

* Trademark of AT&T.

AT&T

VOLUME 5

LANGUAGES
AND SUPPORT TOOLS

UNIX*
programmer's manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

ATs.T

VOLUME 5

LANGUAGES
AND SUPPORT TOOLS

UNIX*
programmer's manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

Steven V. Earhart: Editor

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia

Montreal Toronto London Sldney Tokyo
Mexico City Rio de Janeiro Madrid

* Trademark of AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes
no liability to any party for any loss or damage caused by errors or omissions or statements of any kind in the
UNIX* Programmer's Manual, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. AT&T further assumes no
liability arising out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T disclaims all warranties
regarding the information contained herein, whether expressed, implied or statutory, including implied
warranties or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the TROFF formatter
operating under the UNIX system on an AT&T 3B20 computer.

* Trademark of AT&T.

Copyright© 1986 AT&T
All rights reserved.
Address correspondence to:
383 Madison A venue
New York, NY 10017

No part of this publication may be reproduced, transmitted or used in any form or by any means-graphic,
electronic, mechanical or chemical, including photocopying, recording in any medium, taping, by any
computer or information storage and retrieval systems, etc. without prior permission in writing from
AT&T.

Library of Congress Cataloging-in-Publication Data

UNIX programmer's manual.

At head of title: AT&T
Inclues index.
Contents: v. 1. Commands and utilities-v. 2.

System calls and library routines-v. 3. System
administration facilities.-v. 4. Document Preparation. -v. 5. Languages and support tools.

1. UNIX (Computer operating system) I. Earhart,
Steven V. II. American Telephone and Telegraph Company.
QA76.76.063U548 1986 005.4'3 86-311

Select Code 320-035
ISBN 0-03-011204-4

Printed in the United States of America

Published simultaneously in Canada

67809098765432

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press
Saunders College Publishing

PREFACE
The UNIX Programmer's Manual describes most of the features of the UNIX
System V. It does not provide a general overview of the UNIX system nor
details of the implementation of the system.

Not all commands, features, or facilities described in this series are available in
every UNIX system implementation. For specific questions on a machine
implementation of the UNIX system, consult your system administrator.

The UNIX Programmer's Manual is available in several volumes.

• Volume 1 contains the Commands and Utilities (sections 1 and 6)

• Volume 2 contains the System Calls and Library Routines (sections 2,3,4,
and 5).

• Volume 3 contains the System Administration Facilities (sections 1M, 7,
and 8).

• Volume 4 contains the Document Preparation Facilities (mm, tbl, etc.).

• Volume 5 contains the Languages and Support Tools (C language, lex,
make, etc.).

UNIX Programmer's Manual Languages and Support Tools-i

INTRODUCTION

This volume of the UNIX. Programmer's Manual describes the languages and
support tools that are available on most UNIX operation system
implementations. These facilities are not available on all implemntations, for
specific information as to availability consult your system administrator.

Two main programming languages are supported on the UNIX system. The
languages include:

• C Language - A medium-level programming language which was used
to write most of the UNIX operating system. Discussion includes the
following:

C LANGUAGE- provides a summary of the grammar and rules of
the C programming language. The. C language as it is
implemented on most computers including the AT&T 3B
computers, the PDP:f:-ll computer, and the VAX:f:-1l/780
computer. Where differences exist, these chapters try to point out
implementation-dependent details. With few exceptions, such
dependencies follow directly from the properties of the hardware.
The various compilers are generally quite compatible. Computers
not listed in the examples, probably follow the same rules and
guidelines. Consult your system support group for information.

LIBRARIES- describe functions and declarations that support the
C Language and how to use these functions. Both the C Library
and the Object File and Math Libraries are discussed.

THE "cc" COMMAND- describes the command used to compile
C language programs, produce assembly language programs, and
produce executable programs.

A C PROGRAM CHECKER - "lint" - describes a program that
attempts to detect compile-time bugs and non-portable features in
C programs.

* Trademark of AT&T.

:j: Trademarks of Digital Equipment Corporation

UNIX Programmer's Manual Languages and Support Tools-iii

A SYMBOLIC DEBUGGER - "sdb" - describes a symbolic
debugging program that is used to debug compiled C language
programs.

• Fortran - Fortran 77, and rational Fortran preprocessor (Ratfor) are
described as follows:

UNIX SYSTEM COMMANDS FOR FORTRAN- describes the
various commands that may be used with Fortran on most UNIX
system.

FORTRAN 77- describes the implementation of Fortran 77 on the
UNIX system in terms of the variations from the American
National Standard.

RATFOR- describes the Ratfor preprocessor. This preprocessor
provides a means for writing Fortran in a fashion similar to the C
language. This preprocessor provides '(among other things)
simplified control-flow statements.

EFL- descibes a general purpose computer language intended to
encourage portable programming. It has a uniform and readable
syntax and good data and control flow structuring. EFL programs
can be translated into efficient Fortran code, so the EFL
programmer can take advantage of the ubiquity of Fortran, the
valuable libraries of software written in that language, and the
portability that comes with the use of a standardized language.

The following paragraphs contain a brief description of the support tools that
aid in program development.

• A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
{make} - describes a software tool for maintaining, updating, and
regenerating groups of computer programs. The many activities of
program development and maintenance are made simpler by the make
program.

• AUGMENTED VERSION OF "make" - is now combined with A
PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make).

iv-Languages and Support Tools UNIX Programmer's Manual

• SOURCE CODE CONTROL SYSTEM (SCCS) USER'S GUIDE­
describes the collection of sees programs under the UNIX operating
system. The sees programs act as a "custodian" over the UNIX
system files.

• M4 MACRO PROCESSOR- describes a general purpose macro
processor that may be used as a front end for rational Fortran, e, and
other programming languages.

• "awk" PROGRAMMING LANGUAGE- describes a software tool
designed to make many common information retrieval and text
manipulation tasks easy to state and to perform.

• LINK EDITOR- describes a software tool (Jd) that creates load files by
combining object files, performing relocation, and resolving internal
references.

• COMMON OBJECT FILE FORMAT (COFF) - describes the output
file produced on some UNIX systems by the assembler and the link
editor.

• ARBITRARY PRECISION DESK CALCULATOR LANGUAGE
(BC) - describes a compiler for doing arbitrary precision arithmetic on
the UNIX operating system.

• INTERACTIVE DESK CALCULATOR (DC) - describes a program
implemented on the UNIX operating system to do arbitrary-precision
integer arithmetic.

• LEXICAL ANALYZER GENERATOR (Lex) - describes a software
tool that lexically processes character input streams.

• YET ANOTHER COMPILER-COMPILER (yacc) - describes the yacc
program. The yacc program provides a general tool for imposing
structure on the input to a computer program.

• UNIX SYSTEM TO UNIX SYSTEM COpy (UUCP) - describes a
network that provides information exchange (between UNIX systems)
over the direct distance dialing network.

The support tools provide an added dimension to the basic UNIX software
commands. The "tools" described enable the user to fully utilize the UNIX
operating system.

It is assumed that the user of this document has at least two years of
specialized training in computer-related fields. The user is also expected to use
the UNIX system for software development.

Throughout this document, each reference of the form name (1 M), name (7); or
name(S) refers to entries in the UNIX Programmer's Manual-Volume 3:
System Administration Facilities. Each reference of the form name (1) and

UNIX Programmer's Manual Languages and Support Tools-v

name(6) refers to entries in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities. All other references to entries of the form name (N),
where possibly followed by a letter, refer to entry name in section N of the
UNIX Programmer's manual-Volume 2: System Calls and Library Routines.

vi-Languages and Support Tools UNIX Programmer's Manual

TABLE OF CONTENTS

LANGUAGES

C LANGUAGE ••••••••
LEXICAL CONVENTIONS

Comments •••••.
Identifiers (Names)
Keywords ••••
Constants •••••
Strings . • • • .
Hardware Characteristics
DEC PDP-II HARDWARE CHARACTERISTICS
DEC VAX-II HARDWARE CHARACTERISTICS
AT&T 3B HARDWARE CHARACTERISTICS.

SYNTAX NOTATION ..•.•
NAMES ..•••

Storage Class
Type ...•

OBJECTS AND LVALUES .
CONVERSIONS • . • . .

Characters and Integers
Float and Double • • .
Floating and Integral •.
Pointers and Integers . •
Unsigned .•.•.•.
Arithmetic Conversions •
Void•..

EXPRESSIONS. • .
Primary Expressions
Unary Operators. .
Multiplicative Operators ..•.•
Additive Operators. •
Shift Operators ••.•
Relational Operators •.
Equality Operators ..•
Bitwise AND Operator
Bitwise Exclusive OR Operator
Bitwise Inclusive OR Operator .
Logical AND Operator
Logical OR Operator .•
Conditional Operator • .
Assignment Operators
Comma Operator ...

DECLARATIONS
Storage Class Specifiers .
Type Specifiers

• . • 1
• • • • • • • • • 1

• • 1
• • 1

• 1
• • 2

.3

.4
· .4
· .5

.5
· • 6

. 6
· .6
· .7
• • 8
· .8
• • 8
· .9
• • 9

•••••••• 9
· .9

. ...•••• 10
. 10

• • 11
• • 11

• •• 14
• ...•..•• 16

· •. 16
• •••• 17

· ••.•.••. 18
• •• 18

· •..•.••. 18
· •• 19

· . 19
• •• 19

· .20
· .20

• •••••••• 20
• • 21

· •. 22
· .22

• •••••••• 23
· .24

• •••••••• 25
· .27

• •• 30

Declara tors . • • . . •
Meaning of Declarators .
Structure and Union Declarations
Enumeration Declarations .•
Initialization •....
Type Names

•••• 32
• •••••••••••• 34

Typedef •. • •• 35
STATEMENTS . . • . • • . ••••••••••• 36

Expression Statement. . • •• 36

UNIX Programmer's Manual Languages and Support Tools-vii

Compound Statement or Block. .
Conditional Statement
While Statement
Do Statement • •
For Statement. . .
Switch Statement
Break Statement •
Continue Statement ••.••
Return Statement .•
Goto Statement •.•
Labeled Statement . .
Null Statement • • .

EXTERNAL DEFINITIONS .•
External Function Definitions
External Data Definitions

SCOPE RULES. . • .
Lexical Scope . . . • • . .
Scope of Externals . • •

COMPILER CONTROL LINES
Token Replacement .•.••.••
File Inclusion. . . • • . •
Conditional Compilation ..••.
Line Control •••••

IMPLICIT DECLARATIONS
TYPES REVISITED. . •

Structures and Unions • . • •
Functions ••••.••..•
Arrays, Pointers, and Subscripting • • • • .
Explicit Pointer Conversions • • •

CONSTANT EXPRESSIONS ••
PORTABILITY CONSIDERATIONS.
SYNTAX SUMMARY

Expressions • • • • •
Declarations
Statements • • . • •
External definitions
Preprocessor

C LIBRARIES . • • • •
GENERAL •••.••

Including Functions
Including Declarations

THE C LIBRARY
Input/Output Control
File Access Functions
File Status Functions •
Input Functions • • • •
Output Functions • • •
Miscellaneous Functions
String Manipulation Functions.
Character Manipulation
Character Testing Functions
Character Translation Functions •

viii-Languages and Support Tools

· .36
• .37
• .37

.••• 37
· .38
• • 38
· .39
· .40
· .40
· .40
• • 41
• • 41
· • 41
· .42
· .43
· .43
· .44

.45
• .45
· .46
· .47
· .47
• .49
• .49
• .49
· .50
· . 51

• ••• 51
• .52
• • 53
• .54
· .55
· .55
· .57
· .60
• • 61
· .62

· .63
· .63
· .64
· .64
· .65
· .65
• .66
· .67
· .67
• • 68
• .69
· .70
· .71
· .72
· .73

UNIX Programmer's Manual

Time Functions • • • . • • . • • •
Miscellaneous Functions
Numerical Conversion • . • . • • •
DES Algorithm Access .
Group File Access . . •
Password File Access •
Parameter Access . . .
Hash Table Management .
Binary Tree Management • •
Table Management
Memory Allocation
Pseudorandom Number Generation •.
Signal Handling Functions
Miscellaneous • • . • • • • • . . •

THE OBJECT AND MATH LIBRARIES • • . •
GENERAL .•.•...•••.••••••
THE OBJECT FILE LIBRARY ••••••..

Common Object File Interface Macros (ldfcn.h)

• .73
.74

• • 74
• • 75

• .••• 76
.77

. •.••.••• 77
.78

• .79
.79
.80

• •• 81
· •• 82

.82

• • 85
• • 85

• 85
• 88

THE MATH LIBRARY. . • .••. • .89
.90 Trigonometric Functions

Bessel Functions
Hyperbolic Functions. . •
Miscellaneous Functions

COMPILER AND C LANGUAGE
USE OF THE COMPILER. .
COMPILER OPTIONS . • • • •

A C PROGRAM CHECKER-"lint"
GENERAL •••••.

Usage••.•.•.
TYPES OF MESSAGES . • . • •

Unused Variables and Functions
Set/Used Information .
Flow of Control
Function Values
Type Checking .
Type Casts
Nonportable Character Use
Assignments of "longs" to "ints"
Strange Constructions • • • • .
Old Syntax ••••.••.•
Pointer Alignment .••..
Multiple Uses and Side Effects •

.90
• • 91

• 91

• .93
· .93

• •• 94

97
97
97
99
99

· .100
• • 101
• .102
• .103

.104
• • 105

• 105
• •• 105

• 107
• • 108
• • 108

SYMBOLIC DEBUGGING PROGRAM-"sdb" •.••.•••••.••. 111

UNIX Programmer's Manual Languages and Support Tools-ix

GENERAL ••••••• • • 111
USAGE ••••••••• • 111

Printing a Stack Trace • • • • • • • 113
Examining Variables •• • • • • •

SOURCE FILE DISPLAY AND MANIPULATION • •
Displaying the Source File • • . • • • • • • • • .
Changing the Current Source File or Function • • •
Changing the Current Line in the Source File

• • 113
• • 117

.117
· • 118

A CONTROLLED ENVIRONMENT FOR PROGRAM TESTING
• • 118

.••• 119
Setting and Deleting Breakpoints • • • . • • • •
Running the Program • • • • • • • • • •
Calling Functions . • • • • • • • . . • .

MACHINE LANGUAGE DEBUGGING • .
Displaying Machine Language Statements
Manipulating Registers • . • . • . . • . • .

OTHER COMMANDS • . . • . • • • • •

• .119
· .120

.122
..•• 122

.••.•.• 122
• 123

• . 123

FORTRAN UNIX SYSTEM COMMANDS ••••••.•...•••• 127

FORTRAN 77 •••..•.••
USAGE •.•••.•.•..
LANGUAGE EXTENSIONS

Double Complex Data Type
Internal Files. • . • . • • .
Implicit Undefined Statement
Recursion •••..••.•
Automatic Storage •
Variable Length Input Lines .
Include Statement .••••
Binary Initialization Constants
Character Strings. . . •
Hollerith •••.•.
Equivalence Statements
One-Trip DO Loops ..•
Commas in Formatted Input .
Short Integers . . • . • • .
Additional Intrinsic Functions

VIOLATIONS OF THE STANDARD
Double Precision Alignment • • .
Dummy Procedure Arguments ..
T and TL Formats •......

INTERPROCEDUREINTERFACE
Procedure Names . .
Data Representations
Return Values •
Argument Lists. . .

FILE FORMATS
Structure of Fortran Files ..•..
Preconnected Files and File Positions

x-Languages and Support Tools

• 129
· 129

• . 129
· .130

.130
• 130

• • 130
· • 131

• 131
· 131

· • 132
· • 132

• 133
· 133

• • 133
· • 134
· .134

.135

.138
• .138
· • 138
· .139
· .139

• 139
.139

...•. 140
· 141
· 142

· . 142
. •.••.. 143

UNIX Programmer's Manual

RATFOR •.••..•••.•
GENERAL ••.••.•••
USAGE•••••.•
STATEMENT GROUPING ••
THE "if-else" CONSTRUCTION

Nested "if' Statements •.•••.
THE "switch" STATEMENT • • • •
THE "do" STATEMENT • • • . .
THE "break" AND "next" STATEMENTS
THE "while" STATEMENT .•••
THE "for" STATEMENT • • • .
THE "repeat-until" STATEMENT
THE "return" STATEMENT
THE "define" STATEMENT
THE "include" STATEMENT •
FREE-FORM INPUT
TRANSLATIONS • . • • .
WARNINGS •.•...•
EXAMPLE OF RAT FOR CONVERSION

THE PROGRAMMING LANGUAGE EFL .
INTRODUCTION •
LEXICAL FORM . . • . •

Character Set
Lines ..••.•
Tokens . . • . •
Macros ..•.•

PROGRAM FORM
Files •. . .
Procedures .•
Blocks .•.•.•.•••
Statements .•.•.•••
Labels

DATA TYPES AND VARIABLES. .
Basic Types
Constants
Variables •.
Arrays
Structures .

EXPRESSIONS
Primaries •.
Parentheses • • • . • • •
Unary Operators
Binary Operators
Dynamic Structures . •
Repetition Operator .•
Constant Expressions

DECLARATIONS •
Syntax •••.•.•
Attributes • • • • • •
Variable List . • • . •
The Initial Statement

EXECUTABLE STATEMENTS.

UNIX Programmer's Manual

• • 145
• 145

• •••••• 145
• •••••• 146

• • 147
•••••• 148

• 149
• • 150
• • 150
• • 151
· • 152

• •••••• 153
• • 154

••••• 155
• • 155
• • 156

• ••• 156
• •••••• 158

• • • • • • • •• 158

• • 161
· ••• 161
· ••• 162

• •••••.•••••• 162
· ••. 162

• •• 164
• •••••• 166

• 167
· ••• 167

• •• 167
• 167

· ••• 168
· ••• 169

• 169
• •• 169
• •• 170

· ••• 171
• •• 171

• 172
• •• 172

• 173
• 176
• 176

• •• 177
• 180

• •• 180
• 181
• 181

• •• 181
• 182

• •• 184
.•••.••• 184

• 185

Languages and Support Tools-xi

Expression Statements • •
Blocks ...•.
Test Statements
Loops ...••
For Statement •
Branch Statements ' •.
Input/Output Statements

PROCEDURES • . • •
Procedures Statement . • .••••.•.•..
End Statement • • • •
Argument Association. • •.••••
Execution and Return Values. .
Known Functions •

ATAVISMS .••
Escape Lines ••
Call Statement •
Obsolete Keywords
Numeric Labels
Implicit Declarations
Computed Goto
Goto Statement
Dot Names
Complex Constants • . •
Function Values . . • . • . .
Equivalence . • • • • .
Minimum and Maximum Functions

COMPILER OPTIONS • •
Default Options ...•••
Input Language Options • • •
Input/Output Error Handling
Continuation Conventions
Default Formats • • • . • . . . • . • . • . .
Alignments and Sizes . . . •
Default Input/Output Units • • • • . • . •
Miscellaneous Output Control Options

EXAMPLES .••••.•••••
File Copying . . • • . • . • • • • . • . •
Matrix Multiplication •
Searching a Linked List • . • • • • • •
Walking a Tree .••.••••.•.•.•

PORTABILITY .•••.
Primitives • . • • . • •

DIFFERENCES BETWEEN RATFOR AND EFL •
COMPILER. • . . .•..

Current Version • • • . • . •
Diagnostics • • • • • • •
Quality of Fortran Produced • • • • • •

CONSTRAINTS ON EFL •••••••
External Names
Procedure Interface •
Pointers .•.•••
Recursion •••.
Storage Allocation

••••. 185
• • 186
• .186
• . 188
• • 188
• • 191
• • 193

· 196
• •• 196

· 197
• . 197

• 197
• • 197

· 199
• • 199

• 199
• • 199

· •. 200
.200
.200
.201

• •• 201
.201
.202
.202
.202

· •• 203
.203
.203
.203
.204
.204
.204
• 205
.205
.205
.205
.206

.•••• 206
• •• 207

• •••••• 210
.210

• •• 211
.211

• • 211
• 211

• •• 212
• 214
.214
• 214
• 215

• •••• 215
.215

xii-Languages and Support Tools UNIX Programmer's Manual

SUPPORT TOOLS

A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS (make) •• 217
GENERAL " •.•..••.••.••••...
BASIC FEATURES •••.••••••••••
DESCRIPTION FILES AND SUBSTITUTIONS
COMMAND USAGE .•...•.•..•..
SUFFIXES AND TRANSFORMATION RULES
IMPLICIT RULES ••••...••
SUGGESTIONS AND WARNINGS •••••.•

AUGMENTED VERSION OF make ••
GENERAL •••••••••••••.
THE ENVIRONMENT VARIABLES
RECURSIVE MAKEFILES . • . • • • . • . . . • •
FORMAT OF SHELL COMMANDS WITHIN make
ARCHIVE LIBRARIES •.•••••.•...••

• 217
• 221
.224
.226
.228
.229

• •..••. 231

.233
• ••• 233

.234
· ••• 240

.240

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE TILDE
THE NULL SUFFIX. • • • • .'. • • . • • •

.240

.245

.247

.247

.248
INCLUDE FILES ••...••••.•.•
INVISIBLE SCCS MAKEFILES •••.•••
DYNAMIC DEPENDENCY PARAMETERS .
EXTENSIONS OF $*, $@, AND $<
OUTPUT TRANSLATIONS ••••..••

. ...•.. 248
.249
.250

SOURCE CODE CONTROL SYSTEM USER GUIDE. • .251
.251
.252
.253
.253
.254

GENERAL •••.•.•.•..••.
SCCS FOR BEGINNERS ••.••••

A. Terminology •••..•••.•.•
B. Creating an SCCS File via "admin"
C. Retrieving a File via "get" •••••
D. Recording Changes via "delta" ••••
E. Additional Information About "get"
F. The "help" Command ••..•

DELTA NUMBERING •...•••.
SCCS COMMAND CONVENTIONS
SCCS COMMANDS • • . . • • • • . .

A. The "get" Command •.
B. The "delta" Command .•••••.••••
C. The "admin" Command ••
D. The "prs" Command . • . ••..
E. The "help" Command .••••..
F. The "rmdel" Command •.••••.••.•
G. The "cdc" Command .•.
H. The "what" Command • . • • • • •
I. The "sccsdiff" Command

• ..• 255
.256

· •••.•.•.•• 258
· .• 259

.261
· .. 263

.264
· •• 277
· •• 281

· ..••.••.•• 284
· •• 286
· •• 287
· •• 288

• •.•• 289
· .• 290

.290 J. The "comb" Command
K. The "val" Command • • . • • • • •.•.•• 291

SCCS FILES •.•
A. Protection. .
B. Formatting ••••••
C. Auditing . . • • • . • • • • • •

UNIX Programmer's Manual

· • . .• 292
· •• 292

• .293
••.•• 294

Languages and Support Tools-xiii

AN SCCS INTERFACE PROGRAM ...•...•.•
A. General ••.••..••••••.•.••.
B. Function . . • . . • . • • •
C. Basic Program • . .
D. Linking and Use •

THE M4 MACRO PROCESSOR
GENERAL .•..•.•.
DEFINING MACROS . • .
ARGUMENTS •••...•
ARITHMETIC BUILT-INS.
FILE MANIPULATION ..
SYSTEM COMMAND . . .
CONDITIONALS ••••.
STRING MANIPULATION
PRINTING

THE awk PROGRAMMING LANGUAGE
GENERAL•..
PROGRAM STRUCTURE
LEXICAL CONVENTION . • • • • •

Numeric Constants
String Constants
Keywords .•.•
Identifiers • . . • •
Operators •.••
Record and Field Tokens ••••••
Record Separators ..•
Field Separator.
Multiline Records .•..
Output Record and Field Separators ..
Comments •.••....•
Separators and Brackets • . •

PRIMARY EXPRESSIONS. •
Numeric Constants . • • • •
String Constants . . •••
Vars •...•...••.
Function

TERMS•
Binary Terms
Unary Term.
Incremented Vars .
Parenthesized Terms

EXPRESSIONS . • .
Concatenation of Terms .
Assignment Expressions

USING awk •••••••
INPUT: RECORDS AND FIELDS.
INPUT: FROM THE COMMAND LINE .
OUTPUT: PRINTING •
OUTPUT: TO DIFFERENT FILES •. . •

• ••• 296
· .296
• .296
• .297
• . 297

• .299
· .299
• .306

.308

.309
• .310

• ••• 311
· . 312

• 313
· ... 314

· . 317
· 317

.•••••. 317
· . 319
· . 319
· .319

.320

.320

.320

.323
· .324
· .324

.324
· .325
· .325

.325

.325

.326

.326

.326

.328
• ••. 330

.330

.330
· ••. 331

· 331
· 331
· 331

· .\ •. 332
· 333

· .334
· .336

.338
· .343

xiv-Languages and Support Tools UNIX Programmer's Manual

OUTPUT: TO PIPES •
COMMENTS .••
PATTERNS ••••••

BEGIN and END
Relational Expressions. •
Regular Expressions. • •
Combinations of Patterns
Pattern Ranges • •

ACTIONS .•••••••
Variables, Expressions, and Assignments .
Initialization of Variables
Field Variables • • • . • • • • •
String Concatenation ••••.
Special Variables • • . • • • . • .
Type •••••••
Arrays ..••••

BUILT IN FUNCTIONS ••
FLOW OF CONTROL . .
REPORT GENERATION ••
COOPERATION WITH THE SHELL
MISCELLANEOUS HINTS

THE LINK EDITOR •.••
GENERAL •••••.•

Memory Configuration
Section .
Addresses ••
Binding ••••
Object File

USING THE LINK EDITOR
LINK EDITOR COMMAND LANGUAGE.

Assignment Statements ••.••.•.•
Specifying a Memory Configuration

• . 344
· .345

.345
• .346
• .347

• •.••••• 349
• •.••••• 352

· .353
• ••••••••••• 354

.354
• .356

.356
• •.••••. 357
• •.••••. 358
· ..••••. 359

• ••••••••• 360
.362

· •.•.•.. 365
• .369
· • 371
· .372

.373

.373
· .374
· .374
· .375

.375

.375
• .376

.380
••.•••.••••. 381

.383
Section Definition Directives • • • • • • • • • . • • • · .385

NOTES AND SPECIAL CONSIDERATIONS
Changing the Entry Point • • • . • • .'
Use of Archive Libraries •••••••••
Dealing With Holes in Physical Memory • .
Allocation Algorithm .•••..••••
Incremental Link Editing ••.•.•.

· .397
· .397
• .397

•.•••••.••• 401
.401

DSECT, COPY, and NOLOAD Sections •••.•••
Output File Blocking • .

.402

.403

.404
Nonrelocatable Input Files •

ERROR MESSAGES •
Corrupt Input Files ••
Errors During Output .
Internal Errors • • • . • • • . • •
Allocation Errors • • . . • • • • •
Misuse of Link Editor Directives
Misuse of Expressions • • . • .
Misuse of Options
Space Restraints • • • •
Miscellaneous Errors • • • • •

UNIX Programmer's Manual

.405
· .406

.406

.407

.407

.408
· .409
· .411

.412
• .413

.413

Languages and Support Tools-xv

THE COMMON OBJECT FILE FORMAT 0 0 o 0421
GENERAL 0000000000000 o 0421
DEFINITIONS AND CONVENTIONS 0 0 0 0 0 o 0423

Sections 0 0 0 0 0 0 0 0 0 0
Physical and Virtual Addresses

FILE HEADER 0 0 0 0 0 0 0 0 0 0 0 0
Magic Numbers 0 0 0 0 0 0 0 0 0 0 0 0
Flags 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OPTIONAL HEADER INFORMATION 0 0

Standard UNIX system a.out Header
Optional Header Declaration 0

SECTION HEADERS 0 0 0 0 0 0 0 0 0
Flags 0 0 0 0 0 0 0 0 0 0 0
Section Header Declaration
.bss Section Header 0 0 0 0 0

SECTIONS 0 0 0 0 0 0 0 0 0
RELOCATION INFORMATION

Relocation Entry Declaration 0

LINE NUMBERS 0 0 0 0
Line Number Declaration 0 0 0 0 0 0

SYMBOL TABLE 0 0 0 0 0 0 0 0 0 0

o 0423
o 0423

0424
o 0 0 0 0 0 0 0 0 0 0425
o 0 0 0 0 0 0 0 0 0 0426

o 0 0 0429
o 0429

o 0 0432
o 0 0 0 0 0 0 0 0 0 0 0 0 433

o 0 0 0 0 0 0435
o 0 0436

o 0 0 0 0 0 0 0 0 0 0437
o 0 0 0 0 0 0 0 0 0 0438

o 0 0438
o 0443
o 0443
o 0444
o 0446

Special Symbols 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0447
Symbols and Functions 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 o 0451
Symbol Table Entries . . 0 0 0 0 0 0 0 • • • 0 • • •
Auxiliary Table Entries

STRING TABLE 0 ••••• 0

ACCESS ROUTINES •. . • • • • . 0 • • • •

o .452
o 0 0 0 0 0468

o 0 0 0479
o 0 0 0 0480

ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC) ... 481
GENERAL . . . 0 • • • 0 • • • • 0 • 0 481
BASES ••••• 0 ••• 0 • • • 0 • • • • • • • ..483
SCALING •• 0 0 ••• 0 • • • 0 • • • 0485
FUNCTIONS • • • . . . 0 • • • • • 0 0 • 486
SUBSCRIPTED VARIABLES . 0 • 0 • 488
CONTROL STATEMENTS. • • .•• 0 0 0 ••• 489
ADDITIONAL FEATURES 0 • 0 0 • 492
BC APPENDIX 0 0 • 0 • 0 • • • • • • • 494

NOTATION 0 0 • • • • • • • 0 • 0 • 0 • • 0 494
TOKENS .• 0 • • • • • • • 0 .494
EXPRESSIONS . . • . • . . 0 • • • 0 • • 495
RELATIONAL OPERATORS 0 •••• 0 0 • • • • • 0499
STORAGE CLASSES . . 0 • 0 • • • • • 0 • 499
STATEMENTS • . . . • . 0 • 0 0 0 • 500

INTERACTIVE DESK CALCULATOR (DC)
GENERAL 0 • 0 •• 0 • 0 • 0 •••••
DC COMMANDS 0 • • • 0 • • • • • • •

INTERNAL REPRESENTATION OF NUMBERS .• 0 • 0

THE ALLOCATOR • 0 ••••••

INTERNAL ARITHMETIC 0 ••• 0 •• 0
ADDITION AND SUBTRACTION • • • . 0 • 0

•••• 503
• •• 503
• 0 .503

• 0507
• • 0507

• 0 508
• 0 .509

xvi-Languages and Support Tools UNIX Programmer's Manual

MULTIPLICATION .•••. • .509
DIVISION •••• • ••••• • .510
REMAINDER. • • • ••••••••.••.•.•••• • • 510
SQUARE ROOT • • • • • • • • • • • •
EXPONENTIATION. .
INPUT CONVERSION AND BASE • •
OUTPUT COMMANDS • • • • •
OUTPUT FORMAT AND BASE •.
INTERNAL REGISTERS ••.•.•
STACK COMMANDS . • • • . • . • . • . •.•••
SUBROUTINE DEFINITIONS AND CALLS •.•••
INTERNAL REGISTERS-PROGRAMMING DC
PUSHDOWN REGISTERS AND ARRAYS
MISCELLANEOUS COMMANDS
DESIGN CHOICES . . • • • . • • • . • • • . .

LEXICAL ANALYZER GENERATOR (LEX)
GENERAL .••.•.•••.•.••••.

• • 511
• .511
• .511
• . 512
• . 512
• • 512
• .513
• .513
• • 513
• .513
• • 514
• • 514

• • 517
• . 517

• .•.•• 519 LEX SOURCE .•••••.•••.••••.
LEX REGULAR EXPRESSIONS . • . • . • • • .520

Operators .••..•
Character Classes. . •
Arbitrary Character. • •
Optional Expressions ••
Repeated Expressions • • •
Alternation and Grouping
Context Sensitivity • • • . . • • . •
Repetitions and Definitions. • • ••.••.

LEX ACTIONS . • • • • . • • • • • • • . • .
AMBIGUOUS SOURCE RULES • • • • • . • .
LEX SOURCE DEFINITIONS • • • • • • . • • .

. ..••.•.•• 521

. •.••.•..• 522
• • 523
• .523
• • 523
• • 524

· ••.•••• 524
• • 525

· ••.•.•• 526
• .530

.533
USAGE. • • . • • • . • • • . • • •.•• • .535
LEX AND Y ACC • • • • • • • •
EXAMPLES ••.•..•••••

• .536
• .537

LEFT CONTEXT SENSITIVITY
CHARACTER SET •••••.•
SUMMARY OF SOURCE FORMAT

.••...•••••. 538
• .•.•••. 541

CA VEATS AND BUGS •••.•.

YET ANOTHER COMPILER-COMPILER (yacc) ••.••••
GENERAL •••••••••••••••.••.••••
BASIC SPECIFICATIONS • • • .
ACTIONS ••••••••••••
LEXICAL ANALYSIS •••••••••••••
PARSER OPERATION ••••••
AMBIGUITY AND CONFLICTS
PRECEDENCE •••••.•••
ERROR HANDLING ••••••
THE "yacc" ENVIRONMENT ••••••••
HINTS FOR PREPARING SPECIFICATIONS •

Input Style ••••••••••••••.••.••••

• . 541
• • 543

• • 545
• • 545
• .548
• • 551

• ••• 555
• • 557
• .563
• .569
• .572
• .575

.577
•••••. 577

UNIX Programmer's Manual Languages and Support Tools-xvii

Left Recursion . .
Lexical Tie-ins • .
Reserved Words

ADVANCED TOPICS

. \ ..

Simulating Error and Accept in Actions . • • . .
Accessing Values in Enclosing Rules . . . • • • • .
Support for Arbitrary Value Types • • . • • . • • • • •

EXAMPLES. . . • . . •••.•
A Simple Example . • . • .0 • • . • • • •
Y ACC Input Syntax •. . • • • • . • • • .
An Advanced Example .••••. • . • • .
Old Features Supported But Not Encouraged • •

UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP)
INTRODUCTION • • • . . . • . .
THE UUCP NETWORK

Network Hardware
Network Topology
Forwarding
Security ..•••.
Software Structure
Rules of the Road
Special Places: The Public Area
Permissions

NETWORK USAGE .
Name Space ..•
Forwarding Syntax
Types of Transfers
Remote Executions
Spooling ..•••.
Notification . • •
Tracking and Status
Job Status.
Network Status. • . • . . •••.
Job Control • . . • .

UTILITIES THAT USE UUCP
The Stockroom •
Mail ..
Netnews .•..
Uuto •..•
Other Applications

• .578
• •••..• 579
• •••••• 581

• •• 581
• •••••• 581
• •••••• 581

• .583
• •• 585

• .585
• •••••• 588

• .591
• •• 600

• ••• 603
• •• 603

• .••••• 603
• •••••• 604
• •••••• 604

• ••• 605
• .605

• •••••• 606
• .606

• •••••• 608
• •••••• 608
• •••••• 609
• •••••• 609
• •••••• 611
• •••••• 611
• •••••• 613

• ••• 613
• •••••• 613
• •••••• 614

· •.• 615
• .••••• 615
· .••••• 616

• ••• 617
· •••••• 617

• • 617
· • 617

• •••••. 617
· • 618

xviii-Languages and Support Tools UNIX Programmer's Manual

C LANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants, strings,
operators, and other separators. Blanks, tabs, new-lines, and comments
(collectively, "white space") as described below are ignored except as they
serve to separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longest string of characters which could
possibly constitute a token.

Comments

The characters /* introduce a comment which terminates with the characters
* /. Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a
letter. The underscore () counts as a letter. Uppercase and lowercase letters
are different. Although there is no limit on the length of a name, only initial
characters are significant: at least eight characters of a non-external name, and
perhaps fewer for external names. Moreover, some implementations may
collapse case distinctions for external names. The external name sizes include:

PDP-II
VAX-ll
AT&T 3B20

7 characters, 2 cases
> 100 characters, 2 cases
> 100 characters, 2 cases

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

UNIX Programmer's Manual Languages and Support Tools-I

CLANGUAGE

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct while
default float register switch

Some implementations also reserve the words fortran and asm.

Constants

There are several kinds of constants. Each has a type; an introduction to types
is given in "NAMES." Hardware characteristics that affect sizes are
summarized in "Hardware Characteristics" under "LEXICAL
CONVENTIONS."

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero). An octal constant consists of the digits 0 through 7
only. A sequence of digits preceded by Ox or OX (digit zero) is taken to be a
hexadecimal integer. The hexadecimal digits include a or A through f or F
with values 10 through 15. Otherwise, the integer constant is taken to be
decimal. A decimal constant whose value exceeds the largest signed machine
integer is taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long. Otherwise, integer
constants are into

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by I
(letter ell) or L is a long constant. As discussed below, on some machines
integer and long values may be considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in 'x'. The
value of a character constant is the numerical value of the character in the
machine's character set.

2-Languages and Support Tools UNIX Programmer's Manual

Certain nongraphic characters, the single quote (') and the backslash (\), may
be represented according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
which are taken to specify the value of the desired character. A special case of
this construction is \0 (not followed by a digit), which indicates the character
NUL. If the character following a backslash is not one of those specified, the
behavior is undefined. A new-line character is illegal in a character constant.
The type of a character constant is int.

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part,
an e or E, and an optionally signed integer exponent. The integer and fraction
parts both consist of a sequence of digits. Either the integer part or the
fraction part (not both) may be missing. Either the decimal point or the e and
the exponent (not both) may be missing. Every floating constant has type
double.

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and Enumeration
Declarations" under "DECLARATIONS") have type into

Strings

A string is a sequence of characters surrounded by double quotes, as in " .•• ". A
string has type "array of char" and storage class static (see "NAMES") and is
initialized with the given characters. The compiler places a null byte (\0) ,at
the end of each string so that programs which scan the string can find its end.
In a string, the double quote character (") must be preceded by a \; in addition,
the same escapes as described for character constants may be used.

UNIX Programmer's Manual Languages and Support Tools-3

CLANGUAGE

A \ and the immediately following new-line are ignored. All strings, even when
written identically, are distinct.

Hardware Characteristics

The following figures summarize certain hardware properties that vary from
machine to machine.

DEC PDP-II
(ASCII)

char 8 bits
int 16
short 16
long 32
float 32
double 64

float range ±10
±38

double range ±10
±38

DEC PDP-II HARDWARE CHARACTERISTICS

4-Languages and Support Tools UNIX Programmer's Manual

DEC VAX-II
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64

float range ±10
±38

double range ±10
±38

DEC VAX-II HARDWARE CHARACfERISTICS

AT&T 3D
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64

float range ± 10 ±38

double range ± 10 ±308

AT&T 3D HARDWARE CHARACTERISTICS

UNIX Programmer's Manual Languages and Support Tools-5

CLANGUAGE

SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and
characters in bold type. Alternative categories are listed on separate lines. An
optional terminal or nonterminal symbol is indicated by the subscript "opt," so
that

{expression t} op

indicates an optional expression enclosed in braces. The syntax is summarized
in "SYNTAX SUMMARY".

NAMES

The C language bases the interpretation of an identifier upon two attributes of
the identifier - its storage class and its type. The storage class determines the
location and lifetime of the storage associated with an identifier; the type
determines the meaning of the values found in the identifier's storage.

Storage Class

There are four declarable storage classes:

• Automatic
• Static
• External
• Register.

Automatic variables are local to each invocation of a block (see "Compound
Statement or Block" in "STATEMENTS") and are discarded upon exit from
the block. Static variables are local to a block but retain their values upon
reentry to a block even after control has left the block. External variables exist
and retain their values throughout the execution of the entire program and may
be used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast registers of the
machine; like automatic variables, they are local to each block and disappear
on exit from the block.

6-Languages and Support Tools UNIX Programmer's Manual

Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of the
implementation's character set. If a genuine character from that character set
is stored in a char variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character variables, but the
implementation is machine dependent. In particular, char may be signed or
unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available.
Longer integers provide no less storage than shorter ones, but the
implementation may make either short integers or long integers, or both,
equivalent to plain integers. "Plain" integers have the natural size suggested
by the host machine architecture. The other sizes are provided to meet special
needs.

The properties of enum types (see "Structure, Union, and Enumeration
Declarations" under "DECLARATIONS") are identical to those of some
integer types. The implementation may use the range of values to determine
how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2
n

where n is the number of bits in the representation. (On the PDP-II, unsigned
long quantities are not supported.)

Single-precision floating point (float) and double precIsion floating point
(double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Char, int of all sizes whether
unsigned or not, and enum will collectively be called integral types. The float
and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned
by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class
of derived types constructed from the fundamental types in the following ways:

UNIX Programmer's Manual Languages and Support Tools-7

C LANGUAGE

• Arrays of objects of most types
• Functions which return objects of a given type
• Pointers to objects of a given type
• Structures containing a sequence of objects of various types
• Unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

OBJECTS AND LVALUES

An object is a manipulatable region of storage. An lvalue is an expression
referring to an object. An obvious example of an lvalue expression is an
identifier. There are operators which yield lvalues: for example, if E is an
expression of pointer type, then *E is an lvalue expression referring to the
object to which E points. The name "lvalue" comes from the assignment
expression El - E2 in which the left operand El must be an lvalue expression.
The discussion of each operator below indicates whether it expects lvalue
operands and whether it yields an lvalue.

CONVERSIONS

A number of operators may, depending on their operands, cause conversion of'
the value of an operand from one type to another. This part explains the result
to be expected from such conversions. The conversions demanded by most
ordinary operators are summarized under "Arithmetic Conversions." The
summary will be supplemented as required by the discussion of each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used ..
In all cases the value is . converted to an integer. Conversion of a shorter
integer to a longer preserves sign. Whether or not sign-extension occurs for
characters is machine dependent, but it is guaranteed that a member of the
standard character set is non-negative. Of the machines treated here, only the
PDP-ll and VAX-ll sign-extend. On these machines, char variables range in
value from -128 to 127. The more explicit type unsigned char forces the
values to range from 0 to 255.

8-Languages and Support Tools UNIX Programmer's Manual

On machines that treat characters as signed, the characters of the ASCII set
are all non-negative. However, a character constant specified with an octal
escape suffers sign extension and may appear negative; for example, ,\377' has
the value -1.

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a
ftoat appears in an expression it is lengthened to double by zero padding its
fraction. When a double must be converted to ftoat, for example by an
assignment, the double is rounded before truncation to ftoat length. This result
is undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent.
In particular, the direction of truncation of negative numbers varies. The
result is undefined if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of
accuracy occurs if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in
such a case, the first is converted as specified in the discussion of the addition
operator. Two pointers to objects of the same type may be subtracted; in this
case, the result is converted to an integer as specified in the discussion of the
subtraction operator.

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain
integer is converted to unsigned and the result is unsigned. The value is the
least unsigned integer congruent to the signed integer (modulo 2wordsize). In a
2's complement representation, this conversion is conceptual; and there is no
actual change in the bit pattern.

UNIX Programmer's Manual Languages and Support Tools-9

CLANGUAGE

When an unsigned short integer is converted to long, the value of the result is
the same numerically as that of the unsigned integer. Thus the conversion
amounts to padding with zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar
way. This pattern will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to
unsigned into

2. Then, if either operand is double, the other is converted to double and
that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is converted to
unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and
that is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are
both converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the result.

Void

The (nonexistent) value of a void object may not be used in any way, and
neither explicit nor implicit conversion may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used only as
an expression statement (see "Expression Statement" under
"STATEMENTS") or as the left operand of a comma expression (see
"Comma Operator" under "EXPRESSIONS").

1 0-Languages and Support Tools UNIX Programmer's Manual

An expression may be converted to type void by use of a cast. For example,
this makes explicit the discarding of the value of a function call used as an
expression statement.

EXPRESSIONS

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the
expressions referred to as the operands of + (see "Additive Operators") are
those expressions defined under "Primary Expressions", "Unary Operators",
and "Multiplicative Operators". Within each subpart, the operators have the
same precedence. Left- or right-associativity is specified in each subsection for
the operators discussed therein. The precedence and associativity of all the
expression operators are summarized in the grammar of "SYNTAX
SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular,
the compiler considers itself free to compute sub expressions in the order it
believes most efficient even if the subexpressions involve side effects. The order
in which subexpression evaluation takes place is unspecified. Expressions
involving a commutative and associative operator (*, +, &, ~ A) may be
rearranged arbitrarily even in the presence of parentheses; to force a particular
order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows;
treatment of division by 0 and all floating-point exceptions varies between
machines and is usually adjustable by a library function.

Primary Expressions

Primary expressions involving _, ->, subscripting, and function calls group left
to right.

UNIX Programmer's Manual Languages and Support Tools-II

CLANGUAGE

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression J
primary-expression (expression-list)

. "d ifi opt przmary-expresszon . l entl er
primary-expression -> identifier

expression -list:
expression
expression-list, expression

An identifier is a primary expression provided it has been suitably declared as
discussed below. Its type is specified by its declaration. If the type of the
identifier is "array of ... ", then the value of the identifier expression is a
pointer to the first object in the array; and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared "function returning ... ", when used
except in the function-name position of a call, is converted to "pointer to
function returning ... ".

A constant is a primary expression. Its type may be jot, loog, or double
depending on its form. Character constants have type jot and floating
constants have type double.

A string is a primary expression. Its type is originally "array of char", but
following the same rule given above for identifiers, this is modified to "pointer
to char" and the result is a pointer to the first character in the string. (There
is an exception in certain initializers; see "Initialization" under
"DECLARATIONS.")

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses
does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary
expression. The intuitive meaning is that of a subscript. Usually, the primary
expression has type "pointer to ... ", the subscript expression is jot, and the type

12-Languages and Support Tools UNIX Programmer's Manual

of the result is " ... ". The expression EllE21 is identical (by definition) to
* «EO + (E2». All the clues needed to understand this notation are contained
in this subpart together with the discussions in "Unary Operators" and
"Additive Operators" on identifiers, * and +, respectively. The implications
are summarized under "Arrays, Pointers, and Subscripting" under "TYPES
REVISITED."

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the actual
arguments to the function. The primary expression must be of type "function
returning ... ," and the result of the function call is of type" ... ". As indicated
below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the
most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call.
Any of type char or short are converted to iot. Array names are converted to
pointers. No other conversions are performed automatically; in particular, the
compiler does not compare the types of actual arguments with those of formal
arguments. If conversion is needed, use a cast; see "Unary Operators" and
"Type Names" under "DECLARATIONS."

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A function
may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order of
evaluation of arguments is undefined by the language; take note that the
various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union, and the
identifier must name a member of the structure or union. The value is the
named member of the structure or union, and it is an lvalue if the first
expression is an lvalue.

A primary expression followed by an arrow (built from - and>) followed by
an identifier is an expression. The first expression must be a pointer to a
structure or a union and the identifier must name a member of that structure
or union. The result is an lvalue referring to the named member of the

UNIX Programmer's Manual Languages and Support Tools-13

CLANGUAGE

structure or union to which the pointer expression points. Thus the expression
El-> MOS is the same as (*El).MOS. Structures and unions are discussed in
"Structure, Union, and Enumeration Declarations" under
"DECLARATIONS. "

Unary Operators

Expressions with unary operators group right to left.

unary -expression:
* expression
& Ivalue
- expression
! expression

expression
+ + Ivalue
--lvalue
Ivalue + +
Ivalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection; the expression must be a pointer, and
the result is an lvalue referring to the object to which the expression points. If
the type of the expression is "pointer to ... ," the type of the result is " ... ".

The result of the unary & operator is a pointer to the object referred to by the
lvalue. If the type of the lvalue is " ... ", the type of the result is "pointer to

"

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 2n where n is the number of bits in the
corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its operand is
zero, zero if the value of its operand is nonzero. The type of the result is int.
It is applicable to any arithmetic type or to pointers.

14-Languages and Support Tools UNIX Programmer's Manual

The - operator yields the one's complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

The object referred to by the lvalue operand of prefix + + is incremented. The
value is the new value of the operand but is not an lvalue. The expression
+ +x is equivalent to x=x+l. See the discussions "Additive Operators" and
"Assignment Operators" for information on conversions.

The lvalue operand of prefix -- is decremented analogously to the prefix + +
operator.

When postfix + + is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented in
the same manner as for the prefix + + operator. The type of the result is the
same as the type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in
the manner as for the prefix -- operator. The type of the result is the same as
the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This construction
is called a cast. Type names are described in "Type Names" under
"Declarations. "

The sizeof operator yields the size in bytes of its operand. (A byte is undefined
by the language except in terms of the value of sizeof. However, in all existing
implementations, a byte is the space required to hold a char.) When applied to
an array, the result is the total number of bytes in the array. The size is
determined from the declarations of the objects in the expression. This
expression is semantically an unsigned constant and may be used anywhere a
constant is required. Its major use is in communication with routines like
storage allocators and 110 systems.

The sizeof operator may also be applied to a parenthesized type name. In that
case it yields the size in bytes of an object of the indicated type.

UNIX Programmer's Manual Languages and Support Tools-15

CLANGUAGE

The construction sizeof(type) is taken to be a unit, so the expression
sizeof{type) -2 is the same as (sizeof{type» -2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative,
and expressions with several multiplications at the same level may be
rearranged. by the compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of
truncation is machine-dependent if either operand is negative. On all machines
covered by this manual, the remainder has the same sign as the dividend. It is
always true that (alb) *b + a % b is equal to a (if b is not 0).

Additive Operators

The additive operators + and - group left to right. The usual arithmetic
c<mversions are performed. There are some additional type possibilities for
e~ch .opera tor.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter is
in all cases converted to an address offset by multiplying it by the length of the
object to which the pointer points. The result is a pointer of the same type as

16-Languages and Support Tools UNIX Programmer's Manual

the original pointer which points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an object
in an array, the expression P +1 is a pointer to the next object in the array.
No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the
same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral
type may be subtracted from a pointer, and then the same conversions for
addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (by division by· the length of the object) to an int representing the
number of objects separating the pointed-to objects. This conversion will in
general give unexpected results unless the pointers point to objects in the same
array, since pointers, even to objects of the same type, do not necessarily differ
by a multiple of the object length.

Shift Operators

The shift operators < < and> > group left to right. Both perform the usual
arithmetic conversions on their operands, each of which must be integral. Then
the right operand is converted to int; the type of the result is that of the left
operand. The result is undefined if the right operand is negative or greater
than or equal to the length of the object in bits.

s hilt -expression:
expression < < expression
expression > > expression

The value of E1 < <E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value of E1> > E2 is E1 right-shifted E2 bit
positions. The right shift is guaranteed to be logical (0 fill) if E1 is unsigned;
otherwise, it may be arithmetic.

UNIX Programmer's Manual Languages and Support Tools-17

CLANGUAGE

Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

The operators < (less than), > (greater than), < = (less than or equal to),
and > = (greater than or equal to) all yield 0 if the specified relation is false
and I if it is true. The type of the result is into The usual arithmetic
conversions are performed. Two pointers may be compared; the result depends
on the relative locations in the address space of the pointed-to objects. Pointer
comparison is portable only when the pointers point to objects in the same
array.

Equality Operators

equality -expression:
expression = = expression
expression ! = expression

The = = (equal to) and the ! = (not equal to) operators are exactly analogous
to the relational operators except for their lower precedence. (Thus
a<b = = c<d is I whenever a<b and c<d have the same truth value).

A pointer may be compared to an integer only if the integer is the constant O.
A pointer to which 0 has been assigned is guaranteed not to point to any object
and will appear to be equal to O. In conventional usage, such a pointer is
considered to be null.

Bitwise AND Operator

and -expression:
expression & expression

I8-Languages and Support Tools UNIX Programmer's Manual

The & operator is associative, and expressions involving & may be rearranged.
The usual arithmetic conversions are performed. The result is the bitwise
AND function of the operands. The operator applies only to integral operands.

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression A expression

The A operator is associative, and expressions involving A may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
exclusive OR function of the operands. The operator applies only to integral
operands.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
inclusive OR function of its operands. The operator applies only to integral
operands.

Logical AND Operator

logical-and -expression:
expression & & expression

The & & operator groups left to right. It returns 1 if both its operands
evaluate to nonzero, 0 otherwise. Unlike &, & & guarantees left to right
evaluation; moreover, the second operand is not evaluated if the first operand is
o.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always into

UNIX Programmer's Manual Languages and Support Tools-19

CLANGUAGE

Logical OR Operator

logical-or-expression:
expression II expression

The I operator groups left to right. It returns 1 if either of its operands
evaluates to nonzero, 0 otherwise. Unlike I, I guarantees left to right evaluation;
moreover, the second operand is not evaluated if the value of the first operand
is nonzero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated;
and if it is nonzero, the result is the value of the second expression, otherwise
that of third expression. If possible, the usual arithmetic conversions are
performed to bring the second and third expressions to a common type. If both
are structures or unions of the same type, tll C result has the type of the
structure or union. If both pointers are of the sam~ type, the result has the
common type. Otherwise, one must be a pointer and the other the constant 0,
and the result has the type of the pointer. Only 0::-- ~ of the second and third
expressions is evaluated.

Assign~\'nt Operators

There are a number of assignment operators, all of which group right to left.
All require an lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

20-Languages and Support Tools UNIX Programmer's Manual

assignment -expression:
lvalue = expression
lvalue + = expression
lvalue - = expression
lvalue * = expression
lvalue /-. expression
lvalue % = expression
lvalue > > -. expression
lvalue < < -= expression
lvalue & -. expression
lvalue A = expression
lvalue 1-. expression

In the simple assignment with ==, the value of the expression replaces that of
the object referred to by the lvalue. If both operands have arithmetic type, the
right operand is converted to the type of the left preparatory to the assignment.
Second, both operands may be structures or unions of the same type. Finally,
if the left operand is a pointer, the right operand must in general be a pointer
of the same type. However, the constant 0 may be assigned to a pointer; it is
guaranteed that this value will produce a null pointer distinguishable from a
pointer to any object.

The behavior of an expression of the form El op -. E2 may be inferred by
taking it as equivalent to El = El op (E2); however, El is evaluated only
once. In + = and - =, the left operand may be a pointer; in which case, the
(integral) right operand is converted as explained in "Additive Operators." All
right operands and all nonpointer left operands must have arithmetic type.

Comma Operator

comma -expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the
value of the left expression is discarded. The type and value of the result are
the type and value of the right operand. This operator groups left to right. In
contexts where comma is given a special meaning, e.g., in lists of actual
arguments to functions (see "Primary Expressions") and lists of initializers (see
"Initialization" under "DECLARATIONS"), the comma operator as described
in this subpart can only appear in parentheses. For example,

UNIX Programmer's Manual Languages and Support Tools-21

CLANGUAGE

f(a, <t=3, t +2), c)

has three arguments, the second of which has the value 5.

DECLARATIONS

Declarations are used to specify the interpretation which C gives to each
identifier; they do not necessarily reserve storage associated with the identifier.
Declarations have the form

declaration:
decl-specifiers declarator-list ;

opt

The declarators in the declarator-list contain the identifiers being declared.
The decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier dec/-specifiers
sc-specifier'decl-specifiers opt

opt

The list must be self-consistent in a way described below.

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

Storage Class Specifiers

The typedef specifier does not reserve storage and is called a "storage class
specifier" only for syntactic convenience. See "Typedef' for more information.
The meanings of the various storage classes were discussed in "Names."

22-Languages and Support Tools UNIX Programmer's Manual

The auto, static, and register declarations also serve as definitions in that they
cause an appropriate amount of storage to be reserved. In the extern case,
there must be an external definition (see "External Definitions") for the given
identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a
hint to the compiler that the variables declared will be heavily used. Only the
first few such declarations in each function are effective. Moreover, only
variables of certain types will be stored in registers; on the PDP-II, they are
int or pointer. One other restriction applies to register variables: the address­
of operator & cannot be applied to them. Smaller, faster programs can be
expected if register declarations ate used appropriately, but future
improvements in code generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is
mIssmg from a declaration, it is taken to be auto inside a function, extern
outside. Exception: functions are never automatic.

Type Specifiers

The type-specifiers are

type-specijier:
struct -or-union -specijier
typedef-name
enum -specijier

basic-type-specijier:
basic-type
basic-type basic-type-specijiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction with int;
the meaning is the same as if int were not mentioned. The word long may be
specified in conjunction with float; the meaning is the same as double. The

UNIX Programmer's Manual Languages and Support Tools-23

CLANGUAGE

word unsigned may be specified alone, or in conjunction with int or any of its
short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or unsigned is not permitted with
typedef names. If the type-specifier is missing from a declaration, it is taken to
be into

Specifiers for structures, unions, and enumerations are discussed in "Structure,
Union, and Enumeration Declarations." Declarations with typedef names are
discussed in "Typedef."

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence
of declarators, each of which may have an initializer.

declarator-list:
init -declarator
init-declatator, declarator-list

init -declarator:
declarator initializer

opt

Initializers are discussed in "Initialization". The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression J

opt

The grouping is the same as in expressions.

24-Languages and Support Tools UNIX Programmer's Manual

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the
same form as the declarator appears in an expression, it yields an object of the
indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the
examples below.

Now imagine a declaration

TDl

where T is a type-specifier (like jnt, etc.) and Dl is a declarator. Suppose this
declaration makes the identifier have type" ... T ," where the" ... " is empty
if Dl is just a plain identifier (so that the type of x in 'jnt x" is just jnt). Then
if Dl has the form

*D

the type of the contained identifier is " ... pointer to T ."

If Dl has the form

DO

then the contained identifier has the type" ... function returning T."

If Dl has the form

Dlconstant -expression]

UNIX Programmer's Manual Languages and Support Tools-25

CLANGUAGE

or

nil

then the contained identifier has type" ... array of T." In the first case, the
constant expression is an expression whose value is determinable at compile
time, whose type is int, and whose value is positive. (Constant expressions are
defined precisely in "Constant Expressions.") When several "array of'
specifications are adjacent, a multidimensional array is created; the constant
expressions which specify the bounds of the arrays may be missing only for the
first member of the sequence. This elision is useful when the array is external
and the actual definition, which allocates storage, is given elsewhere. The first
constant expression may also be omitted when the declarator is followed by
initialization. In this case the size is calculated from the number of initial
elements supplied.

An array may be constructed from one of the basic types, from a pointer, from
a structure or union, or from another array (to generate a multidimensional
array). .

Not all the possibilities allowed by the syntax above are actually permitted.
The restrictions are as follows: functions may not return arrays or functions
although they may return pointers; there are no arrays of functions although
there may be arrays of pointers to functions. Likewise, a structure or union
may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, fO, *fipO, (*pfi) 0;

declares an integer i, a pointer ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to a
function which returns an integer. It is especially useful to compare the last
two. The binding of *fipO is *(fipO). The declaration suggests, and the same
construction in an expression requires, the calling of a function fip. Using
indirection through the (pointer) result to yield an integer. In the declarator
(*pfi)O, the extra parentheses are necessary, as they are also in an expression,
to indicate that indirection through a pointer to a function yields a function,
which is then called; it returns an integer.

26-Languages and Support Tools UNIX Programmer's Manual

As another example,

float fa1l7), *afp1l7J;

declares an array of float numbers and an array of pointers to float numbers.
Finally,

static int x3d[3)[S)[7);

declares a static 3-dimensional array of integers, with rank 3x5x7. In
complete detail, x3d is an array of three items; each item is an array of five
arrays; each of the latter arrays is an array of seven integers. Any of the
expressions x3d, x3dliJ, x3dli)[j), x3dli)[j)[k) may reasonably appear in an
expression. The first three have type "array" and the last has type into

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object which may, at a given time,
contain anyone of several members. Structure and union specifiers have the
same form.

struct -or-union -specifier:
struct-or-union { struct-dec/-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct -or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct -decl-list:
struct -declaration
struct -declaration struct -decl-list

UNIX Programmer's Manual Languages and Support Tools-27

CLANGUAGE

struct -declaration:
type-specifier struct-declarator-list ;

struct -declarator-list:
struct~declarator

struct-declarator, struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified number
of bits. Such a member is also called a field ; its length, a non-negative
constant expression, is set off from the field name by a colon.

struct -declarator:
declarator
declarator: constani-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the
declarations are read left to right. Each nonfield member of a structure begins
on an addressing boundary appropriate to its type; therefore, there may be
unnamed holes in a structure. Field members are packed into maChlile
integers; they do not straddle words. A field which does not fit into the space
remaining in a word is put into the next word. No field may be wider than a
word.

Fields are assigned right to left on the PDP-ll and VAX-ll, left to right on
the 3B20.

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As
a special case, a field with a width of 0 specifies alignment of the next field at
an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields,
but implementations are not required to support any but integer fields.
Moreover, even int fields may be considered to be unsigned. On the PDP-ll,
fields are not signed and have only integer values; on the VAX-ll, fields
declared with int are treated as containing a sign. For these reasons, it is
strongly recommended that fields be declared as unsigned. In all
implementations, there are no arrays of fields, and the address-of operator &

28-Languages and Support Tools UNIX Programmer's Manual

may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset
o and whose size is sufficient to contain any of its members. At most, one of
the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form of
specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also
permit the long part of the declaration to be given once and used several times.
It is illegal to declare a structure or union which contains an instance of itself,
but a structure or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a
declaration which gives the complete specification of the structure or union in
situations in which the size of the structure or union is unnecessary. The size is
unnecessary in two situations: when a pointer to a structure or union is being
declared and when a typedef name is declared to be a synonym for a structure
or union. This, for example, allows the declaration of a pair of structures
which contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the same
structure, but the same name may be used in several different structures in the
same scope.

A simple but important example of a structure declaration is the following
binary tree structure:

UNIX Programmer's Manual Languages and Support Tools-29

CLANGUAGE

struct tnode
{

};

char tword[20);
int count;
struct tnode *Ieft;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to
similar structures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp-> count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right-> tword[O)

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

30-Languages and Support Tools UNIX Programmer's Manual

enum -specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier == constant -expression

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with == appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with == gives the
associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each
other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of
the structure tag in a struct-specifier; it names a particular enumeration. For
example,

enum color { chartreuse, burgundy, claret == 20, winedark };

enum color *cp, col;

col == claret;
cp == & col;

if (*cp == == burgundy) •..

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type, and col as an object of that
type. The possible values are drawn from the set {O,I,20,2I}.

UNIX Programmer's Manual Languages and Support Tools-31

CLANGUAGE

Initialization

A declarator may specify an initial value for the identifier being declared. The
initializer is preceded by = and consists of an expression or a list of values
nested in braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-Iist:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in "CONSTANT EXPRESSIONS",
or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may
be initialized by arbitrary expressions involving constants and previously
declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off
as zero. Automatic and register variables that are not initialized are
guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value of
the object is taken from the expression; the same conversions as for assignment
are performed.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a brace-enclosed, comma-separated list of initializers for
the members of the aggregate written in increasing subscript or member order.
If the aggregate contains subaggregates, this rule applies recursively to the
members of the aggregate. If there are fewer initializers in the list than there
are members of the aggregate, then the aggregate is padded with zeros. It is
not permitted to initialize unions or automatic aggregates.

32-Languages and Support Tools UNIX Programmer's Manual

Braces may in some cases be omitted. If the initializer begins with a left
brace, then the succeeding comma-separated list of initializers initializes the
members of the aggregate; it is erroneous for there to be more initializers than
members. If, however, the initializer does not begin with a left brace, then
only enough elements from the list are taken to account for the members of the
aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this
case successive characters of the string initialize the members of the array.

For example,

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array which has three members,
since no size was specified and there are three initializers.

float yl4][31 =
{

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of
the array ylOl, namely ylO][OI, ylOIIlI, and ylOll21. Likewise, the next two lines
initialize ylll and yl21. The initializer ends early and therefore yl31 is
initialized with o. Precisely, the same effect could have been achieved by

float yl4][31 =
{

1, 3, 5, 2, 4, 6, 3, 5, 7

The initializer for y begins with a left brace but that for ylOI does not;
therefore, three elements from the list are used. Likewise, the next three are
taken successively for ylll and yl21. Also,

UNIX Programmer's Manual Languages and Support Tools-33

CLANGUAGE

float y[4U3) =
{

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest O.

Finally,

char msg[) = "Syntax error on line % s\n";

shows a character array whose members are initialized with a string.

Type Names

In two contexts (to specify type conversions explicitly by means of a cast and
as an argument of sizeof), it is desired to supply the name of a data type. This
is accomplished using a "type name", which in essence is a declaration for an
object of that type which omits the name of the object.

type-name:
type-specifier abstract -declarator

abstract -declarator:
empty
(abstract -declarator)
* abstract -declarator
abstract -declarator ()
abstract-declarator [constant-expression)

opt

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is
possible to identify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration.

34-Languages and Support Tools UNIX Programmer's Manual

The named type is then the same as the type of the hypothetical identifier. For
example,

int
int *
int *[3]
int (*)(3]
int *()
int (*) ()
int (*[3]) ()

name respectively the types Hinteger," Hpointer to integer," Harray of three
pointers to integers," Hpointer to an array of three integers," 4'function
returning pointer to integer," Hpointer to function returning an integer," and
Harray of three pointers to functions returning an integer."

Typedef

Declarations whose Hstorage class" is typedef do not define storage but instead
define identifiers which can be used later as if they were type keywords naming
fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as
part of any declarator therein becomes syntactically equivalent to the type
keyword naming the type as~ociated with the identifier in the way described in
HMeaning of Declarators." For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

UNIX Programmer's Manual Languages and Support Tools-35

CLANGUAGE

are all legal declarations; the type of distance is int, that of metricp is "pointer
to int, " and that of z is the specified structure. The zp is a pointer to such a
structure.

The typedef does not introduce brand-new types, only synonyms for types which
could be specified in another way. Thus in the example above distance is
considered to have exactly the same type as any other int object.

STATEMENTS

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form

expression ;

. Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called "block") is provided:

compound -statement:
{ declaration-list statement-list }

opt opt

declaration -list:
declaration
declaration declaration-list

statement -list:
statement
statement statement-list

36-Languages and Support Tools UNIX Programmer's Manual

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is pushed down for the duration of the block, after which it
resumes its force.

Any initializations of auto or register variables are performed each time the
block is entered at the top. It is currently possible (but a bad practice) to
transfer into a block; in that case the initializations are not performed.
Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage so
initialization is not permitted.

Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first
substatement is executed. In the second case, the second sub statement is
executed if the expression is O. The "else" ambiguity is resolved by connecting
an else with the last encountered else-less if.

While Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the statement.

Do Statement

The do statement has the form

do statement while (expression) ;

UNIX Programmer's Manual Languages and Support Tools-37

CLANGUAGE

The substatement is executed repeatedly until the value of the expression
becomes o. The test takes place after each execution of the statement.

For Statement

The for statement has the form:

for (exp-l ; exp-2 ; exp-3) statement
opt opt opt

Except for the behavior of continue, this statement is equivalent to.

exp-l ;
while (exp-2)
{

statement
exp-3 ;

Thus the first expression specifies initialization for the loop; the second specifies
a test, made before each iteration, such that the loop is exited when the
expression becomes o. The third expression often specifies an incrementing
that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the
implied while clause equivalent to while(t); other missing expressions are
simply dropped from the expansion above.

Switch Statement

The switch statement causes control to be transferred to one of several
statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result
must be int. The statement is typically compound. Any statement within the
statement may be labeled with one or more case prefixes as follows:

38-Languages and Support Tools UNIX Programmer's Manual

case constant -expression :

,

where the constant expression must be into No two of the case constants in the
same switch may have the same value. Constant expressions are precisely
defined in "CONSTANT EXPRESSIONS."

There may also be at most one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated and
compared with each case constant. If one of the case constants is equal to the
value of the expression, control is passed to the statement .following the
matched case prefix. If no case constant matches the expression and if there is
a default, prefix, control passes to the prefixed statement. If no case matches
and if there is no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues
unimpeded across such prefixes. To exit from a switch, see "Break Statement."

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initializations of
automatic or register variables are ineffective.

Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch statement;
control passes to the statement following the terminated statement.

UNIX Programmer's Manual Languages and Support Tools-39

CLANGUAGE

Continue Statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing
while, do, or for statement; that is to the end of the loop. More precisely, in
each of the statements

while t..) do for C.')
{ { {

contin: ; contin: ; contin: ;
} } while C • .); }

a continue is equivalent to goto contino (Following the contin: is a null
statement, see "Null Statement",)

Iteturn Statement

A function returns to its caller by means of the return statement which has one
of the forms

return;
return expression ;

In the first case, the returned value is undefined. In the second case, the value
of the expression is returned to the caller of the function. If required, the
expression is converted, as if by assignment, to the type of function in which it
appears. Flowing off the end of a function is equivalent to a return with no
returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

40-Languages and Support Tools UNIX Programmer's Manual

The identifier must be a label (see "Labeled Statement") located in the current
function.

Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a
target of a goto. The scope of a label is the current function, excluding any
subblocks in which the same identifier has been redeclared. See "SCOPE
RULES."

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the} of a compound
statement or to supply a null body to a looping statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or
perhaps static, and a specified type. The type-specifier (see "Type Specifiers"
in "DECLARATIONS") may also be empty, in which case the type is taken
to be into The scope of external definitions persists to the end of the file in
which they are declared just as the effect of declarations persists to the end of
a block. The syntax of external definitions is the same as that of all
declarations except that only at this level may the code for functions be given.

UNIX Programmer's Manual Languages and Support Tools-41

CLANGUAGE

External Function Definitions

Function definitions have the form

Junction -definition:
decl-specifiers t Junction-declarator Junction-body op

The only sc-specifiers allowed among the decl-specifiers are extern or static; see
"Scope of Externals" in "SCOPE RULES" for the distinction between them.
A function declarator is similar to a declarator for a "function returning ... "
except that it lists the formal parameters of the function being defined.

Junction-declarator:
declarator (parameter-list)

opt

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

Junction-body:
declaration-list compound -statement

opt

The identifiers in the parameter list, and only those identifiers, may be declared
in the declaration list. Any identifiers whose type is not given are taken to be
int. The only storage class which may be specified is register; if it is specified,
the corresponding actual parameter will be copied, if possible, into a register at
the outset of the function.

A simple example of a complete function definition follows

42-Languages and Support Tools UNIX Programmer's Manual

int max (a, b, c)
int a, b, c;

int m;

m == (a > b) ? a : b;
return«m > c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c;
is the declaration-list for the formal parameters; { ..• } is the block giving the
code for the statement.

The C program converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double. A-ll
char and short formal parameter declarations are similarly adjusted to read into
Also, since a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared "array of ... " are adjusted to read
"pointer to "

External Data Definitions

An external data definition has the form

data -definition:
declaration

The storage class of such data may be extern {which is the default} or static
but not auto or register.

SCOPE RULES

A C program need not all be compiled at the same time. The source text of the
program may be kept in several files, and precompiled routines may be loaded
from libraries. Communication among the functions of a program may be
carried out both through explicit calls and through manipulation of external
data.

UNIX Programmer's Manual Languages and Support Tools-43

CLANGUAGE

Therefore, there are two kinds of scopes to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program
during whlclllt may be used without drawing "undefined identifier"
diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are
references to the same object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the
definition through the end of the source file in which they appear. The lexical
scope of identifiers which are formal parameters persists through the function
with which they are associated. The lexical scope of identifiers declared at the
head of a block persists until the end of the block. The lexical scope of labels
is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations" in
"DECLARATIONS") that tags, identifiers associated with ordinary variables,
and identities associated with structure and union members form three disjoint
classes which do not conflict. Members and tags follow the same scope rules as
other identifiers. The enum constants are in the same class as ordinary
variables and follow the same scope rules. The typedef names are in the same
class as ordinary identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a
declaration with no declarators and type distance.

44-Languages and Support Tools UNIX Programmer's Manual

Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must be at
least one external definition for the identifier. All functions in a given program
which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible
with those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the
set of files and libraries comprising a multi-file program. It is legal to have
more than one data definition for any external non-function identifier; explicit
use of extern does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an
additional meaning. In these environments, the explicit appearance of the
extern keyword in external data declarations of identities without initialization
indicates that the storage for the identifiers is allocated elsewhere, either in this
file or another file. It is required that there be exactly one definition of each
external identifier (without extern) in the set of files and libraries comprising a
mult-file program.

Identifiers declared static at the top level in external definitions are not visible
in other files. Functions may be declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning with #
communicate with this preprocessor. There may be any number of blanks and
horizontal tabs between the # and the directive. These lines have syntax
independent of the rest of the language; they may appear anywhere and have
effect which lasts (independent of scope) until the end of the source program
file.

UNIX Programmer's Manual Languages and Support Tools-45

CLANGUAGE

Token Replacement

A compiler-control line of the form

#define identifier token-string
opt

causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. Semicolons in or at the end of the token-string are
part of that string. A line of the form

#define identifier{;dentifier, ...)token-string
opt

where there is no space between the first. identifier and the (, is a macro
definition with arguments. There may be zero or more formal parameters.
Subsequent instances of the first identifier followed by a (, a sequence of tokens
delimited by commas, and a) are replaced by the token string in the definition.
Each occurrence of an identifier mentioned in the formal parameter list of the
definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however,
commas in quoted strings or protected by parentheses do not separate
arguments. The number of formal and actual parameters must be the same.
Strings and character constants in the token-string are scanned for formal
parameters, but strings and character constants in the rest of the program are
not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers.
In both forms a long definition may be continued on another line by writing \
at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table[TABSIZEI;

A control line of the form

#undef identifier

46-Languages and Support Tools UNIX Programmer's Manual

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #undef, then the two token-strings are compared textually. If the
two token-strings are not identical (all white space is considered as equivalent),
then the identifier is considered to be redefined.

File Inclusion

A compiler control line of the form

#include ''filename''

causes the replacement of that line by the entire contents of the file filename.
The named file is searched for first in the directory of the file containing the
#include, and then in a sequence of specified or standard places. Alternatively,
a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of the
#include. (How the places are specified is not part of the language.)

#includes may be nested.

