

The UNIXT
• System

User's Manual

ATaT

The UNIXT
" System

User's Manual

AT&T Information Systems

PRENTICE-HALL, Englewood Cliffs, New Jersey 07632

Copyright © 1986 AT&T. All Rights Reserved.

Published by Prentice-Hall
A Division of Simon & Schuster, Inc.
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means -
graphic, electronic, electrical, mechanical, or chemical, including photocopying, recording in
any medium, taping, by any computer or information storage and retrieval systems, etc.,
without prior permission in writing from AT&T.

IMPORTANT NOTE TO USERS
While every effort has been made to ensure the accuracy of all information in this document,
AT&T assumes no liability to any party for any loss or damage caused by errors or omissions or
by statements of any kind in The UNIX* System User's Manual, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. AT&T further assumes no liability arising out of the application
or use of any product or system described herein; nor any liability for incidental or consequen­
tial damages arising from the use of this document. AT&T disclaims all warranties regarding
the information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

AT&T makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of license to make, use or sell equipment constructed in accordance
with this description.

AT&T reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the troff

formatter operating on UNIX System V on an AT&T 3820 computer.

* UNIX is a trademark of AT&T.
APS-5 is a trademark of AUTOLOGIC, Inc.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-938242-9
SELECT CODE NO.

025
320-041

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Whitehall Books Limited, Wellington, New Zealand

To the many users
past, present and future

whose programming contributions
built and sustain
the UNIX System

The UNIX System User's Manual v

Table of
Contents

Page

Preface ix

Introduction

Part I Commands and Utilities

Chapter Basic Utilities 19
Chapter 2 Advanced Utilities 127
Chapter 3 Administered System Utilities 219
Chapter 4 Software Development Utilities 271

Part II System Routines

Chapter 5 Base System Routines 355
Chapter 6 Kernel Extension Routines 443

Part III Library Routines

Chapter 7 Base Library Routines 477
Chapter 8 Software Development Library 563

Part IV Environment

Chapter 9 Base System Environment 583
Chapter 10 Kernel Extension Environment 607
Chapter 11 Administered Systems Environment 613

Part V Definitions

Chapter 12 Base System Definitions 621
Chapter 13 Kernel Extension Definitions 631

The UNIX System User's Manual vii

Preface

The UNIX' System User's Manual addresses itself to the needs of all users of UNIX
System V, but especially to those of application-developers building C language
application-programs whose source-code must be portable from one UNIX System V
environment to another. The UNIX System User's Manual serves the following
major purposes:

• To provide a single reference defining operating system components provided by
computer systems supporting UNIX System V.

• To define the featurelfunctionality that application-programs and end-users can
expect from those components. (This does not include the details of how the
operating system implements these components.)

• To assist in porting software between computer systems supporting UNIX Sys-
tem V. (This assumes the source is recompiled for the proper target hardware.)

The UNIX System User's Manual is based on Issue 2 of the System V Interface
Definition, which corresponds to functionality in UNIX System V Release 1.0 and
UNIX System V Release 2.0. The System V Interface Definition applies to com­
puter systems ranging from personal computers to mainframes, and specifies a
computing environment for creating applications software independent of any par­
ticular computer hardware. Applications conforming to the System V Interface
Definition allow users to take advantage of changes in technology and to choose the
computer system that best meets their needs from among many manufacturers
while retaining a common computing environment.

The UNIX System User's Manual describes operating system components available
to both end-users and application-programs. The UNIX System User's Manual
specifies the source-code or command-level interfaces of each operating system
component as well as the run-time behavior an application-program or an end-user
should expect. The UNIX System User's Manual specifies the functionality of com­
ponents without stipulating the implementation. The emphasis is on defining a
common computing environment for application-programs and end-users; not on
the internals of the operating system, such as the scheduler or memory manager.

• UNIX is a trademark of AT&T.

The UNIX System User's Manual ix

The UNIX™ System
User's Manual

Introduction

Scope and Field of Application
The UNIX System User's Manual defines the source-code interfaces and the run­
time behavior for components of UNIX System V. These components include
operating system routines, general library routines, system data files, special device
files and end-user utilities (commands). The UNIX System User's Manual follows
the System V Interface Definition by grouping the components of UNIX System V
into a Base System plus a series of Extensions to that Base System. This does not
change the definition of UNIX System V. Instead it recognizes that the entire
feature/functionality of UNIX System V may be unnecessary in certain environ­
ments, especially on small hardware configurations. It also recognizes that
different computing environments require some functions that others do not.

The Base System includes the components that all computer systems supporting
UNIX System V provide, but a system may provide some or none of the Extensions.
Extensions to the Base System may not be present on a computer system support­
ing UNIX System V, but when a component is present it will have the specified
functionality. All the components of an Extension are present on a system that
meets the requirements of the Extension. This does not preclude a system from
including only a few components from some Extension, but the system would not
then meet the requirements of that Extension. Some Extensions require other
Extensions to be present (e.g., the Advanced Utilities require the Basic Utilities).

This partitioning into the Base System and Extensions allows an application­
program to be built using a basic set of components that are consistent across all
computer systems supporting UNIX System V. Where necessary, an application­
developer can choose to use components from an Extension and require the run­
time environment to support that Extension in addition to the Base System. To
execute, many application-programs will require only the components in the Base
System. Other application-programs will need one or more Extensions.

The Extensions to the Base System provide a growth path in natural functional
increments, which leads to a full UNIX System V configuration. The division into a
Base System and Extensions allows system builders to create machines tailored for
different purposes and markets in an orderly fashion. Thus, a small
business/professional computer system designed for novice single-users migllt
include only the Base System and the Basic Utilities. A system for advanced
business/professional users might add to this the Advanced Utilities. A system
designed for high-level language software development would include the Base Sys­
tem, the Kernel Extension and the Basic Utilities, Advanced Utilities and Software
Development Extension. Although the Extensions are not meant to specify the
physical packaging of UNIX System V for a particular product, it is expected that
the. Extensions will lead to a fairly consistent packaging scheme.

The run-time behavior of the components defined in The UNIX System User's
Manual is supported by computer systems supporting UNIX System V. However,
the source-code libraries themselves may not be present on a system that supports
only the Base System. The Base System supports only the execution of
application-programs; the Software Development Extension supports the compila­
tion of those application-programs. A computer system that supports only the Base

The UNIX System User's Manual 3

System provides only a run-time environment; it is assumed that an application­
program targeted to execute on such a system would be compiled on a computer
system that supports the Software Development Extension.

The Base System defines a basic set of UNIX System V components needed to sup­
port a minimal, stand-alone run-time environment for executable application­
programs originally written in a high-level language, such as C. An example of
such a system would be a dedicated-use system; that is, a system devoted to a sin­
gle application, such as a vertically-integrated application-package for managing a
legal office. In this environment, the end-user would not interact directly with the
traditional UNIX System V shell and commands.

The Base System excludes end-user level utilities (commands). Executable
application-programs designed for maximum portability should use Base Library
Routines instead of any Commands and Utilities. For example, an application­
program written in C would use the function chown [see CHOWN(BA_SYS}] to
change the owner of a file rather than using the command chown [see
CHOWN(AU_CMD}]. This does not say that an application-program running in a tar­
get environment that supports only the Base System cannot execute another
application-program. Using the SYSTEM(BA_SYS} routine, one application-program
can execute another application-program.

Features or side-effects that are not explicitly defined should not be used by
application-programs that require portability. Some Extensions may add features
to components defined in the Base System. The additional features supported in an
extended environment are described in Environment in a section titled
EFFECTS(XX_ENV) (e.g., EFFECTS(KE_ENV) in Kernel Extension Environment}.

The UNIX System User's Manual defines source-code interfaces for the C language.
The following two references define the C language for UNIX System V Release 1.0
and UNIX System V Release 2.0 respectively:

• UNIX System V Programming Guide, Issue 1, February 1982.

• UNIX System V Programming Guide, Issue 2, April 1984.

The UNIX System User's Manual describes each component's run-time behavior,
but does not specify its implementation.

4 The UNIX System User's Manual

Structure
Each component definition follows the same structure. The sections are listed
below, but not all of them appear in each description. Sections entitled EXAMPLE,
APPL!CA"!"!Q~ USAGE and USAGE are not considered part of the formal definition of
a component.

• NAME - name of component

• SYNOPSIS - summary of source-code or user-level interface

• DESCRIPTION - functionality and run-time behavior

• RETURN VALUE - value returned by the function

• ERRORS - possible error conditions

• FILES - names of files used

• APPLICATION USAGE or USAGE - guidance on use

• EXAMPLE - examples and sample usage

• SEE ALSO - list of related components

• CAVE A TS - future directions

In general, commands and utilities lack a RETURN VALUE section. Except as noted
in the detailed definition for a particular command or utility, they return a zero
exit code for success and non-zero for failure.

The component definitions are similar in format to traditional AT&T UNIX System
V manual pages, but have been extended or modified as follows:

• All machine-specific or implementation-specific information has been removed,
and all implementation-specific constants have been replaced by symbolic
names, defined in a separate section [see Implementation-specific constants in
Deflnltlonsl. When these symbolic names are used they always appear in curly
brackets (e.g., (PROC_MAX}). The symbolic names correspond to those the
November 1985 draft of the IEEE PI003 Standard defines to be in a
< 1 i mit s . h> header file; however, in this document, they are not to be read
as symbolic constants defined in header files.

• A section entitled CAVEATS has been added to indicate how a component may
evolve. The information ranges from specific changes in functionality to more
general indications of proposed development.

• A section entitled APPLICATION USAGE or USAGE has been added to guide
application-developers on the expected or recommended usage of certain com­
ponents. Detailed definitions of System and Library routines have an APPLICA­
TION USAGE section while Utilities have a USAGE section.

While System and Library routines are used only by application-programs, Utilities
may be used by application-programs, by end-users or by system-administrators.
The USAGE section indicates which of these three is appropriate for a particular
utility (this is not meant to be prescriptive, but rather to give guidance).

The UNIX System User's Manual 5

The USAGE section uses the following terms:

• application-program

• end-user

• system-administrator

• general

The term general indicates that the utility might be used by all three: application­
programs, end-users and system-administrators.

When referred to individually, component definitions are identified by a suffix of
the form (XX_YYY), where xx identifies the Base System or the Extension the com­
ponent belongs to and YYY identifies the type of component. Possible types are:

ENV - environmental components

SYS - system service routines

LIB - general library routines

CMD - commands or utilities

For example, component definitions in Base System Routines are identified by
(BA_SYS), those in Base Library Routines are identified by (BA_LlB) and those in Ker­
nel Extension Routines are identified by (KE_SYS).

6 The UNIX System Users Manual

Contents
Chapter 1. - Basic Utilities (BU_CMD) defines basic user-level functions like:

• the sh (shell) command interpreter,

• shell programming aids,

• facilities for basic directory and file manipulation,

• facilities for text file editing and processing.

Basic Utilities require Base System Routines and Base Library Routines.

Chapter 2. - Advanced Utilities (AU_CMD) defines the next logical expansion
step up from Basic Utilities. Advanced Utilities require Base System Routines,
Base Library Routines and Basic Utilities.

Chapter 3. - Administered Systems Utilities (AS_CMD) defines utilities used for
system administration; most of which are restricted to super-users. Administered
Systems Utilities require Base System Routines, Base Library Routines, Kernel
Extension Routines, Basic Utilities and Advanced Utilities.

Chapter 4. - Software Development Utilities (SD_CMD) defines facilities for
compiling and maintaining C language software. Principal components are the C
compiler cc and related utilities, program development aids yacc and lex,
and Source Code Control System (sees) utilities. Software Development Utilities
require Base System Routines, Base Library Routines, Basic Utilities and
Advanced Utilities.

Chapter 5. - Base System Routines (BA_SYS) defines operating system com­
ponents that provide application-programs access to basic system resources (e.g.,
allocating dynamic storage). Base System Routines provide access to and control
over system resources such as memory, files and process execution. The Base Sys­
tem excludes some UNIX System V components that provide operating system ser­
vices. An application-program using any of these requires an extended environ­
ment.

Chapter 6. - Kernel Extension Routines (KE_SYS) defines operating system
components that support process-accounting tools, software-development tools and
application-programs requiring more sophisticated inter-process communication
than provided by Base System Routines.

Chapter 7. - Base Library Routines (BA_LlB) defines general-purpose library
routines that perform a wide range of useful functions including:

• mathematical functions,

• string and character-handling routines,

• sorting and searching routines,

• standard I/O routines.

The UNIX System User's Manual 7

Chapter 8. - Software Development Library (SD_lIB) defines facilities for com­
piling and maintaining C language software. The standard C library is automati­
cally included in the Software Development Library (that is, searched to resolve
undefined external references). This includes all Base System Routines (BA_SYS),

Kernel Extension Routines (KE_SYS) and Base Library Routines (BA_lIB) listed
above. They must be present (that is, compilation of programs that use these rou­
tines must be supported) to satisfy the requirements of the Software Development
Library.

Inclusion of other libraries requires specific loader options on the C compiler c c
command line. For example, the mathematical library ("Mathematical Functions"
in Base Library Routines) is searched by including the option -1m on the com­
mand line:

cc file. c -1m

Notes on other libraries:

• The lex library (cc option -11) is required for the compilation of pro­
grams generated by lex [see LEX(SD_CMD)].

• The object file library (c c option -11 d) contains routines used for the
manipulation of object files. The only such routines required for the
Software Development Library are sput1 and sget1 [see
SPUTL(SD_lIB»).

• The yacc library (cc option -ly) facilitates the use of yacc [see
YACC(SD_CMD»).

Chapter 9. - Base System Environment (BA_ENV) defines error conditions,
environmental variables, directory tree structures, system data files and special dev­
ice files present in the Base System.

Chapter 10. - Kernel ExtenSion Environment (KE_ENV) defines Kernel Exten­
sion error conditions and other exteonsions to the Base System Environment, includ­
ing additional behavior of Base System Routines when Kernel Extension Routines
are present on a system [see EFFECTS(KE_ENV»).

Chapter 11. - Administered Systems Environment (AS_ENV) defines the pro­
cess of initializing UNIX System V on a computer system.

Chapter 12. - Base System Definitions (BA_DEF) defines terms used in the
Base System; these definitions also apply to the Extensions because the Base Sys­
tem is a prerequisite for any Extension.

Chapter 13. - Kernel Extension Definitions (KE_DEF) defines terms relating to
message-queues, semaphores, shared-memory and the inter-process communication
mechanisms introduced by the Kernel Extension.

8 The UNIX System User's Manual

Commands and Utilities
In the following tables, utilities marked with • are Level 2: I January 1985 as
defined in the System V Interface Definition and those marked with .. are Level 2:
1 December 1985. The utilities marked with t ~_re new in UNIX Syst~m V Release
2.0 and those marked with # are optional.

TABLE 1. Basic Utilities

ar AR(BU_CMD) nl NL(BU_CMD)
awk AWK(BU_CMD) nohup NOHUP(BU _ CMD)
banner BANNER(BU_CMD) pack PACK(BU_CMD)
basename BASENAME(BU _ CMD) paste PASTE(BU_CMD)
cal CAL(BU_CMD) peat PACK(BU_CMD)
calendar CALENDAR(BU _ CMD) pgt PG(BU_CMD)
cat CAT(BU_CMD) pr PR(BU_CMD)
cd CD(BU_CMD) ps PS(BU_CMD)
chmod CHMOD(BU _ CMD) pwd PWD(BU _ CMD)
cmp CMP(BU_CMD) red ED(BU_CMD)
col COL(BU_CMD) rm RM(BU_CMD)
comm COMM(BU _ CMD) rmail MAIL(BU _ CMD)
cp CP(BU_CMD) rmdir RM(BU_CMD)
cpio CPIO(BU _ CMD) rsh SH(BU_CMD)
cut CUT(BU_CMD) sed SED(BU_CMD)
date DATE(BU_CMD) sh SH(BU_CMD)
df DF(BU_CMD) sleep SLEEP(BU _ CMD)
diff DIFF(BU_CMD) sort SORT(BU _ CMD)
dirname BASENAME(BU _ CMD) spell SPELL(BU _ CMD)
du DU(BU_CMD) split SPLlT(BU_CMD)
echo ECHO(BU _ CMD) sum SUM(BU_CMD)
ed ED(BU_CMD) tail TAIL(BU _ CMD)
expr EXPR(BU _ CMD) tee TEE(BU_CMD)
false TRUE(BU _ CMD) test TEST(BU _ CMD)
file FILE(BU _ CMD) touch TOUCH(BU _ CMD)
find FIND(BU _ CMD) tr TR(BU_CMD)
grep GREP(BU _ CMD) true TRUE(BU _ CMD)
kill KILL(BU _ CMD) umask UMASK(BU _ CMD)
line LlNE(BU _ CMD) uname UNAME(BU _ CMD)
In CP(BU_CMD) uniq UNIQ(BU _ CMD)
Is LS(BU_CMD) unpack PACK(BU_CMD)
mail MAIL(BU _ CMD) wait WAIT(BU_CMD)
mkdir MKDIR(BU _ CMD) wc WC(BU_CMD)
mv CP(BU_CMD)

The UNIX System User's Manual 9

TABLE 2. Advanced Utilities

at AT(AU_CMD) newgrp NEWGRP(AU _ CMD)
batch AT(AU_CMD) news NEWS(AU _ CMD)

cancel LP(AU_CMD) od OD(AU_CMD)
chgrp CHOWN(AU _ CMD) passwd PASSWD(AU_CMD)

chown CHOWN(AU _ CMD) shIt SHL(AU_CMD)
cron CRON(AU_CMD) stty STTY(AU _ CMD)

crontabt CRONTAB(AU_CMD) su SU(AU_CMD)
csplit CSPLIT(AU _ CMD) tabs TABS(AU_CMD)
cu CU(AU_CMD) tar TAR(AU_CMD)

dd DD(AU_CMD) tty TTY(AU_CMD)
dircmp DIRCMP(AU_CMD) uucp UUCP(AU_CMD)

egrep·· EGREP(AU _ CMD) uulog UUCP(AU _ CMD)

ext EX(AU_CMD) uuname UUCP(AU_CMD)
fgrep" EGREP(AU _ CMD) uupick UUTO(AU _ CMD)

id ID(AU_CMD) uustat UUSTAT(AU_CMD)
join JOIN(AU _ CMD) uuto UUTO(AU_CMD)
logname LOGNAME(AU_CMD) uux UUX(AU_CMD)
lp LP(AU_CMD) vit VI(AU_CMD)
Ips tat LPSTAT(AU_CMD) wall WALL(AU_CMD)

mailxt MAILX(AU _ CMD) who WHO(AU_CMD)
mesg MESG(AU _ CMD) write WRITE(AU_CMD)

TABLE 3. Administered Systems Utilities

acctcms ACCTCMS(AS _ CMD) mkfs MKFS(AS _ CMD)

acctcom ACCTCOM(AS _ CMD) mknod MKNOD(AS _ CMD)

acctcon1 ACCTCON(AS_CMD) monacct ACCT(AS _ CMD)

acctcon2 ACCTCON(AS _ CMD) mount MOUNT(AS _ CMD)

acctdisk DISKUSG(AS_CMD) mvdir MVDIR(AS _ CMD)

acctmerg ACCTMERG(AS _ CMD) ncheck·· NCHECK(AS_CMD)
accton ACCT(AS_CMD) nice NICE(AS _ CMD)

acctprc1 ACCTPRC(AS _ CMD) prctmp ACCTCON(AS _ CMD)
acctprc2 ACCTPRC(AS_CMD) prdaily ACCT(AS _ CMD)

acctwtmp ACCT(AS _ CMD) prtacct ACCT(AS_CMD)

charge fee ACCT(AS_ CMD) pwck PWCK(AS _ CMD)

ckpacct ACCT(AS _ CMD) runacct RUNACCT(AS_CMD)
clri·· CLRI(AS_CMD) sa1 SA 1 (AS _ CMD)

devnm DEVNM(AS _ CMD) sadc SA 1(AS _ CMD)

diskusg DISKUSG(AS_CMD) sadp SADP(AS _ CMD)

dodisk ACCT(AS_CMD) sar SAR(AS_CMD)
fsck FSCK(AS_CMD) setmnt SETMNT(AS _ CMD)

fsdb FSDB(AS _ CMD) shutacct ACCT(AS_CMD)
fuser FUSER(AS _ CMD) startup ACCT(AS _ CMD)

fwtmp FWTMP(AS_CMD) sync SYNC(AS_CMD)
grpck PWCK(AS_CMD) sysdef SYSDEF(AS _ CMD)

init INIT(AS _ CMD) timex TIMEX(AS_CMD)
ipcrm IPCRM(AS_CMD) turnacct ACCT(AS_CMD)
ipcs IPCS(AS_CMD) umount MOUNT(AS _ CMD)

killall KILLALL(AS_CMD) unlink LlNK(AS_CMD)
labelit VOLCOPY(AS _ CMD) vol copy VOLCOPY(AS _ CMD)
lastlogin ACCT(AS _ CMD) whodo WHODO(AS _ CMD)
link LlNK(AS _ CMD) wtmpfix FWTMP(AS _ CMD)

10 The UNIX System Users Manual

TABLE 4. Software Development Utilities

admin AOMIN(SO_CMO) make MAKE(SO _ CMO)
as# AS(SO_CMO) nm NM(SO_CMO)
cc CC(SO_CMO) prof PROF(SO _ CMO)
cflow CFLOW(SO _ CMO) prs PRS(SO_CMO)
chroot CHROOT(SO _CMO) rmdel RMOEL(SO_CMO)
cpp CPP(SO _ CMO) sact SACT(SO _ CMO)
cxref CXREF(SO _ CMO) sdb SOB(SO_CMO)
delta OELTA(SO_CMO) size SIZE(SO _ CMO)
dis# OIS(SO_CMO) strip STRIP(SO _ CMD)
env ENV(SO_CMO) time TIME(SO _ CMO)
get GET(SO_CMO) tsort TSORT(SO _CMO)
ld LO(SO_CMO) unget UNGET(SO_CMO)
lex LEX(SO_CMO) val VAL(SO_CMO)
lint LlNT(SO _CMO) what WHAT(SO_CMD)
lorder LOROER(SO_CMO) xargs XARGS(SO_CMO)
m4 M4(SO_CMO) yacc YACC(SO_CMD)

The UNIX System User's Manual 11

System Routines
All the routines in Table 5, except those marked with t or tt, are common to
UNIX System V Release 1.0 and UNIX System V Release 2.0. Those marked with
t first appeared in UNIX System V Release 2.0. The function lockf, marked
with tt. is a post UNIX System V Release 2.0 component.

TABLE 5. Base System Routines

abort ABORT(BA _ SYS) getuid GETUID(BA_SYS)
access ACCESS(BA _ SYS) ioctl IOCTL(BA_SYS)
alarm ALARM(BA_SYS) kill KILL(BA_SYS)
calloc MALLOC(BA_SYS) link LINK(BA_SYS)
chdir CHDIR(BA_ SYS) lockftt LOCKF(BA _ SYS)
chmod CHMOD(BA_SYS) mallinfot MALLOC(BA_ SYS)
chown CHOWN(BA_SYS) malloc MALLOC(BA_SYS)
clearerr FERROR(BA_SYS) malloptt MALLOC(BA_SYS)
dup DUP(BA_SYS) mknod MKNOD(BA_ SYS)
exit EXIT(BA_SYS) pause PAUSE(BA_SYS)
fclose FCLOSE(BA_SYS) pclose POPEN(BA _ SYS)
fcntl FCNTL(BA_ SYS) pipe PIPE(BA_SYS)
fdopen FOPEN(BA_ SYS) popen POPEN(BA _ SYS)
feof FERROR(BA_SYS) realloc MALLOC(BA _ SYS)
ferror FERROR(BA_SYS) rewind FSEEK(BA_SYS)
fflush FCLOSE(BA_ SYS) setgid SETGID(BA_SYS)
fileno FERROR(BA_SYS) setpgrp SETPGRP(BA_SYS)
fopen FOPEN(BA_SYS) setuid SETUID(BA_SYS)
fread FREAD(BA _ SYS) signal SIGNAL(BA_SYS)
free MALLOC(BA_SYS) sleep SLEEP(BA_SYS)
freopen FOPEN(BA _ SYS) stat STAT(BA_SYS)
fseek FSEEK(BA_SYS) stime STIME(BA_SYS)
fstat STAT(BA_SYS) system SYSTEM(BA_SYS)
ftell FSEEK(BA _ SYS) time TIME(BA_SYS)
fwrite FWRITE(BA_SYS) times TIMES(BA_SYS)
getcwd GETCWD(BA_SYS) ulimit ULlMIT(BA _ SYS)
getegid GETGID(BA_SYS) umask UMASK(BA_ SYS)
geteuid GETUID(BA_SYS) uname UNAME(BA_SYS)
getgid GETGID(BA_ SYS) unlink UNLlNK(BA_SYS)
getpgrp GETPID(BA_SYS) ustat USTAT(BA_ SYS)
getpid GETPID(BA_ SYS) utime UTIME(BA_SYS)
getppid GETPID(BA_ SYS) wait WAIT(BA_SYS)

close CLOSE(BA_SYS) fork FORK(BA_SYS)
creat CREAT(BA _ SYS) lseek LSEEK(BA_SYS)
execl EXEC(BA_SYS) mount MOUNT(BA_SYS)
execle EXEC(BA _ SYS) open OPEN(BA_SYS)
execlp EXEC(BA _ SYS) read READ(BA_SYS)
execv EXEC(BA_SYS) umount UMOUNT(BA_SYS)
execve EXEC(BA_SYS) write WRITE(BA_SYS)
execvp EXEC(BA _ SYS)

exit EXIT(BA_SYS) sync SYNC(BA _ SYS) -

12 The UNIX System User's Manual

Table 5 shows three sets of routines in order to reflect recommended usage by
application-programs.

• The first set of routines (from abort to wa i t) should fulfill the needs of
most appiication-programs.

• The second set of routines (from close to write) should be used by
application-programs only when some special need requires it. For example,
application-programs, when possible, should use the function sys tem rather
than the functions fork and exec because it is easier to use and supplies
more functionality. The corresponding Standard Input/Output, stdio routines
[see stdio-routines in Definitions] should be used instead of the functions
close, creat, lseek, open, read, write (e.g., the stdio routine
fopen should be used rather than the function open).

• The third set of routines (_ exi t and sync), although defined as part of the
basic set of UNIX System V components, are not expected to be used by
application-programs. These routines are used by other Base System Routines.

TABLE 6. Kernel Extension Routines

acct ACCT(KE_SYS) ptrace PTRACE(KE_SYS)
chroot CHROOT(KE _ SYS) semctl SEMCTl(KE _ SYS)
msgctl MSGCTl(KE_SYS) semget SEMGET(KE_SYS)
msgget MSGGET(KE_SYS) semop SEMOP(KE_SYS)
msgrcv MSGOP(KE_SYS) shmctl# SHMCTl(KE _ SYS)
msgsnd MSGOP(KE_SYS) shmget# SHMGET(KE_SYS)
nice NICE(KE_SYS) shmat# SHMOP(KE_SYS)
plock PlOCK(KE_SYS) shmdt# SHMOP(KE_SYS)
profil PROFll(KE_SYS)

Optional. These routines are hardware-dependent and will only appear on machines with the
appropriate hardware.

The UNIX System User's Manual 13

Library Routines
All the routines in Table 7, except those marked with t are in both UNIX System
V Release 1.0 and UNIX System V Release 2.0. Those marked with. are Level-2
in the System V Interface Definition; those marked with # are optional.

TABLE 7. Base Library Routines

Mathematical Functions

abs ABS(BA_LlB) jO BESSEL(BA_LIB)
acos TRIG(BA_LIB) j 1 BESSEL(BA_LlB)
asin TRIG(BA_LlB) jn BESSEL(BA_LIB)

atan2 TRIG(BA_ LIB) ldexp FREXP(BA _LIB)
atan TRIG(BA_LlB) log10 EXP(BA_LlB)

ceil FLOOR(BA_LIB) log EXP(BA _LIB)

cos TRIG(BA_LlB) matherr MATHERR(BA_LlB)

cosh SINH(BA _LIB) modf FREXP(BA_LlB)
erf ERF(BA_LlB) pow EXP(BA_LlB)

erfc ERF(BA_LlB) sin TRIG(BA _LIB)
exp EXP(BA_LlB) sinh SINH(BA _LIB)

fabs FLOOR(BA_LlB) sqrt EXP(BA_LlB)
floor FLOOR(BA_LlB) tan TRIG(BA_LIB)
fmod FLOOR(BA_LIB) tanh SINH(BA _LIB)

frexp FREXP(BA_LIB) yO BESSEL(BA_LlB)

gamma GAMMA(BA _LIB) y1 BESSEL(BA_LlB)
hypot HYPOT(BA_LlB) yn BESSEL(BA_LlB)

String and Character Handling Routines

tolower CONV(BA_LlB) memccpy MEMORY(BA _LIB)
toupper CONV(BA_LlB) memchr MEMORY(BA_LlB)

advance REGEXP(BA_LIB) memcmp MEMORY(BA _LIB)
asctime CTIME(BA_LlB) memcpy MEMORY(BA_LIB)

atof STRTOD(BA_LlB) memset MEMORY(BA _LIB)

atoi STRTOL(BA_LlB) setkey# CRYPT(BA_LlB)
atol STRTOL(BA_LlB) step REGEXP(BA_LIB)

compile REGEXP(BA_LIB) strcat STRING(BA_LlB)
crypt# CRYPT(BA_LlB) strchr STRING(BA_LlB)
ctime CTIME(BA_LlB) strcmp STRING(BA_LIB)
encrypt# CRYPT(BA_LlB) strcpy STRING(BA_LlB)
gmtime CTIME(BA_LlB) strcspn STRING(BA _LIB)

isalnum CTYPE(BA_LIB) strlen STRING(BA_LIB)
isalpha CTYPE(BA_LlB) strncat STRING(BA_LlB)

isascii CTYPE(BA_LIB) strncmp STRING(BA_LlB)

iscntrl CTYPE(BA_LlB) strncpy STRING(BA_LlB)

isdigit CTYPE(BA_LIB) strpbrk STRING(BA_ LIB)

isgraph CTYPE(BA_LlB) strrchr STRING(BA_LlB)
islower CTYPE(BA_LlB) strspn STRING(BA_LlB)
isprint CTYPE(BA_LIB) strtodt STRTOD(BA _LIB)

ispunct CTYPE(BA_LlB) strtok STRING(BA_LIB)
isspace CTYPE(BA_LlB) strtol STRTOL(BA_LlB)
isupper CTYPE(BA_LIB) toascii CONV(BA_LIB)
isxdigit CTYPE(BA_LlB) tolower CONV(BA_LlB)

localtime CTIME(BA_LlB) toupper CONV(BA_LlB)

tzset CTIME(BA_LIB)

14 The UNIX System User's Manual

Sorting and Searching Routines

bsearch BSEARCH(BA_LlB) mktemp MKTEMP(BA_LlB)
clock CLOCK(BA _LIB) mrand48 DRAND48(BA_LIB)

drand48 DRAND48(BA_LIB) nrand48 DRAND48(BA_LIB)

erand48 DRAND48(BA_LIB) perror~ PERROR(BA_LlB)

ftw FTW(BA_LlB) putenvT PUTENV(BA_LIB)

getenv GETENV(BA_LlB) qsort QSORT(BA_LlB)

get opt GETOPT(BA_LlB) rand RAND(BA_LlB)

gsignal* SSIGNAL(BA_LlB) seed48 DRAND48(BA_LlB)

hcreate HSEARCH(BA_LlB) setjmp SET JMP(BA_LlB)

hdestroy HSEARCH(BA_LlB) srand48 DRAND48(BA_LIB)
hsearch HSEARCH(BA_LlB) srand RAND(BA_LIB)

isatty TTYNAME(BA_LlB) ssignal* SSIGNAL(BA_LlB)

jrand48 DRAND48(BA_LlB) swab SWAB(BA_LlB)

lcong48 DRAND48(BA_LlB) tdelete TSEARCH(BA_LIB)

lfindt LSEARCH(BA_LlB) tfindt TSEARCH(BA_LIB)
longjmp SET JMP(BA_LIB) tsearch TSEARCH(BA_LIB)
lrand48 DRAND48(BA_LlB) ttyname TTYNAME(BA_LIB)

lsearch LSEARCH(BA_LlB) twalk TSEARCH(BA_LlB)

Standard I/O Routines

ctermid CTERMID(BA_LlB) puts PUTS(BA_LlB)
fgetc GETC(BA_LlB) putw PUTC(BA_LIB)

fgets GETS(BA_LlB) scanf SCANF(BA_LlB)

fprintf PRINTF(BA_LlB) setbuf SETBUF(BA_LIB)
fputc PUTC(BA_LlB) setvbuft SETVBUF(BA_LIB)
fputs PUTS(BA_LIB) sprintf PRINTF(BA_LIB)

fscanf SCANF(BA_LlB) sscanf SCANF(BA_L.lB)

getc GETC(BA_LlB) tempnam TMPNAM(BA_LlB)

get char GETC(BA_LIB) tmpfile TMPFILE(BA_LlB)
gets GETS(BA_LlB) tmpnam TMPNAM(BA_LlB)

getw GETC(BA_LIB) ungetc UNGETC(BA_LIB)
printf PRINTF(BA_LIB) vfprintft VPRINTF(BA_LlB)

putc PUTC(BA_LlB) vprintft VPRINTF(BA_LlB)

putchar PUTC(BA_LlB) vsprintft VPRINTF(BA_LlB)

TABLE 8. Software Development Library

a641 A84L(SD_LlB) getutent GETUT(SD_LIB)
assert ASSERT(SD _LIB) getutid GETUT(SD _LIB)
endgrent GETGRENT(SD _LIB) getutline GETUT(SD _LIB)
endpwent GETPWENT(SD _LIB) 164a A84L(SD_LIB)
endutent GETUT(SD _LIB) MARK MARK(SD _LIB)
fgetgrent GETGRENT(SD _LIB) monitor MONITOR(SD _LIB)
fgetpwent GETPWENT(SD _LIB) nlist NLlST(SD_LIB)
getgrent GETGRENT(SD _LIB) putpwent PUTPWENT(SD _LIB)
getgrgid GETGRENT(SD _LIB) pututline GETUT(SD _LIB)
getgrnam GETGRENT(SD _LIB) setgrent GETGRENT(SD_LlB)
get login GETLOGIN(SD _LIB) setpwent GETPWENT(SD _LIB)

getpass GETPASS(SD_LIB) setutent GETUT(SD _LIB)
getpwent GETPWENT(SD _LIB) sgetl SPUTL(SD_LlB)
getpwnam GETPWENT(SD _LIB) sputl SPUTL(SD_LlB)
getpwuid GETPWENT(SD _LIB) utmpname GETUT(SD _LIB)

The UNIX System User's Manual 15

Part I

Commands and Utilities

Chapter 1

Basic Utilities

Basic Utilities

NAME

ar - archive and library maintainer for portable archives

SYNOPSIS
a r option [posname) aftle [name) • •.

DESCRIPTION

The ar command maintains groups of files combined into a single archive
file. It is used to create and update library files as used by the link editor [see
LD(SD_CMD»). It can be used, however, for any similar purpose. If an archive
file is created from printable files, the entire archive file is printable.

Archives of text files created by a r are portable between implementations of
UNIX System V.

When ar creates an archive file, it creates administrative information in a
format that is portable across all machines. When there is at least one object
file (that ar recognizes as such) in the archive, an archive symbol table is
created in the archive file and maintained by a r. The archive symbol table
is never mentioned or accessible to the user. (It is used by the link editor to
search the archive file.) Whenever the ar command is used to create or
update the contents of such an archive, the symbol table is rebuilt. The s
modifier character described below forces the symbol table to be rebuilt.

The option is a - followed by one character from the set drqtpmx which
may be optionally concatenated with one or more characters to modify the
action. These modifier characters are taken from the set vuabiels but not
all modifiers make sense with all options. See below for further explanation.
The argument posname is the name of a file in the archive file, used for rela­
tive positioning; see options -r and -m below. The argument aftle is the
archive file. The names are constituent files in the archive file.

The meanings of the option characters are:

-d Delete the named files from the archive file. Valid modifiers are vl.

-r Replace the named files in the archive file. Valid modifiers are vua-
b i e 1. If the modifier u is used, then only those files with dates of
modification later than the archive files are replaced. If an optional posi­
tioning character from the set a b i is used, then the posname argument
must be present, and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

-q Quickly append the named files to the end of the archive file. Valid
modifiers are vel. In this case ar does not check whether the added
members are already in the archive. This is useful to bypass the search­
ing otherwise done, when creating a large archive piece-by-piece.

-t Print a table of contents of the archive file. If no names are given, all
files in the archive are listed. If names are given, only those files are
listed. Valid modifiers are v s. The v modifier gives a long listing of
all information about the files.

The UNIX System User's Manual 21

Basic Utilities

-p Print the named files from the archive. Valid modifiers are vs.

-m Move the named files to the end of the archive. Valid modifiers are
vabi 1. If a positioning modifier from the set abi is present, then the
posname argument must be present, and, as with the option character
r, it specifies where the files are to be moved.

-x Extract the named files. If no names are given, all files in the archive
are extracted. The archive file is not changed. Valid modifiers are vs.

The meanings of the modifier characters are:

v Give verbose output. When used with the option characters d, r, q,
or m, this gives a verbose file-by-file description of the making of a new
archive file from the old archive (if one exists) and the constituent files.
When used with x, this precedes each file with its name.

c Suppress the message that is produced by default when the archive file
afile is created.

1 Place temporary files in the local current working directory, rather than
in the directory specified by the environment variable TMPDIR or in the
default directory.

s Force the regeneration of the archive symbol table even if ar is not
invoked with a command which will modify the archive file contents.
This command is useful to restore the archive symbol table after it has
been stripped [see STRIP(SD_CMD)1.

SEE ALSO
LD(SD_CMD), STRIP(SD_CMD).

USAGE
General.

22 The UNIX System User's Manual

Basic Utilities

NAME

awk - pattern-directed scanning and processing language

SYNOPSIS
a wk [-Fe) [-f progfile) [, program') [parameters) [file •••)

DESCRIPTION

The a wk command executes programs written in the awk programming
language, which is specialized for data manipulation. An a wk program is a
sequence of patterns and corresponding actions. When input is read that
matches a pattern, the action associated with that pattern is carried out.

The file arguments contain the input to be read. If no files are given or the
filename - is given, the standard input is used.

Each line of input is matched in turn against the set of patterns in the pro­
gram. The awk program may either be in a file progfile or may be specified
in the command line as a string enclosed in single quotes.

Each line of input is matched in turn against each pattern in the program.
For each pattern matched, the associated action is executed.

The command a wk interprets each input line as a sequence of fields where,
by default, a field is a string of non-blank. non-tab characters. This default
whitespace field delimiter can be changed by using the - Fc option, or the
variable FS; see below. The command awk denotes the first field in a line
$ 1, the second $ 2, and so forth; $ 0 refers to the entire line. Setting any
other field causes the re-evaluation of $ 0 .

Pattern-action statements in an a wk program have the form:

pattern { action}

In any pattern-action statement, either the pattern or the action may be omit­
ted. A missing action means print the input line to the standard output; a
missing pattern is always matched, and its associated action is executed for
every input line read.

Patterns

Patterns are special patterns or arbitrary Boolean combinations (1, I I, &&
and parentheses) of regular-expressions and relational expressions. The opera­
tor 1 has the highest precedence, then && and then I I. Evaluation is left
to right and stops when truth or falsehood has been determined.

Boolean
Operator Meaning

1 negation
&& and
I I or I I

The UNIX System User's Manual 23

Basic Utilities

Special Patterns
The awk command recognizes two special patterns, BEGIN and END.
BEGIN is matched once and its associated action executed before the first line
of input is read. END is matched once and its associated action executed
after the last line of input has been read. (See examples 4 and 5). These two
patterns must have associated actions.

Relational Expressions
A pattern may be any expression that compares strings of characters or
numbers. A relational expression is either an

expression relational-operator expression

or an

expression matching-operator regular-expression

The six relational operators are listed below; regular-expression matching
operators are described later. If both operands are numeric, a numeric com­
parison is made, otherwise, a string comparison is made.

Relational
Operator

<
<=

>
>=
1=

Meaning
less than
less than or equal to
greater than
greater than or equal to
not equal to
equal to

Regular Expressions
A regular-expression must be surrounded by slashes. If re is a regular­
expression, then the pattern

Irel

matches any line of input that contains a substring specified by the regular­
expression. A regular-expression comparison may be limited to a specific field
by one of the two regular-expression matching operators: - and 1 -.

$4 - Irel

matches any line whose 4th field matches the regular-expression Irel.

$4 1- Irel

matches any line whose 4th field fails to match the regular-expression Irel.

Regular-expressions recognized by awk are those recognized by the ed [see
ED(BU_CMD)] except for \ (and \) and the addition of the special charac­
ters + , ?, :, and (). The meaning of a special character can be turned
off by preceding the character with a \. The special characters *, + and
? have the highest precedence, then concatenation, then alternation; all are
left-associative.

24 The UNIX System User's Manual

Basic Utilities

Regular-expressions recognized by a wk are listed below:

Regular
Expression

c
'\c

$

[s]

[AS]

r*
r+
r?

(r)
rx

Pattern Ranges

Pattern
Matched
the chanwt~r r wh~ .. e r is not a special character.
the character c where c is any character.
the beginning of the string being compared.
the end of the string being compared.
any character in the input but newline.
any character in the set s where s is a sequence of charac­
ters and/or a range of characters, c-c.
any character not in the set s, where s is defined as above.
zero or more successive occurrences of regular-expression r.
one or more successive occurrences of regular-expression r.
zero or one occurrence of regular-expression r.
the regular-expression r. (Grouping)
the occurrence of regular-expression r followed by the
occurrence of regular-expression x. (Concatenation)
the occurrence of regular-expression r or the occurrence of
regular-expression x.

A pattern may consist of two patterns separated by a comma; in this case, the
action is performed for all lines between an occurrence of the first pattern and
the following occurrence of the second pattern.

Variables and Special Variables
Variables may be used in an awk program by assigning to them. They do
not need to be declared. Like field variables, all variables are treated as string
variable unless used in a clearly numeric context (see Relational Expressions).
Field variables are designated by a $ followed by a number or numerical
expression. New field variables may be created by assigning a value to them.
Other special variables set by a wk are listed below:

Special
Variable

$n

FS
FILENAME

NF
NR

OFMT

OFS

ORS

Meaning
The string read as field n.
Input field separator. Set to whitespace by default.
Name of the current input file.
Number of fields in the current record.
Ordinal number of the current record from start of input.
The print statement output format for numbers.
" • 6 g by default.
The pr i n t statement output field separation.
One blank by default.
The print statement output record separator.
Newline by default.

The UNIX System User's Manual 25

Basic Utilities

Actions

An action is a sequence of statements. A statement can be one of the follow­
ing. Square brackets indicate optional elements. Keywords are shown in
constant-width font.

if (expression) statement (e 1 s e statement)
wh i 1 e (expression) statement
for (expression; expression; expression) statement
break
continue
{ (statement) ••• }
variable = expression
pr i n t (expression-list) (>expression)
printf format (,expression-list) (>expression)
next
exi t (expression)

Any single statement may be replaced by a statement list enclosed in curly
braces. The statements in a statement list are separated by newlines or semi­
colons. The character # anywhere in a program line begins a comment, with
is terminate.d by the end of the line.

Statements are terminated by semicolons, newlines, or right braces. A long
statement may be split across several lines by ending each partial line with a
'\. An empty expression-list stands for the whole input line. Expressions take
on string or numeric values as appropriate, and are built using the operators
+ (addition), - (subtraction), * (multiplication), I (division), "(modulus
operator), and concatenation (indicated by a blank between strings in an
expression). The C language operators + +, - -, + =, - =, * =, I = and ,,= are also available in expressions. Variables may be scalars, array elements
(denoted x [i]) or fields. Variables are initialized to the null-string. Array
subscripts may be any string, not necessarily numeric.

String constants are surrounded by double quotes (" ••• "). A string expression
is created by concatenating constants, variables, field names, array elements,
functions and other expressions.

The expression acting as the conditional in an if statement can include the
relational operators, the regular-expression matching operators, logical opera­
tors, juxtaposition for concatenation and parentheses for grouping. The
expression is evaluated and if it is non-zero and non-null, statement is exe­
cuted, otherwise if e 1 s e is present, the statement following the e 1 s e is
executed. The while, for, break and continue statements are as
in the C language.

The print statement prints its arguments on the standard output (or on a
file if >expression is present), separated by the current output field separator
(see variable OFS below), and terminated by the output record separator (see
variable ORS below). The printf statement formats its expression list
according to format [see PRINTF(BA_LlB»).

26 The UNIX System User's Manual

Basic Utilities

The next statement causes the next input line to be scanned, skipping the
remaining characters on the current input line. The exi t statement causes
the termination of the a wk program, skipping the rest of the input.

The b\!ilt-in function 1 ength (s) returns the length of its arguments taken
as a string, or of the whole line, $ 0, if there is no argument. There are also
built-in functions exp (x) (the exponential function of x), log (x)
(natural logarithm of x), sqrt (x) (square root of x), and int (x)
(truncates its argument to an integer). The call substr (s, p, n)
returns the at'most n-character substring of s that begins at position p.

The function sprintf (fmt, expr, expr •••) formats the expres­
sions according to the PRINTF(BA_LlB) format given by fmt and returns the
resulting string.

EXAMPLES

The following are examples of simple a wk programs:

Print on the standard output all input lines for which field 3 is greater than 5.

$3 > 5

Print every 10th line.

(NR " 1 0) = = 0

Print any line with a substring matching the regular-expression.

I(GID)(2[O-9][a-zA-Z]*)1

Print the second to the last and the last field in each line. Separate the fields
by a colon.

{OFS=":";print $(NF-1), $NF}

Print the line number and number of fields in each line. The three strings
representing the line number, the colon and the number of fields are con­
catenated and that string is printed.

BEGIN {line = O}

{line = line + 1
print line ":" NF}

Print lines longer than 72 characters.

length > 72

Print first two fields in opposite order separated by the OFS.

{ print $2, $1 }

Add up first column, print sum and average.

{s += $1 }
END {print "sum is ", s, " average is", s/NR}

The UNIX System User's Manual 27

Basic Utilities

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between occurrences of the strings start and stop:

Istart/, Istopl

Print all lines whose first field is different from the previous one:

$1 1= prev { print; prev = $1 }

Print file, filling in page number starting at 5:

IPagel { $2 = n++; }
{ print

command line:

awk -f program n=5 input

USAGE
General.

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string (" II) to it.

28 The UNIX System User's Manual

Basic Utilities

NAME

banner - make large letters

SYNOPSIS

bann:ar strings

DESCRIPTION
The command banner prints each argument in large letters (across the
page) on the standard output, putting each argument on a separate "line".
Spaces can be included in an argument by surrounding it with quotes. The
maximum number of characters that can be accomodated in a line is imple­
mentation dependent; excess characters are simply ignored.

SEE ALSO
ECHO(BU _ CMD)

USAGE
General.

The UNIX System User's Manual 29

Basic Utilities

NAME

basename. dirname - deliver portions of path names

SYNOPSIS

basename string Isuffixl
dirname string

DESCRIPTION

BASENAME(BU _ CMD)

The command basename deletes any prefix ending in I and the sUffix (if
present in string) from string. and prints the result on the standard output. It
is normally used inside substitution marks (' ') within command procedures.

The command dirname delivers all but the last level of the path name in
string.

EXAMPLES

The following example moves the named file to a file named xy z in the
current directory:

mv abc 'basename /p/q/xyz. c '.c"

The following example will set the variable NAME to /usr/src/cmd:

NAME='dirname /usr/src/cmd/xyz.c'

SEE ALSO
SH(BU_CMD)

USAGE

General.

30 The UNIX System User's Manual

Basic Utilities

NAME

cal - print calendar

SYNOPSIS
cal [[month) yearl

DESCRIPTION

The cal command prints a calendar for the specified year. If a month is
also specified, a calendar just for that month is printed. If neither is specified,
a calendar for the present month is printed. The argument year can be
between 1 and 9999. (Note that "cal 83" refers to 83 A.D., not 1983.) The
month is a number between 1 and 12.

USAGE
End-user.

The UNIX System User's Manual 31

Basic Utilities

NAME

calendar - reminder service

SYNOPSIS

calendar

DESCRIPTION

CALENDAR(BU_CMD)

The command calendar consults the file calendar in the current
directory and prints out lines that contain today's or tomorrow's date anywhere
in the line. Month-day date formats such as "Aug. 24," "august 24," "8/24,"
are recognized. On weekends, "tomorrow" extends through Monday.

USAGE

End-user.

32 The UNIX System User's Manual

Basic Utilities

NAME

cat - concatenate and print files

SYNOPSIS
cat. [-8 !file ...

DESCRIPTION

The command cat reads each file in sequence and writes it on the standard
output. Thus:

ca t file

prints the file, and:

ca t filel file2 > file3

concatenates the first two files and places the result in the third.

If no input file is given, or if the argument - is encountered, cat reads from
the standard input file. The - s option makes cat silent about non-existent
files.

USAGE
General.

Command formats such as
catfilel file2 >filel

will cause the original data in filel to be lost.

The UNIX System User's Manual 33

Basic Utilities

NAME

cd - change working directory

SYNOPSIS
cd [directory)

DESCRIPTION
If directory is not specified, the value of the environmental variable HOME is
used as the new working directory. If directory specifies a complete path
starting with I, " or .. , directory becomes the new working directory. If nei­
ther case applies, cd tries to find the designated directory relative to one of
the paths specified by the CDPATH environmental variable. CDPATH has
the same syntax as, and similar semantics to, the PATH variable [see
SH(BU_CMD)]. The command cd must have execute (search) permission in
directory.

SEE ALSO
PWD(BU_CMD), SH(BU_CMD), CHDIR(BA_SYS)

USAGE

General.

34 The UNIX System Users Manual

Basic Utilities

NAME

chmod - change mode

SYNOPSIS

chmod mode files

DESCRIPTION

The permissions of the named files are changed according to mode, which
may be absolute or symbolic.

An absolute-mode is a four octal-digit number constructed from the logical
OR (sum) of the following modes:

4000 set user-ID on execution
2000 set group-ID on execution
1000 Reserved
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0040 read by group
0020 write by group
0010 execute (search) by group
0004 read by others
0002 write by others
0001 execute (search) by others

A symbolic-mode has the form:

[who I op permission [op permission I

The who part is a combination of the letters u (user), g (group) and °
(other). The letter a stands for ugo, the default if who is omitted.

The argument op can be + to add permission to the file-mode, - to take
away permission, or = to assign permission absolutely (all other bits will be
reset).

The argument permission is any combination of the letters r (read), w
(write), x (execute), and s (set owner or group-ID); u, g, or ° indicate
that permission is to be taken from the current mode. Omitting permission is
only useful with = to take away all permissions.

Multiple symbolic-modes separated by commas may be given. Operations are
performed in the order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode. In order to
set set-group-ID, the group of the file must correspond to the user's current
group-ID.

The UNIX System User's Manual 35

Basic Utilities

EXAMPLES

The first example denies write permission to others, the second makes a file
executable:

chmod o-w file

chmod +x file

SEE ALSO
LS(BU_CMD), CHMOD(BA_SYS).

USAGE

General.

CAVEATS

The command chmod will be used to specify mandatory locking
{enable/disable} on a file. This will be done as follows:

An absolute mode of 20#0 specifies set-groupoID if # is 1, 3, 5, or
7; specifies enable mandatory locking if # is 0, 2 , 4, or 6 .

A symbolic-mode of 1 specifies mandatory locking, + to enable, - to dis­
able.

It will not be possible to have set-groupoID set and mandatory locking enabled
on a file simultaneously.

36 The UNIX System User's Manual

Basic Utilities

NAME

cmp - compare two files

SYNOPSIS
crop! -11! -s !file! fill!2

DESCRIPTION
The command cmp compares two files. (If filel is -, the standard input is
used,) Under default options, cmp makes no comment if the files are the
same; if they differ, it announces the byte and line number at which the
difference occurred. If one file is identical to the first part of the other, then it
is reported that end-of-file was reached in the shorter file (before any
differences were found).

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for
each difference.

-8 Print nothing for differing files; return codes only.

ERRORS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

SEE ALSO
COMM(BU _ CMD), DIFF(BU _ CMD)

USAGE

General.

The UNIX System User's Manual 37

Basic Utilities

NAME

col - filter reverse line-feeds

SYNOPSIS

col [-bfpxJ

DESCRIPTION

The command col reads from the standard input and writes onto the stan­
dard output. It performs the line overlays implied by reverse line feeds, and
by forward and reverse half-line feeds.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to appear
in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is moved
to the next lower full-line boundary. This treatment can be suppressed by the
-f (fine) option; in this case, the output from col may contain forward
half-line feeds, but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on out­
put wherever possible to shorten printing time.

The ASCII control characters SO and SI are assumed by col to start and end
text in an alternate character set. The character set to which each input char­
acter belongs is remembered, and on output SI and so characters are gen­
erated as appropriate to ensure that each character is printed in the correct
character set.

On input, the only control characters accepted are space, backspace, tab,
return, newline, SI, SO, VT, reverse line feed, forward half-line feed, and
reverse half-line feed. The VT character is an alternate form of full reverse
line-feed, included for compatibility with some earlier programs of this type.
All other non-printing characters are ignored.

The ASCII codes for the control functions and line-motion sequences mentioned
above are as given in the table below. ESC stands for the ASCII "escape" char­
acter, with the octal code 033; ESC-x means a sequence of two characters, ESC
followed by the character x.

reverse line feed
reverse half-line feed
forward half-line feed
vertical tab (VT)
start-of-text (SO)
end-of-text (sl)

ESC-7
ESC-8
ESC-9
013
016
017

Normally, col will remove any escape sequences found in its input that are
unknown to it; the -p option may be used to force these to be passed through
unchanged. The use of this option is discouraged unless the user is aware of
the consequences.

38 The UNIX System Users Manual

USAGE

General.

B.slc Utilities

Local vertical motions that would result in backing up over the first line of the
document are ignored, As a result, the first line must not have any super­
scripts.

The UNIX System User's Manual 39

Basic Utilities

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS

comm[-[123] Ifilelfile2

DESCRIPTION

The command comm reads filel and file2, which should be ordered in ASCII
collating sequence [see SORT(BU_CMD)]. and produces a three-column output:
lines only in filel; lines only in file2; and lines in both files. The file name -
means the standard input.

Flags 1. 2. or 3 suppress printing of the corresponding column. Thus comm
-12 prints only the lines common to the two files; comm -23 prints only
lines in the first file but not in the second; comm -123 is a no-op.

SEE ALSO
CMP(BU_CMD). DIFF(BU_CMD). SORT(BU_CMD). UNIQ(BU_CMD).

USAGE
General.

40 The UNIX System Users Manual

Basic Utilities

NAME

cp, In, mv - copy, link or move files

SYNOPSIS
c p file] Ifile2 ••. 1 target
1 n I -f 1 file] I file2 ••• 1 target
mv I -f 1 file] I file2 ••• 1 target

DESCRIPTION

These commands respectively copy, link, or move files; file] and target may
not be the same. If target is not a directory, then only one file may be
specified before it; if target is an existing file, its contents are destroyed, other­
wise (target is neither an existing file nor a directory) the file target is created.
If target is a directory, then more than one file may be specified before it; the
specified files are respectively copied, linked, or moved to that directory.

cp

In

mv

If target is not a directory, cp copies file] to target. If target exists, its
contents are overwritten, but the mode, owner, and group are not
changed. If target is a link to a file, all links remain (the file is
changed).

If target is a directory, then the specified files are copied to that direc­
tory. For each file named, a new file, with the same mode, is created in
the target directory; the owner and the group are those of the user mak­
ing the copy.

If target is not a directory, In links file] to target, that is, the name
target is linked to the file file]. If target exists, and its mode forbids
writing, the mode is printed, and the user asked for a response; if the
response begins with a y, (and the user is permitted) then the In
occurs. No questions are asked and the In is done where permitted
when the -f option is used or if the standard input is not a terminal.

If target is a directory, then the specified files are linked to that direc­
tory. That is, files with the same names are created in the directory,
linked to the specified files.

If target is not a directory, mv moves (renames) file] as directed. If
target does not exist, and has the same parent as file], file] may be a
directory: this allows a directory rename.

If target is a directory, then the specified files are moved to that direc­
tory.

If file] is a file and target is a link to another file with links, the other
links remain and target becomes a new file.

The UNIX System Users Manual 41

Basic Utilities

SEE ALSO

If target is a file, and its mode forbids writing, the mode is printed, and
the user asked for a response; if the response begins with a y, (and the
user is permitted) then the mv occurs. No questions are asked and the
mv is done where permitted when the -f option is used or if the stan­
dard input is not a terminal.

CPIO(BU_CMD), RM(BU_CMD), CHMOD(BU_CMD).

USAGE

General.

If filel and target lie on different file systems, mv may achieve the move by
copying the file and deleting the original. In this case any linking relationship
with other files is lost.

In will not link across file systems.

42 The UNIX System User's Manual

NAME

cpio - copy file archives in and out

SYNOPSIS

CP:lC -clacBv!

cpio -i(Bcdmrtuvf) (patterns)

cpio -p(ad1mruv) directory

DESCRIPTION

Basic Utilities

The command cpio -0 (copy out) reads the standard input to obtain a list
of path names and copies those files onto the standard output together with
path name and status information. Output is padded to a 512-byte boundary.

The command cpio -i (copy in) extracts files from the standard input,
which is assumed to be the product of a previous cpio -0. Only files with
names that match patterns are selected. The arguments patterns are simple
regular expressions given in the name-generating notation of the shell (see
SH(BU_CMD»). In patterns, meta-characters ?, ., and l...1 match the / char­
acter. Multiple patterns may be specified and if no patterns are specified, the
default for patterns is • (i.e., select all files). The extracted files are condition­
ally created and copied into the current directory tree based upon the options
described below. The permissions of the files will be those of the previous
cpio -0. The owner and group of the files will be that of the current user
unless the user is super-user, which causes cpio to retain the owner and
group of the files of the previous cpio -0.

The command cpio -p (pass) reads the standard input to obtain a list of
path names of files that are conditionally created and copied into the destina­
tion directory tree based upon the options described below.

Archives of text files created by c p i 0 are portable between implementations
of UNIX System V.

The meanings of the available options are:

a Reset access times of input files after they have been copied. [When
option -1 (see below) is also specified, the linked files do not have their
access times reset.)

B Input/output is to be blocked 5120 bytes to the record (does not apply to
the pass option; meaningful only with data directed to or from char­
acter special files).

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally, an older file will not replace a newer file

with the same name).
v Verbose: causes the names of the affected files to be printed. With the

t option, provides a detailed listing.

The UNIX System User's Manual 43

Basic Utilities

1 Whenever possible, link files rather than copying them. Usable only
with the -p option.

m Retain previous file modification ~ime. This option is ineffective on
directories that are being copied.

f Copy in all files except those in patterns.

EXAMPLES

The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

SEE ALSO

ls I cpio -oc >/dev/mt/Om

cd olddir
find. -depth -print I cpio -pd1 newdir

AR(BU_CMD), FIND(BU_CMD), LS(BU_CMD), TAR(AU_CMD).

USAGE

General.

Only the super-user can copy special files.

44 The UNIX System User's Manual

Basic Utilities

NAME

cut - cut out selected fields of each line of a file

SYNOPSIS

ell t -clistt!/i!el/i!e2 ... !
cut -flist (-dchad (-sl (file1 file2 .•. 1

DESCRIPTION

The command cut cuts out columns from a table or fields from each line of
a file. The fields specified by list can be of fixed length, specified by character
position (-c option), or the length can vary and be marked with a field delim­
iter character like tab (-f option). The command cut can be used as a
filter; if no files are given, the standard input is used. The option qualifier list
(see options -c and -f below) is a comma-separated list of integers (in
increasing order), with optional - to indicate ranges; e.g., 1,4,7 ;
1-3,8; -5,10 (short for 1-5,10); or 3- (short for third through
last) .

The meanings of the options are:

-clist The list following -c (no space) specifies character positions
(e.g., -c 1-72 would pass the first 72 characters of each line).

-f list The list following -f lists fields assumed to be separated in the
file by a delimiter character (-d); e.g., -f 1,7 copies the first
and seventh field only. Lines with no field delimiters remain intact
(useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (used with the
-f option only). Default is the tab character. Space or other
characters with special meaning to the command interpreter must
be quoted.

-s Suppresses lines with no delimiter characters when used with the
-f option. Unless specified, lines with no delimiters will be passed
through untouched.

Either the -c or the -f option must be specified.

EXAMPLES

The following maps user IDs to names:
cut -d: -f1,5 /etc/passwd

SEE ALSO

GREP(BU_CMD), PASTE(BU_CMD), SH(BU_CMD).

USAGE

General.

Use grep to make horizontal "cuts" (by context) through a file, or paste
to put files together column-wise (i.e., horizontally). To reorder columns in a
table, use cut and paste.

The UNIX System User's Manual 45

Basic Utilities

NAME

date - print or set the date

SYNOPSIS

da te mmddhhmm Iyy)

date I+JormatJ

DESCRIPTION

46

The first form of date sets the current date and time; it is usable only by
the super-user. The first mm is the month (number); dd is the day (number)
of the month; hh is the hour (number, 24-hour system); the second mm is the
minute (number); yy is the last 2 digits of the year and is optional. For exam­
ple:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
given. The system operates in GMT; date takes care of the conversion to
and from local standard and daylight time. (The environment variable TZ
specifies the local time-zone; therefore its value affects the conversion between
the internal GMT clock and the local time.)

In the second form, if no argument is given, the current date and time are
printed. (As above, the environment variable TZ specifies the local time­
zone, and therefore its value affects the output.) If an argument beginning
with + is given, the output of date is under the control of the user. The
format for the output is similar to that .of the first argument to the printf
routine [see PRINTF(BA_LIB»). All output fields are of fixed size (zero padded if
necessary). Each field descriptor is preceded by "and will be replaced in the
output by its corresponding value. A single "is encoded by"". All other
characters are copied to the output without change. The string is always ter­
minated with a newline character.

Field Descriptors:

n insert a newline character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday - 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

The UNIX System User's Manual

EXAMPLE

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates the output:

DATE: 08/01/76
TIME: 14:45:05

SEE ALSO

PRINTF(BA_LlB).

USAGE

General.

Basic Utilities

It is a bad practice to change the date while the system is running multi-user.

The UNIX System User's Manual 47

Basic Utilities

NAME

df - report free disk space

SYNOPSIS

df I -t) I file-system •••)

DESCRIPTION
The command df prints out the free space (in 512-byte units) and the
number of free file slots ("inodes") available for on-line file systems. The
argument file-system may be specified either by device name (e.g.,
/dev/dsk/Os1) or by mounted directory name (e.g., /usr). If no file­
system is specified, the free space on all of the mounted file systems is printed.

The -t option causes the total allocated space figures to be reported as well.

USAGE
General.

48 The UNIX System User's Manual

Basic Utilities

NAME

diff - differential file comparator

SYNOPSIS
diff! -efbh !filel file2

DESCRIPTION
The command d iff tells what lines must be changed in two files to bring
them into agreement. If file! (file2) is -, the standard input is used. If
file! (file2) is a directory, then a file in that directory with the name file2
(file]) is used. The normal output contains lines of these forms:

n 1 a n3, n4

n 1, n2 d n3

n1,n2c n3,n4

These lines resemble ed commands to convert file! into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into file!. As in
ed, identical pairs, where n 1 - n2 or n3 - n4, are abbreviated as a
single number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file ftagged
by>.

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed,
which will recreate file2 from file!.

The -f option produces a similar script, not useful with ed, in the opposite
order.

Option -h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length.

Options -e and -f are unavailable with the -h option.

SEE ALSO
CMP(BU _ CMD), COMM(BU _ CMD), ED(BU _ CMD).

ERRORS
Exit status is:

o no differences

some differences

2 errors

The UNIX System User's Manual 49

Basic Utilities

USAGE

General.

DIFF(BU _ CMD)

Editing scripts produced under the -e or -f option may be incorrect when
dealing with lines consisting of a single period.

50 The UNIX System User's Manual

Basic Utilities

NAME

du - estimate file space usage

SYNOPSIS
du [-ars I [file ••• I

DESCRIPTION

The command du gives an estimate, in 512-byte units, of the file space con­
tained in all the specified files. Whenever a directory is named, all files within
it are reported; sub-directories are traversed recursively. If no file is specified,
the current directory is used.

The option -s causes only the grand total (for each of the specified files) to
be given. The option -a causes a report to be generated for each file. With
no options, a report is given for each directory only.

du is normally silent about directories that cannot be read, files that cannot
be opened, etc. The -r option will cause d u to generate messages in such
instances.

A file with two or more links is only counted once.

USAGE

General.

If the -a option is not used, non-directories given as arguments are not listed.

Files with holes in them may get an incorrect (high) estimate.

The UNIX System Users Manual 51

Basic Utllltle'

NAME

echo - echo arguments

SYNOPSIS

echo (arg I

DESCRIPTION

The command echo writes its arguments separated by blanks and ter­
minated by a newline on the standard output. It also understands the follow­
ing escape conventions.

'\b backspace
'\ c print arguments up to this point, without newline; ignore remainder

of command line
,\f form-feed
'\n newline
'\ r carriage return
'\ t tab
'\ v vertical tab
'\ '\ backslash
'\On n must be a 1-, 2- or 3-digit octal number; specifies the

corresponding ASCII character

SEE ALSO
SH(BU_CMD).

USAGE

General.

The command echo is useful for producing diagnostics in command scripts
and for sending known data into a pipe.

Arguments containing blanks and escape sequences must be enclosed in double
quotes.

52 The UNIX System Users Manual

Basic Utilities

NAME

ed, red - text editor

SYNOPSIS

e d l - I l - p string I l file I

red l - I l - p string I l file I

DESCRIPTION

The command ed is a text editor. If the file argument is given, ed simu­
lates an e command (see below) on the named file; that is to say, the file is
read into the ed buffer so that it can be edited.

The option - suppresses the printing of character counts bye, r, and w
commands, of diagnostics from e and q commands, and of the I prompt
after a I command.

The - p option allows the user to specify a prompt string. (This option is new
in UNIX System V Release 2.0.)

ed operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is only one
buffer.

The command red is a restricted version of ed. It will only allow editing
of files in the current directory, and prohibits executing commands via I com­
mand. Attempts to bypass these restrictions result in an error message.

Commands to e d have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by
typing a period (•) alone at the beginning of a line.

e d supports a limited form of regular-expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., s) to
specify portions of a line that are to be substituted. A regular-expression (RE)
specifies a set of character strings. A member of this set of strings is said to
be matched by the RE. The REs allowed by ed are constructed as follows:

The following one-character-REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character-RE that matches itself.

1.2 A backslash (,\) followed by any special character is a one-character­
RE that matches the special character itself. The special characters are:

The UNIX System User's Manual 53

Basic Utilities

a.

b.

c.

d.

" *, [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except
within square brackets ([]; see 1.4 below).

A (caret or circumflex), which is special at the beginning of
an entire-RE (see 3.1 and 3.2 below) or immediately after
the open square bracket of a pair ([]; see 1.4 below).

$ (currency symbol), which is special at the end of an
entire-RE (see 3.2 below).

The character used to bound (i.e., delimit) an entire-RE,
which is special. for that RE (for example, see how slash (/)
is used in the 9 command, below).

1.3 A period (•) is a one-character-RE that matches any character except
newline.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character-RE that matches anyone character in that string. If,
however, the first character of the string is a caret (A), the one­
character-RE matches any character except newline and the remaining
characters in the string. The A has this special meaning only if it
occurs first in the string. The minus (-) may be used to indicate a
range of consecutive ASCII characters; for example, [0 - 9] is
equivalent to [0 1 23456789]. The - loses this special meaning if it
occurs first (after an initial A, if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first
character within it (after an initial A, if any); e.g., [] a - f] matches
either a right square bracket (]) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules may be used to construct REs from one-character-REs:

2.1 A one-character-RE is a RE that matches whatever the one-character­
RE matches.

2.2 A one-character-RE followed by an asterisk (*) is a RE that matches
zero or more occurrences of the one-character-RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character-RE followed by \ {m\}, \ {m, \}, or \ {m ,n\}
is a RE that matches a range of occurrences of the one-character-RE.
The values of m and n must be non-negative integers less than 256;
\ {m\} matches exactly m occurrences; \ {m, \} matches at least m
occurrences; \ {m, n\} matches any number of occurrences between
m and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

54 The UNIX System User's Manual

Basic Utilities

2.5 A RE enclosed between the character sequences \. (and \.) is a RE
that matches whatever the unadorned RE matches.

2.6 The expression \.n matches the same string of characters as was
matched by an expression enclosed between \. (and \.) earlier in the
same RE. Here n is a digit; the sub-expression specified is that begin­
ning with the n-th occurrence of \. (counting from the left. For exam­
ple, the expression A\.(. * \.) \. 1 $ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire-RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex (A) at the beginning of an entire-RE constrains that RE to
match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire-RE constrains that RE to
match a final segment of a line.

The form Aentire-RE$ constrains the entire-RE to match the entire line.

The null RE (e.g., / /) is equivalent to the last RE encountered.

To understand addressing in ed it is necessary to know that at any time there
is a current line. Generally speaking, the current line is the last line affected
by a command; the exact effect on the current line is discussed under the
description of each command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which
must be a lower-case letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching
forward to the end of the buffer from the line after the current line and
stopping at the first line with a string matching the RE. If necessary,
the search wraps around to the beginning of the buffer and continues up
to and including the current line, so that the entire buffer is searched.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward to the beginning of the buffer from the line before
the current line and stopping at the first line with a string matching the
RE. If necessary, the search wraps around to the end of the buffer and
continues up to and including the current line.

7. An address followed by a plus sign (+) or a minus sign (-) followed by
a decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

The UNIX System User's Manual 55

Basic Utilities

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e.g, - 5 is understood to mean • - 5 .

9. If an address ends with + or -, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address - refers to the line preceding the
current line. Moreover, trailing + and - characters have a cumulative
effect, so - - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1, $, while
a semicolon (;) stands for the pair ., $.

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an error. Commands that
accept one or two addresses assume default addresses when an insufficient
number of addresses is given; if more addresses are given than such a com­
mand requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They
may also be separated by a semicolon (;). In the latter case, the current line
(.) is set to the first address, and only then is the second address calculated.
This feature can be used to determine the starting line for forward and back­
ward searches (see rules 5. and 6. above). The second address of any two­
address sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. How­
ever, any command (except e, f, r, or w) may be suffixed by I, n, or p
in which case the current line is either listed, numbered or printed, respec­
tively, as discussed below under the I, n, and p commands.

I.la
<text>

The append command reads the given text and appends it after the
addressed line; the current line becomes the last inserted line, or, if there
were none, the addressed line. Address 0 is legal for this command: it
causes the "appended" text to be placed at the beginning of the buffer.
The maximum number of characters that may be entered from a termi­
nal is 256 per line (including the newline character).

I.]e
<text>

The change command deletes the addressed lines, then accepts input text
that replaces these lines; • is left at the last line input, or, if there were
none, at the first line that was not deleted.

56 The UNIX System User's Manual

Basic Utilities

I. , .Id

e file

Efile

f file

The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

The edit command causes the entire contents of the buffer to be deleted,
and then the named file to be read in; . is set to the last line of the
buffer. If no file-name is given, the currently-remembered file-name, if
any, is used (see the f command). The number of characters read is
typed; the name file is remembered for possible use as a default file­
name in subsequent e, r, and w commands. If file is replaced by I,
the rest of the line is taken to be a command whose output is to be read.
Such a command is not remembered as the current file-name.

The E (edit) command is like e, except that the editor does not check to
see if any changes have been made to the buffer since the last w com­
mand.

If file is given, the file-name command changes the currently­
remembered file-name to file; otherwise, it prints the currently­
remembered file-name.

I 1 , Slg / REI command-list
In the global command, the first step is to mark every line that matches
the given RE. Then, for every such line, the given command-list is exe­
cuted with . initially set to that line. A single command or the first of
a list of commands appears on the same line as the global command. All
lines of a multi-line list except the last line must be ended with a '\; a,
i, and c commands and associated input are permitted. The . ter­
minating input mode may be omitted if it would be the last line of the
command-list. An empty command-list is equivalent to the p com­
mand. The g, G, v, and V commands are forbidden in the
command-list.

[1, SIGIREI
In the interactive global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed, . is changed to that line, and anyone command (other than
one of the a, c, i, g, G, v, and V commands) may be input and
is executed. After the execution of that command, the next marked line
is printed, and so on; a newline acts as a null command; an &. causes the
re-execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the execution
of the G command may address and affect any lines in the buffer. The
G command can be terminated by an interrupt signal (ASCII DEL or
BREAK).

The UNIX System User's Manual 57

Basic Utilities

h

H

The help command gives a short error message that explains the reason
for the most recent ? diagnostic.

The help command causes ed to enter a mode in which error messages
are printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

I. Ii
<text>

The insert command inserts the given text before the addressed line;
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the placement
of the input text. Address 0 is not legal for this command. The max­
imum number of characters that may be entered from a terminal is 256
per line (including the newline character).

1.,.+1Ij
The join command joins contiguous lines by removing the appropriate
newline characters. If exactly one address is given, this command does
nothing.

[.Ikx
The mark command marks the addressed line with name x, which must
be a lower-case letter. The address ' x then addresses this line; • is
unchanged.

[. , .11
The list command prints the addressed lines in an unambiguous way: a
few non-printing characters (e.g., tab, backspace) are represented by
(hopefully) mnemonic overstrikes. All other non-printing characters are
printed in octal, and long lines are folded. An 1 command may be
appended to any other command other than e, f, r, or w.

[. , .Ima
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed line(s)
to be moved to the beginning of the file. It is an error if address a falls
within the range of moved lines; • is left at the last line moved.

[. ,.In
The number command prints the addressed lines, preceding each line by
its line number and a tab character; • is left at the last line printed.
The n command may be appended to any other command other than
e, f, r,or w.

58 The UNIX System User's Manual

Basic Utilities

1 . , .Ip

p

q

Q

The print command prints the addressed lines; • is left at the last line
printed. The p command may be appended to any other command
other than e, f, r, or w. For example, dp deletes the current line
and prints the new curreni iine.

The editor will prompt with a * for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit.

The editor exits without checking if changes have been made in the
buffer since the last w command.

1 Sir file
The read command reads in the given file after the addressed line. If no
file-name is given, the currently-remembered file-name, if any, is used
(see e and f commands). The currently-remembered file-name is not
changed unless file is the very first file-name mentioned since ed was
invoked. Address 0 is legal for r and causes the file to be read at the
beginning of the buffer. If the read is successful, the number of charac­
ters read is typed; • is set to the last line read in. If file is replaced by
1, the rest of the line is taken to be a command whose output is to be
read. Such a command is not remembered as the current file-name.

I. , .lslRElreplacementl or
I. ,.lsIRElreplacementlg or
I. ,.lsIRElreplacementln n - 1-512

The substitute command searches each addressed line for an occurrence
of the specified RE. In each line in which a match is found, all (non­
overlapped) matched strings are replaced by the replacement if the glo­
bal replacement indicator 9 appears after the command. If the global
indicator does not appear, only the first occurrence of the matched string
is replaced. If a number n follows the command, only the n-th
occurrence of the matched string on each addressed line is replaced. It
is an error when the substitution fails on all addressed lines. Any char­
acter other than space or newline may be used instead of I to delimit
RE and replacement; • is the last line on which a substitution occurred.

An ampersand (&.) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &.
in this context may be suppressed by preceding it by \. As a more gen­
eral feature, the characters \n, where n is a digit, are replaced by the
text matched by the n-th regular subexpression of the specified RE
enclosed between \ (and \). When nested parenthesized subexpres­
sions are present, n is determined by counting occurrences of \ (start­
ing from the left. When the character "is the only character in the

The UNIX System Users Manual 59

Basic Utilities

replacement, the replacement used in the most recent substitute com­
mand is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of
more than one character or is preceded by a \ .

A line may be split by substituting a newline character into it. The new­
line in the replacement must be escaped by preceding it by \. Such
substitution cannot be done as part of a 9 or v command-list.

[. , . Ita

u

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at
the last line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, 9,
i, j, m, r, S, t, v, G, or V command.

[1 , Slv/RE/command-list
This command is the same as the global command 9 except that the
command-list is executed with • initially set to every line that does not
match the RE.

[1 , SIV/RE/
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do not
match the RE.

I 1 , slw file

[sl=

The write command writes the addressed lines into the named file. The
currently-remembered file-name is not changed unless file is the very
first file-name mentioned since ed was invoked. If no file-name is
given, the currently-remembered file-name, if any, is used (see e and f
commands); • is unchanged. If the command is successful, the number
of characters written is typed. If file is replaced by I, the rest of the
line is taken to be a command whose standard input is the addressed
lines. Such a command is not remembered as the current file-name.

The line number of the addressed line is typed; . is unchanged by this
command.

I command
The remainder of the line after the I is sent to the command inter­
preter to be interpreted as a command. Within the text of that com­
mand, the unescaped character % is replaced with the remembered file­
name; if a I appears as the first character of the command, it is
replaced with the text of the previous command. Thus, I I will repeat
the last command. If any expansion is performed, the expanded line is
echoed; • is unchanged.

60 The UNIX System User's Manual

Basic Utilities

I. + 11
An address alone on a line causes the addressed line to be printed. A
newline alone is equivalent to . + 1 p; it is useful for stepping forward
through the buffer.

If an interrupt signal (BREAK) is sent, e d prints a ? and returns to its com­
mand level.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be
the last character before a newline, that delimiter may be omitted, in which
case the addressed line is printed. The following pairs of commands are
equivalent:

6/61/62 s/s1/s2/p
g/s1 g/s1/p
?s1 ?61?

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroy the edi­
tor buffer via the e or q commands. It prints ? and allows the user to con­
tinue editing. A second e or q command at this point will take effect. The
- command-line option inhibits this feature.

ERRORS

? for command errors.

? file for an inaccessible file.

[see the hand H (help) commands for detailed explanations).

FILES

ed. hup work is saved here if the terminal is hung up.

SEE ALSO

GREP(BU _ CMD), SED(BU _ CMD), SH(BU _ CMD).

USAGE

General.

A I command cannot be subject to a g or a v command.

The sequence 'n in a RE does not match a newline character.

If the editor input comes from a command file, for example:

ed file < ed-cmd-file

the editor exits at the first failure of a command in the command file.

The UNIX System User's Manual 61

Basic Utilities

CAVEATS

The option - will be replaced by - s, in order to conform to the syntax stan­
dard. The old form of the option will continue to be accepted for some time.

62 The UNIX System User's Manual

Basic Utilities

NAME

expr - evaluate expression

SYNOPSIS
expr expression

DESCRIPTION

The command expr evaluates an expression and writes the result on the
standard output. Terms of the expression must be separated by blanks. Char­
acters special to the command interpreter must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings contain­
ing blanks or other special characters should be quoted. Integer-valued argu­
ments may be preceded by a unary minus sign.

The operators are listed below. Characters that need to be escaped are pre­
ceded by \. The list is in order of increasing precedence, with equal pre­
cedence operators grouped within {} symbols. The symbol arg represents an
argument.

arg \\ arg
returns the first arg if it is neither null nor 0, otherwise returns the
second argo

arg \& arg
returns the first arg if neither arg is null or 0, otherwise returns O.

arg { -, \>, \> -, \<, \< -, !- } arg
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

arg { +, - } arg
addition or subtraction of integer-valued arguments.

arg { *, I, % } arg
multiplication, division, or remainder of the integer-valued arguments.

arg: arg
The matching operator: compares the first argument with the second
argument which must be a regular expression. Regular expression syn­
tax is the same as that of ed, except that all patterns are "anchored"
(i.e., begin with ") and, therefore, " is not a special character, in that
context. Normally, the matching operator returns the number of charac­
ters matched (0 on failure). Alternatively, the \ (. •• \) pattern symbols
can be used to return a portion of the first argument.

EXAMPLES

1. a='expr Sa + l'

adds 1 to the variable a.

2. For $a equal to either lusrlabc/file or just file

The UNIX System User's Manual 63

Basic Utilities

expr Sa: ',*/\(,*\)' \1 Sa

returns the last segment of a path name (i.e., file). Watch out for /
alone as an argument: expr will take it as the division operator.

3. A better representation of example 2.

expr liSa : ',*1\(,*\)'

4.

SEE ALSO

The addition of the / / characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

expr SVAR
, ,
,*

returns the number of characters in $V AR.

ED(BU_CMD), SH(BU_CMD).

ERRORS
As a side effect of expression evaluation, expr returns the following exit
values:

o if the expression is neither null nor 0

1 if the expression is null or 0

2 for invalid expressions.

USAGE
General.

After argument processing [see SH(BU_CMD)], expr cannot tell the difference
between an operator and an operand except by the value. If Sa is -, the com­
mand:

expr Sa

looks like:

expr = = =

, ,
=

as the arguments are passed to expr (and they will all be taken as the
operator). The following works:

expr XSa X=

64 The UNIX System User's Manual

Basic Utilities

NAME

file - determine file type

SYNOPSIS
fi 1 e [- f /file I file

DESCRIPTION
The command f i 1 e performs a series of tests on each specified file in an
attempt to classify it. If it appears to be a text file, f i 1 e examines an initial
segment and makes a guess about its language. (The answer is not
guaranteed to be correct.) If an argument is an executable (a.out) file it is
identified as such, and any other available information is reported.

