VOLUME 5

~ LANGUAGES
AND SUPPORT TOOLS

G

IX* SYSTEM LIBRARY

TR g T s TS

* TRADEMARK OF AT&T

[

=

VOLUME 5

LANGUAGES
AND SUPPORT TOOLS

UNIX

programmer’s manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

* Trademark of AT&T.

I

VOLUME 5

LANGUAGES
AND SUPPORT TOOLS

UNIX

programmer’s manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

Steven V. Earhart: Editor

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Riode Janeiro Madrid

* Trademark of AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes
no liability to any party for any loss or damage caused by errors or omissions or statements of any kind in the
UNIX* Programmer’s Manual, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. AT&T further assumes no
liability arising out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T disclaims all warranties
regarding the information contained herein, whether expressed, implied or statutory, including implied
warranties or merchantability or fitness for a particular purpose. .

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the TROFF formatter
operating under the UNIX system on an AT&T 3B20 computer.

* Trademark of AT&T.

Copyright® 1986 AT&T
All rights reserved.
Address correspondence to:
383 Madison Avenue

New York, NY 10017

No part of this publication may be reproduced, transmitted or used in any form or by any means—graphic,
electronic, mechanical or chemical, including photocopying, recording in any medium, taping, by any

computer or information storage and retrieval systems, etc. without prior permission in writing from
AT&T.

Library of Congress Cataloging-in-Publication Data
UNIX programmer’s manual.

Athead of title: AT&T
Inclues index.
Contents: v. 1. Commands and utilities—v. 2.
System calls and library routines—v. 3. System
administration facilities.—v. 4. Document Preparation. —v. 5. Languages and support tools.
1. UNIX (Computer operating system) I. Earhart,
Steven V. II. American Telephone and Telegraph Company.
QA76.76.063U548 1986 005.4'3 86-311

Select Code 320-035
ISBN 0-03-011204-y

Printed in the United States of America
Published simultaneously in Canada
678 090 98765432

CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

PREFACE

The UNIX Programmer’s Manual describes most of the features of the UNIX
System V. It does not provide a general overview of the UNIX system nor
details of the implementation of the system.

Not all commands, features, or facilities described in this series are available in
every UNIX system implementation. For specific questions on a machine
implementation of the UNIX system, consult your system administrator.

The UNIX Programmer’s Manual is available in several volumes.

¢ Volume 1 contains the Commands and Utilities (sections 1 and 6)

e Volume 2 contains the System Calls and Library Routines (sections 2,3,4,
and 5).

e Volume 3 contains the System Administration Facilities (sections 1M, 7,
and 8).

- o Volume 4 contains the Document Preparation Facilities (mm, tbl, etc.).

e Volume 5 contains the Languages and Support Tools (C language, lex,
make, etc.).

UNIX Programmer’s Manual Languages and Support Tools—i

INTRODUCTION

This volume of the UNIx* Programmer’s Manual describes the languages and
support tools that are available on most UNIX operation system
implementations. These facilities are not available on all implemntations, for
specific information as to availability consult your system administrator.

Two main programming languages are supported on the UNIX system. The
languages include:

e C Language — A medium-level programming language which was used
to write most of the UNIX operating system. Discussion includes the
following:

C LANGUAGE— provides a summary of the grammar and rules of
the C programming language. The C language as it is
implemented on most computers including the AT&T 3B
computers, the PDP#-11 computer, and the VAX#-11/780
computer. Where differences exist, these chapters try to point out
implementation-dependent details. With few exceptions, such
dependencies follow directly from the properties of the hardware.
The various compilers are generally quite compatible. Computers
not listed in the examples, probably follow the same rules and
guidelines. Consult your system support group for information.

LIBRARIES — describe functions and declarations that support the
C Language and how to use these functions. Both the C Library
and the Object File and Math Libraries are discussed.

THE “c¢” COMMAND— describes the command used to compile
C language programs, produce assembly language programs, and
produce executable programs.

A C PROGRAM CHECKER - “lint”— describes a program that
attempts to detect compile-time bugs and non-portable features in
C programs.

+ Trademark of AT&T.
$ Trademarks of Digital Equipment Corporation

UNIX Programmer’s Manual Languages and Support Tools—iii

A SYMBOLIC DEBUGGER - “sdb”— describes a symbolic
debugging program that is used to debug compiled C language
programs. :

e Fortran — Fortran 77, and rational Fortran preprocessor (Ratfor) are
described as follows:

UNIX SYSTEM COMMANDS FOR FORTRAN- describes the
various commands that may be used with Fortran on most UNIX
system.

FORTRAN 77— describes the implementation of Fortran 77 on the
UNIX system in terms of the variations from the American
National Standard. '

RATFOR— describes the Ratfor preprocessor. This preprocessor
provides a means for writing Fortran in a fashion similar to the C
language. This preprocessor provides (among other things)
simplified control-flow statements.

EFL— descibes a general purpose computer language intended to
encourage portable programming. It has a uniform and readable
syntax and good data and control flow structuring. EFL programs
can be translated into efficient Fortran code, so the EFL
programmer can take advantage of the ubiquity of Fortran, the
valuable libraries of software written in that language, and the
portability that comes with the use of a standardized language.

The following paragraphs contain a brief description of the supportk tools that
aid in program development.

e A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make) — describes a software tool for maintaining, updating, and
regenerating groups of computer programs. The many activities of
program development and maintenance are made simpler by the make
program.

e AUGMENTED VERSION OF "make"— is now combined with A
PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make).

iv—Languages and Support Tools UNIX Programmer’s Manual

e SOURCE CODE CONTROL SYSTEM (SCCS) USER’S GUIDE-—
describes the collection of SCCS programs under the UNIX operating
system. The SCCS programs act as a “custodian” over the UNIX
system files.

e M4 MACRO PROCESSOR— describes a general purpose macro
processor that may be used as a front end for rational Fortran, C, and
other programming languages.

e "awk" PROGRAMMING LANGUAGE-— describes a software tool
designed to make many common information retrieval and text
manipulation tasks easy to state and to perform.

e LINK EDITOR— describes a software tool (Id) that creates load files by
combining object files, performing relocation, and resolving internal
references.

e COMMON OBJECT FILE FORMAT (COFF)— describes the output
file produced on some UNIX systems by the assembler and the link
editor.

e ARBITRARY PRECISION DESK CALCULATOR LANGUAGE
(BC) — describes a compiler for doing arbitrary precision arithmetic on
the UNIX operating system.

e INTERACTIVE DESK CALCULATOR (DC)— describes a program
implemented on the UNIX operating system to do arbitrary-precision
integer arithmetic.

e LEXICAL ANALYZER GENERATOR (Lex)— describes a software
tool that lexically processes character input streams.

e YET ANOTHER COMPILER-COMPILER (yacc) — describes the yace
program. The yacc program provides a general tool for imposing
structure on the input to a computer program.

e UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP)— describes a
network that provides information exchange (between UNIX systems)
over the direct distance dialing network.

The support tools provide an added dimension to the basic UNIX software
commands. The “tools” described enable the user to fully utilize the UNIX
operating system.

It is assumed that the user of this document has at least two years of
specialized training in computer-related fields. The user is also expected to use
the UNIX system for software development.

Throughout this document, each reference of the form name (1M), name (7); or
name (8) refers to entries in the UNIX Programmer’s Manual —Volume 3:
System Administration Facilities. Bach reference of the form name(1) and

UNIX Programmer’s Manual Languages and Support Tools—v

name (6) refers to entries in the UNIX Programmer’s Manual —Volume 1:
Commands and Utilities. All other references to entries of the form name (N),
where possibly followed by a letter, refer to entry mame in section N of the
UNIX Programmer’s manual —Volume 2: System Calls and Library Routines.

vi—Languages and Support Tools UNIX Programmer’s Manual

TABLE OF CONTENTS

LANGUAGES

CLANGUAGE e e e e e e e e e e e e e 1
LEXICALCONVENTIONS 0 v v vt v v vt v v oo oo o u 1
COMMENtS o « v v ¢ o ¢ o o o o o o o o « o v o b o 4 4 0 e .. 1
Identifiers (Names) « ¢ & ¢ ¢ @ 4 v e v v v e e e e e e 1
Keywords e e e e e et e e e e e e e 1
Constants .« v . 4 v v v v e e e e e e e e e e e e e e s e e e e 2
SIHNGS ¢ v v v v o e e e e e e e e e e e e e e e e s e e e e 3
Hardware CharacteristicCs . . « v ¢« ¢ ¢ ¢ ¢ o v o o o o o s o o o o o o 4
DEC PDP-11 HARDWARE CHARACTERISTICS 4
DEC VAX-11 HARDWARE CHARACTERISTICS 5
AT&T 3B HARDWARE CHARACTERISTICS 5
SYNTAX NOTATION . . . o ¢ v v v v e v e v vt o ot oo oo v us 6
NAMES . . . i i e e e e e e e e e e e e e e e 6
Storage Class .« . v v v ¢ 4 4 it et e e e e e e e e e e e e e e 6
1 <L 7
OBJECTSANDLVALUES ¢ v v v v v v e v s e s e v o v o 8
CONVERSIONS . & & 0 i i i e it e e e e e e e o e e e oo oo e o 8
Charactersand Integers « ¢ v ¢ ¢ v v ¢ v v v e e e e e 8
Floatand Double v . . ¢ v v v v v i v it e e e e e e 9
Floating and Integral oo 0 v oo 9
Pointersand Integers v ¢ v v h 0 i b e e e e e e 9
Unsigned . . . v v v v v v v ittt e e e e e e e e e e e e e 9
Arithmetic Conversions « « « « « v v ¢ v v ¢ o b e e e e e e e 10
0 L 10
EXPRESSIONS . . & & v v v v ot e e i v et v v o e ot s o e o 11
Primary EXpressions . . « . ¢ ¢ v ¢ v v 0 v 6 vt v et e e b e e 11
Unary Operators « « « o ¢ v v v o o o o v o o o o o o s s 0 0 0 o a0 14
Multiplicative Operators . . .« « ¢« ¢« ¢ ¢ v ¢« v 4 e e e e e e e e e e 16
Additive Operators « . v ¢ v v ¢ 4 4 b e e e b e e e e e e e e e e e 16
Shift Operators . . .« v v v v ¢ v 0 v i e e e e e e e e e e e e 17
Relational Operators « . o v « v ¢« ¢ v v ¢ o o o o o o o 0 o 0 0w e 18
Equality Operators . « « « v « v ¢ ¢ ¢ s ¢ o ¢ o o o o o o o o o s o s 18
Bitwise AND ODPErator . « .« « v v v v ¢« o o o o o o s o o o o o s o s 18
Bitwise Exclusive OR Operator . . « . v ¢ v v v v v o v o 0 o o o o & 19
Bitwise Inclusive OR Operator ¢« v v v v 0 v v 0 v v v v o 19
Logical AND Operator . . . v v v ¢ v o o o o o s o o s o o o o o o s 19
Logical OROPErator « « v v v v v ¢ v o o v v o v v o o o o o o o o s 20
Conditional Operator . . « v v ¢ ¢ o 4 o o o s o s o o 0o o e 00 .. 20
Assignment OPErators « « o v ¢« v 4 ¢ o 4 4 4 e e e e e e e e e 20
Comma Operator« v v ¢ v v v v e 0 v e e e e e Ve e W21
DECLARATIONS i i i e i i e et e e v e e ot oo e s 22
Storage Class Specifiers . . . « « ¢ ¢ ¢ v ¢ ¢ v ¢ 4t v v 4 e e e e e e 22
Type SPecifiers + « v ¢ ¢ ¢ v v v v h e e e e e e e e e s e e e e 23
Declarators . v v v v v v v vt b e e e e e e e e e e e e e e e e 24
Meaning of Declarators & ¢ v 0 0 0 v i e i s e e e e e e e 25
Structure and Union Declarations ¢« . v v v o v v v v .. 27
Enumeration Declarations 0000000l 30
Initialization . . « & v ¢« v 0 o 4 et e e e e e e e e e e e e e e e 32
Type Names . . ¢« ¢ v v v v v v v v v e v v e bt e e e e e e 34
Typedef . . & @ ¢ v i i i e e e e e e e e e e e e e e e e 35
STATEMENTS . . . & ¢ o i i e et e e et e e e o e oo e e a o 36
Expression Statement . . « « ¢ ¢ v ¢ v 0 et h 4 e et e e e e e e e 36

UNIX Programmer’s Manual ~ Languages and Support Tools—vii

Compound Statement or Block . . .

Conditional Statement
While Statement
Switch Statement
Continue Statement
Return Statement
Goto Statement
Null Statement

External Function Definitions

Token Replacement
Conditional Compilation
IMPLICIT DECLARA”I‘IONS
Structures and Unions

Arrays, Pointers, and Subscripting

Explicit Pointer Conversions

CONSTANT EXPRESSIONS
SYNTAX SUMMARY

Declarations
Statements

External definitions
Preprocessor

C LIBRARIES

Including Functions
Including Declarations
THE C LIBRARY
Input/Output Control
File Access Functions

ooooooo

Output Functions

Miscellaneous Functions
String Manipulation Functions . . .

Character Manipulation
Character Testing Functions

viii—Languages and Support Tools

oooooo

oooooooo

Do Statement
For Statement
Break Statement .
Labeled Statemen.t
EXTERNAL DEFINITIONS

External Data Definitions . .
SCOPERULES

Lexical Scope

Scope of Externals
COMPILER CONTROL LINES . .
File Inclusion

Line Control . . . e e e e

TYPES REVISITED.

Functions « « ¢« « ¢« + .

PORTABILITY CONSIDERATIONS
Expressions . « « « ¢« & v 4 o« o &

oooooooooo

ooooooooooo

GENERAL

oooooo

oooooooo

File Status Functions
Input Functions

Character Translation Functions . .

UNIX Programmer’s Manual

Time Functions ¢ ¢ v v v v v i i i i e e e e e e 73
Miscellaneous Functions . . . « ¢ v ¢ v o v 0 v o v i e e e e 74
Numerical Conversion « « ¢ ¢« v o ¢ v v o v o e e e e e 74
DES AlZOrithm ACCESS « ¢ « + v « v v o o o o o o o o o o o o s o o o 75
Group File ACCESS « v v v ¢« v v v v 4 v 4 v 6 o o v o s o o o v e e 76
Password File ACCESS « « « & v v ¢ ¢ ¢ v v o o o o o o o o s o o o o 77
Parameter ACCESS « « & v v v ¢ ¢« ¢ 4 o 4 st 4 4 4 4 e e e e e e 77
Hash Table Management ¢« v ¢ 4 ¢ ¢ v v v e v o o o 0 o o 78
Binary Tree Management . . . « v ¢ v ¢ o v o v 6 v 0 b v b e a e e 79
Table Management . .« .« ¢« « ¢« v ¢ 4 ¢ 4 0 v 0. . B
Memory Allocation 0 0000 e e e e e e 80
Pseudorandom Number Generation ¢ ¢ v v v o o . 81
Signal Handling Functions e e e e e e e e e e e e e e e 82
Miscellaneous « v v v v v vttt e e e e e e e e e .82
THE OBJECT AND MATHLIBRARIES ¢t 85
GENERAL . . . ¢ ¢ v v v v v v ot o e ot o e o v e o e e e e 85
THEOBJECTFILELIBRARY ¢ 0 v v v v v e v e e v 85
Common Object File Interface Macros (Idfenh) 88
THEMATHLIBRARY v v ¢ v v v vt vt et e v oo v e o 89
Trigonometric Functions . . . « « ¢ ¢« ¢« v ¢ o v v o v e b b 00w w s 90
Bessel Functions ¢ & & v v v v vttt e e e e e e e e . 90
Hyperbolic Functions « . ¢ ¢ ¢ v 0 v v v v v v v v v v o o 91
Miscellaneous Functions ¢ ¢ v v v v v v v v v v v e e e a s 91
COMPILER ANDCILANGUAGE ¢ it vt v o v v oo s v 93
USEOFTHECOMPILER v ¢ i v i vttt e v e o u s 93
COMPILER OPTIONS . . . & ¢ v v v vt v v v v o v ot o s e o o 94
A CPROGRAM CHECKER—“lint” . . . v v v v v v v v v v o v v o 97
GENERAL i i i it e i e i e e ot ot o e oo o s v o 97
L0 . T . 97
TYPESOFMESSAGES ¢ & ¢t it i e e e v ot e s et e s 99
Unused Variables and Functions . . « « « ¢ v ¢ v v ¢ v o v o v v o o 99
Set/Used Information ¢« v v v v v v vt h e e e . 100
Flowof Control . . . ¢« . ¢ v v v o v v v o v vt e e oo s s s e 101
Function Values . . . ¢ v v v v v o v o o o 0 v o o o o 0 o s . 0102
Type Checking . « ¢ & v ¢ v v v v v v v v o v vt e e e e e 103
Type Casts . v v v v v i v e e e e e e e e e e e e e e e e e 104
Nonportable Character Use . . « « v v v ¢« v v v v v v o s o v o o o 105
Assignments of “longs™ to “ints” . + « « + v v i v e e 0w e e e . . 105
Strange Constructions . « « « v ¢« v ¢ o ¢ 4 ¢ 4 o e 04 e w 0. . 105
OldSyntax . . v v v v v vt v e e e e e e e e e e e e e 107
Pointer Alignment ¢ ¢ 0 0 0 0t i e e e e e e e e e e 108
Multiple Uses and Side Effects ¢« « ¢ v ¢ v v v o v v v o v 108
SYMBOLIC DEBUGGING PROGRAM—“sdb” « « ¢ ¢« ¢« v « « & 111

UNIX Programmer’s Manual Languages and Support Tools—ix

GENERAL @ ¢ i i e i e it ittt et e s oo s s 111

USAGE . . & i i i i i et e i e i e et ettt e e e e e e 111
Printinga Stack Trace . . « v v ¢ v ¢ v ¢ o v 6t v o v v o v o s o 113
Examining Variables ¢« v ¢ o v v i ot s e 0 e e 113

SOURCE FILE DISPLAY AND MANIPULATION 117
Displaying the Source File « « . o o v o v v v v v v 117
Changing the Current Source File or Function 118
- Changing the Current Line in the Source File 118

A CONTROLLED ENVIRONMENT FOR PROGRAM TESTING ... 119
Setting and Deleting Breakpoints 0000 . 119
Running the Program ¢ ¢ ¢ v ¢ v v v v o o o v 0 v v o 120
Calling Functions . « « ¢ ¢ ¢« v v 4 v ¢ ¢ o ot o o o o s o s o v s o 122

MACHINE LANGUAGEDEBUGGING . . . ¢ ¢+ ¢ ¢ ¢ ¢ v o v s o 122
Displaying Machine Language Statements« 122
Manipulating Registers ¢ 4 4 v 0 00 e e e e e e e e . 123

OTHER COMMANDS st v v e e v v v v e v o e v e o e o 123

FORTRAN UNIX SYSTEM COMMANDS ¢ v v .. 127
FORTRAN 77 . & v v i vt et ot 6 v e s o v o e o et o e o v o e a e 129

USAGE . . & v v it i e e et e e e e v et e e e e e e e e 129

LANGUAGEEXTENSIONS . . ¢ ¢ v v v v v v v v v v 0 o o v o o s 129
Double Complex Data Type .« « « ¢« ¢ v v v v v v v v v v o o o o o o 130
Internal Files . . . & & ¢ ¢« v v v 0 i i ittt i e e e e e e e e e 130
Implicit Undefined Statement 130
Recursion . ¢ ¢ v v v v v v v v v v e et e e e e e e e e e e e 130
AUutomatic StOTage « « v v v v v 4 4 4 e e e e e e e e e e e e e 131
Variable Length Input Lines ¢ v v v v v v v v v v v v 131
Include Statement . . . + ¢« ¢ ¢ v ¢ bttt e e e e e e e e e e e 131
Binary Initialization Constants « ¢ « v ¢« ¢ ¢ ¢« o 4 0 e 0. . 132
Character SHNgS « « « ¢+ 4 ¢« v ¢ v o o o o o o o o s 4 o 0t .. 132
Hollerith . . ¢ ¢ v v v o 0 i v i e e e e et e e e e e e 133
Equivalence Statements . . . « v ¢ . v v v v v b e e 0 e e e e e e . 133
One-TripDO LOOPS « « v & v ¢ v o v o v v v e s e v e o v e v o a s 133
Commas in Formatted Input 134
Short Integers . « & v ¢« v ¢« v ¢« v o e b 0 b e e e e e e e 134
Additional Intrinsic Functions « + ¢« . v o 0000 .. 135

VIOLATIONS OF THESTANDARD i v v v v v 138
Double Precision Alignment« ¢ ¢ v v v o v e e e e e e 138
Dummy Procedure Arguments . . . « +« ¢ « 4 ¢« ¢ o 4 e s 0 ..o 138
Tand TLFormats . . o v v v ¢ v ¢ v 0 o 0 o v v o o o o 0 o o oo 139

INTERPROCEDUREINTERFACE ¢ v v v v v v v oo 139
Procedure Names . « ¢ ¢« v v ¢ v ¢ v v o v o o o s o o o o 0 0 0 0 139
Data Representations . . « « v v o v ¢ o o o 4 o v o 0 0 0 0 0 0 e 139
Return Values e e e e e e e e e e e e e e e e e e e 140
Argument Lists « .+« v ¢ v v o v 0 o b i e e e e e e e e e e e e 141

FILEFORMATS . . ¢ ¢ v v v v e v s v s v s ot s ot oo v o s 142
Structure of Fortran Files « v ¢ ¢ o v oo v v v v v 142
Preconnected Files and File Positions o 143

x—Languages and Support Tools UNIX Programmer’s Manual

GENERAL . . . i i i i it e e e b e vt et e oo e oo e e v 145
USAGE . . & . it e e i it et ettt e et e e e e e e e e 145
STATEMENTGROUPING & ¢ ¢ v vt v et e v s s oo o 146
THE “if-else” CONSTRUCTION ¢ ¢ ¢ ¢ v v vt v e v o o o o 147
Nested “if " Statements . . . ¢ ¢ ¢« ¢ 4 vt 4 ¢ 0 0 4 e e e e e e 148
THE “switch” STATEMENT« ¢ ¢ v ¢ ¢ o ¢ o o o s o o o o & 149
THE “do” STATEMENT ¢ & ¢« ¢ ¢ i e e et e o o e o o v 150
THE “break” AND “next” STATEMENTS ¢ ¢« .. 150
THE “while” STATEMENT ¢ ¢ ¢ & ¢ ¢ ¢ v v e v e s e o o 151
THE “for” STATEMENT . . . v ¢ ¢ ¢ v ¢ v ¢ ¢ ¢ o ¢ o o o o o o s & 152
THE “repeat-until” STATEMENT « ¢ ¢ ¢ ¢« ¢ ¢ v 0 o ¢ o o s & 153
THE “return” STATEMENT & ¢ ¢ ¢ ¢ ¢ v 6 v v o o o o o 154
THE “define” STATEMENT ¢« & ¢« ¢ ¢ v v e v e e v o v 155
THE “include” STATEMENT ¢ ¢ & ¢ ¢ ¢ v v e e e e v o v W 155
FREE-FORMINPUT . . . & ¢ v v 4 v 6o v o v o o o o o o o o o o 156
TRANSLATIONS . . & ¢ i v v 6 v e e s o o o oot o v o s o o v 156
WARNINGS . . . it it et et et e e v s ot o o s o o e u 158
EXAMPLE OF RATFOR CONVERSION ¢ ¢ e v v .. 158
THE PROGRAMMING LANGUAGEEFL ¢ ¢ v ¢ v ¢ v o 161
INTRODUCTION . . & v v i v v e v e v e e v o oo o e e oo o o 161
LEXICALFORM . . . i ¢ i it e v et e ot e ot e o oo e e e 162
Character SEE « v v v« ¢ o o o e e e e e e e e e e e e e e e e e 162
LInes . & v v v et ettt e e e et e e e e e e e e e e e e e 162
TOKENS & v ¢ v v e it e 164
Macros .« v ¢ v it ot e 166
PROGRAMF FORM . . . i i it v v et ettt e oo oo e e e e 167
Files & v v v i i it i e 167
Procedures . . . ¢« v v v v i 4 i e et e e e e e e e e e e e e e e 167
Blocks . & v v it e 167
Statements © . . ¢ . . v et e e e e e e e e e e e e e e e e e e 168
Labels & v v v ¢t v v it et e e e e e e e e e e e e e e e e e e 169
DATATYPESAND VARIABLES . . & &« ¢ ¢« v ¢ v v ¢ v o e o v o o o 169
Basic Types . « & v ¢ v v 6 6 6 v e o o 0 4 o 0 e e e e e e 169
ConstantS + v « o v ¢ 4 v 4 e b e e e e e e e e e e e e e e e e 170
Variables . . ¢ ¢ v 0 it i e e e e e e e e e e e e e e e e e e e 171
N 3 171
SIIUCLUTES & v & v 4 o & o o o o o o o s o o o o o o o o o o o o o 172
EXPRESSIONS . & . & v i it ot e vttt et et t e v o s v o 172
Primaries . . . & . 0 i i e et e e e e e e e e e e e e e e e 173
Parentheses . . + v ¢ v ¢ v v ¢ 0 v 4 bt e e e e e e e e e e e e 176
Unary Operators « o« « v o & &+ o « o o s o o o o o o o s o o o o o s 176
Binary Operators . . . v v v v v v v o 4 4 o 4 40 e e b e e 177
Dynamic Structures e e e e e e e e e e e e e 180
Repetition Operator « . v ¢ v v v v v v v v 0. e e e e e 180
Constant EXpressions . . « « ¢ ¢« ¢« ¢ v v ¢ v v 0 v 0 o 0 0 e 0 e 0 181
DECLARATIONS . . . & i i ot ot e e e e e et e et e e oo e o v 181
SYRAX & v 0 v bt et et e e e e e e e e e e e e e e e e e e 181
AributeS « & v v v v i i e e e e e et e e e e e e e e e e e e e 182
Variable List & v ¢ v v 0 i it e e e e e e e e e e e e e 184
The Initial Statement ¢ . ¢ ¢ ¢ ¢ v ¢ 0t v e e e e e e e e 184
EXECUTABLESTATEMENTS . . . & ¢ ¢ ¢ ¢ v o o o o o o o o o o 185

UNIX Programmer’s Manual Languages and Support Tools—xi

BlockS o v v v v v o e 186
Test Statements . « . ¢ ¢ ¢ 4 v 4 ¢ 4 o s 4 e e e e e e e e e e e 186
LoOpS « v v v v i i i e 188
ForStatement ¢ v v 0 0t vttt e e e e e e 188
Branch Statements . « « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ 4 o 6 o 0 e b e e e e e e 191
Input/Output Statements . . « « v v ¢ v v v 0 e e e e e e e e 193
PROCEDURES i i it i it et e e v e e e et e e e e 196
Procedures Statement . . . + « « ¢ 4 o v v v b e e e e e e e e e e 196
End Statement . . « v ¢ . ¢ ¢ ¢ vt et e e e e e e e e e e e 197
Argument ASSOCIZHION + ¢+ + o o ¢ o ¢ s 4 b 4 e e e e e e e e e e 197
Execution and Return Values . . « . « . ¢ v v ¢ ¢ v v v 0 0 0 o o o 197
Known Functions ¢ ¢« ¢ v v v v v v v v o o o o o o o o o s s 197
ATAVISMS . & . i i et e e et e et e e e e e e e e e e e 199
Escape Lines . . . ¢« v v v v v v v v v vttt e e e e e e e e e e 199
CallStatement « + « v ¢ v ¢« o o o o o v o 6 b 4 b bt e e e e e 199
Obsolete Keywords . . « v ¢ v ¢ v v v v v 0 v o v 0 v o b e e e 199
Numeric Labels . . . ¢ v v v v v v 0 v 0 vt et e e e e e e e e 200
Implicit Declarations . « . ¢« « ¢ v ¢ ¢ ¢ ¢ ¢ v v 4 e b e e e e 200
Computed GO0 &+ v v ¢ v v v ¢ v v o b et e e e e e e e e e e 200
GotoStatement . « « . v v 4 4 e e s e b e e e e e e e e s e e 201
Dot Names . . ¢ ¢ v ¢ v o o v v s o o s o o o o o o o o o s 0 o 201
Complex Constants . . . v ¢« v v v v o 4 o v b e e e e e e e e e 201
Function Values . . . ¢« & ¢« v ¢ v v ¢ v 6o v v o o o s o 0 s o o o . 202
Equivalence . . . ¢« v v v o v o v 6 o o s bt e e e e e e e e e 202
Minimum and Maximum Functions . . . « . « .+ ¢ v o v o o 0 0 . 202
COMPILER OPTIONS &t o v vt o e v v e v o o o o o o o v 203
Default Options . . . v ¢ ¢ v v v v o o 4 e v o o o s o o o o o s s 203
Input Language Options « v v v ¢ v v o v o o o o o o 0 00 203
Input/Output Error Handling ¢ ¢ v v v o v v v o v v 203
Continuation Conventions . « « + « « ¢ ¢ ¢ ¢ 4 ¢ o 4 4 0 e 000 . s 204
Default Formats . « v v v v v ¢ ¢ ¢ o o 0 o v o o o o o o s s o o s 204
Alignments and Sizes 0 v 0 e 0 e e e e e e e e e 204
Default Input/Output Units« o v v o .. e e e e 205
Miscellaneous Output Control Options« . . .« . .. 205
EXAMPLES. et e e e e e e e e e e e e e e 205
FileCopying . « « ¢ v v ¢ v v v o v v e e ettt e e e e e e e 205
Matrix Multiplication 00000000l 206
Searchinga Linked List . . + . « v v ¢ v v ¢ v o ¢ o v o o o o o o 206
Walking a Tree . o ¢ & v v ¢ o ¢ o o o o o o o o ¢ o s o o o o o o s 207
PORTABILITY . v v v v v v v a6 s o s e o s ot e s o s e v o s 210
Primitives . . & &« v 4 v ¢ ot v et e e e e e e e e e e e e e e e 210
DIFFERENCES BETWEEN RATFOR ANDEFL. 211
COMPILER v i vttt v e e e ot o e o s o o e e oo e o 211
Current VEISION « + v v ¢ ¢ 4 ¢ o o s o o o s o o o o o o o s o o 211
DiagnostiCs « « v v v ¢« ¢ v 4 e 4t b b e e e e s e e e e e e e e 211
Quality of Fortran Produced ¢ ¢ v v ¢ v ¢ v v ¢ v v v 0 212
CONSTRAINTSONEFL 4 v vt v v v v v v e o v e o s 214
External Names . . . & ¢ ¢ ¢« ¢ ¢ ¢ o ¢ o ¢ o o o o o o o o o o o 214
Procedure Interface e e e e e e e e e e e e e e e 214
Pointers S e e e e e e e e e e e e e e e e e e e 215
Recursion . . + . ¢ ¢ ¢ v v v v v v b v v vt w e e e e e e 215
Storage Allocation . . & + v ¢ v ¢ ¢ b it e e e e e e e e e e e 215

xii—Languages and Support Tools UNIX Programmer’s Manual

SUPPORT TOOLS
A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS (make) . . 217

GENERAL . . . & . i i ittt e et e ot et e s et e e e 217
BASICFEATURES ¢ .t i i i ittt e et v e v s 221
DESCRIPTION FILES AND SUBSTITUTIONS e e e e 224
COMMANDUSAGE . . . v v v v vttt e ot o oo o o v e e us 226
SUFFIXES AND TRANSFORMATIONRULES 228
IMPLICITRULES i e ittt it e e e e ot o e 229
SUGGESTIONS AND WARNINGS ¢ vt v v v v o0 231
AUGMENTED VERSION OF make ¢« v v v v v v v v 0 o 233
GENERAL ¢ i i i it e et e e it i e o e s e s v o as 233
THE ENVIRONMENT VARIABLES, ... 234
RECURSIVEMAKEFILES . . &« ¢t ¢ v v 6 v v v v o o o o o v u o 240
FORMAT OF SHELL COMMANDS WITHIN make 240
ARCHIVELIBRARIES v i ittt v vt v e h oo e 240
SOURCE CODE CONTROL SYSTEM FILE NAMES: THE TILDE . . . 245
THENULLSUFFIX & v v v v v v vt e v o v e e o oo o s 247
INCLUDEFILES v it v vt e v v oo o o oot oo v o 247
INVISIBLESCCS MAKEFILES v ¢ ¢t v v v o v o o o o o o 248
DYNAMIC DEPENDENCY PARAMETERS 248
EXTENSIONS OF $*,$@, AND $< v v v v v 249
OUTPUT TRANSLATIONS & ¢ v v v v v e o ot v oo o o 250
SOURCE CODE CONTROL SYSTEM USERGUIDE. 251
GENERAL ¢ i it it e e e e et e e e e et e o e e e e 251
SCCSFORBEGINNERS ¢ ¢t v v v v vt et vt o v oo e as 252
A Terminology « v v v v v v v v b v e e e e e e e e e e e e e e 253
B. Creating an SCCS File via “admin” ¢ ¢ v v v v o 253
C. Retrieving a File via “get” ¢ v ¢ ¢ v v v v v e v e e 0w 254
D. Recording Changes via “delta « ¢ . v ¢ o v v v v . 255
E. Additional Information About “get” ¢« ¢ ¢ ¢ 0 0 ... 256
F. The “help” Command . . . « ¢ v ¢ ¢« v v v ¢ v v v o o o v o0 o 258
DELTANUMBERING . . .« ¢ v ¢ v v v v v vt ettt oo a0 a o 259
SCCS COMMAND CONVENTIONS v v v v v v e o o o 261
SCCSCOMMANDS . . v vt v v vttt e et et e e e e e s o e 263
A.The“get”Command . . . + « ¢ v v v v v v vt o v o 0 o o o o 264
B. The “delta” Command . . « « « v v v v v v v v v 0 v v o o 0 o 277
C.The “admin” Command« v v ¢ v v v v v o v 0 v 0w 281
D.The “prs”Command « ¢ v v v v v 0t v v v o o o o o o s 284
E. The “help” Command v v v v v v v v o v v o 0w 286
F. The “rmdel” Command . . . « « ¢ ¢ v ¢ v 0o v v v v 0o v v v v v 287
G.The “cdc” Command « v v v v v v v v v v s o v o o 0w 288
H. The “what” Command e e e e e e e e e e e 289