Conditional Compilation

A compiler control line of the form

#if restricted -constant -expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in "CONSTANT EXPRESSIONS"; the
following additional restrictions apply here: the constant expression may not
contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary
expression

UNIX Programmer's Manual Languages and Support Tools-47

CLANGUAGE

defined identifier
or
defined (identifier

which evaluates to one if the identifier is currently defined in the preprocessor
and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced
by their token-strings (except those identifiers modified by defined) just as in
normal text. The restricted constant expression will be evaluated only after all
expressions have finished. During this evaluation, all undefined (to the
procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a #define control line. It is equivalent to
#ifdef(identifier). A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #ifldefined (identifier).

All three forms are followed by an arbitrary number of lines, possibly
containing a control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are
ignored. If the checked condition is false, then any lines between the test and a

48-Languages and Support Tools UNIX Programmer's Manual

#else or, lacking a #else, the #eodif are ignored.

These constructions may be nested.

Line Control

For the benefit of other preprocessors which generate C programs, a line of the
form

#lioe constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line
number of the next source line is given by the constant and the current input
file is named by ''filename''. If ''filename'' is absent, the remembered file name
does not change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in
external definitions and in declarations of formal parameters and structure
members. In a declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be iot; if a type but no storage class is
indicated, the identifier is assumed to be auto. An exception to the latter rule
is made for functions because auto functions do not exist. If the type of an
identifier is "function returning ... ," it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is
contextually declared to be "function returning iot."

TYPES REVISITED

This part summarizes the operations which can be performed on objects of
certain types.

UNIX Programmer's Manual Languages and Support Tools-49

CLANGUAGE

Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and
returned by functions. Other plausible operators, such as equality comparison
and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the ->
or the. must specify a member of the aggregate named or pointed to by the
expression on the left. In general, a member of a union may not be inspected
unless the value of the union has been assigned using that same member.
However, one special guarantee is made by the language in order to simplify
the use of unions: if a union contains several structures that share a common
initial sequence and if the union currently contains one of these structures, it is
permitted to inspect the common initial part of any of the contained structures.
For example, the following is a legal fragment:

union
{

struct
{

int type;
} n;
struct
{

int type;
int intnode;

} ni;
struct
{

int type;
float f1oatnode;

} nf;
} u;

u.nf.type = FLOAT;
u.nf.f1oatnode = 3.14;

if (u.n. type = = FLOAT)
••• sin{u.nf.floatnode) •••

50-Languages and Support Tools UNIX Programmer's Manual

Functions

There are only two things that can be done with a function m call it or take its
address. If the name of a function appears in an expression not in the
function-name position of a call, a pointer to the function is generated. Thus,
to pass one function to another, one might say

int fO;

g(f);

Then the definition of g might read

g(funcp)
int (*funcp) 0 ;

(*funcp)0;

Notice that f must be declared explicitly in the calling routine since its
appearance in g(f) was not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted
into a pointer to the first member of the array. Because of this conversion,
arrays are not lvalues. By definition, the subscript operator (] is interpreted in
such a way that El[E2) is identical to *«EO +(E2». Because of the
conversion rules which apply to +, if El is an array and E2 an integer, then
EllE2) refers to the E2 -th member of El. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an
n-dimensional array of rank ixjx ... xk, then E appearing in an expression is
converted to a pointer to an {n-I}-dimensional array with rank jx ... xk. If the
* operator, either explicitly or implicitly as a result of subscripting, is applied
to this pointer, the result is the pointed-to {n-I}-dimensional array, which itself
is immediately converted into a pointer.

UNIX Programmer's Manual Languages and Support Tools-51

CLANGUAGE

For example, consider

int x[3J1S];

Here x is a 3x5 array of integers. When x appears in an expression, it is
converted to a pointer to (the first of three) 5-membered arrays of integers. In
the expression xlil, which is equivalent to * (x +0, x is first converted to a
pointer as described; then i is converted to the type of x, which involves
mUltiplying i by the length the object to which the pointer points, namely 5-
integer objects. The results are added and indirection applied to yield an array
(of five integers) which in turn is converted to a pointer to the first' of the
integers. If there is another subscript, the same argument applies again; this
time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first
subscript in the declaration helps determine the amount of storage consumed
by an array. Arrays play no other part in subscript calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation­
dependent aspects. They are all specified by means of an explicit type­
conversion operator, see "Unary Operators" under"EXPRESSIONS" and
"Type Names"under "DECLARATIONS."

A pointer may be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine dependent. The mapping
function is also machine dependent but is intended to be unsurprising to those
who know the addressing structure of the machine. Details for some particular
machines are given below.

An object of integral type may be explicitly converted to a pointer. The
mapping always carries an integer converted from a pointer back to the same
pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions upon use if the subject
pointer does not refer to an object suitably aligned in storage. It is guaranteed
that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

52-Languages and Support Tools UNIX Programmer's Manual

For example, a storage-allocation routine might accept a size (in bytes) of an
object to allocate, and return a char pointer; it might be used in this way.

extern char *allocO;
double *dp;

dp = (double *) alloc(sizeof(double»;
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is
portable.

The pointer representation on the PDP-ll corresponds to a 16-bit integer and
measures bytes. The char's have no alignment requirements; everything else
must have an even address.

On the VAX-ll, pointers are 32 bits long and measure bytes. Elementary
objects are aligned on a boundary equal to their length, except that double
quantities need be aligned only on even 4-byte boundaries. Aggregates are
aligned on the strictest boundary required by any of their constituents.

The 3B20 computer has 24-bit pointers placed into 32-bit quantities. Most
objects are aligned on 4-byte boundaries. Shorts are aligned in all cases on 2-
byte boundaries. Arrays of characters, all structures, ints, longs, floats, and
doubles are aligned on 4-byte boundries; but structure members may be packed
tighter.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case,
as array bounds, and in initializers. In the first two cases, the expression can
involve only integer constants, character constants, casts to integral types,
enumeration constants, and sizeof expressions, possibly connected by the binary

UNIX Programmer's Manual Languages and Support Tools-53

CLANGUAGE

operators

+ - * / % & I" « » ==!= < > <= >= && I

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts and can
also apply the unary & operator to external or static objects and to external or
static arrays subscripted with a constant expression. The unary & can also be
applied implicitly by appearance of unsubscripted arrays and functions. The
basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a
constant.

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating point
arithmetic and integer division have proven in practice to be not much of a
problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the
others are only minor problems.

54-Languages and Support Tools UNIX Programmer's Manual

The number of register variables that can actually be placed in registers varies
from machine to machine as does the set of valid types. Nonetheless, the
compilers all do things properly for their own machine; excess or invalid
register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is
exceedingly unwise to write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharaeter
character constants may be permitted. The specific implementation is very
machine dependent because the order in which characters are assigned to a
word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an
int pointer to a char pointer and inspecting the pointed-to storage) but must be
accounted for when conforming to externally-imposed storage layouts.

SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension than as
an exact statement of the language.

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
! expression

expression
+ + lvalue

UNIX Programmer's Manual

Expressions

Languages and Support Tools-55

CLANGUAGE

--lvalue
lvalue + +
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list)

. { . J opt przmary expressIOn
primary . identifier
primary -> identifier

lvalue:
identifier
primary { expression J
lvalue . identifier
primary -> identifier
* expression
(lvalue)

The primary-expression operators

o [] . ->

have highest priority and group left to right. The unary operators

* & - ! - ++ -- sizeof (type-name)

56-Languages and Support Tools UNIX Programmer's Manual

have priority below the primary operators but higher than any binary operator
and group right to left. Binary operators group left to right; they have priority
decreasing as indicated below.

binop:
* / %
+
» «
< > <= >=

!=
&

1
&&
I

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
+= -= *= /= %= »= «= &= "= 1=

The comma operator has the lowest priority and groups left to right.

Declarations

declaration:
decl-specifiers init-declarator-list ;

opt

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-specifiers opt

opt

UNIX Programmer's Manual Languages and Support Tools-57

CLANGUAGE

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum -specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
iot
long
unsigned
float
double
void

enum -specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier == constant-expression

init -declarator-list:
init -declarator
init-declarator, init-declarator-list

58-Languages and Support Tools UNIX Programmer' ~ Manual

init -declarator:
declarator initializer

opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant -expression J

opt

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct -decl-list:
struct -declaration
struct -declaration struct -decl-list

struct -declaration:
type-specifier struct-declarator-list ;

struct -declarator-list:
struct -declarator
struct-declarator, struct-declarator-list

struct -declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
= expression
= { initializer-list }
= { initiaUzer-Ust , }

UNIX Programmer's Manual Languages and Support Tools-59

CLANGUAGE

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract -declarator

abstract -declarator:
empty

. (abstract -declarator)
* abstract -declarator
abstract-declarator 0
abstract -declarator [constant -expression 1

opt

typedef-name:
identifier

compound -statement:

Statements

{ declaration-list statement-list }
opt opt

declaration -list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

60-Languages and Support Tools UNIX Programmer's Manual

statement:
compound -statement
expression;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp opt;exp opt;exp opt) statement
switch (expressIOn) statement
case constant -expression: statement
default: statement
break;
continue;
return;
return expression ;
goto identifier ;
identifier: statement

External definitions

program:
external-definition
external-definition program

external-definition:
Junction -definition
data -definition

Junction-definition:
decl-specifier t Junction-declarator Junction-body op

Junction-declarator:
declarator (parameter-list)

opt

parameter-list:
identifier
identifier, parameter-list

UNIX Programmer's Manual Languages and Support Tools-61

CLANGUAGE

function-body:
declaration -list compound -statement

opt

data -definition:
extern declaration ;
static'declaration ;

Preprocessor

#define identifier token-stringopt
#define identifier(;dentifier, •• .)token-string t
#undef identifier op
#include ''filename''
#include <.filename>
#if restricted -const ant -expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant ''filename''

62-Languages and Support Tools UNIX Programmer's Manual

C LIBRARIES

GENERAL

This chapter and THE OBJECf AND MATH LIBRARIES chapter describe the
libraries that are supported on the UNIX operating system. A library is a
collection of related functions and/or declarations that simplify programming
effort by linking only what is needed, allowing use of locally produced
functions, etc. All of the functions described are also described in Part 3 of the
UNIX Programmer's Manual-Volume 2: System Calls and Library Routines.
Most of the declarations described are in Part 5 of the 2UNIX Programmer's
Manual-Volume 2: System Calls and Library Routines. The three main
libraries on the UNIX system are:

C library

Object file

Math library

This is the basic library for C language programs. The
C library is composed of functions and declarations used
for file access, string testing and manipulation,
character testing and manipulation, memory allocation,
and other functions. This library is described later in
this chapter.

This library provides functions for the access and
manipulation of object files. This library is described in
THE OBJECf AND MATH LIBRARIES chapter.

This library provides exponential, bessel functions,
logarithmic, hyperbolic, and trigonometric functions.
This library is described in THE OBJECf AND MATH
LIBRARIE.S chapter.

Some libraries consist of two portions - functions and declarations. In some
cases, the user must request that the functions (and/or declarations) of a
specific library be included in a program being compiled. In other cases, the
functions (and/or declarations) are included automatically.

UNIX Programmer's Manual Languages and Support Tools-63

C LIBRARIES

Including Functions

When a program is being compiled, the compiler will automatically search the
C language library to locate and include functions that are used in the
program. This is the case only for the C library and no other library. In
order for the compiler to locate and include functions from other libraries, the
user must specify these libraries on the command line for the compiler. For
example, when using functions of the math library, the user must request that
the math library be searched by including the argument -1m on the command
line, such as:

cc file.c -1m

The argument -1m must come after all files that reference functions in the math
library in order for the link editor to know which functions to include in the
a.out file.

This method should be used for all functions that are not part of the C
language library.

Including Declarations

Some functions require a set of declarations in order to operate properly. A set
of declarations is stored in a file under the /usrlinclude directory. These files
are referred to as header files. In order to include a certain header file, the
user must specify this request within the C language program. The request is
in the form:

#include < file.h >

where file.h is the name of the file: Since the header files define the type of the
functions and various preprocessor constants, they must be included before
invoking the functions they declare.

The remainder of this chapter describes the functions and header files of the C
Library. The description of the library begins with the actions required by the
user to include the functions and/or header files in a program being compiled
(if any). Following the description of the actions required is information in
three-column format of the form:

64-Languages and Support Tools UNIX Programmer's Manual

function reference (N) Brief description.

The functions are grouped by type while the reference refers to section 'N' in
the 2UNIX Programmer's Manual-Volume 2: System Calls and Library
Routines. Following this, are descriptions of the header files associated with
these functions (if any) .

THE C LIBRARY

The C library consists of several types of functions. All the functions of the C
library are loaded automatically by the compiler. Various declarations must
sometimes be included by the user as required. The functions of the C library
are divided into the following types:

• Input/output control
• String manipulation
• Character manipulation
• Time functions
• Miscellaneous functions.

Input/Output Control

These functions of the C library are automatically included as needed during
the compiling of a C language program. No command line request is needed.

The header file required by the input! output functions should be included in
the program being compiled. This is accomplished by including the line:

#include <stdio.h>

near the beginning of each file that references an input or output function.

The input/output functions are grouped into the following categories:

• File access
• File status
• Input

UNIX Programmer's Manual Languages and Support Tools-65

C LIBRARIES

• Output
• Miscellaneous.

FUNCTION

fclose

fdopen

fileno

fopen

freopen

fseek

pclose

popen

rewind

File Access Functions

REFERENCE

fclose(3S)

fopen(3S)

ferror(3S)

fopen(3S)

fopen(3S)

fseek (3S)

popen(3S)

popen(3S)

fseek (3S)

BRIEF DESCRIPTION

Close an open stream.

Associate stream with
an open (2) ed file.

File descriptor associated
with an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

Close a stream opened
by popen.

Create pipe as a stream
between calling process
and command.

Reposition file
pointer at beginning
of file.

66-Languages and Support Tools UNIX Programmer's Manual

setbuf

vsetbuf

FUNCTION

clearerr

feof

ferror

ftell

FUNCTION

fgetc

fgets

fread

fscanf

setbuf(3S)

setbuf(3S)

Assign buffering to
stream.

Similar to setbuf, but
allowing finer control.

File Status Functions

REFERENCE

ferror (3S)

ferror(3S)

ferror(3S)

fseek (3S)

BRIEF DESCRIPTION

Reset error condition on
stream.

Test for "end of file"
on stream.

Test for error condition
on stream.

Return current position
in the file.

Input Functions

REFERENCE

getc(3S)

gets(3S)

fread(3S)

scanf(3S)

BRIEF DESCRIPTION

True function for getc
(3S).

Read string from stream.

General buffered read
from stream.

Formatted read from
stream.

UNIX Programmer's Manual Languages and Support Tools-67

C LIBRARIES

getc getc(3S) Read character from
stream.

getchar getc(3S) Read character from
standard input.

gets gets (3S) Read string from standard input.

getw getc(3S) Read word from stream.

scanf scanf(3S) Read using format from
standard input.

sscanf scanf(3S) Forma tted from
string.

ungetc ungetc(3S) Put back one character on
stream.

Output Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

mush fclose(3S) Write all currently buffered
characters from stream.

fprintf printf(3S) Forma tted write to
stream.

fputc putc (3S) True function for putc
(3S).

fputs puts(3S) Write string to stream.

fwrite fread (3S) General buffered write to
stream.

printf printf(3S) Print using format to
standard output.

68-Languages and Support Tools UNIX Programmer's Manual

pute

putehar

puts

putw

sprintf

vfprintf

vprintf

vsprintf

pute(3S)

pute(3S)

puts (3S)

pute(3S)

printf(3S)

vprint(3C)

vprint(3C)

vprintf(3C)

Write character to
standard output.

Write character to
standard output.

Write string to
standard output.

Write word to stream.

Formatted write to
string.

Print using format to
stream by varargs(S)
argument list.

Print using format to
standard output by
varargs(S) argument list.

Print using format to
stream string by
varargs(S) argument list.

Miscellaneous Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

ctermid ctermid (3S) Return file name for
controlling terminal.

cuserid cuserid (3S) Return login name for
owner of current process.

system system(3S) Execute shell command.

UNIX Programmer's Manual Languages and Support Tools-69

C LIBRARIES

tempnam

tmpnam

tmpfile

tempnam (3S)

tmpnam(3S)

tmpfile (3S)

Create temporary file
name using directory and
prefix.

Create temporary file
name.

Create temporary file.

String Manipulation Functions

These functions are used to locate characters within a string, copy, concatenate,
and compare strings. These functions are automatically located and loaded
during the compiling of a C language program. No command line request is
needed since these functions are part of the C library. The string manipulation
functions are declared in a header file that may be included in the program
being compiled. This is accomplished by including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

streat string (3 C) Concatenate two strings.

strehr string (3C) Search string for
character.

stremp string (3 C) Compares two strings.

strepy string (3C) Copy string.

strespn string (3 C) Length of initial string
not containing set of
characters.

70-Languages and Support Tools UNIX Programmer's Manual

strlen string (3C)

strncat string (3 C)

strncmp string (3C)

strncpy string (3C)

strpbrk string (3 C)

strrchr string (3C)

strspn string(3C)

strtok string (3C)

Length of string.

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token
separated by any of a
set of characters.

Character Manipulation

The following functions and declarations are used for testing and translating
ASCII characters. These functions are located and loaded automatically
during the compiling of a C language program. No command line request is
needed since these functions are part of the C library.

The declarations associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <ctype.h>

near the beginning of the file being compiled.

UNIX Programmer's Manual Languages and Support Tools-71

C LIBRARIES

Character Testing Functions

These functions can be used to identify characters as uppercase or lowercase
letters, digits, punctuation, etc.

FUNCTION REFERENCE

isalnum ctype(3C)

isalpha ctype(3C)

isascii ctype(3C)

iscntrl ctype(3C)

isdigit ctype(3C)

isgraph ctype(3C)

islower ctype(3C)

isprint ctype(3C)

ispunct ctype(3C)

isspace ctype(3C)

isupper ctype(3C)

isxdigit ctype(3C)

72-Languages and Support Tools

BRIEF DESCRIPTION

Is character
alphanumeric?

Is character alphabetic?

Is integer ASCII
character?

Is character a control
character?

Is character a digit?

Is character a printable
character?

Is character a
lowercase letter?

Is character a printing
character including
space?

Is character a
punctuation character?

Is character a white
space character?

Is character an uppercase
letter?

Is character a hex digit?

UNIX Programmer's Manual

Character Translation Functions

These functions provide translation of uppercase to lowercase, lowercase to
uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the systems idea of
the current date and time. These functions are located and loaded
automatically during the compiling of a C language program. No command
line request is needed since these functions are part of the C library.

The header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include < time.h >

near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by time (2) .

UNIX Programmer's Manual Languages and Support Tools-73

C LIBRARIES

FUNCTION REFERENCE

asctime ctime(3C)

ctime ctime(3C)

gmtime ctime(3C)

localtime ctime(3C)

tzset ctime(3C)

Miscellaneous Functions

BRIEF DESCRIPTION

Return string
representation
of date and time.

Return string
representation of
date and time, given
integer form.

Return Greenwich
Mean Time.

Return local time.

Set time zone field
from environment
variable.

These functions support a wide variety of operations. Some of these are
numerical conversion, password file and group file access, memory allocation,
random number generation, and table management. These functions are
automatically located and included in a program being compiled. No
command line request is needed since these functions are part of the C library.

Some of these functions require declarations to be included. These are
described following the descriptions of the functions.

Numerical Conversion

The following functions perform numerical conversion.

74-Languages and Support Tools UNIX Programmer's Manual

FUNCTION REFERENCE BRIEF DESCRIPTION

a641 a64I(3C) Convert string to
base 64 ASCII.

atof atof(3C) Convert string to
floating.

atoi atof(3C) Convert string to
integer.

atoI atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13toI 13tol (3C) Convert 3-byte integer
to long.

ItoI3 13toI(3C) Convert long to 3-byte
integer.

Idexp frexp(3C) Combine mantissa and
exponent.

164a a64I(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into
integer and fraction.

DES Algorithm Access

The following functions allow access to the Data Encryption Standard (DES)
algorithm used on the UNIX operating system. The DES algorithm is
implemented with variations to frustrate use of hardware implementations of
the DES for key search.

UNIX Programmer's Manual Languages and Support Tools-75

C LIBRARIES

FUNCTION

crypt

encrypt

setkey

REFERENCE

crypt(3C)

crypt (3C)

crypt (3C)

Group File Access

BRIEF DESCRIPTION

Encode string.

Encode! decode string of
Os and Is.

Initialize for subsequent
use of encrypt.

The following functions are used to obtain entries from the group file.
Declarations for these functions must be included in the program being
compiled with the line:

#include <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent (3C) Close group file being
processed.

getgrent getgrent (3C) Get next group file
entry.

getgrgid getgrent (3C) Return next group with
matching gid.

getgrnam getgrent (3C) Return next group with
matching name.

setgrent getgrent (3C) Rewind group file being
processed.

fgetgrent getgrent (3 C) Get next group file entry
from a specified file.

76-Languages and Support Tools UNIX Programmer's Manual

Password File Access

These functions are used to search and access information stored in the
password file (/etc/passwd). Some functions require declarations that can be
included in the program being compiled by adding the line:

#include <pwd.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endpwent getpwent (3C) Close password file
being processed.

getpw getpw(3C) Search password file
for uid.

getpwent getpwent (3C) Get next password file
entry.

getpwnam getpwent (3 C) Return next entry with
matching name.

getpwuid getpwent (3C) Return next entry with
matching uid.

putpwent putpwent (3 C) Write entry on stream.

setpwent getpwent (3C) Rewind password file
being accessed.

fgetpwent getpwent(3C) Get next password file
entry from a specified
file.

Parameter Access

The following functions provide access to several different types of paramenters ..
None require any declarations.

FUNCTION REFERENCE

getopt getopt(3C)

UNIX Programmer's Manual

BRIEF DESCRIPTION

Get next option from
option list.

Languages and Support Tools-77

C LIBRARIES

getcwd

getenv

getpass

putenv

getcwd(3C)

getenv(3C)

getpass (3C)

putenv(3C)

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

Hash Table Management

The following functions are used to manage hash search tables. The header file
associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE

bcreate bsearcb (3 C)

bdestroy bsearcb (3C)

bsearcb bsearcb (3C)

7S-Languages and Support Tools

BRIEF DESCRIPTION

Create hash table.

Destroy hash table.

Search hash table for
entry.

UNIX Programmer's Manual

Binary Tree Management

The following functions are used to manage a binary tree. The header file
associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the· search functions.

FUNCTION REFERENCE

tdelete tsearcb (3C)

tfind tsearcb (3 C)

tsearcb tsearcb (3C)

twalk tsearcb (3C)

BRIEF DESCRIPTION

Deletes nodes from
binary tree.

Find element in
binary tree.

Look for and add
element to binary
tree.

Walk binary tree.

Table Management

The following functions are used to manage a table. Since none of these
functions allocate storage, sufficient memory must be allocated before using
these functions. The header file associated with these functions should be
included in the program being compiled. This is accomplished by including the
line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE

bsearcb bsearcb (3C)

UNIX Programmer's Manual

BRIEF DESCRIPTION

Search table using
binary search.

Languages and Support Tools-79

C LIBRARIES

lfind

Isearch

qsort

Isearch(3C)

Isearch (3C)

qsort(3C)

Memory Allocation

Find element in
library tree.

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can be dynamically
allocated or freed.

FUNCTION REFERENCE . BRIEF DESCRIPTION

calloc malloc(3C) Allocate zeroed storage.

(ree malloc(3C) Free previously allocated
storage.

malloc malloc (3C) Allocate storage.

realloc malloc(3C) Change size of allocated
storage.

The following is another set of memory allocation functions available.

FUNCTION REFERENCE'

calloc malloc(3X)

(ree malloc(3X)

malloc malloc(3X)

mallopt malloc(3X)

80-Languagesand Support Tools

BRIEF DESCRIPTION

Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Control allocation
algorithm.

UNIX Programmer's Manual

mallinfo malloc(3X)

realoc malloc(3X)

Space usage.

Change size of
allocated storage.

Pseudorandom Number Generation

The following functions are used to generate pseudorandom numbers. The
functions that end with 48 are a family of interfaces to a pseudorandom
number generator based upon the linear congruent algorithm and 48-bit integer
arithmetic. The rand and srand functions provide an interface to a
multiplicative congruential random number generator with period of 232.

FUNCTION REFERENCE

drand48 drand48 (3C)

lcong48 drand48 (3C)

lrand48 drand48 (3C)

mrand48 drand48 (3C)

rand rand (3 C)

seed48 drand48 (3C)

srand rand (3C)

srand48 drand48 (3C)

UNIX Programmer's Manual

BRIEF DESCRIPTION

Random double over
the interval [0 to 1).

Set parameters for
drand48, lrand48,
and mrand48.

Random long over the
interval [0 to 231).

Random lon~ over the
interval [_23 to 231).

Random integer over the
interval [0 to 32767).

Seed the generator for
drand48, lrand48, and
mrand48.

Seed the genera tor
for rand.

Seed the generator for
drand48, lrand48, and
mrand48 using a long.

Languages and Support Tools-81

C LIBRARIES

Signal Handling Functions

The functions gsignal and ssignal implement a software facility similar to
signal (2) in the 2UNIX Programmer's Manual-Volume 2: System Calls and
Library Routines. This facility enables users to indicate the disposition of error
conditions and allows users to handle signals for their own purposes. The
declarations associated with these functions can be included in the program
being complied by the line

#include <signal.h>

These declarations define ASCII names for the 15. software signals'.

FUNCTION

gsignal

ssignal

REFERENCE

ssignal (3C)

ssignal (3 C)

Miscellaneous

BRIEF DESCRIPTION

Send a software signal.

Arrange for handling
of software signals.

The following functions do not fall into any previously described category.

FUNCTION REFERENCE

abort abort (3 C)

abs abs(3C)

ecvt ecvt (3C)

(cvt ecvt(3C)

82-Languages and Support Tools

BRIEF DESCRIPTION

Cause an lOT signal
to be sent to the
process.

Return the absolute
integer value.

Convert double to
string.

Convert double to
string using Fortran
Format.

UNIX Programmer's Manual

gcvt ecvt(3C) Convert double to
string using Fortran
For E format.

isatty ttyname (3C) Test whether integer
file descriptor is
associated with a
terminal.

mktemp mktemp(3C) Create file name
using template.

monitor monitor (3C) Cause process to record
a histogram of program
counter location.

swab swab (3C) Swap and copy bytes.

ttyname ttyname (3 C) Return pathname of
terminal associated with
integer file descriptor.

UNIX Programmer's Manual Languages and Support Tools-83

THE OBJECT AND MATH LIBRARIES

GENERAL

This chapter describes the Object and Math Libraries that are supported on
the UNIX operating system. A library is a collection of related functions
and/ or declarations that simplify programming effort. All of the functions
described are also described in Part 3 of the UNIX Programmer's Manual­
Volume 2: System Calls and Library Routines. Most of the declarations
described are in Part 5 of the UNIX Programmer's Manual-Volume 2: System
Calls and Library Routines. The three main libraries on the UNIX system
are:

C library

Object file

Math library

This is the basic library for C language programs. The
C library is composed of functions and declarations used
for file access, string testing and· manipulation,
character testing and manipulation, memory allocation,
and other functions. This library is described in the C
Libraries chapter in this volume.

This library provides functions for the access and
manipulation of object files. This library is described
la ter in this chapter.

This library provides exponential, bessel functions,
logarithmic, hyperbolic, and trigonometric functions.
This library is also described later in this chapter.

THE OBJECT FILE LIBRARY

The object file library provides functions for the access and manipulation of
object files. Some functions locate portions of an object file such as the symbol
table, the file header, sections, and line number entries associated with a
function. Other functions read these types of entries into memory. For a
description of the format of an object file, see The Common Object File Format
in this volume.

UNIX Programmer's Manual Languages and Support Tools-85

THE OBJECf AND MATH LIBRARIES

This library consists of several portions. The functions reside in /usrRibRibld.a
and are located and loaded during the compiling of a C language program by a
command line request. The form of this request is:

cc file -lid

which causes the link editor to search the object file library. The argument -lid
must appear after all files that reference functions in !ibld.a.

In addition, various header files must be included. This is accomplished by
including the line:

#include < stdio.h >
#include <a.out.h>
#include <ldfcn.h>

FUNCTION

Idaclose

Idahread

Idaopen

Idclose

Idfhread

Idgetname

REFERENCE

Idclose OX)

Idahread (3X)

IdopenOX)

Idclose OX)

Idfhread OX)

Idgetname OX)

86-Languages and Support Tools

BRIEF DESCRIPTION

Close object file being
processed.

Read archive header.

Open object file for
reading.

Close object file being
processed.

Read file header of
object file being
processed.

Retrieve the name of
an object file symbol
table entry.

UNIX Programmer's Manual

Idlinit Idlread (3X) Prepare object file for
reading line number
entries via Idlitem.

Idlitem Idlread (3X) Read line number entry
from object file after
Idlinit.

Idlread Idlread (3X) Read line number entry
from object file.

Idlseek Idlseek (3X) Seeks to the line number
entries of the object
file being processed.

Idnlseek Idlseek (3X) Seeks to the line number
entries of the object file
being processed given
the name of a section.

Idnrseek Idrseek (3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

Idnshread Idshread (3X) Read section header of
the· named section of the
object file being
processed.

Idnsseek Idsseek (3X) Seeks to the section of
the object file being
processed given the
name of a section.

Idohseek Idohseek (3X) Seeks to the optional
file header of the object
file being processed.

Idopen Idopen(3X) Open object file for
reading.

UNIX Programmer's Manual Languages and Support Tools-87

THE OBJECf AND MATH LIBRARIES

Idrseek Idrseek OX)

Idshread Idshread (3X)

Idsseek Idsseek (3X)

Idtbindex Idtbindex (3X)

Idtbread Idtbread (3X)

Idtbseek Idtbseek (3X)

sgetl sputI(3X)

sputl sputl(3X)

Seeks to the relocation
entries of the object file
being processed.

Read section header of
an object file being
processed.

Seeks to the section of
the object file being
processed.

Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

Reads a specific
symbol table entry
of the object file
being processed.

Seeks to the symbol
table of the object file
being processed.

Access long integer data
in a machine independant
format.

Translate a long integer
into a machine
independant format.

Common Object File Interface Macros (Idfcn.h)

The interface between the calling program and the object file access routines is
based on the defined type LDFILE which is defined in the header file Idfcn.h
(see Idfcn(4». The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

88-Languages and Support Tools UNIX Programmer's Manual

The function Idopen (3 X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through the following macros:
the type macro returns the magic number of the file, which is used to
distinguish between archive files and simple object files. The IOPfR macro
returns the file pointer which was opened by Idopen(3X) and is used by the
input/output functions of the C library. The OFFSET macro returns the file
address of the beginning of the object file. This value is non-zero only if the
object file is a member of the archive file. The HEADER macro accesses the
file header structure of the object file.

Additional macros are provided to access an object file. These macros parallel
the input/output functions in the C library; each macro translates a reference
to an LDFILE structure into a reference to its file descriptor field. The
available macros are described in Idfcn(4) in the UNIX Programmer's
Manual-Volume 2: System Calls and Library Routines. .

THE MATH LIBRARY

The math library consists of functions and a header file. The functions are
located and loaded during the compiling of a C language program by a
command line request. The form of this request is:

cc file -1m

which causes the link editor to search the math library. In addition to the
request to load the functions, the header file of the math library should be
included in the program being compiled. This is accomplished by including the
line:

#include <math.h>

near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

• Trigonometric functions

UNIX Programmer's Manual Languages and Support Tools-89

THE OBJECf AND MATH LIBRARIES

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian measure), sines, cosines,
and tangents. All of these values are expressed in double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION

acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig (3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of
a ratio.

cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate bessel functions of the first and second kinds of
several orders for real values. The bessel functions are jO, jl, jn, yO, yl, and
yn. The functions are located in section besseI(3M).

90-Languages and Support Tools UNIX Programmer's Manual

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent
for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION

cosh sinh(3M) Return hyperbolic cosine.

sinh sinh (3M) Return hyperbolic sine.

tanh sinh (3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural logarithm,
exponential, and absolute value. In addition, several are provided to truncate
the integer portion of double precision numbers.

FUNCTION REFERENCE

ceil 80or(3M)

exp exp(3M)

fabs 800r(3M)

800r 800r(3M)

fmod 800r(3M)

UNIX Programmer's Manual

BRIEF DESCRIPTION

Returns the smallest
integer not less than a
given value.

Returns the exponential
function of a given value.

Returns the absolute value
of a given value.

Returns the largest integer
not greater than a given
value.

Returns the remainder
produced by the division of
two given values.

Languages and Support Tools-91

THE OBJECf AND MATH LIBRARIES

gamma gamma(3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot(3M) Return the square root
of the sum of the squares
of two numbers.

log exp(3M) Returns the natural
logarithm of a given
value.

loglO exp(3M) Returns the lorarithm base
ten of a given value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

92-Languages and Support Tools UNIX Programmer's Manual

COMPILER AND C LANGUAGE

This chapter describe the UNIX System's C compiler, cc, and the C
programming language that the compiler translates. The compiler is part of
the UNIX System Software Generation System (SGS).

The SGS is a package of tools used to create and test programs for UNIX
Systems. These tools allow high-level program coding and source-level testing
of code. The C language is implemented for high-level programming; it
contains many control and structuring facilities that greatly simplify the task of
algorithm construction. Within the SGS, a C compiler converts C programs
into assembly language programs that are ultimately translated into object files
by the assembler, as. The link editor, Id, collects and merges object files into
executable load modules. Each of these tools preserves all symbolic
information necessary for meaningful symbolic testing at C-Ianguage source
level. In addition, a utility package aids in testing and debugging.

The current manual page for the C compiler can be obtained with the SGS
command:

man cc

USE OF THE COMPILER

The main command of the SGS is cc; it operates much like the UNIX system
cc command. To use the compiler, first creat a file (typically by using the
UNIX system text editor) containing C source code. The name of the file
created must have a special format; the last two characters of the file name
must be.c as in fUel.c.

N ext, enter the SGS command

cc options file.c

to invoke the compiler on the C source file file.c with the appropriate options
selected. The compilation process creates an absolute binary file named a.out
that reflects the contents of file.c and any referenced library routines. The
resulting binary file, a.out, can then be executed on the target system.

UNIX Programmer's Manual Languages and Support Tools-93

COMPILER AND C LANGUAGE

Options can control the steps in the compilation process. When none of the
controlling options are used, and only one file is named, cc automatically calls
the assembler, as, and the link editor, Id, thus resulting in an executable file,
named a.out. If more than one file is named in a command,

cc filel.c file2.c file3.c

then the output will be placed on files filel.o, file2.o, and file3.o. These files
can then be linked and executed through the Id command.

The cc compiler also accepts input file names with the last two characters .s.
The .s signifies a source file in assembly language. The cc compiler passes this
type of file directly to as, which assembles the file and places the output on a
file of the same name with .0 substituted for .s.

Cc is based on a portable C compiler and translates C source files into
assembly code. Whenever the command cc is used, the standard C
preprocessor (which resides on the file llih/cpp) is called. The preprocessor
performs file inclusion and macro substitution. The preprocessor is always
invoked by cc and need not be called directly by the programmer. Then, unless
the appropriate flags are set, cc calls the assembler and the link editor to
produce an executable file.

COMPILER OPTIONS

All options recognized by the cc command are listed below:

Option Argument

-c none

-g none

-p none

94-Languages and Support Tools

Description

Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is
compiled.

Produce symbolic debugging
information.

Reserved for invoking a profiler.

UNIX Programmer's Manual

-D identifier! =constantl

-E none

-I directory

-0 none

-p none

-u identifier

-v none

-w c,argll,arg2 .. .J

UNIX Programmer's Manual

Define the external symbol identifier
to the preprocessor, and
give it the value constant
Of specified).

Same as the -P option except
output is directed to the
standard output.

Change the algorithm that searches
for #include files whose names
do not begin with / to look in the
named directory before looking in
the directories on the standard list.
Thus, #include files whose names are
enclosed in "" are searched for
first in the directory of the file
being compiled, then in directories
named by the -I options, and last
in directories on the standard list.
For #include files whose names are
enclosed in < >, the directory of the
file argument is not searched.

Invoke an object code optimizer.

Suppress compilation and loading;
i.e., invoke only the preprocessor
and leave out the output on
corresponding files suffixed .i.

Undefine the named identifier to
the preprocessor.

Print the version of the assembler
that is invoked.

Pass along the argument (s) argi
to pass c, where c is one of
[pOl2all, indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

Languages and Support Tools-95

COMPILER AND C LANGUAGE

This part provides additional information for those options not completely
described above.

By using appropriate options, compilation can be terminated early to produce
one of several intermediate translations such as relocatable object files (-c
option), assembly source expansions for C code (-S option), or the output of
the preprocessor (-p option). In general, the intermediate files may be saved
and later resubmitted to the cc command, with other files or libraries included
as necessary.

When compiling C source files, the most common practice is to use the -c
option to save relocatable files. Subsequent changes to one file do not then
require that the others be recompiled. A separate call to cc without the -c
option then creates the linked executable a.out file. A relocatable object file
created under the -c option is named by adding a .0 suffix to the source file
name.

The -W option provides the mechanism to specify options for each step that is
normally invoked from the cc command line. These steps are preprocessing,
the first pass of the compiler, the second pass of the compiler, optimization,
assembly, and link editing. At this time, only assembler and link editor options
can be used with the -W option. The most common example of use of the -W
option is "-Wa,-m", which passes the -m option to the assembler. Specifying
"-wl,-m" passes the -m option to the link editor.

When the -P option is used, the compilation process stops after only
preprocessing, with output left on file.i. This file will be unsuitable for
subsequent processing by cc.

The -0 option decreases the size and increases the execution speed of programs
by moving, merging, and deleting code. However, line numbers used for
symbolic debugging may be transposed when the optimizer is used.

The -g option produces-information for a symbolic debugger. The SGS
currently supports the SDB symbolic debugger.

96-Languages and Support Tools UNIX Programmer's Manual

A C PROGRAM CHECKER-"lint"

GENERAL

The lint program examines C language source programs detecting a number of
bugs and obscurities. It enforces the type rules of C language more strictly
than the C compiler. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines and/or
operating systems. Another option detects a number of wasteful or error prone
constructions which nevertheless are legal. The lint program accepts multiple
input files and library specifications and checks them for consistency.

Usage

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files
are the files to be checked which end with .c or .In; and library-descriptors are
the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a

-b

-c

-h

-n

Suppress messages about assignments of long values to variables
that are not long.

Suppress messages about break statements that cannot be
reached.

Only check for intra-file bugs; leave external information in files
suffixed with .In.

Do not apply heuristics <which attempt to detect bugs, improve
style, and reduce waste).

Do not check for compatibility with either the standard or the
portable lint library.

UNIX Programmer's Manual Languages and Support Tools-97

A C PROGRAM CHECKER -"lint"

-0 name

-p

-u

-v

-x

Create a lint library from input files named IIib-lname.ln.

Attempt to check portability to other dialects of C language.

Suppress messages about function and external variables used
and not defined or defined and not used.

Suppress messages about unused arguments in functions.

Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a single
argument, such as, -ab or -xha.

The names of files that contain C language programs should end with the suffix
.c which is mandatory or lint and the C compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used in the C language
program. The source code is tested for compatibility with these libraries. This
is done by accessing library description files whose names are constructed from
the library arguments. These files all begin with the comment:

1* LINTLIBRAR Y *1

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to
the function. The V ARARGS and ARGSUSED comments can be used to
specify features of the library functions.

The lint library files are processed almost exactly like ordinary source files.
The only difference is that functions which are defined on a library file but are
not used on a source file do not result in messages. The lint program does not
simulate a full library search algorithm and will print messages if the source

98-Languages and Support Tools UNIX Programmer's Manual

files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file
which contains descriptions of the programs which are normally loaded when a
C language program is run. When the -p option is used, another file is
checked containing descriptions of the standard library routines which are
expected to be portable across various machines. The -n option can be used
to suppress all library checking.

TYPES OF MESSAGES

The following paragraphs describe the major categories of messages printed by
lint.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and
arguments to functions may become unused. It is not uncommon for external
variables or even entire functions to become unnecessary and yet not be
removed from the source. These types of errors rarely cause working programs
to fail, but are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused variables and
functions can occasionally serve to discover bugs.

The lint program prints messages about variables and functions which are
defined but not otherwise mentioned. An exception is variables which are
declared through explicit extern statements but are never referenced; thus the
statement

extern double sin 0 ;

will evoke no comment if sin is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external declarations
might be of some interest and can be discovered by using the -x option with
the lint command.

Certain styles of programming require many functions to be written with
similar interfaces; frequently, some of the arguments may be unused in many
of the calls. The -v option is available to suppress the printing of messages

UNIX Programmer's Manual Languages and Support Tools-99

A C PROGRAM CHECKER -"lint"

about unused arguments. When -v is in effect, no messages are produced
about unused arguments except for those arguments which are unused and also
declared as register arguments. This can be considered an active (and
preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by
adding the comment:

1* ARGSUSED *1

to the program before the function. This has the effect of the -v option for only
one function. Also, the comment:

I*"YARARGS *1

can be used to suppress messages about variable number of arguments in calls
to a function. The comment should be added before the function definition. In
some cases, it is desirable to check the first several arguments and leave the
later arguments unchecked. This can be done with a digit giving the number
of arguments which should be checked. For example:

1* Y ARARGS2 *1

will cause only the first two arguments to be checked.

There is one case where information about unused or undefined variables is
more distracting than helpful. This is when lint is applied to some but not all
files out of a collection which are to be loaded together. In this case, many of
the functions and variables defined may not be used. Conversely, many
functions and variables defined elsewhere may be used. The -u option may be
used to suppress the spurious messages which might otherwise appear.

Set/Used Information

The lint program attempts to detect cases where a variable is used before it is
set. The lint program detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first
assignment to the variable. It assumes that taking the address of a variable
constitutes a "use", since the actual use may occur at any later time, in a· data
dependent fashion.

lOO-Languages and Support Tools UNIX Programmer's Manual

The restriction to the physical appearance of variables in the file makes the
algorithm very simple and quick to implement since the true flow of control
need not be discovered. It does mean that lint can print messages about some
programs which are legal, but these programs would probably be considered
bad on stylistic grounds. Because static and external variables are initialized to
zero, no meaningful information can be discovered about their uses. The lint
program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables which
are set and never used. These form a frequent source of inefficiencies and may
also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the programs
which it processes. It will print messages about unlabeled statements
immediately following goto, break, continue, or return statements. An attempt
is made to detect loops which can never be left at the bottom and to recognize
the special cases while(t) and for(;;) as infinite loops. The lint program also
prints messages about loops which cannot be entered at the top. Some valid
programs may have such loops which are considered to be bad style at best and
bugs at worst.

The lint program has no way of detecting functions which are called and never
returned. Thus, a call to exit may cause an unreachable code which lint does
not detect. The most serious effects of this are in the determination of returned
function values (see "Function Values"). If a particular place in the program
cannot be reached but it is not apparent to lint, the comment

/* NOTREACHED */

can be added at the appropriate place. This comment will inform lint that a
portion of the program cannot be reached.

The lint program will not print a message about unreachable break statements.
Programs generated by yacc and especially lex may have hundreds of
unreachable break statements. The -0 option in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance. There is typically nothing the user can do

UNIX Programmer's Manual Languages and Support Tools-IOI

A C PROGRAM CHECKER-"lint"

about them, and the resulting messages would clutter up the lint output. If
these messages are desired, lint can be invoked with the - b option.

Function Values

Sometimes functions return values that are never used. Sometimes programs
incorrectly use function "values" that have never been returned. The lint
program addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return (expr);

and

return;

statements is cause for alarm; the lint program will give the message

function name contains return (e) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a) {
if (a) return (3);
g 0;
}

Notice that, if a tests false, f will call g and then return with no defined return
value; this will trigger a message from fint. If g, like exit, never returns, the
message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature.

102-Languages and Support Tools UNIX Programmer's Manual

On a global scale, lint detects cases where a function returns a value that is
sometimes or never used. When the value is never used, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it
may represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

Type Checking

The lint program enforces the type checking rules of C language more strictly
than the compilers do. The additional checking is in four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balancing between
types of the operands. The assignment, conditional (?:), and relational
operators have this property. The argument of a return statement and
expressions used in initialization suffer similar conversions. In these
operations, char, short, int, long, unsigned, float, and double types may be
freely intermixed. The types of pointers must agree exactly except that arrays
of x's can, of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left
operand of the -> be a pointer to structure, the left operand of the. be a
structure, and the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is done for references
to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with their declared
counterparts.

UNIX Programmer's Manual Languages and Support Tools-I03

A C PROGRAM CHECKER -"lint"

With enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations and that the only
operations applied are =, initialization, ==, !=, and function arguments and
return values.

If it is desired to turn off strict type checking for an expression, the comment

1* NOSTRICT *1

should be added to the program immediately before the expression. This
comment will prevent strict type checking for only the next line in the program.

Type Casts

The type cast feature in C language was introduced largely as an aid to
producing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. The lint program will print a message as a
result of detecting this. Consider the assignment

p = {char *)1 ;

in which a cast has been used to convert the integer to a character pointer.
The programmer obviously had a strong motivation for doing this and has
clearly signaled his intentions. It seems harsh for lint to continue to print
messages about this. On the other hand, if this code is moved to another
machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as
though they were assignments subject to messages; otherwise, all legal casts are
passed without comment, no matter how strange the type mixing seems to be.

I04-Languages and Support Tools UNIX Programmer's Manual

Nonportable Character Use

On some systems, characters are signed quantities with a range from -128 to
127. On other C language implementations, characters take on only positive
values. Thus, lint will print messages about certain comparisons and
assignments as being illegal or nonportable. For example, the fragment

char c;

if((c = getcharO) < 0) ...

will work on one machine but will fail on machines where characters always
take on positive values. The real solution is to declare c as an integer since
getchar is actually returning integer values. In any case, lint will print the
message "nonportable character comparison".

A similar issue arises with bit fields. When assignments of constant values are
made to bit fields, the field may be too small to hold the value. This is
especially true because on some machines bit fields are considered as signed
quantities. While it may seem logical to consider that a two-bit field declared
of type int cannot hold the value 3, the problem disappears if the bit field is
declared to have type unsigned

Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which will truncate the
contents. This may happen in programs which have been incompletely
converted to use typedefs. When a typedef variable is changed from int to
long, the program can stop working because some intermediate results may be
assigned to ints, which are truncated. Since there are a number of legitimate
reasons for assigning longs to ints, the detection of these assignments is enabled'
by the -a option.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by
lint. The messages hopefully encourage better code quality, clearer style, and
may even point out bugs. The - h option is used to supress these checks. For
example, in the statement

*p++ ;

UNIX Programmer's Manual Languages and Support Tools-105

A C PROGRAM CHECKER-"lint"

the * does nothing. This provokes the message "null effect" from lint. The
following program fragment:

unsigned x ;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x != 0)

which may not be the intended action. The lint program will print the message
"degenerate unsigned comparison" in these cases. If a program contains
something similar to

if(1 != 0) ...

lint will print the message "constant in conditional context" since the
comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statement

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize
such expressions, and lint encourages this by an appropriate message.

106-Languages and Support Tools UNIX Programmer's Manual

Finally, when the -h option has not been used, lint prints messages about
variables which are redeclared in inner blocks in a way that conflicts with their
use in outer blocks. This is legal but is considered to be bad style, usually
unnecessary, and frequently a bug.

Old Syntax

Several forms of older syntax are now illegal. These fall into two classes -
assignment operators and initialization.

The older forms of assignment operators (e.g., =- +, -., ...) could cause
ambiguous expressions, such as:

a =-1 ;

which could be taken as either

a =- 1 ;

or

a = -1;

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer and preferred operators (e.g., + =- ,
.=, .. .) have no such ambiguities. To encourage the abandonment of the
older forms, lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initialization

int x (-1) ;

UNIX Programmer's Manual Languages and Support Tools-107

A C PROGRAM CHECKER -"lint"

looks somewhat like the beginning of a function definition:

int x (y) { ...

and the compiler must read past x in order to determine the correct meaning.
Again, the problem is even more perplexing when the initializer involves a
macro. The current syntax places an equals sign between the variable and the
initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machInes and illegal
on others due entirely to alignment restrictions. The lint program tries to
detect cases where pointers are assigned to other pointers and such alignment
problems might arise. The message "possible pointer alignment problem"
results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate sUbexpressions
may be highly machine dependent. For example, on machines (like the PDp·
11) in which the stack runs backwards, function arguments will probably be
best evaluated from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as arguments of
other functions mayor may not be treated similarly to ordinary arguments.
Similar issues arise with other operators which have side effects, such as the
assignment operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of
complicated expressions up to the local compiler. In fact, the various C
compilers have considerable differences in the order in which they will evaluate
complicated expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the result is explicitly
undefined.

108-Languages and Support Tools UNIX Programmer's Manual

The lint program checks for the important special case where a simple scalar
variable is affected. For example, the statement

ali] = bli++];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

UNIX Programmer's Manual Languages and Support Tools-l 09

SYMBOLIC DEBUGGING PROGRAM-"sdb"

GENERAL

This chapter describes the symbolic debugger sdb(t) as implemented for C
language and Fortran 77 programs on the UNIX operating system. The sdb
program is useful both for examining "core images" of aborted programs and
for providing an environment in which execution of a program can be
monitored and controlled.

The sdb program allows interaction with a debugged program at the source
language level. When debugging a core image from an aborted program, sdb
reports which line in the source program caused the error and allows all
variables to be accessed symbolically and to be displayed in the correct format.

Breakpoints may be placed at selected statements or the program may be single
stepped on a line-by-line basis. To facilitate specification of lines in the
program without a source listing, sdb provides a mechanism for examining the
source text. Procedures may be called directly from the debugger. This
feature is useful both for testing individual procedures and for calling user­
provided routines which provided formatted printout of structured data.

USAGE

In order to use sdb to its full capabilities, it is necessary to compile the source
program with the -g option. This causes the compiler to generate additional
information about the variables and statements of the compiled program.
When the -g option has been specified, sdb can be used to obtain a trace of the
called functions at the time of the abort and interactively display the values of
variables.

A typical sequence of shell commands for debugging a core image is

UNIX Programmer's Manual Languages and Support Tools-Ill

sdb

$ cc -g prgm.c -0 prgm
$ prgm
Bus error - core dumped
$ sdb prgm
main:25: x[i] = 0;

*

The program prgm was compiled with the -g option and then executed. An
error occurred which caused a core dump. The sdb program is then invoked to
examine the core dump to determine the cause of the error. It reports that the
bus error occurred in function main at line 25 (line numbers are always
relative to the beginning of the file) and outputs the source text of the
offending line. The sdb program then prompts the user with an * indicating
that it awaits a command.

It is useful to know that sdb has a notion of current function and current line.
In this example, they are initially set to main and "25", respectively.

In the above example, sdb was called with one argument, prgm. In general, it
takes three arguments on the command line. The first is the name of the
executable file which is to be debugged; it defaults to a.out when not specified.
The second is the name of the core file, defaulting to core; and the third is the
name of the directory containing the source of the program being debugged.
The sdb program currently requires all source to reside in a single directory.
The default is the working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

It is possible that the error occurred in a function which was not compiled with
the -g option. In this case, sdb prints the function name and the address at
which the error occurred. The current line and function are set to the first
executable line in main. The sdb program will print an error message if main
was not compiled with the -g option, but debugging can continue for those
routines compiled with the -g option. Figure 1 shows a typical example of sdb
usage.

112-Languages and Support Tools UNIX Programmer's Manual

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which led to the error.
This is obtained with the t command. For example:

*t
sub(x=2,y=3) [prgm.c:25]
inter(i=16012) [prgm.c:96]
main (argc= 1 ,argv=Ox7fffff54,envp=Ox7fffff5c) [prgm.c: 15]

This indicates that the error occurred within the function sub at line 25 in file
prgm.c. The sub function was called with the arguments x=2 and y=3 from
inter at line 96. The inter function was called from main at line 15. The main
function is always called by the shell with three arguments often referred to as
argc, argv, and envp. Note that argv and envp are pointers, so their values are
printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped program.
Variables are displayed by typing their name followed by a slash, so

*errftag/

causes sdb to display the value of variable errflag. Unless otherwise specified,
variables are assumed to be either local to or accessible from the current
function. To specify a different function, use the form

*sub:iI

to display variable i in function sub. F77 users can specify a common block
variable in the same manner.

The sdb program supports a limited form of pattern matching for variable and
function names. The symbol * is used to match any sequence of characters of
a variable name and? to match any single character. Consider the following
commands

UNIX Programmer's Manual Languages and Support Tools-113

sdb

x/
*sub:y?/
**/

The first prints the values of all variables beginning with x, the second prints
the values of all two letter variables in function sub beginning with y, and the
last prints all variables. In the first and last examples, only variables accessible
from the current function are printed. The command

**:*/

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined by its
type as declared in the source program. To request a different format, a
specifier is placed after the slash. The specifier consists of an optional length
specification followed by the format. The length specifiers are:

b One byte

h Two bytes (half word)

Four bytes (long word).

The lengths are effective only with the formats d, 0, x, and u. If no length is
specified, the word length of the host machine is used. A numeric length
specifier may be used for the s or a commands. These commands normally
print characters until either a null is reached or 128 characters are printed.
The number specifies how many characters should be printed.

There are a number of format specifiers available:

c Character.

d Decimal.

u Decimal unsigned.

114-Languages and Support Tools UNIX Programmer's Manual

o

x

f

g

s

a

p

Octal.

Hexadecimal.

32-bit single-precision floating point.

64-bit double-precision floating point.

Assume variable is a string pointer and print characters starting
at the address pointed to by the variable until a null is reached.

Print characters starting at the variable's address until a null is
reached.

Pointer to function.

Interpret as a machine-language instruction.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and pointers so that all
of the following commands work.

*array[2][3]/
*sym.id/
*psym- > usage/
*xsym[20]. p- > usage/

The only restriction is that array subscripts must be numbers. Depending on
your machine, accessing arrays may be limited to I-dimensional arrays. Note
that as a special case:

*psym->/d

displays the location pointed to by psym in decimal.

UNIX Programmer's Manual Languages and Support Tools-lIS

sdb

Core locations can also be displayed by specifying their absolute addresses.
The command

*10241

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal so the above command is equivalent to both

*020001

and

*Ox4001

It is possible to mix numbers and variables so that

*1000.xl

refers to an element of a structure starting at address 1000, and

*1000->xl

refers to an element of a structure whose address is at 1000. For commands of
the type *1000.xl and *1000->x/, the sdb program uses the structure template
of the last structured referenced.

The address of a variable is printed with the ==, so

*i=

displays the address of i. Another feature whose usefulness will become
apparent later is the command

*./

116-Languages and Support Tools UNIX Programmer's Manual

which redisplays the last variable typed.

SOURCE FILE DISPLAY AND MANIPULATION

The sdb program has been designed to make it easy to debug a program
without constant reference to a current source listing. Facilities are provided
which perform context searches within the source files of the program being
debugged and to display selected portions of the source files. The commands
are similar to those of the UNIX system text editor ed(l). Like the editor, sdb
has a notion of current file and line within the file. The sdb program also
knows how the lines of a file are partitioned into functions, so it also has a
notion of current function. As noted in other parts of this document, the
current function is used by a number of sdb commands.

Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful for
perusing the source program and for determining the context of the current
line. The commands are:

p

w

z

control-d

Prints the current line.

Window; prints a window of ten lines around the current
line.

Prints ten lines starting at the current line. Advances the
current line by ten.

Scrolls; prints the next ten lines and advances the current
line by ten. This command is used to cleanly display long
segments of the program.

When a line from a file is printed, it is preceded by its line number. This not
only gives an indication of its relative position in the file but is also used as
input by some sdb commands.

UNIX Programmer's Manual Languages and Support Tools-I 17

sdb

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the forms

*e function
*e file.c

may be used. The first causes the file containing the named function to become
the current file, and the current line becomes the first line of the function. The
other form causes the named file to become current. In this case, the current
line is set to the first line of the named file. Finally, an e command with no
argument causes the current function and file named to be printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing the current line
in the source file. The following paragraphs describe other commands that
change the current line.

There are two commands for searching for instances of regular expressions in
source files. They are

* /regular expression/
*? regular expression?

The first command searches forward through the file for a line containing a
string that matches the regular expression and the second searches backwards.
The trailing / and ? may be omitted from these commands. Regular
expression matching is identical to that of ed(I).

,The + and - commands may be used to move the current line forwards or
backwards by a specified number of lines. Typing a new-line advances the
current line by one, 'and typing a number causes that line to become the
current line in the file. These commands may be combined with the display
commands so that

*+15z

118-Languages and Support Tools UNIX Programmer's Manual

advances the current line by 15 and then prints ten lines.

A CONTROLLED ENVIRONMENT FOR PROGRAM
TESTING

One very useful feature of sdb is breakpoint debugging. After entering sdb,
certain lines in the source program may be specified to be breakpoints. The
program is then started with a sdb command. Execution of the program
proceeds as normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports the breakpoint
where the program stopped. Now, sdb commands may be used to display the
trace of function calls and the values of variables. If the user is satisfied the
program is working correctly to this point, some breakpoints can be deleted and
others set; then program execution may be continued from the point where it
stopped.

A useful alternative to setting breakpoints is single stepping. The sdb program
can be requested to execute the next line of the program and then stop. This
feature is especially useful for testing new programs, so they can be verified on
a statement-by-statement basis. If an attempt is made to single step through a
function which has not been compiled with the -g option, execution proceeds
until a statement in a function compiled with the -g option is reached. It is
also possible to have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been compiled with
the -g option.

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains executable
code. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line numbers
are relative to the beginning of the file as printed by the source file display
commands. The second form sets a breakpoint at line 12 of function proc, and
the third sets a breakpoint at the first line of proc. The last sets a breakpoint

UNIX Programmer's Manual Languages and Support Tools-119

sdb

at the current line.

Breakpoints are deleted similarly with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted
interactively. Each breakpoint location is printed, and a line is read from the
user. If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and
the D command deletes all breakpoints. It is sometimes desirable to have sdb
automatically perform a sequence of commands at a breakpoint and then have
execution continue. This is achieved with another form of the b command.

*12b t;xl

causes both a trace back and the value of x to be printed each time execution
gets to line 12. The a command is a variation of the above command. There
are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is called, and
the second prints the source line each time it is about to be executed. For both
forms of the a command, execution continues after the function name or source
line is printed.

Running the Program

The r command is used to begin program execution. It restarts the program as
if it were invoked from the shell. The command

*r args

120-Languages and Support Tools UNIX Programmer's Manual

runs the program with the given arguments as if they had been typed on the
shell command line. If no arguments are specified, then the arguments from
the last execution of the program are used. To run a program with no
arguments, use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as INTERRUPT or QUIT occurs, or the program
terminates. In all cases after an appropriate message is printed, control returns
to sdb.

The c command may be used to continue execution of a stopped program. A
line number may be specified, as in:

*proc:12c

This places a temporary breakpoint at the named line. The breakpoint is
deleted when the c command finishes. There is also a c command which
continues but passes the signal which stopped the program back to the
program. This is useful for testing user-written signal handlers. Execution
may be continued at a specified line with the g command. For example:

*17 g

continues at line 17 of the current function. A use for this command is to
avoid executing a section of code which is known to be bad. The user should
not attempt to continue execution in a function different than that of the
breakpoint.

The s command is used to run the program for a single line. It is useful for
slowly executing the program to examine its behavior in detail. An important
alternative is the S command. This command is like the s command but does
not stop within called functions. It is often used when one is confident that the
called function works correctly but is interested in testing the calling routine.

The i command is used to run the program one machine level instruction at a
time while ignoring the signal which stopped the program. Its uses are similar
to the s command. There is also an I command which causes the program to
execute one machine level instruction at a time, but also passes the signal
which stopped the program back to the program.

UNIX Programmer's Manual Languages and Support TOQls-121

sdb

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature
is useful both for testing individual functions with different arguments and for
calling a function which prints structured data in a nice way. There are two
ways to call a function:

*proc(argl, arg2, .. J
*proc(argl, arg2, .. JIm

The first simply executes the function. The second is intended for calling
functions (it executes the function and prints the value that it returns). The
value is printed in decimal unless some other format is specified by m.
Arguments to functions may be integer, character or string constants, or values
of variables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a function is called
when the program is not stopped at a breakpoint (such as when a core image is
being debugged) all variables are initialized before the function is started. This
makes it impossible to use a function which formats data from a dump.

MACHINE LANGUAGE DEBUGGING

The sdb program has facilities for examining programs at the machine
language level. It is possible to print the machine language statements
associated with a line in the source and to place breakpoints at arbitrary
addresses. The sdb program can also be used to display or modify the contents
of the machine registers.

Displaying Machine Language Statements

To display the machine language statements associated with line 25 in function
main, use the command

*main:25?

The? command is identical to the / command except that it displays from
text space. The default format for printing text space is the i format which
interprets the machine language instruction. The control-d command may be

122-Languages and Support Tools UNIX Programmer's Manual

used to print the next ten instructions.

Absolute addresses may be specified instead of line numbers by appending a :
to them so that

*Oxl024:?

displays the contents of address Oxl024 in text space. Note that the command

*Oxl024?

displays the instruction corresponding to line Oxl024 in the current function.
It is also possible to set or delete a breakpoint by specifying its absolute
address;

*Oxl024:b

sets a breakpoint at address Oxl024.

Manipulating Registers

The x command prints the values of all the registers. Also, individual registers
may be named instead of variables by appending a % to their name so that

*r3%

displays the value of register r3.

OTHER COMMANDS

To exit sdb, use the q command.

The! command is identical to that in ed (1) and is used to have the shell
execute a command.

UNIX Programmer's Manual Languages and Support Tools-123

sdb

It is possible to change the values of variables when the program is stopped at
a breakpoint. This is done with the command

*variable!value

which sets the variable to the given value. The value may be a number,
character constant, register, or the name of another variable. If the variable is
of type float or double, the value can also be a floating-point constant.

$ cat testdiv2.c
main (argc, argv, envp)
char **argv, **envp; {

}

int i;
i = div2(-I);
printf("-1I2 = %d\n", i);

div2G) {
int j;
j=i»I;
return(j);

$ cc -g testdiv2.c
$ a.out
-1/2 = -1
$ sdb

Figure 1

No core image
*l"div2

Warning message from sdb
Search for function "div2"

7: div2(i) { # It starts on line 7
*z # Print the next few lines
7: div2G) {
8: int j;
9: j=i»I;
1 0: return (j) ;
11: }
*div2:b # Place breakpoint at beginning of "div2"
div2:9 b # Sdb echoes proc name and line number
*r # Run the function
a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9

124-Languages and Support Tools UNIX Programmer's Manual

div2:9: j == i> > 1;
*t # Print trace of subroutine calls
div2 (i==-l) ltestdiv2.c:9]
main (argc== 1 ,argv==Ox7 fffff50 ,envp==Ox7 fffff5 8) [testdiv2.c:4]
*i/ # Print i
-1
*s # Single step
div2: 1 0: return (j); # Execution stops before line 10
*j/ # Print j
-1
*9d # Delete the breakpoint
*div2(1)/ # Try running "div2" with different arguments
o
*div2(-2)/
-1
*div2(-3)/
-2
*q
$

UNIX Programmer's Manual Languages and Support Tools-125

FORTRAN UNIX SYSTEM COMMANDS

A UNIX system Fortran 77 user should be familiar with the following
commands:

• f77 [options] files - This command invokes the UNIX system Fortran 77
compiler

• ratfor [options] [files] - This command invokes the Ratfor preprocessor

• eft [options] [files] - This command compiles a program written in Extended
Fortran Language (EFL) into clean Fortran

• asa [files] - This command interprets the output of Fortran programs that
utilize ASA carriage control characters

• fsplit options files - This command splits the named file(s) into separate files,
with one procedure per file.

For more information about the above commands, see the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual Languages and Support Tools-127

FORTRAN 77

This chapter describes the compiler and run-time system for Fortran 77 as
implemented on the UNIX system. This chapter also describes the interfaces
between procedures and the file formats assumed by the I/O system.

USAGE

The command to run the compiler is

f77 options file

The f77 (1) command is a general purpose command for compiling and loading
Fortran and Fortran-related files into an executable module. Ratfor
(preprocessor) source files will be translated into Fortran before being
presented to the Fortran compiler. The f77 command invokes the C compiler
to translate C source files and invokes the assembler to translate assembler
source files. Object files will be link edited. [The f77(1) and cc(1) commands
have slightly different link editing sequences. Fortran programs need two extra
libraries (libI77.a, libF77.a) and an additional startup routine.1 The following
file name suffixes are understood:

.f Fortran source file

.r Ratfor source file

.c C language source file

.s Assembler source file

• 0 Object file .

LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. The most important
additions are a character string data type, file-oriented input/output statements,
and random access I/O. Also, the language has been cleaned up considerably.

UNIX Programmer's Manual Languages and Support Tools-129

FORTRAN 77

In addition to implementing the language specified in the Fortran 77 American
National Standard, this compiler implements a few extensions. Most are useful
additions to the language. The remainder are extensions to make it easier to
communicate with C language procedures or to permit compilation of old
(1966 Standard Fortran) programs.

Double Complex Data Type

The data type double complex is added. Each datum is represented by a pair
of double-preciSiOii.feal varIables. A double complex version of every complex
built-in function is provided.

Internal Files

The Fortran 77 American National Standard introduces internal files (memory
arrays) but restricts their use to formatted sequential I/O statements. This
I/O system also permits internal files to be used in direct and unformatted
reads and writes.

Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in a type
stateme,nt is integer if its first letter is i, j, k, I, m or n. Otherwise, it is real.
Fortran 77 lias an implicit statement for overriding this rule. An additIOnal
type statement, undefined, IS permitted. The statement

implicit undefined (a-z)

turns off the automatic data typing mechanism, and the compiler will issue a
diagnostic for each variable that is used but does not appear in a type
statement. Specifying the -u compiler option is equivalent to beginning each
procedure with this statement.

Recursion

Procedures may call themselves directly or through a chain of other procedures.

130-Languages and Support Tools UNIX Programmer's Manual

Automatic Storage

Two new keywords recognized are static and automatic. These keywords may
appear as "types" in type statements and in implicit statements. Local
variables are static by default; there is exactly one copy of the datum, and its
value is retained between calls. There is one copy of each variable declared
automatic for each invocation of the procedure. Automatic variables may not
appear in equivalence, data, or save statements.

Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to
be in a 72-column format: except in comment lines, the first five characters are
the statement number, the next is the continuation character, and the next 66
are the body of the line. (If there are fewer than 72 characters on a line, the
compiler pads it with blanks; characters after the first 72 are ignored.) In
order to make it easier to type Fortran programs, this compiler also accepts
input in variable length lines. An ampersand (&) in the first position of a line
indicates a continuation line; the remaining characters form the body of the
line. A tab character in one of the first six positions of a line signals the end of
the statement number and continuation part of the line; the remaining
characters form the body of the line. A tab elsewhere on the line is treated as
another kind of blank by the compiler.

In the Fortran 77 Standard, there are only 26 letters

- Fortran is a one-case language. Consistent with ordinary system usage, the
new compiler expects lowercase input. By default, the compiler converts all
uppercase characters to lowercase except those inside character constants.
However, if the -U compiler option is specified, uppercase letters are not
transformed. In this mode, it is possible to specify external names with
uppercase letters in them and to have distinct variables differing only in case.
Regardless of the setting of the option, keywords will only be recognized in
lowercase.

Include Statement

The statement

include "stuff"

UNIX Programmer's Manual Languages and Support Tools-I31 .

FORTRAN 77

is replaced by the contents of the file stuff. Includes may be nested to a
reasonable depth, . currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a
binary constant, denoted by a letter followed by a quoted strmg. If the letter is
b, the string is binary, and only zeroes and ones are permitted. If the letter is
0, the string is octal with digits zero through seven. If the letter is z or x, the
string is hexadecimal with digits zero through nine, a through f. thuS, the
statements

integer a (3)
data a/b'lOlO',0'12',z'a'/

initialize all three elements of a to ten.

Character Strings

For compatibility with C language usage, the following backslash escapes are
recognized:

\n New-line

\t Tab

\b Backspace

\f Form feed

\0 Null

\' Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

132-Languages and Support Tools UNIX Programmer's Manual

\\ \

\x Where x is any other character.

Fortran 77 only has one quoting character - the apostrophe ('). This compiler
and I/O system recognize both the apostrophe and the double quote ("). If a
string begins with one variety of quote mark, the other may be embedded
within it without using the repeated quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string
constant is aligned on an integer word boundary. Each character string
constant appearing outside a data statement is followed by a null character to
ease communication with C language routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the new
Standard recommends implementing the old Hollerith feature in order to
improve compatibility with old programs. In this compiler, Hollerith data may
be used in place of character string constants and may also be used to initialize
non character variables in data statements.

Equivalence Statements

This compiler permits single subscripts in equivalence statements under the
interpretation that all missing subscripts are equal to 1. A warning message is
printed for each such incomplete subscript.

One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do
loop not be performed if the initial value is already past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was undefined,
but it was common practice that the range of a do loop would be performed at
least once. In order to accommodate old programs though they were in
violation of the 1966 Standard, the -onetrip compiler option causes nonstandard

UNIX Programmer's Manual Languages and Support Tools-133

FORTRAN 77

loops to be generated.

Commas in Formatted Input

The I/O system attempts to be more lenient than the Fortran 77 American
National Standard when it seems worthwhile. When doing a formatted read of
non-character variables, commas may be used as value separators in the input
record overriding the field lengths given in the format statement. Thus, the
format

(ilO, f20.10, i4)

will read the record

-345,.05e-3,12

correctly.

Short Integers

On machines that support half word integers, the compiler accepts declarations
of type integer*2. (Ordinary integers follow the Fortran rules about occupying
the same space as a REAL variable; they are assumed to be of C language
type long int; half word integers are of C language type short int.) An
expression involving only objects of type integer*2 is of that type. Generic
functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using· the -12 flag, all small integer
constants will be of type integer*2. If the precision of an integer-valued
intrinsic function is not determined by the generic function rules, one will be
chosen that returns the prevailing length (jnteger*2 when the -12 command flag
is in effect). When the -12 option is in effect, all quantities of type logical will
be short. Note that these short integer and logical quantities do not obey the
standard rules for storage association.

134-Languages and Support Tools UNIX Programmer's Manual

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77
Standard. In addition, there are functions for performing bitwise Boolean
operations (or, and, xor, and not) and for accessing the command arguments
(getarg and iargc).

The following lists the Fortran intrinsic function library plus some additional
functions. These functions are automatically available to the Fortran
programmer and require no special invocation of the compiler. The asterisk
(*) beside some of the commands indicate they are not part of standard F77.
In parenthesis beside each function description listed below is the location for
the command in the UNIX Programmer's Manual-Volume 2: System Calls
and Library Routines. These functions are as follows:

abort* Terminate program (ABORT(3F»
abs Absolute value (MAX(3F)
acos Arccosine (A COS (3 F))
aimag Imaginary part of complex argument (AIMAG(3F»
aint Integer part (AINT(3F»
alog Natural logarithm (LOG(3F»
alog 1 0 Common logarithm (ALOG 1 0 (3 F))
amaxO Maximum value (MAX(3F»
amax 1 Maximum value (MAX (3 F»
aminO Minimum value (MIN(3F»
amin 1 Minimum value (MIN (3 F»
amod Remaindering (MOD(3F»
and* Bitwise boolean (BOOL(3F»
anint Nearest integer (ROUND(3F»
asin Arcsine (ASIN(3F»
atan Arctangent (ATAN(3F»
atan2 Arctangent (ATAN2(3F»
cabs Complex absolute value (ABS(3F»
ccos Complex cosine (COS(3F»
cexp Complex exponential (EXP(3F»
char Explicit type conversion (FTYPE(3F»
clog Complex natural logarithm (LOG(3F»
cmplx Explicit type conversion (FTYPE(3F»
conjg Complex conjugate (CONJG(3F»
cos Cosine (COS (3 F))
cosh Hyperbolic cosine (COSH(3F»
csin Complex sine (SIN(3F»
csqrt Complex square root (SQRT(3F»
dabs Absolute value (ABS(3F»

UNIX Programmer's Manual Languages and Support Tools-135

FORTRAN 77

dacos Arccosine (ACOS(3F»
dasin Arcsine (ASIN(3F»
datan Arctangent (ATAN(3F»
datan2 Double precision arctangent (ATAN2(3F»
dble Explicit type conversion (FTYPE (3 F))
dcmplx* Explicit type conversion (FTYPE(3F»
dconjg* Complex conjugate (CONJG(3F»
dcos Cosine (DCOS (3 F))
dcosh Hyperbolic cosine (COSH(3F»
ddim Positive difference (DIM(3F»
dexp Exponential (EXP(3F»
dim Positive difference (DIM(3F»
dimag* Imaginary part of complex argument «AIMAG(3F»
dint Integer part (AINT (3 F))
dlog Natural logarithm (LOG (3 F))
dloglO Common logarithm (LOGIO(3F»
dmaxl Maximum value (MAX(3F»
dminl Minimum value (MIN(3F»
dmod Remaindering (DMOD(3F»
dnint Nearest integer (ROUND(3F»
dprod Double precision product (DPROD(3F»
dsign Transfer of sign (SIGN(3F»
dsin Sine (SIN (3 F))
dsinh Hyperbolic sine (SINH(3F»
dsqrt Square root (SQRT(3F»
dtan Tangent (TAN(3F»
dtanh Hyperbolic tangent (TANH(3F»
exp Exponential (EXP(3F»
float Explicit type conversion (FTYPE(3F»
getarg* Return command-line argument (GETARG(3F»
getenv* Return environment variable (GETENV(3F»
iabs Absolute value (ABS(3F).)
iargc Return number of arguments (IARGC(3F»
ichar Explicit type conversion (FTYPE(3F»
idim Positive difference (DIM(3F»
idint Explicit type conversion (FTYPE(3F»
idnint Nearest integer (ROUND(3F»
ifix Explicit type conversion (FTYPE (3 F))
index Return location of substring (INDEX(3F»
int Explicit type conversion (FTYPE(3F»
irand * Random number generator
isign Transfer of sign (SIGN(3F»
len Return location of string (LEN(3F»

136-Languages and Support Tools UNIX Programmer's Manual

1ge String comparison (STRCMP(3F))
19t String comparison (STRCMP(3F))
He String comparison (STRCMP(3F))
lIt String comparison (STRCMP(3F))
log Natural logarithm (LOG(3F))
logiO Common logarithm (LOGIO(3F))
lshift* Bitwise boolean (BOOL(3F))
max Maximum value (MAX(3F))
maxO Maximum value (MAX(3F))
maxI Maximum value (MAX(3F))
mclock* Return Fortran time accounting (MCLOCK(3F))
mm Minimum value (MIN(3F))
minO Minimum value (MIN(3F))
minI Minimum value (MIN(3F))
mod Remaindering (MOD(3F))
nint Nearest integer (BOOL(3F))
not* Bitwise boolean (BOOL(3F))
or* Bitwise boolean (BOOL(3F))
rand* Random number generator (RAND(3F))
real Explicit type conversion (FTYPE(3F))
rshift* Bitwise boolean (BOOL(3F))
sign Transfer of sign (SIGN(3F))
signal* Specify action on receipt of system signal

(SIGNAL (3 F))
sin Sine (SINE(3F))
sinh Hyperbolic sine (SINH(3F))
sngl Explicit type conversion (FTYPE(3F))
sqrt Square root (SQRT(3F))
srand* Random number generator (RAND(3F))
system* Issue a shell command (SYSTEM(3F))
tan Tangent (TAN(3F))
tanh Hyperbolic tangent (TANH(3F))
xor* Bitwise boolean (BOOL(3F))
zabs* Complex abs.olute value (ABS(3F)).