If the -f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

USAGE
General.

The UNIX System User's Manual 65

Basic Utilities

NAME

find - find files

SYNOPSIS

find path-name-Iist expression

DESCRIPTION

The command find recursively descends the directory hierarchy for each
path name in the path-name-Iist (i.e., one or more path names) seeking files
that match a boolean expression written in the primaries given below. In the
following descriptions, the argument n is used as a decimal integer where +n
means more than n, - n means less than nand n means exactly n.

The expression argument is made up of:

-name file True if file matches the current file name. The argument
syntax of sh [see SH(BU_CMD)] may be used if escaped
(especially note I, ? and .».

-perm onum True if the file permission flags exactly match the octal
number onum [see CHMOD(BU_CMD)] If onum is prefixed by
a minus sign, more flag bits (017777) [see STAT(BA_SYS)]

become significant and the flags are compared.

-type c True if the type of the file is c, where c is b, c, d, p, or f for
block special file, character special file, directory, fifo
(named pipe), or plain file respectively.

-1 inks n True if the file has n links.

-u s e r uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it
is taken as a group ID.

-size n[c]

-atime n

-mtime n

-ctime n

-exec cmd

True if the file is n "blocks" long (block - 512 bytes). If n
is followed by a c, the size is in characters.

True if the file has been accessed in n days. The access
time of directories in path-name-list is changed by find
itself.

True if the file has been modified in n days.

True if the file inode has been changed in n days.

True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semi­
colon. A command argument {} is replaced by the
current path name.

66 The UNIX System User's Manual

FIND(BU_CMD)

-ok cmd

-print

-newer file

-depth

(expression)

Basic Utilities

Like -exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

Always true; causes the current path name to be printed.

True if the current file has been modified more recently
than the argument file.

Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before
the directory itself. This can be useful when find is used
with cpio [see CPIO(BU_CMD)] to transfer files that are
contained in directories without write permission.

True if the parenthesized expression is true (parentheses
must be escaped if they are special to the command inter-
preter).

The primaries may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposi­
tion of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

To remove all files named tmp or ending in . xx that have not been
accessed for a week:

find I '(-name tmp -0 -name ' •• xx' 'l -atime +7
-exec rm {} ';

FILES

letc/passwd
letc/group

SEE ALSO

CHMOD(BU_CMD), CPIO(BU_CMD), SH(BU_CMD), TEST(BU_CMD), STAT(BA_SYS).

USAGE
General.

The UNIX System User's Manual 67

Basic Utilities

NAME

grep - search a file for a pattern

SYNOPSIS

grep (options! expression {files!

DESCRIPTION

The command grep searches the input files (standard input default) for
lines matching a pattern. Normally, each line found is copied to the standard
output. The patterns are limited regular expressions in the style of ed.

The following options are recognized:

-v All lines but those matching are printed.
-c Only a count of matching lines is printed.
-i Ignore upperllower case distinction during comparisons. (This option is

new in UNIX System V Release 2.0,)
-1 Only the names of files with matching lines are listed (once), separated

by newlines.
-n Each line is preceded by its relative line number in the file.
-8 The error messages produced for nonexistent or unreadable files are

suppressed.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using characters in expression that may also be mean­
ingful to the command interpreter. It is safest to enclose the entire expression
argument in single quotes' .. .'.

ERRORS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

SEE ALSO
ED(BU _ CMD), EGREP(AU _ CMD), SED(BU _ CMD).

USAGE

General.

CAVEATS
The functionality of egrep and fgrep (see EGREP(AU_CMD)! will eventu­
ally be provided in grep, and those two <;:ommands discontinued.

88 The UNIX System User's Manual

Basic Utilities

NAME
kill - send signal to a process

SYNOPSIS
kill! -.~ignall PID

DESCRIPTION
The command k i 11 sends the specified signal to the specified processes (or
process groups). If process number 0 is specified, all processes in the process
group are signaled. Process numbers can be found by using ps [see
PS(BU_CMD)].

The argument signal must be specified as a numeric value; these values are
implementation dependent. (See CAVEATS below.)

If no signal is specified, kill sends SIGTERM (terminate). This will nor­
mally kill processes that do not catch or ignore the signal.

The specified process(es) must belong to the user unless the user is super-user.

Further details are described in KILL(BA_SYS).

SEE ALSO
PS(BU_CMD), KILL(BA_SYS), SIGNAL(BA_SYS).

USAGE
General.

CAVEATS
The command k iII will be changed to use symbolic names rather than
numeric values of signals. The old form will continue to be accepted for some
time.

The UNIX System User's Manual 69

Basic Utilities

NAME

line - read one line

SYNOPSIS

line

DESCRIPTION

The command 1 ine copies one line (up to a newline) from the standard
input and writes it on the standard output. It returns an exit code of 1 on EOF
and always prints at least a newline. It is often used within command scripts
to read from the user's terminal.

SEE ALSO

SH(BU_CMD).

USAGE
General.

70 The UNIX System User's Manual

Basic Utilities

NAME

Is - list contents of directory

SYNOPSIS

1 S (optionsl Vile ...1

DESCRIPTION

For each file, if it is directory 18 lists the contents of the directory; if it is a
file, 18 repeats its name and gives any other information requested. The out­
put is sorted alphabetically by default. When no files are specified, the
current directory is listed. When several arguments are given, the arguments
are first sorted appropriately, but files appear before directories and their con­
tents.

Note that the following options are new in UNIX System V Release 2.0:
-C, -F, -R, -m, -n, -q, and -x.

There are three major listing formats. The default format is to list one entry
per line; the options -C and -x enable multi-column formats; and the -m
option enables stream output format in which files are listed across the page,
separated by commas.

In order to determine output formats for the -C, -x, and -m options,
18 uses the environmental variable COLUMNS to determine the number of
character positions available on one output line. If this variable is not set, the
terminfo database is used to determine the number of columns, based on
the environmental variable TERM. If this information cannot be obtained,
80 columns is assumed.

There are a large number of options:

- C Multi-column output with entries sorted down the columns.

- F Put a slash (/) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

- R Recursively list subdirectories encountered.

- a List all entries; usually entries whose names begin with a period (.) are
not listed.

- c Use time of last modification of the i-node (file created, mode changed,
etc.) for sorting (-t) or printing (-1).

-d If an argument is a directory, list only its name (not its contents); often
used with -1 to get the status of a directory.

- f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -I, -t, -8, and -r, and
turns on -a; the order is the order in which entries appear in the direc­
tory.

- 9 The same as - I, except that the owner is not printed.

The UNIX System Users Manual 71

Basic Utilities

- i For each file, print the inode number in the first column of the report.

-1 List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file
is a special file, the size field will instead contain the major and minor
device numbers rather than a size.

-m Stream output format; files are listed across the page, separated by com­
mas.

-n The same as -1, except that the owner's UID and group's GID
numbers are printed, rather than the associated character strings.

- 0 The same as -1, except that the group is not printed.

-p Put a slash (f) after each filename if that file is a directory.

-q Force non-printing characters On file names) to be displayed as the
character (?).

- r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

- s Give size of each file in 512-byte units.

- t Sort by time modified Oatest first} instead of by name.

-u Use time of last access instead of last modification for sorting (with the
- t option) or printing (with the -1 option).

-x Multi-column output with entries sorted across rather than down the
page.

The mode printed under the -1 option consists of 10 characters that are
interpreted as described below.

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (named pipe) special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others in
the user-group of the file; and the last to all others. Within each set, the three
characters indicate permission to read, to write, and to execute the file as a
program, respectively. For a directory, "execute" permission is interpreted to
mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable (also see below);

72 The UNIX System User's Manual

Basic Utilities

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group­
ID mode; likewise, the user-execute permission character is given as s if the
file has set-user-ID mode. These are given as S (capitalized) if the
corresponding execute permission is NOT set. (See, however, CAVEATS
below')

FILES

/etc/passwd to get user IDs for ls -1 and ls -0.

/etc/group togetgroupIDsfor ls -1 and ls -g.
/usr /1 ib/terminf 0/ * / * terminfo terminal information database

SEE ALSO
CHMOD(BU_CMD), FIND(BU_CMD).

USAGE
General.

CAVEATS
The group execute permission will be shown as I if mandatory locking is
enabled for the file. It will not be possible to set-groupoID without also turn­
ing on group execute permission; therefore the group execute permission char­
acter will have one of the following values: ., x, s, or I; (S will not be possi­
ble).

The UNIX System User's Manual 73

Basic Utilities

NAME

mail, rmail - send or read mail

SYNOPSIS

mail [-epqrl [-f filel

mail [-tl name •..

rmail[-tlname ..•

DESCRIPTION

The command ma i 1 without arguments prints a user's mail, message-by­
message, in last-in first-out order. For each message, the user is prompted
with a ?, and a line is read from the standard input to determine the disposi­
tion of the message:

<newline>
+

Go on to next message.
Same as <newline>.

d
p

s [file J
w [file J

Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named file (mbox is default).
Save message, without its header, in the named file (mbox is
default).

m [name ... J Mail the message to the named users (names are user login
names; the default is the user).

q
EOF
x

Put undeleted mail back in the mailjile and stop.
(Usually control-D') Same as q.

1 command
Put all mail back in the mailjile unchanged and stop.
Escape to the command interpreter to execute command.
Print a command summary . •

The optional arguments alter the printing of the mail:

-e

-p
-q

-r
-ffile

causes mail not to be printed. An exit value of 0 is returned if the
user has mail; otherwise, an exit value of 1 is returned.
causes all mail to be printed without prompting for disposition.
causes ma i 1 to terminate after interrupts. Normally an interrupt
only causes the termination of the message being printed.
causes messages to be printed in first-in, first-out order.
causes ma i 1 to use file (e.g., mbox) instead of the default
mailjile.

When names (user login names) are given, ma i 1 takes the standard input up
to an end-of-file (or up to a line consisting of just a.) and adds it to each
user's mailjile. The message is preceded by the sender's name and a post­
mark. Lines in the message that begin with the word "From" are preceded
with a >. The -t option causes the message to be preceded by all users the
ma i 1 is sent to. If a user being sent mail is not recognized, or if ma i 1 is
interrupted during input, the file dead. letter will be saved to allow edit­
ing and resending. Note that this is regarded as a temporary file in that it is

74 The UNIX System User's Manual

Basic Utilities

recreated every time needed, erasing the previous contents of
dead. letter.

To denote a recipient on a remote system, name is the user's login name
prefixed by the system name and an exclamation mark. Everything after the
first exclamation mark is interpreted by the remote system. In particular, if
name contains additional exclamation marks, it can denote a sequence of
machines through which the message is to be sent on the way to its ultimate
destination. For example, specifying a!b!cde as a recipient's name causes the
message to be sent to user b!cde on system a. System a will interpret that des­
tination as a request to send the message to user cde on system b. This might
be useful, for instance, if the sending system can access system a but not sys­
tem b, and system a has access to system b.

The mailfile may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to
person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment. In order for forwarding to work
properly the mailfile should have "mail" as group ID, and the group permission
should be read-write.

The command rmai 1 only permits the sending of mail.

FILES

/etc/passwd
$HOME/mbox
dead. letter

USAGE

General.

to identify sender and locate persons
saved mail
unmailable text

The UNIX System User's Manual 75

Basic Utilities

NAME

mkdir - make a directory

SYNOPSIS

mkd i r dirname ",

DESCRIPTION

The command mkdir creates the specified directories. Standard entries, "
for the directory itself, and ", for its parent, are made automatically.

The command mkdir requires write permission in the parent directory.

ERRORS
The command mkd i r returns exit code 0 if all directories were successfully
made; otherwise, it prints a diagnostic and returns non-zero.

SEE ALSO
RM(BU_CMD).

USAGE
General.

76 The UNIX System User's Manual

Basic Utilities

NAME

nl - line numbering filter

SYNOPSIS
nl (-htype) (-btype) [-ftypeJ [-'!sta!"t#) [-iinc!") [-pI (-lnuml [-ssep)
l-wwidthl l-nformatl l-ddelimllfi/el

DESCRIPTION
The command n 1 reads lines from the named f i 1 e or the standard input if
no f i 1 e is named and reproduces the lines on the standard output. Lines
are numbered on the left in accordance with the command options in effect.

n 1 views the text it reads in terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a body,
and a footer section. Empty sections are valid. Different line numbering
options are independently available for header, body, and footer (e.g., no
numbering of header and footer lines while numbering blank lines only in the
body).

The start of logical page sections are signaled by input lines containing noth­
ing but the following delimiter character(s):

Line Start of

\:\:\: header
\:\: body
\: footer

Unless otherwise specified, nl assumes the text being read is in a single logi­
cal page body.

Options may appear in any order and may be intermingled with an optional
file name. Only one file may be named. The options are:

-btype

-htype

-ftype

-p

-vstart#

-iincr

Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are: a, number all
lines; t, number lines with printable text only; n, no line
numbering; pstring. number only lines that contain the regu­
lar expression specified in string. Default type for logical
page body is t (text lines numbered).

Same as -btype except for header. Default type for logical
page header is n (no lines numbered).

Same as -btype except for footer. Default for logical page
footer is n (no lines numbered).

Do not restart numbering at logical page delimiters.

The initial value used to number logical page lines. Default
is 1.

The increment value used to number logical page lines.
Default is 1 .

The UNIX System User's Manual 77

Basic Utilities

-ssep

-wwidth

-nformat

-lnum

-dxx

EXAMPLE

The command:

The character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

The number of characters to be used for the line number.
Default width is 6.

The line numbering format. Recognized values are: In,
left justified, leading zeroes suppressed; rn, right justified,
leading zeroes supressed; rz, right justified, leading zeroes
kept. Default format is rn (right justified).

The number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or
-fa option is set>. Defaultis 1.

The delimiter characters specifying the start of a logical page
section may be changed from the default characters (\:) to
two user-specified characters. If only one character is
entered, the second character remains the default character
(:). No space should appear between the -d and the delim­
iter characters. To enter a backslash, use two backslashes.

nl -v10 -i10 -dl+ file1

will number filel starting at line number 10 with an increment of ten. The
logical page delimiters are !+.

USAGE
General.

SEE ALSO
PR(BU_CMD).

78 The UNIX System User's Manual

Basic Utilities

NAME

nohup - run a command immune to hangups and quits

SYNOPSIS

:n.ohup command !aig-umeiit.;]

DESCRIPTION

The command nohup executes command with the signals SIGHUP an<i
SIGQUIT ignored. If output is not re-directed by the user, both standard out­
put and standard error are sent to nohup. ou t. If nohup. ou t is not
writable in the current directory, output is redirected to
$HOME/nohup. out.

EXAMPLE

It is frequently desirable to apply nohup to pipelines or lists of commands.
This can be done only by placing pipelines and command lists in a single file;
this procedure can then be executed as command, and the nohup applies to
everything in the file.

USAGE
General.

SEE ALSO
SH(BU _ CMD), SIGNAL(BA _ SYS).

The UNIX System User's Manual 79

Basic Utilities

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [- I [- f I name

pc at name •••

unpack name

DESCRIPTION
The command pack attempts to store the specified files in a compressed
form. Wherever possible {and usefuO, each input file name is replaced by a
packed file name.z with the same access modes, access and modified dates, and
owner as those of name. The option -f will force packing of name. This is
useful for causing an entire directory to be packed even if some of the files will
not benefit. If pack is successful, name will be removed. Packed files can
be restored to their original form using unpack or pcat.

The command pack uses Huffman (minimum redundancy) codes on a byte­
by-byte basis. If the - argument is used, an internal flag is set that causes
the number of times each byte is used, its relative frequency, and the code for
the byte to be printed on the standard output. Additional occurrences of - in
place of name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distribu­
tion of characters, show little compression, the packed versions being about
90% of the original size.

The command pack returns a value that is the number of files that it failed
to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than {NAME_MAXl-2 characters;
the file has links;
the file is a directory;
the file cannot be opened;
the file is empty;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

80 The UNIX Sy~tem User's Manual

Basic Utilities

The last segment of the file name must contain no more than {NAME_MAX}-2
characters to allow space for the appended .z extension.

The command pc at does for packed files what cat does for ordinary files,
except that pc at cannot be used as a filter. The specified files are unpacked
and written to the standard output. Thus to view a packed file named name.z
use:

pc at name.z (or pcat name)

To make an unpacked copy, called abc, of a packed file named name.z
(without destroying name.z) use the command:

pcat name >nnn

The command pcat returns the number of files it was unable to unpack.
Failure may occur if:

the file name (exclusive of the .z) has more than {NAME_MAX}-2 char­
acters;
the file cannot be opened;
the file does not appear to be the output of pack.

The command unpack expands files created by pack. For each file name
specified in the command, a search is made for a file called name.z (or just
name, if name ends in .z). If this file appears to be a packed file, it is
replaced by its expanded version. The new file has the .z suffix stripped from
its name, and has the same access modes, access and modification dates, and
owner as those of the packed file.

The command unpack returns a value that is the number of files it was
unable to unpack. Failure may occur for the same reasons that it may in
pca t, as well as for the following:

a file with the "unpacked" name already exists;
the unpacked file cannot be created.

USAGE
General.

SEE ALSO

CAT(BU_CMD).

The UNIX System User's Manual 81

)

Basic Utilities

NAME

paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS

pastefilel file2 •••
paste -dlist filel file2
paste -s I-dlistlfilel file2

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of the given
input files filel, file2, etc. The file-name - means standard input. It treats
each file as a column or columns of a table and pastes them together horizon­
tally (parallel merging). In the last form above (-s option), paste com­
bines subsequent lines of the input file (serial merging).

In all cases, lines are glued together with the tab character, unless the -d
option is used (see below).

Output is to the standard output, so that paste can be used as the start of
a pipe, or as a filter, if - is used in place of a file name.

Without the -d option, the newline characters of each but the last file (or last
line in case of the -s option) are replaced by a tab character.

When this option is used, a character from the list immediately following -d
replaces the default tab as the line concatenation character. The list is used
circularly, i.e., when exhausted, it is reused. In parallel merging (i.e., no -s
option), the lines from the last file are always terminated with a newline char­
acter, not from the list. The list may contain the special escape sequences: \n
(newline), \t (tab), \\ (backslash), and \0 (empty string, not a null character).
Quoting may be necessary, if characters have special meaning to the command
interpreter.

EXAMPLES

ls I paste - - - -
list directory in four columns

paste -s -dn't'nn file

USAGE
General.

SEE ALSO

combine pairs of lines into lines

CUT(BU_CMD), GREP(BU_CMD), PR(BU_CMD).

82 The UNIX System User's Manual

Basic Utilities

NAME

pg - file perusal filter for soft-copy terminals

SYNOPSIS

pg I-numberll-p stringll-cefnsll+linenumberll+lpattern/lljiles . .. 1

DESCRIPTION

The command pg is a filter that allows the examination of files one screenful
at a time on a soft-copy terminal. (The file name - and/or null arguments
indicate that pg should read from the standard input.> Each screenful is fol­
lowed by a prompt. If the user types a carriage return, another page is
displayed; other possibilities are enumerated below.

This command is different from previous paginators in that it allows the user
to back up and review something that has already passed. The method for
doing this is explained below.

In order to determine terminal attributes, pg scans the terminfo data base
for the terminal type specified by the environmental variable TERM. If TERM

is not defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size On lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default
window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains a
"%d", the first occurrence of "%d" in the prompt will be replaced by the
current page number when the prompt is issued. The default prompt
string is ":".

-c Home the cursor and clear the screen before displaying each page. This
option is ignored if clear_screen is not defined for this terminal type in
the terminfo data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (e.g., escape
sequences for underlining) generate undesirable results. The -f option
inhibits pg from splitting lines.

-n Normally, commands must be terminated by a newline character. This
option causes an automatic end of command as soon as a command
letter is entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

The UNIX System User's Manual 83

Basic Utilities

+ linen umber
Start up at linenumber.

+Ipatternl
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should
be displayed. This address is interpreted in either pages or lines depending on
the command. A signed address specifies a point relative to the current page
or line, and an unsigned address specifies an address relative to the beginning
of the file. Each command has a default address that is used if none is pro­
vided.

The perusal commands and their defaults are as follows:

(+O<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+0 1
With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified line.

(+0 d or 'D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

. or 'L

$

Typing a single period causes the current page of text to be redisplayed.

Displays the last windowful in the file. Use with caution when the input
is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ED(BU_CMD) are available. They
must always be terminated by a <newl ine >, even if the -n option is
specified.

i/patternl
Search forward for the ith (default i = 1) occurrence of pattern.
Searching begins immediately after the current page and continues to
the end of the current file, without wrap-around.

i 'pattern'
i ?pattern?

Search backwards for the ith (default i = 1) occurrence of pattern.
Searching begins immediately before the current page and continues to

84 The UNIX System User's Manual

Basic Utilities

the beginning of the current file, without wrap-around. (The· notation
is useful for terminals that do not properly handle the ?)

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from now
on. The suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following
commands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an
unsigned number, default is 1.

i w Display another window of text. If i is present, set the window size to
i.

s filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This
command must always be terminated by a newline, even if the -n
option is specified.

h Help by displaying an abbreviated summary of available commands.

q or Q

Quit pg.

I command
The argument command is passed to the command interpreter, whose
name is taken from the SHELL environmental variable. If this is not
available, the default command interpreter is used. This command must
always be terminated by a newl ine, even if the -n option is
specified.

At any time when output is being sent to the terminal, the user can hit the
QUIT key (normally control-\) or the interrupt (BREAK) key. This causes
pg to stop sending output, and to display the prompt. The user may then
enter one of the above commands in the normal manner. Unfortunately, some
output is lost when this is done, due to the fact that any characters waiting in
the terminal's output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, pg acts just like the cat com­
mand, except that a header is printed before each file (if there is more than
one).

FILES

lusr/lib/terminfol*l* terminfo terminal information database

USAGE

End-user.

The UNIX System User's Manual 85

Basic Utilities

While waiting for terminal input, pg responds to BREAK, DEL, and QUIT by
terminating execution. Between prompts, however, these signals interrupt
pg's current task and place the user in prompt mode. These signals should be
used with caution when input is being read from a pipe, since an interrupt is
likely to terminate the other commands in the pipeline.

If terminal tabs are not set every eight positions, undesirable results may
occur.

When pg is used as a filter with another command that changes the terminal
I/O options, terminal settings may not be restored correctly.

SEE ALSO
ED(BU _ CMD), GREP(BU _ CMD).

86 The UNIX System User's Manual

Basic Utilities

NAME

pr - print files

SYNOPSIS

pr loptionslfilesl

DESCRIPTION
The command pr prints the named files on the standard output. If file is -,
or if no files are specified, the standard input is assumed. By default, the list­
ing is separated into pages, each headed by the page number, a date and time,
and the name of the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -8 option is used, lines are not trun­
cated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

The below options may appear singly, or may be combined in any order:

+k Begin printing with page k (default is O.

- k Produce k - col umn output (default is O. This option should not
be used with -m. The options -e and -i are assumed for multi­
column output.

-a Print multi-column output across the page. This option is appropri­
ate only with the -k option.

-m Merge and print all files simultaneously, one per column (overrides
the -k option).

-d Double-space the output.

-eck Expand input tabs to character positions k+ 1, 2*k+ 1, 3*k+ 1,
etc. If k is 0 or is omitted, default tab settings at every eighth posi­
tion are assumed. Tab characters in the input are expanded into the
appropriate number of spaces. If c (any non-digit character) is
given, it is treated as the input tab character (default for c is the
tab character).

-ick In output, replace white space wherever possible by inserting tabs
to character positions k + 1, 2*k + 1, 3*k + 1, etc. If k is 0 or is
omitted, default tab settings at every eighth position are assumed. If
c (any non-digit character) is given, it is treated as the output tab
character (default for c is the tab character).

-n c k Provide k - d i 9' i t line numbering (default for k is 5). The
number occupies the first k+ 1 character positions of each column of
normal output or each line of -m output. If c (any non-digit char­
acter) is given, it is appended to the line number to separate it from
whatever follows (default for c is a tab).

The UNIX System User's Manual 87

Basic Utilities

-wk Set the width of a line to k character positions for multi-column
output (default is 72).

-ok Offset each line by k character positions (default is 0). The number
of character positions per line is the sum of the width and offset.

-lk Set the length of a page to k lines (default is 66). If k is less than
what is needed for the page header and trailer. then the option -t
is in effect; that is. header and trailer lines are suppressed in order to
make room for text.

-h header
Use header as the header to be printed instead of the file name.

-p Pause before beginning each page if the output is directed to a termi­
nal (pr will ring the bell at the terminal and wait for a carriage
return).

-f Use form-feed character for new pages (default is to use a sequence
of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

- s c Separate columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

EXAMPLES

• Print f i 1 e 1 and f i 1 e 2 as a double-spaced. three-column listing headed
by "file list":

pr -3dh "file list" file1 file2

• Write file1 on file2.expandingtabstocolumns 10.19.28 :

pr -e9 -t <file1 >file2

USAGE

General.

88 The UNIX System User's Manual

Basic Utilities

NAME

pS - report process status

SYNOPSIS

p s [options!

DESCRIPTION
The command p s prints certain information about active processes. Without
options, information is printed about processes associated with the current ter­
minal. The output consists of a short listing containing only the process-ID,
terminal identifier, cumulative execution time, and the command name. Oth­
erwise, the information that is displayed is controlled by the selection of
options.

The options using lists as arguments can have the list specified in one of two
forms: a list of identifiers separated from one another by a comma, or a list of
identifiers enclosed in double quotes and separated from one another by a
comma and/or one or more spaces.

The options are:

-e Print information about all processes.
-d Print information about all processes, except process group

leaders.
-a Print information about all processes, except process group

leaders and processes not associated with a terminal.
-f Generate a ful/listing. (See below for meaning of columns in a

full listing).
-1 Generate a long listing. See below.
-n namelist

-t termlist

-p proclist

-u uidlist

-9 grplist

The argument will be taken as the name of an alternate system
namelist file in place of the default.

Restrict listing to data about the processes associated with the
terminals given in termlist. Terminal identifiers may be
specified in one of two forms: the device's file name (e.g., tty04)
or if the device's file name starts with tty, just the digit identifier
(e.g., 04).

Restrict listing to data about processes whose process-ID
numbers are given in proclist.

Restrict listing to data about processes whose user-ID numbers
or login names al'e given in uidlist. In the listing, the
numerical-user-ID will be printed unless the -f option is used,
in which case the login name will be printed.

Restrict listing to data about processes whose process group
leaders are given in grplist.

The UNIX System User's Manual 89

Basic Utilities

The column headings and the meaning of the columns in a ps listing are
given below; the letters f and I indicate the option (full or long) that
causes the corresponding heading to appear; aU means that the heading always
appears. Note that these two options determine only what information is pro­
vided for a process; they do not determine which processes will be listed.

F (I) Flags (octal and additive) associated with the process.
S (I) The state of the process.
UID (1,0 The user ID number of the process owner; the login name is

PID (aU)

PPID (f,O
C (f,O
PRI (I)

NI (I)
ADDR (I)
sz (I)

WCHAN

STIME
TIT (aU)
TIME (aU)
CMD (aU)

printed under the -f option.
The process ID of the process; it is possible to kill a process
if you know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
The priority of the process; higher numbers mean lower
priority.
Nice value; used in priority computation.
The memory address of the process.
The size in blocks of the core image of the process.

(I) The event for which the process is waiting or sleep­
ing; if blank, the process is running.

(f) Starting time of the process.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name; the full command name and its argu­
ments are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited for by
the parent, is marked defunct.

Under the option -f, ps tries to determine the command name and argu­
ments given when the process was created by examining memory or the swap
area. Failing this, the command name, as it would appear without the option
-f, is printed in square brackets.

FILES

/etc/passwd

USAGE

General.

supplies UID information

Things can change while ps is running; the snap-shot it gives is only true for
an instant, and may not be accurate by the time it is displayed.

90 The UNIX System User' s Manual

PWD(BU_CMD) Basic Utilities

NAME

pwd - working directory name

SYNOPSIS

pwd

DESCRIPTION
The command pwd prints the path name of the working (current) directory.

ERRORS

"Cannot open .. " and "Read error in .. " indicate possible file system trouble.

USAGE
General.

SEE ALSO

CD(BU_CMD).

The UNIX System Users Manual 91

Basic Utilities

NAME
rm, rmdir ~ remove files or directories

SYNOPSIS

rm I -fri] file '"

rmdir dir

DESCRIPTION
The command rm removes the entries for one or more files from a directory.
If an entry was the last link to the file, the file is destroyed. Removal of a file
requires write permission in its directory, but neither read nor write permission
on the file itself.

If a file has no write permission and the standard input is a terminal, its per­
missions are printed and a line is read from the standard input. If that line
begins with y the file is deleted, otherwise the file remains. No questions are
asked when the option -f is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

If the option -i (interactive) is in effect, rm asks whether to delete each
file, and, under -r, whether to examine each directory.

The command rmd i r removes entries for the named directories, which must
be empty.

ERRORS
It is forbidden to remove the file .. in order to avoid the consequences of inad­
vertently doing something like:

rm -r ,*

USAGE
General.

SEE ALSO

UNLINK(BA_SYS).

92 The UNIX System User's Manual

Basic Utilities

NAME
sed - stream editor

SYNOPSIS
sed! -n!! -'" script J [-of s.file) I files)

DESCRIPTION
The command sed copies the named files (standard input default) to the
standard output, edited according to a script of commands. The -f option
causes the script to be taken from file sfile; these options accumulate. If there
is just one -e option and no -f options, the flag -e may be omitted. The
-n option suppresses the default output. A script consists of editing com­
mands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address, i.e.,
a/regular expression/ in the style of the ed command modified
as follows:

In a context address, the construction \?regular expression?,
where ? is any character, is identical to /regular expres­
sion/. Note that in the context address \.xabc\.xdefx, the
second x stands for itself, so that the regular expression is
abcxdef.

The escape sequence \.n matches a newline embedded in the pattern
space.

A period. matches any character except the terminal newline of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from the

first pattern space that matches the first address through the next
pattern space that matches the second. (If the second address is a
number less than or equal to the line number first selected, only
one line is selected.) Thereafter the process is repeated, looking
again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function! (below).

The UNIX System User's Manual 93

Basic Utilities

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

The argument text consists of one or more lines, all but the last of which
end with \ to hide the newline. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used to
protect initial blanks and tabs against the stripping that is done on every script
line. The argument rfile or the argument wfile must terminate the
command line and must be preceded by exactly one blank. Each wf i 1 e is
created before processing begins. There can be at most 10 distinct wf i 1 e
arguments.

(l) a\
text Append. Place text on the output before reading the next

input line.
(2) b labe 1

(2) c\
text

text
(2)1

Branch to the: command bearing the label. If label is
empty, branch to the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at
the end of a 2-address range, place text on the output. Start
the next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
newline. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the
pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII
and long lines are folded.
Copy the pattern space to the standard output. Replace the pat­
tern space with the next line of input.
Append the next line of input to the pattern space with an
embedded newline. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
newline to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile

Read the contents of r f i 1 e. Place them on the output before
reading the next input line.

(2) s/regular express ion/replacement/f lags

94 The UNIX System User's Manual

Basic Utilities

Substitute the replacement string for instances of the
regular expression in the pattern space. Any charac­
ter may be used instead of I. For a fuller description see
ED(BU_CMD). The value of flags is zero or more of:

n n- 1 - 512. Substitute for just the n th occurrence
of the regular expression.

g Global. Substitute for all nonoverlapping instances
of the regular expression rather than just
the first one.

p Print the pattern space if a replacement was made.
w wfile

Write. Append the pattern space to wfile if a
replacement was made.

(2)t label Test. Branch to the: command bearing the label if any
substitutions have been made since the most recent reading of an
input line or execution of a t. If 1 abe 1 is empty, branch to
the end of the script.

(2)w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y/string 1 Istring21

Transform. Replace all occurrences of characters in string 1
with the corresponding character in string2. The lengths of
string1 and string2 must be equal.

(2)1 function
Don't. Apply the function (or group, if function is ()
only to lines not selected by the address (es) .

(0): label This command does nothing; it bears a label for band t
commands to branch to.

(0)
(0)#

USAGE
General.

SEE ALSO

Place the current line number on the standard output as a line.
Execute the following commands through a matching} only
when the pattern space is selected.
An empty command is ignored.
If a # appears as the first character on the first line of a script
file, then that entire line is treated as a comment, with one
exception.' If the character after the # is an 'n', then the default
output will be suppressed. The rest of the line after #n is also
ignored. A script file must contain at least one non-comment
line.

AWK(BU_CMD), ED(BU_CMD), GREP(BU_CMD).

The UNIX System User's Manual 95

Basic Utilities

NAME
sh, rsh - shell, the standard/restricted command interpreter

SYNOPSIS
sh (flags) (args)

rsh (flags) (args)

DESCRIPTION
The command sh is a command interpreter that executes commands read
from a terminal or a file. The command r s h is a restricted version of the
standard command interpreter sh; it is used to set up login-names and execu­
tion environments whose capabilities are more controlled than those of the
standard shell. See Invocation below for the meaning of flags and other argu­
ments to the shell.

Commands
A blank is a tab or a space.

A name is a sequence of letters, digits, or underscores beginning with a letter
or underscore.

A parameter is a name, a digit, or any of the characters *, @I, #, ?, -, $

and !.

A simple-command is a sequence of non-blank words separated by blanks.
The first word specifies the path-name or file-name of the command ,to be exe­
cuted. Except as specified below, the remaining words are passed as argu­
ments to the invoked command. The command-name is passed as argument 0
[see EXEC(BA_SYS»). The value of a simple-command is its exit status if it
terminates normally, or (octal) 2 0 0 +status if it terminates abnormally [see
SIGNAL(BA_SYS) for a list of status values).

A pipeline is a sequence of one or more commands separated by the character
I. The standard output of each command (except the last) is connected by a

pipe [see PIPE(BA_SYS») to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to
terminate. T)J.e exit status of a pipeline is the exit status of the last command.

Unless otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

A list is a command or a pipeline or a sequence of commands and pipelines
separated by the characters ; or &. or the character-pairs &.&. or I I. Of
these, the characters ; and &., which have equal precedence, have a pre­
cedence lower than that of the character-pairs &.&. and I I, which have equal
precedence. A list may optionally be terminated by the characters ; or &..

A series of commands and/or pipelines separated by the character ; are exe­
cuted sequentially, while commands and pipelines terminated by the character
&. are executed asynchronously. Thus, / causes sequential executionS of the
preceding pipeline; &. causes asynchronous execution of the preceding pipeline
(i.e., the shell does not wait for that pipeline to finish). The character-pair

96 The UNIX System User's Manual

Basic Utilities

&.&. or :: causes the list following it to be executed only if the preceding
pipeline returns a zero (non-zero) exit status. An arbitrarily long sequence of
newlines may appear in a list, instead of the character ;, to delimit com­
mands.

A command is either a simple-command or one of the following:

for name (in word ...) do list done
Each time a f or command is executed, name is set to the next word
taken from the in word 1 i st. If in word .•• is omitted, then
the f or command executes the do list once for each positional param­
eter set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in (pattern (: pattern) ••.) list;;) ••• esac
A cas e command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation) except that a slash, a
leading dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list (elif list then list) •.• (else list I fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
eli f is executed and, if its value is zero, the list following the next
then is executed. Failing that, the e 1 s e list is executed. If no
else list or then list is executed, then the if command returns a
zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the
exit status of the last command in the list is zero, executes the do list;
otherwise the loop terminates. If no commands in the do list are exe­
cuted, then the while command returns a zero exit status; until
may be used in place of wh i 1 e to negate the loop termination test.

(list)
Execute list in a sub-shell.

{ list; }
Simply execute list (the semi-colon may be replaced by a newline).

name () { list; }
Define a function which is referenced by name. (New in UNIX System
V Release 2.0) The body of the function is the list of commands between
{and } (the semi-colon may be replaced by a newline). Execution of
functions is described below (see Execution).

The following words are only recognized as the first word of a command and
when not quoted:

if then else elif fi case esac for
esac for while until do done { }

The UNIX System User's Manual 97

Basic Utilities

Comments
A word beginning with # causes that word and all the following characters up
to a newline to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents (")
may be used as part or all of a word; trailing newlines are removed.

Parameter Substitution
The character S is used to introduce substitutable parameters. There are two
types of parameters, positional and keyword. If the parameter-name is a sin­
gle digit (0 - 9), it is a positional parameter; otherwise, the name must be a
legal name as defined above, and gives a keyword parameter. Positional
parameters may be assigned values by set. Keyword parameters (also
known as variables) may be assigned values by writing:

name = value [name=valuel •••

Pattern-matching is not performed on value. There cannot be a function and
a variable with the same name.

S { parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name. If parameter is • or
@, all the positional parameters, starting with S 1, are substituted
(separated by spaces). Parameter SO is set from argument zero when
the shell is invoked.

S {parameter: word}
If parameter is set and is non-null, substitute its value; otherwise substi­
tute word.

S {parameter: = word}
If parameter is not set or is null set it to word; the value of the parame­
ter is substituted. Positional parameters may not be assigned to in this
way.

S {parameter? word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message param­
eter null or not set is printed.

S {parameter: + word}
If parameter is set and is non-null, substitute word; otherwise substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set
or is null:

echo S{d:-'pwd'}

If the character : is omitted from the above expressions, the shell only checks
whether parameter is set or not.

98 The UNIX System User's Manual

Basic Utilities

The following parameters are automatically set by the shell:

/I

?

$

The number of positional parameters in decimal.
Flags supplied to the shell on invocation or by the set com­
mand.
The decimal value returned by the last synchronousiy executed
command.
The process number of this shell.
The process number of the last background command invoked.

The following parameters are used by the shell:

HOME
The default argument (home directory) for the cd command.

PATH
The search path for commands (see Execution below). The user
may not change PATH if executing under rsh.

CD PATH
The search path for the cd command. The syntax and usage is
similar to that of PATH.

MAIL
If this parameter is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file. In
UNIX System V Release 2.0, the user is informed only if MAIL is
set and MAILPATH is not set.

MAILCHECK
(New in UNIX System V Release 2.0) This parameter specifies how
often (in seconds) the shell will check for the arrival of mail in the
files specified by the MAILPATH or MAIL parameters. The
default value is 600 seconds (10 minutes). If set to 0, the shell
will check before each primary prompt.

MAILPATH

PS1

PS2

IFS

(New in UNIX System V Release 2.0) The character : separated
list of file-names. If this parameter is set, the shell informs the
user of the arrival of mail in any of the specified files. Each file
name can be followed by "and a message that will be printed
when the modification time changes. The default message is "you
have mail".

Primary prompt string, by default $.

Secondary prompt string, by default >.

Internal field separators, normally space, tab, and newline.
SHACCT

If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed. (New in UNIX System V Release 2.0)

The UNIX System User's Manual 99

Basic Utilities

SHELL
When the shell is invoked, it scans the environment (see Environ­
ment below) for this name. (New in UNIX System V Release 2.0)
If it is found and there is an r in the file-name part of its value,
the shell becomes a restricted shell.

The shell gives defaults for PATH, PS1, PS2, MAILCHECK, IFS.

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal-field-separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu­
ments (" " or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters *,
?, and [. If one of these characters appears the word is regarded as a pat­
tern. The word is replaced with alphabetically sorted file names that match
the pattern. If no file name is found that matches the pattern, the word is left
unchanged. The character • at the start of a file-name or immediately fol­
lowing a /, as well as the character / itself, must be matched explicitly.

*
?

[...]

Quoting

Matches any string, including the null-string.
Matches any single character.
Matches anyone of the enclosed characters. A pair of charac­
ters separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening [is
a I any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termi­
nation of a word unless quoted:

&. < > newline space tab

A character may be quoted (j.e., made to stand for itself) by preceding it with
the character \. The pair \newline is ignored. All characters enclosed
between a pair of single quote marks (, ,), except a single quote, are quoted.
Inside double quote marks (" ,,), parameter and command substitution occurs
and \ quotes the characters \, " ", and $. The character-pair $ * is
equivalent to $ 1 $ 2 .•• , whereas $@ is equivalent to $ 1 $ 2

Prompting

When used interactively, the shell prompts with the value of PS 1 before
reading a command. If at any time a newline is typed and further input is
needed to complete a command, the secondary prompt (j.e., the value of
P S 2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere

100 The UNIX System User's Manual

Basic Utilities

in a simple-command, or may precede or follow a command and are not
passed on to the invoked command; substitution occurs before word or digit is
used:

<word
> word

> > word

«1- I word

<&.digit

<&.-

Use file word as standard input (file-descriptor 0).
Use file word as standard output (file-descriptor 1). If the
file does not exist it is created; otherwise, it is truncated to
zero length.
Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); other­
wise, the file is created.
The shell input is read up to a line that is the same as word
or to an end-of-file. The resulting document becomes the
standard input. If any character of word is quoted, no
interpretation is placed upon the characters of the docu­
ment; otherwise, parameter and command substitution
occurs, (unescaped) \newline is ignored, and \ must be
used to quote the characters \ , $, ',and the first char­
acter of word. If - is appended to < <, all leading tabs
are stripped from word and from the document.
Use the file associated with file-descriptor digit as standard
input. Similarly for the standard output using > &.digit.
The standard input is closed. Similarly for the standard
output using > &. - .

If a digit precedes any of the above, the digit specifies the file-descriptor to be
associated with the file (instead of the default 0 or 1). For example:

••• 2 >&. 1

associates file-descriptor 2 with the file currently associated with file­
descriptor 1.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

••• 1 >xxx 2>&'1

first associates file-descriptor 1 with file xxx. It associates file-descriptor 2
with the file-associated with file descriptor 1 (i.e., xxx). If the order of
redirections were reversed, file-descriptor 2 would be associated with the ter­
minal (assuming file-descriptor 1 had been) and file-descriptor 1 would be
associated with file xxx.

If a command is followed by &. the default standard input for the command is
the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file-descriptors of the invoking shell as modified by
input/output specifications.

Redirection of output is not allowed in the restricted shell.

The UNIX System User's Manual 101

Basic Utilities

Environment
The environment is a list of name-value pairs that is passed to· an executed
program in the same way as a normal argument list. The shell interacts with
the environment in several ways. On invocation, the shell scans the environ­
ment and creates a parameter for each name found, giving it the correspond­
ing value. If the user modifies the value of any of these parameters or creates
new parameters, none of these affects the environment unless the export
command is used to bind the shell's parameter to the environment (see also
set -a). A parameter may be removed from the environment with the
un set command (new in UNIX System V Release 2.0). The environment
seen by any executed command is thus composed of any unmodified name­
value pairs originally inherited by the shell, minus any pairs removed by
unset, plus any modifications or additions, all of which must be noted in
export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=123 cmd
(export TERM; TERM=123; cmd)

(where cmd uses the value of the environmental variable TERM) are
equivalent as far as the execution of cmd is concerned.

If the - k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command-name. The following first prints
a=b c and c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by &.; otherwise signals have the values inherited by
the shell from its parent (but see also the trap command beloW).

Execution
Each time a command is executed, the above substitutions are carried out. If
the command name matches one of the Special Commands listed below, it is
executed in the shell process. If the command name does not match a Special
Command, but matches the name of a defined function (functions are new in
UNIX System V Release 2.0), the function is executed in the shell process
(note how this differs from the execution of shell procedures). The positional
parameters $ 1, $ 2, ••• are set to the arguments of the function. If the com­
mand name matches neither a Special Command nor the name of a defined
function, a new process is created and an attempt is made to execute the com­
mand via an EXEC(BA_SYS) routine.

The variable PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). Note

102 The UNIX System User's Manual

Basic Utilities

that the current directory is specified by a null path-name, which can appear
immediately after the equal sign or between the colon delimiters anywhere else
in the path-list. If the command name contains a / the search path is not
used; such commands will not be executed by the restricted shell. Otherwise,
each directory in the path is searched for an executabie iiie. if ihe file has
execute permission but is not an executable (a. ou t) file, it is assumed to be
a file containing shell commands. A sub-shell is spawned to read it. A
parenthesized command is also executed in a sub-shell.

The following is new in UNIX System V Release 2.0:

The location in the search path where a command was found is remem­
bered by the shell (to help avoid unnecessary calls to the EXEC(BA_SYS)

routines later). If the command was found in a relative directory, its loca­
tion must be re-determined whenever the current directory changes. The
shell forgets all remembered locations whenever the PATH variable is
changed or the hash -r command is executed (see below).

Special Commands
Except as specified, input/output redirection is not permitted for these com­
mands in UNIX System V Release 1.0. In UNIX System V Release 2.0, such
redirection is permitted; file-descriptor 1 is the default output location.

No effect; the command does nothing. A zero exit code is returned .

• file

Read and execute commands from file and return. The search path specified
by PATH is used to find the directory containing file.

break lnl

Exit from the enclosing for or while loop, if any. If n is specified break
n levels.

continue [nl

Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n-th enclosing loop.

cd largl

Change the current directory to argo The variable HOME is the default argo
The variable CDPATH defines the search path for the directory containing
argo Alternative directory names are separated by a colon (:). The default
path is null (specifying the current directory). Note that the current directory
is specified by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list. If arg
begins with a / the search path is not used. Otherwise, each directory in the
path is searched for argo The cd command may not be executed by rsh.

The UNIX System User's Manual 103

Basic Utilities

echo [arg •.• 1

Echo arguments [see ECHO(BU_CMD)] for usage and description. (Not a Spe­
cial Command in UNIX System V Release 1.0)

eval [arg .•• J

The arguments are read as input to the shell and the resulting command(s)
executed.

exec [arg .•. 1

The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and, if
no other arguments are given, cause the shell input/output to be modified.

exi t [nl

Causes a shell to exit with the exit status specified by n. If n is omitted the
exit status is that of the last command executed (an end-of-file will also cause
the shell to exit).

export [name ••• 1

The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, a list of all
names that are exported in this shell is printed. Function names may not be
exported.

hash [-r 1 [name ••• 1

For each name, the location in the search path of the command specified by
name is determined and remembered by the shell. (New in UNIX System V
Release 2.0) The -r option causes the shell to forget all remembered loca­
tions. If no arguments are given, information about remembered commands is
presented.

pwd

Print the current-working-directory. (Not a Special Command in UNIX Sys­
tem V Release 1.0) [see PWD(BU_CMD)] for usage and description.

read (name •.• 1

One line is read from the standard input and the first word is assigned to the
first name, the second word to the second name, etc., with leftover words
assigned to the last name. Only the characters in the variable IF S are
recognized as delimiters. The return code is 0 unless an end-of-file is encoun­
tered.

readonly [name .•• 1

The given names are marked readonJy and the values of the these names may
not be changed by subsequent assignment. If no arguments are given, a list of
all readonJy names is printed.

104 The UNIX System User's Manual

Basic Utilities

return Inl

Causes a function to exit with the return value specified by n. (New in UNIX
System V Release 2.0) If n is omitted, the return status is that of the last
command executed.

set I--aefhkntuvx larg ... 11

- a Mark variables which are modified or created for export. (N ew in
UNIX System V Release 2.0)

- e Exit immediately if a command exits with a non-zero exit status.
- f Disable file-name generation. (New in UNIX System V Release 2.0)
-h Locate and remember function commands as functions are defined

(function commands are normally located when the function is exe­
cuted). (New in UNIX System V Release 2.0)

- k All keyword arguments are placed in the environment for a com-
mand, not just those that precede the command name.

-n Read commands but do not execute them.
- t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
- x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $ 1 to -.

Using + rather than - causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $ - . The remaining arguments are positional parameters and are
assigned, in order, to $ 1, $ 2, ..•. If no arguments are given the values of all
names are printed.

shift Inl

The positional parameters from $ n + 1... are renamed $ 1.... If n is not
given, it is assumed to be l.

test

Evaluate conditional expressions [see TEST(BU_CMD)] for usage and description.

times

Print the accumulated user and system times for processes run from the shell.

trap largllnl ..•

The command arg is to be read and executed when the shell receives signal (s)
n. (Note that arg is scanned once when the trap is set and once when the
trap is taken). Trap commands are executed in order of signal number. Any
attempt to set a trap on a signal that was ignored on entry to the current shell
is ineffective. If arg is absent all trap(s) n are reset to their original values. If
arg is the null-string this signal is ignored by the shell and by the commands it
invokes. If n is 0 the command arg is executed on exit from the shell. The
trap command with no arguments prints a list of commands associated with

The UNIX System User's Manual 105

Basic Utilities

each signal number.

type I name ••• J

For each name, indicate how it would be interpreted if used as a command
name. (New in UNIX System V Release 2.0)

ulimi t I-f nJ

If the - f n option is used, then a size-limit of n blocks is imposed on files
written by the shell and its child-processes (files of any size may be read). If
n is omitted, the current limit is printed. If no option is given, - f is
assumed.

umask InnnJ

The user file-creation-mask is set to nnn [see UMASK(BA_SYS)1. If nnn is omit­
ted, the current value of the mask is printed.

unset I name ••• J

For each name, remove the corresponding variable or function. (New in UNIX
System V Release 2.0) The variables PATH, PS 1, PS2, MAILCHECK
and IF S cannot be unset.

wait InJ

Wait for the specified process and report its termination status. If n is not
given all currently active child-processes are waited for and the return code is
zero.

Invocation

If the shell is invoked through an EXEC(BA_SYS) routine and the first character
of argument zero is -, commands are initially read from /etc/profile
and from $HOME/ .profile, if such files exist. Thereafter, commands
are read as described below. The flags below are interpreted by the shell on
invocation only; note that unless the - c or - s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the
remaining arguments are passed as positional parameters to that command
file:

- c string If the - c flag is present commands are read from string.
- s If the - s flag is present or if no arguments remain commands

are read from the standard input. Any remaining arguments
specify the positional parameters. Shell output (except for Spe­

cial Commands) is written to file-descriptor 2.
- i If the - i flag is present or if the shell input and output are

attached to a terminal, this shell is interactive. In this case
TERMINATE is ignored (so that kill 0 does not kill an
interactive shell) and INTERRUPT is caught and ignored (so
that wait is interruptible). In all cases, QUIT is ignored by
the shell.

- r If the - r flag is present the shell is a restricted shell.

106 The UNIX System User's Manual

Basic Utilities

The remaining flags and arguments are described under the set command.

For rsh Only
The commnad rsh is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard shell. The
actions of r share similar to those of s h, but the following are disallowed:

changing directory [see CD(BU_CMD)l,
setting the value of PATH,
specifying path or command names containing /,
redirecting output (> and > ».

The restrictions above are enforced after . prof i 1 e is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-user shell
procedures that have access to the full power of the standard shell, while
imposing a limited menu of commands; this scheme assumes that the end-user
does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the . prof i 1 e has com­
plete control over user actions, by performing guaranteed setup actions and
leaving the user in an appropriate directory (probably not the login directory).

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see also the exit command above).

FILES
jete/profile
$HOME/.profile
/dev/null

USAGE
General.

(Not for UNIX System V Release 1.0) If a command is executed, and a com­
mand with the same name is installed in a directory in the search path before
the directory where the original command was found, the shell continues to
exec the original command. Use the hash command to correct.

(Not for UNIX System V Release 1.0) If the current directory or the one
above it is moved, pwd may not give the correct response. Use the command
cd with a full path-name to correct this situation.

SEE ALSO
CD(BU_CMD), ECHO(BU_CMD), PWD(BU_CMD), TEST(BU_CMD), UMASK(BU_CMD),
DUP(BA_SYS), EXEC(BA_SYS), FORK(BA_SYS), PIPE(BA_SYS), SIGNAL(BA_SYS),
SYSTEM(BA_SYS), ULlMIT(BA_SYS), UMASK(BA_SYS), WAIT(BA_SYS).

The UNIX System User's Manual 107

Basic Utilities

NAME

sleep - suspend execution for an interval

SYNOPSIS

sleep time

DESCRIPTION

The command s lee p suspends execution for time seconds. It is used to exe­
cute a command after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true

USAGE

General.

SEE ALSO

do

done

command
sleep 37

ALARM(BA_ SYS), SLEEP(BA _ SYS).

108 The UNIX System User's Manual

Basic Utilities

NAME

sort - sort and/or merge files

SYNOPSIS
a,., ... +- 1_ ,,1 1_,.,ro",n",1 l_u1-......... 1 I_ ,.,.~.,.I I_A4'~ .., ... 1 I_n+-vl 1 " .. 1 - -- -.. ----... ---"'r-.. · .. .I _ -... -- _ ... - - --.II r-- .
l-pos211 Vilesl

DESCRIPTION

The command sort sorts lines of all the named files together and writes the
result on the standard output. The standard input is read if - is used as a file
name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is
lexicographic by bytes in machine collating sequence.

The following options alter the default behavior:

-c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal
keys.

-ooutput The argument given is the name of an output file to use instead
of the standard output. This file may be the same as one of the
inputs. There may be optional blanks between -0 and output.

-ykmem The amount of main memory used by the sort has a large
impact on its performance. Sorting a small file in a large
amount of memory is a waste. If this option is omitted, sort
begins using a system default memory size, and continues to use
more space as needed. If this option is presented with a value,
kmem, sort will start using that number of kilobytes of
memory, unless the administrative minimum or maximum is
violated, in which case the corresponding extremum will be used.
Thus, -yO is guaranteed to start with minimum memory. By
convention, -y (with no argument) starts with maximum
memory.

-zrecsz The size of the longest line read is recorded in the sort phase so
buffers can be ",llocated during the merge phase. If the sort
phase is omitted via the -c or -m options, a popular system
default size will be used. Lines longer than the buffer size will
cause sort to terminate abnormally. Supplying the actual
number of bytes in the longest line to be merged (or some larger
value) will prevent abnormal termination.

The following options override the default ordering rules.

The UNIX System User's Manual 109

Basic Utilities

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Fold lower case letters into upper case.

-i Ignore characters outside the ASCII range 040-0176 in non-numeric com-
parisons.

-n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. The -n option implies the -b option (see below).
Note that the -b option is only effective when restricted sort key
specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached
to a specific sort key (described below), the specified ordering options override
all global ordering options for that key.

The notation +pos 1 -pos2 restricts a sort key to one beginning at pos 1
and ending at pos2. The characters at positions pos 1 and pos2 are
included in the sort key (provided that po s 2 does not precede po s 1). A
missing -pos2 means the end of the line.

Specifying po s 1 and po s 2 involves the notion of a field, a minimal
sequence of characters followed by a field separator or a newline. By default,
the first blank (space or tab) of a sequence of blanks acts as the field separa­
tor. All blanks in a sequence of blanks are considered to be part of the next
field; for example, all blanks at the beginning of a line are considered to be
part of the first field. The treatment of field separators can be altered using
the options:

-tx Use x as the field separator character; x is not considered to be part of
a field (although it may be included in a sort key). Each occurrence of
x is significant (e.g., xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending posi­
tions of a restricted sort key. If the -b option is specified before the
first +pos 1 argument, it will be applied to all +pos 1 arguments.
Otherwise, the b flag may be attached independently to each +pos 1 or
-pos2 argument (see below).

The arguments pos 1 and pos2 each have the form m.n optionally fol­
lowed by one or more of the flags bdfinr. A starting position specified by
+m.n is interpreted to mean the n+ 1st character in the m+ 1st field. A
missing .n means .0, indicating the first character of the m+ 1st field. If the b
flag is in effect n is counted from the first non-blank in the m+ 1st field;
+m.Ob refers to the first non-blank character in the m+ 1st field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the mth field. A missing .n

110 The UNIX System User's Manual

Basic Utilities

means .0, indicating the last character of the mth field. If the b flag is in
effect n is counted from the last leading blank in the m+ 1st field; -m.1b
refers to the first non-blank in the m+ 1st field.

When there are multiple sort keys, later keys are compared only after all ear­
lier keys compare equal. Lines that otherwise compare equal are ordered with
all bytes significant.

EXAMPLES

Sort the contents of infile with the second field as the sort key:
sort +1 -2 infile

Sort, in reverse order, the contents of infile 1 and infile2, placing
the output in outfile and using the first character of the second field as
the sort key:

sort -r -0 outfile +1.0 -1.2 infile1 infile2

Sort, in reverse order, the contents of infile1 and infile2 using the
first non-blank character of the second field as the sort key:

sort -r +1.0b -1.1b 1nf11e1 1nf11e2

Print the password file sorted by the numeric user ID (the third colon­
separated field):

sort -t: +2n -3 letc/passwd

Print the lines of the already sorted file infile, suppressing all but the
first occurrence of lines having the same third field (the options -um with just
one input file make the choice of a unique representative from a set' of equal
lines predictable):

sort -um +2 -3 infile

ERRORS

Sort comments and exits with non-zero status for various trouble conditions
(e.g., when input lines are too long), and for disorder discovered under the
-c option.

When the last line of an input file is missing a newline character, sort
appends one, prints a warning message, and continues.

USAGE

General.

SEE ALSO
COMM(BU _ CMD), JOIN(AU _ CMD), UNIQ(BU _ CMD).

The UNIX System User's Manual 111

Basic Utilities

NAME

spell - find spelling errors

SYNOPSIS

spe 11 I-vll-bll-xll-tlocal..filellfilesl

DESCRIPTION

The command spell collects words from the named files and looks them up
in a spelling list. Words that neither occur among nor are derivable (by
applying certain inflections, prefixes, and/or suffixes) from words in the spel­
ling list are printed on the standard output. If no files are named, words are
collected from the standard input.

Under the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality. travelled, etc., this option insists upon -ise in
words like standardise.

Under the -x option, every plausible stem is printed with - for each word.

Under the +Iocal..file option, words found in local..file are removed from
spell's output. The argument local..file is the name of a user-provided
file that contains a sorted list of words, one per line. With this option, the
user can specify a set of words that are correct spellings (in addition to
s p e 11 ' s own spelling list) for each job.

USAGE
End-user.

CAVEATS

In order to the command syntax standard, the +Iocal..file option will be
changed to the form -f/ocal..file. The old form will continue to be accepted
for some time.

112 The UNIX System Users Manual

Basic Utilities

NAME

split - split a file into pieces

SYNOPSIS
split I -n Ilfilelnamell

DESCRIPTION
The command s p 1 i t reads file and writes it in n-line pieces (default 1000
lines) onto a set of output files. The name of the first output file is name with
aa appended, and so on lexicographically, up to zz (a maximum of 676 files).
The argument name cannot be longer than (NAME_MAX}-2 characters. If no
output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input
file is used.

USAGE
General.

SEE ALSO
CSPLlT(AU _ CMD).

The UNIX System User's Manual 113

Basic Utilities

NAME

sum - print checksum and block count of a file

SYNOPSIS

sum I-r) file

DESCRIPTION

The command sum calculates and prints a checksum for the named file, and
also prints the space used by the file, in 512-byte units. The option -r
causes an alternate algorithm to be used in computing the checksum.

The algorithms used are uniform across all UNIX System V implementations, so
that the same checksum is obtained for the same file, independent of the
hardware and implementation.

USAGE

General.

114 The UNIX System User's Manual

Basic Utilities

NAME

tail - deliver the last part of a file

SYNOPSIS

tail !+!-ll7umherHlbc!fJ!] Vile!

DESCRIPTION
The command tail copies the named file to the standard output beginning
at a designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from
the end of the input (if number is null, the value 10 is assumed). The argu­
ments number is counted in units of lines, blocks, or characters, according to
the appended option 1. b. or c. When no units are specified, counting is
by lines.

With the -f ("follow") option, if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied, but will enter
an endless loop: it sleeps for a second and then attempts to read and copy
further records from the input file. Thus it may be used to monitor the
growth of a file that is being written by some other process. For example, the
command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time ta i 1 is initiated and killed. As
another example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that
are appended to fred between the time tail is initiated and killed.

USAGE
General.

Tails relative to the end of the file are saved in a buffer, and thus are limited
in length.

Various kinds of anomalous behavior may happen with character special files.

The UNIX System User's Manual 115

Basic Utilities

NAME

tee - join pipes and make copies of input

SYNOPSIS

tee 1- i) I-a] lfile] •••

DESCRIPTION

The command tee transcribes the standard input to the standard output and
makes copies in the files. The -i option ignores interrupts; the -a option
causes the output to be appended to the files rather than overwriting them.

USAGE
General.

116 The UNIX System User's Manual

TEST(BU_CMD) Basic Utilities

NAME

test - condition evaluation command

SYNOPSIS
test expr
lexprl

DESCRIPTION

The command t est evaluates the expression expr and, if its value is true,
returns a zero (true) exit status; otherwise, a non-zero (false) exit status is
returned; t est also returns a non-zero exit status if there are no arguments.
The following primitives are used to construct expr:

-r file

-w file

-x file

-ffile

-dfile

-cfile

-bfile

-pfile

-ufile

-gfile

-sfile

-tlftldes]

-z sl

-n sl

sl ... s2

sl !- s2

sl

nl -eq n2

true if file exists and is readable.

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is .tildes (I
by default) is associated with a terminal device.

true if the length of string sl is zero.

true if the length of the string sl is non-zero.

true if strings sl and s2 are identical.

true if strings sl and s2 are not identical.

true if s 1 is not the null string.

true if the integers nl and n2 are algebraically equal. Any
of the comparisons -ne, -gt, -ge, -It, and -Ie
may be used in place of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-a binary and operator.

The UNIX System User's Manual 117

Basic Utilities TEST(BU_CMD)

-0 binary or operator (-a has higher precedence than -0).

(expr) parentheses for grouping.

Notice that all the operators and flags are separate arguments to te s t.
Notice also that parentheses are meaningful to sh and, therefore, must be
escaped.

In the second form of the command (i.e., the one that uses I J, rather than the
word t est), the square brackets must be delimited by blanks.

USAGE

General.

SEE ALSO
FIND(BU _ CMD), SH(BU _ CMD).

118 The UNIX System User's Manual

Basic Utilities

NAME

touch - update access and modification times of a file

SYNOPSIS
touch l-amcl lmmddhhmmlyyllfile .•.

DESCRIPTION
The command touch causes the access and modification times of each file
to be updated. The file is created if it does not exist. If no time is specified
the current time is used. The -a and -m options cause touch to update
only the access or modification times respectively (default is -am). The
-c option silently prevents touch from creating the file if it did not previ­
ously exist.

The return code from touch is the number of files for which the times could
not be successfully modified (including files that did not exist and were not
created).

USAGE
General.

The UNIX System Users Manual 119

Basic Utilities

NAME

tr - translate characters

SYNOPSIS
tr I -cds)Istring! Istring2))

DESCRIPTION

The command tr copies the standard input to the standard output with sub­
stitution or deletion of selected characters. Input characters found in string!
are mapped into the corresponding characters of string2. Any combination of
the options -cds may be used:

-c Complements the set of characters in string! with respect to the
universe of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string!.

-s Squeezes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from char­
acter a to character z, inclusive.

[a*n) Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A zero or
missing n is taken to be huge; this facility is useful for padding
string2.

The escape character \ may be used to remove special meaning from any char­
acter in a string. In addition, \ followed by 1, 2, or 3 octal digits stands for
the character whose ASCII code is given by those digits.

The following example creates a list of all the words in filel one per line in
file2, where a word is taken to be a maximal string of alphabetics. The strings
are quoted to protect the special characters from interpretation by the com­
mand interpreter; 012 is the ASCII code for newline.

USAGE

General.

tr -cs "[A-Z][a-z]" "[\012*]" <file! >file2

The command tr does not handle ASCII NUL in stringl or string2; it always
deletes NUL from input.

120 The UNIX System User's Manual

TRUE(BU_CMD) Basic Utilities

NAME
true, false - provide truth values

SYNOPSIS

true

false

DESCRIPTION
The command true does nothing, and returns exit code zero. The command
fa 1 s e does nothing, and returns a non-zero exit code. They are typically
used to construct command procedures. For example,

while true
do

command
done

USAGE

General.

SEE ALSO

SH(BU_CMD).

The UNIX System Users Manual 121

Basic Utilities

NAME

umask - set file-creation mode mask

SYNOPSIS

umask 10001

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively [see
CHMOD(BU_CMD)]. The value of each specified digit is subtracted from the
corresponding "digit" specified by the system for the creation of a file. For
example, umask 022 removes group and others write permission (files nor­
mally created with mode 777 become mode 755; files created with mode
666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

USAGE
General.

SEE ALSO
CHMOD(BU _ CMD).

122 The UNIX System User's Manual

Basic Utilities

NAME
uname - print name of current system

SYNOPSIS
unamel =snrvIna)

DESCRIPTION
The command uname prints the current system name on the standard output
file. The options cause selected information returned by UNAME(BA_SYS) to be
printed:

-s print the system name (default). This is a name by which the system is
known in the local installation.

-n print the nodename. The nodename may be a name by which the sys­
tem is known to a communications network.

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

USAGE
General.

SEE ALSO
UNAME(BA_SYS).

The UNIX System User's Manual 123

Basic Utilities

NAME

uniq - report repeated lines in a file

SYNOPSIS

uniq [-udo [+n I [-n II [input [output))

DESCRIPTION

The command uniq reads the input file comparing adjacent lines. In the
normal case, the second and succeeding copies of repeated lines are removed;
the remainder is written on the output file. The arguments input and output
should always be different. Note that repeated lines must be adjacent in order
to be found [see SORT(BU_CMD»). If the -u flag is used, just the lines that
are not repeated in the original file are output. The -d option specifies that
one copy of just the repeated lines is to be written. The normal mode output
is the union of the -u and -d mode outputs.

The -0 option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times it
occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

-n The first n fields together with any blanks before each are ignored.
A field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before char­
acters.

USAGE

General.

SEE ALSO

COMM(BU _ CMD), SORT(BU _ CMD).

124 The UNIX System User's Manual

Basic Utilities

NAME

wait - await completion of process

SYNOPSIS

wait [pidl

DESCRIPTION
With no argument, wait waits until all processes started with 8. have com­
pleted, and reports on abnormal terminations. If a numeric argument pid is
given, and is the process id of a background process, then wait waits until
that process has completed. Otherwise, if pid is not a background process,
wai t waits until all background processes have completed.

USAGE
General.

SEE ALSO
SH(BU_CMD), WAIT(BA_SYS).

The UNIX System User' s Manual 125

Basic Utilities

NAME

WC - word count

SYNOPSIS

we [-1 wei {filesl

DESCRIPTION

The command we counts lines, words, and characters in the named files, or in
the standard input if no files appear. It also keeps a total count for all named
files. A word is defined as a maximal string of characters delimited by spaces,
tabs, or newlines.

The options 1, w, and e may be used in any combination to specify that a
subset of lines, words, and characters are to be reported. The default is
-lwe.

When files are specified on the command line, their names will be printed
along with the counts.

USAGE
General.

126 The UNIX System User's Manual

Chapter 2

Advanced Utilities

Advanced Utilities

NAME

at, batch - execute commands at a later time

SYNOPSIS
at time [date) [+ increment)
at -r job •••
at -1 [job)

batch

DESCRIPTION
The commands at and batch read commands from standard input to be
executed at a later time. The command a t allows you to specify when the
commands should be executed, while jobs queued with batch will execute
when system load level permits. The option - r removes jobs previously
scheduled with at. The -1 option reports all jobs scheduled for the invok­
ing user.

Standard output and standard error output are mailed to the user unless they
are redirected elsewhere. The environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
/usr /lib/cron/at. deny is checked to determine if the user should be
denied access to a t. If neither file exists, only root is allowed to submit a
job. If only at. deny exists and is empty, global usage is permitted. The
allow/deny files consist of one user name per line.

The time may be specified as 1,2, or 4 digits. One and two digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alter­
nately be specified as two numbers separated by a colon, meaning
hour:minute. A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recog­
nized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by a comma) or a day of the
week (fully spelled or abbreviated to three characters). Two special "days",
today and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less. If the given month is less than the current month (and
no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singu­
lar form is also accepted.)

Thus legitimate commands include:

The UNIX System User's Manual 129

Advanced Utilities

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

The commands at and batch write the job number and schedule time to
standard error.

The command batch submits a batch job. It is almost equivalent to
"at now", but not quite. For one, it goes into a different queue. For another,
"at now" does not work: it is too late (and results in an error message).

The option -r removes jobs previously scheduled by at or batch. The
job number is the number reported at invocation by at or batch. Job
numbers can also be obtained by using the -1 option. Only the super-user is
allowed to remove another user's jobs.

EXAMPLES

The a t and batch commands read from standard input the commands to
be executed at a later time. It may be useful to redirect standard output
within the specified commands:

This sequence can be used at a terminal:

batch
spell filename >outfile
EOT

This sequence, which demonstrates redireCting standard error to a pipe, is use­
ful in a command procedure (the sequence of output redirection specifications
is significant):

batch «1
s p e 11 filename 2> & 1 > outfile I ma i 1 loginid
!

To have a job reschedule itself, a t can be invoked from within the procedure.

FILES

lusr/lib/cron/at. allow - list of allowed users

lusr/lib/cron/at. deny - list of denied users

USAGE
General.

SEE ALSO
CRON(AU_CMD).

130 The UNIX System User's Manual

Advanced Utilities

NAME

chown, chgrp - change owner or group

SYNOPSIS

chown owner file

chgrp group file

DESCRIPTION

The command chown changes the owner of the files to owner. The owner
may be either a decimal user-ID or a login name found in the password file.

The command chgrp changes the group- ID of the files to group. The
group may be either a decimal groupoID or a group name found in the group
file.

If either command is invoked by other than the super-user, the set-user-ID and
set-groupoID bits of the file mode will be cleared.

FILES
/etc/passwd
/etc/group

USAGE
General.

SEE ALSO

CHMOD(BU_CMD), CHOWN(BA_SYS).

The UNIX System User's Manual 131

Advanced Utllltle.

NAME

cron - clock daemon

SYNOPSIS

/ete/eren

DESCRIPTION

The command eren executes commands at specified dates and times. Regu­
larly scheduled commands can be specified according to instructions found in
crontab files; users can submit their own crontab file via the erentab com­
mand. Commands which are to be executed only once may be submitted via
the a t command.

A history of all actions taken by cron are recorded in a system log file.

USAGE
Administrator.

Since eren never exits, it should only be executed once. This is best done
by running it from the initialization process.

SEE ALSO
ATCAU_CMD), CRONTAB(AU_CMD), SH(BU_CMD).

132 The UNIX System User's Manual

CRONTAB(AU_CMD)

NAME

crontab - user crontab file

SYNOPSIS
crontab Ifile)
crontab -r
crontab -1

DESCRIPTION

Advanced Utllltle.

The command crontab copies the specifiedjile, or standard input if no file
is specified, into a directory that holds all users' crontabs. The -r option
removes a user's crontab from the crontab directory. The option -1 will list
the crontab file of the invoking user.

Users are permitted to use crontab if their names appear in the file
/usr/lib/cron/cron. allow. If that file does not exist, the file
/usr/lib/cron/cron. deny is checked to determine if the user should
be denied access to crontab. If neither file exists, only root is allowed to
submit a job. If only cron. deny exists and is empty, global usage is per­
mitted. The allow/deny files consist. of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month 0-31),
month of the year (1-12),
day of the week (0-6 with O-Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or
a list of elements separated by commas. An element is either a number or two
numbers separated by a minus sign (meaning an inclusive range). Note that
the specification of days may be made by two fields (day of the month and
day of the week). If both are specified as a list of elements, each one is
effective independent of the other. For example, 0 0 1,15 • 1 would run a
command on the first and fifteenth of each month, as well as on every Mon­
day. To specify days by only one field, the other field should be set to • (for
example, 00 •• 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the
command interpreter at the specified times. A percent character in this field
(unless escaped by \) is translated to a p.ewline charact~r. Only the first line
(up to a % or end of line) of the command field is executed by the command
interpreter. The other lines are made available to the command as standard
input. The command cron supplies a default environment, defining the
environmental variables HOME, LOGNAME, and PATH.

NOTE: If standard output and standard error are not redirected, any gen­
erated output or errors will be mailed to the user.

The UNIX System User's Manual 133

Advanced Utilities CRONTAB(AU_CMD)

FILES

/usr/lib/cron/cron. allow list of allowed users

/usr/lib/cron/cron. deny list of denied users

USAGE
General.

The new crontab file for a user overwrites an existing one.

SEE ALSO
SH(BU _ CMD), CRON(AU _ CMD).

134 The UNIX System User's Manual

Advanced Utltltles

NAME

csplit - context split

SYNOPSIS
C8plit (-81 (-kl (-fprejixljile argJ (••• argnl

DESCRIPTION

The command C 8 P 1 i t reads file and separates it into n+ 1 sections, defined
by the arguments argJ... argn. By default the sections are placed in xxOO ...
xxnn (nn may not be greater than 99). These sections get the following
pieces of file:

00: From the start of file up to (but not including) the line referenced
byargJ.

01: From the line referenced by arg J up to the line referenced by
arg2.

n+ 1: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The options to C 8 P 1 it are:

- 8 C 8 P 1 i t normally prints the character counts for each file
created. If the - 8 option is present, C 8 P 1 i t suppresses the
printing of all character counts.

- k C 8 P 1 it normally removes created files if an error occurs. If the
-k option is present, c8pli t leaves previously created files
intact.

-fprefix
If the -f option is used, the created files are named prefixO 0 ...
prefixn. The default is xx 00 ... xxn.

The arguments (argJ ... argn) to C 8 P 1 i t can be a combination of the fol­
lowing:

Irexpl A file is to be created for the section from the current line up
to (but not including) the line containing the regular expres­
sion rexp. (Regular expressions as in ED(BU_CMD) are
accepted.) The current line becomes the line containing
rexp. This argument may be followed by an optional + or
- some number of lines (e.g., /Page/-S).

%rexp% This argument is the same as Irexp/, except that no file is
created for the section.

1 ine no A file is to be created from the current line up to (but not
- including) the line number line no. The current line

becomes line no.

The UNIX System User's Manual 1:35

Advanced Utilities CSPLlT(AU_CMD)

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows lnno,
the file will be split every lnno lines (num times) from
that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions may
not contain embedded newlines. The command c s p 1 it does not affect the
original file; it is the user's responsibility to remove it.

EXAMPLES
This example creates four files, cobolOO ... cobol08:

csplit -fcobol file '/procedure division/' /parS./
/par16./

After editing the split files, they can be recombined as follows:

cat cobolO[0-3] > file

Note that this example overwrites the original file.

This example would split the file at every 100 lines, up to 10,000 lines:

csplit -k file 100 {99}

The -k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit -k prog.c '"main(''' '/A}/+1' {20}

Assuming that prog. c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog. c.

ERRORS

An error is reported if an argument does not reference a line between the
current position and the end of the file.

USAGE
General.

SEE ALSO

ED(BU_CMD), SH(BU_CMD).

136 The UNIX System User's Manual

Advanced Utilities

NAME

cu - call another system

SYNOPSIS
eu I-s speed) 1-1linell-h) [-t) [-d) [-0 -e) [-n) teinD

eu [-sspeedl [-hI [-d) [-0 : -e) -1 line

eu[-hJ[-dJ[-o : -e)systemname

DESCRIPTION
The command eu calls up another system, which usually is a computer sys­
tem running UNIX System V, but may be a terminal, or a computer system
running another operating system. It manages an interactive conversation,
with possible transfers of ASCII files. The third form above, using system­
name, is new in UNIX System V Release 2.0.

The command eu accepts the following options and arguments:

-sspeed

-1 line

-h

-t

-d

-0

-e

-n

Specifies the transmission speed. The default value is "Any"
speed, depending on line order in the system devices file.

Specifies a device name to use as the communication line. This
can be used to override the search that would otherwise take
place for the first available line having the right speed. When
the -1 option is used without the -s option, the speed of a
line is taken from the devices file. When the -1 and - s
options are used together, eu searches the devices file to check
if the requested speed for the requested line is available. If so,
the connection is made at the requested speed; otherwise, an
error message is printed and the call is not made. If the specified
device is associated with an auto dialer, a telephone number
must be provided. Using this option with systemname rather
than teinD is not allowed (see systemname below).

Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage­
return-line-feed pairs is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data sent to the
remote system.

Designates that even parity is to be generated for data sent to
the remote system.

For added security, will prompt the user to provide the telephone
number to be dialed rather than taking it from the command
line. (New in UNIX System V Release 2.0.)

The UNIX System User's Manual 137

Advanced Utilities

teinD When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of 4 seconds.

systemname A uucp system name may be used rather than a telephone
number; in this case, cu will obtain an appropriate direct line
or telephone number from a system file.

Note: the systemname option should not be used in conjunction
with the -1 and -s options as cu will connect to the first
available line for the system name specified ignoring the
requested line and speed.

After making the connection, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with -,
passes it to the remote system; the receive process accepts data from the
remote system and, except for lines beginning with -,passes it to the standard
output. Normally, an automatic DC3/DCl protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with - have spe­
cial meanings.

The transmit process interprets the following user initiated commands:

terminate the conversation.

-Icmd.

-$cmd.

-%cd

escape to an interactive command interpreter on the
local system.

execute cmd on the local system

run cmd locally and send its output to the remote sys-
tem for execution.

change the directory on the local system. (New in
UNIX System V Release 2.0.)

-%take from [to] copy file from (on the remote system) to file to on
the local system. If to is omitted, the from argu­
ment is used in both places.

-%put from [to] copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is
used in both places.

-%break

-%nostop

send the line -1 ine to the remote system.

transmit a BREAK to the remote system (which can
also be specified as - %b).

toggles between DC3/DCl input control protocol and no
input control. This is useful in case the remote system
is one which does not respond properly to the DC3 and
DC 1 characters.

138 The UNIX System User's Manual

Advanced Utilities

The receive process normally copies data from the remote system to its start­
dard output.

The use of -%put requires STTY(AU_CMD) and CAT(BU_CMD) on the remote
side. It also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local system.
Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo and cat on the
remote system. Also, tabs mode [see STTY(AU_CMD)] should be set on the
remote system if tabs are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently
used on system Y to connect to system Z, commands on system Y can be
executed by using --. For example, uname can be executed on Z, X, and Y
as follows (the response is given in brackets):

uname [Z]
- [X] I uname [X]
--[Y] luname [Y]

In general, - causes the command to be executed on the original machine; -­
causes the command to be executed on the next machine in the chain.

EXAMPLES
To dial a system whose telephone number is 9 1 201 555 1212 using 1200
baud (where dial tone is expected after the 9):

cu -s 1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line:
cu -1 /dev/ttyXX or5 cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s 1200 -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -1 cu1XX 9=12015551212

To use a system name:
cu system name

ERRORS
Exit code is 0 for normal exit, otherwise, -1.

USAGE
End-user.

SEE ALSO
CAT(BU _ CMD), ECHO(BU _ CMD), STTY(AU _ CMD), UNAME(BU _ CMD),

UUCP(AU_CMD).

The UNIX System User's Manual 139

Advanced Utilities

NAME

dd - convert and copy a file

SYNOPSIS

dd loption=value] •••

DESCRIPTION

The command dd copies the specified input file to the specified output with
possible conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw physical
110.

Option
if=file
of=file
ibs=n
obs=n
bs=n

cbs=n
skip=n
seek=n
count=n
conv=ascii
ebcdic
ibm
lcase
ucase
swab
noerror
sync

Values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done
conversion buffer size
skip n" input blocks before starting copy
seek n blocks from beginning of output file before copying
copy only n" input blocks
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input block to ibs
several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate a product.

The option cbs is used only if ascii or ebcdic conversion is specified.
In the former case cbs characters are placed into the conversion buffer, con­
verted to ASCII, and trailing blanks trimmed and newline added before sending
the line to the output. In the latter case ASCII characters are read into the
conversion buffer, converted to EBCDIC, and blanks added to make up an out­
put block of size cbs.

After completion, dd reports the number of whole and partial input and out­
put blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per block into the ASCII file x:

140 The UNIX System User's Manual

dd if=/dev/rmt/Om of=x ibs=800 cbs=80
conv=ascii,lcase

Advanced Utilities

Note the use of raw magtape. The command dd is especially suited to I/O
en the ra'.v physical devices because it a.!!ows reading and writing in arbitrary
block sizes.

USAGE

General.

New-lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC.

The UNIX System User's Manual 141

Advanced Utilities

NAME
dircmp - directory comparison

SYNOPSIS
dircmp (-dl (-sl dirl dir2

DESCRIPTION
The command dircmp examines dirl and dir2 and generates various tabu­
lated information about the contents of the directories. Listings of files that

. are unique to each directory are generated for all the options. If no option is
specified, a list is output indicating whether the file names common to both
directories have the same contents.

-d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in DIFF(BU_CMD).

-6 Suppress messages about identical files.

USAGE
General.

SEE ALSO
CMP(BU _ CMD), DIFF(BU _ CMD).

142 The UNIX System User's Manual

Advanced Utilities

NAME
egrep, fgrep - search a file for a pattern

SYNOPSIS
egrep [options! [expression! Viles!

fgrep loptionsllstringsllfilesl

DESCRIPTION
The egrep and fgrep commands search the input files (standard input
default) for lines matching a pattern. Normally, each line found is copied to
the standard output. The patterns used by egrep are full regular expres­
sions; fgrep patterns are fixed strings. The following options are recog­
nized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep only).
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons.
-1 Only the names of files with matching lines are listed (once), separated

by newlines.
-n Each line is preceded by its relative line number in the file.
-e expression

(egrep only.) Same as a simple expression argument, but useful
when the expression begins with a -

-f file
The regular expression (egrep) or strings list (fgrep) is taken
from the file.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using characters in expression that may also be mean­
ingful to the command interpreter. It is safest to enclose the entire expression
argument in single quotes' ... '.