I. The “scesdiff” Command e e e s e e e e s e e e 290
J. The “comb” Command ¢ o v v v v v v v v v v v e 290
K.The “val”’Command « & v ¢ ¢ v v v v o v v s 0 o o o o 291
SCCSFILES . . v vt i v e vt o o ot s et ot ot s oo s s 292
A Protection . « v v v v 0 it e e e e e e e e e e e e e e e e e 292
B. Formatting e e e e e e e e e e e e e e 293
C.Auditing . . . & ¢ v o i it ot e e e e s e e e e e e e e e e 294

UNIX Programmer’s Manual Languages and Support Tools—xiii

/

AN SCCS INTERFACEPROGRAM v v v v v v o v o o o 296
A.General L L Ll e s e e e e e e e e e e e e e e e e 296
B.Function @ v v i v i i ittt i e e e e e e e e e e 296
C.BasicProgram . . « ¢ ¢ ¢ v v v v v v v bttt e e e e e e e e 297
D.Linkingand Use + . . . ¢ v ¢ v 4 v 0 s v 4 v e 6 oo o o o s o 297

THE M4 MACROPROCESSOR . . . ¢ . v v v v v v o e o e v e e u 299

GENERAL e e e e e e e e e e e e e e e e 299

DEFININGMACROS . . . ¢t v ¢ v v v et v et et o s v v o C. . 306

ARGUMENTS . . . & i i v v v e v vt e e e v o s e e e e 308

ARITHMETICBUILT-INS ¢ v ¢ v v v vt vt et eie o a s 309

FILE MANIPULATION v i v v 6 v v s v et s s e o oo o 310

SYSTEMCOMMAND ¢ i i i e e e vt v v ot o e oo e 311

CONDITIONALS . . . & i i i e e e ettt et et s oo e o s o 312

STRING MANIPULATION ¢ v v v v vt e vt oo o e v o 313

PRINTING i i i e i et e v o v ot e o b e oo e e o us 314

THE awk PROGRAMMING LANGUAGE ¢ o v v v o 317

GENERAL v v v v v v o ottt s ettt ot o e e v oo 317

PROGRAMSTRUCTURE i v v v v vt e v e s o e oo as 317

LEXICALCONVENTION ¢ i vt v v vt e et o e e s s ns 319
NumericConstants . . « v v ¢ ¢ v ¢ v ¢« v o o s o v o o 0 o 0 s .. 319
String Constants . . « v 4 ¢ v v 4 e e e b e e e e e e e e e e e e 319
Keywords . . v v v v v 0 0 i e e e e e e e e e e e e e e e e e e 320
Identifiers . . . & v ¢ ¢ 4 ¢ttt 4 e e e e e e e e e e e e e e e e 320
OPErators « « ¢ v o o o o o ¢ o o o o s o o o 4 s s e 8 e 0w 320
Record and Field Tokens . . « ¢ ¢ ¢ v v v v v v v v v v v v 0 v o s 323
Record Separators . « o ¢ v v v ¢ 4 v e v v vt e e e e e e e e e 324
Field Separator . . « « v ¢ v v v v v vt v v v e e e e e e e e e e 324
Multiline Records . « « v ¢ v v v v v v v v b v e e e e e e e e e e 324
Output Record and Field Separators « « o v o o o o o o o o o« 325
Comments « « v v v v v o v b e e e e e e e e e e e e e e e e e e 325
Separators and Brackets 0 0 v 0 e 0w e e e e e e e 325

PRIMARY EXPRESSIONS & . v v v v 0 i vt e e e e o v e 325
Numeric Constants « « + ¢ v v ¢ ¢ v ¢ ¢« o o o s v o o o o o o o o s 326
String Constants . . « v ¢ v 4 4 e b b e e e e e e e e e e e e e 326
£ £ 326
Function v v v i i e e e e e e e e e e e e e e e e e e 328

TERMS . & . i it ot e et e e e e e e e e e e e e e e e e e e 330
Binary Terms . . . v ¢ v v v v v v v v e e e e e e e e e e e e e 330
Unary TErm « ¢ v v v v v v v 6 o o 4 v 6 o o o s o o o o s o o o 330
Incremented Vars . .« « « v v v v v 0 i bt e e e e e e e e e e e 331
Parenthesized Terms ¢ ¢ v v v o ¢ ¢ o v o v o o o o o o o & 331

EXPRESSIONS . . . ot i i i it et e e e et e ot ot e v o v 331
Concatenation of Terms . . .« v ¢« ¢« v v ¢ 4 ¢« ¢ o o 0 4 0 o o o 0 . 331
Assignment Expressions 0 0 0 000 e e e e e L. . 332

USING AWk « v v v v v vttt 6 st v et et e e o a s s e oo a 333

INPUT: RECORDS AND FIELDS ¢ ¢ v v v v v ot o o o o o s 334

INPUT: FROM THECOMMANDLINE 336

OUTPUT:PRINTING v i v v e vt e vt et v s e o s o 338

OUTPUT: TODIFFERENT FILES ¢« v v v v v o o o 343

xiv—Languages and Support Tools UNIX Programmer’s Manual

OUTPUT: TOPIPES . - © « o v e v e e e et e e 344

COMMENTS . . & i i it e i et et et e st et o oo s s e a 345
PATTERNS e e e e e e e e e e e e e e e 345
BEGINandEND e e e e e e e e 346
Relational Expressions v« v 0 v v v v v v i i e e e . 347
Regular Expressions & ¢ v v v v v 0 v v v v v v v v v o0 o 349
Combinationsof Patterns ¢ . ¢ ¢« v v v 0t v e e e e e .. 352
Pattern Ranges . . . « & v ¢ ¢ v v o 4 o o o v o o s o b o b 0 0 a 353
O (0)1 354
Variables, Expressions, and Assignments ¢« « ¢« « « ¢ v v 0o 0 354
Initialization of Variableso 00000 356
Field Variables v v v v v v 6o v v v v e v v v v v e 356
String Concatenation . . « v v v v o ¢ ¢ 4o 4 4 e e e e 00 e e e 357
Special Variables ot e e e e e e e e e e e e 358
TYPE & v v e 359
ATTays + ¢ ¢ o ¢ ¢ o o 4 e e e e e e o e e e e e e e e e e e e 360
BUILTINFUNCTIONS vt v o v v v o o v v o o v o o o 362
FLOWOFCONTROL i v v v vttt e ettt e e e on s 365
REPORTGENERATION . . v v v ¢ ¢ ¢ 6 v v v o o o o o o o s o s 369
COOPERATION WITHTHESHELL ¢+ oo 371
MISCELLANEOUS HINTS ¢ ¢ v 0t v v v v v o o o o u . 372
THELINKEDITOR ¢ v o v v v e bt v e e o o v e v oo 373
GENERAL e e e e e e e e e e e e e e e 373
Memory Configuration . . . « « ¢« v ¢ ¢ ¢ 0 4 0 . os e e e e e 374
Section . & & vt i i e 374
Adresses . « v ¢ v v v b 4t e e e e e e e e e e e e e 375
Binding e e e e e s e e e e e e e e e e 375
Object File . . . ¢ v v 0 i v i ittt e e e o v oo e s o e o us 375
USING THELINKEDITOR . . . ¢t ¢ ¢ ¢ v ¢ v o v o o o o o o o o 376
LINK EDITOR COMMANDLANGUAGE 380
Assignment Statements ¢ ¢ . 0 e e e e e e w000 e e 381
Specifying a Memory Configuration « ¢ ¢ ¢ o 0 4 0. 383
Section Definition Directives . + « « « « ¢ ¢« ¢« 4 o v ¢ 0 o v 0 400 385
NOTES AND SPECIAL CONSIDERATIONS 397
Changing the Entry Point T e e e e e e e e e e e e e 397
Use of Archive Libraries . . « « « ¢« ¢ ¢ ¢ v v v o v 0 0 0 o o o o o & 397
Dealing With Holes in Physical Memory 401
Allocation Algorithm « ¢ ¢ v v o v v v v 0w e e e e 401
Incremental Link Editing oo 00000 402
DSECT, COPY, and NOLOAD Sections . . . + « « « « « « « « o « « 403
Output File Blocking . . . ¢« ¢« v ¢ ¢ ¢ ¢ ¢ ¢« v o 6 o o o o o o o o 404
Nonrelocatable Input Files . . « ¢« o v v ¢ ¢ v v ¢ s ¢ o o o 0 o o o & 405
ERRORMESSAGES ¢ i i v v e i et vt et oo v o e us 406
Corrupt Input Files« ¢ v v v v v v v v v o b e e e e e e e 406
Errors During Qutput . . . o v ¢ ¢ v ¢ o v v v o v o v o 0 0 e e e 407
Internal Brrors . .+ & v ¢ v ¢ v 0 6 ot et e e e e e e e e e e e e 407
Allocation Errors . . .« v v ¢ v v v o v i e it e e e e e e e e e e 408
Misuse of Link Editor Directives « « ¢« . ¢ ¢ ¢ v o v v o o o 409
Misuse Of EXPressions . . . ¢ ¢ ¢ v ¢ v ¢ v o 4 v o o 4 a0 e 0. 411
Misuse of OPLIONS « & & v v v ¢ & ¢ 4 o 4 4 4 o o s s o e e e e 412
Space Restraints v ¢ v v v v 0 v i i d i e e e e e e 413
Miscellaneous Errors 0000000 . 413

UNIX Programmer’s Manual Languages and Support Tools—xv

THE COMMON OBJECTFILEFORMAT . . . v v v v v v ¢ o o o s o & 421
GENERAL @ v i v vt v o e o o o o e e e e e e 421
DEFINITIONS AND CONVENTIONS 423

Sections « v & v v e i e 423
Physical and Virtual Addresses . . . « . « v ¢ v v 0 v o v e 0w . 423
FILEHEADER ¢ i i v it e vt v o b o oo oo e o o s 424
Magic Numbers . . v v ¢ v ¢ ¢ o v e o o o o o o o o o o o o o o 425
Flags & ¢ ¢ vt v i bt et e e e e e e e e e e e e e e e e e e e 426
OPTIONAL HEADER INFORMATION v v v v v o o 429
Standard UNIX system aout Header+ .« . v v ¢ v v v o v o 429
Optional Header Declaration v v v v v v v v 432
SECTION HEADERS ¢ v i i v i et v v e oo e o a s 433
Flags « & v v v v i et e 435
Section Header Declaration . + + v ¢ v ¢ ¢ ¢ v v v ¢ v o o 0 o 0 o o 436
.bss Section Header e e e e e e e e e e e e e e e 437
SECTIONS . . & & i i i it e i e e e s e o et o s oo v o v o 438
RELOCATION INFORMATION ¢ v v v v v v v v o v o v 438
Relocation Entry Declaration . « « « « ¢ ¢« v ¢ ¢ ¢« v v v 0 v o o v o s 443
LINENUMBERS i i i i e v e v e v e ot vt e v oo e as 443
Line Number Declaration . . . v v v ¢« v ¢ ¢ ¢ ¢ 4 o o o o o o o o s 444
SYMBOLTABLE o0 i it it vttt ean oo 446
Special Symbols L 0 0. e e e e e e e e e e 447
Symbolsand Functions v i v vttt e . 451
Symbol Table Entries« . & v v v v v v v v v v v v e e e 452
Auxiliary Table Entries e e e e e e e e e e e e e e 468
STRINGTABLE ¢ i i v vttt et e v et et o oo v o 479
ACCESSROUTINES ¢ i v v ittt e e s e e oo o u o 480

ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC) 481
GENERAL i i i i e et et et e et et e e e e 481
BASES i i i e e e e e e e e e e e e e e e e e 483
SCALING . & i it ittt et ot ottt ot ot oot o e o e 485
FUNCTIONS i e i e e e e e e o o vt o e o a s . . 486
SUBSCRIPTED VARIABLES ¢ ¢ v v v vt v v e v e e s 488
CONTROLSTATEMENTS ¢ ¢ v v ¢t v v v v v vt oo o o o 489
ADDITIONAL FEATURES v v ¢ v o v v v v e v e v e s 492
BCAPPENDIX . . . v v v v v it ittt et e e e o o e 494

NOTATION. S e e e e e e s e e e e e n e e s 494
TOKENS . . . it i e e e e e e e e e e e e e e e e e 494
EXPRESSIONS 0t i i i it it et e e et e e e e e 495
RELATIONALOPERATORS« ¢ 4 ¢ v v v 6 v o v o o s v o s 499
STORAGECLASSES ¢ v v o v v v et et ot o ot o s 499
CSTATEMENTS & L o i i e e e e e e o ettt e ot e e 500

INTERACTIVE DESK CALCULATOR (DC) . . ¢ ¢ v v v v v v 0 v v 503
GENERAL i i it e e et e o a e o e o . . 4503
DCCOMMANDSt it i e ettt e vt o s v oo o s o 503
INTERNAL REPRESENTATION OF NUMBERS 507
THEALLOCATOR ¢ ¢ v v v v e v vt st et oot o v o 507
INTERNAL ARITHMETIC 0 v i v v v e v v e o v v 508
ADDITION AND SUBTRACTION ¢ v ¢ v v v 6 v o o o v o o 509

xvi—Languages and Support Tools UNIX Programmer’s Manual

MULTIPLICATION ¢ i e i ittt it e e e e v e e e e 509

DIVISION e 510
REMAINDER ¢ ¢ v i v e it e it e vt e e o e v oo a 510
SQUAREROOT v v i v i v e et v e o s e s ... W51
EXPONENTIATION ¢ ¢ v v v v o v v o 0 v v - 1 0
INPUT CONVERSIONANDBASE 1Y
OUTPUT COMMANDS ¢ v v o v v v v v vt e v ot oo o 512
OUTPUT FORMATANDBASE v v v vt v v v v s 512
INTERNALREGISTERS e e e e e 512
STACKCOMMANDS ¢ vt v v v O I
SUBROUTINE DEFINITIONS ANDCALLS+ e+ 513
INTERNAL REGISTERS—PROGRAMMINGDC 513
PUSHDOWN REGISTERS AND ARRAYS e e e e e e 513
MISCELLANEOUSCOMMANDSo v v 514
DESIGNCHOICES ¢ v v v v v v v v e v oo o o o 0 o . . 514
LEXICAL ANALYZER GENERATOR (LEX) v v v v v v o v v 517
GENERAL it i i i it ittt et et et e e e e o 517
LEXSOURCE. . .t v ¢ v v vt vt v e vttt vt o ae o . 519
LEX REGULAREXPRESSIONS 0t v v v v o v o 520
OPErators + v v v & ¢ o o o o o o o o o o s s o s o s o o 4 o 0 s 521
Character Classes . . « « « « v o« + & e e e e e e e e e e e e e e 522
ArbitraryCharacter . « « « ¢« v v v v v v v v v e e e e e e .. 0523
Optional Expressions . . . & v v v v v v v v v o vt e e e e e e 523
Repeated Expressions v v v v v v v i hh e e e e 0w . . .523
Alternationand Grouping 0000w e e e .. 524
Context Sensitivity . « o« ¢ ¢ ¢ ¢« ¢ 4 ¢ 0 ¢ 4 4 4 e e e e e e e e e 524
Repetitions and Definitions . . « + « v ¢ v ¢ o ¢ o v v v 0 e e e .. 525
LEXACTIONS . . . ¢ i i i ittt et e o et e v o v e o e o 526
AMBIGUOUS SOURCERULES ¢ v vt v v v v v oo 530
LEXSOURCEDEFINITIONS ¢ i v v v v vt v v an 533
USAGE i i it e et e e e i e e e e e e e e e e e e 535
LEXANDYACC e e e e e e e e e e e e e 536
EXAMPLES 0t et et e e e e e e e e e e e e e e e e e 537
LEFT CONTEXT SENSITIVITY« o v v v v v v v . . . 538
CHARACTER SET & v v i vttt e tin o e et e e o e o 541
SUMMARY OF SOURCE FORMATt v vt v v oo 541
CAVEATSANDBUGS it i i ittt et vt et v e o 543
YET ANOTHER COMPILER-COMPILER (yacc) ¢ v v v v o v 545
GENERAL 0t i i i i i e it e e e e e e s o s o v o 545
BASIC SPECIFICATIONS ¢ ¢t v v v v vt e e e e o v o 548
ACTIONS. e e e e e e e e e e e e e 551
LEXICAL ANALYSIS e e e e e e e e e v . 555
PARSER OPERATION e e e e e e e e e e e e 557
AMBIGUITY ANDCONFLICTS v ¢ v v v v v v v v v o us 563
PRECEDENCE . . . ¢ ¢ i i v v bttt v v o oo oo oo o a o 569
ERRORHANDLING . « v v v v v v v o v o oo o v v o o a .« .52
THE “yacc” ENVIRONMENT N T4
HINTS FOR PREPARING SPECIFICATIONS e e e e e e e e e .05
Input Style e e e e e e e e e v e e e . 577

UNIX Programmer’s Manual Languages and Support Tools—xvii

Left Recursion « « + . . . o e e e e e e e e e e e e e e 578

Lexical Tie-INS « « v & v o v ¢ 4 4 o 4 o o o o o o o o o o o o o o 579
Reserved Words . . . & & v ¢ v v v v v v bttt e e e e e e e e 581
ADVANCED TOPICS . . . & & i i vttt e e o o e o o s s o o o 581
Simulating Error and Accept in Actions . . . « « « ¢ ¢ v 4 v o0 . . 581
Accessing Values in Enclosing Rules00 .. 581
Support for Arbitrary Value Types . . + « ¢ ¢« « ¢ v v v v v v o o o W 583
EXAMPLES v i i et et e e o e ettt e e e e 585
A Simple Example e e e e e e s e e e e e e e e e e e 585
YACCInput SyntaX .« « + ¢ ¢ v ¢ o v v v o o o o o o o o o o o o o 588
An Advanced Example . . . ¢ . . . 0 0 v b v e e e e e e e e e 591
Old Features Supported But Not Encouraged600
UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP) 603
INTRODUCTION . . . ¢ v v v v e v v e v o v v v e s e s oo o 603
THE UUCPNETWORK & i i v i vt e v e v e v e e o u s 603
Network Hardware« v ¢ v v v v v v v v v o v v v v 604
Network Topology « « ¢ v v v v v v v o v v e o v v v o o o v 0 v 604
Forwarding v ¢ 0 v v v i i e e e e e e e e e e e e e 605
SECUTILY & v v v ¢ 4 v o v vt e b e e e e e e e e e e e e e e e e 605
Software Structure . . « ¢ v ¢ ¢ ¢ ¢ ¢ 4 4 e e e e e e e e e e e e 606
Rulesof the Road . + v &« ¢ ¢« v v v 0 v v v v v o v v v v o v o o 606
Special Places: The Public Area « ¢« ¢ v v v v v v o v v o 608
Permissions . . v ¢ v ¢ v ¢ v 4 4 0 e e e e e e e e e e e e e e e 608
NETWORKUSAGE e e e e e e e e e e ". . . 609
NameSpace . « v v ¢ v v v o v v v v v o v e e e e e e e 609
Forwarding Syntax . . . ¢« ¢« v ¢« v ¢« v v v 0 0 e e 0 e e e e e e 611
Typesof Transfers . . .« ¢« v & ¢ v v v v v v v v v v o v e e e e 611
Remote Executions . . . « ¢ ¢ v v v v v v v et h i e e e e e e 613
Spooling . .+ v v vt e 613
Notification . . ¢ v v v v v o v o o v v b e e e e e e e e e e e e 613
Tracking and Status . . ¢ ¢« v ¢ o v v v b b v e e e e e e e e e 614
JobStatus L L b e e e e e e e e e e e e e e e e e 615
Network Status « o ¢ o ¢ ¢ v ¢ v o v v o v v v e e e e e e e e e e 615
JobControl . . . v 4 v v i e e e e e e e e e e e e e e e e e 616
UTILITIESTHATUSEUUCP ¢ ¢ v v v v v v e v v v v o 617
The Stockroom e e e e e e e e e e e e e e e e 617
Mail & o o o e 617
NENEWS ¢« ¢« & v ¢ ¢ ¢ v o & o o o o o o o o o o o s o o o o v o oo 617
L8 617
Other Applications . . « « v ¢ ¢« ¢ v 4 o v o v o o o o s 0 o v 0 .. 618

xviiimLanguages and Support Tools UNIX Programmer’s Manual

C LANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants, strings,
operators, and other separators. Blanks, tabs, new-lines, and comments
(collectively, “white space”) as described below are ignored except as they
serve to separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants. ‘

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longest string of characters which could
possibly constitute a token.

Comments

The characters /* introduce a comment which terminates with the characters
*/. Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a
letter. The underscore () counts as a letter. Uppercase and lowercase letters
are different. Although there is no limit on the length of a name, only initial
characters are significant: at least eight characters of a non-external name, and
perhaps fewer for external names. Moreover, some implementations may
collapse case distinctions for external names. The external name sizes include:

PDP-11 7 characters, 2 cases
VAX-11 > 100 characters, 2 cases
AT&T 3B20 > 100 characters, 2 cases

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

UNIX Programmer’s Manual Languages and Support Tools—1

C LANGUAGE

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct while
default float register switch

Some implementations also reserve the words fortran and asm.

Constants

There are several kinds of constants. Each has a type; an introduction to types
is given in “NAMES.” Hardware characteristics that affect sizes are
summarized in “Hardware Characteristics” under “LEXICAL
CONVENTIONS.”

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero). An octal constant consists of the digits 0 through 7
only. A sequence of digits preceded by Ox or 0X (digit zero) is taken to be a
hexadecimal integer. The hexadecimal digits include a or A through f or F
with values 10 through 15. Otherwise, the integer constant is taken to be
decimal. A decimal constant whose value exceeds the largest signed machine
integer is taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be lomg. Otherwise, integer
constants are int.

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1
(letter ell) or L is a long constant. As discussed below, on some machines
integer and long values may be considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in 'x’. The
value of a character constant is the numerical value of the character in the
machine’s character set.

2—Languages and Support Tools UNIX Programmer’s Manual

Certain nongraphic characters, the single quote (*) and the backslash (\), may
be represented according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \
single quote ’ \

bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
which are taken to specify the value of the desired character. A special case of
this construction is \0 (not followed by a digit), which indicates the character
NUL. If the character following a backslash is not one of those specified, the
behavior is undefined. A new-line character is illegal in a character constant.
The type of a character constant is int.

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part,
an e or E, and an optionally signed integer exponent. The integer and fraction
parts both consist of a sequence of digits. Either the integer part or the
fraction part (not both) may be missing. Either the decimal point or the e and

the exponent (not both) may be missing. Every floating constant has type
double.

Enumeration Constants

Names declared as enumerators (see *“Structure, Union, and Enumeration
Declarations” under “DECLARATIONS”) have type int.

Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A
string has type “array of char” and storage class static (see “NAMES”) and is
initialized with the given characters. The compiler places a null byte (\0) at
the end of each string so that programs which scan the string can find its end.
In a string, the double quote character (") must be preceded by a \; in addition,
the same escapes as described for character constants may be used.

UNIX Programmer’s Manual Languages and Support Tools—3

C LANGUAGE

A\ and the immediately following new-line are ignored. All strings, even when

written identically, are distinct.

The following figures summarize certain hardware properties that vary from
machine to machine.

DEC PDP-11 HARDWARE CHARACTERISTICS

Hardware Characteristics

DEC PDP-11
(ASCID
char 8 bits
int 16
short 16
long 32
float 32
double 64
float range +10 +38
double range +10 =

4—Languages and Support Tools

UNIX Programmer’s Manual

DEC VAX-11

(ASCID
char 8 bits
int 32
short 16
long 32
float 32
double 64
float range +10 =
double range +10 =38

DEC VAX-11 HARDWARE CHARACTERISTICS

AT&T 3B

(ASCID)
char 8 bits
int 32
short 16
long 32
float 32
double 64
float range +10 **
double range +10 *+308

UNIX Programmer’s Manual

Languages and Support Tools—5

AT &T 3B HARDWARE CHARACTERISTICS

C LANGUAGE

SYNTAX NOTATION

Syntactic categories are indicated by iralic type and literal words and
characters in bold type. Alternative categories are listed on separate lines. An
optional terminal or nonterminal symbol is indicated by the subscript “opt,” so
that

}

expression
Lexp opt

indicates an optional expression enclosed in braces. The syntax is summarized
in “SYNTAX SUMMARY”.

NAMES

The C language bases the interpretation of an identifier upon two attributes of
the identifier - its storage class and its type. The storage class determines the
location and lifetime of the storage associated with an identifier; the type
determines the meaning of the values found in the identifier’s storage.

Storage Class

There are four declarable storage classes:

Automatic
Static
External
Register.

Automatic variables are local to each invocation of a block (see “Compound
Statement or Block” in “STATEMENTS”) and are discarded upon exit from
the block. Static variables are local to a block but retain their values upon
reentry to a block even after control has left the block. External variables exist
and retain their values throughout the execution of the entire program and may
be used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast registers of the
machine; like automatic variables, they are local to each block and disappear
on exit from the block.

6—Languages and Support Tools - UNIX Programmer’s Manual

Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of the
implementation’s character set. If a genuine character from that character set
is stored in a char variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character variables, but the
implementation is machine dependent. In particular, char may be signed or
unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available.
Longer integers provide no less storage than shorter ones, but the
implementation may make either short integers or long integers, or both,
equivalent to plain integers. “Plain” integers have the natural size suggested
by the host machine architecture. The other sizes are provided to meet special
needs.

The properties of emum types (see “Structure, Union, and Enumeration
Declarations” under “DECLARATIONS”) are identical to those of some
integer types. The implementation may use the range of values to determine
how to allot storage.

Unsigned integers, declared unmsigned, obey the laws of arithmetic modulo 2"
where 7 is the number of bits in the representation. (On the PDP-11, unsigned
long quantities are not supported.)

Single-precision floating point (float) and double precision floating point
(double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Char, int of all sizes whether
unsigned or not, and enum will collectively be called integral types. The float
and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned
by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class
of derived types constructed from the fundamental types in the following ways:

UNIX Programmer’s Manual Languages and Support Tools—7

C LANGUAGE

Arrays of objects of most types

Functions which return objects of a given type

Pointers to objects of a given type

Structures containing a sequence of objects of various types

Unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

OBJECTS AND LVALUES

An object is a manipulatable region of storage. An Ivalue is an expression
referring to an object. An obvious example of an lvalue expression is an
identifier. There are operators which yield lvalues: for example, if E is an
expression of pointer type, then *E is an lvalue expression referring to the
object to which E points. The name “lvalue” comes from the assignment
expression E1 = E2 in which the left operand E1 must be an lvalue expression.
The discussion of each operator below indicates whether it expects lvalue
operands and whether it yields an lvalue.

CONVERSIONS

A number of operators may, depending on their operands, cause conversion of
the value of an operand from one type to another. This part explains the result
to be expected from such conversions. The conversions demanded by most
ordinary operators are summarized under “Arithmetic Conversions.” The
summary will be supplemented as required by the discussion of each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used.
In all cases the value is converted to an integer. Conversion of a shorter
integer to a longer preserves sign. Whether or not sign-extension occurs for
characters is machine dependent, but it is guaranteed that a member of the
standard character set is non-negative. Of the machines treated here, only the
PDP-11 and VAX-11 sign-extend. On these machines, char variables range in
value from —128 to 127. The more explicit type unsigned char forces the
values to range from 0 to 255.

8—Languages and Support Tools UNIX Programmer’s Manual

On machines that treat characters as signed, the characters of the ASCII set
are all non-negative. However, a character constant specified with an octal
escape suffers sign extension and may appear negative; for example, \377" has
the value -1.

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a
float appears in an expression it is lengthened to double by zero padding its
fraction. When a double must be converted to float, for example by an
assignment, the double is rounded before truncation to float length. This result
is undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent.
In particular, the direction of truncation of negative numbers varies. The
result is undefined if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of
accuracy occurs if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in
such a case, the first is converted as specified in the discussion of the addition
operator. Two pointers to objects of the same type may be subtracted; in this
case, the result is converted to an integer as specified in the discussion of the
subtraction operator.

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain
integer is converted to unsigned and the result is unsigned. The value is the
least unsigned integer congruent to the signed integer (modulo 2%°r%iz¢) In a
2’s complement representation, this conversion is conceptual; and there is no
actual change in the bit pattern.

UNIX Programmer’s Manual Languages and Support Tools—9

C LANGUAGE

When an unsigned short integer is converted to long, the value of the result is
the same numerically as that of the unsigned integer. Thus the conversion
amounts to padding with zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar
way. This pattern will be called the ‘“usual arithmetic conversions.”

1. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to
unsigned int.

2. Then, if either operand is double, the other is converted to double and
that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is converted to
unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and
that is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are
both converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unmsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the result.

Void

The (nonexistent) value of a void object may not be used in any way, and
neither explicit nor implicit conversion may be applied.. Because a void
expression denotes a nonexistent value, such an expression may be used only as
an expression statement (see “Expression Statement” under
“STATEMENTS”) or as the left operand of a comma expression (see
“Comma Operator” under “EXPRESSIONS”).

10—Languages and Support Tools UNIX Programmer’s Manual

An expression may be converted to type void by use of a cast. For example,
this makes explicit the discarding of the value of a function call used as an
expression statement.

EXPRESSIONS

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the
expressions referred to as the operands of + (see “Additive Operators™) are
those expressions defined under “Primary Expressions”, ‘“Unary Operators”,
and “Multiplicative Operators”. Within each subpart, the operators have the
same precedence. Left- or right-associativity is specified in each subsection for
the operators discussed therein. The precedence and associativity of all the
expression operators are summarized in the grammar of “SYNTAX
SUMMARY”.

Otherwise, the order of evaluation of expressions is undefined. In particular,
the compiler considers itself free to compute subexpressions in the order it
believes most efficient even if the subexpressions involve side effects. The order
in which subexpression evaluation takes place is unspecified. Expressions
involving a commutative and associative operator (¥, +, &, | ") may be
rearranged arbitrarily even in the presence of parentheses; to force a particular
order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows;
treatment of division by 0 and all floating-point exceptions varies between
machines and is usually adjustable by a library function.

Primary Expressions

Primary expressions involving ., ->, subscripting, and function calls group left
to right.

UNIX Programmer’s Manual Languages and Support Tools—11

C LANGUAGE

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list t)
primary-expression . identifier P
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as
discussed below. Its type is specified by its declaration. If the type of the
identifier is “array of ...”, then the value of the identifier expression is a
pointer to the first object in the array; and the type of the expression is
“pointer to ...”. Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared “function returning ...”, when used
except in the function-name position of a call, is converted to “pointer to
function returning ...”.

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int and floating
constants have type double.

A string is a primary expression. Its type is originally “array of char”, but
following the same rule given above for identifiers, this is modified to “pointer
to char” and the result is a pointer to the first character in the string. (There
is an exception in certain initializers; see “Initialization” under
- “DECLARATIONS.”)

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses
does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary
expression. The intuitive meaning is that of a subscript. Usually, the primary
expression has type “pointer to ...”, the subscript expression is int, and the type

12—Languages and Support Tools UNIX Programmer’s Manual

of the result is “...”. The expression E1[E2] is identical (by definition) to
*((E1) +(E2)). All the clues needed to understand this notation are contained
in this subpart together with the discussions in *“Unary Operators” and
“Additive Operators” on identifiers, * and +, respectively. The implications
are summarized under “Arrays, Pointers, and Subscripting” under “TYPES
REVISITED.”

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the actual
arguments to the function. The primary expression must be of type “function
returning ...,” and the result of the function call is of type “...”. As indicated
below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the
most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call.
Any of type char or short are converted to int. Array names are converted to
pointers. No other conversions are performed automatically; in particular, the
compiler does not compare the types of actual arguments with those of formal
arguments. If conversion is needed, use a cast; see “Unary Operators” and
“Type Names” under “DECLARATIONS.”

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A function
may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order of
evaluation of arguments is undefined by the language; take note that the
various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union, and the
identifier must name a member of the structure or union. The value is the
named member of the structure or union, and it is an lvalue if the first
expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by
an identifier is an expression. The first expression must be a pointer to a
structure or a union and the identifier must name a member of that structure
or union. The result is an lvalue referring to the named member of the

UNIX Programmer’s Manual Languages and Support Tools—13

C LANGUAGE

structure or union to which the pointer expression points. Thus the expression
E1->MOS is the same as (*E1).MOS. Structures and unions are discussed in
“Structure, Union, and Enumeration Declarations” under
“DECLARATIONS.”

Unary Operators

Expressions with unary operators group right to left.

unary-expression:
* expression
& Ivalue
- expression
! expression
~ expression
++ lvalue
--lvalue
Ivalue + +
Ivalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection ; the expression must be a pointer, and
the result is an lvalue referring to the object to which the expression points. If
the type of the expression is “pointer to ...,” the type of the result is “...”.