For more information on the Fortran intrinsic function commands, see the
UNIX Programmer's Manual-Volume 2: System Calls and Library Routines.

UNIX Programmer's Manual Languages and Support Tools~ 137

FORTRAN 77

VIOLATIONS OF THE STANDARD

The following paragraphs describe only three known ways in which the UNIX
system implementation of Fortran 77 violates the new American National
Standard.

Double Precision Alignment

The Fortran 77 American National Standard permits common or equivalence
statements to force a double precision quantity onto an odd word boundary, as
in the following example:

real a(4)
double precision b,c
equivalence (a(I),b), (a (4) ,c)

Some machines require that double preCIsIon quantities be on double word
boundaries; other machines run inefficiently if this alignment rule is not
observed. It is possible to tell which equivalenced and common variables suffer
from a forced odd alignment, but every double-precision argument would have
to be assumed on a bad boundary. To load such a quantity on some machines,
it would be necessary to use two separate operations. The first operation would
be to move the upper and lower halves into the halves of an aligned temporary.
The second would be to load that double-precision temporary. The reverse
would be needed to store a result. All double-precision real and complex
quantities are required to fall on even word boundaries on machines with
corresponding hardware requirements and to issue a diagnostic if the source
code demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure
arguments of that procedure must be declared in an external statement. This
requirement arises as a subtle corollary of the way we represent character
string arguments. A warning is printed if a dummy procedure is not declared
external. Code is correct if there are no character arguments.

138-Languages and Support Tools UNIX Programmer's Manual

T and TL Formats

The implementation of the t (absolute tab) and tI (leftward tab) format codes
is defective. These codes allow rereading or rewriting part of the record which
has already been processed. The implementation uses "seeks"; so if the unit is
not one which allows seeks (such as a terminal) the program is in error. A
benefit of the implementation chosen is that there is no upper limit on the
length of a record nor is it necessary to predeclare any record lengths except
where specifically required by Fortran or the operating system.

INTERPROCEDUREINTERFACE

To be able to write C language procedures that call or are called by Fortran
procedures, it is necessary to know the conventions for procedure names, data
representation, return values, and argument lists that the compiled code obeys.

Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an
underscore appended to it by the compiler to distinguish it from a C language
procedure or external variable with the same user-assigned name. Fortran
library procedure names have embedded underscores to avoid clashes with
user-assigned subroutine names.

Data Representations

The following is a table of corresponding Fortran and C language declarations:

UNIX Programmer's Manual Languages and Support Tools-139

FORTRAN 77

Fortran C Language
integer*2 x short int x;

integer x long int x;

logical x long int x;

real x floa t x;

double precision x double x;

complex x struct { float r, i; } x;

double complex x struct { double dr, di; } x;

character*6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same amount
of memory.

Return Values

A function of type integer, logical, real, or double precision declared as a C
language function returns the corresponding type. A complex or double
complex function is equivalent to a C language routine with an additional
initial argument that points to the place where the return value is to be stored.
Thus, the following:

complex function f(...)

is equivalent to

struct { float r, i; } temp;
f_(&temp, .. .)

A character-valued function is equivalent to a C language routine with two
extra initial arguments - a data address and a length. Thus,

140-Languages and Support Tools UNIX Programmer's Manual

character* 15 function g (...)

is equivalent to

char result[];
long int length;
g_ (result, length, .. .)

and could be invoked in C language by

char chars[15];

g_ (chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value
specifies which alternate return to use. Alternate return arguments (statement
labels) are not passed to the function but are used to do an indexed branch in
the calling procedure. (If the subroutine has no entry points with alternate
return arguments, the returned value is undefined.) The statement

call nret(*I, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

Argument Lists

All Fortran arguments are passed by address. In addition, for every argument
that is of type character or that is a dummy procedure, an argument givin'g the
length of the value is passed. (The string lengths are long int quantities passed
by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

UNIX Programmer's Manual Languages and Support Tools-141

FORTRAN 77

Thus, the call in

external f
character*7 s
integer b(3)

call sam (f, b (2), s)

is equivalent to that in

int fo;
char s[7];
long int b[3];

sam_(f, &b[l1, s, OL, 7L);

Note that the first element of a C language array always has subscript 0, but
Fortran arrays begin at 1 by default. Fortran arrays are stored in column­
major order; C language arrays are stored in row-major order.

FILE FORMATS

Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and
unformatted, and direct formatted and unformatted. On UNIX systems,
these are all implemented as ordinary files which are assumed to have the
proper internal structure.

Fortran 110 is based on "records." When a direct file is opened in a Fortran
program, the record length of the records must be given; and this is used by the
Fortran 110 system to make the file look as if it is made up of records of the
given length. In the special case that the record length is given as I, the files
are not considered to be divided into records but are treated as byte­
addressable byte strings; i.e., as ordinary files on the UNIX system. (A read or
write request on such a file keeps consuming bytes until satisfied rather than
being restricted to a single record.)

142-Languages and Support Tools UNIX Programmer's Manual

The peculiar requirements on sequential unformatted files make it unlikely that
they will ever be read or written by any means except Fortran 110 statements.
Each record is preceded and followed by an integer containing the record's
length in bytes.

The Fortran 110 system breaks sequential formatted files into records while
reading by using each new-line as a record separator. The result of reading off
the end of a record is undefined according to the Fortran 77 American
National Standard. The 1/0 system is permissive and treats the record as
being extended by blanks. On output, the 110 system will write a new-line at
the end of each record. It is also possible for programs to write new-lines for
themselves. This is an error, but the only effect will be that the single record
the user thought was written will be treated as more than one record when
being read or backspaced over.

Preconnected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is
connected to the standard input, unit 6 is connected to the standard output, and
unit 0 is connected to the standard error unit. All are connected for sequential
formatted I/O.

All the other units are also preconnected when execution begins. Unit n is
connected to a file named fort.n. These files need not exist nor will they be
created unless their units are used without first executing an open. The default
connection is for sequential formatted 110.

The Fortran 77 Standard does not specify where a file which has been
explicitly opened for sequential I/O is initially positioned. In fact, the 110
system attempts to position the file at the end. A write will append to the file
and a read will result in an "end of file" indication. To position a file to its
beginning, use a rewind statement. The preconnected units 0, 5, and 6 are
positioned as they come from. the parent process.

UNIX Programmer's Manual Languages and Support Tools-143

RAT FOR

GENERAL
This chapter describes the ratfor(I) preprocessor. It is assumed that the user
is familiar with the current implementation of Fortran 77 on the UNIX
system.

The Ratfor language allows users to write Fortran programs in a fashion
similar to C language. The Ratfor program is implemented as a preprocessor
that translates this "simplified" language into Fortran. The facilities provided
by Ratfor are:

• Statement grouping
• if-else and switch for decision making
• whlle, tor, do, and repeat-until for looping
• oreaK ana next for controlhng lOOP exits
• ~ form mput such as multiple statements/lines and automatic

continuation
• Simple comment convention
• Translation of >, >=, etc., into .gt., .ge., etc.
• return statement for functions
• deiiile statement for symbolic parameters
• mclude statement for including source files.

USAGE
The Ratfor program takes either a list of file names or the standard input and
writes Fortran on the standard output. Options include -6x, which uses x as a
continuation character in column 6 (the UNIX system uses & in column D, -h,
which causes quoted strings to be turned into nH constructs and -C, which
causes Ratfor comments to be copied into the generated Fortran.

UNIX Programmer's Manual Languages and Support Tools-145

RATFOR

STATEMENT GROUPING

The Ratfor language provides a statement grouping facility. A group of
statements can be treated as a unit by enclosing them in the braces { and}.
For example, the Ratfor code

if (x > 100)
{ call error ("x > 100"); err = 1; return}

will be translated by the Ratfor preprocessor into Fortran equivalent to

10

if (x .Ie. 100) goto 10
call error(Shx> 100)
err = 1
return

which should simplify programming effort. By using { and }, a group of
statements can be used instead of a single statement.

Also note in the previous Ratfor example that the character > was used
instead of .GT. in the if statement. The Ratfor preprocessor translates this C
language· type operator to the appropriate Fortran operator. More on
relationship operators later.

In addition, many Fortran compilers permit character strings in quotes (like
"X > 100 ") . But others, like ANSI Fortran 66, do not. Ratfor converts it jnto
the right number of Hs.

The Ratfor language is free form. Statements may appear anywhere on a line,
and several may appear on one line if they are separated by semicolons. The
previous example could also be written as

if (x > 100) {
call error ("x > 1 00")
err = 1
return

146-Languages and Support Tools UNIX Programmer's Manual

which shows grouped statements spread over several lines. In this case, no
semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement, no braces
are needed.

THE "if-else" CONSTRUCTION

The Ratfor language provides an else statement. The syntax of the if-else
construction is:

if (legal Fortran condition)
rat/or statement

else
rat/or statement

wh.yre the else part is optional. The legal Fortran condition is anything that
can legally go into a Fortran LogicallFStatement. I he Ratfor preprocessor
does not check this clause since it does not know enough Fortran to know what
is permitted. The "ratfor" statement is any Ratfor or Fortran statement or any
collection of them in braces. For example:

if (a <= b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

is a valid Ratfor if-else construction. This writes out the smaller of a and b,
then the larger, and sets sw appropriately.

As before, if the statement following an if or an else is a single statement, no
braces are needed.

UNIX Programmer's Manual Languages and Support Tools-147

RATFOR

Nested "if" Statements

The statement that follows an if or an else can be any Ratfor statement
including another if or else statement. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor language also
provides a switch statement which could be used instead, under certain
conditions.) The last else handles the "default" condition. If there is no
default action, this final else can be omitted. Thus, only the actions associated
with the valid condition are performed. For example:

if (x < 0)
x=O

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In Ratfor when
there are more if statements than else statements, else statements are
associated with the closest previous if statement that currently does not have an
associated else statement. For example:

if (x > 0)
if (y > 0)
write(6,I) x, y
else
write(6,2) y

is interpreted by the Ratfor preprocessor as

148-Languages and Support Tools UNIX Programmer's Manual

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

in which the braces are assumed. If the other association is desired it must be
written as

if (x > 0) {
if (y > 0)

write(6, 1) x, y

else
write(6, 2) y

with the braces specified.

THE "switch" STATEMENT

The switch statement provides a way to express multiway branches which
branch on the value of some integer-valued expression. The syntax is

switch (expression) {
case exprl :
statements
case expr2, expr3 :
statements

default:
statements

where each case is followed by an integer expression (or several integer
expressions separated by commas). The switch expression is compared to each
case expr until a match is found. Then the statements following that case are
executed. If no cases match expression, then the statements following default
are executed. The default section of a switch is optional.

UNIX Programmer's Manual Languages and Support Tools-149

RATFOR

When the statements associated with a case are executed, the entire switch is
exited immediately. This is different from C language.

THE "do" STATEMENT

The do statement in Ratfor is quite similar to the DO statement in Fortran
except that it uses no statement number (braces are used to mark the end of
the do instead of a statement number). The syntax of the ratfor do statement
is

do legal-Fortran-DO-text {
ratfor statements

The legal-Fortran-DO-text must be something that can legally be used in a
Fortran DO statement. Thus if a local version of Fortran allows DO limits to
be expressions (which is not currently permitted in ANSI Fortran 66), they
can be used in a ratfor do statement. The ratfor statements are enclosed in
braces; but as with the if, a single statement need not have braces around it.
For example, the following code sets an array to zero:

do i = 1, n
xG) = 0.0

and the code

do i = 1, n
do j = 1, n

mG, j) = 0

sets the entire array m to zero.

THE "break" AND "next" STATEMENTS

The Ratfor break and next statements provide a means for leaving a loop early
and one for beginning the next iteration. The break causes an immediate exit
from the do; in effect, it is a branch to the statement after the do. The next is
a branch to the bottom of the loop, so it causes the next iteration to be done.

1 50-Languages and Support Tools UNIX Programmer's Manual

For example, this code skips over negative values in an array

do i = 1, n {
if (x (0 < 0.0)

next
process positive element

The break and next statements will also work in the other Ratfor looping
constructions and will be discussed with each looping construction.

The break and next can be followed by an integer to indicate breaking or
iterating that level of enclosing loop. For example:

break 2

exits from two levels of enclosing loops, and

break 1

is equivalent to break. The

next 2

iterates the second enclosing loop.

THE "while" STATEMENT

The Ratfor language provides a while statement. The syntax of the while
statement is

while (Zegal-Fortran-condition)
rat/or statement

As with the if, legal-Fortran-condition is something that can go into a
Fortran Logical IF, and ratfor statement is a single statement which may be
multiple statements enclosed In oraces.

UNIX Programmer's Manual Languages and Support Tools-l 51

RATFOR

For example, suppose nextch is a function which returns the next input
character both as a functIon value and in its argument. Then a while loop to
find the first non blank character could be

while (nextch (ich) == iblank)

where a semicolon by itself is a null statement (which is necessary here to
mark the end of the while). If the semicolon were not present, the while would
control the next statement. When the loop is exited, ich contains the first
nonblank.

THE "for" STATEMENT

The for statement is another Ratfor loop. A for statement allows explicit
initialization and increment steps as part of the statement.

The syntax of the for statement is

for (init ; condition ; increment)
rat/or statement

where init is any single Fortran statement which is executed once before the
loop begins. The increment is any single Fortran statement that is executed at .
the end of each pass through the loop before the test. The condition is again
anything that is legal in a Fortran Logical IF. Any of init, condition, and
increment may be omitted although the semicolons must always be present. A
nonexIstent condition is treated as always true, so

for (;;)

is an infinite loop.

lS2-Languages and Support Tools UNIX Programmer's Manual

For example, a Fortran 00 loop could be written as

for G = 1; i < = n; i = i + 1) ...

which is equivalent to

i = 1
while G <= n)

i = i + 1

The initialization and increment of i have been moved into the for statement.

The for, do, and while versions have the advantage that they will be done zero
times if n is less than 1. In addition, the break and next statements work in a
for loop.

The increment in a for need not be an arithmetic progression. The program

sum = 0.0
for G = first; i > 0; i = ptrG))

sum = sum + value (i)

steps through a list (stored in an integer array ptr) until a zero pointer is found
while adding up elements from a parallel array of values. Notice that the code
also works correctly if the list is empty.

THE "repeat-until" STATEMENT

There are times when a test needs to be performed at the bottom of a loop
after one pass through. This facility is provided by the repeat-until statement.
The syntax for the repeat-until statement is

repeat
ratfor statement

until (fegal-Fortran-condition)

UNIX Programmer's Manual Languages and Support Tools-153

RATFOR

where ratfor-statement is done once, then the condition is evaluated. If it is
true, tIie loop IS eXIted; If it is false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat-until
loop can be exited by the use of a stop, return, or break statement or an
implicit stop such as running out of input with a READ statement.

As stated before, a break statement causes an immediate exit from the
enclosing repeat-until loop. A next statement will cause a skip to the bottom of
a repeat-until loop (i.e., to the until part).

THE "return" STATEMENT

The standard Fortran mechanism for returning a value from a routine uses the
name of the routine as a variable. This variable can be assigned a value. The
last value stored in it is the value returned by the function. For example, in a
Fortran routine named equal, the statements

equal = 0
return

cause equal to return zero.

The Ratfor language provides a return statement similar to the C language
return statement. In order to return a value from any routine, the return
statement has the syntax

return (expression)

where expression is the value to be returned.

If there is no parenthesized expression after return, no value is returned.

154-Languages and Support Tools UNIX Programmer's Manual

THE "define" STATEMENT

The Ratfor language provides a define statement similar to the C language
version. Any string of alphanumeric characters can be defined as a name.
Whenever that name occurs in the input (delimited by non alphanumerics) , it is
replaced by the rest of the definition line. (Comments and trailing white
spaces are stripped off.) A defined name can be arbitrarily long and must
begin with a letter.

Usually the define statement is used for symbolic parameters. The syntax of
the define statement is

define name value

where name is a symbolic name that represents the quantity of value. For
example:

define ROWS 100
define CLOS 50
dimension a (ROWS), b(ROWS, COLS)

if G > ROWS I j > COLS) ...

causes the preprocessor to replace the name ROWS with the value 100 and the
name COLS with the value 50. Alternately, definitions may be written as

define (ROWS, 100)

in which case the defining text is everything after the comma up to the right
parenthesis. This allows multiple-line definitions.

THE "include" STATEMENT

The Ratfor language provides an include statement similar to the #include
< ... > statement in C language. The syntax for this statement is

include file

UNIX Programmer's Manual Languages and Support Tools-155

RATFOR

which inserts the contents of the named file into the Ratfor input file in place
of the include statement. The standard usage is to place COMMON blocks on
a file and use the include statement to include the common code whenever
needed.

FREE-FORM INPUT

In Ratfor, statements can be placed anywhere on a line. Long statements are
continued automatically as are long conditions in if, for, and until statements.
Blank lines are ignored. Multiple statements may appear on one line if they
are separated by semicolons. No semicolon is needed at the end of a line if
Ratfor can make some reasonable guess about whether the statement ends
there. Lines ending with any of the characters

=+-*,1&(-

are assumed to be continued on the next line. Underscores are discarded
wherever they occur. All other characters remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a Fortran
label and placed in columns 1 through 5 upon output. Thus:

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format (5hhello)

TRANSLATIONS

When the -b option is chosen, text enclosed in matching single or double quotes
is converted to nH... but is otherwise unaltered (except for formatting - it
may get split across card boundaries during the reformatting process). Within
quoted strings, the backslash (\) serves as an escape character; i.e., the next
character is taken literally. This provides a way to get quotes and the
backslash itself into quoted strings. For example:

"\'"

156-Languages and Support Tools UNIX Programmer's Manual

is a string containing a backslash and an apostrophe. (This is not the standard
convention of doubled quotes, but it is easier to use and more general.)

Any line that begins with the character % is left absolutely unaltered except
for stripping off the % and moving the line one position to the left. This is
useful for inserting control cards and other things that should not be
preprocessed (like an existing Fortran program). Use % only for ordinary
statements not for the condition parts of if, while, etc., or the output may come
out in an unexpected place.

The following character translations are made (except within single or double
quotes or on a line beginning with a %):

.eq.

!= .ne.

> .gt.

>= .ge .

< .It.

<= .Ie.

& .and.

.or .

. not.

In addition, the following translations are provided for input devices with
restricted character sets:

$(

$)

UNIX Programmer's Manual Languages and Support Tools-157

RATFOR

WARNINGS

The Ratfor preprocessor catches certain syntax errors (such as missing braces),
else statements without if statements, and most errors involving missing
parentheses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the
Fortran compiler prints messages in terms of generated Fortran code and not in
terms of the Ratfor code. This makes it difficult to locate Ratfor statements
that contain errors.

The keywords are deserved. Using if, else, while, etc., as variable names will
cause considerable problems. Likewise, spaces within keywords and use of the
Arithmetic IF will cause problems.

The Fortran nH convention is not recognized by Ratfor. Use quotes instead.

EXAMPLE OF RATFOR CONVERSION

As an example of how to use the Ratfor program, the following program prog.r
(where the .r indicates a Ratfor source program), is written in the Ratfor
language:

ICNT=O
10 WRITE(6,3I)
31 FORMAT("INPUT FIRST NUMBER")

READ(5,32) A
32 FORMAT(FIO.2)

WRITE(6,33)
33 FORMAT("INPUT SECOND NUMBER")

READ(5,34) B
34 FORMAT(FIO.2)

IF(A<B)
WRITE(6,36) A,B

ELSE WRITE(6,37)A,B
36 FORMAT(FIO.2," < ",FIO.2)
37 FORMAT(FIO.2," >= ",FIO.2)

ICNT==ICNT+ I
IF(ICNT.EQ.5)

GO TO 100
GOTO 10

100 END

158-Languages and Support Tools UNIX Programmer's Manual

The command

ratfor prog.r > prog.f

causes the Fortran translation program prog.f to be produced. (The Ratfor
program prog.r remains intact.> The Fortran program prog.f follows:

icnt=O
10 write(6,30
31 format("INPUT FIRST NUMBER")

read(5,32) a
32 format(f10.2)

write(6,33)
33 format("INPUT SECOND NUMBER")

read (5,34) b
34 format(flO.2)

if(.not. (a.lt. b» goto 23000
write(6,36) a,b
goto 23001

23000 continue
write(6,37)a,b

23001 continue
36 format(flO.2," < ",flO.2)
37 format(flO.2," >= ",flO.2)

icnt=icnt+ 1
if(.not. (icnt.eq .5» goto 23002
goto 100

23002 continue
goto 10

100 end

The Fortran program prog.f is compiled using the command

f77 progJ

UNIX Programmer's Manual Languages and Support Tools-159

RATFOR

An object program file prog.o and a final output file a.out are produced. Since
the output file a.out is an executable file, the command

a.out

causes the program to run.

The Ratfor program prog.r can also be translated and compiled with the single
command

f77 prog.r

where the .r indicates a Ratfor source program. An object file prog.o and a
final output file a.out are produced.

160-Languages and Support Tools UNIX Programmer's Manual

THE PROGRAMMING LANGUAGE EFL

INTRODUCTION

EFL is a clean, general purpose computer language intended to encourage
portable programming. It has a uniform and readable syntax, and good data
and control flow structuring. EFL programs can be translated into efficient
Fortran code, so the EFL programmer can take advantage of the ubiquity of
Fortran, the valuable libraries of software written in that language, and the
portability that comes with the use of a standardized language, without
suffering from Fortran's many failings as a language., It is especially useful for
numeric programs. Thus, the EFL language permits the programmer to express
complicated ideas in a comprehensible way, while permitting access to the
power of the Fortran environment.

The name EFL originally stood for "Extended Fortran Language." The current
compiler is much more than a simple preprocessor: it attempts to diagnose all
syntax errors, to provide readable Fortran output, and to avoid a number of
niggling restrictions.

In examples and syntax specifications, boldface type is used to indicate literal
words and punctuation, such as while. Words in italic type indicate an item in
a category, such as an expression. A construct surrounded by double brackets
represents a list of one or more of those items, separated by commas. Thus,
the notation

[item]

could refer to any of the following:

item
item, item
item, item, item

The reader should have a fair degree of familiarity with some procedural
language. There will be occasional references to . Ratfor and to Fortran which
may be ignored if the reader is unfamiliar with those languages.

UNIX Programmer's Manual Languages and Support Tools-161

EFL

LEXICAL FORM

Character Set

The following characters are legal in an EFL program:

letters abcdefghijklm
nopqrstuvwxyz

digits 0123456789
white space blank tab
quotes ' "
sharp #
continuation
braces { }
parent heses ()

other , ; : . + • /
= < > & - I $

Letter case (upper or lower) is ignored except within strings, so "a" and "A"
are treated as the same character. All of the examples below are printed in
lower case. An exclamation mark ("!") may be used in place of a tilde ("-").
Square brackets ("[" and "J") may be used in place of braces ("{" and "}").

Lines

EFL is a line-oriented language. Except in special cases (discussed below), the
end of a line marks the end of a token and the end of a statement. The trailing
portion of a line may be used for a comment. There is a mechanism for
diverting input from one source file to another, so a single line in the program
may be replaced by a number of lines from the other file. Diagnostic messages
are labeled with the line number of the file on which they are detected.

White Space

Outside of a character string or comment, any sequence of one or more spaces
or tab characters acts as a single space. Such a space terminates a token.

162-Languages and Support Tools UNIX Programmer's Manual

Comments

A comment may appear at the end of any line. It is introduced by a sharp (#)
character, and continues to the end of the line. (A sharp inside of a quoted
string does not mark a comment.) The sharp and succeeding characters on the
line are discarded. A blank line is also a comment. Comments have no effect
on execution.

Include Files

It is possible to insert the contents of a file at a point in the source text, by
referencing it in a line like

include joe

No statement or comment may follow an include on a line. In effect, the
include line is replaced by the lines in the named file, but diagnostics refer to
the line number in the included file. Includes may be nested at least ten deep.

Continuation

Lines may be continued explicitly by using the underscore (_) character. If
the last character of a line (after comments and trailing white space have been
stripped) is an underscore, the end of a line and the initial blanks on the next
line are ignored. Underscores are ignored in other contexts (except inside of
quoted strings). Thus

There are also rules for continuing lines automatically: the end of line is
ignored whenever it is obvious that the statement is not complete. To be
specific, a statement is continued if the last token on a line is an operator,
comma, left brace, or left parenthesis. (A statement is not continued just
because of unbalanced braces or parentheses.) Some compound statements are
also continued automatically; these points are noted in the sections on
executable statements.

UNIX Programmer's Manual Languages and Support Tools-163

EFL

Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is possible to write
more than one statement on a line. A line consisting only of a semicolon, or a
semicolon following a semicolon, forms a null statement.

Tokens

A program is made up of a sequence of tokens. Each token is a sequence of
characters. A blank terminates any token other than a quoted string. End of
line also terminates a token unless explicit continuation (see above) is signaled
by an underscore.

Identifiers

An identifier is a letter or a letter followed by letters or digits. The following is
a list of the reserved words that have special meaning in EFL. They will be
discussed later.

array exit precision
automatic external procedure
break false read
call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while
end next write
equivalence option writebin

The use of these words is discussed below. These words may not be used for
any other purpose.

164-Languages and Support Tools UNIX Programmer's Manual

Strings

A character string is a sequence of characters surrounded by quotation marks.
If the string is bounded by single-quote marks (,), it may contain double
quote marks ("), and vice versa. A quoted string may not be broken across a
line boundary.

'hello there'
"ain't misbehavin'"

Integer Constants

An integer constant is a sequence of one or more digits.

Floating Point Constants

o
57
123456

A floating point constant contains a dot and/or an exponent field. An exponent
field is a letter d or e followed by an optionally signed integer constant. If I
and J are integer constants and E is an exponent field, then a floating constant
has one of the following forms:

Punctuation

.1
I.
I.J
IE
I.E
.IE
I.JE

Certain characters are used to group or separate objects in the language.
These are

parentheses ()
braces { }

UNIX Programmer's Manual Languages and Support Tools-165

EFL

comma
semicolon
colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither blank
nor continued.

Operators

The EFL operators are written as sequences of one or more non-alphanumeric
characters.

+ - * / **
< <== > >== ==== -==
&& II & I
+== -==
&&== 11==
-> . $

/== **==
&== 1==

A dot (".") is an operator when it qualifies a structure element name, but not
when it acts as a decimal point in a numeric constant. There is a special mode
(see "ATAVISMS") in which some of the operators may be represented by a
string consisting of a dot, an identifier, and a dot (e.g., .It.).

Macros

EFL has a simple macro substitution facility. An identifier may be defined to
be equal to a string of tokens; whenever that name appears as a token in the
program, the string replaces it. A macro name is given a value in a define
statement like

define count n +== 1

Any time the name count appears in the program, it is replaced by the
statement

n += 1

166-Languages and Support Tools UNIX Programmer's Manual

A define statement must appear alone on a line; the form is

define name rest-oj-line

Trailing comments are part of the string.

PROGRAM FORM

Files

A file is a sequence of lines. A file is compiled as a single unit. It may contain
one or more procedures. Declarations and options that appear outside of a
procedure affect the succeeding procedures on that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has
a name by which it is invoked. (The first procedure invoked during execution,
known as the main procedure, has the null name.) Procedure calls and
argument passing are discussed in "PROCEDURES."

Blocks

Statements may be formed into groups inside of a procedure. To describe the
scope of names, it is convenient to introduce the ideas of block and of nesting
level. The beginning of a program file is at nesting level zero. Any options,
macro definitions, or variable declarations are also at level zero. The text
immediately following a procedure statement is at level 1. After the
declarations, a left brace marks the beginning of a new block and increases the
nesting level by 1; a right brace drops the level by 1. (Braces inside
declarations do not mark blocks') (See "Blocks" under "EXECUTABLE
ST A TEMENTS. ") An end statement marks the end of the procedure, levell,
and the return to level O. A name (variable or macro) that is defined at level
K is defined throughout that block and in all deeper nested levels in which that

UNIX Programmer's Manual Languages and Support Tools-167

EFL

name is not redefined or redeclared. Thus, a procedure might look like the
following:

block 0
procedure george
real x
x=2

if(x> 2)
{ # new block
integer x # a different variable
do x = 1,7

write (,x)

} # end of block
end # end of procedure, return to block 0

Statements

A statement is terminated by end of line or by a semicolon. Statements are of
the following types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The inciude,
define, and end statements have been described above; they may not be followed
by another statement on a line. Each procedure begins with a procedure
statement and finishes with an end statement; these are discussed in
"PROCEDURES". Declarations describe types and values of variables and
procedures. Executable statements cause specific actions to be taken. A block
is an example of an executable statement; it is made up of declarative and
executable statements.

168-Languages and Support Tools UNIX Programmer's Manual

Labels

An executable statement may have a label which may be used in a branch
statement. A label is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal ("bad input")

DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may
define objects made up of variables of basic type; other aggregates may then be
defined in terms of previously defined aggregates.

The basic types are

Basic Types

logical
integer
field(rn:n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may
take on any whole number value in some machine-dependent range. A field
quantity is an integer restricted to a particular closed interval ([rn:n]). A
"real" quantity is a floating point approximation to a real or rational number.
A long real is a more precise approximation to a rational. (Real quantities are
represented as single precision floating point numbers; long reals are double
precision floating point numbers') A complex quantity is an approximation to
a complex number, and is represented as a pair of reals. A character·quantity
is a fixed-length string of n characters.

UNIX Programmer's Manual Languages and Support Tools-169

EFL

Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by a
plus or minus sign, as in

17
-94
+6
o

A long real ("double precision") constant is a floating point constant containing
an exponent field that begins with the letter d. A real ("single precision")
constant is any other floating point constant. A real or long real constant may
be preceded by a plus or minus sign. The following are valid real constants:

17.3
-.4
7.ge -6 (== 7.9x 10-6)

14e9 (== l.4x 1010)

The following are valid long real constants

7.9d -6 (== 7.9x 10-6)

5d3

A character constant is a quoted string.

170-Languages and Support Tools UNIX Programmer's Manual

Variables

A variable is a quantity with a name and a location. At any particular time
the variable may also have a value. (A variable is said to be undefined before
it is initialized or assigned its first value, and after certain indefinite operations
are performed,) Each variable has certain attributes:

Storage Class

The association of a name and a location is either transitory or permanent.
Transitory association is achieved when arguments are passed to procedures.
Other associations are permanent (static). (A future extension of EFL may
include dynamically allocated variables.)

Scope of Names

The names of common areas are global, as are procedure names: these names
may be used anywhere in the program. All other names are local to the block
in which they are declared.

Precision

Floating point variables are either of normal or long precision. This attribute
may be stated independently of the basic type.

Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the
same type. The index set is always a cross-product of intervals of integers.
The lower and upper bounds of the intervals must be constants for arrays that
are local or common. A formal argument array may have intervals that are of
length equal to one of the other formal arguments. An element of an array is
denoted by the array name followed by a parenthesized comma-separated list
of integer values, each of which must lie within the corresponding interval.
(The intervals may include negative numbers,) Entire arrays may be passed as
procedure arguments or in input/output lists, or they may be initialized; all
other array references must be to individual elements.

UNIX Programmer's Manual Languages and Support Tools-171

EFL

Structures

It is possible to define new types which are made up of elements of other types.
The compound object is known as a structure; its constituents are called
members of the structure. The structure may be given a name, which acts as a
type name in the remaining statements within the scope of its declaration. The
elements of a structure may be of any type {including previously defined
structures}, or they may be arrays of such objects. Entire structures may be
passed to procedures or be used in input/output lists; individual elements of
structures may be referenced. The uses of structures will be detailed below.
The following structure might represent a symbol table:

struct tableentry
(
character(S) name
integer hashvalue
integer numberofelements
field(O:t> initialized, used, set
field (0: 10) type
}

EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression may have
any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have equal
precedence and have higher precedence than operators on later lines. The
meanings of these operators are described in "Unary Operators" and "Binary
Operators" under "EXPRESSIONS".

172-Languages and Support Tools UNIX Programmer's Manual

-> .
••
• / unary + - + + --
+
< <= > >= ==
& &&
1 II
$

+= - = .= /= •• = & = 1= & & = 11=

Examples of expressions are

a<b && b<c
- (a + sin(x» / (5 +cos(x» **2

Primaries

Primaries are· the basic elements of expressions.
variables, array elements, structure members,
input/output expressions, coercions, and sizes.

Constants

They include constants,
procedure invocations,

Constants are described in "Constants" under "DATA TYPES AND
VARIABLES".

Variables

Scalar variable names are primaries. They may appear on the left or the right
side of an assignment. Unqualified names of aggregates (structures or arrays)
may appear only as procedure arguments and in input/output lists.

Array Elements

An element of an array is denoted by the array name followed by a
parenthesized list of subscripts, one integer value for each declared dimension:

a(5)
b(6, -3,4)

UNIX Programmer's Manual Languages and Support Tools-173

EFL

Structure Members

A structure name followed by a dot followed by the name of a member of that
structure constitutes a reference to that element. If that element is itself a
structure, the reference may be further qualified.

Procedure Invocations

a.b
x(3).y(4).z(S)

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-l, ... , expression-n)

The procedurename is either the name of a variable declared external or it is
the name of a function known to the EFL compiler (see "Known Functions"
under "PROCEDURES"), or it is the actual name of a procedure, as it appears
in a procedure statement. If a procedurename is declared external and is an
argument of the current procedure, it is associated with the procedure name
passed as actual argument; otherwise it is the actual name of a procedure.
Each expression in the above is called an actual argument. Examples of
procedure invocations are

f(x)

work 0
g(x, y +3, 'xx')

When one of these procedure invocations is to be performed, each of the actual
argument expressions is first evaluated. The types, precisions, and bounds of
actual and formal arguments should agree. If an actual argument is a variable
name, array element, or structure member, the called procedure is permitted to
use the corresponding formal argument as the left side of an assignment or in
an input list; otherwise it may only use the value. After the formal and actual
arguments are associated, control is passed to the first executable statement of
the procedure. When a return statement is executed in that procedure, or when
control reaches the end statement of that procedure, the function value is made
available as the value of the procedure invocation. The type of the value is
determined by the attributes of the procedurename that are declared or implied

174-Languages and Support Tools UNIX Programmer's Manual

in the calling procedure, which must agree with the attributes declared for the
function in its procedure. In the special case of a generic function, the type of
the result is also affected by the type of the argument. See "PROCEDURES".

Input / Output Expressions

The EFL input/output syntactic forms may be used as integer primaries that
have a non-zero value if an error occurs during the input or output. See
"Input/Output Statements" under "EXECUTABLE STATEMENTS".

Coercions

An expression of one precision or type may be converted to another by an
expression of the form

attributes (expression)

At present, the only attributes permitted are precision and basic types.
Attributes are separated by white space. An arithmetic value of one type may
be coerced to any other arithmetic type; a character expression of one length
may be coerced to a character expression of another length; logical expressions
may not be coerced to a nonlogical type. As a special case, a quantity of
complex or long complex type may be constructed from two integer or real
quantities by passing two expressions (separated by a comma) in the coercion.
Examples and equivalent values are

integer(5.3) = 5
long real (5) -= 5.0dO
complex (5,3) = 5 + 3i

Most conversions are done implicitly, since most binary operators permit
operands of different arithmetic types. Explicit coercions are of most use when
it is necessary to convert the type of an actual argument to match that of the
corresponding formal parameter in a procedure call.

UNIX Programmer's Manual Languages and Support Tools-175

EFL

Sizes

There is a notation which yields the amount of memory required to store a
datum or an item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or
structure member. The value of sizeof is an integer, which gives the size in
arbitrary units. If the size is needed in terms of the size of some specific unit,
this can be computed by division:

sizeof(x) / sizeofOnteger)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof
because certain data types require final padding on some machines. The
lengthof operator gives this larger value, again in arbitrary units. The syntax is

lengthof (leftside)
lengthof (attributes)

Parentheses

An expression surrounded by parentheses is itself an expression. A
parenthesized expression must be evaluated before an expression of which it is
a part is evaluated.

Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary
operator has the same type as its operand.

176-Languages and Support Tools UNIX Programmer's Manual

Arithmetic

Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator + + adds one to its operand. The prefix operator
subtracts one from its operand. The value of either expression is the result of
the addition or subtraction. For these two operators, the operand must be a
scalar, array element, or structure member of arithmetic type. (As a side
effect, the operand value is changed.)

Logical

The only logical unary operator is complement (-). This operator is defined by
the equations

- true = false
- false = true

Binary Operators

Most EFL operators have two operands, separated by the operator. Because the
character set must be limited, some of the operators are denoted by strings of
two or three special characters. All binary operators except exponentiation are
left associative.

Arithmetic

The binary arithmetic operators are

+ addition
subtraction

* multiplication
/ division
** exponentiation

Exponentiation is right associative: a ** b**c = a ** (b**c) = a (be) The
operations have the conventional meanings: 8+2 == 10, 8-2 == 6, 8*2 == 16,
8/2 = 4, 8**2 == 82 == 64.

The type of the result of a binary operation A op B is determined by the types
of its operands:

UNIX Programmer's Manual Languages and Support Tools-177

EFL

Type of B

Type of A r I r c I c
r I r c I c

r r r I r c I c
I r I r I r I r I c I c
c c c I c c I c

I c I c I c I c I c I c

i = integer
r = real
I r = long real
c = complex
I c = long complex

If the type of an operand differs from the type of the result, the calculation is
done as if the operand were first coerced to the type of the result. If both
operands are integers, the result is of type integer, and is computed exactly.
(Quotients are truncated toward zero, so 8/3==2.)

Logical

The two binary logical operations in EFL, and and or, are defined by the truth
tables:

A B A and B A or B
false false false false
false true false true
true false false true
true true true true

Each of these operators comes in two forms. In one form, the order of
evaluation is specified. The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is false and b
is not evaluated; otherwise, the expression has the value of b. The expression

178-Languages and Support Tools UNIX Programmer's Manual

is evaluated by first evaluating a; if it is true then the expression is true and b
is not evaluated; otherwise, the expression has the value of b. The other forms
of the operators (& for and and I for or) do not imply an order of evaluation.
With the latter operators, the compiler may speed up the code by evaluating
the operands in any order.

Relational Operators

There are six relations between arithmetic quantities. These operators are not
associative.

EFL Operator Meaning

< < less than
<= ~ less than or equal to

equal to
- ¢ not equal to

> > grea ter than
>= ~ grea ter than or equal

Since the complex numbers are not ordered, the only relational operators that
may take complex operands are = = and -= . The character collating
sequence is not defined.

Assignment Operators

All of the assignment operators are right associative. The simple form of
assignment is

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure member
of basic type. This statement computes the expression on the right side, and
stores that value (possibly after coercing the value to the type of the left side)
in the location named by the left side. The value of the assignment expression
is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary arithmetic
and logical operator. In each case, a op= b is equivalent to a = a op b. (The
operator and equal sign must not be separated by blanks') Thus, n + =2 adds

UNIX Programmer's Manual Languages and Support Tools-179

EFL

2 to n. The location of the left side is evaluated only once.

Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there is a
notation for dynamic structures,

leftside - > structurename

This expression is a structure with the shape implied by structurename but
starting at the location of leftside. In effect, this overlays the structure
template at the specified location. The leftside must be a variable, array, array
element, or structure member. The type of the leftside must be one of the
types in the structure declaration. An element of such a structure is denoted in
the usual way using the dot operator. Thus,

place(j) - > st.elt

refers to the elt member of the st structure starting at the ith element of the
arra y place.

Repetition Operator

Inside of a list, an element of the form

integer-constant -expression $ constant -expression

is equivalent to the appearance of the expression a number of times equal to
the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

180-Languages and Support Tools UNIX Programmer's Manual

Constant Expressions

If an expression is built up out of operators (other than functions) and
constants, the value of the expression is a constant, and may be used anywhere
a constant is required.

DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects
in the EFL language.

Syntax

A declaration statement is made up of attributes and variables. Declaration
statements are of two forms:

attributes variable-list
attributes { declarations

In the first case, each name in the variable-list has the specified attributes. In
the second, each name in the declarations also has the specified attributes. A
variable name may appear in more than one variable list, so long as the
attributes are not contradictory. Each name of a nonargument variable may be
accompanied by an initial value specification. The declarations inside the
braces are one or more declaration statements. Examples of declarations are

integer k=2

long real b(7,3)

common (cname)
(
integer i
long real array (5,0:3) x, y
character(7) ch
}

UNIX Programmer's Manual Languages and Support Tools-181

EFL

Attributes

Basic Types

The following are basic types in declarations

logical
integer
field(m :n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant expressions
with the properties k >0 and n >m.

Arrays

The dimensionality may be declared by an array attribute

array(b 1 , ••• ,bn)

Each of the bi may either be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lower and an
upper bound; the single expression is an upper bound with an implied lower
bound of I. The number of dimensions is equal to n, the number of bounds.
All of the integer expressions must be constants. An exception is permitted
only if all of the variables associated with an array declarator are formal
arguments of the procedure; in this case, each bound must have the property
that upper-[ower+ 1 is equal to a formal argument of the procedure. (The
compiler has limited ability to simplify expressions, but it will recognize
important cases such as (O:n - 1). The upper bound for the last dimension (bn)

may be marked by an asterisk (•) if the size of the array is not known. The
following are legal array attributes:

array (5)
array(5, 1:5, -3:0)
array(5, .)
array (O:m -1, m)

182-Languages and Support Tools UNIX Programmer's Manual

Structures

A structure declaration is of the form

struct structname { declaration statements}

The structname is optional; if it is present, it acts as if it were the name of a
type in the rest of its scope. Each name that appears inside the declarations is
a member of the structure, and has a special meaning when used to qualify any
variable declared with the structure type. A name may appear as a member of
any number of structures, and may also be the name of an ordinary variable,
since a structure member name is used only in contexts where the parent type
is known. The following are valid structure attributes

struct xx
{
integer a, b
real x(S)
}

struct { xx z(3); character(S) y }

The last line defines a structure containing an array of three xx's and a
character string.

Precision

Variables of floating point (real or complex) type may be declared to be long to
ensure they have higher precision than ordinary floating point variables. The
default precision is short.

Common

Certain objects called common areas have external scope, and may be
referenced by any procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute are
in the same block; the order in which they are declared is significant.
Declarations for the same block in differing procedures must have the variables

UNIX Programmer's Man~al Languages and Support Tools-I83

EFL

in the same order and with the same types, precision, and shapes, though not
necessarily with the same names.

External

If a name is used as the procedure name in a procedure invocation, it is
implicitly declared to have the external attribute. If a procedure name is to be
passed as an argument, it is necessary to declare it in a statement of the form

external [name B

If a name has the external attribute and it is a formal argument of the
procedure, then it is associated with a procedure identifier passed as an actual
argument at each call. If the name is not a formal argument, then that name
is the actual name of a procedure, as it appears in the corresponding procedure
statement.

Variable List

The elements of a variable list in a declaration consist of a name, an optional
dimension specification, and an optional initial value specification. The name
follows the usual rules. The dimension specification is the same form and
meaning as the parenthesized list in an array attribute. The initial value
specification is an equal sign (=) followed by a constant expression. If the
name is an array, the right side of the equal sign may be a parenthesized list of
constant expressions, or repeated elements or lists; the total number of elements
in the list must not exceed the number of elements of the array, which are
filled in column-major order.

The Initial Statement

An initial value may also be specified for a simple variable, array, array
element, or member of a structure using a statement of the form

initial [var = val B

The var may be a variable name, array element specification, or member of
structure. The right side follows the same rules as for an initial value
specification in other declaration statements.

184-Languages and Support Tools UNIX Programmer's Manual

EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements, otherwise it would
not do anything and would not need to be run. Statements are frequently
made up of other statements. Blocks are the most obvious case, but many
other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be
broken without an explicit continuation. A square (0) in the syntax represents
a point where the end of a line will be ignored.

Expression Statements

Subroutine Call

A procedure invocation that returns no value is known as a subroutine call.
Such an invocation is a statement. Examples are

work (in, out)
run 0

Input/output statements (see "Input/Output Statements" under
"EXECUTABLE STATEMENTS") resemble procedure invocations but do not
yield a value. If an error occurs the program stops.

Assignment Statements

An expression that is a simple assignment (=) or a compound assignment
(+ = etc.) is a statement:

a=b
a = sin(x)/6
x *= y

UNIX Programmer's Manual Languages and Support Tools-I85

EFL

Blocks

A block is a compound statement that acts as a statement. A block begins
with a left brace, optionally followed by declarations, optionally followed by
executable statements, followed by a right brace. A block may be used
anywhere a statement is permitted. A block is not an expression and does not
have a value. An example of a block is

integer i # this variable is unknown
outside the braces

big - 0
do i = l,n

}

if(big < a (j))
big = a(j)

Test Statements

Test statements permit execution of certain statements conditional on the truth
of a predicate.

If Statement

The simplest of the test statements is the if statement, of form

if (logical-expression) 0 statement

The logical expression is evaluated; if it is true, then the statement is executed.

If-Else

A more general statement is of the form

if (logical-expression) 0 statement-l 0

else 0 statement-2

If the expression is true then statement-l is executed, otherwise, statement-2 is
executed. Either of the consequent statements may itself be an if-else so a

186-Languages and Support Tools UNIX Programmer's Manual

completely nested test sequence is possible:

if(x<y)
if(a<b)

k = 1
else

k=2
else

if(a<b)
m = 1

else
m = 2

An else applies to the nearest preceding un-elsed if. A more common use is as
a sequential test:

Select Statement

if(x= =1)
k = 1

else if(x= =3 I x= =5)
k=2

else
k=3

A multiway test on the value of a quantity is succinctly stated as a select
statement, which has the general form

select(expression) 0 block

Inside the block two special types of labels are recognized. A prefix of the
form

case [constant D :

marks the statement to which control is passed if the expression in the select
has a value equal to one of the case constants. If the expression equals none of
these constants, but there is a label default inside the select, a branch is taken
to that point; otherwise the statement following the right brace is executed.
Once execution begins at a case or default label, it continues until the next case

UNIX Programmer's Manual Languages and Support Tools-187

EFL

or default is encountered. The else-if example above is better written as

select (x)
{
case 1:

k = 1
case 3,5:

k=2
default:

k=3
}

Note that control does not "fall through" to the next case.

Loops

The loop forms provide the best way of repeating a statement or sequence of
operations. The simplest (while) form is theoretically sufficient, but it is very
convenient to have the more general loops available, since each expresses a
mode of control that arises frequently in practice.

While Statement

This construct has the form

while (logical-expression) 0 statement

The expression is evaluated; if it is true, the statement is executed, and then
the test is performed again. If the expression is false, execl;ltion proceeds to the
next statement.

For Statement

The for statement is a more elaborate looping construct. It has the form

for { initial-statement, 0 logical-expression,
o iteration-statement) 0 body-statement

Except for the behavior of the next statement (see "Branch Statement" under

188-Languages and Support Tools UNIX Programmer's Manual

"EXECUTABLE STATEMENTS"), this construct is equivalent to

initial-statement
while (logical-expression)

{
body -statement
iteration-statement
}

This form is useful for general arithmetic iterations, and for various pointer­
type operations. The sum of the integers from 1 to 100 can be computed by
the fragment

n = 0
forO = 1, i < = 100, i + = 1)

n += i

Alternatively, the computation could be done by the single statement

for{ { n = 0 ; i = 1 } , i< =100 , {n + = i ; + +i })

Note that the body of the for loop is a null statement in this case. An example
of following a linked list will be given later.

Repeat Statement

The statement

repeat 0 statement

executes the statement, then does it again, without any termination test.
Obviously, a test inside the statement is needed to stop the loop.

UNIX Programmer's Manual Languages and Support Tools-189

EFL

Repeat ... Until Statement

The while loop performs a test before each iteration. The statement

repeat 0 statement 0 until (logical-expression)

executes the statement, then evaluates the logical; if the logical is true the loop
is complete; otherwise, control returns to the statement. Thus, the body is
always executed at least once. The until refers to the nearest preceding repeat
that has not been paired with an until. In practice, this appears to be the least
frequently used looping construct.

Do Loop

The simple arithmetic progression is a very common one in numerical
applications. EFL has a special loop form for ranging over an ascending
arithmetic sequence

do variable = expression-i, expression-2, expression-3
statement

The variable is first given the value expression-i. The statement is executed,
then expression-3 is added to the variable. The loop is repeated until the
variable exceeds expression-2. If expression-3 and the preceding comma are
omitted, the increment is taken to be I. The loop above is equivalent to

t2 == expression-2
t3 == expression-3
for (variable==expression-I, variable < ==t2, varia ble+==t3)

statement

(The compiler translates EFL do statements into Fortran DO statements, which
are in turn usually compiled into excellent codeJ The do variable may not be
changed inside of the loop, and expression-i must not exceed expression-2.
The sum of the first hundred positive integers could be computed by

n = 0
do i = 1, 100

n += i

190-Languages and Support Tools UNIX Programmer's Manual

Branch Statements

Most of the need for branch statements in programs can be averted by using
the loop and test constructs, but there are programs where they are very useful.

Goto Statement

The most general, and most dangerous, branching statement is the simple
unconditional

goto label

After executing this statement, the next statement performed is the one
following the given label. Inside of a select the case labels of that block may
be used as labels, as in the following example:

select(k)
{
case 1:

error (7)

case 2:
k=2
goto case 4

case 3:
k=5
goto case 4

case 4:
fixup(k)
goto default

default:
prmsg("ouch")

}

(If two select statements are nested, the case labels of the outer select are not
accessible from the inner one,)

UNIX Programmer's Manual Languages and Support Tools-191

EFL

Break Statement

A safer statement is one which transfers control to the statement following the
current select or loop form. A statement of this sort is almost always needed in
a repeat loop:

repeat
{
do a computation
if(finished)

break

More general forms permit controlling a branch out of more than one
construct.

break 3

transfers control to the statement following the third loop and/or select
surrounding the statement. It is possible to specify which type of construct
(for, while, repeat, do, or select) is to be counted. The statement

break while

breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

Next Statement

The next statement causes the first surrounding loop statement to go on to the
next iteration: the next operation performed is the test of a while, the
iteration-statement of a for, the body of a repeat, the test of a repeat ..• until, or
the increment of a do. Elaborations similar to those for break are available:

192-Languages and Support Tools UNIX Programmer's Manual

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

Return

The last statement of a procedure is followed by a return of control to the
caller. If it is desired to effect such a return from any other point in the
procedure, a

return

statement may be executed. Inside a function procedure, the function value is
specified as an argument of the statement:

return (expression)

Input/Output Statements

EFL has two input statements (read and readbin), two output statements (write
and writebin), and three control statements (endfile, rewind, and backspace).
These forms may be used either as a primary with a integer value or as a
statement. If an exception occurs when one of these forms is used as a
statement, the result is undefined but will probably be treated as a fatal error.
If they are used in a context where they return a value, they return zero if no
exception occurs. For the input forms, a negative value indicates end-of-file
and a positive value an error. The input/output part of EFL very strongly
reflects the facilities of Fortran.

Input / Output Units

Each 110 statement refers to a "unit," identified by a small positive integer.
Two special units are defined by EFL, the standard input unit and the standard
output unit. These particular units are assumed if no unit is specified in an
I/O transmission statement.

UNIX Programmer's Manual Languages and Support Tools-193

EFL

The data on the unit are organized into records. These records may be read or
written in a fixed sequence, and each transmission moves an integral number of
records. Transmission proceeds from the first record until the end oj file.

Binary Input / Output

The readbin and writebin statements transmit data in a machine-dependent but
swift manner. The statements are of the form

writebin{ unit, binary-output-Ust)
readbin{ unit, binary-input-Ust)

Each statement moves one unformatted record between storage and the device.
The unit is an integer expression. A binary-output-Ust is an ioUst (see below)
without any format specifiers. A binary-input-Ust is an ioUst without format
specifiers in which each of the expressions is a variable name, array element, or
structure member.

Formatted Input / Output

The read and write statements transmit data in the form of lines of characters.
Each statement moves one or more records (lines). Numbers are translated
into decimal notation. The exact form of the lines is determined by format
specifications, whether provided explicitly in the statement or implicitly. The
syntax of the statements is

write(unit, Jormatted-output-Ust)
read{ unit, Jormatted-input-Ust)

The lists are of the same form as for binary 110, except that the lists may
include format specifications. If the unit is omitted, the standard input or
output unit is used.

lolists

An ioUst specifies a set of values to be written or a set of variables into which
values are to be read. An ioUst is a list of one or more ioexpressions of the
form

194-Languages and Support Tools UNIX Programmer's Manual

expression
{ ioUst }
do-specification { ioUst }

For formatted 110, an ioexpression may also have the forms

ioexpression : format -specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the
values in the braces are transmitted repeatedly until the do execution is
complete.

Formats

The following are permissible format-specifiers. The quantities w, d, and k
must be integer constant expressions.

i(w)
f(w,d)

e(w,d)

Hw)

c

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.
floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked
with the letter e
logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively
character string of width equal to
the length of the datum
character string of width w
skip k lines
skip k spaces
use the characters inside the
string as a Fortran format

If no format is specified for an item in a formatted input/output statement, a
default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a
sequence of elements, each with its own format. The elements are transmitted

UNIX Programmer's Manual Languages and Support Tools-195

EFL

in column-major order, the same order used for array initializations.

Manipulation Statements

The three input/output statements

backspace (unit)
rewind (unit)
endfile (unit>

look like ordinary procedure calls, but may be used either as statements or as
integer expressions which yield non-zero if an error is detected. backspace
causes the specified unit to back up, so that the next read will re-read the
previous record, and the next write will over-write it. rewind moves the device
to its beginning, so that the next input statement will read the first record.
endfile causes the file to be marked so that the record most recently written will
be the last record on the file, and any attempt to read past is an error.

PROCEDURES

Procedures are the basic unit of an EFL program, and provide the means of
segmenting a program into separately compilable and named parts.

Procedures Statement

Each procedure begins with a statement of on>e of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([name D)

The first case specifies the main procedure, where execution begins. In the two
other cases, the attributes may specify precision and type, or they may be
omitted entirely. The precision and type of the procedure may be declared in
an ordinary declaration statement. If no type is declared, then the procedure is
called a subroutine and no value may be returned for it. Otherwise, the
procedure is a function and a value of the declared type is returned for each

196-Languages and Support Tools UNIX Programmer's Manual

call. Each name inside the parentheses in the last form above is called a
formal argument of the procedure.

End Statement

Each procedure terminates with a statement

end

Argument Association

When a procedure is invoked, the actual arguments are evaluated. If an actual
argument is the name of a variable, an array element, or a structure member,
that entity becomes associated with the formal argument, and the procedure
may reference the values in the object, and assign to it. Otherwise, the value
of the actual is associated with the formal argument, but the procedure may
not attempt to change the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is not
permitted that the corresponding actual argument be associated with another
formal argument or with a common element that is referenced in the procedure.

Execution and Return Values

After actual and formal arguments have been associated, control passes to the
first executable statement of the procedure. Control.returns to the invoker
either when the end statement of the procedure is reached or when a return
statement is executed. If the procedure is a function (has a declared type), and
a return(value) is executed, the value is coerced to the correct type and
precision and returned.

Known Functions

A number of functions are known to EFL, and need not be declared. The
compiler knows the types of these functions. Some of them are generic; i.e.,
they name a family of functions that differ in the types of their arguments and
return values. The compiler chooses which element of the set to invoke based
upon the attributes of the actual arguments.

UNIX Programmer's Manual Languages and Support Tools-197

EFL

Minimum and Maximum Functions

The generic functions are min and max. The min calls return the value of their
smallest argument; the max calls return the value of their largest argument.
These are the only functions that may take different numbers of arguments in
different calls. If any of the arguments are long real then the result is long
real. Otherwise, if any of the arguments are real then the result is real;
oth~rwise all the arguments and the result must be integer. Examples are

Absolute Value

min(S, x, -3.20)
max(i, z)

The abs function is a generic function that returns the magnitude of its
argument. For integer and real arguments the type of the result is identical to
the type of the argument; for complex arguments the type of the result is the
real of the same precision.

Elementary Functions

The following generic functions take arguments of real, long real, or complex
type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

sine function
cosine function
exponential function (eX).
natural (base e) logarithm
common (base 10) logarithm
square root function (~).

In addition, the following functions accept only real or long real arguments:

atan

atan2

atan (x) ==tan -1 x

198-Languages and Support Tools

atan 2 (x ,Y) ==tan -1 .:!..
y

UNIX Programmer's Manual

Other Generic Functions

The sign functions takes two arguments of identical type;
sign (x,y) == sgn (y) 1 x I. The mod function yields the remainder of its first
argument when divided by its second. These functions accept integer and real
arguments.

ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old
Fortran or Ratfor programs to EFL.

Escape Lines

In order to make use of nonstandard features of the local Fortran compiler, it
is occasionally necessary to pass a particular line through to the EFL compiler
output. A line that begins with a percent sign (" %") is copied through to the
output, with the percent sign removed but no other change. Inside of a
procedure, each escape line is treated as an executable statement. If a
sequence of lines constitute a continued Fortran statement, they should be
enclosed in braces.

Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work (17)

Obsolete Keywords

The following keywords are recognized as synonyms of EFL keywords:

Fortran

double precision
function
subroutine

UNIX Programmer's Manual

EFL

long real
procedure
procedure (untyped)

Languages and Support Tools-199

EFL

Numeric Labels

Standard statement labels are identifiers. A numeric (positive integer
constant) label is also permitted; the colon is optional following a numeric
label.

Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives
a warning and assumes a declaration for it. If it is used in the context of a
procedure invocation, it is assumed to be a procedure name; otherwise it is
assumed to be a local variable defined at nesting level 1 in the current
procedure. The assumed type is determined by the first letter of the name.
The association of letters and types may be given in an implicit statement, with
syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of letters
separated by a minus sign). If no implicit statement appears, the following
rules are assumed:

implicit (a - h, 0 - z) real
implicit (i -n) integer

Computed Goto

Fortran contains an indexed multi-way branch; this facility may be used in EFL
by the computed GOTO:

goto ([label D), expression

The expression must be of type integer and be positive but be no larger than
the number of labels in the list. Control is passed to the statement marked by
the label whose position in the list is equal to the expression.

200-Languages and Support Tools UNIX Programmer's Manual

Goto Statement

In unconditional and computed goto statements, it is permissible to separate
the go and to words, as in

go to xyz

Dot Names

Fortran uses a restricted character set, and represents certain operators by
multi-character sequences. There is an option (dots=on; see "COMPILER
OPTIONS") which forces the compiler to recognize the forms in the second
column below:

< .It.
<= .Ie.
> .gt.
>= .ge .
== == . eq.
-= .ne .
& . and.
I .or .
&& . andand.

II .oror .
• not .

true . true.
false .false.

In this mode, no structure element may be named It, Ie, etc. The readable
forms in the left column are always recognized.

Complex Constants

A complex constant may be written as a parenthesized list of real quantities,
such as

U.5, 3.0)

The preferred notation is by a type coercion,

UNIX Programmer's Manual Languages and Support Tools-201

EFL

complexU.S, 3.0>

Function Values

The preferred way to return a value from a function in EFL is the
return{value} construct. However, the name of the function acts as a variable
to which values may be assigned; an ordinary return statement returns the last
value assigned to that name as the function value.

Equivalence

A statement of the form

declares that each of the Vi starts at the same memory location. Each of the Vi

'may be a variable name, array element name, or structure member.

Minimum and Maximum Functions

There are a number of non-generic functions in this category, which differ in
the required types of the arguments and the type of the return value. They
may also have variable numbers of arguments, but all the arguments must have
the same type.

Function Argument Type Result Type
aminO integer real
aminl real real
minO integer integer
minI real integer
dminl long real long real

amaxO integer real
amaxl real real
maxO integer integer
maxI real integer
dmaxl long real long real

202-Languages and Support Tools UNIX Programmer's Manual

COMPILER OPTIONS

A number of options can be used to control the output and to tailor it for
various compilers and systems. The defaults chosen are conservative, but it is
sometimes necessary to change the output to match peculiarities of the target
environment.

Options are set with statements of the form

option [opt I

where each opt is of one of the forms

optionname
optionname = optionvalue

The optionvalue is either a constant (numeric or string) or a name associated
with that option. The two names yes and no apply to a number of options.

Default Options

Each option has a default setting. It is possible to change the whole set of
defaults to those appropriate for a particular environment by using the system
option. At present, the only valid values are system = unix and system = gcos.

Input Language Options

The dots option determines whether the compiler recognizes .It. and similar
forms. The default setting is no.

Input/Output Error Handling

The ioerror option can be given three values: none means that none of the I/O
statements may be used in expressions, since there is no way to detect errors.
The implementation of the ibm form uses ERR = and END= clauses. The
implementation of the fortran77 form uses lOST AT= clauses.

UNIX Programmer's Manual Languages and Support Tools-203

EFL

Continuation Conventions

By default, continued Fortran statements are indicated by a character in
column 6 (Standard Fortran). The option continue:=columnl puts an
ampersand (&) in the first column of the continued lines instead.

Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a
default is provided. The default formats can be changed by setting certain
options

Option
iformat
rformat
dformat
zformat
zdformat
Iformat

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option rformat:= f22.6

Alignments and Sizes

In order to implement character variables, structures, and the sizeof and
lengthof operators, it is necessary to know how much space various Fortran
data types require, and what boundary alignment properties they demand. The
relevant options are

Fortran Type
integer
real
long real
complex
logical

Size Option
isize
rsize
dsize
zsize
Isize

204-Languages and Support Tools

Alignment Option
ialign
ralign
dalign
zalign
lalign

UNIX Programmer's Manual

The sizes are given in terms of an arbitrary unit; the alignment is given in the
same units. The option charperint gives the number of characters per integer
variable.

Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output
units. The default values are ftnin=S and ftnout=6.

Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the
value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if hollincall =no is
specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is
possible to change the increment value by using the deltastno option.

EXAMPLES

In order to show the flavor or programming in EFL, we present a few examples.
They are short, but show some of the convenience of the language.

File Copying

The following short program copies the standard input to the standard output,
provided that the input is a formatted file containing lines no longer than a
hundred characters.

procedure # main program
character (I 00) line

while{ read{ ,line) = = 0)
write{ , line)

end

Since read returns zero until the end of file (or a read error), this program

UNIX Programmer's Manual Languages and Support Tools-205

EFL

keeps reading and writing until the input is exhausted.

Matrix Multiplication

The following procedure multiplies the m Xn matrix a by the n xp matrix b to
give the m xp matrix c. The calculation obeys the formula cij == ~ai,pkj.

procedure matmul (a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a (m,n), b (n,p), c (m,p)

do i = I,m
do j = l,p

end

{
c(i,j) = 0
do k = l,n

}
c(i,j) + - a(i,k) • b(k,j)

Searching a Linked List

Assume we have a list of pairs of numbers (x,y). The list is stored as a linked
list sorted in ascending order of x values. The following procedure searches
this list for a particular value of x and returns the corresponding y value.

206-Languages and Support Tools UNIX Programmer's Manual

define LAST 0
define NOTFOUND -1

integer procedure val (list, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
} Iist(.)

integer first, p, arg

fodp = first, p-==LAST & & Iist(p).x< ==x ,
p == Iist(p).nextindex)

if(list(p).x == == x)
return (Iist<p).y)

return (NOTFOUND)
end

The search is a single for loop that begins with the head of the list and
examines items until either the list is exhausted (p====LAST) or until it is
known that the specified value is not on the list (list(p).x > x). The two tests
in the conjunction must be performed in the specified order to avoid using an
invalid subscript in the list(p) reference. Therefore, the & & operator is used.
The next element in the chain is found by the iteration statement
p == list (p) .nextindex.

Walking a Tree

As an example of a more complicated problem, let us imagine we have an
expression tree stored in a common area, and that we want to print out an infix
form of the tree. Each node is either a leaf (containing a numeric value) or it

UNIX Programmer's Manual Languages and Support Tools-207

EFL

is a binary operator, pointing to a left and a right descendant. In a recursive
language, such a tree walk would be implement by the following simple
pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a non recursive language like EFL, it is necessary to maintain an explicit
stack to keep track of the current state of the computation. The following
procedure calls a procedure outch to print a single character and a procedure
outval to print a value.

procedure walk (first) # print an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common (nodes) struct

struct

(
characterU) op
integer leftp, rightp
real val
} treeUOO) # array of structures

{
integer nextstate
integer nodep
} stackframeUOO)

define NODE
define STACK

tree (currentnode)
stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFf 2
define RIGHT 3

208-Languages and Support Tools UNIX Programmer's Manual

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep = first

while(stackdepth > 0)
{

end

currentnode = STACK.nodep
select (ST ACK.nextstate)

}

{
case DOWN:

if(NODE.op == == "") # a leaf
{
outvaH NODE. val)
stackdepth - = 1
}

else { # a binary operator node
outch("(")
STACK.nextstate = LEFf
stackdepth + == 1
STACK.nextstate == DOWN
STACK.nodep = NODE.leftp
}

case LEFf:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth + = 1
STACK.nextstate = DOWN
STACK.nodep == NODE.rightp

case RIGHT:

}

outch(")")
stackdepth - == 1

UNIX Programmer's Manual Languages and Support Tools-209

EFL

PORTABILITY

One of the major goals of the EFL language is to make it easy to write portable
programs. The output of the EFL compiler is intended to be acceptable to any
Standard Fortran compiler (unless the fortran77 option is specified).

Primitives

Certain EFL operations cannot be implemented in portable Fortran, so a few
machine-dependent procedures must be provided in each environment.

Character String Copying

The subroutine eflasc is called to copy one character string to another. If the
target string is shorter than the source, the final characters are not copied. If
the target string is longer, its end is padded with blanks. The calling sequence
is

subroutine eflasc(a, la, b, Ib)
integer a(.), la, b(.), Ib

and it must copy the first Ib characters from b to the first la characters of a.

Character String Comparisons

The function eflcmc is invoked to determine the order of two character strings.
The declaration is

integer function efl cmc(a, la, b, Ib)
integer a(.), la, b(.), Ib

The function returns a negative value if the string a of length la precedes the
string b of length lb. It returns zero if the strings are equal, and a positive
value otherwise. If the strings are of differing length, the comparison is carried
out as if the end of the shorter string were padded with blanks.

210-Languages and Support Tools UNIX Programmer's Manual

DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratfor and EFL, since EFL is a
defined language while Ratfor is the union of the special control structures and
the language accepted by the underlying Fortran compiler. Ratfor running
over Standard Fortran is almost a subset of EFL. Most of the features
described in the "ATAVISMS" are present to ease the conversion of Ratfor
programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly
different in the two languages: the three clauses are separated by semicolons in
Ratfor, but by commas in EFL. (The initial and iteration statements may be
compound statements in EFL because of this change). The input/output syntax
is quite different in the two languages, and there is no FORMAT statement in
EFL. There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored declaration syntax,
block structure, assignment and sequential test operators, generic functions, and
data structures. EFL permits more general forms for expressions, and provides
a more uniform syntax. (One need not worry about the Fortran/Ratfor
restrictions on subscript or DO expression forms, for example.)

COMPILER

Current Version

The current version of the EFL compiler is a two-pass translator written in
portable C. It implements all of the features of the language described above
except for long complex numbers.

Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and file name
Of known} on which the error was detected. Warnings are given for variables
that are used but not explicitly declared.

UNIX Programmer's Manual Languages and Support Tools-2II

EFL

Quality of Fortran Produced

The Fortran produced by EFL is quite clean and readable. To the extent
possible, the variable names that appear in the EFL program are used in the
Fortran code. The bodies of loops and test constructs are indented. Statement
numbers are consecutive. Few unneeded GOTO and CONTINUE statements
are used. It is considered a compiler bug if incorrect Fortran is produced
(except for escaped lines). The following is the Fortran procedure produced by
the EFL compiler for the matrix multiplication example (See "EXAMPLES".)

subroutine matmul (a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), ben, p), c(m, p)
integer i, j, k
do 3 i == 1, m

do 2 j == 1, p
cO, j) == 0
do 1 k == 1, n

cO, j) == cO, j) +a{i, k)*b(k, j)
1 continue
2 continue
3 continue

end

212-Languages and Support Tools UNIX Programmer's Manual

, The following is the procedure for the tree walk:
subroutine walk (first)
integer first
common /nodes/ tree
integer tree (4, 100)
real treel (4, 100)
integer staame(2, 100), stapth, curode
integer const 1 (1)
equivalence (treeU,1), tree 1 U,1»
data constl(1)/4h /

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = 1
staameU, stapth) = 1
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9
curode = staame (2, stapth)
goto 7

2 if (treeU, curode) .ne. constl U» goto 3
call outvaHtreet(4, curode»

c a leaf

3

stapth = stapth-l
goto 4
call outchUhO

c a binary operator node
staameU, stapth) = 2
stapth = stapth + 1
staameU, stapth) 1
staame(2, stapth) = tree (2, curode)

4 goto 8
5 call outch(treeU, curode»

staameU, stapth) = 3
stapth = stapth + 1
staameU, stapth) = 1
staame(2, stapth) = tree (3, curode)
goto 8

6 call outchUh»
stapth = stapth-l
goto 8

7 if (staameU, stapth) .eq. 3) goto 6
if (staameU, stapth) .eq. 2) goto 5

UNIX Programmer's Manual Languages and Support Tools-213

EFL

if (staameU, stapth) .eq. 1) goto 2
8 continue

goto 1
9 continue

end

CONSTRAINTS ON EFL

Although Fortran can be used to simulate any finite computation, there are
realistic limits on the generality of a language that can be translated into
Fortran. The design of EFL was constrained by the implementation strategy.
Certain of the restrictions are petty (six character external names), but others
are sweeping (lack of pointer variables). The following paragraphs describe the
major limitations imposed by Fortran.

External Names

External names (procedure and COMMON block names) must be no longer
than six characters in Fortran. Further, an external name is global to the
entire program. Therefore, EFL can support block structure within a
procedure, but it can have only one level of external name if the EFL
procedures are to be compilable separately, as are Fortran procedures.

Procedure Interface

The Fortran standards, in effect, permit arguments to be passed between
Fortran procedures either by reference or by copy-in/copy-out. This
indeterminacy of specification shows through into EFL. A program that
depends on the method of argument transmission is illegal in either language.

There are no procedure-valued variables in Fortran: a procedure name may
only be passed as an argument or be invoked; it cannot be stored. Fortran (and
EFL) would be noticeably simpler if a procedure variable mechanism were
available.

214-Languages and Support Tools UNIX Programmer's Manual

Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type.
The implementation of the compiler would have been far easier if certain hard
cases could have been handled by pointers. Further, the language could have
been simplified considerably if pointers were accessible in Fortran. (There are
several ways of simulating pointers by using subscripts, but they founder on the
problems of external variables and initialization.)

Recursion

Fortran procedures are not recursive, so it was not practical to permit EFL
procedures to be recursive. (Recursive procedures with arguments can be
simulated only with great pain.)

Storage Allocation

The definition of Fortran does not specify the lifetime of variables. It would be
possible but cumbersome to implement stack or heap storage disciplines by
using COMMON blocks.

UNIX Programmer's Manual Languages and Support Tools-215

1

I

I

A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS
(make)

GENERAL

In a programming project, a common practice is to divide large programs into
smaller pieces that are more manageable. The pieces may require several
different treatments such as being processed by a macro processor or
sophisticated program generators (e.g., Yacc or Lex). The project continues to
become more complex as the output of these generators are compiled with
special options and with certain definitions and declarations. A sequence of
code transformations develops which is difficult to remember. The resulting
code may need further transformation by loading the code with certain libraries
under control of special options. Related maintenance activities also complicate
the process further by running test scripts and installing validated modules.
Another activity that complicates program development is a long editing
session. A programmer may lose track of the files changed and the object
modules still valid especially when a change to a declaration can make a dozen
other files obsolete. The programmer must also remember to compile a routine
that has been changed or that uses changed declarations.

The "make" is a software tool that maintains, updates, and regenerates groups
of computer programs.

A programmer can easily forget

• Files that are dependent upon other files.

• Files that were modified recently.

• Files that need to be reprocessed or recompiled after a change in the
source.

• The exact sequence of operations needed to make an exercise a new
version of the program.

UNIX Programmer's Manual Languages and Support Tools-217

MAKE

The many activities of program development and maintenance are made
simpler by the make program.