The command fgrep searches for lines that contain one of the strings
separated by newlines.

The command egrep accepts regular expressions as in ED(BU_CMD), except
for \ (and \), with the addition of:

1. A regular expression followed by + matches one or more occurrences
of the regular expression.

2. A regular expression followed by? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by I or by a newline match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses 0 for grouping.

The order of precedence of operators is II, then .? +, then concatenation, then
I and newline.

The UNIX System User's Manual 143

Advanced Utilities

ERRORS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

USAGE
General.

Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ
is defined in /usr/include/stdio. h.)

CAVEATS
The functionality of egrep and fgrep will eventually be provided in
GREP(BU_CMD), and these two commands discontinued.

SEE ALSO
ED(BU _ CMD), GREP(BU _ CMD), SED(BU _ CMD).

144 The UNIX System User's Manual

Advanced Utilities

NAME

ex - text editor

SYNOPSIS

ex I-I I-vi I-rl I-RI I+commandl 1-11 l/i1e ... 1

DESCRIPTION
The command ex is a line oriented text editor, which supports both com­
mand and display editing Isee VI(AU_CMD)I. The command line options are:

-v

-r

-R

+ command

-1

Suppress all interactive-user feedback. This is useful in pro­
cessing editor scripts.

Invokes vi

Recover the named files after an editor or system crash. If
no files are named a list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Begin editing by executing the specified editor search or posi­
tioning command.

LISP mode; indents appropriately for lisp code; the () {}
[[and]] commands in vi are modified to have meaning
for lisp.

The file argument(s) indicates files to be edited, in the order specified.

The name of the file being edited by ex is the current file. The text of
the file is read into a buffer, and all editing changes are performed in this
buffer; changes have no effect on the file until the buffer is written out expli­
citly.

The alternate file name is the name of the last file mentioned in an editor
command, or the previous current file name if the last file mentioned became
the current file. The character % in filenames is replaced by the current file
name, and the character # by the alternate file name.

The named buffers a through z may be used for saving blocks of text during
the edit. If the buffer name is specified in upper case, the buffer is appended
to rather than being overwritten.

The read-only mode can be cleared from within the edit by setting the
noreadon1y edit option (see Edit Options below). Writing to a different
file is allowed in read-only mode; in addition, the write can be forced by using
I (see the write command below).

When an error occurs e x sends the BEL character to the terminal (to sound
the bell) and prints a message. If an interrupt signal is received, ex returns
to the command level in addition to the above actions. If the editor input is
from a file, ex exits at the interrrupt. (The bell action may be disabled by
the use of an edit option, see below')

The UNIX System Users Manual 145

Advanced Utilities

If the system crashes, ex attempts to preserve the buffer if any unwrtten
changes were made. The command line option -r is used to retrieve the
saved changes.

At the beginning, ex is in the command mode, which is indicated by the :
prompt. The input mode is entered by append, insert, or
change commands; it is left (and command mode re-entered) by typing a
period . alone at the beginning of a line.

Command lines beginning with the double quote character "are ignored.
(this may used for comments in an editor script,)

Addressing

n

$

%

+n
-n

/pat/
?pat?

'x

Dot . refers to the current line. There is always a
current line; the positioning may be the result of an expli­
cit movement by the user, or the result of a command that
affected multiple lines (in which case it is usually the last
line affected).

The nth line in the buffer, with lines numbered sequen­
tially from 1.

The last line in the buffer.

Abbreviation for 1, $, the entire buffer.

An offset relative to the current line. (The forms . + 3 ,
+ 3, and + + + are equivalent.)

Line containing the pattern (regular expression) pat, scan­
ning forward (/ /) or backward (??). The trailing / or
? may be omitted if the line is only to be printed. If the
pattern is omitted, the previous pattern specified is used.

Lines may be marked using single lower case letters (see
the mark command below); 'x refers to line marked x.
In addition, the previous current line is marked before
each non-relative motion; this line may be referred to by
using 'for x.

Addresses to commands consist of a series of line addresses (specified as
above), separated by ,or j. Such address lists are evaluated left-to­
right. When j is the separator, the current line is set to the value of
the previous address before the next address is interpreted. If more
addresses are given than the command requires, then all but the last one
or two are ignored. Where a command requires two addresses, the first
line must precede the second one in the buffer. A null address in a list
defaults to the current line.

146 The UNIX System User's Manual

EX(AU_CMD) Advanced Utilities

Command names and abbreviations
abbrev ab next n unmap unm
append a number #nu version ve
args ar preserve pre visual vi
_L __ ~_

c -_!_ p write w I,;mlllgc pelln

copy co put pu xit x
delete d quit q yank ya
edit e read re (window) z
file f recover re (escape) !
global gv rewind rew OshifO <
insert set se (rshift) >
join j shell sh (resubst) & s
list I source so (scroll) AD
map substitute s Oine no)
mark kma unabbrev una
move m undo u

Command descriptions
In the following, 1 in e is a single line address, given in any of the
forms described in the Addressing section above; range is a pair of
line addresses, separated by a comma or semicolon (see the Addressing
section for the difference between the two); count is a positive
integer, specifying the number of lines to be affected by the command;
f 1 a g s is one or more of the characters #, p, and 1; the correspond·
ing command to print the line is executed after the command completes.
Any number of + or - characters may also be given with these flags.

When count is used, range is not effective; only a line number
should be specified instead, to indicate the first line affected by the com·
mand. (If a range is given, then the last line of the range is taken as the
starting line for the command,)

These modifiers are all optional; the defaults are as follows, unless other·
wise stated: the default for 1 ine is the current line; the default for
range is the current line only C,,); the default for count is 1; the
default for flags is null.

When only a line or a range is specified (with a null command),
the implied command is print; if a null line is entered, the next line
is printed (equivalent to ' • + 1 p')

ab word rhs
Add the named abbreviation to the current list. In visual mode, if
word is typed as a complete word during input, it is replaced by
the string rhs.

line a
Enters input mode; the input text is placed after the specified line.
If line 0 is specified, the text is placed at the beginning of the
buffer. The last input line becomes the current line, or the target

The UNIX System User's Manual 147

Advanced Utilities

ar

line, if no lines are input.

The argument list is printed, with the current argument inside
and].

range c count
Enters input mode; the input text replaces the specified lines. The
last input line becomes the current line; if no lines are input, the
effect is the same as a delete.

range co line flags
A copy of the specified lines (range) is placed after the specified
destination line; line 0 specifes that the lines are to be placed at the
beginning of the buffer.

range d buffer count
The specified lines are deleted from the buffer. If a named buffer is
specified, the deleted text is saved in it. The line after the deleted
lines becomes the current line, or the last line if the deleted lines
were at the end.

e +line file

f

Begin editing a new file. If the current buffer has been modified
since the last write, then a warning is printed and the command is
aborted. This action may be overridden by appending the character
1 to the command (" elf i 1 e"). The current line is the last line
of the buffer; however, if this command is executed from within
visual, the current line is the first line of the buffer. If the
+ 1 i ne option is specified, the current line is set to the specified
position, where line may be a number (or $) or specified as
"/pat" or "?pat".

Prints the current file name and other information, including the
number of lines and the current position.

range g /pat/ cmds
First marks the lines within the given range that match the given
pattern. Then the given command(s) are executed with • set to
each marked line.

Cmd s may be specified on multiple lines by hiding new lines with a
backslash. If cmds are omitted, each line is printed. Append,
change, and insert commands are omitted; the terminating
dot may be omitted if it ends cmds. Visual commands are
also permitted, and take input from the terminal.

The global command itself, and the undo command are not
allowed in cmds. The edit options autoprint, auto in­
dent and report are inhibited.

148 The UNIX System User's Manual

Advanced Utilities

range v /pat/ cmds
This is the same as the global command, except that cmds is
run on the lines that do not match the pattern.

line i
Enters input mode; the input text is piaced beiore the specified iine.
The last line input becomes the current line, or the line before the
target line, if no lines were input.

range j count flags
Joins the text from the specified lines together into one line. White
space is adjusted to provide at least one blank character, to if there
was a period at the end of the line, or none if the first following
character is a). Extra white space at the start of a line is dis­
carded.

Appending the command with a I causes a simpler join with no
white space processing.

range 1 count flags
Prints the specified lines with tabs printed as 'T and the end of
each line marked with a trailing $. (The only useful flag is #, for
line numbers,} The last line printed becomes the current line.

map x rhs
The map command is used to define macros for use in visual
mode. The first argument is a single character, or the sequence
'#n', where n is a digit, to refer to the function key n. When this
character or function key is typed in vis u a 1 mode, the action is
as if the corresponding rhs had been typed. If I is appended to
the command map, then the mapping is effective during insert
mode rather than command mode. Special characters, white space,
and newline must be escaped with a control-V to be entered in the
arguments.

line ma x
(The letter k is an alternative abbreviation for the mark com­
mand,} The specified line is given the specified mark x, which
must be a single lower case letter. (The x must be preceded by a
space or tab.) The current line position is not affected.

range m line

n

Moves the specified lines (range) to be after the target line. The
first of the moved lines becomes the current line.

The next file from the command line argument list is edited.
Appending a I to the command overrides the warning about the
buffer having been modifed since the last write (discarding any
changes). The argument list may be replaced by specifying a new
one on this command line.

The UNIX System User's Manual 149

Advanced Utilities

range nu count flags

pre

(The character # is an alternative abbreviation for the number
command.) Prints the lines, each preceded by its line number.
(The only useful flag is 1.) The last line printed becomes the
current line.

The current editor buffer is saved as though the system had just
crashed. This command is for use in emergencies, for example
when a write does not work, and the buffer cannot be saved in any
other way.

range p count
Prints the specified lines, with non-printing characters printed as
control characters in the form ,AX'; DEL is represented as 'A?'. The
last line printed becomes the current line.

line pu buffer

q

Puts back deleted or "yanked" lines. A buffer may be specified; oth­
erwise, the text in the unnamed buffer (where delted or yanked text
is placed by default) is restored.

Causes termination of the edit. If the buffer has been modified
since the last write, a warning is printed and the command fails.
This warning may be overridden by appending a I to the command
(discarding changes).

line r file
Places a copy of the specified file in the buffer after the target line
(which may be line 0 to place text at the beginning). If no file
is named the current file is the default. If there is no current file
then f i 1 e becomes the current file. The last line read becomes
the current line; in vis ua.1 the first line read becomes the current
line.

If file is given as "!string" then string is taken to be a
system command, and passed to the command interpreter; the resul­
tant output is read in to the buffer. A blank or tab must precede
the I.

rec file
Recovers f i 1 e from the save area, after an accidental hangup or
a system crash.

rew
The argument list is rewound, and the first file in the list is edited.
Any warnings may be overridden by appending a I.

se parame.ter
With no arguments, the set command prints those options whose
values have been changed from the default settings; with the

150 The UNIX System User's Manual

sh

Advanced Utilities

parameter a 11 it prints all of the option values.

Giving an option name followed by a ? causes the current value of
that option to be printed. The ? is necessary only for Boolean
valued options. Boolean options are given values by the form 'se
option' to turn them on, or 'se nooption' to turn them off;
string and numeric options are assigned by the form 'se
option-value'. More than one parameter may be given; they are
interpreted left to right.

See Edit Options below for further details about options.

The user is put into the command interpreter [usually sh; see
SH(BU_CMD»); editing is resumed on exit.

so file
Reads and executes commands from the specified file. Such so
commands may be nested.

range s Ipat/repll options count flags
On each specified line, the first instance of the pattern pat is
replaced by the string rep 1. (See Regular Expressions and
Replacement Strings below.} If options includes the letter g
(global), then all instances of the pattern in the line are substituted.
If the option letter c (confirm) is included, then before each substi­
tution the line is typed with the pattern to be replaced marked with
A characters; a response of y causes the substitution to be done,
while any other input aborts it. The last line substituted becomes
the current line.

una word

u

Delete word from the list of abbreviations.

Reverses the changes made by the previous editing command. For
this purpose, global and visual are considered single com­
mands. Commands which affect the external environment, such as
wri te, edit and next, cannot be undone. An undo can
itself be reversed.

unm x
The macro definition for x is removed.

ve
Prints the current version of the editor.

line vi type count
Enters visual mode at the specified line. The type is optional,
and may be - or ., as in the z command, to specify the position
of the specified line on the screen window. (The default is to place
the line at the top of the screen window.} A c oun t specifies an

The UNIX System User's Manual 151

Advanced Utilities

initial window size; the default is the value of the edit option win­
dow. The command Q exits visual mode. [For more information,
see VI(AU_CMD)]

range w file

x

Writes the specified lines (the whole buffer, if no range is given)
out to f i 1 e, printing the number of lines and characters written.
If f i 1 e is not specified, the default is the current file. (The com­
mand fails with an error message if there is no current file and no
file is specified.)

If an alternate file is specified, and the file exists, then the write will
fail; it may be forced by appending a I to the command. An exist­
ing file may be appended to by appending '> >' to the command.
If the file does not exist, an error is reported.

If the file is specified as '!string', then string is taken as a
system command; the command interpreter is invoked, and the
specified lines are passed as standard input to the command.

The command wq is equivalent to a w followed by a q; wq I is
equivalent to w I followed by q.

Writes out the buffer if any changes have been made, and then (in
any case) quits.

range ya buffer count
Places the specified lines in the named buffer. If no buffer is
specified, the unnamed buffer is used (where the most recently
deleted or yanked text is placed by default).

line z type count
If type is omitted, then count lines following the specified line
(default current line) are printed. The default for c oun t is the
value of the edit option window.

If type is specified, it must be - or .; a - causes the line to be
placed at the bottom of the screen, while a . causes the line to be
placed in the middle. The last line printed becomes the current
line.

command
The remainder of the line after the I is passed to the system com­
mand interpreter for execution. A warning is issued if the buffer
has been changed since the last write. A single I is printed when
the command completes. The current line position is not affected.

Within the text of command % and # are expanded as
filenames, and I is replaced with the text of the previous I com­
mand. (Thus I I repeats the previous I command.) If any such
expansion is done, the expanded line will be echoed.

152 The UNIX System User's Manual

Advanced Utilitle.

range I command
In this form of the I command, the specified lines (there is no
default; see previous paragraph) are passed to the command inter­
preter as standard input; the resulting output replaces the specified
lines.

range < count
Shift the specified lines to the left; the number of spaces to be
shifted is determined by the edit option shiftwidth. Only
white space (blanks and tabs)is lost in shifting; other characters are
not affected. The last line changed becomes the current line.

range > count
Shift the specified lines to the right, by inserting white space (see
previous paragraph for further details).

range & options count flags
Repeats the previous substitute command, as if '&' were replaced by
the previous 's/pat/repl/'. (The same effect is obtained by
omitting the '/pat/repl/' string in the substitute com­
mand.)

AD (control-D)
Control-D (Ascu EOT) prints the next n lines, where n is the
value of the edit option scroll.

line =
Prints the line number of the specified line (default last line). The
current line position is not affected.

Regular Expressions
Regular expressions are interpreted according to the setting of the edit
option magic; the following assumes the setting magic. The
differences caused by the setting nomagic are described below.

The following constructs are used to construct regular expressions:

char An ordinary character matches itself. The following charac­
ters are not ordinary, and must be escaped (preceded by '\')
to have their ordinary meaning: ,A at the beginning of a pat­
tern; '$ at the end of a pattern; '. anywhere other than the
beginning of a pattern; '., \, [, and -, anywhere in a pat­
tern.

When at the beginning of a pattern, matches the beginning
of the line.

$ When at the end of a pattern, matches the end of the line.

matches any single character in the line.

\< Matches the beginning of a "word". That is, the matched
string must begin in a letter, digit, or underline, and be

The UNIX System User's Manual 153

Advanced Utilities

preceded by the beginning of the line or a character other
than the above.

\> Matches the end of a "word" (see previous paragraph).

[string]Matches a~y single character in string. Within string,
the following have special meanings: a pair of characters
separated by - defines a range (e.g., '[a-z]' defines any
lower case letter); the character ", if it is the first one in
string, causes the construct to match characters other
than those specified in string. These special meaning
can be removed by escaping the characters.

*

\Coo\)

Matches zero or more occurrences of the preceding regular
expression.

Matches the replacement part of the last substitute
command.

A regular expression may be enclosed in escaped parentheses;
this serves only to identify them for substitution actions.

A concatenation of two regular expressions is a regular expression that
matches the concatenation of the strings matched by each component.

When nomagic is set, the only characters with special meanings are
" at the beginning of a pattern, $ at the end of a pattern, and '\'. The
characters ., *, [, and ~ lose their special meanings, unless escaped
by a '\'.

Replacement Strings
The character &. ('\& if nomagic is set) in the replacement string
stands for the text matched by the pattern to be replaced. The charac­
ter ~ ('\ - if noma g i c is set) is replaced by the replacement part of
the previous substitute command. The sequence "n', where n is
an integer, is replaced by the text matched by the pattern enclosed in
the nth set of parentheses ',(' and ") '. The sequence "u' (" 1 ')
causes the immediately following character in the replacement to be con­
verted to upper-case (lower-case), if this character is a letter. The
sequence "u' ("L') turns such conversion on, until the sequence "E'
or "e' is encountered, or the end of the replacement string is reached.

Edit Options
The command ex has a number of options that modify its behavior.
These options have default settings, which may be changed using the
set command (see above). Options may also be set at startup by put­
ting a set command string in the environmental variable EXINIT, or
in the file • exrc in the HOME directory, or in . exrc in the current
directory.

Options are Boolean unless otherwise specified.

154 The UNIX System User's Manual

Advanced Utilities

autoindent, ai
If autoindent is set, each line in insert mode is indented (using
blanks and tabs) to align with the previous line. (Starting indenta­
tion is determined by the line appended after, or the line inserted
before, or the first iine changed.) Additional indentation can be
provided as usual; succeeding lines will automatically be indented
to the new alignment. Reducing the indent is achieved by typing
control-D one or more times; the cursor is moved back
shiftwidth spaces for each control-D. (A A followed by a
control-D removes all indentation temporarily for the current line;
a 0 followed by a control-D removes all indentation.}

autoprint, ap
The current line is printed after each command that changes
buffer text. (Autoprint is suppressed in globals.}

autowrite, aw
The buffer is written (to the current file) if it has been modified,
and a next, rewind, or 1 command is given.

beautify, bf
Causes all control characters other than tab, newline and formfeed
to be discarded from the input text.

directory, dir
The value of this option specifies the directory in which the editor
buffer is to be placed. If this directory is not writeable by the
user, the editor quits.

edcompatible, ed
Causes the presence of g and c suffixes on substitute commands
to be remembered, and toggled by repeating the suffixes.

ignorecase, ic
All upper case characters in the text are mapped to lower case in
regular expression matching. Also, all upper case characters in
regular expressions are mapped to lower case, except in character
class specifications.

lisp
Autoindent mode, and the {} [[]] commands in
vis ua 1 are suitable modified for lisp code.

list
All printed lines will be displayed with tabs shown as 'AI', and the
end of line marked by a $.

magic
Changes interpretation of characters in regular expressions and
substitution replacement strings (see the relevant sections above).

The UNIX System Users Manual 155

Advanced Utilities

number, nu
Causes lines to be printed with line numbers.

paragraphs, para
The value of this option is a string, in which successive pairs of
characters specify the names of text-processing macros which begin
paragraphs. (A macro appears in the text in the form . xx,
where the . is the first character in the line.)

prompt
When set, command mode input is prompted for with a :; when
unset, no prompt is displayed.

redraw
The editor simulates an intelligent terminal on a dumb terminal.
(Since this is likely to require a large amount of output to the ter­
minal, it is useful only at high transmission speeds,)

remap
If set, then macro translation allows for macros defined in terms of
other macros; translation continues until the final product is
obtained. If unset, then a one-step translation only is done.

report
The value of this option gives the number of lines that must be
changed by a command before a report is generated on the number
of lines affected.

scroll
The value of this option determines the number of lines scrolled on
a control-D, and the number of lines displayed by the z command
(twice the value of scroll).

sections
The value of this option is a string, in which successive pairs of
characters specify the names of text-processing macros which begin
sections. (See paragraphs option above,)

shiftwidth, sw
The value of this option gives the width of a software tab stop,
used during autoindent, and by the shift commands.

showmatch, sm
In visual mode, when a) or} is typed, the matching (or { is
shown if it is still on the screen.

slowopen, slow
In vi sual mode, prevents screen updates during input to
improve throughput on unintelligent terminals.

tabstop, ts
The value of this options specifies the software tab stops to be used
by the editor to expand tabs in the input file.

156 The UNIX System User's Manual

FILES

Advanced Utilities

terse
When set, error messages are shorter.

window
The !!umbe!' of !i!!{~S i!! " text winnow in v'i~ sua 1 mode.

wrapscan, ws
When set, searches (using '/I' or '??') wrap around the end of the
file; when unset, searches stop at the beginning or the end of the
file, as appropriate.

wrapmargin, wm
In visual mode, if the value of this option is greater than zero
(say n), then a newline is automatically added to an input line, at
a word boundary, so that lines end at least n spaces from the
right margin of the terminal screen.

writeany, wa
Inhibits the checks otherwise made before write commands, allow­
ing a write to any file (provided the system allows it).

lusr/lib/terminfo/*l* terminfo terminal capability database

$HOME/.exrc

.I.exrc

USAGE

End-user.

editor initialization file

editor initialization file

The undo command causes all marks to be lost on lines that were changed
and then restored.

The z command prints a number of logical rather than physical lines. More
than a screen-ful of output may result if long lines are present.

Null characters are discarded in input files and cannot appear in resultant
files.

SEE ALSO

VI(AU_CMD).

The UNIX System User's Manual 157

Advanced Utilities

NAME

id - print user and group IDs and names

SYNOPSIS

id

DESCRIPTION
The command id writes a message on the standard output giving the user­
and group- IDs and the corresponding names of the invoking process. If the
effective and real IDs do not match, both are printed.

USAGE
General.

SEE ALSO
LOGNAME(AU_CMD), GETUID(BA_SYS).

158 The UNIX System User's Manual

Advanced Utilltle.

NAME

join - join two files on identical-valued field

SYNOPSIS
join [optiomJ/ile1 file2

DESCRIPTION
The command join performs an "equality join" on the files file] and file2.
If file] is -, the standard input is used in its place.

A field must be specified for each file as the "join field", on which the files are
compared. There is one line in the output for each pair of lines in file] and
file2 that have identical join fields. The output line normally consists of the
common field, then the rest of the line from file], then the rest of the line
fromfile2. This format can be changed by using the -0 option (see below).

The files file] and file2 must be sorted in increasing ASCII collating sequence
on the fields on which they are to be joined, normally the first in each line.

The default input field separators are blank, tab, or newline. In this case,
multiple separators count as one field-separator, and leading separators are
ignored. The default output field-separator is a blank.

Some of the options below use the argument n. This argument should be a
1 or a 2 referring to either file] or file2, respectively. The following options
are recognized:

-an

-es

-jnm

-olist

-tc

USAGE
General.

In addition to the normal output, produce a line for each unpair­
able line in file n, where n is 1 or 2.

Replace empty output fields by string s.

Join on the mth field of file n. If n is missing, use the mth field in
each file. Fields are numbered starting with 1.

Each output line comprises the fields specified in list, each element
of which has the form n . m , 1 where n is a file number and m is a
field number. The common field is not printed unless specifically
requested.

Use character c as a separator, for both input and output. Every
appearance of c in a line is significant.

Filenames that are numeric may cause conflict when the - 0 option is used
right before listing filenames.

SEE ALSO
AWK(BU_CMD), COMM(BU_CMD), SORT(BU_CMD), UNIQ(BU_CMD).

The UNIX System User's Manual 159

Advanced Utllltle.

NAME

logname - get login name

SYNOPSIS

logname

DESCRIPTION

The command logname returns the user's login name.

USAGE

General.

160 The UNIX System User's Manual

LOGNAME(AU _CMD)

Advanced Utilities

NAME

lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
lp ! - c! ! - ddes!! [-ml [-nnumber! ! -ooptionll- sl I-ttitlel [-wI files

cancel [idsl [printers I

DESCRIPTION

The command lp arranges for the named files and associated information
(collectively called a request) to be printed by a line printer. If no file names
are mentioned, the standard input is assumed. The file name - stands for the
standard input and may be supplied on the command line in conjunction with
named files. The order in which files appear is the same order in which they
will be printed.

The command lp associates a unique ID with each request and prints it on
the standard output. This ID can be used later to cancel (see cancel) or find
the status [see LPSTAT(AU_CMD») of the request.

The following options to lp may appear in any order and may be intermixed
with file names:

-c

-ddest

-m

-nnumber

Make copies of the files to be printed immediately when Ip
is invoked. Normally, files will not be copied, but will be
linked whenever possible. If the -c option is not given,
then the user should be careful not to remove any of the files
before the request has been printed in its entirety. It should
also be noted that in the absence of the -c option, any
changes made to the named files after the request is made
but before it is printed will be reflected in the printed output.

Choose dest as the printer or class of printers that is to do
the printing. If dest is a printer, then the request will be
printed only on that specific printer. If dest is a class of
printers, then the request will be printed on the first available
printer that is a member of the class. Under certain condi­
tions (printer unavailability, file space limitation, etc.),
requests for specific destinations may not be accepted [see
LPSTAT(AU_CMD»). By default, dest is taken from the
environmental variable LPDEST (if it is set). Otherwise, a
default destination (if one exists) for the computer system is
used. Destination names vary between systems [see
LPSTAT(AU_CMD)1.

Send mail [see MAIL(BU_CMD») after the files have been
printed. By default, no mail is sent upon normal completion
of the print request.

Print number copies (default of 1) of the output.

The UNIX System Users Manual 161

Advanced Utilities LP(AU_CMD)

-ooption Specify printer-dependent or class-dependent options.
Several such options may be collected by specifying the -0

keyletter more than once.

-8 Suppress messages from lp such as "request id is .. .".

-ttitle Print title on the banner page of the output.

-w Write a message on the user's terminal after the files have
been printed. If the user is not logged in, then mail will be
sent instead.

The command cancel cancels line printer requests that were made by the
lp .command. The command line arguments may be either request ids (as
returned by lp) or printer names [for a complete list, use LPSTAT(AU_CMD).]

Specifying a request id cancels the associated request even if it is currently
printing. Specifying a printer cancels the request which is currently printing
on that printer. In either case, the cancellation of a request that is currently
printing frees the printer to print its next available request.

USAGE

General.

SEE ALSO
LPSTAT(AU _ CMD), MAIL(BU _ CMD),

162 The UNIX System User's Manual

Advanced Utilities

NAME

lpstat - print LP status information

SYNOPSIS
lpstat !optiansl

DESCRIPTION
The command lpstat prints information about the current status of the LP
line printer system.

If no options are given, then lpstat prints the status of all requests made
to LP(AU_CMD) by the user. Any arguments that are not options are assumed
to be request ids as returned by lp [see LP(AU_CMD)1. The command
1 pst a t prints the status of such requests. The options may appear in any
order and may be repeated and intermixed with other arguments. Some of the
keyletters below may be followed by an optional list that can be in one of two
forms: a list of items separated from one another by a comma, or a list of
items enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-u"user1, user2, user3"

The omission of a list following such key letters causes all information relevant
to the keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

-a[list 1 Print acceptance status of destinations for output requests. list is a
list of intermixed printer names and class names.

-0[list 1 Print class names and their members. list is a list of class names.

-d Print the system default destination for output requests.

-o[list 1 Print the status of output requests. list is a list of intermixed
printer names, class names, and request ids.

-p[list 1 Print the status of printers. list is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

-t Print all status information.

-u[list 1 Print status of output requests for users. list is a list of login
names.

-v[list 1 Print the names of printers and the path names of the devices asso­
ciated with them. list is a list of printer names.

The UN/X System User's Manual 163

Advanced Utilities

USAGE

General.

SEE ALSO

LP(AU_CMD).

164 The UNIX System User's Manual

Advanced Utilities

NAME

mailx - interactive message processing system

SYNOPSIS

DESCRIPTION
The command rna i Ix provides a comfortable, flexible environment for send­
ing and receiving messages electronically. When reading mail, rna i Ix pro­
vides commands to facilitate saving, deleting, and responding to messages.
When sending mail, rna i 1 x allows editing, reviewing and other modification
of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the system
mailbox for that user. When rnaiIx is called to read messages, the mailbox
is the default place to find them. As messages are read, they are marked to be
moved to a secondary file for storage, unless specific action is taken, so that
the messages need not be seen again. This secondary file is called the mbox
and is normally located in the user's HOME directory (see MBOX, in ENVIRON­
MENTAL VARIABLES below for a description of this file). Messages remain in
this file until specifically removed.

On the command line, options start with a dash (-) and any other arguments
are taken to be destinations (recipients). If no recipients are specified,
rnai Ix will attempt to read messages from the mailbox. Command line
options are:

-e Test for presence of mail. The command rnai Ix prints
nothing and exits with a successful return code if there is
mail to read.

-f [filenamel Read messages from filename instead of mailbox. If no
filename is specified, the mbox is used.

-F Record the message in a file named after the first recipient.
Overrides the "record" variable, if set (see ENVIRONMENTAL
VARIABLES) .

-hnumber The number of network "hops" made so far. This is provided
for network software to avoid infinite delivery loops.

-H Print header summary only.

-i Ignore interrupts. See also "ignore" (ENVIRONMENTAL VARI-
ABLES).

-n Do not initialize from the system default Mailx.rc file.

-N Do not print initial header summary.

-raddress Pass address to network delivery software. All tilde com-
mands are disabled.

The UNIX System User's Manual 165

Advanced Utilities MAILX(AU_CMD)

-ssubject Set the Subject header field to subject.

-uuser Read user's mailbox. This is only effective if user's mailbox
is not read protected.

When reading mail, mailx is in command mode. A header summary of the
first several messages is displayed, followed by a prompt indicating ma i 1 x
can accept regular commands (see COMMANDS below). When sending mail,
mailx is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. As the message is typed, ma i 1 x will read
the message and store it in a temporary file. Commands may be entered by
beginning a line with the tilde (-) escape character followed by a single com­
mand letter and optional arguments. See TILDE ESCAPES for a summary of
these commands.

At any time, the behavior of ma i 1 x is governed by a set of environmental
variables. These are flags and valued parameters which are set and cleared
via the set and unset commands. See ENVIRONMENTAL VARIABLES below
for a summary of these parameters.

Regular commands are of the form:

[command) [msglistl [arguments)

If no command is specified in command-mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not treated
as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a 'current' message, marked by a '>' in the header summary. Many
commands take an optional list of messages (msglist) to operate on, which
defaults to the current message. A msglist is a list of message specifications
separated by spaces, which may include:

n Message number n.
The current message.
The first undeleted message.

$ The last message.
* All messages.
n -m An inclusive range of message numbers.
user All messages from user.
/string All messages with string in the subject line (case

ignored).
: c All messages of type c, where c is one of:
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type of mes­
sage specification makes sense.

166 The UNIX System Users Manual

Advanced Utilities

Other arguments are usually arbitrary strings whose usage depends on the
command involved. File names, where expected, can be specified with meta­
characters understood by the command interpreter. Special characters are
recognized by certain commands and are documented with the commands
below.

At start-up time, mailx reads commands from a system-wide file to initial­
ize certain parameters, then from a private start-up file (SHOMEI • mai lrc)
for personalized variables. Most regular commands are legal inside start-up
files, the most common use being to set up initial display options and alias
lists. The following commands are not legal in the start-up file: I, Copy,
edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. Any errors in the start-up file cause the
remaining lines in the file to be ignored.

COMMANDS

The following is a complete list of ma i 1 x commands:

I command
Escape to the command interpreter. See "SHELL" (ENVIRONMENTAL

VARIABLES) .

comment
Null command (comment). This may be useful in .mailrc files.

Print the current message number.

?
Prints a summary of commands.

alias alias name .. .

group alias name .. .
Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

al ternates name ...
Declares a list of alternate names for the user's login. When responding
to a message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alter­
nate names. See also "allnet" (ENVIRONMENTAL VARIABLES).

cd [directory]

chdir [directory]
Change directory. If directory is not specified, SHOME is used.

copy [filename]

copy [msglist] filename
Copy messages to the file without marking the messages as saved. Oth­
erwise equivalent to the save command.

The UNIX System User's Manual 167

Advanced Utilities

Copy [msglist]
Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist1
Delete messages from the mailbox. If "autoprint" is set, the next mes­
sage after the last one deleted is printed (see ENVIRONMENTAL VARI­
ABLES).

discard [header-field .. .1
ignore [header-field .. .1

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" and
"ce." The fields are included when the message is saved. The Print and
Type commands override this command.

dp [msglist1
d t [msglist1

Delete the specified messages from the mailbox and print the next mes­
sage after the last one deleted. Roughly equivalent to a delete com­
mand followed by a print command.

echo string ...
Echo the given strings Oike ECHO(BU_CMD).)

edit [msglist1

exit
xit

Edit the given messages. The messages are placed in a temporary file
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENTAL VARIABLES). Default editor is ed.

Exit from rna i lx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with
the following substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" variable
(see ENVIRONMENTAL VARIABLES).

168 The UNIX System User's Manual

Advanced Utilities

f ollowup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" variable,
if set. See also the Followup, Save, and Copy commands and "out­
folder" (ENVIRONMENTAL VARIABLES).

Followup [msglist1
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from
the first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the f ollowup,
Save, and Copy commands and "outfolder" (ENVIRONMENTAL VARI­

ABLES).
from [msglist1

Prints the header summary for the specified messages.

group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

headers [message]
Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRONMEN­
TAL VARIABLES). See also the z command.

help
Prints a summary of commands.

hold [msglist1
preserve [msglist]

Holds the specified messages in the mailbox.

if sir
mail-commands
else mail-commands
endif

Conditional execution, where s will execute following mail-commands,
up to an else or endif, if the program is in send mode, and r causes
the mail-commands to be executed only in receive mode. Useful in the
.mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status" and
"cc." All fields are included when the message is saved. The print and
Type commands override this command.

Prints all commands available. No explanation is given.

The UNIX System User's Manual 169

Advanced Utilities

mail name ...
Mail a message to the specified users.

mbox [msglist1
Arrange for the given messages to end up in the standard mbox save file
when mailx terminates normally. See MBOX (ENVIRONMENTAL

VARIABLES) for a description of this file. See also the exit and quit
commands.

next [messagel
Go to next message matching message. A msglist may be specified, but
in this case the first valid message in the list is the only one used. This
is useful for jumping to the next message from a specific user, since the
name would be taken as a command in the absence of a real command.
See the discussion of msglists above for a description of possible message
specifica tions.

pipe [msglistl [commandl
[msglistl [commandl

Pipe the message through the given command. The message is treated
as if it were read. If no arguments are given, the current message is
piped through the command specified by the value of the "cmd" variable.
If the "page" variable is set, a form feed character is inserted after each
message (see ENVIRONMENTAL VARIABLES).

preserve [msglistl
hold [msglistl

Preserve the specified messages in the mailbox.

Print [msglist1
Type [msglistl

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist1
type [msglist1

quit

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the
command specified by the PAGER environment variable. The default
command is pg. (See ENVIRONMENTAL VARIABLES).

Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in a
file are deleted.

Reply [msglistl
Respond [msglist1

Send a response to the author of each message in the msglist. The sub­
ject line is taken from the first message. If "record" is set to a file name,
the response is saved (see ENVIRONMENTAL VARIABLES).

170 The UNIX System Users Manual

Advanced Utilities

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the mes­
sage. If "record" is set to a file name, the response is saved at the end of
that file (see ENVIRONMENTAL VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, f ollowup, and Followup commands and "outfolder" (ENVIRON­

MENTAL VARIABLES).

save lji/ename]
save [msglistl filename

set

Save the specified messages in the given file. The file is created if it does
not exist. The message is deleted from the mailbox when rna i 1 x ter­
minates unless "keepsave" is set (see also ENVIRONMENTAL VARIABLES

and the exit and quit commands).

set name
set name-string
set name-number

shell

Define a variable called name. The variable may be given a null, string,
or numeric value. set by itself prints all defined variables and their
values. See ENVIRONMENTAL VARIABLES for detailed descriptions of the
rna i 1 x variables.

Invoke an interactive command interpreter (see also SHELL (ENVIRON­

MENTAL VARIABLES».

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglistl
Print the top few lines of the specified messages. If the "toplines" vari­
able is set, it is taken as the number of lines to print (see ENVIRONMEN­

TAL VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox upon normal ter­
mination. See exit and quit.

Type [msglistl
Print [msglistl

Print the specified messages on the screen, including all header fields.

The UNIX Syst~m User's Manual 171

Advanced Utilities

Overrides suppression of fields by the ignore command.

type [msglist]
print [msglist1 (

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the
command specified by the PAGER variable. The default command is
pg. (See ENVIRONMENTAL VARIABLES).

undelete [msglist1
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If "autoprint" is set, the last message
of those restored is printed (see ENVIRONMENTAL VARIABLES).

unset name ...
Causes the specified variables to be erased. If the variable was imported
from the execution environment (i.e., an environment variable) then it
cannot be erased.

version
Prints the current version and release date.

visual [msglist1
Edit the given messages with a screen editor. The messages are placed
in a temporary file and the VISUAL variable is used to get the name of
the editor (see ENVIRONMENTAL VARIABLES).

write [msglist1 filename

xit
exit

Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

Exit from mai lx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

zl+ I-I
Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see
ENVIRONMENTAL VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning
a line with the tilde escape character (-). See "escape" (ENVIRONMENTAL

VARIABLES) for changing this special character.

- I command
Escape to the command interpreter.

Simulate end of file (terminate message input).

mail-command
mail-command

172 The UNIX System User's Manual

Advanced Utilities

Perform the command-level request. Valid only when sending a message
while reading mail.

- ? Print a summary of tilde escapes.

- A Insert the autograph string "Sign" into the message (see ENVIRONMEN-

TAL VARIABLES).

- a Insert the autograph string "sign" into the message (see ENVIRONMENTAL

VARIABLES) •

-b name ...
Add the names to the blind carbon copy (Bcc) list.

-c name ...
Add the names to the carbon copy (Cc) list.

-d Read in the dead.letter file. See "DEAD" (ENVIRONMENTAL VARIABLES)

for a description of this file.

- e Invoke the editor on the partial message. See also EDITOR (ENVIRON­

MENTAL VARIABLES).

- f [msglist1
Forward the specified messages. The messages are inserted into the mes­
sage, without alteration.

- h Prompt for Subject line and To, Cc, and Bcc lists. If the field is
displayed with an initial value, it may be edited.

- i string
Insert the value of the named variable into the text of the message. For
example, - A is equivalent to - i Sign.

- m [msglist1
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

- p Print the message being entered.

- q Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead. letter. See
DEAD (ENVIRONMENTAL VARIABLES) for a description of this file.

-r filename
- < filename
-< 1 command

Read in the specified file. If the argument begins with an exclamation
point 0), the rest of the string is taken as an arbitrary system command
and is executed, with the standard output inserted into the message.

-s string ...
Set the subject line to string.

The UNIX System User's Manual 173

Advanced Utilities

-t name ...
Add the given names to the To list.

- v Invoke a preferred screen editor on the partial message. See also
VISUAL" (ENVIRONMENTAL VARIABLES).

-w filename
Write the partial message onto the given file, without the header.

- x Exit as with - q except the message is not saved in dead. letter.

-I command
Pipe the body of the message through the given command. If the com­
mand returns a successful exit status, the output of the command
replaces the message.

ENVIRONMENTAL VARIABLES
The following are environment variables taken from the execution environment
and are not alterable within mailx.

HOME-directory
The user's base of operations.

MAI LRc-filename
The name of the start-up file. Default is $HOME/ .mailrc.

The following variables are internal mai lx variables. They may be
imported from the execution environment or set via the set command at any
time. The unset command may be used to erase variables;

allnet All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifications to
behave similarly. Default is noallnet. See also the alter­
nates command and the "metoo" variable.

append
Upon termination, append messages to the end of the mbox file instead
of prepending them. Default is noappend.

askcc
Prompt for the Cc list after message is entered. Default is noaskcc.

asksub
Prompt for subject if it is not specified on the command line with the
- s option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and
undelete commands. Default is noautoprint.

bang
Enable the special-case treatment of exclamation points (!) in escape
command lines as in VI(AU_CMD). Default is nobang.

174 The UNIX System User's Manual

Advanced Utilities

cmd-command
Set the default command for the pipe command. No default value.

conv-conversion
Convert uucp addresses to the specified address style. Conversion is dis­
abled by default. See also "sendmail" and the -u command line option.

crt-number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable (PG(BU_CMD) by default).
Disabled by default.

DEAD-filename
The name of the file in which to save partial letters in case of untimely
interrupt or delivery errors. Default is SHOME/dead.letter.

debug

dot

Enable verbose diagnostics for debugging. Messages are not delivered.
Default is node bug.

Take a period on a line by itself during input from a terminal as end-of­
file. Default is nodot.

EDITOR-command
The command to run when the edit or - e command is used. Default
is ED(BU_CMD).

escape-c
Substitute c for the - escape character.

folder-directory
The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name with
this directory name to obtain the real file name. If directory does not
start with a slash (f), SHOME is prepended to it. In order to use the
plus (+) construct on a ma i 1 x command line, "folder" must be an
exported environment variable. There is no default for the "folder" vari­
able. See also "outfolder" below.

header
Enable printing of the header summary when entering mailx.
Enabled by default.

hold
Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up lines.
Default is noignore.

The UNIX System User's Manual 175

Advanced Utilities

ignoreeof
Ignore end-of-file during message input. Input must be terminated by a
period (.) on a line by itself or by the N. command. Default is no i g­
nore eof. See also "dot" above.

keep
When the mailbox is empty, truncate it to zero length instead of remov­
ing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox instead
of deleting them. Default is nokeepsave.

MBox-filename
The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message explicitly in
another file. Default is $HOME/mbox.

metoo
If the user's login appears as a recipient, do not delete it from the list.
Default is nome too.

LISTER-command
The command (and options) to use when listing the contents of the
"folder" directory. The default is 1 s.

one hop
When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative to
the originating author's machine for the response. This flag disables
alteration of the recipients' addresses, improving efficiency in a network
where all machines can send directly to all other machines.

outfolder
Causes the files used to record outgoing messages to be located in the
directory specified by the "folder" variable unless the path name is abso­
lute. Default is nooutfolder. See "folder" above and the Save,
Copy, followup, and Followup commands.

page
Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

PAGER-cOmmand
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg.

prompt-string
Set the command mode prompt to string. Default is "? ".

quiet
Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

176 The UNIX System Users Manual

Advanced Utilities

re cord-filename
Record all outgoing mail in filename. Disabled by default. See also
"outfolder" above.

save
Enable saving of messages in dead. letter on interrupt or delivery error.
See "DEAD" for a description of this file. Enabled by default.

screen-number
Sets the number of lines in a screen-full of headers for the headers
command.

sendmail-command
Alternate command for delivering messages. Default is mail.

sendwait
Wait for background mailer to finish before returning. Default is
nosendwai t.

SHELL=command
The name of a preferred command interpreter. Default is sh.

showto
When displaying the header summary and the message is from the user,
print the recipient's name instead of the author's name.

s ign=string
The variable inserted into the text of a message when the
graph) command is given. No default (see also ~ i
ESCAPES».

Sign-string

~ a (auto­
(TILDE

The variable inserted into the text of a message when the ~ A command
is given. No default (see also ~ i (TILDE ESCAPES».

topl ine s-number
The number of lines of header to print with the top command.
Default is 5.

VISUAL=command
The name of a preferred screen editor. Default is vi.

FILES
$HOME/.mailrc
$HOME/mbox

USAGE

End-user.

SEE ALSO

users's start-up file
secondary storage file

MAIL(BU _ CMD), PG(BU _ CMD), LS(BU _ CMD), VI(AU _ CMD).

The UNIX System User's Manual 177

Advanced Utilities

NAME

mesg - permit or deny messages

SYNOPSIS

mesg [y : nl

DESCRIPTION

The command mesg with argument n prevents another user from writing to
the invoking user's terminal, (e.g., by using wr i t e [see WRITE(AU _ CMD»)).

The command mesg with argument y reinstates write permission. With no
arguments, me s g reports the current state without changing it.

ERRORS

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

FILES

/dev/tty*

USAGE
General.

SEE ALSO
WRITE(AU _ CMD).

178 The UNIX System User's Manual

NEWGRP(AU _ CMD) Advanced Utilities

NAME

newgrp - change to a new group

SYNOPSIS
newgrp (-) (group)

DESCRIPTION
The command newgrp changes a user's group identification. The user
remains logged in and the current directory is unchanged, but calculations of
access permissions to files are performed with respect to the new real and
effective group IDs.

Exported environmental variables retain their values after invoking
newgrp; however, all unexported variables are either reset to their default
value or set to null. Environmental variables (such as P51, P52, PATH,
MAIL, and HOME), unless exported, are reset to default values.

With no arguments, newgrp changes the group identification back to the
group specified in the user's password file entry.

If the first argument to newgrp is a -, the environment is changed to what
would be expected if the user actually logged in again.

FILES

/etc/group

/etc/passwd

USAGE

End-user.

SEE ALSO
SH(BU_CMD).

system's group file

system's password file

The UNIX System User's Manual 179

Advanced Utilities

NAME

news - print news items

SYNOPSIS

news I-al I-nll-sl I items I

DESCRIPTION

The command news prints files from the system news directory.

When invoked without arguments, news prints the contents of all current
files in the news directory, most recent first, with each preceded by an
appropriate header. news stores the "currency" time as the modification
date of a file named • news time in the user's home directory (the identity
of this directory is determined by the environmental variable HOME); only
files more recent than this currency time are considered "current."

The -a option causes news to print all items, regardless of currency. In
this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time.

All other arguments are assumed to be specific news items that are to be
printed.

If an interrupt (DEL or BREAK) is typed during the printing of a news item,
printing stops and the next item is started. Another interrupt within one
second of the first causes the program to terminate.

FILES
jete/profile
SHOME/ • news time

USAGE
End-user.

180 The UNIX System User's Manual

Advanced Utilities

NAME

od - octal dump

SYNOPSIS
od [-bcdosx) [file) H+)offset[•] [b]l

DESCRIPTION
The command od prints file in one or more formats as selected by the
options. If no file is specified, the standard input is used. If no option is
specified, -0 is the default.

For the purposes of this description, word refers to a 16-bit unit, independent
of the word size of the machine.

The meanings of the options are:

- b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: NUL-\. 0, BS-\.b, FF-\.f, NL-\'n, CR-\'r, HT-\.t;
others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-s Interpret words in signed decimal.

-x Interpret words in hex.

The offset argument specifies the offset in the file where dumping is to com­
mence. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the offset is
interpreted in units of 512 bytes. If the file argument is omitted, the offset
argument must be preceded by +. '

USAGE

General.

The UNIX System User's Manual 181

Advanced Utilities PASSWD(AU_CMD)

NAME

passwd - change login password

SYNOPSIS

passwd [namel

DESCRIPTION
The command passwd changes or installs a password associated with the
login name.

Ordinary users may change only the password which corresponds to their login
name.

The command passwd prompts ordinary users for their old password, if
any. It then prompts for the new password twice. If password aging is in
effect, then the first time the new password is entered, passwd checks to see
if the old password has "aged"sufficiently. If "aging" is insufficient the new
password is rejected and passwd terminates.

If "aging" is sufficient, a check is made to insure that the new password meets
construction requirements. When the new password is entered a second time,
the two copies of the new password are compared. If the two copies are not
identical the cycle of prompting for the new password is repeated for at most
two more times.

The super-user may change any password; hence, passwd does not prompt
the super-user for the old password. The super-user is not forced to comply
with password aging and password construction requirements. The super-user
can create a null password by entering a carriage return in response to the
prompt for a new password.

FILES
/etc/passwd

USAGE
End-user.

182 The UNIX System User's Manual

Advanced Utilities

NAME

shl - shell layer manager

SYNOPSIS

shl

DESCRIPTION

The command shl allows a user to interact with more than one shell from a
single terminal. The user controls these shells, known as layers, using the
commands described below.

The current layer is the layer which can receive input from the keyboard.
Other layers attempting to read from the keyboard are blocked. Output from
multiple layers is multiplexed onto the terminal. To have the output of a layer
blocked when it is not current, the stty option loblk may be set within
the layer.

The stty character swtch (set to control-Z if NUL) is used to switch
control to shl from a layer. The command shl has its own prompt, > > >,

to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device
Vdev/sxt/*). The virtual device can be manipulated like a real tty dev­
ice using stty and ioctl (). [See STTY(AU_CMD) and IOCTL(BA_SYS)

respectively.] Each layer has its own process group ID.

Definitions

A name is a sequence of characters delimited by a blank, tab or newline.
Only the first eight characters are significant. The names (1) through
(7) cannot be used when creating a layer. They are used by shl when
no name is supplied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level.
Any unique prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no
argument is given, a layer will be created with a name of the form
(#) where # is the last digit of the virtual device bound to the
layer. The shell prompt variable PS 1 is set to the name of the
layer followed by a space. A maximum of seven layers can be
created.

block name [name ...]
For each name, block the output of the corresponding layer when
it is not the current layer. This is equivalent to setting the stty
option loblk within the layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes in
the process group of the layer are sent the SIGHUP signal.

The UNIX System User's Manual 183

Advanced Utilities

FILES

help (or ?)
Print the syntax of the shl commands.

layers [-I] [name ...]
For each name, list the layer name and its process group. The -1
option produces a long listing. If no arguments are given, informa­
tion is presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argu­
ment is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the
sttyoption -loblk within the layer.

quit
Exit shl. All layers are sent the SIGHUP signal.

name
Make the layer referenced by name the current layer.

/dev/sxt/* Virtual tty devices

USAGE

General.

SEE ALSO

SH(BU_CMD), STTY(AU_CMD), IOCTL(BA_SYS), SIGNAL(BA_SYS).

184 The UNIX System User's Manual

STTY(AU_CMD) Advanced Utilities

NAME

stty - set the options for a terminal

SYNOPSIS

stty I-all-glloptionsl

DESCRIPTION

The command stty sets certain terminal I/O options for the device that is
its standard input; without arguments, it reports the settings of certain options;
with the -a option, it reports all of the option settings; with the -g option,
it reports current settings in a form that can be used as an argument to
another s t ty command. Detailed information about the modes listed in the
first five groups below may be found in IOCTL(BA_SYS). Options in the last
group are implemented using options in the previous groups. Note that many
combinations of options make no sense, but no sanity checking is performed.
The options are selected from the following:

Control Modes

parenb (-parenb)
enable (disable) parity generation and detection.

parodd (-parodd)
select odd (even) parity.

csS cs6 cs7 csS
select character size.

o
hang up phone line immediately.

number
Set terminal baud rate to the number given, if possible. (All
speeds are not supported by all hardware interfaces.}

hupcl (-hupcl)
hang up (do not hang up) modem connection on last close.

hup (-hup)
same as hupcl (-hupcl).

cstopb (-cstopb)
use two (one) stop bits per character.

cread (-cread)
enable (disable) the receiver.

clocal (-clocal)
assume a line without (with) modem control.

loblk (-loblk)
block (do not block) output from a non-current layer.

The UNIX System User's Manual 185

Advanced Utilities

Input Mod ••

ignbrk (-ignbrk)
ignore (do not ignore) break on input.

brkint (-brkint)
signal (do not signal) INTR on break.

ignpar (..-ignpar)
ignore (do not ignore) parity errors.

parmrk (-parmrk)
mark (do not mark) parity errors.

inpck (-inpck)
enable (disable) input parity checking.

istrip (-istrip)
strip (do not strip) input characters to seven bits.

inlcr (-inlcr)
map (do not map) NL to CR on input.

igncr (-igncr)
ignore (do not ignore) CR on input.

icrnl (-icrnl)
map (do not map) CR to NL on input.

iuclc (-iuclc)
map (do not map) upper-case alphabetics to lower case on input.

ixon (-ixon)
enable (disable) START/STOP output control. Output is stopped
by sending an ASCII DC3 and started by sending an ASCII DCI.

ixany (-ixany)
allow any character (only DCl) to restart output.

ixoff (-ixoff)
request that the system send (not send) START/STOP characters
when the input queue is nearly empty/full.

Output Mod ••

opost (-opost)
post-process output (do not post-process output; ignore all other
output modes).

olcuc (-olcuc)
map (do not map) lower-case alphabetics to upper case on output.

onlcr (-onlcr)
map (do not map) NL to CR-NL on output.

186 The UNIX System User's Manual

Advanced Utilities

oernl (-oernl)
map (do not map) CR to NL on output.

onoer (-onoer)
do not (do) output CRs at column zero.

onlret (-onlret)
on the terminal NL performs (does not perform) the CR function.

of ill (-ofill)
use fill characters (use timing) for delays.

of del (-of de 1)
fill characters are DELs (NULs).

crO cr1 cr2 er3
select style of delay for carriage returns.

nlO n11
select style of delay for line-feeds.

tabO tab1 tab2 tab3
select style of delay for horizontal tabs.

bsO bs1
select style of delay for backspaces.

ffO ff 1
select style of delay for form-feeds.

vtO vt1
select style of delay for vertical tabs.

Local Modes

isig (-isig)
enable (disable) the checking of characters against the special con­
trol characters INTR, QUIT, and SWTCH.

icanon (-icanon)
enable (disable) canonical input (ERASE and KILL processing).

xcase (-xcase)
canonical (unprocessed) upper/lower-case presentation.

echo (-echo)
echo back (do not echo back) every character typed.

echoe (-echoe)
echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed charac­
ter on many CRT terminals; however, it does not keep track of
column position and, as a result, may be confusing on escaped
characters, tabs, and backspaces.

The UNIX System User's Manual 187

Advanced Utilities

echok (-echok)
echo (do not echo) NL after KILL character.

Hkc (-Hkc)
the same as echok (-echok); obsolete.

echonl (-echonl)
echo (do not echo) NL.

noflsh (-noflsh)
disable (enable) flush after INTR, QUIT, or SWTCH.

Control Assignments

control-character c
set control-character to c, where control­
character is erase, kill, intr, quit, swtch,
eof, eol, min, or time (min and time are used with
-icanon). If c is preceded by a caret (A), then the value used
is the corresponding CTRL character (e.g., .,,' d" is a CfRL-d);
"A?" is interpreted as DEL and "A -" is interpreted as undefined.

line i
set line discipline to i (0 < i < 127).

Combination Modes

evenp or parity
enable parenb and cs7.

oddp
enable parenb, cs7, and parodd.

-pari ty, -evenp, or -oddp
disable parenb, and set csS.

raw (-raw or cooked)
enable (disable) raw input and output (no ERASE, KILL, INTR,
QUIT, SWTCH, EOT, or output post processing).

nl (-nl)
unset (set) icrnl, onlcr. In addition -nl unsets inlcr,
igncr, ocrnl, and onlret.

lcase (-lcase)
set (unset) xcase, iuclc, and olcuc.

LCASE (-LCASE)
same as lcase (-lcase).

tabs (-tabs or tabS)
preserve (expand to spaces) tabs when printing.

ek
reset ERASE and KILL characters back to normal # and @.

188 The UNIX System User's Manual

Advanced Utilities

sane
resets all modes to some reasonable values.

USAGE

SEE ALSO
IOCTL(BA_SYS).

The UNIX System User's Manual 189

Advanced Utilities

NAME

su - become super-user or another user

SYNOPSIS
su [-I [name [arg ... 11

DESCRIPTION

The command su allows one to become another user without logging off.
The default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new environment with
the real and effective user ID set to that of the specified user. The new com­
mand interpreter will be the optional program named in the specified user's
password file entry, or the default if none is specified. Normal user ID
privileges can be restored by entering EOT (control-D).

Any additional arguments given on the command line are passed to the com­
mand interpreter.

The following statements are true only if the command interpreter named in
the specified user's password file entry is sh [see SH(BU_CMD»). If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. Otherwise, the
environment is passed along with the possible exception of PATH.

All attempts to become another user using su are logged.

FILES

/etc/passwd

/etc/profile

system's password file

system's profile

$HOME/.profile user's profile

USAGE

General.

SEE ALSO

SH(BU_CMD).

190 The UNIX System User's Manual

Advanced Utilities

NAME

tabs - set tabs on a terminal

SYNOPSIS

DESCRIPTION
The command tabs sets the tab stops on the user's terminal according to
the tab specification tabspec, after clearing any previous settings.

Three types of tab specification are accepted for tabspec: "canned," repetitive,
arbitrary. If no tabspec is given, the ,default value is -8, i.e., "standard"
tabs. The lowest column number is 1. Note that for tabs, column 1 always
refers to the leftmost column on a terminal, even one whose column markers
begin at 0.

-code Gives the name of one of a set of "canned" tabs. The legal codes
and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM System/370, first format

-a2 1,10,16,40,72
Assembler, IBM System/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted).

-c 3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than
-c 2. This is the recommended format for COBOL.

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PLiI

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n

n1,n2, ...

A repetitive specification requests tabs at columns 1 +n,
1 +2*n, etc. Of particular importance is the value -8: this
represents the "standard" tab setting, and is the most likely
tab setting to be found at a terminal. Another special case is
the value -0, implying no tabs at all.
The arbitrary format permits the user to type any chosen set
of numbers, separated by commas, in ascending order. Up to
40 numbers are allowed. If any number (except the first
one) is preceded by a plus sign, it is taken as an increment to
be added to the previous value. Thus, the tab lists 1,10,20,30

The UNIX System User's Manual 191

Advanced Utilities

and 1,10,+10,+10 are considered identical.

Any of the following may be used also; if a given flag occurs more than once,
the last value given takes effect:

-Ttype

+mn

The command tabs usually needs to know the type of ter­
minal in order to set tabs and always needs to know the type
to set margins. The argument type is a terminal name. If
no -T flag is supplied, tabs searches for the environmen­
tal variable TERM. If no type can be found, tabs tries a
sequence that will work for many terminals.
The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+l the left margin. If +m is given without a value
of n, the value assumed is 10. For a TermiNet, the first
value in the tab list should be 1, or the margin will move
even further to the right. The normal (leftmost) margin on
most terminals is obtained by +mO. The margin for most
terminals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

USAGE

End-user.

192 The UNIX System User's Manual

Advanced Utilities

NAME

tar - file archiver

SYNOPSIS
tar [option) [J11e .. .1

DESCRIPTION

The command tar creates archives of files; it is often used to save files on
(and restore from) magnetic tape. Its actions are controlled by the option
argument. The option is a string of characters containing at most one func­
tion letter and possibly one or more modifiers. Other arguments to the com­
mand are files (or directory names) specifying which files are to be archived
or restored. In all cases, appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.

The function portion of the option is specified by one of the following letters:

r The named files are written on the end of the archive.

x The named files are extracted from the archive. If a named file
matches a directory whose contents had been written onto the
archive, this directory is (recursively) extracted. If a named file in
the archive does not exist on the system, the file is created with the
same mode as the one in the archive, except that the set-user-ID and
set-group-ID modes are not set unless the user is super-user. If the
files exist, their modes are not changed except as described above.
The owner, group, and modification time are restored Of possible). If
no files argument is given, the entire content of the archive is
extracted. Note that if several files with the same name are in the
archive, the last one overwrites all earlier ones.

t The names of all the files in the archive are listed.

u The named files are added to the archive if they are not already
there, or have been modified since last written into the archive. This
option implies option r.

c Create a new archive; writing begins at the beginning of the archive,
instead of after the last file. This option implies the r option.

The following characters may be used in addition to the letter that selects the
desired function:

v Normally, tar does its work silently. The v (verbose) modifier
causes it to type the name of each file it treats, preceded by the
option letter. With the t option, v gives more information about
the archive entries than just the name.

w Causes tar to print the action to be taken, followed by the name of
the file, and then wait for the user's confirmation. If a word begin­
ning with y is given, the action is performed. Any other input
means "no". This modifier is invalid with the t option.

The UNIX System User's Manual 193

Advanced Utilities

f Causes tar to use the next argument as the name of the archive
instead of the default, which is usually a tape drive. If the name of
the file is -, tar writes to the standard output or reads from the
standard input, whichever is appropriate. Thus, tar can be used as
the head or tail of a pipeline. The command tar can also be used
to move directory hierarchies with the command:

(cd fromdir; tar cf - .) I (cd todir; tar xf -)

b Causes tar to use the next argument as the blocking factor for tape
records. The default is 1, the maximum is 20. This option should
only be used with (raw) magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (options
x and t).

1 Tells tar to report if it cannot resolve all of the links to the files
being archived. If 1 is not specified, no error messages are printed.
This modifier is valid only with the options c, r, and u.

m Tells tar not to restore the modification times. The modification
time of the file will be the time of extraction. This modifier is invalid
with the t option.

o Causes extracted files to take on the user and group identifier of the
user running the program rather than those on the archive. This
modifier is valid only with the x option.

ERRORS
The command tar reports bad option characters and read/write errors.
It also reports an error if enough memory is not available to hold the link
tables.

USAGE
General.

194 The UNIX System User's Manual

Advanced Utilities

NAME

tty - get the name of the terminal

SYNOPSIS
tty I-sl

DESCRIPTION

The command tty prints the path name of the user's terminal. The -s
option inhibits printing of the terminal path name, allowing one to test just the
exit code.

ERRORS

Exit codes:

2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

An error is reported if the standard input is not a terminal and -s is not
specified.

USAGE

General.

The UNIX System User's Manual 195

Advanced Utilities

NAME
UUCp, uulog, uuname - system-to-system copy

SYNOPSIS

uucp [options) source-files destination-file

uulog [-s system)

uuname [-1)

DESCRIPTION

uucp

The command uucp copies files named by the source-file arguments to the
destination-file argument. (Note that some uucp options are new to UNIX
System V Release 2.0; see the options paragraph below for details') A file
name may be a path name on your machine, or may have the form:

system-name I path-name

where system-name is taken from a list of system names that uucp knows
about. The destination system-name may also be a list of names such as:

system-name I system-name I ... I system-name I path-name

in which case, an attempt is made to send the file via the specified route to the
destination. Care should be taken to ensure that intermediate nodes in the
route are willing to forward information.

The shell metacharacters ?, ., and [...] appearing in path-name will be
expanded on the appropriate system. Path-names may be one of:

(0 a full path-name.

(2) a path-name preceded by ~ name where name is a login name on
the specified system and is replaced by that user's login directory.
Note that if an invalid login is specified, the default will be to the
public directory (PUBDIR).

(3) a path-name specified as ~ I dest, where the destination dest is
appended to PUBDIR.

NOTE: This destination will be treated as a file name unless more
than one file is being transferred by this request or the destination
is already a directory. To ensure that it is a directory, follow the
destination with a I. For example, ~ I danl as the destination
will make the directory PUBDIR/dan if it does not exist and
put the requested file(s) in that directory.

(4) anything else is prefixed by the current directory.

If the result is an erroneous path-name for the remote system, the copy will
fail. If the destination-file is a directory, the last part of the source-file name
is used.

196 The UNIX System User's Manual

Advanced Utilities

The command uucp gives universal read and write permissions and preserves
execute permissions across the transmission.

The following options are interpreted by uucp:

-c

-c
-d

-f

-j

-m

-nuser

-r

uulog

Do not copy iocai fiie to the spooi direciory for iransfer to ihe
remote machine (default).

Force the copy of local files to the spool directory for transfer.

Make all necessary directories for the file copy (default).

Do not make intermediate directories for the file copy.

Output the job identification ASCll string on the standard output.
This job identification can be used by uustat to obtain the
status or terminate a job. (This option is new to UNIX System V
Release 2.0.)

Send mail to the requester when the copy is completed.

Notify user on the remote system that a file was sent.

Do not start the file transfer; just queue the job. (This option is
new to UNIX System V Release 2.0.)

The command uu10g queries a log file of uucp or uuxqt transactions.

If the - s option is specified, then uu10g prints information about file
transfer work involving system system.

uuname

The command uuname lists the uucp names of known systems. The -1
option returns the local system name.

USAGE

General.

The domain of remotely accessible files can (and for obvious security reasons,
usually should) be severely restricted.

SEE ALSO
MAIL(BU _CMD), UUSTAT(AU _CMD), UUX(AU _ CMD).

The UNIX System User's Manual 197

Advanced Utilities

NAME

uustat - uucp status inquiry and job control

SYNOPSIS
uustat [options)

DESCRIPTION

The command uustat will display the status of, or cancel, previously
specified uucp commands, or provide general status on uucp connections
to other systems.

Not all combinations of options are valid. Only one of the following options
can be specified with uustat:

-q
-k jobid

-r jobid

List the jobs queued for each machine.
Kill the uucp request whose job identification is jobid. The

killed uucp request must belong to the person issuing the uus­
ta t command unless that user is the superuser.
Rejuvenate jobid. The files associated with jobid are touched so
that their modification time is set to the current time. This
prevents the cleanup daemon from deleting the job until the jobs
modification time reaches the limit imposed by the daemon.

The options below may not be used with the ones listed above; however, these
options may be used singly or together:

-s sys
-u user

Report the status of all uucp requests for remote system sys.
Report the status of all uucp requests issued by user.

When no options are given, uustat outputs the status of all uucp
requests issued by the current user.

USAGE
General.

SEE ALSO
UUCP(AU _ CMD).

198 The UNIX System User's Manual

NAME

uuto, uupick - public system-to-system file copy

SYNOPSIS
uuto i-pi i-mj source-file~' cle~'iiiiciiiOfj

uupick (-8 system]

DESCRIPTION

uuto

Advanced Utilities

The command uuto sends source-files to destination. The command uuto
uses the UUCP(AU_CMD) facility to send files, while it allows the local system to
control the file access. A source-file name is a path name on the user's
machine. Destination has the form: "system/user" where system is taken from
a list of system names that uucp knows about [see uuname in
UUCP(AU_CMD).l The argument user is the login name of someone on the
specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or subtrees if directories are specified) are sent to a public directory
(PUBDlR) on system. Specifically, the files are sent to the directory

PUBDIR/receiveluser/fsystem,
where user is the recipient, and fsystem is the sending system.

The recipient is notified by ma i 1 of the arrival of files.

uuplck

The command uupick may be used by a user to accept or reject the files
transmitted to the user. Specifically, uupick searches PUBDIR on the
user's system for files sent to the user. For each entry (file or directory)
found, one of the following messages is printed on the standard output:

from system: dir dirname ?

from system: file file-name ?

The command uupick then reads a line from the standard input to deter­
mine the disposition of the file. The user's possible responses are:

<newline>

d

m [dir]

Go on to next entry.

Delete the entry.

Mo~e the entry to named directory dir. If dir is not
specified as a complete path name a destination relative to
the current directory is assumed. If no destination is given,
the default is the current directory.

The UNIX System User's Manual 199

Advanced Utilities UUTO(AU_CMD)

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file to standard output.

q Stop and exit.

BOT {control-D.} Same as q.

I command Escape to the command interpreter to execute command.

* Print a usage summary for uuto.

The command uupick invoked with the -8 system option will only search
for files {and list any found} sent from system.

USAGE
General.

SEE ALSO
MAIL(BU_CMD), UUCP(AU_CMD), UUSTAT(AU_CMD), UUX(AU_CMD),

200 The UNIX System User's Manual

UUX(AU_CMD) Advanced Utilities

NAME

uux - remote command execution

SYNOPSIS

uux (options) command-string

DESCRIPTION

The command uux will gather zero or more files from various systems, exe­
cute a command on a specified system, and then send the standard output of
the command to a file on a specified system.

The command-string is made up of one or more arguments that are similar to
normal command arguments, except that the command and any file names
may be prefixed by system-name!. A null system-name is interpreted as the
local system.

The following statements are relevant if SH(BU_CMD) is the command inter­
preter.

The metacharacter • will not give the desired result.

The redirection tokens > > and < < are not implemented.

A file name may be specified as for uucp: it may be a full path name, a
path name preceded by -name (which is replaced by the corresponding login
directory), a path name specified as -Idest (dest is prefixed by PUBDIR), or a
simple file name (which is prefixed by the current directory). See
UUCP(AU_CMD) for the details.

As an example, the command
uux "Idiff usgl/usr/dan/file1
pwbal/a4/dan/file2 >I-/dan/file.diff"

will get the f i 1 e 1 and f i 1 e 2 files from the "usg" and "pwba" machines,
execute diff, and put the results in file.diff in the local
PUBDIR/dan directory. (PUBDIR is the uucp public directory on the local
system.)

The execution of commands on remote systems takes place in an execution
directory known to the uucp system. All files required for the execution will
be put into this directory unless they already reside on that machine. There­
fore, the non-local file names (without path or machine reference) must be
unique within the u ux request. The following command will not work:

uux "aldiff bl/usr/dan/xyz cl/usr/dan/xyz
>Ixyz.diff"

because the file xyz will be copied from the b system as well as the c sys­
tem, causing a name conflict. The command

uux "aldiff al/usr/dan/xyz cl/usr/dan/xyz
>Ixyz.diff"

The UNIX System User's Manual 201

Advanced Utilities

will work (provided d iff is a permitted command), because the local file
xyz (which is not copied) does not conflict with the copied file xyz from the
c system.

Any characters special to the command interpreter should be quoted either by
quoting the entire command-string or quoting the special characters as indivi­
dual arguments.

The command u ux will attempt to get all files to the execution system. For
files that are output files, the file name must be escaped using parentheses.
For example, the command

uux alcut -f1 bl/usr/file \(cl/usr/file\)

gets lusr/file from system "b", sends it to system "a", performs a cut
command on that file, and sends the result of the cut command to system
"c".

The command u ux will notify the user (by maiO if the requested command
on the remote system was disallowed. This notification can be turned off by
the -n option. The response comes by mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command -string.

- j Output the job identification ASCII string on the standard output. This
job identification can be used by u us ta t to obtain the status or ter­
minate a job. (This option is new to UNIX System V Release 2.0,)

-n Do not notify the user if the command fails.

USAGE

General.

Note that, for security reasons, many installations will limit the list of com­
mands executable on behalf of an incoming request from uux. Many sites
will permit little more than the receipt of mail via uux.

Only the first command of a pipeline [see SH(BU_CMD)] may have a system­
name!. All other commands are executed on the system of the first command.

SEE ALSO
UUCP(AU _ CMD), UUSTAT(AU _ CMD).

202 The UNIX System User's Manual

Advanced Utilities

NAME
vi - screen-oriented (visual) display editor

SYNOPSIS
vi [-r .lile! ! -I! ! -wn! ! -R! ! +commandlfile

DESCRIPTION
Vi (visual) is a display-oriented text editor. It is based on the underlying line
editor EX(AU_CMD): it is possible to switch back and forth between the two,
and to execute ex commands from within vi.

When using vi, the terminal screen acts as window into the file being edited.
Changes made to the file are reflected in the screen display; the position of the
cursor on the screen indicates the position within the file.

The environmental variable TERM must give the terminal type; the terminal
must be defined in the terminfo database. As for ex, editor initialization
scripts can be placed in the environmental variable EXINIT, or the file
. exrc in the current or home directory.

Options
The following options are interpreted by vi:

-rfile

-1

-wn

-R

+ command

VI COMMANDS

General Remarks

Recover file after an editor or system crash. If file is
not specified a list of all saved files will be printed.

set LISP mode (see Edit Options below).

Set the default window size to n.

Read only mode; the readooly flag is set, preventing
accidental overwriting of the file.

The specified ex command is interpreted before edit­
ing begins.

See EX(AU_CMD) for the complete description of ex. Only the
visual mode of the editor is described here.

At the beginning, vi is in the command mode; the input mode is
entered by several commands used to insert or change text. In input
mode, ESC (escape) is used to leave input mode; in command mode, it is
used to cancel a partial command; the terminal bell is sounded if the
editor is not in input mode and there is no partially entered command.

The last (bottom) line of the screen is used to echo the input for search
commands (/ and ?), for ex commands (:), and system commands (I).
It is also used to report errors or print other messages.

An interrupt (BREAK or DEL) typed during text input, or during the
input of a command on the bottom line, terminates the input (or cancels

The UNIX System User's Manual 203

Advanced Utilities

the command) and returns the editor to command mode. During com­
mand mode an interrupt causes the bell to be sounded; in general the
bell indicates an error (such as unrecognized key).

Lines displayed on the screen containing only a ,.., indicate that the last
line above them is the last line of the file (the ,.., lines are past the end
of the file). On a terminal with limited local intelligence, there may be
lines on the screen marked with an '@': these indicate space on the
screen not corresponding to lines in the file. (These lines may be
removed by entering a 'control-R', forcing the editor to retype the screen
without these holes')

Command Summary

Most commands accept a preceding number as an argument, either to
give a size or position (for display or movement commands), or as a
repeat count (for commands that change text). For simplicity, this
optional argument will be referred to as count when its effect is
described.

The following operators can be followed by a movement command, in
order to specify an extent of text to be affected: c, d, y, <, >, 1,
and =. The region specified is from the current cursor position to just
before the cursor position indicated by the move. If the command
operates on lines only, then all the lines which fall partly or wholly
within this region are affected. Otherwise the exact marked region is
affected.

In the following, control characters are indicated in the form 'AX', which
stands for 'control-X'. The intended ASCII character name is also given.

Unless otherwise specified, the commands are interpreted in command
mode and have no special effect in input mode.

AB (STX) Scrolls backward to display the window above the current
one. A count specifies the number of windows to go back.
Two lines of overlap are kept if possible.

AD (EOT) Scrolls forward a half-window of text. A count gives the
number of (logical) lines to scroll, and is remembered for
future AD and AU commands.

In input mode, backs shiftwidth spaces over the inden­
tation provided by auto indent or AT.

AE (ENQ) Scrolls forward one line, leaving the cursor where it is if pos­
sible.

AF (ACK) Scrolls forward to display the window below the current one.
A count specifies the number of windows to go forward. Two
lines of overlap are kept if possible.

204 The UNIX System User's Manual

Advanced Utilities

AG (BEL) Prints the current file name and other information, including
the number of lines and the current position. (Equivalent to
the e x command f.)

AU (BS) Moves one space to the left (stops at the left margin). A
count specifies the number of spaces to back up. (Same as
h.)

In input mode, backs over the last input character without
erasing it.

AJ (LF) Moves the cursor down one line in the same column. A
count specifies the number of lines to move down. (Same as
AN and j.)

AL (FF) Clears and redraws the screen. (Used when the screen is
scrambled for any reason.)

AM (CR) Moves to the first non-white character in the next line. A
count specifies the number of lines to go forward.

AN (SO) Same as AJ and j.

Ap (DLE) Moves the cursor up one line in the same column. A count
specifies the number of lines to move up. (Same as k.)

AR (DC2) Redraws the current screen, eliminating the false lines
marked with '@' (which do not correspond to actual lines in
the file).

AT (DC4) In input mode, if at the beginning of the line or preceded
only by white space, inserts shiftwidth white space.
This inserted space can only be backed over using AD.

AU (NAK) Scrolls up a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future AD
and AU commands.

AV (SYN) In input mode, quotes the next character to make it possible
to insert special characters (including ESC) into the file.

AW (ETB) In input mode, backs up one word; the deleted characters
remain on the display.

Ay (EM) Scrolls backward one line, leaving the cursor where it is if
possible.

AI (ESC) Cancels a partially formed command; sounds the bell if there
is none.

In input mode, terminates input mode.

When entering a command on the bottom line of the screen
(ex command line or search pattern with \ or ?), terminates
input and executes command.

The UNIX System User's Manual 205

Advanced Utilities VI(AU_CMD)

SPACE Moves one space to the right (stops at the end of the line).
A count specifies the number of spaces to go forward. (Same
as I.)

An operator which passes specified lines from the buffer as
standard input to the specified system command, and
replaces those lines with the standard output from the com­
mand. The! is followed by a movement command specifying
the lines to be passed (lines from the current position to the
end of the movement) and then the command (terminated as
usual by a return). A count preceding the ! is passed on to
the movement command after !.

Doubling! and preceding it by a count causes that many
lines, starting with the current line, to be passed.

Precedes a named buffer specification. There are named
buffers 1-9 in which the editor places deleted text. The
named buffers a-z are available to the user for saving deleted
or yanked text.

S Moves to the end of the current line. A count specifies the
number of lines to go forward. (e.g., 2$ goes to the end of
the next line.)

% Moves to the parenthesis or curly brace which matches the
parenthesis or brace at the current cursor position.

& Same as the ex command & (repeats previous substitute
command).

When followed by a " returns to the previous context,plac­
ing the cursor at the beginning of the line. (The previous
context is set whenever a non-relative move is made.) When
followed by a letter a-z, returns to the line marked with that
letter (see the m command), at the first non-white character
in the line.

When used with an operator such as d to specify an extent of
text, the operation takes place over complete lines. (See also
'.)

When followed by a " returns to the previous context, plac­
ing the cursor at the character position marked. (The previ­
ous context is set whenever a non-relative move is made.)
When followed by a letter a-z, returns to the line marked
with that letter (see the m command), at the character posi­
tion marked.

When used with an operator such as d to specify an extent of
text, the operation takes place from the exact marked place
to the current position within the line. (See also '')

206 The UNIX System User's Manual

Il

Advanced Utilities

Backs up to the previous section boundary. A section is
defined by the value of the sections option. Lines
which start with a formfeed rL character) or { also stop Il.

If the option lisp is set, stops at each (at the beginning of a
line.

n Moves forward to a section boundary (see (1).

Moves to the first non-white position on the current line.

(Moves backward to the beginning of a sentence. A sentence
ends at a . ! or ? which is followed by either the end of a line
or by two spaces. Any number of closing)] " and • charac­
ters may appear between the. ! or ? and the spaces or end of
line. A count moves back that many sentences.

If the lisp option is set. moves to the beginning of a LISP
s-expression. Sentences also begin at paragraph and section
boundaries (see (and [[below).

Moves forward to the beginning of a sentence. A count
moves forward that many sentences. (See (.)

Moves back to the beginning of the preceding paragraph. A
paragraph is defined by the value of the paragraphs
option. A completely empty line, and a section boundary
(see [[above), are also taken to begin paragraphs. A count
specifies the number of paragraphs to move backward.

Moves forward to the beginning of the next paragraph. A
count specifies the number of paragraphs to move forward.
(See (.)

Requires a count; the cursor is placed in that column (if pos­
sible).

+ Moves to the first non-white character in the next line. A
count specifies the number of lines to go forward. (Same as
AM.)

Reverse of the last f F t or T command, looking the other
way in the current line. A count is equivalent to repeating
the search that many times.

Moves to the first non-white character in the previous line.
A count specifies how many lines to move back.

Repeats the last command which changed the buffer. A
count is passed on to the command being repeated.

I Reads a string from the last line on the screen, interprets it
as a regular expression, and scans forward for the next
occurrence of a matching string. The search begins when

The UNIX System User's Manual 207

Advanced Utilities

return is entered to terminate the pattern; it may be ter­
minated with an interrupt (or DEL).

When used with an operator to specify an extent of text, the
defined region is from the current cursor position to the
beginning of the matched string. Whole lines may be
specified by giving an offset from the matched line (using a
closing 1 followed by a +n or -n).

Regular expressions are described in EX(AU_CMD).

o Moves to the first character on the current line. (Is not
interpreted as a command when preceded by a non-zero
digit.)

Begins an ex command. The:, as well as the entered com­
mand, is echoed on the bottom line; It is executed when the
input is terminated by entering a return.

Repeats the last single character find using f F t or T. A
count is equivalent to repeating the search that many times.

< An operator which shifts lines left one shiftwidth.
May be followed by a move to specify lines. A count is
passed through to the move command.

When repeated « <), shifts the current line (or count lines
starting at the current one).

> An operator which shifts lines right one shiftwidth.
(See <.)

If the 1 i s p option is set, then reindents the specified lines,
as though they were typed in with lisp and autoindent set.
May be preceded by a count to indicate how many lines to
process, or followed by a move command for the same pur­
pose.

? Scans backwards, the reverse of I. (See I,)

A Appends at the end of line. (Same as Sa.)

B Backs up a word, where a word is any non-blank sequence,
placing the cursor at the beginning of the word. A count
gives the number of words to go back.

C Changes the rest of the text on the current line. (Same as
cS.)

D Deletes the rest of the text on the current line. (same as dS.)

E Moves forward to the end of a word, where a word is any
non-blank sequence. A count gives the number of words to
go forward.

208 The UNIX System User's Manual

F

G

H

I

J

L

Advanced Utilities

Must be followed by a single character; scans backwards in
the current line for that character, moving the cursor to it if
found. A count is equivalent to repeating the search that
many times.

Goes to the iine number given as preceding argument, or ihe
end of the file if no preceding count is given.

Moves the cursor to the top line on the screen. If a count is
given, then the cursor is moved to that line on the screen,
counting from the top. The cursor is placed on the first non­
white character on the line. If used as the target of an
operator, full lines are affected.

Inserts at the beginning of a line. (Same as tiJ
Joins the current line with the next one, supplying appropri­
ate white space: one space between words, two spaces after a
period, and no spaces at all if the first character of the next
line is). A count causes that many lines to be joined rather
than two.

Moves the cursor to the first non-white character of the last
line on the screen. A count moves to that line counting form
the bottom. When used with an operator, whole lines are
affected.

M Moves the cursor to the middle line on the screen, at the first
non-white position on the line.

N Scans for the next match of the last pattern given to lor ?,
but in the reverse direction; this is the reverse of n.

o Opens a new line above the current line and enters input
mode.

P Puts the last deleted text back before/above the cursor. The
text goes back as whole lines above the cursor if it was
deleted as whole lines. Otherwise the text is inserted just
before the cursor.