The result of the unary & operator is a pointer to the object referred to by the
lvalue. If the type of the Ivalue is “...”, the type of the result is “pointer to

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 2" where n is the number of bits in the
corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand is
zero, zero if the value of its operand is nonzero. The type of the result is int.
It is applicable to any arithmetic type or to pointers.

14—Languages and Support Tools UNIX Programmer’s Manual

The ~ operator yields the one’s complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

The object referred to by the lvalue operand of prefix + + is incremented. The
value is the new value of the operand but is not an lvalue. The expression
+ +x is equivalent to x=x+1. See the discussions “Additive Operators” and
“Assignment Operators” for information on conversions.

The lvalue operand of prefix -- is decremented analogously to the prefix + +
operator.

When postfix + <+ is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented in
the same manner as for the prefix + + operator. The type of the result is the
same as the type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in
the manner as for the prefix -- operator. The type of the result is the same as
the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This construction
is called a cast. Type names are described in “Type Names” under
“Declarations.”

The sizeof operator yields the size in bytes of its operand. (A byte is undefined
by the language except in terms of the value of sizeof. However, in all existing
implementations, a byte is the space required to hold a char.) When applied to
an array, the result is the total number of bytes in the array. The size is
determined from the declarations of the objects in the expression. This
expression is semantically an unsigned constant and may be used anywhere a
constant is required. Its major use is in communication with routines like
storage allocators and I/0 systems.

The sizeof operator may also be applied to a parenthesized type name. In that
case it yields the size in bytes of an object of the indicated type.

UNIX Programmer’s Manual Languages and Support Tools—15

C LANGUAGE

The construction sizeof(type) is taken to be a unit, so the expression
sizeof (1ype)-2 is the same as (sizeof(zype))-2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression [expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative,
and expressions with several multiplications at the same level may be
rearranged by the compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward O; but the form of
truncation is machine-dependent if either operand is negative. On all machines
covered by this manual, the remainder has the same sign as the dividend. It is
always true that (a/b)*b + a%b is equal to a (if b is not 0).

Additive Operators

The additive operators + and - group left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities for
each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter is
in all cases converted to an address offset by multiplying it by the length of the
object to which the pointer points. The result is a pointer of the same type as

16—Languages and Support Tools UNIX Programmer’s Manual

the original pointer which points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an object
in an array, the expression P+1 is a pointer to the next object in the array.
No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the
same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral
type may be subtracted from a pointer, and then the same conversions for
addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (by division by the length of the object) to an int representing the
number of objects separating the pointed-to objects. This conversion will in
general give unexpected results unless the pointers point to objects in the same
array, since pointers, even to objects of the same type, do not necessarily differ
by a multiple of the object length.

Shift Operators

The shift operators. < < and > > group left to right. Both perform the usual
arithmetic conversions on their operands, each of which must be integral. Then
the right operand is converted to int; the type of the result is that of the left
operand. The result is undefined if the right operand is negative or greater
than or equal to the length of the object in bits.

shift-expression:
expression < < expression
expression > > expression

The value of E1< <E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value of E1>>E2 is El right-shifted E2 bit
positions. The right shift is guaranteed to be logical (0 fil) if E1 is unsigned;
otherwise, it may be arithmetic.

UNIX Programmer’s Manual Languages and Support Tools—17

C LANGUAGE

Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression > = expression

The operators < (less than), > (greater than), <= (less than or equal to),
and > = (greater than or equal to) all yield O if the specified relation is false
and 1 if it is true. The type of the result is int. The usual arithmetic
conversions are performed. Two pointers may be compared; the result depends
on the relative locations in the address space of the pointed-to objects. Pointer
comparison is portable only when the pointers point to objects in the same
array.

Equality Operators

equality-expression:
expression == expression
expression ! = expression

The == (equal to) and the != (not equal to) operators are exactly analogous
to the relational operators except for their lower precedence. (Thus
a<b == c¢<dis 1 whenever a<b and c¢<d have the same truth value).

A pointer may be compared to an integer only if the integer is the constant 0.
A pointer to which 0 has been assigned is guaranteed not to point to any object
and will appear to be equal to 0. In conventional usage, such a pointer is
considered to be null.

 Bitwise AND Operator

and-expression:
expression & expression

18—Languages and Support Tools UNIX Programmer’s Manual

The & operator is associative, and expressions involving & may be rearranged.
The usual arithmetic conversions are performed. The result is the bitwise
AND function of the operands. The operator applies only to integral operands.

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression " expression

The " operator is associative, and expressions involving " may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
exclusive OR function of the operands. The operator applies only to integral
operands.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
inclusive OR function of its operands. The operator applies only to integral
operands.

Logical AND Operator

logical-and-expression:
expression & & expression

The & & operator groups left to right. It returns 1 if both its operands
evaluate to nonzero, 0 otherwise. Unlike &, & & guarantees left to right

evaluation; moreover, the second operand is not evaluated if the first operand is
0.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

UNIX Programmer’s Manual Languages and Support Tools—19

C LANGUAGE

Logical OR Operator

logical-or-expression:
expression || expression

The | operator groups left to right. It returns 1 if either of its operands
evaluates to nonzero, 0 otherwise. Unlike |, | guarantees left to right evaluation;
moreover, the second operand is not evaluated if the value of the first operand
is nonzero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated;
and if it is nonzero, the result is the value of the second expression, otherwise
that of third expression. If possible, the usual arithmetic conversions are
performed to bring the second and third expressions to a common type. If both
are structures or unions of the same type, thc result has the type of the
structure or union. If both pointers are of the saruc type, the result has the
common type. Otherwise, one must be a pointer and the other the constant 0,
and the result has the type of the pointer. Only o-: of the second and third
expressions is evaluated.

Assignmont Operators

There are a number of assignment operators, all of which group right to left.
All require an lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

20—Languages and Support Tools UNIX Programmer’s Manual

assignment-expression:
Ivalue = expression
Ivalue + = expression
lvalue - = expression
Ivalue * = expression
Ivalue /= expression
Ivalue % = expression
Ivalue > > = expression
Ivalue << = expression
Ivalue & = expression
Ivalue " = expression
Ivalue |= expression

In the simple assignment with =, the value of the expression replaces that of
the object referred to by the lvalue. If both operands have arithmetic type, the
right operand is converted to the type of the left preparatory to the assignment.
Second, both operands may be structures or unions of the same type. Finally,
if the left operand is a pointer, the right operand must in general be a pointer
of the same type. However, the constant 0 may be assigned to a pointer; it is
guaranteed that this value will produce a null pointer distinguishable from a
pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by
taking it as equivalent to E1 = E1 op (E2); however, El is evaluated only
once. In += and -=, the left operand may be a pointer; in which case, the
(integral) right operand is converted as explained in “Additive Operators.” All
right operands and all nonpointer left operands must have arithmetic type.

Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the
value of the left expression is discarded. The type and value of the result are
the type and value of the right operand. This operator groups left to right. In
contexts where comma is given a special meaning, e.g., in lists of actual
arguments to functions (see “Primary Expressions™) and lists of initializers (see
“Initialization” under “DECLARATIONS”), the comma operator as described
in this subpart can only appear in parentheses. For example,

UNIX Programmer’s Manual Languages and Support Tools—21

C LANGUAGE

f(a, (t=3, t+2), ¢

has three arguments, the second of which has the value 5.

DECLARATIONS

Declarations are used to specify the interpretation which C gives to each
identifier; they do not necessarily reserve storage associated with the identifier.
Declarations have the form

declaration:

decl-specifiers declarator-listop .
The declarators in the declarator-list contain the identifiers being declared.
The decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl -speciﬁersop :

The list must be self-consistent in a way described below.

Storage Class Specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a “storage class
specifier” only for syntactic convenience. See “Typedef” for more information.
The meanings of the various storage classes were discussed in “Names.”

22—Languages and Support Tools UNIX Programmer’s Manual

The auto, static, and register declarations also serve as definitions in that they
cause an appropriate amount of storage to be reserved. In the extern case,
there must be an external definition (see “External Definitions”) for the given
identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a
hint to the compiler that the variables declared will be heavily used. Only the
first few such declarations in each function are effective. Moreover, only
variables of certain types will be stored in registers; on the PDP-11, they are
int or pointer. One other restriction applies to register variables: the address-
of operator & cannot be applied to them. Smaller, faster programs can be
expected if register declarations are used appropriately, but future
improvements in code generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern
outside. Exception: functions are never automatic.

Type Specifiers
The type-specifiers are

type-specifier:

Struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in conjunction with int;
the meaning is the same as if int were not mentioned. The word long may be
specified in conjunction with fleat; the meaning is the same as double. The

UNIX Programmer’s Manual Languages and Support Tools—23

C LANGUAGE

word umsigned may be specified alone, or in conjunction with int or any of its
short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or umsigned is not permitted with
typedef names. If the type-specifier is missing from a declaration, it is taken to
be int.

Specifiers for structures, unions, and enumerations are discussed in “Structure,
Union, and Enumeration Declarations.” Declarations with typedef names are
discussed in “Typedef.”

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence
of declarators, each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:

declarator initializer
opt

Initializers are discussed in “Initialization”. The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionop y]

~

The grouping is the same as in expressions.

24—Languages and Support Tools UNIX Programmer’s Manual

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the
same form as the declarator appears in an expression, it yields an object of the
indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the
examples below.

Now imagine a declaration

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this
declaration makes the identifier have type “... T ,” where the “...” is empty
if D1 is just a plain identifier (so that the type of x in ‘int x” is just int). Then
if D1 has the form

*D
the type of the contained identifier is ... pointer to T .”
If D1 has the form
DO
then the contained identifier has the type “... function returning T.”
If D1 has the form

Dlconstant-expressionl

UNIX Programmer’s Manual Languages and Support Tools—25

C LANGUAGE

or
DIl

then the contained identifier has type “... array of T.” In the first case, the
constant expression is an expression whose value is determinable at compile
time , whose type is int, and whose value is positive. (Constant expressions are
defined precisely in “Constant Expressions.”) When several “array of”
specifications are adjacent, a multidimensional array is created; the constant
expressions which specify the bounds of the arrays may be missing only for the
first member of the sequence. This elision is useful when the array is external
and the actual definition, which allocates storage, is given elsewhere. The first
constant expression may also be omitted when the declarator is followed by
initialization. In this case the size is calculated from the number of initial
elements supplied.

An array may be constructed from one of the basic types, from a pointer, from
a structure or union, or from another array (to generate a multidimensional
array).

Not all the possibilities allowed by the syntax above are actually permitted.
The restrictions are as follows: functions may not return arrays or functions
although they may return pointers; there are no arrays of functions although
there may be arrays of pointers to functions. Likewise, a structure or union
may not contain a function; but it may contain a pointer to a function.

As an example, the declaration
int i, *ip, O, *fip(), (*pfi) O;

declares an integer i, a pointer ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to a
function which returns an integer. It is especially useful to compare the last
two. The binding of *fip() is *(fip()). The declaration suggests, and the same
construction in an expression requires, the calling of a function fip. Using
indirection through the (pointer) result to yield an integer. In the declarator
(*pfi) O, the extra parentheses are necessary, as they are also in an expression,
to indicate that indirection through a pointer to a function yields a function,
which is then called; it returns an integer.

26—Languages and Support Tools UNIX Programmer’s Manual

As another example,
float fal17], *afpl17];

declares an array of float numbers and an array of pointers to float numbers.
Finally,

static int x3d[31[5117];

declares a static 3-dimensional array of integers, with rank 3x5x7. In
complete detail, x3d is an array of three items; each item is an array of five
arrays; each of the latter arrays is an array of seven integers. Any of the
expressions x3d, x3dlil, x3dlilljl, x3dlilljllkl may reasonably appear in an
expression. The first three have type “array” and the last has type int.

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object which may, at a given time,
contain any one of several members. Structure and union specifiers have the
same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

UNIX Programmer’s Manual Languages and Support Tools—27

C LANGUAGE

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified number
of bits. Such a member is also called a field ; its length, a non-negative
constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the
declarations are read left to right. Each nonfield member of a structure begins
on an addressing boundary appropriate to its type; therefore, there may bhe
unnamed holes in a structure. Field members are packed into machiae
integers; they do not straddle words. A field which does not fit into the space
remaining in a word is put into the next word. No field may be wider than a
word.

Fields are assigned right to left on the PDP-11 and VAX-11, left to right on
the 3B20.

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As
a special case, a field with a width of 0 specifies alignment of the next field at
an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields,
but implementations are not required to support any but integer fields.
Moreover, even int fields may be considered to be unsigned. On the PDP-11,
fields are not signed and have only integer values; on the VAX-11, fields
declared with int are treated as containing a sign. For these reasons, it is
strongly recommended that fields be declared as wunsigned. In all
implementations, there are no arrays of fields, and the address-of operator &

28—Languages and Support Tools UNIX Programmer’s Manual

may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset
0 and whose size is sufficient to contain any of its members. At most, one of
the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form of
specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also
permit the long part of the declaration to be given once and used several times.
It is illegal to declare a structure or union which contains an instance of itself,
but a structure or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a
declaration which gives the complete specification of the structure or union in
situations in which the size of the structure or union is unnecessary. The size is
unnecessary in two situations: when a pointer to a structure or union is being
declared and when a typedef name is declared to be a synonym for a structure
or union. This, for example, allows the declaration of a pair of structures
which contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the same
structure, but the same name may be used in several different structures in the
same scope.

A simple but important example of a structure declaration is the following
binary tree structure:

UNIX Programmer’s Manual Languages and Support Tools—29

C LANGUAGE

struct tnode

{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;
k

which contains an array of 20 characters, an integer, and two pointers to
similar structures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp-> count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right-> tword[0]

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

30—Languages and Support Tools UNIX Programmer’s Manual

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the
associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each
other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of
the structure tag in a struct-specifier; it names a particular enumeration. For
example,

enum color { chartreuse, burgundy, claret =20, winedark };
enum color *cp, col;

col = claret;

cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type, and col as an object of that
type. The possible values are drawn from the set {0,1,20,21}.

UNIX Programmer’s Manual Languages and Support Tools—31

C LANGUAGE

Initialization

A declarator may specify an initial value for the identifier being declared. The
initializer is preceded by = and consists of an expression or a list of values
nested in braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

- All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in “CONSTANT EXPRESSIONS”,
or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may
be initialized by arbitrary expressions involving constants and previously
declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off
as zero. Automatic and register variables that are not initialized are
guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value of
the object is taken from the expression; the same conversions as for assignment
are performed.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a ‘brace-enclosed, comma-separated list of initializers for
the members of the aggregate written in increasing subscript or member order.
If the aggregate contains subaggregates, this rule applies recursively to the
members of the aggregate. If there are fewer initializers in the list than there
are members of the aggregate, then the aggregate is padded with zeros. It is
not permitted to initialize unions or automatic aggregates.

32—Languages and Support Tools UNIX Programmer’s Manual

Braces may in some cases be omitted. If the initializer begins with a left
brace, then the succeeding comma-separated list of initializers initializes the
members of the aggregate; it is erroneous for there to be more initializers than
members. If, however, the initializer does not begin with a left brace, then
only enough elements from the list are taken to account for the members of the
aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this
case successive characters of the string initialize the members of the array.

For example,
intxll ={1,3,5};

declares and initializes x as a one-dimensional array which has three members,
since no size was specified and there are three initializers.

float yl41[3] =

{
{1,3,5},
{2,4,6},
{3,5,7},
b

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of
the array ylOl, namely yl01[0], y[0][1], and y[0l[2]. Likewise, the next two lines
initialize yl1] and yl2l. The initializer ends early and therefore yl3] is
initialized with 0. Precisely, the same effect could have been achieved by

float yl4l[3] =
{

1,3,524,6,3,57
}

The initializer for y begins with a left brace but that for yl0] does not;
therefore, three elements from the list are used. Likewise, the next three are
taken successively for y[1] and y[2]. Also,

UNIX Programmer’s Manual Languages and Support Tools—33

C LANGUAGE

float yl4l[3] =

{1),{2},{3}, {4}

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest 0.

Finally,
char msgll = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

Type Names

In two contexts (to specify type conversions explicitly by means of a cast and
as an argument of sizeof), it is desired to supply the name of a data type. This
is accomplished using a “type name”, which in essence is a declaration for an
object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()

abstract-declarator [constant-expressionop p 1

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is
possible to identify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration.

34—Languages and Support Tools UNIX Programmer’s Manual

The named type is then the same as the type of the hypothetical identifier. For
example,

int

int *

int *[3]

int (*)[3]
int *0

int (*)O
int (*[3D 0

% & % &

name respectively the types “integer,” “pointer to integer,” “array of three
pointers to integers,” “pointer to an array of three integers,” “function
returning pointer to integer,” “pointer to function returning an integer,” and
“array of three pointers to functions returning an integer.”

Typedef

Declarations whose “storage class” is typedef do not define storage but instead
define identifiers which can be used later as if they were type keywords naming
fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as
part of any declarator therein becomes syntactically equivalent to the type
keyword naming the type associated with the identifier in the way described in
“Meaning of Declarators.” For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

UNIX Programmer’s Manual Languages and Support Tools—35

C LANGUAGE

are all legal declarations; the type of distance is int, that of metricp is “pointer
to int, ” and that of z is the specified structure. The zp is a pointer to such a
structure.

The typedef does not introduce brand-new types, only synonyms for fypes which
could be specified in another way. Thus in the example above distance is
considered to have exactly the same type as any other int object.

STATEMENTS

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form
expression ;

~ Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called “block™) is provided:

compound-statement:

{ declaration-list __ statement-list __}
opt opt

declaration-list:
declaration
declaration declaration-list

statement -list:
‘ statement
Statement statement-list

36—Languages and Support Tools UNIX Programmer’s Manual

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is pushed down for the duration of the block, after which it
resumes its force.

Any initializations of auto or register variables are performed each time the
block is entered at the top. It is currently possible (but a bad practice) to
transfer into a block; in that case the initializations are not performed.
Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage so
initialization is not permitted.

Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first
substatement is executed. In the second case, the second substatement is
executed if the expression is 0. The “else”” ambiguity is resolved by connecting
an else with the last encountered else-less if.

While Statement

The while statement has the form
while (expression) statement

The substatement is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the statement.

Do Statement

The do statement has the form

do statement while (expression) ;

UNIX Programmer’s Manual Languages and Support Tools—37

C LANGUAGE

The substatement is executed repeatedly until the value of the expression
becomes 0. The test takes place after each execution of the statement.

For Statement

The for statement has the form:

for (exp-lo

pt N exp-20

ot ; exp-3op ;) statement

Except for the behavior of continue, this statement is equivalent to.

exp-1 ;
while (exp-2)
{

statement
exp-3 ;

Thus the first expression specifies initialization for the loop; the second specifies
a test, made before each iteration, such that the loop is exited when the
expression becomes 0. The third expression often specifies an incrementing
that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the
implied while clause equivalent to while(1); other missing expressions are
simply dropped from the expansion above.

Switch Statement

The switch statement causes control to be transferred to one of several
statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result
must be int. The statement is typically compound. Any statement within the
statement may be labeled with one or more case prefixes as follows:

38—Languages and Support Tools UNIX Programmer’s Manual

case constant -expression .

where the constant expression must be int. No two of the case constants in the
same switch may have the same value. Constant expressions are precisely
defined in “CONSTANT EXPRESSIONS.”

There may also be at most one statement prefix of the form
default :

When the switch statement is executed, its expression is evaluated and
compared with each case constant. If one of the case constants is equal to the
value of the expression, control is passed to the statement following the
matched case prefix. If no case constant matches the expression and if there is
a default, prefix, control passes to the prefixed statement. If no case matches
and if there is no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues
unimpeded across such prefixes. To exit from a switch, see “Break Statement.”

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initializations of
automatic or register variables are ineffective.

Break Statement

The statement
break ;

causes termination of the smallest enclosing while, do, for, or switch statement;
control passes to the statement following the terminated statement.

UNIX Programmer’s Manual Languages and Support Tools—39

C LANGUAGE

Continue Statement

The statement
continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing
while, do, or for statement; that is to the end of the loop. More precisely, in
each of the statements

while (...) do for (...)
{ { {
contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null
statement, see “Null Statement”.)

Return Statement

A function returns to its caller by means of the return statement which has one
of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value
of the expression is returned to the caller of the function. If required, the
expression is converted, as if by assignment, to the type of function in which it
appears. Flowing off the end of a function is equivalent to a return with no
returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

40—Languages and Support Tools UNIX Programmer’s Manual

The identifier must be a label (see “Labeled Statement’) located in the current
function.

Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a
target of a goto. The scope of a label is the current function, excluding any
subblocks in which the same identifier has been redeclared. See “SCOPE
RULES.”

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound
statement or to supply a null body to a looping statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or
perhaps static, and a specified type. The type-specifier (see “Type Specifiers”
in “DECLARATIONS”) may also be empty, in which case the type is taken
to be int. The scope of external definitions persists to the end of the file in
which they are declared just as the effect of declarations persists to the end of
a block. The syntax of external definitions is the same as that of all
declarations except that only at this level may the code for functions be given.

UNIX Programmer’s Manual Languages and Support Tools—41

C LANGUAGE

External Function Definitions

Function definitions have the form

Sfunction-definition:
decl -speciﬁersop ¢ function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see
“Scope of Externals” in “SCOPE RULES” for the distinction between them.
A function declarator is similar to a declarator for a “function returning ...”
except that it lists the formal parameters of the function being defined.

Sfunction-declarator:

declarator (parameter-list _,)
opt

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

Sfunction-body:
declaration-listop y compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared
in the declaration list. Any identifiers whose type is not given are taken to be
int. The only storage class which may be specified is register; if it is specified,
the corresponding actual parameter will be copied, if possible, into a register at
the outset of the function.

A simple example of a complete function definition follows

42—Languages and Support Tools UNIX Programmer’s Manual

int max(a, b, ¢)
int a, b, ¢;

{
int m;
m=1(a>hb)?a:b;
return((m > ¢) ? m: ¢);
)

Here int is the type-specifier; max(a, b, ¢) is the function-declarator; int a, b, c;
is the declaration-list for the formal parameters; { ... } is the block giving the
code for the statement.

The C program converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double. All
char and short formal parameter declarations are similarly adjusted to read int.
Also, since a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared “array of ...” are adjusted to read
“pointer to”

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static
but not auto or register.

SCOPE RULES

A C program need not all be compiled at the same time. The source text of the
program may be kept in several files, and precompiled routines may be loaded
from libraries. Communication among the functions of a program may be
carried out both through explicit calls and through manipulation of external
data.

UNIX Programmer’s Manual Languages and Support Tools—43

C LANGUAGE

Therefore, there are two kinds of scopes to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program
during which it may be used without drawing “undefined identifier”
diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are
references to the same object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the
definition through the end of the source file in which they appear. The lexical
scope of identifiers which are formal parameters persists through the function
with which they are associated. The lexical scope of identifiers declared at the
head of a block persists until the end of the block. The lexical scope of labels
is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember also (see “Structure, Union, and Enumeration Declarations” in
“DECLARATIONS”) that tags, identifiers associated with ordinary variables,
- and identities associated with structure and union members form three disjoint
classes which do not conflict. Members and tags follow the same scope rules as
other identifiers. The enum constants are in the same class as ordinary
variables and follow the same scope rules. The typedef names are in the same
class as ordinary identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a
declaration with no declarators and type distance.

44—L anguages and Support Tools UNIX Programmer’s Manual

Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must be at
least one external definition for the identifier. All functions in a given program
which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible
with those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the
set of files and libraries comprising a multi-file program. It is legal to have
more than one data definition for any external non-function identifier; explicit
use of extern does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an
additional meaning. In these environments, the explicit appearance of the
extern keyword in external data declarations of identities without initialization
indicates that the storage for the identifiers is allocated elsewhere, either in this
file or another file. It is required that there be exactly one definition of each
external identifier (without extern) in the set of files and libraries comprising a
mult-file program.

Identifiers declared static at the top level in external definitions are not visible
in other files. Functions may be declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning with #
communicate with this preprocessor. There may be any number of blanks and
horizontal tabs between the # and the directive. These lines have syntax
independent of the rest of the language; they may appear anywhere and have
effect which lasts (independent of scope) until the end of the source program
file.

UNIX Programmer’s Manual Languages and Support Tools—45

C LANGUAGE

Token Replacement

A compiler-control line of the form
#define identifier token-strmgop p

causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. Semicolons in or at the end of the token-string are
part of that string. A line of the form

#define identifier (identifier, ...)token-stringopt

where there is no space between the first identifier and the (, is a macro
definition with arguments. There may be zero or more formal parameters.
Subsequent instances of the first identifier followed by a (, a sequence of tokens
delimited by commas, and a) are replaced by the token string in the definition.
Each occurrence of an identifier mentioned in the formal parameter list of the
definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however,
commas in quoted strings or protected by parentheses do not separate
arguments. The number of formal and actual parameters must be the same.
Strings and character constants in the token-string are scanned for formal
parameters, but strings and character constants in the rest of the program are
not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers.
In both forms a long definition may be continued on another line by writing \
at the end of the line to be continued. '

This facility is most valuable for definition of “manifest constants,” as in

#define TABSIZE 100

int table[TABSIZEI;
A control line of the form

#undef identifier

46—Languages and Support Tools - UNIX Programmer’s Manual

causes the identifier’s preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #undef, then the two token-strings are compared textually. If the
two token-strings are not identical (all white space is considered as equivalent),
then the identifier is considered to be redefined.

File Inclusion

A compiler control line of the form
#include "filename"

causes the replacement of that line by the entire contents of the file filename.
The named file is searched for first in the directory of the file containing the
#include, and then in a sequence of specified or standard places. Alternatively,
a control line of the form ’

#include <filename >

searches only the specified or standard places and not the directory of the
#include. (How the places are specified is not part of the language.)

#includes may be nested.

Conditional Compilation

A compiler control line of the form
#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in “CONSTANT EXPRESSIONS”; the
following additional restrictions apply here: the constant expression may not
contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary
expression

UNIX Programmer’s Manual Languages and Support Tools—47

C LANGUAGE

defined identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in the preprocessor
and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced
by their token-strings (except those identifiers modified by defined) just as in
normal text. The restricted constant expression will be evaluated only after all
expressions have finished. During this evaluation, all undefined (to the
procedure) identifiers evaluate to zero.

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a #define control line. It is equivalent to
#ifdef(identifier). A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #ifldefined (identifier).

All three forms are followed by an arbitrary number of lines, possibly
containing a control line

#else
and then by a control line
#endif

If the checked condition is true, then any lines between #else and #endif are
ignored. If the checked condition is false, then any lines between the test and a

48—Langliages and Support Tools UNIX Programmer’s Manual

#else or, lacking a #else, the #endif are ignored.

These constructions may be nested.

Line Control

For the benefit of other preprocessors which generate C programs, a line of the
form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line
number of the next source line is given by the constant and the current input
file is named by "filename". If "filename" is absent, the remembered file name
does not change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in
external definitions and in declarations of formal parameters and structure
members. In a declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be imt; if a type but no storage class is
indicated, the identifier is assumed to be auto. An exception to the latter rule
is made for functions because auto functions do not exist. If the type of an
identifier is “function returning ...,” it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is
contextually declared to be “function returning int.”

TYPES REVISITED

This part summarizes the operations which can be performed on objects of
certain types.

UNIX Programmer’s Manual Languages and Support Tools—49

C LANGUAGE

Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and
returned by functions. Other plausible operators, such as equality comparison
and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the ->
or the . must specify a member of the aggregate named or pointed to by the
expression on the left. In general, a member of a union may not be inspected
unless the value of the union has been assigned using that same member.
However, one special guarantee is made by the language in order to simplify
the use of unions: if a union contains several structures that share a common
initial sequence and if the union currently contains one of these structures, it is
permitted to inspect the common initial part of any of the contained structures.
For example, the following is a legal fragment:

union
{
struct
{
int type;
}mg
struct
{
int type;
int intnode;
} ni;
struct
{
int type;
float floatnode;
} nf;
}u

u.nf.typé = FLOAT;
u.nf.floatmode = 3.14;

if (u.n.type == FLOAT)
... sin(u.nf.floatnode) ...

50—Languages and Support Tools UNIX Programmer’s Manual

Functions

There are only two things that can be done with a function m call it or take its
address. If the name of a function appears in an expression not in the
function-name position of a call, a pointer to the function is generated. Thus,
to pass one function to another, one might say

int £fO;

;(f);

Then the definition of g might read

g(funcp)

int (*funcp) (;
{

'(.;funcp) 0;
} .

Notice that f must be declared explicitly in the calling routine since its
appearance in g(f) was not followed by (.

Aﬁays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted
into a pointer to the first member of the array. Because of this conversion,
arrays are not lvalues. By definition, the subscript operator [l is interpreted in
such a way that E1[E2] is identical to *((E1) +(E2)). Because of the
conversion rules which apply to +, if El is an array and E2 an integer, then
E1[E2] refers to the E2 -th member of E1. Therefore, despite its asymmetric
- appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an
n-dimensional array of rank ixjX...xk, then E appearing in an expression is
converted to a pointer to an (n-1)-dimensional array with rank jx...xk. If the
* operator, either explicitly or implicitly as a result of subscripting, is applied
to this pointer, the result is the pointed-to (n-1)-dimensional array, which itself
is immediately converted into a pointer.

UNIX Programmer’s Manual Languages and Support Tools—51

C LANGUAGE

For example, consider
int x[31I5];

Here x is a 3X5 array of integers. When x appears in an expression, it is
converted to a pointer to (the first of three) S-membered arrays of integers. In
the expression xlil, which is equivalent to *(x+1i), x is first converted to a
pointer as described; then i is converted to the type of x, which involves
multiplying i by the length the object to which the pointer points, namely 5-
integer objects. The results are added and indirection applied to yield an array
(of five integers) which in turn is converted to a pointer to the first of the
integers. If there is another subscript, the same argument applies again; this
time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first
subscript in the declaration helps determine the amount of storage consumed
by an array. Arrays play no other part in subscript calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-
dependent aspects. They are all specified by means of an explicit type-
conversion operator, see “Unary Operators” under“EXPRESSIONS” and
“Type Names”under “DECLARATIONS.”

A pointer may be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine dependent. The mapping
function is also machine dependent but is intended to be unsurprising to those
who know the addressing structure of the machine. Details for some particular
machines are given below.

An object of integral type may be explicitly converted to a pointer. The
mapping always carries an integer converted from a pointer back to the same
pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions upon use if the subject
pointer does not refer to an object suitably aligned in storage. It is guaranteed
that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

52—Languages and Support Tools UNIX Programmer’s Manual

For example, a storage-allocation routine might accept a size (in bytes) of an
object to allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is
portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and
measures bytes. The char’s have no alignment requirements; everything else
must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary
objects are aligned on a boundary equal to their length, except that double
quantities need be aligned only on even 4-byte boundaries. Aggregates are
aligned on the strictest boundary required by any of their constituents.

The 3B20 computer has 24-bit pointers placed into 32-bit quantities. Most
objects are aligned on 4-byte boundaries. Shorts are aligned in all cases on 2-
byte boundaries. Arrays of characters, all structures, ints, longs, floats, and
doubles are aligned on 4-byte boundries; but structure members may be packed
tighter.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case,
as array bounds, and in initializers. In the first two cases, the expression can
involve only integer constants, character constants, casts to integral types,
enumeration constants, and sizeof expressions, possibly connected by the binary

UNIX Programmer’s Manual Languages and Support Tools—53

C LANGUAGE

operators
+-*/B&|" <K< >> ==I=< > <=>=&&]|

or by the unary operators

or by the ternary operator

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts and can
also apply the unary & operator to external or static objects and to external or
static arrays subscripted with a constant expression. The unary & can also be
applied implicitly by appearance of unsubscripted arrays and functions. The
basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a
constant,

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating point
arithmetic and integer division have proven in practice to be not much of a
problem, Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the
others are only minor problems.

54—Languages and Support Tools UNIX Programmer’s Manual

The number of register variables that can actually be placed in registers varies
from machine to machine as does the set of valid types. Nonetheless, the
compilers all do things properly for their own machine; excess or invalid
register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is
exceedingly unwise to write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter
character constants may be permitted. The specific implementation is very
machine dependent because the order in which characters are assigned to a
word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an
int pointer to a char pointer and inspecting the pointed-to storage) but must be
accounted for when conforming to externally-imposed storage layouts.

SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension than as
an exact statement of the language.

Expressions

The basic expressions are:

expression:

primary

* expression
&lvalue

- expression
! expression
~ expression
+ + lvalue

UNIX Programmer’s Manual Languages and Support Tools—55

C LANGUAGE

--lvalue

Ivalue + +

Ivalue --

sizeof expression

sizeof (type-name)

(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list)
primary [expression] opt
primary . identifier
primary -> identifier

Ivalue:
identifier :
primary [expression |
Ivalue . identifier
primary -> identifier
* expression
(value)

The primary-expression operators
on.->
have highest priority and group left to right. The unary operators

* & - ! 7 ++ --sizeof (type-name)

56—~Languages and Support Tools UNIX Programmer’s Manual

have priority below the primary operators but higher than any binary operator
and group right to left. Binary operators group left to right; they have priority
decreasing as indicated below.

binop:

~
N

> <<

T \Y
A
]
\'
i

2l AV +H®

& —
&

The conditional operator groups right to left.
Assignment operators all have the same priority and all group right to left.

asgnop:

The comma operator has the lowest priority and groups left to right.