The make program provides a method for maintaining up-to-date versions of
programs that result from many operations on a number of files. The make
program can keep track of the sequence of commands that create certain files
and the list of files that require other files to be current before the operations
can be done. Whenever a change is made in any part of a program, the make
command creates the proper files simply, correctly, and with a minimum
amount of effort. The make program also provides a simple macro substitution
facility and the ability to encapsulate commands in a single file for convenient
administration.

The basic operation of make is to

• Find the name of the needed target file in the description .

• Ensure that all of the files on which it depends exit and are up to date.

• Create the target file if it has not been modified since its generators were
modified.

The descriptor file really defines the graph of dependencies. The make program
determines the necessary work by performing a depth-first search of the graph
of dependencies.

If the information on interfile dependencies and command sequences is stored
in a file, the simple command

make

is frequently sufficient to update the interesting files regardless of the number
edited since the last make. In most cases, the description file is easy to write
and changes infrequently. It is usually easier to type the make command than
to issue even one of the needed operations, so the typical cycle of program
development operations becomes

think - edit - make - test

2I8-Languages and Support Tools UNIX Programmer's Manual

The make program is most useful for medium-sized programming projects.
The make program does not solve the problems of maintaining multiple source
versions or of describing huge programs.

As an example of the use of make, the description file used to maintain the
make command is given. The code for make is spread over a number of C
language source files and a Yacc grammar. The description file contains:

Description file for the Make command

p = lp
FILES = Makefile version.c defs main.c doname.c misc.c

files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o

dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS =-0

make: $ (OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$ (OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $ (FILES)
pr $? I $P
touch print

test:

print recently changed files

make -dp I grep -v TIME> lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

UNIX Programmer's Manual Languages and Support Tools-219

MAKE

lint: dosys.c doname.c files.c main.c misc.c version.c
gram.c
$ (LINT) dosys.c doname.c files.c main.c misc.c
version.c gram.c

arch:
ar uv Isys/source/s2/make.a $(FILES)

The make program usually prints out each command before issuing it.

The following output results from typing the simple command make in a
directory containing only the source and description files:

cc -0 -c version.c
cc -0 -c main.c
cc -0 -c doname.c
cc -0 -c misc.c
cc -0 -c files.c
cc -0 -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o

gram.o -IS -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the
description file, make found them using its suffix rules and issued the needed
commands. The string of digits results from the size make command. The
printing of the command line itself was suppressed by an @ sign. The @ sign
on the size command in the description file suppressed the printing of the
command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences.
The "print" entry prints only the files changed since the last make print
command. A zero-length file print is maintained to keep track of the time of
the printing. The $1 macro in the command line then picks up only the names
of the files changed since print was touched.

220-Languages and Support Tools UNIX Programmer's Manual

The printed output can be sent to a different printer or to a file by changing
the definition of the P macro as follows:

make print "P= cat >zap"

BASIC FEATURES

The basic operation of make is to update a target file by ensuring that all of
the files on which the target file depends exist and are up to date. The target
file is created if it has not been modified since the dependents were modified.
The make program does a depth-first search of the graph of dependencies. The
operation of the command depends on the ability to find the date and time that
a file was last modified.

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c, y.c, and z.c with the
IS library. By convention, the output of the C language compilations will be
found in files named x.o, y.o, and z.o. Assume that the files x.c and y.c share
some declarations in a file named defs, but that z.c does not. That is, x.c and
y.c have the line

#include "defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o y.o: defs

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had
been made to any of the four source files x.c, y.c, z.c, or defs.

UNIX Programmer's Manual Languages and Support Tools-221

MAKE

The make program operates using the following three sources of information:

• A user-supplied description file

• File names and "last-modified" times from the file system

• Built-in rules to bridge some of the gaps.

In the example, the first line states that prog depends on three ".0" files. Once
these object files are current, the second line describes how to load them to
create prog. The third line states that x.o and y.o depend on the file defs.
From the file system, make discovers that there are three ".c" files
corresponding to the needed ".0" files and uses built-in information on how to
generate an object from a source file (i.e., issue a "cc -c" command).

By not taking advantage of make's innate knowledge, the following longer
descriptive file results.

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o : z.c
cc -c z.c

If none of the source or object files have changed since the last time prog was
made, all of the files are current, and the command

make

announces this fact and stops. If, however, the defs file has been edited, x.c
and y.c (but not z.c) is recompiled; and then prog is created from the new
".0" files. If only the file y.c had changed, only it is recompiled; but it is still
necessary to reload prog. If no target name is given on the make command
line, the first target mentioned in the description is created; otherwise, the
specified targets are made. The command

222-Languages and Support Tools UNIX Programmer's Manual

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file's time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further decisions.
A method, often useful to programmers, is to include rules with mnemonic
names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and
substitute macros. Thus, an entry "save" might be included to copy a certain
set of files, or an entry "cleanup" might be used to throwaway unneeded
intermediate files. In other cases, one may maintain a zero-length file purely to
keep track of the time at which certain actions were performed. This technique
is useful for maintaining remote archives and listings.

The make program has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by command
arguments or description file lines with embedded equal signs. A macro is
invoked by preceding the name by a dollar sign. Macro names longer than one
character must be parenthesized. The name of the macro is either the single
character after the dollar sign or a name inside parentheses. The following are
valid macro invocations:

$ (CFLAGS)
$2
$ (xy)
$Z
$(Z)

The last two invocations are identical. A $$ is a dollar sign.

The $*, $@, $?, and $< are four special macros which change values during
the execution of the command. (These four macros are described in the part
"DESCRIPTION FILES AND SUBSTITUTIONS".) The following
fragment shows assignment and use of some macros:

UNIX Programmer's Manual Languages and Support Tools-223

MAKE

OBJECTS = x.o y.o z.o
LIBES = -IS
prog: $(OBJECTS)

cc $(OBJECTS) $ (LIBES) -0 prog

The make command loads the three object files with the IS library. The
command

make "LIBES= -11 -IS"

loads them with both the Lex (-II) and the standard (-IS) libraries since
macro definitions on the command line override definitions in the description.
Remember to quote arguments with embedded blanks in UNIX software
commands.

DESCRIPTION FILES AND SUBSTITUTIONS

A description file contains the following information:

• macro definitions

• dependency information

• executable commands.

The comment convention is that a sharp (#) and all characters on the same
line after a sharp are ignored. Blank lines' and lines beginning with a sharp
(#) are totally ignored. If a noncomment line is too long, the line can be
continued by using a backslash. If the last character of a line is a backslash,
then the backslash, the new line, and all following blanks and tabs are replaced
by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or
a tab. The name (string of letters and digits) to the left of the equal sign
(trailing blanks and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are stripped). The following

224-Languages and Support Tools UNIX Programmer's Manual

are valid macro definitions:

2 = xyz
abc = -11 -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as the macro's value.

Macro definitions may also appear on the make command line while other lines
give information about target files. The general form of an entry is

target! [target2 . .1 :[:] [dependent! . .1 [; commands] [# . .1
[(tab) commands] [# .. .1

Items inside brackets may be omitted. Targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters such as "*,, and "?"
are expanded. Commands may appear either after a semicolon on a
dependency line or on lines beginning with a tab immediately following a
dependency line. A command is any string of characters not including a sharp
(#) except when the sharp is in quotes or not including a new line.

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all of those lines must be of
the same (single or double colon) type. For the usual single-colon case, a
command sequence may be associated with at most one dependency line. If the
target is out of date with any of the dependents on any of the lines and a
command sequence is specified (even a null one following a semicolon or tab),
it is executed; otherwise, a default creation rule may be invoked. In the
double-colon case, a command sequence may be associated with each
dependency line; if the target is out of date with any of the files on a particular
line, the associated commands are executed. A built-in rule may also be
executed. This detailed form is of particular value in updating archive-type
files.

If a target must be created, the sequence of commands is executed. Normally,
each command line is printed and then passed to a separate invocation of the
shell after substituting for macros. The printing is suppressed in the silent
mode or if the command line begins with an @ sign. Make normally stops if
any command signals an error by returning a nonzero error code. Errors are

UNIX Programmer's Manual Languages and Support Tools-225

MAKE

ignored if the -i flags have been specified on the make command line, if the
fake target name ".IGNORE" appears in the description file, or if the
command string in the description file begins with a hyphen. Some UNIX
software commands return meaningless status. Because each command line is
passed to a separate invocation of the shell, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only
within a single shell process. These results are forgotten before the next line is
executed.

Before issuing any command, certain internally maintained macros are set. The
$@ macro is set to the full target name of the current target. The $@ macro is
evaluated only for explicitly named dependencies. The $? macro is set to the
string of names that were found to be younger than the target. The $? macro
is evaluated when explicit rules from the makefile are evaluated. If the
command was generated by an implicit rule, the $ < macro is the name of the
related file that caused the action; and the $* macro is the prefix shared by the
current and the dependent file names. If a file must be made but there are no
explicit commands or relevant built-in rules, the commands associated with the
name ".DEFAULT" are used. If there is no such name, make prints a
message and stops.

COMMAND USAGE

The make command takes macro definitions, flags, description file names, and
target file names as arguments in the form:

make [flags] [macro definitions] [targets]

The following summary of command operations explains how these arguments
are interpreted.

First, all macro definition arguments (arguments with embedded equal signs)
are analyzed and the assignments made. Command-line· macros override
corresponding definitions found in the description files. Next, the flag
arguments are examined. The permissible flags are as follows:

-i Ignore error codes returned by invoked commands. This
mode is entered if the fake target name ".IGNORE"

226-Languages and Support Tools UNIX Programmer's Manual

-s

-r

-0

-t

-q

-p

-d

-f

appears in the description file.

Silent mode. Do not print command lines before
executing. This mode is also entered if the fake target
name" .SILENT" appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute
them. Even lines beginning with an "@" sign are
printed.

Touch the target files (causing them to be up to date)
rather than issue the usual commands.

Question. The make command returns a zero or nonzero
status code depending on whether the target file is or is
not up to date.

Print out the complete set of macro definitions and
target descriptions.

Debug mode. Print out detailed information on files and
times examined.

Description file name. The next argument is assumed to
be the name of a description file. A file name of "-"
denotes the standard input. If there are no "-f"
arguments, the file named makefile or Makefile in the
current directory is read. The contents of the description
files override the built-in rules if they are present.

Finally, the remaining arguments are assumed to be the names of targets to be
made, and the arguments are done in left-to-right order. If there are no such
arguments, the first name in the description files that does not begin with a
period is "made".

UNIX Programmer's Manual Languages and Support Tools-227

MAKE

SUFFIXES AND TRANSFORMATION RULES

The make program does not know what file name suffixes are interesting or
how to transform a file with one suffix into a file with another suffix. This
information is stored in an internal table that has the form of a description file.
If the -r flag is used, the internal table is not used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES".
The make program searches fora file with any of the suffixes on the list. If
such a file exists and if there is a transformation rule for that combination,
make transforms a file with one suffix into a file with another· suffix. The
transformation rule names are the concatenation of the two suffixes. The name
of the rule to transform a .r file to a .0 file is thus .r.o. If the rule is present
and no explicit command sequence has been given in the user's description files,
the command sequence for the rule .r.o is used. If a command is generated by
using one of these suffixing rules, the macro $* is given the value of the stem
(everything but the suffix) of the name of the file to be made; and the macro
$< is the name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can add an entry for
".SUFFIXES" in his own description file. The dependents are added to the
usual list. A" .SUFFIXES" line without any dependents deletes the current
list. It is necessary to clear the current list if the order of names is to be
changed. The following is an excerpt from the default rules file:

228-Languages and Support Tools UNIX Programmer's Manual

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC = yacc
Y ACCR = yacc -r
Y ACCE = yacc -e
YFLAGS =

LEX = lex
LFLAGS =
CC = cc
AS = as­
CFLAGS =
RC = ec
RFLAGS =
EC = ec
EFLAGS =
FFlags =
.c.o:

$(CC) $(CFLAGS) -c $<
.e.o .r.o .r.o :

.s.o:

.y.o :

.y.c :

$ (EC) $ (RFLAGS) $ (EFLAGS) $ (FFLAGS) -c $ <

$(AS) -0 $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

IMPLICIT RULES

The make program uses a table of interesting suffixes and a set of
transformation rules to supply default dependency information and implied
commands. The default suffix list is as follows:

.0 Object file

.C C source file

UNIX Programmer's Manual Languages and Support Tools-229

MAKE

.e Efl source file

.r Ratfor source file

f Fortran source file

.S Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Y acc-Efl source grammar

.I Lex source grammar.

If there are two paths connecting a pair of suffixes, the longer one is used only
if the intermediate file exists or is named in the description.

If the file x.o were needed and there were an x.c in the description or directory,
the x.o file would be compiled. If there were also an x.l, that grammar would
be run through Lex before compiling the result. However, if there were no x.c
but there were an x.l, make would discard the intermediate C language file and
use the direct link.

It is possible to change the names of some of the compilers used in the default
or the flag arguments with which they are invoked by knowing the macro
names used. The compiler names are the macros AS, CC, RC, EC, YACC,
YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the newcc command to be used instead of the usual C language
compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS
may be set to cause these commands to be issued with optional flags. Thus

make "CFLAGS=-O"

causes the optimizing C language compiler to be used.

230-Languages and Support Tools UNIX Programmer's Manual

SUGGESTIONS AND WARNINGS

The most common difficulties arise from make's specific meaning of
dependency. If file x.c has a "#include "defs'''' line, then the object file x.o
depends on defs; the source file x.c does not. If defs is changed, nothing is
done to the file x.c while file x.o must be recreated.

To discover what make would do, the -0 option is very useful. The command

make -n

orders make to print out the commands which make would issue without
actually taking the time to execute them. If a change to a file is absolutely
certain to be mild in character (e.g., adding a new definition to an include file),
the -t (touch) option can save a lot of time. Instead of issuing a large
number of superfluous recompilations, make updates the modification times on
the affected file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care
is necessary since this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

The debugging flag (-d) causes make to print out a very detailed description
of what it is doing including the file times. The output is verbose and
recommended only as a last resort.

UNIX Programmer's Manual Languages and Support Tools-23I

AUGMENTED VERSION OF make

GENERAL

This section describes an augmented version of the make command of the
UNIX operating system. The augmented version is upward compatible with
the old version. This section describes and gives examples of only the
additional features. Further possible developments for make are also discussed.
Some justification will be given for the chosen implementation, and examples
will demonstrate the additional features.

The make command is an excellent program administrative tool used
extensively in at least one project for over 2 years. However, make had the
following shortcomings:

• Handling of libraries was tedious.

• Handling of the Source Code Control System (SCCS) file name format
was difficult or impossible.

• Environment variables were completely ignored by make.

• The general lack of ability to maintain files in a remote directory.

These shortcomings hindered large scale use of make as a program support
tool.

The augmented version of make is modified to handle the above problems. The
additional features are within the original syntactic framework of make and
few if any new syntactical entities are introduced. A notable exception is the
include file capability. Further, most of the additions result in a "Don't know
how to make ... " message from the old version of make.

The following paragraphs describe with examples the additional features of the
make program. In general, the examples are taken from existing makefiles.
Also, the illustrations are examples of working makefiles.

UNIX Programmer's Manual Languages and Support Tools-233

AUGMAKE

THE ENVIRONMENT VARIABLES

Environment variables are read and added to the macro definitions each time
make executes. Precedence is a prime consideration in doing this properly.
The following describes make's interaction with the environment. A new
macro, MAKEFLAGS, is maintained by make. The new macro is defined as
the collection of all input flag arguments into a string (without minus signs).
The new macro is exported and thus accessible to further invocations of make.
Command line flags and assignments in the makefile update MAKEFLAGS.
Thus, to describe how the environment interacts with make, the MAKEFLAGS
macro (environment variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions are the -f,
-p, and -r flags.)

2. Read and set the input flags from the command line. The command
line adds to the previous settings from the MAKEFLAGS environment
variable.

3. Read macro definitions from the command line. These are made not
resettable. Thus, any further assignments to these names are ignor~d.

4. Read the internal list of macro definitions. These are found in the file
rules.c of the source for make. Figure 2 contains the complete makefile
that represents .the internally defined macros and rules of the current
version of make. Thus, if make -r •.. is typed and a makefile includes
the makefile in Figure 2, the results would be identical to excluding the
-r option and the include line in the makefile. The Figure 2 output can
be reproduced by the following:

make -fp - < /dev/null 2> /dev/null

The output appears on the standard output.
They give default definitions for the C language compiler
(CC=cc), the assembler (AS=as), etc.

234-Languages and Support Tools UNIX Programmer's Manual

5. Read the environment. The environment variables are treated as macro
definitions and marked as exported (in the shell sense). However, since
MAKEFLAGS* is not an internally defined variable (in rules.c) , this
has the effect of doing the same assignment twice. The exception to this
is when MAKEFLAGS is assigned on the command line. (The reason it
was read previously was to turn the debug flag on before anything else
was done.)

6. Read the makefile (s). The assignments in the makefile{s} overrides the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless
the -e flag is used. The -e is an additional command line flag which
tells make to have the environment override the makefile assignments.
Thus, if make -e ... is typed, the variables in the environment override
the definitions in the makefilet. Also MAKEFLAGS override the
environment if assigned. This is useful for further invocations of make
from the current makefile.

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1. internal definitions (from rules.c)

2. environment

3. makefile{s}

4. command line.

The -e flag has the effect of changing the order to:

* MAKEFLAGS are read and set again.

t There is no way to override the command line assignments.

UNIX Programmer's Manual Languages and Support Tools-235

AUGMAKE

1. internal definitions (from rules.C>

2. makefile{s)

3. environment

4. command line.

This order is general enough to allow a programmer to define a makefile or set
of makefiles whose parameters are dynamically definable.

Figure 2

Example of Internal Definitions (Sheet 1 of 4).

LIST OF SUFFIXES

.SUFFIXES: .0 .c .c- .y .y- .1 .r .s .s- .sh .sh- .h .h-

PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=ld
LDFLAGS=
CC=cc
CFLAGS=-o
AS=as
ASFLAGS=
GET=get
GFLAGS=

236-Languages and Support Tools UNIX Programmer's Manual

Example of Internal Definitions (Sheet 2 of 4).

SINGLE SUFFIX RULES

.c:
$(CC) -n -0 $< -0 $@

.c-:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -n -0 $* .c -0 $*
-rm -f $*.c

.sh:
cp $< @

.sh-:
$(GET) &(GFLAGS) -p $< > .sh
cp $* .sh $*
-rm -f $* .sh

DOUBLE SUFFIX RULES

.C.o:
$(CC) $(CFLAGs) -c $<

.C-.o:

UNIX Programmer's Manual Languages and Support Tools-237

AUGMAKE

Example of Internal Definitions (Sheet 3 of 4). .

$(GET) $(CFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
·rm -f $*.c

.c- .c:

$(GET) $(GFLAGS) -p $< >$*.c
.S.o:

$(AS) $(ASFLAGS) -0 $@ $<
.s- .0:

$(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -0 $* .0 $* .s
-rm -f $*.s

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.o$@

.y-.o:
$(GET) $(GFLAG) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAG) -c y.tab.c
rm .. f y.tab $*.y
mv y.tab.o $*.0

.1.0:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

238-Languages and Support Tools UNIX Programmer's Manual

Example of Internal Definitions (Sheet 4 of 4) .

.1-.0:
$(GET) $(GFLAGS) -p $< > $*.1
$(LEX) $(GFLAG) $*.1
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1
my lex.yy.o $*.0

.y.c:
$(YACC) $(YFLAGS) $<
my y.tab.c $@

.y-.c:

$(GET) $(GFLAGS) -p $< > $*.y
$(Y ACC) $(YFLAGS) $*.y
my -f $*.c
-rm -f $*.y

.I.c:
$(LEX) $<
my lex.yy.c$@

.c.a:
$(CC) -c $(FLAGS) $ <
ar rv $@ $*.0
rm -f $*.0

.c-.a:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
ar ry $@ $*.0

.s-.a:

$(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -0 $*.0 $*.s
ar ry $@ $*.0
-rm -f $* .[so]

.h-.h

$(GET) $(GFLAGS) -p $< > $*.h

UNIX Programmer's Manual Languages and Support Tools-239

AUGMAKE

RECURSIVE MAKE FILES

Another feature was added to make concerning the environment and recursive
invocations. If the sequence "$(MAKE)" appears anywhere in a shell
command line, the line is executed even if the -0 flag is set. Since the -0

flag is exported across invocations of make (through the MAKEFLAGS
variable), the only thing that actually gets executed is the make command
itself. This feature is useful when a hierarchy of makejile(s) describes a set of
software subsystems. For testing purposes, make -0 ••• can be executed and
everything that would have been done will get printed out including output
from lower level invocations of make.

FORMAT OF SHELL COMMANDS WITHIN make

The make program remembers embedded newlines and tabs in shell command
sequences. Thus, if the programmer puts a for loop in the makefile with
indentation, when make prints it out, it retains the indentation and backslashes.
The output can still be piped to the shell and is readable. This is obviously a
cosmetic change; no new function is gained.

ARCHIVE LIBRARIES

The make program has an improved interface to archive libraries. Due to a
lack of documentation, most people are probably not aware of the current
syntax of addressing members of archive libraries. The previous version of
make allows a user to name a member of a library in the following manner:

lib (object.o)
or

lib ((Jocaltime))

where the second method actually refers to an entry point of an object file
within the library. (Make looks through the library, locates the entry point,
and translates it to the correct object file name.)

To use this procedure to maintain an archive library, the following type of
makejile is required:

240-Languages and Support Tools UNIX Programmer's Manual

lib:: lib (ctime.o)
$(CC) -c -0 ctime.c
ar rv lib ctime.o
rm ctime.o

lib:: lib (fopen.o)
$(CC) -c -0 fopen.c
ar rv lib fopen.o
rm fopen.o

... and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for adding
a C language file to a library are the same for each invocation; the file name
being the only difference each time. (T~is is true in most cases.)

The current version gives the user access to a rule for building libraries. The
handle for the rule is the ".a" suffix. Thus, a ".c.a" rule is the rule for
compiling a C language source file, adding it to the library, and removing the
".0" cadaver. Similarly, the ".y.a", the ".s.a", and the ".l.a" rules rebuild
YACC, assembler, and LEX files, respectively. The current archive rules
defined internally are ".c.a", ".cta", and ".sta". [The tilde (-) syntax will be
described shortly.1 The user may define in makefile other rules needed.

The above 2-member library is then maintained with the following shorter
makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual ".c.a" rules are as follows:

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

Thus, the $@ macro is the ".a" target (lib); the $< and $* macros are set to
the out-of-date C language file; and the file name scans the suffix, respectively
(ctime.c and ctime). The $ < macro (in the preceding rule) could have been
changed to $*.c.

UNIX Programmer's Manual Languages and Support Tools-241

AUGMAKE

It might be useful to go into some detail about exactly what make does when it
. sees the construction

lib: lib (ctime.o)
@echo lib up-to-date

Assume the object in the library is out-of-date with respect to ctime.c. Also,
there is no ctime.o file.

1. Do lib.

2. To do lib, do each dependent of lib.

3. Do lib (ctime.o).

4. To do lib (ctime.o) , do each dependent of lib (ctime.o). (There are
none.)

5. Use internal rules to try to build lib (ctime.o). (There is no explicit
rule') Note that lib (ctime.o) has a parenthesis in the name to identify
the target suffix as ".a". This is the key. There is no explicit ".a" at the
end of the lib library name. The parenthesis forces the ".a" suffix. In
this sense, the ".a" is hard wired into make.

6. Break the name lib(ctime.o) up into lib and ctime.o. Define two
macros, $@ (=lib) and $* (=ctime).

7. Look for a rule ".X.a" and a file $*.X. The first ".X" (in the
.SUFFIXES list) which fulfills these conditions is ".c" so the rule is
".c.a", and the file is ctime.c. Set $< to be ctime.c and execute the
rule. In fact, make must then do ctime.c. However, the search of the
current directory yields no other candidates, and the search ends.

8. The library has been updated. Do the rule associated with the "lib:"
dependency; namely:

.echo lib up-to-date

It should be noted that to let ctime.o have dependencies, the following syntax is
required:

242-Languages and Support Tools UNIX Programmer's Manual

lib (ctime.o): $(I~<:I>IFt)/stdio.h

Thus, explicit references to .0 files are unnecessary. There is also a new macro
for referencing the archive member name when this form is used. The $ %
macro is evaluated each time $@ is evaluated. If there is no current archive
member, $ % is null. If an archive member exists, then $ % evaluates to the
expression between the parenthesis.

An example makefile for a larger library is given in Figure 3.

Figure 3

Example of Library Makefile (Sheet 1 of 3).

@(#)/usr/src/cmd/make/make.tm 3.2
LIB =lsxlib
PFt=lp
I~SI>IFt = /rllftopO/
I~S = eval
lsx: $ (LIB) low.o mch.o

ld -x low.o mch.o $(LIB)
mv a.out lsx
@size lsx

Here, $(I~S) as either "." or "eval".
lsx:

$ (I~S) 'cp lsx $ (I~SI> 1Ft) lsx . .
strip $(I~SI>IFt)Isx ..
Is -1 $(I~SI>IFt)Isx'

print:
$ (PFt) header .slow .smch.s * .h *.c Makefile

U~IX Programmer's Manual Languages and Support Tools-243

AUGMAKE

Example of Library Makefile (Sheet 2 of 3).

$(LIB):

$ (LIB) (CLOCK.o)

$ (LIB) (main.o)

$ (LIB) (tty.o)

$ (LIB) (trap.o)

$ (LIB) (sysent.o)

$ (LIB) (sys2.0)

$ (LIB) (syn3.0)

$ (LIB) (syn4.0)

$ (LIB) (sys 1.0)

$ (LIB) (sig.o)

$ (LIB) (fio.o)

$ (LIB) (kl.o)

$ (LIB) (alloc.o)

$ (LIB) (nami.o)

$ (LIB) (iget.o)

$ (LIB) (rdwri.o)

$ (LIB) (subr.o)

244-Languages and Support Tools UNIX Programmer's Manual

Example of Library Makefile (Sheet 3 of 3).

$ (LIB) (bio.o)
$ (LIB) (decfd.o)
$ (LIB) (sip.o)
$ (LIB) (space.o)
$ (LIB) (puts.o)
@echo $(LIB) now up to date .

. s.o:
as -0 $*.0 header.s $*.s

.o.a:
ar rv $@ $<
rm -f $<

.s.a:
as -0 $*.0 header.s $*.s
ar rv $@ $*.0
rm -f $*.0

.PRECIOUS: $ (LIB)

The reader will note also that there are no lingering "*.0" files left around.
The result is a library maintained directly from the source files (or more
generally from the SCCS files).

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE
TILDE

The syntax of make does not directly permit referencing of prefixes. For most
types of files on UNIX operating system machines, this is acceptable since
nearly everyone uses a suffix to distinguish different types of files. The SCCS
files are the exception. Here, "s." precedes the file name part of the complete
pathname.

To allow make easy access to the prefix "s." requires either a redefinition of the
rule naming syntax of make or a trick. The trick is to use the tilde (-) as an

UNIX Programmer's Manual Languages and Support Tools-245

AUGMAKE

identifier of sees files. Hence, ".c-.o" refers to the rule which transforms an
sees e language source file into an object. Specifically, the internal rule is

$(GET) $(GFLAGS) -p $< > $*.c
$(ee) $(eFLAGS) -c $*.c
-rm -f $*.c

Thus, the tilde appended to any suffix transforms the file search into an sees
file name search with the actual suffix named by the dot and all characters up
to (but not including) the tilde.

The following sees suffixes are internally defined:

.c­

.y-

.s-

.sh­

.h-

The following rules involving sees transformations are internally defined:

.c-:

.sh-:

.c-.o:

.s-.o:

.y-.o:

.r.o:

.y-.c:

.c-.a:

.s-.a:

.h-.h:

Obviously, the user can define other rules and suffixes which may prove useful.
The tilde gives him a handle on the sees file name format so that this is
possible.

246-Languages and Support Tools UNIX Programmer's Manual

THE NULL SUFFIX

In the UNIX system source code, there are many commands which consist of a
single source file. It was wasteful to maintain an object of such files for make.
The current implementation supports single suffix rules (a null suffix). Thus, to
maintain the program cat, a rule in the makefile of the following form is
needed:

.c:
$(CC) -n -0 $< -0 $@

In fact, this ".c:" rule is internally defined so no makefile is necessary at all.
The user only needs to type

make cat dd echo date

(these are notable single file programs) and all four C language source files are
passed through the above shell command line associated with the ".c:" rule.
The internally defined single suffix rules are

.c:

.c-:

.sh:

.sh-:

Others may be added in the makefile by the user.

INCLUDE FILES

The make program has an include file capability. If the string include appears
as the first seven letters of a line in a makefile and is followed by a blank or a
tab, the string is assumed to be a file name which the current invocation of
make will read. The file descriptors are stacked for reading include files so that
no more than about 16 levels of nested includes are supported.

UNIX Programmer's Manual Languages and Support Tools-247

AUGMAKE

INVISIBLE SCCS MAKEFILES

The SCCS makejiles are invisible to make. That is, if make is typed and only
a file named s.makejile exists, make will do a get on the file, then read and
remove the file. Using the -f, make will get, read, and remove arguments and
include files.

DYNAMIC DEPENDENCY PARAMETERS

A new dependency parameter has been defined. The parameter has meaning
only on the dependency line in a makefile. The $$@ refers to the current
"thing" to the left of the colon (which is $@). Also the form $$(@F) exists
which allows access to the file part of $@. Thus, in the following:

cat: $$@.c

the dependency is translated at execution time to the string "cat.c". This is
useful for building a large number of executable files, each of which has only
one source file. For instance, the UNIX software command directory could
have a makejile like:

CMDS = cat dd echo date cc cmp comm ar ld chown

$(CMDS): $$@.c
$(CC) -0 $? -0 $@

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makejile is made. For
any particular file that has a peculiar compilation procedure, a specific entry
must be made in the makejile.

The second useful form of the dependency parameter is $$(@F). It represents
the file name part of $$@. Again, it is evaluated at execution time. Its
usefulness becomes evident when trying to maintain the lusrlinclude directory
from a makefile in the lusrlsrclhead directory. Thus, the lusrlsrclheadlmakejile
would look like

248-Languages and Support Tools UNIX Programmer's Manual

INCDIR = lusr/include

INCLUDES = \
$(INCDIR)/stdio.h \
$ (INCDIR)/pwd.h \
$ (INCIDR)Idir.h \
$ (INCDIR)la.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

This would completely maintain the lusrlinclude directory whenever one of the
above files in lusrlsrclhead was updated.

EXTENSIONS OF $*, $@, AND $<

The internally generated macros $*, $@, and $< are useful generic terms for
current targets and out-of-date relatives. To this list has been added the
following related macros: $(@D), $(@F), $(*D), $(*F), $(<D), and $(<F).
The "D" refers to the directory part of the single letter macro. The "F" refers
to the file name part of the single letter macro. . These additions are useful
when building hierarchical makefiles. They allow access to directory names for
purposes of using the cd command of the shell. Thus, a shell command can be

cd $(<D); $(MAKE) $(<F)

The following command forces a complete rebuild of the operating system:

FRC=FRC make -f 70.mk

where the current directory is ucb. The FRC is a convention for FoRCing
make to completely rebuild a target starting from scratch.

UNIX Programmer's Manual Languages and Support Tools-249

AUGMAKE

OUTPUT TRANSLATIONS

Macros in shell commands can now be translated when evaluated. The form is
as follows:

$ (macro:string 1 ==string2)

The meaning of $(macro) is evaluated. For each appearance of string] in the
evaluated macro, string2 is substituted. The meaning of finding string] in
$(macro) is that the evaluated $(macro) is considered as a bunch of strings
each delimited by white space (blanks or tabs). Thus, the occurrence of
string] in $(macro) means that a regular expression of the following form has
been found:

.*<stringl > [TABIBLANK]

This particular form was chosen because make usually concerns itself with
suffixes. A more general regular expression match could be implemented if the
need arises. The usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate the out-of-date
members and write a shell script which can handle all the C language
programs (i.e., those files ending in ".c"). Thus, the following fragment
optimizes the executions of make for maintaining an archive library:

$(LIB): $ (LIB) (a.o) $(LIB) (b.o) $(LIB)c.o)
$(CC) -c $(CFLAGS) $(?:.o==.c)
ar rv $(LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the different types
of source files (suffices) which define the archive library. These translations are
added in an effort to make more general use of the wealth of information which
make generates.

250-Languages and Support Tools UNIX Programmer's Manual

SOURCE CODE CONTROL SYSTEM USER GUIDE

GENERAL

The Source Code Control System (SCCS) is a collection of the UNIX software
commands that help individuals or projects control and account for changes to
files of text. The source code and documentation of software systems are typical
examples of files of text to be changed. The SCCS is a collection of programs
that run under the UNIX operating system. It is convenient to conceive of
SCCS as a custodian of files. The SCCS provides facilities for

• Storing files of text

• Retrieving particular versions of the files

• Controlling updating privileges to files

• Identifying the version of a retrieved file

• Recording when, where, and why the change was made and who made
each change to a file.

These types of facilities are important when programs and documentation
undergo frequent changes because of maintenance and/or enhancement work.
It is often desirable to regenerate the version of a program or document as it
existed before changes were applied to it. This can be done by keeping copies
(on paper or other media), but this method quickly becomes unmanageable and
wasteful as the number of programs and documents increases. The SCCS
provides an attractive solution because the original file is stored on disk.
Whenever changes are made to the file, the SCCS stores only the changes.
Each set of changes is called a "delta".

This chapter, together with relevant portions of the UNIX Programmer's
Manual-Volume]: Commands and Utilities is a complete user's guide to
SCCS. The following topics are covered:

• SCCS for Beginners: How to make an SCCS file, how to update it, and
how to retrieve a version thereof.

UNIX Programmer's Manual Languages and Support Tools-251

sees

• How Deltas Are Numbered: How versions of SCCS files are numbered
and named.

• SCCS Command Conventions: Conventions and rules generally applicable
to all SCCS commands.

• SCCS Commands: Explanation of all SCCS commands with discussions
of the more useful arguments.

• SCCS Files: Protection, format, and auditing of SCCS files including a
discussion of the differences between using SCCS as an ind~vidual and
using it as a member of a group or project. The role of a "project SCCS
administrator" is introduced.

Neither the implementation of SCCS nor the installation procedure for SCCS
is described in this section.

Throughout this section, each reference of the form name (I M), name (7), or
name (8) refers to entries in the UNIX Programmer's Manual-Volume 3:
System Administration Facilities. All other references to entries of the form
name(N), where "N" is a number (1 through 6) possibly followed by a letter,

. refer to entry name in section N of the UNIX Programmer's Manual-Volume
1: Commands and Utilities.

sees FOR BEGINNERS

It is assumed that the reader knows how to log onto a UNIX system, create
files, and use the text editor. A number of terminal-session fragments are
presented. All of them should be tried since the best way to learn SCCS is to
use it.

To supplement the material in this section, the detailed SCCS command
description.s in the UNIX Programmer's Manual-Volume 1: Commands and
Utilities. should be consulted.

252-Languages and Support Tools UNIX Programmer's Manual

A. Terminology

Each sees file is composed of one or more sets of changes applied to the null
(empty) version of the file, with each set of changes usually depending on all
previous sets. Each set of changes is called a "delta" and is assigned a name,
called the sees ID entification string (SID). The SID is composed of at most
four components. The first two components are the "release" and "level"
numbers which are separated by a period. Hence, the first delta (for the
original file) is called "1.1", the second "1.2", the third "1.3", etc. The release
number can also be changed allowing, for example, deltas "2.1", "3.1", etc.
The change in the release number usually indicates a major change to the file.

Each delta of an sees file defines a particular version of the file. For
example, delta 1.5 defines version 1.5 of the sees file, obtained by applying to
the null (empty) version of the file the changes that constitute deltas 1.1, 1.2,
etc., up to and including delta 1.5 itself, in that order.

B. Creating an SCCS File via "admin"

Consider, for example, a file called lang that contains a list of programming
languages.

c
pl/i
fortran
cobol
algol

Custody of the lang file can be given to sees. The following admin command
(used to "administer" sees files) creates an sees file and initializes delta
1.1 from the file lang:

admin -ilang s.lang

All sees files must have names that begin with "s.", hence, s.lang. The -i
keyletter, together with its value lang, indicates that admin is to create a new
sees file and "initialize" the new sees file with the contents of the file lang.
This initial version is a set of changes (delta 1. 1) applied to the null sees file.

UNIX Programmer's Manual Languages and Support Tools-253

sccs

The admin command replies

No id keywords (cm7)

This is a warning message (which may also be issued by other sees
commands) that is to be ignored for the purposes of this section. Its
significance is described under the get command in the part "sees
COMMANDS." In the following examples, this warning message is not shown
although it may actually be issued by the various commands. The file lang
should now be removed (because it can be easily reconstructed using the get
command) as follows:

rm lang

c. Retrieving a File via "get"

The lang file can be reconstructed by using the following get command:

get s.lang

The command causes the creation (retrieval) of the latest version of file s.lang
and prints the following messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of five
lines of text. The retrieved text is placed in a file whose name is formed by
deleting the "s." prefix from the name of the sees file. Hence, the file lang is
created.

The "get s.lang" command simply creates the file lang (read-only) and keeps
no information regarding its creation. On the other hand, in order to be able
to subsequently apply changes to an sees file with the delta command, the get
command must be informed of your intention to do so. This is done as follows:

254-Languages and Support Tools UNIX Programmer's Manual

get -e s.lang

The -e keyletter causes get to create a file lang for both reading and writing
(so it may be edited) and places certain information about the sees file in
another new file. The new file, called the p-file, will be read by the delta
command. The get command prints the same messages as before except that
the SID of the version to be created through the use of delta is also issued. For
example,

get -e s.lang
1.1
new delta 1.2
5 lines

The file lang may now be changed, for example, by

ed lang
27
$a
snobol
rat for

w
41
q

D. Recording Changes· via "delta"

In order to record within the sees file the changes that have been applied to
lang, execute the following command:

delta s.lang

Delta prompts with

comments?

The response should be a description of why the changes were made. For
example,

UNIX Programmer's Manual Languages and Support Tools-255

sees

comments? added more languages

The delta command then reads the p-file and determines what changes were
made to the file lang. The delta command does this by doing its own get to
retrieve the original version and by applying the diff(1) command to the
original version and the edited version.

When this process is complete, at which point the changes to lang have been
stored in s.lang, delta outputs

1.2
2 inserted
o deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next three
lines of output refer to the number of lines in the file s.lang.

E. Additional Information About "get"

As shown in the previous example, the command

get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done· by starting
with the original version of the file and successively applying deltas (the
changes) in order until all have been applied.

256-Languages and Support Tools UNIX Programmer's Manual

In the example chosen, the following commands are all equivalent:

get s.lang
get -r 1 s.lang
get -rl.2 s.lang

The numbers following the -r keyletter are SIDs. Note that omitting the level
number of the SID (as in "get -rl s.lang") is equivalent to specifying the
highest level number that exists within the specified release. Thus, the second
command requests the retrieval of the latest version in release 1, namely 1.2.
The third command specifically requests the retrieval of a particular version, in
this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that
change is usually indicated by changing the release number (first component of
the SID) of the delta being made. Since normal automatic numbering of
deltas proceeds by incrementing the level number (second component of the
SID), the user must indicate to sees the need to change the release number.
This is done with the get command.

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release
2. The get command also interprets this as a request to change the release
number of the delta which the user desires to create to 2, thereby causing it to
be named 2.1, rather than 1.3. This information is conveyed to delta via the
p-file. The get command then outputs

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the version
delta will create. If the file is now edited, for example, by

UNIX Programmer's Manual Languages and Support Tools-257

SCCS

ed lang
41
/cobol/d
w
35
q

and delta executed

delta s.lang
comments? deleted cobol from list of languages

the user will see by delta's output that version 2.1 is indeed created.

2.1
o inserted
1 deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc'), or another new
release may be created in a similar manner. This process may be continued as
desired.

F. The "help" Command

If the command

get abc

is executed, the following message will be output:

ERROR [abc]: not an sees file (col)

The string "col" is a code for the diagnostic message and may be used to
obtain a fuller explanation of that message by use of the help command.

258-Languages and Support Tools UNIX Programmer's Manual

help col

This produces the following output:

col:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s. ".

Thus, help is a useful command to use whenever there is any doubt about the
meaning of an sees message. Detailed explanations of almost all sees
messages may be found in this manner.

DELTA NUMBERING

It is convenient to conceive of the deltas applied to an sees file as the nodes
of a tree in which the root is the initial version of the file. The root delta
(node) is normally named "1.1" and successor deltas (nodes) are named "1.2",
"1.3", etc. The components of the names of the deltas are called the "release"
and the "level" numbers, respectively. Thus, normal naming of successor
deltas proceeds by incrementing the level number, which is performed
automatically by sees whenever a delta is made. In addition, the user may
wish to change the release number when making a delta to indicate that a
major change is being made. When this is done, the release number also
applies to all successor deltas unless specifically changed again. Such a
structure may be termed the "trunk" of the sees tree.

However, there are situations in which it is necessary to cause a branching in
the tree in that changes applied as part of a given delta are not dependent upon
all previous deltas. As an example, consider a program which is in production
use at version 1.3 and for which development work on release 2 is already in
progress. Thus, release 2 may already have some deltas. Assume that a
production user reports a problem in version 1.3 and that the nature of the
problem is such that it cannot wait to be repaired in release 2. The changes
necessary to repair the trouble will be applied as a delta to version 1.3 (the

. version in production use). This creates a new version that will then be
released to the user but will not affect the changes being applied for release 2
(i.e., deltas 1.4, 2.1, 2.2, etc.).

UNIX Programmer's Manual Languages and Support Tools-259

sees

The new delta is a node on a branch of the tree. Its name consists of four
components; the release number and the level number (as with trunk deltas)
plus the "branch" number and the "sequence" number. The delta name
appears as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a
particular trunk delta with the first such branch being 1, the next one 2, etc.
The sequence number is assigned, in order, to each delta on' a particular
branch. Thus, 1.3.1.2 identifies the second delta of the first branch that derives
from delta 1.3.

The concept of branching may be extended to any delta in the tree. The
naming of the resulting deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the
names of trunk deltas contain exactly two components, and the names of
branch deltas contain exactly four components. Second, the first two
components of the name of branch deltas are always those of the ancestral
trunk delta, and the branch component is assigned in the order of creation of
the branch independently of its location relative to the trunk delta. Thus, a
branch delta may always be identified as such from its name. Although the
ancestral trunk delta may be identified from the branch delta's name, it is not
possible to determine the entire path leading from the trunk delta to the branch
delta. For example, if delta 1.3 has one branch emanating from it, all deltas
on that branch will be named 1.3. Ln. If a delta on this branch then has
another branch emanating from it, all deltas on the new branch will be named
1.3.2.n. The only information that may be derived from the name of delta
1.3.2.2 is that it is the chronologically second delta on the chronologically
second branch whose trunk ancestor is delta 1.3. In particular, it is not
possible to determine from the name of delta 1.3.2.2 all the deltas between it
and trunk ancestor 1.3 .

. It is obvious that the concept of branch deltas allows the generation of
arbitrarily complex tree structures. Although this capability has been provided
for certain specialized uses, it is strongly recommended that the sees tree be
kept as simple as possible because comprehension of its structure becomes
extremely difficult as the tree becomes more complex.

260-Languages and Support Tools UNIX Programmer's Manual

SCCS COMMAND CONVENTIONS

This part discusses the conventions and rules that apply to sees commands.
These rules and conventions are generally applicable to all sees commands
with exceptions indicated. The sees commands accept two types of
arguments:

• Keyletter arguments

• File arguments.

Keyletter arguments (hereafter called simply "keyletters") begin with a minus
sign (-), followed by a lowercase alphabetic character, and in some cases,
followed by a value. These key letters control the execution of the command to
which they are supplied.

File arguments (names of files and/or directories) specify the file{s) that the
given sees command is to process. Naming a directory is equivalent to
naming all the sees files within the directory. Non-SeeS files and
unreadable files [because of permission modes via chmod(I)] in the named
directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the
name "-" (a lone minus sign) is specified as an argument to a command, the
command reads the standard input for lines and takes each line as the name of
an sees file to be processed. The standard input is read until end-of-file.
This feature is often used in pipelines with, for example, the find(1) or Is(I)
commands. Again, names of non-SeeS files and of unreadable files are
silently ignored.

All keyletters specified for a given command apply to all file arguments of that
command. All keyletters are processed before any file arguments with the
result that the placement of keyletters is arbitrary (i.e., keyletters may be
interspersed with file arguments). File arguments, however, are processed left
to right. Somewhat different argument conventions apply to the help, what,
sccsdiff, and val commands.

Certain actions of various sees commands are controlled by flags appearing
in sees files. Some of these flags are discussed in this part. For a complete
description of all such flags, see admin(1) section in the UNIX Programmer's
Manual- Volume 1: Commands and Utilities.

UNIX Programmer's Manual Languages and Support Tools-261

sees

The distinction between the real user [see passwd(I)] and the effective user of
a UNIX system is of concern in discussing various actions of sees commands.
For the present, it is assumed that both the real user and the effective user are
one and the same (i.e., the user who is logged into a UNIX system). This
subject is discussed further in "sees FILES."

All sees commands that modify an sees file do so by writing a temporary
copy, called the x-jile. This file ensures that the sees file is not damaged if
processing should terminate abnormally. The name of the x-file is formed by
replacing the "s." of the sees file name with "x.". When processing is
complete, the old sees file is removed and the x-file is renamed to be the
sees file. The x-file is created in the directory containing the sees file,
given the same mode [see chmod(I)] as the sees file, and owned by the
effective user.

To prevent simultaneous updates to an sees file, commands that modify­
sees files create a lock-file, called the z-file, whose name is formed by
replacing the "s." of the sees file name with "z.". The z-file contains the
process number of the command that creates it, and its existence is an
indication to other commands that the sees file is being updated. Thus, other
commands that modify sees files do not process an sees file if the
corresponding z-jile exists. The z-file is created with mode 444 (read-only) in
the directory containing the sees file and is owned by the effective user. This
file exists only for the duration of the execution of the command that creates it.
In general, users can ignore x-files and z-files. The files may be useful in the
event of system crashes or similar situations.

The sees commands produce diagnostics (on the diagnostic output) of the
form:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help command to
obtain a further explanation of the diagnostic message. Detection of a fatal
error during the processing of a file causes the sees command to terminate
processing of that file and to proceed with the next file, in order, if more than
one file has been named.

262-Languages and Support Tools UNIX Programmer's Manual

sees COMMANDS

This part describes the major features of all the sees commands. Detailed
descriptions of the commands and of all their arguments are given in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities and should be
consulted for further information. The discussion below covers only the more
common arguments of the various sees commands.

The commands follow in approximate order of importance. The following is a
summary of all the sees commands and of their major functions:

get

delta

admin

prs

help

rmdel

cdc

what

sccsdiff

comb

val

Retrieves versions of sees files.

Applies changes (deltas) to the text of sees files, i.e.,
creates new versions.

Creates sees files and applies changes· to parameters
of sees files.

Prints portions of an sees file in user specified format.

Gives explanations of diagnostic messages.

Removes a delta from an sees file; allows the removal
of deltas that were created by mistake.

Changes the commentary associated with a delta.

Searches any UNIX system file(s) for all occurrences of
a special pattern and prints out what follows it; is useful
in finding identifying information inserted by the get
command.

Shows the differences between any two versions of an
sees file.

Combines two or more consecutive deltas of an sees
file into a single delta; often reduces the size of the
sees file.

Validates an sees file.

UNIX Programmer's Manual Languages and Support Tools-263

SCCS

A. The "get" Command

The get command creates a text file that contains a particular version of an
sees file. The particular version is retrieved by beginning with the initial
version and then applying deltas, in order, until the desired version is obtained.
The created file is called the g-file. The g-file name is formed by removing the
"s." from the sees file name. The g-file is created in the current directory
and is owned by the real user. The mode assigned to the g-file depends on how
the get command is invoked.

The most common invocation of get is

get s.abc

which normally retrieves the latest version on the trunk of the sees file tree
and produces (for example) on the standard output

1.3
67 lines
No id keywords (cm7)

which indicates that

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file.

The generated g-file (file "abc") is given mode 444 (read-only). This particular
way of invoking get is intended to produce g-files only for inspection,
compilation, etc. It is not intended for editing (i.e., not for making deltas).

In the case of several file arguments (or directory-name arguments), similar
information is given for each file processed, but the sees file name precedes
it. For example,

get s.abc s.def

264-Languages and Support Tools UNIX Programmer's Manual

produces

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm7)

10 Keywords

In generating a g-file to be used for compilation, it is useful and informative to
record the date and time of creation, the version retrieved, the module's name,
etc. within the g-file. This information appears in a load module when one is
eventually created. The SCCS provides a convenient mechanism for doing this
automatically. Identification (ID) keywords appearing anywhere in the
generated file are replaced by appropriate values according to the definitions of
these ID keywords. The format of an ID keyword is an uppercase letter
enclosed by percent signs (%). For example,

%1%

is defined as the ID keyword that is replaced by the SID of the retrieved
version of a file. Similarly, %H% is defined as the ID keyword for the current
date (in the form "mm/dd/yy"), and %M% is defined as the name of the g-I
file. Thus, executing get on an SCCS file that contains the PLII declaration,

DCL ID CHAR (I 00) VAR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR(IOO) VAR INIT('MODNAME 2.3 07/07/77');

When no ID keywords are substituted by get, the following message is issued:

No id keywords (cm7)

UNIX Programmer's Manual Languages and Support Tools-265

sees

This message is normally treated as a warning by get, although the presence of
the i flag in the sees file causes it to be treated as an error. For a complete
list of the approximately 20 ID keywords provided, see get(I) in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities.

Retrieval of Different Versions

Various key letters are provided to allow the retrieval of other than the default
version of an sees file. Normally, the default version is the most recent delta
of the highest-numbered release on the trunk of the sees file tree. However,
if the sees file being processed has a d (default SID) flag, the SID specified
as the value of this flag is used as a default. The default SID is interpreted in
exactly the same way as the value supplied with the -r keyletter of get.

The -r keyletter is used to specify an SID to be retrieved, in which case the d
(default SID) flag (if any) is ignored. For example,

get -r1.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the standard
output

1.3
64 lines

A branch delta may be retrieved similarly,

get -r1.5.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the -r keyletter (as
above) and the particular version does not exist in the sees file, an error
message results. Omission of the level number, as in

266-Languages and Support Tools UNIX Programmer's Manual

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the
given release if the given release exists. Thus, the above command might
output,

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest
level number within the highest-numbered existing release that is lower than
the given release. For example, assuming release 9 does not exist in file s.abc
and that release 7 is actually the highest-numbered release below 9, execution
of

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below
release 9. Similarly, omission of the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on
the given branch if it exists. (If the given branch does not exist, an error
message results.) This might result in the following output:

4.3.2.8
89 lines

The -t key letter is used to retrieve the latest (top) version in a particular
release (i.e., when no -r key letter is supplied or when its value is simply a
release number). The latest version is defined as that delta which was
produced most recently, independent of its location on the sees file tree.
Thus, if the most recent delta in release 3 is 3.5,

UNIX Programmer's Manual Languages and Support Tools-267

sees

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5),
the same command might produce

3.2.1.5
46 lines

Retrieval With Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication of the
intent to make a delta, and as such, its use is restricted. The presence of this
keyletter causes get to check

1. The user list (a list of login names and/or group IDs of users allowed to
make deltas) to determine if the login name or group ID of the user
executing get is on that list. Note that a null (empty) user list behaves
as if it contained all possible login names.

2. The release (R) of the version being retrieved satisfies the relation:

floor is < or = to R which is
< or = to ceiling

to determine if the release being accessed is a protected release. The
"floor" and "ceiling" are specified as flags in the sees file.

3. The R is not locked against editing. The "lock" is specified as a flag in
the sees file.

4. Whether or not multiple concurrent edits are allowed for the sees file
as specified by the j flag in the sees file.

268-Languages and Support Tools UNIX Programmer's Manual

A failure of any of the first three conditions causes the processing of the
corresponding sees file to terminate.

If the above checks succeed, the -e keyletter causes the creation of a g-file in
the current directory with mode 644 (readable by everyone, writable only by
the owner) owned by the real user. If a writable g-file already exists, get
terminates with an error. This is to prevent inadvertent destruction of a g-file
that already exists and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by get (when the
-e keyletter is specified) because the generated g-file is subsequently used to
create another delta. Replacement of ID keywords cause them to be
permanently changed within the sees file. In view of this, get does not need
to check for the presence of ID keywords within the g-file, so the message

No id keywords (cm7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a p-file
which is used to pass information to the delta command.

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output

1.3
new delta 1.4
67 lines

If the -r and/or -t keyletters are used together with the -e keyletter, the
version retrieved for editing is as specified by the -r and/or -t keyletters.

The keyletters -i and -x may be used to specify a list [see get(I) in the
UNIX Programmer's Manual-Volume 1: Commands and Utilities for the
syntax of such a list] of deltas to be included and excluded, respectively, by get.
Including a delta means forcing the changes that constitute the particular delta

UNIX Programmer's Manual Languages and Support Tools-269

sees

to be included in the retrieved version. This is useful if one wants to apply the
same changes to more than one version of the sees file. Excluding a delta
means forcing it not to be applied. This may be used to undo (in the version of
the sees file to be created) the effects of a previous delta. Whenever deltas
are included or excluded, get checks for possible interference between such
deltas and those deltas that are normally used in retrieving the particular
version of the sees file. Two deltas can interfere, for example, when each one
changes the same line of the retrieved g-file. Any interference is indicated by
a warning that shows the range of lines within the retrieved g-file in which the
problem may exist. The user is expected to examine the g-file to determine
whether a problem actually exists and to take whatever corrective measures (if
any) are deemed necessary {e.g., edit the file}.

Warning: The -i and -x key letters should be used with extreme care.

The -k keyletter is provided to facilitate regeneration of a g-file that may
have been accidentally removed or ruined subsequent to the execution of get
with the -e keyletter or to simply generate a g-file in which the replacement
of ID keywords has been suppressed. Thus, a g-file generated by the -k
key letter is identical to one produced by get and executed with the -e
keyletter. However, no processing related to the p-file takes place.

Concurrent Edits of Different SID

The ability to retrieve different versions of an sees file allows a number of
deltas to be "in progress" at any given time. This means that a number of get
commands with the -e keyletter may be executed on the same file provided
that no two executions retrieve the same version {unless multiple concurrent
edits are allowed}.

The p-file {created by the get command invoked with the -e keyletter} is
named by replacing the "s." in the sees file name with "p.". It is created in
the directory containing the sees file, given mode 644 (readable by everyone,
writable only by the owner), and owned by the effective user. The p-file
contains the following information for each delta that is still "in progress":

• The SID of the retrieved version .

• The SID that is given to the new delta when it is created.

270-Languages and Support Tools UNIX . Programmer's Manual

• The login name of the real user executing get.

The first execution of get -e causes the creation of the p-file for the
corresponding sees file. Subsequent executions only update the p-file with a
line containing the above information. Before updating, however, get checks to
assure that no entry {already in the p-fileJ specifies that the SID {of the
version to be retrieved} is already retrieved {unless multiple concurrent edits
are allowed}.

If both checks succeed, the user is informed that other deltas are in progress
and processing continues. If either check fails, an error message results. It is
important to note that the various executions of get should be carried out from
different directories. Otherwise, only the first execution succeeds since
subsequent executions would attempt to overwrite a writable g-file, which is an
sees error condition. In practice, such multiple executions are performed by
different users so that this problem does not arise since each user normally has
a different working directory. See HProtection" under the part "sees FILES"
for a discussion of how different users are permitted to use sees commands
on the same files.

Figure 4 shows, for the most useful cases, the version of an sees file retrieved
by get, as well as the SID of the version to be eventually created by delta, as a
function of the SID specified to get.

UNIX Programmer's Manual Languages and Support Tools-271

SCCS

Figure 4

Determination of New SID (Sheet 1 of 3).

SID -b KEY- OTHER SID
SPECI- LETTER CONDI- RETRI-
FlED * USEDt TIONS EVED

nonet no R default mRmL
to mR

none* yes R default mRmL
tomR

R no R> mR mRmL
R no R==mR mRmL
R yes R> mR mRmL
R yes R==mR mR.mL
R R<mR

R R< mR hR.mL**
and
does
not
exist

R Trunk R.mL
successor
in release
> Rand
R exists

See footnotes on sheet 3 of 3.

SID OF
DATA
TO BE
CREATED

mR(mL+l)

mRmL. (mB+ 1)

R.l§
mR.(mL+I)
mR.mL. (mB+ 1).1
mR.mL. (mB+ 1).1

hR.mL. (mB+ 1) .1

R.mL. (mB+ 1).1

272-Languages and Support Tools UNIX Programmer's Manual

Determination of New SID (Sheet 2 of 3).

SID -b KEY- OTHER SID SID OF
SPECI LETTER CONDI- RETRI- DELTA
FIED* USEDt TIONS EVED TO BE

CREATED

R.L. no No trunk R.L R.(L+1)
successor

R.L. yes. No trunks R.L R.L.(mB+l).l
successor

R.L Trunk R.L R.L.(mS+l).l
in release
>=R

R.L.b no No branch R.L.B.mS R.L.B. (mS+ 1)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+l).l
successor

R.L.B.S no No branch R.L.B.S R.L.B. (S+ 1)
successor

R.L.B.S no No branch R.L.B.S R.L.(mB+l).l
successor

R.L.B.S Branch R.L.B.S R.L.(mB+1).l
successor

See footnotes on sheet 3 of 3.

UNIX Programmer's Manual Languages and Support Tools-273

sees

Determination of New SID (Sheet 3 of 3).

Footnotes:

* "R", "L", "B", and "s" are "release", "level", "branch", and "sequence"
components of the SID, respectively; "m" means "maximum". Thus, for
example, "R.mL"means "the maximum level number within release R";
"R.L. (mB+ 1) .1" means "the first sequence number on the (i.e., maximum
branch number plus 1) of level L within release R". Also note that if the SID
specified is of the form "R.L", "R.L.B", or "R.L.B.S", each of the specified
components must exist.

t The -b keyletter is effective only if the b flag [see admin(t)] is present in the
file. In this state, an entry of "-" means "irrelevant".

:I: This case applies if the d (default SID) flag is not present in the file. If the
d flag is present in the file, the SID obtained from the d flag is interrupted as
if it had been specified on the command line. Thus, one of the other cases in
this figure applies.

§ This case is used to force the creation of the first delta in the new release.

** "hR" is the highest existing release that is lower than the specified,
nonexisting, release R.

Concurrent Edits of Same SID

Under normal conditions, gets for editing (-e keyletter is specified) based on
the same SID are not permitted to occur concurrently. That is, delta must be
executed before a subsequent get for editing is executed at the same SID as the
previous get. However, multiple concurrent edits (defined to be two or more
successive executions of get for editing based on the same retrieved SID) are
allowed if the j flag is set in the sees file. Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

274-Languages and Support Tools UNIX Programmer's Manual

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta command
corresponding to the first get produces delta 1.2 [assuming 1.1 is the latest
(most recent) trunk delta], and the delta command corresponding to the second
get produces delta 1.1.1.1.

Keyletters That Affect Output

Specification of the -p keyletter causes get to write the retrieved text to the
standard output rather than to a g-file. In addition, all output normally
directed to the standard output (such as the SID of the version retrieved and
the number of lines retrieved) is directed instead to the diagnostic output. This
may be used, for example, to create g-files with arbitrary names.

get -p s.abc > arbitrary-file-name

The -p keyletter is particularly useful when used with the "!" or "$"
arguments of the send(IC) command. For example,

send MOD=s.abc REL=3 compile

given that file compile contains

Ilplicomp job job-card-information
Ilstepi exec plickc
Ilpli.sysin dd *
-s
!get -p -rREL MOD

1*
II

will send the highest level of release 3 of file s.abc. Note that the line "--s"
(that causes send to make ID keyword substitutions before detecting and
interpreting control lines) is necessary if send is to substitute "s.abc" for MOD
and "3" for REL in the line "-!get -p -rREL MOD".

UNIX Programmer's Manual Languages and Support Tools-275

sees

The -s keyletter suppresses all output that is normally directed to the standard
output. Thus, the SID of the retrieved version, the number of lines retrieved,
etc., are not output. This does not, however, affect messages to the diagnostic
output. This key letter is used to prevent nondiagnostic messages from
appearing on the user's terminal and is often used in conjunction with the -p
keyletter to "pipe" the output of get, as in

get -p -s s.abc I nroff

The -g keyletter is supplied to suppress the actual retrieval of the text of a
version of the sees file. This may be useful in a number of ways. For
example, to verify the existence of a particular SID in an sees file, one may
execute

get -g -r4.3 s.abc

This outputs the given SID if it exists in the sees file or it generates an error
message if it does not. Another use of the -g keyletter is in regenerating a
p-file that may have been accidentally destroyed.

get -e -g s.abc

The -I keyletter causes the creation of an I-file, which is named by replacing
the "s." of the sees file name with "I.". This file is created in the current
directory with mode 444 (read-only) and is owned by the real user. It contains
a table [whose format is described in get(I) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities] showing the deltas used in
constructing a particular version of the sees file. For example,

get -r2.3 -1 s.abc

generates an I-file showing the deltas applied to retrieve version 2.3 of the
sees file. Specifying a value of "p" with the -I keyletter, as in

get -lp -r2.3 s.abc

causes the generated output to be written to the standard output rather than to
the I-file. The -g keyletter may be used with the -I keyletter to suppress the

276-Languages and Support Tools UNIX Programmer's Manual

actual retrieval of the text.

The -m keyletter is of use in identifying, line by line, the changes applied to
an sees file. Specification of this keyletter causes each line of the generated
g-file to be preceded by the SID of the delta that caused that line to be
inserted. The SID is separated from the text of the line by a tab character.

The -n keyletter causes each line of the generated g-file to be preceded by the
value of the seesl ID keyword and a tab character. The -n keyletter is most
often used in a pipeline with grep(I). For example, to find all lines that match
a given pattern in the latest version of each sees file in a directory, the
following may be executed:

get -p -n -s directory I grep pa ttern

If both the -m and -n keyletters are specified, each line of the generated g­
file is proceded by the value of the % M % ID keyword and a tab (this is the
effect of the -n keyletter) and followed by the line in the format produced by
the -m keyletter. Because use of the -m keyletter and/or the -n keyletter
causes the contents of the g-file to be modified, such a g-file must not be used
for creating a delta. Therefore, neither the -m keyletter nor the -n keyletter
may be specified together with the -e keyletter.

See get(1) in the UNIX Programmer's Manual- Volumel: Commands and
Utilities for a full description of additional get key letters.

B. The "delta" Command

The delta command is used to incorporate the changes made to a g-file into the
corresponding sees file, i.e., to create a delta, and therefore, a new version of
the file.

Invocation of the delta command requires the existence of a p-file. The delta­
command examines the p-file to verify the presence of an entry containing the
user's login name. If none is found, an error message results. The delta
command performs the same permission checks that get performs when invoked
by the -e keyletter. If all checks are successful, delta determines what has
been changed in the g-file by comparing it via diff(I) with its own temporary
copy of the g-file as it was before editing. This temporary copy of the g-file is
called the d -file (its name is formed by replacing the "s." of the sees file
name with "d.") and is obtained by performing an internal get at the SID

UNIX Programmer's Manual Languages and Support Tools-277

sees

specified in the p-file entry.

The required p-file entry is the one containing the login name of the user
executing delta because the user who retrieved the g-file must be the one who
creates the delta. However, if the login name of the user appears in more than
one entry, the same user has executed get with the -e keyletter more than
once on the same sees file. The -r keyletter must then be used with delta to
specify the SID that uniquely identifies the p-file entry. This entry is the one
used to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is

delta s.abc

which prompts on the standard output (but only if it is a terminal)

comments?

to which the user replies with a description of why the delta is being made,
terminating the reply with a newline character. The user's response may be up
to 512 characters long with new lines (not intended to terminate the response)
escaped by backslashes "\".

If the sees file has a v flag, delta first prompts with

MRs? (Modification Requests)

on the standard output. (Again, this prompt is printed only if the standard
output is a terminal.) The standard input is then read for MR numbers,
separated by blanks and/or tabs, terminated in the same manner as the
response to the prompt "comments?". In a tightly controlled environment, it is
expected that deltas are created only as a result of some trouble report, change
request, trouble ticket, etc., collectively called [MRs]. It is desirable (or
nec~ssary) to record such MR number(s) within each delta.

The -y and/or -m keyletters may be used to supply the commentary
(comments and MR numbers, respectively) on the command line rather than
through the standard input.

278-Languages and Support Tools UNIX Programmer's Manual

delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc

In this case, the corresponding prompts are not printed,and the standard input
is not read. The -m keyletter is allowed only if the sees file has a v flag.
These keyletters are useful when delta is executed from within a shell
procedure [see sh(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities).

The commentary (comments and/or MR numbers), whether solicited by delta
or supplied via keyletters, is recorded as part of the entry for the delta being
created and applies to all sees files processed by the same invocation of delta.
This implies that (if delta is invoked with more than one file argument and the
first file named has a v flag) all files named must have this flag. Similarly, if
the first file named does not have this flag, then none of the files named may
have it. Any file that does not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output) the SID
of the created delta (obtained from the p-file entry) and the counts of lines
inserted, deleted, and left unchanged by the delta. Thus, a typical output
might be

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or unchanged
by delta do not agree with the user's perception of the changes applied to the
g-file. The reason for this is that there usually are a number of ways to
describe a set of such changes, especially if lines are moved around in the g­
file, and delta is likely to find a description that differs from the user's
perception. However, the total number of lines of the new delta (the number
inserted plus the number left unchanged) should agree with the number of lines
in the edited g-file.

If (in the process of making a delta) delta finds no ID keywords in the edited
g-file, the message

No id keywords (cm7)

UNIX Programmer's Manual Languages and Support Tools-279

sees

is issued after the prompts for commentary but before any other output. This
indicates that any ID keywords that may have existed in the sees file have
been replaced by their values or deleted during the editing process. This could
be caused by creating a delta from a g-file that was created by a get without
the -e keyletter (recall that ID keywords are replaced by get in that case).
This could also be caused by accidentally deleting or changing the ID keywords
during the editing of the g-file. Another possibility is that the file had no ID
keywords. In any case, it is left up to the user to determine what remedial
action is necessary. However, the delta is made unless there is an i flag in the
sees file indicating that this should be treated as a fatal error. In this last
case, the delta is not created.

After the processing of an sees file is complete, the corresponding p-file entry
is removed from the p-file. All updates to the p-file are made to a temporary
copy, the q-file, whose use is similar to the use of the x-file which is described
in the part "sees COMMAND CONVENTIONS". If there is only one
entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file unless the -0 keyletter is specified.
Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s (silent> keyletter suppresses all output that is normally directed to the
standard output, other than the prompts "comments?" and "MRs?". Thus, use
of the -s keyletter together with the -y keyletter (and possibly, the -m
keyletter) causes delta neither to read the standard input nor to write the
standard output.

The differences between the g-file and the d-file (see above), constitute the
delta and may be printed on the standard output by using the -p keyletter.
The format of this output is similar to that produced by diff(l).

280-Languages and Support Tools UNIX Programmer's Manual

C. The "admin" Command

The admin command is used to administer sees files, that is, to create new
sees files and to change parameters of existing ones. When an sees file is
created, its parameters are initialized by use of keyletters or are assigned
default values if no keyletters are supplied. The same keyletters are used to
change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting
"corrupted" sees files (see "Auditing" in part "sees FILES"). Newly
created sees files are given mode 444 (read-only) and are owned by the
effective user. Only a user with write permission in the directory containing
the sees file may use the admin command upon that file.

Creation of SCCS Files

An sees file may be created by executing the command

admin -ifirst s.abc

in which the value "first" of the -i keyletter specifies the name of a file from
which the text of the initial delta of the sees file s.abc is to be taken.
Omission of the value of the -i keyletter indicates that admin is to read the
standard input for the text of the initial delta. Thus, the command

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not
contain ID keywords, the message

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the
command also sets the i flag (not to be confused with the -i keyletter), the
message is treated as an error and the sees file is not created. Only one
sees file may be created at a time using the -i keyletter.

When an sees file is created, the release number assigned to its first delta is
normally "1", and its level number is always "1". Thus, the first delta of an
sees file is normally "1.1". The -r keyletter is used to specify the release

UNIX Programmer's Manual Languages and Support Tools-281

SCCS

number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1". Because
this keyletter is only meaningful in creating the first delta, its use is only
permitted with the -i keyletter.

Inserting Commentary for the Initial Delta

When an sees file is created, the user may choose to supply commentary
stating the reason for creation of the file. This is done by supplying comments
(-y keyletter) and/or MR numbers (-m keyletter) in exactly the same
manner as for delta. The creation of an sees file may sometimes be the
direct result of an MR. If comments (-y keyletter) are omitted, a comment
line of the form

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v flag must also be
set (using the -f key letter described below). The v flag simply determines
whether or not MR numbers must be supplied when using any sees command
that modifies a "delta commentary" [see sccsfile(4) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilties] in the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that the -y and -m keyIetters are only effective if a new sees file is
being created.

Initialization and Modification of SCCS File Parameters

The portion of the sees file reserved for descriptive text may be initialized or
changed through the use of the -t keyletter. The descriptive text is intended
as a summary of the contents and purpose of the sees file.

282-Languages and Support Tools UNIX Programmer's Manual

When an sees file is being created and the -t keyletter is supplied, it must
be followed by the name of a file from which the descriptive text is to be taken.
For example, the command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc;.

When processing an existing sees file, the -t keyletter specifies that the
descriptive text (if any) currently in the file is to be replaced with the text in
the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the sees file is to be replaced by the
contents of desc; omission of the file name after the -t keyletter as in

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized, changed, or deleted through the
use of the -f and -d keyletters, respectively. The flags of an sees file are
used to direct certain actions of the various commands. See admin (1) in the
UNIX Programmer's Manual-Volume 1: Commands and Utilities for a
description of all the flags. For example, the i flag specifies that the warning
message (stating that there are no ID keywords contained in the sees file)
should be treated as an error. Also the d (default SID) flag specifies the
default version of the sees file to be retrieved by the get command. The -f
keyletter is used to set a flag and, possibly, to set its value. For example,

admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value "modname" specified
for the m flag is the value that the get command will use to replace the %M%
ID keyword. (In the absence of the m flag, the name of the g-file is used as
the replacement for the %M% ID keyword.) Note that several -f keyletters
may be supplied on a single invocation of admin and that -f key letters may be
supplied whether the command is creating a new sees file or processing an

UNIX Programmer's Manual Languages and Support Tools-283

'SCCS

existing one.

The -d keyletter is used to delete a flag from an sees file and may only be
specified when processing an existing file. As an example, the command

admin -dm s.abc

removes the m flag from the sees file. Several -d keyletters may be supplied
on a single invocation of admin and may be intermixed with -f keyletters.

The sees files contain a list (user list) of login names and/or group IDs of
users who are allowed to create deltas. This list is empty by default which
implies that anyone may create deltas. To add login names and/or group IDs
to the list, the -a keyletter is used. For example,

admin -axyz -awql -a1234 s.abc

adds the login names "xyz" and "wql" and the group 10 "1234" to the list.
The -a keyletter may be used whether admin is creating a new sees file or
processing an existing one and may appear several times. The -e keyletter is
used in an analogous. manner if one wishes to remove (erase) login names or
group IDs from the list.

D. The "prs" Command

The prs command is used to print on the standard output all or parts of an
sees file in a format, called the output "data specification," supplied by the
user via the -d keyletter. The data specification is a string consisting of
sees file data keywords (not to be confused with get 10 keywords)
interspersed with optional user text.

Data keywords. are replaced by appropriate values according to their
definitions. For example,

: I:

is defined as the data keyword that is replaced by the SID of a specified delta.
Similarly, :F: is defined as the data keyword for the sees file name currently

284-Languages and Support Tools UNIX Programmer's Manual

being processed, and :C: is defined as the comment line associated with a
specified delta. All parts of an SCCS file have an associated data keyword.
For a complete list of the data keywords, see prs(I) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

There is no limit to the number of times a data keyword may appear in a data
specification. Thus, for example,

prs -d":I: this is the top delta for :F: :1:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that
delta using the -r keyletter. For example,

prs -d":F:: :1: comment line is: :C:" -rl.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID defaults to the most
recently created delta.

In addition, information from a range of deltas may be obtained by specifying
the -lor -e keyletters. The -e keyletter substitutes data keywords for the
SID designated via the -r keyletter and all deltas created earlier. The -I
keyletter substitutes data keywords for the SID designated via the -r keyletter
and all deltas created later. Thus, the command

prs -d: I: -rI.4 -e s.abc

may output

UNIX Programmer's Manual Languages and Support Tools-285

SCCS

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d:I: -rI.4 -1 s.abc

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the sees file may be obtained
by specifying both the -e and -I key letters.

E. Tbe "belp" Command

The belp command prints explanations of sees commands and of messages
that these commands may print. Arguments to help, zero or more of which
may be supplied, are simply the names of sees commands or the code
numbers that appear in parentheses after sees messages. If no argument is
given, belp prompts for one. The belp command has no concept of keyletter
arguments or file arguments. Explanatory information related to an argument,
if it exists, is printed on the standard output. If no information is found, an
error message is printed. Note that each argument is processed independently,
and an error resulting from one argument will not terminate the processing of
the other arguments.

Explanatory information related to a command is a synopsis of the command.
For example,

286-Languages and Support Tools UNIX Programmer's Manual

help geS rmdel

produces

geS:
"nonexistent sid"
The specified sid does not exist in the
given file.
eheck for typos.

rmdel:
rmdel -rSID name ...

F. The "rmdel" Command

The rmdel command is provided to allow removal of a delta from an sees file.
Its use should be reserved for those cases in which incorrect global changes
were made a part of the delta to be removed.

The delta to be removed must be a "leaf' delta. That is, it must be the latest
(most recently created) delta on its branch or on the trunk of the sees file
tree.