May be preceded by a named buffer specification ("x), to
retrieve the contents of the buffer.

Q Quits from vi and enters ex command mode.

R Replaces characters on the screen with characters entered,
until the input is terminated with ESC.

S Changes whole lines (same as cd. A count changes that
many lines.

T Must be followed by a single character; scans backwards in
the current line for that character, and if found, places the

The UNIX System User's Manual 209

Advanced Utilities

cursor just after that character. A count is equivalent to
repeating the search that many times.

U Restores the current line to its state before the cursor was
last moved to it.

W Moves forward to the beginning of a word in the current line,
where a word is a sequence of non-blank characters. A
count specifies the number of words to move forward.

X Deletes the character before the cursor. A count repeats the
effect, but only characters on the current line are deleted.

Y Places (yanks) a copy of the current line into the unnamed
buffer (same as yy). A count copies that many lines. May
be preceded by a buffer name to put the copied line(s) in
that buffer.

ZZ Exits the editor, writing out the buffer if it was changed
since the last write. (Same as the ex command x.)

a Enters input mode, appending the entered text after the
current cursor position; A count causes the inserted text to be
replicated that many times, but only if the inserted text is all
on one line.

b Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics, or a sequence of special
characters. A count repeats the effect.

c Deletes the specified region of text, and enters input mode to
replace it with the entered text. If more than part of a single
line is affected, the deleted text is saved in the numeric
buffers. If only part of the current line is affected, then the
last character to be deleted is marked with a $. A count is
passed through to the move command.

d Deletes the specified region of text. If more than part of a
line is affected, the text is saved in the numeric buffers. A
count is passed through to the move command.

e Moves forward to the end of the next word, defined as for b.
A count repeats the effect.

f Must be followed by a single character; scans the rest of the
current line for that character, and moves the cursor to it if
found. A count repeats the find that many times.

h Moves the cursor one character to the left. (Same as AU.)
A count repeats the effect.

Enters input mode, inserting the entered text before the cur­
sor. (See a.)

210 The UNIX System User's Manual

j

k

Advanced Utilities

Moves the cursor one line down in the same column. (Same
as AJ and AN.)

Moves the cursor one line up. (Same as Ap.)

~.foves the cursor one character to the right. <Same as
SPACE.)

m Must be followed by a single lower case letter x; marks the
current position of the cursor with that letter. The exact
position is referred to by 'x; the line is referred to by 'x.

n Repeats the last / or ? scanning commands.

o Opens a line below the current line and enters input mode;
otherwise like O.

p Puts text after/below the cursor; otherwise like P.

r Must be followed by a single character; the character under
the cursor is replaced by the specified one. (The new charac­
ter may be a newline.) A count replaces each of the follow­
ing count characters with the single character given.

s Deletes the single character under the cursor, and enters
input mode; the entered text replaces the deleted character.
A count specifies how many characters from the current line
are changed. The last character to be changed is marked
with a $, as for c.

t Must be followed by a single character; scans the rest of the
line for that character. The cursor is moved to just before
the character, if it is found. A count is equivalent to repeat­
ing the search that many times.

u Reverses the last change made to the current buffer. If
repeated, will alternate between these two states, thus is its
own inverse. When used after an insert which inserted text
on more than one line, the lines are saved in the numeric
named buffers.

w Moves forward to the beginning of the next word, where
word is the same as in b. A count specifies how many words
to go forward.

x Deletes the single character under the cursor. With a count
deletes that many characters forward from the cursor posi­
tion, but only on the current line.

y Must be followed by a movement command; the specifed text
is copied (yanked) into the unnamed temporary buffer. If
preceded by a named buffer specification, ·x, the text is
placed in that buffer also.

The UNIX System User's Manual 211

Advanced Utilities VI(AU_CMD)

z Redraws the screen with the current line placed as specified
by the following character: return specifies the top of the
screen, . the center of the screen, and - the bottom of the
screen. A count may be given after the z and before the fol­
lowing character to specify the new screen size for the
redraw. A count before the z gives the number of the line to
place in the center of the screen instead of the default
current line.

USAGE

General.

SEE ALSO

EX(AU_CMD).

212 The UNIX System User's Manual

NAME

wall - write to all users

SYNOPSIS
jete/wall

DESCRIPTION

Advanced Utilities

The command wall reads its standard input until an end-of-file. It then
prints this message on the terminals of all users currently logged-in, preceded
~ ,

Broadcast Message from login-id

The sender must be super-user to override any protections the users may have
invoked [see MESG(AU_CMD»).

USAGE

Administrator.

The command wall is used to warn all users, typically prior to shutting
down the system.

SEE ALSO
MESG(AU _ CMD), WRITE(AU _ CMD).

The UNIX System User's Manual 213

Advanced Utilities

NAME

who - who is on the system

SYNOPSIS

who (options) (file)

who am i

who am I

DESCRIPTION

The command who can list the user's name, terminal line, login time, elapsed
time since activity occurred on the line, and the process-ID of the command
interpreter for each current system user. It examines the / etc / u tmp file
to obtain its information. If file is given, that file is examined instead.

The command who with the am i or am I option identifies the invoking
user.

Except for the default -5 option, the general format for output entries is:

name (state) line time activity pid (commentl (exit)

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the ini t process. These
options are:

-u This option lists only those users who are currently logged in. The
name is the user's login name. The line is the name of the line as
found in the directory /dev. The time is the time that the user
logged in. The activity is the number of hours and minutes since
activity last occurred on that particular line. A dot (.) indicates that
the terminal has seen activity in the last minute and is therefore
"current". If more than twenty-four hours have elapsed or the line has
not been used since boot time, the entry is marked old. This field is
useful when trying to determine whether a person is working at the ter­
minal or not. The pid is the process-ID of the user's login process.

-T This option is the same as the -u option, except that the state of the
terminal line is printed. The state describes whether someone else can
write to that terminal. A + appears if the terminal is writable by any­
one; a - appears if it is not. The super-user can write to all lines hav­
ing a + or a - in the state field. If a bad line is encountered, a ? is
printed.

-1 This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other fields
are the same as for user entries except that the state field does not
exist.

-H This option will print column headings above the regular output. (This
option is new in UNIX System V Release 2.0.)

214 The UNIX System User's Manual

Advanced Utilities

-q This is a quick who, displaying only the names and the number of
users currently logged on. When this option is used, all other options
are ignored. (This option is new in UNIX System V Release 2.0.)

-p This option lists any other process which is currently active and has
been previously spawned by ini t.

-d This option displays all processes that have expired and not been
respawned by ini t. The exit field appears for dead processes and
contains the termination and exit values of the dead process. This can
be useful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the ini t process.

-t This option indicates the last change to the system clock.

-a This option processes letc/utmp or the named file with all options
turned on.

-s This option is the default and lists only the name, line, and time fields.

FILES
letc/utmp
Idev/tty*

USAGE
General.

The UNIX System User' s Manual 215

Advanced Utilities

NAME

write - write to another user

SYNOPSIS

wr i t e user !termina/l

DESCRIPTION

The command write copies lines from the user's terminal to that of another
user. When first called, it sends the message:

Message from sender-Iogin-id (ttynn) Idate] . ..

to the user addressed. When it has successfully completed the connection, it
also sends two bells to the sender's terminal to indicate that what the sender is
typing is being sent.

The recipient of the message should write back, by typing wr i te sender­
login-id, on receipt of the initial message. Whatever each user types (except
for command escapes, see below) is printed on the other user's terminal, until
an end-of-file or an interrupt is sent. At that point wr i t e writes "EDT" on
the other terminal and exits. The recipient can also stop further messages
from coming in by executing "mesg nil.

To write to a user who is logged in more than once, the terminal argument
may be used to indicate which terminal to send to (e.g., ttyOO); otherwise,
the first writable instance of the user found in /etc/utmp is assumed and
an informational message is written.

A user may deny or grant write permission by use of the me s g command.
Certain commands disallow messages in order to prevent interference with
their output. However, if the sender has super-user permissions, messages can
be forced onto a write-inhibited terminal.

It the character J is found at the beginning of a line, wr i t e calls the com­
mand interpreter to execute the rest of the line as a command.

ERRORS

The following errors are reported:

the user addressed is not logged on.

the user addressed denies write permission [see MESG(AU_CMD»).

the user's terminal is set to me sg n; recipient cannot respond.

the recipient changes permission
after write had begun.

FILES
/etc/utmp

USAGE

End-user.

216 The UNIX System User's Manual

Advanced Utilities

SEE ALSO

MESG(AU_CMD), WHO(AU_CMD).

The UNIX System User's Manual 217

Chapter 3

Administered Systems
Utilities

Administered Systems

NAME

accton, acctwtmp, chargefee, ckpacct, dodisk, lastlogin, monacct, prdaily,
prtacct, shutacct, startup, turnacct - miscellaneous accounting and support
commands

SYNOPSIS
lusr/lib/acct/accton (file)

lusr Ilib/acct/acctwtmp reason

lusr/lib/acct/chargefee login-name number

lusr/lib/acct/ckpacct (blocks)

lusr/lib/acct/dodisk (files)

lusr/lib/acct/lastlogin

lusr/lib/acct/monacct number

lusr/lib/acct/prdai ly (-1) l-cJ [mmdd)

lusr/lib/acct/prtacct file (heading)

lusr/lib/acct/shutacct [reason)

lusr/lib/acct/startup

lusr/lib/acct/turnacct on I off I switch

DESCRIPTION

The accounting software provides utilities to collect data on: process account­
ing, connect accounting, disk usage, command usage, summary command
usage, and users' last login.

The runnacct (see RUNACCT(AS_CMD)] and monacct commands use the
utilities listed here to produce daily and monthly summary files and reports
that can be printed using prdaily; they use a number of intermediate files
and support utilities that can also be used to tailor-make new accounting sys­
tems. Many of these utilities produce or manipulate "total accounting" (tacct)
records which can be summarized by acctmerg [see ACCTMERG(AS_CMD)]
and printed using prtacct.

The command accton without parameters turns process accounting off. If
file is given, accton will turn accounting on. The argument file must be
the name of an existing file (normally lusr/adm/pacct), to which the
system appends process accounting records [see ACCT(KE_SYS)1.

The command acctwtmp writes a utmp structure in record to its standard
output. The record contains the current time and a string of characters that
describe the reason. A record type of ACCOUNTING is assigned. The argu­
ment reason must be a string of (11 or less) characters, numbers, $, or spaces.
For example, the following are suggestions for use in startup and shutdown
procedures, respectively:

The UNIX System User's Manual 221

Administered Systems

acctwtmp "acctg on" » /etc/wtmp
acctwtmp "acctg off" » /etc/wtmp

The command chargefee is invoked to charge a number of units to
login-name. An ASCII tacct record is written to /usr/adm/fee, to be
merged with other accounting records by acctmerg.

The command ckpacct is typically initiated via cron It periodically
checks the size of /usr/adm/pacct. If the size exceeds blocks, 1000 by
default, turnacct will be invoked with argument swi tch. If the
number of free disk blocks in the /usr file system falls below 500,
ckpacct will automatically turn off the collection of process accounting
records via the off argument to turnacct. The accounting will be
activated again on the next invocation of ckpacct when at least this
number of blocks is restored.

The command dodisk is typically invoked by cron to perform the disk
accounting functions. By default, it will do disk accounting on the special files
in /etc/check1ist. If files are used, they should be the special file
names of mountable filesystems; disk accounting will be done on these filesys­
terns only.

The command 1ast1ogin is invoked (typically by runacct) to update
/usr/adm/acct/sum/1ogin1og, which shows the last date on which
each person logged in.

The command monacct is typically invoked once each month. The argu­
ment number indicates which month or period it is. If number is not given, it
defaults to the current month (01-12). This default is useful if monacct
is to executed via cron on the first day of each month. The command
monacct creates summary files in /usr/adm/acct/fisca1, restarts
summary files in /usr / adm/ acct/ sum, and deletes the previous days'
accounting reports (see prdai 1y below).

The command prdai1y is invoked (typically by runacct) to format a
report of the previous day's accounting data. The report resides in
/usr/adm/acct/sum/rprtmmdd where mmdd is the month and day
of the report. The current daily accounting reports may be printed by typing
prdai1y. Previous days' accounting reports can be printed by using the
mmdd option and specifying the report date desired. The -1 option prints a
report of exceptional usage by login id for the specifed date. Previous daily
reports are removed and therefore inaccessible after each invocation of
monacct. The -c option prints a report of exceptional resource usage by
command, and may be used on current day's accounting data only.

The command prtacct can be used to format and print any total account­
ing (tacct) file.

The command shutacct is typically invoked during a system shutdown
(usually in /etc/shutdown) to turn process accounting off and append a
"reason" record to /etc/wtmp.

222 The UNIX System User's Manual

Administered Systems

The command startup is typically called by the system initialization rou­
tine to turn on process accounting whenever the system is brought up.

The command turnacct is an interface to accton to turn process
accounting en or eff. The S~-l'i tch argument turns ac-counting off; moves
the current lusr/adm/pacct to the next free name in
lusr/adm/pacctincr (where incr is a number starting with 1 and
incrementing by one for each additional pacct file), then turns accounting
back on again.

FILES

letc/wtmp

letc/passwd

lusr/lib/acct

lusr/adm/£ee

lusr/adm/pacct

login/logoff summary

used for login name to user ID conversions

directory for accounting commands

accumulator for fees

current file for process accounting

lusr/adm/acct/sum summary directory

USAGE
Administrator.

SEE ALSO
ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS _ CMD),

ACCTMERG(AS_CMD), ACCTPRC(AS_CMD), CRON(AU_CMD), DISKUSG(AS .. CMD),

FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_SYS).

The UNIX System User's Manual 223

Administered Systems ACCTCMS(AS_CMD)

NAME

acctcms - command summary from per-process accounting records

SYNOPSIS
lusr II ib/acct/acctcms (options) files

DESCRIPTION

The command acctcms reads one or more files, normally in the form pro­
duced by ACCT(KE_SYS). It adds all records for processes that executed
identically-named commands, sorts them, and writes them to the standard out­
put, normally using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The
output includes command name, number of times executed, total kcore­
minutes, total CPU minutes, total real minutes, mean size On K), mean
CPU minutes per invocation, "hog factor", characters transferred, and
blocks read and written, as in ACCTCOM(AS_CMD). Output is normally
sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "."other".
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal summary

format.

The following options may be used only with the - a option.

-p Output a prime-time-only command summary.

-0 Output a non-prime (offshift) time only command summary.

When -p and -0 are used together, a combination prime and non-prime
time report is produced. All the output summaries will be total usage except
number of times executed, CPU minutes, and real minutes which will be split
into prime and non-prime.

A typical sequence for performing daily command accounting and for main­
taining a running total is:

acctcms file >today
cp total previous total
acctcms -s today previous total >total
acctcms -a -s today

USAGE
Administrator.

SEE ALSO

ACCT(AS_CMD), ACCTCON(AS_CMD), ACCTMERG(AS_CMD), ACCTPRC(AS_CMD),

FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCTCOM(AS_CMD), ACCT(KE_SYS).

224 The UNIX System User's Manual

ACCTCOM(AS _ CMD) Administered Systems

NAME

acctcom - search and print process accounting file(s)

SYNOPSIS

acctcom [[Opiionsl Vilell ...

DESCRIPTION

The command acctcom reads file, the standard input, or
/usr/adm/pacct, in the form produced by ACCT(KE_SYS) and writes
selected records to the standard output. Each record represents the execution
of one process and shows the COMMAND NAME, USER, TIYNAME, START
TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally, F
(the fork/exec flag: 1 for fork without exec), STAT (the system
exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD, and
BLOCKS RIW (total blocks read and written).

The command name is prepended with a # if it was executed with super­
use r privileges. If a process is not associated with a known terminal, a ? is
printed in the TIYNAME field.

If no files are specified, and if the standard input is associated with a terminal
or /dev/nu11, /usr/adm/pacct is read; otherwise, the standard
input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward, i.e., in chronological order by process completion
time. The options are:

-a

-b

-f

-h

-i
-k
-m
-r

-t
-v
-1 line
-uuser

-ggroup

Show average statistics about the processes selected. The statis­
tics will be printed after the output records.
Read backwards, showing latest commands first. This option
has no effect when the standard input is read.
Print the fork/exec flag and system exit status columns in
the output.
Instead of mean memory size, show the fraction of total avail­
able CPU time consumed by the process during its execution (the
"hog factor").
Print columns containing total blocks read and written.
Instead of memory size, show total kcore·minutes.
Show mean core size (the default).
Show CPU factor (user time/ (system-time + user-time).
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal / dev / line.
Show only processes belonging to user that may be specified by:
a user 10, a login name that is then converted to a user 10, a #
which designates only those processes executed with super-user
privileges, or ? which designates only those processes associated
with unknown user lOs.
Show only processes belonging to group. The group may be

The UNIX System User's Manual 225

Administered Systems ACCTCOM(AS_CMD)

-stime

-etime
-Slime
-Etime

-npattern

-q

-oofile

-Hfactor

-Osee

-Csec

-Ichars

FILES

designated by either the group ID or group name.
Select processes existing at or after time, given in the format
hr [: min [: sec]] .
Select processes existing at or before time.
Select processes starting at or after time.
Select processes ending at or before time. Using the same
time for both -S and -E shows the processes that existed at
time.
Show only commands matching pattern that may be a regular
expression as in ED(BU_CMD) except that + means one or more
occurrences.
Do not print any output records, just print the average statistics
as with the -a option.
Copy selected process records in the input data format to ofile;
suppress standard output printing.
Show only processes that exceed factor, where factor is the "hog
factor" as explained in option -h above.
Show only processes with CPU system time exceeding sec
seconds.
Show only processes with total CPU time, system plus user,
exceeding sec seconds.
Show only processes transferring more characters than the cut­
off number given by chars.

/etc/passwd
/etc/group
/usr/adm/pacct

USAGE
Administrator.

SEE ALSO
ACCT(KE _ SYS), ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCON(AS _ CMD),

ACCTMERG(AS_CMD), ACCTPRC(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD).

226 The UNIX System User's Manual

ACCTCON(AS_CMD) Administered Systems

NAME

acctcon 1, acctcon2, prctmp - connect-time accounting

SYNOPSIS

/usr/lib/acct/acctcon 1 [options!

/usr/1ib/acct/acctcon2

/usr/1ib/acct/prctmp

DESCRIPTION

The command acctcon 1 converts a sequence of login/logoff records read
from its standard input to a sequence of session records, one per login session.
Its input should normally be redirected from /etc/wtmp. The record for­
mat is ASCII, giving device, user 10, login name, prime connect time
<seconds}, non-prime connect time <seconds}, session starting time (numeric),
and starting date and time. The options are:

-p

-t

-1 file

-0 file

Print input only, showing line name, login name, and time (in both
numeric and dateltime formats).

The command acctcon 1 maintains a list of lines on which
users are logged in. When it reaches the end of its input, it emits
a session record for each line that still appears to be active. It nor­
mally assumes that its input is a current file, so that it uses the
current time as the ending time for each session still in progress.
The -t flag causes it to use, instead, the last time found in its
input, thus assuring reasonable and repeatable numbers for non­
current files.

File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number of
logoffs. This file helps track line usage, identify bad lines, and find
software and hardware oddities. Various events during logoff each
generate logoff records, so that the number of logoffs is often three
to four times the number of sessions.

File is filled with an overall record for the accounting period, giv­
ing starting time, ending time, and the count and type of various
accounting records produced by acctwtmp [see ACCT(AS_CMD)l.

The command acctcon2 expects as input a sequence of login session
records (as produced by acctcon 1), and converts them into total account­
ing records.

The argument prctmp can be used to print the session record file as pro­
duced by acctcon 1.

EXAMPLES

These commands are typically used as shown below. The file ctmp can be
used by acctprc 1 [see ACCTPRC(AS_CMD)l:

The UNIX System User's Manual 227

Administered Systems ACCTCON(AS_CMD)

acctcon1 -t -1 1ineuse -0 reboots <wtmp I sort +1n

+2 >ctmp

acctcon2 <ctmp I acctmerg >ctacct

FILES

/etc/wtmp

USAGE
Administra tor.

The command wtmpf ix [see FWTMP(AS_CMD)] can be used to correct for
the confusion caused by date changes.

SEE ALSO
ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTMERG(AS _ CMD),

ACCTPRC(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_SYS).

228 The UNIX System User's Manual

ACCTMERG(AS _ CMD) Administered Systems

NAME
acctmerg - merge or add total accounting files

SYNOPSIS

/usr/lib/acct/acctmer9 rupiionsl Vile ... 1

DESCRIPTION
The command acctmerg reads its standard input and up to nine additional
files, all in the total accounting (tacct) format or an ASCII version thereof. It
merges these inputs by adding records whose keys (normally user ID and
name) are identical, and expects the inputs to be sorted on those keys.
Options are:

-a Produce output in ASCII version of tacct.
- i Input files are in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user ID, rather than user ID and name.
-v Produce output in verbose ASCII format, using more precise notation for

floating point numbers.

EXAMPLES

The following sequence is useful for making "repairs" to any file kept in this
format:

acctmerg -v <.filel >file2
(edit file2 as desired)
acctmerg -i <file2 >filel

USAGE
Administrator.

SEE ALSO
ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS _ CMD),

ACCTPRC(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_SYS).

The UNIX System User's Manual 229

Administered Systems

NAME

acctprcl, acctprc2 - process accounting

SYNOPSIS

lusr/lib/acct/acctprc1(ctmpl

lusr/lib/acct/acctprc2

DESCRIPTION
The command acctprc 1 reads input in the form produced by
ACCT(KE_SYS), supplies login names corresponding to user IDs, then writes for
each process an ASCII line giving user ID, login name, prime CPU time (tics),
non-prime CPU time (tics), and mean memory size (in memory segment
units). A memory segment of the mean memory size is a unit of measure for
the number of bytes in a logical memory segment on a particular processor.
For example, this measure could be in 64-byte units on one machine and in
512-byte units on another. If ctmp is given, it is expected to contain a list of
login sessions, in the form described in ACCTCON(AS_CMD), sorted by user ID
and login name. If this file is not supplied, it obtains login names from the
password file. The information in ctmp is used to distinguish among different
login names that share the same user ID.

The command acctprc2 reads records in the form written by
acctprc 1, merges and sorts them by user ID and name, then writes them to
the standard output as total accounting records.

These commands are typically used as shown below:

acctprc1
>ptacct

FILES

letc/passwd

USAGE

Administrator.

SEE ALSO

ctmp </usr/adm/pacct acctprc2

ACCT(AS _ CMD), ACCTCMS(AS_ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS_CMD),

ACCTMERG(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_SYS).

230 The UNIX System User's Manual

Administered Systems

NAME
clri - clear i-node

SYNOPSIS
i. i.. . rr_ ~. ~"- __ .. ~ _______ L __ _

/ e "LC/ C J.r l. JlIe-~ys,em '-rlumuer ...

DESCRIPTION
The command c 1 r i writes zeros on the 64 bytes occupied by the i-node(s)
numbered i-number. The argument file-system must be a special file name
referring to a device containing a file system. After c 1 r i is executed, any
blocks in the affected file will show up as "missing" in an f s c k [see
FSCK(AS_CMD)] of the file-system. This command should only be used in
emergencies and extreme care should be exercised.

Read and write permission is required on the specified file-system device. The
i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason
appears in no directory. If it is used to clear an i-node which does appear in a
directory, care should be taken to track down the entry and remove it. Other­
wise, when the i-node is reallocated to some new file, the old entry will still
point to that file. At that point removing the old entry will destroy the new
file. The new entry will again point to an unallocated i-node, so the whole
cycle is likely to be repeated again and again.

USAGE
Administrator.

SEE ALSO
FSCK(AS _ CMD), FSDB(AS _ CMD), NCHECK(AS _ CMD).

The UNIX System User's Manual 231

Administered Systems

NAME

devnm - device name

SYNOPSIS

/etc/devnm Ipathnamel

DESCRIPTION
The command devnm identifies the special file associated with the mounted
file system where the named file or directory resides. The full path name must
be given.

EXAMPLE
The command:

/etc/devnm /usr

produces

/dev/dsk/Os1 /usr

if

/usr is mounted on

/dev/dsk/Os 1.

FILES

/dev/dsk/*
/etc/mnttab

USAGE
Administrator.

SEE ALSO
SETMNT(AS _ CMD).

232 The UNIX System User's Manual

DISKUSG(AS_CMD) Administered Systems

NAME

diskusg, acctdisk - generate disk accounting data by user-ID

SYNOPSIS
/usr/lib/acct/diskusg [options) [special-file _ . ..1

lusr/lib/acct/acctdisk

DESCRIPTION

The command dis k us g generates disk accounting information for the file­
system identified by the special-files. The command di skusg prints lines
on the standard output, one per user, in the following format:

uid login #blocks
where uid is the numerical user-ID of the user, login is the login-name of the
user, and #blocks is the total number of disk blocks allocated to this user.

The command di skusg recognizes the following options:

-s The input data is already in diskusg output format; all lines
combined into a single line per user.

-v Verbose; print a list on standard error of all files that are
charged to no one.

- i fnmlist Ignore the data on those file systems whose file system name is
in fnmlist. The argument fnmlist is a list of file system names
separated by commas or enclosed within quotes. The command
dis ku s g compares each name in this list with the file system
name stored in the volume-ID [see 1 abe 1 it in
VOLCOPY(AS _ CMD»).

- p file Use file as the name of the password file to generate login­
names. letc/passwd is used by default.

- u file Write records to file of files that are charged to no one. Records
consist of special file-name, i-node number, and user-ID.

The argument acctdisk expects a sequence of disk accounting informa­
tion, as produced by dis ku s g (sorted by user-ID and login-name), and gen­
erates total accounting records that can be merged with other accounting
records. The command diskusg is normally run in dodisk [see
ACCT(AS_CMD»).

FILES

let c I pas s wd used for user-ID to login-name conversions

USAGE

Administrator.

SEE ALSO

ACCT(AS_CMD), VOLCOPY(AS_CMD), ACCT(KE_SYS).

The UNIX System User's Manual 233

Administered Systems

NAME

fsck - file system consistency check and interactive repair

SYNOPSIS

/etc/fsck loptionslljile-systemsl

DESCRIPTION

The command f s c k audits and interactively repairs inconsistent conditions
for files. If the file system is consistent then the number of files, number of
blocks used, and number of blocks free are reported. If the file system is
inconsistent the user is prompted for concurrence before each correction is
attempted. It should be noted that most corrective actions will result in some
loss of data. The amount of data lost and its severity may be determined from
the diagnostic output. The default action for each consistency correction is to
wait for the user to respond ye s or no. If the user does not have write per­
mission f s c k will default to a -n action.

The file system should be unmounted while f s ck is used. If this is not pos­
sible, care should be taken that the system is quiescent and that it is rebooted
immediately afterwards.

The following options are interpreted by f s c k.

-y

-n

-sX

-SX

-t file

-q

Assume a yes response to all questions asked by f s c k .

Assume a no response to all questions asked by f s c k; do not
open the file system for writing.

Ignore the actual free list and (unconditionally) reconstruct a new
one. X is a hardware dependent option, which specifes how the
free list is to be created; if it is not given, the values used when the
file system was created, or other default values, are used.

Conditionally reconstruct the free list. This option is like -sX
above except that the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using -s will force a
no response to all questions asked by f s ck. This option is useful
for forcing free list reorganization on uncontaminated file systems.

If fsck cannot obtain enough memory to keep its tables, it uses
a scratch file. If the -t option is specified, the file named in the
next argument is used as the scratch file, if needed. Without the
-t flag, f s ck will prompt the user for the name of the scratch
file. The file chosen should not be on the file system being checked,
and if it is not a special file or did not already exist, it is removed
when fsck completes.

Quiet f s c k. Do not print size-check messages in Phase 1.
Unreferenced FIFOs will silently be removed. If f s ck requires it,
counts in the superblock will be automatically fixed and the free
list salvaged.

234 The UNIX System Users Manual

Administered Systems

-D Directories are checked for bad blocks. Useful after system
crashes.

-f Fast check of block and sizes (Phase 1) and free list (Phase 5).
Free iisi wiii be reconsirucieo (Phase 6) if necessary.

If no file-systems are specified, f s ck will read a list of default file systems
from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free list.
2. Blocks claimed by i-node or free list outside range of file system.
3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad i-node format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated i-node.
I-node number out of range.

8. Super Block checks:
More than {INODE_MAX} inodes.
More blocks for i-nodes than there are in the file system.

9. Bad free block list format.
10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the user's
concurrence, reconnected by placing them in the lost+found directory, if
the files are nonempty. The user will be notified if the file or directory is
empty or not. If it is empty, fsck will silently remove them. The command
f s c k will force the reconnection of nonempty directories. The name assigned
is the i-node number. The only restriction is that the directory
los t + found must preexist in the root of the file system being checked and
must have empty slots in which entries can be made. This is accomplished by
making lost+found, copying a number of files to the directory, and then
removing them (before f s c k is executed).

Checking the raw device is almost always faster and should be used with
everything but the root file system.

FILES
/etc/checklist

USAGE
Administrator.

I-node numbers for. and •. in each directory should be checked for validity.

The UNIX System User's Manual 235

Administered Systems

NAME
fsdb - file system debugger

SYNOPSIS

letc/fsdb speciall-I

DESCRIPTION

The command f sdb can be used to patch up a damaged file system after a
crash. It has conversions to translate block and i-numbers into their
corresponding disk addresses. Also included are mnemonic offsets to access
different parts of an i-node. These greatly simplify the process of correcting
control block entries or descending the file system tree.

The command f sdb contains several error-checking routines to verify i-node
and block addresses. These can be disabled if necessary by invoking fsdb
with the optional - argument or by the use of the 0 symbol. (from the
superblock of the file system as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed
with a zero. During any assignment operation, numbers are checked for a pos­
sible truncation error due to a size mismatch between source and destination.

The command f s db reads a block at a time and will therefore work with
raw as well as block 1/0. A buffer management routine is used to retain com­
monly used blocks of data in order to reduce the number of read system calls.
All assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:

absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+,- address arithmetic
q quit
>, < save, restore an address
= numerical assignment
= + incremental assignment
= - decremental assignment

character string assignment
o error checking flip flop
p general print facilities
f file print facility
B byte mode
w word mode
D double word mode
I escape to the command interpreter

The print facilities generate a formatted output in various styles. The current
address is normalized to an appropriate. boundary before printing begins. It

236 The UNIX System User's Manual

FSDB(AS _ CMD) Administered Systems

advances with the printing and is left at the address of the last item printed.
The output can be terminated at any time by typing the delete character. If a
number follows the p symbol, that many entries are printed. A check is
made to detect block boundary overflows since logically sequential blocks are
generaiiy noi physicaily sequeniiai. If a couni of zero is used, ail eniries io ihe
end of the current block are printed. The print options available are:

i print as i-nodes
d print as directories
o print as octal words
e print as decimal words
c print as characters
b print as octal bytes

The f symbol is used to print data blocks associated with the current i-node.
If followed by a number, that block of the file is printed. (Blocks are num­
bered from zero,) The desired print option letter follows the block number, if
present, or the f symbol. This print facility works for small as well as large
files. It checks for special devices and that the block pointers used to find the
data are not zero.

Dots, tabs, and spaces may be used as function delimiters but are not neces­
sary. A line with just a new-line character will increment the current address
by the size of the data type last printed. That is, the address is set to the next
byte, word, double word, directory entry or i-node, allowing the user to step
through a region of a file system. Information is printed in a format appropri­
ate to the data type. Bytes, words and double words are displayed with the
octal address followed by the value in octal and decimal. A • B or • D is
appended to the address for byte and double word values, respectively. Direc­
tories are printed as a directory slot offset followed by the decimal i-number
and the character representation of the entry name. I-nodes are printed with
labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

md mode
1 n link count
u i d user ID number
g i d group ID number
sz file size
a# data block numbers (0 - 12)
a t access time
mt modification time
ma j major device number
min minor device number

EXAMPLES

386i prints i-number 386 in an i-node format. This now becomes
the current working i-node.

The UNIX System Users Manual 237

Administered Systems

In=4

In=+1

fc

2i.fd

dSi.fc

512B.pOo

changes the link count for the working i-node to 4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated with the
working i-node.

prints the first 32 directory entries for the root i-node of this
file system.

changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the above
command. The first logical block of the file is then printed
in ASCII.

prints the superblock of this file system in octal.

2 i . a 0 b • d 7 = 3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

d7.nm=

a2b.pOd

USAGE
Administrator.

SEE ALSO
FSCK(AS_CMD).

changes the name field in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

prints the third block of the current i-node as directory
entries.

238 The UNIX System User's Manual

Administered Systems

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/etc/fuser [-kulfiles [-I [[-ku 1 files 1

DESCRIPTION
The command fuser lists the process IDs of the processes using the files
specified as arguments. For block special devices, all processes using any file
on that device are listed. The process ID is followed by c, p or r if the pro­
cess is using the file as its current directory, the parent of its current directory
(only when in use by the system), or its root directory, respectively. If the
-u option is specified, the login name, in parentheses, also follows the process
ID. In addition, if the -k option is specified, the SIGKILL signal is sent to
each process. Only the super-user can terminate another user's process [see
KILL(BA_SYS» 1 Options may be respecified between groups of files. The new
set of options replaces the old set, with a lone dash canceling any options
currently in force.

The process IDs are printed as a single line on the standard output, separated
by spaces and terminated with a single new line. All other output is written
on standard error.

EXAMPLES

fuser -ku /dev/dsk/1s?
will terminate all processes that are preventing disk drive one from being
unmounted if typed by the super-user, listing the process ID and login
name of each as it is killed.

fuser -u /etc/passwd
will list process IDs and login names of processes that have the password
file open.

fuser -ku /dev/dsk/1s? -u /etc/passwd
will do both of the above examples in a single command line.

USAGE

Administrator.

The command fuser works with a snapshot of the system tables, which is
true only for an instant. It is possible that other processes begin accessing the
specified file(s) after this snapshot is taken.

SEE ALSO
KILL(BA_SYS).

The UNIX System User's Manual 239
,

\

Administered Systems

NAME

fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
lusr/lib/acct/fwtmp (-icl

lusr/lib/acct/wtmpfix (files I

DESCRIPTION

fwtmp

FWTMP(AS _ CMD)

The command fwtmp reads from the standard input and writes to the stan­
dard output, converting binary records of the type found in letc/wtmp to
formatted ASCII records. The ASCII version is useful to enable editing bad
records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output is
to be written in binary form.

wtmpfix

The command wtmp fix examines the standard input or named files in
wtmp format, corrects the time/date stamps to make the entries consistent,
and writes to the standard output. A - can be used in place of files to indi­
cate the standard input. If time/date corrections are not performed, acct­
con 1 will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to
letc/wtmp. The first record is the old date denoted by the string old
time placed in the line field and the flag OLD_TIME placed in the type
field of the <u tmp . h> structure. The second record specifies the new date
and is denoted by the string new time placed in the line field and the flag
NEW _ TIME placed in the type field. The command wtmpf ix uses these
records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpf ix will check the validity
of the name field to ensure that it consists solely of alphanumeric characters or
spaces. If it encounters a name that is considered invalid, it will change the
login name to INVALID and write a diagnostic to the standard error. In this
way, wtmpfix reduces the chance that acctcon 1 will fail when process­
ing connect accounting records.

FILES
letc/wtmp

USAGE
Administrator.

SEE ALSO
ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS _ CMD),
ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMD), RUNACCT(AS _ CMD), ACCT(KE _ SYS).

240 The UNIX System User's Manual

Administered Systems

NAME
init - change system run level

SYNOPSIS
/etc/initl0123456sql

DESCRIPTION
The command in i t is used to direct the actions of the in i t process,
which is the system process spawner. (The ini t command provides the
ini t process with certain directives; it is important to keep in mind the dis­
tinction between the two.)

The system is in a particular run-level at any given time. The processes
spawned by the ini t process for each of these run-levels is defined in the
/etc/ini ttab file. The system can be in one of eight run-levels, 0-6
and s (or S). The run-level is changed when the System Administrator
runs the in i t command.

If the run-level s (S) is specified, the ini t process goes into the SINGLE­
USER level. This is the only run-level that does not require the existence of a
properly formatted / etc/ini ttab file. (If that file does not exist, then
by default the SINGLE USER level is entered.)

If a run-level of 0 through 6 is specified, the ini t process enters the
corresponding run-level.

The following arguments are accepted by ini t:

0-6 tells ini t to place the system in one of the run-levels
0-6.

q (or Q) tells init to re-examine the /etc/inittab file.
lt is often used after that file has been changed, in order to
check its correctness.

s (or S) tells ini t to enter the SINGLE-USER level. When
this level change is effected, the virtual system terminal,
/dev/console, is changed to the terminal from which the
command was executed.

FILES
/etc/inittab

USAGE
Administrator.

The UNIX System User's Manual 241

Administered Systems

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm (options)

DESCRIPTION

The command ipcrm will remove one or more specified message, semaphore
or shared memory identifiers. The identifiers are specified by the following
options:

-q msqid removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with
it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with
it are destroyed after the last detach operation.

-s semid removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated
with it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data struc­
ture associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data struc­
ture associated with it are destroyed after the last detach.

-s semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

The details of the removes are
SHMCTL(KE_SYS), and SEMCTL(KE_SYS).

found by using IPCS(AS_CMD).

SEE ALSO

described in MSGCTL(KE_SYS),

The identifiers and keys may be

IPCS(AS_CMD), MSGCTL(KE_SYS), MSGGET(KE_SYS), MSGOP(KE_SYS),

SEMCTL(KE_SYS), SEMGET(KE_SYS), SEMOP(KE_SYS), SHMCTL(KE_SYS),

SHMGET(KE_SYS), SHMOP(KE_SYS).

242 The UNIX System User's Manual

Administered Systems

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options)

DESCRIPTION
The command ipc s prints certain information about active inter-process
communication facilities. Without options, information is printed in short for­
mat for message queues, shared memory, and semaphores that are currently
active in the system. Otherwise, the information that is displayed is controlled
by the following options:

-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only
those indicated will be printed. If none of these three are specified, informa­
tion about all three will be printed.

-b Print biggest allowable size information. (Maximum number of
bytes in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for sema­
phores.) See below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-0 Print information on outstanding usage. (Number of messages on
queue and total bytes in messages on queue for message queues and
number of processes attached to shared memory segments.)

-p Print process number information. (Process ID of last process to send
a message, process ID of last process to receive a message on mes­
sage queues, process ID of creating process, process ID of last process
to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last
msgsnd and last msgrcv operations on message queues, last
s hma t and last s hmd t operations on shared memory, last
semop operation on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b, -c,
-0, -p, and -t.)

-c core file
Use the file corefile in place of / dev /kmem.

-N namelist
The argument will be taken as the name of an alternate namelist file,
instead of the default.

The UNIX System User's Manual 243

Administered Systems

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; aU means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities will be listed.

T (aU)

Type of the facility:

q message queue;

m shared memory segment;

s semaphore.

ID (aU)

The identifier for the facility entry.

KEY (all)
The key used as an argument in calls to msgget, semget, or
shmget to create the facility entry. (Note: The key 6f a shared
memory segment is changed to IPC_PRIVATE when the segment
has been removed until all processes attached to the segment
detach it.)

MODE (all)
The facility access modes and flags: The mode consists of 11 char­
acters, interpreted as follows.

The first character is:

5 if a process is waiting on a msgsnd operation;

D if the associated shared memory segment has been
removed. It will disappear when the last process
attached to the segment detaches it;

if the corresponding condition is not true.

The second character is:

R if a process is waiting on a msgrcv operation;

C if the associated shared memory segment is to be
cleared when the first attach operation is executed;

if the corresponding condition is not true.

The next nine characters are interpreted as three sets of three bits
each. The first set refers to the owner's permissions; the next to
permissions of others in the user-group of the facility entry; and
the last to all others. Within each set, the first character indicates
permission to read, the second indicates permission to write or alter
the facility entry, and the last is currently unused.

244 The UNIX System User's Manual

Administered Systems

The permissions are indicated as follows:

r if read permission is granted;

w if write permission is granted;

a if alter permission is granted;

if the indicated permission is not granted.

(Thus the first character in a set of three can either be r or -
the second character can be either w, a, or -; the last character
can only be -.)

OWNER (all)
The login name of the owner of the facility entry.

GROUP (all)
The group name of the group of the owner of the facility entry.

CREATOR (a,c)
The login name of the creator of the facility entry.

CGROUP (a,c)
The group name of the group of the creator of the facility entry.

CBYTES (a,o)
The number of bytes in messages currently outstanding on the
associated message queue.

QNUM (a,o)
The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b)
The maximum number of bytes allowed in messages outstanding
on the associated message queue.

LSPID (a,p)
The process ID of the last process to send a message to the associ­
ated queue.

LRPID (a,p)
The process ID of the last process to receive a message from the
associated queue.

STIME (a,t)
The time the last message was sent to the associated queue.

RTIME (a,t)
The time the last message was received from the associated queue.

CTIME (a,t)
The time when the associated entry was created or changed.

The UNIX System User's Manual 245

Administered Systems

NATICH (a,o)

SEGSZ

CPID

LPID

ATIME

DTIME

The number of processes attached to the associated shared memory
segment.

(a,b)
The size of the associated shared memory segment.

(a,p)
The process ID of the creator of the shared memory entry.

(a,p)
The process ID of the last process to attach or detach the shared
memory segment.

(a,t)
The time the last attach was completed to the associated shared
memory segment.

(a,t)
The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b)
The number of semaphores in the set associated with the sema­
phore entry.

OTIME (a,t)

SEE ALSO

The time the last semaphore operation was completed on the set
associated with the semaphore entry.

MSGOP(KE_SYS), SEMOP(KE_SYS), SHMOP(KE_SYS).

USAGE
Things can change while ipcs is running; therefore the status it reports may
no longer be accurate at the time it is seen.

246 The UNIX System User's Manual

KILLALL(AS_CMD) Administered Systems

NAME

killall - kill all active processes

SYNOPSIS

letc/ki11a11 (signa/l

DESCRIPTION

The command kill a 11 is a procedure used to kill all active processes not
directly related to the calling procedure.

The command kill a 11 is chiefly used to terminate all processes with open
files so that the mounted file systems will be unbusied and can be unmounted.

The command kill a 11 sends signal to all remaining processes not belong­
ing to the above group of exclusions. If no signal is specified, SIGKILL is
used.

USAGE

Administrator.

The UNIX System User's Manual 247

Administered Systems

NAME

link, unlink - exercise link and unlink system calls

SYNOPSIS
/etc/linkjileljile2

/etc/unlinkjile

DESCRIPTION
The commands 1 ink and unl ink perform their respective system calls on
their arguments, without any error checking.

These commands may only be executed by the super-user.

USAGE
Administrator.

SEE ALSO
LlNK(BA_SYS), UNLlNK(BA_SYS).

248 The UNIX System User' s Manual

Administered Systems

NAME

mkfs - construct a file system

SYNOPSIS
let G Imkf s special hlocksl:i-nodes I I gap hlockslcyll

/ etc/mkf s special proto fgap blocks/cyll

DESCRIPTION

The command mkf s constructs a file system by writing on the special file
according to the directions found in the remainder of the command line. The
command waits 10 seconds before starting to construct the file system. If the
second argument is given as a string of digits, mkf s builds a file system with
a single empty directory on it. The size of the file system is the value of blocks
interpreted as a decimal number. This is the number of 512-byte units the file
system will occupy. The boot program is left uninitialized.

If the second argument is a file name that can be opened, mkf s assumes it
to be a prototype file proto, and will take its directions from that file. The
prototype file contains tokens separated by spaces or new-lines. The first token
is the name of a file to be copied onto block zero as the bootstrap program.
The second token is a number specifying the size of the created file system in
physical disk blocks. Typically it will be the number of blocks on the device,
perhaps diminished by space for swapping. The next token is the number of
i-nodes in the file system. The next set of tokens comprise the specification for
the root file. File specifications consist of tokens giving the mode, the user ID,
the group ID, and the initial contents of the file. The syntax of the contents
field depends on the mode.

The mode token for a file is a 6-character string. The first character specifies
the type of the file. (The characters -bed specify regular, block special, char­
acter special and directory files respectively.) The second character of the
type is either u or - to specify set-user-ID mode or not. The third is g or -
for the set-group-ID mode. The rest of the mode is a 3 digit octal number giv­
ing the owner, group, and other read, write, execute permissions.

Two decimal number tokens come after the mode; they specify the user and
group IDs of the owner of the file.

If the file is a regular file, the next token is a path name whence the contents
and size are copied. If the file is a block or character special file, two decimal
number tokens follow which give the major and minor device numbers. If the
file is a directory, mkf s makes the entries and then reads a list of names and
(recursively) files specifications for the entries in the directory. The scan is
terminated with the token S.

If a prototype is used, there is an upper limit on the size of a file that can be
initialized. This limit is implementation dependent, but is at least 64K bytes.

A sample prototype specification follows:

The UNIX System User's Manual 249

Administered Systems

Istand/di skboot
4872 110
d--75531
usr d--755 3 1

sh

$

USAGE
Administrator.

ken

bO
cO
$

250 The UNIX System User's Manual

---755 3 1 Ibin/sh
d--75561
$
b--644.3 1 0 0
c--6443 100

MKNOD(AS _ CMD) Administered Systems

NAME

mknod - build special file

SYNOPSIS

letc/mknod name c b major minor

/etc/mknod name p

DESCRIPTION

The command mknod makes a directory entry and corresponding i-node for
a special file.

The command mknod can also be used to create FIFOs (named pipes)
(second case in SYNOPSIS above).

The first argument is the name of the entry. In the first case above, the
second argument is b if the special file is block-type (disks, tape) or c if it is
character-type (other devices). The last two arguments are numbers specify­
ing the major device type and the minor device (e.g., unit, drive, or line
number), which may be either decimal or octal (any number with a leading
zero).

The assignment of major device numbers is specific to each system.

The command mknod may only be used by the superuser, to make special
files.

USAGE
Administrator.

SEE ALSO

MKNOD(BA _ SYS).

The UNIX System User's Manual 251

Administered Systems

NAME

mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount (special directory (-r]]

/etc/umount special

DESCRIPTION

The command mount announces to the system that a removable file system
is present on the device special. The directory must exist already; it becomes
the name of the root of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked with no
arguments, moun t prints the table.

The option -r indicates that the file is to be mounted read-only. Physically
write-protected and magnetic tape file systems must be mounted in this way or
errors will occur when access times are updated, whether or not any explicit
write is attempted.

The command umount announces to the system that the removable file sys­
tem previously mounted on device special is to be removed.

ERRORS

The command mount issues a warning if the file system to be mounted is
currently mounted under another name.

The command umount reports an error if the special file is not mounted or
if it is busy. The file system is busy if it contains an open file, a user's work­
ing directory, or another mounted file system.

FILES

/etc/mnttab

USAGE
Administrator.

mount table

Some degree of validation is done on the file system; however, it is generally
unwise to mount garbage file systems.

SEE ALSO
SETMNT(AS_CMD), MOUNT(BA_SYS), UMOUNT(BA_SYS).

252 The UNIX System User's Manual

Administered Systems

NAME

mvdir - move a directory

SYNOPSIS

letc/m"',:dir dirname name

DESCRIPTION

The command mvdir moves directories within a file system. The argument
dirname must be a directory; name must not be an existing file. If name is a
directory, then dirname is moved to nameldirname provided no such file or
directory already exists. Neither name may be a sub-set of the other (/x/y
cannot be moved to Ix/y/z, nor vice versa).

Only the super-user can use mvdir.

USAGE
Administrator.

The UNIX System User's Manual 253

Administered Systems

NAME

ncheck - generate names from i-numbers

SYNOPSIS

/etc/ncheck [-i i-numbersl [-al [-sl ljile-system I

DESCRIPTION

The command ncheck with no argument generates a path-name vs. i­
number list of all files on a set of default file systems. Names of directory files
are followed by /.. The -i option reduces the report to only those files
whose i-numbers follow. The -a option allows printing of the names /.
and / .. , which are ordinarily suppressed. The -s option reduces the
report to special files and files with set-user-ID mode; it is intended to discover
concealed violations of security policy.

A file system may be specified.

ERRORS

When the file system structure IS Improper, ?? denotes the "parent" of a
parentless file and a path-name beginning with ... denotes a loop.

USAGE

Administrator.

SEE ALSO

FSCK(AS _ CMD).

254 The UNIX System User's Manual

NICE(AS _ CMD) Administered Systems

NAME
nice - run a command at low priority

SYNOPSIS
nice (-incremen.t! command

DESCRIPTION

The command nice executes command with a lower CPU scheduling prior­
ity.

The increment is a positive integer less than {NZERO}; if it is not given, the
default is half of that (rounded up).

The super-user may run commands with priority higher than normal by using
a negative increment, e.g., nice - -2.

An increment larger than the maximum is equivalent to the maximum.

The command nice returns the exit status of the subject command.

USAGE
General, except for super-user restriction stated above.

SEE ALSO
NICE(KE_SYS).

The UNIX System User's Manual 255

Administered Systems

NAME

pwck, grpck - password/group file checkers

SYNOPSIS
/etc/pwck [filel

/etc/grpck [filel

DESCRIPTION
The command pwck scans the password file and notes any inconsistencies.
The checks include validation of the number of fields, login name, user 10,
group 10, and whether the login directory and optional program name exist.
The default password file is /etc/passwd.

The command grpck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group 10, and whether
all login names appear in the password file. In addition, group entries in
/ etc/group with no login names are flagged. The default group file is
/etc/group.

FILES
/etc/group
/etc/passwd

USAGE

Administrator.

256 The UNIX System User's Manual

RUNACCT{AS_CMD) Administered Systems

NAME

runacct - run daily accounting

SYNOPSIS

ltiS:L/lib/a,cct/runacct !mmdd (state))

DESCRIPTION

The command runacct is the main daily accounting procedure. It is nor­
mally initiated via cron. The command runacct processes connect, fee,
disk, and process accounting files. It also prepares summary files for
prdaily or billing purposes. Unless otherwise specified, files named here
reside in the directory /usr /adm/acct/ni teo

The command runacct takes care not to damage active accounting files or
summary files in the event of errors. It records its progress by writing descrip­
tive diagnostic messages into the file active. When an error is detected, a
message is written to /dev/console, mail is sent to the users root and
adm, and runacct terminates. The command runacct uses a series of
lock files to protect against re-invocation. The files lock and lock 1 are
used to prevent simultaneous invocation, and the file las tda t e is used to
prevent more than one invocation per day.

The command runacct breaks its processing into separate, restartable
states using statejile to remember the last state completed. It accomplishes
this by writing the state name into statejile. The command runacct then
looks in statejile to see what it has done and to determine what to process
next. The states are executed in the following order:

SETUP
Move active accounting files into working files.

WTMPFIX
Verify integrity of / etc /wtmp file; correct date changes if needed.

CONNECfl
Produce connect session records [see ACCTCON(AS_CMD»).

CONNECf2
Convert session records into total accounting records.

PROCESS
Convert process accounting records into total accounting records.

MERGE

FEES

DISK

Merge the total connect and process accounting records.

Convert output of chargefee into total accounting records and
merge with the above (connect and process) total accounting records.

Merge disk total accounting records with the above (connect, process,
and fee) total accounting records. This merge forms the daily total

The UNIX System User's Manual 257

Administered Systems RUNACCT(AS_CMD)

accounting records.

MERGETACcr
Merge the daily total accounting records with the summary total
accounting records in /usr/adm/acct/sum/tacct.

CMS
Produce command summaries in internal format.

USEREXIT
Any installation-dependent accounting programs can be included here.

CLEANUP
Write ASCII command summaries
/usr/adm/acct/sum/rprtxxxx [see
ACCT(AS_CMD»). Remove temporary files and exit.

into the
prdaily

file
in

To restart runacct after a failure, first check the active file for diag­
nostics, then fix up any corrupted data files such as
pacct"\f 50r"\f 5wtmp. The lock files and lastda te file must be
removed before runacct can be restarted. The argument mmdd is neces­
sary if runacct is being restarted, and specifies the month and day for
which runacct will rerun the accounting. Entry point for processing is
based on the contents of state file; to override this, include the desired state on
the command line to designate where processing should begin.

FILES

/usr/src/cmd/acct/nite/active
/usr/src/cmd/acct/nite/lock
/usr/src/cmd/acct/nite/lockl
/usr/src/cmd/acct/nite/lastdate
/usr/src/cmd/acct/nite/statefile
/usr/adm/acct/sum/rprtxxxx
/usr/adm/acct/sum/tacct
/usr/adm/pacct
/etc/wtmp

USAGE

Administrator.
Normally runacct should not be restarted in the SETUP state. SETUP
should be run manually and restart should be done by:

runacct mmdd WTMPFIX

SEE ALSO

ACCT(AS_CMD), ACCTCMS(AS_CMD), ACCTCOM(AS_CMD), ACCTCON(AS_CMD),

ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMD), CRON(AU _ CMD), FWTMP(AS _ CMD),

ACCT(KE_SYS).

258 The UNIX System User's Manual

Administered Systems

NAME

sal, sa2, sadc - system activity report package

SYNOPSIS
/usrllib/sa/s&dc [t::1 [afi/e!

/usr/lib/sa/sa 1lt n)

/usr/lib/sa/sa2Ioptions) I-s time) I-e time) I-i sec!

DESCRIPTION
System activity data can be accessed at the special request of a user [see
SAR(AS_CMD)] and automatically on a routine basis as described here. The
operating system contains a number of counters that are incremented as vari­
ous system actions occur. These include CPU utilization counters, buffer usage
counters, disk and tape I/O activity counters, TTY device activity counters,
switching and system-call counters, file-access counters, queue activity
counters, and counters for interprocess communications.

The commands sade, sa 1, and sa2, are used to sample, save, and pro­
cess this data.

The command sade, the data collector, samples system data n times every t
seconds and writes in binary format to ofile or to standard output. If t and n
are omitted, a special record is written. This facility is typically used at sys­
tem boot time to mark the time at which the counters restart from zero.

The utility sa 1, a variant of sade, is used to collect and store data in the
binary file /usr/adm/sa/sadd where dd is the current day. The
options t and n cause records to be written n times at an interval of t seconds,
(once if the options are omitted).

The utility sa2, a variant of sar, writes the day's system activity report in
the file /usr/adm/sa/sardd. The options are explained in
SAR(AS _ CMD).

FILES

/usr/adm/sa/sadd daily data file
/usr/adm/sa/sardd daily report file

USAGE
Administrator.

SEE ALSO
SAR(AS _ CMD).

The UNIX System User's Manual 259

Administered Systems

NAME

sadp - disk access profiler

SYNOPSIS
sadp (-thl (-d device(-drivell s (nl

DESCRIPTION

The command sadp reports disk access location and seek distance, in tabu­
lar or histogram form. It samples disk activity once every second during an
interval of s seconds. This is done repeatedly if n is specified.

The argument drive specifies the disk drives and it may be:

a drive number in the range supported by device,
or

two numbers separated by a minus (indicating an inclusive range),
or

a list of drive numbers separated by commas.

The -d option may be omitted, if only one device is present.

The -t option (default) causes the data to be reported in tabular form. The
-h option produces a histogram of the data on the printer. Default is -to

USAGE
Administra tor.

260 The UNIX System User's Manual

Administered Systems

NAME

sar - system activity reporter

SYNOPSIS
sar (options) [-ofile 1 t Inl

sar [options] [-s time] [-e time] [-i sed [-f file]

DESCRIPTION

In the first form above, the sar command, in the first instance, samples
cumulative activity counters in the operating system at n intervals of t seconds.
If the -0 option is specified, it saves the samples in file in binary format.
The default value of n is 1. In the second form, with no sampling interval
specified, sar extracts data from a previously recorded file, either the one
specified by the -f option or, by default, the standard system activity daily
data file lusr/adm/sa/sadd for the current day dd. The starting and
ending times of the report can be bounded via the -s and -e time argu­
ments of the form hh(:mm(:s sll The -i option selects records at sec
second intervals. Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, run­
ning in system mode, idle with some process waiting for block 110, and
otherwise idle.

-b Report buffer activity:
breadls, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
lreadls, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e. g., 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive. When
data is displayed, the device specification dsk- is generally used to
represent a disk drive. The device specification used to represent a tape
drive is machine dependent. The activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, number of
bytes transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek,
rotational latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt
rates.

The UNIX System User's Manual 261

Administered Systems

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, forlds, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system
calls. .

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswotls - number of transfers and number of
512-byte units transferred for swapins and swapouts (including initial
loading of some programs);
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, nameils, dirblkls.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to
run.

-v Report status of process, i-node, file, record lock and file header tables:
proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz - entries/size for each table,
evaluated once at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-A Report all data (all options effective).

EXAMPLES
To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

FILES

/usr/adm/sa/sadd daily data file, where dd are digits representing the
day of the month.

USAGE
Administrator.

SEE ALSO
SA1(AS_CMD).

262 The UNIX System Users Manual

Administered Systems

NAME

setmnt - establish mount table

SYNOPSIS
/etc/Setmnt

DESCRIPTION

The command setmnt creates the /etc/mnttab table, which is needed
for both the mount and umount [see MOUNT(AS_CMD)] commands. The
command setmnt reads standard input and creates a mnttab entry for
each line. Input lines have the format:

filesys node

where filesys is the name of the file system's special file and node is the root
name of that file system. Thus filesys and node become the first two strings in
the /etc/mnttab entry.

FILES
/etc/mnttab

USAGE

Administrator.

SEE ALSO
MOUNT(AS _ CMD).

The UNIX System User's Manual 263

Administered Systems

NAME

sync - flush system buffers

SYNOPSIS

sync

DESCRIPTION
The command sync executes the sync system source routine. If the sys­
tem is to be stopped, sync must be executed to ensure file system integrity.
It will flush all previously unwritten system buffers out to disk, thus assuring
that all file modifications up to that point will be saved.

USAGE

Administrator.

SEE ALSO

SYNC(BA_SYS).

264 The UNIX System User's Manual

Administered Systems

NAME

sysdef - system definition

SYNOPSIS

DESCRIPTION

The command sysdef analyzes the named operating system file (or the
default one if none is specified) and extracts configuration information. The
master file contains the hardware and software specifications. (The default
master file is used if one is not specified.) This includes all hardware devices
as well as system devices and all tunable parameters.

USAGE

Administrator.

The UNIX System User's Manual 265

Administered Systems TIMEX(AS _ CMD)

NAME

timex - time a command; report process data and system activity

SYNOPSIS
tim e x [options I command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting
data for the command and all its children can be listed or summarized, and
total system activity during the execution interval can be reported.

The output of timex is written on standard error.

The options are:

-p List process accounting records for command and all its children.
Suboptions f, h, k, m, r, and t modify the data items reported, as
defined in ACCTCOM(AS_CMD). The number of blocks read or written
and the number of characters transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data items
listed in SAR(AS_CMD) are reported.

USAGE

General.

SEE ALSO
ACCTCOM(AS _ CMD), SAR(AS _ CMD).

266 The UNIX System User's Manual

VOLCOPY(AS_CMD) Administered Systems

NAME

volcopy, labelit - copy file systems with label checking

SYNOPSIS

/etc/volccpy [options!!sname special! volnamel special2 volname2

/ etc/label it special Ifsname volume I -nil

DESCRIPTION

volcopy

The command volcopy makes a literal copy of the file system using a
blocksize matched to the device. The options are:

-a invoke a verification sequence requiring a positive operator response
in~tead of the standard delay before the copy is made

-s (default) invoke the DEL if wrong verification sequence.

Other options are used only with tapes:

-bpidensity

-feetsize

-reelnum

-buf

bits-per-inch

size of reel in feet

beginning reel number for a restarted copy,

use double buffered 110.

The program requests length and density information if it is not given on the
command line or is not recorded on an input tape label. If the file system is
too large to fit on one reel, vo 1 copy will prompt for additional reels.
Labels of all reels are checked. Tapes may be mounted alternately on two or
more drives. If vo 1 copy is interrupted, it will ask if the user wants to quit
or wants to escape to the command interpreter. In the latter case, the user
can perform other operations (e.g.: labelit) and return to volcopy by
exiting the command interpreter.

The fsname argument represents the file system name on the device (e.g.:
root, u 1) being copied.

The special should be the physical disk section or tape (e.g.:
/dev /rdsk/ 1 s 5, /dev /rmt/Om, etc.).

The volname is the physical volume name and should match the external label
sticker. Such label names are limited to six or fewer characters. The argu­
ment volname may be - to use the existing volume name.

The arguments specialJ and volnamel are the device and volume from which
the copy of the file system is being extracted. The arguments special2 and
volname2 are the target device and volume.

labelit

The command 1 abe 1 i t can be used to provide initial labels for unmounted
disk or tape file systems. With the optional arguments omitted, label it

The UNIX System User's Manual 267

Administered Systems VOLCOPY(AS_CMD)

prints current label values. The -n option provides for initial labeling of new
tapes only (this destroys previous contents).

USAGE
Administrator.

268 The UNIX System User's Manual

Administered Systems

NAME

whodo - who is doing what

SYNOPSIS

DESCRIPTION

The command whodo produces merged, reformatted, and dated output from
the WHO(AU_CMD) and PS(BU_CMD) commands.

FILES
/etc/passwd

USAGE
General.

SEE ALSO

PS(BU_CMD), WHO(AU_CMD).

The UNIX System Users Manual 269

Chapter 4

Software Development
Utilities

ADMIN{SD _CMD) Software Development

NAME

admin - create and administer sees files

SYNOPSIS

admin I-nl l-ilname.1 I-rrell l-tlname.1 I-ffiag{fiag-valll 1-
dfiag{fiag-vallJ 1- a login I 1- e login I I -mlmrlistll 1- %lcommentll I - hI 1- z I
file ...

DESCRIPTION

The command admin is used to create new sees files and change parame­
ters of existing ones. Arguments to admin, which may appear in any order,
consist of options, which begin with -, and named files (note that sees file
names must begin with s.). If a named file does not exist, it is created, and
its parameters are initialized according to the specified options. Parameters
not initialized by an option are assigned a default value. If a named file does
exist, parameters corresponding to specified options are changed, and other
parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component of
the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files ale silently ignored.

The options are as follows. Each is explained as though only one named file is
to be processed since the effects of the options apply independently to each
named file.

-n

- ilnamel

-rrel

-t[name1

This option indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is
to be taken. The text constitutes the first delta of the file
(see -r option for delta numbering scheme). If the i
option is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is
encountered. If this option is omitted, then the sees file is
created empty. Only one sees file may be created by an
admin command on which the i option is supplied. Using
a single admin to create two or more sees files requires
that they be created empty (no -i option). Note that the
- i option implies the -n option.

The release into which the initial delta is inserted. This
option may be used only if the -i option is also used. If
the -r option is not used, the initial delta is inserted into
release 1. The level of the initial delta is always I (by
default initial deltas are named 1. 1).

The name of a file from which descriptive tex~ for the sees
file is to be taken. If the -t option is used and admin is

The UNIX System User's Manual 273

Software Development

b

cceil

{floor

dSID

i[str]

IIist

n

creating a new sees file (the -n and/or -i options also
used), the descriptive text file name must also be supplied.
In the case of existing sees files: (1) a -t option without
a file name causes removal of descriptive text (if any)
currently in the sees file, and (2) a -t option with a file
name causes text (if any) in the named file to replace the
descriptive text (if any) currently in the sees file. This
option specifies a flag, and, possibly, a value for the flag, to
be placed in the sees file. Several f options may be sup­
plied on a single admin command line. The allowable
flags and their values are:

Allows use of the - b option on age t command to
create branch deltas.

The highest release (i.e., "ceiling"), a number less than
or equal to 9999, which may be retrieved by a get
command for editing. The default value for an
unspecified c flag is 9999.

The lowest release (i.e., "floor"), a number greater than
o but less than 9999, which may be retrieved by a
get command for editing. The default value for an
unspecified { flag is 1.

The default delta number (SID) to be used by a get
command.

Causes the "No id keywords" message issued by get
or delta to be treated as a fatal error. In the
absence of this flag, the message is only a warning.
The message is issued if no sees identification key­
words (see get) are found in the text retrieved or
stored in the sees file.

Allows concurrent get commands for editing on the
same SID of an sees file. This allows multiple con­
current updates to the same version of the sees file.

A list of releases to which deltas can no longer be
made (get -e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::- <range> I <list> , <range>
<range> ::- RELEASE NUMBER I a

The character a in the list is equivalent to specifying
all releases for the named sees file.

Causes delta to create a "null" delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null

274 The UNIX System User's Manual

ADMIN(SD _CMD)

qtext

mmod

ttype

v[pgm]

-dflag

-alogin

-elogin

Software Development

deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
sees file, preventing branch deltas from being created
frem them in the future.

User definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by get.

Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get. If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get.

Causes delta to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program. (If this flag is set when
creating an sees file, the m option must also be used
even if its value is null).

Causes removal (deletion) of the specified flag from an sees
file. The -d option may be specified only when processing
existing sees files. Several -d options may be supplied on
a single admin command. See the -f option for allow­
able flag names. (The llist flag gives a list of releases to be
"unlocked". See the -f option for further description of
the I flag and the syntax of a list.)

A login name, or numerical group ID, to be added to the list
of users which may make deltas (changes) to the sees file.
A group ID is equivalent to specifying all login names com­
mon to that group ID. Several a options may be used on a
single admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultaneously. If
the list of users is empty, then anyone may add deltas. If
login or group ID is preceded by a I they are to be denied
permission to make deltas.

A login name, or numerical group ID, to be erased from the
list of users allowed to make deltas (changes) to the sees
file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e options
may be used on a single admin command line.

The UNIX System User's Manual 275

Software Development ADMIN(SD _CMD)

-y[comment]

-m[mrlist]

-h

-z

FILES

The comment text is inserted into the sees file as a com­
ment for the initial delta in a manner identical to that of
del t a. Omission of the -y option results in a default
comment line being inserted in the form:
date and time created YY/MM/DD HH:MM:SS by login
The -y option is valid only if the -i and/or -n options
are specified (i.e., a new sees file is being created).

The list of Modification Requests (MR) numbers is inserted
into the sees file as the reason for creating the initial delta
in a manner identical to del t a. The v flag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program). Diagnos­
tics will occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees file, and
to compare a newly computed check-sum (the sum of all the
characters in the sees file except those in the first line) with
the check-sum that is stored in the first line of the sees file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, so that it nullifies the
effect of any other options supplied. It is only meaningful
when processing existing files.

The sees file check-sum is recomputed and stored in the
first line of the sees file (see -h, above).

Note that use of this option on a truly corrupted file may
prevent future detection of the corruption.

All sees file names must be of the form s .file-name. New sees files are
given read-only permission mode (see chmod). Write permission in the per­
tinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x .file-name, [see GET(SD_CMD)1.
created with read-only mode if the admin command is creating a new sees
file, or with the same mode as the sees file if it exists. After successful exe­
cution of admin, the sees file is removed (if it exists), and the x-file is
renamed with the name of the sees file. This ensures that changes are made
to the sees file only if no errors occurred.

The command admin also makes use of a transient lock file (called z .file­
name), which is used to prevent simultaneous updates to the sees file by
different users. See GET(SD_CMD) for further information.

SEE ALSO
DEL TA(SD _ CMD), GET(SD _ CMD), PRS(SD _ CMD), WHAT(SD _ CMD).

USAGE

General.

276 The UNIX System User's Manual

ADMIN(SD _ CMD) Software Development

It is recommended that directories containing sees files be writeable by the
owner only, and that sees files themselves be read-only. The mode of the
directories allows only the owner to modify sees files contained in the direc­
tories. The mode of the sees files prevents any modification at all except by
sees commands.

The UNIX System User's Manual 277

Software Development

NAME

as - common assembler

SYNOPSIS
as [-0 objfileJ [-ml [-vljile-name

DESCRIPTION

The a s command assembles the named file. The following options may be
specified in any order:

-oobjfile
Put the output of the assembly in objfile. By default, the output file
name is formed by removing the suffix, if there is one, from the input file
name and appending a suffix.

-m Run the m4 macro pre-processor on the input to the assembler.

-v Write the version number of the assembler being run on the standard
error output.

SEE ALSO

CC(SD_CMD), LD(SD_CMD), M4(SD_CMD).

USAGE

General.

The command c c is the recommended interface to the assembler. The as
command may not be present on all implementations of UNIX System V.

If the -m option (m4 macro pre-processor invocation) is used, keywords for
m4 [see M4(SD_CMD)] cannot be used as symbols (variables, functions, labels)
in the input file since m4 cannot determine which are assembler. symbols and
which are real m4 macros.

CAVEATS

The -y option is reserved for future use. It will be used to allow the user to
specify the directories where the m4 preprocessor, and the file of predefined
macros are lOCated.

Users will also be able to specify, by means of the TMPDIR environmental
variable, the directory in which any temporary files are to be created.

These additions are part of the effort to eliminate hard-coded pathnames from
the compilation system.

278 The UNIX System User's Manual

Software Development

NAME

cc - C compiler

SYNOPSIS
cc (options) file ...

DESCRIPTION

The c c command is the interface to the C compilation system. The system
conceptually consists of a preprocessor, compiler, optimizer, assembler, and
link-editor. The cc command processes the supplied options and then exe­
cutes the various tools with the appropriate arguments.

The suffix of a file-name argument indicates how the file is to be treated.
Files whose names end with . c are taken to be C source programs, and may
be preprocessed, compiled, optimized, and link-edited. The compilation pro­
cess may be stopped after the completion of any pass if the appropriate options
are supplied. If the compilation process is allowed to complete the assembly
phase, then an object program is produced; the object program for a source file
called xyz. c is created in a file called xyz. o. However, the .0 file is
normally deleted if a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with . s are taken to be
assembly source programs, and may be assembled and link-edited. Files with
names ending in • i are taken to be preprocessed C source programs and may
be compiled, optimized, assembled, and link-edited. Files whose names do not
end in . c, . s, or . i are handed to the link-editor.

By default, if an executable file is produced (Le., the link-edit phase is allowed
to complete), the file is called a. ou t. This default name can be changed
with the -0 option (see below).

The following options are interpreted by c c:

- c Suppress the link edit phase of the compilation, and do not remove any
object files that are produced.

- f Include floating-point support for systems without an automatically
included floating-point implementation. This option is ignored on sys­
tems that do not need it.

-g Cause the compiler to generate additional information needed for the use
of sdb.

-0 out file
Use the name outfile, instead of the default a. out, for the exe­
cutable file produced. This is a link-editor option.

- p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, a profiled
version of the standard C library is linked, and moni tor [see
MONITOR(SD _LIB)] is automatically called. Amon. ou t file will then
be produce at normal termination of execution of the program. An exe­
cution profile can then be generated by use of prof.

The UNIX System User's Manual 279

Software Development CC(SD_CMD)

-q This option is reserved for specification of implementation specific
profiling directives.

-E Run only epp on the named C programs and send the result to the
standard output.

- F This option is reserved for implementation specific optimization direc­
tives.

- 0 Do compilation phase optimization., This option will not affect files.

-p Run only epp on the named C programs and leave the result on
corresponding files suffixed • i. This option is passed to epp.

- S Compile and do not assemble the named C programs, and leave the
assembler-language output on corresponding files suffixed • s.

-Wc,argl[,arg2 .. .1
Hand off the argument[s] argi to phase C where C is one of [p02a1]
indicating preprocessor, compiler, optimizer, assembler, or link editor,
respectively. For example, -Wa, -m passes -m to the assembler phase.

The e e command also recognizes the options - C , - D , - I, and - U ,
and passes them (and their associated arguments) directly to the preprocessor
without using the - W option. Similarly, the loader options - a, -1, - 0 ,

- r , - s, - u, . - L, and - V are recognized and passed directly to the
loader. See CPP(SD_CMD) and LD(SD_CMD) for descriptions of these options.

Other arguments are taken to be C-compatible object programs, typically pro­
duced by an earlier ee or pee run, or perhaps libraries of C-compatible
routines, and are passed directly to the link-editor. These programs, together
with the results of any compilations specified, are linked (in the order given)
to produce an executable program with the name a. out (unless the -0

link-editor option is used).

The standard C library is automatically available to the C program. Other
libraries (including the math library) must be specified explicitly using the
-1 option with ee; see LD(SD_CMD) for details.

FILES

fi1e.e
fi1e.i
fi1e.o
fi1e.s
a.out

SEE ALSO

input file
preprocessed C source file
object file
assembly language file
link-edited (executable) output

CPP(SD_CMD), LD(SD_CMD), PROF(SD_CMD), SDB(SD_CMD), EXIT(BA_SYS),

MONITOR(SD _LIB).

280 The UNIX System User's Manual

Software Development

USAGE

General.

Arbitrary length variable names are allowed in the C language, starting with
UNIX System V Reiease 2.0.

Since the e e command usually creates files in the current directory during
the compilation process, it is typically necessary to run the e e command in a
directory in which a file can be created.

CAVEATS
The - y option is reserved for future use. It will be used to allow the user to
specify the directories searched by the various components of ee.

Users will also be able to specify, by means of the TMPDIR environmental
variable, the directory in which any temporary files are to be created.

These additions are part of the effort to eliminate hard-coded pathnames from
the compilation system.

The UNIX System User's Manual 281

Software Development

NAME

cflow - generate C flowgraph

SYNOPSIS
cflow [-rl [-ixl [-i_I [-dnumlfiles

DESCRIPTION

The command c flow analyzes a collection of C, Y ACC, LEX, assembler, and
object files and attempts to build a graph charting the external references.
Files suffixed in .y, .1, . c, and • i are YACC'd, LEX'd, and C­
preprocessed (bypassed for • i files) as appropriate, and then run through the
first pass of lint. (The -I, -D, and -u options of the C-preprocessor are
also understood by c flow.) Files suffixed with . s are assembled and
information is extracted (as in .0 files) from the symbol table. The output
of all this processing is collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by a
suitable amount of indentation indicating the level. Then the name of the glo­
bill (normally only a function not defined as an external or beginning with an
underscore; see below for the -i inclusion option) a colon and its definition.
For information extracted from C source, the definition consists of an abstract
type declaration (e.g., char .), and, delimited by angle brackets, the name
of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the file name and location
counter under which the symbol appeared (e.g., text).

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition may
be found. For undefined references, only < > is printed.

The following options are interpreted by c flow:

-r Reverse the "caller:callee" relationship producing an inverted list­
ing showing the callers of each function. The listing is also sorted
in lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the
flowgraph is cut off. By default this is a very large number.
Attempts to set the cutoff depth to a non-positive integer will be
ignored.

SEE ALSO

CC(SD _ CMD), LEX(SD _ CMD), LlNT(SD _ CMD), Y ACC(SD _ CMD).

USAGE

General.

282 The UNIX System User's Manual

Software Development

Files produced by lex and yacc cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow
the yacc or lex input.

The UNIX System User's Manual 283

Software Development CHROOT(SD_CMD)

NAME

chroot - change root directory for a command

SYNOPSIS

/etc/chroot newroot command

DESCRIPTION

The command chroot executes the given command, relative to the new
root. The meaning of any initial slashes (I) in path names is changed for a
command and any of its children to newroot. Furthermore, the initial working
directory is newroot.

This command is restricted to the super-user.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroot argument is relative to the current
root of the running process.

SEE ALSO

CHDIR(BA_SYS)

USAGE

General.

The user should exercise caution when referencing special files in the new root
file system.

284 The UNIX System User's Manual

Software Development

NAME

cpp - the C language preprocessor

SYNOPSIS

LIBDIRi'cpp ~optio;; .. .! [ifile [alUe!!

DESCRIPTION

The command cpp is the C language preprocessor, which is invoked as the
first pass of any C compilation using the c c command. Thus the output of
cpp is designed to be in a form acceptable as input to the next pass of the C
compiler.

LIBDIR is usually Ilib.

The cpp command optionally accepts two file names as arguments; ifile and
ofile are respectively the input and output for the preprocessor. They default
to standard input and standard output if not supplied.

The following options to cpp are recognized:

-p Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-c By default, cpp strips C-style comments. If the -c option is
specified, all comments (except those found on c pp directive
lines) are passed along.

-Uname Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor.

-Dname
-Dname-dej

-Idir

Define name as if by a Idefine directive. If no =def is
given, name is defined as 1. The -D option has lower precedence
than the -u option. That is, if the same name is used in both a
-u option and a -D option, the name will be undefined regardless
of the order of the options.

Change the algorithm for searching for linclude files whose
names do not begin with / to look in d i r before looking in the
directories on the standard list. Thus, linc 1 ude files whose
names are enclosed in •• will be searched for first in the directory
of the file with the lin c 1 u deline, then in directories named in
-I options, and last in directories on a standard list. For
linclude files whose names are enclosed in <>, the directory
of the file with the linclude line is not searched.

Two special names are understood by cpp. The name _LINE_ is defined as
the current line number (as a decimal integer) as known by cpp, and
FILE is defined as the current file name (as a C string) as known by
cpp. They can be used anywhere (including in macros) just as any other
defined name.

The UNIX System User's Manual 285

Software Development

All cpp directives start with lines begun by #. Any number of blanks and
tabs are allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#definename(arg, .•. , arg) token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma­
separated set of tokens, and a) by token-string, where each occurrence
of an arg in the token-string is replaced by the corresponding set of
tokens in the comma-separated list. When a macro with arguments is
expanded, the arguments are placed into the expanded token-string
unchanged. After the entire token-string has been expanded, cpp re­
starts its scan for names to expand at the beginning of the newly created
token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on. No
additional tokens are permitted on the line after name.

inc 1 ude ''filename''
#include <filename>

Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is
only searched for in the standard places. See the -I option above for
more detail. No additional tokens are permitted on the line after the
final" or >.

1 in e integer-constant ''filename''
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line and
filename is the file where it comes from. If ''filename'' is not given, the
current file name is unchanged. No additional tokens are permitted on
the line after the final ".

#endif
Ends a section of lines begun by a test directive (# if, # i f d e f, or
#ifndef). Each test directive must have a matching #endif. No
additional tokens are permitted on the line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef. No additional tokens are permitted on the
line after name.

#ifndef name
The lines following will not appear in the output if and only if name has
be~n the subject of a previous #define without being the subject of
an intervening #und e f . No additional tokens are permitted on the

286 The UNIX System User's Manual

Software Development

line after name.

i f constant -expression
Lines following will appear in the output if and only if the constant­
pxpression evaluates to non-zero. All binary non-assignment C opera­
tors, the ?: operator, the unary -, 1, and @ operators are all legal
in constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms:
defined(name) or defined name. This allows the utility of
#ifdef and #ifndef in a #if directive. Only these operators,
integer constants, and names which are known by cpp should be used
in constant-expression. In particular, the sizeof operator is not
available.

#else
The else part of an #ifdef, #ifndef, or #if. The lines preced­
ing are ignored, and the lines following (upto the #endif) are
included in the output if the test is false.

The test directives and the optional # e 1 s e directives can be nested.

SEE ALSO
CC(SD_CMD).

USAGE
General.

The recommended way to invoke cpp is through the cc command. See
M4(SD_CMD) for a general macro processor.

Include directives should avoid using explicit path-names: for example,
#include <file.h>

should be used, rather than
#include "/usr/include/file.h"

CAVEATS
The option -y is reserved for future use. It will be used to specify a direc­
tory to be used instead of the standard list, when searching for #include
files.

Users will also be able to specify, by means of the TMPDIR environmental
variable, the directory in which any temporary files are to be created.

The UNIX System Users Manual 287

Software Development

NAME

cxref - generate C program cross-reference

SYNOPSIS
cxref (optionsljiles

DESCRIPTION

The command cxref analyzes a collection of C files and attempts to build a
cross-reference table. Information from #define lines is included in the
symbol table. A listing is produced on standard output of all symbols (auto,
static, and global) in each file separately, or with the -c option, in combina­
tion. Each symbol contains an asterisk (.) before the declaring reference.

In addition to the -D, -I, and -u options (which are identical to their
interpretation by cc) the following options are interpreted by cxref:

-c

-wnum

-0 jile

-5

SEE ALSO
CC(SD_CMD).

USAGE

General.

Print a combined cross-reference of all input files.

Width option which formats output no wider than num
(decimal) columns. This option will default to 80 if num is not
specified or is less than 51.

Direct output to named jile.

Operate silently; does not print input file names.

288 The UNIX System User's Manual

Software Development

NAME

delta - make a delta (change) to an sees file

SYNOPSIS

del t<'. [-rSW! [-!I! [on) '-slistil-mlmrlistlll-ylcommentll [-pljile ...

DESCRIPTION

The command de 1 ta is used to permanently introduce into the named sees
file changes that were made to the file retrieved by get (called the g-jile, or
generated file).

The del t a command makes a delta to each named sees file. If a directory
is named, de 1 ta behaves as though each file in the directory were specified
as a named file, except that non-sees files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name of
- is given, the standard input is read; in this case the -y option (see below)
is required on the command line; if the -m option (see below) would normally
be required, then it too is required on the command line. Each line of the
standard input is taken to be the name of an sees file to be processed.

The de 1 ta command may issue prompts on the standard output depending
upon certain keyletters specified and flags [see ADMIN(SD_CMD)] that may be
present in the sees file (see -m and -y keyletters below).

Lines beginning with an SOH ASeII character (binary 001) cannot be placed
in the sees file unless the SOH is escaped. This character has special mean­
ing to sees and will cause an error.

Keyletter arguments apply independently to each named file.

-rSID

-8

-n

-glist

-m[mrlist]

Uniquely identifies which delta is to be made to the sees
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the same
sees file were done by the same person (login name). The
SID value specified with the -r keyletter can be either the
SID specified on the get command line or the SID to be
made as reported by the get command [see GET(SD_CMD)1.

A diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

Suppresses the issue, on the standard output, of the created
delta's SID, as well as the number of lines inserted, deleted
and unchanged in the sees file.

Specifies retention of the edited g-jile (normally removed at
completion of delta processing).

Specifies a list [see GET(SD_CMD) for the definition of list] of
deltas which are to be ignored when the file is accessed at
the change level (sID) created by this delta.

If the sees file has the v flag set [see ADMIN(SDyMD)] then
a Modification Request (MR) number must be supplied as

The UNIX System Users Manual 289

Software Development

the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a termi­
nal, no prompt is issued. The MRs? prompt always precedes
the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the v flag has a value, it is taken to be the name
of a program which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

-y[commentJ Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment.

-p

SEE ALSO

If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is not
a terminal, no prompt is issued. An unescaped new-line
character terminates the comment text.

Causes delta to print (on the standard output) the sees
file differences before and after the delta is applied in d iff
format [see DIFF(BU_CMD»).

ADMIN(SD_CMD), GET(SD_CMD), PRS(SD_CMD), RMDEL(SD_CMD).

USAGE

General.

290 The UNIX System User's Manual

Software Development

NAME

dis - disassembler

SYNOPSIS
di.;: !-o! ! -VII-LI [-F function) [-I string) files

DESCRIPTION

The dis command produces an assembly language listing of each of its file
arguments, each of which may be an object file or an archive of object files.
The listing includes assembly statements and an octal or hexadecimal
representation of the binary that produced those statements.

The following options are interpreted by the disassembler and may be specified
in any order.

-0 Will print numbers in octal. Default is hexadecimal.

-v Version number of the disassembler will be written to standard
error.

-L Invokes a lookup of C source labels in the symbol table for sub­
sequent printing.

-F function Disassembles only the named function in each object file
specified on the command line. This option may be specified a
number of times on the command line.

-1 string Will disassemble the library file specified as string. For exam­
ple, the command dis -1m will disassemble the math library.

SEE ALSO

AS(SD_CMD), CC(SD_CMD).

USAGE
General.

CAVEATS
The -s option is reserved for future use. It will be used to specify symbolic
disassembly.

The UNIX System User's Manual 291

Software Development

NAME

env - set environment for command execution

SYNOPSIS
env [-I [name-valuel ... [commandl

DESCRIPTION

The command env obtains the current environment, modifies it according to
its arguments, then executes the command. with the modified environment.
Arguments of the form name=value modify the execution environment: they
are merged into the inherited environment before the command is executed.
The - option causes the inherited environment to be ignored completely, so
that the command is executed with exactly the environment specified by the
arguments.

If no command is specified, the resulting environment is printed, one name­
value pair per line.

SEE ALSO
SH(BU_CMD).

USAGE

General.

292 The UNIX System User's Manual

Software Development

NAME

get - get a version of an sees file

SYNOPSIS
get !-r SID! !-(" C!ltoi!1 !-~! I-hI [-i lift! I-x li.~t! !-kJ [-1 !pH
I-pll-sll-mll-nll-gll-tljile ...

DESCRIPTION
The command get generates an ASeIl text file from each named sees file
according to the specifications given by its key letter arguments, which begin
with -. The arguments may be specified in any order, but all keyletter argu­
ments apply to all named sees files. If a directory is named, get behaves
as if each file in the directory were specified as a named file, except that non­
sees files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If - is given, the standard input is read;
each line of the standard input is taken to be the name of an sees file to be
processed. Non-Sees files and unreadable files are silently ignored.

The generated text is normally written into a file called the g - f i 1 e whose
name is derived from the sees file name by simply removing the leading s.;
(see also FILES, below).

Each of the keyletter arguments is explained below as though only one sees
file is to be processed, but the effects of any keyletter argument applies
independently to each named file.

-rSID The sees Identification string (SID) of the version (delta) of an
sees file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an sees file is retrieved (as well as
the SID of the version to be eventually created by de 1 ta if the
-e keyletter is also used), as a function of the SID specified.

-ccutoff

-e

Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SSllll1

No changes (deltas) to the sees file which were created after
the specified cutoff date-time are included in the generated
Asell text file. Units omitted from the date-time default to
their maximum possible values; that is, -c 7502 is equivalent
to -c 750228235959. Any number of non-numeric char­
acters may separate the various 2-digit pieces of the cutoff date­
time. This feature allows one to specify a cutoff date in the
form: "-c77/2/2 9:22:25".

Indicates that the get is to edit or make a change (delta) to
the sees file via a subsequent use of de 1 tao The -e
keyletter used in a get for a specific version (SID) of the sees
file prevents further gets from editing on the same SID until
de 1 ta is executed or the j (joint edit) flag is set in the sees
file. Concurrent use of get -e for different S[Ds is always
allowed.

The UNIX System User's Manual 293

Software Development

-b

-ilist

-xlist

-k

-Hp]

-p

-8

-m

If the g-fi1e generated by get with an -e keyletter is
accidentally ruined in the process of editing it, it may be regen­
erated by re-executing the get command with the -k
keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor, and author­
ized user list stored in the sees file are enforced when the -e
keyletter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file or if the
retrieved delta is not a leaf delta. (A leaf delta is
one that has no successors on the sees file tree.)
Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the crea­
tion of the generated file. The list has the following syntax:

<list> ::- <range> I <list> , <range>
<range> ::- SID I SID - SID

SID, the sees Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1. Partial SIDs
are interpreted as shown in the "SID Retrieved" column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the -i keyletter for the list
format.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The - k keyletter is implied
by the - e keyletter.

Causes a delta summary to be written into an 1- f i 1 e. If
-lp is used then an 1-fi1e is not created; the. delta sum­
mary is written on the standard output instead. See FILES for
the format of the 1- f i 1 e •

Causes the text retrieved from the sees file to be written on the
standard output. No g - f i 1 e is created. All output which
normally goes to the standard output goes to standard error
instead, unless the -8 keyletter is used, in which case it disap­
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to standard
error) remain unaffected.

Causes each text line retrieved from the sees file to be pre­
ceded by the SID of the delta that inserted the text line in the

294 The UNIX System User's Manual

,
I

•

-n

-g

-t

Software Development

SCCS file. The format is: SID, followed by a horizontal tab, fol­
lowed by the text line.

Causes each generated text line to be preceded with the %M%
identincation keyword '!a!!!e (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the -m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an 1- f i 1 e, or to verify the
existence of a particular SID.

Used to access the most recently created ("top") delta in a given
release (e.g., -r 1), or release and level (e.g., -r 1 .2).

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more than
one named file or if a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed following the notation "Included"; if the -x
keyletter is used, excluded deltas are listed following the notation "Excluded".

Determination of sees Identification String
SID* -b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created

none* no R defaults to mR mR.mL mR.(mL+1)

none* yes R defaults to mR mR.mL mR.mL (mB+ 1).1

R no R> mR mR.mL R.l ***
R no R-mR mR.mL mR.(mL+1)
R yes R> mR mR.mL mR.mL(mB+I).1
R yes R-mR mR.mL mR.mL (mB+ 1).1
R R < mR and hR.mL** hR.mL(mB+I).l

R does not exist
R Trunk succ.# R.mL R.mL (mB+ 1) .I

in release > R
and R exists

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L(mB+1).1
R.L Trunk succ. R.L R.L(mB+I).1

in release ~ R

R.LB no No branch succ. R.LB.mS R.LB.(mS+1)

R.LB yes No branch succ. R.LB.mS R.L(mB+I).I

The UNIX System User's Manual 295

Software Development

R.L.B.S

R.L.B.S

R.L.B.S

•

••

•••

t

*

no No branch succ. R.L.B.s R.L.B. (S+ I)

yes No branch succ. R.L.B.S R.L. (mB+ 1).1

Branch succ. R.L.B.S R.L.(mB+I).1

"R", "L", "B", and "S" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means
"maximum". Thus, for example, "R.mL" means "the maximum
level number within release R"; "R.L. (mB+ 1).1" means "the first
sequence number on the new branch (i.e., maximum branch
number plus one) of level L within release R". Nute that if the
SID specified is of the form "R.L", "R.L.B", or "R.L.B.S", each
of the specified components must exist.
"hR" is the highest existing release that is lower than the
specified, nonexistent, release R.
This is used to force creation of the first delta in a new release .
Successor.
The -b keyletter is effective only if the b flag is present in the
file. An entry of - means "irrelevant".
This case applies if the d (default SID) flag is not present in the
file. If the d flag is present in the file, then the SID 0 '.>tained
from the d flag is interpreted as if it had been specified on the
command line. Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the sees file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an sees file:

Keyword
%M%

%I%

Value
Module name: either the value of the m flag in the file, or if
absent, the name of the sees file with the leading s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved
text.

%R% Release.
%L% Level.
%B% Branch.
%5% Sequence.
%D% Current date (YY/MM/DD).
%H% Current date (MM/DD/YY).
%T% Current time (HH:MM:SS).
%E% Date newest applied delta was created (YY IMM/DD).
%G% Date newest applied delta was created (MM/DD/YY).
%U% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the sees file.
%F% sees file name.
%P% Fully qualified sees file name.
%Q% The value of the q flag in the file.
%C% Current line number. This keyword is intended for identifying

296 The UNIX System User's Manual

GET(SD_CMD) Software Development

messages output by the program such as "this should not have
happened" type errors. It is not intended to be used on every line
to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what.

%W% A shorthand notation for constructing wha t strings.
%W% - %Z%%M%<horizontal-tab>%I%

%A% Another shorthand notation for constructing what(SD_CMD)
strings.
%A% - %Z%%Y% %M% %I%%Z%

FILES
Several auxiliary files may be created by get. These files are known generi­
cally as the g-fi1e. 1-fi1e. p-fi1e. and z-fi1e. The letter
before the hyphen is called the tag. An auxiliary file name is formed from the
sees file name: the last component of all sees file names must be of the
form s.module-name, the auxiliary files are named by replacing the leading s
with the tag. The 9 - f i 1 e is an exception to this scheme: the 9 - f i 1 e is
named by removing the s. prefix. For example, s. xyz . c. the auxiliary
file names would be xyz. c. 1. xyz. c. p. xyz. c. and z. xyz. c.
respectively.

The g-fi1e. which contains the generated text, is created in the current
directory (unless the -p keyletter is used). A g - f i 1 e is created in all
cases, whether or not any lines of text were generated by the get. It is
owned by the real user. If the -k keyletter is used or implied it is writeable
by the owner only (read-only for everyone else); otherwise it is read-only.
Only the real user need have write permission in the current directory.

The 1- f i 1 e contains a table showing which deltas were applied in generat­
ing the retrieved text. The 1-f i 1 e is created in the current directory if the
-I keyletter is used; it is read-only and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the 1-f i 1 e have the following format:

a. A blank character if the delta was applied;
• otherwise.

b. A blank character if the delta was applied or was not applied and
ignored;
• if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (sID).
f. Tab character.
g. Date and time On the form YY IMM/DD HH:MM:SS) of creation.
h. Blank.

The UNIX System User's Manual 297

Software Development

i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizon­
'tal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
keyletter along to de 1 tao Its contents are also used to prevent a subsequent
execution of get with an -e keyletter for the same SID until de 1 ta is
executed or the joint edit flag, j, is set in the sees file. The p-file is
created in the directory containing the sees file and the effective user must
have write permission in that directory. It is writeable by owner only, and it is
owned by the effective user. The format of the p-file is: the gotten SID,
followed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real user, fol­
lowed by a blank, followed by the date-time the get was executed, followed
by a blank and the -i keyletter argument if it was present, followed by a
blank and the -x keyletter argument if it was present, followed by a new-line.
There can be an arbitrary number of lines in the p-file at any time; no
two lines can have the same new delta SID.

The z - f i 1 e serves as a lock-out mechanism against simultaneous updates.
Its contents are the binary process ID of the command (i.e., get) that
created it. The z - f i 1 e is created in the directory containing the sees file
for the duration of get. The same protection restrictions as those for the
p-file apply for the z-file. The z-file is created read-only.

SEE ALSO

ADMIN(SD_CMD), DELTA(SD_CMD), PRS(SD_CMD), WHAT(SD_CMD).

USAGE

General.

\

298 The UNIX System User's Manual

Software Development

NAME

Id - link editor for object files

SYNOPSIS

Id [options! file ...

DESCRIPTION
The 1 d command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and 1d combines them, producing an object module that can either be
executed or, if the -r option is specified, used as input for a subsequent 1d
run. The output of 1d is left in a. out. By default this file is executable if
no errors occurred during the load. If any input file filename, is not an object
file, 1d assumes it is an archive library.

If any argument is a library, it is searched at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference
are loaded. The library (archive) symbol table is searched to resolve external
references which can be satisfied by library members. The ordering of library
members is unimportant, unless there exist multiple library members defining
the same external symbol.

The following options are recognized by 1 d:

-e epsym

-lx

Set the default entry point address for the output file to be that of the
symbol epsym.

Search the library which has the abbreviation x (e.g., -1m to search the
math library). A library is searched when its name is encountered, so
the placement of a -1 option is significant.

-0 out file
Produce an output object file by the name outfile. The name of the
default object file is a. au tAo

- r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a subse­
quent 1d run. The link editor will not complain about unresolved refer­
ences, and the output file will not be made executable.

- s Strip all symbolic information from the output object file.

-u symname
Enter symname as an undefined symbol in the symbol table. This is use­
ful for loading entirely from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the loading of the
first routine.

-L dir
Change the algorithm of searching for the library x to look in dir before

The UNIX System User's Manual 299

Software Development

looking in the default library directories. This option is effective only if
it precedes the -1 option on the command line.

-v Output a message giving information about the version of 1d being
used.

FILES

a.out

SEE ALSO

output file

AR(BU_CMD), CC(SD_CMD), STRIP(SD_CMD).

USAGE
General.

When the link editor is called through C c, a startup routine is linked with the
user's program. This routine calls exi t () after execution of the main pro­
gram. If the user calls the link editor directly, then the user must ensure that
the program always calls exi t () rather than falling through the end of the
entry routine.

The symbols etext, edata, and end are reserved and are defined by
the link editor. It is erroneous for a user program to redefine them.

CAVEATS

The option - Y is reserved for future use. It will be used to specify a direc­
tory to be used instead of the standard list, when searching for libraries.

Users will also be able to specify, by means of the TMPDIR environment
variable, the directory in which any temporary files are to be created.

300 The UNIX System User's Manual

Software Development

NAME

lex - generate programs for simple lexical analysis of text

SYNOPSIS
lex I-ctvn} lfile} ...

DESCRIPTION
The command lex generates programs to be used in lexical processing of
character input and may be used as an interface to yacc.

The input file(s) , which contain lex source code, contain a table of regular
expressions each with a corresponding action in the form of a C program frag­
ment. Multiple input files are treated as a single file. When lex processes
file(s), this source is translated into a C program. Normally 1 ex writes the
program it generates to the file lex. yy. c. If the -t option is used, the
resulting program is written instead to the standard output. When the pro­
gram generated by lex is compiled and executed, it will read character input
from the standard input and partition it into strings that match the given
expressions. When an expression is matched, the input string was matched is
left in an external character array yyl ex and the expressions corresponding
program fragment, or action, is executed. During pattern matching the set of
patterns will be searched for a match in the order in which they appeared in
the 1 e x source and the single longest possible matchwill be chosen at any
point in time. Among rules that match the same number of characters, the
rule given first will be matched.

The program generated by lex, e.g., lex. yy. c. should be compiled and
loaded with the lex library (using the -11 option with cc.

The option -c indicates C language actions and is the default, -t causes
the program generated to be written instead to standard output, -v provides
a one-line summary of statistics of the finite state machine generated, -n will
not print out the - summary.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%pn
%nn
%en
%an
%kn
%on

number of positions is n
number of states is n
number of parse tree nodes is n
number of transitions is n
number of packed character classes is n
size of the output array is n

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.

The general format of lex source is:
{definitions}
%%
{rules}
%%

The UNIX System Users Manual 301

Software Development LEX(SD _CMD)

{user subroutines}
The definitions and the user subroutines may be omitted. The first % % is
required to mark the beginning of the rules (regular expressions and actions);
the second % % is required only if user subroutines follow.

Any line in the source beginning with a blank is assumed to contain only C
text and is copied to 1 ex. yy . c; if it precedes % % it is copied into the
external definition area of the lex. yy. c file. Anything included between
lines containing only % { and %} is copied unchanged to 1 ex. yy . c and the
delimiter lines are discarded. Anything after the third % % delimiter is
copied to lex. yy. c.

Definitions

Rules

Definitions must appear before the first % % delimiter. Any line in this
section not contained between % { and %} lines and beginning in column
1 is assumed to define a lex substitution string. The format of these
lines is

name substitute
The name must begin with a letter and be followed by at least one blank
or tab. The substitute will replace the string {name} when it is used in a
rule. The curly braces do not imply parentheses; only string substitution
is done.

The rules in lex source files are a table in which the left column con­
tains regular expressions and the right column contains actions and pro­
gram fragments to be executed when the expressions are recognized.

re whitespace action
re whitespace action

Because the regular expression, (re), portion of a rule is terminated by
the first blank or tab, any blank or tab used within a regular expression
must be quoted (its special meaning escaped). That is, it must appear
within double quotes, square brackets or must be preceded by a
backslash character.

The program fragment which is the action associated with a particular
re may extend across several lines if it is enclosed in curly braces:

re whitespace { program statement
program statement }

Regular Expressions

The lex command supports the sets of regular expressions recognized
by ed and awk, and some additional expressions. Some characters
have special meanings when used in an re and are called regular expres­
sion operators. Below is a table of expressions supported by lex.

302 The UNIX System User's Manual

Regular
Expression

c

\c

"CO

$

[sl

["sl

r*

r+

r?

(r)

rx

<s>r

r/x

Is}

rlm,n}

Pattern
Matcbed

Software Development

the character c where c is not a spe­
cial character.

the character c where c is any char­
acter.

the character c where c is any char­
acter except \.

the beginning of the line being com­
pared.

the end of the line being compared.

any character in the input but new­
line

any character in the set s where s is
a sequence of characters and/or a
range of characters, coco

any character not in the set s, where
s is defined as above.

zero or more successive occurrences
of the regular expression r.

one or more successive occurrences
of the regular expression r.

zero or one occurrence of the regular
expression r.

the regular expression r. (Grouping)
the occurrence of regular expression
r followed by the occurrence of regu­
lar expression X. (Concatenation)

the occurrence of regular expression
r or the occurrence of regular
expression X.

the occurrence of regular expression
r only when the program is in start
condition (state) S.

the occurrence of regular expression
r only if it is followed by the
occurence of regular expression X.

(Note this is r in the context of x
and only r is matched.)

the substitution of S from the
Definitions section.

m through n successive occurrences
of the regular expression r.

The notation r{m,n} in a rule indicates between m and n instances of
regular expression r. It has higher precedence than I, but lower than *,
?, +, and concatenation.

The UNIX System User's Manual 303

Software Development

The character A at the beginning of an expression permits a successful
match only immediately after a new-line, and the character $ at the end
of an expression requires a trailing new-line.

The character / in an expression indicates trailing context; only the part
of the expression up to the slash is returned in yytext, but the remainder
of the expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within double quotes, "c"; pre­
ceded by \, \c; or is within square brackets, Ic). Two operators have spe­
cial meaning when used within square brackets. A - denotes a range,
[c-c], unless it is just after the open bracket or before the closing
bracket, [-c] or [co] in which case it has no special meaning. When used
within brackets, A has the meaning "complement of' if it immediately fol­
lows the open bracket, [AC], elsewhere between brackets, [CA], it stands
for the ordinary character A. The special meaning of the \ operator can
be escaped only by preceding it with another \.

Actions
The default action when a string in the input to a lex.yy.c program is
not matched by any expression is to copy the string to the output.
Because the default behavior of a program generated by lex is to read
the input and copy it to the output, a minimal lex source program
that has just %% will generate a C program that simply copies the input
to the output unchanged. A null C statement, the statement ';', may be
specified as an action in a rule. Any string in the lex.yy.c input that
matches the pattern portion of such a rule, will be effectively ignored or
skipped.

Three special actions are available, L REJECT, and ECHO. The action I
means that the action for the next rule is the action for this rule. ECHO
prints the string yytext on the output. Normally only a single expression
is matched by a given string in the input. REJECT means "continue to
the next expression that matches the current input" and causes whatever
rule was second choice after the current rule to be executed for the same
input. Thus, it allows multiple rules to be matched and executed for one
input string or overlapping input strings. For example, given the expres­
sions xyz and yz and the input xyz, normally only one pattern, xyz would
match and the next attempted match would start at z. If the last action
in the xyz rule is REJECT, both this rule and the yz rule would be exe­
cuted.

The 1 ex command provides several routines that can be used in the lex
source program: yymoreO, yyless(n), inputO, output(c), and unput(c).

The function yymoreO may be called to indicate that the next input
string recognized is to be concatenated onto the end of the current string
in yytext rather than overwriting it in yytext.

yyless(n) returns to the input some of the characters matched by the
currently successful expression. The argument lin" indicates the number

304 The UNIX System User's Manual

EXAMPLE

Software Development

of initial characters in yytext to be retained; the remaining trailing char­
acters in yytext are returned to the input.

inputO returns the next character from the input. input returns 0 on end
of file.

unput(c) pushes the character c back onto the input stream to be read
later by inputO.

output(c) writes the character c on the output.

To perform custom processing when the end of input is reached, a user
may supply their own yywrapO function. yywrapO is called whenever
lex.yy.c reaches an end-of-file. If yywrapO returns a one, lex.yy.c con­
tinues with the normal wrap-up on end of input. The default yywrapO
always returns a one. If the user wants lex.yy.c to continue processing
with another source of input, then a yywrapO must be supplied that
arranges for the new input and returns a zero. These routines may be
redefined by the user.

The external names generated by lex all begin with the prefix yy or
YY.

The program generated by lex is named yylexO; if the user does not
supply a main routine, the default mainO routine calls yylexO. If the
user supplies a mainO routine, it should call yylexO.

D [0-9]
%%
if printf("IF statement\n");
[a-z]+ printf("tag, value %s\n",yytext);
O{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n");
"+" printf("binary op\n");
"/*" { loop:

FILES

lex.yy.c.

SEE ALSO

while (input() 1= '.');
switch (input(»

}

{

case '/': break;
case '.': unput('.');
default: go to loop;
}

CC(SD_CMD), YACC(SD_CMD).

The UNIX System User's Manual 305

Software Development

USAGE
General.

306 The UNIX System User's Manual

Software Development

NAME

lint - a C program checker

SYNOPSIS

lint I options I file ...

DESCRIPTION

The command 1 i n t attempts to detect features of the C program files that
are likely to be bugs, non-portable, or wasteful. It also checks type usage
more strictly than the compilers. Among the things that are currently
detected are unreachable statements, loops not entered at the top, automatic
variables declared and not used, and logical expressions whose value is con­
stant. Moreover, the usage of functions is checked to find functions that
return values in some places and not in others, functions called with varying
numbers or types of arguments, and functions whose values are not used or
whose values are used but none returned.

The options are described below. Note, however, that the options - c and
- 0 are new to UNIX System V Release 2.0.

Arguments whose names end with . c are taken to be C source files. The fol­
lowing behavior is new in UNIX System V Release 2.0.

Arguments whose names end with . 1n are taken to be the result of an ear­
lier invocation of lint with either the -c or the -0 option used. The
. 1n files are analogous to .0 (object) files that are produced by the cc
command when given a • c file as input.

Files with other suffixes are warned about and ignored.

The command 1 in t will take all the . c, • 1 n. files, and 11 i b-
1x(specififed by -lx), and process them in their command line order. By
default, lint appends the standard C lint library to the end of the list of
files. However, if the -p option is used, the portable C lint library (llib­
po r t . 1 n) is appended instead. When the - c option is not used, the second
pass of 1 in t checks this list of files for mutual compatibility. When the
- c option is used, the . 1 n files and the lint libraries are ignored.

Any number of 1 int options may be used, in any order, intermixed with
file-name arguments. The following options are used to suppress certain kinds
of complaints:

-a Suppress complaints about assignments of long values to variables
that are not long.

-b Suppress complaints about break statements that cannot be
reached. (Programs produced by 1 e x or ya c c will often result in
many such complaints).

-h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

The UNIX System User's Manual 307

Software Development

-u Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for run­
ning 1 in t on a subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.

- x Do not report variables referred to by external declarations but never
used.

The following arguments alter 1 in t 's behavior:

-lx Include additional lint library x (e.g., -1m for the math library).

-n Do not check compatibility against either the standard or the portable
lint library.

- p Attempt to check portability.

- c Cause 1 in t to produce a • 1 n file for every . c file on the command
line. These • 1 n files are the product of 1 in t 's first pass only, and
are not checked for inter-function compatibility.

-0 lib Cause lint to create a lint library with the name lib. The -c
option nullifies any use of the - 0 option. The lint library produced is
the input that is given to 1 in t 's second pass. The - 0 option simply
causes this file to be saved in the named lint library. To produce the lint
library without extraneous messages, use of the - x option is suggested.
The -v option is useful if the source file(s) for the lint library are just
external interfaces. These option settings are also available through the
use of "lint comments" (see below).

The. -0, -u, and - I options of cpp [see CPP(SD_CMD)] are also recog­
nized as separate arguments.

(The following is new to UNIX System V Release 2.0,) The -g and -0
options of c c are also recognized as separate arguments. These options are
ignored, but, by recognizing these options, 1 in t 's behavior is closer to that
of the c c command. Other options are warned about and ignored. The pre­
processor symbol "lint" is defined to allow certain questionable code to be
altered or removed for 1 in t . Therefore, the symbol "lint" should be
thought of as a reserved word for all code that is planned to be checked by
lint.

Certain conventional comments in the C source will change the behavior of
lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.
(This comment is typically placed just after calls to functions like
exit.

/*YARARGSn*/
suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first n

308 The UNIX System User's Manual

LlNT(SD _ CMD) Software Development

arguments are checked; a missing n is taken to be O.

/*ARGSUSED*/
turns on the - v option for the next function.

!*UNTUBRARY*!
at the beginning of a file shuts off complaints about unused func­
tions and function arguments in this file. This is equivalent to
using the -v and -x options.

The command 1 in t produces its first output on a per-source-file basis.
Complaints regarding included files are collected and printed after all source
files have been processed. Finally, if the - c option is not used, information
gathered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or
from one of its included files, the source file name will be printed followed by
a question mark.

The behavior of the - c and the - 0 options allows for incremental use of
1 in t on a set of C source files. Generally, 1 in t is invoked once for each
source file with the - c option. Each of these invocations produces a . 1 n
file which corresponds to the • c file, and prints all messages that are about
just that source file. After all the source files have been separately run
through 1 in t, it is invoked once more (without the - c option), listing all
the . In files with the needed -Ix options. This will print all the inter-file
inconsistencies. This scheme works well with make; it allows make to be
used to 1 in t only the source files that have been modified since the last time
the set of source files were checked by 1 in t.

SEE ALSO
CC(SD _ CMD), CPP(SD _ CMD), MAKE(SD _ CMD).

USAGE

General.

The UNIX System Users Manual 309

Software Development

NAME

lorder - find ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION
The input is one or more object or library archive files [see AR(BU_CMD»). The
standard output is a list of pairs of object file names, meaning that the first file
of the pair refers to external identifiers defined in the second. The output may
be processed by tsort to find an ordering of a library suitable for one-pass
access by the link editor ld Note that ld is capable of multiple passes over
an archive in the portable archive format and does not require that lorder
be used when building an archive. The usage of the lorder command
may, however, allow for a slightly more efficient access of the archive during
the link edit process.

EXAMPLE

The following example builds a new library from existing • 0 files.

ar -cr library 'lorder ·.0 I tsort'

SEE ALSO
AR(BU _ CMD), LD(SD _ CMD), TSORT(SD _ CMD).

USAGE

General.

310 The UNIX System User's Manual

Software Development

NAME

m4 - macro processor

SYNOPSIS
m4 (options] (file .. .1

DESCRIPTION
The command m4 is a macro processor intended as a front end for Ratfor, C,
and other languages. Each of the argument files is processed in order; if there
are no files, or if a file name is -, the standard input is read. The processed
text is written on the standard output.

The options and their effects are as follows:

-s Enable line sync output for the C preprocessor (Le., #line direc­
tives).

This option must appear before any file names and before the follow­
ing options.

-Dname(=val1
Defines name to valor to null in vafs absence.

-Uname undefines name.

Macro calls have the form:

name (arg 1 ,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters, digits,
and underscore ,where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The value
of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. If fewer arguments are supplied than are in
the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the value of a
nested call are as effective as those in the original input text. After argument
collection, the value of the macro is pushed back onto the input stream and
rescanned.

The command m4 makes available the following built-in macros. They may
be redefined, but once this is done the original meaning is lost. Their values
are null unless otherwise stated.

define the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the
replacement text, where n is a digit, is replaced by the n-th

The UNIX System User's Manual 311

Software Development

argument. Argument 0 is the name of the macro; missing argu­
ments are replaced by the null string; $ # is replaced by the
number of arguments; $* is replaced by a list of all the argu­
ments separated by commas; $@ is like $*, but each argu­
ment is quoted (with the current quotes).

undefine removes the definition of the macro named in its argument.

de f n returns the quoted definition of its argument (s). It is useful for
renaming macros, especially built-ins.

pushdef like define, but saves any previous definition.

popdef removes current definition of its argument(s), exposing the previ­
ous one, if any.

if d e f if the first argument is defined, the value is the second argu­
ment, otherwise the third. If there is no third argument, the
value is null.

shift returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that will subsequently be
performed.

changequote change quote symbols to the first and second arguments.
The symbols may be up to five characters long. the command
changequote without arguments restores the original values
(i.e., ").

change com change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism is
effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-line.
With two arguments, both markers are affected. Comment
markers may be up to five characters long.

di vert The command m4 maintains 10 output streams, numbered 0-9.
The final output is the concatenation of the streams in numerical
order; initially stream 0 is the current stream. The divert
macro changes the current output stream to its (digit-string)
argument. Output diverted to a stream other than 0 through 9
is discarded.

undivert causes immediate output of text from diversions named as argu­
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

di vnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next new­
line.

312 The UNIX System User's Manual

ifelse

incr

decr

eval

len

index

Software Development

has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If
not, and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is
either th~ fourth string, or, if it is not prc:;cnt, null.

returns the value of its argument incremented by 1. The value
of the argument is calculated by interpreting an initial digit­
string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include + , * , / , " ,
(exponentiation), bitwise &. , I , A, and ; relationals;
parentheses. Octal and hex numbers may be specified as in C.
The second argument specifies the radix for the result; the
default is 10. The third argument may be used to specify the
minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argu­
ment begins (zero origin), or -1 if the second argument does not
occur.

substr returns a substring of its first argument. The second argument
is a zero origin number selecting the first character; the third
argument indicates the length of the substring. A missing third
argument is taken to be large enough to extend to the end of the
first string.

trans 1 i t transliterates the characters in its first argument from the set
given by the second argument to the set given by the third. No
abbreviations are permitted.

inc 1 ude returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file
is inaccessible.

syscmd

sysval

executes the system command given in the first argument. No
value is returned.

is the return code from the last call to sys cmd.

make temp fills in a string of XXXXX in its argument with the current pro­
cess ID.

m4exit

m4wrap

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is O.

argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup() ')

The UNIX System User's Manual 313

Software Development

errprint prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for
all if no arguments are given.

traceon with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

traceoff turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by
specific calls to traceoff.

SEE ALSO
CC{SD _ CMD), CPP{SD _ CMD).

USAGE

General.

314 The UNIX System User's Manual

MAKE(SD _CMD) Software Development

NAME

make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefilel I-p) [-iJ [-k) [-5) [-rl [-01 [-el [-tJ [-ql
[name .. .1

DESCRIPTION

The options are interpreted as follows:

-f makefile Description file name. The argument makefile is assumed to
be the name of a description file. A file name of - denotes
the standard input.

-p Print out the complete set of macro definitions and target
descriptions.

- i Ignore error codes returned by invoked commands. This mode
is entered if the fake target name .IGNORE appears in the
description file.

-k Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

-8 Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

-e Environmental variables override assignments within makefiles.

-t Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

-q Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date.

The following target names may be defined in the make file, and are inter­
preted as follows:

.DEFAULT

.PRECIOUS

• SILENT

• IGNORE

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists.

Dependents of this target will not be removed when quit or
interrupt are hit.

Same effect as the -8 option .

Same effect as the -i option .

The UNIX System User's Manual 315

Software Development

The command m executes commands in makefile to update one or more tar­
get names. The argument name is typically a program. If no -f option is
present, makefile, M akefile, and the SCCS files s • ma kef i 1 e, and
s .Makefile are tried in order. If make file is -, the standard input is
used. More than one -fmakefile argument pair may appear.

The command make updates a target only if its dependents are newer than
the target. All prerequisite files of a target are added recursively to the list of
targets. Missing files are deemed to be out-of-date.

The argument makefile contains a sequence of entries that specify dependen­
cies. The first line of an entry is a blank-separated, non-null list of targets,
then a :, then a (possibly null) list of prerequisite files or dependencies.
Text following a ; and all following lines that begin with a tab are commands
to be executed to update the target. The first line that does not begin with a
tab or # begins a new dependency or macro definition. Commands may be
continued across lines with the <backslash> <new-line> sequence. Every­
thing printed by make (except the initial tab) is passed directly to the com­
mand interpreter as is.

The symbols # and new-line surround comments.

The following makefile says that pgm depends on two files a. 0 and b. 0 ,

and that they in turn depend on their corresponding source files (a. c and
b. c) and a common file incl. h:

pgm:
a.o:
b.o:

a.o b. 0 cc
incl.h a.c
incl.h b.c

a.o
cc
cc

b.o -0

-c a.c
-c b.c

pgm

Command lines are executed one at a time. The first one or two characters in
a command can be the following: -, @I, -@I, or @I-. If @I is present, print­
ing of the command is suppressed. If - is present, make ignores an error.
A line is printed when it is executed unless the -s option is present, or the
entry .SILENT: is in makefile. or unless the initial character sequence contains
a @I. The -n option specifies printing without execution; however, if the
command line has the string $ (MAKE) in it, the line is always executed (see
discussion of the MAKEFLAGS macro under Environment). The -t
(touch) option updates the modified date of a file without executing any com­
mands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry .IGNORE: appears in make file. or the initial
character sequence of the command contains -, the error is ignored. If the
-k option is present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a depen­
dent of the special name .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be

316 The UNIX System User's Manual

Software Development

macro definitions and processed as such. The environmental variables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environmental variables. The
-e option causes the environment to override the macro assignments in
a makefile.

The environmental variable MAKE FLAGS is processed by make as
containing any legal input option (except -f and -p) defined for the
command line. Further, upon invocation, make "invents" the variable
if it is not in the environment, puts the current options into it, and passes
it on to invocations of commands. Thus, MAKEFLAGs always contains
the current input options. This proves very useful for "super-makes". In
fact, as noted above, when the -n option is used, the command
$ (MAKE) is executed anyway; hence, one can perform a make -n
recursively on a whole software system to see what would have been exe­
cuted. This is because the -n is put in MAKEFLAGs and passed to
further invocations of $ (MAKE). This is one way of debugging all of
the makefiles for a software project without actually doing anything.

Macros

Entries of the form string1 - string2 are macro definitions.
The macro string2 is defined as all characters up to a comment
character or an unescaped new-line. Subsequent appearances of
$(string1[:substJ-[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used and
there is no substitute sequence. The optional : subst 1-subst2 is a
substitute sequence. If it is specified, all non-overlapping occurrences of
subst 1 in the named macro are replaced by subst2. Strings (for
the purposes of this type of substitution) are delimited by blanks, tabs,
new-line characters, and beginnings of lines. An example of the use of
the substitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing
rules for building targets.

$* The macro $* stands for the file name part of the current depen­
dent with the suffix deleted. It is evaluated only for inference
rules.

$@ The $@ macro stands for the full target name of the current tar­
get. It is evaluated only for explicitly named dependencies.

$ < The $ < macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out-of-date with respect
to the target (i.e., the "manufactured" dependent file name).
Thus, in the .c.o rule, the $ < macro would evaluate to the • c
file. An example for making optimized . 0 files from . c files is:

.c .0:
cc -c -0 $*.c

The UNIX System User's Manual 317

Software Development

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from
the makefile are evaluated. It is the list of prere­
quisites that are out-of-date with respect to the target;
essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an
archive library member of the form 1 i b (f i 1 e . 0) .

In this case, $@ evaluates to lib and $% evaluates
to the library member, file. o.

Four of the five macros can have alternative forms. When an upper case
D or F is appended to any of the four macros, the meaning is changed to
"directory part" for D and "file part" for F. Thus, $ (@D) refers to
the directory part of the string $@. If there is no directory part, . / is
generated. The only macro excluded from this alternative form is $?

Suffixes
Certain names (for instance, those ending with .0) have inferable
prerequisites such as • c, . s, etc. If no update commands for such a
file appear in make file. and if an inferable prerequisite exists, that prere­
quisite is compiled to make the target. In this case, make has infer­
ence rules which allow building files from other files by examining the
suffixes and determining an appropriate inference rule to use. Inference
rules in the makefile override the default rules.

The internal rules for make are compiled into the make program. To
print out the rules compiled into the make program, the following com­
mand is used:

make -fp - 2>/dev/null </dev/null

A tilde in the above rules refers to an sees file. Thus, the rule .C .0

would transform an sees C source file into an object file (.0). Because
the s. of the sees files is a prefix, it is incompatible with make's suffix
point of view. Hence, the tilde is a way of changing any file reference
into an sees file reference.

A rule with only one suffix (Le., .c:) is the definition of how to build x
from x.c. In effect, the other suffix is null. This is useful for building
targets from only one source file (e.g., command scripts, simple C pro­
grams).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and a
rule exist is inferred as a prerequisite.

Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine. Multi­
ple suffix lists accumulate; .SUFFIXES: with no dependencies clears the

318 The UNIX System User's Manual

Software Development

list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The
user may add rules to this list by simply putting them in the make file .

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For example,
BCFLAGS, BLFLAGS, and BYFLAGS are used for compiler options
to cc, lex, and yacc, respectively. Again, the previous method for
examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix . 0 from a file with suffix • c is specified as an entry with
.c.o: as the target and no dependents. Commands associated with the
target define the rule for making a .0 file from a .c file. Any target that
has no slashes in it and starts with a dot is identified as a rule and not a
true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be
an archive library, the string within parentheses referring to a member
within the library. Thus 1 i b (file. 0) and S(LIB)(file.o) both refer
to an archive library which contains file.o. (This assumes the LIB
macro has been previously defined.) The expression S(LIB)(filel.o
file2.0) is not legal. Rules pertaining to archive libraries have the form
.xx.a where the XX is the suffix from which the archive member is to be
made. The most common use of the archive interface follows. Here, we
assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary
in this example. A more interesting, but more limited example of an
archive library maintenance construction follows:

lib: lib (file 1.0) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o-.c)
ar rv lib $?
rm $? @echo lib is now up-to-date

.c.a:;

The UNIX System User's Manual 319

Software Development

FILES

Here the substitution mode of the macro expansions is used. The $? list
is defined to be the set of object file names (inside lib) whose C source
files are out-of-date. The substitution mode translates the .0 to .c. Note
also, the disabling of the .c.a: rule, which would have created each object
file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumber­
some if the archive library contains a mix of assembly programs and C
programs.

[Mm]akefile and s.[Mm]akefile

SEE ALSO
CC(SD_CMD), LEX(SD_CMD), SH(BU_CMD), YACC(SD_CMD).

USAGE

General.

The characters -= : @ in file names may give trouble.

320 The UNIX System User's Manual

NM(SD_CMD) Software Development

NAME

nm - print name list of common object file

SYNOPSIS

DESCRIPTION

The nm command displays the symbol table of each common object file file.
The argument file may be a relocatable or absolute common object file; or it
may be an archive of relocatable or absolute common object files. For each
symbol, at least the following information will be printed:

Name

Value

Size

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its size in bytes, if available.

The output of nm may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of
decimal.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (text, .data and
.bss), normally suppressed.

-u Print undefined symbols only.

-v Print the version of the nm command executing on the standard
error output.

SEE ALSO

CC(SD_CMD), LD(SD_CMD).

USAGE

General.

The UNIX System User's Manual 321

Software Development

NAME

prof - display profile data

SYNOPSIS
prof [-tcanl [-oxl [-gl [-zl [-m mdatal [progl

DESCRIPTION
The command prof interprets a profile file produced by the moni tor
routine. The symbol table in the object file prog (a . ou t by default) is read
and correlated with a profile file (mon. ou t by default). For each external
text symbol the percentage of time spent executing between the address of
that symbol and the address of the next is printed, together with the number
of times that function was called and the average number of milliseconds per
call.

The mutually exclusive options t, c , a, and n determine the type of
sorting of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address of
each symbol monitored:

-0 Print each symbol address On octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range, even if associated with zero
number of calls and zero time.

-m mdata
Use file mdata instead of mon. ou t as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
cc This option to the cc command arranges for calls to monitor at the
beginning and end of execution. It is the call to monitor at the end of
execution that causes a profile file to be written. The number of calls to a
function is tallied if the -p option was used when the file containing the
function was compiled.

The name of the file created by a profiled program is controlled by the
environmental variable PROFDIR. If PROFDIR is not set, "mon.out" is
produced in the directory current when the program terminates. If
PROFDIR-string, "string/pid.progname" is produced, where progname

322 The UNIX System User's Manual

Software Development

consists of argv[O) with any path prefix removed, and pid is the program's pro­
cess ID. If PROFDIR is set, but null, no profiling output is produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro [see MARKCSD_LlB»).

FILES
mon. OU t for profile
a . ou t for namelist

SEE ALSO
CC(SD_CMD), EXIT(BA_SYS), PROFIL(KE_SYS), MONITOR(SD_LlB), MARK(SD_LlB).

USAGE
General.

The times reported in successive identical runs may show variances, because of
varying cache-hit ratios due to sharing of the cache with other processes.
Even if a program seems to be the only one using the machine, hidden back­
ground or asynchronous processes may blur the data.

In rare cases, the clock ticks initiating recording of the program counter may
"beat" with loops in a program, grossly distorting measurements. Call counts
are always recorded precisely, however.

Only programs that call exit or return from main are guaranteed to pro­
duce a profile file, unless a final call to monitor is explicitly coded.

The UNIX System User's Manual 323

Software Development

NAME

prs - print an sees file

SYNOPSIS
prs (options) files

DESCRIPTION

The command pr s prints, on the standard output, parts or all of an sees
file in a user-supplied format. If a directory is named, pr s behaves as
though each file in the directory were specified as a named file, except that
non-SeeS files (last component of the path name does not begin with s.), and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
sees file or directory to be processed; non-sees files and unreadable files are
silently ignored.

Arguments to prs, which may appear in any order, consist of options, and
file names.

All the described options apply independently to each named file. (Note that
the - c option is new to UNIX System V Release 2.0.)

-d[dataspecJ Used to specify the output data specification. The dataspec
is a string consisting of sees file data keywords (see DATA
KEYWORDS) interspersed with optional user supplied text. to
specify the sees identification string of a delta for which
information is desired. If no SID is specified, the SID of the
most recently created delta is assumed.

-rSID Requests information for all deltas created earlier than and
including the delta designated via the - r keyletter or the
date given by the - c option.

-1 Requests information for all deltas created later than and
including the delta designated via the - r keyletter or the
date given by the - c option.

- c [date-time] The cutoff date-time is in the form:

-a

YY[MM[DD[HH[MM[SSIIIII

Units omitted from the date-time default to their maximum
possible values; for example, - c 7 5 0 2 is equivalent to
- c 7 5 0 228235959. Any number of non-numeric charac­
ters may separate the various 2-digit pieces of the cutoff date
in the form: n -c77 /2/2 9: 22: 25".

Requests printing of information for both removed, i.e., delta
type - R. [see RMDEL(SD_CMD)] and existing, i.e., delta type
- D. deltas. If the - a keyletter is not specified, information
for existing deltas only is provided.

DATA KEYWORDS ~

Data keywords specify which parts of an sees file are to be retrieved and

324 The UNIX System User's Manual

Software Development

output. All parts of an sees file have an associated data keyword. There is
no limit on the number of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and
(2) appropriate values (extracterl fr'Jffi the sees file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword substi­
tution is direct, or Multi-line (M), in which keyword substitution is followed
by a carriage return.

User-supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \n. The default
data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:eOMMENTS:\n:C:"

sees Files Data Keywords

Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below· S
:DL: Delta line statistics :Li:/:Ld:I:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D orR S

:1: sees ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:0: Date Delta created :Dy:I:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S

:DP: Predecessor Delta seq-no. nnnn S
:01: Seq -no. of deltas incl., excl., ignored :Dn:I:Dx:I:Dg: S
:Dn: Deltas included (seq #) :DS::DS: ... S
:Dx: Deltas excluded (seq #) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS::DS: ... S

The UNIX System User's Manual 325

Software Development PRS(SD_CMD)

:MR: MR numbers for delta text
:C: Comments for delta text

:UN: User names User Names text
:FL: Flag list Flags text
:Y: Module type flag text

:MF: MR validation flag yes or no

:MP: MR validation pgm name text

:KF: Keyword error/warning flag yes or no

:KV: Keyword validation string text
:BF: Branch flag yes or no
:J: Joint edit flag yes or no

:LK: Locked releases :R: .••
:Q: User-defined keyword text
:M: Module name text
:FB: Floor boundary :R:
:CB: Ceiling boundary :R:
:Ds: Default SID :1:
:ND: Null delta flag yes or no
:FD: File descriptive text Comments text

:BD: Body Body text
:GB: Gotten body text
:W: A form of what (SO _ CMD) string N/A :Z::M:\t:l:

:A: A form of what (SD_CMD) string N/A :Z::Y: :M: :I::Z:

:Z: what (SO _ CMD) string delimiter N/A @(#)

:F: SCCS file name N/A text
:PN: SCCS file path name N/A text

* :Dt: - :DT: :1: :0: :T: :P: :DS: :DP:

EXAMPLES

prs -d"Users and/or user IDs for : F: are: \n: UN:" s. file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

M
M
M
M
S
S

S

S

S
S
S
S
S
S
S
S
S
S
M

M
M
S

S

S

S
S

prs -d"Newest delta for pgm : M:: : I: Created : D: By : P:" -r
s. file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/1211 By cas

As a special case:

prs s.file

may produce on the standard output:

326 The UNIX System User's Manual

PRS(SD_CMD) Software Development

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special case is the - a key letter .

SEE ALSO
ADMIN(SD_CMD). DELTA(SD_CMD). GET(SD_CMD). WHAT(SD_CMD).

USAGE

General.

The UNIX System User's Manual 327

Software Development

NAME

rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -r

DESCRIPTION
The command rmdel removes the delta specified by the SID from each
named sees file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named sees file. In addition,
the SID specified must not be that of a version being edited for the purpose of
making a delta (i.e., if a p-file [see GET(SD_CMD)] exists for the named sees
file, the SID specified must not appear in any entry of the p-file).

If a directory is named, rmd e 1 behaves as though each file in the directory
were specified as a named file, except that non-sees files (Jast component of
the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed; non­
sees files and unreadable files are silently ignored.

The restrictions on removal of a delta are: (0 the user who made a delta can
remove it; (2) the owner of the file and directory can remove a delta.

SEE ALSO
DEL TA(SD _ CMD), GET(SD _ CMD), PRS(SD _ CMD).

USAGE

General.

328 The UNIX System User's Manual

SACT(SD _CMD) Software Development

NAME

sact - print current sees file editing activity

SYNOPSIS
o!:t,..+- lilo~ _--J ... _

DESCRIPTION

The command sact informs the user of any impending deltas to a named
sees file. This situation occurs when get -e has been previously executed
without a subsequent execution of de 1 tao If a directory is named on the
command line, sac t behaves as though each file in the directory were
specified as a named file, except that non-sees files and unreadable files are
silently ignored. If a name of - is given, the standard input is read with each
line being taken as the name of an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

SEE ALSO

Field 1

Field 2

Field 3

Field 4

Field 5

specifies the SID of a delta that currently exists in the sees
file to which changes will be made to make the new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
G.e., executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

DEL TA(SD _ CMD), GET(SD _ CMD), UNGET(SD _ CMD).

USAGE

General.

The UNIX System User's Manual 329

Software Development SDB(SD _CMD)

NAME

sdb - symbolic debugger

SYNOPSIS

sdb [objfile [corfile [directory-Iistl))

DESCRIPTION

The command sdb is a symbolic debugger that can be used with C and For­
tran77 (F77) programs. It may be used to examine their object files and core
files and to provide a controlled environment for their execution.

The argument objfile is an executable program file which has been compiled
with the -9 (debug) option; if it has not been compiled with the -9 option,
or if it is not an executable file, the symbolic capabilities of sdb will be lim­
ited, but the file can still be examined and the program debugged. The
default for objfile is a. ou t. The argument corfile is assumed to be a core
image file produced after executing objfile; the default for corfile is core. The
core file need not be present. A - in place of corfile will force sdb to
ignore any core image file. The colon-separated list of directories (directory­
list) is used to locate the source files used to build objfile.

It is useful to know that at any time there is a current line and current file. If
corfile exists then they are initially set to the line and file containing the
source statement at which the process terminated. Otherwise, they are set to
the first line in mainU. The current line and file may be changed with the
source file examination commands.

By default, warnings are provided if the source files used in producing objfile
cannot be found, or are newer than objfile.

Names of variables are written just as they are in C or F77. (The command
sdb does not truncate names.) Variables local to a procedure may be
accessed using the form procedure:variable. If no procedure name is given,
the procedure containing the current line is used by default.

It is also possible to refer to structure members as variable.member, pointers
to structure members as variable-> member and array elements as
variablelnumberl. Pointers may be dereferenced by using the form pointerlOI.
Combinations of these forms may also be used. F77 common variables may be
referenced by using the name of the common block instead of the structure
name. Blank common variables may be named by the form .variable. A
number may be used in place of a structure variable name, in which case the
number is viewed as the address of the structure, and the template used for
the structure is that of the last structure referenced by sdb. An unqualified
structure variable may also be used with various commands. Generally, sdb
will interpret a structure as a set of variables. Thus, s db will display the
values of all the elements of a structure when it is requested to display a struc­
ture. An exception to this interpretation occurs when displaying variable
addresses. An entire structure does have an address, and it is this value sdb
displays, not the addresses of individual elements.

330 The UNIX System User's Manual

Software Development

Elements of a multidimensional array may be referenced as
variablelnumber)[numberl ... , or as variablelnumber.numberI. In place of
number. the form number;number may be used to indicate a range of values, •
may be used to indicate all legitimate values for that subscript, or subscripts
may be omitted entirely if they are the last subscripts and the full range of
values is desired. As with structures, sdb displays all the values of an array
or of the section of an array if trailing subscripts are omitted. It displays only
the address of the array itself or of the section specified by the user if sub­
scripts are omitted. A multidimensional parameter in an F77 program cannot
be displayed as an array, but it is actually a pointer, whose value is the loca­
tion of the array. The array itself can be accessed symbolically from the cal­
ling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in naming
variables may be used. Number is the occurrence of the specified procedure
on the stack, counting the top, or most current, as the first. If no procedure is
specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer con­
stants which are valid in C may be used, so that addresses may be input in
decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file is
used.

While a process is running under sdb, all addresses refer to the executing
program.

Commands

The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

variable/elm
Print the value of variable according to length I and format m. A
numeric count c indicates that a region of memory, beginning at
the address implied by variable. is to be displayed. The length
specifiers are:

b one byte

h two bytes (half word)

1 four bytes (long word)

The UNIX System User's Manual 331

Software Development

Legal values for mare:

c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
s Assume variable is a string pointer and print characters

starting at the address pointed to by the variable.
a Print characters starting at the variable's address. This for­

mat may not be used with register variables.
p pointer to procedure
i disassemble machine-language instruction with addresses

printed numerically and symbolically.

The length specifiers are only effective with the formats c, d, u, 0

and x. Any of the specifiers, c, 1, and m, may be omitted. If all are
omitted, sdb cho~es a length and a format suitable for the variable's
type as declared in the program. If m is specified, then this format is
used for displaying the variable. A length specifier determines the out­
put length of the value to be displayed, sometimes resulting in trunca­
tion. A count specifier c tells s db to display that many units of
memory, beginning at the address of variable. The number of bytes in
one such unit of memory is determined by the length specifier 1, or if
no length is given, by the size associated with the variable. If a count
specifier is used for the s or a command, then that many characters
are printed. Otherwise successive characters are printed until either a
null byte is reached or 128 characters are printed. The last variable
may be redisplayed with the command .t.
Iinenumber? 1m
variable:?lm

Print the value at the address from a.out or I space given by
linen umber or variable (procedure name), according to the format
1m. The default format is 'i'.

variable - 1m
linen umber - 1m
number-1m

Print the address of variable or linen umber, or the value of
number, in the format specified by 1m. If no format is given, then
Ix is used. The last variant of this command provides a convenient
way to convert between decimal, octal and hexadecimal.

variable!value
Set variable to the given value. The value may be a number, a
character constant or a variable. The value must be well defined;
expressions which produce more than one value, such as structures,
are not allowed. Character constants are denoted 'character.
Numbers are viewed as integers unless a decimal point or exponent

332 The UNIX System User's Manual

Software Development

is used. In this case, they are treated as having the type double.
Registers are viewed as integers. The variable may be an expres­
sion which indicates more than one variable, such as an array or
structure name. If the address of a variable is given, it is regarded
as the address of a variable of type into C conventions are used in
any type conversions necessary to perform the indicated assign­
ment.

x Print the machine registers and the current machine-language
instruction.

The commands for examining source files are:

e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current file to the file containing pro­
cedure or to file-name. The current line is set to the first line in
the named procedure or file. Source files are assumed to be in
directory. The default is the current working directory. The latter
two forms change the value of directory. If no procedure, file
name, or directory is given, the current procedure name and file
name are reported.

/regular expression/
Search forward from the current line for a line containing a string
matching regular expression as in ED(BU_CMD). The trailing /
may be deleted.

?regular expression?
Search backward from the current line for a line containing a
string matching regular expression as in ED(BU_CMD). The trailing
? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current
line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new
current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command
with no arguments reuses the previous arguments to the program
while the R command runs the program with no arguments. An
argument beginning with < or > causes redirection for the

The UNIX System Users Manual 333

Software Development

standard input or output, respectively. If count is given, it specifies
the number of breakpoints to be ignored.

linenumber c count
linen umber C count

Continue after a breakpoint or interrupt. If count is given, the
program will stop when count breakpoints have been encountered.
With the C command, the signal which caused the program to
stop is reactivated; with the c command, it is ignored. If a line
number is specified then a temporary breakpoint is placed at the
line and execution is continued. The breakpoint is deleted when
the command finishes. (It may not be possible to set breakpoints
in some places, e.g., with shared libraries')

s count
S count

i
I

Single step the program through count lines. If no count is given
then the program is run for one line. S is equivalent to s except
it steps through procedure calls.

Single step by one machine-language instruction. With the I

command, the signal which caused the program to stop is reac­
tivated; with the i command, it is ignored.

k Kill the program being debugged.

procedure (arg 1 ,arg2, .. .>
procedure (arg 1 ,arg2, .. .> 1m

Execute the named procedure with the given arguments. Argu­
ments can be integer, character or string constants or names of
variables accessible from the current procedure. The second form
causes the value returned by the procedure to be printed according
to format m. If no format is given, it defaults to d.

Iinenumber b commands
Set a breakpoint at the given line. If a procedure name without a
line number is given (e.g., "proc:"), a breakpoint is placed at the
first line in the procedure even if it was not compiled with the -g
option. If no Iinenumber is given, a breakpoint is placed at the
current line. (It may not be possible to set breakpoints in some
places, e.g., with shared libraries')
If no commands are given, execution stops just before the break­
point and control is returned to sdb. Otherwise the commands
are executed when the breakpoint is encountered and execution
continues. Multiple commands are specified by separating them
with semicolons. If k is used as a command to execute at a
breakpoint, control returns to sdb. instead of continuing execu­
tion.

B Print a list of the currently active breakpoints.

334 The UNIX System User's Manual

SDB(SD_CMD) Software Development

linenumber d
Delete a breakpoint at the given line. If no linenumber is given
then the breakpoints are deleted interactively. Each breakpoint
location is printed and a line is read from the standard input. If
the line begins with a y or d then the breakpoint is deleted.

D Delete all breakpoints.

1 Print the last executed line.

Miscellaneous commands:

I command
The command is interpreted by the command interpreter.

new-line
If the previous command printed a source line, then advance the
current line by one line and print the new current line. If the pre­
vious command displayed a memory location, then display the next
memory location.

end-of-file
Scroll. Print the next 10 lines of instructions, source or data
depending on which was printed last. (The end-of-file character is
usually control-D,}

< filename
Read commands from filename until the end of file is reached, and
then continue to accept commands from standard input. When
sdb is told to display a variable by a command in such a file, the
variable name is displayed along with the value. This command
may not be nested; < may not appear as a command in a file.

" string
Print the given string. The C escape sequences of the form \char­
acter are recognized, where character is a nonnumeric character.

q Exit the debugger.

FILES

a.out
core

SEE ALSO
CC(SD_CMD), ED(BU_CMD).

USAGE

General.

The UNIX System User's Manual 335

Software Development

NAME

size - print section sizes of object files

SYNOPSIS
size [-01 [-xl [-VI Jiles

DESCRIPTION

The size command produces section size information for each section in the
loaded object files. The sizes of the loaded sections are printed along with the
sum of these sizes. If an archive file is input to the s i z e command, the
information for all archive members is displayed.

Numbers will be printed in decimal unless either the -0 or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respec­
tively.

The -v flag will supply the version information on the s i z e command.

SEE ALSO

CC(SD_CMD), LD(SD_CMD).

USAGE

General.

336 The UNIX System User's Manual

Software Development

NAME

strip - strip symbolic information from an object file

SYNOPSIS
strip [-xl [-rJ [-VI file ...

DESCRIPTION

The strip command strips the symbolic information from object files or
archives of object files.

The amount of information stripped from the symbol table can be controlled
by using any of the following options:

-x Do not strip static or external symbol information.

-r Do not strip static or external symbol information, or relocation
information.

-v Print the version of the strip command, on the standard error out-
put.

If there is any relocation information in the object file and any symbol table
information is to be stripped, strip will report an error and terminate
without stripping file unless the -r flag is used.

SEE ALSO

AR(BU_CMD), CC(SD_CMD), LD(SD_CMD).

USAGE

General.

The purpose of this command is to reduce the file storage overhead taken by
the object file.

The UNIX System User's Manual 337

Software Development TIME(SD _ CMD)

NAME

time - time a command

SYNOPSIS

time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent executing system code, and the time
spent in execution of the user code. Times are reported in seconds.

The times are printed on standard error.

USAGE
General.

When time is used on a multi-processor system the sum of system and user
time could be greater than real time.

338 The UNIX System User's Manual

Software Development

NAME

tsort - topological sort

SYNOPSIS
tsort (file!

DESCRIPTION

The command tsort produces on the standard output a totally ordered list
of items consistent with a partial ordering of items mentioned in the input file.
lf no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
LORDER(SD _ CMD).

USAGE

General.

The UNIX System User's Manual 339

Software Development UNGET(SD _ CMD)

NAME

unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSIDI [-sl [-nifties

DESCRIPTION
The command unget undoes the effect of a get -e done prior to creat­
ing the intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file, except that
non-Sees files and unreadable files are silently ignored. If a name of - is
given, the standard input is read with each line being taken as the name of an
sees file to be processed.

Keyletter arguments apply independently to each named file.

-rSID

-s

-n

SEE ALSO

Uniquely identifies which delta is no longer intended. (This would
have been specified by get as the new delta). The use of this
keyletter is necessary only if two or more outstanding gets for
editing on the same sees file were done by the same person (login
name). An error is reported if the specified SID is ambiguous, or if
it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the intended
delta's SID.

Causes the retention of the file that was obtained by get. which
would normally be removed from the current directory.

DEL TA(SD _ CMD), GET(SD _ CMD), SACT(SD _ CMD).

USAGE

General.

340 The UNIX System User's Manual

Software Development

NAME

val - validate sees file

SYNOPSIS

val -

val [-61 [-rSIDI [-mnamel [-ytypelfile ...

DESCRIPTION
The command val determines if the specified file is an sees file meeting
the characteristics specified by the options. The arguments may appear in any
order.

The command val has a special argument, -, which causes reading of the
standard input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

The command val generates diagnostic messages on the standard output for
each command line and file processed, and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects of any option apply indepen­
dently to each named file on the command line.

-6

-rSID

Silences the diagnostic message normally generated on the stan­
dard output for any error that is detected while processing each
named file on a given command line.

SID (sees Identification String) is an sees delta number. A
check is made to determine if the SID is ambiguous (e. g., - r 1 is
ambiguous because it physically does not exist but implies 1.1, 1.2,
etc., which may exist) or invalid (e. g., - r 1.0 or - r 1.1.0 are
invalid because neither case can exist as a valid delta number). If
the SID is valid and not ambiguous, a check is made to determine
if it actually exists.

- mname The argument name is compared with the sees %M% keyword in
file.

-ytype The argumenttype is compared with the sees %Y% keyword in
file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e.,
can be interpreted as a bit string where (moving from left to right) set bits are
interpreted as follows:

bit 0 - missing file argument;
bit 1 - unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 - cannot open file or file not sees;
bit 4 - SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 - %Y%, -y mismatch;

The UNIX System User's Manual 341

Software Development

bit 7 - %M%, -m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard input).
In these cases an aggregate code is returned - a logical OR of the codes gen­
erated for each command line and file processed.

SEE ALSO

ADMIN(SD_CMD), DELTA(SD_CMD), GET(SD_CMD), PRS(SD_CMD).

USAGE
General.

342 The UNIX System User's Manual

Software Development

NAME

what - identify sees files

SYNOPSIS

wha t [-8 I files

DESCRIPTION

The command wha t searches the given files for all occurrences of the pat­
tern that the get command substitutes for %Z% (@(#» and prints out
what follows until the first ., >, new-line, \, or null character. For example, if
the C program in file f.c contains

char ident[] = "@(#)identification informa­
tion" ;

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:

f.o:

a.out:

identification information

identification information

identification information

The command wha t is intended to be used in conjunction with the sees
get command, which automatically inserts identifying information, but it can
also be used where the information is inserted manually.

There is only one option (new in UNIX System V Release 2.0):

- 8 Quit after finding the first occurrence of pattern in each file.

ERRORS

Exit status is 0 if any matches are found, otherwise 1.

SEE ALSO

GET(SD_CMD).

USAGE

General.

The UNIX System User's Manual 343

Software Development

NAME

xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [options) [command[initial-arguments))

DESCRIPTION
The command xargs combines the fixed initial-arguments with arguments
read from standard input to execute the specified command one or more times.
The number of arguments read for each command invocation and the manner
in which they are combined are determined by the options specified.

If command is omitted, echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument
if escaped or quoted. Characters enclosed in quotes (single or double) are
taken literally, and the delimiting quotes are removed. Outside of quoted
strings a backslash (\) quotes the next character.

Each argument list is constructed starting with the initial-arguments, followed
by some number of arguments read from standard input (Exception: see -i).
Options -i. -1. and -n determine how arguments are selected for each
command invocation. When none of these options are coded, the initial­
arguments are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with theaccu­
mula ted args. This process is repeated until there are no more args. When
there are conflicts (e.g., -1 vs. -n), the last option has precedence. The
recognized options are:

-lnumber The argument command is executed for each non-empty number
lines of arguments from standard input. The last invocation of
command will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first new­
line unless the last character of the line is a blank or a tab; a
trailing blank/tab signals continuation through the next non­
empty line. If number is omitted, 1 is assumed. Option -x is
forced.

-irep!str Insert mode: command is executed for each line from standard
input, taking the entire line as a single arg, inserting it in
initial-arguments for each occurrence of replstr. A maximum
of 5 arguments in initial-arguments may each contain one or
more instances of replstr. Blanks and tabs at the beginning of
each line are thrown away. Constructed arguments may not
grow larger than 255 characters, and option -x is also forced.
{} is assumed for replstr if not specified.

-nnumber Execute command using as many standard input arguments as
possible, up to number arguments maximum. Fewer arguments

344 The UNIX System User's Manual

-t

-p

-x

-ssize

-eeo/str

Software Development

will be used if their total size is greater than size characters, and
for the last invocation if there are fewer than number arguments
remaining. If option -x is also invoked, each number argu­
ments must fit in the size limitation, else xargs terminates
execution.

Trace mode: The command and each constructed argument list
are echoed to standard error just prior to their execution.

Prompt mode: The user is asked whether to execute command
each invocation. Trace mode (-t) is turned on to print the com­
mand instance to be executed, followed by a ?.. prompt. A
reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return, skips
that particular invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options -i
and -1. When neither of the options -i. -1, or -n are
coded, the total length of all arguments must be within the size
limit.

The maximum total size of each argument list is set to size char­
acters; size must be a positive integer less than or equal to 470.
If -s is not coded, 470 is taken as the default. Note that the
character count for size includes one extra character for each
argument and the count of characters in the command name.

The argument eo/str is taken as the logical end-of-file string.
Underscore C) is assumed for the logical EOF string if -e is
not invoked. The option -e with no eo/str coded turns off the
logical EOF string capability (underbar is taken literally). The
command xargs reads standard input until either end·of-file
or the logical EOF string is encountered.

The command xargs will terminate if either it receives a return code of
-1 from, or if it cannot execute, command. (Thus command should explicitly
exit with an appropriate value to avoid accidentally returning with -1.)

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

ls $1 xargs -i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized commands onto
one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) xargs »log

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

The UNIX System Users Manual 345

Software Development XARGS(SD _ CMD)

1. Is: xargs -p -1 ar r arch
2. Is: xargs -p -1 : xargs ar r arch

The following will execute with successive pairs of arguments originally typed
as command line arguments:

echo $. : xargs -n2 diff

SEE ALSO
ECHO(BU_CMD).

USAGE

General.

346 The UNIX System User's Manual

Software Development

NAME

yacc - a compiler-compiler

SYNOPSIS

yacc l-vd1tl grammar

DESCRIPTION

The yacc command provides a general tool for describing the input to a pro­
gram. More precisely, yacc converts a context-free grammar into a set of
tables for a simple automaton which executes an LR(I) parsing algorithm.
The grammar may be ambiguous; built-in precedence rules are used to break
ambiguities.

The output file, y. tab. c, must be compiled by the C compiler to produce
a program yyparse. This program must be loaded with the lexical
analyzer function, yy1ex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user (however, see
the description of the yacc library below); lex is useful for creating lexi­
cal analyzers usable by yacc.

If the -v option is used, the file y. ou tpu t is prepared, which contains a
description of the parsing tables and a report on conflicts generated by ambi­
guities in the grammar.

If the -d option is used, the file y. tab. h is generated with the #define
statements that associate the yacc-assigned "token codes" with the user­
declared "token names". This allows source files other than y. tab. c to
access the token codes.

If the -1 option is used, the code produced in y. tab. c will not contain
any #Hne constructs. This should only be used after the grammar and the
associated actions are fully debugged.

Runtime debugging code is always generated in y. tab. c under conditional
compilation control. By default, this code is not included when y. tab. c is
compiled. However, when yacc's -t option is used, this debugging code
will be compiled by default. Independent of whether the -t option was used,
the runtime debugging code is under the control of YYDEBUG, a pre-processor
symbol. If YYDEBUG has a non-zero value, then the debugging code is
included. If its value is zero, then the code will not be included. The size and
execution time of a program produced without the runtime debugging code
will be smaller and slightly faster.

Yacc Library
The yacc library 1iby. a facilitates the initial use of yacc by
providing the routines:

maine)

yyerror(s)
char *s;

These routines may be loaded by using the -ly option with cc.
main () just calls yyparse () • yyerror () simply prints the

The UNIX System User's Manual 347

Software Development

string (error message) s when a syntax error is detected.

YACC SPECIFICATIONS
The yacc user constructs a specification of the input process; this includes
rules describing the input structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic input. The command
yacc then generates the (integer-valued) function yyparse; it in turn
calls yylex, the lexical analyzer, to obtain input tokens.

A structure recognized (and returned) by the lexical analyzer is called a ter­
minal symbol, here referred to as a token (literal characters must also be
passed through the lexical analyzer, and are also considered tokens). A struc­
ture recognized by the parser is called a nonterminal symbol. The argument
name refers to either tokens or nonterminal symbols.

Every specification file consists of three sections: declarations, grammar rules,
and programs, separated by double percent marks ("%%"). The declarations
and programs sections may be empty. If the latter is empty, then the preced­
ing %% mark separating it from the rules section may be omitted.

Blanks, tabs and newlines are ignored, except that they may not appear in
names or multi-character reserved symbols. Comments are enclosed in
1* ... *1, and may appear wherever a name is legal.

Names may be of arbitrary length, made up of letters, dot «.", underscore "':',
and non-initial digits. Upper and lower case letters are distinct. Names
beginning in "yy" should be avoided, since the y ace parser uses such names.

A literal consists of a character enclosed in single quotes. The C escape
sequences (e.g., '\n') are recognized.

Declarations
The following declarators may be used in the declarations section:

% token
Names representing tokens must be declared; this is done by writ-
ing

%token name] name2 ...
in the declarations section. Every name not defined in this section
is assumed to represent a nonterminal symbol. Every nonterminal
symbol must appear on the left side of at least one grammar rule.

% start
The start symbol represents the largest, most general structure
described by the grammar rules. By default, it is the left hand
side of the first grammar rule; this default may be overridden by
declaring:

% left

% right

%start symbol

348 The UNIX System User's Manual

YACC(SD_CMD) Software Development

%nonassoc
Precedence and associativity rules attached to tokens are declared
using these keywords. This is done by a series of lines, each begin­
ning with one of the keywords %left, %right, or %nonassoc, fol­
lowed by a list of tokens. All tokens on the same line have the
same precedence level and associativity; the lines are in order of
increasing precedence or binding strength. %left denotes that the
operators on that line are left associative, and %right similary
denotes right associative operators. %nonassoc denotes operators
that may not associate with themselves. (A token declared using
one of these keywords need not be declared by %token as well.)

%prec
Unary operators must, in general, be given a precedence. In cases
where a unary and binary operator have the same symbolic
representation, but need to be given different precedences, the key­
word %prec is used to change the precedence level associated with
a particular grammar rule. %prec appears immediately after the
body of the grammar rule, before the action or closing semicolon
(see Grammar Rules below), and is followed by a token name or a
literal. It causes the precedence of the grammar rule to become
that of the following token name or literal.

% union
By default, the values returned by actions and the lexical analyzer
are integers. Other types, including structures, are supported: the
yacc value stack is declared to be a union of the various types of
values desired. The command ya c c keeps track of types, and
inserts appropriate union member names so that the resulting
parser will be strictly type-checked. The declaration is done by
including a statement of the form:

%union {
body of union

Alternatively, the union may be declared in a header file, and a
typedef used to define the variable YYSTYPE to represent this
union. The header file must be included in the declarations sec­
tion, by using a "#include" construct within %{ and %} (see
below). Union members must be associated with the various
names. The construction < name> is used to indicate a union
member name; if this follows one of the keywords %token %left,
%right, and %nonassoc, the union member name is associated with
the tokens listed.

% type
This key word is used to associate union member names with non­
terminals, in the form:

%type <ntype> a b ...

The UNIX System User's Manual 349

Software Development

Other declarations and definitions can appear in the declarations section,
enclosed by the marks "%{" and "%}". These have global scope within
the file, so that they may be used in the rules and programs sections.

Grammar Rules

The rules section is comprised of one or more grammar rules. A gram­
mar rule has the form:

A:BODY;
A represents a nonterminal name, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are
yacc punctuation. If there are several successive grammar rules with
the same left hand side, the vertical bar 'I' can be used to avoid rewriting
the left hand side; in this case the semicolon must occur only after the
last rule. The BODY part may be empty to indicate that the nontermi­
nal symbol matches the empty string.

The ASCII NUL character (0 or '\0') should not be used in grammar
rules.

With each grammar rule, the user may associate actions to be performed
each time the rule is recognized in the input process. These actions may
return values, and may obtain the values returned by previous actions.
In addition, the lexical anlayzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input or out­
put, call subprograms, and alter external variables. An action is one or
more statements enclosed in curly braces "{" and "}". Certain pseudo­
variables can be used in the action: a value can be returned by assigning
it to $$; the variables $1, $2, ... , refer to the values returned by the com­
ponents of the right side of a rule, reading from left to right. By default,
the value of a rule is the value of the first element in it. Actions may
occur in the middle of a rule as well as at the end; an action may access
the values returned by symbols (and actions) to its left, and in turn the
value it returns may be accessed by actions to its right.

Internal rules to resolve ambiguities are:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the gram-
mar rule that occurs earlier in the input sequence.

In addition, the declared precedences and associativities (see Declara­
tions Section above) are used to resolve parsing conflicts as follows:

1. A precedence and associativity is associated with each grammar
rule; it is the precedence and associativity of the last token or
literal in the body of the rule. If the %prec keyword is used, it
overrides this default. Some grammar rules may have no pre­
cedence and associativity.

350 The UNIX System User's Manual

Software Development

2. When there is a reduce/reduce conflict, or there is a shiftlreduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two rules given above are
used.

3. If there is a shift/reduce conflict, and both the grammar rule and
the input symbol have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences
are the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociative implies
error.

Conflicts resolved by precedence are not counted in the shift/reduce and
reducelreduce conflicts reported by yacc.

The token name "error" is reserved for error handling. This name can
be used in grammar rules; in effect, it suggests places where errors are
expected, and recovery might take place. When an error is encountered,
the parser behaves as if the token "error" were the current lookahead
token, and performs the action encountered. The lookahead token is
then reset to the token that caused the error. If no special error rules
have been specified, the processing halts when an error is detected.

In order to prevent a series of error messages, the parser, after detecting
an error, remains in error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in
error state, no message is given, and the input token is quietly deleted.

The statement
yyerrok;

in an action resets the parser back to its normal mode; it may be used if
it is desired to force the parser to believe that an error has been fully
recovered from.

The statement
yyclearin;

in an action is used to clear the previous lookahead token; it may be used
if a user-supplied routine is to be used to find the correct place to
resume input.

Programs
The programs section may include the definition of the lexical analyzer
yylex, and any other functions, for example those used in the actions
specified in the grammar rules.

yylex is an integer-valued function, which returns the token number,
representing the kind of token read. If there is a value associated with
that token, it should be assigned to the external variable yylval. The
parser and yylex must agree on these token numbers in order for
communication between them to take place. The numbers may be

The UNIX System User's Manual 351

Software Development

ERRORS

chosen by yacc, or chosen by the user. In either case, the "#define"
construct of C is used to allow yy 1 e x to return these numbers symbol­
ically. If the token numbers are chosen by yacc, then literals are
given the numerical value of the character in the local character set, and
other names are assigned token numbers starting at 257.

A token may be assigned a number by following its first appearance in
the declarations section with a nonnegative integer. Names and literals
not defined this way retain their default definition. All token numbers
must be distinct.

The end of the input is marked by a special token called the endmarker.
The endmarker must have token number 0 or negative. (these values
are not legal for any other token.) All lexical analyzers should return 0
or negative as a token number upon reaching the end of their input. If
the token upto, but excluding, the endmarker form a structure which
matches the start symbol, the parser accepts the input. If the end­
marker is seen in any other context, it is an error.

The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also
reported.

FILES

y.output
y.tab.c
y.tab.h

SEE ALSO
LEX(SD _ CMD).

USAGE

General.

352 The UNIX System User's Manual

Part II

System Routines

Chapter 5

Base System
Routines

ABORT(BA _ SYS) Base System

NAME
abort - generate an abnormal process termination

SYNOPSIS
int abort (j

DESCRIPTION

The function abort first closes all open files if possible, then causes a signal
to be sent to the process. This invokes abnormal process termination routines,
such as a core dump, which are implementation dependent.

APPLICATION USAGE

The signal sent by abort should not be caught or ignored by applications.

SEE ALSO
EXIT(BA_SYS), SIGNAL(BA_SYS).

CAVEATS

The function abort will send the SIGABRT signal rather than the
S IGIOT signal.

The UNIX System User's Manual 357

Base System

NAME

access - determine accessibility of a file

SYNOPSIS

int access(path, amode)

char *path;
int amode;

DESCRIPTION

ACCESS(BA_SYS)

The function access checks the file named by the path-name pointed to by
path for accessibility according to the bit-pattern contained in amode,
using the real-user-ID instead of the effective-user-ID, and the real-group-ID
instead of the effective-group-ID.

The bit-pattern contained in amode is constructed as follows:

04 read
02 write
o 1 execute (search)
o 0 check existence of file

Thus, amode is the sum of the values of the access modes to be checked.

The owner of a file has permission checked with respect to the owner read,
write, and execute mode-bits. Members of the file's group other than the
owner have permissions checked with respect to the group mode-bits, and all
others have permissions checked with respect to the other mode-bits.

RETURN VALUE
If the requested access is permitted, a c c e s s returns 0; otherwise, it
returns -1 and errno indicates the error.

ERRORS

The function access fails and errno equals:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission, or if
the permission-bits of the file-mode forbid the requested access.

EROFS if write access is requested for a file on a read-only file system.

ETXTBSY if write access is requested for a pure procedure (shared text)
file being executed.

EINVAL if amode is invalid.

SEE ALSO
CHMOD(BA_SYS), STAT(BA_SYS).

358 The UNIX System User's Manual

ACCESS(BA _ SYS) Base System

CAVEATS
The <unistd. h> header file will define these symbolic constants for
amode:

Name Description
R OK test for read permission.
W OK test for write permission.
X OK test for execute permission.
F OK test for existence of file.

The UNIX System User's Manual 359

Base System

NAME

alarm. - set a process alarm clock

SYNOPSIS

unsigned alarm(sec)

unsigned sec;

DESCRIPTION
The function alarm instructs the alarm clock of the calling-process to send
the signal S IGALRM to the calling-process after the number of real time
seconds specified by sec have elapsed [see SIGNAL(BA_SYS»).

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling-process.

If sec is 0, any previously made alarm request is canceled.

The FORK(BA_SYS) routine sets the alarm clock of a new process to o. A
process created by the EXEC(BA_SYS) family of routines inherits the time left
on the old process's alarm clock.

RETURN VALUE
If successful, a 1 a rm returns the amount of time previously remaining in the
alarm clock of the calling-process.

SEE ALSO
EXEC(BA_SYS), FORK(BA_SYS), PAUSE(BA_SYS), SIGNAL(BA_SYS).

360 The UNIX System User's Manual

CHDIR(BA _ SYS) Base System

NAME

chdir - change working directory

SYNOPSIS
.;_+- ,..'hA';_(",",,~+-'h' _.A.~\~ __ ,

char *path;

DESCRIPTION
The function chdir causes the named directory to become the current
working directory and the starting point for path-searches for path-names not
beginning with / .

The argument pa th points to the path-name of a directory.

RETURN VALUE
If successful, c hd i r returns 0; otherwise, it returns - 1, it does not change
the current-working-directory, and errno indicates the error.

ERRORS

The function chdir fails and errno equals:

ENOTDIR if a component of the path-name is not a directory.

ENOENT if the named directory does not exist.

EACCES if any component of the path-name denies search permission.

The UNIX System User's Manual 361

Base System

NAME

chmod - change mode of file

SYNOPSIS

int chmod(path, mode)
char *path;
int mode;

DESCRIPTION

The function chmod sets the access-permission-bits of the mode of the
named file according to the bit-pattern contained in mode.

The argument pa th points to a path-name naming a file.

The access-permission-bits are interpreted as follows; the value of mode
should be the sum of the values of the desired permissions:

04000 Set user-ID on execution.
02000 Set groupoID on execution.
o 1 0 0 0 Reserved.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by owner.
00 040 Read by group.
00020 Write by group.
000 1 0 Execute (search) by group.
00 004 Read by others (Le., anyone else).
00002 Write by others.
00 0 0 1 Execute (search) by others.

The effective-user-ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective-user-ID of the process is not super-user and the effective­
groupoID of the process does not match the groupoID of the file, mode-bit
02000 (set groupoID on execution) is cleared. This prevents an ordinary user
from making itself an effective member of a group to which it does not belong.
Similarly, the CHOWN(BA_SYS) routine clears the set-user-ID and set-group­
ID-bits when invoked by other than the super-user.

RETURN VALUE

If successful, chmod returns 0; otherwise, it returns -1, it does not change
the file-mode, and errno indicates the error.

ERRORS

The function chmod fails and errno equals:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

362 The UNIX System User's Manual

CHMOD(BA_SYS) Base System

EPERM if the effective-user-ID does not match the owner of the file and
the effective-user-ID is not super-user.

EROFS if the named file resides on a read-only file system.

SEE ALSO
CHOWN(BA_SYS), MKNOD(BA_SYS).

CAVEATS

Symbolic constants defining the access-permission-bits will be added to the
<sys/stat. h> header file and should be used to construct mode.

Enfo*ement-mode file and record-locking will be added:

If the mode-bit 02000 (set groupoID on execution) is set and the mode­
bit 0 1 000 (execute or search by group) is not set, enforcement-mode file
and record-locking will exist on an ordinary-file. This may affect future
calls to OPEN(BA_SYS), CREAT(BA_SYS), READ(BA_SYS) and WRITE(BA_SYS)

routines on this file.