Declarations
declaration:
decl-specifiers init-declarator-listop .

decl-specifiers:
type-specifier decl -speciﬁerso y

sc-specifier decl -speczﬁersop y

UNIX Programmer’s Manual Languages and Support Tools—57

C LANGUAGE

sc-specifier:
auto
static
extern
register
typedef

type-specifier:

struct-or-union-specifier

typedef-name

‘enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

58—Languages and Support Tools UNIX Programmer’s Manual

init-declarator:

declarator initializer
opt

declarator:
identifier
(declarator)
* declarator
declarator ()

declarator [constant-expressionop .]

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
; constant-expression

initializer:
= expression
= { initializer-list }
= {initializer-list , }

UNIX Programmer’s Manual Languages and Support Tools—59

C LANGUAGE

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
" (abstract-declarator)
* abstract-declarator
abstract-declarator ()

abstract-declarator [constant-expressionop ; J)

typedef-name:
identifier

Statements

compound-statement:

{ declaration-list _ statement-list }
opt opt

declaration-list:
declaration
declaration declaration-list

statement -list:
statement
statement statement-list

60—Languages and Support Tools UNIX Programmer’s Manual

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expopt;expopt,expo /) statement
switch (expression) statement
case constant-expression : statement
default - statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

>

External definitions

program:
external-definition
external-definition program

external-definition:
Sfunction-definition
data-definition

Sfunction-definition:
decl- spec:ﬁer functzon declarator function-body

Sfunction-declarator:

declarator (parameter-list)
opt

parameter-list:

identifier
identifier , parameter-list

UNIX Programmer’s Manual Languages and Support Tools—61

C LANGUAGE

Sfunction-body:

declaration-listop / compound-statement

data-definition:
extern declaration ;
static declaration ;

Preprocessor

#define identifier token-string,,

#define identifier(identifier,...) token-stringopt

#undef identifier

#include "filename"

#include <filename >

#if restricted-constant-expression
#ifdef identifier

#ifndef identifier

felse

#endif

#line constant "filename"

62—Languages and Support Tools

UNIX Programmer’s Manual

C LIBRARIES

GENERAL

This chapter and THE OBJECT AND MATH LIBRARIES chapter describe the
libraries that are supported on the UNIX operating system. A library is a
collection of related functions and/or declarations that simplify programming
effort by linking only what is needed, allowing use of locally produced
functions, etc. All of the functions described are also described in Part 3 of the
UNIX Programmer’s Manual —Volume 2: System Calls and Library Routines.
Most of the declarations described are in Part 5 of the 2UNIX Programmer’s
Manual—Volume 2: System Calls and Library Routines. The three main
libraries on the UNIX system are:

C library This is the basic library for C language programs. The
C library is composed of functions and declarations used
for file access, string testing and manipulation,
character testing and manipulation, memory allocation,
and other functions. This library is described later in
this chapter.

Object file This library provides functions for the access and
manipulation of object files. This library is described in
THE OBJECT AND MATH LIBRARIES chapter.

Math library This library provides exponential, bessel functions,
logarithmic, hyperbolic, and trigonometric functions.
This library is described in THE OBJECT AND MATH
LIBRARIES chapter.

Some libraries consist of two portions - functions and declarations. In some
cases, the user must request that the functions (and/or declarations) of a
specific library be included in a program being compiled. In other cases, the
functions (and/or declarations) are included automatically.

UNIX Programmer’s Manual Languages and Support Tools—63

C LIBRARIES

Including Functions

When a program is being compiled, the compiler will automatically search the
C language library to locate and include functions that are used in the
program. This is the case only for the C library and no other library. In
order for the compiler to locate and include functions from other libraries, the
user must specify these libraries on the command line for the compiler. For
example, when using functions of the math library, the user must request that
the math library be searched by including the argument -Im on the command
line, such as:

cc file.c -Im

The argument -lm must come after all files that reference functions in the math
library in order for the link editor to know which functions to include in the
a.out file.

This method should be used for all functions that are not part of the C
language library.

Including Declarations

Some functions require a set of declarations in order to operate properly. A set
of declarations is stored in a file under the /fusrfinclude directory. These files
are referred to as header files. In order to include a certain header file, the
user must specify this request within the C language program. The request is
in the form:

#include <file.h>

where file.h is the name of the file. Since the header files define the type of the
functions and various preprocessor constants, they must be included before
invoking the functions they declare.

The remainder of this chapter describes the functions and header files of the C
Library. The description of the library begins with the actions required by the
user to include the functions and/or header files in a program being compiled
Gif any). Following the description of the actions required is information in
three-column format of the form:

64—Languages and Support Tools UNIX Programmer’s Manual

function reference (N) Brief description.

The functions are grouped by type while the reference refers to section ‘N’ in
the 2UNIX Programmer’s Manual—Volume 2: System Calls and Library
Routines. Following this, are descriptions of the header files associated with
these functions (if any).

THE C LIBRARY

The C library consists of several types of functions. All the functions of the C
library are loaded automatically by the compiler. Various declarations must
sometimes be included by the user as required. The functions of the C library
are divided into the following types:

Input/output control
String manipulation
Character manipulation
Time functions
Miscellaneous functions.

Input/Output Control

These functions of the C library are automatically included as needed during
the compiling of a C language program. No command line request is needed.

The header file required by the input/output functions should be included in
the program being compiled. This is accomplished by including the line:

#include <stdio.h>
near the beginning of each file that references an input or output function.
The input/output functions are grouped into the following categories:

e File access
¢ File status
e Input

UNIX Programmer’s Manual Languages and Support Tools—65

C LIBRARIES

e Output
e Miscellaneous.

FUNCTION
fclose

fdopen

fileno

fopen

freopen

fseek

pclose

popen

rewind

66—Languages and Support Tools

File Access Functions

REFERENCE
fclose (3S)

fopen (3S)

ferror (3S)

fopen (3S)

fopen (3S)

fseek (3S)

popen (3S)

popen (3S)

fseek (3S)

BRIEF DESCRIPTION
Close an open stream.

Associate stream with
an open(2) ed file.

File descriptor associated
with an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

Close a stream opened
by popen. :

Create pipe as a stream
between calling process
and command.

Reposition file
pointer at beginning
of file.

UNIX Programmer’s Manual

setbuf

vsetbuf

FUNCTION

clearerr

feof

ferror

ftell

FUNCTION

fgetc

fgets

fread

fscanf

setbuf (3S)

setbuf (3S)

Assign buffering to
stream.

Similar to setbuf, but
allowing finer control.

File Status Functions

REFERENCE

ferror (3S)

ferror (3S)

ferror (3S)

fseek (3S)

BRIEF DESCRIPTION

Reset error condition on
stream.

Test for “end of file”
on stream.

Test for error condition
on stream.

Return current position
in the file.

Input Functions

REFERENCE

getc (3S)

gets (3S)

fread (3S)

scanf (3S)

UNIX Programmer’s Manual

BRIEF DESCRIPTION

True function for getc

(3S).
Read string from stream.

General buffered read
from stream.

Formatted read from
stream.

Languages and Support Tools—67

C LIBRARIES

getc getc (3S)
getchar getc (3S)
gets gets (3S)
getw getc(3S)
scanf scanf (3S)
sscanf scanf (3S)
ungetc ungetc (3S)

Read character from
stream.

Read character from
standard input.

Read string from standard input.
Read word from stream.

Read using format from
standard input.

Formatted from
string.

Put back one character on
stream.

Output Functions

FUNCTION REFERENCE
fllush fclose (3S)
fprintf printf (3S)
fputc putc (3S)

fputs puts (3S)
fwrite fread (3S)
printf printf (3S)

68—Languages and Support Tools

BRIEF DESCRIPTION

Write all currently buffered
characters from stream.

Formatted write to
stream.

True function for putc
(3S).

Write string to stream.

General buffered write to
stream.

Print using format to
standard output.

UNIX Programmer’s Manual

putc

putchar

puts

putw

sprintf

viprintf

vprintf

vsprintf

FUNCTION

ctermid

cuserid

system

putc (3S)

putc (3S)

puts (3S)

putc (3S)

printf (3S)

vprint(3C)

vprint(3C)

vprintf (3C)

Write character to
standard output.

Write character to
standard output.

Write string to
standard output.

Write word to stream.

Formatted write to
string.

Print using format to
stream by varargs(5)
argument list.

Print using format to
standard output by
varargs(5) argument list.

Print using format to
stream string by
varargs(5) argument list.

Miscellaneous Functions

REFERENCE

ctermid (3S)

cuserid (3S)

system (3S)

UNIX Programmer’s Manual

BRIEF DESCRIPTION

Return file name for
controlling terminal.

Return login name for
owner of current process.

Execute shell command.

Languages and Support Tools—69

C LIBRARIES

tempnam tempnam (3S) ‘ Create temporary file
name using directory and
prefix.

tmpnam tmpnam (3S) Create temporary file
name.

tmpfile tmpfile (3S) Create temporary file.

String Manipulation Functions

These functions are used to locate characters within a string, copy, concatenate,
and compare strings. These functions are automatically located and loaded
during the compiling of a C language program. No command line request is
needed since these functions are part of the C library. The string manipulation
functions are declared in a header file that may be included in the program
being compiled. This is accomplished by including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

strcat string (3C) Concatenate two strings.

strchr string (3C) Search string for
character.

strcmp string (3C) Compares two strings.

strepy string (3C) Copy string.

strespn ~ string(3C) Length of initial string
not containing set of
characters.

70—Languages and Support Tools UNIX Programmer’s Manual

strien string (3C) Length of string.

strncat string (3C) Concatenate two strings
with a maximum length.

strncmp string (3C) Compares two strings
with a maximum length.

strncpy string (3C) Copy string over string
with a maximum length.

strpbrk string 3C) Search string for any
set of characters.

strrchr string 3C) Search string backwards
for character.

strspn string (3C) Length of initial string
containing set of
characters.

strtok string 3C) Search string for token

separated by any of a
set of characters.

Character Manipulation

The following functions and declarations are used for testing and translating
ASCII characters. These functions are located and loaded automatically
during the compiling of a C language program. No command line request is
needed since these functions are part of the C library.

The declarations associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <ctype.h>

near the beginning of the file being compiled.

UNIX Programmer’s Manual Languages and Support Tools—71

C LIBRARIES

Character Testing Functions

These functions can be used to identify characters as uppercase or lowercase
letters, digits, punctuation, etc.

FUNCTION REFERENCE BRIEF DESCRIPTION

isalnum ctype 3C) Is character
alphanumeric?

isalpha ctype 3C) Is character alphabetic?

isascii ctype 3C) Is integer ASCII
character?

iscntrl ctype (3C) Is character a control
character?

isdigit ctype (3C) Is character a digit?

isgraph ctype (3C) Is character a printable
character?

islower ctype (3C) Is character a

lowercase letter?

isprint ctype 3C) Is character a printing
character including
space?

ispunct ctype (3C) Is character a
: punctuation character?

isspace ctype (3C) Is character a white
space character?

isupper ctype (3C) Is character an uppercase
letter?
isxdigit ctype 3C) Is character a hex digit?

72—Languages and Support Tools UNIX Programmer’s Manual

Character Translation Functions

These functions provide translation of uppercase to lowercase, lowercase to
uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv (3C) Convert integer to
ASCII character.

tolower conv (3C) Convert character to
lowercase.

toupper conv (3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the systems idea of
the current date and time. These functions are located and loaded
automatically during the compiling of a C language program. No command
line request is needed since these functions are part of the C library.

The header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <time.h>
near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by time(2).

UNIX Programmer’s Manual - Languages and Support Tools—73

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION
asctime ctime (3C) Return string
: representation

of date and time.

ctime ctime (3C) Return string
representation of
date and time, given
integer form.

gmtime ctime (3C) Return Greenwich
Mean Time.

localtime ctime (3C) Return local time.

tzset ctime (3C) Set time zone field
from environment
variable.

Miscellaneous Functions

These functions support a wide variety of operations. Some of these are
numerical conversion, password file and group file access, memory allocation,
random number generation, and table management. These functions are
automatically located and included in a program being compiled. No
command line request is needed since these functions are part of the C library.

Some of these functions require declarations to be included. These are
described following the descriptions of the functions.

Numerical Conversion

The following functions perform numerical conversion.

74—Languages and Support Tools UNIX Programmer’s Manual

FUNCTION REFERENCE BRIEF DESCRIPTION

a64l a641(3C) Convert string to
base 64 ASCII.

atof atof (3C) Convert string to
floating.

atoi atof (3C) Convert string to
integer.

atol atof (3C) Convert string to long.

frexp frexp (3C) Split floating into
mantissa and exponent.

13tol 13tol 3C) Convert 3-byte integer

' to long.

1tol3 13tol 3C) Convert long to 3-byte
integer.

ldexp frexp (3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp (3C) Split mantissa into

integer and fraction.

DES Algorithm Access

The following functions allow access to the Data Encryption Standard (DES)
algorithm used on the UNIX operating system. The DES algorithm is
implemented with variations to frustrate use of hardware implementations of
the DES for key search.

UNIX Programmer’s Manual Languages and Support Tools—75

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt 3C) Encode string.

encrypt crypt (3C) Encode/decode string of
0Os and 1s.

setkey crypt 3C) Initialize for subsequent

use of encrypt.

Group File Access

The following functions are used to obtain entries from the group file.
Declarations for these functions must be included in the program being
compiled with the line:

#include <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent (3C) Close group file being
processed.

getgrent getgrent 3C) Get next group file
entry.

getgrgid getgrent (3C) Return next group with
matching gid.

getgrnam getgrent (3C) Return next group with
matching name.

setgrent getgrent (3C) Rewind group file being
processed.

fgetgrent getgrent(3C) Get next group file entry

from a specified file.

76—Languages and Support Tools UNIX Programmer’s Manual

Password File Access

These functions are used to search and access information stored in the
password file (/etc/passwd). Some functions require declarations that can be
included in the program being compiled by adding the line:

#include <pwd.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endpwent getpwent (3C) Close password file
being processed.

getpw getpw (3C) Search password file
for uid.

getpwent getpwent (3C) Get next password file
entry.

getpwnam getpwent (3C) Return next entry with

matching name.

getpwuid getpwent (3C) Return next entry with
matching uid.

putpwent putpwent (3C) Write entry on stream.

setpwent getpwent 3C) Rewind password file
being accessed.

fgetpwent getpwent(3C) Get next password file
entry from a specified
file.

Parameter Access

The following functions provide access to several different types of paramenters.
None require any declarations.

FUNCTION REFERENCE BRIEF DESCRIPTION

getopt getopt 3C) Get next option from
option list.

UNIX Programmer’s Manual Languages and Support Tools—77

C LIBRARIES

getcwd getewd 3C)
getenv getenv (3C)
getpass getpass (3C)
puteny putenv(3C)

Hash Table Management

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

The following functions are used to manage hash search tables. The header file
associated with these functions should be included in the program being

compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE
hcreate hsearch (3C)
hdestroy hsearch (3C)
hsearch hsearch (3C)

78—Languages and Support Tools

BRIEF DESCRIPTION
Create hash table.
Destroy hash table.

Search hash table for
entry.

UNIX Programmer’s Manual

Binary Tree Management

The following functions are used to manage a binary tree. The header file
associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

tdelete tsearch (3C) Deletes nodes from
binary tree.

tfind tsearch(3C) Find element in
binary tree.

tsearch tsearch (3C) Look for and add
element to binary
tree.
twalk tsearch (3C) Walk binary tree.
Table Management

The following functions are used to manage a table. Since none of these
functions allocate storage, sufficient memory must be allocated before using
these functions. The header file associated with these functions should be
included in the program being compiled. This is accomplished by including the
line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

bsearch bsearch (3C) Search table using
binary search.

UNIX Programmer’s Manual Languages and Support Tools—79

C LIBRARIES

Ifind Isearch(3C)
Isearch Isearch (3C)
qsort gsort (3C)

Memory Allocation

Find element in
library tree.

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can be dynamically

allocated or freed.

FUNCTION REFERENCE
calloc malloc (3C)
free malloc (3C)
malloc malloc (3C)
realloc malloe (3C)

. BRIEF DESCRIPTION

Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Change size of allocated
storage.

The following is another set of memory allocation functions available.

FUNCTION REFERENCE
calloc malloc(3X)
free malloc (3X)
malloc malloc(3X)
mallopt malloc(3X)

80—Languages and Support Tools

BRIEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Control allocation
algorithm,

UNIX Programmer’s Manual

mallinfo malloc(3X) Space usage.

realoc malloc(3X) Change size of
allocated storage.

Pseudorandom Number Generation

The following functions are used to generate pseudorandom numbers. The
functions that end with 48 are a family of interfaces to a pseudorandom
number generator based upon the linear congruent algorithm and 48-bit integer
arithmetic. The rand and srand functions provide an interface to a
multiplicative congruential random number generator with period of 232.

FUNCTION REFERENCE BRIEF DESCRIPTION

drand48 drand48 (30C) Random double over
the interval [0 to 1).

Icongd8 drand48 (3C) Set parameters for
drand48, Irand48,
and mrand48.

Irand48 drand48 (3C) Random long over the
interval [0 to 231).

mrand48 drand48 (3C) Random long over the
interval [-231 to 231).

rand rand 3C) Random integer over the
interval [0 to 32767).

seed48 drand48 (3C) Seed the generator for
drand48, Irand48, and
mrand48.

srand rand 3C) Seed the generator
for rand.

srand48 drand48 (3C) Seed the generator for

drand48, Irand48, and
mrand48 using a long.

UNIX Programmer’s Manual Languages and Support Tools—81

C LIBRARIES

Signal Handling Functions

The functions gsignal and ssignal implement a software facility similar to
signal(2) in the 2UNIX Programmer’s Manual—Volume 2: System Calls and
Library Routines. This facility enables users to indicate the disposition of error
conditions and allows users to handle signals for their own purposes. The
declarations associated with these functions can be included in the program
being complied by the line

#include <signal.h>

These declarations define ASCII names for the 15 software signals.

FUNCTION REFERENCE BRIEF DESCRIPTION
gsignal ssignal (3C) Send a software signal.
ssignal ssignal (3C) Arrange for handling

of software signals.

Miscellaneous

The following functions do not fall into any previously described category.

FUNCTION REFERENCE BRIEF DESCRIPTION

abort abort (3C) Cause an IOT signal
to be sent to the
process.

abs abs (3C) Return the absolute
integer value.

ecvt ecvt (3C) Convert double to
string.

fovt ecvt (3C) Convert double to
string using Fortran
Format.

82—Languages and Support Tools UNIX Programmer’s Manual

gevt

isatty

mktemp

monitor

swab

ttyname

ecvt (3C)

ttyname (3C)

mktemp (3C)

monitor (3C)

swab (3C)

ttyname (3C)

UNIX Programmer’s Manual

Convert double to
string using Fortran
F or E format.

Test whether integer
file descriptor is
associated with a
terminal.

Create file name
using template.

Cause process to record
a histogram of program
counter location.

Swap and copy bytes.
Return pathname of

terminal associated with
integer file descriptor.

Languages and Support Tools—83

THE OBJECT AND MATH LIBRARIES

GENERAL

This chapter describes the Object and Math Libraries that are supported on
the UNIX operating system. A library is a collection of related functions
and/or declarations that simplify programming effort. All of the functions
described are also described in Part 3 of the UNIX Programmer’s Manual —
Volume 2: System Calls and Library Routines. Most of the declarations
described are in Part 5 of the UNIX Programmer’s Manual —Volume 2: System
Calls and Library Routines. The three main libraries on the UNIX system
are:

C library This is the basic library for C language programs. The
C library is composed of functions and declarations used
for file access, string testing and manipulation,
character testing and manipulation, memory allocation,
and other functions. This library is described in the C
Libraries chapter in this volume.

Object file This library provides functions for the access and
manipulation of object files. This library is described
later in this chapter.

Math library This library provides exponential, bessel functions,
logarithmic, hyperbolic, and trigonometric functions.
This library is also described later in this chapter.

- THE OBJECT FILE LIBRARY

The object file library provides functions for the access and manipulation of
object files. Some functions locate portions of an object file such as the symbol
table, the file header, sections, and line number entries associated with a
function. Other functions read these types of entries into memory. For a
description of the format of an object file, see The Common Object File Format
in this volume.

- UNIX Programmer’s Manual Languages and Support Tools—85

THE OBJECT AND MATH LIBRARIES

This library consists of several portions. The functions reside in /usr/lib/libld.a
and are located and loaded during the compiling of a C language program by a
command line request. The form of this request is:

cc file -lid

which causes the link editor to search the object file library. The argument -lid
must appear after all files that reference functions in /ibld.a.

In addition, various header files must be included. This is accomplished by
including the line:

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

ldaclose ldclose (3X) Close object file being
processed.

ldahread Idahread (3X) Read archive header.

Idaopen Idopen (3X) Open object file for
reading.

ldclose ldclose (3X) Close object file being
processed.

ldfhread ldfhread (3X) . Read file header of
object file being
processed.

ldgetname ldgetname (3X) Retrieve the name of

an object file symbol
table entry.

86—Languages and Support Tools UNIX Programmer’s Manual

Idlinit ldiread (3X) Prepare object file for
reading line number
entries via ldlitem.

Idlitem Idiread (3X) Read line number entry
from object file after
1dlinit.

IdIread Idiread (3X) Read line number entry

from object file.

ldiseek Idiseek (3X) Secks to the line number
entries of the object
file being processed.

ldnlseek ldiseek (3X) Seeks to the line number
entries of the object file
being processed given
the name of a section.

ldnrseek ldrseek (3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

Idnshread ldshread (3X) Read section header of
the named section of the
object file being
processed.

ldnsseek ldsseek (3X) Seeks to the section of
the object file being
processed given the
name of a section.

Idohseek ldohseek (3X) Seeks to the optional
' file header of the object
file being processed.

ldopen Idopen (3X) Open object file for
reading.

UNIX Programmer’s Manual Languages and Support Tools—87

THE OBJECT AND MATH LIBRARIES

ldrseek ldrseek (3X) Seeks to the relocation
entries of the object file
being processed.

ldshread ldshread (3X) Read section header of
an object file being
processed.

ldsseek ldsseek (3X) Seeks to the section of
the object file being
processed.

Idtbindex ldtbindex (3X) Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

ldtbread ldtbread (3X) Reads a specific
symbol table entry
of the object file
being processed.

ldtbseek ldtbseek (3X) Seeks to the symbol
table of the object file
being processed.

sgetl sputl(3X) Access long integer data
in a machine independant
format.

sputl sputl(3X) Translate a long integer

into a machine
independant format.

Common Object File Interface Macros (Idfcn.h)

The interface between the calling program and the object file access routines is
based on the defined type LDFILE which is defined in the header file Idfen.h
(see ldfen(4)). The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

88—Languages and Support Tools UNIX Programmer’s Manual

The function ldopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through the following macros:
the type macro returns the magic number of the file, which is used to
distinguish between archive files and simple object files. The IOPTR macro
returns the file pointer which was opened by ldopen(3X) and is used by the
input/output functions of the C library. The OFFSET macro returns the file
address of the beginning of the object file. This value is non-zero only if the
object file is a member of the archive filee. The HEADER macro accesses the
file header structure of the object file.

Additional macros are provided to access an object file. These macros parallel
the input/output functions in the C library; each macro translates a reference
to an LDFILE structure into a reference to its file descriptor field. The
available macros are described in ldfen(4) in the UNIX Programmer’s
Manual —Volume 2: System Calls and Library Routines.

THE MATH LIBRARY

The math library consists of functions and a header file. The functions are
located and loaded during the compiling of a C language program by a
command line request. The form of this request is:

cc file -Im

which causes the link editor to search the math library. In addition to the
request to load the functions, the header file of the math library should be
included in the program being compiled. This is accomplished by including the
line:

#include <math.h>
near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

e Trigonometric functions

UNIX Programmer’s Manual Languages and Support Tools—89

THE OBJECT AND MATH LIBRARIES

e Bessel functions
e Hyperbolic functions

e Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian measure), sines, cosines,
and tangents. All of these values are expressed in double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION
acos trig 3GM) Return arc cosine.
asin trig GM) Return arc sine.
atan trig(M) Return arc tangent.
atan2 trig(M) Return arc tangent of
a ratio.
cos trig(M) Return cosine.
sin trig(GM) Return sine.
tan trig(GM) Return tangent.

Bessel Functions

These functions calculate bessel functions of the first and second kinds of
several orders for real values. The bessel functions are jO, j1, jn, y0, y1, and
yn. The functions are located in section bessel(3M).

90—Languages and Support Tools UNIX Programmer’s Manual

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent
for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION
cosh sinh (3M) Return hyperbolic cosine.
sinh sinh 3M) Return hyperbolic sine.
tanh | sinh 3M) Return hyperbolic tangent.

Miscellancous Functions

These functions cover a wide variety of operations, such as natural logarithm,
exponential, and absolute value. In addition, several are provided to truncate
the integer portion of double precision numbers.

FUNCTION REFERENCE BRIEF DESCRIPTION
ceil floor 3M) Returns the smallest
integer not less than a

given value.

exp exp (3M) Returns the exponential
function of a given value.

fabs floor (3M) Returns the absolute value
of a given value.

floor floor M) Returns the largest integer
not greater than a given
value. :

fmod floor M) Returns the remainder

produced by the division of
two given values.

UNIX Programmer’s Manual Languages and Support Tools—91

THE OBJECT AND MATH LIBRARIES

gamma gamma (3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot (3M) Return the square root
of the sum of the squares
of two numbers.

log exp (3M) Returns the natural
logarithm of a given
value.
log10 exp(3M) Returns the lorarithm base
ten of a given value.
matherr matherr(3M) Error-handling function.
pow exp (3M) Returns the result of a

given value raised to
another given value.

sqrt exp (3M) Returns the square root
of a given value.

92—Languages and Support Tools UNIX Programmer’s Manual

COMPILER AND C LANGUAGE

This chapter describe the UNIX System’s C compiler, cc, and the C
programming language that the compiler translates. The compiler is part of
the UNIX System Software Generation System (SGS).

The SGS is a package of tools used to create and test programs for UNIX
Systems. These tools allow high-level program coding and source-level testing
of code. The C language is implemented for high-level programming; it
contains many control and structuring facilities that greatly simplify the task of
algorithm construction. Within the SGS, a C compiler converts C programs
into assembly language programs that are ultimately translated into object files
by the assembler, as. The link editor, ld, collects and merges object files into
executable load modules. Each of these tools preserves all symbolic
information necessary for meaningful symbolic testing at C-language source
level. In addition, a utility package aids in testing and debugging.

The current manual page for the C compiler can be obtained with the SGS
command:

man cc

USE OF THE COMPILER

The main command of the SGS is cc; it operates much like the UNIX system
cc command. To use the compiler, first creat a file (typically by using the
UNIX system text editor) containing C source code. The name of the file
created must have a special format; the last two characters of the file name
must be .c as in filel.c.

Next, enter the SGS command
cc options file.c

to invoke the compiler on the C source file file.c with the appropriate options
selected. The compilation process creates an absolute binary file named a.out
that reflects the contents of file.c and any referenced library routines. The
resulting binary file, a.out, can then be executed on the target system.

UNIX Programmer’s Manual Languages and Support Tools—93

COMPILER AND C LANGUAGE

Options can control the steps in the compilation process. When none of the
controlling options are used, and only one file is named, cc automatically calls
the assembler, as, and the link editor, Id, thus resulting in an executable file,
named a.out. If more than one file is named in a command,

cc filel.c file2.c file3.c

then the output will be placed on files filel.o, file2.0, and file3.0. These files
can then be linked and executed through the ld command.

The ¢c compiler also accepts input file names with the last two characters .s.
The .s signifies a source file in assembly language. The cc compiler passes this
type of file directly to as, which assembles the file and places the output on a
file of the same name with .o substituted for .s.

Cc is based on a portable C compiler and translates C source files into
assembly code. Whenever the command cc is used, the standard C
preprocessor (which resides on the file /lib/cpp) is called. The preprocessor
performs file inclusion and macro substitution. The preprocessor is always
invoked by cc and need not be called directly by the programmer. Then, unless
the appropriate flags are set, cc calls the assembler and the link editor to
produce an executable file.

COMPILER OPTIONS

All options recognized by the cc command are listed below:

Option Argument Description

-C none Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is

compiled.

-g none Produce symbolic debugging
information.

-p none Reserved for invoking a profiler.

94—Languages and Support Tools UNIX Programmer’s Manual

-D

-0

-P

-U

-W

identifier[=constant]

none

directory

none

none

identifier

none

cargllarg?...]

UNIX Programmer’s Manual

Define the external symbol identifier
to the preprocessor, and

give it the value constant

(if specified).

Same as the -P option except
output is directed to the
standard output.

Change the algorithm that searches
for #include files whose names

do not begin with / to look in the
named directory before looking in
the directories on the standard list.
Thus, #include files whose names are
enclosed in “ are searched for

first in the directory of the file

being compiled, then in directories
named by the -I options, and last

in directories on the standard list.
For #include files whose names are
enclosed in <>, the directory of the
file argument is not searched.

Invoke an object code optimizer.

Suppress compilation and loading;
i.e., invoke only the preprocessor
and leave out the output on
corresponding files suffixed .i.

Undefine the named identifier to
the preprocessor.

Print the version of the assembler
that is invoked.

Pass along the argument(s) argi

to pass ¢, where ¢ is one of
[p012all, indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

Languages and Support Tools—95

COMPILER AND C LANGUAGE

This part provides additional information for those options not completely
described above.

By using appropriate options, compilation can be terminated early to produce
one of several intermediate translations such as relocatable object files (-c
option), assembly source expansions for C code (-S option), or the output of
the preprocessor (-P option). In general, the intermediate files may be saved
and later resubmitted to the cc command, with other files or libraries included
as necessary.

When compiling C source files, the most common practice is to use the -c
option to save relocatable files. Subsequent changes to one file do not then
require that the others be recompiled. A separate call to ec without the -¢
option then creates the linked executable a.out file. A relocatable object file
created under the -c option is named by adding a .o suffix to the source file
name.

The -W option provides the mechanism to specify options for each step that is
normally invoked from the cc command line. These steps are preprocessing,
the first pass of the compiler, the second pass of the compiler, optimization,
assembly, and link editing. At this time, only assembler and link editor options
can be used with the -W option. The most common example of use of the -W
option is “-Wa,-m”, which passes the -m option to the assembler. Specifying
“-wl,-m” passes the -m option to the link editor.

When the -P option is used, the compilation process stops after only
preprocessing, with output left on file.i. This file will be unsuitable for
subsequent processing by cc.

The -O option decreases the size and increases the execution speed of programs
by moving, merging, and deleting code. However, line numbers used for
symbolic debugging may be transposed when the optimizer is used.

The -g option produces ‘information for a symbolic debugger. The SGS
currently supports the SDB symbolic debugger. ‘

96—Languages and Support Tools UNIX Programmer’s Manual

A C PROGRAM CHECKER —“lint”

GENERAL

The lint program examines C language source programs detecting a number of
bugs and obscurities. It enforces the type rules of C language more strictly
than the C compiler. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines and/or
operating systems. Another option detects a number of wasteful or error prone
constructions which nevertheless are legal. The lint program accepts multiple
input files and library specifications and checks them for consistency.

Usage

The lint command has the form:
lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files
are the files to be checked which end with .c or .In; and library-descriptors are
the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppress messages about assignments of long values to variables
that are not long.

-b Suppress messages about break statements that cannot be
reached.
-C Only check for intra-file bugs; leave external information in files

suffixed with .In.

-h Do not apply heuristics (which attempt to detect bugs, improve
style, and reduce waste).

-n Do not check for compatibility with either the standard or the
portable lint library.

UNIX Programmer’s Manual Languages and Support Tools—97

A C PROGRAM CHECKER —*“lint”

-0 name Create a lint library from input files named lib-lname.ln.
-p Attempt to check portability to other dialects of C language.
-u Suppress messages about function and external variables used

and not defined or defined and not used.

-V Suppress messages about unused arguments in functions.
-X Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a single
argument, such as, -ab or -xha.

The names of files that contain C language programs should end with the suffix
.¢ which is mandatory or lint and the C compiler.

The lint program accepts certain arguments, such as:

These arguments specify libraries that contain functions used in the C language
program. The source code is tested for compatibility with these libraries. This
is done by accessing library description files whose names are constructed from
the library arguments. These files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED comments can be used to
specify features of the library functions.

The lint library files are processed almost exactly like ordinary source files.
The only difference is that functions which are defined on a library file but are
not used on a source file do not result in messages. The lint program does not
simulate a full library search algorithm and will print messages if the source

98—Languages and Support Tools UNIX Programmer’s Manual

files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file
which contains descriptions of the programs which are normally loaded when a
C language program is run. When the —p option is used, another file is
checked containing descriptions of the standard library routines which are
expected to be portable across various machines. The —n option can be used
to suppress all library checking.

TYPES OF MESSAGES

The following paragraphs describe the major categories of messages printed by
lint.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and
arguments to functions may become unused. It is not uncommon for external
variables or even entire functions to become unnecessary and yet not be
removed from the source. These types of errors rarely cause working programs
to fail, but are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused variables and
functions can occasionally serve to discover bugs.

The lint program prints messages about variables and functions which are
defined but not otherwise mentioned. An exception is variables which are
declared through explicit extern statements but are never referenced; thus the
statement

extern double sin();

will evoke no comment if sin is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external declarations
might be of some interest and can be discovered by using the —x option with
the lint command.