To be allowed to remove a delta, the effective user must have write permission
in the directory containing the sees file. In addition, the real user must
either be the one who created the delta being removed or be the owner of the
sees file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete SID of
the delta to be removed (i.e., it must have two components for a trunk delta
and four components for a branch delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the sees file. Before removal
of the delta, rmdel checks that the release number (R) of the given SID
satisfies the relation.

floor < == R < == ceiling

UNIX Programmer's Manual Languages and Support Tools-287

SCCS

The rmdel command also checks that the SID specified is not that of a version
for which a get for editing has been executed and whose associated delta has
not yet been made. In addition, the login name or group ID of the user must
appear in the file's "user list", or the "user list" must be empty. Also, the
release specified cannot be locked against editing. That is, if the I flag is set
[see admin(I) in the UNIX Programmer's Manual-Volume 1: Commands and
Utilities 1, the release specified must not be contained in the list. If these
conditions are not satisfied, processing is terminated, and the delta is not
removed. After the specified delta has been removed, its type indicator in the
"delta table" of the sees file is changed from "D" ("delta") to "R"
("removed") .

G. The "cdc" Command

The cdc command is used to change a delta's commentary that was supplied
when that delta was created. Its invocation is analogous to that of the rmdel
command, except that the delta to be processed is not required to be a leaf
delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the sees file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta.
The old commentary associated with the specified delta is kept, but it is
preceded by a comment line indicating that it has been changed (i.e.,
superseded), and the new commentary is entered ahead of this comment line.
The "inserted" comment line records the login name of the user executing cdc
and the time of its execution.

The cdc command also allows for the deletion of selected MR numbers
associated with the specified delta. This is specified by preceding the selected
MR numbers by the character "!". Thus:

cdc -rI.4 s.abc
MRs? mrnum3 !mrnuml
comments? deleted wrong MR number and inserted

correct MR number

288-Languages and Support Tools UNIX Programmer's Manual

inserts "mrnum3" and deletes "mrnum1" for delta 1.4.

H. The "what" Command

The what command is used to find identifying information within any UNIX
system file whose name is given as an argument to what. Directory names and
a name of "-" (.a lone minus sign) are not treated specially as they are by
other sees commands and no key letters are accepted by the command.

The what command searches the given file(s) for all occurrences of the string
"@(#)", which is the replacement for the @(#) ID keyword [see get(1)], and
prints (on the standard output) the balance following that string until the first
double quote ("), greater than (», backslash (\), newline, or (nonprinting)
NUL character. For example, if the sees file s.prog.c (a e language
program) contains the following line:

char id[] "@ (#)sccs2:5.l ";

and then the command

get -r3.4 s.prog.c

is executed, the resulting g-file is compiled to produce "prog.o" and "a.out".
Then the command

what prog.c prog.o a.out

produces

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need· not be inserted via an ID keyword of get;
it may be inserted in any convenient manner.

UNIX Programmer's Manual Languages and Support Tools-289

SCCS

I. The "sccsdift'" Command

The sccsdiff command determines (and prints on the standard output) the
differences between two specified versions of one or more sees files. The
versions to be compared are specified by using the -r keyletter, whose format
is the same as for the get command. The two versions must be specified as the
first two arguments to this command in the order they were created, i.e., the
older version is specified first. Any following keyletters are interpreted as
arguments to the pr(I) command (which actually prints the differences) and
must appear before any file names. The sees files to be processed are named
last. Directory names and a name of "-" (a lone minus sign) are not
acceptable to sccsdiff.

The differences are printed in the form generated by diff(I). The following is
an example of the invocation of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

J. The "comb" Command

The comb command generates a "shell procedure" [see sh(I) in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities] which attempts
to reconstruct the named sees files so that the reconstructed files are smaller
than the originals. The generated shell procedure is written on the standard
output. Named sees files are reconstructed by discarding unwanted deltas
and combining other specified deltas. The sees files that contain deltas no
longer useful should be discarded. It is not recommended that comb be used as
a matter of routine; its use should be restricted to a very small number of times
in the life of an sees file.

In the absence of any keyletters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the "shape" of the
sees file tree. The effect of this is to eliminate middle deltas on the trunk
and on all branches of the tree. Some of the keyletters are summarized as
follows:

The -p keyletter specifies the oldest delta that is to be preserved in the
reconstruction. All older deltas are discarded.

290-Languages and Support Tools UNIX Programmer's Manual

The -c keyletter specifies a list [see get(1) in the UNIX Programmer's
Manual- Volume 1: Commands and Utilities for the syntax of such a list]
of deltas to be preserved. All other deltas are discarded.

The -s keyletter causes the generation of a shell procedure, which when
run, produces only a report summarizing the percentage space (if any) to
be saved by reconstructing each named sees file. It is recommended that
comb be run with this keyletter (in addition to any others desired) before
any actual reconstructions.

It should be noted that the shell procedure generated by comb is not
guaranteed to save space. In fact, it is possible for the reconstructed file to be
larger than the original. Note, too, that the shape of the sees file tree may
be altered by the reconstruction process.

K. The "val" Command

The val command is used to determine if a file is an sees file meeting the
characteristics specified by an optional list of keyletter arguments. Any
characteristics not met are considered errors.

The val command checks for the existence of a particular delta when the SID
for that delta is explicitly specified via the -r keyletter. The string following
the -y or -m key letter is used to check the value set by the t or m flag,
respectively [see admin(1) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities for a description of the flags).

The val command treats the special argument "-" differently from other
sees commands. This argument allows val to read the argument list from the
standard input as opposed to obtaining it from the command line. The
standard input is read until end of file. This capability allows for one
invocation of val with different values for the keyletter and file arguments. For
example,

val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file s.abc has a value "c" for its "type" flag and value "abc" for
the "module name" flag. Once processing of the first file is completed, val then
processes the remaining files, in this case, s.xyz, to determine if they meet the

UNIX Programmer's Manual Languages and Support Tools-291

sees

characteristics specified by the keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the occurrence of
a specific error [see vaI(I) for a description of possible errors and the codes).
In addition, an appropriate diagnostic is printed unless suppressed by the -s
keyletter. A return code of "0" indicates all named files met the characteristics
specified.

sees FILES

This part discusses several topics that must be considered before extensive use
. is made of sees. These topics deal with the protection mechanisms relied
upon by sees, the format of sees files, and the recommended procedures
for auditing sees files.

A. Protection

The sees relies on the capabilities of the UNIX software for most of the
protection mechanisms required to prevent unauthorized changes to sees files
(i.e., changes made by non-SeeS commands). The only protection features
provided directly by sees are the "release lock" flag, the "release floor" and
"ceiling" flags, and the "user list".

New sees files created by the admin command are given mode 444 (read­
only). It is recommended that this mode remain unchanged as it prevents any
direct modification of the files by non-SeeS commands. It is further
recommended that the directories containing sees files be given mode 755
which allows only the owner of the directory to modify its contents.

The sees files should be kept in directories that contain only sees files and
any temporary files created by sees commands. This simplifies protection
and auditing of sees files. The contents of directories should correspond to
convenient logical groupings, e.g., subsystems of a large project.

The sees files must have only one link (name) because the commands that
modify sees files do so by creating a copy of the file (the x-file, see "sees
COMMAND CONVENTIONS"). Upon completion of processing, remove the
old file and rename the x-file. If the old file has more than one link, this would
break such additional links. Rather than process such files, sees commands

292-Languages and Support Tools UNIX Programmer's Manual

produce an error message. All sees files must have names that begin with
"s." .

When only one user uses sees, the real and effective user IDs are the same;
and the user ID owns the directories containing sees files. Therefore, sees
may be used directly without any preliminary preparation.

However, in those situations in which several users with unique user IDs are
assigned responsibility for one sees file (e.g., in large software development
projects), one user (equivalently, one user ID) must be chosen as the "owner"
of the sees files and be the one who will "administer" them (e.g., by using
the admin command). This user is termed the "sees administrator" for that
project. Because other users of sees do not have the same privileges and
permissions as the sees administrator, they are not able to execute directly
those commands that require write permission in the directory containing the
sees files. Therefore, a project-dependent program is required to provide an
interface to the get, delta, and if desired, rmdel and cdc commands.

The interface program must be owned by the sees administrator and must
have the "set user ID on execution" bit "on" [see chmod(I) in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities]. This assures
that the effective user ID is the user ID of the administrator. This program
invokes the desired sees command and causes it to inherit the privileges of
the interface program for the duration of that command's execution. Thus, the
owner of an sees file can modify it at will. Other users whose login names or
group IDs are in the "user list" for that file (but are not the owner) are given
the necessary permissions only for the duration of the execution of the interface
program. Other users are thus able to modify the sees files only through the
use of delta and, possibly, rmdel and cdc. The project-dependent interface
program, as its name implies, must be custom-built for each project.

B. Formatting

The sees files are composed of lines of ASCII text arranged in six parts as
follows:

Checksum

Delta Table

A line containing the "logical" sum of all the characters
of the file (not including this checksum itself).

Information about each delta, such as type, SID, date
and time of creation, and commentary.

UNIX Programmer's Manual Languages and Support Tools-293

SCCS

User Names

Flags

Descriptive Text

Body

List of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas.

Indicators that control certain actions of various sees
commands.

Arbitrary text provided by the user; usually a summary
of the contents and purpose of the file.

Actual text that is being administered by sees,
intermixed with internal sees control lines.

Detailed information about the contents of the various sections of the file may
be found in sccsfile(5). The checksum is the only portion of the file that is of
interest below.

It is important to note that because sees files are ASeII files they may be
processed by various UNIX software commands, such as ed(I), grep(I) , and
cat(I). This is very convenient in those instances in which an sees file must
be modified manually (e.g., when the time and date of a delta was recorded
incorrectly because the system clock was set incorrectly) or when it is desired
to simply look at the file.

Caution: Extreme care should be exercised when modifying SCCS files with
non-SCCS commands.

C. Auditing

On rare occasions, perhaps due to an operating system or hardware
malfunction, an sees file or portions of it (i.e., one or more "blocks") can be
destroyed. The sees commands (like most UNIX software commands) issue
an error message when a file does not exist. In addition, sees commands use
the checksum stored in the sees file to determine whether a file has been
corrupted since it was last accessed [possibly by having lost one or more blocks
or by having been modified with ed(I) 1. No sees command will process a
corrupted sees file except the admin command with the -h or -z keyletters,
as described below.

It is recommended that sees files be audited for possible corruptions on a
regular basis. The simplest and fastest way to perform an audit is to execute
the admin command with the -h keyletter on all sees files.

294-Languages and Support Tools UNIX Programmer's Manual

admin -h s.filel s.file2 ...
or

admin - h directory 1 directory2

If the new checksum of any file is not equal to the checksum in the first line of
that file, the message

corrupted file (c06)

is produced for that file. This process continues until all the files have been
examined. When examining directories (as in the second example above), the
process just described will not detect missing files. A simple way to detect
whether any files are missing from a directory is to periodically execute the
Is(1) command on that directory and compare the outputs of the most current
and the previous executions. Any file whose name appears in the previous
output but not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner in which the file is restored
depends upon the extent of the corruption. If damage is extensive, the best
solution is to contact the local UNIX system operations group and request that
the file be restored from a backup copy. In the case of minor damage, repair
through use of the editor ed(1) may be possible. In the latter case after such
repair, the following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into agreement
with the actual contents of the file. After this command is executed on a file,
any corruption that existed in the file will no longer be detectable.

UNIX Programmer' s Manual Languages and Support Tools-295

sees

AN SCCS INTERFACE PROGRAM

A. General

In order to permit UNIX system users [with different user identification
numbers (user IDs)] to use sees commands upon the same files, an sees
interface program is provided. It temporarily grants the necessary file access
permissions to these users. This part discusses the creation and use of such an
interface program. The sees interface program may also be used as a
preprocessor to sees commands since it can perform operations upon its
arguments.

B. Function

When only one user uses sees, the real and effective user IDs are the same;
and that user's ID owns the directories containing sees files. However, there
are situations (e.g., in large software development projects) in which it is
practical to allow more than one user to make changes to the same set of
Sees files. In these cases, one user must be chosen as the "owner" of the
sees files and be the one who will "administer" them (e.g., by using the
admin command). This user is termed the "sees administrator" for that
project. Since other users of sees do not have the same privileges and
permissions as the sees administrator, the other users are not able to execute
directly those commands that require write permission in the directory
containing the sees files. Therefore, a project-dependent program is required
to provide an interface to the get, delta, and if desired, rmdel, cdc, and unget
commands. Other sees commands either do not require write permission in
the directory containing sees files or are (generally) reserved for use only by
the administrator.

The interface program

• Must be owned by the sees administrator

• Must be executable by the new owner

• Must have the" set user on execution" bit "on" [see chmod(1) in the
UNIX Programmer's Manual-Volume 1: Commands and Utilities].

296-Languages and Support Tools UNIX Programmer's Manual

Then when executed, the effective user ID is the user ID of the administrator.
This program's function is to invoke the desired sees command and to cause
it to inherit the privileges of the sees administrator for the duration of that
command's execution. In this manner, the owner of an sees file (the
administrator) can modify it at will. Other users whose login names are in the
user list for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program.
They are thus able to modify the sees files only through the use of delta and,
possibly, rmdel and cdc.

C. Basic Program

When a UNIX system program is executed, the program is passed as argument
0, which is the name that invoked the program, and followed by any additional
user-supplied arguments. Thus, if a program is given a number of links
(names), the program may alter its processing depending upon which link
invokes the program. This mechanism is used by an sees interface program
to determine the sees command it should subsequently invoke [see exec(2) in
the UNIX Programmer's Manual- Volume 1: Commands and Utilities],

D. Linking and Use

In general, the following demonstrates the steps to be performed by the sees
administrator to create the sees interface program. It is assumed, for the
purposes of the discussion, that the interface program inter.c resides in
directory "/xl/xyz/sccs". Thus, the command sequence

cd Ixl/xyz/sccs
cc inter.c -0 inter

compiles inter.c to produce the executable module inter (the " ... " represents
other arguments that may be required). The proper mode and the "set user ID
on execution" bit are set by executing

chmod 4755 inter

For example, new links are created by

UNIX Programmer's Manual Languages and Support Tools-297

sees

In inter get
In inter delta
In inter rmdel

The names of the links may be arbitrary if the interface program is able to
determine from them the names of sees commands to be invoked.
Subsequently, any user whose shell parameter PATH [see sh(l) in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities] specifies
directory "/xllxyz/sccs" as the one to be searched first for executable
commands may execute

get -e /xl/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link "get"). The
interface program then executes "/usr/bin/get" (the actual sees get
command) upon the named file. As previously mentioned, the interface
program could be used to supply the pathname "/xl/xyz/sccs" so that the user
would only have to specify

get -e s.abc

to achieve the same results.

298-Languages and Support Tools UNIX Programmer's Manual

THE M4 MACRO PROCESSOR

GENERAL

The M4 macro processor is a front end for rational Fortran (Rat for) and the C
programming languages. The "#define" statement in C language and the
analogous "define" in Ratfor are examples of the basic facility provided by any
macro processor.

At the beginning of a program, a symbolic name or symbolic constant can be
defined as a particular string of characters. The compiler will then replace
later unquoted occurrences of the symbolic name with the corresponding string.
Besides the straightforward replacement of one string of text by another, the
M4 macro processor provides the following features:

• arguments

• arithmetic capabilities

• file manipulation

• conditional macro expansion

• string and substring functions.

The basic operation of M4 is to read every alphanumeric token (string of
letters and digits) input and determine if the token is the name of a macro.
The name of the macro is replaced by its defining text, and the resulting string
is pushed back onto the input to be rescanned. Macros may be called with
arguments. The arguments are collected and substituted into the right places in
the defining text before the defining text is rescanned.

The user also has the capability to define new macros. Built-ins and user­
defined macros work exactly the same way except that some of the built-in
macros have side effects on the state of the process. A list of 21 built-in
macros provided by the M4 macro processor can be found in Figure 5.

UNIX Programmer's Manual Languages and Support Tools-299

M4MACROS

Figure 5

Built-in Macros (Sheet 1 of 4).

Macro Function
Name

changequote Restores original
characters or
makes new quote
characters the
left and right
brackets.

changescom Changes left and right
comment markers from
the default # and new
line.

deer Returns the value of
its argument decremented
by 1.

define Defines new macros.
defn Returns the quoted

definition of its
argument (s) .

divert Diverts output to
l-out-of-IO
diversions.

300-Languages and Support Tools UNIX Programmer's Manual

Built-in Macros (Sheet 2 of 4).

Macro Function
Name

divnum Returns the number
of the currently
active diversion.

dnl Reads and discards
characters up to
and including the
next new line.

dumpdef Dumps the current
names and definitions
of items named as
arguments.

errprint Prints its arguments
on the standard
error file.

eval Prints arbitrary
arithmetic on
integers.

ifdef Determines if a
macro is currently
defined.

ifelse Performs arbitrary
conditional testing.

include Returns the contents
of the file named
in the argument. A
fatal error occurs
if the file name
cannot be accessed.

UNIX Programmer's Manual Languages and Support Tools-30!

M4MACROS

Built-in Macros (Sheet 3 of 4).

Macro Function
Name

iner Returns the value of
its argument
incremented by 1.

index Returns the position
where the second
argument begins in
the first argument
pf index.

len Returns the number of
characters that makes
its argument.

m4exit Causes immediate
exit from M4.

m4wrap Pushes the exit code
back at final EOF.

maketemp Facilitates making
unique file names.

popdef Removes current
definition of its
argument (s)
exposing any previous
definitions.

pushdef Defines new macros
but saves any
previous definition.

302-Languages and Support Tools UNIX Programmer's Manual

Built-in Macros (Sheet 4 of 4).

Macro Function
Name

shift Returns all arguments
of shift except the
first argument.

sinclude Returns the contents
of the file named
in the arguments.
The macro remains
silent and continues
if the file is
inaccessi ble.

substr Produces substrings
of strings.

syscmd Executes the UNIX System
command given in
the first argument.

traceoff Turns macro trace off.
traceon Turns the macro trace on.
translit Performs character

transliteration.
undefine Removes user-defined

or built-in macro
definitions.

undivert Discards the diverted
text.

To use the M4 macro processor, input the following command:

m4 [optional files]

Each argument file is process(!d in order. If ,there are no arguments or if an
argument is "-", the standard input is read at that point. The processed text
is written on the standard output which may be captured for subsequent

UNIX Programmer's Manual Languages and Support Tools-303

M4MACROS

processing with the following input:

m4 [files] >outputfile

DEFINING MACROS

The primary built-in function of M4 is define. Define is used to define new
macros. The following input:

define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of
name will be replaced by stuff. Name must be alphanumeric and must begin
with a letter (the underscore counts as a letter). Stuff is any text that contains
balanced parentheses. Use of a slash may stretch stuff over multiple lines.
Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100 and uses the symbolic constant N in a later if statement.

The left parenthesis must immediately follow the word define to signal that
define has arguments. If a user-defined macro or built-in name is not followed
immediately by "(", it is assumed to have no arguments. Macro calls have the
following general form:

name (arg 1 ,arg2, ... argn)

A macro name is only recognized as such if it appears surrounded by
nonalphanumerics. Using the following example:

304-Languages and Support Tools UNIX Programmer's Manual

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N even though
the variable contains a lot of Ns.

Macros may be defined in terms of other names. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100. If N is redefined and subsequently changes,
M retains the value of 100 not N.

The M4 macro processor expands macro names into their defining text as soon
as possible. The string N is immediately replaced by 100. Then the string M
is also immediately replaced by 100. The overall result is the same as using
the following input in the first place:

define(M, 100)

The order of the definitions can be interchanged as follows:

define (M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is requested later,
the result is the value of N at that time (because the M will be replaced by N
which will be replaced by 100).

The more general solution is to delay the expansion of the arguments of define
by quoting them. Any text surrounded by left and right single quotes is not
expanded immediately but has the quotes stripped off. The value of a quoted
string is the string stripped of the quotes. If the input is

UNIX Programmer's Manual Languages and Support Tools-305

M4MACROS

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is being collected.
The results- of using quotes is to define M as the string N, not 100. The
general rule is that M4 always strips off one level of single quotes whenever it
evaluates something. This is true even outside of macros. If the word define is
to appear in the output, the word must be quoted in the input as follows:

'define' = 1;

Another example of using quotes is redefining N. To redefine N, the
evaluation must be delayed by quoting

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first argument of a macro. The following
example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is equivalent to
the following statement:

define (1 00, 200)

This statement is ignored by M4 since only things that look like names can be
defined.

306-Languages and Support Tools UNIX Programmer's Manual

If left and right single quotes are not convenient for some reason, the quote
characters can be changed with the following built-in macro:

changequote([,])

The built-in changequote makes. the new quote characters the left and right
brackets. The original characters can be restored by using changequote without
arguments as follows:

changeq uote

There are two additional built-ins related to define. The undefine macro
removes the definition of some macro or built-in as follows:

undefine('N')

The macro removes the definition of N. Built-ins can be removed with
undefine, as follows:

undefine('define')

But once removed, the definition cannot be reused.

The built-in ifdef provides a way to determine if a macro is currently defined.
Depending on the 'system, a definition appropriate for the particular machine
can be made as follows:

ifdef('pdpll', 'define(wordsize,16)')
ifdef('u3b', 'define(wordsize,32)')

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first argument is
defined, the value of ifdef is the second argument. If the first argument is not

UNIX Programmer's Manual Languages and Support Tools-307

M4MACROS

defined, the value of ifdef is the third argument. If there is no third argument,
the value of ifdef is null. If the name is undefined, the value of ifdef is then
the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

ARGUMENTS

So far the simplest form of macro processing has been discussed which is
replacing one string by another (fixed) string. User-defined macros may also
have arguments, so different invocations can have different results. Within the
replacement text for a macro (the second argument of its define), any
occurrence of $n is replaced by the nth argument when the macro is actually
used. Thus, the macro bump defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1. The 'bump (x) , statement is
equivalent to 'x = x + 1.'

A macro can have as many arguments as needed, but only the first nine are
accessible ($1 through $9). The macro name is $0 although that is less
commonly used. Arguments that are not supplied are replaced by null strings,
so a macro can be defined which simply concatenates its arguments like this:

define(ca~ $1$2$3$4$5$6$7$8$9)

Thus, 'cat(x, y, z)' is equivalent to 'xyz'. Arguments $4 through $9 are null
since no corresponding arguments were provided. Leading unquoted blanks,
tabs, or newlines that occur during argument collection are discarded. All
other white space is retained. Thus:

define (a, b c)

308-Languages and Support Tools UNIX Programmer's Manual

defines 'a' to be 'b c'.

Arguments are separated by commas; however, when commas are within
parentheses, the argument is not terminated nor separated. For example,

define (a, (b,c»

has only two arguments. The first argument is a. The second is literally (b,e).
A bare comma or parenthesis can be inserted by quoting it.

ARITHMETIC BUILT-INS

The M4 provides three built-in functions for doing arithmetic on integers
(only). The simplest is ioer which increments its numeric argument by 1. The
built-in deer decrements by 1. Thus to handle the common programming
situation where a variable is to be defined as "one more than N', use the
following:

define(N, 100)
define(Nl, 'incr(N)')

Then N 1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called eval which is
capable of arbitrary arithmetic on integers. The operators in decreasing order
of precedence are

unary + and-
** or A (exponentiation)
* I % (modulus)
+ -
== != < <= > >=

(not)
& or & & (logical and)
I or II (logical or).

UNIX Programmer's Manual Languages and Support Tools-309

M4MACROS

Parentheses may be used to group operations where needed. All the operands
of an expression given to eval must ultimately be numeric. The numeric value
of a true relation (like 1> 0) is 1 and false is O. The precision in eval is 32 bits
under the UNIX operating system.

As a simple example, define M to be "2==== N + 1" using eval as follows:

define(N, 3)
define(M, 'eval (2====N+ I)')

The defining text for a macro should be quoted unless the text is very simple.
Quoting the defining text usually gives the desired result and is a good habit to
get into.

FILE MANIPULATION

A new file can be included in the input at any time by the built-in function
include. For example,

incl ude (filename)

inserts the contents of filename in place of the include command. The contents
of the file is often a set of definitions. The value of include (include's
replacement text) is the contents of the file. If needed, the contents can be
captured in definitions, etc.

A fatal error occurs if the file named in include cannot be accessed. To get
some control over this situation, the alternate form sinclude can be used. The
built-in sinclude (silent include) says nothing and continues if the file named
cannot be accessed.

The output of M4 can be diverted to temporary files during processing, and the
collected material can be output upon command. The M4 maintains nine of
these diversions, numbered 1 through 9. If the built-in macro

310-Languages and Support Tools UNIX Programmer's Manual

divert(n)

is used, all subsequent output is put onto the end of a temporary file referred to
as n. Diverting to this file is stopped by the divert or divert(O) command which
resumes the normal output process.

Diverted text is normally output all at once at the end of processing with the
diversions output in numerical order, Diversions can be brought back at any
time by appending the new diversion to the current diversion. Output diverted
to a stream other than 0 through 9 is discarded. The built-in undivert brings
back all diversions in numerical order. The built-in undivert with arguments
brings back the selected diversions in the order given. The act of undiverting
discards the diverted text (as does diverting) into a diversion whose number is
not between 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore, the diverted
material is not rescanned for macros. The built-in divnum returns the number
of the currently active diversion. The current output stream is zero during
normal processing.

SYSTEM COMMAND

Any program in the local operating system can be run by using the syscmd
built-in. For example,

syscmd(date)

on the UNIX system runs the date command. Normally, syscmd would be
used to create a file for a subsequent include. To facilitate making unique file
names, the built-in maketemp is provided with specifications identical to the
system funCtion mktemp. The maketemp macro fills in a string of XXXXX in
the argument with the process id of the current process.

UNIX Programmer's Manual Languages and Support Tools-311

M4MACROS

CONDITIONALS

Arbitrary conditional testing is performed via built-in ifelse. In the simplest
form

ifelse(a, b, c, d)

compares the two strings a and b. If a and b are identical, ifelse returns the
string c. Otherwise, string d is returned. Thus, a macro called compare can be
defined as one which compares two strings and returns "yes" or "no" if they
are the same or different as follows:

define(compare, 'ifelse($l, $2, yes, no)')

Note the quotes which prevents evaluation of ifelse occurring too early. If the
fourth argument is missing, it is treated as empty.

The built-in ifelse can actually have any number of arguments and provides a
limited form of multiway decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same
as e, the result is f Otherwise, the result is g. If the final argument is
omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

312-Languages and Support Tools UNIX Programmer's Manual

STRING MANIPULATION

The built-in len returns the length of the string (number of characters) that
makes up its argument. Thus:

len (abcdef)

is 6, and len«a,b» is 5.

The built-in substr can be used to produce substrings of strings. Using input,
substr(s, i, n) returns the substring of s that starts at the ith position (origin
zero) and is n characters long. If n is omitted, the rest of the string is
returned. Inputting

substr{'now is the time',I)

returns the following string:

ow is the time.

If i or n are out of range, various actions occur.

The built-in index(sl, s2) returns the index (position) in sl where the string s2
occurs or -1 if it does not occur. As with substr, the origin for strings is O.

The built-in trans lit performs character transliteration and has the general
form

translit (s, f, t)

which modifies s by replacing any character found in f by the corresponding
character of t. Using input

UNIX Programmer's Manual Languages and Support Tools-313

M4MACROS

translit (s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than J,
characters that do not have an entry in t are deleted. As a limiting case, if t is
not present at all, characters from fare deleted from s. So

translit (s, aeiou)

would delete vowels from s.

There is also a built-in called dol that deletes all characters that follow it up to
and including the next new line. The dDI macro is useful mainly for throwing
away empty lines that otherwise tend to clutter up M4 output. Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of the definition.
So the new line is copied into the output where it may not be wanted. If the
built-in dol is added to each of these lines, the newlines will disappear.
Another method of achieving the same results is to input

divert(- 1)
definet . .)

divert.

PRINTING

The built-in errpriDt writes its arguments out on the standard error file. An
example would be

314-Languages and Support Tools UNIX Programmer's Manual

errprint('fatal error')

The built-in dumpdef is a debugging aid that dumps the current names and
definitions of items named as arguments. If no arguments are given, then all
current names and definitions are printed. Do not forget to quote the names.

UNIX Programmer's Manual Languages and Support Tools-315

M4 MACROS

NOTES

316-Languages and Support Tools UNIX Programmer's Manual

THE awk PROGRAMMING LANGUAGE

GENERAL

The awk is a file-processing programming language designed to make many
common information and retrieval text manipulation tasks easy to state and
perform. The awk:

• Generates reports

• Matches patterns

• Validates data

• Filters data for transmission.

PROGRAM STRUCTURE

The awk program is a sequence of statements of the form

pattern {action}
pattern {action}

The awk program is run on a set of input files. The basic operation of awk is to
scan a set of input lines, in order, one at a time. In each line, awk searches for
the pattern described in the awk program, then if that pattern is found in the
input line, a corresponding action is performed. In this way, each statement of
the awk program is executed for a given input line. When all the patterns are
tested, the next input line is fetched; and the awk program is once again
executed from the beginning.

In the awk command, either the pattern or the action is omitted, but not both.
If there is no action for a pattern, the matching line is simply printed. If there
is no pattern for an action, then the action is performed for every input line.

UNIX Programmer's Manual Languages and Support Tools-317

awk

The null awk program does nothing. Since patterns and actions are both
optional, actions are enclosed in braces to distinguish them from patterns.

For example, this awk program

Ixl {print}

prints every input line that has an "x" in it.

An awk program has the following structure:

- a <BEGIN> section
- a < record> or main section
- an < END> section.

The <BEGIN> section is run before any input lines are read, and the
<END> section is run after all the data files are processed. The <record>
section is data driven. That is, it is the section that is run over and over for
each separate line of input.

Values are assigned to variables from the awk command line. The <BEGIN>
section is run before these assignments are made.

The words "BEGIN" and "END" are actually patterns recognized by awk.
These are discussed further in the pattern section of this guide.

318-Languages and Support Tools UNIX Programmer's Manual

LEXICAL CONVENTION

All awk programs are made up of lexical units called tokens. In awk there are
eight token types:

1. numeric constants

2. string constants

3. keywords

4. identifiers

5. operators

6. record and file tokens

7. comments

8. separators.

Numeric Constants

A numeric constant is either a decimal constant or a floating constant. A
decimal constant is a nonnull sequence of digits containing at most one decimal
point as in 12, 12., 1.2, and .12. A floating constant is a decimal constant
followed by e or E followed by an optional + or - sign followed by a nonnull
sequence of digits as in 12e3, 1.2e3, 1.2e-3, and 1.2E +3. The maximum size
and precision of a numeric constant are machine dependent.

String Constants

A string constant is a sequence of zero or more characters surrounded by
double quotes as in "," "a", !lab", and "12". A double quote is put in a string by
proceeding it with \ as in "He said, \ Sit! \"". A newline is put in a string by
using \n in its place. No other characters need to be escaped. Strings can be
(almost) any length.

UNIX Programmer's Manual Languages and Support Tools-319

awk

Keywords

Strings used as keywords are shown in Figure 6.

Figure 6

Strings Used As Keywords.
Keywords

begin break length
end close log
FILENAME continue next
FS close number
NF exit print
NR exp printf
OFS for split
ORS getline sprintf
OFMT if sqrt
RS in string

index substr
int while

Identifiers

Identifiers in awk serve to denote variables and arrays. An identifier is a
sequence of letters, digits, and underscores, beginning with a letter or an
underscore. Uppercase and lowercase letters are different.

Operators

The awk has assignment, arithmetic, relational, and logical operators similar to
those in the C programming language and regular expression pattern matching
operators similar to those in the UNIX operating system program egrep and
lex.

320-Languages and Support Tools UNIX Programmer's Manual

Assignment operators are shown in Figure 7.

Figure 7

Symbols and Descriptions for Assignment Operators.

Assignment Operators

Symbol Usage Description

== assignment
+== plus-equals X + == Y is similar

to X == X+Y

-- minus-equals X - == Y is similar
to X == X-Y

*== times-equals X * == Y is similar
to X == X*y

/== divide-equals X == Y is similar
to X == X/Y

%== mod-equals X%==y is similar
to X == X% Y

++ prefix and + + X and FBX ++ are similar
postfix to X==X +1
increments

- prefix and - and X similar
postfix to X == X-I
decrements

UNIX Programmer's Manual Languages and Support Tools-321

awk

Arithmetic operators are shown in Figure 8.

Figure 8

Symbols and Descriptions for Arithmetic Operators.

Arithmetic Operators

Symbol Description
.R

+ unary binary plus
- unary and binary minus

* multiplication
/ division
% modulus
C ••) grouping

Relational operators are shown in Figure 9.

Figure 9

Symbols and Descriptions for Relational Operators.

Relational Operators

Symbol Description

< less than
<= less than or equal to
-- equal to
!= not equal to
>= greater than or equal to
> grea ter than

322-Languages and Support Tools UNIX Programmer's Manual

Logical operators are shown in Figure 10.

Figure 10

Symbols and Descriptions for Logical Operators.

Logical Operators

Symbol Description

&& and
! ! or
! not

Regular expression matching operators are shown in the Figure 11.

Figure 11

Symbols and Descriptions for Regular Expression Pattern.

Regular Expression Pattern Matching Operators

Symbol Description

- matches
!- does not match

Record and Field Tokens

The $0 is a special variable whose value is that of the current input record. The
$1, $2 ... are special variables whose values are those of the first field, the
second field, ... , respectively, of the current input record. The keyword NF
(Number of Fields) is a special variable whose value is the number of fields in
the current input records. Thus $NF has, as its value, the value of the last
field of the current input records. Notice that the field of each record is
numbered 1 and that the number of fields can vary from record to record.

UNIX Programmer's Manual Languages and Support Tools-323

awk

None of these variables is defined in the action associated with a BEGIN or
END pattern, where there is no current input record.

The keyword NR (Number of Records) is a variable whose value is the number
of input records read so far. The first input record read is 1.

Record Separators

The keyword RS (Record Separators) is a variable whose value is the current
record separator. The value of RS is initially set to newline, indicating that
adjacent input records are separated by a newline. Keyword RS is changed to
any character c by including the assignment statement RS = "c" in an action.

Field Separator

The keyword FS (Field Separator) is a variable indicating the current field
separator. Initially, the value of FS is a blank, indicating that fields are
separated by white space, i.e., any nonnUll sequence of blanks and tabs.
Keyword FS is changed to any single character c by including the assignment
statement F = "c" in an action or by using the optional command line
argument -Fc. Two values of c have special meaning, space and t. The
assignment statement FS = " " makes white space in field separator; and on the
command line, -Ft makes tab the field separator.

If the field operator is not a blank, then there is a field in the record on each
side of the separator. For instance, if the field separator is 1, the record lXXXl
has three fields. The first and last are null. If the field separator is blank, then
fields are separated by white space, and none of the NF fields are null.

Multiline Records

The assignment RS = " " makes an empty line the record separator and makes
a non null sequence (consisting of blanks, tabs, and possibly a newline) the field
separator. With this setting, none of the first NF fields of any record are null.

324-Languages and Support Tools UNIX Programmer's Manual

Output Record and Field Separators

The value of OFS (Output Field Separator) is the output field separator. It is
put between fields by print. The value of ORS (Output Record Separators) is
put after each record by print. Initially, ORS is set to a newline and OFS to a
space. These values may change to any string by assignments such as ORS =
"abc" and OFS = "xyz".

Comments

A comment is introduced by a # and terminated by a newline. For example:
part of the line is a comment

A comment can be appended to the end of any line of an awk program.

Separators and Brackets

Tokens in awk are usually separated by nonnull sequences of blank, tabs, and
newlines, or by other punctuation symbols such as commas and semicolons.
Braces {...} surround actions, slashes / .. .1 surround regular expression patterns,
and double quotes " ... " surround strings.

PRIMARY EXPRESSIONS

In awk, patterns and actions are made up of expressions. The basic building
blocks of expressions are the primary expressions:

numeric constants
string constant
var
function

Each expression has both a numeric and a string value, one of which is usually
preferred. The rules for determining the preferred value of an expression are
explained below.

UNIX Programmer's Manual Languages and Support Tools-325

awk

Numeric Constants

The format of a numeric constant was defined previously in LEXICAL
CONVENTIONS. Numeric values are stored as floating point numbers. Both
the numeric and string value of a numeric constant is the decimal number
represented by the constant. The preferred value is the numeric value.
Numeric values for string constants are ·in Figure 12.

Figure 12

Numeric Values for String Constants.

Numeric Constants

Numeric Numeric String
Constant Value Value

0 0 0
1 1 1

.5 0.5 .5

.5e2 50 50

String Constants

The format of a string constant was defined previously in LEXICAL
CONVENTIONS. The numeric value of a string constant is 0 unless the string
is a numeric constant enclosed in double quotes. In this case, the numeric
value is the number represented. The preferred value of a string constant is its
string value. The string value of a string constant is always the string itself.
String values for string constants are in Figure 13.

A var is one of the following:

identifier
identifier {expression}
$ term

326-Languages and Support Tools

Vars

UNIX Programmer's Manual

Figure 13

String Values for String Constants.

String Constants

String Numeric String
Constant Value Value

"" 0 empty space
"a" 0 a
"XYZ" 0 xyz
"0" 0 0
"1 " 1 1
".5" 0.5 .5
".5e2" 0.5 .5e2a

The numeric value of any uninitialized var is 0, and the string value is the
empty string.

An identifier by itself is a simple variable. A var of the form identifier
{expression} represents an element of an associative array named by identifier.
The string value of expression is used as the index into the array. The
preferred value of identifier or identifier {expression} is determined by context.

The var $0 refers to the current input record. Its string and numeric values are
those of the current input record. If the current input record represents a
number, then the numeric value of $0 is the number and the string value is the
literal string. The preferred value of $0 is string unless the current input
record is a number. The $0 cannot be changed by assignment.

The var $1, $2, ... refer to fields 1, 2, ... of the current input record. The
string and numeric value of $i for 1 < =i < = NF are those of the ith field of the
current input record. As with $0, if the ith field represents a number, then the
numeric value of $i is the number and the string value is the literal string. The
preferred value of $i is string unless the ith field is a number. The $i is changed
by assignment. The $0 is then changed accordingly.

UNIX Programmer's Manual Languages and Support Tools-327

awk

In general, $term refers to the input record if term has the numeric value 0
and to field i if the greatest integer in the numeric value of term is i. If i < 0 or
if i>=lOO, then accessing $i causes awk to produce an error diagnostic. If
NF < i < = 1 00, then $i behaves like an uninitialized var. Accessing $i for i >
NF does not change the value of NF.

Function

The awk has a number of built-in functions that perform common arithmetic
and string operations. The arithmetic functions are in Figure 14.

Figure 14

Built-in Functions for Arithmetic and String Operations.

Functions

exp (expression)
int (expression)
log (expression)
sqrt (expression)

These functions (exp, int, log, and sqrt) compute the exponential, integer part,
natural logarithm, and square root, respectively, of the numeric value of
expression. The (expression) may be omitted; then the function is applied to
$0. The preferred value of an arithmetic function is numeric. String functions
are shown in Figure 15.

The function getline causes the next input record to replace the current record.
It returns 1 if there is a next input record or a 0 if there is no next input
record. The value of NR is. updated.

The function index (el,e2) takes the string value of expressions el and e2 and
returns the first position of where e2 occurs as a substring in el. If e2 does not
occur in el, index returns O. For example, index ("abc", "be") =2 and index
("abc", "ac") =0.

328-Languages and Support Tools UNIX Programmer's Manual

Figure 15

Expressions for String Functions.

String Functions

getline
index (expression 1, expression2)
length (expression)
split (expression, identifier, expression2)
split (expression, identifier)
sprintf (format, expression 1, expression2 ...)
substr (expression 1, expression2)
substr (expression 1, expression2, expression3)

The function length without an argument returns the number of characters in
the current input record. With an expression argument, length (e) returns the
number of characters in the string value of e. For example, length ("abc") =3
and length (17) =2.

The function split (e array, sep) splits the string value of expression e into
fields that are then stored in array [I}, array [2}, ... , array [n} using the string
value of sep as the field separator. Split returns the number of fields found in e.
The function split (e, array) uses the current value of FS to indicate the field
.separator. For example, after invoking n = split (SO), aU], a[2, ... , a[n] is the
same sequence of values as $1, S2 .•• , $NF.

The fu,p.ction splitf (f, el, e2 •••) produces the value of expressions el, e2 •.•
in the format specified by the string value of the expression f. The format
control conventions are those of the printf statement in the C programming
language [KR).

The function substr (string, pos) returns the suffix of string starting at position
pos. The function substr (string, pos, length) returns the substring of string
that begins at position pos and is length characters long. If pos + length is
greater than the length of string then substr (string, pos, length) is equivalent
to substr (string, pos). For example, substr ("abc", 2, 1)=:. "b", substr ("abc",
2, 2) = "be", and subtr ("abc", 2, 3) = "be". Positions less than J ~re taken as
1. A negative or zero length produces a null result.

UNIX Programmer's Manual Language~ and Support Tools-32g

awk

The preferred value of sprintf and substr is string. The preferred value of the
remaining string functions is numeric.

TERMS

Various arithmetic operators are applied to primary expressions to produce
larger syntactic units called terms. All arithmetic is done in floating point. A
term has one of the following forms:

primary expression
term binop term
unop term
incremented var
(term)

In a term of the form

termi
binop
term2

Binary Terms

binop can be one of the five binary arithmetic operators +, ~, *
(multiplication), / (division), % (modulus). The binary operator is applied to
the numeric value of the operand termi and term2, and the result is the usual
numeric value. This numeric value is the preferred value, but it call be
interpreted as a string value (see Numeric Constants). The operators * , /, and
% have higher precedence than + and -. All operators are left associatfve.

Unary Term

In a term of the form

unop term

unop can be unary + or -. The unary operator is applied to the numeric value
of term, and the result is the usual numeric value which is preferred. However,

3'30-Languages and Support Tools UNIX Programmer's Manual

it can be interpreted as a string value. Unary + and - have higher precedence
than *, I, and %

Incremented Vars

An incremented var has one of the forms

+ + var
- - var
var + +
var --

The + + var has the value var + 1 and has the effect of var == var + 1.
Similarly, - - var has the value var - 1 and has the effect of var = var - 1.
Therefore, var + + has the same value as var and has the effect of var == var
+ 1. Similarly, var - - has the same value as var and has the effect of var =

var - 1. The preferred value of an incremented var is numeric.

Parenthesized Terms

Parentheses are used to group terms in the usual manner.

EXPRESSIONS

,awk expression is one of the following:

term
term term .. ,
vat asgnop expression

Concatenation of Terms

In an expression of the form term1 term2 ... , the string value of the terms are
concatenated. The preferred value of the resulting expression is a string value
that can be interpreted as a numeric value. Concatenation of terms has lower
precedence than binary + and -. For example, 1 +2 3=4 has the string {and
numeric} value 37.

UNIX Programmer's Manual Languages and Support Tools-331

awk

Assignment Expressions

An assignment expression is one of the forms

var asgnop expression

where asgnop is one of the six assignment operators:

+=

*=
/=
%=

The preferred value of var is the same as that of expression.

In an expression of the form

var = expression

the numeric and string value of var becomes those of expression.

var op = expression

is equivalent to

var = var op expression

where op is one of; +, -, *, /, %. The asgnops are right as~ociative and have
the lowest precedence of any operator. Thus, a += b 11"-= c-2 is equivalent to
the sequence of assignments

b = b * (0-2)
a = a+2

332-Languages and Support Tools UNIX Programmer's Manual

USING awk

There are two ways in which to present your awk program of pattern-action
statements to awk for processing:

1. If the program is short (a line or two), it is often easiest to make the
program the first argument on the command line:

awk ' program ' files

where "files" is an optional list of input files and "program" is your awk
program. Note that there are single quotes around the program in order
for the shell to accept the entire string (program) as the first argument to
awk. For example, write to the shell

awk ' Ixl {print} , files

to run the awk script Ixl {print} on the input file "files". If no input files
are specified, awk takes input from the standard input stdin. You can also
specify that input comes from stdin by using "-" (the hyphen) as one of the
files. The pattern-action statement

awk 'program' files -

looks for input from "files" and from stdin and processes first from "files"
and then from stdin.

2. Alternately, if your awk program is long, it is more convenient to put the
.,program in a separate file; awkprog, and tell awk to fetch it from there.
ll:tjs is done by using the "-f" option after the awk command as follows:

awk -f aWkprogfiles

where "files" is an optional. Jist of input files that may include stdin as is
indicated by a hyphen (-). .

For example:

UNIX Programmer's Manual Languao"'l, and Support Tools-333

awk

awk' BEGIN {
print "hello, world"
exit

prints

hello, world

on the standard output when given to the shell. Recall that the word "BEGIN"
is a special pattern indicating that the action following in braces is run before
any data is read. Words "print" and "exit" are both discussed in later sections.

This awk program could be run by putting

BEGIN {
print "hello, world"
exit
}

in a file named awkprog , and then the command

awk -f awkprog

given to the shell. This would have the same effect as the first procedure.

INPUT: RECORDS AND FIELDS

The awk reads its input one record at a time unless changed by you,/A. record
is a sequence of characters from the input ending with a newLi...rlt(~haracter or
with an end of file. Thus, a record is a line of input. Th~aw1Z program reads in
characters until it encounters a newline or end of file... The string of characters,
thus read, is assigned to the variable $O.Yoll: C:d~ change the character that
indicates the end of a record by assigning-a new character to tbe special
variable RS (the record separator). Assignment of values to variables and these
special variables such as RS are disc~fissed later.

334-Languages and SUl"~.",rt Tools UNIX Programmer's Manual

Once awk has read in a record, it then splits the record into "fields". A field is a
string of characters separated by blanks or tabs, unless you specify otherwise.
You may change field separators from blanks or tabs to whatever characters
you choose in the same way that record separators are changed. That is, the
special variable FS is assigned a different value.

As an example, let us suppose that the file "countries" contains the area in
thousands of square miles, the population in millions, and the continent for the
ten largest countries in the world. (Figures are from 1978; Russia is placed in
Asia.)

Sample Input File "countries":

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia
India 1269 637 Asia
Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide spaces are tabs in the original input and a single blank separates
North and South from America. We use this data as the input for many of the
awk programs in this guide since it is typical of the type of material that awk
is best at processing (a mixture of words and numbers separated into fields or
columns separated by blanks and tabs).

Each of these lines has either four or five fields if blanks and/or tabs separate
the fields. This is what awk assumes unless told otherwise. In the above
example, the first record is

Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable SO. If you want
to refer to this entire record, it is done through the variable, SO.

UNIX Programmer's Manual Languages and Support Tools-335

awk

For example, the following input:

{print $O}

prints the entire record. Fields within a record are assigned to the variables $1,
$2, $3, and so forth; that is, the first field of the present record is referred to as
$1 by the awk program. The second field of the present record is referred to as
$2 by the awk program. The ith field of the present record is referred to as $i
by the awk program. Thus, in the above example of the file countries, in the
first record;

$1 is equal to the string "Russia"
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string "Asia"
$5 is equal to the null string

... and so forth.

To print the continent, followed by the name of the country, followed by its
population, use the following awk script:

{print $4, $1, $3}

Note that awk does not require type declarations.

INPUT: FROM THE COMMAND LINE

It is possible to assign values to variables from within an awk program.
Because you do not declare types of variables, a variable is created simply by
referring to it. An example of assigning a value to a variable is:

x-5

This statement in an awk program assigns the value 5 to the variable x. It is
also possible to assign values to variables from the command line. This
provides another way to supply input values to awk programs.

336-Languages and Support Tools UNIX Programmer's Manual

For example

awk ' {print x }' x=5 -

will print the value 5 on the standard output. The minus sign at the end of this
command is necessary to indicate that input is coming from stdin instead of a
file called "x=5". Similarly if the input comes from a file named "file", the
command is

awk '{print x}' file

It is not possible to assign values to variables used in the BEGIN section in this
way.

If it is necessary to change the record separator and the field separator, it is
useful to do so from the command line as in the following example:

awk -f awk.program RS=":" file

Here, the record separator is changed to the character ":". This causes your
program in the file "awk.program" to run with records separated by the colon
instead of the newline character and with input coming from the file, "file". It
is similarly useful to change the field separator from the command line.

This operation is so common that there is yet another way to change the field
separator from the command line. There is a separate option "-Fx" that is
placed directly after the command awk. This changes the field separator from
blank or tab to the character "x".

For example

awk -F: -f awk.program file

changes the field separator FS to the character ":". Note that if the field
separator is specifically set to a tab, (that is, with the - F option or by making
a direct assignment to FS) then blanks are recognized by awk as separating
fields. However, even if the field separator is specifically set to a blank, tabs
are STILL recognized by awk as separating fields.

UNIX Programmer's Manual Languages and Support Tools-337

awk

An exercise:

Using the input file ("countries" described earlier) write an awk script that
prints the name of a country followed by the continent that it is on. Do this in
such a way that continents composed of two words (e. g., North America) are
processed as only one field and not two.

OUTPUT: PRINTING

An action may have no pattern; in this case, the action is executed for all lines
as in the simple printing program

{print}

This is one of the simplest actions performed by awk. It prints each line of the
input to the output. More useful is to print one or more fields from each line.
For instance, using the file "countries", that was used earlier,

awk '{ print $1, $3 }' countries

prints the name of the country and the population:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

Note that the use of a semicolon at the end of statements in awk programs is
optional. Awk accepts

{print $1 }

and

338-Languages and Support Tools UNIX Programmer's Manual

{print $1; }

equally and takes them to mean the same thing. If you want to put two awk
statements on the same line of an awk script, the semicolon is necessary. For
example, the following semicolon is necessary if you want the number 5
printed:

{x==5; print x }

Parentheses are also optional with the print statement.

print $3, $2

is the same as

print ($3, $2)

Items separated by a comma in a print statement are separated by the current
output field separators (normally spaces, even though the input is separated by
tabs) when printed. The OFS is another special variable that can be changed
by you. These special variables are summarized in a later section.

An exercise:

Using the input file, "countries", print the continent followed by the country
followed by the population for each input record. Then pipe the output to the
UNIX operating system command "sort" so that all countries from a given
continent are printed together.

Print also prints strings directly from your programs with the awk script

{print "hello, world" }

from an earlier section.

An exercise:

Print a header to the output of the previous exercise that says "Population of
Largest. Countries" followed by headers to the columns that follow describing
what is in that column, for example, Country or Population.

UNIX Programmer's Manual Languages and Support Tools-339

awk

As we have already seen, awk makes available a number of special variables
with useful values, for example, FS and RS. We now introduce another special
variable in the next example. NR and NF are both integers that contain the
number of the present record and the number of fields in the present record,
respectively. Thus,

{print NR, NF, SO}

prints each record number and the number of fields in each record followed by
the record itself. Using this program on the file, "countries" yields:

1 4 Russia
2 5 Canada
3 4 China
4 5 USA
5 5 Brazil
6 4 Australia
7 4 India
8 5 Argentina
9 4 Sudan
10 4 Algeria

and the program

prints

1 Russia
2 Canada
3 China
4 USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

8650 262 Asia
3852 24 North America
3692 866 Asia
3615 219 North America
3286 116 South America
2968 14 Australia
1269 637 Asia
1072 26 South America
968 19 Africa
920 18 Africa

{print NR, $1 }

This is an easy way to supply sequence numbers to a list. Print, by itself,
prints the input record. Use

340-Languages and Support Tools UNIX Programmer's Manual

print ""

to print the empty line.

Awk also provides the statement printf so that you can format output as
desired. Print uses the default format "%.6g" for each variable printed.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the string,
format, and prints them. The format statement is exactly that of the printf in
the C library. For example,

{ printf "%10s %6dO, $1, $2, $3 }

prints $1 as a string of 10 characters (right justified). The second and third
fields (6-digit numbers) make a neatly columned table.

Russia 8650 262
Canada 3852 244

China 3692 866
USA 3615 219

Brazil 3286 116
Australia 2968 14

India 1269 637
Argentina 1072 26

Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced automatically. You
must add them as in this example. In the C library version of printf, the
various escape characters "\n", "\t", "\b" (backspace) and "\r" (carriage return)
are valid with the awk printf.

There is a third way that printing can occur on standard output when a pattern
is specified but there is no action to go with it. In this case, the entire record SO
is printed. For example, the program

Ixl

prints any record that contains the character "x".

UNIX Programmer's Manual Languages and Support Tools-341

awk

There are two special variables that go with printing, OFS and ORS. These
are by default set to blank and the newline character, respectively. The variable
OFS is printed on the standard output when a comma occurs in a print
statement such as

{ x="hello"; y="world"
print x,y
}

which prints

hello world

However, without the comma in the print statement as

{ x="hello"; y="world"
print x y
}

you get

helloworld

To get a comma on the output, you can either insert it in the print statement as
in this case

{ x="hello"; y="world"
print x"," y
}

or you can change OFS in a BEGIN section as in

342-Languages and Support Tools UNIX Programmer's Manual

BEGIN {OFS==", ,,}
{ x=="hello"; y=="world"
print x, y
}

both of these last two scripts yields

hello, world

Note that the output field separator is not used when SO is printed.

OUTPUT: TO DIFFERENT FILES

The UNIX operating system shell allows you to redirect standard output to a
file. The awk program also lets you direct output to many different files from
within your awk program. For example, with our input file "countries", we
want to print all the data from countries of Asia in a file called "ASIA", all the
data from countries in Africa in a file called "AFRICA", and so forth. This is
done with the following awk program:

{ if ($4 ==== "Asia") print> "ASIA"

}

if ($4 ==== "Europe") print > "EUROPE"
if ($4 ==== "North") print> "NORTH_AMERICA"
if ($4 ==== "South") print> "SOUTH_AMERICA"
if ($4 ==== "Australia") print> "AUSTRALIA"
if ($4 ==== "Africa") print> "AFRICA"

The flow of control statements (for example, "if') are discussed later.

In general, you may direct output into a file after a print or a printf statement
by using a statement of the form

print > "FILE"

where FILE is the name of the file receiving the data, and the print statement
may have any legal arguments to it.

UNIX Programmer's Manual Languages and Support Tools-343

awk

Notice that the file names are quoted. Without quotes, the file names are
treated as uninitialized variables and all output then goes to the same file.

If > is replaced by > >, output is appended to the file rather than overwriting
it.

Users should also note that there is an upper limit to the number of files that
are written in this way. At present it is ten.

OUTPUT: TO PIPES

It is also possible to direct printing into a pipe instead of a file. For example,

if ($2 ==== "XX'') print I "mail mary"

where "mary" is someone's login name, any record is sent (with the second field
equal to "XX'') to the user, mary, as mail. Awk waits until the entire program
is run before it executes the command that was piped to, in this case the "mail"
command.

For example:
{
print $1 I "sort"
}

takes the first field of each input record, sorts these fields, and then prints
them. The command in parentheses is any UNIX operating system command.

344-Languages and Support Tools UNIX Programmer's Manual

An exercise:

Write an awk script that uses the input file to

• List countries that were used previously

• Print the name of the countries

• Print the population of each country

• Sort the data so that countries with the largest population appear first

• Mail the resulting list to yourself.

Another exatpple of using a pipe for output is the following idiom which
guarantees that its output always goes to your terminal:

print ... I "cat -u > /dev/tty"

Only' one output statement to a pipe is permitted in an awk program. In all
output statements involving ,redirection of output, the files or pipes are
identified by their names but they are created and opened only once in the
entire run.

COMMENTS

Comments are placed in awk programs; they begin with the character # and
end with the end of the line as in

print x, Y # this is a comment

PATTERNS

A pattern in front of an action acts as a selector that determines if the action is
to be executed. A variety of expressions are used as patterns:

UNIX Programmer's Manual Languages and Support Tools-345

awk

• Regular expressions

• Arithmetic relational expressions

• String valued expressions

• Combinations of these.

BEGIN and END

The special pattern, BEG IN, matches the beginning of the input before the
first record is read. The pattern, END, matches the end of the input after the
last line is processed. BEGIN and END thus provide a way to gain control
before and after processing for initialization and wrapping up.

An example:

As you have seen, you can use BEGIN to put column headings on the output

BEGIN {print "Country", "Area", "Population", "Continent"}
{print}

which produces

Country Area Population Continent

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26South America
Sudan 968 19 Africa
Algeria 920 18 Africa

346-Languages and Support Tools UNIX Programmer's Manual

Formatting is not very good here; printf would do a better job and is usually
mandatory if you really care about appearance.

Recall also, that the BEGIN section is a good place to change special variables
such as FS or RS.

Example:

BEGIN { FS=" "
print "Countries", "Area", "Population", "Continent"
}
{print}

END {print "The number of records is", NR}

In this program, FS is set to a tab in the BEG IN section and as a result all
records (in the file countries) have exactly four fields.

Note that if BEGIN is present it is the first pattern; END is the last if it is
used.

Relational Expressions

An awk pattern is any expression involving comparisons between strings of
characters or numbers. For example, if you want to print only countries with
more than 100 million population, use

$3 > 100

This tiny awk program is a pattern without an action so it prints each line
whose third field is greater than 100 as follows:

Russia
China
USA
Brazil
India

8650 262
3692 866
3615 219
3286 116
1269 637

Asia
Asia
North America
South America
Asia

UNIX Programmer's Manual Languages and Support Tools-347

awk

To print the names of the countries that are in Asia, type

$4 == "Asia" {print $1}

which produces

Russia
China
India

The conditions tested are <, < =, ==, !==, > =, and >. In such relational tests
if both operands are numeric, a numerical comparison is made. Otherwise, the
operands are compared as strings. Thus,

$1 >== "S"

selects lines that begin with S, T, U, and so forth which in this case is

USA 3615
Sudan 968

219
19

North America
Africa

In the absence of other information, fields are treated as strings, so the
program

$1 === $4

compares the first and fourth fields as strings of characters and prints the single
line

348-Languages and Support Tools UNIX Programmer's Manual

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done numerically.

Regular Expressions

Awk provides more powerful capabilities for searching for strings of characters
than were illustrated in the previous section. These are regular expressions. The
simplest regular expression is a literal string of characters enclosed in slashes.

/Asia/

This is a complete awk program that prints all lines which contain any
occurrence of the name "Asia". If a line contains "Asia" as part of a larger
word like "Asiatic", it is also printed (but there are no such words in the
countries file,}

Awk regular expressions include

• Regular expression forms found in the text editor

• ed and the pattern finder

• grep in which certain characters have special meanings.

For example, we could print all lines that begin with A with

rAJ

or all lines that begin with A, B, or C with

r[ABC]!

UNIX Programmer's Manual Languages and Support Tools-349

awk

or all lines that end with "ia" with

lia$1

In general, the circumflex (A) indicates the beginning of a line. The dollar sign
($) indicates the end of the line and characters enclosed in brackets ,{}, match
anyone of the characters enclosed. In addition, awk allows parentheses for
grouping, the pipe (» for alternatives, + for "one or more" occurrences, and ?
for "zero or one" occurrences. For example,

Ixlyl {print}

prints all records that contain either an "x" or a "y".

lax+bl {print}

prints all records that contain an "a" followed by one or more "x's" followed by
a "b". For example, axb, Paxxxxxxxb, QaxxbR.

lax?bl {print}

prints all records that contain an "a" followed by zero or one "x" followed by a
"b". For example: ab, axb, yaxbPPP, CabD.

The two characters "." and "*,, have the same meaning as they have in ed:
namely, "." can stand for any character and "*,, means zero or more occurrences
of the character preceding it. For example,

la.bl

matches any record that contains an "a" followed by any character followed by
a "b". That is, the record must contain an "a" and a "b" separated by exactly
one character. For example, la.bl matches axb, aPb and xxxxaXbxx, but
NOT ab, axxb.

350-Languages and Support Tools UNIX Programmer's Manual

lab*cl

matches a record that contains an "a" followed by zero or more "b'''s followed
by a "c". For example, it matches

ac
abc
pqrabbbbbbbbbbc901

Just as in ed, it is possible to turn off the special meaning of these
metacharacters such as "",, and "*,, by preceding these characters with a
backslash. An example of this is the pattern

11.*1/

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regular expression (or
does not match it) by using the operators or !'. For example, with the input
file countries as before, the program

$1 - lia$1 {print $l}

prints all countries whose name ends in "ia ":

Russia
Australia
India
Algeria

that is indeed different from lines which end in "ia".

UNIX Programmer's Manual Languages and Support Tools-351

awk

Combinations of Patterns

A pattern is made up of similar patterns combined with the operators I (OR),
&& (AND), ! (NOT), and parentheses. For example,

$2 >= 3000&& $3 >=100

selects lines where both area AND population are large. For example,

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America

while

$4 == "Asia" I $4 == "Africa"

selects lines with Asia or Africa as the fourth field. An alternate way to write
this last expression is with a regular expression:

$1 - r (AsiaIAfrica)) $/

&& and I guarantee that their operands are evaluated from left to right;
evaluation stops as soon as truth or falsehood is determined.

352-Languages and Support Tools UNIX Programmer's Manual

Pattern Ranges

The "pattern" that selects an action may also consist of two patterns separated
by a comma as in

pa ttern 1, pa ttern2 { ... }

In this case, the action is performed for each line between an occurrence of
pattern1 and the next occurrence of pattern2 (inclusive). As an example with
no action

/ Canada/ ,IBrazil/

prints all lines between the one containing "Canada" and the line containing
"Brazil". For example,

Canada
China
USA
Brazil

while

3852
3692
3615
3286

24 North America
866 Asia
219 North America
116 South America

NR == 2, NR == 5 { .. , }

does the action for lines 2 through 5 of the input. Different types of patterns
are mixed as in

/Canada/, $4 == "Africa"

and prints all lines from the first line containing "Canada" up to and including
the next record whose fourth field is "Africa".

Users should note that patterns in this form occur OUTSIDE of the action
parts of the awk programs (outside of the braces that define awk actions). If
you need to check patterns inside an awk action (inside the braces), use a flow

UNIX Programmer's Manual Languages and Support Tools-353

awk

of control statement such as an "if" statement or a "while" statement. Flow of
control statements are discussed in the part "BUILT-IN FUNCTIONS".

ACTIONS

An awk action is a sequence of action statements separated by newlines or
semicolons. These action statements do a variety of bookkeeping and string
manipulating tasks.

Variables, Expressions, and Assignments

The awk provides the ability to do arithmetic and to store the results in
variables for later use in the program. However, variables can also store strings
of characters. You cannot do arithmetic on character strings, but you can stick
them together and pull them apart as shown. As an example, consider printing
the population density for each country in the file countries.

{print $1, (1000000 * $3)/($2 * 1000) }

(Recall that in this file the population is in millions and the area in thousands.)
The result is population density in people per square mile.

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is bad; so using printf instead gives the program

{printf "%10s %6.lfO, $1, (1000000 * $3)/($2 * 1000) }

and the output

354-Languages and Support Tools UNIX Programmer's Manual

Russia 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators are +.
-, *, / and % (mod or remainder).

To compute the total population and number of countries from Asia, we could
write

{ pop == pop + $3; n == n + 1 } /Asia/
END {print "total population of", n, "Asian countries is", pop}

which produces total population of three Asian countries is 1765.

Actually, no experienced programmer would write

{pop == pop + $3; n == n + 1 }

since both assignments are written more clearly and concisely. The better way
is

{pop +== $3; ++n }

Indeed, these operators, ++, --, -==, /==, * ==, +==, and %== are available in.
awk as they are in C. Operator x +== y has the same effect as x == x + Y but

UNIX Programmer's Manual Languages and Support Tools-355

awk

+= is shorter and runs faster. The same is true of the ++ opera tor; it adds
one to the value of a variable. The increment operators ++ and -- (as in C)
is used as prefix or as postfix operators. These operators are also used in
expressions.

Initialization of Variables

In the previous example, we did not initialize pop nor n; yet, everything worked
properly. This is because (by default) variables are initialized to the null string
which has a numerical value of O. This eliminates the need for most
initialization of variables in BEGIN sections. We can use default initialization
to advantage in this program which finds the country with the largest
population.

maxpop < $3 {
max pop = $3
country = $1
}

END {print country, maxpop}

which produces

China 866

Field Variables

Fields in awk share essentially all of the properties of variables. They are used
in arithmetic and string operations and may be assigned to and initialized to
the null string. Thus, divide the second field by 1000 to convert the area to
millions of square miles by

{ $2 /= 1000; print}

or process two fields into a third with

356-Languages and Support Tools UNIX Programmer's Manual

BEG IN {FS = " ,,}
{ $4 = 1000 * $3 I $2; print}

or assign strings to a field as in

IUSAI {$1 = "United States" ; print}

which replaces USA by United States and prints the effected line

United States 3615 219 North America

Fields are accessed by expressions; thus, $NF is the last field and $(NF-l) is
the second to the last. Note that the parentheses are needed since $NF-1 is 1
less than the values in the last field .

. String Concatenation

Strings are concatenated by writing them one after the other as in the
following example:

{ x = "hello"

}

x = x ", world"
print x

prints the usual

hello, world

With input from the file "countries", the following program:

I AI { s = s " " $1 }
END { print s }

prints

UNIX Programmer's Manual Languages and Support Tools-357

awk

Australia Argentina Algeria

Variables, string expressions, and numeric expressions may appear in
concatenations; the numeric expressions are treated as strings in this case.

Special Variables

Some variables in awk have special meanings. These are detailed here and the
complete list given.

NR

NF

FS

RS

$i

$0

OFS

ORS

OFMT

Number of the current record.

Number of fields in the current record.

Input field separator, by default it is set to a blank or tab.

Input record separator, by default it is set to the newline
character.

The ith input field of the current record.

The entire current input record.

Output field separator, by default it is set to a blank.

Output record separator, by default it is set to the newline
character.

The format for printing numbers, with the print statement, by
default is "%.6g".

FILENAME The name of the input file currently being read. This is
useful because awk commands are typically of the form

awk -f program file! file2 file3 ...

358-Languages and Support Tools UNIX Programmer's Manual

Type

Variables {and fields} take on numeric or string values according to context.
For example, in

pop += $3

pop is presumably a number, while in

country = $1

country is a string. In

maxpop < $3

the type of max pop depends on the data found in $3. It is determined when the
program is run.

In general, each variable and field is potentially a string or a number or both at
any time. When a variable is set by the assignment

v = expr

its type is set to that of expr. (Assignment also includes +=, ++, -=, and so
forth.) An arithmetic expression is of the type, "number"; a concatenation of
strings is of type "string". If the assignment is a simple copy as in

vI = v2

UNIX Programmer's Manual Languages and Support Tools-359

awk

then the type of v I becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to strings if necessary and the
comparison is made on strings.

The type of any expression is coerced to numeric by subterfuges such as

expr + 0

and to string by

expr ""

This last expression is string concatenated with the null string.

Arrays

As well as ordinary variables, awk provides I-dimensional arrays. Array
elements are not declared; they spring into existence by being mentioned.
Subscripts may have any non-null value including non-numeric strings.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to the NRth element of the array x. In fact, it is
possible in principle (though perhaps slow) to process the entire input in a
random order with the following awk program:

360-Languages and Support Tools UNIX Programmer's Manual

{ x[NR] = $0 }
END { ... program ... }

The first line of this program records each input line into the array x. In
particular, the following program

{ x[NR] = $1}

(when run on the file countries) produces an array of elements with

x[1] = "Russia"
x[2] = "Canada"
x[3] = "China"

... and so forth.

Arrays are also indexed by non-numeric values that give awk a capability
rather like the associative memory of Snobol tables. For example, we can write

/ Asia/ {pop["Asia"] += $3 }
/ Africa/ {pop[Africa] += $3 }
END print "Asia=" pop["Asia"], "Africa="pop["Africa"] }

which produces

Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a subscript in an
array reference. Thus,

area[$1] = $2

uses the first field of a line (as a string) to index the array area.

UNIX Programmer's Manual Languages and Support Tools-361

awk

BUILT IN FUNCTIONS

The function

length

is provided by awk to compute the length of a string of characters. The
following program prints each record preceded by its length:

{print length, $0 }

In this case (the variable) length means length ($O), the length of the present
record. In general, length (x) will return the length of x as a string.

Example:

With input from the file countries, the following awk program will print the
longest country name:

length ($1) > max {max = length ($1); name = $1 }
END {print name}

The function

split

split (s, array) assigns the fields of the string "s" to successive elements of the
array, "array".

362~Languages and Support Tools UNIX Programmer's Manual

For example;

split("Now is the time", w)

assigns the value "Now" to w[1], "is" to w[2], "the" to w[3] and "time" to w[4].
All other elements of the array w[], if any, are set to the null string. It is
possible to have a character other than a blank as the separator for the
elements of w. For this, use split with three elements.

n = split(s, array, sep)

This splits the string s into array[1], ... , array[nl The number of elements
found is returned as the value of split. If the sep argument is present, its first
character is used as the field separator; otherwise, FS is used. This is useful if
in the middle of an awk script, it is necessary to change the record separator
for one record.

Also provided by the awk are the

Math Functions

sqrt,
log,
exp
int,

They provide the square root function, the base e logarithm function,
exponential and integral part functions. This last function returns the greatest
integer less than or equal to its argument. These functions are the same as
those of the C library (int corresponds to the libc floor function) and so they
have the same return on error as those in libc. (See the UNIX Programmer's
Manual- Volume 2: System Calls and Library Routines.)

The subtract function

substr

UNIX Programmer's Manual Languages and Support Tools-363

awk

substr(s,m,n) produces the substring of s that begins at position m and is at
most n characters long. If the third argument (n in this case) is omitted, the
substring goes to the end of s. For example, we could abbreviate the country
names in the file countries by

{ $1 = substr($I, 1, 3); print}

which produces

Rus 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

If s is a number, substr uses its printed image; substr(I23456789,3,4)=3456.

The function

index:

index (sl,s2) returns the leftmost position where the string s2 occurs in sl or
zero if s2 does not occur in s 1.

The function

sprintf

formats expressions as the printf statement does but will assign the resulting
expression to a variable instead of sending the results to stdout. For example,

364-Languages and Support Tools UNIX Programmer's Manual

x = sprintf("%10s %6d ", $1, $2)

sets x to the string produced by formatting the values of $1 and $2. The x is
then used in subsequent computations.

The function

getline

immediately reads the next input record. Fields NR and $0 are all set but
control is left at exactly the same spot in the awk program. Getline returns 0
for the end of file and a 1 for a normal record.

FLOW OF CONTROL

The awk provides the basic flow of control statements

• if-else

• while/fR

• for

with statement grouping as in C language.

The if statement is used as follows:

if (condition) statementl else statement2

The condition is evaluated; and if it is true, statementl is executed; otherwise,
statement2 is executed. The else part is optional. Several statements enclosed in
braces ({,}) are treated as a single statement. Rewriting the maximum
population computation from the pattern section with an if statement results in

UNIX Programmer's Manual Languages and Support Tools-365

awk

if (maxpop < $3) {
maxpop= $3
country= $1
} }

END { print country, max pop }

There is also a while statement in awk.

while (condition) statement

The condition is evaluated; if it is true, the statement is executed. The
condition is evaluated again, and if true, the statement is executed. The cycle
repeats as long as the condition is true. For example, the following prints all
input fields one per line:

i = 1
while (i < = NF) {

pint $i
++i
}

Another example is the Euclidean algorithm for finding the greatest common
divisor of $1 and $2:

{printf "the greatest common divisor of " $1 "and ", $2, "is"
while ($1 != $2) {

if ($1 > $2) $1 = $1 - $2
else $2 = $2 - $1
}

printf $1 "0
}

The for statement is like that of C.

366-Languages and Support Tools UNIX Programmer's Manual

for (expression 1 ; condition; expression2) statement

has the same effect as

so

expression 1
while (condition) {

statement
expression2
}

for 0=1 ; i <= NF; i++)
print $i

is another awk program that prints all input fields one per line.

This is an alternate form of the or statement that is suited for accessing the
elements of an associative array as is in awk.

for G in array) statement

executes statement with the variable i set in turn to each subscript of array.
The subscripts are each accessed once but in random order. Chaos will ensue if
the variable i is altered or if any new elements are created within the loop. For
example, you could use the "for" statement to print the record number followed
by the record of all input records after the main program is executed.

{xlNR] = $O}
END { forO in x) { print i, x[i] }

A more practical example is the following use of strings to index arrays to add
the populations of countries by continents:

UNIX Programmer's Manual Languages and Support Tools-367

awk

BEGIN {FS==""}
{population[$41 ==+ $3}

END (forO in population)
print i, populationli1

In this program, the body of the for loop is executed for i equal to the string
"Asia", then for i equal to the string "North America", and so forth until all the
possible values of i are exhausted; that is, until all the strings of names of
countries are used. Note, however, the order the loops are executed is not
specified. If the loop associated with "Canada" is executed before the loop
associated with the string "Russia", such a program produces

South America 26
Africa 16
Asia 637
Australia 14
North America 219

Note that the expression in the condition part of an if, while, or, for statement
can include relational operators like <, <==, >, >==, ====, and !==; it can
include regular expressions that are used with the "matching" operators - and
!-; it can include the logical operators I, & &, and !; and it also include
parentheses for grouping.

The break statement (when it occurs within a while or for loop) causes an
immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for loop) causes the
next iteration of the loop to begin.

The next statement in an awk program causes awk to skip immediately to the
next record and begin scanning patterns from the top of the program. (Note
the difference between getline and next. Getline does not skip to the top of the
awk program.)

368-Languages and Support Tools UNIX Programmer's Manual

If an exit statement occurs in the BEGIN section of an awk program, the
program stops executing and the END section is not executed (if there is one).

An exit that occurs in the main body of the awk program causes execution of
the main body of the awk program to stop. No more records are read, and the
END section is executed.

An exit in the END section causes execution to terminate at that point.

REPORT GENERATION

The flow of control statements in the last section are especially useful when
awk is used as a report generator. Awk is useful for tabulating, summarizing,
and formatting information. We have seen an example of awk tabulating in
the last section with the tabulation of populations. Here is another example of
this. Suppose you have a file "prog.usage" that contains lines of three fields;
name, program, and usage:

Smith draw 3
Brown eqn 1
lones nroff 4
Smith nroff 1
lones spell 5
Brown spell 9
Smith draw 6

The first line indicates that Smith used the draw program three times. If you
want to create a program that has the total usage of each program along with
the names in alphabetical order and the total usage, use the following program,
called list. a:

{ use[$l "" $2] +== $3}
END {for (np in use)

print np " "use[np] I "sort +0 +2nr" }

This program produces the following output when used on the input file,
prog. usage.

