains data type definitions for expressions frequently used in rhic kernel and
drivers. l.ocation: rvpes.h

u.u_base
The user(D4X) structure member that specifies the base address for /O actions to and from user
data space. Location: user—user.h

u.u_count
The user structure member that specifies the number of characters (bytes) not vet transferred
during an /O transaction. Location: user—user.h

u.u_error
The user structure member that returns an error code to the user (in the errno external variabie).
Valid error codes are described in intro(2), Chapter 4 of the BCI Driver Development Guide.
Location: user—user.h

Glossary GL-47

u.u_gid
The user structure member that contains the effective group identification number. This member
provides a process with the access permissions group. Location: user—user.h

u.u_offset
The user structure member that specifies the offset into the file where data is being transferred to
or from. Location: user—user. h

u.u_procp
The user structure member that contains the address of the proc(D4X) structure associated with
the user process. Location: user—user.h

u.u_gsav
The user structure member that is an argument to the kemnel longjmp(D3X) routine. This address
is set automatically by the operating system each time a driver is started. Location: user—user.h

u.u_rgid
The user structure member that identifies the real group ID. Location: user—user.h

u.u_ruid
The user structure member that identifies the real user [D. Location: user—user.h

u.u_segflg
The user structure member is an flag that determines if the user kernel initiated the /O. Location:
user—user.hn

u.u_ttyp ,
The user structure member that contains the address of the process group member (t_pgrp) of the
ty structure for the terminal associated with this process. Location: user—user.h

w.u_uid
The user structure member that contains the effective user [D. This member provides access
permissions of another user. Location: user—user.h

UART See universal asynchronous receiver transmitter

GL~48 BCI Driver Reference Manual

universal asynchronous receiver transmitter (CART)

A arcwt board chip that conveys bytes of data between a serial communications line and a
microprocessor (for example between a 3B computer and a TTY device). In transmut mode. the
UART reads a bvte from a microprocessor’s data bus and outputs the byte a bit at a time on a serial
line for a terminal. In receive mode, the UART converts bit data from a serial line and forms a byte
which is then given to the microprocessor. UARTS can generally handle data speeds between 30 bits
per second (bps) and 19.2 thousand bps with character widths from 5 to 8 bits.

unkseg(D3X)
The function that frees previously allocated memory pages. Location: osipage.c

untimeout(D3X)
The function that cancels a previous timeout(D3X) call. Location: osiclock.c

user.h
The header file that contains the user(D4X) structure. Location: user.h

user(D4X)

The structure that contains status information for a process. One user structure is defined for each
process in the kemnel. The kernel uses the information for process status checking. For the currently
running process, u is used to access the members of the user block. Location: user.h

useracc’ D3X)
The runcmon that verifies a user data space
The portion of kemel memory used to store data for programs executing in user space.

user space
The part of the operating system where programs that do not have direct access to the kemel
structures and services execute. The UNIX operating system is divided into two major areas: the user
program and the kernel. Drivers execute in the kemnel, and the user programs that interact with
drivers generally execute in the user program area. This space is also referred to as user data area.

useracc(D3X)
The function that verifies a user has access to a requested data structure. Location: osiprobe.c

virtual protocol machine (VPM)
A software module that handies communicatons to the IOA.

Glossary GL-49

volume table of contents (VTOC)
Lists the beginning and ending points of the disk partitions by the system administrator for a given
disk.

VPM See virtual protocol machine
VTOC See volume table of contents

vtop(D3X) .
The function that converts a virtual address to a physical address. Location: mi/misc.s

wakeup(D3X)
The function that resumes execution of a suspended process. Location: os/sop.c

WOPEN
The flag that indicates the driver is waiting for an open request to complete.
Locanon: t_state—tty—iry.h

write(2)
The system call that stores information on a device. Information is copied from user prcgram space
to a dnver. Thus function is executed only from a user program and not from a driver.

write(D2X)
The routine for the bdevsw(D4X) or cdevsw(D4X) tables that conveys data from user space to
kernel space.

xint(D2X)
A routine that services a transmit interrupt.

xmtint
The sysinfo(D4X) structure member that increments the entry to xint.
Location: sysinfo—sysinfo.h

GL-50 BCI Driver Reference Manual

WWE BFTITVWE I IWIWIWIIWW ITIMIIMME) IWVWwY

AT&T values your opinion. We'd like to know how well this document meets your needs. Please
check the appropriate column below to indicate your opinion of the document for the

categories listed on the right.

If we need more information may we contact you? Yes D No]

Name (Optional) Excellent{ Good Fair [Poor
Job Title or Function Ease of Use
Accuracy
Organization Examples
Address Completeness
Organization
Appearance
Writing
Phone () Clarity
Does the document meet your needs? llustrations
Why or why not?
Please make at least one comment.
BCI Driver Reference Manual, Issue 2 307192

AT&T values your opinion. We'd like to know how well this document meets your needs. Please
check the appropriate column below to indicate your opinion of the document for the

categories listed on the right.

iIf we need more information may we contact you? Yes] No [

Name (Optional) Excellent| Good | Fair | Poor
Job Title or Function Ease of Use
Accuracy
Organization Examples
Address Completeness
Organization
Appearance
Writing
Phone () Clarity
lllustrations

Does the document meet your needs?
Why or why not?

Please make at least one comment.

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.5 NEW PROVIDENCE N..

POSTAGE WILL BE PAID BY ADDRESSEE

AT&T

4513 Western Avenue

Lisle, lllinois 60532

Attn: District Manager—Documentation

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.5 NEW PROVIDENCE N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

AT&T

4513 Western Avenue

Lisle, lllinois 60532

Attn: District Manager—Documentation-

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