The UNIX System User's Manual 363

Base System

NAME

chown - change owner and group of a file

SYNOPSIS

int chown(path, owner, group)
char *path;
int owner, group;

DESCRIPTION

CHOWN(BA _ SYS)

The function chown sets the owner-ID and group-ID of the named file to the
numeric values contained in owner and group, respectively.

The argument path points to a path-name naming a file.

Only processes with effective-user-ID equal to the file-owner or super-user may
change the ownership of a file.

If chown is invoked successfully by other than the super-user, it clears the
set-user-ID and set-group-ID-bits of the file-mode, 04000 and 02000
respectively. (This prevents ordinary users from making themselves effectively
other users or members of a group to which they don't belong.)

RETURN VALUE

If successful, c hown returns 0; otherwise, it returns - 1, it does not change
the owner and group of the named file, and errno indicates the error.

ERRORS

The function chown fails and errno equals:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

EPERM if the effective-user-ID does not match the owner of the file and
the effective-user-ID is not super-user.

EROFS if the named file resides on a read-only file system.

SEE ALSO

CHMOD(BA _ SYS).

364 The UNIX System User's Manual

CLOSE(BA _ SYS)

NAME

close -- close a file-descriptor

SYNOPSIS
int close(fildes)
int fildes;

DESCRIPTION

Base System

The function c los e closes the file-descriptor indicated by f i 1 des.

The argument fildes is an open file-descriptor [see file-descriptor in
Definitions).

All outstanding record-locks on the file indicated by f i 1 des that are owned
by the calling-process are removed.

RETURN VALUE
If successful, close returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS
The function close fails and errno equals:

EBADF if f i 1 des is not a valid open file-descriptor.

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. Thus, an application that had used the FOPEN(BA_SYS) stdio rou­
tine to open a file would use the corresponding FCLOSE(BA_SYS) stdio routine
rather than the CLOSE(BA_SYS) routine.

The record and file locking features are an update that followed UNIX System
V Release 1.0 and UNIX System V Release 2.0.

SEE ALSO
CREAT(BA_SYS), DUP(BA_SYS), EXEC(BA_SYS), FCNTL(BA_SYS), OPEN(BA_SYS),

PIPE(BA _ SYS).

The UNIX System User's Manual 365

Base System

NAME

creat 7 create a new file or rewrite an existing one

SYNOPSIS

int creat(path, mode)

char *path;
int mode;

DESCRIPTION

The function c rea t creates a new ordinary file or prepares to rewrite an
existing file named by the path-name pointed to by pa tho

If the file exists, the length is truncated to zero, the mode and owner are
unchanged, and the file is open for writing [see 0 WRONL Y in
OPEN(BA_SYSll. If the file does not exist, the file's owner-ID is set to the
effective-user-ID of the process; the groupoID of the file is set to the effective­
groupoID of the process; and the access permission bits [see CHMOD(BA_SYSl)

of the file-mode are set to the value of mode modified as follows:

The file-mode bits are ANDed with the complement of the process' file­
mode-creation-mask [see UMASK(BA_SYS)l. Thus, creat clears each bit
in the file-mode whose corresponding bit in the file-mode-creation-mask is
set.

If successful, crea t returns the file-descriptor and the file is open for writ­
ing. A new file may be created with a mode that forbids writing, but
eventhough mo d e forbids writing, c rea t opens the file for writing.

The call creat (path, mode) is the same as the following [see
OPEN(BA _ SYSl):

open(path, O_WRONLY : O_CREAT : O_TRUNC, mode)

The file-pointer is set to the beginning of the file. The file-descriptor is set to
remain open across calls to the EXEC(BA_SYSl routines [see FCNTL(BA_SYSl).

No process may have more than (OPEN_MAX} files open simultaneously.

RETURN VALUE

If successful, creat returns the file-descriptor (a non-negative integer); oth­
erwise, it returns - 1 and errno indicates the error.

ERRORS

The function creat fails and errno equals:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if a component of the path-name should exist but does not.

EACCES if a component of the path-prefix denies search permission, or if
the file does not exist and the directory in which the file is to be
created does not permit writing, or if the file exists and write
permission is denied.

366 The UNIX System User's Manual

CREAT(BA_SYS) Base System

EROFS if the named file does or would reside on a read-only file-system.

ETXTBSY if the file is a pure procedure (shared text) file being executed.

EISDIR if the named file is an existing directory.

EMFILE

ENOSPC

ENFILE

if {OPEN_MAX} file-descriptors are currently open in the
calling-process.

if the directory to contain the file cannot be extended.

if the system file table is full.

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. In this case, the FOPEN(BA_SYS) stdio routine should be used
rather than the CREAT(BA_SYS) routine.

SEE ALSO
CHMOD(BA_SYS), CLOSE(BA_SYS), DUP(BA_SYS), FCNTL(BA_SYS),

LSEEK(BA_SYS), OPEN(BA_SYS), READ(BA_SYS), UMASK(BA_SYS),

WRITE(BA_SYS).

CAVEATS
Symbolic constants defining the access permission bits will be defined by the
<sys/stat. h> header file and should be used to construct mode.

Enforcement-mode file and record locking features will be added:

The function creat will set errno to EAGAIN if the file exists,
enforcement-mode file and record-locking is set and there are outstanding
record-locks on the file [see CHMOD(BA_SYS)].

The UNIX System Users Manual 367

Base System

NAME
dup - duplicate an open file-descriptor

SYNOPSIS
int dup(fildes)
int fildes;

DESCRIPTION

The function d up returns a new file-descriptor having the following in com­
mon with the original:

Same open file (or pipe).

Same file-pointer (i.e., both file-descriptors share one file-pointer).

Same access mode (read, write or read/write).

The argument fildes is an open file-descriptor [see file-descriptor in
Definitions).

The new file-descriptor is set to remain open across calls to the EXEC(BA_SYS)

routines [see FCNTL(BA_SYS»).

The file-descriptor returned is the lowest one available.

RETURN VALUE
If successful, dup returns the file-descriptor (a non-negative integer); other­
wise, it returns - 1 and errno indicates the error.

ERRORS

The function dup fails and errno equals:

EBADF

EMFILE

SEE ALSO

if f i 1 des is not a valid open file-descriptor.

if {OPEN_MAX} file-descriptors are currently open in the
calling-process.

CREAT(BA_SYS), CLOSE(BA_SYS), EXEC(BA_SYS), FCNTL(BA_SYS),

OPEN(BA_SYS), PIPE(BA_SYS).

368 The UNIX System User's Manual

Base System

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl(path, argO, arg1, ... argn, (char *)0)
char *path, *argO, *arg 1, ... *argn;

int execv(path, argv)
char *path, *argv[];

int execle(path, argO, arg1, ... argn, (char *)0, envp)
char *path, *argO, *arg1, ... *argn, *envp[];

int execve(path, argv, envp)
char *path, *argv[], *envp[];

int execlp(file, argO, arg1, ... argn, (char *)0)
char *file, *argO, *arg1, ... *argn;

int execvp(file, argv)
char *file, *argv[];

DESCRIPTION
All forms of the function exec transform the calling-process into a new pro­
cess. The new process is constructed from an ordinary, executable file called
the new-process-file. This file consists of a header, a text segment, and a data
segment. There can be no return from a successful ex e c because the
calling-process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char * *argv, * * envp;

where argc is the argument count, argv is an array of character pointers
to the arguments themselves and envp is an array of character pointers to
null-terminated strings that constitute the environment for the new process.
The argument argc is conventionally at least one and the initial member of
the array points to a string containing the name of the file.

The argument pa th points to a path-name that identifies the new-process­
file. For execlp and execvp, the argument file points to the new­
process-file. The path-prefix for this file is obtained by a search of the direc­
tories passed as the environment line PATH= [see ENVVARCBA_ENV) and
SYSTEMCBA_SYS»).

The arguments argO, arg1, ... argn are pointers to null-terminated
character strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present and point to a
string that is the same as f i 1 e or pa th (or its last component).

The UNIX System Users Manual 369

Base System

The argument argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list available to the new pro­
cess. By convention, argv [0] must point to a string that is the same as
file or path (or its last component), and argv is terminated by a null
pointer.

The argument envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new process, and
envp is terminated by a null-pointer. For execl and execv, a pointer
to the environment of the calling-process is made available in the global cell:

extern char **environ;

and is used to pass the environment of the calling-process to the new process.

The file-descriptors open in the calling-process remain open in the new process,
except for those whose c1ose-on-exec flag is set [see FCNTL(BA_SYS»). For
those file-descriptors that remain open, the file-pointer is unchanged.

Signals set to the default action (SIG DFL) in the calling-process will be set
to the default action in the new -process. Signals set to be ignored
(SIG IGN) by the calling-process will be ignored by the new process. Sig­
nals set to be caught by the calling-process will be set to the default action in
the new process [see SIGNAL(BA_SYS»).

If the set-user-ID-on-execution mode bit of the new-process-file is set, the
exec sets the effective-user-ID of the new process to the owner-ID of the
new-process-file [see CHMOD(BA_SYS»). Similarly, if the set-groupoID mode bit
of the new-process-file is set, the effective-groupoID of the new process is set to
the groupoID of the new-process-file. The real-user-ID and real-groupoID of
the new process remain the same as those of the calling-process. The
effective-user-ID and groupoID of the new process are saved for use by the
SETUID(BA_SYS) routine.

The new process also inherits at least the following attributes from the
calling-process:

process-ID
parent -process-ID
process-group-ID
tty-groupoID [see EXIT(BA_SYS) and SIGNAL(BA_SYS)]

time left until an alarm clock signal [see ALARM(BA_SYS)]
current-working-directory
root-directory
file mode creation mask [see UMASK(BA_SYS)]

file size limit [see ULlMIT(BA_SYS)]

utime, stime, cutime, and cstime [see TIMES(BA_SYS)]
(file-locks [see FCNTL(BA_SYS) and LOCKF(BA_SYS»))

370 The UNIX System User's Manual

Base System

RETURN VALUE

If the exec returns to the calling-process, an error has occurred; the exec
returns - 1 and errno indicates the error.

ERRORS

An exec returns to the calling-process and errno equals:

ENOENT if one or more components of the path-name of the new­
process-file do not exist.

ENOTDIR if a component of the path-prefix of the new-process-file is not a
directory.

EACCES if a directory in the new-process-file's path-prefix denies search
permission, or if the new-process-file is not an ordinary file [see
MKNOD(BA_SYS)], or if the new-process-file's mode denies execu­
tion permission.

ENOEXEC if the exec is not an exec1p or execvp, and the new­
process-file has the appropriate access permission but is not a
valid executable object.

ETXTBSY if the new-process-file is a pure procedure (shared text) file that
is currently open for writing by some process.

ENOMEM if the new process image requires more memory than is allowed
by the hardware or system-imposed maximum.

E2BIG if the number of bytes in the new process image's argument list
exceeds the system-imposed limit of {ARG_MAX} bytes.

EFAULT if the new-process-file image is corrupted.

APPLICATION USAGE

Two interfaces for these functions are available. The list (1) versions:
exec 1, exec1e and exec1p, are useful when a known file with known
arguments is being called. The arguments are the character-strings that are
the file-name and the arguments. The variable (v) versions: execv,
execve and execvp, are useful when the number of arguments is unk­
nown in advance. The arguments are a file-name and a vector of strings con­
taining the arguments.

If possible, applications should use the SYSTEM(BA_SYS) routine, which is
easier to use and supplies more functions, rather than the FORK(BA_SYS) and
EXEC(BA_SYS) routines.

SEE ALSO

ALARM(BA_SYS), EXIT(BA_SYS), FORK(BA_SYS), SIGNAL(BA_SYS),

TIMES(BA_SYS), ULlMIT(BA_SYS), UMASK(BA_SYS).

The UNIX System User's Manual 871

Base System

NAME
exit, _exit - terminate process

SYNOPSIS

void exit(status)

int status;

void exit(status)

int status;

DESCRIPTION

The function exit may cause cleanup actions before the process exits [see
FCLOSE(BA_SYS)J. The function exit does not.

The functions exit and exit terminate the calling-process with the fol­
lowing consequences:

All of the file-descriptors open in the calling-process are closed.

If the parent-process of the calling-process is executing a WAIT(BA_SYS)
routine, it is notified of the calling-process's termination and the low-order
eight bits (i.e., bits 0377) of status are made available to it. If the
parent is not waiting, the child's status will be made available to it when
the parent subsequently executes the WAIT(BA_SYS) routine.

If the parent-process of the calling-process is not executing a WAIT(BA_SYS)
routine, the calling-process is transformed into a zombie-process. A
zombie-process is an inactive process that has no process space allocated to
it, and it will be deleted at some later time when its parent executes the
WAIT(BA_SYS) routine.

Terminating a process by exiting does not terminate its children. The
parent-process-ID of all of the calling-process's existing child-processes and
zombie-processes is set to the process-ID of a special system-process. That
is, these processes are inherited by a special system-process.

If the calling-process is a process-group-leader, and is associated with a
controlling-terminal [see TERMIO(BA_ENV»), the SIGHUP signal is sent to
each process that has a process-groupoID and tty-groupoID equal to that of
the calling-process.

RETURN VALUE

Neither exit nor exit return a value.

APPLICATION USAGE

Normally applications should use exit rather than exi t.

SEE ALSO

SIGNAL(BA_SYS), WAIT(BA_SYS).

372 The UNIX System User's Manual

NAME

fclose, mush - close or flush a stream

SYNOPSIS

#include <stdio.h>

int fclose(stream)
FILE *stream;

int fflush(stream)
FILE *stream;

DESCRIPTION

Base System

The function fclose causes any buffered data for the named stream to
be written out, and the stream to be closed.

The function f c los e is performed automatically for all open files upon cal­
ling the EXIT(BA_SYS) routine.

The function fflush causes any buffered data for the named stream to
be written to that file. The stream remains open.

RETURN VALUE

The functions fclose and fflush will return 0 for success, and EOF
if any error (such as trying to write to a file that has not been opened for writ­
ing) was detected.

SEE ALSO

CLOSE(BA_SYS), EXIT(BA_SYS), FOPEN(BA_SYS), SETBUF(BA_LlB).

The UNIX System User's Manual 373

Base System

NAME

fcntl - file control

SYNOPSIS

#include <fcntl.h>

int fcntl(fildes, cmd, arg)
int fildes, cmd;

DESCRIPTION

The function f cn t 1 provides for control over. open files.

The argument f i 1 de s is an open file-descriptor [see file-descriptor in
Definitions).

The data type and value of arg are specific to the type of command specified
by cmd. The symbolic names for commands and file status flags are defined
by the <fcntl. h> header file.

The commands available are:

F DUPFD Return a new file-descriptor as follows:

Lowest numbered available file-descriptor greater than or
equal to the argument argo

Same open file (or pipe) as the original file.

Same file-pointer as the original file (i.e., both file-descriptors
share one file-pointer).

Same access-mode (read, write or read/write) [see
ACCESS(BA _ SYS)].

Same file status flags [see OPEN(BA_SYS»).

Set the close-on-exec flag associated with the new file­
descriptor to remain open across calls to any EXEC(BA_SYS)

routines.

F GETFD Get the close-on-exec flag associated with the file-descriptor
f i 1 des. If the low-order bit is 0 the file will remain open
across calls to any EXEC(BA_SYS) routines; otherwise, the file will
be closed upon execution of any EXEC(BA_SYS) routines.

F SETFD Set the close-on-exec flag associated with fildes to the low­
order bit of arg (0 or 1 as above).

F GETFL Get file status flags:
O_RDONLY, O_WRONLY, O_RDWR, O_NDELAY,
o APPEND.

[see OPEN(BA_SYS»).

F SETFL Set file status flags to argo Only the flags 0 NDELAY and
0_ APPEND may be set with f cntl.

374 The UNIX System User's Manual

FCNTL(BA_SYS) Base System

The following commands are used for file-locking and record-locking (see also
APPLICATION USAGE below). Locks may be placed on an entire file or seg­
ments of a file.

F GETLK Get the first lock which blocks the lock description given by the
variable of type struct flock (see below) pointed to by
argo The information retrieved overwrites the information
passed to fcntl in the structure flock. If no lock is found
that would prevent this lock from being created, then the struc­
ture is passed back unchanged except for the lock type which
will be set to F UNLCK.

NOTE: This command was added to fcntl following UNIX
System V Release 1.0 and UNIX System V Release 2.0, and can­
not be expected to be available in those releases.

F SETLK Set or clear a file segment lock according to the variable of type
struct flock (see below) pointed to by argo
F SETLK is used to establish read (F RDLCK) and write
(i WRLCK) locks, as well as remove -either type of lock
(F - UNLCK). F RDLCK, F WRLCK, and F UNLCK are
defined by the <fcntl. h> header file. If a ;ead or write
lock cannot be set, f cn t 1 will return immediately with an
error value of - 1 .

NOTE: This command was added to fcntl following UNIX
System V Release 1.0 and UNIX System V Release 2.0, and can­
not be expected to be available in those releases.

F SETLKW This command is the same as F SETLK except that if a read
- or write lock is blocked by other locks, the process will sleep

until the segment is free to be locked.

NOTE: This command was added to fcntl following UNIX
System V Release 1.0 and UNIX System V Release 2.0, and can­
not be expected to be available in those releases.

The structure flock defined by the <fcntl. h> header file describes a
lock. It describes the type (1 type), starting offset (1 whence), relative
offset (I_start), size (l_l;n), and process-m (l_pid):

short 1 _type; 1* F_RDLCK, F_WRLCK, F UNLCK *1 -
short 1 _whence; 1* flag for starting offset *1
long 1 _start; 1* relative offset in bytes *1
long 1 - len; 1"* if 0 then until EOF *1
short 1 pid; 1* returned with F GETLK *1 - -

When a read-lock has been set on a segment of a file, other processes may also
set read-locks on that segment or a portion of it. A read-lock prevents any
other process from setting a write-lock on any portion of the protected area.
The file-descriptor on which a read-lock is being placed must have been
opened with read-access.

The UNIX System User's Manual 375

Base System

A write-lock prevents any other process from setting a read-lock or a write­
lock on any portion of the protected area. Only one write-lock and no read­
locks may be set on a given segment of a file at a given time. The file­
descriptor on which a write-lock is being set must be open with write-access.

The value of 1 whence is 0, 1 or 2 to indicate that the relative offset,
1 _ s tar t byteS: will be measured from the start of the file, current position
or end of the file, respectively. The value of 1 len is the number of con­
secutive bytes to be locked. The process-ID field 1 pid is used only with
F _ GETLK to return the value for a blocking-lock. -

Locks may start and extend beyond the current end of a file, but may not be
negative relative to the beginning of the file. A lock may be set to always
extend to the end of file by setting 1 len to zero (0). If such a lock also
has 1_ start set to zero (0), the whole file will be locked.

Changing or unlocking a segment from the middle of a larger locked segment
leaves two smaller segments locked at each end of the originally locked seg­
ment. Locking a segment already locked by the calling-process causes the old
lock type to be removed and the new lock type to take effect. All locks placed
by a process on a file are removed when the process closes the file-descriptor
for the file or the process with the file-descriptor terminates. Child-processes
do not inherit locks after the FORK(BA_SYS) routine is executed.

RETURN VALUE

If successful, fcntl returns a value that depends on cmd as follows:

F DUPFD a new file-descriptor.

F GETFD a value of flag (only the low-order bit is defined).

F SETFD a value other than -1.

F GETFL a value of file flags.

F SETFL a value other than -1.

F GETLK a value other than -1.

F SETLK avalueotherthan -1.

F SETLKW a value other than -1.

If unsuccessful, fcntl returns -1 and errno indicates the error.

ERRORS

The function fcntl fails and errno equals:

EBADF

EMFILE

EINVAL

if fildes is not a valid open file-descriptor.

if cmd is F _DUPFD and {OPEN_MAX} file-descriptors are
currently open in the calling-process.

if cmd is F DUPFD and arg is negative or greater than or
equal to {OPEN_MAX}; or if cmd is F GETLK, F SETLK or
F _ SETLKW and arg or the data it points to is invalid.

376 The UNIX System User's Manual

FCNTL(BA_SYS) Base System

EACCES if cmd is F SETLK the type of lock (1 type) is a read­
lock (F RDLCK) or write-lock (F WRLCK) -and the segment of
a file to- be locked is already write:locked by another process or
the type is a write-lock and the segment of a file to be locked is
already read-locked or write-locked by another process.

ENOLCK if cmd is F SETLK or F SETLKW, the type of lock is a
read-lock or write-lock and the-;e are no more file-locks available
(too many segments are locked).

EDEADLK if cmd is F SETLKW, the lock is blocked by some lock from
another proce;s and putting the calling-process to sleep, waiting
for that lock to become free, would cause a deadlock.

APPLICATION USAGE

Because in the future the variable errno will be set to EAGAIN rather
than EACCES when a section of a file is already locked by another process,
portable application programs should expect and test for either value, for
example:

f1k->1_type = F_RDLCK;
if (fcnt1(fd, F_SETLK, f1k) == -1)

if «errno == EACCES) I I (errno == EAGAIN»

1*
* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*1

else if .,.
1*

* check for other errors
*1

The features of f cn t 1 that deal with file and record locking are an update
that followed UNIX System V Release 1.0 and UNIX System V Release 2.0.

SEE ALSO
CLOSE(BA_SYS), EXEC(BA_SYS), OPEN(BA_SYS), LOCKF(BA_SYS).

CAVEATS
The error condition which currently sets errno to EACCES will instead set
errno to EAGAIN [see also APPLICATION USAGE above).

Enforcement-mode file-locking and record locking will be added:

If enforcement-mode file and record-locking is set and there are outstand­
ing record-locks on the file, this may affect future calls to READ(BA_SYS)

and WRITE(BA_SYS) routines on the file [see CHMOD(BA_SYS»).

The UNIX System User's Manual 377

Base System

NAME

ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS

#include <stdio.h>

int ferror(stream)
FILE *stream;

int feof(stream)
FILE *stream;

void clearerr(stream)
FILE *stream;

int fileno(stream)
FILE *stream;

DESCRIPTION

The function ferror determines if an I/Q error occurred when reading
from or writing onto the named stream.

The function f eof determines if EOF occurred when reading from the
named stream.

The function clearerr resets both the error and EOF indicator to false
on the named stream. The EOF indicator is reset when the file-pointer
associated with stream is repositioned (e.g., by the FSEEK(BA_SYS) or
REWIND(BA_SYS) routines} or can be reset with clearerr.

The function f i 1 eno gets the integer file-descriptor associated with the
named stream [see OPEN(BA_SYS»).

RETURN VALUE
The function ferror returns non-zero when an I/O error occurred reading
from or writing onto the named stream; otherwise, it returns zero.

The function feof returns non-zero when EOF occurred reading from the
named stream; otherwise, it returns zero.

The function f i 1 eno returns the integer file-descriptor number associated
with the named stream.

APPLICATION USAGE

All of these functions are macros; thus, they cannot be declared or redeclared.

The function f i 1 eno returns a file-descriptor that non-stdio routines, such
as WRITE(BA_SYS) and LSEEK(BA_SYS) routines, can use to manipulate the
associated file, but these routines are not recommended for use by
application-programs.

SEE ALSO

OPEN(BA_SYS), FOPEN(BA_SYS).

378 The UNIX System User's Manual

NAME

fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopeIi(path t type)
char *path t *type;

FILE *freopen(path t type,
char *path, *type;
FILE *stream;

FILE *fdopen(fildes, type)
int fildes;
char *type;

DESCRIPTION

Base System

stream)

The function fopen opens the file named by path and associates a stream
with it [see stream in Deftnltlonsl The function fopen returns a pointer to
the FILE structure associated with the stream.

The function freopen substitutes the named file in place of the open
stream. The original stream is closed, regardless of whether the open
ultimately succeeds. The function freopen returns a pointer to the FILE
structure associated with stream.

The function freopen is typically used to attach the preopened streams
associated with stdin, stdout and stderr to other files. The stan­
dard error output stream, stderr, is by default unbuffered but use of
freopen causes it to be buffered or line-buffered.

The argument pa th points to a character-string that names the file to be
opened.

The argument type is a character-string having one of the following values:

r open for reading.

w truncate or create for writing.

a append; open for writing at the end of the file, or create for writing.

r + open for update (reading and writing).

w+ truncate or create for update.

a + append; open or create for update (appending) to the end of the file.

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input
without an intervening call to the FSEEK(BA_SYS) or REWIND(BA_SYS) routine,
and input may not be directly followed by output without an intervening call
to the FSEEK(BA_SYS) or REWIND(BA_SYS) routine or an input operation which
encounters end-of-file.

The UNIX System User's Manual 379

Base System FOPEN(BA_SYS)

When a file is opened for append (i.e., when type is a or a +) it is impos­
sible to overwrite information already in the file. The FSEEK(BA_SYS) routine
may be used to reposition the file-pointer to any position in the file, but when
output is written to the file, the current file-pointer is disregarded. All output
is written at the end of the file. For example, if two separate processes open
the same file for append, each process may write to the file without overwrit­
ing output being written by the other, and the output from the two processes
would be interleaved in the file.

The function fdopen associates a stream with a file-descriptor,
fildes. The type of stream given to fdopen must agree with the
mode of the already open file. File-descriptors are obtained from the routines
which open files but do not return pointers to a FILE structure stream.
Streams are necessary input for many of the stdio routines.

RETURN VALUE

The functions fopen and freopen return a NULL pointer if path
cannot be accessed or if type is invalid or if the file cannot be opened.

The function fdopen returns a NULL pointer if fildes is not an open
file-descriptor or if type is invalid or if the file cannot be opened.

The function fop en or fdopen may also fail if no stdio streams are free.

ERRORS
When the file cannot be opened, fopen or freopen fails and errno
equals:

ENOTDIR if a component of the path-prefix in path is not a directory.

ENOENT if the named file does not exist or a component of the path-name
should exist but does not.

EACCES if search permission is denied for a component of the path-prefix
or type permission is denied for the named file.

EISDIR if the named file is a directory and type permission is write or
read/write.

EROFS if the named file resides on a read-only file system and type
permission is write or read/write.

ETXTBSY if the file is a pure procedure (shared text) file that is being exe­
cuted and type permission is write or read/write.

E I NTR if a signal was caught during the open operation.

SEE ALSO

CREAT,BA_SYS), DUP(BA_SYS), OPEN(BA_SYS), PIPE(BA_SYS), FCLOSE(BA_SYS),

FSEEK(aA_SYS).

380 The UN/X System User's Manual

Base System

NAME

fork - create a new process

SYNOPSIS
int fork!

DESCRIPTION
The function fork creates a new process (child-process) that is a copy of
the calling-process (parent-process). The child-process inherits the following
attributes from the parent-process:

environment
close-on-exec flag [see EXEC(BA_SYS)]

signal-handling settings (j.e., S IG _ DFL, S IG IGN, address)
set-user-ID mode bit
set-groupoID mode bit
process-group-ID
tty-groupoID [see EXIT(BA_SYS) and SIGNAL(BA_SYS)]

current-working-directory
root-directory
file mode creation mask [see UMASK(BA_SYS)]

file size limit [see ULlMIT(BA_SYS)]

Additional attributes associated with an Extension to the Base System may be
inherited from the parent-process [see, for example, EFFECTS(KE_ENV)1.

The child-process differs from the parent-process as follows:

The child-process has a unique process-ID

The child-process has a different parent-process-ID (j.e., the process-ID of
the parent-process).

The child-process has its own copy of the parent's file-descriptors. Each of
the child-process's file-descriptors shares a common file-pointer with the
corresponding file-descriptor of the parent-process.

The child-process's utime, stime, cutime, and cstime are set
to o. The time left until an alarm clock signal is reset to o.

The child-process does not inherit file-locks set by the parent-process [see
FCNTL(BA_SYS) or LOCKF(BA_SYS)1.

RETURN VALUE

If successful, fork returns 0 to the child-process and returns the process-ID
of the child-process to the parent-process; otherwise, it returns - 1 to the
parent-process, it does not create any child-process, and errno indicates the
error.

The UNIX System User's Manual 38 t

Base System

ERRORS

The function fork fails and errno equals:

EAGAIN if the system-imposed limit on the total number of processes
under eJl:ccution system-wide {PROC_MAX} or by a single user­
ID {CHILD_MAX} would be exceeded.

ENOMEM if the process requires more space than the system can supply.

APPLICATION USAGE

The function fork creates a new process that is a copy of the calling-process
and both processes will run as system resources become available. Because the
goal is typically to create a new process that is different from the parent­
process (Le., the goal is to start a new program running) often the child­
process immediately calls an EXEC(BA_SYS) routine to transform itself and
start the new program.

If possible, applications should use the SYSTEM(BA_SYS) routine, which is
easier to use and supplies more functionality, rather than the FORK(BA_SYS)

and EXEC(BA_SYS) routines.

SEE ALSO
ALARM(BA_SYS), EXEC(BA_SYS), FCNTL(BA_SYS), LOCKF(BA_SYS),

SIGNAL(BA_SYS), TIMES(BA_SYS), ULlMIT(BA_SYS), UMASK(BA_SYS),

WAIT(BA_SYS).

382 The UNIX System User's Manual

NAME

fread - buffered input

SYNOPSIS
#includa <stdic.h~

int fread(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION

Base System

The function fread reads into an array pointed to by ptr up to ni tems
items of data from the named input stream, where an item of data is a
sequence of bytes (not necessarily terminated by a null byte) of length s i z e.
The function fread stops appending bytes if an end-of-file or error condi­
tion is encountered while reading stream, or if ni tems items have been
read. The function fread increments the data-pointer in stream to point
to the byte following the last byte read if there is one [see FSEEK(BA_SYS»).

The function fread does not change the contents of stream.

RETURN VALUE

If successful, fread returns the number of items read. If size or
ni tems is non-positive, fread returns 0 and does not read any items.

APPLICATION USAGE

The argument size is typically sizeof (*ptr), where the C operator
sizeof gives the length of an item pointed to by ptr. If ptr points to a
data type other than char it should be cast into a pointer to char.

The FERROR(BA_SYS) or FEOF(BA_SYS) routines must be used to distinguish
between an error condition and an end-of-file condition.

SEE ALSO
FERROR(BA _ SYS). FOPEN(BA _ SYS). FSEEK(BA _ SYS). FWRITE(BA _ SYS).

GETC(BA_LlB). GETS(BA_LlB). PRINTF(BA_LlB). PUTC(BA_LlB). PUTS(BA_LIB).

READ(BA_SYS). SCANF(BA_LIB). WRITE(BA_SYS).

CAVEATS

The type of the argument size to the functions fread and fwrite will
be declared through the typedef facility in a header file as size t.

The UNIX System User's Manual 383

Base System

NAME
fseek. rewind. ftell - reposition a file-pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek(stream, offset, whence)
FILE *stream;
long offset;
int whence;

void rewind(stream)
FILE *stream;

long ftell(stream)
FILE *stream;

DESCRIPTION

FSEEK(BA_SYS)

The function f see k sets the position of the next input or output operation
on the stream. The new position is at the signed distance offset bytes
from the beginning. from the current position. or from the end of the file.
according as whence has the value O. 1. or 2.

The call rewind (stream) is equivalent to the following:

fseek(stream,OL,O)

except that rewind returns no value.

The functions fseek and rewind undo any effects of the UNGETC(BA_LlB)

routine. After fseek or rewind. the next operation on a file opened for
update may be either input or output.

The function f tell returns the offset of the current byte relative to the
beginning of the file associated with the named stream. The offset is
always measured in bytes.

RETURN VALUE

The function f see k returns non-zero for improper seeks; otherwise. it
returns zero. An improper seek is. for example. an fseek on a file that has
not been opened via the FOPEN(BA_SYS) routine; on a device incapable of seek­
ing. such as a terminal; or on a stream opened via the POPEN(BA_SYS) routine.

SEE ALSO
LSEEK(BA_SYS). FOPEN(BA_SYS). POPEN(BA_SYS). UNGETC(BA_LlB).

CAVEATS
The <unistd. h> header file will define symbolic constants for the values
of whence [see LSEEK(BA_SYS)].

384 The UNIX System Users Manual

FWRITE{BA _SYS)

NAME

fwrite - buffered output

SYNOPSIS

#include <stdio.h>

int fwrite(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION

Base System

The function fwri te appends to the named output stream at most
ni tems items of data from the array pointed to by ptr. The function
fwr i te stops appending when it has appended ni tems items of data or if
an error condition is encountered on stream. The function fwri te does
not change the contents of the array pointed to by ptr. The function
fwrite increments the data-pointer in stream by the number of bytes
written.

RETURN VALUE

If successful, fwrite returns the number of items written. If size or
ni tems is non-positive, fwri te returns 0 and does not write any items.

APPLICATION USAGE

The argument size is typically sizeof(*ptr), where the C operator
sizeof gives the length of an item pointed to by ptr. If ptr points to a
data type other than char it should be cast into a pointer to char.

The FERROR(BA_SYS) or FEOF(BA_SYS) routines must be used to distinguish
between an error condition and an end-of-file condition.

SEE ALSO
FERROR(BA _ SYS), FOPEN(BA _ SYS), FREAD(BA _ SYS), FSEEK(BA _ SYS),

GETC(BA_LlB), GETS(BA_LlB), PRINTF(BA_LIB), PUTC(BA_LlB), PUTS(BA_LlB},

READ(BA _ SYS), SCANF(BA _LIB). WRITE(BA _ SYS),

CAVEATS

The type of the argument s i z e to the functions f rea d and f wr it e will
be declared through the typedef facility in a header file as size t.

The UNIX System User's Manual 385

Base System

NAME
getcwd - get path-name of current working directory

SYNOPSIS

char *getcwd(buf, size)
char *buf;
int size;

DESCRIPTION

GETCWD(BA_SYS)

The function getcwd returns a pointer to the current directory path-name.
The value of s i z e must be at least two greater than the length of the path­
name to be returned.

RETURN VALUE
If s i z e is not large enough or if an error occurs in a lower-level function,
getcwd returns NULL and errno indicates the error.

ERRORS

The function getcwd fails and errno equals:

EINVAL

ERANGE

if size is zero

if s i z e not large enough to hold the path-name.

386 The UNIX System User's Manual

NAME

getgid, getegid - get real-groupoID and effective-groupoID.

SYNOPSIS
unsigned ~hQrt getgid(1

unsigned short getegid()

DESCRIPTION

Base System

The function getgid returns the real-groupoID of the calling-process.

The function get e g i d returns the effective-group-ID of the calling-process.

SEE ALSO

GETGID(BA_SYS), SETGID(BA_SYS), SETUID(BA_SYS).

The UNIX System User's Manual 387

Base System GETPID(BA _ SYS)

NAME
getpid, getpgrp, getppid - get process-ID, process-groupoID, and parent­
process-ID

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION

The function getpid returns the process-ID of the calling-process.

The function getpgrp returns the process-groupoID of the calling-process.

The function getppid returns the parent-process-ID of the calling-process.

SEE ALSO
EXEC(BA_SYS), FORK(BA_SYS), SETPGRP(BA_SYS), SIGNAL(BA_SYS).

388 The UNIX System User's Manual

GETUID(BA _ SYS)

NAME

getuid, geteuid - get real-user-ID and effective-user-ID.

SYNOPSIS
unsign@d short gptnid()

unsigned short geteuid()

DESCRIPTION

Base System

The function getuid returns the real-user-ID of the calling-process.

The function geteuid returns the effective-user-ID of the calling-process.

SEE ALSO
GETGID(BA_SYS), SETGID(BA_SYS), SETUID(BA_SYS).

The UNIX System User's Manual 389

Base System IOCTL(BA~SYS)

NAME

ioctl - control device

SYNOPSIS
int ioctl(fildes, request, arg)
int fildes, request;

DESCRIPTION
The function ioctl performs a variety of device control-functions by pass­
ing the request to a device-driver to perform device-specific control-functions.

NOTE: This control is not frequently used and the basic input/output opera­
tions are performed by the READ(BA_SYS) and WRITE(BA_SYS) routines.

The argument f i 1 des is an open file-descriptor that refers to a device.

The argument request selects the device control-function and depends on
the device being addressed.

The argument arg represents additional information needed by the specific
device to perform the requested function. The data-type of arg depends
upon the particular control-function, but it is either an integer or a pointer to
a device-specific data-structure.

In addition to device-specific functions, many device-drivers provide generic
functions, (e.g., the general terminal interface [see TERMIO(BA _ ENV)]) •

RETURN VALUE
If successful, ioctl returns a value that depends upon the device control­
function, but must be an integer value; otherwise, it returns -1 and errno
indicates the error.

ERRORS

The function i,octl fails and errno equals:

EBADF

ENOTTY

EINTR

if fildes is not a valid open file-descriptor.

if f i 1 des is not associated with a device-driver that accepts
control-functions.

if a signal was caught during the ioctl operation.

The function ioctl also fails if the device-driver detects an error. In this
case, the error is passed through ioctl without change to the caller. A
particular device-driver might not have all of the following error cases.

Requests to standard device-drivers fail and errno equals:

EINVAL

EIO

ENXIO

if request or arg are not valid for this device.

if some physical 110 error has occurred.

if request and arg are valid for this device-driver, but the
particular sub-device can not perform the service requested.

390 The UNIX System User's Manual

IOCTL(BA _ SYS) Base System

SEE ALSO
The specific device reference documents and generic devices such as the gen­
eral terminal interface [see TERMIO(BA_ENV)1.

The UNIX System User's Manual 391

Base System

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
#inc1ude <signa1.h>
int ki11(pid, sig)
int pid, sigj

DESCRIPTION
The function kill sends a signal to a process or a group of proCesses.

The signal sent is specified by s i g, and is either 0 or from the list in
SIGNAL(BA_SYS). If sig is 0 (the null-signaO, error checking is done but
no signal is sent. This checks the validity of pid. The process or group of
processes to receive s i g is specified by pi d as follows:

If pid < 0, send sig to the process whose process-ID equals pid.

If pi d = 0, send s i g to all processes, except special system-processes,
whose process-groupoID equals the process-groupoID of the sending-process.

If pi d < 0, but not - 1, send s i g to all processes whose process-group­
ID equals the absolute value of pid.

If pi d = - 1 ,send s i g to all processes, except special system-processes.

Of the processes specified by pid, only those where the real-user-ID or
effective-user-ID of the sending-process matches the real-user-ID or effective­
user-ID of the receiving-process are sent the signal, unless the effective-user-ID
of the sending-process is super-user.

RETURN VALUE
If successful, kill returns 0; otherwise, it returns - 1, it does not send any
signal, and errno indicates the error.

ERRORS
The function kill fails and errno equals:

EINVAL if sig is not a valid signal number.

EINVAL

ESRCH

EPERM

SEE ALSO

if sig is SIGKILL and pid is a special system-process.

if no process corresponding to pid can be found.

if the user-ID of the sending-process is not super-user, and its
real-user-ID (or effective-user-ID) does not match either the
real-user-ID or effective-user-ID of the receiving-process.

GETPID(BA_SYS), SETPGRP(BA_SYS), SIGNAL(BA_SYS).

CAVEATS
The variable errno will equal EPERM if sig is SIGKILL and pid is
a special system-process.

392 The UNIX System User' s Manual

LINK(BA _ SYS)

NAME
link - link to a file

SYNOPSIS

int link(pathi, path2j
char *path1, *path2;

DESCRIPTION

Base System

The function link creates a new link (directory entry) for the existing file.

The argument pa th 1 points to a path-name naming an existing file.

The argument pa th2 points to a path-name naming the new directory entry
to be created.

RETURN VALUE

If successful, 1 ink returns 0; otherwise, it returns - 1, it does not create
any link, and errno indicates the error.

ERRORS

The function link fails and errno equals:

ENOTDIR if a component of either path-prefix is not a directory.

ENOENT if a component of either path-name should exist but does not.

EACCES if a component of either path-prefix denies search permission, or
if the requested link requires writing in a directory with a mode
that denies write permission.

EEXI ST if the link named by pa th2 exists.

EPERM if the file named by path 1 is a directory and the effective­
user-ID is not super-user.

EXDEV if the link named by pa th2 and the file named by path 1
are on different logical devices (file-systems) and the implemen­
tation does not permit cross-device links.

EROFS if the requested link requires writing in a directory on a read­
only file-system.

EMLINK if the maximum number of links to a single file, (LINK_MAX},
would be exceeded.

ENOS PC if the directory to contain the link cannot be extended.

SEE ALSO

UNLlNK(BA_SYS).

The UNIX System User's Manual 393

Base System LOCKF(BA _ SYS)

NAME

lockf - record locking on files

SYNOPSIS

#include <unistd.h>

int lockf(fildes, function, size)
int fildes, function;
long size;

DESCRIPTION

NOTE: The function lockf first became available following UNIX System
V Release 1.0 and UNIX System V Release 2.0.

The function lockf will allow sections of a file to be locked. Calls to
lockf from other processes which try to lock the locked file section either
return an error value or go to sleep until the resource becomes unlocked. All
the locks for a process are removed when the process terminates [see
FCNTL(BA_SYS) for more information about record-locking).

The argument f i Ide s is an open file-descriptor. The file-descriptor must
have been opened with write-only permission (0 WRONLY) or with read/write
permission (0 RDW~) in order to establish a lock with this function call [see
OPEN(BA_SYS)1.

The argument function is a control value which specifies the action to be
taken. The permissible values for function are defined by the
<unistd. h> header file as follows:

#define F ULOCK 0 /* unlock locked sections */ -
#define F LOCK /* lock a section */ -

/* for exclusive use */
#define F TLOCK 2 /* test and lock a section */ -

/* for exclusive use */
#define F TEST 3 /* test section for locks */ -

/* by other processes */

F _ TEST detects if a lock by another process is present on the specified sec­
tion; F _ LOCK and F _ TLOCK both lock a section of a file if the section is
available; F ULOCK removes locks from a section of the file. All other
values of fu~ction are reserved for future extensions and will result in an
error return if they are not implemented.

The argument s i z e is the number of contiguous bytes to be locked or
unlocked. The resource to be locked or unlocked starts at the current offset in
the file and extends forward for a positive size or backward for a negative size
(the preceding bytes up to but not including the current offset). If s i z e is
0, the section from the current offset through the largest file offset
(FCHR_MAX} is locked (i.e., from the current offset through the present or
any future end-of-file). An area need not be allocated to the file in order to
be locked as such locks may exist past the end-of-file.

394 The UNIX System User's Manual

Base System

The sections locked with F LOCK or F TLOCK may, in whole or in part,
contain or be contained by a previously lOCked section for the same process.
When this occurs, or if adjacent locked sections would occur, the sections are
combined into a single locked section. If the request requires that a new ele­
ment be added to the table of active locks and this table is already full, an
error is returned, and the new section is not locked.

F LOCK and F TLOCK requests differ only in the action taken if the
resource is unavailable. F LOCK causes the calling-process to sleep until
the resource is available; F TLOCK causes lockf to return -1 and
errno to equal EACCES if the section is already locked by another process.

F ULOCK requests may release (wholly or in part) one or more locked sec­
tions controlled by the process. Locked sections will be unlocked starting at
the point of the file offset through s i z e bytes or to the end of file if s i z e
is o. When all of a locked section is not released (i.e., the beginning or end
of the area to be unlocked falls within a locked section) the remaining portions
of that section are still locked by the process. For example, releasing a center
portion of a locked section will leave the portions of the section before and
after it locked and requires an additional element in the table of active locks.
If this table is full, an EDEADLK error is returned in errno and the
requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put
to sleep by accessing another process's locked resource. Thus, calls to
lockf or the FCNTL(BA_SYS) routine scan for a deadlock prior to sleeping on
a locked resource. An error return is made if sleeping on the locked resource
would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The ALARM(BI_SYS)
routine may be used to provide a timeout facility in applications requiring it.

RETURN VALUE

If successful, lockf returns 0; otherwise, it returns - 1 and errno indi­
cates the error.

ERRORS

The function lockf fails and errno equals:

EBADF if fildes is not a valid open file-descriptor.

EACCES if function is F TI"OCK or F TEST and the section is
already locked by another process. -

EDEADI"K if fUnction is F LOCK and a deadlock would occur; also if
function ill FLOCK, F TLOCK or F VLCCK and the
system lock table has too few entries to honor the request.

The UNIX System User's Manllal 395

Base System

APPLICATION USAGE
Because in the future the variable errno will be set to EAGAIN rather
than EACCES when a section of a file is already locked by another process,
portable application programs should expect and test for either value, for
example:

if (lockf(fd, F_TLOCK, siz) == -1)
if «errno == EAGAIN) :: (errno == EACCES))

1*
* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*1

else if ...
1*
* check for other errors
*1

File-locking and record-locking should not be used in combination with the
FOPEN(BA_SYSl, FREAD(BA_SYSl, FWRITE(BA_SYSl, etc. stdio routines.
Instead, the more primitive, non-buffered routines (e.g., the OPEN(BA_SYSl
routine) should be used. Unexpected results may occur in processes that do
buffering in the user address space. The process may later read/write data
which is/was locked. The stdio routines are the most common source of unex­
pected buffering.

SEE ALSO

CHMOD(BA_SYSl, CLOSE(BA_SYSl, CREAT(BA_SYSl, FCNTL(BA_SYSl,

OPEN(BA_SYSl, READ(BA_SYSl, WRITE(BA_SYSl.

CAVEATS

The error condition which currently sets errno to EACCES will instead set
errno to EAGAIN [see also APPLICATION USAGE above].

Enforcement-mode file and record locking will be added:

Sections of a file will be locked with advisory-mode or enforcement-mode
locks depending on the mode of the file [see CHMOD(BA_SYSl]

396 The UNIX System User's Manual

LSEEK(BA _ SYS)

NAME

lseek - move read/write file-pointer

SYNOPSIS

long lseek{fildes,
int fildes;
long offset;
int whence;

DESCRIPTION

_~.z: __ _ ___ \
"".i...i.ii;;II '-, wU'C,U\,.;.CJ

Base System

The function Iseek modifies the file-pointer associated with the file­
descriptor, f i 1 des, without affecting the physical device, as follows:

If whence'" 0, Iseek sets the file-pointer to offset bytes.

If whence'" 1, Iseek adds offset to the file-pointer.

If whence'" 2, Iseek sets the file-pointer to the length of the file plus
offset bytes.

If successful, 1 see k returns the resulting pointer location, as measured in
bytes from the beginning of the file.

The argument f i 1 des is an open file-descriptor [see file-descriptor in
Definitions].

The function 1 see k allows the file-pointer to be set beyond the existing data
in the file. If data are later written at this point, subsequent reads in the gap
between the previous end of data and the newly written data will return bytes
of value ° until data are written into the gap.

RETURN VALUE
If successful, 1 see k returns a file-pointer value; otherwise, it returns - 1, it
does not change the file-pointer, and errno indicates the error.

ERRORS

The function Iseek fails and errno equals:

EBADF

ESPIPE

EINVAL

if f i Ide s is not an open file-descriptor.

if fildes is associated with a pipe or FIFO.

if whence is not 0, 1, or 2.

The significance of the file-pointer associated with a device incapable of seek­
ing, such as a terminal, is undefined.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read, write
and manipulate files. Thus, an application that had used the FOPEN(BA_SYS)

stdio routine to open a file would use the FSEEK(BA_SYS) stdio routine rather
than Iseek.

SEE ALSO

CREAT(BA_SYS), DUP(BA_SYS), FCNTL(BA_SYS), OPEN(BA_SYS).

The UNIX System User's Manual 397

Base System

CAVEATS

The <uni std. h> header file will define symbolic constants for the argu­
ment whence to the functions seek and lseek as follows:

Name
SEEK SET -
SEEK CUR
SEEK END

Description
set file-pointer to 0 f f set.
set file-pointer to current plus offset.
set file~pointer to EOF plus offset.

398 The UNIX System Users Manual

Base System

NAME

malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator

SYNOPSIS
#include <malloc.h>

char *malloc(size)
unsigned size;

void free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

int mallopt(cmd, value)
int cmd, value;

struct mallinfo mallinfo(

DESCRIPTION

The function malloc and the function free provide a simple general­
purpose memory allocation package.

The function ma 11 0 c returns a pointer to a block of at least s i z e bytes
suitably aligned for any use.

The argument to the function f r e e is a pointer to a block previously allo­
cated by the function ma 11 0 c; after the function f r e e is performed this
space is made available for further allocation.

Undefined results will occur if the space assigned by the function malloc is
overrun or if an invalid value for ptr is passed to the function free.

The function realloc changes the size of the block pointed to by ptr to
s i z e bytes and returns a pointer to the (possibly moved) block. The con­
tents will be unchanged up to the lesser of the new and old sizes.

The function calloc allocates space for an array of nelem elements of
size e 1 s i z e. The space is initialized to zeros.

Available in UNIX System V Release 2.0, the function mallopt plus the
function ma 11 i nf 0 allow tuning the allocation algorithm at execution time.

The function mallopt initiates a mechanism that can be used to allocate
small blocks of memory quickly. Using this scheme, a large-group <Called a
holding-block} of these small-blocks is allocated at one time. Then, each time
a program requests a small amount of memory from malloc a pointer to
one of the pre-allocated small-blocks is returned. Different holding-blocks are
created for different sizes of small-blocks and are created when needed.

The UNIX System User's Manual 399

Base System MALLOC(BA _SYS)

The function ma110pt allows the programmer to set three parameters to
maximize efficient small-block allocation for a particular application. The
three parameters are:

The value of s i z e below which requests to ma 11 0 e will be filled using
the special small-block algorithm. Initially, this value, which will be called
max/ast, is zero, which means that the small-block option is not normally
in use by ma11oe.

The number of small-blocks in a holding-block. If holding-blocks have
many more small-blocks than the program is using, space will be wasted.
If holding-blocks are too small, have too few small-blocks in each, perfor­
mance gain is lost.

The grain of small-block sizes. This value determines what range of
small-block sizes will be considered to be the same size. This influences
the number of separate holding-blocks allocated. For example, if grain
were 16-bytes, all small-blocks of 16-bytes or less would belong to one
holding-block and blocks from 17-bytes to 32-bytes would belong to
another holding-block. Thus, if grain is too small space may be wasted
because many holding-blocks may be created.

The values for the argument emd to the function ma110pt are:

M MXFAST

M NLBLKS

M GRAIN

M KEEP

Set max/ast to value. The algorithm allocates all blocks
below the size of max/ast in large-groups and then doles
them out very quickly. The default value for max/ast is o.
Set numlblks to value. The above mentioned large­
groups each contain numlblks blocks. The value for
numlblks must be greater than 1. The default value for
numlblks is 1 0 o.
Set grain to val u e. The sizes of all blocks smaller than
max/ast are considered to be rounded up to the nearest
multiple of grain. The value for grain must be greater than
o. The default value for grain is the smallest number of
bytes which will allow alignment of any data type. The
val u e will be rounded up to a multiple of the default
when grain is set.

Preserve data in a freed-block until the next call to the
function ma11oe, rea11oe, or ea11oe. This option
is provided only for compatibility with the older version of
the function ma 110 e and is not recommended.

These emd values are defined by the <ma11oe. h> header file.

The function ma110pt may be called repeatedly, but the parameters may
not be changed after the first small-block is allocated from a holding-block. If
ma110pt is called again after the first small-block is allocated using the
small-block algorithm, it will return an error.

400 The UNIX System User's Manual

MALLOC(BA _SYS) Base System

The function ma 11 in f 0 can be used during a program development to
determine the best settings of these parameters for a particular application.
The function ma11info must not be called until after some storage has
been allocated using the function ma11oc. The function ma11info pro­
vides information describing space usage. It returns the structure rna 1-
1info, which includes the following members:

int arena; 1* total space in arena *1
int ordblks; 1* number of ordinary-blocks *1
int smblks; 1* number of small-blocks *1
int hblkhd; 1* space in holding-block overhead *1
int hblks; 1* number of holding-blocks *1
int usmblks; 1* space in small-blocks in use *1
int fsmblks; 1* space in free small-blocks *1
int uordblks; 1* space in ordinary-blocks in use *1
int fordblks; 1* space in free ordinary-blocks *1
int keepcost; 1* space penalty for keep option *1

The structure ma11info is defined by the <ma11oc. h> header file.

RETURN VALUE
Each of the allocation functions ma11oc, rea11oc, and ca110c
returns a pointer to space suitably aligned (after possible pointer coercion) for
storage of any type of object.

The functions ma11oc, rea11oc, and ca110c return a NULL pointer
if nbytes is 0 or if there is not enough available memory. When the func­
tion rea110c returns NULL, the block pointed to by ptr is left intact.

If the function ma 11 opt is called after any allocation from a holding-block
or if the arguments cmd or value are invalid, the function ma110pt
will return a non-zero value; otherwise, it will return O.

APPLlCA:rION USAGE
The functions ma110pt and ma11info and the <ma11oc. h> header
file first appeared in UNIX System V Release 2.0.

In UNIX System V Release 2.0, the developer can control whether the contents
of the freed space are destroyed or left undisturbed (see the function ma 1-
lopt above). In UNIX System V Release 1.0, the contents are left undis­
turbed.

Allocation time increases when many objects have been allocated and not
freed. The additional UNIX System V Release 2.0 routines provide some flexi­
bility in dealing with this.

The UNIX System User's Manual 401

Base System

NAME

mknod - make a directory, or a special or ordinary-file

SYNOPSIS

int mknod(path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION

The function mknod creates a new file named by the path-name pointed to
by path.

The mode of the new file is initialized from mode. Where the value of
mode is interpreted as follows:

o 1 7 0 0 0 0 file type; one of the following:

o 0 1 0000 FIFO-special
o 0 2 0 0 0 0 character-special
o 0 4 0 0 0 0 directory
0060000 block-special
o 1 0 0 0 0 0 or 0000000 ordinary-file

0004000 set user-ID on execution

0002000 set group-ID on execution

o 0 0 1 0 0 0 (reserved)

00 0 0 777 access permissions; constructed from the following:

o 0 0 0 4 0 0 read by owner
o 0 0 0 2 0 0 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
00 0 0 0 0 7 read, write, execute (search) by others

The owner-ID of the file is set to the effective-user-ID of the process. The
group-ID of the file is set to the effective-group-ID of the process.

Values of mode other than those above are undefined and should not be
used. The owner, group and other permission-bits of mode are modified by
the process's file-mode-creation-mask: mknod clears each bit whose
corresponding bit in the process's file-mode-creation-mask is set [see
UMASK(BA _ SYS) 1.

If mode indicates a block-special or character-special file, dev is a
configuration-dependent specification of a character or block I/O device. If
mode does not indicate a block-special or character-special device, dev is
ignored. The value of dev comes from the st dev field of the stat
structure [see STAT(BA_SYS»). -

The function mknod may be invoked only by the super-user for file types
other than FIFO-special.

402 The UNIX System User's Manual

MKNOD(BA_SYS) Base System

RETURN VALUE

If successful, mknod returns 0; otherwise, it returns - 1, it does not create
a new file, and errno indicates the error.

ERRORS

The function mknod fails and errno equals:

EPERM if the effective-user-ID of the process is not super-user and the
file type is not FIFO-special.

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if a component of the path-prefix does not exist.

EACCES if a component of the path-prefix denies search permission and
the effective-user-ID of the process is not super-user.

EROFS if the directory in which the file is to be created is located on a
read-only file system.

EEXIST if the named file exists.

ENOS PC if the directory to contain the new file cannot be extended.

SEE ALSO

CHMOD(BA_SYS), EXEC(BA_SYS), STAT(BA_SYS), UMASK(BA_SYS).

The UNIX System User's Manual 403

Base System

NAME

mount - mount a file system

SYNOPSIS
int mount(spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
The function moun t requests that a removable file system contained on the
block-special file identified by the argument spec be mounted on the direc­
tory identified by the argument d i r.

The arguments spec and dir are pointers to path-names.

When mount succeeds, references to the file named by dir will refer to
the root-directory on the mounted file system.

The low-order bit of the argument rwf 1 ag is used to control write permis­
sion on the mounted file system; if the bit is set to 1, writing is forbidden;
otherwise, writing is permitted according to individual file accessibility.

The function mount may be invoked only by the super-user.

RETURN VALUE

If successful, mount returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS
The function mount fails and errno equals:

EPERM if the effective-user-ID is not super-user.

ENOENT if any of the named files does not exist.

ENOTDIR if a component of a path-prefix is not a directory.

ENOTBLK if the device identified by spec is not block-special.

ENXIO if the device identified by spec does not exist.

ENOTDIR if dir is not a directory.

EBUSY if dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

EBUSY if the device identified by spec is currently mounted.

EBUSY if there are no more mount-table entries.

APPLICATION USAGE

The function moun t is not recommended for use by application-programs.

SEE ALSO
UMOUNT(BA _ SYS).

404 The UNIX System User's Manual

MOUNT(BA _ SYS) Base System

CAVEATS
The external variable errno will be set to EAGAIN rather than EBUSY
when the system mount-table is full.

Additional optional arguments will be added to the mount function. New
bit-patterns will be added to the set of possible values of the argument
rwflag. Some of these patterns will be used to indicate if an optional argu­
ment is present.

The UNIX System User's Manual 405

Base System

NAME

open - open for reading or writing

SYNOPSIS

#include <fcntl.h>

int open(path. ofla9. mode)
char *path;
int ofla9. mode;

DESCRIPTION
The function open opens a file-descriptor for the named file.

The argument pa th points to a path-name naming a file.

The function open sets the file-status flags according to ofla9. The
<fcntl. h> header file defines the symbolic names of flags. The values of
of 1 a9 are constructed by ORing flags from the following list (only one of the
first three flags below may be used):

o RDONLY Open for reading only.

o WRONLY Open for writing only.

o RDWR Open for reading and writing.

o NDELAY This flag may affect subsequent reads and writes [see
READ(BA_SYS) and WRITE(BA_SYS)].

When opening a FIFO with 0 RDONLYor 0 WRONLY set:

If 0 NDELAY is set:

An open for reading-only returns without delay. An
open for writing-only returns an error if no process
currently has the file open for reading.

If 0 NDELAY is clear:

An open for reading-only blocks until a process opens the
file for writing. An open for writing-only blocks until a
process opens the file for reading.

When opening a file associated with a communication line:

If 0 NDELAY is set:

The open returns without waiting for carrier.

If 0 NDELAY is clear:

The open blocks until carrier is present.

o APPEND Set the file-pointer to the end of the file prior to each write.

o TRUNe If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

406 The UNIX System User's Manual

OPEN(BA_SYS) Base System

o CREAT If the file exists, this flag has no effect; otherwise, the file is
created, the owner-ID of the file is set to the effective-user-ID of
the process, the groupoID of the file is set to the effective-group­
ID of the process, and the access-permission-bits [see
CHMOD(BA_SYSj] of the fiie-mode afe set to the value of mode

modified as follows [see CREAT(BA_SYS)]:

o EXCL

The file-mode bits are ANDed with the complement of the
process's file-mode-creation-mask [see UMASK(BA_SYS»).

Thus, open clears each bit in the file-mode whose
corresponding bit in the file-mode-creation-mask is set.

If the file exists and both 0 EXCL and 0 CREAT are set,
open will fail. - -

The file-pointer used to mark the current position within the file is set to the
beginning of the file.

The new file-descriptor will be the lowest-numbered file-descriptor available
and will remain open across calls to any EXEC(BA_SYS) routines [see
FCNTL(BA_SYS»).

RETURN VALUE
If successful, open returns an open file-descriptor; otherwise, it returns -1
and errno indicates the error.

ERRORS
The function open fails and errno equals:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if 0 CREAT is not set and the named file does not exist, or a
compOnent of the path-name should exist but does not.

EACCES if a component of the path-prefix denies search permission; or if
the file does not exist and the directory that would contain the
file does not permit writing; or if the 0 f 1 a 9 permission is
denied for the named file.

E I S D I R if the named file is a directory and the 0 f 1 a 9 permission is
write or read/write.

EROFS if the named file resides on a read-only file system and the
of lag permission is write or read/write.

EMFILE if this process has {OPEN_MAX} file-descriptors currently open.

ENXIO if the named file is a character-special or block-special file and
the device associated with this special file does not exist; or if
O_NDELAY is set, the named file is a FIFO, O_WRONLY is set
and no process has the file open for reading.

ETXTBSY if the file is a pure procedure (shared text) file that is being exe­
cuted and of lag specifies write or read/write permission.

The UNIX System User's Manual 407

Base System

EEXIST

EINTR

ENFILE

ENOSPC

if 0_ CREAT and 0_ EXCL are set, and the named file exists.

if a signal was caught during the open operation.

if the system-file-table is full, there are (SYS_OPEN) files open.

if the directory to contain the file cannot be extended, the file
does not exist, and 0_ CREAT is specified.

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. Thus, applications should use the FOPEN(BA_SYS) stdio routine
rather than using the OPEN(BA_SYS) routine.

SEE ALSO
CLOSE(BA_SYS), CREAT(BA_SYS), DUP(BA_SYS), FCNTL(BA_SYS),

LSEEK(BA_SYS), READ(BA_SYS), WRITE(BA_SYS).

CAVEATS

Enforcement-mode file and record-locking features will be added:

The function open will set errno to EAGAIN if the file exists,
enforcement-mode file and record-locking is set and there are outstanding
record-locks on the file [see CHMOD(BA_SYS»).

408 The UNIX System User's Manual

Base System

NAME

pause - suspend process until signal

SYNOPSIS

int pause ()

DESCRIPTION
The function pause suspends the calling-process until it receives a signal.
The signal must be one that is not currently set to be ignored by the calling­
process.

RETURN VALUE
If the signal causes termination of the calling-process, pause will not return.
In case of error, pause returns -1 and errno equals EINTR.

ERRORS
The function pause fails and errno equals:

EINTR

SEE ALSO

if the signal is caught by the calling-process and control is
returned from the signal-catching function, the calling-process
resumes execution from the point of suspension.

ALARM(BA_SYS), KILL(BA_SYS), SIGNAL(BA_SYS), WAIT(BA_SYS).

The UNIX System User's Manual 409

Base System

NAME

pipe - create an interprocess channel

SYNOPSIS

int pipe(fildes)
int fildes[2];

DESCRIPTION

The function pipe creates an 110 mechanism called a pipe and returns two
file-descriptors, fildes[O] and fildes[1]. The file associated with
f i 1 des [0] is opened for reading, the file associated with f i 1 des [1] is
opened for writing, and the 0_ NDELAY flag is cleared.

Up to {PIPE_MAX) bytes of data are buffered by the pipe before the writing­
proceSs is blocked. A read-only file-descriptor f i 1 des [0] accesses the
data written to f i 1 des [1] on a first-in-first-out, FIFO, basis.

RETURN VALUE

If successful, pipe returns 0; otherwise, it returns - 1 and errno indi­
cates the error.

ERRORS

The function pipe fails and errno equals:

EMFILE

ENFILE

SEE ALSO

if {OPEN_MAX) - 1 or more file-descriptors are currently open
for this process.

if more than {SYS_OPEN) files would be open in the system.

READ(BA_SYS), WRITE(BA_SYS).

410 The UNIX System User's Manual

NAME

popen, pclose - initiate pipe to/from a process

SYNOPSIS

#include <stdio-h>

FILE *popen(command, type}
char *command, *type;

int pclose(stream}
FILE *stream;

DESCRIPTION

Base System

The function popen creates a pipe between the calling program and the
command to be executed.

The arguments to popen are pointers to null-terminated strings containing,
respectively, a command line [see SYSTEM(BA_SYS») and an 110 mode, either
r for reading or w for writing.

The function popen returns a stream pointer such that one can write to the
standard input of the command, if the 110 mode is w by writing to the file
stream; and one can read from the standard output of the command, if the
110 mode is r by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for
the associated process to terminate and returns the exit status of the com­
mand.

Because open files are shared, a type r command may be used as an input
filter and a type w command as an output filter.

RETURN VALUE

If files or processes cannot be created or if command cannot be executed,
popen returns a NULL pointer.

If stream is not associated with a popened command, pclose returns
-1.

APPLICATION USAGE

The FSEEK(BA_SYS) routine should not be used with a stream opened by
pop en.

SEE ALSO
FCLOSE(BA_SYS), FOPEN(BA_SYS), PIPE(BA_SYS), SYSTEM(BA_SYS),

WAIT(BA_SYS).

The UNIX System User' s Manual 411

Base System

NAME

read - read from file

SYNOPSIS

int read(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

The function read attempts to read nbyte bytes from the file associated
with fildes into the buffer pointed to by buf.

The argument f i 1 des is an open file-descriptor [see flle-descrlptor in
Definitions].

On devices capable of seeking, read starts at a position in the file given by
the file-pointer associated with fildes. Upon return from read, the
file-pointer is incremented by the number of bytes actually read.

Devices incapable of seeking, such as terminals, always read from the current
position. The value of a file-pointer associated with such a file is undefined.

If successful, read returns the number of bytes read and stored in the
buffer; this number may be less than nbyte if the file is associated with a
communication-line [see IOCTL(BA_SYS) and TERMIO(BA_ENV)], or if the
number of bytes left in the file is less than nbyt e bytes or if the file is a
pipe or a special file. When end-of-file is reached, read returns o.
When attempting to read from an empty pipe (or FIFO):

If the pipe is no longer open for writing, read returns 0, indicating
end-of-file.

If 0 NDELAY is clear, read blocks until data is written to the file or
the fiie is no longer open for writing.

When attempting to read a file associated with a character-special file that has
no data currently available:

If 0 _NDELAY is clear, read blocks until data is available.

The function read reads data previously written to a file. If any portion of
an ordinary-file prior to the end-of-file has not been written, read returns
bytes with value o. For example, the LSEEK(BA_SYS) routine allows the file­
pointer to be set beyond the end of existing data in the file. If data are later
written at this point, subsequent reads in the gap between the previous end of
data and newly written data will return bytes with value 0 until data are
written into the gap.

RETURN VALUE

If successful, read returns the number of bytes actually read; otherwise, it
returns -1 and errno indicates the error.

412 The UNIX System User's Manual

Base System

ERRORS

The function read fails and errno equals:

EBADF

EINTR

EIO

ENXIO

if f i lde s is not a valid file-descriptor open for reading.

if a signal was caught during the read operation.

if a physical 110 error has occurred.

if the device associated with the file-descriptor is a block-special
or character-special file and the file-pointer value is out of range.

APPLICATION USAGE

Normally, applications should use the stdio routines to open, close, read and
write files. Thus, an application that used the FOPEN(BA_SYS) stdio routine to
open a file should use the FREAD(BA_SYS) stdio routine rather than the
READ(BA_SYS) routine to read it.

SEE ALSO

CREAT(BA_SYS), DUP(BA_SYS), FCNTL(BA_SYS), IOCTL(BA_SYS), OPEN(BA_SYS),

POPEN(BA_SYS).

CAVEATS

When no data are present at the time of the read on a pipe, FIFO, or tty-line
with the 0 NDELAY flag set, read returns -1, rather than 0, and
errno equals EAGAIN.

Enforcement-mode file and record-locking will be added:

When trying to read from an ordinary-file with enforcement-mode file and
record-locking set [see CHMOD(BA_SYS)], and the segment of the file to be read
has a blocking write-lock (i.e., a write-lock owned by another process):

If 0 _ NDELAY is set, read returns -1 and errno equals EAGAIN.

If 0 _NDELAY is clear, read sleeps until the blocking write-lock is removed.

The function read fails and errno equals:

EAGAIN

ENOLCK

if enforcement-mode file-locking and record-locking was set,
O_NDELAY was set, and there was a blocking write-lock.

if the system record-lock table was full, so read could not go
to sleep until the blocking write-lock was removed.

The UNIX System User's Manual 413

Base System

NAME

setgid - set groupoID

SYNOPSIS
int setgid(gid)
int gid;

DESCRIPTION

SETGID(BA_SYS)

The function setgid sets the real-groupoID and effective-groupoID of the
calling-process.

If the effective-user-ID of the calling-process is super-user, set the real-group­
ID and effective-groupoID to gid.

If the effective-user-ID of the calling-process is not super-user, but its real­
groupoID equals gid, set the effective-groupoID to gid.

RETURN VALUE
If successful, setgid returns 0; otherwise, it returns -1 and errno
indicates the error.

ERRORS

The function setgid fails and errno equals:

EPERM

EINVAL

SEE ALSO

if the real-group-ID of the calling-process is not equal to gid
and its effective-user-ID is not super-user.

if gid is out of range.

EXEC(BA_SYS), GETGID(BA_SYS). GETUID(BA_SYS). SETUID(BA_SYS).

4'4 The UNIX System User's Manual

SETPGRP(BA _ SYS) Base System

NAME

setpgrp - set process-groupoID

SYNOPSIS
int setpgrp ()

DESCRIPTION
The function s etpgrp sets the process-groupoID of the calling-process to
the process-ID of the calling-process and returns the new process-groupoID.

RETURN VALUE
If successful, setpgrp returns the new process-groupoID.

SEE ALSO
EXEC(BA_SYS), FORK(BA_SYS), GETPID(BA_SYS), KILL(BA_SYS),

SIGNAL(BA _ SYS).

The UNIX System User's Manual 415

Base System

NAME

setuid - set user-ID

SYNOPSIS
int setuid(uid}
int uid;

DESCRIPTION
The function setuid sets the real-user-ID and effective-user-ID of the
calling-process.

If the effective-user-ID of the calling-process is super-user, set the real-user-ID
and effective-user-ID to uid.

If the effective-user-ID of the calling-process is not super-user, but its real­
user-ID equals uid, set the effective-user-ID to uid.

If the effective-user-ID of the calling-process is not super-user, but the saved
set-user-ID from an EXEC(BA_SYS) routine equals uid, set the effective-user­
ID to uid.

RETURN VALUE
If successful, setuid returns 0; otherwise, it returns -1 and errno
indicates the error.

ERRORS
The function setuid fails and errno equals:

EPERM

EINVAL

SEE ALSO

if the real-user-ID of the calling-process is not equal to uid
and its effective-user-ID is not super-user.

if u i d is out of range.

EXEC(BA_SYS), GETGID(BA_SYS), GETUID(BA_SYS), SETGID(BA_SYS).

416 The UNIX System User's Manual

SIGNAL(BA _ SYS)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include csignal,h>

int (*signal(sig, func))()
int sig;
int (*func) ();

DESCRIPTION

Base System

The function signa 1 allows the calling-process to choose one of three ways
in which it is possible to handle the receipt of a specific signal.

The argument s ig specifies the signal and the argument func specifies the
choice. The argument s i g can be assigned anyone of the following signals
except SIGKILL:

SIGALRM alarm clock

SIGFPE floating point exception*

SIGHUP hangup

5 I GILL illegal instruction (not reset when caught) *

SIGINT interrupt

SIGKILL kill (cannot be caught or ignored)

SIGPIPE write on a pipe with no one to read it

SIGQUIT quit*

SIGSYS bad argument to routine*

SIGTERM software termination signal

SIGTRAP trace trap (not reset when caught)*

5 I GUS R 1 user-defined signal 1

SIGUSR2 user-defined signal 2

For portability, application-programs should use or catch only the signals
listed above; other signals are hardware and implementation-dependent and
may have very different meanings or results across systems (For example, the
UNIX System V signals SIGEMT, SIGBUS, SIGSEGV, and SIGIOT are
implementation-dependent and are not listed above). Specific implementations
may have other implementation-dependent signals.

• The default action for these signals is an abnormal process termination. See SIG DFL.

The UNIX System User's Manual 417

Base System SIGNAL(BA_SYS)

The argument func is assigned one of three values: SIG_DFL,
S IG _ IGN, or an address of a signal-catching function. The following actions
are prescribed by these values:

SIG DFL Terminate process upon receipt of a signal.

Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in
EXIT(BA_SYS). In addition, if sig is one of the signals marked
with an asterisk above, implementation-dependent abnormal pro­
cess termination routines, such as a core dump, may be invoked.

S I GIG N Ignore signal.

address

The signal s i g is to be ignored.

NOTE: The signal SIGKILL cannot be ignored.

Catch signal.

Upon receipt of the signal s i g, the receiving process executes
the signal-catching function pointed to by func. The signal
number sig is the only argument passed to the signal-catching
function. Additional arguments may be passed to the signal­
catching function for hardware-generated signals. Before enter­
ing the signal-catching function, the value of func for the
caught signal is set to S I G _ D F L unless the signal is
SIGILL, or SIGTRAP.

The function signa 1 will not catch an invalid function argu­
ment, func, and results, are undefined when an attempt is
made to execute the function at the bad address.

Upon return from the signal-catching function, the receiving
process resumes execution at the point at which it was inter­
rupted, except for implementation defined signals where this may
not be true.

When a signal to be caught occurs during a non-atomic opera­
tion such as a call to a REAO(BA_SYS), WRITE(BA_SYS),
OPEN(BA_SYS), or IOCTL(BA_SYS) routine on a slow device (such
as a terminal); or occurs during a PAUSE(BA_SYS) routine; or
occurs during a WAIT(BA_SYS) routine that does not return
immediately, the signal-catching function will be executed and
then the interrupted routine may return a - 1 to the calling­
process with errno set to EINTR.

NOTE: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

418 The UNIX System User's Manual

SIGNAL(BA _ SYS) Base System

RETURN VALUE

If successful, signal returns the previous value of the argument func for
the specified signal s i g; otherwise, it returns (in t (*) ()) - 1 and
errno indicates the error.

ERRORS

The function signal fails and errno equals:

EINVAL if sig is an illegal signal number or SIGKILL.

APPLICATION USAGE
Signals may be sent by the system to an application-program (user-level pro­
cess) or signals may be sent by one user-level process to another using the
KILL(BA_SYS) routine. An application-program can catch signals and specify
the action to be taken using the function signa 1. The signals that a port­
able application-program may send are:

SIGKILL, SIGTERM, SIGUSR1, SIGUSR2.

For portability, application-programs should use only the symbolic names of
signals rather than their values and use only the set of signals defined here.
Specific implementations may have additional signals.

SEE ALSO

KILL(BA_SYS), PAUSE(BA_SYS), WAIT(BA_SYS), SET JMP(BA_LIB).

CAVEATS

SIGABRT will be added to the <signal.h> header file [see
ABORT(BA _ SYS) 1.

A macro S IG ERR will be defined by the < signa 1. h> header file to
represent the return value (int(*) ())-1 of the function signal in
case of error.

The end-user level utility KILL(BU_CMD) will be changed to use symbolic signal
names rather than numbers.

In keeping with the proposed ANSI X3Jll standard, the argument func will
be declared as type pointer to a function returning void.

The following functions will be added to enhance the signal facility:

sigset, sighold, sigrelse, sigignore, sigpause.

These functions will give a calling-process control over the disposition of a
specified signal that follows a signal that has been caught. When a signal has
been caught, the system will hold (defer) a succeeding signal of the type
specified should it occur. Similarly, processes will be able to establish critical
regions of code where an incoming-signal is deferred so the critical region can
be executed without losing the signal. Finally, a calling process will be able to
suspend if a specified signal has not yet occurred.

The UNIX System User's Manual 419

Base System

NAME

sleep - suspend execution for interval

SYNOPSIS

unsigned sleep(seconds)
unsigned seconds;

DESCRIPTION

SLEEP(BA_SYS)

The function s 1 e e p suspends the current-process from execution for the
number of seconds specified by the argument seconds. The actual
suspension-time may be less than that requested for two reasons:

1. because scheduled wakeups occur at fixed 1-second intervals (on the
second, according to an internal clock) and

2. because any signal caught will terminate s 1 e e p following execution of
the signal-catching routine.

Also, the suspension-time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system.

The function s 1 e e p sets an alarm signal and pauses until it (or some other
signa!) occurs. The previous state of the alarm signal .is saved and restored.
The calling-process may have set up an alarm signal before calling sleep.
If the argument seconds exceeds the time until such an alarm signal
would occur, the process sleeps only until the alarm signal would have
occurred. The alarm signal-catching routine of the calling-process is executed
just before s 1 e e p returns. But if the suspension-time is less than the time
till such alarm, the prior alarm time remains unchanged.

RETURN VALUE
If successful, s 1 e e p returns the unslept amount (the requested time minus
the time actually slept) in case the caller had an alarm set to go off earlier
than the end of the requested suspension-time or premature arousal due to
another caught signal; otherwise, s 1 e e p returns o.

SEE ALSO
ALARM(BA_SYS), PAUSE(BA_SYS), SIGNAL(BA_SYS).

420 The UNIX System User's Manual

Base System

NAME

stat, fstat - get file-status information

SYNOPSIS
#i~clQde <BYB/types.h>
#include <sys/stat.h>

int stat(path, buf)
char *path;
struct stat *buf;

int fstat(fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION

The function stat obtains information about the status of the file named by
the path-name pointed to by path. Neither read, write, nor execute permis­
sion of the named file is required, but all directories listed in the path-name
leading to the file must be searchable.

The function f s ta t obtains the status information about an open file associ­
ated with the file-descriptor fildes [see file-descriptor in Definitionsl.

The argument buf points to a structure stat which contains file-status
information and includes the following members:

ushort st mode; 1* file-mode *1 -
ino t st ino; 1* i-node number *1 - -
dev t st dev; 1* file-system-identifier *1 - -
dev t st rdev; 1* device-identifier, only *1 - -

/* for character-special *1
1* or block-special files *1

short st nlink; 1* number of links *1 -
ushort st uid; 1* file-owner user-ID *1 -
ushort st gid; 1* file-group user-ID *1 -
off t st size; 1* file-size in bytes *1 - -
time t st atime; 1* time data last accessed *1 - -
time t st mtime; 1* time data last modified *1 - -
time t st ctime; 1* time file-status last *1 - -

1* changed, in seconds since *1
1* 00:00:00 GMT 1 Jan 70 *1

The < sys/type s . h> header file defines the types ushort, ino t,
dev_t, off_t, and time_to

s t mode This field is the file-mode [see MKNOD(BA_SYS)l.

s t ino This field uniquely identifies the file in a given file-system.

s t dev This field uniquely identifies the file-system holding the file. The
field has no more significance, but the USTAT(BA_SYS) routine
uses it to get more information about the file-system. Together,
st _ ino and st _ dev uniquely identify ordinary-files.

The UNIX System User's Manual 421

Base System STAT(BA_SYS)

st rdev This field should not be used by application-programs. The field
is valid for block-special or character-special files and has
significance only on the system where the file was configured.

st nlink This field should not be used by application-programs.

s t s i z e For ordinary-files, this field is the address of the end of the file;
for pipes or FIFOs, it is the count of the data currently in the
file; for block-special or character-special files, it is undefined.

s tat ime This field is the time when file-data was last accessed. The fol­
lowing routines change this field:

CREAT(BA_SYS), LOCKF(BA_SYS), MKNOD(BA_SYS), PIPE(BA_SYS),

UTIME(BA_SYS), READ(BA_SYS).

st mtime This field is the time when file-data was last modified. The fol­
lowing routines change this field:

CREAT(BA_SYS), MKNOD(BA_SYS), PIPE(BA_SYS), UTIME(BA_SYS),

WRITE(BA_ SYS).

st ctime This field is the time when file status was last changed. The fol­
lowing routines change this field:

RETURN VALUE

CHMOD(BA_ SYS), CHOWN(BA_ SYS), CREAT(BA_ SYS),

LlNK(BA_SYS), MKNOD(BA_SYS), PIPE(BA_SYS), UNLlNK(BA_SYS),

UTIME(BA_SYS), WRITE(BA_SYS).

If successful, both s tat and f s tat return 0; otherwise, they return - 1
and errno indicates the error.

ERRORS

The function stat fails and errno equals:

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

The function fstat fails and errno equals:

EBADF if fildes is not a valid open file-descriptor.

SEE ALSO

CHMOD(BA_SYS), CHOWN(BA_SYS), CREAT(BA_SYS), LlNK(BA_SYS),

MKNOD(BA_SYS), PIPE(BA_SYS), READ(BA_SYS), TIME(BA_SYS),

UNLlNK(BA_SYS), UTIME(BA_SYS), WRITE(BA_SYS).

422 The UNIX System User's Manual

NAME

stime - set time

SYNOPSIS

int stime(tpl
long *tp;

DESCRIPTION

Base System

The function stime sets the system time and date. The argument tp
points to the value of time in seconds since 00:00:00 GMT Jan. 1, 1970.

RETURN VALUE

If successful, stime returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS

The function stime fails and errno equals:

EPERM if the effective-user-m of the calling-process is not super-user.

SEE ALSO
TIME(BA_SYS).

The UNIX System User's Manual 423

Base System SYNC(BA _ SYS)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION

The function sync causes all information in transient memory that updates
a file-system to be written out to the file-system. This includes modified
super-blocks, modified i-nodes, and delayed block 110.

The function sync should be used by programs which examine a file-system.

The writing, although scheduled, is not necessarily complete upon return from
the function sync.

APPLICATION USAGE

The function sync is not recommended for use by application-programs.

424 The UNIX System User's Manual

SYSTEM(BA _ SYS)

NAME

system - issue a command

SYNOPSIS
#include <stdio.h>

int system(string)
char *string;

DESCRIPTION

Base System

The function system causes the argument string to be given as input to
a command interpreter and execution process. That is, the argument
string is interpreted as a command, and then the command is executed.

Commands

A blank is a tab or a space.

A word is a sequence of characters excluding blanks.

A parameter-name is a sequence of letters, digits, or underscores beginning
with a letter or underscore. A parameter is a parameter-name, a digit, or any
of the characters ?, $, or 1.