Certain styles of programming require many functions to be written with
similar interfaces; frequently, some of the arguments may be unused in many
of the calls. The —v option is available to suppress the printing of messages

UNIX Programmer’s Manual Languages and Support Tools—99

A C PROGRAM CHECKER - “lint”

about unused arguments. When —v is in effect, no messages are produced
about unused arguments except for those arguments which are unused and also
declared as register arguments. This can be considered an active (and
preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by
adding the comment:

/* ARGSUSED */

to the program before the function. This has the effect of the -v option for only
one function. Also, the comment:

/* VARARGS */

can be used to suppress messages about variable number of arguments in calls
to a function. The comment should be added before the function definition. In
some cases, it is desirable to check the first several arguments and leave the
later arguments unchecked. This can be done with a digit giving the number
of arguments which should be checked. For example:

/* VARARGS2 */
will cause only the first two arguments to be checked.

There is one case where information about unused or undefined variables is
more distracting than helpful. This is when lint is applied to some but not all
files out of a collection which are to be loaded together. In this case, many of
the functions and variables defined may not be used. Conversely, many
functions and variables defined elsewhere may be used. The —u option may be
used to suppress the spurious messages which might otherwise appear.

Set/Used Information

The lint program attempts to detect cases where a variable is used before it is
set. The lint program detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first
assignment to the variable. It assumes that taking the address of a variable
constitutes a “use”, since the actual use may occur at any later time, in a data
dependent fashion.

100—Languages and Support Tools UNIX Programmer’s Manual

The restriction to the physical appearance of variables in the file makes the
algorithm very simple and quick to implement since the true flow of control
need not be discovered. It does mean that lint can print messages about some
programs which are legal, but these programs would probably be considered
bad on stylistic grounds. Because static and external variables are initialized to
zero, no meaningful information can be discovered about their uses. The lint
program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables which
are set and never used. These form a frequent source of inefficiencies and may
also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the programs
which it processes. It will print messages about unlabeled statements
immediately following goto, break, continue, or return statements. An attempt
is made to detect loops which can never be left at the bottom and to recognize
the special cases while(1) and for(;;) as infinite loops. The lint program also
prints messages about loops which cannot be entered at the top. Some valid
programs may have such loops which are considered to be bad style at best and
bugs at worst.

The lint program has no way of detecting functions which are called and never
returned. Thus, a call to exit may cause an unreachable code which lint does
not detect. The most serious effects of this are in the determination of returned
function values (see “Function Values”). If a particular place in the program
cannot be reached but it is not apparent to lint, the comment

/* NOTREACHED */

can be added at the appropriate place. This comment will inform lint that a
portion of the program cannot be reached.

The lint program will not print a message about unreachable break statements.
Programs generated by yacc and especially lex may have hundreds of
unreachable break statements. The —O option in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance. There is typically nothing the user can do

UNIX Programmer’s Manual Languages and Support Tools—101

A C PROGRAM CHECKER —“lint”

about them, and the resulting méssages would clutter up the lint output. If
these messages are desired, lint can be invoked with the —b option.

Function Values

Sometimes functions return values that are never used. Sometimes programs
incorrectly use function "values" that have never been returned. The lint
program addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both
return(expr);

and
return ;

statements is cause for alarm; the lint program will give the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f(a){
if (a) return (3);
}g();

Notice that, if a tests false, f will call g and then return with no defined return
value; this will trigger a message from lint. If g, like exit, never returns, the
message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature.

102—Languages and Support Tools 'UNIX Programmer’s Manual

On a global scale, lint detects cases where a function returns a value that is
sometimes or never used. When the value is never used, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it
may represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

Type Checking

The lint program enforces the type checking rules of C language more strictly
than the compilers do. The additional checking is in four major areas:

e Across certain binary operators and implied assignments
o At the structure selection operators

o Between the definition and uses of functions

o In the use of enumerations.

There are a number of operators which have an implied balancing between
types of the operands. The assignment, conditional (?:), and relational
operators have this property. The argument of a return statement and
expressions used in initialization suffer similar conversions. In these
operations, char, short, int, long, unsigned, float, and double types may be
freely intermixed. The types of pointers must agree exactly except that arrays
of x’s can, of course, be intermixed with pointers to x’s.

The type checking rules also require that, in structure references, the left
operand of the -> be a pointer to structure, the left operand of the . be a
structure, and the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is done for references
to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with their declared
counterparts.

UNIX Programmer’s Manual Languages and Support Tools—103

A C PROGRAM CHECKER ~“lint”

With enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations and that the only
operations applied are =, initialization, ==, !=, and function arguments and
return values.

If it is desired to turn off strict type checking for an expression, the comment
/* NOSTRICT */

should be added to the program immediately before the expression. This
comment will prevent strict type checking for only the next line in the program.

Type Casts

The type cast feature in C language was introduced largely as an aid to
producing more portable programs. Consider the assignment

p=1;

where p is a character pointer. The lint program will print a message as a
result of detecting this. Consider the assignment

p = (char ®1 ;

in which a cast has been used to convert the integer to a character pointer.
The programmer obviously had a strong motivation for doing this and has
clearly signaled his intentions. It seems harsh for lint to continue to print
messages about this. On the other hand, if this code is moved to another
machine, such code should be looked at carefully. The —c flag controls the
printing of comments about casts. When —c is in effect, casts are treated as
though they were assignments subject to messages; otherwise, all legal casts are
passed without comment, no matter how strange the type mixing seems to be.

104—Languages and Support Tools UNIX Programmer’s Manual

Nonportable Character Use

On some systems, characters are signed quantities with a range from —128 to
127. On other C language implementations, characters take on only positive
values. Thus, lint will print messages about certain comparisons and
assignments as being illegal or nonportable. For example, the fragment

char c;

if((c = getchar()) < 0) ...

will work on one machine but will fail on machines where characters always
take on positive values. The real solution is to declare ¢ as an integer since
getchar is actually returning integer values. In any case, lint will print the
message “nonportable character comparison”.

A similar issue arises with bit fields. When assignments of constant values are
made to bit fields, the field may be too small to hold the value. This is
especially true because on some machines bit fields are considered as signed
quantities. While it may seem logical to consider that a two-bit field declared
of type int cannot hold the value 3, the problem disappears if the bit field is
declared to have type unsigned

Assignments of “longs” to “ints”

Bugs may arise from the assignment of long to an int, which will truncate the
contents. This may happen in programs which have been incompletely
converted to use typedefs. When a typedef variable is changed from int to
long, the program can stop working because some intermediate results may be
assigned to ints, which are truncated. Since there are a number of legitimate
reasons for assigning longs to ints, the detection of these assignments is enabled’
by the —a option.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by
lint. The messages hopefully encourage better code quality, clearer style, and
may even point out bugs. The —h option is used to supress these checks. For
example, in the statement

*pt++;

UNIX Programmer’s Manual Languages and Support Tools—105

A C PROGRAM CHECKER —“lint”

the * does nothing. This provokes the message “null effect” from lint. The
following program fragment:

unsigned X ;
if(x<0) ...

results in a test that will never succeed. Similarly, the test
if(x>0)...

is equivalent to
if(x!=0)

which may not be the intended action. The lint program will print the message
“degenerate unsigned comparison” in these cases. If a program contains
something similar to

if(1!1=0) ...

lint will print the message “constant in conditional context” since the
comparison of 1 with O gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statement

if(x&077==10) ...
or
x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize
such expressions, and lint encourages this by an appropriate message.

106—Languages and Support Tools UNIX Programmer’s Manual

Finally, when the —h option has not been used, lint prints messages about
variables which are redeclared in inner blocks in a way that conflicts with their
use in outer blocks. This is legal but is considered to be bad style, usually
unnecessary, and frequently a bug.

Old Syntax
Several forms of older syntax are now illegal. These fall into two classes -
assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ..) could cause
ambiguous expressions, such as:

a=-—1;

which could be taken as either
a=—1;

or
a=—1;

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer and preferred operators (e.g., +=,
-=, ..) have no such ambiguities. To encourage the abandonment of the
older forms, lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed
intx1;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initialization

intx (—1);

UNIX Programmer’s Manual Languages and Support Tools—107

A C PROGRAM CHECKER —*lint”

looks somewhat like the beginning of a function definition:
intx (y) {...

and the compiler must read past x in order to determine the correct meaning.
Again, the problem is even more perplexing when the initializer involves a
macro. The current syntax places an equals sign between the variable and the
initializer: '

intx=—1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines and illegal
on others due entirely to alignment restrictions. The lint program tries to
detect cases where pointers are assigned to other pointers and such alignment
problems might arise. The message “possible pointer alignment problem”
results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine dependent. For example, on machines (like the PDP-
11) in which the stack runs backwards, function arguments will probably be
best evaluated from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as arguments of
other functions may or may not be treated similarly to ordinary arguments.
Similar issues arise with other operators which have side effects, such as the
assignment operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of
complicated expressions up to the local compiler. In fact, the various C
compilers have considerable differences in the order in which they will evaluate
complicated expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the result is explicitly
undefined.

108—Languages and Support Tools UNIX Programmer’s Manual

The lint program checks for the important special case where a simple scalar
variable is affected. For example, the statement

alil = bli++];
will cause lint to print the message
warning: i evaluation order undefined

in order to call attention to this condition.

UNIX Programmer’s Manual Languages and Support Tools—109

SYMBOLIC DEBUGGING PROGRAM —*“sdb”

GENERAL

This chapter describes the symbolic debugger sdb(1) as implemented for C
language and Fortran 77 programs on the UNIX operating system. The sdb
program is useful both for examining “core images” of aborted programs and
for providing an environment in which execution of a program can be
monitored and controlled.

The sdb program allows interaction with a debugged program at the source
language level. When debugging a core image from an aborted program, sdb
reports which line in the source program caused the error and allows all
variables to be accessed symbolically and to be displayed in the correct format.

Breakpoints may be placed at selected statements or the program may be single
stepped on a line-by-line basis. To facilitate specification of lines in the
program without a source listing, sdb provides a mechanism for examining the
source text. Procedures may be called directly from the debugger. This
feature is useful both for testing individual procedures and for calling user-
provided routines which provided formatted printout of structured data.

USAGE

In order to use sdb to its full capabilities, it is necessary to compile the source
program with the -g option. This causes the compiler to generate additional
information about the variables and statements of the compiled program.
When the -g option has been specified, sdb can be used to obtain a trace of the
called functions at the time of the abort and interactively display the values of
variables.

A typical sequence of shell commands for debugging a core image is

UNIX Programmer’s Manual Languages and Support Tools—111

sdb

$ cc -g prgm.c -0 prgm
$ prgm

Bus error - core dumped
$ sdb prgm

main:25: x[il = 0;

*

The program prgm was compiled with the -g option and then executed. An
error occurred which caused a core dump. The sdb program is then invoked to
examine the core dump to determine the cause of the error. It reports that the
bus error occurred in function main at line 25 (line numbers are always
relative to the beginning of the file) and outputs the source text of the
offending line. The sdb program then prompts the user with an * indicating
that it awaits a command.

It is useful to know that sdb has a notion of current function and current line.
In this example, they are initially set to main and “25”, respectively.

In the above example, sdb was called with one argument, prgm. In general, it
takes three arguments on the command line. The first is the name of the
executable file which is to be debugged; it defaults to a.out when not specified.
The second is the name of the core file, defaulting to core; and the third is the
name of the directory containing the source of the program being debugged.
The sdb program currently requires all source to reside in a single directory.
The default is the working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

It is possible that the error occurred in a function which was not compiled with
the -g option. In this case, sdb prints the function name and the address at
which the error occurred. The current line and function are set to the first
executable line in main. The sdb program will print an error message if main
was not compiled with the -g option, but debugging can continue for those
routines compiled with the -g option. Figure 1 shows a typical example of sdb
usage.

112—Languages and Support Tools UNIX Programmer’s Manual

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which led to the error.
This is obtained with the t command. For example:

*t

sub(x=2,y=3) [prgm.c:25]

inter(i=16012) [prgm.c:96]

main (argc=1,argv=0x7ffff54,envp=0x7fffff5c) [prgm.c:15]

This indicates that the error occurred within the function sub at line 25 in file
prgm.c. The sub function was called with the arguments x=2 and y=3 from
inter at line 96. The inter function was called from main at line 15. The main
function is always called by the shell with three arguments often referred to as
argce, argv, and envp. Note that argv and envp are pointers, so their values are
printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped program.
Variables are displayed by typing their name followed by a slash, so

*errflag/

causes sdb to display the value of variable errflag. Unless otherwise specified,
variables are assumed to be either local to or accessible from the current
function. To specify a different function, use the form

*sub:i/

to display variable / in function sub. F77 users can specify a common block
variable in the same manner.

The sdb program supports a limited form of pattern matching for variable and
function names. The symbol * is used to match any sequence of characters of
a variable name and ? to match any single character. Consider the following
commands

UNIX Programmer’s Manual Languages and Support Tools—113

sdb

x/
*sub:y?/

**/

The first prints the values of all variables beginning with x, the second prints
the values of all two letter variables in function sub beginning with y, and the
last prints all variables. In the first and last examples, only variables accessible
from the current function are printed. The command

**:*/

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined by its
type as declared in the source program. To request a different format, a
specifier is placed after the slash. The specifier consists of an optional length
specification followed by the format. The length specifiers are:

b One byte
h Two bytes (half word)
I Four bytes (long word).

The lengths are effective only with the formats d, o, x, and u. If no length is
specified, the word length of the host machine is used. A numeric length
specifier may be used for the s or a commands. These commands normally
print characters until either a null is reached or 128 characters are printed.
The number specifies how many characters should be printed.

There are a number of format specifiers available:

¢ Character.
d Decimal.
u Decimal unsigned.

114—Languages and Support Tools UNIX Programmer’s Manual

) Octal.

X Hexadecimal.

f 32-bit single-precision floating point.

g 64-bit double-precision floating point.

s Assume variable is a string pointer and print characters starting

at the address pointed to by the variable until a null is reached.

a Print characters starting at the variable’s address until a null is
reached.

P Pointer to function.

i Interpret as a machine-language instruction.

For example, the variable i can be displayed with
*i/x
which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and pointers so that all
of the following commands work.

*array[2][31/
*sym.id/
*psym->usage/
*xsym[20].p->usage/

The only restriction is that array subscripts must be numbers. Depending on
your machine, accessing arrays may be limited to 1-dimensional arrays. Note
that as a special case:

*psym-> /d

displays the location pointed to by psym in decimal.

UNIX Programmer’s Manual Languages and Support Tools—115

sdb

Core locations can also be displayed by specifying their absolute addresses.
The command

*1024/

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal so the above command is equivalent to both

*02000/
and
*0x400/
It is possible to mix numbers and variables so that
*1000.x/
refers to an element of a structure starting at address 1000, and
*1000->x/

refers to an element of a structure whose address is at 1000. For commands of
the type *1000.x/ and *1000->x/, the sdb program uses the structure template
of the last structured referenced.

The address of a variable is printed with the =, so

*i=

displays the address of i. Another feature whose usefulness will become
apparent later is the command

*/

116—Languages and Support Tools ' UNIX Programmer’s Manual

which redisplays the last variable typed.

SOURCE FILE DISPLAY AND MANIPULATION

The sdb program has been designed to make it easy to debug a program
without constant reference to a current source listing. Facilities are provided
which perform context searches within the source files of the program being
debugged and to display selected portions of the source files. The commands
are similar to those of the UNIX system text editor ed(1). Like the editor, sdb
has a notion of current file and line within the file. The sdb program also
knows how the lines of a file are partitioned into functions, so it also has a
notion of current function. As noted in other parts of this document, the
current function is used by a number of sdb commands.

Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful for
perusing the source program and for determining the context of the current
line. The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current
line.

z Prints ten lines starting at the current line. Advances the

current line by ten.

control-d Scrolls; prints the next ten lines and advances the current
line by ten. This command is used to cleanly display long
segments of the program.

When a line from a file is printed, it is preceded by its line number. This not
only gives an indication of its relative position in the file but is also used as
input by some sdb commands.

UNIX Programmer’s Manual Languages and Support Tools—117

sdb

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the forms

*e function
*e file.c

may be used. The first causes the file containing the named function to become
the current file, and the current line becomes the first line of the function. The
other form causes the named file to become current. In this case, the current
line is set to the first line of the named file. Finally, an e command with no
argument causes the current function and file named to be printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing the current line
in the source file. The following paragraphs describe other commands that
change the current line.

There are two commands for searching for instances of regular expressions in
source files. They are

*/regular expression/
*?regular expression?

The first command searches forward through the file for a line containing a
string that matches the regular expression and the second searches backwards.
The trailing / and ? may be omitted from these commands. Regular
expression matching is identical to that of ed(1).

. The + and - commands may be used to move the current line forwards or
backwards by a specified number of lines. Typing a new-line advances the
current line by one, and typing a number causes that line to become the
current line in the file. These commands may be combined with the display
commands so that

*+15z

118—Languages and Support Tools UNIX Programmer’s Manual

advances the current line by 15 and then prints ten lines.

A CONTROLLED ENVIRONMENT FOR PROGRAM
TESTING

One very useful feature of sdb is breakpoint debugging. After entering sdb,
certain lines in the source program may be specified to be breakpoints. The
program is then started with a sdb command. Execution of the program
proceeds as normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports the breakpoint
where the program stopped. Now, sdb commands may be used to display the
trace of function calls and the values of variables. If the user is satisfied the
program is working correctly to this point, some breakpoints can be deleted and
others set; then program execution may be continued from the point where it
stopped.

A useful alternative to setting breakpoints is single stepping. The sdb program
can be requested to execute the next line of the program and then stop. This
feature is especially useful for testing new programs, so they can be verified on
a statement-by-statement basis. If an attempt is made to single step through a
function which has not been compiled with the -g option, execution proceeds
until a statement in a function compiled with the -g option is reached. It is
also possible to have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been compiled with
the -g option.

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains executable
code. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line numbers
are relative to the beginning of the file as printed by the source file display
commands. The second form sets a breakpoint at line 12 of function proc, and
the third sets a breakpoint at the first line of proc. The last sets a breakpoint

UNIX Programmer’s Manual Languages and Support Tools—119

sdb

at the current line.
Breakpoints are deleted similarly with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted
interactively. Each breakpoint location is printed, and a line is read from the
user. If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and
the D command deletes all breakpoints. It is sometimes desirable to have sdb
automatically perform a sequence of commands at a breakpoint and then have
execution continue. This is achieved with another form of the b command.

*12b t;x/

causes both a trace back and the value of x to be printed each time execution
gets to line 12. The a command is a variation of the above command. There
are two forms: ‘

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is called, and
the second prints the source line each time it is about to be executed. For both
forms of the a command, execution continues after the function name or source
line is printed.

Running the Program
The r command is used to begin program execution. It restarts the program as
if it were invoked from the shell. The command

*r args

120—Languages and Support Tools UNIX Programmer’s Manual

runs the program with the given arguments as if they had been typed on the
shell command line. If no arguments are specified, then the arguments from
the last execution of the program are used. To run a program with no
arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as INTERRUPT or QUIT occurs, or the program
terminates. In all cases after an appropriate message is printed, control returns
to sdb.

The ¢ command may be used to continue execution of a stopped program. A
line number may be specified, as in:

*proc:12¢

This places a temporary breakpoint at the named line. The breakpoint is

" deleted when the ¢ command finishes. There is also a ¢ command which
continues but passes the signal which stopped the program back to the
program. This is useful for testing user-written signal handlers. Execution
may be continued at a specified line with the g command. For example:

*17g

continues at line 17 of the current function. A use for this command is to
avoid executing a section of code which is known to be bad. The user should
not attempt to continue execution in a function different than that of the
breakpoint.

The s command is used to run the program for a single line. It is useful for
slowly executing the program to examine its behavior in detail. An important
alternative is the S command. This command is like the s command but does
not stop within called functions. It is often used when one is confident that the
called function works correctly but is interested in testing the calling routine.

The i command is used to run the program one machine level instruction at a
time while ignoring the signal which stopped the program. Its uses are similar
to the s command. There is also an I command which causes the program to
execute one machine level instruction at a time, but also passes the signal
which stopped the program back to the program.

UNIX Programmer’s Manual Languages and Support Tools—121

sdb

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature
is useful both for testing individual functions with different arguments and for
calling a function which prints structured data in a nice way. There are two
ways to call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, ...)/m

The first simply executes the function. The second is intended for calling
functions (it executes the function and prints the value that it returns). The
value is printed in decimal unless some other format is specified by m.
Arguments to functions may be integer, character or string constants, or values
of variables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a function is called
when the program is not stopped at a breakpoint (such as when a core image is
being debugged) all variables are initialized before the function is started. This
makes it impossible to use a function which formats data from a dump.

MACHINE LANGUAGE DEBUGGING

The sdb program has facilities for examining programs at the machine
language level. It is possible to print the machine language statements
associated with a line in the source and to place breakpoints at arbitrary
addresses. The sdb program can also be used to display or modify the contents
of the machine registers.

Displaying Machine Language Statements

To display the machine language statements associated with line 25 in function
main, use the command

*main:25?

The ? command is identical to the / command except that it displays from
text space. The default format for printing text space is the i format which
interprets the machine language instruction. The control-d command may be

122—Languages and Support Tools UNIX Programmer’s Manual

used to print the next ten instructions.

Absolute addresses may be specified instead of line numbers by appending a :
to them so that

*0x1024:?
displays the contents of address 0x1024 in text space. Note that the command
*0x1024?

displays the instruction corresponding to line 0x1024 in the current function,
It is also possible to set or delete a breakpoint by specifying its absolute
address;

*0x1024:b

sets a breakpoint at address 0x1024.

Manipulating Registers
The x command prints the values of all the registers. Also, individual registers
may be named instead of variables by appending a % to their name so that

*r3%

displays the value of register r3.

OTHER COMMANDS

To exit sdb, use the ¢ command.

The ! command is identical to that in ed(l) and is used to have the shell
execute a command.

UNIX Programmer’s Manual Languages and Support Tools—123

sdb

It is possible to change the values of variables when the program is stopped at
a breakpoint. This is done with the command

*variablelvalue

which sets the variable to the given value. The value may be a number,
character constant, register, or the name of another variable. If the variable is
of type float or double, the value can also be a floating-point constant.

Figure 1

$ cat testdiv2.c
main (argc, argv, envp)
char **argv, **envp; {
int i;
i =div2(-1);
printf('—1/2 = %d\n", i);
}
div2@) {
int j;
j=i>>1;
return(j);

$ cc —g testdiv2.c

$ a.out

—1/2 =—1

$ sdb

No core image # Warning message from sdb
*/°div2 # Search for function "div2"

7: div2@) { # It starts on line 7

*z # Print the next few lines

7: div2 @) {

8: int j;

9: j=i>>1;

10: return(y);

11: }

*div2:b # Place breakpoint at beginning of "div2"
div2:9 b # Sdb echoes proc name and line number
*r # Run the function

a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9

124—Languages and Support Tools , -UNIX Programmer’s Manual

div2:9: j=i>>1;

*t # Print trace of subroutine calls

div2(i=—1) [testdiv2.c:9]
main(arge=1,argv=0x7fTfff50,envp=0x7Ifff58) [testdiv2.c:4]

*i/ # Print i

-1

*s # Single step

div2:10: return(j); # Execution stops before line 10
*j/ # Print j

-1

*9d # Delete the breakpoint

*div2(1)/ # Try running "div2" with different arguments
0

*div2(—=2)/

-1

*div2(—3)/

-2

*q

$

UNIX Programmer’s Manual Languages and Support Tools—125

FORTRAN UNIX SYSTEM COMMANDS

A UNIX system Fortran 77 user should be familiar with the following
commands:

o 77 [options] files - This command invokes the UNIX system Fortran 77
compiler

e ratfor [options] [files] - This command invokes the Ratfor preprocessor

o efl [options] [files] - This command compiles a program written in Extended
Fortran Language (EFL) into clean Fortran

e asa [files] - This command interprets the output of Fortran programs that
utilize ASA carriage control characters .

e fsplit options files - This command splits the named file(s) into separate files,
with one procedure per file.

For more information about the above commands, see the UNIX Programmer’s
Manual —Volume 1: Commands and Utilities.

UNIX Programmer’s Manual Languages and Support Tools—127

FORTRAN 77

This chapter describes the compiler and run-time system for Fortran 77 as
implemented on the UNIX system. This chapter also describes the interfaces
between procedures and the file formats assumed by the I/O system.

USAGE

The command to run the compiler is
77 options file

The £77(1) command is a general purpose command for compiling and loading
Fortran and Fortran-related files into an executable module. Ratfor
(preprocessor) source files will be translated into Fortran before being
presented to the Fortran compiler. The f77 command invokes the C compiler
to translate C source files and invokes the assembler to translate assembler
source files. Object files will be link edited. [The £77(1) and cc(1) commands
have slightly different link editing sequences. Fortran programs need two extra
libraries (libl77.a, 1ibF77.a) and an additional startup routine.] The following
file name suffixes are understood:

£ Fortran source file
T Ratfor source file
.c C language source file
.S Assembler source file
.0 Object file.
LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. The most important
additions are a character string data type, file-oriented input/output statements,
and random access I/0. Also, the language has been cleaned up considerably.

UNIX Prdgrammer's Manual Languages and Support Tools—129

FORTRAN 77

In addition to implementing the language specified in the Fortran 77 American
National Standard, this compiler implements a few extensions. Most are useful
additions to the language. The remainder are extensions to make it easier to
communicate with C language procedures or to permit compilation of old
(1966 Standard Fortran) programs. '

Double Cdmplex Data Type

The data type double complex is added. Each datum is represented by a pair
of double-precision real variables. A double complex version of every complex
built-in function is provided.

Internal Files

The Fortran 77 American National Standard introduces internal files (memory
arrays) but restricts their use to formatted sequential I/O statements. This
I/O system also permits internal files to be used in direct and unformatted
reads and writes. '

Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in a type
statement is integer if its first letter is i, j, k, I, m or n. Otherwise, it is real.
Fortran 77 has an implicit statement for overriding this rule. An additional
type statement, undefined, is permitted. The statement

implicit undefined (a-z)

turns off the automatic data typing mechanism, and the compiler will issue a
diagnostic for each variable that is used but does not appear in a type
statement. Specifying the -u compiler option is equivalent to beginning each
procedure with this statement.

Recursion

Procedures may call themselves directly or through a chain of other procedures.

130—Languages and Support Tools UNIX Programmer’s Manual

Automatic Storage

Two new keywords recognized are static and automatic. These keywords may
appear as “types” in type statements and in implicit statements. Local
variables are static by default; there is exactly one copy of the datum, and its
value is retained between calls. There is one copy of each variable declared
automatic for each invocation of the procedure. Automatic variables may not
appear in equivalence, data, or save statements.

Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to
be in a 72-column format: except in comment lines, the first five characters are
the statement number, the next is the continuation character, and the next 66
are the body of the line. (If there are fewer than 72 characters on a line, the
compiler pads it with blanks; characters after the first 72 are ignored.) In
order to make it easier to type Fortran programs, this compiler also accepts
input in variable length lines. An ampersand (&) in the first position of a line
indicates a continuation line; the remaining characters form the body of the
line. A tab character in one of the first six positions of a line signals the end of
the statement number and continuation part of the line; the remaining
characters form the body of the line. A tab elsewhere on the line is treated as
another kind of blank by the compiler.

In the Fortran 77 Standard, there are only 26 letters

— Fortran is a one-case language. Consistent with ordinary system usage, the
new compiler expects lowercase input. By default, the compiler converts all
uppercase characters to lowercase except those inside character constants.
However, if the -U compiler option is specified, uppercase letters are not
transformed. In this mode, it is possible to specify external names with
uppercase letters in them and to have distinct variables differing only in case.
Regardless of the setting of the option, keywords will only be recognized in
lowercase.

Include Statement

The statement

include "stuff”

UNIX Programmer’s Manual Languages and Support Tools—131

FORTRAN 77

is replaced by the contents of the file stuff. Includes may be nested to a
reasonable depth, -currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a
binary constant, denoted by a letter followed by a quoted string. If the letter is
b, the string is binary, and only zeroes and ones are permitted. If the letter is
o, the string is octal with digits zero through seven. If the letter is z or x, the
string is hexadecimal with digits zero through nine, a through f. Thus, the
statements

integer a(3)
data a/b’1010%,0’12’,2’a’/

initialize all three elements of a to ten.

Character Strings

For compatibility with C language usage, the following backslash escapes are
recognized:

\n New-line

\t Tab

\b Backspace

\f Form feed

\O Null

\ Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

132—Languagés and Support Tools UNIX Programmer’s Manual

\ \

\x Where x is any other character.

Fortran 77 only has one quoting character — the apostrophe (°). This compiler
and I/0 system recognize both the apostrophe and the double quote (). If a
string begins with one variety of quote mark, the other may be embedded
within it without using the repeated quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string
constant is aligned on an integer word boundary. Each character string
constant appearing outside a data statement is followed by a null character to
ease communication with C language routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the new
Standard recommends implementing the old Hollerith feature in order to
improve compatibility with old programs. In this compiler, Hollerith data may
be used in place of character string constants and may also be used to initialize
non character variables in data statements.

Equivalence Statements

This compiler permits single subscripts in equivalence statements under the
interpretation that all missing subscripts are equal to 1. A warning message is
printed for each such incomplete subscript.

One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do
loop not be performed if the initial value is already past the limit value, as in

do10i=2,1

The 1966 Standard stated that the effect of such a statement was undefined,
but it was common practice that the range of a do loop would be performed at
least once. In order to accommodate old programs though they were in
violation of the 1966 Standard, the -ometrip compiler option causes nonstandard

UNIX Programmer’s Manual Languages and Support Tools—133

FORTRAN 77
loops to be generated.

Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Fortran 77 American
National Standard when it seems worthwhile. When doing a formatted read of
non-character variables, commas may be used as value separators in the input
record overriding the field lengths given in the format statement. Thus, the
format

(i10, £20.10, i4)
will read the record
-345,.05¢-3,12

correctly.

Short Integers

On machines that support half word integers, the compiler accepts declarations
of type integer*2. (Ordinary integers follow the Fortran rules about occupying
the same space as a REAL variable; they are assumed to be of C language
type long int; half word integers are of C language type short int.) An
expression involving only objects of type integer*2 is of that type. Generic
functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the -I2 flag, all small integer
constants will be of type integer*2. If the precision of an integer-valued
intrinsic function is not determined by the generic function rules, one will be
chosen that returns the prevailing length (integer*2 when the -I2 command flag
is in effect). When the -I2 option is in effect, all quantities of type logical will
be short. Note that these short integer and logical quantities do not obey the
standard rules for storage association.

134—Languages and Support Tools UNIX Programmer’s Manual

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77
Standard. In addition, there are functions for performing bitwise Boolean
operations (or, and, xor, and not) and for accessing the command arguments
(getarg and iargc).