UNIX Programmer's Manual Languages and Support Tools-369

awk

Brown eqn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff 1

If you would like to format the previous output so that each name is printed
only once, pipe the output of the previous awk program into the following
program, called "format.a: '

if ($1 != prev) {
print $1 ":"
rev = $1
}

print " " $2 " " $3

The variable prev prints the unique values of the first field. The command

awk -f list.a prog.usage I awk -f format.a

gives the output

Brown:
eqn 1
spell 9

Jones:
nroff 4
spell 5

Smith:
draw 9
nroff 1

It is often useful to combine different awk scripts and other shell commands
such as sort as was done in the last script.

370-Languages and Support Tools UNIX Programmer's Manual

COOPERATION WITH THE SHELL

Normally, an awk program is either contained in a file or enclosed within
single quotes as in

awk '{print $1}' ...

Awk uses many of the same characters that the shell does, such as $ and the
double quote. Surrounding the program by , ... ' ensures that the shell passes
the aw k program to aw k in tact.

Consider writing an awk program to print the nth field, where n is a parameter
determined when the program is run. That is, we want a program called field
such that

field n

runs the awk program

awk '{print $n}'

How does the value of n get into the awk program?

There are several ways to do this. One is to define field as follows:

awk '{print $'$1 '}'

Spaces are critical here: as written there is only one argument, even though
there are two sets of quotes. The $1 is outside the quotes, visible to the shell,
and therefore substituted properly when field is invoked.

UNIX Programmer's Manual Languages and Support Tools-37I

awk

Another way to do this job relies on the fact that the shell substitutes for $
parameters within double quotes.

awk "{print $I}"

Here the trick is to protect the first $ with a \ \; the $1 is again replaced by the
number when field is invoked.

This kind of trickery is extended in remarkable ways, but it IS hard to
understand quickly.

MISCELLANEOUS HINTS

You can simulate the effect of multidimensional arrays by creating your own
subscripts. For example,

for (i = 1; i < = 10; i++)
for (j = 1; j <= 10; j++)

muldi "," j] = ...

creates an array whose subscripts have the form i,j; that is, 1,1; 1,2; and so
forth and thus simulate a 2-dimensional array.

372-Languages and Support Tools UNIX Programmer's Manual

THE LINK EDITOR

GENERAL

The link editor [/d(1)*] is a UNIX system support tool used on the VAX
processor and on all processors in the 3B Computer family. The Id creates
executable object files by combining object files, performing relocation, and
resolving external references. The Id also processes symbolic debugging
information. The inputs to Id are relocatable object files produced either by the
compiler [cdt) 1, the assembler [as(1)], or by a previous ld run. The Id
combines these object files to form either a relocatable or an absolute (i.e.,
executable) object file.

The Id also supports a command language that allows users to control the Id
process with great flexibility and precision. The UNIX system Id shares most
of its source with other Ids in-use on other processors and operating systems.
Therefore, the UNIX system ld provides many powerful features that mayor
may not be useful on a UNIX system.

Although the link edit process is controlled in detail through use of the Id
command language described later, most users do not require this degree of
flexibility, and the manual page obtained by typing

man ld

is sufficient instruction in the use of ld.

The command language {described later} supports the ability to

• Specify the memory configuration of the machine

• Combine object file sections in particular fashions

* Section 1 of the UNIX Programmer's Manual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual Languages and Support Tools-373

LINK EDITOR

• Cause the files to be bound to specific addresses or within specific portions
of memory

• Define or redefine global symbols at link edit time.

There are several concepts and definitions with which you should familiarize
yourself before proceeding further.

Memory Configuration

The virtual memory of the target machine is, for purposes of allocation,
partitioned into configured and unconfigured memory. The default condition is
to treat all memory as configured. It is common with microprocessor
applications, however, to have different types of memory at different addresses.
For example, an application might have 3K of PROM (Programmable Read­
Only Memory) beginning at address 0, and 8K of RAM (Read-Only Memory)
starting at 20K. Addresses in the range 3K to 20K-! are then not configured.
Un configured memory is treated as "reserved" or "unusable" by the ld.
Nothing can ever be linked into unconfigured memory. Thus, specifying a
certain memory range to be unconfigured is one way of marking the addresses
(in that range) "illegal" or "npnexistent" with respect to the linking process.
Memory configurations other. than the default must be explicitly specified by
you (the user).

Unless otherwise specified, all discussion in this document of memory,
addresses, etc. are with respect to the configured sections of the address space.

Section

A section of an object file is the smallest unit of relocation and must be a
contiguous block of memory. A section is identified by a starting address and
a size. Information describing all the sections in a file is stored in "section
headers" at the start of the file. Sections fro~ input files are combined to form
output sections that contain executable text, data, or a mixture of both.
Although there may be "holes" or gaps between input sections and between
output sections, storage is allocated contiguously within each output section and
may not overlap a hole in memory.

374-Languages and Support Tools UNIX Programmer's Manual

Addresses

The physical address of a section or symbol is the relative offset from address
zero of the address space. The physical address of an object is not necessarily
the location at which it is placed when the process is executed. For example,
on a system with paging, the address is with respect to address zero of the
virtual space, and the system performs another address translation.

Binding

It is often necessary to have a section begin at a specific, predefined address in
the address space. The process of specifying this starting address is called
"binding", and the section in question is said to be "bound to" or "bound at"
the required address. While binding is most commonly relevant to output
sections, it is also possible to bind global symbols with an assignment statement
in the ld command language.

Object File

Object files are produced both by the assembler (typically as a result of calling
the compiler) and by the ld. The ld accepts relocatable object files as input
and produces an output object file that mayor may not be relocatable. Under
certain special circumstances, the input object files given to the ld can also be
absolute files.

Files produced from the compiler/assembler always contain three sections,
called .text, .data, and .bss. The .text section contains the instruction text (for
example, executable instructions), .data contains initialized data variables, and
.bss contains uninitialized data variables. For example, if a C program
contained the global (i.e., not inside a function) declarations

int i = 100;
char abc[2001;

and the assignment

abcli1 = 0;

then compiled code from the C assignment is stored in .text. The variable i is
located in . data, and abc is located in .bss. There is an exception to the rule
however; both initialized and uninitialized statics are allocated into the .data

UNIX Programmer's Manual Languages and Support Tools-375

LINK EDITOR

section. The value of an uninitialized static in a .data section is zero.

USING THE LINK EDITOR

The ld is called by the command

ld [options] filename1 filename2 ...

Files passed to the ld must be object files, archive libraries containing object
files, or text source files containing ld directives. The ld uses the "magic
number" (in the first two bytes of the file) to determine which type of file is
encountered. If the ld does not recognize the magic number, it assumes the file
is a text file containing ld directives and attempts to parse it.

Input object files and archive libraries of object files are linked together to form
an output object file. If there are no unresolved references, this file is
executable on the target machine. An input file containing directives is
referred to as an ifile in this document. Object files have the form "name.o"
throughout the examples in this chapter. The names of actual input object files
need not follow this convention.

If you merely want to link the object files file1.o and file2.0, the following
command is sufficient:

ld file 1.0 file2.0

No directives to the ld are needed. If no errors are encountered during the link
edit, the output is left on the default file a.out. The sections of the input files
are combined in order. That is, if file1.o and file2.0 each contain the standard
sections . text, .data, and .bss, the output object file also contains these three
sections. The output .text section is a concatenation of .text from file1.0 and
.text from file2.0. The .data and .bss sections are formed similarly. The output
.text section is then bound (with the exception of 3B5 Computers) at address
OXOOOOOO. The output .data and .bss sections are link edited together into
contiguous addresses (the particular address depending on the particular
processor) .

376-Languages and Support Tools UNIX Programmer's Manual

Instead of entering the names of files to be link edited (as well as ld options on
the ld command line), this information can be placed into an ifile, and just the
ifile passed to ld. For example, if you are going to frequently link the object
files filel.o, file2.0, and file3.0 with the same options fl and f2, then enter the
command

ld -fl -f2 file 1.0 file2.0 file3.0

each time it is necessary to invoke ld. Alternatively, an ifile containing the
statements

-fl
-f2
file1.0
file2.0
file3.0

could be created, and then the following UNIX system command would serve:

ld ifilename

Note that it is perfectly permissible to specify some of the object files to be link
edited in the ifile and others on the command line-as well as some options in
the ifile and others on the command line. Input object files are link edited in
the order they are encountered, whether this occurs on the command line or in
an ifile. As an example, if a command line were

ld file 1.0 ifile file2.0

and the ifile contained

file3.0
file4.0

then the order of link editing would be: filel.o, file3.0, file4.0, and file2.0. Note
from this example that an ifile is read and processed immediately upon being
encountered in the command line.

UNIX Programmer's Manual Languages and Support Tools-377

LINK EDITOR

Options may be interspersed with file names both on the command line and in
an ifile. The ordering of options is not significant, except for the "I" and "L"
options for specifying libraries. The "I" option is a shorthand notation for
specifying an archive library, and an archive library is just a collection of
object files. Thus, as is the case with any object file, libraries are searched as
they are encountered. The "L" specifies an alternative directory for searching
for libraries. Therefore, to be effective, a "-L" option must appear before any
"-I" options.

All options for Id must be preceded by a hyphen (-) whether in the ifile or on
the Id command line. Options that have an argument (except for the "-I" and
"-L" options) are separated from the argument by white space (blanks or
tabs). The following options (in alphabetical order) are supported, though not
all options are available on each processor.

-a Produces an absolute, executable file. Messages are issued when
undefined symbols are found, and several special symbols (such as
"_end") are defined. Unless overridden by the "-r" option,
relocation information is stripped from the output file. If neither
"-r" nor "-a" is specified, "-a" is assumed. This flag applies only
to the 3B5 and 3B2 Computers.

-e ss Defines the primary entry point of the output file to be the symbol
given by the argument "ss". See "Changing the Entry Point" in
"NOTES AND SPECIAL CONSIDERATIONS" for a discussion
of how the option is used.

-fbb Sets the default fill value. This value is used to fill "holes" formed
within output sections. Also, it is used to initialize input .bss
sections when they are combined with other non-.bss input sections.
The argument "bb" is a 2-byte constant. If the "-f' option is not
used, the default fill value is zero.

-Ix Specifies a UNIX system archive library file as Id input. The
argument is a character string (less than 10 characters)
immediately following the "-I" without any intervening white
space. As an example, -Ic refers to libc.a, -IC to libC.a, etc. The
given archive library must contain valid object files as its members.

-m Produces a map or listing of the input! output sections (including
"holes") on the standard output.

378-Languages and Support Tools UNIX Programmer's Manual

-0 name Names the output object file. The argument "name" is the name of
the UNIX system file to be used as the output file. The default
output object file name is "a.out". The "name" can be a full or
partial UNIX system pathname.

-r Retains relocation entries in the output object file. Relocation
entries must be saved if the output file is to be used as an input file
in a subsequent ld call. If the -r option is used, unresolved
references do not prevent the creation of an output object file.

-s Strips line number entries and symbol table information from the
output object file. Relocation entries ("-r" option) are meaningless
without the symbol table, hence use of "-s" precludes the use of
"-r". All symbols are stripped, including global and undefined
symbols.

-t Disables checking that all instances of a multiply defined symbol
are the same size.

-u sym Introduces an unresolved external symbol into the output file's
symbol table. The argument "sym" is the name of the symbol.
This is useful for linking entirely from a library, since initially the
symbol table is empty and an unresolved reference is needed to
force the linking of an initial routine from the library.

-x Does not preserve any local (nonglobal) symbols in the output
symbol table; enter external and static symbols only. This option
saves some space in the output file.

-H Changes the type of all global symbols to "static". This option can
be used to "hide" symbols since static symbols have different
accessing rules from global symbols.

- Ldir Changes the algorithm for searching for libraries to look in dir
before looking in the default location. This option is for ld libraries
as the -I option is for compiler #include files. The "-L" option is
useful for finding libraries that are not in the standard library
directory. To be useful, this option must appear before the "-1"
option.

-M Prints a warning message for all external variables that are
multiply defined.

UNIX Programmer's Manual Languages and Support Tools-379

LINK EDITOR

- N Places the data section immediately following the text section in
memory and stores the magic number 0407 in the UNIX system
header. This prevents the text from being shared (the default).

-S Requests a 4'silent" fd run. All error messages resulting from
errors that do not immediately stop the fd run are suppressed.

- V Prints on the standard error output a "version id" identifying the fd
being run.

- VS num Takes num as a decimal version number identifying the a.out file.
that is produced. The version stamp is stored in the UNIX system
header.

LINK EDITOR COMMAND LANGUAGE

Expressions

Expressions may contain global symbols, constants, and most of the basic C
language operators. (See Figure 17, "SYNTAX DIAGRAM FOR INPUT
DIRECTIVES".) Constants are as in C with a number recognized as decimal
unless preceded with 4'0" for octal or "Ox" for hexadecimal. All numbers are
treated as long ints. Symbol names may contain uppercase or lowercase letters,
digits, and the underscore ('_'). Symbols within an expression have the value
of the address of the symbol only. The fd does not do symbol table lookup to
find the contents of a symbol, the dimensionality of an array, structure
elements declared in a C program, etc.

The fd uses a lex-generated input scanner to identify symbols, numbers,
operators, etc. The current scanner design makes the following names reserved
and unavailable as symbol names or section names:

ALIGN
ASSIGN
BLOCK

DSECT
GROUP
LENGTH

MEMORY
NOLOAD
ORIGIN

380-Languages and Support Tools

PHY
RANGE
REGION

SECTIONS
SPARE
TV

UNIX Programmer's Manual

align
assign
block

group
I
len

length
o
org

origin
phy
range

spare

The operators that are supported, in order of precedence from high to low, are
shown in Figure 16:

Figure 16

Symbols and Functions of Operators.

symbol

!--(UNARY Minus)

* 1 %

+ -(BINARY Minus)

» «
=== != > < <= >=
&
I
&&
I
= += -= *= 1=

The above operators have the same meaning as in the C language. Operators
on the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via the assignment
statement. The syntax of the assignment statement is

symbol = expression;

or

UNIX Programmer's Manual Languages and Support Tools-381

LINK EDITOR

symbol op== expression;

where op is one of the operators +, -, *, or I.

Assignment statements must be terminated by a semicolon.

All assignment statements (with the exception of the one case described in the
following paragraph) are evaluated after allocation has been performed. This
occurs after all input-file-defined symbols are appropriately relocated but before
the actual relocation of the text and data itself. Therefore, if an assignment
statement expression contains any symbol name, the address used for that
symbol in the evaluation of the expression reflects the symbol address in the
output object file. References within text and data (to symbols given a value
through an assignment statement) access this latest assigned value.
Assignment statements are processed in the same order in which they are input
to ld.

Assignment statements are normally placed outside the scope of section­
definition directive (see "Section Definition Directive" under "LINK EDITOR
COMMAND LANGUAGE"). However, there exists a special symbol, called
".", that can occur only within a section-definition directive. This symbol
refers to the current R address of the ld's location counter. Thus, assignment
expressions involving 0." are evaluated during the allocation phase of ld.
Assigning a value to the "." symbol within a section-definition directive
increments/resets ld's location counter and can create "holes" within the
section, as described in "Section Definition Directives". Assigning the value of
the"." symbol to a conventional symbol permits the final allocated address (of
a particular point within the link edit run) to be saved.

Align is provided as a shorthand notation to allow alignment of a symbol to an
n-byte boundary within an output section, where n is a power of 2. For
example, the expression

align(n)

is equivalent to

382-Languages and Support Tools UNIX Programmer's Manual

Link editor expressions may have either an absolute or a relocatable value.
When the ld creates a symbol through an assignment statement, the symbol's
value takes on that type of expression. That type depends on the following
rules:

• An expression with a single relocatable symbol (and zero or more
constants or absolute symbols) is relocatable. The value is in relation to
the section of the referenced symbol.

• All other expressions have absolute values.

Specifying a Memory Configuration

MEMORY directives are used to specify

a. The total size of the virtual space of the target machine.

b. The configured and unconfigured areas of the virtual space.

If no directives are supplied, the ld assumes that all memory is configured.
The size of the default memory is dependent upon the target machine.

By means of MEMORY directives, an arbitrary name of up to eight characters
is assigned to a virtual address range. Output sections can then be forced to be
bound to virtual addresses within specifically named memory areas. Memory
names may contain uppercase or lowercase letters, digits, and the special
characters '$', '.', or '_'. Names of memory ranges are used by ld only and are
not carried in the output file symbol table or headers.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Unconfigured memory
is not used in the ld's allocation process, and hence nothing can be link edited,
bound, or assigned to any address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with a
named memory area. This restricts the memory areas (with specific attributes)
to which an output section can be bound. The attributes assigned to output
sections in this manner are recorded in the appropriate section headers in the
output file to allow for possible error checking in the future. For example,
putting a text section into writable memory is one potential error condition.
Currently, error checking of this type is not implemented.

UNIX Programmer's Manual Languages and Support Tools-383

LINK EDITOR

The attributes currently accepted are

a. R: readable memory.

b. W: writable memory.

c. X: executable, i.e., instructions may reside in this memory.

d. I: initializable, i.e., stack areas are typically not initialized.

Other attributes may be added in the future if necessary. If no attributes are
specified on a MEMORY directive or if no MEMORY directives ·are supplied,
memory areas assume the attributes of W, R, I, and X.

The syntax of the MEMORY directive is

MEMORY
{

namel (attr) :
name2 (attr) :
etc.

origin == nl, length == n2
origin == n3, length == n4

The keyword "origin" (or "org" or "0") must precede the origin of a memory
range, and "length" (or "len" or "I") must precede the length as shown in the
above prototype. The origin operand refers to the virtual address of the
memory range. Origin and length are entered as long integer constants in
either decimal, octal, or hexadecimal (standard C syntax). Origin and length
specifications, as well as individual MEMORY directives, may be separated by
white space or a comma.

By specifying MEMORY directives, the ld can be told that memory is
configured in some manner other than the default. For example, if it is
necessary to prevent anything from being linked to the first OxlOOOO words of
memory, a MEMORY directive can accomplish this.

384-Languages and Support Tools UNIX Programmer's Manual

MEMORY
{

valid : org = Ox 10000, len = OxFEOOOO

Section Definition Directives

The purpose of. the SECTIONS directive is to describe how input sections are
to be combined, to direct where to place output sections (both in relation to
each other and to the entire virtual memory space), and to permit the renaming
of output sections.

In the default case where no SECTIONS directives are given, all input sections
of the same name appear in an output section of that name. For example, if a
number of object files from the compiler are linked, each containing the three
sections .text, .data, and .bss, the output object file also contains three sections,
.text, .data, and .bss. If two object files are linked (one that contains sections
sl and s2 and the other containing sections s3 and s4), the output object file
contains the four sections sl, s2, s3, and s4. The order of these sections would
depend on the order in which the link editor sees the input files.

UNIX Programmer's Manual Languages and Support Tools-385

LINK EDITOR

The basic syntax of the SECTIONS directive is

SECTIONS
{

secnamel :

etc.
}

{
file _specifica tions,
assignment _statements *

secname2 :
{

file _specifica tions,
assignment_statements *

The various types of section definition directives are discussed in the remainder
of this section.

File Specifications

Within a section definition, the files and sections of files to be included in the
output section are listed in the order in which they are to appear in the output
section. Sections from an input file are specified by

filename (secname)

or

filename (secnam 1 secnam2 . . .)

* These may be intermixed.

386-Languages and Support Tools UNIX Programmer's Manual

Sections of an input file are separated either by white space or commas as are
the file specifications themselves.

If a file name appears with no sections listed, then all sections from the file are
linked into the current output section. For example,

SECTIONS
{

outsecl:
{

file 1.0 (sec 1)
file2.0
file3.0 (secl, sec2)

The order in which the input sections appears in the output section "outsecl" is
given by

a. Section secl from file filel.o

b. All sections from file2.0, in the order they appear in the fiie

c. Section sec 1 from file file3.0, and then section sec2 from file
file3.0.

If there are any additional input files that contained input sections also named
"outsecl ", these sections are linked following the last section named in the
definition of "outsecl". If there are any other input sections in filel.O or
file3.0, they will be placed in output sections with the same names as the input
sections unless they are included in other file specifications.

Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is accomplished by an
ld option as shown on the following SECTIONS directive example:

UNIX Programmer's Manual Languages and Support Tools-387

LINK EDITOR

SECTIONS
{

outsec addr:
{

etc.

The "addr" is the bonding address expressed as a C constant. If "outsec" does
not fit at "addr" (perhaps because of holes in the memory configuration or
because "outsec" is too large to fit without overlapping some other output
section), ld issues an appropriate error message.

So long as output sections do not overlap and there is enough space, they can
be bound anywhere in configured memory. The SECTIONS directives defining
output sections need not be given to Id in any particular order.

The ld does not ensure that each section's size consists of an even number of
bytes or that each section starts on an even byte boundary. The assembler
ensures that the size (in bytes) of a section is evenly divisible by 4. The ld
directives can be used to force a section to start on an odd byte boundary
although this is not recommended. If a section starts on an odd byte boundary,
the section's contents are either accessed incorrectly or are not executed
properly. When a user specifies an odd byte boundary, the ld issues a warning
message.

Aligning an Output Section

It is possible to request that an output section be bound to a virtual address
that falls on an n-byte boundary, where n is a power of 2. The ALIGN option
of the SECTIONS directive performs this function, so that the option

ALIGN(n)

is equivalent to specifying a bonding address of

(. + n - 1) & - (n - 1)

388-Languages and Support Tools UNIX Programmer's Manual

For example

SECTIONS
{

outsec ALIGN (Ox20000) :
{

etc.

The output section "outsec" is not bound to any given address but is linked to
some virtual address that is a multiple of Ox20000 (e.g., at address OxO,
Ox20000, Ox40000, Ox60000, etc,).

Grouping Sections Together

The default allocation algorithm for ld

a. Links all input .text sections together into one output section.
This output section is called .text and is bound to an address of
OxO.

b. Links all input .data sections together into one output section.
This output section is called .data and (with the exception of 3B5
Computers) is bound to an address aligned to a machine
dependent constant.

c. Links all input .bss sections together into one output section.
This output section is called .bss and is allocated so as to
immediately follow the output section .data. Note that the
output section .bss is not given any particular address alignment.

Specifying any SECTIONS directives results in this default allocation not
being performed.

The default allocation of ld is equivalent to supplying the following directive:

UNIX Programmer's Manual Languages and Support Tools-389

LINK EDITOR

SECTIONS
{

.text : { }
GROUP ALIGN(align_value) :
{

.data : { }

.bss : {}

where align_value is a machine dependent constant. The GROUP command
ensures that the two output sections, .data and .bss, are allocated (e.g.,
"grouped") together. Bonding or alignment information is supplied only for
the group and not for the output sections contained within the group. The
sections making up the group are allocated in the order listed in the directive.

If . text, .data, and .bss are to be placed in the same segment, the following
SECTIONS directive is used:

SECTIONS
{

GROUP
{

.text : { }

.data : { }

.bss : { }

Note that there are still three output sections (text, .data, and .bss), but now
they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting address or
aligned simply by adding a field to the GROUP directive. To bind to
OxCOOOO, use

GROUP OxCOOOO: {

To align to OxIOOOO, use

390-Languages and Support Tools UNIX Programmer's Manual

GROUP ALIGN(Oxl0000) : {

With this addition, first the output section .text is bound at OxCOOOO (or is
aligned to Ox 1 0000); then the remaining members of the group are allocated
in order of their appearance into the next available memory locations.

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS
{

.text : { }

.data ALIGN(Ox20000) : { }

.bss : { }

The .text section starts at virtual address OxO and the .data section at a virtual
address aligned to Ox20000. The .bss section follows immediately after the
.text section if there is enough space. If there is not, it follows the .data
section.

The order in which output sections are defined to the ld cannot be used to force
a certain allocation order in the output file.

Creating Holes Within Output Sections

The special symbol dot (.) appears only within section definitions and
assignment statements. When it appears on the left side of an assignment
statement, "." causes the ld's location counter to be incremented or reset and a
"hole" left in the output section. "Holes" built into output sections in this
manner take up physical space in the output file and are initialized using a fill
character (either the default fill character (OxOO) or a supplied fill character).
See the definition of the "-f' option in "USING THE LINK EDITOR" and
the discussion of filling holes in "Initialized Section Holes or .bss Sections"
under "LINK EDITOR COMMAND LANGUAGE".

Consider the following section definition:

UNIX Programmer's Manual Languages and Support Tools-391

LINK EDITOR

outsec:
(

· += OxIOOO;
fLo (.text)
· += OxIOO;
f2.0 (.text)
· = align (4);
f3.0 (.text)

The effect of this command is as follows:

a. A OxlOOO byte hole, filled with the default fill character, is left at
the beginning of the section. Input file fl.o(.text) is linked after
this hole.

b. The text of input file f2.0 begins at OxlOO bytes following the end
of fl.o(.text).

c. The text of f3.0 is linked to start at the next full word boundary
following the text of f2.0 with respect to the beginning of
"outsec" .

For the purposes of allocating and aligning addresses within an output section,
the ld treats the output section as if it began at address zero. As a result, if, in
the above example, "outsec" ultimately is linked to start at an odd address,
then the part of "outsec" built from f3.o(.text) also starts at an odd address­
even though f3.0(.text) is aligned to a full word boundary. This is prevented
by specifying an alignment factor for the entire output section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the sections it generates
to a full word length making explicit alignment specifications unnecessary.
This also holds true· for the compiler.

392-Languages and Support Tools UNIX Programmer's Manual

Expressions that decrement "." are illegal. For example, subtracting a value
from the location counter is not allowed since overwrites are not allowed. The
most common operators in expressions that assign a value to "." are "+=" and
"align" .

Creating and Defining Symbols at Link-Edit Time

The assignment instruction of the Id can be used to give symbols a value that is
link-edit dependent. Typically, there are three types of assignments:

a. Use of "." to adjust ld's location counter during allocation

b. Use of "." to assign an allocation-dependent value to a symbol

c. Assigning an allocation-independent value to a symbol.

Case a) has already been discussed in the previous section.

Case b) provides a means to assign addresses (known only after allocation) to
symbols. For example

SECTIONS
{

outscl: {...}
outsc2:
{

filel.o (s1)
s2_start = . ;
file2.0 (s2)
s2_end = . - 1;

The symbol "s2 start" is defined to be the address of file2.0(s2), and "s2 end"
is the address of the last byte of file2.0(s2). -

Consider the following example:

UNIX Programmer's Manual Languages and Support Tools-393

LINK EDITOR

SECTIONS
{

outscl:
{

file1.o (.data)
mark == .;
. +- 4;
file2.0 (.data)

In this example, the symbol "mark" is created and is equal to the address of
the first byte beyond the end of filel.o's .data section. Four bytes are reserved
for a future run-time initialization of the symbol mark. The type of the symbol
is a long integer (32 bits).

Assignment instructions involving "." must appear within SECTIONS
definitions since they are evaluated during allocation. Assignment instructions
that do not involve "." can appear within SECTIONS definitions but typically
do not. Such instructions are evaluated after allocation is complete.
Reassignment of a defined symbol to a different address is dangerous. For
example, if a symbol within .data is defined, initialized, and referenced within a
set of object files being link-edited, the symbol table entry for that symbol is
changed to reflect the new, reassigned physical address. However, the
associated initialized data is not moved to the new address. The ld issues
warning messages for each defined symbol that is being redefined within an
ifile. However, assignments of absolute values to new symbols are safe because
there are no references or initialized data associated with the symbol.

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere)· within a specific
named memory (as previously specified on a MEMORY directive). (The ">"
notation is borrowed from the UNIX system concept of "redirected output".)

394-Languages and Support Tools UNIX Programmer's Manual

For example

MEMORY
{

meml: o=OxOOOOOO I=Oxl0000
mem2 (R W): 0=Ox020000 I=Ox40000
mem3 (R W): 0=Ox070000 I=Ox40000
meml: 0=Ox120000 I=Ox04000

SECTIONS
{

outsecl: { f1.o(.data) } > meml
outsec2: { f2.0(.data) } > mem3

This directs ld to place "outsecl" anywhere within the memory area named
"mem 1" (i.e., somewhere within the address range OxO-OxFFFF or Ox 120000-
OxI23FF). The "outsec2" is to be placed somewhere in the address range
Ox70000-0xAFFFF.

Initialized Section Holes or BSS Sections

When "holes" are created within a section (as in the example in "LINK
EDITOR COMMAND LANGUAGE"), the ld normally puts out bytes of zero
as "fill". By default, .bss sections are not initialized at all; that is, no
initialized data is generated for any .bss section by the assembler nor supplied
by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set such "holes"
or output .bss sections to an arbitrary 2-byte pattern. Such initialization
options apply only to .bss sections or "holes". As an example, an application
might want an uninitialized data table to be initialized to a constant value
without recompiling the ".0" file or a "hole" in the text area to be filled with a
transfer to an error routine.

Either specific areas within an output section or the entire output section may
be specified as being initialized. However, since no text is generated for an
uninitialized .bss section, if part of such a section is initialized, then the entire
section is initialized. In other words, if a .bss section is to be combined with a
.text or .data section (both of which are initialized) or if part of an output .bss
section is to be initialized, then one of the following will hold:

UNIX Programmer's Manual Languages and Support Tools-395

LINK EDITOR

a. Explicit initialization options must be used to initialize all .bss.
sections. in the output section.

b. The ld will use the default fill value to initialize all .bss sections
in the output section.

Consider the following ld ifile:

SECTIONS
{

secl:
{

fLo
. =+ Ox200;
f2.0 (. text)

} = OxDFFF
sec2:
{

fLo (.bss)
f2.0 (.bss) = Oxl234

sec3:
{

f3.0 (.bss)

} = OxFFFF
sec4: { f4.0 (.bss) }

In the example above, the Ox200 byte "hole" in section "secl" is filled with the
value OxDFFF. In section "sec2", fl.o(.bss) is initialized to the default fill
value of OxOO, and f2.0(.bss) is initialized to Oxl234. All .bss sections within
"sec3" as well as all "holes" are initialized to OxFFFF. Section "sec4" is not
initialized; that is, no data is written to the object file for this section.

396-Languages and Support Tools UNIX Programmer's Manual

NOTES AND SPECIAL CONSIDERATIONS

Changing the Entry Point

The a.out header contains a field for the (primary) entry point of the file. This
field is set using one of the following rules (listed in the order they are
applied):

a. The value of the symbol specified with the "-e" option, if
present, is used.

b. The value of the symbol "_start", if present, is used.

c. The value of the symbol "main", if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field through
the "-e" option or by using an assignment instruction in an ifile of the form

_start = expression;

If the ld is called through cc(l), a startup routine is automatically linked in.
Then, when the program is executed, the routine exit(1) is called after the
main routine finishes to close file descriptors and do other cleanup. The user
must therefore be careful when calling the ld directly or when changing the
entry point. The user must supply the startup routine or make sure that the
program always calls exit rather than falling through the end. Otherwise, the
program will dump core.

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object file
typically consisting of the standard three sections: .text, .data, and .bss.
Archive libraries are created through the use of the UNIX system "ar"
command from object files generated by running the cc or as.

An archive library is always processed using selective inclusion: Only those
members that resolve existing undefined-symbol references are taken from the
library for link editing.

UNIX Programmer's Manual Languages and Support Tools-397

LINK EDITOR

Libraries can be placed both inside and outside section definitions. In both
cases, a member of a library is included for linking whenever

a. There exists a reference to a symbol defined in that member.

b. The reference is found by the Id prior to the actual scanning of
the library.

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the library member are included
in the output section being defined. When a library member is included by
searching the library outside of a SECTIONS directive, all input sections from
the library member are included into the output section with the same name.
That is, the .text section of the member goes into the output section named
.text, the .data section of the member into .data, the .bss section of the
member into .bss, etc. If necessary, new output sections are defined to provide
a place to put the input sections. Note, however, that

a. Specific members of a library cannot be referenced explicitly in
an ifile.

b. The default rules for the placement of members and sections
cannot be overridden when they apply to archive library
members.

The "-1" option is a shorthand notation for specifying an input file coming
from a predefined set of directories and having a predefined name. By
convention, such files are archive libraries. However, they need not be so.
Furthermore, archive libraries can be specified without using the "-1" option
by simply giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a member to be
extracted from the library it must satisfy a reference that is known to be
unresolved at the time the library is searched. Archive libraries can be
specified more than once. They are searched every time they are encountered.
Archive files have a symbol table at the beginning of the archive. The Id will
cycle through this symbol table until it has determined that it cannot resolve
any more references from that library.

398-Languages and Support Tools UNIX Programmer's Manual

Consider the following example:

a. The input files filel.o and file2.0 each contain a reference to the
external function FCN.

b. Input filel.o contains a reference to symbol ABC.

c. Input file2.0 contains a reference to symbol XYZ.

d. Library liba.a, member 0, contains a definition of XYZ.

e. Library libc.a, member 0, contains a definition of ABC.

f. Both libraries have a member 1 that defines FCN.

If the ld command were entered as

ld filel.o -la file2.0 -lc

then the FCN references are satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ remains undefined (since the library liba.a is
searched before file2.0 is specified). If the ld command were entered as

ld filel.o file2.0 -Ia -Ic

then the FCN references is satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ is obtained from liba.a, member 0. If the ld
command were entered as

ld fiIel.o file2.0 -lc -la

then the FCN references is satisfied by Iibc.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ is obtained from liba.a, member 0.

The "-u" option is used to force the linking of library members when the link
edit run does not contain an actual external reference to the members. For
example,

ld -u routl -la

UNIX Programmer's Manual Languages and Support Tools-399

LINK EDITOR

creates an undefined symbol called "routl" in the ld's global symbol table. If
any member of library liba.a defines this symbol, it (and perhaps other
members as well) is extracted. Without the "-u" option, there would have
been no "trigger" to cause ld to search the archive library.

Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured areas exist in
the virtual memory, each application or user must assume the responsibility of
forming output sections that will fit into memory. For example, assume that
memory is configured as follows:

MEMORY
{

meml:
mem2:
mem3:

o == OxOOOOO
o == Ox40000
o == Ox20000

I == Ox02000
I == Ox05000
I == OxlOOOO

Let the files £1.0, f2.0, ... fn.o each contain the standard three sections .text,
.data, and .bss, and suppose the combined .text section is Oxl2000 bytes.
There is no configured area of memory in which this section can be placed.
Appropriate directives must be supplied to break up the .text output section so
ld may do allocation. For example,

400-Languages and Support Tools UNIX Programmer's Manual

SECTIONS
{

txt1:
{

txt2:
{

etc.

fl.o (.text)
f2.0 (.text)
f3.0 (.text)

f4.0 (.text)
f5.0 (.text)
f6.0 (.text)

Allocation Algorithm

An output section is formed either as a result of a SECTIONS directive or by
combining input sections of the same name. An output section can have zero
or more input sections comprising it. After the composition of an output
section is determined, it must then be allocated into configured virtual memory.
Ld uses an algorithm that attempts to minimize fragmentation of memory, and
hence increases the possibility that a link edit run will be able to allocate all
output sections within the specified virtual memory configuration. The
algorithm proceeds as follows:

a. Any output sections for which explicit bonding addresses were­
specified are allocated.

b. Any output sections to be included in a specific named memory
are allocated. In both this and the succeeding step, each output
section is placed into the first available space within the (named)
memory with any alignment taken into consideration.

c. Output sections not handled by one of the above steps are
allocated.

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in the order
they appear to the ld, normally .text, .data, .hss. Otherwise, output sections
are allocated in the order they were defined or made known to the ld into the

UNIX Programmer's Manual Languages and Support Tools-401

LINK EDITOR

first available space they fit.

Incremental Link Editing

As previously mentioned, the output of the ld can be used as an input file to
subsequent ld runs providing that the relocation information is retained ("-r"
option). Large applications may find it desirable to partition their C pr()grams
into "subsystems", link each subsystem independently, and then link edit the
entire application. For example,

Step 1:
ld -r -0 outfilel ifilel

1* ifilel *1
SECTIONS
{

ssl:
{

Step 2:

fLo
f2.0

fn.o

ld -r -0 outfile2 ifile2

1* ifile2 *1
SECTIONS
{

ss2:
{

g1.o
g2.0

gn.o

402-Languages and Support Tools UNIX Programmer's Manual

Step 3:
Id -a -m -0 final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a form of
"incremental link editing" whereby it is necessary to relink only a portion of
the total link edit when a few programs are recompiled.

To apply this technique, there are two simple rules

a. Intermediate link edits should contain only SECTIONS
declarations and be concerned only with the formation of output
sections from input files and input sections. No binding of output
sections should be done in these runs.

b. All allocation and memory directives, as well as any assignment
statements, are included only in the final ld call.

DSECT, COPY, and NOLOAD Sections

Sections may be given a "type" in a section definition as shown in the following
example:

SECTIONS
{

name 1 Ox200000 (DSECT)
name20x400000 (COpy)
name3 Ox600000 (NOLOAD)

: { file1.o }
: { file2.0 }

: { file3.0 }

The DSECT option creates what is called a "dummy section". A '4dummy
section" has the following properties:

a. It does not participate in the memory allocation for output
sections. As a result, it takes up no memory and does not show
up in the memory map (the "-m" option) generated by the ld.

b. It may overlay other output sections and even unconfigured
memory. DSECTs may overlay other DSECTs.

UNIX Programmer's Manual Languages and Support Tools-403

LINK EDITOR

c. The global symbols defined within the "dummy section" are
relocated normally. That is, they appear in the output file's
symbol table with the same value they would have had if the
DSECT were actually loaded at its virtual address. DSECT­
defined symbols may be referenced by other input sections.
Undefined external symbols found within a DSECT cause
specified archive libraries to be searched and any members which
define such symbols are link edited normally (i.e., not in the
DSECT or as a DSECT).

d. None of the section contents, relocation information, or line
number information associated with the section is written to the
output file.

In the above example, none of the sections from file1.o are allocated, but all
symbols are relocated as though the sections were link edited at the specified
address. Other sections could refer to any of the global symbols and they are
resolved correctly.

A "copy section" created by the COpy option is similar to a "dummy section".
The only difference between a "copy section" and a "dummy section" is that
the contents of a "copy section" and all associated information is written to
the output file.

A section with the "type" of NOLOAD differs in only one respect from a
normal output section: its text and/or data is not written to the output file. A
NOLOAD section is allocated virtual space, appears in the memory map, etc.

Output File Blocking

The BLOCK option (applied to any output section or GROUP directive) is
used to direct ld to align a section at a specified byte offset in the output file.
It has no effect on the address at which the section is allocated nor on any part
of the link edit process. It is used purely to adjust the physical position of the
section in the output file.

404-Languages and Support Tools UNIX Programmer's Manual

SECTIONS
{

.text BLOCK(Ox200) : { }

.data ALIGN(Ox20000) BLOCK(Ox200) : {}

With this SECTIONS directive, ld assures that each section, .text and .data, is
physically written at a file offset which is a multiple of Ox200 (e.g., at an offset
of 0, Ox200, Ox400, ... , etc. in the file).

Nonrelocatable Input Files

If a file produced by the ld is intended to be used in a subsequent ld run, the
first ld run has the "-r" option set. This preserves relocation information and
permits the sections of the file to be relocated by the subsequent ld run.

When the ld detects an input file (that does not have relocation or symbol table
information), a warning message is given. Such information can be removed
by the ld (see the "-a" and "-s" options in the part USING THE LINK
EDITOR) or by the strip(t) program. However, the link edit run continues
using the nonrelocatable input file.

For such a link edit to be successful (i.e., to actually and correctly link edit all
input files, relocate all symbols, resolve unresolved references, etc'), two
conditions on the nonrelocatable input files must be met.

a. Each input file must have no unresolved external references.

b. Each input file must be bound to the exact same virtual address
as it was bound to in the ld run that created it.

Note that if these two conditions are not met for all nonrelocatable input files,
no error messages are issued. Because of this fact, extreme care .must be taken
when supplying such input files to the ld.

UNIX Programmer's Manual Languages and Support Tools-405

LINK EDITOR

ERROR MESSAGES

Corrupt Input Files

The following error messages indicate that the input file is corrupt, nonexistent,
or unreadable. The user should check that the file is in the correct directory
with the correct permissions. If the object file is corrupt, try recompiling or
reassembling it.

• Can't open name

• Can't read archive header from archive name

• Can't read file header of archive name

• Can't read 1st word of file name

• Can't seek to the beginning of file name

• Fail to read file header of name

• Fail to read lnno of section sect of file name

• Fail to read magic number of file name

• Fail to read section headers of file name

• Fail to read section headers of library name member number

• Fail to read symbol table of file name

• Fail to read symbol table when searching libraries

• Fail to read the aux entry of file name

• Fail to read the field to be relocated

• Fail to seek to symbol table of file name

• Fail to seek to symbol table when searching libraries

406-Languages and Support Tools UNIX Programmer's Manual

• Fail to seek to the end of library name member number

• Fail to skip aux entries when searching libraries

• Fail to skip the mem of struct of name

• Illegal relocation type

• No reloc entry found for symbol

• Reloc entries out of order in section sect of file name

• Seek to name section sect failed

• Seek to name section sect lnno failed

• Seek to name section sect reloc entries failed

• Seek to relocation entries for section sect in file name failed.

Errors During Output

These errors occur because the Id cannot write to the output file. This usually
indicates that the file system is out of space.

• Cannot complete output file name. Write error.

• Fail to copy the rest of section num of file name

• Fail to copy the bytes that need no reloc of section num of file

• name 110 error on output file name.

Internal Errors

These messages indicate that something is wrong with the Id internally. There
is probably nothing the user can do except get help.

• Attempt to free non allocated memory

• Attempt to reinitialize the SDP aux space

UNIX Programmer's Manual Languages and Support Tools-407

LINK EDITOR

• Attempt to reinitialize the SDP slot space

• Default allocation did not put .data and .bss into the same region

• Failed to close SDP symbol space

• Failure dumping an AIDFNxxx data structure

• Failure in closing SDP aux space

• Failure to initialize the SDP aux space

• Failure to initialize the SDP slot space

• Internal error: audit.....groups, address mismatch

• Internal error: audit.....group, finds a node failure

• Internal error: fail to seek to the member of name

• Internal error: in allocate lists, list confusion (num num)

• Internal error: invalid aux table id

• Internal error: invalid symbol table id

• Internal error: negative aux table ld

• Internal error: negative symbol table id

• Internal error: no symtab entry for DOT

• Internal error: split_scns, size of sect exceeds its new displacement.

Allocation Errors

These error messages appear during the allocation phase of the link edit. They
generally appear if a section or group does not fit at a certain address or if the
given MEMORY or SECTION directives in some way conflict. If you are
using an ifile, check that MEMORY and SECTION directives allow enough
room for the sections to ensure that nothing overlaps and that nothing is being
placed in unconfigured memory. For more information, see "LINK EDITOR
COMMAND LANGUAGE".

408-Languages and Support Tools UNIX Programmer's Manual

• Bond address address for sect is not in configured memory

• Bond address address for sect overlays previously allocated section sect at
address

• Can't allocate output section sect, of size num

• Can't allocate section sect into owner mem

• Default allocation failed: name is too large

• GROUP containing section sect is too big

• Memory types name} and name2 overlap

• Output section sect not allocated into a region

• Sect at address overlays previously allocated section sect at address

• Sect, bonded at address, won't fit into configured memory

• Sect enters unconfigured memory at address

• Section sect in file name is too big.

Misuse of Link Editor Directives

These errors arise from the misuse of an input directive. Please review the
appropriate section in the manual.

• Adding name(sect) to multiple output sections.

The input section is mentioned twice in the SECTION directive.

• Bad attribute value in MEMORY directive: c.

An attribute must be one of "R", "W", "X", or "I".

• Bad flag value in SECTIONS directive, option.

UNIX Programmer's Manual Languages and Support Tools-409

LINK EDITOR

Only the "-1" option is allowed inside of a SECTIONS directive

• Bad fill value.

The fill value must be a 2-byte constant.

• Bonding excludes alignment.

The section will be bound at the given address regardless of the alignment of
that address.

• Cannot align a section within a group

• Cannot bond a section within a group

• Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be aligned or bound
to an address, but the sections making up the group may not be handled
individually.

• DSECT sect can't be given an owner

• DSECT sect can't be linked to an attribute.

Since dummy sections do not participate in the memory allocation, it is
meaningless for a dummy section to be given an owner or an attribute.

• Region commands not allowed

The UNIX system link editor does not accept the REGION commands.

• Section sect not built.

The most likely cause of this is a syntax error in the SECTIONS directive.

410-Languages and Support Tools UNIX Programmer's Manual

• Semicolon required after expression

• Statement ignored.

Caused by a syntax error in an expression.

• Usage of unimplemented syntax.

The UNIX system fd does not accept all possible ld commands.

Misuse of Expressions

These errors arise from the misuse of an input expression. Please review the
appropriate section in the manual.

• Absolute symbol name being redefined.

An absolute symbol may not be redefined.

• ALIGN illegal in this context.

Alignment of a symbol may only be done within a SECTIONS directive.

• Attempt to decrement DOT

• Illegal assignment of physical address to DOT.

• Illegal operator in expression

• Misuse of DOT symbol in assignment instruction.

The DOT symbol (".") cannot be used in assignment statements that are
outside SECTIONS directives.

• Symbol name is undefined.

All symbols referenced in an assignment statement must be defined.

UNIX Programmer's Manual Languages and Support Tools-411

LINK EDITOR

• Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment statement.

• Undefined symbol in expression.

Misuse of Options

These errors arise from the misuse of options. Please review the appropriate
section of the manual.

• Both -r and -s flags are set. The -s flag is turned off.

Further relocation requires a symbol table.

• Can't find library libx.a

• - L path too long (string)

• -0 file name too large (> 128 char), truncated to (string)

• Too many -L options, seven allowed.

Some options require white space before the argument, some do not; see
"USING THE LINK EDITOR". Including extra white space or not including
the required white space is the most likely cause of the following messages.

• option flag does not specify a number

• option is an invalid flag

• -e flag does not specify a legal symbol name name

• -f flag does not specify a 2-byte number

• No directory given with -L

• -0 flag does not specify a valid file name: string

412-Languages and Support Tools UNIX Programmer's Manual

• the -1 flag (specifying a default library) is not supported

• -u flag does not specify a legal symbol name: name.

Space Restraints

The following error messages may occur if the Id attempts to allocate more
space than is available. The user should attempt to decrease the amount of
space used by the ld. This may be accomplished by making the ifile less
complicated or by using the "-r" option to create intermediate files.

• Fail to allocate num bytes for slotvec table

• Internal error: aux table overflow

• Internal error: symbol table overflow

• Memory allocation failure on num-byte 'calloc' call

• Memory allocation failure on realloc call

• Run is too large and complex.

Miscellaneous Errors

These errors occur for many reasons. Refer to the error message for an
indication of where to look in the manual.

• Archive symbol table is empty in archive name, execute 'ar ts name' to
restore archive symbol table .

On systems with a random access archive capability, the link editor requires
that all archives have a symbol table. This symbol table may have been
removed by strip.

• Cannot create output file name.

The user may not have write permission in the directory where the output file is
to be written.

UNIX Programmer's Manual Languages and Support Tools-413

LINK EDITOR

• File name has no relocation information.

See "NOTES AND SPECIAL CONSIDERATIONS".

• File name is of unknown type, magic number == num

• Hile nesting limit exceeded with file name.

Ifiles may be nested 16 deep.

• Library name, member has no relocation information.

• Line nbr entry (num num) found for nonrelocatable symbol.

Section sect, file name

This is generally caused by an interaction of yacc(t) and cc(t). Re-yacc the
offending file with the "-1" option of yacc.

See the part "NOTES AND SPECIAL CONSIDERATIONS".

• Multiply defined symbol sym, in name has more than one size.

A multiply defined symbol may not have been defined in the same manner in
all files.

• name(sect) not found.

An input section specified in a SECTIONS directive was not found in the input
file.

• Section sect starts on an odd byte boundary!

This will happen only if the user specifically binds a section at an odd
boundary.

414-Languages and Support Tools UNIX Programmer's Manual

• Sections .text, .data, or .bss not found. Optional header may be useless.

The UNIX system a.out header uses values found in the .text, .data, and .bss
section headers.

• Undefined symbol sym first referenced in file name.

Unless the -r option is used, the ld requires that all referenced symbols are
defined.

• Unexpected EOF (End Of File).

Syntax error in the ifile.

UNIX Programmer's Manual Languages and Support Tools-415

LINK EDITOR

Figure 17

Syntax Diagram for Input Directives (Sheet 1 of 4).

directives -> expanded directives

<file> -> { <cmd> }
<cmd> -> <memory>

-> <sections>
-> <assignment>
-> <filename>
-> <flags>

<memory -> MEMORY { <memory_spec>
{ [,] <memory_spec> }}

< memory_spec> -> <name> [<attributes>] :
<origin_spec> [,] <length_spec>

<attributes> -> ({RlwlxII})
< origin _spec> -> < origin> = < long>
<lenth_spec> -> <length> = <long>
<origin> -> ORIGIN I 0 I org I origin
<length> -> LENGTH III len I length

<sections> -> SECTIONS { { <sec_or-Eroup> } }
<sec_or-Eroup> -> <section> I <group> I <library>
<group> -> GROUP <group_options> : {

<sectionJist> } [<mem_spec>]

< section list> -> <section> { [,] <section> }

416-Languages and Support Tools UNIX Programmer's Manual

Syntax Diagram for Input Directives (Sheet 2 of 4).

directives -> expanded directives

<section> -> < name> < sec_options> : {
< statement Jist> }
[<fill>] [<mem_spec>]

< group_options> -> [<addr>] [<align_option>]

< sec_options> -> [<addr>] [<align_option>]
[< block_option>] [< type_option>]

<addr> -> <long>
< align_option> -> <align> (<long>)
<align> -> ALIGN I align
< block_option> -> <block> (<long>)
<block> -> BLOCK I block
< type_option> -> (DSECT) I (NOLOAD) I (COPY)
<fill> -> = <long>
<mem_spec> -> > <name>

-> > <attributes>
< statement> -> <file_name> [(<nameJist>)]

[<fill>] <library> <assignment>

<name list> -> <name> { [,] <name> }
<library> -> -I<name>

< assignment> -> < lside > < assign _ op > <expr> <end>
<lside> -> <name> I.
< assign _ op > -> =1 +=1-=1*=11 =
<end> -> ; I ,
<expr> -> <expr> <binary_op> < expr >

-> <term>
< binary _ op> -> * I II %

-> + 1-
-> »1«

UNIX Programmer's Manual Languages and Support Tools-417

LINK EDITOR

Syntax Diagram for Input Directives (Sheet 3 of 4).

directives -> expanded directives

-> ==I!=I>I<I<=I>=
-> &
-> 1
-> &&
-> I

<term> -> <long>
-> <name>
-> <align> (<term>)
-> (<expr)
-> <unary_op> <term>

<unary_op> -> ! I -
<flags> -> -e<wht_space> <name>

-> -f<wht_space> <long>
-> -h<wht_space> <long>
-> -I<name>
-> -m
-> -o<wht_space> <filename>
-> -r
-> -s
-> -t
-> -u<wht_space> <name>
-> -z
-> -H
-> -L<pathname>
-> -M
-> -N
-> -S
-> -v
-> -VS<wht_space> <long>
-> -a
-> -x

418-Languages and Support Tools UNIX Programmer's Manual

Syntax Diagram for Input Directives (Sheet 4 of 4).

directives -> expandedmrectives

<name> -> Any valid symbol name
<long> -> Any valid long integer constant
< wht_space > -> Blanks, tabs, and new lines

<filename> -> Any valid UNIX operating system
filename. This may include a
full or partial pa thname.

<pathname> -> Any valid UNIX operating system
pa thname (full or partial)

UNIX Programmer's Manual Languages and Support Tools-419

THE COMMON OBJECT FILE FORMAT

GENERAL

This chapter describes the Common Object File Format (COFF) used on
several processors and operating systems, including the AT&T 3B Computer
family and the UNIX operating system. The COFF is simple enough to be
easily incorporated into existing projects, yet flexible enough to meet the needs
of most projects. The COFF is the output file produced on some UNIX
systems by the assembler (as) and the link editor (ld). This format is also
used by other operating systems; hence, the word common is both descriptive
and widely recognized. Currently, this object file format is used for the AT &T
3B Computer, including the 3B20D, the 3B20S, the 3B5 and 3B2 Computers,
and on the VAX*-11/780 and 11/750 UNIX operating systems. Some key
features of COFF are

• Applications may add system-dependent information to the object file
without causing access utilities to become obsolete.

• Space is provided for symbolic information used by debuggers and other
applications

• Users may make some modifications in the object file construction at
compile time.

The object file supports user-defined sections and contains extensive information
for symbolic software testing. An object file contains

• A file header

• Optional header information

• A table of section headers

• Data corresponding to the section header

* Trademark of Digital Equipment Corporation

UNIX Programmer's Manual Languages and Support Tools-421

COFF

• Relocation information

• Line numbers

• A symbol table

• A string table.

Figure 18 shows the overall structure.

Figure 18

Object File Format.

FILE HEADER
Optional Information

Section 1 Header
...

Section n Header
Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1
...

Relocation Info for Sect. n
Line Numbers for Sect. 1

...
Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

The last four sections (relocation, line numbers, symbol table, and the string
table) may be missing if the program is linked with the -s option of the UNIX
system link editor or if the line number information, symbol table, and string
table are removed by the strip command. The line number information does
not appear unless the program is compiled with the -g option of the compiler

422-Languages and Support Tools UNIX Programmer's Manual

(CC) command. Also, if there are no unresolved external references after
linking, the relocation information is no longer needed and is absent. The
string table is also absent if the source file does not contain any symbols with
names longer than eight characters.

An object file that contains no errors or unresolved references can be executed
on the target machine.

DEFINITIONS AND CONVENTIONS

Before proceeding further, you should become familiar with the following terms
and conventions:

Sections

A section is the smallest portion of an object file that is relocated and treated
as one separate and distinct entity. In the default case, there are three sections
named .text, .data, and .bss. Additional sections accommodate multiple text or
data segments, shared data segments, or user-specified sections. However, the
UNIX operating system loads only the .text, .data, and .bss into memory when
the file is executed.

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that section or
symbol from address zero of the address space. The term physical address as
used in COFF does not correspond to the general usage. The physical address
of an object is not necessarily the address at which the object is placed when
the process is executed. For example, on a system with paging, the address is
located with respect to address zero of virtual memory and the system performs
another address translation. The section heading contains two address fields, a
physical address, and a virtual address; but in all versions of COFF on UNIX
systems, the physical address is equivalent to the virtual address.

UNIX Programmer's Manual Languages and Support Tools-423

COFF

FILE HEADER

The file header contains the 20 bytes of information shown in Figure 19. The
last 2 bytes are flags that are used by ld and object file utilities.

Figure 19
File Header Contents (Sheet 1 of 2).

Bytes Declaration Name

0-1 unsigned short f _magic

2-3 unsigned short f nscns

Description

Magic number,
see Figure 20.

Number of
section headers
(equals the
number of
sections)

4-7 long int f timdat Time and date

424-Languages and Support Tools

stamp
indicating when
the file was
created relative
,to the number
of elapsed
seconds since
00:00:00 GMT,
January 1,
1970.

UNIX Programmer's Manual

File Header Contents (Sheet 2 of 2).
Bytes Declaration Name Description

8-11 long int f_symptr File pointer
containing the
starting address
of the symbol
table

12-15 long int Cnsyms Number of
entries in the
symbol table

16-17 unsigned short f_opthdr Number of
bytes in the
optional header

18-19 unsigned short fJlags Flags (see
Figure 21)

The size of optional header information (f _ opthdr) is used by all referencing
programs that seek to the beginning of the section header table. This enables
the same utility programs to work correctly on files targeted for different
systems.

Magic Numbers

The magic number specifies the target machine on which the object file is
executable. The currently defined magic numbers are in Figure 20.

UNIX Programmer's Manual Languages and Support Tools-425

COFF

Figure 20

Magic Numbers.

Mnemonic Magic Number System

N3B MAGIC 0550 3B20S Computers
FBOMAGIC 0560 3B2 and 3B5

Computers

VAXWRMAGIC 0570 VAX-ll/750 and
VAX-ll/780
(writable text
segments)

VAXROMAGIC 0575 VAX-ll/750 and
VAX-11780
(read-only text
segments)

U370WRMAGIC 0530 IBM 370 (writable
text segments)

U370ROMAGIC 0535 IBM 370 (read-only
sharable text
segments)

Flags

The last 2 bytes of the file header are flags that describe the type of the object
file. The currently defined flags are given in Figure 21.

426-Languages and Support Tools UNIX Programmer's Manual

Figure 21

File Header Flags (Sheet 1 of 2).
Mnemonic Flag Meaning

F RELFLG 00001 Relocation
information
stripped from the
file

F_EXEC 00002 File is executable
(i.e., no unresolved
external references)

F LNNO 00004 Line numbers
stripped from the
file

F LSYMS 00010 Local symbols
stripped from the
file

F MINMAL 00020 Not used by the
UNIX system

F UPDATE 00040 Not used by the
UNIX system

F SWABD 00100 Not used by the
UNIX system

F AR16WR 00200 File has the byte
ordering used by
the PDP*·11/70
processor.

* Trademark of Digital Equipment Corporation

UNIX Programmer's Manual Languages and Support Tools-427

COFF

Filer Heade Flags (Sheet 2 of 2).
Mnemonic Flag Meaning

F AR32WR 00400 File has the byte
ordering used by
the VAX-111780
(i.e., 32 bits per
word, least
significant byte
first) .

F AR32W 01000 File has the byte
ordering used by'
the 3B computers
(i.e., 32 bits per
word, most
significant byte
first) .

F PATCH 02000 Not used by the
UNIX system

F BM32ID 0160000 WE 32000
processor ID field.

File Header Declaration"
The C structure declaration for the file header is given in Figure 22.
This declaration may be found in the header file filehdr.h.

428-Languages and Support Tools UNIX Programmer's Manual

Figure 22

File Header Declaration.

struct filehdr {

};

unsigned short f _magic; 1* magic number *1
unsigned short f_nscns; 1* number of section *

long f _timdat; 1* time and data stamp 1*

long f _symptr; 1* file ptr to symbol table *1

long f-nsyms; 1* number entries in the symbol table *1

unsigned short f _ opthdr; 1* size of optional header *1

unsigned short f Jiags; 1* flags *1

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

OPTIONAL HEADER INFORMATION

The template for optional information varies among different systems that use
the COFF. Applications place all system-dependent information into this
record. This allows different operating systems access to information that only
that operating system uses without forcing all COFF files to save space for that
information. General utility programs (for example, the symbol table access
library functions, the disassembler, etc.) are made to work properly on any
common object file. This is done by seeking past this record using the size of
optional header information in the file header f_optbdr.

Standard UNIX system a.out Header

By default, files produced by the link editor for a UNIX system always have a
standard UNIX system a.out header in the optional header field. The UNIX
system a.out header is 28 bytes. There is one exception; files produced for the
3B20S Computers have an optional header of 36 bytes. The extra 8 bytes
represent unused fields that are present for historical reasons. Therefore, the

UNIX Programmer's Manual Languages and Support Tools-429

COFF

two formats contain functionally equivalent information. The fields of the
optional header are described in Figure 23 and 24.

Figure 23

Optional Header Contents (3B20S Computers Only).

Bytes Declaration Name Description

0-1 short magic Magic number

2-3 short vstamp Version stamp

4-7 long int tsize Size of text
in bytes

8-11 long int dsize Size of initialized
data in bytes

12-15 long int bsize Size of uninitialized
data in bytes

16-19 long int duml Unused dummy field
20-23 long int dum2 Unused dummy field
24-27 long int entry Entry point

27-31 long int text start Base address of text
32-35 long int data start Base address of data

430-Languages and Support Tools UNIX Programmer's Manual

Figure 24

Optional Header Contents (Processors other than the 3B20S Computer).

Bytes Declaration Name Description

0-1 short magic Magic number
2-3 short vstamp Version stamp
4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized
da ta in bytes

12-15 long int bsize Size of uninitialized
data in bytes

16-19 long int entry Entry point
20-23 long int text start Base address

of text
24-37 long int data start Base address of data

The magic number in the optional header supplies operating system dependent
information about the object file. Whereas, the magic number in the file header
specifies the machine on which the object file runs. The magic number in the
optional header supplies information telling the operating system on that
machine how that file should be executed.

The magic numbers recognized by the UNIX operating system are given in
Figure 25.

UNIX Programmer's Manual Languages and Support Tools-431

COFF

Figure 25

UNIX System Magic Numbers.

Value Meaning

0407 The text segment is not
write-protected or
sharable; the data
segment is contiguous
with the text segment.

0410 The data segment starts
at the next segment
following the text segment
and the text segment is
write protected.

0413 The data segment starts
at a certain boundary
within the next segment
following the text
segment. The text
segment is write
protected.

Optional Header Declaration

The C language structure declaration currently used for the UNIX system a.out
file header is given in Figure 26. This declaration may be found in the header
file aouthdr.h.

432-Languages and Support Tools UNIX Programmer's Manual

Figure 26

Aouthdr Declaration.

typedef struct aouthdr {
short magic; /* magic number * /
short vstamp; /* version stamp */
long tsize; /* text size in bytes, padded * /

/* to full word boundary * /

long dsize; /* initialized data size * /

long bsize; /* uninitialized data size * /

#if u3b
long dum1; /* unused dummy field * /
long dum2; /* unused dummy field * /

#endif
long entry; /* entry point * /
long text_start; /* base of text for this file * /

long data start /* base of data for this file * /

} AOUTHDR;

SECTION HEADERS

Every object file has a table of section headers to specify the layout of data
within the file. The section header table consists of one entry for every section
in the file. The information in the section header is described in Figure 27.

UNIX Programmer's Manual Languages and Support Tools-433

COFF

Figure 27

Section Header Contents.

Bytes Declaration Name Description

0-7 char s name 8-char null
padded section
name

8-11 long int s-paddr Physical
address of section

12-15 long int s vaddr Virtual
address of section

16-19 long int s size Section
size in bytes

20-23 long int s_scnptr File pointer
to raw data

24-27 long int sJelptr File ptr to
relocation
entries

28-31 long int sJnnoptr File ptr to line
number entries

32-33 unsigned s nreloc Number of
short entries

34-35 unsigned s nlnno Number of line
short number entries

36-39 long int sJlags Flags (see
Figure 28)

The size of a section is padded to a mUltiple of 4 bytes.

File pointers are byte offsets that can be used to locate the start of data,
relocation, or line number entries for· the section. They can be readily used
with the UNIX system function fseek(3S).

434-Languages and Support Tools UNIX Programmer's Manual

Flags

The lower 4 bits of the flag field indicate a section type. The flags are
described in Figure 28.

Figure 28

Section Header Flags (Sheet 1 of 2).
Mnemonic Flag Meaning

STYP REG OxOO Regular section
(allocated,
relocated, loaded)

STYP_DSECT OxOl Dummy section
(not allocated,
relocated, not
loaded)

STYP _NOLOAD Ox02 Noload section
(allocated,
relocated, not
loaded)

UNIX Programmer's Manual Languages and Support Tools-435

COFF

Section Header Flags (Sheet 2 of 2).
Mnemonic Flag Meaning

STYP_GROUP Ox04 Grouped section
(formed from input
sections)

STYP_PAD Ox08 Padding section
(not allocated, not
relocated, loaded)

STYP COpy OxlO Copy section (for a
decision function
used In updating
fields; not allocated,
not relocated,
loaded, relocation
and line number
entries processed
normally)

STYP TEXT Ox20 Section contains
executable text

STYP DATA Ox40 Section contains
initialized data

STYP BSS Ox80 Section contains
only unini tialized
data

Section Header Declaration

The C structure declaration for the section headers is described in Figure 29.
This declaration may be found in the header file scuhdr.h.

436-Languages and Support Tools UNIX Programmer's Manual

Section Header Declaration.

struct scnhdr {
char s_name[8];
long s yaddr;
long s _ vaddr;
long s _size;
long s _scnptr;

long sJelptr;

long sJnnoptr;

unsigned short s _ nreloc;

unsigned short s _ nlnno;

long

};

Figure 29

/* section name * /
/* physical address * /
/* virtual address * /

/* section size * /
/* file ptr to section raw data * /

/ * file ptr to relocation * /

/* file ptr to line number * /

/* number of relocation entries * /

/* number of line number entries * /

/* flags */

#define SCNHD R struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

.bss Section Header

The one deviation from the normal rule in the section header table is the entry
for uninitialized data in a .bss section. A .bss section has a size and symbols
that refer to it, and symbols that are defined in it. At the same time, a .bss
section has no relocation entries, no line number entries, and no data.
Therefore, a .bss section has an entry in the section header table but occupies
no space elsewhere in the file. In this case, the number of relocation and line
number entries, as well as all file pointers in a .bss section header, are O.

UNIX Programmer's Manual Languages and Support Tools-437

COFF

SECTIONS

Figure 18 shows that section headers are followed by the appropriate number
of bytes of text or data. The raw data for each section begins on a full word
boundary in the file.

Files produced by the cc and the as always contain three sections, called .text,
.data, and .bss. The .text section contains the instruction text (i.e., executable
code), the .data section contains initialized data variables, and the .bss section
contains uninitialized data variables.

The link editor "SECTIONS directives" (see The LINK EDITOR chapter)
allows users to

• Describe how input sections are to be combined.

• Direct the placement of output sections.

• Rename output sections.

If no SECTIONS directives are given, each input section appears in an output
section of the same name. For example, if a number of object files from the
"cc" are linked together (each containing the three sections .text, .data, and
.bss), the output object file contains three sections, .text, .data, and .bss.

RELOCATION INFORMATION

Object files have one relocation entry for each relocatable reference in the text
or data. The relocation information consists of entries with the format
described in Figure 30.

438-Languages and Support Tools UNIX Programmer's Manual

Figure 30

Relocation Section Contents.

Bytes Declaration Name Description

0-3 long int r_symndx (Virtual)
address
of reference

4-7 long int r_symndx Symbol
table
index

8-9 unsigned short r_type Relocation
type

The first 4 bytes of the entry are the virtual address of the text or data to
which this entry applies. The next field is the index, counted from 0, of the
symbol table entry that is being referenced. The type field indicates the type of
relocation to be applied.

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the input
section are treated.

The currently recognized relocation types are given in Figures 31 through 33.

UNIX Programmer's Manual Languages and Support Tools-439

COFF

Figure 31

3B208 Computers Relocation Types.

Mnemonic Flag Meaning

R ADS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R DIR24 04 Direct 24-bit
reference to the
symbol's virtual
address.

R REL24 05 A "PC-relative"
24-bit reference to
the symbol's virtual
address. Actual
address is
calculated by
adding a constant
to the PC value.

440-Languages and Support Tools UNIX Programmer's Manual

Figure 32

3B2 and 3B5 Computer Relocation Types.
Mnemonic Flag Meaning

R BS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R DIR32 06 Direct 32-bit
reference to the
symbol's virtual
address

R DIR32S 012 Direct 32-bit
reference to the
symbol's virtual
address, with the
32-bit value stored
in the reverse order
in the object file.

UNIX Programmer's Manual Languages and Support Tools-441

COFF

Figure 33

V AX Relocation Types.

Mnemonic Flag Meaning

R ADS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R RELDYTE 017 Direct 8-bit
reference to the
symbol's virtual
address.

R RELWORD 020 Direct 16-bit
reference to the
symbol's virtual
address.

R RELLONG 021 Direct 32-bit
reference to the
symbol's virtual
address.

R PCRDYTE 022 A "PC relative" 8-
bit reference to the
symbol's virtual
address.

R PCRWORD 023 A "PC relative"
16-bit reference to
the symbol's virtual
address.

R_PCRLONG 024 A "PC Jela tive"
32-bit reference to
the symbol's virtual
address.

442-Languages and Support Tools UNIX Programmer's Manual

On the VAX processors, relocation of a symbol index of -1 indicates that the
amount by which the section is being relocated is added to the relocatable
address.

The as automatically generates relocation entries which are then used by the
link editor. The link editor uses this information to resolve external references
in the file.

Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 34. This
declaration may be found in the header file reloc.h.

Figure 34

Relocation Entry Declaration.

struct reloc {
long r_vaddr; /* virtual address of reference */

long r_symndx; /* index into symbol table */

unsigned short r _type; /* relocation type * /
};

#define RELOC struct reloc

#define RELSZ 10
o

LINE NUMBERS

When invoked with the -g option, UNIX system ccs (cc, 177) generates an
entry in the object file for every C language source line where a breakpoint can
be inserted. You can then reference line numbers when using a software
debugger like sdb. All line numbers in a section are grouped by function as
shown in Figure 35.

UNIX Programmer's Manual Languages and Support Tools-443

COFF

Figure 35

Line Number Grouping.

symbol index 0
physical address line number
physical address line number

symbol index 0
physical address line number
physical address line number

The first entry in a function grouping has line number 0 and has, in place of
the physical address, an index into the symbol table for the entry containing
the function name. Subsequent entries have actual line numbers and addresses
of the text corresponding to the line numbers. The line number entries appear
in increasing order of address.

Line Number Declaration

The structure declaration currently used for line number entries is given in
Figure 36.

444-Languages and Support Tools UNIX Programmer's Manual

Line Number Entry Declaration.
struet lineno {

union
{

Figure 36

long l_symndx; /* symtbl index of fune name * /

long lyaddr; /* paddr of line number */
} l_addr;
unsigned short IJnno; /* line number */

};

#define LINENO

#define LINESZ
o

struet lineno

6

UNIX Programmer's Manual Languages and Support Tools-445

COFF

SYMBOL TABLE

Because of symbolic debugging requirements, the order of symbols in the
symbol table is very important. Symbols appear in the sequence shown in
Figure 37.

Figure 37

COFF Global Symbol Table.

file name 1
function 1

local symbols
for function 1

function 2
local symbols
for function 2

statics

file name 2
function 1

local symbols
for function 1

statics

defined global
symbols

undefined global
symbols

The word "statics" in Figure 37 means symbols defined in the C language
storage class static outside any function. The symbol table consists of at least
one fixed-length entry per symbol with some symbols followed by auxiliary
entries of the same size. The entry for each symbol is a structure that holds
the value, the type, and other information.

446-Languages and Support Tools UNIX Programmer's Manual

Special Symbols

The symbol table contains some special symbols that are generated by the cc,
as, and other tools. These symbols are given in Figure 38.

Figure 38

Special Symbols in the Symbol Table (Sheet 1 of 2).
Symbol Meaning

.file file name
.text address of .text section
.data address of .data section
.bss address of .bss section
.bb address of start of inner block
.eb address of end of inner block
.bf address of start of function
.ef address of end of function
. target pointer to the structure or

union returned by a function

.xfake dummy tag name for
structure, union, or enumeran

UNIX Programmer's Manual Languages and Support Tools-447

COFF

Special Symbols in the Symbol Table (Sheet 2 of 2).
Symbol Meaning

.eos end of members of
structure, union, or
enumeration

_ etext,etext next available address
after the end of the output
section .text

_ edata,edata next available address
after the end of the output
section .data

_end,end next available address
after the end of the output
section .bss.

Six of these special symbols occur in pairs. The .bb and .eb symbols indicate
the boundaries of inner blocks. A .bf and .ef pair brackets each function; and a
.xfake and .eos pair names and defines the limit of structures, unions, and
enumerations that were not named. The .eos symbol also appears after named
structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the cc invents a
name to be used in the symbol table. The name chosen for the symbol table is
.x.fake, where "x" is an integer. If there are three unnamed structures, unions,
or enumerations in the source, their tag names are ".Ofake", ".1 fake", and
".2fake" .

Each of the special symbols has different information stored in the symbol table
entry as well as the auxiliary entry.

Inner Blocks

The C language defines a block as a compound statement that begins and ends
with braces ({ and}). An inner block is a block that occurs within a function
(w hich is also a block).

448-Languages and Support Tools UNIX Programmer's Manual

For each inner block that has local symbols defined, a special symbol .bb is put
in the symbol table immediately before the first local symbol of that block.
Also a special symbol, .eb is put in the symbol table immediately after the last
local symbol of that block. The sequence is shown in Figure 39.

Special Symbols (. bb and .eb).

Figure 39

,---------,

.bb

local symbols
for that block

.eb

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. See Figure 40.

UNIX Programmer's Manual Languages and Support Tools-449

COFF

Figure 40

Nested Blocks.

/* block 1 */
int i;
char c;

/* block 2 */
long a;

/* block 3 */
int x;

} /* block 3 */
} /* block 2 */

/* block 4 */
long i;

/* block 4 */
/* block 1 */

The symbol table would look like Figure 41.

4S0-Languages and Support Tools UNIX Programmer's Manual

Figure 41

Example of the Symbol Table.

.bb for block 1
i
c

.bb for block 2
a

.bb for block 3
x

.eb for block 3

.eb for block 2

.bb for block 4
i

.bb for block 4

.eb for block 1

Symbols and Functions

For each function, a special symbol .bf is put between the function name and
the first local symbol of the function in the symbol table. Also, a special symbol
.ef is put immediately after the last local symbol of the function in the symbol
table. The sequence is shown in Figure 42.

Symbols for Functions.

UNIX Programmer's Manual

Figure 42

function name
.bf

local signal
.el

Languages and Support Tools-451

COFF

If the return value of the function is a structure or union, a special symbol
.target is put between the function name and the .bf. The sequence is shown in
Figure 43.

Special Symbol .Target.

Figure 43

function name
.target

.bf
local symbols

.ef

The cc invents .target to store the function-return structure or union. The
symbol .target is an automatic variable with "pointer" type. Its value field in
the symbol is always O.

Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for
their entries in the symbol table~ The symbol table entries each contain the 18
bytes of information. The meaning of each of the fields in the symbol table
entry is described in Figure 44.

It should be noted that indices for symbol table entries begin at 0 and count
upward. Each auxiliary entry also counts as one symbol.