A simple-command is a sequence of non-blank words separated by blanks.
The first word specifies the path-name or file-name of the command to be exe­
cuted. Except as specified below, the remaining words are passed as argu­
ments to the invoked command. The command-name is passed as argument 0
[see EXEC(BA_SYS»). The value of a simple-command is its exit status if it
terminates normally, or (octal) 2 0 0 +status if it terminates abnormally [see
WAIT(BA_SYS)].

A pipeline is a sequence of two or more simple-commands separated by the
character :. The standard output of each simple-command (except the last
simple-command in the sequence) is connected by a pipe [see PIPE(BA_.SYS)] to
the standard input of the next simple-command. Each simple-command is run
as a separate process; the command execution process waits for the last
simple-command to terminate. The exit status of a pipeline is the exit status
of the last command.

A command is either a simple-command or a list enclosed in parentheses:
(list). Unless otherwise stated, the value returned by a command is that of
the last simple-command executed in the command.

A list is a command or a pipeline or a sequence of commands and pipelines
separated by the characters ; or &. or the character-pairs &.&. or ::. Of
these, the characters ; and &., which have equal precedence, have a pre­
cedence lower than that of the character-pairs &.&. and ::, which have equal
precedence. A list may optionally be terminated by the characters ; or &..

A series of commands and/or pipelines separated by the character ; are exe­
cuted sequentially, while commands and pipelines terminated by the character
&. are executed asynchronously.

The UNIX System User's Manual 425

Base System SYSTEM(BA_SYS)

The character-pair &.&. or :: causes the command or pipeline following it to
be executed only if the preceding pipeline returns a zero (non-zero) exit status.
An arbitrarily long sequence of newlines may appear in a list, instead of the
character ;, to delimit commands.

Comments
A word beginning with the character # causes that word and all the following
characters up to a new-line to be ignored.

Command Substitution
The standard output from a command bracketed by grave-accents (the char­
acter ,) may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution
The character $ is used to introduce substitutable keyword-parameters.

$ {parameter} The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a
letter, digit, or underscore that is not to be interpreted as
part of its name.

Keyword-parameters (also known as variables) may be assigned values by
writing:

parameter-name - value

The following parameters are automatically set:

Parameter
?

$

Description
The decimal value returned by the last synchronously exe­
cuted command in this call to system.
The process-number of this process.
The process-number of the last background command
invoked in this call to system.

The following parameters are used by the command execution process:

Parameter
HOME

PATH

Description
The initial working (home) directory, initially set from the
6th-field in the /etc/passwd file [see
PASSWD(BA ENV»).

The search path for commands (see Execution beloW).

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters <Space, tab and new-line) and
split into distinct arguments where such characters are found. Explicit null
arguments (" "or ,,) are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

426 The UNIX System User's Manual

Base System

File Name Generation
Following substitution, each word in the command is scanned for the charac­
ters *, ?, and [. If one of these characters appears the word is regarded as
a pattern. The word is replaced with alphabetically sorted file-names that
match the pattern. If no file-name is found that matches the pattern, the
word is left unchanged. The character at the start of a file-name or
immediately following the character /, as well as the character / itself,
must be matched explicitly.

Parameter

Quoting

*
?

[...]

Description
Matches any string, including the null string.
Matches any single character.
Matches anyone of the enclosed characters.
A pair of characters separated by the character - matches
any character lexically between the pair, inclusive. If the
first character following the opening [is the character I
any character not enclosed is matched.

The following characters have special meaning and cause termination of a
word unless enclosed in quotation marks as explained below:

; &. (: < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with
the character \. The character-pair \new-line is ignored. All characters
enclosed between a pair of single quote marks (, '), except a single quote, are
quoted. Inside double quote marks (" ,,), parameter and command substitu­
tion occurs and the character \ quotes the characters \ , * , ", and $.

Input/Output

Before a command is executed, its input and output may be redirected using a
special notation. The following may appear anywhere in a simple-command,
or may precede or follow a command and are not passed on to the invoked
command; substitution occurs before word or digit is used:

Notation
<word
> word

> > word

<&.digit

<&.-

Description
Use file word as standard input (file-descriptor 0).
Use file word as standard output (file-descriptor 1). If the
file does not exist it is created; otherwise, it is truncated to
zero length.
Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); other­
wise, the file is created.
Use the file associated with file-descriptor digit as standard
input. Similarly for the standard output using > &.digit.
The standard input is closed. Similarly for the standard
output using > &. -.

The UNIX System User's Manual 427

Base System SYSTEM(BA_SYS)

If a digit precedes any of the above, the digit specifies the file-descriptor to be
associated with the file (instead of the default 0 or 1). For example:

... 2>& 1

associates file-descriptor 2 with the file currently associated with file descrip­
tor 1.

The order in which redirections are specified is significant. Redirections are
evaluated left-to-right. For example:

••• 1 >xxx 2>&1

first associates file-descriptor 1 with file xxx. It associates file-descriptor 2
with the file associated with file-descriptor 1 (Le., xxx). If the order of
redirections were reversed, file-descriptor 2 would be associated with the ter­
minal (assuming file-descriptor 1 had been) and file-descriptor 1 would be
associated with file xxx.

If a command is followed by the character & the default standard input for
the command is the empty file Idev/nul1. Otherwise, the environment
for the execution of a command contains the file-descriptors of the invoking
process as modified by input/output specifications.

Environment
The environment [see EXEC(BA_SYS)] is a list of parameter-name-value pairs
passed to an executed program in the same way as a normal argument list.
On invocation, the environment is scanned and a parameter is created for each
name found, giving it the corresponding value.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. For example:

TERM=4S0 cmd;

Signals
The SIGINT and SIGQUIT signals for an invoked command are ignored if
the command is followed by the character &; otherwise . signals have the
values inherited by the command execution process from its parent.

Execution
The above substitutions are carried out each time a command is executed. A
new process is created and an attempt is made to execute the command via
the EXEC(BA_SYS) routines.

The parameter PATH defines the search path for the directory containing the
command. The character : separates path-names. The default path is
: Ibin: lusr/bin (specifying the current directory, Ibin, and
lusr/bin, in that order>. NOTE: The current directory is specified by a
null path-name, which can appear immediately after the equal sign or between
the colon delimiters anywhere else in the path-list. If the command-name con­
tains the character I the search path is not used. Otherwise, each directory
in the path is searched for an executable file.

428 The UNIX System User's Manual

SYSTEM(BA_SYS) Base System

Conventionally, system has been implemented with the Bourne shell,
SH(BU_CMD) [see Commands and Utilities). The current definition of sys­
tem is not intended to preclude that or its implementation by another
command-line interpreter that provides the minimum functionality described
here. Of course, any implementation may provide a superset of the functional­
ity described.

RETURN VALUE
If successful, system returns the exit status of the last simple-command
executed. Errors, such as syntax errors, cause a non-zero return value and
execution of the command is abandoned.

FILES
/dev/null

APPLICATION USAGE

If possible, applications should use the system, which is easier to use and
supplies more functions, rather than the FORK(BA_SYS) and EXEC(BA_SYS)

routines.

SEE ALSO
DUP(BA_SYS), EXEC(BA_SYS), FORK(BA_SYS), PIPE(BA_SYS), SIGNAL(BA_SYS),

ULlMIT(BA_SYS), UMASK(BA_SYS), WAIT(BA_SYS).

The UNIX System User's Manual 429

Base System

NAME

time - get time

SYNOPSIS

long time«long *) 0)

long time(t10c)
long *t10c;

DESCRIPTION

The function time returns the value of time in seconds since 00:00:00 GMT,
Jan. 1, 1970.

As long as t10c is not a null-pointer, the return value is also stored in the
location to which t 10c points.

The actions of time are undefined if t10c points to an invalid address.

RETURN VALUE

If successful, time returns the value of time; otherwise, it returns - 1.

SEE ALSO
STIME(BA _ SYS).

430 The UNIX System User's Manual

NAME
times - get process and child-process elapsed times

SYNOPSIS
#include <sysitypes.h>
#include <sys/times.h>

long times(buffer)
struct tms *buffer;

DESCRIPTION

Base System

The function times fills the structure pointed to by buffer with time­
accounting information. The action of times is undefined if buffer
points to an illegal address.

The following are the contents of the structure tms, which is defined by the
<sys/times. h> header file to include:

time t
time t
time t
time t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling-process and each of its terminated
child-processes for which it has executed a WAIT(BA_SYS) routine. All times
are defined in units of II{CLK]CK}'s of a second.

The type time _ t is defined by the <sys/types. h> header file.

The value of tms _ utime is the CPU time used while executing instructions
in the user-space of the calling-process.

The value of tms _ stime is the CPU time used by the system on behalf of
the calling-process.

The value of tms cutime is the sum of the tms utime and
tms _ cutime of the child-processes.

The value of tms cstime is the sum of the tms stime and
tms _ cst ime of the child-processes.

RETURN VALUE
If successful, time s returns the elapsed real time, in units of
II{CLK]CK}'s of a second, since an arbitrary point in the past (e.g., system
start-up time). This point does not change from one invocation of times to
another. When time s fails, it returns - 1.

SEE ALSO
EXEC(BA _ SYS), FORK(BA _ SYS), TIME(BA _ SYS), WAIT(BA _ SYS).

The UNIX System User's Manual 431

Base System

NAME

ulimit - get and set user limits

SYNOPSIS

long ulimit(cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
The function u 1 imi t provides for control over process limits.

Values available for the argument cmd are:

1 Get the file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child-processes. Files of any
size can be read.

2 Set the file size limit of the process equal to newl imi t. Any
process may decrease this limit, but only a process with an
effective-user-ID of super-user may increase the limit.

RETURN VALUE

If successful, ul imi t returns a non-negative value; otherwise, it returns
-1, it does not change the limit, and errno indicates the error.

ERRORS
The function ulimit fails and errno equals:

EPERM

SEE ALSO

if a process with an effective-user-ID other than super-user
attempts to increase its file size limit.

WRITE(BA _ SYS).

432 The UNIX System User's Manual

UMASK(BA_SYS) Base System

NAME

umask - set and get file-mode-creation-mask

SYNOPSIS
int umask(cmask)

int cmask;

DESCRIPTION
The function umask sets the process's file-mode-creation-mask [see
CREAT(BA_SYS)] equal to cmask and returns the previous value of the mask.
Only the owner, group, other permission-bits of cmask and the file-mode­
creation-mask are used.

RETURN VALUE
If successful, umask returns the previous value of the file-mode-creation­
mask.

SEE ALSO

CHMOD(BA_SYS), CREAT(BA_SYS), MKNOD(BA_SYS), OPEN(BA_SYS).

The UNIX System User's Manual 433

Base System

NAME

umount - unmount a file system

SYNOPSIS
int umount(spec)

char *spec;

DESCRIPTION

UMOUNT(BA_SYS)

The function umount requests that a previously mounted file system con­
tained on the block-special device identified by spec be unmounted.

The argument spec points to a path-name. After unmounting the file­
system, the directory upon which the file-system was mounted reverts to its
ordinary interpretation.

The function umount may be invoked only by the super-user.

RETURN VALUE

If successful, umount returns 0; otherwise, it returns -1 and errno
indicates the error.

ERRORS

The function umount fails and errno equals:

EPERM if the process's effective-user-ID is not super-user.

ENXIO if the device identified by spec does not exist.

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if the named file does not exist.

ENOTBLK if the device identified by spec is not block-special.

EINVAL if the device identified by spec is not mounted.

EBUSY if a file on the device identified by spec is busy.

APPLICATION USAGE
The function umount is not recommended for use by application-programs.

SEE ALSO
MOUNT(BA_SYS).

434 The UNIX System User's Manual

Base System

NAME

uname - get name of current operating system

SYNOPSIS
#include <sys/utsname.h>

int uname(name)
struct utsname *name;

DESCRIPTION
The function uname stores information identifying the current operating sys­
tem in the structure pointed to by name.

The <sys/utsname.h> header file defines the structure that uname
uses and that includes the following members:

char sysname [{SYS_NMLN}];
char nodename [{SYS NMLN}] ;
char release [{SYS NMLN}];
char version[{SYS-NMLN}];
char machine [{SYS=NMLN}];

The function uname returns a null-terminated character string naming the
current operating system in the character array sysname.

Similarly, the character array nodename contains the name that the system
is known by on a communications network.

The members release and version further identify the operating sys­
tem.

The member machine contains a standard name that identifies the
hardware that the operating system is running on.

RETURN VALUE
If successful, uname returns a non-negative value; otherwise, it returns -1
and errno indicates the error.

The UNIX System User's Manual 435

Base System

NAME

unlink - remove directory entry

SYNOPSIS

int unlink(path)
char *path;

DESCRIPTION

UNLlNK(BA _ SYS)

The function unl ink removes the directory entry named by the path-name
pointed to by the argument pa tho When all links to a file have been
removed and no process has the file open, the space occupied by the file is
freed and the file ceases to exist. If one or more processes have the file open
when the last link is removed, space occupied by the file is not released until
all references to the file have been closed.

RETURN VALUE

If successful, unlink returns 0; otherwise, it returns -1 and errno
indicates the error.

ERRORS

The function unlink fails and errno equals:

ENOTDIR if a component of the path prefix is not a directory.

ENOENT if the named file does not exist.

EACCES if a component of the path-prefix denies search permission.

EACCES if the directory containing the link to be removed denies write
permission.

EPERM

EBUSY

if the named file is a directory and the effective-user-ID of the
process is not super-user.

if the entry to be unlinked is the mount point for a mounted file
system.

ETXTBSY if the entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

EROFS if the entry to be unlinked is part of a read-only file system.

SEE ALSO
CLOSE(BA_SYS), LlNK(BA_SYS), OPEN(BA_SYS).

436 The UNIX System User's Manual

B88e SY8tem

NAME

ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat(dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION

The function ustat returns information about a mounted file system.

The argument dev is a device number identifying a device containing a
mounted file-system. The value of dev comes from the field st dev of
the structure stat [see STAT(BA_SYS»). -

The argument buf points to a ustat structure that includes the following
elements:

daddr t f tfree; /* total free blocks */ - -
ino t f tinode; /* number of free i-nodes */ - -
char f fname[6]; /* - file-system name or null */
char f fpack[6]; /* file-system pack or null */ -
The last two fields, f fname and f fpack may not have significant
information on all systerm, and, in that ca~, will contain the null character.

RETURN VALUE

If successful, ustat returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS

The function ustat fails and errno equals:

EINVAL if dev is not the device number of a device containing a
mounted file-system.

SEE ALSO
STAT(BA_SYS).

The UNIX System User's Manual 437

Base System

NAME

utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>

int utime(path, times)
char *pathj
struct utimbuf *timesj

DESCRIPTION
The function uti me sets the access and modification times of the file named
by the path-name pointed to by path; hence, u time updates the time of
the last file-status change (st _ ctime) for that file [see STAT(BA_SYS»).

If time s is NULL, the access and modification times are set to the current
time; a process must be the owner of the file or have write permission to do
this. If time s is not NULL, it must point to aut imbuf structure (see
below) and the access and modification times are set to the values in that
structure; only the owner of the file or the super-user may do this.

RETURN VALUE
If successful, utime returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS
The function utime fails and errno equals:

ENOENT if the named file does not exist.

ENOTDIR if a component of the path-prefix is not a directory.

EACCES if a component of the path-prefix denies search permission, or if
the effective-user-ID is not super-user and not the owner of the
file and times is NULL and write access is denied.

EPERM if the effective-user-ID is not super-user and not the owner of the
file and times is not NULL.

EROFS if the file-system containing the file is mounted read-only.

APPLICATION USAGE
Application-programs must declare the structure u t imbuf as follows:

struct utimbuf {

} j

time_t actimej 1* access time *1
time_t modtimej 1* modification time *1

The structure utimbuf gives times in seconds since 00:00:00 GMT Jan. 1,
1970. The <sys/types.h> header file defines the type time_to

SEE ALSO
STAT(BA_SYS).

438 The UNIX System User's Manual

NAME

wait - wait for child-process to stop or terminate

SYNOPSIS
int wait(stat_loc)
int *stat_loc;

int waitt (int *)0)

DESCRIPTION

Base System

The function wait suspends the calling-process until one of the immediate
children terminates. If a child-process terminates prior to the call to wai t,
return is immediate.

If stat_loc (taken as an integer) is non-zero, 16-bits of information called
status are stored in the low-order 16-bits of the location pointed to by
stat loc. The status differentiates between stopped and terminated child­
processes and if the child-process terminated, identifies the cause of termina­
tion and passes useful information to the parent-process as follows:

If the child-process terminated due to a call to the EXIT(BA_SYSl routine,
the low-order 8-bits of status will be zero and the next 8-bits will contain
the low-order 8-bits of the argument that the child-process passed to the
EXIT(BA_SYS) routine.

If the child-process terminated due to a signal, the low-order 7-bits (i.e.,
bits 177) will contain the number of the signal that caused the termination.
Also, if abnormal-process-termination routines [see SIGNAL(BA_SYSl] suc­
cessfully completed, the low-order eighth-bit (i.e., bit 200) will be set. The
next 8-bits of status will be zero.

If a parent-process terminates without waiting for its child-processes to ter­
minate, a special system process inherits them [see EXIT(BA_SYS)].

The function wa i t fails and its actions are undefined if the argument
s tat _ 10 c points to an illegal address.

RETURN VALUE
If wa i t returns due equals the receipt of a signal, it returns - 1 to the
calling-process and errno to EINTR.

If wa i t returns due to a terminated child-process, it returns the process-ID
of the child-process to the calling-process; otherwise, it returns immediately
with a value of -1 and errno indicates the error.

ERRORS

The function wait fails and errno equals:

ECHILD if the calling-process has no more unwaited-for child-processes.

SEE ALSO
EXEC(BA_SYS), EXIT(BA_SYS), FORK(BA_SYS), SIGNAL(BA_SYS).

The UNIX System User's Manual 439

Base System

NAME

write - write on a file

SYNOPSIS

int write(fildes, buf, nbytel
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

WRITE(BA _ SYS)

The function write attempts to write nbyte bytes from the buffer
pointed to by buf to the file associated with the file-descriptor, fildes.

The argument f i 1 des is an open file-descriptor [see file-descriptor in
Definitions].

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file-pointer associated with fildes.
Upon returning from write, the file-pointer is incremented by the number
of bytes actually written.

On devices incapable of seeking, such as a terminal, writing always takes place
starting at the current position. The value of a file-pointer associated with
such a device is undefined [see OPEN(BA_SYSl).

If the 0 _APPEND flag of the file status flags is set, the file-pointer is set to
the end of the file prior to each wr i te operation.

If a wr i t e requests that more bytes be written than there is room for (e.g.,
beyond the user process's file size limit [see ULlMIT(BA_SYSl) or the physical
end of a medium), only as many bytes as there is room for are written. For
example, suppose there is space for 20 bytes more in a file before reaching a
limit; a write of 512-bytes will return 20-bytes. The next write of a
non-zero number of bytes will give a failure return (except as noted for pipes
and FIFOs below).

If a write to a pipe (or FIFO) of (PIPE_BUF) bytes or less is requested and
less than nbyt e s bytes of free space is available in the pipe, one of the fol­
lowing occurs:

If 0 _ NDELAY is clear, the process blocks until at least nbyte s of
space is available in the pipe and then the wr i te takes place, or

If O_NDELAY is set, the process does not block and write returns O.

A write request to a pipe (or FIFO) of more than (PIPE_BUF) bytes
behaves differently. Because it is not atomic, a write to a pipe (or FIFO)
of nbyte s greater than (PIPE_BUF) bytes should be used only when two
cooperating processes, one reader and one writer, are using a pipe.

440 The UNIX System User's Manual

WRITE(BA _ SYS) Base System

If a write to a pipe (or FIFO) of more than {PIPE_BUF} bytes is requested,
one of the following occurs:

If 0 NOELAY is clear, the process blocks if the pipe is full. As space
beco~es available in the pipe, the data from the wr i t e request are writ­
ten piecemeal, in multiple smaller amounts until the request is fulfilled.
Thus, data from a wr i te request of more than {PIPE_BUF} bytes may be
interleaved on arbitrary byte boundaries with data written by other
processes.

If 0 _ NO E LA Y is set and the pipe is full, the process does not block and
write returns O.

If 0 NOELAY is set and the pipe is not full, the process does not block
and as much data as currently fits in the pipe is written and wr i t e
returns the number of bytes written. In this case, only part of the data are
written, but what data are written are not interleaved with data from other
processes.

In contrast to a write of more than {PIPE_BUF} bytes, data from a
wri te of {PIPE_BUF} bytes or less is never interleaved in the pipe with data
from other processes.

RETURN VALUE
If successful, write returns the number of bytes written; otherwise, it
returns - 1, it does not change the file-pointer, and e rrno indicates the
error.

ERRORS
The function write fails and errno equals:

EBAOF if f i 1 des is not a valid file descriptor open for writing.

EPIPE and SIGPIPE signal if an attempt is made to write to a pipe that is
not open for reading by any process.

EFBIG

EINTR

ENOSPC

EIO

ENXIO

if an attempt was made to write a file that exceeds the process's
file size limit or the system's maximum file size [see
ULlMIT(BA_SYS)1.

if a signal was caught during the write operation.

if there is no free space remaining on the device holding the file.

if a physical I/O error has occurred.

if the device associated with the file-descriptor is a block-special
or character-special file and the file-pointer value is out of range.

APPLICATION USAGE
Normally, applications should use the stdio routines to open, close, read and
write files. Thus, if an application had used the FOPEN(BA_SYS) stdio routine
to open a file, it would use the FWRITE(BA_SYS) stdio routine rather than the
WRITE(BA_SYS) routine to write it.

The UNIX System User's Manual 441

Base System WRITE(BA _ SYS)

SEE ALSO

CREAT(BA_SYS), DUP(BA_SYS), LSEEK(BA_SYS), OPEN(BA_SYS), PIPE(BA_SYS),

ULlMIT(BA_ SYS).

CAVEATS
Enforcement-mode file and record-locking will be added:

A wr i t e to an ordinary-file blocks if enforcement-mode file and record­
locking is set, and there is a record-lock owned by another process on the
segment of the file to be written.

If 0 NDELAY is not set, write sleeps until the blocking record-lock is
removed.

The function write fails and errno equals:

EAGAIN if enforcement-mode file-locking and record-locking was set,
0_ NDELAY was set and there was a blocking record-lock.

EDEADLK if write should go to sleep and cause a deadlock to occur.

ENOLCK if the system record-lock table was full, so write could not
go to sleep until the blocking record-lock was removed.

442 The UNIX System User's Manual

Chapter 6

Kernel Extension
Routines

Kernel Extension

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct(path)
char *path;

DESCRIPTION
The function acct enables or disables the system-process accounting-routine.
If the routine is enabled, for each process that terminates, an accounting­
record will be written on an accounting-file. One of two things can cause ter­
mination:

1. a call to the EXIT(BA_SYS) routine, or

2. a signal [see SIGNAL(BA_SYS»).

The effective-user-ID of the calling-process must be super-user to use this
function.

The argument path points to a path-name naming the accounting-file. The
format of an accounting-file produced as a result of calling acct has records
in the format defined by the structure acct in <sys/acct. h> which
defines the following data-type:

comp_t 1* floating point - 13-bit fraction, *1
1* 3-bit exponent *1

and defines the following members in the structure acct:

char ac_flag; 1* accounting flag *1
char ac stat; 1* exit status *1 -ushort ac uid; 1* accounting user-ID *1
ushort ac_gid; 1* accounting group-ID *1
dev t ac_tty; - 1* control typewriter *1
time t ac btime; 1* beginning time *1 - -comp_ t ac_utime; 1* user-time in CLKTCKs *1
comp_ t ac stime; - 1* system-time in CLKTCKs
comp_ t ac_etime; 1* elapsed-time inCLKTCKs
comp_ t ac_mem; 1* memory usage *1
comp t ac io; 1* chars transferred *1 - -comp t ac rw; 1* blocks read or written - -char ac comm[al; 1* command name *1 -

and defines the following symbolic names:

AFORK
ASU
ACCTF

1* has executed fork, but no exec *1
1* used super-user privileges *1
1* record type: 00 = acct *1

*1
*1

*1

The AFORK flag is set in ac flag when the FORK(BA SYS) routine is exe­
cuted and reset when an EXEC(eA_SYS) routine is execut~. The ac _ comm
field is inherited from the parent process when a child process is created with

The UNIX System User's Manual ,445

Kernel Extension

the FORK(BA_SYS) routine and is reset when the EXEC(BA_SYS) routine is exe­
cuted. The variable ac mem is a cumulative record of memory usage and is
incremented each time the system charges the process with a clock tick.

If no errors occur during the call, the accounting routine is enabled if path
is non-zero and is disabled if pa th is zero.

RETURN VALUE

If successful, acct returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS

The function acct fails and errno equals:

EPERM if the effective user of the calling-process is not super-user.

EBUSY if an attempt is being made to enable accounting when it is
already enabled.

ENOTDIR if a component of the path-prefix is not a directory.

ENOENT if one or more components of the accounting file path-name do
not exist.

EACCES if the file named by path is not an ordinary file.

EROFS if the named file resides on a read-only file system.

SEE ALSO
EXIT(BA _ SYS), SIGNAL(BA _ SYS).

446 The UNIX System User's Manual

CHROOT(KE_SYS)

NAME

chroot - change root directory

SYNOPSIS
int chroot(path)
char *path;

DESCRIPTION

Kernel Extension

The function chroot causes the named-directory to become the root­
directory, the starting point for path searches for path-names beginning
with the character /. The user's working directory is unaffected by
chroot.

The argument pa th points to a path-name naming a directory.

The effective-user-ID of the process must be super-user to change the root
directory.

The .. entry in the root-directory is interpreted to mean the root-directory
itself. Thus, .. cannot be used to access files outside the sub-tree rooted at
the root-directory.

RETURN VALUE

If successful, chroot returns 0; otherwise, it returns - 1 and errno
indicates the error.

ERRORS

The function chroot fails, it does not change the root-directory, and
errno equals:

ENOTDIR if any component of the path-name is not a directory.

ENOENT if the named directory does not exist.

EPERM if the effective-user-ID is not super-user.

SEE ALSO
CHDIR(BA _ SYS).

The UNIX System User's Manual 447

Kernel Extension MSGCTL(KE _SYS)

NAME

msgctl - message-control-operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION

The function msgct 1 provides a variety of message-control-operations as
specified by cmd. The following values for cmd and the message-control­
operations they specify are available:

IPC STAT Put the current value of each member of the msqid ds
structure in the structure pointed to by buf. -

IPC SET Setthe following members of the msqid ds structure to the
corresponding value found in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode 1* only low 9-bits *1
msg_qbytes

Only a process with an effective-user-ID equal to either super­
user or to either msg perm. cuid or msg perm. uid in
the msqid ds structure can execute this -cmd, and only
super-user can raise the value of msg _ qbyte s.

IPC RMID Remove the message-queue-identifier specified by msqid from
the system and destroy the message-queue and msqid _ ds
structure. Only a process whose effective-user-ID equals either
super-user or either msg perm. cuid or msg perm. uid
in the m s q i d _ d s structure can execute this c md.

RETURN VALUE

If successful, msgctl returns 0; otherwise, it returns -1 and errno
indicates the error.

ERRORS

The function msgctl fails and errno equals:

EINVAL

EACCES

EPERM

if msqid is not a valid message-queue-identifier; or cmd is
not a valid command.

if cmd is IPC STAT and the calling-process does not have
read permission. -

if cmd is IPC RMID or IPC SET and the effective-user-ID
of the calling-process does not equal either super-user or either

448 The UNIX System User's Manual

MSGCTL(KE _SYS) Kernel Extension

EPERM

SEE ALSO

msg _perm. cuid or msg _perm. uid in the msqid _ ds
structure.

if cmd is IPC SET, an attempt is being made to increase the
value of msg=qbytes, and the effective-user-ID of the
calling-process does not equal super-user.

MSGGET(KE_SYS), MSGOP(KE_SYS).

The UNIX System User's Manual 449

Kernel Extension

NAME

msgget - get message-queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key, msgflg)
key_t key;
int msgflg;

DESCRIPTION

MSGGET(KE_SYS)

The function msgget returns the message-queue-identifier associated with
the argument key.

A message-queue-identifier with its associated msqid ds structure and
message-queue are created for· key if one of the following-are true:

if key equals IPC_PRIVATE.

if key does not already have a message-queue-identifier associated with
it,and (msgflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new message-queue­
identifier is initialized as follows:

Set msg perm. cuid and msg perm. uid to the effective-user-ID
of the calling-process; -

Set msg perm. cgid, and msg perm. gid to the effective-group-
ID of the Calling-process; -

Set the low-order 9-bits of msg _perm. mode to the low-order 9-bits of
msgflg;

Set msg_qnum, msg_lspid, msg_lrpid, msg_stime, and
msg_rtime to 0;

Set msg _ ctime to the current-time;

Set msg _ qbyte s to the system-limit.

RETURN VALUE

If successful, msgget returns a message-queue-identifier (a non-negative
integer); otherwise, it returns - 1 and errno indicates the error.

ERRORS
The function msgget fails and errno equals:

EACCES

ENOENT

if a message-queue-identifier exists for key, but operation­
permission as set by the low-order 9-bits of msgflg is denied.

if a message-queue-identifier does not exist for key and
(msgflg&IPC_CREAT) is "false".

450 The UNIX System User's Manual

MSGGET(KE _ SYS) Kernel Extension

ENOSPC

EEXIST

SEE ALSO

if a message-queue-identifier is to be created but the system­
imposed limit on the maximum number of allowed message­
queue-identifiers system-wide would be exceeded.

if a message-queue-identifier exists for the argument key but
«msgflg&IPC_CREAT)&&(msgflg&IPC_EXCL»
is "true".

MSGCTL(KE_SYS), MSGOP(KE_SYS).

The UNIX System User's Manual 451

Kernel Extension

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(msqid, msgp, msgsz, msgflg)
int msqid;
struct mymsg *msgp;
int msgsz, msgflg;

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct mymsg *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
The function msgsnd sends a message to the queue associated with the
message-queue-identifier specified by msqid.

The argument msgp points to a user-defined buffer that must contain first a
field of type long integer to specify the type of the message, and then a
data portion to hold the text of the message. The structure below is an exam­
ple of what this user-defined buffer might look like.

struct mymsg {
long mtype; 1* message type *1
char mtext[]; 1* message text *1

The structure member mtype is a positive integer that can be used by the
receiving-process for message selection (see msgrcv below).

The structure member mtext is any text of length msgsz bytes. The
argument msgsz can range from 0 to a system-imposed maximum.

The argument m s g f 1 g specifies the action to take if any or all of the follow­
ing are true:

The number of bytes already on the queue equals msg _ qbytes.

The total number of messages on all queues system-wide equals the
system-imposed limit.

452 The UNIX System User's Manual

Kernel Extension

These actions are as follows:

If (msgf1g&'IPC NOWAIT) is "true", the message is not sent and the
calling-process return; immediately.

If (msgf1g&.IPC NOWAIT) is ;;faise;;, the caning-process suspends
execution until one of the following occurs:

• The condition responsible for the suspension no longer exists, in which
case the message is sent.

• The message-queue-identifier msqid is removed from the system [see
MSGCTL(KE_SYSl). When this occurs, errno equals EIDRM and
- 1 is returned.

• The calling-process receives a signal that is to be caught. In this case
the message is not sent and the calling-process resumes execution in the
manner prescribed in the SIGNAL(BA_SYS) routine.

Upon successful completion, the following actions are taken with respect to the
msqid _ ds structure:

msg_qnum is increased by 1.

msg _1 spid is set to the process-ID of the calling-process.

msg_stime is set to the current time.

The function msgrcv reads a message from the queue associated with the
message queue identifier specified by msqid and places it in the user-defined
buffer pointed to by msgp. The buffer must contain a message type field fol­
lowed by the area for the message text (see the structure mymsg above).

The structure member mtype is the received message's type as specified by
the sending-process.

The structure member m t ext is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received
message is truncated to msgsz bytes if it is larger than msgsz and
(msgf 19&'MSG NOERROR) is "true". The truncated part of the message
is lost and no indication of the truncation is given to the calling-process.

The < sys/msg. h> header file defines the symbolic name
MSG NOERROR.

The argument msgtyp specifies the type of message requested as follows:

If msgtyp= 0, the first message on the queue is received.

If msgtyp> 0, the first message of type msgtyp is received.

If ms gtyp < 0, the first message of the lowest type that is less than or
equal to the absolute value of msgtyp is received.

The argument m s g f 1 g specifies the action to be taken if a message of the
desired type is not on the queue.

The UNIX System User's Manual 453

Kernel Extension

These actions are as follows:

If (msgflg&IPC NOWAIT) is "true", the calling-process immediately
returns with -1 and- errno equals ENOMSG.

If (msgflg&IPC NOWAIT) is "false", the calling-process suspends
execution until one of the following occurs:

• A message of the desired type is placed on the queue.

• The message-queue-identifier msqid is removed from the system.
When this occurs, errno equals EIDRM and -1 is returned.

• The calling-process receives a signal that is to be caught. In this case a
message is not received and the calling-process resumes execution in the
manner prescribed in SIGNAL(BA_SYS).

Upon successful completion, the following actions are taken with respect to the
msqid _ ds structure:

msg _ qnum is decremented by 1.

msg_lrpid is set to the process-ID of the calling-process.

msg_rtime is set to the current time.

RETURN VALUE

If successful, msgsnd returns O.

If successful, msgrcv returns the number of bytes put in the buffer
mtext.

Otherwise, both msgsnd and msgrcv return -1 and errno indicates
the error.

ERRORS
The function msgsnd fails, it does not send any messages, and errno

equals:

EINVAL

EACCES

EAGAIN

EINTR

EIDRM

if msqid is not a valid message-queue-identifier; or if mtype
is less than 1; or if ms g s z is less than 0 or greater than the
system-imposed limit.

if the calling-process is denied operation-permission.

if the message cannot be sent for one of the reasons cited above
and (msgf 19 & I PC _ NOWAIT) is "true".

if msgsnd was interrupted by a signal.

if the message-queue-identifier msgid has been removed from
the system.

454 The UNIX System User's Manual

Kernel Extension

The function msgrcv fails, it does not receive any messages, and errno

equals:

EINVAL

EACCES

EINTR

EIDRM

E2BIG

ENOMSG

SEE ALSO

if msqid is not a valid message-queue-identifier; or if msgsz
is less than 0,

if the calling-process is denied operation-permission.

if msgrcv was interrupted by a signal.

if the message-queue-identifier m s q i d has been removed from
the system.

if the length of mtext exceeds msgsz and
(msgflg&MSG NO ERROR) is "false".

if the queue does not contain a message of the desired type and
(msgtyp& IPC _NOWAIT) is "true".

MSGCTL(KE_SYS), MSGGET(KE_SYS), SIGNAL(BA_SYS).

The UNIX System User's Manual 455

Kernel Extension

NAME

nice - change priority of a process

SYNOPSIS
int nice(incr)
int incr;

DESCRIPTION

NICE(KE _ SYS)

The function nice adds the value of incr to the nice-value of the
calling-process. A process's nice-value is a positive number for which a more
positive value results in lower CPU priority.

The system imposes an implementation-specific, maximum process-nice-value
of 2 * {N ZERO} - 1 and a minimum process-nice-value of O. If adding
incr to the process's current nice-value causes the result to be above or
below these limits, the process's nice-value is set to the corresponding limit.

RETURN VALUE
If successful, n ice returns the process's new nice-value minus {NZ ERa}.

ERRORS
The function n ice fails, it does not change the process's nice-value, and
errno equals:

EPERM if incr is negative or greater than 2*{NZERO} and the
effective-user-ID of the calling-process is not super-user.

SEE ALSO
EXEC(BA_SYS).

456 The UNIX System Users Manual

Kernel Extension

NAME

plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock(op)
int op;

DESCRIPTION
The function plock allows the calling-process to lock its text segment (text
lock), its data segment (data lock), or both its text and data segments (process
lock) into memory. Locked segments are immune to all routine swapping.
The function plock also all!>ws these segments to be unlocked. The
effective-user-ID of the calling-process must be super-user to use this call. The
argument op specifies the following, which are defined by the
<sys/lock.h> header file:

PROCLOCK lock text and data segments into memory (process lock)

TXTLOCK lock text segment into memory (text lock)

DATLOCK lock data segment into memory (data lock)

UNLOCK remove locks

RETURN VALUE

If successful, plock returns 0 to the calling-process; otherwise, it returns
- 1 and errno indicates the error.

ERRORS
The function plock fails, it does not perform the requested operation, and
errno equals:

EPERM

EINVAL

EINVAL

EINVAL

EINVAL

if the effective-user-ID of the calling-process is not super-user.

if op is PROCLOCK and a process-lock, a text-lock, or a
data-lock already exists on the calling-process.

if op is TXTLOCK and a text-lock, or a process-lock already
exists on the calling-process.

if op is DATLOCK and a data-lock, or a process-lock already
exists on the calling-process.

if op is UNLOCK and the calling-process has no locks on it.

APPLICATION USAGE
The function plock should not be used by most applications. Only pro­
grams that must have the type of real-time control it provides should use it.

SEE ALSO

EXEC(BA_SYS), EXIT(BA_SYS), FORK(BA_SYS).

The UNIX System User's Manual 457

Kernel Extension PROFIL(KE_SYS)

NAME

profil - execution time profile

SYNOPSIS
void profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
The argument buff points to an area of memory whose length (in bytes) is
given by bufsiz. After the call to profil, the user's program counter
(pc) is examined each clock tick ((CLKJCK} times per second); offset is
subtracted from it, and the result multiplied by sea 1 e. If the resulting
number corresponds to an entry inside buf f, that entry is incremented. An
"entry" is defined as a series of bytes with length s i z eo f (s ho r t) .

The scale is interpreted as an unsigned, fixed-point fraction with binary point
at the left: 0177777 (octal) gives a 1-1 mapping of pc's to words in buff;
077777 (octal) maps each pair of instruction words together. 02 (octal)
maps all instructions onto the beginning of buf f (producing a non­
interrupting core clock).

Profiling is turned off by giving a sea 1 e of 0 or 1 . It is rendered
ineffective by giving a buf s i z of o. Profiling is turned off when an
EXEC(BA_SYS) routine is executed, but remains on in both child and parent
after a call to the FORK(BA_SYS) routine. Profiling will be turned off if an
update in ,buff would cause a memory fault.

RETURN VALUE

Not defined.

APPLICATION USAGE
The function prof i 1 would normally be used by an application program
only during development of a program to analyze the program's performance.

458 The UNIX System User's Manual

PTRACE(KE _ SYS) Kernel Extension

NAME

ptrace - process trace

SYNOPSIS

int ptrace(request, pid, addr,
int request, pid, data;

DESCRIPTION
The function ptrace provides a means by which a parent-process may con­
trol the execution of a child-process. Its primary use is for the implementation
of breakpoint debugging. The child-process behaves normally until it
encounters a signal [see SIGNAL(BA_SYS)] at which time it enters a stopped
state and its parent is notified via the WAIT(BA_SYS) routine. When the child
is in the stopped state, its parent can examine and modify its core-image using
ptrace. Also, the parent can cause the child either to terminate or con­
tinue, with the possibility of ignoring the signal that caused it to stop.

The data type of addr depends upon the request passed ptrace.

The argument request determines the precise action to be taken by
ptrace and is one of the following:

o This request must be issued by the child-process if it is to be traced
by its parent. It turns on the child's trace flag that stipulates that the
child should be left in a stopped state upon receipt of a signal rather
than the state specified by func [see SIGNAL(BA_SYS»). The argu­
ments pid, addr, and data are ignored, and a return value is
not defined for this request. Peculiar results will ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the parent-process. For
each, pid is the process-ID of the child. The child must be in a stopped
state before these requests are made.

1 ,2 With these requests, the word at location addr in the address space
of the child-process is returned to the parent-process. If instruction
(I) and data (D) space are separated, request 1 returns a word from
I-space, and request 2 returns a word from D-space. If I-space and
D-space are not separated either request 1 or request 2 may be
used with equal results. The argument data is ignored. These two
requests fail if addr is not the start address of a word, in which
case - 1 is returned to the parent-process and the parent's errno
equals EIO.

3 With this request, the word at location addr in the child's user­
area in the system's address space is returned to the parent-process.

The argument data is ignored. This request fails if addr is not
the start address of a word or is outside the user-area, in which case
- 1 is returned to the parent-process and the parent's errno equals
EIO.

The UNIX System User's Manual 459

Kernel Extension PTRACE(KE _ SYS)

4, 5 With these requests, the value of d a t a is written into the address
space of the child at location addr. If I-space and D-space are
separated, request 4 writes a word into I-space, and request 5
writes a word into D-space. If I-space and D-space are not
separated, either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written into the
address space of the child is returned to the parent.

These two requests fail if addr is a location in a pure procedure
space and another process is executing in that space, or addr is not
the start address of a word. Upon failure - 1 is returned to the
parent-process and the parent's errno equals EIO.

6 With this request, a few entries in the child's user-area can be writ­
ten.

The value of data is written and addr is the location of the
entry. Entries that can be written are implementation-specific but
might include general registers portions of the processor-status-word.

7 This request causes the child to resume execution. If data is 0,
all pending signals including the one that caused the child to stop are
canceled before it resumes execution.

If data is a valid signal number, the child resumes execution as if
it had incurred that signal, and any other pending signals are can­
celed. The argument addr must equal 1 for this request. Upon
successful completion, the value of da t a is returned to the parent.
This request fails if da ta is not 0 or a valid signal number, in
which case - 1 is returned to the parent-process and the parent's
errno equals EIO.

S This request causes the child to terminate with the same conse­
quences as the EXIT(BA_SYS) routine.

9 This request is implementation-dependent but if operative, it is used
to request single-stepping through the instructions of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subse­
quent EXEC(BA_SYS) routines. If a traced process calls and EXEC(BA_SYS) rou­
tine, it will stop before executing the first instruction of the new image show­
ing signal SIGTRAP.

RETURN VALUE

Upon failure, ptrace returns -1. Return values on successful completion
are specific to the request type (see above).

ERRORS

In general, ptrace fails and errno equals:

EIO if request is an illegal number. See the summary for each
request type above.

460 The UNIX System User's Manual

PTRACE(KE _ SYS) Kernel Extension

ESRCH if pid identifies a child that does not exist or has not executed
a ptrace with request O.

APPLICATION USAGE
The function ptrace should not be used by application-programs. It is only
used by software debugging programs and it is hardware-dependent.

When ptrace is used to read a word from the address space of the child­
process, reque s t 1, 2 or 3, the data read and value returned by
ptrace could be -1. In this case, a return value of -1 would not indicate
an error.

SEE ALSO

EXEC(BA _ SYS), SIGNAL(BA _ SYS), WAIT(BA _ SYS).

The UNIX System User's Manual 461

Kernel Extension

NAME

semctl - semaphore-control-operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid ds *buf;
ushort *array;

arg;

DESCRIPTION

SEMCTL(KE_SYS)

The function semctl provides a variety of semaphore-control-operations, as
specified by cmd, that are executed with respect to the semaphore specified
by semid and semnum. The <sys/sem.h> header file defines the
symbolic names for values of cmd. The level of permission required for each
operation is shown with each command below:

GETVAL

SETVAL

Return the value of s emva 1 (Requires read permission).

Set semval to arg. val (Requires alter permission).
Successfully executing this cmd clears the s emad j value
corresponding to the specified semaphore in all processes.

GETPID Return the value of sempid (Requires read permission).

GETNCNT Return the value of semncnt (Requires read permission).

GETZCNT Return the value of semzcnt (Requires read permission).

The following cmds operate on each semval in the set of semaphores.

GETALL

SETALL

Return semvals in the array pointed to by arg. array
(Requires read permission).

Set s em val values according to the array pointed to by
arg. array (Requires alter permission).
Successfully executing this cmd clears the s emad j values
corresponding to each specified semaphore in all processes.

The following cmds are also available:

IPC STAT Put the current value of each member of the semid ds
structure in the structure pointed to by arg. buf (Reqii'ires
read permission).

462 The UNIX System User's Manual

SEMCTL(KE _ SYS) Kernel Extension

IPC SET Set the following members of the s em i d d s structure to the
corresponding value found in the structure pointed to by
arg .buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode 1* only low 9-bits *1

Only a process with an etfective-user-ID equal to either super­
user or to either sem _perm. cuid or s em _perm. uid in
the semid ds structure can execute this cmd.

IPC RMID Remove the semaphore-identifier specified by semid from the
system and destroy the set of semaphores and the semid ds
structure. Only a process with an etfective-user-ID equal to
either super-user or to either sem_perm.cuid or
sem_perm.uid in the semid ds structure can execute
this cmd.

RETURN VALUE

If successful, the value s emc t 1 returns depends on cmd as follows:

GETVAL the value of semval.
GETPID the value of sempid.
GETNCNT the value of semncnt.
GETZCNT the value of semzcnt.
All others a value of O.

Otherwise, shmctl returns -1 and errno indicates the error.

ERRORS

The function semctl fails and errno equals:

EINVAL

EACCES

EPERM

ERANGE

SEE ALSO

if semid is not a valid semaphore-identifier; or semnum is
less than 0 or greater than sem nsems; or cmd is not a
valid command. -

if the calling-process is' denied operation-permission.

if cmd is IPC RMID or IPC SET and the etfective-user-ID
of the calling-process does not equal either super-user or either
sem_perm. cuid or sem_perm. uid in the semid_ ds
structure.

if cmd is SETVAL or SETALL and semval would exceed
the system imposed maximum.

SEMGET(KE_SYS), SEMOP(KE_SYS).

The UNIX System User's Manual 463

Kernel Extension

NAME

semget - get set of semaphores

SYNOPSIS

#inelude <sys/types.h>
#inelude <sys/ipe.h>
#inelude <sys/sem.h>
int semget(key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION

SEMGET(KE_SYS)

The function semget returns the semaphore-identifier associated with the
argument key.

A semaphore-identifier with its associated semid ds structure and its set
of nsems semaphores are created for key if one of the following are true:

if key equals IPC _PRIVATE.

if key does not already have a semaphore-identifier associated with it,
and (semflg&.IPC_CREAT) is "true".

Upon creation, the semid_ds structure is initialized as follows:

In the operation-permissions structure, set sem perm. euid and
sem perm. uid to the effective-user-ID of the calliiig-process; while set­
ting -sem perm. egid and sem perm. gid to the effective-group-
ID of the calling-process. -

Set the low-order 9-bits of sem_perm.mode to the low-order 9-bits of
semflg.

Set sem nsems is set to the value of nsems.

Set sem_otimeto O,andset sem_etime to the current time.

The data structure for each semaphore in the set is not initialized.

The function semetl with the command SETVAL or SETALL initializes
each semaphore.

RETURN VALUE

If successful, semget returns a semaphore-identifier (a non-negative
integer); otherwise, it returns - 1 and errno indicates the error.

ERRORS

The function semget fails and errno equals:

EACCES

EEXIST

if a semaphore-identifier exists for key, but operation­
permission set by the low-order 9-bits of semflg is denied.

if a semaphore-identifier exists for the argument key but
«semflg&.IPC_CREAT)&.&.(semflg&.IPC_EXCL))
is "true".

464 The UNIX System User's Manual

SEMGET{KE_SYS) Kernel Extension

ENOENT

ENOSPC

EINVAL

SEE ALSO

if a semaphore-identifier does not exist for the argument key
and (semflg&IPC_CREAT) is "false".

if a semaphore-identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores system­
wide would be exceeded.

if nsems is either less than or equal to 0 or greater than the
system-imposed limit, or a semaphore-identifier exists for key,
but the number of semaphores in the set associated with it is less
than nsems and nsems is not equal to O.

SEMCTL(KE_SYS), SEMOP(KE_SYS).

The UNIX System User's Manual 465

Kernel Extension

NAME

semop - semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(semid, sops, nsops)
int semid;
struct sembuf *sops;
unsigned nsops;

DESCRIPTION

The function s emop automatically performs an user-defined array of
semaphore-operations on the set of semaphores associated with the
semaphore-identifier specified by the argument s emid.

The argument sops points to a user-defined array of semaphore-operation
structures.

The argument nsops is the number of such structures in the array.

Each structure, s e mbu f, includes the following members:

short sem_num;
short sem_op;
short sem_flg;

1* semaphore number *1
1* semaphore operation *1
1* operation flags *1

,
Each semaphore operation specified by sem op is performed on the
corresponding semaphore specified by semid and sem_num.

The variable s em _ op specifies one of three semaphore operations:

1. If s em op is a negative integer and the calling-process has alter per­
mission, ~ne of the following occurs:

• If semval is greater than or equal to the absolute value of
sem_op, the absolute value of sem_op is subtracted from sem­
val. Also, if (sem flg&'SEM UNDO) is "true", the absolute
value of sem op is added to the calling-process's semadj value
for the specified semaphore [see EXIT(BA_SYS) in EFFECTS(KE_ENV»).

The < s y sis em. h> header file defines the symbolic name
SEM UNDO.

• If semval is less than the absolute value of sem_op and
(sem flg&.IPC CREAT) is "true", semop returns immedi-
ately. - -

• If s emva 1 is less than the absolute value of s em op and
(sem_flg&.IPC_CREAT) is "false", semop increments the
semncnt associated with the specified semaphore and suspends
execution of the calling-process until one of the following occurs:

466 The UNIX System User's Manual

SEMOP(KE _ SYS) Kernel Extension

The value of semval becomes greater than or equal to the
absolute value of s em _ op. When this occurs, the value of
s emncn t associated with the specified semaphore is decre­
mented, the absolute value of s em _ op is subtracted from
s emva 1 and, if {s em fIg s.. SEr~1_ UNDO) is "true", tht;
absolute value of s em ;p is added to the calling-process's
s emad j value for the specified semaphore.

The semid for which the calling-process is awaiting action is
removed from the system [see SEMCTL(KE_SYS»). When this
occurs, errno is set equal to EIDRM, and a value of - 1 is
returned.

The calling-process receives a signal that is to be caught. When
this occurs, the value of semncnt associated with the specified
semaphore is decremented, and the calling-process resumes execu­
tion in the manner prescribed in the routines defined in
SIGNAL(BA_SYS).

2. If s em op is a positive integer and the calling-process has alter per­
mission, - the value of s em _ 0 p is added· to s em val and, if
(sem flg&SEM UNDO) is "true", the value of sem op is sub­
tracted-from the caiiing-process's s emad j value for the sp~cified sema­
phore.

3. If sem op is 0 and the calling-process has read permission, one of
the following occurs:

• If semval is 0, semop returns immediately.

• If semvalisnotequalto o and (sem flg&IPC CREAT) is
"true", semop returns immediately. - -

• If semval is not equal to 0 and
"false", s emop increments the
specified semaphore and suspends
until one of the following occurs:

(sem flg&IPC CREAT) is
semzcnt associated with the
execution of the calling-process

The value of semval becomes 0, at which time the value of
semzent associated with the specified semaphore is decre­
mented.

The semi d for which the calling-process is awaiting action is
removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of - 1 is returned.

The calling-process receives a signal that is to be caught. When
this occurs, the value of s emz en t associated with the specified
semaphore is decremented, and the calling-process resumes execu­
tion in the manner prescribed in the routines defined in
SIGNAL(BA_ SYS).

The UNIX System User's Manual 467

Kernel Extension

RETURN VALUE

If successful, semop returns 0; otherwise, it returns -1 and errno indi­
cates the error.

ERRORS

The function semop fai1~ and errno equals:

EINVAL

EACCES

EAGAIN

EFBIG

E2BIG

ENOSPC

ERANGE

EINTR

EIDRM

if s emid is not a valid semaphore-identifier; or the number of
individual semaphores for which the calling-process requests a
SEM UNDO would exceed the limit.

if the calling-process is denied operation-permission.

if the operation would result in suspension of the calling-process
but (sem_flg&IPC_CREAT) is "true".

if s em _ num is less than 0 or greater than or equal to the
number of semaphores in the set associated with semid.

if nsops is greater than the system-imposed maximum.

if the limit on the number of individual processes requesting a
S EM UNDO would be exceeded.

if an operation would cause a semval to overflow the system­
imposed limit, or an operation would cause a semadj value to
overflow the system-imposed limit.

if semop was interrupted by a signal.

if semaphore-identifier semid was removed from the system.

Upon successful completion, the value of sempid for each semaphore
specified in the array pointed to by sops is set to the process-m of the
calling-process.

SEE ALSO

EXEC(BA_SYS), EXIT(BA_SYS), FORK(BA_SYS), SEMCTL(KE_SYS),

SEMGET(KE_SYS).

468 The UNIX System User's Manual

SHMCTL(KE _SYS) Kernel Extension

NAME

shmctl - shared-memory-control-operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION

The function shmctl provides a variety of shared-memory-control­
~perations as specified by cmd. The following values for cmd are available:

IPC STAT Put the current value of each member of the shmid ds

IPC SET

structure in the structure pointed to by buf. -

Set the following members of the shmid ds structure to the
corresponding value found in the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9-bits */

Only a process whose effective-user-ID equals either super-user
or either shm perm. cuid or shm perm. uid in the
shmid ds structure can execute this cm""d.

IPC RMID Remove the shared-memory-identifier specified by shmid from
the system and destroy the shared-memory-segment and
shmid ds structure associated with it. Only a process whose
effective=-user-ID equals either super-user or either
shm perm. cuid or shm perm. uid in the shmid ds
structure can execute this cmd.

RETURN VALUE

If successful, shmctl returns 0; otherwise, it returns -1 and errno
indicates the error.

ERRORS

The function shmctl fails and errno equals:

EINVAL

EACCES

EPERM

if shmid is not a valid shared-memory-identifier; or cmd is
not a valid command.

if cmd is IPC STAT and the calling-process does not have
read permission. -

if cmd is IPC RMID or IPC SET and the effective-user-ID
of the calling-prOcess does not e<i"ual either super-user or either
shm_perm.cuid or shm_perm.uid in the shmid_ds
structure.

The UNIX System User's Manual 469

Kernel Extension SHMCTL(KE _SYS)

APPLICATION USAGE

The functions shmctl, shmget, and shmat and shmdt are
hardware-dependent and may not be present on all systems. The shared­
memory-routines should not be used by applications except when extreme per­
formance considerations demand them.

SEE ALSO
SHMGET(KE_SYS), SHMOP(KE_SYS).

470 The UNIX System User's Manual

SHMGET(KE _ SYS)

NAME

shmget - get shared-memory-segment

SYNOPSIS

#include <Sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION

Kernel Extension

The function s hmg e t returns the shared-memory-identifier associated with
the argument key.

A shared-memory-identifier with its associated shmid ds structure and
shared-memory-segment of at least s i z e bytes are created for key if one
of the following are true:

if key equals IPC_PRIVATE.

if key does not already have a shared-memory-identifier associated with
itand (shmflg&IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared-memory­
identifier is initialized as follows:

Set shm _perm. cuid and shm _perm. uid to the effective-user-ID
of the calling-process.

Set shm perm. cgid and shm_perm. gid to the effective-groupoID
of the calling-process.

Set the low-order 9-bits of shm _perm. mode to the low-order 9·bits of
shmflg.

Set shm_segsz to the value of size.

Set shm_lpid, shm_nattch, shm atime, and shm dtime to
o.
Set shm ctime to the current time.

RETURN VALUE

If successful, s hmg e t returns a shared-memory-identifier (a non-negative
integer); otherwise, it returns -1 and errno indicates the error.

ERRORS

The function shmget fails and errno equals:

EACCES if a shared-memory-identifier exists for key but operation­
permission set by the low-order 9-bits of shmflg is denied.

The UNIX System User's Manual 471

Kernel Extension SHMGET(KE_SYS)

EEXI ST if a shared-memory-identifier exists for the argument key but
«shmflg&IPC CREAT)&&(shmflg&IPC EXCL))

ENOENT

ENOS PC

ENOMEM

EINVAL

is "true".

if a shared-memory-identifier does not exist for the argument
key and (shmflg&IPC_ CREAT) is "false".

if a shared-memory-identifier is to be created but the system­
imposed limit on the maximum number of allowed shared­
memory-identifiers system-wide would be exceeded.

if a shared-memory-identifier and associated shared-memory­
segment are to be created but the amount of available physical
memory is not sufficient to fill the request.

if s i z e is less than the system-imposed minimum or greater
than the system-imposed maximum, or a shared-memory­
identifier exists for key but the size of the segment associated
with it is less than s i z e and s i z e is not zero.

APPLICATION USAGE

The functions shmctl, shmget and shmat and shmdt are
hardware-dependent and may not be present on all systems. The shared
memory routines should not be used by applications except when extreme per­
formance considerations require them.

SEE ALSO

SHMCTL(KE_SYS), SHMOP(KE_SYS).

472 The UNIX System User's Manual

SHMOP(KE _ SYS)

NAME

shmop - shared-memory-operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat(shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt(shmaddr)
char *shmaddr

DESCRIPTION

Kernel Extension

The function shma t attaches the shared-memory-segment associated with
the shared-memory-identifier specified by shmid to the data segment of the
calling-process at the address specified by one of the following criteria:

If shmaddr is zero, attach the shared-memory-segment at the first avail­
able address the system selects.

If shmaddr is not zero and (shmf 19 &. SHM RND) is "true", attach
the shared-memory-segment at the address specified by (shmaddr­
(shmaddr % SHMLBA)), where % is the C language modulos operator.

If shmaddr is not zero and (shmf 19 &. SHM RND) is "false", attach
the shared-memory-segment at the address given by shmaddr.

The segment is attached for reading if (shmflg&'SHM RDONLY) is
"true" and the calling-process has read permission; otherwise, if it is not true
and the calling-process has read and write permission, the segment is attached
for reading and writing.

The function shmdt detaches the shared-memory-segment located at the
address given by shmaddr from the data segment of the calling-process.

The <sys/shm. h> header file defines the following symbolic names:

Name
SHMLBA
SHM RDONLY
SHM RND

RETURN VALUE

Description
segment low boundary address multiple
attach read-only (else read-write)
round attach address to SHMLBA

If successful, s hma t returns the data segment start address of the attached
shared-memory-segment.

If successful, s hmd t returns O. Otherwise, s hma t and s hmd t return
-1 and errno indicates the error.

The UNIX System User's Manual 473

Kernel Extension SHMOP(KE _ SYS)

ERRORS

The function s hma t fails, it does not attach the shared-memory-segment,
and errno equals:

EACCES

ENOMEM

EINVAL

EMFILE

if the calling-process is denied operation-permission.

if the available data space is not large enough to accommodate
the shared-memory-segment.

if shmid is not a valid shared-memory-identifier; or if
shmaddr is non-zero and the address specified by
(shmaddr - (shmaddr % SHMLBA» is illegal; or if
shmaddr is non-zero and (shmflg&SHM RND) is "false"
and shmaddr is an illegal-address.

if the number of shared-memory-segments attached to the
calling-process would exceed the system-imposed limit.

The function shmdt fails, it does not detach the shared-memory-segment,
and errno equals:

EINVAL if shmaddr is not the data-segment-start-address of a
shared -memory-segment.

APPLICATION USAGE

The functions shmctl, shmget, shma t, and shmd t are hardware
dependent and may not be present on all systems. The shared-memory­
routines should not be used by applications except when extreme performance
considerations require them.

SEE ALSO

EXEC(BA_SYS), EXIT(BA_SYS), FORK(BA_SYS), SHMCTL(KE_SYS),

SHMGET(KE_SYS).

474 The UNIX System User's Manual

Part III

Library Routines

Chapter 7

Base Library
Routines

ABS(BA_LIB)

NAME

abs - return integer absolute value

SYNOPSIS
int abs(i)
int i;

DESCRIPTION

Base System

The function abs returns the absolute value of its integer operand.

APPLICATION USAGE
In two-complement representation, the absolute value of the negative integer
with largest magnitude {INT_MIN} is undefined. Some implementations may
catch this as an error but others may ignore it.

SEE ALSO
FLOOR(BA_LlB).

The UNIX System User's Manual 479

Base System

NAME

jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS

#include <math.h>

double jO(x)
double X;

double j1(x)
double X;

double jn(n,
int n;
double X;

double yO(x)
double X;

double y1(x)
double X;

x)

double yn(n, x)
int n;
double x;

DESCRIPTION

BESSEL(BA _LIB)

The functions j 0 and j 1 return Bessel functions of X of the 1 st kind of
orders 0 and 1 respectively. The function jn returns the Bessel function of
X of the 1st kind of order n.

The functions yO and y 1 return Bessel fu~ctions of X of the 2nd kind of
orders 0 and 1 respectively. The function yn returns the Bessel function of
X of the 2nd kind of order n. For the functions yO, y 1 and yn, the argu­
ment X must be positive.

RETURN VALUE

Non-positive arguments cause yO, y 1 and yn to return the value -HUGE
and to set errno to EDOM. In addition, a message for a DOMAIN error is
printed on the standard error output.

Arguments too large in magnitude cause the functions j 0, j 1, yO and y 1
to return zero and to set errno to ERANGE. In addition, a message for a
TLOSS error is printed on the standard error output [see MATHERR(BA_LlB»).

APPLICATION USAGE
These error-handling procedures are changed by the MATHERR(BA_LlB) routine.

SEE ALSO
MATHERR(BA_LlB).

480 The UNIX System User's Manual

BSEARCH(BA _LIB)

NAME

bsearch - binary search on a sorted table

SYNOPSIS

char *bsearch(key. base. nel. width.
char *key;
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION

Base System

compar)

The function bsearch is a binary search routine. It returns a pointer into
a table indicating where a datum may be found. The table must be previously
sorted in increasing order according to a user-provided comparison function,
compar [see aSORT(BA_SYS)].

The argument key points to a datum instance to be sought in the table.

The argument base points to the element at the base of the table.

The argument nel is the number of elements in the table.

The argument width is the size of an element in bytes.

The argument compar is the name of the comparison function, which is
called with two arguments of type char that point to the elements being
compared. The compar function must return an integer less than, equal to
or greater than zero, as the first argument is to be considered less than, equal
to or greater than the second.

RETURN VALUE

A NULL pointer is returned if the key cannot be found in the table.

APPLICATION USAGE

The pointers to the key and the element at the base of the table, key and
bas e, should be of type pointer-to-element and cast to type pointer-to­
character.

The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

EXAMPLE

The following example searches a table containing pointers to nodes consisting
of a string and its length. The table is ordered alphabetically on the string in
the node pointed to by each entry.

The UNIX System User's Manual 481

Base System BSEARCH(BA_LlB}

This code fragment reads in strings; it either finds the corresponding node and
prints out the string and its length or it prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node {
char *string;
int length;

1* these are in the table *1

} ;
struct node table[TABSIZE]; 1* table to be searched *1

*1

struct node *node_ptr, node;
int node_compare(); 1* routine to compare 2 nodes *1
char str_space[20]; 1* space to read string into *1

node.string = str_space;
while (scanf(""s", node.string) 1= EOF) {

node_ptr = (struct node *)bsearch«char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr 1= NULL) {
(void)printf("string = "20s, length = "d\n",

node_ptr->string, node_ptr->length);
else {

(void) printf("not found: "s\n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

int node_compare(node1, node2)
struct node *node1, *node2;
{

return strcmp(node1->string, node2->string);

SEE ALSO

HSEARCH(BA_LlB), LSEARCH(BA_LlB), QSORT(BA_LIB), TSEARCH(BA_LlB).

482 The UNIX System User's Manual

CLOCK(BA _LIB) Base System

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
The function c lock returns the amount of CPU time (in microseconds) used
since the first call to c lock. The time reported is the sum of the user and
system times of the calling-process and its terminated child-processes for
which It has executed the WAIT(BA_SYS) or SYSTEM(BA_SYS) routine.

APPLICATION USAGE
The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution.

SEE ALSO
TIMES(BA_SYS), WAIT(BA_SYS), SYSTEM(BA_SYS).

The UNIX System User's Manual 483

Base System CONV(BA _LIB)

NAME

toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS

#include <ctype.h>

int toupper(c)
int c;

int tolower(c)
int c;

int toupper(c)
int c;

int tolower(c)
int c;

int toascii(c)
int c;

DESCRIPTION

The functions toupper and tolower have as domain the range of the
GETC(BA_LlB) routine: the integers from - 1 through 255. If the argument
of toupper represents a lower-case letter, the result is the corresponding
upper-case letter. If the argument of tolower represents an upper-case
letter, the result is the corresponding lower-case letter. All other arguments in
the domain are returned unchanged.

The macros toupper, tolower, and toascii are defined by the
<ctype. h>- header file. The macros toupper and tolower
accomplish the same thing as toupper and tolower but ha~e restricted
domains and are faster. The macro toupper requires a lower-case letter
as its argument; its result is the corresponding upper-case letter. The macro
_ tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause
undefined results.

The macro toa sci i yields its argument with all bits turned off that are not
part of a standard ASCII character; it is intended for compatibility with other
systems.

SEE ALSO
CTYPE(BA_LlB), GETC(BA_LIB).

484 The UNIX System User's Manual

NAME

crypt, setkey, encrypt - generate string encoding

SYNOPSIS

char *crypt{key, ~~lt)

char *key, *salt;

void setkey(key)
char *key;

char *block;
int edflag;

DESCRIPTION

aA4=1.::1irrl -----;1'

The function crypt is a string-encoding function.

Base System

The argument key is a string to be encoded. The argument salt is a
two-character string chosen from the set [a - z A - Z 0 - 9 .]; this string is
used to perturb the encoding algorithm, after which the string that key
points to is used as the key to repeatedly encode a constant string. The
returned value points to the encoded string. The first two characters are the
salt itself.

The functions setkeyand encrypt provide (rather primitive) access to
the encoding algorithm. The argument to the entry setkey is a character
array of length 64 containing only the characters with numerical value 0 and
1. If this string is divided into groups of 8, the low-order bit in each group is
ignored; this gives a 56-bit key. This is the key that will be used with the
above mentioned algorithm to encode the string block with the function
encrypt.

The argument to the entry encrypt is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. The argument
array is modified in place to a similar array representing the bits of the argu­
ment after having been sUbjected to the encoding algorithm using the key set
by setkey.

If the argument e d f 1 a g is zero, the argument is encoded.

APPLICATION USAGE

The return value of the function crypt points to static data that are
overwritten by each call.

The UNIX System Users Manual 485

Base System

NAME

ctermid - generate file name for terminal

SYNOPSIS

#include <stdio.h>

char *ctermid(s)
char *s;

DESCRIPTION

CTERMID(BA _LIB)

The function ctermid generates the path-name of the controlling terminal
for the current process and stores it in a string.

If the argument s is a NULL pointer, the string is stored in an internal
static area which will be overwritten at the next call to ctermid. The
address of the static area is returned. Otherwise, s is assumed to point to a
character array of at least L ctermid elements; the path name is placed in
this array and the value 0(-s is returned. The constant L ctermid is
defined by the < stdio. h> header file. -

APPLICATION USAGE

The difference between the TIVNAME(BA_LlB) routine and the function
ctermid is that the TTVNAME(BA_LlB) routine must be passed a file­
descriptor and returns the name of the terminal associated with that file­
descriptor, while the function ctermid returns a string (e.g.,' /dev/tty)
that will refer to the terminal if used as a file-name. Thus the
TIVNAME(BA_LlB) routine is useful only if the process already has at least one
file open to a terminal.

SEE ALSO
TTVNAME(BA_LlB).

486 The UNIX System User's Manual

CTIME(BA _LIB) Base System

NAME

ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS

char *ctime(clock)
long *clock;

struct tm *localtime(clock)
10Ilg *cloci..;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION

The function ctime converts a long integer, pointed to by clock, giving
the time in seconds since 00:00:00 GMT, January 1, 1970 [see TIME(BA_SYS)]

and returns a pointer to a 26-character string in the following form:

Sun Sep 16 01:03:52 1973

All the fields have constant width.

The functions local time and gmtime return pointers to the structure
tm, described below:

The function local time corrects for the time-zone and possible
Daylight Savings Time.

The function gmtime converts directly to Greenwich Mean Time
(GMT), which is the time the system uses.

The function asctime converts a tm structure to a 26-character string, as
shown in the above example, and returns a pointer to the string.

The external long variable time zone contains the difference, in seconds,
between GMT and local standard time (in EST, time zone is
5*60*60); the external variable daylight is non-zero only if the stan­
dard USA Daylight Savings Time conversion should be applied. The program
compensates for the peculiarities of this conversion in 1974 and 1975; if neces­
sary, a table for these years can be extended.

The UNIX System User's Manual 487

Base System CTIME(BA_LIB)

The < time. h> header file declares all the functions, the external variables
and the tm structure, which includes the following members:

int tm sec; /* number of seconds past */ -
/* the minute (0-59) */

int tm min; /* number of minutes past */
/* the hour (0-59) */

int tm hour; /* current hour (0-23) */ -
int tm mday; /* day of month (1-31) */ -int tm mon; /* month of year (0-11) */ -
int tm year; /* current year -1900 */ -
int tm_wday; /* day of week (Sunday=O) */
int tm yday; /* day of year (0-365) */ -
int tm isdst; /* daylight savings time flag */ -

The value of tm_isdst is non-zero if Daylight Savings Time is in effect.

If an environment variable named TZ is present, asctime uses the con­
tents of the variable to override the default time-zone. The value of TZ must
be a three-letter time-zone name, followed by an optional minus sign (for
zones east of Greenwich) and a series of digits representing the difference
between local time and Greenwich Mean Time in hours; this is followed by an
optional three-letter name for a daylight time-zone. For example, the setting
for New Jersey would be EST5EDT. The effects of setting TZ are thus to
change the values of the external variables timezone and daylight.
In addition, the time-zone names contained in the external variable

char *tzname[2] = { "EST", "EDT" };

are set from the environment variable T Z. The function t z set sets these
external variables from T Z; the function t z set is called by as c tim e
and may also be called explicitly by the user.

APPLICATION USAGE
The return values point to static data that is overwritten by each call.

SEE ALSO

TIMECBA_SYS), GETENVCBA_LlB).

CAVEATS
The argument clock to the functions ctime, local time and
gmtime will be defined by the <sys/types. h> header file as pointer to
time t.

The number in T Z will be defined as an optional minus sign followed by two
hour-digits and two minute-digits, hhmm, to represent fractional time-zones.

488 The UNIX System User's Manual

Base System

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, is print,
isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include <ctype.h>

int isalpha(c)
int c;

int isupper(c)
int c;

int islower(c)
int c;

int isdigit(c)
int c;

int isxdigit(c)
int c;

int isalnum(c)
int c;

int isspace(c)
int c;

int ispunct(c)
int c;

int isprint(c)
int c;

int isgraph(c)
int c;

int iscntrl(c)
int c;

int isascii(c)
int c;

DESCRIPTION

These macros, which are defined by the <ctype. h> header file, classify
character-coded integer values. Each is a predicate returning non-zero for
true, zero for false. The function is a sci i is defined on all integer values;
the rest are defined only where is a sci i is true and on the single non-ASCII
value EOF, which is defined by the <stdio. h> header file and represents
end-of-file.

isalpha(c) cisaletter.

i supper (c) c is an upper-case letter.

The UNIX System User's Manual 489

Base System CTYPE(BA_LIB)

is lowe r (c) c is a lower-case letter.

is dig i t (c) c is a digit [0 - 9] .

isxdigit(c) cisahexadecimaldigit [0-9], [A-F]or [a-fl.

is a 1 n urn (c) c is an alphanumeric Oetter or digit).

isspace (c) c is a space, tab, carriage-return, new-line, vertical-tab or
form-feed.

ispunct (c) c is a punctuation mark (neither control nor alpha-numeric
nor space).

isprint (c) c is a printing character, ASCII code 040 (space) through
0176 (tilde).

isgraph(c) c is a printing character, like isprint except false for
space.

i sen t r 1 (c) c is a delete character (0 1 7 7) or an ordinary control­
character Oess than 0 4 0) .

i sa sci i (c) c is an ASCII character, code between 0 and 0 1 7 7
inclusive.

RETURN VALUE
If the argument to any of these macros is not in the domain of the function,
the result is undefined.

SEE ALSO
FOPEN(BA_SYS), ASCII character set in Definitions.

490 The UNIX System User's Manual

DRAND48(BA _LIB) Base System

NAME

drand48. erand48. Irand48. nrand48. mrand48. jrand48. srand48. seed48.
Icong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS

double drand48()

double erand48(xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48(xsubi)
unsigned short xsubi[3];

long mrand48()

long jrand48(xsubi)
unsigned short xsubi[3];

void srand48(seedval)
long seedval;

unsigned short *seed48(seed16v)
unsigned short seed16v[3];

void lcong48(param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well­
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0.1.0).

Functions lrand48 and nrand48 return non-negative long integers uni­
formly distributed over the interval [0.231).

Functions mrand48 and j rand48 return signed long integers uniformly
distributed over the interval [_231 .231).

Functions srand48. seed48 and lcong48 are initialization entry
points. one of which should be called before calling drand48. lrand48
or mrand48. While not recommended. constant default initializer values
are supplied automatically if drand48. lrand48 or mrand48 is called
without first calling an initialization entry point. Functions erand48.
nrand48 and jrand48 need no initialization entry point called first.

All the routines generate a sequence of 48-bit integer values. Xi. according to
the linear congruential formula:

X n+1=(aX n +c)modm n~O

The parameter m = 248; hence 48-bit integer arithmetic is performed.

The UNIX System User's Manual 491

Base System DRAND48(BA_LlB)

Unless lcong48 is called, the multiplier a and the addend care:

a == 5DEECE66D 16- 273673163155 8
c ... B 16= 13 8

The value returned by any of the functions drand48, erand48,
lrand48, nrand48, mrand48 or jrand48 is computed by first gen­
erating the next 48-bit Xi in the sequence. Then the appropriate number of
bits, according to the type of data item to be returned, are copied from the
high-order (leftmost> bits of XI and transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit
Xi generated in an internal buffer; that is why they must be initialized prior to
being invoked. The functions erand48, nrand48 and jrand48
require the calling program to provide storage for the successive Xi values in
the array specified as an argument when the functions are invoked. That is
why these routines do not have to be initialized; the calling program merely
has to place the desired initial value of Xi into the array and pass it as an
argument. By using different arguments, functions erand48, nrand48
and jrand48 allow separate modules of a large program to generate several
independent streams of pseudo-random numbers. In other. words, the sequence
of numbers in each stream will not depend upon how many times the routines
have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32-bits of XI to the
(LONG_BIT} bits contained in its argument. The low-order 16-bits of XI are
set to the arbitrary value 330E16.

The initializer function seed48 sets the value of Xi to the 48-bit value
specified in the argument array. In addition, the previous value of Xi is
copied into a 48-bit internal buffer, used only by, seed48, and a pointer to
this buffer is the value returned by seed48.

The initialization function lcong48 allows the user to specify the initial Xi,
the multiplier a and the addend c. Argument array elements param[0-
2] specify Xi, param [3 - 5] specify the multiplier a, and param [6]
specifies the 16-bit addend c. After lcong48 has been called, a subsequent
call to either srand48 or seed48 will restore the standard multiplier
and addend values, a and c, specified earlier.

APPLICATION USAGE
The pointer returned by seed48, which can just be ignored if not needed, is
useful if a program is to be restarted from a given point at some future time.
Use the pointer to get at and store the last Xi value and then use this value to
reinitialize via seed48 when the program is restarted.

SEE ALSO
RAND(BA_LIB).

492 The UNIX System User's Manual

ii
I

NAME

erf, erfc - error function and complementary error function

SYNOPSIS

double erf(x)
double X;

double erfc(x)
double X;

DESCRIPTION

Base System

The function erf returns the error function of X, defined as follows:
x

7- f e-t2dt
V1r 0

The function e r f c returns 1. 0 - e r f (X) .

APPLICATION USAGE
The function erfc is provided because of the extreme loss of relative accu­
racy if erf (x) is called for large X and the result subtracted from 1. o.

SEE ALSO
EXP(BA _LIB).

The UNIX System Users Manual 493

Base System

NAME
exp, log, 10g10, pow, sqrt - exponential, logarithm, power, square root func­
tions

SYNOPSIS

#include <math.h>

double exp(x)
double X;

double log (x)
double X;

double log10(x)
double X;

double pow(x, y)
double x, y;

double sqrt(x)
double X;

DESCRIPTION
The function exp returns eX.

The function log returns the natural logarithm of x. The value of X must
be positive.

The function log 10 returns the logarithm base ten of x. The value of X

must be positive.

The functions pow returns x Y• If X is zero, y must be positive. If X is
negative, y must be an integer.

The function sqrt returns the non-negative square root of x. The value of
X may not be negative.

RETURN VALUE
The function exp returns HUGE when the correct value would overflow or
o when the correct value would underflow and sets errno to ERANGE.

The functions log and log 1 0 return -HUGE and set errno to
EDOM when x is non-positive. A message indicating DOMAIN error (or
SING error when x is 0) is printed on the standard error output.

The function pow returns 0 and sets errno to EDOM when x is 0 and
y is non-positive, or when x is negative and y is not an integer. In these
cases a message indicating DOMAIN error is printed on the standard error
output. When the correct value for pow would overflow or underflow, pow
returns ±HUGE or 0 respectively and sets errno to ERANGE.

The function sqrt returns 0 and sets errno to EDOM when x is nega­
tive. A message indicating DOMAIN error is printed on the standard error
output.

494 The UNIX System User's Manual

EXP(BA _LIB) Base System

APPLICATION USAGE
These error-handling procedures are changed by the MATHERR(BA_LlB) routine.

SEE ALSO

CAVEATS

A macro HUGE VAL will be defined by the <math. h> header file. This
macro will call a function which will either return +00 on a system supporting
the IEEE P754 standard or +(MAXDOUBLEl on a system that does not ~lIpp/lrt
the IEEE P754 standard.

The function exp will return HUGE _ VAL when the correct value overflows.

The functions 109 and 10910 will return -HUGE_VAL when x is not
positive.

The function sqrt will return -0 when the value of x is -0.

The return value of pow will be negative HUGE _ VAL when an illegal com­
bination of input arguments is passed to pow.

The UNIX System Users Manual 495

Base System

NAME

floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor(x)
double X;

double ceil(x)
double X;

double fmod(x, y)
double X, y;

double fabs(x)
double X;

DESCRIPTION

The function floor returns the largest integer (as a double-precision
number) not greater than x.

The function c e i 1 returns the smallest integer not less than x.

The function fmod returns the floating-point remainder of the division of X

by y, zero if y is zero or if x/y would overflow. Otherwise the number is!
with the same sign as x, such that x-iy+! for some integer i, and
I!I<IYI·
The function fa b s returns the absolute value of x, i.e., 1 X I.

SEE ALSO
ABS(BA _LIB).

CAVEATS

The function fmod will return X if y is zero or if x/y would overflow.

496 The UNIX System Users Manual

FREXP(BA _LIB)

NAME

frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp(value, eptrl
double value;
int *eptr;

double ldexp(value, exp)
double value;
int exp;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

Base System

Every non-zero number can be written uniquely as x-2", where the mantissa
(fraction) x is in the range 0.5 ~ I x I < 1.0 and the exponent n is an integer.
The function frexp returns the mantissa of a double value and
stores the exponent indirectly in the location pointed to by eptr. If
value is 0, both results returned by frexp are O.

The function ldexp returns the quantity val ue_2exp.

The function modf returns the fractional part of va 1 ue and stores the
integral part indirectly in the location pointed to by iptr. Both the frac­
tional and integer parts have the same sign as value.

RETURN VALUE

If ldexp would cause overflow, ±HUGE is returned (according to the sign
of value) and errno is set to ERANGE.

If ldexp would cause underflow, 0 is returned and errno is set to
ERANGE.

CAVEATS

A macro HUGE_VAL will be defined by the <math.h> header file This
macro will call a function which will either return +00 on a system supporting
the IEEE P754 standard or +(MAXDOUBLE) on a system that does not support
the IEEE P754 standard.

The return value of ldexp will be ±HUGE VAL (according to the sign of
val ue) in case of overflow. -

The UNIX System User's Manual 497

Base System

NAME

ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw(path, fn, param)
char *path;
int (*fn) ();
int param;

DESCRIPTION
The function ftw recursively descends the directory hierarchy rooted in
pa th visiting each directory before visiting any of its descendants. For each
object in the hierarchy, ftw calls a user-defined function fn passing it three
arguments. The first argument passed is a character pointer to a null­
terminated string containing the name of the object. The second argument
passed to fn is a pointer to a stat structure [see STAT(BA_SYS)] containing
information about the object, and the third argument passed is an integer flag.
Possible values of the flag, defined by the < f t w • h> header file, are F TW F
for a file, FTW D for a directory, FTW DNR for a directory that cannot-be
read and FTW -NS for an object for whiCh stat could not successfully be
executed. If the integer is FTW DNR, descendants of that directory will not
be processed. If the integer is F TW N S, the contents of the s tat structure
are undefined. -

The function f t w uses one file-descriptor for each level in the tree. The
argument param limits the number of file-descriptors to be in the range of
1 to {OPEN_MAX}. The function ftw will run more quickly if param is at
least as large as the number of levels in the tree.

RETURN VALUE

The tree traversal continues until the tree is exhausted or fn returns a non­
zero value or f t w detects some error (such as an 110 error). If the tree is
exhausted, ftw returns O. If fn returns a non-zero value, ftw stops its
tree traversal and returns whatever value fn returned.

If ftw detects ail error other than EACCES (see FTW DNR and
FTW_NS above), it returns -1 and errno equals the type of error. The
external variable errno may contain the error values that are possible when
a directory is opened [see OPEN(BA_SYS)] or when the STAT(BA_SYS) routine is
executed on a directory or file.