The following lists the Fortran intrinsic function library plus some additional
functions. These functions are automatically available to the Fortran
programmer and require no special invocation of the compiler. The asterisk
(*) beside some of the commands indicate they are not part of standard F77.
In parenthesis beside each function description listed below is the location for
the command in the UNIX Programmer’s Manual —Volume 2: System Calls
and Library Routines. These functions are as follows:

abort* Terminate program (ABORT(3F))
abs Absolute value (MAX(3F)

acos Arccosine (ACOS(3F))

aimag Imaginary part of complex argument (AIMAG(3F))
aint Integer part (AINT(3F))

alog Natural logarithm (LOG(3F))

alogl0 Common logarithm (ALOG10(3F))
amax0 Maximum value (MAX(3F))

amaxl Maximum value (MAX(3F))

amin0 Minimum value (MIN(3F))

aminl Minimum value (MIN(3F))

amod Remaindering (MOD(3F))

and* Bitwise boolean (BOOL (3F))

anint Nearest integer (ROUND(3F))

asin Arcsine (ASIN(3F))

atan Arctangent (ATAN(3F))

atan2 Arctangent (ATAN2(3F))

cabs Complex absolute value (ABS(3F))
ccos Complex cosine (COS(3F))

cexp Complex exponential (EXP(3F))

char Explicit type conversion (FTYPE(3F))
clog Complex natural logarithm (LOG(3F))
cmplx Explicit type conversion (FTYPE(3F))
conjg Complex conjugate (CONJG(3F))

cos Cosine (COS(3F))

cosh Hyperbolic cosine (COSH(3F))

csin Complex sine (SIN(3F))

csqrt Complex square root (SQRT(3F))
dabs Absolute value (ABS(3F))

UNIX Programmer’s Manual Languages and Support Tools—135

FORTRAN 77

dacos Arccosine (ACOS(3F))

dasin Arcsine (ASIN(3F))

datan Arctangent (ATAN(3F))

datan2 Double precision arctangent (ATAN2(3F))
dble Explicit type conversion (FTYPE(3F))
demplx* Explicit type conversion (FTYPE(3F))
dconjg* Complex conjugate (CONJG(3F))

dcos Cosine (DCOS(3F))

dcosh Hyperbolic cosine (COSH(3F))

ddim Positive difference (DIM(3F))

dexp Exponential (EXP(3F))

dim Positive difference (DIM(3F))

dimag* Imaginary part of complex argument ((AIMAG(3F))
dint Integer part (AINT(3F))

dlog Natural logarithm (LOG(3F))

dlogl0 Common logarithm (LOG10(3F))

dmaxl Maximum value (MAX(3F))

dminl Minimum value (MIN(3F))

dmod Remaindering (DMOD(3F))

dnint Nearest integer (ROUND3F))

dprod Double precision product (DPROD(3F))
dsign Transfer of sign (SIGN(3F))

dsin Sine (SINGGF))

dsinh Hyperbolic sine (SINH(3F))

dsqrt Square root (SQRT(3F))

dtan Tangent (TAN(3F))

dtanh Hyperbolic tangent (TANH (3F))

exp Exponential (EXP(3F))

float Explicit type conversion (FTYPE(3F))
getarg* Return command-line argument (GETARG(3F))
getenv* Return environment variable (GETENV (3F))
iabs Absolute value (ABS(3F))

iargc Return number of arguments JARGC(3F))
ichar Explicit type conversion (FTYPE(3F))

idim Positive difference (DIM(3F))

idint Explicit type conversion (FTYPE(3F))
idnint Nearest integer (ROUND(3F))

ifix Explicit type conversion (FTYPE(3F))

index Return location of substring (INDEX(3F))
int Explicit type conversion (FTYPE(3F))
irand* Random number generator

isign Transfer of sign (SIGN(3F))

len Return location of string (LEN(3F))

136—Languages and Support Tools UNIX Programmer’s Manual

lge String comparison (STRCMP(3F))

lgt String comparison (STRCMP(3F))

lle String comparison (STRCMP(3F))

it String comparison (STRCMP(3F))

log Natural logarithm (LOG3F))

logl0 Common logarithm (LOG10(3F))

Ishift* Bitwise boolean (BOOL (3F))

max Maximum value (MAX3F))

max0 Maximum value (MAX(3F))

max] Maximum value (MAX(3F))

mclock* Return Fortran time accounting (MCLOCK (3F))

min Minimum value (MIN(3F))

min0 Minimum value (MIN(3F))

minl Minimum value (MIN(3F))

mod Remaindering (MOD(3F))

nint Nearest integer (BOOL(3F))

not* Bitwise boolean (BOOL(3F))

or* Bitwise boolean (BOOL(3F))

rand* Random number generator (RAND(3F))

real Explicit type conversion (FTYPE(3F))

rshift* Bitwise boolean (BOOL(3F))

sign Transfer of sign (SIGN (3F))

signal* Specify action on receipt of system signal
(SIGNALQGF))

sin Sine (SINE(3F))

sinh Hyperbolic sine (SINH(3F))

sngl Explicit type conversion (FTYPE(3F))

sqrt Square root (SQRT(3F))

srand* Random number generator (RAND(3F))

system* Issue a shell command (SYSTEM(3F))

tan Tangent (TAN(3F))

tanh Hyperbolic tangent (TANH(3F))

xor* Bitwise boolean (BOOL(3F))

zabs* Complex absolute value (ABS(3F)).

For more information on the Fortran intrinsic function commands, see the
UNIX Programmer’s Manual —Volume 2: System Calls and Library Routines.

UNIX Programmer’s Manual Languages and Support Tools—137

FORTRAN 77

VIOLATIONS OF THE STANDARD

The following paragraphs describe only three known ways in which the UNIX
system implementation of Fortran 77 violates the new American National
Standard.

Double Precision Alignment

The Fortran 77 American National Standard permits common or equivalence
statements to force a double precision quantity onto an odd word boundary, as
in the following example:

real a(4)
double precision b,c
equivalence (a(1),b), (a(4),0)

Some machines require that double precision quantities be on double word
boundaries; other machines run inefficiently if this alignment rule is not
observed. It is possible to tell which equivalenced and common variables suffer
from a forced odd alignment, but every double-precision argument would have
to be assumed on a bad boundary. To load such a quantity on some machines,
it would be necessary to use two separate operations. The first operation would
be to move the upper and lower halves into the halves of an aligned temporary.
The second would be to load that double-precision temporary. The reverse
would be needed to store a result. All double-precision real and complex
quantities are required to fall on even word boundaries on machines with
corresponding hardware requirements and to issue a diagnostic if the source
code demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure
arguments of that procedure must be declared in an external statement. This
requirement arises as a subtle corollary of the way we represent character
string arguments. A warning is printed if a dummy procedure is not declared
external. Code is correct if there are no character arguments.

138—Languages and Support Tools UNIX Programmer’s Manual

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes
is defective. These codes allow rereading or rewriting part of the record which
has already been processed. The implementation uses “seeks’; so if the unit is
not one which allows seeks (such as a terminal) the program is in error. A
benefit of the implementation chosen is that there is no upper limit on the
length of a record nor is it necessary to predeclare any record lengths except
where specifically required by Fortran or the operating system.

INTERPROCEDURE INTERFACE

To be able to write C language procedures that call or are called by Fortran
procedures, it is necessary to know the conventions for procedure names, data
representation, return values, and argument lists that the compiled code obeys.

Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an
underscore appended to it by the compiler to distinguish it from a C language
procedure or external variable with the same user-assigned name. Fortran
library procedure names have embedded underscores to avoid clashes with
user-assigned subroutine names.

Data Representations

The following is a table of corresponding Fortran and C language declarations:

UNIX Programmer’s Manual Languages and Support Tools—139

FORTRAN 77

Fortran - C Language
integer*2 x short int x;
integer x long int x;
logical x long in_t X;
real x float x;

double precision x double x;

complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character*6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same amount
of memory.

Return Values

A function of type integer, logical, real, or double precision declared as a C
language function returns the corresponding type. A complex or double
complex function is equivalent to a C language routine with an additional
initial argument that points to the place where the return value is to be stored.
Thus, the following:

complex function f(. . .)
is equivalent to

struct { float r, i; } temp;
f (&temp, . ..)

A character-valued function is equivalent to a C language routine with two
extra initial arguments - a data address and a length. Thus,

140~Languages and Support Tools - UNIX Programmer’s Manual

character*15 function g(. . .)
is equivalent to

char result[];
long int length;
g_(result, length, . .)

and could be invoked in C language by

char chars[15];

g_(chars, 15L, .. .);

Subroutines are invoked as if they were integer-valued functions whose value
specifies which alternate return to use. Alternate return arguments (statement
labels) are not passed to the function but are used to do an indexed branch in
the calling procedure. (If the subroutine has no entry points with alternate
return arguments, the returned value is undefined.) The statement

call nret(*1, *2, *3)
is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

Argument Lists

All Fortran arguments are passed by address. In addition, for every argument
that is of type character or that is a dummy procedure, an argument givitfg the
length of the value is passed. (The string lengths are long int quantities passed
by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

UNIX Programmer’s Manual Languages and Support Tools—141

FORTRAN 77

Thus, the call in

external f
character*7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int fQ;
char s[7];
long int b[3];

sam_(f, &b[1], s, OL, 7L);

Note that the first element of a C language array always has subscript 0, but
Fortran arrays begin at 1 by default. Fortran arrays are stored in column-
major order; C language arrays are stored in row-major order.

FILE FORMATS

Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and
unformatted, and direct formatted and unformatted. On UNIX systems,
these are all implemented as ordinary files which are assumed to have the
proper internal structure. ’

Fortran 1/0 is based on “records.” When a direct file is opened in a Fortran
program, the record length of the records must be given; and this is used by the
Fortran 1/0 system to make the file look as if it is made up of records of the
given length. In the special case that the record length is given as 1, the files
are not considered to be divided into records but are treated as byte-
addressable byte strings; i.c., as ordinary files on the UNIX system. (A read or
write request on such a file keeps consuming bytes until satisfied rather than
being restricted to a single record.)

142—Languages and Support Tools UNIX Programmer’s Manual

The peculiar requirements on sequential unformatted files make it unlikely that
they will ever be read or written by any means except Fortran I/0 statements.
Each record is preceded and followed by an integer containing the record’s
length in bytes.

The Fortran I/0 system breaks sequential formatted files into records while
reading by using each new-line as a record separator. The result of reading off
the end of a record is undefined according to the Fortran 77 American
- National Standard. The I/O system is permissive and treats the record as
being extended by blanks. On output, the I/O system will write a new-line at
the end of each record. It is also possible for programs to write new-lines for
themselves. This is an error, but the only effect will be that the single record
the user thought was written will be treated as more than one record when
being read or backspaced over.

Preconnected Files and File Positions

Units 5, 6, and O are preconnected when the program starts. Unit 5 is
connected to the standard input, unit 6 is connected to the standard output, and
unit 0 is connected to the standard error unit. All are connected for sequential
formatted 1/0.

All the other units are also preconnected when execution begins. Unit n is
connected to a file named fort.n. These files need not exist nor will they be
created unless their units are used without first executing an open. The default
connection is for sequential formatted 1/0.

The Fortran 77 Standard does not specify where a file which has been
explicitly opened for sequential I/O is initially positioned. In fact, the 1/0O
system attempts to position the file at the end. A write will append to the file
and a read will result in an “end of file” indication. To position a file to its
beginning, use a rewind statement. The preconnected units 0, 5, and 6 are
positioned as they come from the parent process.

UNIX Programmer’s Manual Languages and Support Tools—143

RATFOR

GENERAL

This chapter describes the ratfor(1) preprocessor. It is assumed that the user
is familiar with the current implementation of Fortran 77 on the UNIX
system.

The Ratfor language allows users to write Fortran programs in a fashion
similar to C language. The Ratfor program is implemented as a preprocessor
that translates this “simplified” language into Fortran. The facilities provided
by Ratfor are:

Statement grouping

if—else and switch for decision making

while, Tor, do, and repeat—until for looping
break and next for controlling Toop exits
Free form input such as multiple statements/lines and automatic
continuation

Simple comment convention

Translation of >, >=, etc., into .gt., .ge., etc.
return statement for functions

define statement for symbolic parameters
include statement for including source files.

USAGE

The Ratfor program takes either a list of file names or the standard input and
writes Fortran on the standard output. Options include -6x, which uses x as a
continuation character in column 6 (the UNIX system uses & in column T), -h,
which causes quoted strings to be turned into nH constructs and -C, which
causes Ratfor comments to be copied into the generated Fortran.

UNIX Programmer’s Manual Languages and Support Tools—145

RATFOR

STATEMENT GROUPING

- The Ratfor language provides a statement grouping facility. A group of
statements can be treated as a unit by enclosing them in the braces { and }.
For example, the Ratfor code

if (x > 100)
{ call error("x>100"); err = 1; return }

will be translated by the Ratfor preprocessor into Fortran equivalent to

if (x .le. 100) goto 10
call error(Shx>100)
err=1
return

10

which should simplify programming effort. By using { and }, a group of
statements can be used instead of a single statement.

Also note in the previous Ratfor example that the character > was used
instead of .GT. in the if statement. The Ratfor preprocessor translates this C
language ‘type operator to the appropriate Fortran operator. More on
relationship operators later.

In addition, many Fortran compilers permit character strings in quotes (like
"x>100"). But others, like ANSI Fortran 66, do not. Ratfor converts it into
the right number of Hs.

The Ratfor language is free form. Statements may appear anywhere on a line,
and several may appear on one line if they are separated by semicolons. The
previous example could also be written as

if (x > 100) {

call error("x> 100"
err =1

return

}

146—Languages and Support Tools UNIX Programmer’s Manual

which shows grouped statements spread over several lines. In this case, no
semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement, no braces
are needed.

THE “if-else” CONSTRUCTION

The Ratfor language provides an else statement. The syntax of the if-else
construction is:

if (legal Fortran condition)
ratfor statement

else
ratfor statement

where the else part is optional. The legal Fortran condition is anything that
can legally go into a Fortran Logical TF statement. The Ratfor preprocessor
does not check this clause since it does not know enough Fortran to know what
is permitted. The "ratfor" statement is any Ratfor or Fortran statement or any
collection of them in braces. For example:

if (a <=1)

{ sw=0; write(6, 1) a, b}
else

{ sw=1; write(6, 1) b, a }

is a valid Ratfor if-else construction. This writes out the smaller of a and b,
then the larger, and sets sw appropriately. - -

As before, if the statement following an if or an else is a single statement, no
braces are needed.

UNIX Programmer’s Manual Languages and Support Tools—147

RATFOR

Nested “if”’ Statements

The statement that follows an if or an else can be any Ratfor statement
including another if or else statement. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor language also
provides a switch statement which could be used instead, under certain
conditions.) The last else handles the ‘“default” condition. If there is no
default action, this final else can be omitted. Thus, only the actions associated
with the valid condition are performed. For example:

if (x < 0)
x=0

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In Ratfor when
there are more if statements than else statements, else statements are
associated with the closest previous if statement that currently does not have an
associated else statement. For example:

if x> 0)

if (y > 0)
write(6,1) x, y
else

write(6,2) y

is interpreted by the Ratfor preprocessor as

148—Languages and Support Tools UNIX Programmer’s Manual

if x> 0){
if (y > 0)
write(6, 1) x, y
else
write(6, 2) y

in which the braces are assumed. If the other association is desired it must be
written as

if x>0 {
if (y > 0)
write(6, 1) x, y
}
else
write(6, 2) y

with the braces specified.

THE “switch” STATEMENT

The switch statement provides a way to express multiway branches which
branch on the value of some integer-valued expression. The syntax is

switch (expression) {

' case exprl :
statements
case expr2, expr3 :
Statements

default:
statements

where each case is followed by an integer expression (or several integer
expressions separated by commas). The switch expression is compared to each
case expr until a match is found. Then the statements following that case are
executed. If no cases match expression, then the statements following default
are executed. The default section of a switch is optional.

UNIX Programmer’s Manual Languages and Support Tools—149

RATFOR

When the statements associated with a case are executed, the entire switch is
exited immediately. This is different from C language.

THE “do” STATEMENT

The do statement in Ratfor is quite similar to the DO statement in Fortran
except that it uses no statement number (braces are used to mark the end of
the do instead of a statement number). The syntax of the ratfor do statement
is

do legal-Fortran-DO-text {
ratfor statements

}

The legal-Fortran-DO-text must be something that can legally be used in a
Fortran DO statement. Thus if a local version of Fortran allows DO limits to
be expressions (which is not currently permitted in ANSI Fortran 66), they.
can be used in a ratfor do statement. The ratfor statements are enclosed in
braces; but as with the if, a single statement need not have braces around 1t
For example, the following code sets an array to zero:

doi=1,n

x() =
and the code

doi=1,n
doj=1,n
m(@, j) =0

sets the entire array m to zero.

THE “break” AND “next” STATEMENTS

The Ratfor break and next statements provide a means for leaving a loop early
and one for beginning the next iteration. The break causes an immediate exit
from the do; in effect, it is a branch to the statement after the do. The next is
a branch to the bottom of the loop, so it causes the next iteration to be done.

150—Languages and Support Tools UNIX Programmer’s Manual

For example, this code skips over negative values in an array

doi=1,n{
if (x()) < 0.0)
next
process positive element

The break and next statements will also work in the other Ratfor looping
constructions and will be discussed with each looping construction.

The break and next can be followed by an integer to indicate breaking or
iterating that level of enclosing loop. For example:

’break 2

exits from two levels of enclosing loops, and
break 1

is equivalent to break. The
next 2

iterates the second enclosing loop.

THE “while” STATEMENT

The Ratfor language provides a while statement. The syntax of the while
statement is

while (legal-Fortran-condition)
ratfor statement

As with the if, legal—Fortran—condition is something that can go into a
Fortran Logical IF, and ratfor statement is a single statement which may be
multiple statements enclosed In braces.

UNIX Programmer’s Manual Languages and Support Tools—151

RATFOR

For example, suppose nextch is a function which returns the next input
character both as a function value and in its argument. Then a while loop to
find the first nonblank character could be

while (nextch(ich) == iblank)

b

where a semicolon by itself is a null statement (which is necessary here to
mark the end of the while). If the semicolon were not present, the while would
control the next statement. When the loop is exited, ich contains the first
nonblank. -

THE “for” STATEMENT

The for statement is another Ratfor loop. A for statement allows explicit
initialization and increment steps as part of the statement.

The syntax of the for statement is

for (init ; condition ; increment)
ratfor statement

where init is any single Fortran statement which is executed once before the
loop begins. The increment is any single Fortran statement that is executed at .
the end of each pass through the loop before the test. The condition is again
anything that is legal in a Fortran Logical IF. Any of init, condition, and
increment may be omitted although the semicolons must always be present. A
nonexistent condition is treated as always true, so

for ;)

is an infinite loop.

152—Languages and Support Tools UNIX Programmer’s Manual

For example, a Fortran DO loop could be written as
for(i=1i<=nji=i+1)..
which is equivalent to

i=1
while (i <=n) {

i=i+1

The initialization and increment of / have been moved into the for statement.

The for, do, and while versions have the advantage that they will be done zero
times if n is less than 1. In addition, the break and mext statements work in a
for loop.

The increment in a for need not be an arithmetic progression. The program

sum = 0.0
for (i = first; i > 0; i = ptr(@))
sum = sum + value()

steps through a list (stored in an integer array ptr) until a zero pointer is found
while adding up elements from a parallel array of values. Notice that the code
also works correctly if the list is empty.

THE “repeat-until” STATEMENT

There are times when a test needs to be performed at the bottom of a loop
after one pass through. This facility is provided by the repeat-umtil statement.
The syntax for the repeat-until statement is

repeat
ratfor statement
until (legal-Fortran-condition)

UNIX Programmer’s Manual Languages and Support Tools—153

RATFOR

where ratfor—statement is done once, then the condition is evaluated. If it is
true, the Toop is exited; if it is false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat-until
loop can be exited by the use of a stop, return, or break statement or an
implicit stop such as running out of input with a READ statement.

As stated before, a break statement causes an immediate exit from the
enclosing repeat-until loop. A next statement will cause a skip to the bottom of
a repeat-until loop (i.e., to the until part).

THE “return” STATEMENT

The standard Fortran mechanism for returning a value from a routine uses the
name of the routine as a variable. This variable can be assigned a value. The
last value stored in it is the value returned by the function. For example, in a
Fortran routine named equal, the statements

equal =0
return

cause equal to return zero.

The Ratfor language provides a return statement similar to the C language
return statement. In order to return a value from any routine, the return
statement has the syntax

return (expression)
where expression is the value to be returned.

If there is no parenthesized expression after return, no value is returned.

154—Languages and Support Tools UNIX Programmer’s Manual

THE “define” STATEMENT

The Ratfor language provides a define statement similar to the C language
version. Any string of alphanumeric characters can be defined as a name.
Whenever that name occurs in the input (delimited by nonalphanumerics), it is
replaced by the rest of the definition line. (Comments and trailing white
spaces are stripped off.) A defined name can be arbitrarily long and must
begin with a letter.

Usually the define statement is used for symbolic parameters. The syntax of
the define statement is

define name value

where name is a symbolic name that represents the quantity of value. For
example:

define ROWS 100

define CLOS 50

dimension a(ROWS), b(ROWS, COLS)
if G > ROWS | j > COLS) ...

causes the preprocessor to replace the name ROWS with the value 100 and the
name COLS with the value 50. Alternately, definitions may be written as

define(ROWS, 100)

in which case the defining text is everything after the comma up to the right
parenthesis. This allows multiple-line definitions.

THE “include” STATEMENT

The Ratfor language provides an include statement similar to the #include
<...> statement in C language. The syntax for this statement is

include file

UNIX Programmer’s Manual Languages and Support Tools—155

RATFOR

which inserts the contents of the named file into the Ratfor input file in place
of the include statement. The standard usage is to place COMMON blocks on
a file and use the include statement to include the common code whenever
needed.

FREE-FORM INPUT

In Ratfor, statements can be placed anywhere on a line. Long statements are
continued automatically as are long conditions in if, for, and until statements.
Blank lines are ignored. Multiple statements may appear on one line if they
are separated by semicolons. No semicolon is needed at the end of a line if
Ratfor can make some reasonable guess about whether the statement ends
there. Lines ending with any of the characters

=+'*9|&(

are assumed to be continued on the next line. Underscores are discarded
wherever they occur. All other characters remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a Fortran
label and placed in columns 1 through 5 upon output. Thus:

write(6, 100); 100 format ("hello")
is converted into

write(6, 100)
100 format (Shhello)

TRANSLATIONS

When the -h option is chosen, text enclosed in matching single or double quotes
is converted to nH... but is otherwise unaltered (except for formatting — it
may get split across card boundaries during the reformatting process). Within
quoted strings, the backslash (\) serves as an escape character; i.e., the next
character is taken literally. This provides a way to get quotes and the
backslash itself into quoted strings. For example:

"\'"
156—Languages and Support Tools UNIX Programmer’s Manual

is a string containing a backslash and an apostrophe. (This is not the standard
convention of doubled quotes, but it is easier to use and more general.)

Any line that begins with the character % is left absolutely unaltered except
for stripping off the % and moving the line one position to the left. This is
useful for inserting control cards and other things that should not be
preprocessed (like an existing Fortran program). Use % only for ordinary
statements not for the condition parts of if, while, etc., or the output may come
out in an unexpected place.

The following character translations are made (except within single or double
quotes or on a line beginning with a %):

== eq.

- 1= |ne.
> gt
>= _ge.
< It
<= le.
& .and.
| .or.
! .not.

In addition, the following translations are provided for input devices with
restricted character sets:

$ }
UNIX Programmer’s Manual Languages and Support Tools—157

RATFOR

WARNINGS

The Ratfor preprocessor catches certain syntax errors (such as missing braces),
else statements without if statements, and most errors involving missing
parentheses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the
Fortran compiler prints messages in terms of generated Fortran code and not in
terms of the Ratfor code. This makes it difficult to locate Ratfor statements
that contain errors.

The keywords are deserved. Using if, else, while, etc., as variable names will
cause considerable problems. Likewise, spaces within keywords and use of the
Arithmetic IF will cause problems.

The Fortran nH convention is not recognized by Ratfor. Use quotes instead.

EXAMPLE OF RATFOR CONVERSION

As an example of how to use the Ratfor program, the following program prog.r
(where the .r indicates a Ratfor source program), is written in the Ratfor
language:

ICNT=0
10 WRITE(6,31)
31 FORMAT("INPUT FIRST NUMBER")
READ(5,32) A
32 FORMAT(F10.2)
WRITE(6,33)
33 FORMAT("INPUT SECOND NUMBER")
READ(5,34) B
34 FORMAT(F10.2)
IF(A<B)
WRITE(6,36) A,B
ELSE WRITE(6,37)A,B
36 FORMAT(F10.2," < ",F10.2)
37 FORMAT(F10.2," >= ",F10.2)
ICNT=ICNT+1
IF(ICNT.EQ.5)
GOTO 100
GOTO 10
100 END

158—Languages and Support Tools UNIX Programmer’s Manual

The command

ratfor prog.r > prog.f

causes the Fortran translation program prog.f to be produced. (The Ratfor
program prog.r remains intact.) The Fortran program prog.f follows:

icnt=0
10 write(6,31)

31 format("INPUT FIRST NUMBER")

read(5,32) a
32 format(f10.2)
write(6,33)

33 format("INPUT SECOND NUMBER")

read(5,34) b
34 format(f10.2)

if(.not.(a.lt.b)) goto 23000

write(6,36) a,b

goto 23001
23000 continue

write(6,37)a,b
23001 continue

36 format(f10.2," < ",f10.2)
37 format(f10.2," >="£10.2)

icnt=icnt+1

if (.not. (icnt.eq.5)) goto 23002

goto 100
23002 continue
goto 10

100 end

The Fortran program prog.f is compiled using the command

£77 prog.f

UNIX Programmer’s Manual

Languages and Support Tools—159

RATFOR

An object program file prog.o and a final output file a.out are produced. Since
the output file a.out is an executable file, the command

a.out
causes the program to run.

The Ratfor program prog.r can also be translated and compiled with the single
command

f77 prog.r

where the .r indicates a Ratfor source program. An object file prog.o and a
final output file a.out are produced.

160—Languages and Support Tools UNIX Programmer’s Manual

THE PROGRAMMING LANGUAGE EFL

INTRODUCTION

EFL is a clean, general purpose computer language intended to encourage
portable programming. It has a uniform and readable syntax.and good data
and control flow structuring. EFL programs can be translated into efficient
Fortran code, so the EFL programmer can take advantage of the ubiquity of
Fortran, the valuable libraries of software written in that language, and the
portability that comes with the use of a standardized language, without
suffering from Fortran’s many failings as a language. It is especially useful for
numeric programs. Thus, the EFL language permits the programmer to express
complicated ideas in a comprehensible way, while permitting access to the
power of the Fortran environment.

The name EFL originally stood for “Extended Fortran Language.” The current
compiler is much more than a simple preprocessor: it attempts to diagnose all
syntax errors, to provide readable Fortran output, and to avoid a number of
niggling restrictions.

In examples and syntax specifications, boldface type is used to indicate literal
words and punctuation, such as while. Words in italic type indicate an item in
a category, such as an expression. A construct surrounded by double brackets
represents a list of one or more of those items, separated by commas. Thus,
the notation

[item 1
could refer to any of the following:

item
item, item
item, item, item

The reader should have a fair degree of familiarity with some procedural
language. There will be occasional references to Ratfor and to Fortran which
may be ignored if the reader is unfamiliar with those languages.

UNIX Programmer’s Manual Languages and Support Tools—161

EFL

LEXICAL FORM

Character Set

The following characters are legal in an EFL program:

letters abcdefghijklm
‘nopqrstuvwxyz

digits 0123456789

white space blank tab

quotes "

sharp #

continuation _

braces {1}

parentheses ()

other y 3 + — =

: . /
= < > & ~| s

Letter case (upper or lower) is ignored except within strings, so “a” and “A”
are treated as the same character. All of the examples below are printed in
lower case. An exclamation mark (“!”) may be used in place of a tilde (“~).
Square brackets (“[” and “]”) may be used in place of braces (“{"” and “}”).

Lines

EFL is a line-oriented language. Except in special cases (discussed below), the
end of a line marks the end of a token and the end of a statement. The trailing
portion of a line may be used for a comment. There is a mechanism for
diverting input from one source file to another, so a single line in the program
may be replaced by a number of lines from the other file. Diagnostic messages
are labeled with the line number of the file on which they are detected.

White Space

Outside of a character string or comment, any sequence of one or more spaces
or tab characters acts as a single space. Such a space terminates a token.

162—Languages and Support Tools UNIX Programmer’s Manual

Comments

A comment may appear at the end of any line. It is introduced by a sharp (#)
character, and continues to the end of the line. (A sharp inside of a quoted
string does not mark a comment.) The sharp and succeeding characters on the
line are discarded. A blank line is also a comment. Comments have no effect
on execution.

Include Files

It is possible to insert the contents of a file at a point in the source text, by
referencing it in a line like

include joe

No statement or comment may follow an include on a line. In effect, the
include line is replaced by the lines in the named file, but diagnostics refer to
the line number in the included file. Includes may be nested at least ten deep.

Continuation

Lines may be continued explicitly by using the underscore (_) character. If
the last character of a line (after comments and trailing white space have been
stripped) is an underscore, the end of a line and the initial blanks on the next
line are ignored. Underscores are ignored in other contexts (except inside of
quoted strings). Thus

1_000_000_
000

equals 10°.

There are also rules for continuing lines automatically: the end of line is
ignored whenever it is obvious that the statement is not complete. To be
specific, a statement is continued if the last token on a line is an operator,
comma, left brace, or left parenthesis. (A statement is not continued just
because of unbalanced braces or parentheses.) Some compound statements are
also continued automatically; these points are noted in the sections on
executable statements.

UNIX Programmer’s Manual Languages and Support Tools—163

EFL

Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is possible to write
more than one statement on a line. A line consisting only of a semicolon, or a
semicolon following a semicolon, forms a null statement.

Tokens

A program is made up of a sequence of tokens. Each token is a sequence of
characters. A blank terminates any token other than a quoted string. End of
line also terminates a token unless explicit continuation (see above) is signaled
by an underscore.

Identifiers

An identifier is a letter or a letter followed by letters or digits. The following is
a list of the reserved words that have special meaning in EFL. They will be
discussed later.

array exit precision
automatic external procedure
break false read

call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value

else long while

end next write
equivalence option writebin

The use of these words is discussed below. These words may not be used for
any other purpose.

164—Languages and Support Tools UNIX Programmer’s Manual

Strings

A character string is a sequence of characters surrounded by quotation marks.
If the string is bounded by single-quote marks ('), it may contain double
quote marks ("), and vice versa. A quoted string may not be broken across a
line boundary.

‘hello there’
"ain’t misbehavin'"

Integer Constants

An integer constant is a sequence of one or more digits.

0
57
123456

Floating Point Constants

A floating point constant contains a dot and/or an exponent field. An exponent
field is a letter d or e followed by an optionally signed integer constant. If I
and J are integer constants and E is an exponent field, then a floating constant
has one of the following forms:

I

L
LJ
IE
LE
JE
LJE

Punctuation
Certain characters are used to group or separate objects in the language.
These are

parentheses (
braces {

)
}

UNIX Programmer’s Manual Languages and Support Tools—165

EFL

comma ,
semicolon ;
colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither blank
nor continued.

Operators

The EFL operators are written as sequences of one or more non-alphanumeric
characters.

4+ — % [/ =

< <= > >= == -=
&& || & |

+= —= [= #x=
&&= |l= &= =

-> . 3

A dot (*.”) is an operator when it qualifies a structure element name, but not
when it acts as a decimal point in a numeric constant. There is a special mode
(see "ATAVISMS") in which some of the operators may be represented by a
string consisting of a dot, an identifier, and a dot (e.g., .It.).

Macros

EFL has a simple macro substitution facility. An identifier may be defined to
be equal to a string of tokens; whenever that name appears as a token in the
program, the string replaces it. A macro name is given a value in a define
statement like

define count n +=1

Any time the name count appears in the program, it is replaced by the
statement

166—Languages and Support Tools UNIX Programmer’s Manual

A define statement must appear alone on a line; the form is
define name rest-of-line

Trailing comments are part of the string.

PROGRAM FORM

Files

A file is a sequence of lines. A file is compiled as a single unit. It may contain
one or more procedures. Declarations and options that appear outside of a
procedure affect the succeeding procedures on that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has
a name by which it is invoked. (The first procedure invoked during execution,
known as the main procedure, has the null name.) Procedure calls and
argument passing are discussed in "PROCEDURES."

Blocks

Statements may be formed into groups inside of a procedure. To describe the
scope of names, it is convenient to introduce the ideas of block and of nesting
level. The beginning of a program file is at nesting level zero. Any options,
macro definitions, or variable declarations are also at level zero. The text
immediately following a procedure statement is at level 1. After the
declarations, a left brace marks the beginning of a new block and increases the
nesting level by 1; a right brace drops the level by 1. (Braces inside
declarations do not mark blocks.) (See "Blocks" under "EXECUTABLE
STATEMENTS.") An end statement marks the end of the procedure, level 1,
and the return to level 0. A name (variable or macro) that is defined at level
K is defined throughout that block and in all deeper nested levels in which that

UNIX Programmer’s Manual Languages and Support Tools—167

EFL

name is not redefined or redeclared. Thus, a procedure might look like the
following:

block 0

procedure george
real x
x =2
ifx > 2)
{ # new block
integer x # a different variable
dox = 1,7
write(,x)
} # end of block
end # end of procedure, return to block 0
Statements

A statement is terminated by end of line or by a semicolon. Statements are of
the following types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The include,
define, and end statements have been described above; they may not be followed
by another statement on a line. Each procedure begins with a procedure
statement and finishes with an end statement; these are discussed in
"PROCEDURES". Declarations describe types and values of variables and
procedures. Executable statements cause specific actions to be taken. A block
is an example of an executable statement; it is made up of declarative and
executable statements.

168—Languages and Support Tools ‘ UNIX Programmer’s Manual

Labels

An executable statement may have a label which may be used in a branch
statement. A label is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal("bad input™)

DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may
define objects made up of variables of basic type; other aggregates may then be
defined in terms of previously defined aggregates.

Basic Types

The basic types are

logical
integer
field(m::n)
real

complex

long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may
take on any whole number value in some machine-dependent range. A field
quantity is an integer restricted to a particular closed interval ([m:n]). A
“real” quantity is a floating point approximation to a real or rational number.
A long real is a more precise approximation to a rational. (Real quantities are
represented as single precision floating point numbers; long reals are double
precision floating point numbers.) A complex quantity is an approximation to
a complex number, and is represented as a pair of reals. A character quantity
is a fixed-length string of n characters.

UNIX Programmer’s Manual Languages and Support Tools—169

EFL

Constants

There is a notation for a constant of each basic type.
A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by a
plus or minus sign, as in

17
-94
+6
0

A long real (“double precision”) constant is a floating point constant containing
an exponent field that begins with the letter d. A real (“single precision”)
constant is any other floating point constant. A real or long real constant may
be preceded by a plus or minus sign. The following are valid real constants:

17.3

-4

7.9e—6 (=7.9x107%)
14¢9 (= 1.4x10'9)

The following are valid long real constants

7.9d-6 (=7.9%107%)
5d3

A character constant is a quoted string.

170—Languages and Support Tools UNIX Programmer’s Manual

Variables

A variable is a quantity with a name and a location. At any particular time
the variable may also have a value. (A variable is said to be undefined before
it is initialized or assigned its first value, and after certain indefinite operations
are performed.) Each variable has certain attributes:

Storage Class

The association of a name and a location is either transitory or permanent.
Transitory association is achieved when arguments are passed to procedures.
Other associations are permanent (static). (A future extension of EFL may
include dynamically allocated variables.)

Scope of Names

The names of common areas are global, as are procedure names: these names
may be used anywhere in the program. All other names are local to the block
in which they are declared.