452-Languages and Support Tools UNIX Programmer's Manual

Figure 44

Symbol Table Entry Format.

Bytes Declaration Name Description

0-7 (see text below) n These 8 bytes
contain either
the name of a
pointer or the
name of a
symbol.

8-11 long int n value Symbol value;
storage class
dependent

12-13 short n scnum Section number
of symbol

14-15 unsigned short n_type Basic and
derived type
specification

16 char n sclass Storage class of
symbol

17 char n numaux Number of
auxiliary
entries.

Symbol Names

The first 8 bytes in the symbol table entry are a union of a character array and
two longs. If the symbol name is eight characters or less, the (null-padded)
symbol name is stored there. If the symbol name is longer than eight
characters, then the entire symbol name is stored in the string table. In this
case, the 8 bytes contain two long integers, the first is zero, and the second is
the offset (relative to the beginning of the string table) of the name in the
string table. Since there can be no symbols with a null name, the zeroes on the
first 4 bytes serve to distinguish a symbol table entry with an offset from one
with a name in the first 8 bytes as shown in Figure 45.

UNIX Programmer's Manual Languages and Support Tools-453

COFF

Figure 45

Name Field.

Bytes Declaration Name Description

0-7 char n name 8-character
null-padded
symbol name

0-3 long n_zeroes Zero in this
field indicates
the name is in
the string table

4-7 long n offset Offset of the
name in the
string table

Some special symbols are generated by the cc and link editor as discussed in
"special symbols". The VAX "cc" prepends an underscore ('_') to all the user
defined symbols it generates.

454-Languages and Support Tools UNIX Programmer's Manual

Storage Classes

The storage class field has one of the values described in Figure 46. These
"defines" may be found in the header file storclass.h.

Figure 46

Storage Classes (Sheet 1 of 2).

Mnemonic Value Storage Class

C EFCN -1 physical end of a function

C_NULL 0 -

C AUTO 1 automatic variable
C EXT 2 external symbol

C STAT 3 static

C REG 4 register variable
C EXTDEF 5 external definition
C LABEL 6 label

C ULABEL 7 undefined label

C_MOS 8 member of structure

C ARG 9 function argument

C_STRTAG 10 structure tag

C_MOU 11 member of union
C UNTAG 12 union tag

C TPDEF 13 type definition
C_USTATIC 14 uninitialized static
C ENTAG 15 enumeration tag

C MOE 16 member of enumeration

C REGPARM 17 register parameter
C FIELD 18 bit field

UNIX Programmer's Manual Languages and Support Tools-455

COFF

Storage Classes (Sheet 2 of 2).

Mnemonic Value Storage Class

C BLOCK 100 beginning and end of block
C FCN 101 beginning and end of function
C_EOS 102 end of structure
C FILE 103 file name
CLINE 104 used only by utility programs
CALlAS 105 duplicated tag
C_HIDDEN 106 like static, used to avoid

name conflicts

All of these storage classes except for C_ALIAS and C-HIDDEN are
generated by the "cc" or "as". The compress utility, cprs, generates the
C ALIAS mnemonic. This utility (described in the UNIX Programmer's
Manual- Volume 1: Commands and Utilities) removes duplicated structure,
union, and enumeration definitions and puts ALIAS entries in their places.
The storage class C-HIDDEN is not used by any UNIX system tools.

Some of these storage classes are used only internally by the "cc" and the "as".
These storage classes are C_EFCN, C_EXTDEF, C_ULABEL, C_USTATIC,
and CLINE.

456-Languages and Support Tools UNIX Programmer's Manual

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They are given
in Figure 47.

Figure 47

Storage Class by Special Symbols.

Special Symbol Storage Class

.file C FILE

.bb C BLOCK

.eb C BLOCK

.bf C FCN

.ef C FCN
• target C AUTO
.xfake C STRTAG, C UNTAG, C ENTAG
.eos C EOS
.text C STAT
.data C STAT
.bss C STAT

Also some storage classes are used only for certain special symbols. They are
summarized in Figure 48.

UNIX Programmer's Manual Languages and Support Tools-457

COFF

Figure 48

Restricted Storage Classes.

Storage Class Special Symbol

C_BLOCK .bb, .eb
C FCN .bf, .ef
C_EOS .eos
C_FILE .file

Symbol Value Field

The meaning of the "value" of a symbol depends on its storage class. This
relationship is summarized in Figure 49.

458-Languages and Support Tools UNIX Programmer's Manual

Figure 49

Storage Class and Value.

Storage Class Meaning

C AUTO stack offset in bytes
C_EXT relocatable address
C STAT relocatable address
C REG register number
C_LABEL relocatable address
C_MOS off set in bytes
C ARG stack offset in bytes
C STRTAG 0

C_MOU 0
C UN TAG 0
C TPDEF 0
C ENTAG 0

C MOE enumeration value
C REGPARM register number
C FIELD bit displacement
C BLOCK relocatable address
C FCN relocatable address
C_EOS size
C FILE (see text below)
C_ALIAS tag index
CHIDDEN relocatable address

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries form
a I-way linked list in the symbol table. If there are no more .file entries in the
symbol table, the value of the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that symbol.
When the section is relocated by the link editor, the value of these symbols
changes.

UNIX Programmer's Manual Languages and Support Tools-459

COFF

Section Number Field

Section numbers are listed in Figure 50.

Figure 50

Section Number.

Mnemonic Section Number Meaning

N DEBUG -2 Special symbolic
debugging symbol

NABS -1 Absolute symbol

N UNDEF 0 Undefined external
symbol

N SCNUM 1-077777 Section number
where symbol was
defined

A special section number (-2) marks symbolic debugging symbols, including
structure/union/enumeration tag names, typedefs, and the name of the file. A
section number of -1 indicates that the symbol has a value but is not
relocatable. Examples of absolute-valued symbols include automatic and
register variables, function arguments, and .eos symbols. The .text, .data, and
.bss symbols default to section numbers 1, 2, and 3, respectively.

With one exception, a section number of 0 indicates a relocatable external
symbol that is not defined in the current file. The one exception is a multiply
defined external symbol (i.e., FORTRAN common or an uninitialized variable
defined external to a function in C). In the symbol table of each file where the
symbol is defined, the section number of the symbol is 0 and the value of the
symbol is a positive number giving the size of the symbol. When the files are
combined, the link editor combines all the input symbols into one symbol with
the section number of the .bss section. The maximum size of all the input
symbols with the same name is used to allocate space for the symbol and the
value becomes the address of the symbol. This is the only case where a symbol
has a section number of 0 and a non-zero value.

460-Languages and Support Tools UNIX Programmer's Manual

Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain section
numbers. They are summarized in Figure 51.

Figure 51

Section Number and Storage Class.

Storage Class Section Number

C AUTO NABS
C EXT N_ABS, N_UNDEF, N_SCNUM_
C STAT N SCNUM
C REG NABS
C LABEL N_UNDEF, N_SCNUM
CMOS NABS
C ARG NABS
C STRTAG N DEBUG
C MOU NABS
C UNTAG N DEBUG
C TPDEF N DEBUG
C ENTAG N DEBUG
C MOE NABS
C REGPARM NABS
C FIELD NABS
C BLOCK N SCNUM
C FCN N SCNUM
C EOS NABS
C FILE N DEBUG
CALlAS N DEBUG

UNIX Programmer's Manual Languages and Support Tools-461

COFF

Type Entry

The type field in the symbol table entry contains information about the basic
and derived type for the symbol. This information is generated by the "cc".
The VAX "cc" generates this information only if the -g option is used. Each
symbol has exactly one basic or fundamental type but can have more than one
derived type. The format of the 16-bit type entry is

I d61 dsl d41 d31 d21 d 1 I typ I

Bits 0 through 3, called "typ", indicate one of the fundamental types given in
Figure 52.

462-Languages and Support Tools UNIX Programmer's Manual

Figure 52

Fundamental Types.

Mnemonic Value Type

T NULL 0 type not assigned

T CHAR 2 character

T SHORT 3 short integer

TINT 4 integer

T LONG 5 long integer

T FLOAT 6 floating point

T DOUBLE 7 double word

T STRUCT 8 structure

T UNION 9 union

T ENUM 10 enumeration

T MOE 11 member of enumeration

T UCHAR 12 unsigned character

T USHORT 13 unsigned short

T UINT 14 unsigned integer

T ULONG 15 unsigned long

Bits 4 through 15 are arranged as six 2-bit fields marked "d 1" through "d6."
These "d" fields represent levels of the derived types given in Figure 53.

Figure 53

Derived Types.

Mnemonic Value Type

DT NON 0 no derived type

DT PTR 1 pointer

DT FCN 2 function

DT ARY 3 array

The following examples demonstrate the interpretation of the symbol table
entry representing type.

UNIX Programmer's Manual Languages and Support Tools-463

COFF

ehar *JuneO;

Here June is the name of a function that returns a pointer to a character. The
fundamental type of June is 2 (character), the d 1 field is 2 (function), and the
d2 field is 1 (pointer). Therefore, the type word in the symbol table for June
contains the hexadecimal number Ox62, which is interpreted to mean "function
that returns a pointer to a character."

short *tabptr[JO]f25]f3];

Here tabptr is a 3-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the d 1, d2, and d3 fields each
contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry
in the symbol table contains the hexadecimal number Ox7f3 indicating a "3-
dimensional array of pointers to short integers."

464-Languages and Support Tools UNIX Programmer's Manual

Type Entries and Storage Classes

Figure 54 shows the type entries that are legal for each storage class.

Figure 54

Type Entries by Storage Class (Sheet 1 of 2)

Storage ----------"d" entry---------- "typ" entry

Class Function? Array? Pointer? Basic Type
C AUTO no yes yes Any except

T MOE

C EXT yes yes yes Any except
T MOE

C STAT yes yes yes Any except
T MOE

C REG no no yes Any except
T_MOE

C LABEL no no no T_NULL
CMOS no yes yes Any except

T MOE

C ARG yes no yes Any except
T MOE

C STRTAG no no no T_STRUCT
C MOU no yes yes Any except

T MOE

C UNTAG no no no T_UNION

UNIX Programmer's Manual Languages and Support Tools-465

COFF

Type Entries by Storage Class (Sheet 2 of 2).

Storage ----------"d" entry ---------- "typ" entry

Class Function? Array? Pointer? Basic Type
C TPDEF no yes yes Any except

T MOE

C ENTAG no no no T_ENUM
C MOE no no no T MOE
C REGPARM no no yes Any except

T MOE

C_FIELD no no no T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

C BLOCK no no no T NULL
C FCN no no no T NULL
C_EOS no no no T_NULL
C FILE no no no T_NULL
CALlAS no no no T_STRUCT,

T_UNION<,
T_ENUM

Conditions for the "d" entries apply to dl through d6, except that it is
impossible to have two consecutive derived types of "function."

Although function arguments can be declared as arrays, they are changed to
pointers by default. Therefore, no function argument can have "array" as its
first derived type.

466-Languages and Support Tools UNIX Programmer's Manual

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is given in
Figure 55. This declaration may be found in the header file syms.h.

Figure 55

Symbol Table Entry Declaration.

struct syment
{

};

union
{

char y_name[SYMNMLEN];
/* symbol name*/

struct
{

long _ n _zeroes;
/* symbol name * /

long _n_offset;
/* location in string table * /

_n_n;
char _n_nptr[2];

/* allows overlaying * /
} _n;
long n_value;

/* value of symbol * /

short n_scnum;
/* section number * /

unsigned short n_type;
/* type and derived * /

char n_sclass;
/* storage class * /

char n_numaux;
/* number of aux entries */

#define n _name
#define n _zeroes
#define n_offset
#define n _ nptr

_n._n_name
_n._n_n._n_zeroes

_n._n_n._n_offset
_n._n_nptd 1]

#define SYMNMLEN 8
#define SYMESZ 18 /* size of a symbol table entry */

UNIX Programmer's Manual Languages and Support Tools-467

COFF

Auxiliary Table Entries

Currently, there is at most one auxiliary entry per symbol. The auxiliary table
entry contains the same number of bytes as the symbol table entry. However,
unlike symbol table entries, the format of an auxiliary table entry of a symbol
depends on its type and storage class. They are summarized in Figure 56.

In Figure 56, "tagname" means any symbol name including the special symbol
.xfake, and "fcname" and "arrname" represent any symbol name.

Any symbol that satisfies more than one condition in Figure 56 should have a
union format in its auxiliary entry. Symbols that do not satisfy any of the
above conditions should NOT have any auxiliary entry.

File Names

Each of the auxiliary table entries for a file name contains a 14-character file
name in bytes 0 through 13. The remaining bytes are 0, regardless of the size
of the entry.

Sections

The auxiliary table entries for sections have the format as shown in Figure 57.

468-Languages and Support Tools UNIX Programmer's Manual

Figure 56

Auxiliary Symbol Table Entries.

Storage Type Entry Auxiliary
Name

Class dl typ Entry Format

.file C FILE DT NON T NULL file name
.text, .data, C STAT DT NON T NULL section
.bss

tagname C_STRTAG DT NON T NULL tag name
C_UNTAG
C ENTAG

.eos C EOS DT NON T NULL end of
structure

fcname C EXT DT FCN (Note 1) function
C STAT

arrname (Note 2) DT ARY (Note 1) array
.bb C BLOCK DT NON T NULL beginning

of block

.eb C BLOCK DT NON T NULL end of block

.bf,.ef C FCN DT NON T NULL beginning
and end of
function

name related (Note 2) DT PTR T_STRUCT, name related
to structure DT_ARR, T_UNION, to structure,
union, DT NON T ENUM union,
enumeration enumera tion

Notes:
1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

UNIX Programmer's Manual Languages and Support Tools-469

COFF

Figure 57

Format for Auxiliary Table Entries.

Bytes Declaration Name Description

0-3 long int x scnlen section
length

4-6 unsigned short x nreloc number of
relocation
entries

6-7 unsigned short x nlinno number of
line numbers

8-17 - - unused (filled
with zeroes)

470-Languages and Support Tools UNIX Programmer's Manual

Tag Names

The auxiliary table entries for tag names have the format shown in Figure 58.

Figure 58

Tag Names Table Entries.

Bytes Declaration Name Description

0-5 - - unused (filled
with zeros)

6-7 unsigned short x size size of strucrt,
union,and
enumeration

8-11 - - unused (filled
with zeroes)

12-15 long int x endndx index of next
entry beyond
this structure,
union, or
enumeration

16-17 - - unused (filled
with zeroes)

UNIX Programmer's Manual Languages and Support Tools-471

COFF

End of Structures

The auxiliary table entries for the end of structures have the format shown in
Figure 59.

Figure 59

Table Entries for End of Structures.

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled
wi th zeroes)

6-7 unsigned short x size size of struct,
union, or
enumeration

8-17 - - unused (filled
with zeroes)

472-Languages and Support Tools UNIX Programmer's Manual

Functions

The auxiliary table entries for functions have the format shown in Figure 60.

Figure 60

Table Entries for Functions.

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-7 long int x fsize size of
function
(in bytes)

8-11 long int x-Innoptr file pointer
to line number

12-15 long int x endndx index of
next entry
beyond this
point

16-17 unsigned short x tvndx index of the
function's address
in the transfer
vector table (not
used in UNIX system)

UNIX Programmer's Manual Languages and Support Tools-473

COFF

Arrays

The auxiliary table entries for arrays have the format shown in Figure 61.

Figure 61

Table Entries for Arrays.

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 unsigned short x In no line number of
declaration

6-7 unsigned short x size size of array

8-9 unsigned short x_dimen[O] first dimension

10-11 unsigned short x_dimen[1] second dimension

12-13 unsigned short x dimen[2] third dimension

14-15 unsigned short x_dimen[3] fourth dimension

16-17 - - unused (filled
with zeroes)

474-Languages and Support Tools UNIX Programmer's Manual

End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have the format
shown in Figure 62.

Figure 62

End of Block and Function Entries.

Bytes Declaration Name Description

0-3 - - used (filled
with zeroes)

4-5 unsigned short x lnno C-source line
number

6-17 - - unused (filled
with zeroes)

UNIX Programmer's Manual Languages and Support Tools-475

COFF

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have the
format shown in Figure 63.

Figure 63

Format for Beginning of Block and Function.

Bytes Declaration Name Description

0-3 - - unused (filled
wi th zeroes)

4-5 unsigned short x lnno C-source line
number

6-11 - - unused (filled
with zeroes)

12-15 long int x endndx index of next
entry past
this block

16-17 - - unused (filled
with zeroes)

476-Languages and Support Tools UNIX Programmer's Manual

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumerations symbols have
the format shown in Figure 64.

Figure 64

Entries for Structures, Unions, and Numerations.

Bytes Declaration Name Description

0-3 long int x_tagndx tag index
4-5 - - unused (filled

with zeroes)
6-7 unsigned short x size size of the

structure, union,
or numeration

8-17 - - unused (filled
with zeroes)

Names defined by "typedef' mayor may not have auxiliary table entries. For
example,

typedef struct people STUDENT;

struct people {
char name[20];
long id;
};

typedef struct people EMPLOYEE;

The symbol "EMPLOYEE" has an auxiliary table entry in the symbol table
but symbol "STUDENT" will not.

UNIX Programmer's Manual Languages and Support Tools-477

COFF

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is
given in Figure 65. This declaration may be found in the header file syms.h.

Figure 65

Auxiliary Symbol Table Entry.
union auxent {

struet {

union {
struet {

} xJnsz;

} x mise;
union {

struet {

} x fen;
str~et {

} x_ary;
} xJenary;

} x_sym;
struet {

} xJile;
struet {

} x_sen;
struet {

long x_tagndx;

unsigned short x Jnno;
unsigned short x_size;

long x Jsize;

long x Jnnoptr;
long x _ endndx;

unsigned short x_dimen[DIMNUM];

unsigned short x _tvndx;

char xJname[PILNMLEN];

long x _senlen;
unsigned short x _ nreloe;
unsigned short x _ nlinno;

long x _tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

#define FILNMLEN 14
#define DIMNUM 4
#define AUXENT union auxent
#define A UXESZ 18

478-Languages and Support Tools UNIX Programmer's Manual

STRING TABLE

Symbol table names longer than eight characters are stored contiguously in the
string table with each symbol name delimited by a null byte. The first four
bytes of the string table are the size of the string table in bytes; offsets into the
string table therefore are greater than or equal to 4.

For example, given a file containing two symbols (with names longer then eight
characters, long_name_1 and another _one) the string table has the format as
shown in Figure 66.

Figure 66

String Table.

28

'1' '0' 'n' 'g'

, - , 'n' 'a' 'm'

'e'
, - ,

'1' '\0'

'a' 'n' '0' '1'

'h' 'e' 'r' , - ,

'0' 'n' 'e' '\0'

The index of long_name _1 in the string table is 4 and the index of another_one
is 16.

UNIX Programmer's Manual Languages and Support Tools-479

COFF

ACCESS ROUTINES

Supplied with every standard UNIX system release is a set of access routines
that are used for reading the various parts of a common object file. Although
the calling program must know the detailed structure of the parts of the object
file it processes, the routines effectively insulate the calling program from the
knowledge of the overall structure of the object file. In this way, you can
concern yourself with the section you are interested in without knowing all the
object file details.

The access routines can be divided into four categories:

1. Functions that open or close an object file.

2. Functions that read header or symbol table information.

3. Functions that position an object file at the start of a particular section of
the object file.

4. A function that returns the symbol table index for a particular symbol.

These routines can be found in the library libld.a and are listed in Section 3 of
the UNIX Programmer's Manual-Volume 2: System Calls and Library
Routines. A summary of what is available can be found in the UNIX
Programmer's Manual-Volume 2: System Calls and Library Routines under
LDFCN(4).

480-Languages and Support Tools UNIX Programmer's Manual

ARBITRARY PRECISION DESK CALCULATOR LANGUAGE
(BC)

GENERAL

The arbitrary preCISIOn desk calculator language (BC) is a language and
compiler for doing arbitrary precision arithmetic under the UNIX operating
system. The output of the compiler is interpreted and executed by a collection
of routines that can input, output, and do arithmetic on infinitely large integers
and on scaled fixed-point numbers. These routines are based on a dynamic
storage allocator. Overflow does not occur until all available core storage is
exhausted.

The BC language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution. A small
collection of library functions is also available, including sin, cos, arctan, log,
exponential, and Bessel functions of integer order.

The BC compiler was written to make conveniently available a collection of
routines (called DC) that are capable of doing arithmetic on integers of
arbitrary size. The compiler is not intended to provide a complete
programming language. It is a minimal language facility.

Some of the uses of this compiler are:

• Compile large integers

• Compute accurately to many decimal places

• Convert numbers from one base to another base.

There is a scaling prOVISIon that permits the use of decimal point notation.
Provision is also made for input and output in bases other than decimal.
Numbers can be converted from decimal to octal by simply setting the output
base to equal eight.

The actual limit on the number of digits that can be handled depends on the
amount of core storage available. This is possible even on the smallest versions
of the UNIX operating system.

UNIX Programmer's Manual Languages and Support Tools-481

BC

The syntax of BC is very similar to that of the C language. This enables users
who are familiar with C language to easily work with BC.

The simplest kind of statement is an arithmetic expression on a line by itself.
For instance, if you type in the addition of two numbers (with the + operator)
such as

142857 + 285714

the program responds immediately with the sum

428571.

The operators -, *, /, %, and" can also be used. They indicate subtraction,
multiplication, division, remaindering, and integer result truncated toward zero.
Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it
is to be negated (the unary minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in power, then *, %, and /, and finally, + and -. Contents
of parentheses are evaluated before material outside the parentheses.
Exponentiations are performed from right to left and the other operators from
left to right.

a"b"c and a"(b"c)

are equivalent as are the two expressions

482-Languages and Support Tools UNIX Programmer's Manual

However, BC shares with Fortran and C language the undesirable convention
that

a/b*c is equivalent to (alb) *c.

Internal storage registers to hold numbers have single lowercase letter names.
The value of an expression can be assigned to a register in the usual way. The
statement

x=x+3

has the effect of increasing by three the value of the contents of the register
named x. When, as in this case, the outermost operator is an "=", the
assignment is performed; but the result is not printed. Only 26 of these named
storage registers are available.

There is a built-in square root function whose result is truncated to an integer
(see the part on "SCALING"). Entering the lines

x = sqrt(I91)
x

produces the printed result

13

BASES
There are two special internal quantities; ibase (input base) and obase (output
base). The contents of ibase, initially set to 10 (decimal), determines the base
used for interpreting numbers read in. For example, the input lines

ibase = 8
11

produces the output line

UNIX Programmer's Manual Languages and Support Tools-483

BC

9

and the system is ready to do octal to decimal conversions. Beware, however,
of trying to change the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement has no effect.
For dealing in hexadecimal notation, the characters A through F are permitted
in numbers (regardless of what base is in effect) and are interpreted as digits
having values 10 through 15, respectively. The statement

ibase = A

changes the base to decimal regardless of what the current input base is.
Negative and large positive input bases are permitted but are useless. No
mechanism has been provided for the input of arbitrary numbers in bases less
than 1 and greater than 16.

The content of obase, initially 10 (decimal), is used as the base for output
numbers. The input lines

obase = 16
1000

produces the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output
bases are permitted and are sometimes useful. For example, large numbers can
be output in groups of five digits by setting obase to 100000. Strange output
bases (i.e., 1, 0, or negative) are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines
which are continued end with a backslash (\). Decimal output conversion is
practically instantaneous, but output of very large numbers (i.e., more than 100
digits) with other bases is rather slow. Nondecimal output conversion of a

484-Languages and Support Tools UNIX Programmer's Manual

IOO-digit number takes about 3 seconds.

The ibase and obase have no effect on the course of internal computation or on
the evaluation of expressions. They only affect input and output conversions,
respectively.

SCALING

A third special internal quantity called scale is used to determine the scale of
calculated quantities. The number of digits after the decimal point of a
number is referred to as its scale. Numbers may have up to 99 decimal digits
after the decimal point. This fractional part is retained in further
computations.

The contents of scale must be no greater than 99 and no less than O. It is
initially set to O. However, appropriate scaling can be arranged when more
than 99 fraction digits are required.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules:

• Addition and subtraction - The scale of the result is the larger of the
scales of the two operands. In this case, there is never any truncation of
the result.

• Multiplication - The scale of the result is never less than the maximum of
the two scales of the operands and never more than the sum of the scales
of the operands. Subject to those two restrictions, the scale of the result is
set equal to the contents of the internal quantity scale.

• Division - The scale of a quotient is the contents of the internal quantity
scale. The scale of. a remainder is the sum of the scales of the quotient
and the divisor.

• Exponentiation-The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an integer.

• Square root - The scale of a square root is set to the maximum of the scale
of the argument and the contents of scale.

UNIX Programmer's Manual Languages and Support Tools-485

BC

All of the internal operations are actua.lly carried out in terms of integers with
digits being discarded when necessary. In every case where digits are
discarded,truncation and not rounding is performed.

The internal quantities scale, ibase, and obase can be used in expressions just
like other variables. The input line

scale = scale + 1

increases the value of scale by one, and the input line

scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase or obase are not equal to 10.
The internal computations (which are still conducted in decimal regardless of
the bases) are performed to the specified number of decimal digits, never
hexadecimal, octal, or any other kind of digits.

FUNCTIONS

The name of a function is a single lowercase letter. Function names are
permitted to coincide with simple variable names. Twenty-six different defined
functions are permitted in addition to the 26 variable names. The input line

define a (x) {

begins the definition of a function with one argument. This line must be
followed by one or more statements which make up the body of the function
ending with a right brace (}). The general form of a function is

486-Languages and Support Tools UNIX Programmer's Manual

define a (x) {

return

Return of control from a function occurs when a return statement is executed
or when the end of the function is reached. The return statement can take
either of the two forms:

return
return (x)

In the first case, the value of the function is 0; and in the second, the value of
the function is the expression in parentheses.

Variables used in the function can be declared as automatic by a statement of
the form

auto x,y,z

There can be only one auto statement in a function, and it must be the first
statement in the definition. These automatic variables are allocated space and
initialized to zero on entry to the function and thrown away on return (exit).
The values of any variables with the same names outside the function are not
disturbed. Functions may be called recursively and the automatic variables at
each level of call are protected. The parameters named in a function definition
are treated in the same way as the automatic variables of that function with
the single exception that they are given a value on entry to the function. An
example of a function definition is

define a (x,y) {
auto z
z = x*y
return(z)

The value of this function a, when called, is the product of its two arguments,
"x" and "y".

UNIX Programmer's Manual Languages and Support Tools-487

BC

A function is called by the appearance of its name followed by a string of
arguments enclosed in parentheses and separated by commas. The result is
unpredictable if the wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with
nothing between them: O.

If the function a above has been defined, then the line

a(7,3.14)

causes the result 21.98 to be printed, and the line

z = a(a(3,4),S)

causes the result 60 to be printed.

SUBSCRIPTED VARIABLES

A single lowercase letter variable name followed by an expression in brackets is
called a subscripted variable (an array element). The variable name is called
the array name, and the expression in brackets is called the subscript. Only 1-
dimensional arrays are permitted. The names of arrays are permitted to
coincide with the names of simple variables and function names. Any
fractional part of a subscript is discarded before use. Subscripts must be
greater than or equal to 0 and less than or equal to 2047.

Subscripted variables may be used in expressions, in function calls, and in
return statements.

An array name may be used as an argument to a function or may be declared
as automatic in a function definition by the use of empty brackets:

488-Languages and Support Tools UNIX Programmer's Manual

f(a[]}
define f(a[D
auto a[]

When an array name is so used, the whole contents of the array are copied for
the use of the function and thrown away on exit from the function. Array
names that refer to whole arrays cannot be used in any other contexts.

CONTROL STATEMENTS

The if, while, and for statements may be used to alter the flow within
programs or to cause iteration. The range of each of them is a statement or a
compound statement consisting of a collection of statements enclosed in braces.
They are written in the following way:

or

if(relation} statement
while(relation} statement
for (expression 1 ; relation; expression2} statement

if(re1ation} {statements}
while(relation} {statements}
for (expression 1 ; relation; expression2} {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the following six relational
operators:

UNIX Programmer's Manual Languages and Support Tools-489

BC

< less than
> greater than
<= less than or equal to
> = greater than or equal to
== equal to
!= not equal to

Beware of using "=" instead of "==" as a relational operator. Unfortunately,
both of these are legal, so there will be no diagnostic message, but "=" will not
do a comparison.

The if statement causes execution of its range if and only if the relation is true.
Then control passes to the next statement in sequence.

The while statement causes execution of its range repeatedly as long as the
relation is true. The relation is tested before each execution of its range; and if
the relation is false, control passes to the next statement beyond the range of
the while statement.

The for statement begins by executing expressionl. Then the relation is tested;
and if true, the statements in the range of the for are executed. Then
expression2 is executed. The relation is then tested, etc. The typical use of the
for statement is for a controlled iteration, as in the statement

forG=l; i<=10; i=i+I) i

which prints the integers from one to ten. The following are some examples of
the use of the control statements:

define f(n) {
auto i, x
x=l
forG=l; i<=n; i=i+I) x=x*i
return (x)
}

The input line

490-Languages and Support Tools UNIX Programmer's Manual

prints "a" factorial if "a" is a positive integer. The following is the definition
; of a function that computes values of the binomial coefficient (m and n are

assumed to be positive integers):

define b(n,m) {
auto x, j
x==l
for(j==l; j<==m; j==j+1) x==x*(n-j+1)/j
return (x)
}

The following function computes values of the exponential function by
summing the appropriate series without regard for possible truncation errors:

scale == 20
define e(x) {

auto a, b, c, d, n
a == 1
b == 1
c == 1
d==O
n == 1
while {I ====1) {

a == a*x
b == b*n
c == c + alb
n==n+l
if(c====d) return (c)
d==c

UNIX Programmer's Manual Languages and Support Tools-491

BC

ADDITIONAL FEATURES

There are some additional language features that every user should know.

Normally, statements are typed one to a line. It is also permissible, however,
to type several statements on a line by separating the statements by semicolons.

If an assignment statement is parenthesized, it then has a value; and it can be
used anywhere that an expression can. For example, the input line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

The following is an example of a use of the value of an assignment statement
even when it is not parenthesized. The input line

x = a[i=i+l1

causes a value to be assigned to x and also increments i before it is used as a
subscript.

The following constructs work in BC in exactly the same manner as they do in
the C language.

x=y=z is the same as x= (y=z)
x =+ y x = x+y
x =- y x = x-y
x =* y x = x*y
x =/ y x = x/y
x=%y x = x%y
x= " x = x"y Y
x++ (x=x+I)-1
x-- (x=x-I)+l
++x x = x+l
--x x = x-I

492-Languages and Support Tools UNIX Programmer's Manual

Warning: In some of these constructions, spaces are
significant. There is a real difference between
x=-y and x= -yo The first replaces x by
x-y and the second by -yo

The following are three important things to remember when using BC
programs:

• To exit a BC program, type quit.

• There is a comment convention identical to that of the C language.
Comments begin with 1* and end with *1.

• There is a library of math functions that may be obtained by typing at
command level:

be -1

This command loads a set of library functions that includes sine (s), cosine (e),
arctangent (a), natural logarithm (I), exponential (e), and Bessel functions of
integer order [j(n,x) 1. The library sets the scale to 20, but it can be reset to
another value.

If you type

bc file ...

the BC program reads and executes the named file or files before accepting
commands from the keyboard. In this way, programs and function definitions
are loaded.

UNIX Programmer's Manual Languages and Support Tools-493

BC

BC APPENDIX

NOTATION

In the following pages, syntactic categories are in italics and literals are in
bold. Material in brackets "[]" is optional.

TOKENS

Tokens consist of keywords, identifiers, constants, operators, and separators.
Token separators may be blanks, tabs, or comments. Newline characters or
semicolons separate statements.

Comments are introduced by the characters /. and terminated by ./.

There are three kinds of identifiers-ordinary, array, .and function. All three
types consist of single lowercase letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript.
Arrays are singly dimensioned and may contain up to 2048 elements. Indexing
begins at zero so an array may be indexed from 0 to 2047. Subscripts are
truncated to integers. Function identifiers are followed by parentheses, possibly
enclosing arguments. The three types of identifiers do not conflict. A program
can have a variable named x, an array named x, and a function named x; all
of which are separate and distinct.

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants consist of arbitrarily long numbers with an optional decimal point.
The hexadecimal digits A through F are also recognized as digits with values
10 through 15, respectively.

494-Languages and Support Tools UNIX Programmer's Manual

EXPRESSIONS

The value of an expression is printed unless the main operator is an assignment.
Precedence is the same as the order of presentation here with highest appearing
first. Left or right associativity, where applicable, is discussed with each
operator.

Named Expressions

Named expressions are places where values are stored. Simply stated, named
expressions are legal on the left side of an assignment. The value of a named
expression is the value stored in the place named.

identifiers

Simple identifiers are named expressions. They have an initial value of zero.

array-name[expression]

Array elements are named expressions. They have an initial value of zero.

scale, ibase, and obase

The internal registers scale, ibase, and obase are all named expressions. The
scale register is the number of digits after the decimal point to be retained in
arithmetic operations. It has an initial value of zero. The ibase and obase
registers are the input and output number radix, respectively. Both ibase and
obase have initial values of ten.

Function Calls

function name ([expression[,expression ..]])

A function call consists of a function name followed by parentheses containing
a comma-separated list of expressions, which are the function arguments. A
whole array passed as an argument is specified by the array name followed by
empty square brackets. All function arguments are passed by

UNIX Programmer's Manual Languages and Support Tools-495

BC

value. As a result, changes made to the formal parameters have no effect on
the actual arguments. If the function terminates by executing a return
statement, the value of the function is the value of the expression in the
parentheses of the return statement or is zero if no expression is provided or if
there is no return statement.

sqrt(expression)

The result is the square root of the expression. The result is truncated in the
least significant decimal place. The scale of the result is the scale of the
expression or the value of scale, whichever is larger.

length(expression)

The result is the total number of significant decimal digits in the expression.
The scale of the result is zero.

scale(expression)

The result is the scale of the expression. The scale of the result is zero.

Constants

Constants are primitive expressions.

Parentheses

An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter the normal precedence.

The unary operators bind right to left.

496-Languages and Support Tools UNIX Programmer's Manual

-expression

The result is the negative of the expression.

++named-expression

The named expression is incremented by one. The result is the value of the
named expression after incrementing.

--named-expression

The named expression is decremented by one. The result is the value of the
named expression after decrementing.

named-expression++

The named expression is incremented by one. The result is the value of the
named expression before incrementing.

named-expression--

The named expression is decremented by one. The result is the value of the
named expression before decrementing.

The exponentiation operator binds right to left.

expression expression

The result is the first expression raised to the power of the second expression.
The second expression must be an integer. If a is the scale of the left
expression and b is the absolute value of the right expression, then the scale of
the result is

min (a x b,max (scale,a))

The operators *, I, and % bind left to right.

UNIX Programmer's Manual Languages and Support Tools-497

BC

expression * expression

The result is the product of the two expressions. If a and b are the scales of
the two expressions, then the scale of the result is

min (a +b,max (scale,a,b»

expression / expression

The result is the quotient of the two expressions. The scale of the result is the
value of scale.

expression % expression

The % operator produces the remainder of the division of the two expressions.
More precisely, a%b is a-alb*b.

The scale of the result is the sum of the scale of the divisor and the value of
scale.

The additive operators bind left to right.

expression + expression

The result is the sum of the two expressions. The scale of the result is the
maximum of the scales of the expressions.

expression - expression

The result is the difference of the two expressions. The scale of the result is
the maximum of the scales of the expressions.

The assignment operators bind right to left.

498-Languages and Support Tools UNIX Programmer's Manual

named-expression = expression

This expression results in assigning the value of the expression on the right to
the named expression on the left.

named -expression =+ expression
named -expression =- expression
named -expression =* expression
named-expression =/ expression
named -expression =% expression
named -expression =" expression

The result of the above expressions is equivalent to "named expression
named expression OP expression", where OP is the operator after the = sign.

RELATIONAL OPERATORS

Unlike all other operators, the relational operators are only valid as the object
of an if or while statement or inside a for statement.

expression < expression
expression > expression
expression < = expression
expression > = expression
expression == expression
expression != expression

STORAGE CLASSES

There are only two storage classes in BC-global and automatic (local). Only
identifiers that are to be local to a function need be declared with the auto
command. The arguments to a function are local to the function. All other
identifiers are assumed to be global and available to all functions. All
identifiers, global and local, have initial values of zero. Identifiers declared as
auto are allocated on entry to the function and released on returning from the
function. They therefore do not retain values between function calls. The auto
arrays are specified by the array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in C
language. On entry to a function, the old values of the names that appear as
parameters and as automatic variables are pushed onto a stack. Until return is
made from the function, reference to these names refers only to the new values.

UNIX Programmer's Manual Languages and Support Tools-499

BC

STATEMENTS

Statements must be separated by a semicolon or newline. Except where altered
by control statements, execution is sequential.

When a statement is an expression unless the main operator is an assignment,
the value of the expression is printed followed by a newline character.

Statements may be grouped together and used when one statement is expected
by surrounding them with braces { }.

The following statement prints the string inside the quotes.

"any string"

if (relation) statement

The substatement is executed if the relation is true.

while (relation) statement

The while statement is executed while the relation is true. The test occurs
before each execution of the statement.

for (expression; relation; expression)statement

The for statement is the same as

first -expression
while (relation) {

statement
last -expression

All three expressions must be present.

500-Languages and Support Tools UNIX Programmer's Manual

break

The break statement causes termination of a for or while statement.

auto identifierl,identifier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are
specified by following the array name with empty square brackets. The auto
statement must be the first statement in a function definition.

define ([parameter[,parameter ...]]) {
statements}

The define statement defines a function. The parameters may be ordinary
identifiers or array names. Array names must be followed by empty square
brackets.

return
return (expression)

The return statement causes the following:

• Termination of a function

• Popping of the auto variables on the stack

• Specifies the results of the function.

The first form is equivalent to return(O). The result of the function is the
result of the expression in parentheses.

The quit statement stops execution of a Be program and returns control to the
UNIX system software when it is first encountered. Because it is not treated
as an executable statement, it cannot be used in a function definition or in an
if, for, or while statement.

UNIX Programmer's Manual Languages and Support Tools-501

BC

NOTES

502-Languages and Support Tools UNIX Programmer's Manual

INTERACTIVE DESK CALCULATOR (DC>

GENERAL

The DC program is an interactive desk calculator program implemented on the
UNIX operating system to do arbitrary-precision integer arithmetic. It has
provisions for manipulating scaled fixed-point numbers and for input and
output in bases other than decimal.

The size of numbers that can be manipulated by DC is limited only by
available core storage. On typical implementations of the UNIX system, the
size of numbers that can be handled varies from several hundred on the
smallest systems to several thousand on the largest.

The DC program works like a stacking calculator using reverse Polish notation.
Ordinarily, DC operates on decimal integers; but an input base, output base,
and a number of fractional digits to be maintained can be specified.

A language called Be has been developed which accepts programs written in
the familiar style of higher-level programming languages and compiles the
output which is interpreted by DC. Some of the commands described below
were designed for the compiler interface and are not easy for a human user to
manipulate.

Numbers that are typed into DC are put on a pushdown stack. The DC
commands work by taking the top number or two off the stack, performing the
desired operation, and pushing the result on the stack. If an argument is given,
input is taken from that file until its end, then it is taken from the standard
input.

DC COMMANDS

Any number of commands are permitted on a line. Blanks and new-line
characters are ignored except within numbers and in places where a register
name is expected.

UNIX. Programmer's Manual Languages and Support Tools-503

de

The following constructions are recognized:

number (e.g. 244)

The value of a number is pushed onto the stack. A number is an unbroken
string of digits 0 through 9 and uppercase letters A through F (treated as digits
with values 10 through 15, respectively). The number may be preceded by an
underscore () to input a negative number and numbers may contain decimal
points.

The top two values on the stack are added (+), subtracted (-), multiplied (*),
divided (f), remaindered (%), or exponentiated (A) by using

+_*/ %A

The two entries are popped off the stack, and the result is pushed on the stack
in their place. The result of a division is an integer truncated toward zero. An
exponent must not have any digits after the decimal point.

sx

The top of the main stack is popped and stored in a register named x (where x
may be any character). If s is uppercase, x is treated as a stack; and the value
is pushed onto it. Any character, even blank or newline, is a valid register
name.

The value of register x is pushed onto the stack. Register x is not altered. If the
I in

Ix

is uppercase, register x is treated as a stack, and its top value is popped onto
the main stack. All registers start with empty value which is treated as a zero
by the command I and is treated as an error by the command L.

The following characters perform the stated tasks:

504-Languages and Support Tools UNIX Programmer's Manual

d

The top value on the stack is duplicated.

p

The top value on the stack is printed. The top value remains unchanged.

f

All values on the stack and in registers are printed.

x

Treats the top element of the stack as a character string, removes it from the
stack, and executes it as a string of DC commands.

[...]

Puts the bracketed character string onto the top of the stack.

q

Exits the program. If executing a string, the recursion level is popped by two.
If q is uppercase, the top value on the stack is popped; and the string execution
level is popped by that value.

<x >x =x !<x !>x !=x

The top two elements of the stack are popped and compared. Register x is
executed if they obey the stated relation. Exclamation point is negation.

v

Replaces the top element on the stack by its square root. The square root of an
integer is truncated to an integer.

UNIX Programmer's Manual Languages and Support Tools-50S

de

Interprets the rest of the line as a UNIX software command. Control returns
to DC when the command terminates.

c

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further
input. If i is uppercase, the value of. the input base is pushed onto the stack.
No mechanism has been provided for the input of arbitrary numbers in bases
less than 1 or greater than 16.

o

The top value on the stack is popped and used as the number radix for further
output. If 0 is uppercase, the value of the output base is pushed onto the stack,

k

The top of the stack is popped, and that value is used as a scale factor that
influences the number of decimal places that are maintained during
multiplication, division, and exponentiation. The scale factor must be greater
than or equal to zero and less than 100. If k is uppercase, the value of the
scale factor is pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

?

A line of input is taken from the input source (usually the console) and
executed.

506-Languages and Support Tools UNIX Programmer's Manual

INTERNAL REPRESENTATION OF NUMBERS

Numbers are stored internally using a dynamic storage allocator. Numbers are
kept in the form of a string of digits to the base 100 stored one digit per byte
<centennial digits). The string is stored with the low-order digit at the
beginning of the string. For example, the representation of 157 is 57,1. After
any arithmetic operation on a number, care is taken that all digits are in the
range 0 to 99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100s complement notation, which is
analogous to twos complement notation for binary numbers. The high-order
digit of a negative number is always -1 and all other digits are in the range 0
to 99. The digit preceding the high-order -1 digit is never a 99. The
representation of -157 is 43,98,-1. This is called the canonical form of a
number. The advantage of this kind of representation of negative numbers is
ease of addition. When addition is performed digit by digit, the result is
formally correct. The result need only be modified, if necessary, to put it into
canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that
large, addition can be carried out and the handling of carries done later when it
is convenient.

An additional byte is stored with each number beyond the high-order digit to
indicate the number of assumed decimal digits after the decimal point. The
representation of .001 is 1,3 where the scale has been italicized to emphasize
the fact that it is not the high-order digit. The value of this extra byte is called
the scale factor of the number.

THE ALLOCATOR

The DC program uses a dynamic string storage allocator for all of its internal
storage. All reading and writing of numbers internally is through the allocator.
Associated with each string in the allocator is a 4-word header containing
pointers to the beginning of the string, the end of the string, the next place to
write, and the next place to read. Communication between the allocator and
DC is via pointers to these headers.

UNIX Programmer's Manual Languages and Support Tools-507

de

The allocator initially has one large string on a list of free strings. All headers
except the one pointing to this string are on a list of free headers. Requests for
strings are made by size. The size of the string actually supplied is the next
higher power of two. When a request for a string is made, the allocator first
checks the free list to see if there is a string of the desired size. If none is
found, the allocator finds the next larger free string and splits it repeatedly
until it has a string of the right size. Leftover strings are put on the free list.
If there are no larger strings, the allocator tries to combine smaller free strings
into larger ones. Since all strings are the result of splitting large strings, each
string has a neighbor that is next to it in core and, if free, can be combined
with it to make a string twice as long.

If a string of the proper length cannot be found, the allocator asks the system
for more space. The amount of space on the system is the only limitation on
the size and number of strings in DC. If the allocator runs out of headers at
any time in the process of trying to allocate a string, it also asks the system for
more space.

There are routines in the allocator for reading, writing, copying, rewinding,
forward spacing, and backspacing strings. All string manipulation is done
using these routines.

The reading and writing routines increment the read pointer or write pointer so
that the characters of a string are read or written in succession by a series of
read or write calls. The write pointer is interpreted as the end of the
information-containing portion of a string and a call to read beyond that point
returns an end of string indication. An attempt to write beyond the end of a
string causes the allocator to allocate a larger space and then copy the old
string into the larger block.

INTERNAL ARITHMETIC

All arithmetic operations are done on integers. The operands (or operand)
needed for the operation are popped from the main stack and their scale factors
stripped off. Zeros are added or digits removed as necessary to get a properly
scaled result from the internal arithmetic routine. For example, if the scale of
the operands is different and decimal alignment is required, as it is for
addition, zeros are appended to the operand with the smaller scale. After
performing the required arithmetic operation, the proper scale factor is

508-Languages and Support Tools UNIX Programmer's Manual

appended to the end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations.
The scale register limits the number of decimal places retained in arithmetic
computations. The scale register may be set to the number on the top of the
stack truncated to an integer with the k command. The K command may be
used to push the value of scale on the stack. The value of scale must be
greater than or equal to 0 and less than 100. The descriptions of the individual
arithmetic operations includes the exact effect of scale on the computations.

ADDITION AND SUBTRACTION

The scales of the two numbers are compared and trailing zeros are supplied to
the number with the lower scale to give both numbers the same scale. The
number with the smaller scale is multiplied by 10 if the difference of the scales
is odd. The scale of the result is then set to the larger of the scales of the two
operands.

Subtraction is performed by negating the number to be subtracted and
proceeding as in addition.

The addition is performed digit by digit from the low-order end of the number.
The carries are propagated in the usual way. The resulting number is brought
into canonical form, which may require stripping of leading zeros, or for
negative numbers, replacing the high-order configuration 99,-1 by the digit
-1. In any case, digits that are not in the range 0 through 99 must be brought
into that range, propagating any carries or borrows that result.

MULTIPLICATION

The scales are removed from the two operands and saved. The operands are
both made positive. Then multiplication is performed in a digit by digit
manner that exactly follows the hand method of multiplying. The first number
is multiplied by each digit of the second number, beginning with its low-order
digit. The intermediate products are accumulated into a partial sum which
becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

UNIX Programmer's Manual Languages and Support Tools-509

de

The scale of the result is set equal to the sum of the scales of the two operands.
If that scale is larger than the internal register scale and also larger than both
of the scales of the two operands, then the scale of the result is set equal to the
largest of these three last quantities.

DIVISION

The scales are removed from the two operands. Zeros are appended, or digits
are removed from the dividend to make the scale of the result of the integer
division equal to the internal quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the
lengths of the two numbers is computed. If the divisor is longer than the
dividend, zero is returned. Otherwise, the top digit of the divisor is divided into
the top two digits of the dividend. The result is used as the first (high-order)
digit of the quotient. If it turns out to be one unit too low, the next trial
quotient is larger than 99; and this is adjusted at the end of the process. The
trial digit is multiplied by the divisor, the result subtracted from the dividend,
and the process is repeated to get additional quotient digits until the remaining
dividend is smaller than the divisor. At the end, the digits of the quotient are
put into the canonical form with propagation of carry as needed. The sign is
set from the sign of the operands.

REMAINDER

The division routine is called, and division is performed exactly as described.
The quantity returned is the remains of the dividend at the end of the divide
process. Since division truncates toward zero, remainders have the same sign
as the dividend. The scale of the remainder is set to the maximum of the scale
of the dividend and the scale of the quotient plus the scale of the divisor.

510-Languages and Support Tools UNIX Programmer's Manual

SQUARE ROOT

The scale is removed from the operand. Zeros are added if necessary to make
the integer result have a scale that is the larger of the internal quantity scale
and the scale of the operand. The method used to compute the square root is
Newton's method with successive approximations by the rule.

The initial guess is found by taking the integer square root of the top two
digits.

EXPONENTIATION

Only exponents with 0 scale factor are handled. If the exponent is 0, then the
result is 1. If the exponent is negative, then it is made positive; and the base is
divided into 1. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly
squared, and the result is obtained as a product of those powers of the base
that correspond to the positions of the one-bits in the binary representation of
the exponent. Enough digits of the result are removed to make the scale of the
result the same as if the indicated multiplication had been performed.

INPUT CONVERSION AND BASE

Numbers are converted to the internal representation as they are read in. The
scale stored with a number is simply the number of fractional digits input.
Negative numbers are indicated by preceding the number with an underscore
() . The hexadecimal digits A through F correspond to the numbers 10
through 15 regardless of input base. The i command can be used to change the
base of the input numbers. This command pops the stack, truncates the
resulting number to an integer, and uses it as the input base for all further
input. The input base (ibase) is initialized to 10 (decimal) but may, for
example, be changed to 8 or 16 for octal or hexadecimal to decimal
conversions. The command I pushes the value of the input base on the stack.

UNIX Programmer's Manual Languages and Support Tools-5J 1

de

OUTPUT COMMANDS

The command p causes the top of the stack to be printed. It does not remove
the top of the stack. All of the stack and internal registers are output by
typing the command f. The 0 command is used to change the output base
(obase). This command uses the top of the stack truncated to an integer as the
base for all further output. The output base in initialized to 10 (decimal). It
works correctly for any base. The command 0 pushes the value of the output
base on the stack.

OUTPUT FORMAT AND BASE

The input and output bases only affect the interpretation of numbers on input
and output; they have no effect on arithmetic computations. Large numbers
are output with 70 characters per line; a backslash (\) indicates a continued
line. All choices of input and output bases work correctly, although not all are
useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 are used for decimal-octal or
decimal-hexadecimal conversions.

INTERNAL REGISTERS

Numbers or strings may be stored in internal registers or loaded on the stack
from registers with the commands s and I. The command sx pops the top of
the stack and stores the result in register x. The x can be any character. The
command Ix puts the contents of register x on the top of the stack. The I
command has no effect on the contents of register x. The s command,
however, is destructive.

512-Languages and Support Tools UNIX Programmer's Manual

STACK COMMANDS

The command c clears the stack. The command d pushes a duplicate of the
number on the top of the stack onto the stack. The command z pushes the
stack size on the stack. The command X replaces the number on the top of the
stack with its scale factor. The command Z replaces the top of the stack with
its length.

SUBROUTINE DEFINITIONS AND CALLS

Enclosing a string in brackets "[]" pushes the ASCII string on the stack. The
q command quits or (in executing a string) pops the recursion levels by two.

INTERNAL REGISTERS-PROGRAMMING DC

The load and store commands, together with "[]" to store strings, the x
command to execute, and the testing commands «, >, =, ! <, ! >, ! =), can
be used to program DC. The x command assumes the top of the stack is a
string of DC commands and executes it. The testing commands compare the
top two elements on the stack and, if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0 through 9,

[lip 1 + si lilO>a]sa
Osi lax

PUSHDOWN REGISTERS AND ARRAYS

These commands are designed for use by a compiler, not directly by
programmers. They involve pushdown registers and arrays. In addition to the
stack that commands work on, DC can be thought of as having individual
stacks for each register. These registers are operated on by the commands S
and L. Sx pushes the top value of the main stack onto the stack for the
register x. Lx pops the stack for register x and puts the result on the main
stack. The commands s and I also work on registers but not as pushdown
stacks. The command I does not affect the top of the register stack, but s
destroys what was there before.

UNIX Programmer's Manual Languages and Support Tools-513

de

The commands to work on arrays are : and ;. The command :x pops the stack
and uses this value as an index into the array x. The next element on the stack
is stored at this index in x. An index must be greater than or equal to 0 and
less than 2048. The command ;x loads the main stack from the array x. The
value on the top of the stack is the index into the array x of the value to be
loaded.

MISCELLANEOUS COMMANDS

The command ! interprets the rest of the line as a UNIX software command
and passes it to the UNIX operating system to execute. One other compiler
command is Q. This command uses the top of the stack as the number of
levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator is that a general
purpose program can be used for a variety of other tasks. The allocator has
some value for input and for compiling (i.e., the bracket [.. .1 commands) where
it cannot be known in advance how long a string will be. The result is that at
a modest cost in execution time:

• All considerations of string allocation and sizes of strings are' removed
from the remainder of the program.

• Debugging is made easier.

• The allocation method used wastes approximately 25 percent of available
space.

The choice of 100 as a base for internal arithmetic seemingly has no
compelling advantage. Yet the base cannot exceed 127 because of hardware
limitations and at the cost of 5 percent in space debugging was made a great
deal easier, and decimal output was made much faster.

514-Languages and Support Tools UNIX Programmer's Manual

The reason for a stack-type arithmetic design was to permit all DC commands
from addition to subroutine execution to be implemented in essentially the
same way. The result was a considerable degree of logical separation of the
final program into modules with very little communication between modules.

The rationale for the lack of interaction between the scale and the bases is to
provide an understandable means of proceeding after a change of base or scale
(when numbers had already been entered). An earlier implementation which
had global notions of scale and base did not work out well. If the value of
scale is interpreted in the current input or output base, then a change of base
or scale in the midst of a computation causes great confusion in the
interpretation of the results. The current scheme has the advantage that the
value of the input and output bases are only used for input and output,
respectively, and they are ignored in all other operations. The value of scale is
not used for any essential purpose by any part of the program. It is used only
to prevent the number of decimal places resulting from the arithmetic
operations from growing beyond all bounds.

The rationale for the choices for the scales of the results of arithmetic is that in
no case should any significant digits be thrown away if, on appearances, the
user actually wanted them. Thus, if the user wants to add the numbers 1.5 and
3.517, it seemed reasonable to give them the result 5.017 without requiring to
unnecessarily specify rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with
many more digits than their operands. It seemed reasonable to give as a
minimum the number of decimal places in the operands but not to give more
than that number of digits unless the user asked for them by specifying a value
for scale. Square root can be handled in just the same way as multiplication.
The operation of division gives arbitrarily many decimal places, and there is
simply no way to guess how many places the user wants. In this case only, the
user must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend
from the quotient and remainder. This is easy to implement; no digits are
thrown away.

UNIX Programmer's Manual Languages and Support Tools-SIS

de

NOTES

516-Languages and Support Tools UNIX Programmer's Manual

LEXICAL ANALYZER GENERATOR (LEX)

GENERAL

The Lex is a program generator that produces a program in a general purpose
language that recognizes regular expressions. It is designed for lexical
processing of character input streams. It accepts a high-level, problem oriented
specification for character string matching. The regular expressions are
specified by you (the user) in the source specifications given to Lex. The Lex
program generator source is a table of regular expressions and corresponding
program fragments. The table is translated to a program that reads an input
stream, copies the input stream to an output stream, and partitions the input
into strings that match the given expressions. As each such string is
recognized, the corresponding program fragment is executed. The recognition
of the expressions is performed by a deterministic finite automaton generated
by Lex. The program fragments written by you are executed in the order in
which the corresponding regular expressions occur in the input stream.

The user supplies the additional code beyond expression matching needed to
complete the tasks, possibly including codes written by other generators. The
program that recognizes the expressions is generated in the general purpose
programming language employed for your program fragments. Thus, a high­
level expression language is provided to write the string expressions to be
matched while your freedom to write actions is unimpaired.

The Lex written code is not a complete language, but rather a generator
representing a new language feature which can be added to different
programming languages, called "host languages". Just as general purpose
languages can produce code to run on different computer hardware, Lex can
write code in different host languages. The host language is used for the
output code generated by Lex and also for the program fragments added by the
user. Compatible run-time libraries for the different host languages are also
provided. This makes Lex adaptable to different environments and different
users. Each application may be directed to the combination of hardware and
host language appropriate to the task, the user's background, and the properties
of local implementations. At present, the only supported host language is the
C language, although Fortran (in the form of Ratfor) has been available in the
past. The Lex generator exists on the UNIX operating system, but the codes
generated by Lex may be taken anywhere the appropriate compilers exist.

UNIX Programmer's Manual Languages and Support Tools-517

LEX

The Lex program generator turns the user's expressions and actions (called
source) into the host general purpose language; the generated program is
named yylex. The yylex program recognizes expressions in a stream (called
input) and performs the specified actions for each expression as it is detected .

. For example, consider a program to delete from the input all blanks or tabs at
the ends of lines.

%%
[\t1+$

is all that is required. The program contains a % % delimiter to mark the
beginning of the rules. This rule contains a regular expression that matches one
or more instances of the characters blank or tab (written for visibility, in
accordance with the C language convention) and occurs prior to the end of a
line. The brackets indicate the character class made of blank and tab; the +
indicates "one or more ... "; and the $ indicates "end of line," as in QED. No
action is specified, so the program generated by Lex yylexO ignores these
characters. Everything else is copied. To change any remaining string of
blanks or tabs to a single blank, add another rule.

%%
[\t1+$
[\t]+ printf(" II);

The coded instructions (generated for this source) scans for both rules at once,
observes (at the termination of the string of blanks or tabs) whether or not
there is a newline character, and then executes the desired rule action. The
first rule matches all strings of blanks or tabs at the end of lines, and the
second rule matches all remaining strings of blanks or tabs.

The Lex program generator can be used alone for simple transformations or for
analysis and statistics gathering on a lexical level. The Lex generator can also
be used with a parser generator to perform the lexical analysis phase; it is
particularly easy to interface Lex and yacc. The Lex program recognizes only
regular expressions; yacc writes parsers that accept a large class of context free
grammars but requires a lower level analyzer to recognize input tokens. Thus,
a combination of Lex and yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to partition the input
stream; and the parser generator assigns structure to the resulting pieces.

5I8-Languages and Support Tools UNIX Programmer's Manual

Additional programs, written by other generators or by hand, can be added
easily to programs written by Lex. You will realize that the name yylex is
what yacc expects its lexical analyzer to be named, so that the use of this name
by Lex simplifies interfacing.

In the program written by Lex, the user's fragments (representing the actions
to be performed as each regular expression is found) are gathered as cases of a
switch. The automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions or to add subroutines outside this action
routine.

The Lex program generator is not limited to a source that can be interpreted
on the basis of one character look-ahead. For example, if there are two rules,
one looking for "ab" and another for "abcdefg" and the input stream is
"abcdefh," Lex recognizes "ab" and leaves the input pointer just before "cd
... ". Such backup is more costly than the processing of simpler languages.

LEX SOURCE

The general format of Lex source is

{defini tions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The first
% % is required to mark the beginning of the rules, but the second % % is
optional. The absolute minimum Lex program is

%%

(no definitions, no rules) which translates into a program that copies the input
to the output unchanged.

In the outline of Lex programs shown above, the rules represent your control
decisions. They are in a table containing

UNIX Programmer's Manual Languages and Support Tools-519

LEX

• A left column with regular expressions

• A right column with actions and program fragments to be executed when
the expressions are recognized.

Thus an individual rule might be

integer printf(IIfound keyword INT");

to look for the string integer in the input stream and print the message "found
keyword INT" whenever it appears. In this example, the host procedural
language is C, and the C language library function printf is used to print the
string. The end of the expression is indicated by the first blank or tab
character. If the action is merely a single C language expression, it can just be
given on the right side of the line; if it is compound or takes more than a line,
it should be enclosed in braces. As a more useful example, suppose you desire
to change a number of words from British to American spelling. The Lex rules
such as:

colour
mechanize
petrol

printf("color") ;
printf("mechanize") ;

printf("gas");

would be a start. These rules are not sufficient since the word "petroleum II
would become "gaseum".

LEX REGULAR EXPRESSIONS

The definitions of regular expressions are very similar to those in QED. A
regular expression specifies a set of strings to be matched. It contains text
characters (which match the corresponding characters in the strings being
compared) and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text
characters; the regular expression

integer

520-Languages and Support Tools UNIX Programmer's Manual

matches the string "integer" wherever it appears, and the expression

a57D

looks for the string "a57D".

Operators

The operator characters are

"\[]"-?*+I()$/{}%< >

and if they are to be used as text characters, an escape should be used. The
quotation mark operator" indicates that whatever is contained between a pair
of quotes is to be taken as text characters. Thus:

xyz"++"

matches the string xyz + + when it appears. Note that a part of a string may
be quoted. It is harmless, but unnecessary, to quote an ordinary text character;
the expression

"xyz++"

is equivalent to the one above. Thus, by quoting every nonalphanumeric
character being used as a text character, the user can avoid remembering the
list above of current operator characters and is safe should further extensions to
Lex lengthen the list.

An operator character may also be turned into a text character by preceding it
wi th a backs lash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another'
use of the quoting mechanism is to get a blank into an expression; normally, as
explained above, blanks or tabs end a rule. Any blank character not contained
within [) (see below) must be quoted. Several normal C language escapes with

UNIX Programmer's Manual Languages and Support Tools-521

LEX

\ are recognized: \n is newline, \t is tab, and \b is backspace. To enter \ itself,
use \\. Since newline is illegal in an expression, \n must be used; it is not
required to escape tab and backspace. Every character except blank, tab,
newline, and the list of operator characters above is always a text character.

Character Classes

Classes of characters can be specified using the operator pair n. The
construction [abc) matches a single character which may be "a", "b", or "c".
Within square brackets, most operator meanings are ignored. Only three
characters are special; these are \, -, and ". The - character indicates
ranges. For example,

[a-zO-9<> J

indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using­
between any pair of characters which are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and gets a
warning message (e.g., [O-z] in ASCII is many more characters than is in
EBCDIC). If it is desired to include the character - in a character class, it
should be first or last; thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the" operator must appear as the first character after the
left bracket to indicate that the resulting string is complemented with· respect
to the computer character set. Thus:

["abc]

matches all characters except "a", "b", or "c", including all special or control
characters; or

["a-zA-Z]

522-Languages and Support Tools UNIX Programmer's Manual

is any character that is not a letter. The \ character provides the usual escapes
within character class brackets.

Arbitrary Character

To match almost any character, the operator character (dot)

is the class of all characters except newline. Escaping into octal is possible
although nonportable.

[\40-\176]

matches all printable ASCII characters from octal 40 (blank) to octal 176
(tilde) .

Optional Expressions

The operator? indicates an optional element of an expression. Thus:

ab?c

matches either "ac" or "abc".

Repeated Expressions

Repetitions of classes are indicated by the operators * and +. For example,

a*

is any number of consecutive "a" characters, including zero; while

a+

is one or more instances of "a". For example,

UNIX Programmer's Manual Languages and Support Tools-523

LEX

[a-z]+

is all strings of lowercase letters. And

[A-Za-z][A-Za-zO-9]·

indicates all alphanumeric strings with a leading alphabetic character. This is
a typical expression for recognizing identifiers in computer languages.

Alternation and Grouping

The operator I indicates alternation

(ablcd)

matches either "ab" or "cd". Note that parentheses are used for grouping;
although they are not necessary on the outside level,

ablcd

would have sufficed. Parentheses can be used for more complex expressions.

(ablcd+)? (ef)·

matches such strings as "abefer', "efefer', "cder', or "cddd"; but not "abc",
"abcd", or "abcder'.

Context Sensitivity

The Lex program recognizes a small amount of surrounding context. The two
simplest operators for this are A and $. If the first character of an expression is
", the expression is only matched at the beginning of a line (after a newline
character or at the beginning of the input stream). This never conflicts with
the other meaning of " (complementation of character classes) since that only
applies within the () operators. If the very last character is $, the expression is
only matched at the end of a line (when immediately followed by newline).
The latter operator is a special case of the I operator character which indicates
trailing context. The expression

524-Languages and Support Tools UNIX Programmer's Manual

ab/cd

matches the string "ab" but only if followed by "cd". Thus:

ab$

is the same as

ab/\n

Left context is handled in Lex by "start conditions" as explained later. If a
rule is only to be executed when the Lex automaton interpreter is in start
condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered "being at the
beginning of a line" to be start condition ONE, then the A operator would be
equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions

The operators 0 specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example,

{digit}

looks for a predefined string named "digit" and inserts it at that point in the
expression. The definitions are given in the first part of the Lex input before
the rules. In contrast,

a{1,5}

UNIX Programmer's Manual Languages and Support Tools-525

LEX

looks for 1 to 5 occurrences of "a".

Finally, initial % is special being the separator for Lex source segments.

LEX ACTIONS

When an expression written as above is matched, Lex executes the
corresponding action. This part describes some features of Lex that aid in
writing actions. Note that there is a default action that consists of copying the
input to the output. This is performed on all strings not otherwise matched.
Thus, the Lex user who wishes to absorb the entire input, without producing
any output, must provide rules to match everything. When Lex is being used
with yacc, this is the normal situation. One may consider that actions are what
is done instead of copying the input to the output; thus, in general, a rule that
merely copies can be omitted. Also, a character combination that is omitted
from the rules and that appears as input is likely to be printed on the output,
thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a
C language null statement, ; as an action causes this result. A frequent rule is

[\t\n1

which causes the three spacing characters (blank, tab, and newline) to be
ignored.

Another easy way to avoid writing actions is the action character I which
indicates that the action for this rule is the action for the next rule. The
previous example could also have been written

" "
"\t"
"\n"

with the same result although in different style. The quotes around \0 and \t
are not required.

526-Languages and Support Tools UNIX Programmer's Manual

In more complex actions, you may often want to know the actual text that
matched some expression like "[a-z]+". The Lex program leaves this text in
an external character array. Thus, to print the name found, a rule like

[a-z]+ printf("%s", yytext};

prints the string in yytextll. The C language function printf accepts a format
argument and data to be printed; in this case, the format is "print string" (%
indicating data conversion, and s indicating string type), and the data are the
characters in yytextll. This places the matched string on the output. This
action is so common that it may be written as ECHO.

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the characters
found, one might ask why give a rule like this one which merely specifies the
default action. Such rules are often required to avoid matching some other
rule that is not desired. For example, if there is a rule that matches read, it
normally matches the instances of read contained in bread or readjust. To
avoid this, a rule of the form "[a-z]+" is needed. This is explained further
below.

Sometimes it is more convenient to know the end of what has been found;
hence, Lex also provides a count yyleng of the number of characters matched.
To count both the number of words and the number of characters in words in
the input, write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the words recognized.
The last character in the string matched can be accessed by

yytext[yyleng-l]

Occasionally, a Lex action may decide that a rule has not recognized the
correct span of characters. Two routines are provided to aid with this situation.
First, yymoreO can be called to indicate that the next input expression
recognized is to be tacked on to the end of this input. Normally, the next input
string would overwrite the current entry in yytext. Second, yyless(n) may be
called to indicate that not all the characters matched by the currently

UNIX Programmer's Manual Languages and Support Tools-527

LEX

successful expression are wanted right now. The argument "n" indicates the
number of characters in yytext to be retained. Further characters previously
matched are returned to the input. This provides the same sort of look ahead
offered by the / operator but in a different form.

Example:

Consider a language that defines a string as a set of characters between
quotation (") marks and provides that to include a (") in a string it must be
preceded by a \. The regular expression which matches that is· somewhat
confusing, so that it might be preferable to write

\"[""]. {
if (yytext[yyleng-l] == '\ \')

yymoreO;
else

... normal user processing

will, when faced with a string such as "abc\"def", first match the five characters
"abc\; then the call to yymoreO will cause the next part of the string "def to be
tacked on the end. Note that the final quote terminating the string should be
picked up in the code labeled "normal processing".

The function yylessO might be used to reprocess text in various circumstances.
Consider the C language problem of distinguishing the ambiguity of "=-a ".
Suppose it is desired to treat this as "=- a" but also to print a message: a
rule might be

=-[a-zA-Z]
printf("0perator (=-) ambiguous\n");
yyless (yyleng-l) ;
... action for =- ...
}

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as "=- ". Alternatively, it might be desired to
treat this as "=-a ". To do this, just return the minus sign as well as the
letter to the input.

528-Languages and Support Tools UNIX Programmer's Manual

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n ");
yyless (yyleng-2);
... action for = ...
J

performs the other interpretation. Note that the expressions for the two cases
might more easily be written

=-/[A-Za-z]

in the first case, and

=/-[A-Za-z]

in the second; no backup is required in the rule action. It is not necessary to
recognize the whole identifier to observe the ambiguity. The possibility of
"=-3", however, makes

=-/[" \t\n]

a still better rule.

In addition to these routines, Lex also permits access to the I/O routines it
uses. They are as follows:

1. inputO returns the next input character.

2. output(c) writes the character "c" on the output.

3. unput{c) pushes the character "c" back onto the input stream to be read
later by inputO.

By default, these routines are provided as macro definitions; but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters and must all be
retained or modified consistently. They may be redefined to cause input or
output to be transmitted to or from strange places including other programs or

UNIX Programmer's Manual Languages and Support Tools-529

LEX

internal memory. The character set used must be consistent in all routines and
a value of zero returned by input must mean end of file. The relationship
between unput and input must be retained or the Lex look ahead will not work.
The Lex program does not look ahead at all if it does not have to, but every
rule ending in +, *, ?, or $ or containing / implies look ahead. Look ahead is
also necessary to match an expression that is a prefix of another expression.
The standard Lex library imposes a 100-character limit on backup.

Another Lex library routine that you may sometimes want to redefine is
yywrap 0 which is called whenever Lex reaches an end of file. If yywrap
returns ai, Lex continues with the normal wrap up on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive from a
new source. In this case, the user should provide a yywrap which arranges for
new input and returns o. This instructs Lex to continue processing. The
default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc., at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end of file; the only access to this condition is through yywrap. In
fact, unless a private version of inputO is supplied, a file containing nulls
cannot be handled since a value of 0 returned by input is taken to be end of
file.

AMBIGUOUS SOURCE RULES

The Lex program can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as follows:

1. The longest match is preferred.

2. Among rules that matched the same number of characters, the rule
given first is preferred.

Thus, suppose the rules

integer
[a-z]+

keyword action ... ;
identifier action ... ;

530-Languagesand Support Tools UNIX Programmer's Manual

are to be given in that order. If the input is "integers", it is taken as an
identifier because

"[a-z]+"

matches eight characters while "integer" matches only seven. If the input is
"integer", both rules match seven characters; and the keyword rule is selected
because it was given first. Anything shorter (e.g., "int") does not match the
expression "integer" and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing
expressions like. * dangerous. For example:

, *'

might appear to be a good way of recogmzmg a string in single quotes.
However, it is an invitation for the program to read far ahead looking for a
distant single quote. Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

which, on the above input, stops after ('first'). The consequences of errors like
this are mitigated by the fact that the dot (.) operator does not match newline.
Thus expressions like . * stop on the current line. Do not try to defeat this
with expressions like [.\01 + or equivalents; the Lex generated program tries to
read the entire input file causing internal buffer overflows.

Note that Lex is normally partitioning the input stream not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count

UNIX Programmer's Manual Languages and Support Tools-531

LEX

occurrences of both "she" and "he" in an input text. Some Lex rules to do this
might be

she s++;
he h++;
\n I

where the last two rules ignore everything besides "he" and "she". Remember
that dot (.) does not include newline. Since "she" includes "he", Lex
normally does not recognize the instances of "he" included in "she" since once
it has passed a "she" those characters are gone.

Sometimes the user desires to override this choice. The action REJECT means
"go do the next alternative". It causes whatever rule was second choice after
the current rule to be executed. The position of the input pointer is adjusted
accordingly. Suppose you really want to count the included instances of "he".
Use the following rule to change the previous example to accomplish the task.

she {s++; REJECT;}
he {h++; REJECT;}
\n I

After counting each expression, it is rejected; whenever appropriate, the other
expression is then counted. In this example, you could note that "she" includes
"he" but not vice versa and omit the REJECT action on "he". In other cases,
it is not possible to state which input characters are in both classes.

Consider the two rules

a[bc]+
a[cd]+

{ ... ; REJECT;}
{ ... ; REJECT;}

If the input is "ab", only the first rule matches, and on "ad" only the second
matches. The input string "accb" matches the first rule for four characters
and then the second nile for three characters. In contrast, the input "accd"
agrees with the second rule for four characters and then the first rule for three.

532-Languages and Support Tools UNIX Programmer's Manual

In general, REJECT is useful whenever the purpose of Lex is not to partition
the input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally, the digrams overlap, that is the word
"the" is considered to contain both "th" and "he". Assuming a 2-dimensional
array named digram[] to be incremented, the appropriate source is

%%
[a-z][a-z]

\n

{digram[yytext[O]] [yytext[1 11++; REJECT;}

where the REJECT is necessary to pick up a letter pair beginning at every
character rather than at every other character.

The action REJECT does not rescan the input; instead it remembers the results
of the previous scan. This means that if a rule with trailing context is found
and REJECT executed the user must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction on
the user's ability to manipulate the not-yet-processed input.

LEX SOURCE DEFINITIONS

Recalling the format of the Lex source,

{definitions}
%%
{rules}
%%
{user routines}

So far, only the rules have been described. You need additional options to
define variables for use in the program and for use by Lex. Variables can go
either in the definitions section or in the rules section.

Remember Lex is generating the rules into a program. Any source not
intercepted by Lex is copied into the generated program. There are three
classes of such things.

UNIX Programmer's Manual Languages and Support Tools-533

LEX

1. Any line not part of a Lex rule or action that begins with a blank or tab
is copied into the Lex generated program. Such source input prior to
the first % % delimiter is external to any function in the code; if it
appears immediately after the first % %, it appears in an appropriate
place for declarations in the function written by Lex which contains the
actions. This material must look like program fragments and should
precede the first Lex rule.

Lines that begin with a blank or tab and that contain a comment are
passed through to the generated program. This can be used to include
comments in either the Lex source or the generated code; the comments
should follow the host language convention.

2. Anything included between lines containing only % { and %} is copied
out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column 1
or copying lines that do not look like programs.