Precision

Floating point variables are either of normal or long precision. This attribute
may be stated independently of the basic type.

Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the
same type. The index set is always a cross-product of intervals of integers.
The lower and upper bounds of the intervals must be constants for arrays that
are local or common. A formal argument array may have intervals that are of
length equal to one of the other formal arguments. An element of an array is
denoted by the array name followed by a parenthesized comma-separated list
of integer values, each of which must lie within the corresponding interval.
(The intervals may include negative numbers.) Entire arrays may be passed as
procedure arguments or in input/output lists, or they may be initialized; all
other array references must be to individual elements.

UNIX Programmer’s Manual Languages and Support Tools—171

EFL

Structures

It is possible to define new types which are made up of elements of other types.
The compound object is known as a structure; its constituents are called
members of the structure. The structure may be given a name, which acts as a
type name in the remaining statements within the scope of its declaration. The
elements of a structure may be of any type (including previously defined
structures), or they may be arrays of such objects. Entire structures may be
passed to procedures or be used in input/output lists; individual elements of
structures may be referenced. The uses of structures will be detailed below.
The following structure might represent a symbol table:

struct tableentry
{
character(8) name
integer hashvalue
integer numberofelements
field(0:1) initialized, used, set
field (0:10) type

EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression may have
any of the following forms, recursively applied:

primary

(expression)

unary-operator expression

expression binary-operator expression

In the following table of operators, all operators on a line have equal
precedence and have higher precedence than operators on later lines. The
meanings of these operators are described in "Unary Operators" and "Binary
Operators" under "EXPRESSIONS".

172—Languages and Support Tools UNIX Programmer’s Manual

**
*/ unary + - ++ —-

+ -

< <= > >D>= == ~=

& &&

Ll

$

= 4= —= 2= [= = &= |= &&= “=

Examples of expressions are

a<b & & b<c
—(a + sin(x)) / (5+cos(x))**2

Primaries

Primaries are the basic elements of expressions. They include constants,
variables, array elements, structure members, procedure invocations,
input/output expressions, coercions, and sizes.

Constants

Constants are described in "Constants" under "DATA TYPES AND
VARIABLES".

Variables

Scalar variable names are primaries. They may appear on the left or the right
side of an assignment. Unqualified names of aggregates (structures or arrays)
may appear only as procedure arguments and in input/output lists.

Array Elements

An element of an array is denoted by the array name followed by a
parenthesized list of subscripts, one integer value for each declared dimension:

a(5)
b(6, —3,4)

UNIX Programmer’s Manual Languages and Support Tools—173

EFL

Structure Members

A structure name followed by a dot followed by the name of a member of that
structure constitutes a reference to that element. If that element is itself a
structure, the reference may be further qualified.

a.b
x(3).y(4).z(5)

Procedure Invocations

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-1, ..., expression-n)

The procedurename is either the name of a variable declared external or it is
the name of a function known to the EFL compiler (see "Known Functions"
under "PROCEDURES"), or it is the actual name of a procedure, as it appears
in a procedure statement. If a procedurename is declared external and is an
argument of the current procedure, it is associated with the procedure name
passed as actual argument; otherwise it is the actual name of a procedure.
Each expression in the above is called an actual argument. Examples of
procedure invocations are

f(x)
work)
g(x, y+3, 'xx)

When one of these procedure invocations is to be performed, each of the actual
argument expressions is first evaluated. The types, precisions, and bounds of
actual and formal arguments should agree. If an actual argument is a variable
name, array element, or structure member, the called procedure is permitted to
use the corresponding formal argument as the left side of an assignment or in
an input list; otherwise it may only use the value. After the formal and actual
arguments are associated, control is passed to the first executable statement of
the procedure. When a return statement is executed in that procedure, or when
control reaches the end statement of that procedure, the function value is made
available as the value of the procedure invocation. The type of the value is
determined by the attributes of the procedurename that are declared or implied

174—Languages and Support Tools - UNIX Programmer’s Manual

in the calling procedure, which must agree with the attributes declared for the
function in its procedure. In the special case of a generic function, the type of
the result is also affected by the type of the argument. See "PROCEDURES".

Input/Output Expressions

The EFL input/output syntactic forms may be used as integer primaries that
have a non-zero value if an error occurs during the input or output. See
"Input/Output Statements" under "EXECUTABLE STATEMENTS".

Coercions

An expression of one precision or type may be converted to another by an
expression of the form

attributes (expression)

At present, the only attributes permitted are precision and basic types.
Attributes are separated by white space. An arithmetic value of one type may
be coerced to any other arithmetic type; a character expression of one length
may be coerced to a character expression of another length; logical expressions
may not be coerced to a nonlogical type. As a special case, a quantity of
complex or long complex type may be constructed from two integer or real
quantities by passing two expressions (separated by a comma) in the coercion.
Examples and equivalent values are

integer(5.3) = 5
long real(5) = 5.0d0
complex(5,3) = 5+3i

Most conversions are done implicitly, since most binary operators permit
operands of different arithmetic types. Explicit coercions are of most use when
it is necessary to convert the type of an actual argument to match that of the
corresponding formal parameter in a procedure call.

UNIX Programmer’s Manual Languages and Support Tools—175

EFL

Sizes

There is a notation which yields the amount of memory required to store a
datum or an item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or
structure member. The value of sizeof is an integer, which gives the size in
arbitrary units. If the size is needed in terms of the size of some specific unit,
this can be computed by division:

sizeof (x) / sizeof(integer)
yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof
because certain data types require final padding on some machines. The
lengthof operator gives this larger value, again in arbitrary units. The syntax is

lengthof (leftside)
lengthof (attributes)

Parentheses

An expression surrounded by parentheses is itself an expression. A
parenthesized expression must be evaluated before an expression of which it is
a part is evaluated.

Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary
operator has the same type as its operand.

176—Languages and Support Tools UNIX Programmer’s Manual

Arithmetic

Unary + has no effect. A unary — yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator — —
subtracts one from its operand. The value of either expression is the result of
the addition or subtraction. For these two operators, the operand must be a
scalar, array element, or structure member of arithmetic type. (As a side
effect, the operand value is changed.)

Logical

The only logical unary operator is complement (~). This operator is defined by
the equations

~ true = false
~ false = true

Binary Operators

Most EFL operators have two operands, separated by the operator. Because the
character set must be limited, some of the operators are denoted by strings of
two or three special characters. All binary operators except exponentiation are
left associative.

Arithmetic

The binary arithmetic operators are

+ addition

— subtraction

multiplication
/ division

" *+ exponentiation

*

Exponentiation is right associative: a**b*rc = a*+(bs+c) = a®) The
operations have the conventional meanings: 8+2 = 10, 8—2 = 6, 8+2 = 16,
8/2 = 4, 8+x2 = 82 = 64,

The type of the result of a binary operation A op B is determined by the types
of its operands:

UNIX Programmer’s Manual Languages and Support Tools—177

EFL

Type of B
Typeof A | i r Ir c lc
i i r It c lc
r r r Ir C lc
Ir Ir 1Ir 1Ir lc 1Ic
c c c Ic c Ic
lc Ic 1c ¢ Ic 1Ic

i = integer

r = real

I r = long real

¢ = complex

1 ¢ = long complex

If the type of an operand differs from the type of the result, the calculation is
done as if the operand were first coerced to the type of the result. If both
operands are integers, the result is of type integer, and is computed exactly.
(Quotients are truncated toward zero, so 8/3=2.)

Logical

The two binary logical operations in EFL, and and or, are defined by the truth
tables:

A B Aand B AorB
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of
evaluation is specified. The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is false and b
is not evaluated; otherwise, the expression has the value of b. The expression

178—Languages and Support Tools UNIX Programmer’s Manual

allb

is evaluated by first evaluating a; if it is true then the expression is true and b
is not evaluated; otherwise, the expression has the value of b. The other forms
of the operators (& for and and | for or) do not imply an order of evaluation.
With the latter operators, the compiler may speed up the code by evaluating
the operands in any order.

Relational Operators

There are six relations between arithmetic quantities. These operators are not
associative.

EFL Operator Meaning

less than

less than or equal to
equal to

not equal to

greater than

greater than or equal

I AA
I

]
]
VVIIAA

VvV
I

Since the complex numbers are not ordered, the only relational operators that
may take complex operands are == and ~= . The character collating
sequence is not defined.

Assignment Operators

All of the assignment operators are right associative. The simple form of
assignment is

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure member
of basic type. This statement computes the expression on the right side, and
stores that value (possibly after coercing the value to the type of the left side)
in the location named by the left side. The value of the assignment expression
is the value assigned to the left side after coercion. :

There is also an assignment operator corresponding to each binary arithmetic
and logical operator. In each case, a op= b is equivalent to a = a op b. (The
operator and equal sign must not be separated by blanks.) Thus, n+=2 adds

UNIX Programmer’s Manual Languages and Support Tools—179

EFL

2 to n. The location of the left side is evaluated only once.

Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there is a
notation for dynamic structures,

leftside —> structurename

This expression is a structure with the shape implied by structurename but
starting at the location of leftside. In effect, this overlays the structure
template at the specified location. The leftside must be a variable, array, array
element, or structure member. The type of the leftside must be one of the
types in the structure declaration. An element of such a structure is denoted in
the usual way using the dot operator. Thus,

place(i) —> st.elt

refers to the elt member of the st structure starting at the i element of the
array place.

Repetition Operator

Inside of a list, an element of the form
integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times equal to
the first expression. Thus,

3, 3%4, 5)
is equivalent to

(3,4,4,4,5

180—Languages and Support Tools UNIX Programmer’s Manual

Constant Expressions

If an expression is built up out of operators (other than functions) and
constants, the value of the expression is a constant, and may be used anywhere
a constant is required.

DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects
in the EFL language.

Syntax

A declaration statement is made up of attributes and variables. Declaration
statements are of two forms:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes. In
the second, each name in the declarations also has the specified attributes. A
variable name may appear in more than one variable list, so long as the
attributes are not contradictory. Each name of a nonargument variable may be
accompanied by an initial value specification. The declarations inside the
braces are one or more declaration statements. Examples of declarations are

integer k=2
long real b(7,3)

common{cname)
{
integer i
long real array(5,0:3) x, y
character(7) ch

}

UNIX Programmer’s Manual Languages and Support Tools—181

EFL

Attributes

Basic Types

The following are basic types in declarations

logical
integer
field(m :n)
character (k)
real
complex

In the above, the quantities k, m, and n denote integer constant expressions
with the properties k >0 and n >m.

Arrays

The dimensionality may be declared by an array attribute
array(b,,...,b,)

Each of the b; may either be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lower and an
upper bound; the single expression is an upper bound with an implied lower
bound of 1. The number of dimensions is equal to n, the number of bounds.
All of the integer expressions must be constants. An exception is permitted
only if all of the variables associated with an array declarator are formal
arguments of the procedure; in this case, each bound must have the property
that upper—lower+1 is equal to a formal argument of the procedure. (The
.compiler has limited ability to simplify expressions, but it will recognize
important cases such as (0:n—1). The upper bound for the last dimension (5,)
may be marked by an asterisk (*) if the size of the array is not known. The
following are legal array attributes:

array(5)

array(5, 1:5, —3:0)
~ array(5, *)

array(0:m —1, m)

182—Languages and Support Tools - UNIX Programmer’s Manual

Structures

A structure declaration is of the form
struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were the name of a
type in the rest of its scope. Each name that appears inside the declarations is
a member of the structure, and has a special meaning when used to qualify any
variable declared with the structure type. A name may appear as a member of
any number of structures, and may also be the name of an ordinary variable,
since a structure member name is used only in contexts where the parent type
is known. The following are valid structure attributes

struct xx

{
integer a, b

real x(5)
}

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three xx’s and a
character string.

Precision

Variables of floating point (real or complex) type may be declared to be long to
ensure they have higher precision than ordinary floating point variables. The
default precision is short.

Common

Certain objects called common areas have external scope, and may be
referenced by any procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute are
in the same block; the order in which they are declared is significant.
Declarations for the same block in differing procedures must have the variables

UNIX Programmer’s Manual Languages and Support Tools—183

EFL

in the same order and with the same types, precision, and shapes, though not
necessarily with the same names.

External

If a name is used as the procedure name in a procedure invocatiocn, it is
implicitly declared to have the external attribute. If a procedure name is to be
passed as an argument, it is necessary to declare it in a statement of the form

external [name 1

If a name has the external attribute and it is a formal argument of the
procedure, then it is associated with a procedure identifier passed as an actual
argument at each call. If the name is not a formal argument, then that name
is the actual name of a procedure, as it appears in the corresponding procedure
statement.

Variable List

The elements of a variable list in a declaration consist of a name, an optional
dimension specification, and an optional initial value specification. The name
follows the usual rules. The dimension specification is the same form and
meaning as the parenthesized list in an array attribute. The initial value
specification is an equal sign (=) followed by a constant expression. If the
name is an array, the right side of the equal sign may be a parenthesized list of
constant expressions, or repeated elements or lists; the total number of elements
in the list must not exceed the number of elements of the array, which are
filled in column-major order.

The Initial Statement

An initial value may also be specified for a simple variable, array, array
element, or member of a structure using a statement of the form

initial [var = val 1

The var may be a variable name, array element specification, or member of
structure. The right side follows the same rules as for an initial value
specification in other declaration statements.

184—Languages and Support Tools UNIX Programmer’s Manual

EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements, otherwise it would
not do anything and would not need to be run. Statements are frequently
made up of other statements. Blocks are the most obvious case, but many
other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be
broken without an explicit continuation. A square (O) in the syntax represents
a point where the end of a line will be ignored.

Expression Statements

Subroutine Call

A procedure invocation that returns no value is known as a subroutine call.
Such an invocation is a statement. Examples are

work (in, out)
run()

Input/output statements (see "Input/Output Statements" under
"EXECUTABLE STATEMENTS") resemble procedure invocations but do not
yield a value. If an error occurs the program stops.

Assignment Statements

An expression that is a simple assignment (=) or a compound assignment
(+ = etc.) is a statement:

a=bh
a = sin(x)/6
Xs=y

UNIX Programmer’s Manual Languages and Support Tools—185

EFL

Blocks

A block is a compound statement that acts as a statement. A block begins
with a left brace, optionally followed by declarations, optionally followed by
executable statements, followed by a right brace. A block may be used
anywhere a statement is permitted. A block is not an expression and does not
have a value. An example of a block is ‘

{

integer i # this variable is unknown
outside the braces

big = 0
doi = 1n
if(big < a(i)
} big = a(i)

Test Statements

Test statements permit execution of certain statements conditional on the truth
of a predicate.

If Statement

The simplest of the test statements is the if statement, of form
if (logical-expression) O statement

The logical expression is evaluated; if it is true, then the statement is executed.

If-Else

A more general statement is of the form

'if (logical-expression) O statement-1 O
else O statement-2 '

If the expression is true then statement-1 is executed, otherwise, statement-2 is
executed. Either of the consequent statements may itself be an if-else so a

186—Languages and Support Tools UNIX Programmer’s Manual

completely nested test sequence is possible:

if(x<y)
if(a<b)
k=1
else
k=2
else
if(a<b)
m=1
else
m=2

An else applies to the nearest preceding un-elsed if. A more common use is as
a sequential test:

if(x==1)
k=1

else if(x==3 | x==5)
k=2

else
k=3

Select Statement

A multiway test on the value of a quantity is succinctly stated as a select
statement, which has the general form

select(expression) O block

Inside the block two special types of labels are recognized. A prefix of the
form

case [constant 1 :

marks the statement to which control is passed if the expression in the select
has a value equal to one of the case constants. If the expression equals none of
these constants, but there is a label default inside the select, a branch is taken
to that point; otherwise the statement following the right brace is executed.
Once execution begins at a case or default label, it continues until the next case

- UNIX Programmer’s Manual Languages and Support Tools—187

EFL

or default is encountered. The else-if example above is better written as

select(x)

{
case 1:
k=1
case 3,5:
k=2
default:
k=3
}

Note that control does not “fall through” to the next case.

Loops

The loop forms provide the best way of repeating a statement or sequence of
operations. The simplest (while) form is theoretically sufficient, but it is very
convenient to have the more general loops available, since each expresses a
mode of control that arises frequently in practice.

While Statement

This construct has the form
while (logical-expression) O statement

The expression is evaluated; if it is true, the statement is executed, and then
the test is performed again. If the expression is false, execution proceeds to the
next statement.

For Statement

The for statement is a more elaborate looping construct. It has the form

for (initial-statement , O logical -expression ,
O iteration-statement) O body-statement

Except for the behavior of the mext statement (see "Branch Statement" under

188—Languages and Support Tools UNIX Programmer’s Manual

"EXECUTABLE STATEMENTS"), this construct is equivalent to

initial-statement
while (logical-expression)

{

body-statement
iteration-statement

}

This form is useful for general arithmetic iterations, and for various pointer-
type operations. The sum of the integers from 1 to 100 can be computed by
the fragment

n=20
fori = 1,i <=100,i += 1)
n+=i

Alternatively, the computation could be done by the single statement

for({n=0;i=1},i<=100,{n +=1i; ++i})

Note that the body of the for loop is a null statement in this case. An example
of following a linked list will be given later.

Repeat Statement

The statement
repeat [statement

executes the statement, then does it again, without any termination test.
Obviously, a test inside the statement is needed to stop the loop.

UNIX Programmer’s Manual Languages and Support Tools—189

EFL

Repeat ... Until Statement

The while loop performs a test before each iteration. The statement
repeat O statement O until (logical-expression)

executes the statement, then evaluates the logical; if the logical is true the loop
is complete; otherwise, control returns to the statement. Thus, the body is
always executed at least once. The until refers to the nearest preceding repeat
that has not been paired with an until. In practice, this appears to be the least
frequently used looping construct.

Do Loop

The simple arithmetic progression is a very common one in numerical
applications. EFL has a special loop form for ranging over an ascending
arithmetic sequence

. do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is executed,
then expression-3 is added to the variable. The loop is repeated until the
variable exceeds expression-2. If expression-3 and the preceding comma are
omitted, the increment is taken to be 1. The loop above is equivalent to

t2 = expression-2

t3 = expression-3

for (variable=expression-1, variable <=t2, variable+=t3)
statement

(The compiler translates EFL do statements into Fortran DO statements, which
are in turn usually compiled into excellent code.) The do variable may not be
changed inside of the loop, and expression-1 must not exceed expression-2.
The sum of the first hundred positive integers could be computed by

n=20
doi=1,100
n+=i

190—Languages and Support Tools UNIX Programmer’s Manual

Branch Statements

Most of the need for branch statements in programs can be averted by using
the loop and test constructs, but there are programs where they are very useful.

Goto Statement

The most general, and most dangerous, branching statement is the simple
unconditional

goto label

After executing this statement, the next statement performed is the one
following the given label. Inside of a select the case labels of that block may
be used as labels, as in the following example:

select (k)

{
case 1:

error(7)
case 2:

k=2

goto case 4
case 3:

k=5

goto case 4
case 4:

fixup (k)

goto default
default:

prmsg("ouch”)
}

(If two select statements are nested, the case labels of the outer select are not
accessible from the inner one.)

UNIX Programmer’s Manual Languages and Support Tools—191

EFL

Break Statement

A safer statement is one which transfers control to the statement following the
current select or loop form. A statement of this sort is almost always needed in
a repeat loop:

repeat
{

do a computation

if (finished)
break

}

More general forms permit controlling a branch out of more than one
construct.

break 3

transfers control to the statement following the third loop and/or select
surrounding the statement. It is possible to specify which type of construct
(for, while, repeat, do, or select) is to be counted. The statement

break while
breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

Next Statement

The next statement causes the first surrounding loop statement to go on to the
next iteration: the next operation performed is the test of a while, the
iteration-statement of a for, the body of a repeat, the test of a repeat...until, or
the increment of a do. Elaborations similar to those for break are available:

192—Languages and Support Tools UNIX Programmer’s Manual

next

next 3
next 3 for
next for 3

A next statement ignores select statements.

Return

The last statement of a procedure is followed by a return of control to the
caller. If it is desired to effect such a return from any other point in the
procedure, a

return

statement may be executed. Inside a function procedure, the function value is
specified as an argument of the statement:

return (expression)

Input/Output Statements

EFL has two input statements (read and readbin), two output statements (write
and writebin), and three control statements (endfile, rewind, and backspace).
These forms may be used either as a primary with a integer value or as a
statement. If an exception occurs when one of these forms is used as a
statement, the result is undefined but will probably be treated as a fatal error.
If they are used in a context where they return a value, they return zero if no
exception occurs. For the input forms, a negative value indicates end-of-file
and a positive value an error. The input/output part of EFL very strongly
reflects the facilities of Fortran.

Input/Output Units

Each I/0 statement refers to a “unit,” identified by a small positive integer.
Two special units are defined by EFL, the standard input unit and the standard
output unit. These particular units are assumed if no unit is specified in an
I/0 transmission statement.

UNIX Programmer’s Manual Languages and Support Tools—193

EFL

The data on the unit are organized into records. These records may be read or
written in a fixed sequence, and each transmission moves an integral number of
records. Transmission proceeds from the first record until the end of file.

Binary input/Output

The readbin and writebin statements transmit data in a machine-dependent but
swift manner. The statements are of the form

writebin(unit , binary-output-list)
readbin(unit , binary-input-list)

Each statement moves one unformatted record between storage and the device.
The unit is an integer expression. A binary-output-list is an iolist (see below)
without any format specifiers. A binary-input-list is an iolist without format
specifiers in which each of the expressions is a variable name, array element, or
structure member.

Fermatted Input/Output

The read and write statements transmit data in the form of lines of characters.
Each statement moves one or more records (lines). Numbers are translated
into decimal notation. The exact form of the lines is determined by format
specifications, whether provided explicitly in the statement or implicitly. The
syntax of the statements is

write(unit , formatted-output-list)
read(unit , formatted-input-list)

The lists are of the same form as for binary I/0, except that the lists may
include format specifications. If the unit is omitted, the standard input or
output unit is used.

lolists

An iolist specifies a set of values to be written or a set of variables into which
values are to be read. An iolist is a list of one or more ioexpressions of the
form

194—Languages and Support Tools . UNIX Programmer’s Manual

expression
{ iolist }
do-specification { iolist }

For formatted 1/0, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the
values in the braces are transmitted repeatedly until the do execution is
complete.

Formats

The following are permissible format-specifiers. The quantities w, d, and k
must be integer constant expressions.

iw) integer with w digits
f(w,d) floating point number of w characters,
d of them to the right of the decimal point.
e(w,d) floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked
with the letter e
1(w) logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively

c character string of width equal to
the length of the datum
cw) character string of width w

s(k) skip k lines

x(k) skip k spaces

use the characters inside the
string as a Fortran format

If no format is specified for an item in a formatted input/output statement, a
default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a
sequence of elements, each with its own format. The elements are transmitted

UNIX Programmer’s Manual Languages and Support Tools—195

EFL

in column-major order, the same order used for array initializations.

Manipulation Statements

The three input/output statements

backspace(unit)
rewind (unit)
endfile (unit)

look like ordinary procedure calls, but may be used either as statements or as
integer expressions which yield non-zero if an error is detected. backspace
causes the specified unit to back up, so that the next read will re-read the
previous record, and the next write will over-write it. rewind moves the device
to its beginning, so that the next input statement will read the first record.
endfile causes the file to be marked so that the record most recently written will
be the last record on the file, and any attempt to read past is an error.

PROCEDURES

Procedures are the basic unit of an EFL program, and provide the means of
segmenting a program into separately compilable and named parts.

Procedures Statement

Each procedure begins with a statement of one of the forms

procedure

attributes procedure procedurename

attributes procedure procedurename ()
attributes procedure procedurename ([name 1)

The first case specifies the main procedure, where execution begins. In the two
other cases, the attributes may specify precision and type, or they may be
omitted entirely. The precision and type of the procedure may be declared in
an ordinary declaration statement. If no type is declared, then the procedure is
called a subroutine and no value may be returned for it. Otherwise, the
procedure is a function and a value of the declared type is returned for each

196—Languages and Support Tools UNIX Programmer’s Manual

call. Each name inside the parentheses in the last form above is called a
formal argument of the procedure.

End Statement

Each procedure terminates with a statement

end

Argument Association

When a procedure is invoked, the actual arguments are evaluated. If an actual
argument is the name of a variable, an array element, or a structure member,
that entity becomes associated with the formal argument, and the procedure
may reference the values in the object, and assign to it. Otherwise, the value
of the actual is associated with the formal argument, but the procedure may
not attempt to change the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is not
permitted that the corresponding actual argument be associated with another
formal argument or with a common element that is referenced in the procedure.

Execution and Return Values

After actual and formal arguments have been associated, control passes to the
first executable statement of the procedure. Control returns to the invoker
either when the end statement of the procedure is reached or when a return
statement is executed. If the procedure is a function (has a declared type), and
a return(value) is executed, the value is coerced to the correct type and
precision and returned.

Known Functions

A number of functions are known to EFL, and need not be declared. The
compiler knows the types of these functions. Some of them are generic; i.e.,
they name a family of functions that differ in the types of their arguments and
return values. The compiler chooses which element of the set to invoke based
upon the attributes of the actual arguments.

UNIX Programmer’s Manual Languages and Support Tools—197

EFL

Minimum and Maximum Functions

The generic functions are min and max. The min calls return the value of their
smallest argument; the max calls return the value of their largest argument.
These are the only functions that may take different numbers of arguments in
different calls. If any of the arguments are long real then the result is long
real. Otherwise, if any of the arguments are real then the result is real;
otherwise all the arguments and the result must be integer. Examples are

min(5, x, —3.20)
max(i, z)

Absolute Value

The abs function is a generic function that returns the magnitude of its
argument. For integer and real arguments the type of the result is identical to
the type of the argument; for complex arguments the type of the result is the
real of the same precision.

Elementary Functions

The following generic functions take arguments of real, long real, or complex
type and return a result of the same type:

sin sine function
cos cosine function
exp exponential function (e*).

log natural (base ¢) logarithm
log10 common (base 10) logarithm
sqrt square root function (/x).

In addition, the following functions accept only real or long real arguments:

atan atan (x)=tan™!x

1

atan2 atan?2(x,y)=tan™ %

198—Languages and Support Tools UNIX Programmer’s Manual

Other Generic Functions

The sign functions takes two arguments of identical type;
sign(x,y) = sgn (»)|x|. The mod function yields the remainder of its first
argument when divided by its second. These functions accept integer and real
arguments.

ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old
Fortran or Ratfor programs to EFL.

Escape Lines

In order to make use of nonstandard features of the local Fortran compiler, it
is occasionally necessary to pass a particular line through to the EFL compiler
output. A line that begins with a percent sign (“%”) is copied through to the
output, with the percent sign removed but no other change. Inside of a
procedure, each escape line is treated as an executable statement. If a
sequence of lines constitute a continued Fortran statement, they should be
enclosed in braces. '

Call Statement
A subroutine call may be preceded by the keyword call

call joe
call work(17)

Obsolete Keywords

The foilowing keywords are recognized as synonyms of EFL keywords:

Fortran EFL
double precision long real
function procedure
subroutine procedure (untyped)

UNIX Programmer’s Manual Languages and Support Tools—199

EFL

Numeric Labels

Standard statement labels are identifiers. A numeric (positive integer
constant) label is also permitted; the colon is optional following a numeric
label.

Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives
a warning and assumes a declaration for it. If it is used in the context of a
procedure invocation, it is assumed to be a procedure name; otherwise it is
assumed to be a local variable defined at nesting level 1 in the current
procedure. The assumed type is determined by the first letter of the name.
The association of letters and types may be given in an implicit statement, with
syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of letters
separated by a minus sign). If no implicit statement appears, the following
rules are assumed:

implicit (a —h, 0 —z) real
implicit (i —n) integer

Computed Goto

Fortran contains an indexed multi-way branch; this facility may be used in EFL
by the computed GOTO:

goto ([label 1), expression

The expression must be of type integer and be positive but be no larger than
the number of labels in the list. Control is passed to the statement marked by
the label whose position in the list is equal to the expression.

200—Languages and Support Tools UNIX Programmer’s Manual

Goto Statement

In unconditional and computed goto statements, it is permissible to separate

the go and to words, as in

go to xyz

Dot Names

Fortran uses a restricted character set, and represents certain operators by
multi-character sequences. There is an option (dots=on; see "COMPILER
OPTIONS") which forces the compiler to recognize the forms in the second

column below:

& &
|

true
false

In this mode, no structure element may be named It, le, etc.

.ne.
.and.
.Or.
.andand.
.Oror.
.not.
.true.
false.

forms in the left column are always recognized.

Complex Constants

The readable

A complex constant may be written as a parenthesized list of real quantities,

such as

(1.5, 3.0)

The preferred notation is by a type coercion,

UNIX Programmer’s Manual

Languages and Support Tools—201

EFL

complex (1.5, 3.0)

Function Values

The preferred way to return a value from a function in EFL is the
return(value) construct. However, the name of the function acts as a variable
to which values may be assigned; an ordinary return statement returns the last
value assigned to that name as the function value.

Equivalence

A statement of the form
equivalence v, v,, ..., v,

declares that each of the v; starts at the same memory location. Each of the v;
‘may be a variable name, array element name, or structure member.

Minimum and Maximum Functions

There are a number of non-generic functions in this category, which differ in
the required types of the arguments and the type of the return value. They
may also have variable numbers of arguments, but all the arguments must have
the same type.

Function Argument Type Result Type
amin0 integer v real
aminl real real
min0 integer integer
minl real integer
dminl long real long real
amax0 integer real
amax1 real real
max0 integer integer
max1 real integer
dmax1 long real long real

202—Languages and Support Tools UNIX Programmer’s Manual

COMPILER OPTIONS

A number of options can be used to control the output and to tailor it for
various compilers and systems. The defaults chosen are conservative, but it is
" sometimes necessary to change the output to match peculiarities of the target
environment.

Options are set with statements of the form
option [opt 1
where each opt is of one of the forms

optionname
optionname = optionvalue

The optionvalue is either a constant (numeric or string) or a name associated
with that option. The two names yes and no apply to a number of options.

Default Options

Each option has a default setting. It is possible to change the whole set of
defaults to those appropriate for a particular environment by using the system
option. At present, the only valid values are system=unix and system =gcos.

Input Language Options

The dots option determines whether the compiler recognizes .It. and similar
forms. The default setting is no.

Input/Output Error Handling

The ioerror option can be given three values: none means that none of the I/O
statements may be used in expressions, since there is no way to detect errors.
The implementation of the ibm form uses ERR= and END= clauses. The
implementation of the fortran77 form uses IOSTAT= clauses.

UNIX Programmer’s Manual Languages and Support Tools—203

EFL

Continuation Conventions

By default, continued Fortran statements are indicated by a character in
column 6 (Standard Fortran). The option continue=columnl puts an
ampersand (&) in the first column of the continued lines instead.

Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a
default is provided. The default formats can be changed by setting certain
options

Option Type

iformat integer
rformat real

dformat long real
zformat complex
zdformat long complex
Iformat logical

The associated value must be a Fortran format, such as

option rformat=122.6

Alignments and Sizes

In order to implement character variables, structures, and the sizeof and
lengthof operators, it is necessary to know how much space various Fortran
data types require, and what boundary alignment properties they demand. The
relevant options are

 Fortran Type Size Option Alignment Option
integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical Isize lalign

204—Languages and Support Tools UNIX Programmer’s Manual

The sizes are given in terms of an arbitrary unit; the alignment is given in the
same units. The option charperint gives the number of characters per integer
variable.

Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output
units. The default values are ftnin=>5 and ftnout=6.

Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the
value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if hollincall=no is
specified. ’

The Fortran statement numbers normally start at 1 and increase by 1. It is
possible to change the increment value by using the deltastno option. .

EXAMPLES

In order to show the flavor or programming in EFL, we present a few examples.
They are short, but show some of the convenience of the language.

File Copying

The following short program copies the standard input to the standard output,
provided that the input is a formatted file containing lines no longer than a
hundred characters.

procedure # main program
character(100) line

while(read(, line) == 0)

write(, line)
end

Since read returns zero until the end of file (or a read error), this program

UNIX Programmer’s Manual Languages and Support Tools—205

EFL

keeps reading and writing until the input is exhausted.

Matrix Multiplication

The following procedure multiplies the mXn matrix a by the nXp matrix b to
give the mXp matrix c. The calculation obeys the formula ¢;; = Y a;by;-

procedure matmul(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

doi =1m
doj=1p
cGij) =0
dok = 1I,n
c@ipj) += aGik) » b(k,j)
}
end

Searching a Linked List

Assume we have a list of pairs of numbers (x,y). The list is stored as a linked
list sorted in ascending order of x values. The following procedure searches
this list for a particular value of x and returns the corresponding y value.

206—Languages and Support Tools UNIX Programmer’s Manual

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.
Each structure contains a thread index value,
anXx, and a y value.

struct
{
integer nextindex
integer X, y
} list(s)

integer first, p, arg

for(p = first , p~=LAST & & list(p).x<=x,
p = list(p).nextindex)
if(ist(p).x == x)
‘ return(list(p).y)

return(NOTFOUND)
end

The search is a single for loop that begins with the head of the list and
examines items until either the list is exhausted (p==LAST) or until it is
known that the specified value is not on the list (list(p).x > x). The two tests
in the conjunction must be performed in the specified order to avoid using an
invalid subscript in the list(p) reference. Therefore, the & & operator is used.
The next element in the chain is found by the iteration statement
p =list(p) .nextindex.

Walking a Tree

As an example of a more complicated problem, let us imagine we have an
expression tree stored in a common area, and that we want to print out an infix
form of the tree. Each node is either a leaf (containing a numeric value) or it

UNIX Programmer’s Manual Languages and Support Tools—207

EFL

is a binary operator, pointing to a left and a right descendant. In a recursive
language, such a tree walk would be implement by the following simple
pseudocode: ’

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit
stack to keep track of the current state of the computation. The following
procedure calls a procedure outch to print a single character and a procedure
outval to print a value.

procedure walk (first) # print an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common({nodes) struct
character(1) op
integer leftp, rightp
real val
} tree(100) # array of structures

struct
{
integer nextstate
integer nodep
} stackframe(100)

define NODE tree(currentnode)
define STACK stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

208—Languages and Support Tools UNIX Programmer’s Manual

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep = first

while(stackdepth > 0)
{
currentnode = STACK.nodep
select (STACK .nextstate)
{
case DOWN:
if(NODE.op == "") # a leaf
{
- outval(NODE.val)
stackdepth —= 1
}
else { # a binary operator node
outch("(")
STACK.nextstate = LEFT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODE.leftp

}

case LEFT:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:
outch(™")
stackdepth — = 1

end

UNIX Programmer’s Manual Languages and Support Tools—209

EFL

PORTABILITY

One of the major goals of the EFL language is to make it easy to write portable
programs. The output of the EFL compiler is intended to be acceptable to any
Standard Fortran compiler (unless the fortran77 option is specified).

v A Primitives
Certain EFL operations cannot be implemented in portable Fortran, so a few
machine-dependent procedures must be provided in each environment.

Character String Copying

The subroutine eflasc is called to copy one character string to another. If the
target string is shorter than the source, the final characters are not copied. If
the target string is longer, its end is padded with blanks. The calling sequence
is :

subroutine eflasc(a, la, b, Ib)
integer a(s), la, b(s), Ib

and it must copy the first Ib characters from b to the first la characters of a.

Character String Comparisons

The function efleme is invoked to determine the order of two character strings.
The declaration is

integer function eflcmc(a, la, b, 1b)
integer a(»), la, b(s), Ib

The function returns a negative value if the string a of length la precedes the
string b of length Ib. It returns zero if the strings are equal, and a positive
value otherwise. If the strings are of differing length, the comparison is carried
out as if the end of the shorter string were padded with blanks.

210—Languages and Support Tools UNIX Programmer’s Manual

DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratfor and EFL, since EFL is a
defined language while Ratfor is the union of the special control structures and
the language accepted by the underlying Fortran compiler. Ratfor running
over Standard Fortran is almost a subset of EFL. Most of the features
described in the "ATAVISMS" are present to ease the conversion of Ratfor
programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly
different in the two languages: the three clauses are separated by semicolons in
Ratfor, but by commas in EFL. (The initial and iteration statements may be
compound statements in EFL because of this change). The input/output syntax
is quite different in the two languages, and there is no FORMAT statement in
EFL. There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored declaration syntax,
block structure, assignment and sequential test operators, generic functions, and
data structures. EFL permits more general forms for expressions, and provides
a more uniform syntax. (One need not worry about the Fortran/Ratfor
restrictions on subscript or DO expression forms, for example.)

COMPILER

Current Version

The current version of the EFL compiler is a two-pass translator written in
portable C. It implements all of the features of the language described above
except for long complex numbers.

Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and file name
(if known) on which the error was detected. Warnings are given for variables
that are used but not explicitly declared.

UNIX Programmer’s Manual Languages and Support Tools—211

EFL

Quality of Fortran Produced

The Fortran produced by EFL is quite clean and readable. To the extent
possible, the variable names that appear in the EFL program are used in the
Fortran code. The bodies of loops and test constructs are indented. Statement
numbers are consecutive. Few unneeded GOTO and CONTINUE statements
are used. It is considered a compiler bug if incorrect Fortran is produced
(except for escaped lines). The following is the Fortran procedure produced by
the EFL compiler for the matrix multiplication example (See "EXAMPLES".)

subroutine matmul(a, b, ¢, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3i=1,m
do 2j=1p
ci,) =0
do 1k =1n
cG,) = cG, j) +al, K*bk, j)
continue
continue
continue
end

W N -

212—Languages and Support Tools UNIX Programmer’s Manual

- The following is the procedure for the tree walk:
subroutine walk (first)
integer first
common /nodes/ tree
integer tree(4, 100)
real treel(4, 100)
integer staame(2, 100), stapth, curode
integer comst1(1)
equivalence (tree(1,1), treel(1,1))
data const1(1)/4h /
print out an expression tree
index of root node
array of structures
nextstate values
initialize stack with root node
stapth = 1
staame(1, stapth) = 1
staame(2, stapth) = first
1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)

o6 60 66

goto 7
2 if (tree(1, curode) .me. const1(1)) goto 3
call outval(treel(4, curode))
¢ a leaf
stapth = stapth-1
goto 4
3 call outch(1hQ
c a binary operator node

staame(1, stapth) = 2

stapth = stapth+1

staame(1, stapth) = 1

staame(2, stapth) = tree(2, curode)

4 goto 8
5 call outch(tree(1, curode))
staame(1, stapth) = 3
stapth = stapth+1
staame(1, stapth) = 1
staame(2, stapth) = tree(3, curode)
goto 8
6 call outch(1h))
stapth = stapth-1
goto 8
7 _if (staame(1, stapth) .eq. 3) goto 6

if (staame(1, stapth) .eq. 2) goto 5

UNIX Programmer’s Manual Languages and Support Tools—213

EFL

if (staame(l, stapth) .eq. 1) goto 2

8 continue
goto 1
9 continue
end

CONSTRAINTS ON EFL

Although Fortran can be used to simulate any finite computation, there are
realistic limits on the generality of a language that can be translated into
Fortran. The design of EFL was constrained by the implementation strategy.
Certain of the restrictions are petty (six character external names), but others
are sweeping (lack of pointer variables). The following paragraphs describe the
major limitations imposed by Fortran.

External Names

External names (procedure and COMMON block names) must be no longer
than six characters in Fortran. Further, an external name is global to the
entire program. Therefore, EFL can support block structure within a
procedure, but it can have only one level of external name if the EFL
procedures are to be compilable separately, as are Fortran procedures.

Procedure Interface

The Fortran standards, in effect, permit arguments to be passed between
Fortran procedures either by reference or by copy-in/copy-out. This
indeterminacy of specification shows through into EFL. A program that
depends on the method of argument transmission is illegal in either language.

There are no procedure-valued variables in Fortran: a procedure name may
only be passed as an argument or be invoked; it cannot be stored. Fortran (and
EFL) would be noticeably simpler if a procedure variable mechanism were
available.

214—Languages and Support Tools UNIX Programmer’s Manual

Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type.
The implementation of the compiler would have been far easier if certain hard
cases could have been handled by pointers. Further, the language could have
been simplified considerably if pointers were accessible in Fortran. (There are
several ways of simulating pointers by using subscripts, but they founder on the
problems of external variables and initialization.)

Recursion

Fortran procedures are not recursive, so it was not practical to permit EFL
procedures to be recursive. (Recursive procedures with arguments can be
simulated only with great pain.)

Storage Allocation

The definition of Fortran does not specify the lifetime of variables. It would be
possible but cumbersome to implement stack or heap storage disciplines by
using COMMON blocks.

UNIX Programmer’s Manual Languages and Support Tools—215

A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make)

GENERAL

In a programming project, a common practice is to divide large programs into
smaller pieces that are more manageable. The pieces may require several
different treatments such as being processed by a macro processor or
sophisticated program generators (e.g., Yace or Lex). The project continues to
become more complex as the output of these generators are compiled with
special options and with certain definitions and declarations. A sequence of
code transformations develops which is difficult to remember. The resulting
code may need further transformation by loading the code with certain libraries
under control of special options. Related maintenance activities also complicate
the process further by running test scripts and installing validated modules.
Another activity that complicates program development is a long editing
session. A programmer may lose track of the files changed and the object
modules still valid especially when a change to a declaration can make a dozen
other files obsolete. The programmer must also remember to compile a routine
that has been changed or that uses changed declarations.

The "make" is a software tool that maintains, updates, and regenerates groups
of computer programs.

A programmer can easily forget

o Files that are dependent upon other files.
o Files that were modified recently.

o Files that need to be reprocessed or recompiled after a change in the
source. :

e The exact sequence of operations needed to make an exercise a new
version of the program.

UNIX Programmer’s Manual Languages and Support Tools—217

MAKE

The many activities of program development and maintenance are made
simpler by the make program.

The make program provides a method for maintaining up-to-date versions of
programs that result from many operations on a number of files. The make
program can keep track of the sequence of commands that create certain files
and the list of files that require other files to be current before the operations
can be done. Whenever a change is made in any part of a program, the make
command creates the proper files simply, correctly, and with a minimum
amount of effort. The make program also provides a simple macro substitution
facility and the ability to encapsulate commands in a single file for convenient
administration.

The basic operation of make is to

e Find the name of the needed target file in the description.
e Ensure that all of the files on which it depends exit and are up to date.

e Create the target file if it has not been modified since its generators were
modified.

The descriptor file really defines the graph of dependencies. The make program
determines the necessary work by performing a depth-first search of the graph
of dependencies.

If the information on interfile dependencies and command sequences is stored
in a file, the simple command

make

is frequently sufficient to update the interesting files regardless of the number
edited since the last make. In most cases, the description file is easy to write
and changes infrequently. It is usually easier to type the make command than
to issue even one of the needed operations, so the typical cycle of program
development operations becomes

think — edit — make — test ...

218—Languages and Support Tools UNIX Programmer’s Manual

The make program is most useful for medium-sized programming projects.
The make program does not solve the problems of maintaining multiple source
. versions or of describing huge programs.

As an example of the use of make, the description file used to maintain the
make command is given. The code for make is spread over a number of C
language source files and a Yacc grammar. The description file contains:

Description file for the Make command

p=Ip
FILES = Makefile version.c defs main.c doname.c misc.c
files.c dosys.c gram.y lex.c gcos.c
OBIJECTS = version.0 main.o doname.o misc.o files.o
dosys.o gram.o

LIBES= —IS
LINT = lint —p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) —o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
—rm *.0 gram.c
—du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr §? | $P
touch print

test:
make —dp | grep —v TIME > 1zap
/usr/bin/make —dp | grep —v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

UNIX Programmer’s Manual Languages and Support Tools—219

MAKE

lint : dosys.c doname.c files.c main.c misc.c version.c
gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c
~ version.c gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

The make program usually prints out each command before issuing it.

The following output results from typing the simple command make in a
directory containing only the source and description files:

cc —O0O —c version.c

cc —0 —c main.c

cc —O —c doname.c

cc —O —c misc.c

cc —O —c files.c

cc —0O —c dosys.c

yacc gram.y

myv y.tab.c gram.c

cc —0O —c gram.c

cc version.o main.o doname.o misc.o files.o dosys.o
gram.o —IS —o make

13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the
description file, make found them using its suffix rules and issued the needed
commands. The string of digits results from the size make command. The
printing of the command line itself was suppressed by an @ sign. The @ sign
on the size command in the description file suppressed the printing of the
command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences.
The “print” entry prints only the files changed since the last make print
command. A Zero-length file print is maintained to keep track of the time of
the printing. The $? macro in the command line then picks up only the names
of the files changed since print was touched.

220—Languages and Support Tools UNIX Programmer’s Manual

The printed output can be sent to a different printer or to a file by changing
the definition of the P macro as follows:

make print "P= cat >zap"

BASIC FEATURES

The basic operation of make is to update a target file by ensuring that all of
the files on which the target file depends exist and are up to date. The target
file is created if it has not been modified since the dependents were modified.
The make program does a depth-first search of the graph of dependencies. The
operation of the command depends on the ability to find the date and time that
a file was last modified.

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c, y.c, and z.c with the
IS library. By convention, the output of the C language compilations will be
found in files named x.o0, y.o, and z.0. Assume that the files x.c and y.c share
some declarations in a file named defs, but that z.c does not. That is, x.c and
y.c have the line

~ #include "defs"
The following text describes the relationships and operations:

prog: x.0 y.0o z.0
cc x.0 yo0 zo —IS —o prog

X0 y.0: defs
If this information were stored in a file named makefile, the command
make
would perform the operations needed to recreate prog after any changes had

been made to any of the four source files x.c, y.c, z.c, or defs.

UNIX Programmer’s Manual Languages and Support Tools—221

MAKE

The make program operates using the following three sources of information:

e A user-supplied description file
¢ File names and “last-modified” times from the file system

e Built-in rules to bridge some of the gaps.

In the example, the first line states that prog depends on three “.0” files. Once
these object files are current, the second line describes how to load them to
create prog. The third line states that x.0 and y.o depend on the file defs.
From the file system, make discovers that there are three “.c” files
corresponding to the needed “.0” files and uses built-in information on how to

generate an object from a source file (i.e., issue a “cc —¢” command).

By not taking advantage of make’s innate knowledge, the following longer
descriptive file results.

prog : X.0 y.0 zZ.0
cc X.0 y.0o z.o —IS —o prog
X.0: x.c defs

cC —C X.C
y.0: y.c defs
cc —C y.c
Z.0: Z.C
cc —C z.c

If none of the source or object files have changed since the last time prog was
made, all of the files are current, and the command

make

announces this fact and stops. If, however, the defs file has been edited, x.c
and y.c (but not z.c) is recompiled; and then prog is created from the new
“.0” files. If only the file y.c had changed, only it is recompiled; but it is still
necessary to reload prog. If no target name is given on the make command
line, the first target mentioned in the description is created; otherwise, the
specified targets are made. The command

222—Languages and Support Tools UNIX Programmer’s Manual

make x.0
would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file’s time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further decisions.
A method, often useful to programmers, is to include rules with mnemonic
names and commands that do not actually produce a file with that name.
These entries can take advantage of make’s ability to generate files and
substitute macros. Thus, an entry “save” might be included to copy a certain
set of files, or an entry “cleanup” might be used to throw away unneeded
intermediate files. In other cases, one may maintain a zero-length file purely to
keep track of the time at which certain actions were performed. This technique
is useful for maintaining remote archives and listings.

The make program has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by command
arguments or description file lines with embedded equal signs. A macro is
invoked by preceding the name by a dollar sign. Macro names longer than one
character must be parenthesized. The name of the macro is either the single
character after the dollar sign or a name inside parentheses. The following are
valid macro invocations: ’ ’

$(CFLAGS)
$2

$(xy)

$Z

$(2)

The last two invocations are identical. A 8 is a dollar sign.

The $*, $@, $?, and $< are four special macros which change values during
the execution of the command. (These four macros are described in the part
“DESCRIPTION FILES AND SUBSTITUTIONS”.) The following
fragment shows assignment and use of some macros:

UNIX Programmer’s Manual Languages and Support Tools—223

MAKE

OBJECTS = x.0 y.0 z.0
LIBES = —IS
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) —o prog

The make command loads the three object files with the IS library. The
command

make "LIBES= —II —IS"

loads them with both the Lex (—I1) and the standard (—IS) libraries since
macro definitions on the command line override definitions in the description.
Remember to quote arguments with embedded blanks in UNIX software
commands.

DESCRIPTION FILES AND SUBSTITUTIONS

A description file contains the following information:

® macro definitions
e dependency information

e ecxecutable commands.

The comment convention is that a sharp (#) and all characters on the same
line after a sharp are ignored. Blank lines and lines beginning with a sharp
(#) are totally ignored. If a noncomment line is too long, the line can be
continued by using a backslash. If the last character of a line is a backslash,
then the backslash, the new line, and all following blanks and tabs are replaced
by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or
a tab. The name (string of letters and digits) to the left of the equal sign
(trailing blanks and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are stripped). The following

224—Languages and Support Tools UNIX Programmer’s Manual

are valid macro definitions:

2 = Xxyz
abc = —Il —ly —IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as the macro’s value.

Macro definitions may also appear on the make command line while other lines
give information about target files. The general form of an entry is

targetl [target2 . .] :[:] [dependentl . .] [; commands] [# . .]
[(tab) commands] [# . . .]

Items inside brackets may be omitted. Targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters such as “*” and “?”
are expanded. Commands may appear either after a semicolon on a
dependency line or on lines beginning with a tab immediately following a
dependency line. A command is any string of characters not including a sharp
(#) except when the sharp is in quotes or not including a new line.

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all of those lines must be of
the same (single or double colon) type. For the usual single-colon case, a
command sequence may be associated with at most one dependency line. If the
target is out of date with any of the dependents on any of the lines and a
command sequence is specified (even a null one following a semicolon or tab),
it is executed; otherwise, a default creation rule may be invoked. In the
double-colon case, a command sequence may be associated with each
dependency line; if the target is out of date with any of the files on a particular
line, the associated commands are executed. A built-in rule may also be
executed. This detailed form is of particular value in updating archive-type
files.

If a target must be created, the sequence of commands is executed. Normally,
each command line is printed and then passed to a separate invocation of the
shell after substituting for macros. The printing is suppressed in the silent
mode or if the command line begins with an @ sign. Make normally stops if
any command signals an error by returning a nonzero error code. Errors are

UNIX Programmer’s Manual Languages and Support Tools—225

MAKE

ignored if the —i flags have been specified on the make command line, if the
fake target name “.IGNORE” appears in the description file, or if the
command string in the description file begins with a hyphen. Some UNIX
software commands return meaningless status. Because each command line is
passed to a separate invocation of the shell, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only
within a single shell process. These results are forgotten before the next line is
executed.

Before issuing any command, certain internally maintained macros are set. The
$@ macro is set to the full target name of the current target. The $@ macro is
evaluated only for explicitly named dependencies. The $? macro is set to the
string of names that were found to be younger than the target. The $? macro
is evaluated when explicit rules from the makefile are evaluated. If the
command was generated by an implicit rule, the $< macro is the name of the
related file that caused the action; and the $* macro is the prefix shared by the
current and the dependent file names. If a file must be made but there are no
explicit commands or relevant built-in rules, the commands associated with the
name “.DEFAULT” are used. If there is no such name, make prints a
message and stops.

COMMAND USAGE

The make command takes macro definitions, flags, description file names, and
target file names as arguments in the form:

make [flags 1 [macro definitions] [targets]

The following summary of command operations explains how these arguments
are interpreted.

First, all macro definition arguments (arguments with embedded equal signs)
are analyzed and the assignments made. Command-line ‘macros override
corresponding definitions found in the description files. Next, the flag
arguments are examined. The permissible flags are as follows:

—-i Ignore error codes returned by invoked commands. This
mode is entered if the fake target name “.IGNORE”

226—Languages and Support Tools UNIX Programmer’s Manual

appears in the description file.

-s Silent mode. Do not print command lines before
executing. This mode is also entered if the fake target
name “.SILENT” appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an “@” sign are
printed.

-t Touch the target files (causing them to be up to date)

rather than issue the usual commands.

-q Question. The make command returns a zero or nonzero
status code depending on whether the target file is or is
not up to date.

-p Print out the complete set of macro definitions and
target descriptions.

—d Debug mode. Print out detailed information on files and
times examined.

-f Description file name. The next argument is assumed to
be the name of a description file. A file name of “—"
denotes the standard input. If there are no “—f’
arguments, the file named makefile or Makefile in the
current directory is read. The contents of the description
files override the built-in rules if they are present.

Finally, the remaining arguments are assumed to be the names of targets to be
made, and the arguments are done in left-to-right order. If there are no such
arguments, the first name in the description files that does not begin with a
period is “made”.

UNIX Programmer’s Manual Languages and Support Tools—227

MAKE

SUFFIXES AND TRANSFORMATION RULES

The make program does not know what file name suffixes are interesting or
how to transform a file with one suffix into a file with another suffix. This
information is stored in an internal table that has the form of a description file.
If the —r flag is used, the internal table is not used.

The list of suffixes is actually the dependency list for the name “.SUFFIXES”.
The make program searches for a file with any of the suffixes on the list. If
such a file exists and if there is a transformation rule for that combination,
make transforms a file with one suffix into a file with another suffix. The
transformation rule names are the concatenation of the two suffixes. The name
of the rule to transform a .r file to a .o file is thus .r.0. If the rule is present
and no explicit command sequence has been given in the user’s description files,
the command sequence for the rule .r.o is used. If a command is generated by
using one of these suffixing rules, the macro $* is given the value of the stem
(everything but the suffix) of the name of the file to be made; and the macro
$< is the name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can add an entry for
“SUFFIXES” in his own description file. The dependents are added to the
usual list. A “.SUFFIXES” line without any dependents deletes the current
list. It is necessary to clear the current list if the order of names is to be
changed. The following is an excerpt from the default rules file:

228—Languages and Support Tools UNIX Programmer’s Manual

SUFFIXES: 0.c.e.r f.y.yr.ye.l.s
YACC = yacc
YACCR = yacc —r
YACCE = yacc —e
YFLAGS =
LEX = lex
LFLAGS =
CC=cc
AS = as —
CFLAGS =
RC =ec
RFLAGS =
EC = ec
EFLAGS =
FFlags =
.CO:
$(CC) $(CFLAGS) —c $<
.e.0.r.o .fo:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) —c $<
8.0
$(AS) -0 @ $<
.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) —c y.tab.c
rm y.tab.c
mv y.tab.o $§@
yc: '
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

IMPLICIT RULES

The make program uses a table of interesting suffixes and a set of
transformation rules to supply default dependency information and implied
commands. The default suffix list is as follows:

.0 Object file

.c C source file -

UNIX Programmer’s Manual Languages and Support Tools—229

MAKE

.e | Efl source file

.r Ratfor source file

S Fortran source file

s Assembler source file

.y Yacc-C source grammar

yr Yacc-Ratfor source grammar
.ye Yacc-Efl source grammar

A Lex source grammar.

If there are two paths connecting a pair of suffixes, the longer one is used only
if the intermediate file exists or is named in the description.

If the file x.0 were needed and there were an x.c in the description or directory,
the x.o file would be compiled. If there were also an x./, that grammar would
be run through Lex before compiling the result. However, if there were no x.c
but there were an x./, make would discard the intermediate C language file and
use the direct link.

It is possible to change the names of some of the compilers used in the default
or the flag arguments with which they are invoked by knowing the macro
names used. The compiler names are the macros AS, CC, RC, EC, YACC,
YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the newce command to be used instead of the usual C language
compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS
may be set to cause these commands to be issued with optional flags. Thus

make "CFLAGS=-0"

causes the optimizing C language compiler to be used.

230—Languages and Support Tools UNIX Programmer’s Manual

SUGGESTIONS AND WARNINGS

The most common difficulties arise from make’s specific meaning of
dependency. If file x.c has a “#include "defs" line, then the object file x.o0
depends on defs; the source file x.c does not. If defs is changed, nothing is
done to the file x.c while file x.0 must be recreated.

To discover what make would do, the —n option is very useful. The command
make —n

orders make to print out the commands which make would issue without
actually taking the time to execute them. If a change to a file is absolutely
certain to be mild in character (e.g., adding a new definition to an include file),
the —t (touch) option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the modification times on
the affected file. Thus, the command

make —ts

(“touch silently”) causes the relevant files to appear up to date. Obvious care
is necessary since this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

The debugging flag (—d) causes make to print out a very detailed description
of what it is doing including the file times. The output is verbose and
recommended only as a last resort.

UNIX Programmer’s Manual Languages and Support Tools—231

AUGMENTED VERSION OF make

GENERAL

This section describes an augmented version of the make command of the
UNIX operating system. The augmented version is upward compatible with
the old version. This section describes and gives examples of only the
additional features. Further possible developments for make are also discussed.
Some justification will be given for the chosen implementation, and examples
will demonstrate the additional features.

The make command is an excellent program administrative tool used
extensively in at least one project for over 2 years. However, make had the
following shortcomings:

Handling of libraries was tedious.

Handling of the Source Code Control System (SCCS) file name format
was difficult or impossible.

Environment variables were completely ignored by make.

The general lack of ability to maintain files in a remote directory.

These shortcomings hindered large scale use of make as a program support
tool.

The augmented version of make is modified to handle the above problems. The
additional features are within the original syntactic framework of make and
few if any new syntactical entities are introduced. A notable exception is the
include file capability. Further, most of the additions result in a “Don’t know
how to make ...” message from the old version of make.

The following paragraphs describe with examples the additional features of the -
make program. In general, the examples are taken from existing makefiles.
Also, the illustrations are examples of working makefiles.

UNIX Programmer’s Manual Languages and Support Tools—233

AUGMAKE

THE ENVIRONMENT VARIABLES

Environment variables are read and added to the macro definitions each time
make executes. Precedence is a prime consideration in doing this properly.
The following describes make’s interaction with the environment. A new
macro, MAKEFLAGS, is maintained by make. The new macro is defined as
the collection of all input flag arguments into a string (without minus signs).
The new macro is exported and thus accessible to further invocations of make.
Command line flags and assignments in the makefile update MAKEFLAGS.
Thus, to describe how the environment interacts with make, the MAKEFLAGS
macro (environment variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions are the —f,
—p, and —r flags.) '

2. Read and set the input flags from the command line. The command
line adds to the previous settings from the MAKEFLAGS environment
variable.

3. Read macro definitions from the command line. These are made not
resettable. Thus, any further assignments to these names are ignored.

4. Read the internal list of macro definitions. These are found in the file
rules.c of the source for make. Figure 2 contains the complete makefile
that represents the internally defined macros and rules of the current
version of make. Thus, if make —r ... is typed and a makefile includes
the makefile in Figure 2, the results would be identical to excluding the
—r option and the include line in the makefile. The Figure 2 output can
be reproduced by the following:

make —fp — < /dev/null 2>/dev/null

The output appears on the standard output.
They give default definitions for the C language compiler
(CC=cc), the assembler (AS=as), etc.

234—~Languages and Support Tools UNIX Programmer’s Manual

5. Read the environment. The environment variables are treated as macro
definitions and marked as exported (in the shell sense). However, since
MAKEFLAGS* is not an internally defined variable (in rules.c), this
has the effect of doing the same assignment twice. The exception to this
is when MAKEFLAGS is assigned on the command line. (The reason it
was read previously was to turn the debug flag on before anything else
was done.)

6. Read the makefile(s). The assignments in the makefile(s) overrides the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless
the —e flag is used. The —e is an additional command line flag which
tells make to have the environment override the makefile assignments.
Thus, if make —e ... is typed, the variables in the environment override
the definitions in the makefilef. Also MAKEFLAGS override the
environment if assigned. This is useful for further invocations of make
from the current makefile.

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1. internal definitions (from rules.c)
2. environment
3. makefile(s)

4. command line.

The —e flag has the effect of changing the order to:

* MAKEFLAGS are read and set again.
¥ There is no way to override the command line assignments.

UNIX Programmer’s Manual Languages and Support Tools—235

AUGMAKE

1. internal definitions (from rules.c)
2. makefile(s)
3. environment

4, command line.

This order is general enough to allow a programmer to define a makefile or set
of makefiles whose parameters are dynamically definable.

Figure 2

Example of Internal Definitions (Sheet 1 of 4).

LIST OF SUFFIXES

.SUFFIXES: 0o .c.c”.y.y 1.1 .s.s" .sh.sh™ .h.h"”

PRESET VARIABLES

MAKE=make

YACC=yacc

YFLAGS=

LEX=lex

LFLAGS=

LD=Id

LDFLAGS=

CC=cc

CFLAGS=-0

AS=as

ASFLAGS=

GET=get

GFLAGS=

236—Languages and Support Tools

UNIX Programmer’s Manual

Example of Internal Definitions (Sheet 2 of 4).

SINGLE SUFFIX RULES

$(CC) -n-0$< -0$@

$(GET) $(GFLAGS) -p $< > $*c
$(CC) -n -0 $* .c -0 $*

-rm -f $*.c
.sh:
cpi< @
sh™
$(GET) &(GFLAGS) -p $< > sh
cp $* .sh $*
-rm -f $* .sh
DOUBLE SUFFIX RULES
.C.0:
$(CC) $(CFLAGS) -c $<
c .o

UNIX Programmer’s Manual Languages and Support Tools—237

AUGMAKE

Example of Internal Definitions (Sheet 3 of 4). -

$(GET) $(CFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

$(GED $(GFLAGS) -p $< >$*c

.S.0:

$(AS) $(ASFLAGS) -0 $@ $<

$(GET) $(GFLAGS) -p $< > $*s
$(AS) $(ASFLAGS) -0 $* .0 $* s
-rm -f $*.s

.y.o:

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.o$@

$(GET) $(GFLAG) -p $< > $*y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAG) -c y.tab.c

rm ~f y.tab $*.y

mv y.tab.o $*.0

Jo:

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c

mv lex.yy.o $@

238—Languages and Support Tools

UNIX Programmer’s Manual

Example of Internal Definitions (Sheet 4 of 4).

J.0:

$(GET) $(GFLAGS) -p $< > $*1
$(LEX) $(GFLAG) $*.

$(CC) $(CFLAGS) -c lex.yy.c

rm -f lex.yy.c $*.1

mv lex.yy.o $*.0

y.c

$(YACC) $(YFLAGS) $<
mv y.tab.c $§@

y.c

$(GET) $(GFLAGS) -p $< > $*y
$(YACC) $(YFLAGS) $*.y

mv -f $*.c

-rm -f $*y

lc:

$(LEX) $<
mv lex.yy.c§@

.c.a:

$(CO) -c $(FLAGS) $<
arrv $@ $*.0
rm -f $*.0

$(GET) $(GFLAGS) -p $< > $*c¢
$(CC) -c $(CFLAGS) $*.c
arrv $@ $*.0

$(GET) $(GFLAGS) -p $< > $*s
$(AS) $(ASFLAGS) -0 $*.0 $*.s
arrv $@ $*.0

-rm -f $*.[s0]

h™h

$(GET) $(GFLAGS) -p $< > $*.h

UNIX Programmer’s Manual

Languages and Support Tools—239

AUGMAKE

RECURSIVE MAKEFILES

Another feature was added to make concerning the environment and recursive
invocations. If the sequence “$(MAKE)” appears anywhere in a shell
command line, the line is executed even if the —n flag is set. Since the —n
flag is exported across invocations of make (through the MAKEFLAGS
variable), the only thing that actually gets executed is the make command
itself. This feature is useful when a hierarchy of makefile(s) describes a set of
software subsystems. For testing purposes, make —n ... can be executed and
everything that would have been done will get printed out including output
from lower level invocations of make.

FORMAT OF SHELL COMMANDS WITHIN make

The make program remembers embedded newlines and tabs in shell command
sequences. Thus, if the programmer puts a for loop in the makefile with
indentation, when make prints it out, it retains the indentation and backslashes.
The output can still be piped to the shell and is readable. This is obviously a
cosmetic change; no new function is gained.

ARCHIVE LIBRARIES

The make program has an improved interface to archive libraries. Due to a
lack of documentation, most people are probably not aware of the current
syntax of addressing members of archive libraries. The previous version of
make allows a user to name a member of a library in the following manner:

lib(object.o)
or
lib((_localtime))

where the second method actually refers to an entry point of an object file
within the library. (Make looks through the library, locates the entry point,
and translates it to the correct object file name.)

To use this procedure to maintain an archive library, the following type of
makefile is required:

240—Languages and Support Tools UNIX Programmer’s Manual

lib:: lib(ctime.o0)
$(CC) —c —O ctime.c
ar rv lib ctime.o
rm ctime.o

lib:: lib(fopen.o)
$(CC) —c —O fopen.c
ar rv lib fopen.o
rm fopen.o

...and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for adding
a C language file to a library are the same for each invocation; the file name
being the only difference each time. (This is true in most cases.)

The current version gives the user access to a rule for building libraries. The
handle for the rule is the “.a” suffix. Thus, a “.c.a” rule is the rule for
compiling a C language source file, adding it to the library, and removing the
“.0” cadaver. Similarly, the “.y.a”, the “.s.a”, and the “.l.a” rules rebuild
YACC, assembler, and LEX files, respectively. The current archive rules
defined internally are “.c.a”, “.c{.a”, and “s{.a”. [The tilde (*) syntax will be
described shortly.] The user may define in makefile other rules needed.

The above 2-member library is then maintained with the following shorter
makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual “.c.a” rules are as follows:

.ca:
$(CC) —c $(CFLAGS) $<
arrv $@ $+0
rm —f $*.0

Thus, the $@ macro is the “.a” target (lib); the $< and $* macros are set to
the out-of-date C language file; and the file name scans the suffix, respectively
(ctime.c and ctime). The $< macro (in the preceding rule) could have been
changed to $+.c.

UNIX Programmer’s Manual Languages and Support Tools—241

AUGMAKE

It might be useful to go into some detail about exactly what make does when it
‘'sees the construction

lib: lib(ctime.o)
@echo lib up-to-date

Assume the object in the library is out-of-date with respect to ctime.c. Also,
there is no ctime.o file.

1. Do lib.
2. Todo lib, do each dependent of lib.
3. Do lib(ctime.o0).

4. To do lib(ctime.o), do each dependent of lib(ctime.o). (There are
none.)

5. Use internal rules to try to build /ib(ctime.o). (There is no explicit
rule.) Note that /ib(ctime.o) has a parenthesis in the name to identify
the target suffix as “.a”. This is the key. There is no explicit “.a” at the
end of the /ib library name. The parenthesis forces the “.a” suffix. In
this sense, the “.a” is hard wired into make.

6. Break the name lib(ctime.o) up into lib and ctime.o. Define two
macros, $@ (=/ib) and