3. Anything after the third % % delimiter, regardless of formats, etc., is
copied out after the Lex output.

Definitions intended for Lex are given before the first % % delimiter. Any line
in this section not contained between % { and %} and beginning in column 1 is
assumed to define Lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must begin with a letter. The translation can then be· called out by
the {name} syntax in a rule. Using {D} for the digits and {E} for an exponent
field, for example, abbreviate rules to recognize numbers

534-Languages and Support Tools UNIX Programmer's Manual

[0-9] D
E [DEde][-+]?{D}+
%%
{D} + printf("integer");
{D}+"."{D}*({E}) ?
{D}*"."{D}+({E})? I
{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field. The first requires at least one digit before
the decimal point, and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a Fortran expression such as
"35.EQ.I", which does not contain a real number, a context-sensitive rule such
as:

[0-9]+I"."EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands including the
selection of a host language, a character set table, a list of start conditions, or
adjustments to the default size of arrays within Lex itself for larger source
programs. These possibilities are discussed later.

USAGE

There are two steps in compiling a Lex source program. First, the Lex source
must be turned into a generated program in the host general purpose language.
Then this program must be compiled and loaded usually with a library of Lex
subroutines. The generated program is on a file named iex.yy.c. The 1/0
library is defined in terms of the C language standard library.

On the UNIX operating system, the library is accessed by the loader flag -II.
So an appropriate set of commands is

lex source
cc lex.yy.c -11

UNIX Programmer' s Manual Languages and Support Tools-535

LEX

The resulting program is placed on the usual file a.out for later execution. To
use Lex with yacc, see part "LEX AND YACC". Although the default Lex
110 routines use the C language standard library, the Lex automata themselves
do not do so; if private versions of input, output, and unput are given, the
library is avoided.

LEX AND YACC

To use Lex with yacc, observe that Lex writes a program named yylexO (the
name required by yacc for its analyzer). Normally, the default main program
on the Lex library calls this routine; but if yacc is loaded and its main program
is used, yacc calls yylexO. In this case, each Lex rule ends with

return (token);

where the appropriate token value is returned. An easy way to get access to
yacc's names for tokens is to compile the Lex output file as part of the yacc
output file by placing the line

include "lex.yy.c"

in the last section of yacc input. If the grammar is to be named "good" and
the lexical rules are to be named "better", the UNIX software command
sequence could be

yacc good
lex better
cc y.tab.c -ly -11

The yacc library (-Iy) should be loaded before the Lex library to obtain a
main program that invokes the yacc parser. The generations of Lex and yacc
programs can be done in either order.

536-Languages and Support Tools UNIX Programmer's Manual

EXAMPLES

As a problem, consider copying an input file while adding three to every
positive number divisible by seven. A suitable Lex source program follows:

%%
int k;

[0-9]+ {
k = a toi (yytext) ;
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d ",k);

The rule "[0-9]+" recognizes strings of digits; atoiO converts the digits to
binary and stores the result in "k". The operator % (remainder) is used to
check whether "k" is divisible by seven; if it is, "k" is incremented by three as
it is written out. It may be objected that this program alters such input items
as "49.63" or "X7". Furthermore, it increments the absolute value of all
negative numbers divisible by seven. To avoid this, add a few more rules after
the active one, as here:

%%
int k;

-?[0-9]+ {
k = atoi(yytext);
printf("%d", k%7 == 0 ? k+3 : k);
}

-?[0-9.1+ ECHO;
[A-Za-z][A-Za-zO-9]+ ECHO;

Numerical strings containing a dot (.) or preceded by a letter will be picked
up by one of the last two rules and not changed. The "if-else" has been
replaced by a C language conditional expression to save space; the form
"a ?b:c" means "if a then b else c".

For an example of statistics gathering, here is a program that histograms the
lengths of words, where a word is defined as a string of letters:

UNIX Programmer's Manual Languages and Support Tools-537

LEX

%%
[a-z]+

\n
%%
yywrapO
{
int i;

int lengs[IOO];

lengs[yyleng]++;

printf("Length No. words\n");
forG=O; i < 100; i++)

if (Iengs[i] > 0)
printf("%5d%IOd\n",i,lengsli]) ;

return(l);
}

This program accumulates the histogram while producing no output. At the
end of the input, it prints the table. The final statement "return(I);" indicates
that Lex is to perform wrap up. If yywrap returns zero (false), it implies that
further input is available and the program is to continue reading and
processing. Providing a yywrap (that never returns true) causes an infinite
loop.

LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from ordinary
statements. This requires sensitivity to prior context, and there are several
ways of handling such problems. The" operator, for example, is a prior
context operator recognizing immediately preceding left context just as $
recognizes immediately following right context. Adjacent left context could be
extended to produce a facility similar to that for adjacent right context, but it
is unlikely to be as useful since often the relevant left context appeared some
time earlier such as at the beginning of a line.

This part describes three means of dealing with different environments: a
simple use of flags (when only a few rules change from one environment to
another), the use of "start conditions" on rules, and the possibility of making
multiple lexical analyzers all run together. In each case, there are rules that

538-Languages and Support Tools UNIX Programmer's Manual

recognize the need to change the environment in which the following input text
is analyzed and that set a parameter to reflect the change. This may be a flag
explicitly tested by the user's action code; this is the simplest way of dealing
with the problem since Lex is not involved at all. It may be more convenient,
however, to have Lex remember the flags as initial conditions on the rules.
Any rule may be associated with a start condition. It is only recognized when
Lex is in that start condition. The current start condition may be changed at
any time. Finally, if the sets of rules for the different environments are very
dissimilar, clarity may be best achieved by writing several distinct lexical
analyzers and switching from one to another as desired.

Consider the following problem: copy the input to the output, changing the
word "magic" to "first" on every line which began with the letter "a", changing
"magic" to "second" on every line which began with the letter "b", and changing
"magic" to "third" on every line which began with the letter "c". All other
words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag.

int flag.
%%
"a {flag = 'a'; ECHO;} .
"b {flag = 'b'; ECHO;}
"c {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case IC': printf("third"); break;
default: ECHO; break;
}

}

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to Lex in the definitions section with a line reading

UNIX Programmer's Manual Languages and Support Tools-539

LEX

%Start namel name2 ...

where the conditions may be named in any order. The word "Start" may be
abbreviated to "s" or "S". The conditions may be referenced at the head of a
rule with < > brackets;

< name 1 > expression

is a rule that is only recognized when Lex is in the start condition namel. To
enter a start condition, execute the action statement

BEG IN namel;

which changes the start condition to namel. To resume the normal state

BEGIN 0;

resets the initial condition of the Lex automaton interpreter. A rule may be
active in several start conditions.

< name 1 ,name2,name3 >

is a legal prefix. Any rule not beginning with the < > prefix operator is
always active.

The same example as before can be written as follows:

%START AA BB CC
%%
"a
"b
"c
\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN O;}

printf("first") ;
printf("second") ;
printf("third ") ;

540-Languages and Support Tools UNIX Programmer's Manual

where the logic is exactly the same as in the previous method of handling the
problem, but Lex does the work rather than the user's code.

CHARACTER SET

The programs generated by Lex handle character 110 only through the
routines input 0, output 0, and unputO. Thus, the character representation
provided in these routines is accepted by Lex and used to return values in
yytextO. For internal use, a character is represented as a small integer which,
if the standard library is used, has a value equal to the integer value of the bit
pattern representing the character on the host computer. Normally, the letter
a is represented in the same form as the character constant 'a'. If this
interpretation is changed by providing 110 routines that translate the
characters, Lex must be given a translation table that is in the definitions
section and must be bracketed by lines containing only % T; the translation
table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.

SUMMARY OF SOURCE FORMAT

The general form of a Lex source file is

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions in the form "name space translation".

2. Included code in the form "space code".

UNIX Programmer's Manual Languages and Support Tools-541

LEX

3. Included code in the form:

%{
code
%}

4. Start conditions given in the form:

%S name! name2 ...

5. Character set tables in the form:

%T
number space character-string

%T

6. Changes to internal array sizes in the form:

%x nnn

where "nnn" is a decimal integer representing an array size and "a" selects
the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression action" where the action
may be continued on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

542-Languages and Support Tools UNIX Programmer's Manual

x
"x"
\x
[xy1
[x-z1
["x1

"x
<y>x
x$
x?
x*
x+
x\y
(x)
x/y
{xx}

x{m,n}

the character "x".
an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y, or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from
the definitions section.
m through n occurrences of x.

CAVEATS AND BUGS

There are pathological expressions that produce exponential growth of the
tables when converted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the
previous scan. This means that if a rule with trailing context is found and
REJECT executed, the user must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction on
the user's ability to manipulate the not-yet-processed input.

UNIX Programmer's Manual Languages and Support Tools-543

YET ANOTHER COMPILER-COMPILER (yacc)

GENERAL

The yacc program provides a general tool for imposing structure on the input
to a computer program. The yacc user prepares a specification of the input
process. This includes rules describing the input structure, code to be invoked
when these rules are recognized, and a low-level routine to do the basic input.
The yacc program then generates a function to control the input process. This
function, called a parser, calls the user-supplied low-level input routine (the
lexical analyzer) to pick up the basic items (called tokens) from the input
stream. These tokens are organized according to the input structure rules,
called grammar rules. When one of these rules has been recognized, then user
code (supplied for this rule, an action) is invoked. Actions have the ability to
return values and make use of the values of other actions.

The yacc program is written in a portable dialect of the C language, and the
actions and output subroutine are in the C language as well. Moreover, many
of the syntactic conventions of yacc follow the C language.

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one
grammar rule might be

date : month name day',' year

where "date", "month_name", "day", and "year" represent structures of
interest in the input process; presumably, "month name", "day", and "year"
are defined elsewhere. The comma is enclosed in single quotes. This implies
that the comma is to appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule and have no significance in controlling
the input. With proper definitions, the input

July 4, 1776

might be matched by the rule.

An -important part .of the .input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizes the lower-level structures,

UNIX Programmer's Manual Languages and Support Tools-545

YACC

and communicates these tokens to the parser. For historical reasons, a
structure recognized by the lexical analyzer is called a "terminal symbol",
while the structure recognized by the parser is called a "nonterminal symbol".
To avoid confusion, terminal symbols will usually be referred to as "tokens".

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month name: 'J' 'a' 'n'
month name: 'F' 'e' 'b'

month name: 'D' 'e' 'c'

might be used in the above example. The lexical analyzer only needs to
recognize individual letters, and "month name" is a nonterminal symbol. Such
low-level rules tend to waste time and space and may complicate the
specification beyond the ability of yacc to deal with it. Usually, the lexical
analyzer recognizes the month names and returns an indication that a "month
name" is seen. In this case, "month name" is a "token".

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

date : month'/, day' I' year

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

546-Languages and Support Tools UNIX Programmer's Manual

on input. In most cases, this new rule could be "slipped in" to a working
system with minimal effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan. Thus,
not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry of
bad data or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self-contradictory, or they may require
a more powerful recognition mechanism than that available to yacc. The
former cases represent design errors; the latter cases can often be corrected by
making the lexical analyzer more powerful or by rewriting some of the
grammar rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the constructions which
are difficult for yacc to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid yacc
specifications for their input revealed errors of conception or design early in the
program development.

The yacc program has been extensively used in numerous practical
applications, including lint, the Portable C Compiler, and a system for
typesetting mathematics.

The remainder of this document describes the following subjects as they relate
to yacc

• Basic process of preparing a yacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedences in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the parsers yacc
produces

UNIX Programmer's Manual Languages and Support Tools-547

YACC

• Suggestions to improve the style and efficiency of the specifications

• Advanced topics.

In addition, there are four appendices. In the EXAMPLES section, A Simple
Example is a brief example and YACC Input Syntax is a summary of the yaee
input syntax. An Advanced Example gives an example using some of the more
advanced features of yace, and Appendix 12.4 describes mechanisms and
syntax no longer actively supported but provided for historical continuity with
older versions of yaee.

BASIC SPECIFICATIONS

N ames refer to either tokens or nonterminal symbols. The yaee program
requires token names to be declared as such. In addition, it is often desirable
to include the lexical analyzer as part of the specification file. It may be useful
to include other programs as well. Thus, every specification file consists of
three sections: the declarations, (grammar) rules, and programs. The
sections are separated by double percent (% %) marks. (The percent symbol is
generally used in yaee specifications as an escape character.}

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

when each section is used.

The declaration section may be empty, and if the programs section is omitted,
the second % % mark may also be omitted. The smallest legal yaee
specification is

548-Languages and Support Tools UNIX Programmer's Manual

%%
rules

since the other two sections may be omitted.

Blanks, tabs, and newlines are ignored, but they may not appear in names or
multicharacter reserved symbols. Comments may appear wherever a name is
legal. They are enclosed in /* 000 * /, as in C language.

The rules section is made up of one or more grammar rules. A grammar rule
has the form

A : BODY;

where "A" represents a nonterminal name, and "BODY" represents a sequence
of zero or more names and literals. The colon and the semicolon are yacc
punctuation.

Names may be of arbitrary length and may be made up of letters, dots,
underscores, and noninitial digits. Uppercase and lowercase letters are distinct.
The names used in the body of a grammar rule may represent tokens or
nonterminal symbols.

A literal consists of a character enclosed in single quotes ('). As in C
language, the backslash (\) is an escape character within literals, and all the C
language escapes are recognized. Thus:

'\n' newline
'\r' return
'\" single quote (,)
'\\' backslash (\)
'\t' tab
'\b' backspace
'\f form feed
'\xxx' "xxx" in octal

are understood by yacc. For a number of technical reasons, the NUL
character ('\0' or 0) should never be used in grammar rules.

UNIX Programmer's Manual Languages and Support Tools-549

YACC

If there are several grammar rules with the same left-hand side, the vertical
bar $ can be used to avoid rewriting the left-hand side. In addition, the
semicolon at the end of a rule can be dropped before a vertical bar. Thus the
grammar rules

A
A
A

BCD
E F
G ;

can be given to yacc as

A : BCD
IE F
IG

by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section although it makes
the input much more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated by

empty: ;

which is understood by yacc.

Names representing tokens must be declared. This is most simply done by
writing

%token namel name2 ...

in the declarations section. Every name not defined in the declarations section
is assumed to represent a nonterminal symbol. Every nonterminal symbol must
appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular importance.
The parser is designed to recognize the start symbol. Thus, this symbol
represents the largest, most general structure described by the grammar rules.

550-Languages and Support Tools UNIX Programmer's Manual

By default, the start symbol is taken to be the left-hand side of the first
grammar rule in the rules section. It is possible and desirable to declare the
start symbol explicitly in the declarations section using the % start keyword

%start symbol

to define the start symbol.

The end of the input to the parser is signaled by a special token, called the
end-marker. If the tokens up to but not including the end-marker form a
structure. that matches the start symbol, the parser function returns to its caller
after the end-marker is seen and accepts the input. If the end-marker is seen
in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually the end-marker represents some reasonably obvious
I/O status, such as "end of file" or "end of record".

ACTIONS

With each grammar rule, the user may associate actions to be performed each
time the rule is recognized in the input process. These actions may return
values and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens if desired.

An action is an arbitrary C language statement and as such can do input and
output, call subprograms, and alter external vectors and variables. An action is
specified by one or more statements enclosed in curly braces ({) and (}). For
example:

A '(' B ')'

hello(1, "abc");

and

UNIX Programmer's Manual Languages and Support Tools-55 I

YACC

XXX: YYY ZZZ
(

printf(IIa message\n");
flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The dollar sign symbol ($) is used as a signal
to yacc in this context.

To return a value, the action normally sets the pseudo-variable $$ to some
value. For example, the action

{ $$ = 1; }

does nothing but return the value of one.

To obtain the values returned by previous actions and the lexical analyzer, the
action may use the pseudo-variables $1, $2, ... , which refer to the values
returned by the components of the right side of a rule, reading from left to
right. If the rule is

A : BCD

then $2 has the value returned by C, and $3 the value returned by D.

The rule

expr : '(' expr ')' ;

provides a more concrete example. The value returned by this rule is usually
the value of the "expr" in parentheses. This can be indicated by

552-Languages and Support Tools UNIX Programmer's Manual

expr '(' expr ')'

$$ = $2 ;

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the form

A : B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of rules. Sometimes, it
is desirable to get control before a rule is fully parsed. The yacc permits an
action to be written in the middle of a rule as well as at the end. This rule is
assumed to return a value accessible through the usual $ mechanism by the
actions to the right of it. In turn, it may access the values returned by the
symbols to its left. Thus, in the rule

A : B
{

}
c

$$ =1;

x = $2;
y = $3;

the effect is to set x to 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name and a new rule matching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. The yacc program actually treats the above
example as if it had been written

UNIX Programmer's Manual Languages and Support Tools-553

YACC

$ACT : 1* empty *1
{

$$ = I;

A B $ACT C

x = $2;
Y = $3;

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and transformations
are applied to it before output is generated. Parse trees are particularly easy to
construct given routines to build and maintain the tree structure desired. For
example, suppose there is a C function node written so that the call

node(L, nl, n2)

creates a node with label L and descendants nl and n2 and returns the index of
the newly created node. Then parse tree can be built by supplying actions such
as

expr : expr '+' expr
{

$$ = node('+', $1, $3);

in the specification.

The user may define other variables to be used by the actions. Declarations
and definitions can appear in the declarations section enclosed in the marks % {
and %}. These declarations and definitions have global scope, so they are
known to the action statements and the lexical analyzer. For example:

554-Languages and Support Tools UNIX Programmer's Manual

%{ int variable = 0; %}

could be placed in the declarations section making "variable" accessible to all
of the actions. The yacc parser uses only names beginning with yy. The user
should avoid such names.

In these examples, all the values are integers. A discussion of values of other
types is found in the part "ADVANCED TOPICS".

LEXICAL ANALYSIS

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical
analyzer is an integer-valued function called yylex. The function returns an
integer, the token number, representing the kind of token read. If there is a
value associated with that token, it should be assigned to the external variable
yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers
symbolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the yacc specification file. The relevant
portion of the lexical analyzer might look like

UNIX Programmer's Manual Languages and Support Tools-555

YACC

yylexO
{

extern int yylval;
int c;

c = getchar 0 ;

switch(c)
{

case '0':
case '1':

case '9':
yylval = c-'O';
return(DIGIT);

to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed
in the programs section of the specification file, the identifier DIGIT is defined
as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only
pitfall to avoid is using any token names in the grammar that are reserved or
significant in C language or the parser. For example, the use of token names if
or while will almost certainly cause severe difficulties when the lexical analyzer
is compiled. The token name error is reserved for error handling and should
not be used naively.

As mentioned above, the token numbers may be chosen by yacc or the user. In
the default situation, the numbers are chosen by yacc. The default token
number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of
the token name or literal in the declarations section can be immediately

556-Languages and Support Tools UNIX Programmer's Manual

followed by a nonnegative integer. This integer is taken to be the token
number of the name or literal. N ames and literals not defined by this
mechanism retain their default definition. It is important that all token
numbers be distinct.

For historical reasons, the end-marker must have token number 0 or negative.
This token number cannot be redefined by the user. Thus, all lexical analyzers
should be prepared to return 0 or a negative number as a token upon reaching
the end of their input.

A very useful tool for constructing lexical analyzers is the lex program. These
lexical analyzers are designed to work in close harmony with yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of
grammar rules. Lex can be easily used to produce quite complicated lexical
analyzers, but there remain some languages (such as FORTRAN) which do
not fit any theoretical framework and whose lexical analyzers must be crafted
by hand.

PARSER OPERATION

The yacc program turns the specification file into a C language program, which
parses the input according to the specification given. The algorithm used to go
from the specification to the parser is complex and will not be discussed here.
The parser itself, however, is relatively simple and understanding how it works
will make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the look-ahead token). The current state is always the one on the top
of the stack. The states of the finite state machine are given small integer
labels. Initially, the machine is in state 0 (the stack contains only state 0) and
no look-ahead token has been read.

The machine has only four actions available-shift, reduce, accept, and error.
A step of the parsor is done~as follows:

1. Based on its current state, the parser decides if it needs a look-ahead
token to choose the action to be taken. If it needs one and does not have

UNIX Programmer's Manual Languages and Support Tools-557

YACC

one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser
decides on its next action and carries it out. This may result in states
being pushed onto the stack or popped off of the stack and in the look­
ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a look-ahead token. For example, in state 56
there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top
of the stack). The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right-hand side of a
grammar rule and is prepared to announce that it has seen an instance of the
rule replacing the right-hand side by the left-hand side. It may be necessary to
consult the look-ahead token to decide whether to reduce or not (usually it is
not necessary). In fact, the default action (represented by a dot) is often a
reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, and this leads to some confusion. The
action

• reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

558-Languages and Support Tools UNIX Programmer's Manual

Suppose the rule

A : x y z

is being reduced. The reduce action depends on the left-hand symbol (A in
this case) and the number of symbols on the right-hand side (three in this
case). To reduce, first pop off the top three states from the stack. (In general,
the number of states popped equals the number of symbols on the right side of
the rule.) In effect, these states were the ones put on the stack while
recognizing x, y, and z and no longer serve any useful purpose. After popping
these states, a state is uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state and the symbol on
the left side of the rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues. There are significant
differences between the processing of the left-hand symbol and an ordinary
shift of a token, however, so this action is called a goto action. In particular,
the look-ahead token is cleared by a shift but is not affected by a goto. In any
case, the uncovered state contains an entry such as

A go to 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action "turns back the clock" in the parse popping the
states off the stack to go back to the state where the right-hand side of the rule
was first seen. The parser then behaves as if it had seen the left side at that
time. If the right-hand side of the rule is empty, no states are popped off of
the stacks. The uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions
and values. When a rule is reduced, the code supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states,
another stack running in parallel with it holds the values returned from the
lexical analyzer and the actions. When a shift takes place, the external
variable "yylval" is copied onto the value stack. After the return from the user
code, the reduction is carried out. When the goto action is done, the external
variable "yyval" is copied onto the value stack. The pseudo-variables $1, $2,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the

UNIX Programmer's Manual Languages and Support Tools-559

YACC

specification. This action appears only when the look-ahead token is the end­
marker and indicates that the parser has successfully done its job. The error
action, on the other hand, represents a place where the parser can no longer
continue parsing according to the specification. The input tokens it has seen
(together with the look-ahead token) cannot be followed by anything that
would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing. The error recovery (as opposed to the
detection of error) will be discussed later.

Consider:

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place : DELL

as a yacc specification.

When yacc is invoked with the -v option, a file called y.output is produced
with a human-readable description of the parser. The y.output file
corresponding to the above grammar (with some statistics stripped off the end)
is

560-Languages and Support Tools UNIX Programmer's Manual

state 0
$accept : Jhyme $end

DING shift 3
· error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
• error

state 2
rhyme soundylace

DELL shift 5
• error

place goto 4

state 3
sound DING DONG

DONG shift 6
• error

state 4
rhyme sound place_

reduce

state 5
place : DELL (3)

• reduce 3

(1)

state 6
sound DING DONG (2)

• reduce 2

UNIX Programmer's Manual Languages and Support Tools-561

YACC

where the actions for each state are specified and there is a description of the
parsing rules being processed in each state. The _ character is used to indicate
what has been seen and what is yet to come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the current state is
state 0. The parser needs to refer to the input in order to decide between the
actions available in state 0, so the first token, DING, is read and becomes the
look-ahead token. The action in state ° on DING is shift 3, state 3 is pushed
onto the stack, and the look-ahead token is cleared. State 3 becomes the
current state. The next token, DONG, is read and becomes the look-ahead
token. The action in state 3 on the token DONG is shift 6, state 6 is pushed
onto the stack, and the look-ahead is cleared. The stack now contains 0, 3, and
6. In state 6, without even consulting the look-ahead, the parser reduces by

sound: DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering
state 0. Consulting the description of state ° Oooking for a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so state
5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead
token is cleared. In state 5, the only action is to reduce by rule 3. This has
one symbol on the right-hand side, so one state, 5, is popped off, and state 2 is
uncovered. The goto in state 2 on place (the left side of rule 3) is state 4.
Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by
rule 1. There are two symbols on the right, so the top two states are popped
off, uncovering state ° again. In state 0, there is a goto on rhyme causing the
parser to enter state 1. In state 1, the input is read and the end-marker is
obtained indicated by Send in the y.output file. The action in state 1 (when the
end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG

562-Languages and Support Tools UNIX Programmer's Manual

DELL DELL, etc. A few minutes spent with this and other simple examples is
repaid when problems arise in more complicated contexts.

AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way
that all complex inputs should be structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called "left association", the second "right association".)

The yacc program detects such ambiguities when it is attempting to build the
parser. Given the input

expr - expr - expr

consider the problem that confronts the parser. When the parser has read the
second expr, the input seen

UNIX Programmer's Manual Languages and Support Tools-563

YACC

expr - expr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule. After applying the rule, the input is reduced to
"expr" (the left side of the rule). The parser would then read the final part of
the input

expr

and again reduce. The effect of this is to take the left associative
in terpreta tion.

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and continue reading the
input until

expr - expr - expr

is seen. It could then apply the rule to the rightmost three symbols reducing
them to "expr" which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to take the
right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It has no way
of deciding between them. This is called a "shift/reduce conflict". It may also
happen that the parser has a choice of two legal reductions. This is called a
"reducelreduce conflict". Note that there are never any shift/shift conflicts.

564-Languages and Support Tools UNIX Programmer's Manual

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing the choice to make in a given situation is called a
"disambiguating rule".

The yacc program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred in favor of shifts when there is a
choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided when
possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule I and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has
suggested that this rewriting is somewhat unnatural and produces slower
parsers. Thus, yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

stat IF '(' cond ')' stat
IF '(' cond ')' stat ELSE stat

which is a fragment from a programming language involving an "if-then-else"
statement. In these rules, "IF" and "ELSE" are tokens, "cond" is a

UNIX Programmer's Manual Languages and Support Tools-565

YACC

nonterminal symbol describing conditional (logical) expressions, and "stat" is a
nonterminal symbol describing statements. The first rule will be called the
"simple-if' rule and the second the "if-else" rule.

These two rules form an ambiguous construction since input of the form

IF (Cl) IF (C2) SI ELSE S2

can be structured according to these rules in two ways

or

IF (Cl)
{

IF (C2)
SI

}
ELSE

S2

IF (Cl)
{

IF (C2)
SI

ELSE
S2

where the second interpretation is the one given in most programming
languages having this construct. Each "ELSE" is associated with the last
preceding "un-ELSE'd" IF. In this example, consider the situation where the
parser has seen

IF (C 1) IF (C2) S 1

and is looking at the "ELSE". It can immediately reduce by the simple-if rule
to get

566-Languages and Support Tools UNIX Programmer's Manual

IF (Cl) stat

and then read the remaining input

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the "ELSE" may be shifted, "S2" read, and then the
right-hand portion of

IF (Cl) IF (C2) Sl ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input which is usually desired.

Once again, the parser can do two valid things-there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, "ELSE", and particular inputs, such as

IF (Cl) IF (C2) Sl

have already been seen. In general, there may be many conflicts, and each one
will be associated with an input symbol and a set of previously read inputs.
The previously read inputs are characterized by the state of the parser.

UNIX Programmer's Manual Languages and Support Tools-567

YACC

The conflict messages of yacc are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat (I 8)
stat IF (·cond) stat ELSE stat

ELSE shift 45
reduce 18

where the first line describes the conflict-giving the state and the input
symbol. The ordinary state description gives the grammar rules active in the
state and the parser actions. Recall that the underline marks the portion of the
grammar rules which has been seen. Thus in the example, in state 23 the
parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is "ELSE", it is possible to shift into
state 45. State 45 will have, as part of its description, the line

stat : IF (cond) stat ELSE stat

since the "ELSE" will have been shifted in this state. In state 23, the
alternative action [describing a dot (.)] is to be done if the input symbol is not
mentioned explicitly in the actions. In this case, if the input symbol is not
"ELSE", the parser reduces to

stat : IF '(' cond ')' stat

by grammar rule 18.

Once again, notice that the numbers following "shift" commands refer to other
states, while the numbers following "reduce" commands refer to grammar rule

568-Languages and Support Tools UNIX Programmer's Manual

numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there is reduce action possible in the
state and this is the default command. The user who encounters unexpected
shift/reduce conflicts will probably want to look at the verbose output to decide
whether the default actions are appropriate.

PRECEDENCE

There is one common situation where the rules given above for resolving
conflicts are not sufficient. This is in the parsing of arithmetic expressions.
Most of the commonly used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for operators, together
with information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts. As disambiguating rules, the user
specifies the precedence or binding strength of all the operators and the
associativity of the binary operators. This information is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these rules and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword:
% left, % right, or % nonassoc, followed by a list of tokens. All of the tokens on
the same line are assumed to have the same precedence level and associativity;
the lines are listed in order of increasing precedence or binding strength. Thus:

UNIX Programmer's Manual Languages and Support Tools-569

YACC

%left '+' '-'
%left '*' '/'

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative and have lower precedence than star and
slash, which are also left associative. The keyword % right is used to describe
right associative operators, and the keyword % nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves. Thus:

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described with the
keyword % nonassoc in yacc. As an example of the behavior of these
declarations, the description

%right '='
%left '+' '-'
%left '*' '/'

%%

expr expr '=' expr
I expr '+' expr
I expr

, - ,
expr

I expr ,*, expr
I expr '/' expr
I NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows

a = (b = («c*d)-e) - (f*g)))

570-Languages and Support Tools UNIX Programmer's Manual

in order to perform the correct precedence of operators. When this mechanism
is used, unary operators must, in general, be given a precedence. Sometimes a
unary operator and a binary operator have the same symbolic representation
but different precedences. An example is unary and binary "-". Unary minus
may be given the same strength as multiplication, or even higher, while binary
minus has a lower strength than multiplication. The keyword, % pree, changes
the precedence level associated with a particular grammar rule. The keyword
% prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It
causes the precedence of the grammar rule to become that of the following·
token name or literal. For example, the rules

%left '+'
, - ,

%left '*' '/'

%%

expr expr '+' expr
I expr '-' expr
I expr '*' expr
I expr '/' expr
I , - ,

expr %prec '*'

I NAME

might be used to give unary minus the same precedence as multiplication.

A token declared by % left, %right, and %nonassoe need not be, but may be,
declared by % token as well.

The precedences and associativities are used by yaee to resolve parsing
conflicts. They give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens and
literals that have them.

2. A precedence and associativity is associated with each grammar rule. It
is the precedence and associativity of the last token or literal in the body
of the rule. If the % pree construction is used, it overrides this default.
Some grammar rules may have no precedence and associativity
associated with them.

UNIX Programmer's Manual Languages and Support Tools-571

YACC

3. When there is a reduce/reduce conflict or there is a shift/reduce conflict
and either the input symbol or the grammar rule has no precedence and
associativity, then the two disambiguating rules given at the beginning
of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with them,
then the conflict is resolved in favor of the action (shift or reduce)
associated with the higher precedence. If the precedences are the same,
then the associativity is used; left associative implies reduce, right
associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedences may disguise errors in the input grammar. It is a
good idea to be sparing with precedences and use them in an essentially
"cookbook" fashion until some experience has been gained. The y.output file is
very useful in deciding whether the parser is actually doing what was intended.

ERROR HANDLING

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser "restarted" after an error. A general class
of algorithms to do this involves discarding a number of tokens from the input
string and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but
reasonably general feature. The token name "error" is reserved for error
handling. This name can be used in grammar rules. In effect, it suggests
places where errors are expected and recovery might take place. The parser
pops its stack until it enters a state where the token "error" is legal. It then
behaves as if the token "error" were the current look-ahead token and performs
the action encountered. The look-ahead token is then reset to the token that

572-Languages and Support Tools UNIX Programmer's Manual

caused the error. If no special error rules have been specified, the processing
halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

means that on a syntax error the parser attempts to skip over the statement in
which the error is seen. More precisely, the parser scans ahead, looking for
three tokens that might legally follow a statement, and start processing at the
first of these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up reporting a
second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general but difficult to control. Rules
such as

stat error ';'

are somewhat easier. Here, when there is an error, the parser attempts to skip
over the statement but does so by skipping to the next semicolon. All tokens
after the error and before the next semicolon cannot be shifted and are
discarded. When the semicolon is seen, this rule will be reduced and any
"cleanup" action associated with it performed.

Ano~her form of error rule arises in interactive applications where it may be
desirable to permit a line to be reentered after an error. The following example

UNIX Programmer's Manual Languages and Support Tools-573

YACC

input error '\n'
{

printf("Reenter last line: ");

input

$$ = $4;

is one way to do this. There is one potential difficulty with this approach. The
parser must correctly process three input tokens before it admits that it has
correctly resynchronized after the error. If the reentered line contains an error
in the first two tokens, the parser deletes the offending tokens and gives no
message. This is clearly unacceptable. For this reason, there is a mechanism
that can force the parser to believe that error recovery has been accomplished.
The statement

yyerrok;

in an action resets the parser to its normal mode. The last example can be
rewritten as

input : error '\n'
{

yyerrok;
printf("Reenter last line: ");

input

$$ = $4;

which is somewhat better.

As previously mentioned, the token seen immediately after the "error" symbol
is the input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous

574-Languages and Support Tools UNIX Programmer's Manual

look-ahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine (supplied by the user)
that attempted to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned by yylex is
presumably the first token in a legal statement. The old illegal token must be
discarded and the error state reset. A rule similar to

stat error

resynchO;
yyerrok ;
yyclearin;

could perform this.

These mechanisms are admittedly crude but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the program.

THE "yacc" ENVIRONMENT

When the user inputs a specification to yacc, the output is a file of C language
programs, called y.tab.c on most systems. (Due to local file system
conventions, the names may differ from installation to installation.) The
function produced by yacc is called yyparseO; it is an integer valued function.
When it is called, it in turn repeatedly calls yylexO, the lexical analyzer
supplied by the user (see "LEXICAL ANALYSIS"), to obtain input tokens.
Eventually, an error is detected, yyparseO returns the value 1, and no error
recovery is possible, or the lexical analyzer returns the end-marker token and
the parser accepts. In this case, yyparseO returns the value o.

UNIX Programmer's Manual Languages and Support Tools-575

YACC

The user must provide a certain amount of environment for this parser in order
to obtain a working program. For example, as with every C language program,
a program called mainO must be defined that eventually calls yyparseO. In
addition, a routine called yyerrorO prints a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of mainO and yyerrorO. The name of this library is system
dependent; on many systems, the library is accessed by a -iy· argument to the
loader. The source codes

and

mainO
{

return (yyparse 0);

include <stdio.h>

yyerror(s)
char *s;

fprintf(stderr, "%s\n", s);

show the triviality of these default programs. The argument to yyerrorO is a
string containing an error message, usually the string "syntax error". The
average application wants to do better than this. Ordinarily, the program
should keep track of the input line number and print it along with the message
when a syntax error is detected. The external integer variable yychar contains
the look-ahead token number at the time the error was detected. This may be
of some interest in giving better diagnostics. Since the mainO program is
probably supplied by the user (to read arguments, etc.), the yacc library is
useful only in small projects or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a
nonzero value, the parser will output a verbose description of its actions
including a discussion of the input symbols read and what the parser actions

576-Languages and Support Tools UNIX Programmer's Manual

are. Depending on the operating environment, it may be possible to set this
variable by using a debugging system.

HINTS FOR PREPARING SPECIFICATIONS

This part contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications. The individual subsections are more or less
independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters for
nonterminal names. This rule comes under the heading of "knowing
who to blame when things go wrong".

2. Put grammar rules and actions on separate lines. This allows either to
be changed without an automatic need to change the other.

3. Put all rules with the same left-hand side together. Put the left-hand
side in only once and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand side and
put the semicolon on a separate line. This allows new rules to be easily
added.

5. Indent rule bodies by two tab stops and action bodies by three tab stops.

The example in A Simple Example is written following this style, as are the
examples in this section (where space permits). The user must make up his
own mind about these stylistic questions. The central problem, however, is to
make the rules visible through the morass of action code.

UNIX Programmer's Manual Languages and Support Tools-577

YACC

Left Recursion

The algorithm used by the yacc parser encourages so called "left recursive"
grammar rules. Rules of the form

name : name rest of rule

match this algorithm. These rules such as

list item
list ',' item

and

seq item
seq item

frequently arise when writing specifications of sequences and lists. In each of
these cases, the first rule will be reduced for the first item only; and the second
rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item
I item seq

the parser is a bit bigger; and the items are seen and reduced from right to left.
More seriously, an internal stack in the parser is in danger of overflowing if a
very long sequence is read. Thus, the user should use left recursion wherever
reasonable.

It is worth considering if a sequence with zero elements has any meaning, and
if so, consider writing the sequence specification as

578~ Languages and Support Tools UNIX Programmer's Manual

seq /* empty */
seq item

using an empty rule. Once again, the first rule would always be reduced
exactly once before the first item was read, and then the second rule would be
reduced once for each item read. Permitting empty sequences often leads to
increased generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally but not within quoted strings, or names
might be entered into a symbol table in declarations but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer and set by actions. For example,

UNIX Programmer's Manual Languages and Support Tools-579

YACC

%{
int dflag;

%}
other declarations ...

%%

prog decls stats

decls : 1* empty *1
{

dflag = 1;

decls declaration

stats : /* empty */
{

dflag = 0;

stats statement

... other rules ...

specifies a program that consists of zero or more declarations followed by zero
or more statements. The flag "dflag" is now 0 when reading statements and 1
when reading declarations, except for the first token in the first statement.
This token must be seen by the parser before it can tell that the declaration
section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of "back-door" approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult if not
impossible to do otherwise.

580-Languages and Support Tools UNIX Programmer's Manual

Reserved Words

Some programming languages permit you to use words like "if', which are
normally reserved as label or variable names, provided that such use does not
conflict with the legal use of these names in the programming language. This
is extremely hard to do in the framework of yacc. It is difficult to pass
information to the lexical analyzer telling it "this instance of if is a keyword
and that instance is a variable". The user can make a stab at it using the
mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is
better that the keywords be reserved, i.e., forbidden for use as variable names.
There are powerful stylistic reasons for preferring this.

ADVANCED TOPICS

This part discusses a number of advanced features of yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. The YYACCEPT macro causes
yyparseO to return the value 0; YYERROR causes the parser to behave as if
the current input symbol had been a syntax error; yyerrorO is called, and error
recovery takes place. These mechanisms can be used to simulate parsers with
multiple end-markers or context sensitive syntax checking.

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current
rule. The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit.

UNIX Programmer's Manual Languages and Support Tools-581

YACC

sent adj noun verb adj noun

look at the sentence ...

adj THE

$$ = THE;
}
I YOUNG
{

$$ = YOUNG;

noun : DOG
{

$$ = DOG;
}
I CRONE
{

if($0 == YOUNG)
{

printf("what?\n");
}
$$ = CRONE;

In this case, the digit may be 0 or negative. In the action following the word
CRONE, a check is made that the preceding token shifted was not YOUNG.
Obviously, this is only possible when a great deal is known about what might
precede the symbol "noun" in the input. There is also a distinctly unstructured
flavor about this. Nevertheless, at times this mechanism prevents a great deal
of trouble especially when a few combinations are to be excluded from an
otherwise regular structure.

582-Languages and Support Tools UNIX Programmer's Manual

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers.
The yacc program can also support values of other types including structures.
In addition, yacc keeps track of the types and inserts appropriate union
member names so that the resulting parser is strictly type checked. The yacc
value stack is declared to be a union of the various types of values desired.
The user declares the union and associates union member names to each token
and nonterminal symbol having a value. When the value is referenced through
a $$ or $n construction, yacc will automatically insert the appropriate union
name so that no unwanted conversions take place. In addition, type checking
commands such as lint is far more silent.

There are three mechanisms used to provide for this typing. First, there is a
wa y of defining the union. This must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those
few values where yacc cannot easily determine the type.

To declare the union, the user includes

%union
{

body of union ...

in the declaration section. This declares the yacc value stack and the external
variables yylval and yyval to have type equal to this union. If yacc was
invoked with the -d option, the union declaration is copied onto the y.tab.h
file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the
header file might have said

typedef union
{

body of union ...

YYSTYPE;

instead. The header file must be included in the declarations section by use of
% { and %}.

UNIX Programmer's Manual Languages and Support Tools-583

YACC

Once YYSTYPE is defined, the union member names must be associated with
the various terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords
% token, % left, % right, and % nonassoc, the union member name is associated
with the tokens listed. Thus, saying

%left <optype> '+' '-'

causes any reference to values returned by these two tokens to be tagged with
the union member name optype. Another keyword, % type, is used to associate
union member names with nonterminals. Thus, one might say

%type <nodetype> expr stat

to associate the union member nodetype with the nonterminal symbols "expr"
and "stat".

There remains a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no a
priori type. Similarly, reference to left context values (such as $0) leaves yacc
with no easy way of knowing the type. In this case, a type can be imposed on
the reference by inserting a union member name between < and >
immediately after the first $. The example

rule : aaa
{

$<intval>$ == 3;
}
bbb

fun{ $ <intval> 2, $<other>O);

shows this usage. This syntax has little to recommend it, but the situation
arises rarely.

584-Languages and Support Tools UNIX Programmer's Manual

A sample specification is given in An Advanced Example. The facilities in this
subsection are not triggered until they are used. In particular, the use of
% type will turn on these mechanisms. When they are used, there is a fairly
strict level of checking. For example, use of $n or $$ to refer to something
with no defined type is diagnosed. If these facilities are not triggered, the yacc
value stack is used to hold int's, as was true historically.

EXAMPLES

A Simple Example

This example gives the complete yacc applications for a small desk calculator;
the calculator has 26 registers labeled "a" through "z" and accepts arithmetic
expressions made up of the operators +, ., *,/, % (mod operator), & (bitwise
and), 1 (bit wise or), and assignments. If an expression at the top level is an
assignment, the value is printed; otherwise, the expression is printed. As in C
language, an integer that begins with 0 (zero) is assumed to be octal;
otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a reasonable job
of showing how precedence and ambiguities are used and demonstrates simple
recovery. The major oversimplifications are that the lexical analyzer is much
simpler for most applications, and the output is produced immediately line by
line. Note the way that decimal and octal integers are read in by grammar
rules. This job is probably better done by the lexical analyzer.

%{
includes <stdio.h>
includes < ctype.h >

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left'I'
%left '&'

UNIX Programmer's Manual Languages and Support Tools-585

YACC

%left '+' '-'
%left '*' '/' '%'
%left UMINUS 1* supplies precedence for unary minus *1

% % 1* beginning of rule section *1

list 1* empty *1
list stat '\n'
list error '\n'

yyerrork;

stat expr

printf("%dn", $1);
}
I LETTER '=' expr
{

regs[$l] = $3

expr '(' expr ')'
{

$$ = $2;
}
I expr '+' expr
{

$$ = $1 + $3

I expr '-' expr
{

$$ = $1 - $3

lexpr '*' expr
{

$$ = $1 * $3;

586-Languages and Support Tools UNIX Programmer's Manual

number

1 expr' I' expr
{

$$ = $1/$3;
}
1 exp '%' expr
{

$$ = $1 % $3

expr '&' expr

$$ = $1 & $3;
}
1 expr 'I' expr
{

$$ = $11 $3
}
I '-' expr %prec UMINUS
{

$$ = - $2;
}
1 LETTER
{

$$ = reg[$l1;
}
I number

DIGIT

$$ = $1; base = ($1==0) ? 8 ; 10;
}
1 number DIGIT
{

$$ = bas * $1 + $2

. %% 1* start of program *1

yylex()
{

1* lexical analysis routine *1
1* return LETTER for lowercase letter,

yylval = 0 through 25*1

UNIX Programmer's Manual Languages and Support Tools-587

YACC

1* returns DIGIT for digit, yylval = 0 through 9*1
1* all other characters are returned immediately *1

int c;
I*skip blanks*1

while (c=getchar{ » = = ")

1* c is now nonblank *1

if{ islower{ c »
{

yylval = c- 'a';
return (LETTER);

}
if(isdigit (c »
}

yylval = c-'O';
return{ DIGIT);

}
return{ c);

YACC Input Syntax

This appendix has a description of the yacc input systax as a yacc specification.
Contex dependencies, etc. are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar; the
sticky part comes when an identifier is seen in a rule immediately following an
action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise, it is a continuation of the current rule which just happens to have an
action embedded in it. As implemented, the lexical analyzer looks ahead after
seeing an identifier and decides whether the next token (skipping blanks,
newlines, and comments, etc.) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
strings) are also returned as IDENTIFIERS but never as part of
C IDENTIFIERs.

1* grammar for the input to yacc *1

1* basic entries *1

588-Languages and Support Tools UNIX Programmer's Manual

%token IDENTIFIER 1* includes identifiers and literals *1
%token C _IDENTIFIER 1* identifier (but not literal)

followed by a colon *1
%token NUMBER 1* [0-9]+ *1

1* reserved words: %type=> TYPE %left=> LEFT,etc. *1

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK 1* the %% mark *1
%token LCURL 1* the % { mark *1
%token RCURL 1* the % } mark *1

1* ASCII character literals stand for themselves *1

%token spec

%%

spec defs MARK rules tail

tail MARK

In this action, eat up the rest of the file

1* empty: the second MARK is optional *1

defs 1* empty *1

defs
I
{

defs def

START IDENTIFIER
UNION

Copy union definition to output
}
I LCURL
{

Copy C code to output file
RCURL

UNIX Programmer's Manual Languages and Support Tools-589

YACC

ndefs rword tag nlist

rword : TOKEN
1 LEFT
1 RIGHT
1 NONASSOC
1 TYPE

tag /* empty: union tag is optional * /
'<' IDENTIFIER '>'

nlist : nmno
1 nlist nmno
1 nlist','nmno

nmno : IDENTIFIER /*Note: literal illegal with % type */
1 IDENTIFIER NUMBER /* Note: illegal with % type * /

/* rule section * /

rules : C _IDENTIFIER rbody proc
1 rules rule

rule C_IDENTIFIER rbody prec
1 'I' rbody prec

rbody : /* empty * /
1 rbody IDENTIFIER
1 rbodyact

act : '{'

590-Languages and Support Tools UNIX Programmer's Manual

Copy action translate $$' etc.
}

'I'

Bprec : /* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec';'

An Advanced Example

This appendix gives an example of a grammar using some of the advanced
features. The desk calculator example in A Simple Example is modified to
provide a desk calculator that does floating point interval arithmetic. The
calculator understands floating point constants; the arithmetic operations +, -
*, /, unary - "a" through "z". Moreover, it also understands intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued variables "A"
through "Z" that may also be used. The usage is similar to that in A Simple
Example; assignments returns no value and prints nothing while expressions
print the (floating or interval) value.

This example explores a number of interesting features of yacc· and C
language. Intervals are represented by a structure consisting of the left and
right endpoint values stored as doubles. This structure is given a type name,
INTER VAL, by using typedeJ The yacc value stack can also contain floating
point scalars and integers (used to index into the arrays holding the variable
values). Notice that the entire strategy depends strongly on being able to assign
structures and unions in C language. In fact, many of the actions call functions
that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions­
divis~on by an interval containing 0 and an interval presented in the wrong
order. The error recovery mechanism of yacc is used to throwaway the rest of
the offending line.

UNIX Programmer's Manual Languages and Support Tools-591

YACC

In addition to the mlxmg of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (for
example, scalar or interval) of intermediate expressions. Note that scalar can
be automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc-18 Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen by looking at the two input lines.

2.5+0.5-4.}

and

2.5 + (3.5,4)

Notice that the 2.5 is to be used in an interval value expression in the second
example, but this fact is not known until the comma is read. By this time" 2.5
is finished, and the parser cannot go back and change its mind. More generally,
it might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is evaded by having
two rules for each binary interval valued operator-one when the left operand
is a scalar and one when the left operand is an interval. In the second case, the
right operand must be an interval, so the conversion will be applied
automatically. Despite this evasion, there are still many cases where the
conversion may be applied or not, leading to the above conflicts. They are
resolved by listing the rules that yield scalars first in the specification file; in
this way, the conflict will be resolved in the direction of keeping scalar valued
expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive but not very general. If
there were many kinds of expression types instead of just two, the number of
rules needed would increase dramatically and the conflicts even more
dramatically. Thus, while this example is instructive, it is better practice in a
more normal programming language environment to keep the type information
as part of the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C language library routine ato/O is
used to do the actual conversion from a character string to a double precision
value. If the lexical analyzer detects an error, it responds by returning a token
that is illegal in the grammar provoking a syntax error in the parser and thence

592-Languages and Support Tools UNIX Programmer's Manual

error recovery.

%{

#include < stdio.h >
#include < ctype.h >

typedef struct interval
{

double 10, hi;
INTERVAL;

INTER V AL vmulO, vdiv ();

double atof();

double dreg[26 1;
INTERVAL vreg[26 1;

%}

%start line

%union
{

}

int ivaI;
double dval;
INTERVAL vval;

%token <ivaI> DREG VREG /*indices into dreg, vreg arrays */

%token < dval > CONST /* floating point constant * /

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left '+' '-'
%left ,*, '/'
%left UMINUS /* precedence for unary minus * /

UNIX Programmer's Manual Languages and Support Tools-593

YACC

%%

lines : 1* empty *1
I lines line

line dexp '\n'

printf(n%15.8f\nn.$1);
}
I vexp '\n'

printf(n(%15.8f , %15.8f)O,$1.10,$1.hi);

}
I DREG '=' '\n'
{

dreg[$l] = $3;

}
I VREG '=' vexp '\n'
{

vreg[$l] = $3;

}
I error '\n'
{

yyerrork;

dexp CONST
I DREG
{

$$ = dreg[$l]

}
I dexp '+' dexp

594-Languages and Support Tools UNIX Programmer's Manual

$$ = $1 + $3

}
I dexp '-' dexp
{

$$ = $1 - $3
}
I dexp '*' dexp
{

$$ = $1 * $3

}
I dexp' I' dexp
{

$$ = $1 / $3

}
I '-' dexp %prec UMINUS
{

$$ =- $2

}
I '(' dexp')'
{

$$ = $2

vexpp : dexp
{

$$.hi = $$.10 = $1;

I '(' dexp',' dexp')'
{

UNIX Programmer's Manual Languages and Support Tools-595

'ACC

}

$$.10 == $2;
$$.hi == $4;
If($$.10 > $$.hi)
{

printf("interval out of order n");
YYERROR;

I VREG
{

$$ == vreg[$I]

}
I vexp '+' vexp
{

}

$$.hi == $1.hi + $3.hi;
$$.10 == $1.10 + $3.10

I dexp '+' vexp
{

$$.hi == $1 + $3.hi;
$$.10 == $1 + $3.10

I vexp '==' vexp
{

}

$$.hi == $1.hi - $3.10;
$$.10 == $1.10 - $3.hi

I dvep '-' vdep

$$.hi == $1 - $3.10;
$$.10 == $1 - $3.hi

596-Languages and Support Tools UNIX Programmer's Manual

%%

I vexp ,*, vexp
{

$$ = vmul ($1.10,$.hi,$3)

}
I dexp ,*, vexp
{

$$ = vmuI($1, $1, $3)

}
I vexp '/' vexp
{

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3)

dexp '/' vexp

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3)

I '-' vexp %prec UMINUS
{

$$.hi = -$2.10;$$.10 =-$2.hi
}
I '(' vexp ')'
}

$$ = $2

define BSZ 50 1* buffer size for floating point number *1

1* lexical analysis *1

yylex()
{

register c;

UNIX Programmer's Manual Languages and Support Tools-597

YACC

/* skip over blanks * /

if(isupper(c))
{

}

yylval.ival = c - 'A'
return (VREG);

if(islower(c))
{

yylval.ival = c - 'a',
return (DREG);

/* gobble up digits. points, exponents * /
if(idigit(c) I c=='.')
{

char buflBSZ+ 1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf) <BSZ ; ++cp,c=getchar())

*cp = c;
if(isdigit (c))

continue;
if(c =='.'
{
if(dot++ I exp)

return ('.') ;/* will cause syntax error * /
continue;

if(c == 'e')
{

if(exp++)
return ('e'); * twill cause syntax error * /

continue;

/* end of number * /

598-Languages and Support Tools UNIX Programmer's Manual

break;

*cp = '\0';
if(cp-buff) > = BSZ)

printcf("constant too long truncated\n");
else

ungetc(c, stdin); 1* push back last char read *1
yylval.dval = atof(buf);
return (CONST);
}
return(c);

INTERVAL
hilo(a, b, c, d)

double a, b, c, d;

1* returns the smallest interval containing a, b, c, and d *1

1* used by * J routine *1
INTERVAL v;

if(a>b)
{

else
{

}

v.hi = a;
v.lo = b;

v.hi = b;
v.lo = a;

if(c>d)
{

else
}

if(c>v.hi)
v.hi = c;

if(d <v.lo)
v.lo = d;

if(d>v.hi)
v.hi = d;

UNIX Programmer's Manual Languages and Support Tools-599

YACC

}

if(c<v.lo)
v.lo = c;

return(v);

INTERVAL vmul (a, b, v)
double a, b;
INTERVAL v;

return(hilo(a*v.hi, a*v,lo, b*v.hi, b*v.lo));
}
dcheck(v)

INTERVAL v;

if(v.hi >=0.&& v.lo <=0.)
{

printf("divisor internal contains O.\n");
return(0;

}
return(0);

INTER V AL vdiv(a, b, v)
double a, b;
INTERVAL v;

return (hilo (a/v.hi, a/v,lo, b/v.hi, b/v.1o));

Old Features Supported But Not Encouraged

This appendix mentions synonyms and features that are supported for historical
continuity but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes.

2. Literals may be more that one character long. If all the characters are
alphabetic, numeric, or -' the type number of the literal is defined just
as if the literal did not have the quotes around it. Otherwise, it is
difficult to find the value for such literal.

600-Languages and Support Tools UNIX Programmer's Manual

The use of multicharacter literals is likely to mislead those unfamiliar
with yacc since it suggests that yacc is doing a job which must be
actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular,
\ \ is the same as %%, \left the same as % left, etc.

4. There are a number of other synonyms:

% < is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Action may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C language
statement.

6. The C language code between %{ and %} use to be permitted at the
head of the rules section as well as in the declaration section.

UNIX Programmer's Manual Languages and Support Tools-601

YACC

NOTES

602-Languages and Support Tools UNIX Programmer's Manual

UNIX SYSTEM TO UNIX SYSTEM COPY <UUCP)

INTRODUCTION

The uucp network has provided a means of information exchange between
UNIX systems over the direct distant dialing network for several years. This
chapter provides you with the background to make use of the network.

The first half of the document discusses concepts. Understanding these basic
principles helps the user make the best possible use of the uucp network. The
second half explains the use of the user level interface to the network and
provides numerous examples.

There are several major uses of the network. Some of the uses are:

• Distribution of software

• Distribution of documentation

• Personal communication (mail)

• Data transfer between closely sited machines

• Transmission of debugging dumps and data exposing bugs

• Production of hard copy output on remote printers.

THE UUCP NETWORK

The uucp(I) network is a network of UNIX systems that allows file transfer
and remote execution to occur on a network of UNIX systems. The extent of
the network is a function of both the interconnection hardware -a""iiOthe
controlling network software. Membership in the network is tightly controlled
via the software to preserve the integrity of all members of the network. You
cannot use the uucp facility to send files to systems that are not part of the
uucp network. The following parts describe the topology, services, operating
rules, etc., of the network to provide a framework for discussing use of the
network.

UNIX Programmer's Manual Languages and Support Tools-603

UUCP

Network Hardware

The uucp was originally designed as a dialup network so that systems in the
network could use the DDD network to communicate with each other. The
three most common methods of connecting systems are:

1. Connecting two UNIX systems directly by cross-coupling (via a null
modem) two of the computers ports. This means of connection is useful
for only short distances (several hundred feet can be achieved although the
RS232 standard specifies a much shorter distance) and is usually run at
high speed (9600 baud). These connections run on asynchronous terminal
ports.

2. Using a modem (a private line or a limited distance modem) to directly
connect processors over a private line (using 103- or 212-type data sets).

3. Connecting a processor to another system through a modem, an automatic
calling unit (ACU) , and the DDD network. This is by far the most
common interconnection method, and it makes available the largest
number of connections.

The uucp could be extended to use higher speed media (e.g., HYPERchannel *,
Ethernett, etc.), and this possibility is being explored for future UNIX system
releases. Some sites already support local modifications to uucp to allow the
use of Datakit, X.25 (permanent virtual circuits), and calling through data
switches.

Network Topology

A large number of connections between systems are possible via the DDD
network. The topology of the network is determined by both the hardware
connections and the software that control the network.

* Trademark of Network Systems Corporation.

t Trademark of Xerox Corporation.

604-Languages and Support Tools UNIX Programmer's Manual

Software Topology

The hardware capability of systems in the network defines the maximum
number of connections in the network. The software at each node restncts the
access by other systems and thereby defines the extent of the network. As part
of the security mechanism used by uucp, the extent of access that other systems
have can be controlled at each node.

The uucp uses the UNIX system password mechanism coupled with a system
file UusrRibluucplL.sys) and a file system permISSIOn file
Uusrllibluucp/uSERFILE) to control access between systems. The password
file entries for uucp (usually, luucp, nuucp, uucp, etc.) allow only those remote
systems that know the passwords for these IDs to access the local system.
(Great care should be taken in revealing the password for these uucp logins
since knowing the password allows a system to join the network.) The system
file UusrRibluucplL.sys) defines the remote systems that a local host knows
about. This file contains all information needed for a local host to contact a
remote system (including system name, password, login sequence, etc.) and as
such is protected from viewing by ordinary users.

In summary, while the available hardware on a network of systems determines
the connectivity of the systems, the combination of password file entries and the
uucp system files determine the extent of the network.

Forwarding

One of the recent additions to uucp (for UNIX system 5.0) is a limited
forwarding capability whereby systems that are part of the network can
forward files through intermediate nodes. For security reasons, when
forwarding, files may only be transmitted to the public area or fetched from
the remote systems public area.

Security

The most critical feature of any network is the security that it provides. Users
are familiar with the security that UNIX system provides in protecting files
from access by other users and in accessing the system via passwords. In
building a network of processors, the notion of security is wiOeiieOoecause
access by a wider community of users is granted. Access is granted on a
system basis (that is, access is granted to all users on a remote system). This
foIlows from the fact that the process of sending (receiving) a file to (from)
another system is done via daemons that use one special user ID(s). This user
10 (s) is granted (denied) access to the system . via the uucp system file

UNIX Programmer's Manual Languages and Support Tools-60S

UUCP

(fusrRibluucplL.sys) and the areas that the system has access to is controlled by
another file (fusrRibluucpIUSERFILE). For example, access can be granted to
the entire file system tree or limited to specific areas.

Software Structure

The uucp network is a batch network. That is, when a request is made, it is
spooled for later transmission by a daemon. This is important to users because
the success or failure of a command is only known at some later time via
maiI(l) notification. For most transfers, there is little trouble in transmitting
files between systems, however, transmissions are occasionally delayed or fail
because a remote system cannot be reached.

Rules of the Road

There are several rules by which the network runs. These rules are necessary
to provide the smooth flow of data between systems and to prevent duplicate
transmissions and lost jobs. The following outline these rules and their
influence on the network.

Queuing

Jops submitted to the network are assigned a sequence number for
transmission. Jobs are represented by a file (or files) in a common spool
directory (fusrlspoolluucp). When a file transfer daemon (uucico) is started to
transmit a job, it selects a system to contact and then transmits all jobs to that
system. Before breaking off the conversation, any jobs to be receIved from that
remote system are accepted. The system selected as the one to contact is
randomly selected if there is work for more than one system. In releases of
uucp prior to UNIX system 5.0, the first system appearing in the spool
directory is selected so preference is given to the most recently spawned jobs.
Uucp may be sending to or receiving from many systems simultaneously. The
number of incoming requests is only limited by the number of connections on
the system, and the number of outgoing transfers is limited by the number of
ACUs (or direct connections).

606-Languages and Support Tools UNIX Programmer's Manual

Dialing and the DDD Network

In order to transfer data between processors that are not directly connected, an
auto dialer is used to contact the remote system. There are several factors
that can make contacting a remote system difficult.

1. All lines to the remote system may be busy. There is a mechanism within
uucp that restricts contact with a remote system to certain times of the day
(week) to minimize this problem.

2. The remote system may be down.

3. There may be difficulty in dialing the number (especially if a large
sequence of numbers involving access through PBXs is involved). The
dialing algorithm tries dialing a number twice and the algorithm used to
dial remote systems is not perfect, particularly when intermediate dial
tones are involved.

Scheduling and Polling

When a job is submitted to the network, an attempt to contact that system is
made immediately. Only one conversation at a time can exist between the
same two systems.

Systems that are polled can do nothing to force immediate transmission of
data. Jobs will onlyl)e transmitted when the system is polled (hourly, daily,
etc.) by a remote system.

Retransmissions and Hysteresis

The uucp network is fairly persistent in its attempt to contact remote systems
to complete a transmission. To prevent uucp from continually calling systems
that are unavailable, hysteresis is built into the algorithm used to contact other
systems. This mechamsm forces a minimum fixed delay (specifiable on a per
system basis) to occur before another transmission can take place to that
system.

UNIX Programmer's Manual Languages and Support Tools-607

UUCP

Purging and Clean-up

Transfers that cannot be completed after a defined period of time (72 hours is
the value that is set when the system is distributed) are deleted and the user is
notified.

Special Places: The Public Area

In order to allow the transfer of files to a system for which a user does not have
a login on, the public directory (usually kept in lusrlspool/uucppublic) is
available with general access privileges. When receiving files in the public
area, the user should dispose of them quickly as the administrative portion of
uucp purges this area on a regular basis.

Permissions

File Level Protection

In transferring files between systems, users should make sure that the
destination area is writable by uucp. The uucp daemons preserve execute
permission between systems and assign permission 0666 to transferred files.

System Level Protection

The system administrator at each site determines the global access permissions
for that processor. Thus, access between systems may be confined by the
administrat'or to only some sections of the file system.

Forwarding Permissions

The forwarding feature is a new addition to the uucp package. You should be
aware that

1. When forwarding is attempted through a node that is running an old
version of uucp, the transmission fails.

2. Nodes that allow forwarding can restrict the forwarding feature in several
ways.

608-Languages and Support Tools UNIX Programmer's Manual

a. Forwarding is allowed for only certain users.

b. Forwarding to certain destination nodes (e.g., Australia) should be
avoided.

c. Forwarding for selected source nodes is allowed.

3. The most important restriction is that forwarding is allowed only for files
sent to or fetched from the public area.

NETWORK USAGE

The following parts discuss the user interface to the network and give examples
of command usage.

Name Space

In order to reference files on remote systems, a syntax is necessary to uniquely
identify a file. The notation must also have several defaults to allow the
reference to be compact. Some restrictions must also be placed on pathnames
to prevent security violations. For example, pathnames may not include " .. " as
a component because it is difficult to determine whether the reference is to a
restricted area.

Naming Conventions

Uucp uses a special syntax to build references to files on remote systems. The
basic syntax is

system -name!pa thname

where the system-name is a system that uucp is aware of. The pathname part
of the name may contam any of the following:

1. A fully qualified pathname such as

mhtsa!/usr/you/file

UNIX Programmer's Manual Languages and Support Tools-609

UUCP

The path name may also be a directory name as in

mhtsa!/usr/you/directory

2. The login directory on a remote may be specified by use of the - character.
The combination -user references the login directory of a user on the
remote system. For example,

mhtsa!-adm/file

would expand to

mhtsa!/usr/sys/adm/file

if the login directory for user adm on the remote system is lusrlsysladm.

3. The public area is referenced by a similar use of the prefix -/user
preceding the pathname. For example,

mhtsa!-/you/file

would expand to

mhtsa!/usr/spoolluucp/you/file

if lusrlspooIluucp is used as the spool directory.

4. Pathnames not using any of the combinations or prefixes discussed above
are prefixed with the current directory (or the login directory on the
remote). For example,

mhtsa!file

would expand to

mhtsa!/usr /you/file

610-Languages and Support Tools UNIX Programmer's Manual

The naming convention can be used in reference to either the source or
destination file names.

Forwarding Syntax

The newest feature of uucp is the ability to allow files to be passed between
systems via intermediate nodes. This is done via a variation of the bang 0)
syntax that describes the path to be taken to reach that file. For example, a
user on system a wishing to transmit a file to system e might specify the
transfer as

uucp file b!c!d!e!-/you/file

if the user desires the request to be sent through b, c, and d before reaching e.
Note that the pathname is the path that the file would take to reach node e.
Note also that the destination must be specified as the public area. Fetching a
file from another system via intermediate nodes is done similarly. For example,

uucp b!c!d!e!-/you/file x

fetches file from system e and renames it x on the local system. The
forwarding prefix is the path from the local system and not the path from the
remote to the local system. lfle forwarding feature may also be used in
conjunction with remote execution. For example,

uux mhtsa!uucp mhtsb!mhrtc!/usr/spool/uucppublic/file x

sends a request to mhtsa to execute the' uucp command to copy a file from
mhrtc to x on mhtsa-.--

Types of Transfers

Uucp has a very flexible command syntax for file transmission. The following
give examples of different combinations of transfers.

UNIX Programmer's Manual Languages and Support Tools-611

UUCP

Transmissions of Files to a Remote

Any number of files can be transferred to a remote system via uucp. The
syntax supports the *, ? and l .. J metacharacters. For example,

uucp * .rch] mhtsa!dir

transfers all files whose name ends in c or h to the directory dir in the users
login directory on mhtsa. -

Fetching Files From a Remote

Files can be fetched from a remote system in a similar manner. For example,

uucp mhtsa!* .rch] dir

will fetch all files ending in c or h from the users login directory on mhtsa and
place the copies in the subdirectory dir on the local system.

Switching

Transmission of files can be arranged in such a way that the local system
effectively acts as a switch. For example,

uucp mhtsb!files mhtsa!filed

will fetch files from the users login directory on mhtsb, rename it as filed, and
place it in 1Iielogin directory on mhtsa.

Broadcasting

Broadcast capability (that is, copying a file to many systems) is not supported
by uucp, however, it can be simulated via a shell script as in

for i in mhtsa mhtsb mhtsd
do

uucp file $i!broad
done

612-Languages and Support Tools UNIX Programmer's Manual

Unfortunately, one uucp command is spawned for each transmission so that it
is not possible to track the transfer as a single unit.

Remote Executions

The remote execution facility allows commands to be executed remotely. For
example,

uux "!diff mhtsa!/etc/passwd mhtsd!/etc/passwd > !pass.diff"

will execute the command diff(I) on the password file on mhtsa and mhtsd and
place the result in pass.diff.

Spooling

To continue modifying a file while a copy is being transmitted across the
network, the -c option should be used. This forces a copy of the file to be
queued. The default for uucp is not to queue copies Ofllie files since it is
wasteful of both Central Processing Unit time and storage. For example, the
following command forces the file work to be copied into the spool directory
before it is transmitted.

uucp -c work mhtsa!-/you/work

Notification

The success or failure of a transmission is reported to users asynchronously via
the mail(I) command. A new feature of uucp is to provide notification to the
user in a file (of the users choice). The choices for notification are:

1. Notification returned to the requesters system (via the -m option). This is
useful when the requesting user is distributing files to other machines.
Instead of logging onto the remote machine to read mail, mail is sent to
the requester when the copy is finished.

2. A variation of the -m option is to force notification in a file (using the
-rrifile option where file is a file name). For example,

uucp -mans letc/passwd mhtsb!/dev/null

UNIX Programmer's Manual Languages and Support Tools-613

UUCP

sends the file letclpasswd to system mhtsb and place the file in the bit
bucket (/devlnull). The status of the transfer is reported in the file ans as,

uucp job 0306 (8/20-23:08:09) (0:31:23) letc/passwd copy succeeded

3. Uux(t) always reports the exit status of the remote execution unless
notification is suppressed (via the -n option). Notification can be sent to
a different user on the remote system via the -nuser option.

Tracking and Status

The most pervasive change to the uucp package is revIsmg the internal
formatting of jobs so that each invocation of uucp or uux(t) corresponds to a
single job. It is now possible to associate a single job number with each
command execution so that the job can be terminated or its status obtained.

The Job 10

The default for the uucp and uux command is not to print the job number for
each job. This was done for compatibility with previous versions of uucp and to
prevent the many shell scripts built around uucp from printing job numbers. If
the following environment variable

JOBNO=ON

is made part of the users environment and exported, uucp and uux prints the
job number. Similarly, if the user wishes to turn the job numbers off, the
environment variable is set as follows:

JOBNO=OFF

If you wish to force printing of job numbers without using the environment
mechanism, use the -j option. For example,

uucp -j letc/passwd mhtsb!ldev/null
uucp job 282

614-Languages and Support Tools UNIX Programmer's Manual

forces the job number (282) to be printed. If the -j option is not used, the IDs
of the jobs (belonging to the user) are found by using the uustat(1) command.
This provides the job number. For example,

uustat
0282 tom mhtsb 08/20-21:47 08/20-21:47 JOB IS QUEUED
0272 tom mhtsb 08/20-21 :46 08/20-21 :46 JOB IS QUEUED

shows that the user has two jobs (282 and 272) queued.

Job Status

The uustat command allows a user to check on one or all jobs that have been
queued.· The ID printed when a job is queued is used as a key to query status
of the particular job. An example of a request for the status of a given job is

uustat -j0711

0711 tom mhtsb 07/30-02: 18 07/30-02: 18 JOB IS QUEUED

There are several status messages that may be printed for a given job; the most
frequent ones are JOB IS QUEUED and JOB COMPLETED (meanings are
obvious). The manual page for uustat lists the other status messages.

Network Status

The status of the last transfer to each system on the network is found by using
the uustat command. For example,

uustat -mall

reports the status of the last transfer to all of the systems known to the local
system. The output might appear as

UNIX Programmer's Manual Languages and Support Tools-615

UUCP

mhb5c
res ear
minimo
austra
ucbvax

08/10-12:35
08/20-17:01
07/22-16:31
08/20-18:36
08/20-20:37

CONVERSATION SUCCEEDED
CONVERSATION SUCCEEDED
DIAL FAILED
WRONG TIME TO CALL
LOGIN FAILED

where the status indicates the time and state of the last transfer to each
system. When sending files to a system that has not been contacted recently,
it is a good idea to use uustat to see when the last access occurred (because the
remote system may be down or out of service).

Job Control

With the unique job ID generated for each uucp or uux command, it is possible
to control jobs in the following ways.

Job Termination

A job that consists of transferring many files from several different systems can
be terminated using the -k option of uustat. If any part of the job has left the
system, then only the remaining parts of the job on the local system is
terminated.

Requeuing a Job

The uucp package clears out its working area of jobs on a regular basis
(usually every 72 hours) to prevent the buildup of jobs that cannot be
delivered. The -r option is used to force the date of a job to be changed to the
current date, thereby lengthening the time that uucp attempts to transmit the
job. It should be noted that the -r option does not impart immortality to a job.
Rather, it only postpones deleting the job during housekeepmg functIons until
the next cleanup.

Network Names

Users may find the names of the systems on the network via the uuname(I)
command. Only the names of the systems in the network are printed.

616-Languages and Support Tools UNIX Programmer's Manual

UTILITIES THAT USE UUCP

There are several utilities that rely on uucp or uux(I) to transfer files to other
systems. The following parts outline the more important of these functions.
This increases awareness of the extent of the use of the network.

The Stockroom

The UNIX system stockroom is a facility whereby a library of source can be
maintained at a central locatlon for distribution of source or bug fixes. Access
to and distribution of library entries is controlled by shell scripts that use uucp.

Mail

The maiJ(I) command uses uux to forward mail to other systems. For
example, when a user types

mail mhtsa!tom

the mail command invokes uux to execute rmail on the remote system (rmail is
a link to the mail command). Forwarding mail through several systems (e.g.,
mail a!b!tom) does not use the uucp forwarding feature but is simulated by the
mail command itself.

Netnews

The netnews(t) command that is locally supported on many systems uses uux
in much the same way that mail does to broadcast network mail to systems
subscribing to news categories.

Uuto

The uuto(I) command uses the uucp facility to send files while allowing the
local system to control the file access. Suppose your login is emsgene and you
are on system aaaaa. You have a friend (David) on system bbbbb with a login
name of wldmc. Also assume that both systems are networked to each other
[See uuname(I) 1. To send files using uuto, enter the following:

uuto filename aaaaa!wldmc

UNIX Programmer's Manual Languages and Support Tools-617

UUCP

where filename is the name of a file to be sent. The files are sent to a public
directory defined in the uucp source. In this example, David will receive the
following mail:

From nuucp Tue Jan 25 11:09:55 1983
lusr I spool/uucppublic/receive/wl dmcl aaaaa \
llfilename from aaaaa!emsgene arrived

See uuto(l). for more details.

Other Applications

The Office Automation System (OAS) uses uux to transmit electronic mail
between systems in a manner similar to the standard mail command. Some
sites have replaced utilities such as Ipr(1), opr(1), etc., with shell scripts that
invoke uux or uucp. Other sites use the uucp ne. work as a backup for higher
speed networks (e.g., PCL, NSC HYPERchannel, etc.).

618-Languages and Support Tools UNIX Programmer's Manual

Other Volumes
of the

UNIX* Programmer's Manual

Volume 1
Commands and Utilities, contains the manual pages for the
commands and applications programs that can be invoked
directly by the user or by command language procedures.
Manual pages describe the purpose and use of the UNIX
system commands, warn of potential problems, give examples,
and tell where to find related information.

Volume 2
System Calls and Library Routines, describes the
programming features of the UNIX system. Included are the
descriptions of system calls, subroutines, libraries, file formats,
macro packages, and character set tables.

Volume 3
System Administration Facilities, contains the commands
used by UNIX system administrators. It describes system
maintenance commands and application programs, special
files, and system maintenance procedures.

Volume 4
Documentation Preparation, describes and explains the
commands and macros needed to input and format a
document. It provides examples of advanced UNIX system
editing commands and the stream editor (sed), a non­
interactive content editor. Also described are the text
processors used to format text, nrott and trott, and the
preprocessors, tbl and eqn used to prepare tables and typeset
mathematics.

Select Code 320-035
ISBN 0-03-011204-4

	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	xBack