APPLICATION USAGE
Because ftw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.

SEE ALSO
STAT(BA_SYS), MAllOC(BA_SYS).

498 The UNIX System User's Manual

NAME

gamma - log gamma function

SYNOPSIS

#include <math.h>

double gamma(x)
double Xj

extern int signgamj

DESCRIPTION

Base System

The function gamma returns In(lr<x)i), where r(x) is defined as:
co

fe-1tX-1dt
o

The sign of r(x) is returned in the external integer signgam. The argu-
ment x may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if «y = gamma(x» > LN_MAXDOUBLE)

error() j
Y = signgam * exp(Y)j

RETURN VALUE

For non-positive integer arguments, gamma returns HUGE and errno
equals EDOM. A message indicating SING error is printed on the standard
error output [see MATHERR(BA_LlB)J.

If the correct value overflows, gamma returns HUGE and errno equals
ERANGE.

APPLICATION USAGE

These error-handling procedures are changed by the MATHERR(BA_LlB) routine.

SEE ALSO

EXP(BA_LlB), MATHERR(BA_LlB).

CAVEATS

A macro HUGE VAL will be defined by the <math.h> header file. This
macro calls a function returning either +00 on a system that does support the
IEEE P754 standard or +{MAXDOUBLE} on a system that does not support the
IEEE P754 standard.

If the correct value overflows, gamma returns HUGE VAL.

The UNIX System User's Manual 499

Base System

NAME

getc, getchar, fgetc, getw - get characte~ or word from a stream

SYNOPSIS

#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar ()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION

The function getc returns as an integer the next character (i.e., byte) from
the named input stream s t ream and sets the file-pointer, if defined, ahead
one character in stream. The function getchar is defined as
getc (stdin). Both getc and getchar are macros.

The function fgetc behaves like getc, but is a function instead of a
macro. The function fgetc runs more slowly than getc but it takes less
space per invocation and its name can be passed as an argument to a function.

The function getw reads the next word (i.e., integer) from the named input
stream, stream and sets the file-pointer, if defined, to point to the next
word. The size of a word is the size of an integer and varies from machine to
machine. The function getw needs no special alignment in the file.

RETURN VALUE
These functions return EOF at end-of-fileor on an error. Because EOF is an
integer constant, use the FERROR(BA_SYS) routines to detect these errors

APPLICATION USAGE

. If the integer value returned by getc, getchar or fgetc is assigned to
a character variable and then compared against the integer constant EOF, the
comparison may never succeed because sign-extension of a character on widen­
ing to integer is machine-dependent.

Because word-length and byte-ordering are machine-dependent, files written
using putw may not be read using getw on a different processor.

Because it is implemented as a macro, getc incorrectly treats stream
when it has side-effects. In particular, getc (*f++) does not work sensi­
bly, and fgetc should be used instead.

SEE ALSO
FCLOSE(BA_SYS), FERROR(BA_SYS), FOPEN(BA_SYS), FREAD(BA_SYS),

GETS(BA_LlB), PUTC(BA_LlB), SCANF(BA_LIB).

500 The UNIX System User's Manual

GETENV(BA _LIB)

NAME

getenv - return value for environment name

SYNOPSIS

char *getenv(name)
char *name;

DESCRIPTION

Base System

The function getenv searches the environment list for a string of the form:

name = value

and returns a pointer to value in the current environment if such a string is
present. Otherwise, it returns a NULL pointer.

SEE ALSO

EXEC(BA_SYS), SYSTEM(BA_SYS), PUTENV(BA_LlB).

The UNIX System User's Manual 501

Base System

NAME

getopt - get option letter from argument vector

SYNOPSIS
int getopt(argc, argv, optstring)
int argc;
char *argv[], *optstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION

GETOPT(BA_LlB)

The function getopt is a command-line parser. It returns the next option
letter in argv that matches a letter in optstring. The function
getopt stores the argv index of the next argument to be processed in the
external variable optind, which is initialized to 1 before first calling
getopt.

The argument optstring is a string of recognized option letters; if a letter
is followed by a colon, the option is expected to have an argument that mayor
may not be separated from it by white space.

The function getopt sets optarg to point to the start of the option argu­
ment.

When all options are processed (i.e., up to the first non-option argument),
getopt returns EOF. The special option -- may be used to delimit the
end of the options; EOF will be returned and - - will be skipped.

RETURN VALUE

The function getopt prints an error message on stderr and returns a
question-mark (?) when it gets an option letter not in optstring. Setting
opt err to a 0 disables this error message.

502 The UNIX System User's Manual

GETOPT(BA_LlB) Base System

EXAMPLE

The following code fragment shows how one can process the arguments for a
command takes the mutually exclusive options a and b and the options f
and 0, both of which require arguments:

main (arqc, arqv)
int arqc;
char *arqv [];
{

int c;
int bflq, aflq, errflq;
char *ifile;
char *ofile;
extern char *optarq;
extern int optind;

while «c = qetopt(arqc, arqv, "abf:o:"» 1= EOF)
switch (c) {
case 'a': if (bflq)

errflq++;
else

aflq++;
break;

case 'b': if (aflq)
errflq++;

else
bproc();

break;
case ' f' : ifile = optarq;

break;
case ' 0' : ofile = optarq;

break;
case '?': errflq++;

if (errflq) {
fprintf(stderr, "usaqe: ... ");
exit(2) ;

for (; optind < arqc; optind++)
if (access(arqv[optind], 4»

The UNIX System User's Manual 503

Base System GETOPT(BA_LlB)

CAVEATS

The function getopt will be enhanced to enforce all rules of the UNIX Sys­
tem V Command Syntax Standard (see below). All new UNIX System V com­
mands will conform to the command syntax standard described here. Existing
commands will migrate toward the new standard if they do not already meet
it. Applications with command-like user-interfaces may want to conform to
this standard.

The following rules form the UNIX System V standard for command syntax:

RULE 1:

RULE 2:

RULE 3:

RULE 4:

RULE 5:

RULE 6:

RULE 7:

RULE 8:

RULE 9:

RULE 10:

RULE 11:

RULE 12:

RULE 13:

Command names must be between two and nine characters.

Command names must include lower-case letters and digits only.

Option names must be a single character in length.

All options must be delimited by the - character.

Options with no arguments may be grouped behind one delim­
iter.

The first option-argument following an option must be preceded
by white space.

Option arguments cannot be optional.

Groups of option arguments following an option must be
separated by commas or separated by white space and quoted.

All options must precede operands on the command line.

The characters - - may be used to delimit the end of the
options.

The order of options relative to one another should not matter.

The order of operands may matter and position-related interpre­
tations should be determined on a command-specific basis.

The - character preceded and followed by white space should
be used only to mean standard input.

The function getopt is the command-line parser that will enforce the rules
of this command syntax standard.

504 The UNIX System User's Manual

GETS(BA_LIB)

NAME

gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char !C:. "- ,
int n;
FILE *stream;

DESCRIPTION

Base System

The function gets reads characters from the standard input stream,
stdin, into the array pointed to by s until a new-line character is read or
an end-of-file occurs. The new-line character is discarded and the string is
terminated with a null character.

The function fgets reads characters from stream into the array pointed
to by s until n - 1 characters are read or a new-line character is read and
transferred to s or an end-of-file occurs. The string is then terminated with a
null-character.

RETURN VALUE

If end-of-file occurs and no characters were read, neither gets nor fgets
transfer characters to s and they return a NULL pointer; if a read error
occurs (such as trying to use these functions on a file that is not open for read­
ing), they return a NULL pointer; otherwise, they return s.

APPLICATION USAGE
Reading too long a line through gets may cause gets to fail. The use of
f get s is recommended.

SEE ALSO

FERROR(BA_SYS), FOPEN(BA_SYS), FREAD(BA_SYS), GETC(BA_LlB),
SCANF(BA_LlB).

The UNIX System User's Manual 505

Base System

NAME

hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY *hsearch(item. action)
ENTRY item;
ACTION action;

int hcreate(nel)
unsigned nel;

void hdestroy(

DESCRIPTION

HSEARCH(BA_LlB)

The function hsearch is a hash-table search routine. It returns a pointer
into a hash table indicating the location at which an entry can be found. The
comparison function used by hsearch is strcmp [see STRING(BA_LlB»).

The argument item is a structure of type ENTRY (defined by the
< sea r c h • h> header file) containing two character pointers:

item. key points to the comparison key,
item. da ta points to any other data to be associated with that key.

(Pointers to types other than char should be cast to pointer-to-character.)

The argument action is a member of an enumeration type ACTION,
defined by the <search.h> header file, indicating the disposition of the
entry if it cannot be found in the table.

ENTER indicates that the item should be inserted in the table at an appropri­
ate point. Given a duplicate of an existing item, the new item is not entered,
and hsearch returns a pointer to the existing item.

FIND indicates that no entry should be made. Unsuccessful resolution is indi­
cated by the return of a NULL pointer.

The function hcrea te allocates sufficient space for the table and must be
called before hsearch is used. The value of nel is an estimate of the
maximum number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain mathematically
favorable circumstances.

The function hdestroy destroys the search table and may be followed by
another call to hcreate'.

RETURN VALUE

Either if ~he action is FIND and the item can not be found or if the action is
ENTER and the table is full, hsearch returns a NULL pointer.

If sufficient space for the table cannot be allocated, hcrea te returns O.

506 The UNIX System User's Manual

HSEARCH(BA _LIB) B8se System

APPLICATION USAGE

Both hseareh and herea te use the MALLOC(BA_SYS) routines to allo­
cate space.

EXAMPLE
The example reads in strings followed by two numbers and stores them in a
hash table, then reads in strings and finds the entry in the table and prints it.

#include <std'io.h>
#include <aearch.h>

atruct info { I. theae are in the table .1
I. apart from the ksy • • 1 int age, room;

} ;
#define NUM_BMPL 5000 I. # of elements in the table .1

maine)
{

I. space for strings .1
char atring_apace[NUM_BMPL.201;
I. space for employee info .1
struct info info_apace[NUM_BMPL1;
I. next avail space for strings .1
char .str_ptr • atring_apace;
I. next avail space for info .1
struct info .info_ptr - info_apace;
ENTRY item, .found_item, .haearch();
char name_to_find[301; I. name to look for in table .1
int i - 0;

I. create table .1
(void) hcreate(NUM_BMPL);
while (acanf("KaKdKd", atr_ptr, &info_ptr->age,

&info_ptr->room) I- BOP && i++ < NUM_EMPL)
I. put info in atructure, and structure in item .1
item.key • atr_ptr;
item. data - (char .)info_ptr;
str_ptr +- strlen(str_ptr) + 1;
info_ptr++;
I. put item into table .1
(void) hsearch(item, ENTBR);

I. accesa table .1
item.key • name_to_find;
while (acanf("Ka", item.key) I- EOP) {

if ((found_item - haearch(item, PIND» I- NULL) {
I. if item is in the table .1
(void) printf("found Ka, age - Kd, room - Kd'n",

found_item->key,
((atruct info .)found_item->data)->age,
((atruct info .)found_item->data)->room);

else {
(void) printf("no auch employee Ks'n",

name_to_find)

The UNIX System User's Manual 507

Base System HSEARCH(BA _LIB)

SEE ALSO

MALLOC(BA_SYS), BSEARCH(BA_LlB), LSEARCH(BA_LlB), STRING(BA_LlB),

TSEARCH(BA_LlB).

CAVEATS

The restriction of having only one hash search table active at any given time
will be removed.

508 The UNIX System User's Manual

NAME

hypot - Euclidean distance function

SYNOPSIS

#include <math.h>

double hypot(x, y)
double x, y;

DESCRIPTION

Base System

The function hypot returns sqrt (x * x + Y * y), taking precau­
tions against unwarranted overflows.

RETURN VALUE
If the correct value overflows, hypot returns HUGE and errno equals
ERANGE.

These error-handling procedures are changed by the MATHERR{BA_LlB) routine.

SEE ALSO
MATHERR(BA _LIB).

CAVEATS

A macro HUGE VAL will be defined by the <math. h> header file. This
macro will call a -function which will either return +00 on a system supporting
the IEEE P7S4 standard or +{MAXDOUBLE} on a system that does not support
the IEEE P7S4 standard.

If the correct value overflows, hypot will return HUGE VAL.

The UNIX System User's Manual 509

Base System LSEARCH(BA_LlB)

NAME

lsearch, lfind - linear search and update

SYNOPSIS
#include <search.h>

char *lsearch(key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar) () ;

char *lfind(key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar) () ;

DESCRIPTION

The function 1 ~ ear chis a linear search routine. It returns a pointer into a
table indicating where a datum may be found. If the datum does not occur, it
is added at the end of the table.

The function Ifind is the same as lsearch except that if the datum is
not found, it is not added to the table. Instead, a NULL pointer is returned.

The argument key points to the datum to be sought in the table.

The argument base points to the first element in the table.

The argument nelp points to an integer variable containing the current
number of elements in the table. The variable pointed to by nelp is incre­
mented if the datum is added to the table.

The argument width is the size of an element in bytes.

The argument compar is the name of the comparison function that the user
must supply (strcmp, for example). It is called with two arguments that
point to the elements being compared. The function must return zero if the
elements are equal and non-zero otherwise.

RETURN VALUE
If the searched for datum is found, both Isearch and Ifind return a
pointer to it; otherwise, Ifind returns NULL and lsearch returns a
pointer to the newly added element.

APPLICATION USAGE
The function Ifind was added in UNIX System V Release 2.0.

The pointers to the key and the element at the base of the table should be of
type pointer-to-element and cast to type pointer-to-character.

510 The UNIX System User's Manual

LSEARCH(BA _LIB) Base System

The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

Space for the table must be managed by the application-program. Undefined
results can occur if there is not enough room in the table to add a new item.

EXAMPLE

This fragment will read in ~ TABSIZE strings of length ~ ELSIZE and
store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

SEE ALSO

char line[ELSIZE], tab[TABSIZE] [ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) 1= NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

BSEARCH(BA _LIB), HSEARCH(BA _LIB), TSEARCH(BA _LIB).

CAVEATS
A NULL pointer will be returned by the function lsearch with errno
set appropriately, if there is not enough room in the table to add a new item.

The UNIX System User's Manual 511

Base System

NAME
matherr - error-handling function

SYNOPSIS

#include <math.h>

int matherr(x)
struct exception *x;

DESCRIPTION

MATHERR(BA_LlB)

The function ma therr is invoked by math library routines when errors are
detected. Users may define their own procedures for handling errors, by
including a function named matherr in their programs. The function
matherr must be of the form described above. When an error occurs, a
pointer to the exception structure x will be passed to the user-supplied
matherr function. This structure, which is defined by the <math. h>
header file, includes the following members:

int type;
char *name;
double arg1, arg2, retval;

The element type is an integer describing the type of error that has
occurred from the following list defined by the <math. h> header file:

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error.
argument singularity.
overflow range error.
underflow range error.
total loss of significance.
partial loss of significance.

The element name points to a string containing the name of the routine that
incurred the error. The elements arg1 and arg2 are the first and second
arguments with which the routine was invoked.

The element retval is set to the default value that will be returned by the
routine unless the user's ma therr function sets it to a different value.

If the user's matherr function returns non-zero, no error message will be
printed, and errno will not be set.

If the function ma therr is not supplied by the user, the default error­
handling procedures, described with the math library routines involved, will be
invoked upon error. If the user does not supply the function ma therr, the
default error-handling procedures, described with the math library routines
involved, will be invoked upon error. These procedures are also summarized in
the table below. In every case, errno is set to EDOM or ERANGE and the
program continues.

512 The UNIX System User's Manual

MATHERR(BA _LIB) Base System

ERRORS
DEFAULT ERROR HANDLING PROCEDURES

IYpes 0 Errors
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

errno EDOM EDON BRANGB IRANGI ERANGB IRANGI

BESSEL: - - - - M,O

yO. y1. yn M,-H - - - - -
EXP: - - H 0 - -
LOG, LOG'O:

(arq<O) M,-H - - - - -
(arq-OJ - M,-H - - - -

POW: - - ±H 0 - -
Reg •• non-int M,O - - - - -

0 •• non-pas

SORT: M,O - - - - -
GAMMA: - M,H H - - -
HVPOT: - - H - - -
SINH: - - ±H - - -
COSH: - - H - - -
SIN, COS, TAN: - - - - M,O

ASIN, ACOS, ATAN2: M,O - - - - -
ABBREVIATIONS . As much as possihle of the value is returned,

M Message is printed (EDOM error),
H HUGE is returned,

-H -HUGE is returned,
±H +HUGE or -HUGE is returned,
0 o is returned,

EXAMPLE
#include <math,h>

int ma therr (x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

1* change sqrt to return sqrt(-arg1), not 0 *1
if (I strcmp (x->name, "sqrt"» {

x->retval = sqrt(-x->arg1);
return (0); 1* print message and set errno *1

case SING:
1* SING or other DOMAIN errs, print message and abort *1
fprintf(stderr, "domain error in %s'n", x->name);
abort ();

case PLOSS:
1* print detailed error message *1
fprintf(stderr, "loss of significance in %s(%g)

x->name,
return (1);

x->arg1, x->retval);
1* take no other action *1

return (0); 1* all other errors, execute default procedure *1

The UNIX System User's Manual 513

Base System MATHERR(BA_LlB)

CAVEATS
The math functions which return HUGE or ±HUGE on overflow will return
HUGE_ VAL or ±HUGE_ VAL respectively.

514 The UNIX System User's Manual

MEMORY(BA_LlB) Base System

NAME
memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memQry.h>

char *memccPY(81, 82, c, n)
char *81, *82;
int c, n;

char *memchr(8, c, n)
char *8;
int c, n;

int memcmp(81, 82, n)
char *81, *82;
int n;

char *memcpY(81, 82, n)
char *81, *82;
int n;

char *mem8et(8, c, n)
char *8;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do
not check for the overflow of any receiving memory area.

The function memccpy copies characters from memory area 82 into 81,
stopping after the first occurrence of character c has been copied or after n
characters have been copied, whichever comes first. It returns a pointer to the
character after the copy of c in 81, or a NULL pointer if c was not found
in the first n characters of 8 2.

The function memchr returns a pointer to the first occurrence of character
c in the first n characters of memory area 8, or a NULL pointer if c does
not occur.

The function memcmp compares its arguments, looking at the first n char­
acters only. It returns an integer less than, equal to or greater than 0, accord­
ing as 8 1 is lexicographically less than, equal to or greater than 82.

The function memcpy copies n characters from memory area 82 to 81.
It returns 81.

The function mem8et sets the first n characters in memory area 8 to the
value of character c. It returns 8.

The UNIX System User's Manual 515

Base System MEMORY(BA_ LIB)

APPLICATION USAGE
All these functions are defined by the <memory. h> header file.

The function memcmp uses native character comparison. The sign of the
value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may be unpredictable.

SEE ALSO
STRING(BA_LlB).

CAVEATS
The declarations in the <memory. h> header file will be moved to the
<strinq.h> header file.

516 The UNIX System User's Manual

MKTEMP(BA _LIB)

NAME

mktemp - make a unique file-name

SYNOPSIS
char *mktempCtemplate)
char *template;

DESCRIPTION

Base System

The function mktemp replaces the contents of the string pointed to by
template by a unique file-name and returns template. The string in
template should look like a file-name with six trailing xs; mktemp
replaces the xs with a letter and the current process-ID. The letter is chosen
so that the resulting name does not duplicate an existing file.

RETURN VALUE
The function mktemp returns the pointer template. If a unique name
cannot be created, template points to a null-string.

SEE ALSO
GETPID(BA_SYS), TMPFILE(BA_LIB), TMPNAM(BA_LIB).

CAVEATS
The function mktemp returns a NULL pointer if a unique name cannot be
created.

The UNIX System User's Manual 517

Base System

NAME

perror - system error messages

SYNOPSIS

void perror(s)
char *s;

extern int errno;

extern char *sys_errlist[1;

extern int sys_nerr;

DESCRIPTION

PERROR(BA _LIB)

The function perror produces a message on the standard error output
describing the last error encountered during a call to a function.

The string pointed to by the argument s is printed first, then a colon and a
blank, then the message and a new-line. To be of most use, the argument
string should include the name of the program that incurred the error.

The error number is taken from the external variable errno, which is set
when errors occur but not cleared when successful calls are made.

If given a null-string, perror prints only the message and a new-line.
\

The array of message strings sys errlist is provided to make messages
consistent. The variable errno can be used as an index in this array to get
the message string without the new-line.

The external variable sys nerr is the largest message number provided for
in the array; it should be checked because new error codes may be added to
the system before they are added to the array.

CAVEATS

New error handling routines will be added to support the UNIX System V error
message standard as a tool for application-developers to use. The UNIX Sys­
tem V Error Message Standard is designed to apply to: firmware/diagnostics,
the operating system, networks, commands, languages and, when appropriate,
applications. All new UNIX System V error messages will follow the standard,
and existing error messages will be modified over time. The standard UNIX
System V error message as seen by the end-user may have up to five informa­
tional elements:

Element
LABEL

SEVERITY
PROBLEM

ACTION
TAG

Description
source of the error.
one of at least 4 severity codes.
description of the problem.
error-recovery action.
unique error message identifier.

Each element is described in more detail below.

518 The UNIX System User's Manual

PERROR(BA _LIB) Base System

The standard specifies the information important in error-recovery, but does
not specify the format in which to deliver the information. For example, with
a graphical user-interface, the LABEL might be presented as an icon. An
operating system error message meeting the standard information require­
ments is shown below with, os as the LABEL, HALT as th~ SEVER!TY, Th,,~ut

Table Overflow as the PROBLEM, See Administration Manual as the ACTION, and
OS-136 as the TAG.

OS: HALT: Timeout Table Overflow.
TO FIX: See Administration Manual. OS-136

The standard allows systematic omission of one or more elements in specific
environments that do not need them for successful error-recovery. For exam­
ple, while operating system errors need all five elements, a firmware error mes­
sage can omit the ACTION because an expert service person is typically the
user of this message and the ACTION may be too long to store in firmware.
Software that obviously puts the user in a special environment (e.g., a spread­
sheet program) where the user sees only errors from that environment may
omit the LABEL. Because a primary use of the TAG is for reporting or to point
to on-line documentation, it may be omitted when appropriate (e.g., when
there is no on-line documentation).

LABEL

SEVERITY

PROBLEM

This element of the message identifies the error source (e.g., as,
UUCP, application-program-name, etc.) and could double as a
pointer to documentation.

This element of the message indicates the consequences of the
error for the user. Four levels of severity (which can be
expanded by system builders who want additional distinctions)
are outlined below.

HALT indicates that the processor, as, application, or
database is corrupted and that processing should
be stopped immediately to rectify the problem.
This severity indicates an emergency.

ERROR indicates that a condition that may soon interfere
with resource use has occurred. This severity indi­
cates that corrective action is needed.

WARNING indicates an aberrant condition (e.g., stray
hardware interrupt, free file space is low) that
should be monitored, but needs no immediate
action.

INFO gives information about a user request or about the
state of the system (e.g., a printer taken off-line).

This element of the message clearly describes the error condi­
tion. In much of today's software, this element is the only one
provided in the message.

The UNIX System User's Manual 519

Base System

ACTION

PERROR(BA _LIB)

This element of the message describes the first step to be taken
in the error-recovery process. For OS errors, this section of the
message might be one of five standard strings:

1. See Hardware Vendor

2. See Software Vendor

3. See Administrator Procedure

4. See Operator Procedure

5. See Manual

These strings should be clearly identified as action to be taken
(e.g., by preceding them with the prefix: TO FIX:).

TAG This is a unique identifier for the message, used both internally
and to obtain online documentation for the message on those
systems that have capacity to store such information.

520 The UNIX System User's Manual

PRINTF(BA_LlB)

NAME

printf, fprintf, sprintf - print formatted output

SYNOPSIS

#include <stdio.h>

int printf (format [, argo I. ..)
char *format;

int fprintf (stream, format [, argo I ...)
FILE *stream;
char *format;

int sprintf (s, format [, argo I ...)
char *s, *format;

DESCRIPTION

Ba.e System

The function printf places output on the standard output stream
stdout.

The function fprintf places output on the named output stream
stream.

The function sprintf places output, followed by the null-character (\0)
in consecutive bytes starting at *s. The user must ensure that enough
storage is available. Each function returns the number of characters transmit­
ted (not including the \. 0 in the case of s pr in t f) or a negative value if
an output error occurred.

Each function converts, formats and prints its argos under control of for­
ma t, a character-string containing the following three types of objects:

1. plain-characters that are simply copied to the output stream;

2. escape-sequences that represent non-graphic characters; and

3. conversion-specifications.

The following escape-sequences produce the associated action on display dev­
ices capable of the action:

\b Backspace.
Moves the printing position to one character before the current position,
unless the current position is the start of a line.

\'f Form Feed.
Moves the printing position to the initial printing position of the next logi­
cal page.

\n New line.
Moves the printing position to the start of the next line.

\r Carriage return.
Moves the printing position to the start of the current line.

The UNIX System User's Manual 521

Base System PRINTF(BA_LlB)

\ t Horizontal tab.
Moves the printing position to the next implementation-defined horizontal
tab position on the current line.

\ v Vertical tab.
Moves the printing position to the start of the next implementation­
defined vertical tab position.

The character "introduces each conversion-specification. After ", the fol­
lowing appear in sequence:

Zero or more flags to modify the meaning of the conversion­
specification.

An optional string of decimal digits to specify a minimum field-width.
If the converted value has fewer characters than the field-width, it is
padded on the left (or right, if the left-adjustment flag (-), described
below, has been given) to the field-width.

A precision to sets the minimum number of digits appearing in d,
0, U, x, or X conversions (the field is padded with leading zeros),
the number of digits appearing after the decimal-point in e and f
conversions, the maximum number of significant digits in 9 conver­
sion; or the maximum number of characters printed from a string in
s conversion. The precision takes the form of a dot (.) followed by
a decimal digit string; a null-digit-string is treated as zero.

An optional 1 (eiO to specify that a following
conversion-character applies to a long integer
any other conversion-character is ignored.

d, 0, U,

argo An
x or X
1 before

A conversion-character to indicate the type of conversion to be applied
(see below).

The flag characters and their meanings are:

+

blank

Left-justify the result of the conversion within the field.

Begin the result of a signed conversion with a sign (+ or -) .

Prepend a blank to the result if the first character of a signed
conversion is not a sign (Le., ignore the blank-flag if the +-flag
also appears).

Convert the value to an alternate form; for c, d, sand U

conversions, the flag has no effect; for 0 conversion, it increases
the precision to force the first digit of the result to be a zero; for
x or X conversion, Ox or OX is prepended to a non-zero
result; for e, E, f, 9 and G conversions, the result always
contains a decimal-point, even if no digits follow the point (nor­
mally, a decimal-point appears in the result of these conversions
only if a digit follows it); for 9 and G conversions, trailing
zeroes are not removed from the result as they normally are.

522 The UNIX System User's Manual

PRINTF(BA _LIB) Base System

A field-width or precision may be indicated by an asterisk (*) instead of a
digit string. In this case, an integer arg supplies the field-width or precision.
The arg actually converted is not fetched until the conversion letter is seen,
so any args specifying field-width or precision must come before any arg
to be converted.

Each conversion-character fetchs zero or more args. The results are
undefined if there are insufficient args for the format. If the format is
exhausted while args remain, the excess args are ignored.

The conversion-characters and their meanings are:

% Print a %; no argument is converted.

c Print the character arg.

d,o,u,x,x Convert the integer arg to signed decimal (d), unsigned octal
(0), unsigned decimal (u) or unsigned hexadecimal notation (x
and x). The x conversion uses the letters abcdef and the
X conversion uses the letters ABCDEF. The precision of arg
specifies the minimum number of digits to appear. If the value
being converted can be represented in fewer digits than the
specified minimum, it will be expanded with leading zeroes. The
default precision is 1. The result of converting a zero value
with a precision of 0 is a null-string.

e,E Convert the float or double arg to the style [-I d • ddde ±dd,
where there is one digit before the decimal-point and the
number of digits after it is equal to the precision. When the
precision is missing, six digits are produced; if the precision is
0, no decimal-point appears. The E conversion-character pro­
duces a number with E instead of e introducing the exponent.

The exponent always contains at least two digits. However, if
the value to be printed is greater than or equal to 1 E+ 1 00,
additional exponent digits will be printed as necessary.

f Convert the float or double arg to decimal notation in the style
I-I ddd • ddd, where the number of digits after the decimal­
point is equal to the precision specification. If the precision is
omitted from arg, six digits are output; if the precision is
explicitly 0, no decimal-point appears.

g,G Print the float or double arg in style f or e (or in style E in
the case of a G conversion-character), with the precision­
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only if the
exponent resulting from the conversion is less than - 4 or
greater than the precision. Trailing zeroes are removed from the
result. A decimal-point appears only if it is followed by a digit.

The UNIX System User's Manual 523

Base System

s

PRINTF(BA _LIB)

The arg is taken to be a string (character pointer) and charac­
ters from the string are printed until a null-character (\ 0) is
encountered or the number of characters indicated by the preci­
sion specification of arg is reached. If the precision is omitted
from arg, it is taken to be infinite, so all characters up to the
first null-character are printed. A NULL value for arg will
yield undefined results.

If the character after the % is not a valid conversion-character, the results of
the conversion are undefined.

In no case does a non-existent or smaii field-width cause truncation of a field;
if the result of a conversion is wider than the field-width, the field is simply
expanded to contain the conversion result. Characters generated by printf
and fprintf are printed as if the PUTC(BA_LlB) routine had been called.

RETURN VALUE

The functions printf, fprintf, and sprintf return the number of
characters transmitted, or return - 1 if an error was encountered.

EXAMPLE

To print a date and time in the form Sunday, July 3, 10: 02, where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d",
weekday, month, day, hour, min);

To print 11" to 5 decimal places:

printf("pi - %.5f", 4 * atan(1.0»;

SEE ALSO

PUTC(BA_LlB), SCANF(BA_LlB), FOPEN(BA_SYS).

CAVEATS

The function printf will make available character-string-representations
for 00 and "not a number" (NaN: a symbolic entity encoded in floating point
format) to support the IEEE P7S4 standard.

524 The UNIX System User's Manual

Base System

NAME

putc, putchar, fputc, putw - put character or word onto a stream

SYNOPSIS
#include <stdio,h>

int putc(c, stream)
int c;
FILE *stream;

int putchar(c)
int c;

int fputc(c, stream)
int c;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

DESCRIPTION

The function putc writes character c onto named output stream,
stream, where the file-pointer, if defined, points. Both putc and
put char are macros, and putchar is defined as putc (c, stdout).

The function fputc behaves like putc, but is a function instead of a
macro. The function fputc runs more slowly than putc but it takes less
space per invocation and its name can be passed as an argument to a function.

The function putw writes the word (i.e., integer w onto the named output
stream, stream, where the file-pointer, if defined, points). The size of a
word is the size of an integer and varies from machine to machine. The func­
tion pu t w neither assumes nor causes special alignment in the file.

RETURN VALUE

On success, putc, fputc, and putchar each return the value they
have written. On failure, they return the constant EOF. This occurs if
stream is not open for writing or if it cannot grow. The function putw
returns non-zero if an error occurs; otherwise, it returns zero.

APPLICATION USAGE
Because it is implemented as a macro, putc incorrectly treats stream
when it has side-effects. In particular, putc (c, *f++); may not work
sensibly, and fputc should be used instead.

Because word-length and byte-ordering are machine-dependent, files written
using putw may not be read using getw on a different processor.

SEE ALSO
FCLOSE(BA_SYS), FERROR(BA_SYS), FOPEN(BA_SYS), FREAD(BA_SYS),

PRINTF(BA_LlB), PUTS(BA_LlB), SETBUF(BA_LlB).

The UNIX System User's Manual 525

Base System

NAME
putenv - change or add value to environment

SYNOPSIS

int putenv(string)
char *string;

DESCRIPTION

PUTENV(BA_LlB)

The argument string points to a string of the the following form:

name = value

The function putenv makes the value of the environment variable name
equal to value by altering an existing variable or creating a new one. In
either case, the string pointed to by s tr ing becomes part of the environ­
ment, so altering the string will change the environment. The space used by
string is no longer used once a new string-defining name is passed to the
function putenv.

RETURN VALUE
The function putenv returns non-zero if it was unable to obtain enough
space for an expanded environment, otherwise zero.

APPLICATION USAGE
The function putenv was added in UNIX System V Release 2.0.

The function putenv manipulates the environment pointed to by
environ, and can be used in conjunction with getenv. However,
envp, the third argument to main, is not changed [see EXECCBA_SYS)].

A potential error is to call the function put env with a pointer to an
automatic variable as the argument and to then exit ~he calling function while
string is still part of the environment.

SEE ALSO

EXECCBA_SYS), MALLOCCBA_SYS), GETENVCBA_LlB).

526 The UNIX System User's Manual

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts(s)
char *s;

int fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION

Base System

The function puts writes the null-terminated string s points to followed by
a new-line character, onto the standard output stream, stdout.

The function fputs writes the null-terminated string s points to onto the
named output stream, stream.

Neither function writes the terminating null-character.

RETURN VALUE

On success, both puts and fputs return the number of characters writ­
ten, and both return EOF on error. This occurs if they try to write on a file
that is not open for writing.

APPLICATION USAGE
The function puts appends a new-line character while fputs does not.

SEE ALSO
FERROR(BA_SYS), FOPEN(BA_SYS), FREAD(BA_SYS), PRINTF(BA_LlB),

PUTC(BA _LIB).

The UNIX System User's Manual 527

Base System

NAME

qsort - quicker sort

SYNOPSIS
void qsort(base, nel, width, compar)
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION

QSORT(BA_LIB)

The function qsort is a general-sorting algorithm that sorts a table of data
in place.

The argument ba s e points to the element at the base of the table.

The argument nel is the number of elements in the table.

The argument width is the size of an element in bytes.

The argument compar is the name of the user-supplied comparison func­
tion, which is called with two arguments that point to the elements being com­
pared. The comparison function must return an integer less than, equal to or
greater than zero, according as the first argument is to be considered is less
than, equal to or greater than the second.

APPLICATION USAGE
The pointer to the base the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.

The relative order in the output of two items which compare as equal is
unpredictable.

SEE ALSO
BSEARCH(BA_LlB), LSEARCH(BA_LlB), STRING(BA_LlB).

528 The UNIX System User's Manual

NAME

rand, srand - simple random-number generator

SYNOPSIS
int rand{

void srand{seed)
unsigned int seed;

DESCRIPTION

Base System

The function rand uses a multiplicative congruential random-number gen­
erator with period 232 that returns successive pseudo-random numbers in the
range from 0 to 32767.

The function srand uses the argument seed as a seed for a new sequence
of pseudo-random numbers to be returned by subsequent calls to the function
rand. If srand is then called with the same seed value, the sequence of
pseudo-random numbers will be repeated. If rand is called before any calls
to srand have been made, the same sequence will be generated as when
srand is first called with a seed value of 1.

APPLICATION USAGE

The DRAND48{BA_LlB) routine provides a much more elaborate random-number
generator.

The following functions define the semantics of rand and srand.

static unsigned long int next = 1;
int rand{)
{

next = next * 1103515245 + 12345;
return {(unsigned int) (next/65536) % 32768);

void srand(seed)
unsigned int seed;
{

next = seed;
}

Specifying the semantics makes it possible to reproduce the behavior of pro­
grams that use pseudo-random sequences. This facilitates the testing of port­
able applications in different implementations.

SEE ALSO
DRAND48{BA_LlB).

The UNIX System User's Manual 529

Base System

NAME

regexp - regular-expression compile and match routines

SYNOPSIS

#define INIT declarations
#define GETC () getc code
#define PEEK () peekc code
#define UNGETC () ungetc code
#define RETURN (ptr) return code
#define ERROR(va1) errorcode

#inc1ude <regexp.h>

REGEXP(BA_LlB)

char *compi1e(instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbufj
int eofj

int step(string, expbuf)
char *string, *endbufj

advance(string, expbuf)
char *string, *expbufj

extern char *10c1, *10c2, *locsj

DESCRIPTION
These functions are general-purpose regular-expression matching routines to
be used in programs that perform regular-expression matching. These func­
tions are defined by the <regexp. h> header file.

The function compile takes a regular-expression as input and produces a
compiled-expression that step or advance can use.

The functions step and advance do pattern-matching given a
character-string and a compiled-expression as input.

A regular-expression, re, specifies a set of character-strings. A member of this
set of strings is said to be matched by the reo Some characters have special
meaning when used in an re; other characters stand for themselves.

The regular-expressions that regexp uses are constructed as follows:

Expression

c

Meaning

the character c where c is not a special character.

the character c where c is any character, except a digit in
the range 1-9.

the beginning of the line being compared.

$ the end of the line being compared.

any character in the input.

530 The UNIX System User's Manual

REGEXP(BA_LlB)

[s]

[AS]

rx

Base System

any character in the set s, where s is a sequence of charac­
ters and/or a range of characters (e.g., [c-c]).

any character not in the set s, where s is defined as above.

zero or more successive occurrences of regular~expression r.
The longest match is chosen.

the occurrence of regular-expression r followed by the
occurrence of regular-expression x. (Concatenation)

any number of m through n successive occurrences of
regular-expression r. The regular-expression r\ {m\}
matches exactly m occurrences; r\ {m • \} matches at least
m occurrences.

the regular-expression r. When \n (where n is a number
greater than zero) appears in a constructed regular­
eXfression, it stands for regular-expression x where x is the
n' regular-expression enclosed in \ (and \) strings that
appeared earlier in the constructed regular-expression. For
example, \(r\)x\(y\)z\2 is the concatenation of
regular-expressions rxyzy.

Characters that have special meaning except when they appear within square
brackets, [], or are preceded by \ are: ., *, [, \. Other special char­
acters, such as $ have special meaning in more restricted contexts.

The character A at the beginning of an expression permits a successful match
only immediately after a new-line, and the character $ at the end of an
expression requires a trailing new-line.

Two characters have special meaning only when used within square brackets.
The character - denotes a range, [c - c] , unless it is just after the opening
bracket or before the closing bracket, [-c] or [c-] in which case it has no
special meaning. When used within brackets, the character A means comple­
ment of if it immediately follows the open bracket, [A C] , elsewhere between
brackets, [c A] , it stands for the ordinary character A.

The special meaning of the \ operator can be escaped only by preceding it
with another \ (e.g., \ \).

Programs must declare the following five macros before the #include
<regexp. h> statement. The function compile uses the macros GETC,
PEEKC, and UNGETC to operate on the regular-expression given as input.

GETC ()

PEEKC ()

returns the next character in the regular-expression. Suc­
cessive calls to GETC () return successive characters of
the regular-expression.

returns the next character in the regular-expression. Suc­
cessive calls to PEE K C () return the same character,
which also is the next character GETC () returns.

The UNIX System User's Manual 531

Base System

UNGETC ()

REGEXP(BA_LlB)

causes the next call to GETC () and PEEKC () to return
the argument c. No more than one character of pushback
is ever needed and this character is guaranteed to be the
last character GETC () reads. The value of the macro
UNGETC (c) is always ignored.

RETURN (ptr) is used on normal exit from compile. The argument
ptr points to the character after the last character of the
compiled-expression. This is useful to programs managing
memory allocation.

ERROR (val) is the abnormal return from compile. The argument
val is an error number [see ERRORS below for meanings].
This call should never return.

The syntax of a call to compile is as follows:

compile(instring,expbuf,endbuf,eof)

The first parameter instring is never used explicitly by compile, but
is useful for programs pass different pointers to input characters. It is some­
times used in the IN IT declaration (see below). Programs which call func­
tions to input characters or have characters in an external array can pass down
a value of ((char*) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled-expression will be placed.

The parameter endbuf is one more than the highest address where the
compiled-expression may be placed. If the compiled-expression cannot fit in
(endbuf - expbuf) bytes, a call to ERROR (50) is made.

The parameter eof is the character which marks the end of the regular­
expression. For example, rei.

Each program that includes the <regexp. h> header file must have a
#define statement for INIT. It is used for dependent declarations and
initializations. Most often it is used to set a register variable to point to the
beginning of the regular-expression so that this register variable can be used in
the declarations for GETC (), PEEKC (), and UNGETC (). Otherwise it
can be used to declare external variables that might be used by GETC (),
PEEKC () and UNGETC (). See EXAMPLES below.

The first parameter to s t e p points to a string of characters to be checked
for a match. This string should be null-terminated.

The second parameter, expbuf, is the compiled-expression produced by cal­
ling compi 1 e.

The function step returns non-zero if some sub-string of string matches
the regular-expression in expbuf and zero if there is no match. If there is
a match, two external character pointers are set as a side effect to the call to
step. The variable loc 1 points to the first character that matched the

582 The UNIX System User's Manual

REGEXP(BA_LlB) Base System

regular-expression; the variable loc2 points to the character after the last
character that matches the regular-expression. Thus if the regular-expression
matches the entire input string, 10 c 1 points to the first character of
string and loc2 points to the null at the end of string.

The function advance returns non-zero if the initial substring of string
matches the regular-expression in expbuf. If there is a match, an external
character pointer, loc2, is set as a side-effect. The variable loc2 points
to the next character in string after the last character that matched.

When ad van c e gets a * or '{ '} sequence in the regular-expression, it
moves its pointer to the string to be matched as far as possible and recursively
calls itself trying to match the rest of the string to the rest of the regular­
expression. As long as there is no match, advance backs up along the
string until it finds a match or reaches the point in the string that initially
matched the * or '{ '}. It is sometimes desirable to stop this backing-up
before reaching the inital point in the string. If the external character pointer
10 c s equals the point in the string at sometime during the backing-up,
advance stops the backing-up and returns zero.

The external variables circf, sed, and nbra are reserved.

RETURN VALUE

The function compile uses the macro RETURN on success and the macro
ERROR on failure, see above. The functions step and advance return
non-zero on a successful match and zero if there is no match.

ERRORS

11 range endpoint too large.

16 bad number.

25 'digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 '(') imbalance.

43 too many' (.

44 more than 2 numbers given in '{ '}.

45 } expected after ,.

46 first number exceeds second in '{ '\}.

49 [] imbalance.

50 regular-expression overflow.

The UNIX System User's Manual 533

Bas,. System REGEXP(BA _LIB)

EXAMPLES

The following shows how an application-program might use the regular­
expression macros and calls:

#define INIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(C)

#include <regexp.h>

register char *sp = instring;
(*sp++)
(*sp)
(--sp)
return;
regerr()

(void) compile(*argv, expbuf, &expbuf[ESIZE],'\O');

if (step(linebuf, expbuf»
succeed () ;

534 The UNIX System User's Manual

NAME

scanf, fscanf, sscanf - convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf (format [, pointer I ...)
char *format;

int fscanf (stream, format [, pointer I ... »
FILE *stream;
char *format;

int sscanf(s, format [, pointer I ...)
char *s, *format;

DESCRIPTION

Base System

The function scanf reads from the standard input stream, stdin.

The function fscanf reads from the named input stream, stream.

The function sse a n f reads from the character-string, s.

Each function reads characters, interprets them according to a control-string,
format described below, and stores the converted input where a set of
p~inter arguments indicates.

The control-string usually contains conversion-specifications, which direct
interpretation of input sequences. The control-string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the next
non-white-space character.

2. Ordinary character (not %), which must match the next character of the
input stream.

3. Conversion-specifications, composed of the character %, an optional
assignment suppressing the character *, a decimal-digit-string specifying
an optional numerical maximum field-width, an optional letter 1 (ell) or
h indicating the size of the receiving variable, and a conversion-code.

A conversion-specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument
unless assignment suppression was indicated by the character *. The
suppression of assignment provides a way of describing an input field which is
to be skipped. An input field is defined as a string of non-space characters; it
extends to the next inappropriate character ~r until the maximum field-width,
if one is specified, is exhausted. For all descriptors except the character [
and the character c, white space leading an input field is ignored.

The conversion-code indicates the interpretation of the input field; the
corresponding pointer argument usually must be of a restricted type. For
a suppressed field, no pointer argument is given.

The UNIX System User's Manual 535

Base System SCANF(BA_LIB)

The following conversion-codes are legal:

% a single % is expected; no assignment is done.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be
an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

e,f,g a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a f 1 oa t. The input format for floating
point numbers is an optionally signed string of digits, possibly con­
taining a decimal-point; followed by an optional exponent field con­
sisting of an E or an e, followed by an optionally signed integer.

s a character-string is expected; the corresponding argument should be
a pointer to an array of characters large enough to accept the string
and a terminating \. 0, to be added automatically. The input field is
terminated by a white-space character.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in
this case; to read the next non-space character, use % 1 s. If a
field-width is given, the corresponding argument should point to a
character array; the indicated number of characters is read.

indicates string data; the corresponding argument must point to a
character array large enough to hold the data field and the terminat­
ing \. 0 which will be added automatically. The normal skip over
leading white space is suppressed. The left bracket is followed by a
set of characters called the scanset and a right bracket; the input
field is the maximal sequence of input characters consisting only of
characters in the scanset. At least one character must match for this
conversion to be considered successful. The circumflex ("), when it
is the first character in the scanset, serves as a complement operator
defining the scanset as the set of all characters not contained in the
rest of the scanset string.

Some conventions are used to construct the scanset. The construct first -last
represents a range of characters; thus, [0 1 2 3 4 5 6 7 8 9] may be expressed
[0 - 9]. For this convention, first must be lexically less than or equal to last,
or else the dash will stand for itself. The character - also stands for itself
whenever it is the first or the last character in the scanset. To include the
right square bracket as an element of the scanset (i.e., not as the closing

536 The UNIX System User's Manual

Base System

bracket) it must appear as the first character (possibly preceded by a
circumflex) of the scanset.

If an invalid conversion-character follows the ", the results of the operation
are unpre.dictable,

The conversion-characters d, u, 0, and x may be preceded by 1 or h to
indicate that a pointer to long or to short rather than to int is in the
argument list. Similarly, the conversion-characters e, f, and g may be pre­
ceded by 1 to indicate that a pointer to double rather than to float is
in the argument list. Other conversion-characters ignore the 1 or h
modifier.

The scanf conversion stops at end of file, at the end of the control-string or
when an input character conflicts with the control-string. In the latter case,
the offending character is left unread in the input stream.

RETURN VALUE

These functions return the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between an
input character and the control-string. If the input ends before the first
conflict or conversion, EOF is returned.

APPLICATION USAGE

Trailing white space (including a new-line) is left unread unless matched in
the control-string.

The success of literal matches and suppressed assignments is not directly
determinable.

EXAMPLE

The call to the function scanf:

int i, n; float x; char name[50];
n = scanf(""d"f"s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

assigns to n the value 3, to i the value 2 5, to x the value 5. 43 2, and
name contains thompson\.O.

The call to the function scanf:

int i; float x; char name[50];
(void) scanf(""2d"f"*d "[0-9]", &i, &x, name);

with the input line:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skips 0123, and puts the string 56\.0 in
name. The next call to getchar [see GETC(BA_L1B)] returns a.

The UNIX System User's Manual 537

Base System

SEE ALSO
GETC(BA_lIB), PRINTF(BA_lIB), STRTOD(BA_lIB), STRTOL(BA_lIB).

CAVEATS (

The function scanf will make available character string representations for
DO and "not a number" (NaN: a symbolic entity encoded in floating point for­
mat) to support the IEEE P754 standard.

538 The UNIX System User's Manual

SETBUF(BA _LIB)

NAME

setbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(stream, buf)
FILE *stream;
char *buf;

int setvbuf(stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

Base System

The function setbuf may be used after a stream is opened but before it is
read or written. If buf is the NULL pointer, input/output is completely
unbuffered; otherwise setbuf causes the array pointed to by buf to be
used instead of an automatically allocated buffer. A constant BUF S I z,
defined by the < stdio. h> header file, tells how big an array is needed:

char buf[BUFSIZ];

By default, terminal-output is line-buffered and all other input/output is fully
buffered, except the standard error stream, stderr, which is normally
unbuffered.

APPLICATION USAGE

A common source of error is allocating buffer space as an automatic variable
in a code block, and then failing to close the stream in the same block.

SEE ALSO
FOPEN(BA_SYS), MALLOC(BA_SYS), GETC(BA_LlB), PUTC(BA_LlB),

SETBUF(BA_LlB).

The UNIX System Users Manual 539

Base System

NAME
setjmp, longjmp - non-local goto

SYNOPSIS

#include <setjmp.h>

int setjmp(env)
jmp_buf env;

void longjmp(env, val)
jmp_buf env;
int val;

DESCRIPTION

SET JMP(BA_LlB)

These functions are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

The function setjmp saves its stack environment in env (whose type,
jmp_buf, is defined by the <setjmp.h> header file) for later use by
longjmp. The function setjmp returns the value O.

The function longjmp restores the environment saved by the last call to
setjmp with the corresponding env.

After longjmp is completed, program execution continues as if the
corresponding call to setjmp (the caller of which must not itself have
returned in the interim) had just returned val. All accessible data have
values as of the time longjmp was called.

RETURN VALUE
When called by the calling-process, set j mp returns O.

The function longjmp does not return from where it was called, but rather,
program execution continues as if the previous call to set j mp returned
val. That is, when setjmp returns as a result of calling longjmp,
setjmp returns val. However, longjmp cannot cause setjmp to
return O. If longjmpiscalledwitha val of 0, setjmpreturns 1.

APPLICATION USAGE

The behavior is undefined when long jmp is called without env having
been primed by calling set j mp, or when the last such call was in a function
which has since returned.

Register variables may have unpredictable values when the call to longjmp
is in a different function from the corresponding call to set j mp.

SEE ALSO
SIGNAL(BA_SYS).

540 The UNIX System User's Manual

SETVBUF(BA _LIB)

NAME

setvbuf - assign buffering to a stream

SYNOPSIS

#include 'stdio.h;

int setvbuf(stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

Base System

The function setvbuf may be used after stream is opened but before it
is read or written. The value of type determines how stream is buffered.
Legal values for type, defined by the <stdio. h> header file, are:

IOFBF

IOLBF

IONBF

causes input/output to be fully buffered.

causes output to be line-buffered; the buffer is flushed when a
new-line is written or the buffer is full or input is requested.

causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for
buffering instead of an automatically allocated buffer. The argument size
specifies the size of the buffer to be used. The constant BUF S I Z in the
< stdio. h> header file is suggested as a good buffer size. If input/output is
unbuffered, buf and size are ignored.

By default, terminal-output is line-buffered and all other input/output is fully
buffered, except the standard error stream, stderr, which is normally
unbuffered.

RETURN VALUE

If the value for type or size is illegal, setvbuf returns a non-zero
value; otherwise, it returns zero.

APPLICATION USAGE

The function setvbuf was added in UNIX System V Release 2.0.

A common source of error is allocating buffer space as an automatic variable
in a code block, and then failing to close the stream in the same block.

SEE ALSO

FOPEN(BA_SYS), MALLOC(BA_SYS), GETC(BA_LlB), PUTC(BA_LlB),
SETBUF(BA_LlB).

The UNIX System User's Manual 541

Base System

NAME

sinh, cosh, tanh - hyperbolic functions

SYNOPSIS

#include <rnath.h>

double sinh(x)

double X;

double cosh(x)

double X;

double tanh(x)
double x;

DESCRIPTION

The functions sinh, cosh, and tanh return, respectively, the hyperbolic
sine, cosine and tangent of their argument.

RETURN VALUE
The functions sinh and cosh return HUGE, and sinh may return
-HUGE for negative x, when the correct value would overflow and set
errno to ERANGE.

APPLICATION USAGE

These error-handling procedures are changed by the MATHERRCBA_LlB) routine.

SEE ALSO
MA THERR(BA _LIB).

CAVEATS

A macro HUGE VAL will be defined by the <rna th. h> header file. This
macro will call a -function which will either return +00 on a system supporting
the IEEE P754 standard or +{MAXDOUBLE} on a system that does not support
the IEEE P754 standard.

The functions sinh and cosh will return HUGE VAL (sinh will return
-HUGE_ VAL for negative n) when the correct value overflows.

542 The UNIX System User's Manual

SSIGNAL(BA _LIB)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include ~~i9rtal.h~

int (*ssignal(sig, action» (
int sig, (*action) () ;

int gsignal(sig)
int sig;

DESCRIPTION

Base System

The functions ssignal and gsignal implement a software facility simi­
lar to the SIGNAL(BA_SYS) routine.

Software signals available to programs are described in SIGNAL(BA_SYS).

A call to ssignal associates a procedure, action, with the software sig­
nal s i g; a call to 9 signa 1 raises the software signal, s i g. Raising a
software signal causes the action established for that signal to be taken.

The first argument, sig, to the function ssignal, is a signal number in
the range 1 - 1 5 for which an action is to be established. The second argu­
ment, action, defines the action; it is either the name of a (user-defined)
function action or one of the manifest constants SIG DFL (default) or
SIG IGN (ignore). The function ssignal returns the action previously
established for that signal type; if no action has been established or the signal
is illegal, s signa 1 returns S IG _ DFL.

The function 9 signa 1 raises the signal identified by its argument, s i g:

If an action has been established for s i g, then act i on is reset to
SIG DFL and action is entered with sig. The function
gsignal returns the value action returns.

If the action for sig is SIG_IGN, gsignal returns and
takes no other action.

If the action for sig is SIG_DFL, gsignal returns 0 and
takes no other action.

If s i 9 has an illegal value or no action was ever specified for s i 9 ,
9 signa 1 returns 0 and takes no other action.

SEE ALSO
SIGNAL(BA_SYS).

The UNIX System User's Manual 543

Base System STRING(BA_LlB)

NAME
strcat, strncat, strcmp, str,ncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok - string operations

SYNOPSIS
#include <strinq.h>

char *strcat(s1, s2)
char *s1, *s2;

char *strncat(s1, s2, n)
char *s1, *s2;
int n;

int strcmp(s1, s2)
char *s1, *s2;

int strncmp(s1, s2, n)
char *s1, *s2;
int n;

char *strcpy(s1, s2)
char *s1, *s2;

char *strncpy(s1, s2, n)
char *s1, *s2;
int n;

int strlen(s)
char *s;

char *strchr(s, c)
char *s;
int c;

char *strrchr(s, c)
char *s;
int c;

char *strpbrk(s1, s2)
char *s1, *s2;

int strspn(s1, s2)
char *s1, *s2;

int strcspn(s1, s2)
char *s1, *s2;

char *strtok(s1, s2)
char *s1, *s2;

DESCRIPTION

The arguments s 1, s 2 and s point to strings (arrays of characters ter­
minated by a null-character>.

544 The UNIX System Users Manual

STRING(BA_LIB) Base System

The functions strcat, strncat, strcpy, strncpyand strtok
all alter s 1, and do not check for overflow of the array pointed to by s 1 .

The function s t rca t appends a copy of s 2 to the end of s 1 .

The function strnca t appends at most n characters. Each returns a
pointer to the null-terminated result.

The function strcmp compares its arguments and returns an integer less
than, equal to or greater than 0, according as s 1 is lexicographically less
than, equal to or greater than s 2 .

The function strncmp compares at most n characters of its arguments.

The function strcpy copies s2 to s 1, stopping after the null-character
has been copied and returns s 1 .

The functions s t rn c py copies exactly n characters, truncating s 2 or
adding null-characters to s 1 if necessary and returns s 1. The result will
not be null-terminated if the length of s 2 is n or more.

The function s tr 1 en returns the number of characters in s, not including
the terminating null-character.

The function strchr (or strrchr) returns a pointer to the first (last)
occurrence of character c in s, or a NULL pointer if c does not occur in
s. The terminating null-character is considered to be part of the string.

The function strpbrk returns a pointer to the first occurrence in s 1 of
any character from s2, or a NULL pointer if no character from s2 occurs
in s 1.

The function strspn (or strcspn) returns the length of the initial seg­
ment of s 1 which consists entirely of characters from (not from) s 2.

The function strtok considers s 1 to consist of a sequence of zero or more
text tokens separated by spans of one or more separator-characters from s 2.
The first call (with pointer s 1 specified) returns a pointer to the first charac­
ter of the first token, and will have written a null-character into s 1 immedi­
ately following the returned token. The function keeps track of its position in
the string between separate calls, so that subsequent calls (which must be
made with the first argument a NULL pointer) will work through s 1
immediately following that token. In this way subsequent calls will work
through s 1, returning a pointer to the first character of each subsequent
token. A null-character will have been written into s 1 by strtok
immediately following the token. The separator-string s 2 may be different
from call to call. When no token remains in s 1, a NULL pointer is
returned.

The UNIX System User's Manual 545

Base System STRING(BA _LIB)

APPLICATION USAGE
All these functions are declared by the < s t r in g . h> header file.

Both strcmp and strncmp use native character comparison. The sign of
the value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

SEE ALSO
MEMORY(BA_LlB).

CAVEATS
The type of argument n to strncat, strncmp and strncpy and the
type of value returned by strlen will be declared through the typedef
facility in a header file as s i z e t.

546 The UNIX System User's Manual

STRTOD(BA _LIB)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod(str, ptr)
char *str, **ptr;

double atof(str)
char *str;

DESCRIPTION

Base System

The function strtod returns as a double-precision floating-point number
the value represented by the character string pointed to by s t r. The string
is scanned up to the first unrecognized character.

The function strtod recognizes an optional string of white-space charac­
ters [as defined by isspace in CTYPE(BA_LlB)], then an optional sign, then
a string of digits optionally containing a decimal point, then an optional e or
E followed by an optional sign, followed by an integer.

If the value of ptr is not « char * *) 0), a pointer to the character ter­
minating the scan is returned in the location pointed to by ptr. If no
number can be formed, *ptr is set to str, and 0 is returned.

The function call atof (str) is equivalent to:

strtod(str, (char **)0)

RETURN VALUE
If the correct value would cause overflow, ±HUGE is returned (according to
the sign of the value) and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is
set to ERANGE.

APPLICATION USAGE
The function strtod was added in UNIX System V Release 2.0.

SEE ALSO
CTYPE(BA_LlB), SCANF(BA_LlB), STRTOL(BA_LlB).

CAVEATS
A macro HUGE VAL will be defined by the <rna th. h> header file. This
macro will call a -function which will either return +00 on a system that sup­
ports the IEEE P754 standard or +{MAXDOUBLE) on a system that does not
support the IEEE P754 standard.

If the correct value overflows, ± HUG E VAL will be returned (according to
the sign of the value).

The UNIX System User's Manual 547

Base System

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol(str, ptr, base)
char *str, **ptr;
int base;

long atol(str)
char *str;

int atoi(str)
char *str;

DESCRIPTION

STRTOL(BA_LlB)

The function strtol returns as a long integer the value represented by the
character string pointed to by s t r . The string is scanned up to the first
character inconsistent with the base. Leading white-space characters [as
defined by isspace in CTYPE(BA_LlB)] are ignored.

If the value of ptr is not ((char * *) 0), a pointer to the character ter­
minating the scan is returned in the location pointed to by ptr. If no
integer can be formed, that location is set to str and zero is returned.

If ba s e is positive, but not greater than 36, it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored and 0 x
or ox is ignored if base is 16.

If bas e is zero, the string itself determines the base in the following way:
After an optional leading sign, a leading zero causes octal-conversion and a
leading 0 x or 0 X hexadecimal-conversion; otherwise, decimal-conversion is
used.

Truncation from long to int can, of course, take place upon assignment
or by an explicit cast.

The function call at 01 (s t r) is equivalent to:

strtol(str, (char **)0, 10)

The function call atoi (str) is equivalent to:

(int)strtol(str, (char **)0, 10)

RETURN VALUE

If ptr is a null-pointer, strtol returns the value of the string str as a
long integer.

If ptr is not NULL, strtol returns the value of the string str as a
long integer, and a pointer to the character terminating the scan is returned in
the location ptr points to. If no integer can be formed, that location is set
to str and strtol returns O.

APPLICATION USAGE

Overflow conditions are ignored.

548 The UNIX System User's Manual

STRTOL(BA _LIB) Base System

SEE ALSO
CTYPE(BA_LIB). SCANF(BA_LlB). STRTOD(BA_LlB).

CAVEATS
Error handling will be added to strtcl.

The UNIX System User's Manual 549

Base System

NAME

swab - swap bytes

SYNOPSIS
void swab(from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION

The function swab copies nbytes bytes pointed to by from to the array
pointed to by to, exchanging adjacent even and odd bytes. It is useful for
carrying binary data between machines with different low-order/high-order
byte arrangements.

The argument nbytes should be even and non-negative. If the argument
nbytes is odd and positive, the function swab uses nbytes-1 instead.
If the argument nbytes is negative, the function swab does nothing.

550 The UNIX System User's Manual

TMPFILE(BA_LlB) Base System

NAME

tmpfile - create a temporary file

SYNOPSIS

#include <stdio.h>

FILE *tmpfile ()

DESCRIPTION

The function tmpfile creates a temporary file using a name generated by
the TMPNAM(BA_LlB) library routine, and returns a corresponding pointer to the
FILE structure associated with the stream [see stdlo-stream in Definitions).
The temporary file will automatically be deleted when the process that opened
it terminates or the temporary file is closed. The temporary file is opened for
update (w+) [see FOPEN(BA_SYS»).

RETURN VALUE

If the temporary file cannot be opened, an error message is written and a
NULL pointer is returned.

SEE ALSO
CREAT(BA_SYS), UNLlNK(BA_SYS), FOPEN(BA_SYS), MKTEMP(BA_LlB),

TMPNAM(BA_LlB).

The UNIX System User's Manual 551

Base System

NAME

tmpnam, tempnam - create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam(s)
char *s;

char *tempnam(dir, pfx)
char *dir, *pfx;

DESCRIPTION

TMPNAM(BA _LIB)

These functions create file-names that can safely be used for a temporary file.

The function tmpnam always generates a file-name using the path-prefix
defined as P tmpdir by the <stdio. h> header file. If s is NULL,
tmpnam stores its result in an internal static area and returns a pointer to
that area. The next call to tmpnam destroys the contents of the area. The
function tmpnam stores its result in an array of at least L _ tmpnam bytes,
where L tmpnam is a constant defined by the < stdio. h> header file. If
s is not -NULL, tmpnam stores its result in the array pointed to by sand
returns s.

The function tempnam allows the user to control the choice of a directory.
If defined in the user's environment, the value of the environmental variable
TMPDIR is used as the name of the desired temporary file directory. The
argument d i r points to the name of the directory in which the file is to be
created. If d iris NULL or points to a string that is not a name for an
appropriate directory, tempnam uses the path-prefix defined as
P _ tmpdir by the <stdio. h> header file. If that directory is not acces­
sible, the directory /tmp is used as a last resort.

The function tempnam uses the MALLOC(BA_SYS) routine to get space for
the constructed file-name, and returns a pointer to this area. Thus, any
pointer value tempnam returns may serve as an argument to the function
free defined in MALLOC(BA_SYS). If tempnam cannot return the expected
result for any reason, for example, the MALLOC(BA_SYS routine failed or none
of the above-mentioned attempts to find an appropriate directory succeeded,
tempnam returns a NULL pointer.

APPLICATION USAGE
Many applications prefer their temporary-files to have certain favorite initial
letter sequences in their names. Use the argument pfx for this. This argu­
ment may be NULL or point to a string of up to five characters to be used as
the first few characters of the temporary-file name.

The functions tmpnam and tempnam create a different file-name each
time they are called.

Files created using these functions and either the FOPEN(BA_SYS) routine or
the CREAT(BA_SYS) routine are temporary only in the sense that they reside in

552 The UNIX System User's Manual

TMPNAM(BA _LIB) Base System

a directory intended for temporary use, and their names are unique. The user
is responsible for using the UNLlNK(BA_SYS) routine to remove the file when
done.

If called more than (TMP_MAxj times in a single process, these functions start
recycling previously used names.

Between the time a file-name is created and the file is opened, some other pro­
cess can create a file with the same name. This can never happen if that other
process uses these functions or mktemp, and the file-names are chosen so as
to render duplication by other means unlikely.

SEE ALSO

CREAT(BA_SYS), UNLlNK(BA_SYS), FOPEN(BA_SYS), MALLOC(BA_SYS),

MKTEMP(BA_LlB), TMPFILE(BA_LlB).

The UNIX System User's Manual 553

Base System TRIG(BA _LIB)

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

#include <math.h>

double sin(x)
double x;

double cos (x)
double x;

double tan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(y, x)
double y, x;

DESCRIPTION

The functions s in, cos and tan return respectively the sine, cosine and
tangent of their argument, x, measured in radians.

The function asin returns the arc-sine of x in the range -7ri2 to 7r12.

The function acos returns the arc-cosine of x in the range 0 to 7r.

The function a tan returns the arc-tangent of x in the range -7r/2 to 7r12.

The function atan2 returns the arc-tangent of y/x in the range -7r to 7r,
using the signs of both y and x to get the quadrant of the return value.

RETURN VALUE

Both sin and cos lose accuracy when their argument is far from zero.
For arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significance, and a TLOSS error message is
printed on the standard error output [see MATHERR(BA_LlB»). For arguments
causing only partial loss of significance, a PLOS S error occurs but no mes­
sage is printed. In both cases, errno equals ERANGE.

If the magnitude of the argument to asin or acos is greater than one,
they return 0, print a DOMAIN error message on the standard error output,
and errno equals EDaM.

If both arguments to atan2 are zero, it returns 0, prints a DOMAIN error
message on the standard error output, and errno equals EDaM.

554 The UNIX System User's Manual

II

Base System

APPLICATION USAGE

These error-handling procedures are changed by the MATHERR(BA_LlB) routine.

SEE ALSO

The UNIX System User's Manual 555

Base System

NAME

tsearch, tfind; tdelete, twalk - manage binary search trees

SYNOPSIS

#include <search.h>

char *tsearch(key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

char *tfind(key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

char *tdelete(key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

void twalk(root, action)
char *root;
void (*action) () ;

DESCRIPTION

TSEARCH(BA _LIB)

The functions tsearch, tfind, tdelete, and twalk manipulate
binary search trees. All comparisons are done with a user-supplied function,
compar. The comparison function is called with two arguments, the pointers
to the elements being compared. It returns an integer less than, equal to or
greater than 0, according to whether the first argument is to be considered
less than, equal to or greater than the second argument. The comparison
function need not compare every byte, the elements may contain arbitrary
data in addition to the values being compared.

The function tsearch can build and access the tree. The argument key
points to a datum to be accessed or stored. If a datum in the tree equals
*key (the value pointed to by key), tsearch returns a pointer to this
found datum. Otherwise, tsearch inserts *key, and returns a pointer to
it. Only pointers are copied, so the calling routine must store the data. The
argument rootp points to a variable that points to the root of the tree. A
NULL value for the variable pointed to by rootp denotes an empty tree; in
this case, the variable is set to point to the datum which will be at the root of
the new tree.

Like tsearch, tfind searchs for a datum in the tree, and returns a
pointer to it if found. However, if it is not found, tfind returns a NULL
pointer. The arguments for tfind are the same as for tsearch.

The function tdelete deletes a node from a binary search tree. The argu­
ments are the same as for tsearch. The variable pointed to by rootp is
changed if the deleted node was the root of the tree.

556 The UNIX System User's Manual

TSEARCH(BA _LIB) Base System

The function twalk traverses a binary search tree. The argument root is
the root of the tree to be traversed. (Any node in a tree may be used as the
root for a walk below that node.> The argument action names a user­
defined routine to be called at each node. This routine is, in turn, called with
three arguments.

The first argument is the address of the node being visited.

The second argument is a value from an enumeration data type, VISIT

defined by the <search.h> header file. The values preorder, pos­
torder, endorder, indicate whether this is the first, second or third time
that the node has been visited (during a depth-first, left-to-right traversal of
the tree), or the value leaf indicates that the node is a leaf.

The third argument is an integer that identifies the level of the node in the
tree, with the root being level zero.

RETURN VALUE

If enough space is not available to create a new node, tsearch returns a
NULL pointer.

If rootp is NULL on entry, tsearch, tfind and tdelete return
a NULL pointer.

If the datum is found, both tsearch and tfind return a pointer to it. If
not, tfind returns NULL, and tsearch returns a pointer to the inserted
item. If the node is not found, tdelete returns a pointer to the parent of
the deleted node, or a NULL pointer.

APPLICATION USAGE

The function tfind was added in UNIX System V Release 2.0.

The pointers to the key and the root of the tree must be of type pointer-to­
element, and cast to type pointer-to-character. Similarly, although declared as
type pointer-to-character, the value returned should be cast to type pointer­
to-element.

The argument root to twalk is one level of indirection less than the
argument rootp to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which tree nodes are
visited. The function tsearch uses preorder, postorder and endorder to
respectively refer to visiting a node before any of its children, after its left
child and before its right, and after both its children. The alternate nomencla­
ture uses preorder, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

The UNIX System User's Manual 557

Base System TSEARCH(BA _LIB)

EXAMPLE
The following code reads in strings and stores structures containing a pointer
to each string and a count of its length. It then walks the tree, printing out
the stored strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { 1* pointers to these are stored in the tree *1
char *string;
int length;

} ;
char string_space[10000];
struct node nodes[SOO];
struct node *root = NULL;

1* space to store strings *1
1* nodes to store *1
1* this points to the root *1

maine)
{

char *strptr = string_space;
struct node *nodeptr • nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) 1= NULL && i++ < sizeof(nodes [0]) {
1* set node *1
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
1* put node into the tree *1
(void) tsearch«char *)nodeptr, &root, node_compare);
1* adjust pointers, to not overwrite tree *1
strptr += nodeptr->length + 1;
nodeptr++;

twalk(root, print node);

1* This routine compares two nodes, based on an *1
1* alphabetical ordering of the string field. *1
int node_compare(node1, node2)
struct node *node1, *node2;
{

return strcmp(node1->string, node2->string);

1* This routine prints out a node, the *1
1* first time twalk encounters it. *1
void print_node(node, order, level)
struct node **node;
VISIT order;
int level;

if (order == preorder II order == leaf) {
(void) printf("string = X20s, length

(*node)->string, (*node)->length);

SEE ALSO
BSEARCH(BA_LlB), HSEARCH(BA_LlB), LSEARCH(BA_LIB).

558 The UNIX System User's Manual

Xd\n",

TTYNAME(BA _LIB) Base System

NAME

ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname(fildes)
int fildes;

int isatty(fildes)
int fildes;

DESCRIPTION
The function ttyname returns a pointer to a string containing the null­
terminated path-name of the terminal-device associated with file-descriptor,
fildes.

The function isatty returns 1 if fildes is associated with a terminal­
device, 0 otherwise.

RETURN VALUE
The function t tyname returns a null-pointer if f i Ide s does not describe
a terminal device.

APPLICATION USAGE
The return value points to static data that is overwritten by each call.

The UNIX System User's Manual 559

Base System

NAME

ungetc - push character back into input stream

SYNOPSIS

#include <stdio.h>

int ungetc(c, stream)
int c;
FILE *stream;

DESCRIPTION

UNGETC(BA_LIB)

The function ungetc inserts the character c into the buffer associated with
an input stream. That character, c, will be returned by the next call to
the GETC(BA_LlB) routine on that stream. The function ungetc returns
c, and leaves the file corresponding to stream unchanged.

One character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

The FSEEK(BA_SYS) routine erases all memory of inserted characters.

RETURN VALUE

If successful, ungetc returns c; ungetc returns EOF if it cannot insert
the character.

SEE ALSO

FSEEK(BA_SYS), GETC(BA_LIB), SETBUF(BA_LIB).

560 The UNIX System User's Manual

VPRINTF{BA_LIB) Base System

NAME

vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf(format, ap)
char *format;
va_list ap;

int vfprintf(stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprintf(s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION

The functions vprintf, vfprintf, and vsprintf are the same as
printf, fprintf, and sprintf respectively, except they are called
with an argument list ap of type va 1 i s t as defined by the
<varargs . h> header file. -

The < v a r a r g s . h> header file defines the type val i stand a set of
macros for advancing through a list of arguments whose number and types
may vary. The argument ap is used with the <varargs. h> header file
macros va start, va arg and va end. The EXAMPLE section below
shows their use with vprintf. -

The macro va _ ali s t is used as the parameter list in a function definition
as in the function called err 0 r in the example below.

The macro va d c 1 is the declaration for va ali stand should not be
followed by a se~icolon. -

The macro va start (ap), where ap is of type va 1 i s t, must be
called before any-attempt to traverse and access the list of arguments.

Calls to va _ arg (ap, a type) traverse the argument list. Each execu­
tion of va _ arg expands to an expression with the value of the next argu­
ment in the list ap. The argument a type is the type that the returned
argument is expected to be.

The macro va end (ap) must be executed when all desired arguments
have been acces;ed. (The argument list in ap can be traversed again if
va _ start is called again after va _ end).

APPLICATION USAGE

The functions vprintf, vfprintf and vsprintf were added in
UNIX System V Release 2.0.

The UNIX System User's Manual 561

Base System VPRINTF(BA_LlB)

EXAMPLE

The following shows how vfprintf can be used to write an error routine.
In it. va arq is executed first to return the function name passed to
error and it is called again to retrieve the format passed to error. The
remaining error arguments. arq 1. arq2 are given to vfprintf
in ap.

#include <stdio.h>
#include <varargs.h>

1*
* error should be called like

error(function_name, format. arg1. arg2 .••);

void error(va_alist)
va_del

va_list ap;
char *fmt;

va_start(ap);
1* print out name of function causing error *1
(void) fprintf(stderr, "ERR in %s:
fmt = va_arg(ap, char *);
1* print out remainder of message *1
(void) vfprintf(stderr, fmt. ap);
va_end(ap) ;
(void) abort();

SEE ALSO
PRINTF(BA_LlB).

562 The UNIX System User's Manual

i
j

Chapter 8

Software Development
Library

A64L(SD _LIB) Software Development

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long
char *8;

char *164a(1)
long 1;

DESCRIPTION
These routines are used to maintain numbers stored in base-64 ASCII charac­
ters. In this notation, up to six characters can represent a long integer;
with each character being a radix-64 digit.

The characters used to represent radix-64 digits are . for 0, / for 1, 0
through 9 for 2 through 11, A through z for 12 through 37, and a through
z for 38 through 63.

The routine a641 takes a pointer to a null-terminated base-64 representation
and returns a corresponding long value. If the string pointed to bys con­
tains more than six characters, a 6 41 will use the first six.

The routine 164a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0 , 164 a returns a
pointer to a null-string.

APPLICATION USAGE

The value returned by 164a may be a pointer into a static buffer, which
would therefore be overwritten by each call.

The UNIX System User's Manual 565

Software Development

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

void assert(expression)
int expression;

DESCRIPTION

ASSERT(SD _LIB)

The macro ass e r t is useful for putting diagnostics into programs. When it
is executed, if expression is false (zero), assert prints

assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the
name of the source file and nnn the source line number of the assert state­
ment.

SEE ALSO
ABORT(BA_SYS).

APPLICATION USAGE
Compiling with the pre-processor option - DNDEBUG or with the pre­
processor control statement #define NDEBUG ahead of the #include
< ass e r t . h> statement will stop assertions from being compiled into the
program.

566 The UNIX System User's Manual

GETGRENT(SD _LIB) Software Development

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file
entry

SYNOPS!S
#include <grp.h>
#include <stdio.h>

struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

void setgrent ()

void endgrent ()

struct group *fgetgrent(f)
FILE *f;

DESCRIPTION

The routines getgrent, getgrgid and getgrnam each return
pointers to an object with the following structure containing the broken-out
fields of a line in the /etc/group file. Each line contains a group
structure, defined in the <grp. h> header file. The structure contains at
least the following members:

char *gr_name; /* the name of the group */
int gr_gid; /* the numerical group-ID */
char **gr_mem; /* pointer array to member names */

The routine getgrent when first called returns a pointer to the first
group structure in the file; thereafter, it returns a pointer to the next
group structure in the file; thus, successive calls search the entire file.

The routine getgrgid searches the file for a groupoID matching gid and
returns a pointer to the particular structure in which to find it.

The routine getgrnam searches the file for a group-name matching name
and returns a pointer to the particular structure in which to find it.

If an end-of-file or an error occurs on reading, these functions return a NULL
pointer.

The routine setgrent rewinds the group-file to allow repeated searches.

The routine endgrent closes the group-file when processing is done.

The routine fgetgrent returns a pointer to the next group structure in
the file f; this file must have the format of /etc/group.

RETURN VALUE
A NULL pointer is returned on end of file or an error.

The UNIX System User's Manual 567

Software Development

FILES
/etc/group

SEE ALSO
GETLOGIN(SD _LIB), GETPWENT(SD _LIB).

APPLICATION USAGE

GETGRENT(SD _LIB)

All information may be contained in a static area, so it should be copied if it is
to be saved.

568 The UNIX System User's Manual

GETLOGIN(SD _LIB) Software Development

NAME
getlogin - get login-name

SYNOPSIS

char *getlogin(i;

DESCRIPTION

The routine getlogin returns a pointer to the login-name as found in the
file /etc/utmp. It may be used in conjunction with the routine
getpwnam [see GETPWENT(SD_LlB)] to locate the correct password-file entry
when the same user-ID is shared by several login-names.

If getlogin is called within a process that is not attached to a terminal, it
returns a NULL pointer. The correct procedure for determining the login­
name is to call get login and if it fails to call getpwuid.

RETURN VALUE

Returns a NULL pointer if name is not found.

FILES

/etc/utmp

SEE ALSO
GETGRENT(SD _LIB), GETPWENT(SD _LIB).

APPLICATION USAGE

The return value may point to static data that is overwritten by each call.

The UNIX System User's Manual 569

Software Development

NAME

get pass - read a password

SYNOPSIS

char *getpass(prompt)
char *prompt;

DESCRIPTION

GETPASS(SD _LIB)

The routine getpas s reads up to a new-line or an EOF from the file
Idev/tty, after prompting on the standard error output with the null­
terminated string prompt and disabling echoing. A pointer is returned to a
null-terminated string of at most 8 characters. If I dev It ty cannot be
opened, a NULL pointer is returned. An interrupt will terminate input and
send an interrupt signal to the calling program before returning.

FILES

Idev/tty

APPLICATION USAGE
The return value points to static data that is overwritten by each call.

570 The UNIX System User's Manual

GETPWENT(SD _LIB) Software Development

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get pass­
word file entry

SYNOPSIS

#include <pwd.h>
#include <stdio.h>

struct passwd *getpwent(

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

void setpwent(

void endpwent(

struct passwd *fgetpwent(f)
FILE *f;

DESCRIPTION

Each of the functions getpwent, getpwuid and getpwnam returns a
pointer to a structure containing the broken-out fields of a line in the
letc/passwd file. Each line in the file contains a passwd structure,
declared in the <pwd. h> header file. The structure contains at least the
following members:

char *pw name; 1* login-name *1 -char *pw_ passwd; 1* encrypted-password *1
int pw uid; 1* numerical user-ID *1 -int pw gid; - 1* numerical group-ID *1
char *pw dir; - 1* initial-working-directory *1
char *pw shell; - 1* command-interpreter *1

The function getpwent when first called returns a pointer to the first
pa s swd structure in the file; thereafter, it returns a pointer to the next
pa s swd structure in the file; so successive calls can be used to search the
entire file.

The function getpwuid searches the file for a user-ID matching uid and
returns a pointer to the particular structure in which to find it.

The function getpwnam searches the file for a login-name matching name
and returns a pointer to the particular structure in which to find it.

If an end-of-file or an error occurs on reading, these functions return a NULL
pointer.

The function setpwent rewinds the password-file to allow repeated
searches.

The UNIX System User's Manual 571

Software Development GETPWENT(SD _LIB)

The function endpwent closes the password-file when processing is done.

The function fgetpwent returns a pointer to the next passwd structure
in the file f, which must have the format of /etc/passwd.

RETURN VALUE
A NULL pointer is returned on end-of-file or error.

FILES

/etc/passwd

SEE ALSO
GETLOGIN(SD _LIB), GETGRENT(SD _LIB).

APPLICATION USAGE
All information may be contained in a static area, so it should be copied if it is
to be saved.

572 The UNIX System User's Manual

GETUT(SD _LIB) Software Development

NAME

getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access
utmp file entry

SYNOPSIS
#include cutmp.h>

struct utmp *getutent(

struct utmp *getutid(id)
struct utmp *id;

struct utmp *getutline(line)
struct utmp *line;

void pututline(utmp)
struct utmp *utmp;

void setutent(

void endutent(

void utmpname(file)
char *file;

DESCRIPTION
Each of the routines getutent, getutid and getutline returns a
pointer to a structure, which is defined in the header file < u tmp . h>. The
structure contains at least the following members:

char ut user[] ; 1* user login-name *1 -
char ut id[] ; 1* letc/inittab ID *1 -
char ut line[] ; 1* device-name *1 -short ut pid; 1* process-ID *1 -
short ut type; 1* - type of entry *1

In addition, (at least) the following type values for u t _ type are defined:

EMPTY, RUN_LVL, BOOT_TIME, OLD_TIME, NEW_TIME,
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS,
DEAD_PROCESS, ACCOUNTING.

The routine getutent reads in the next entry from the letc/utmp file.
lt opens the file if it is not already open and it fails if it reaches the end of the
file.

The routine getutid searches forward from the current point in the
letc/utmp file; if the ut type value of the structure id is
RUN LVL, BOOT TIME, OLD - TIME or NEW TIME, then it stops when
it finds an entry with a ut type matching the ;;'t type of the structure
id. If the ut type value is INIT PROCESS: LOGIN PROCESS,
USER PROCESS, or DEAD PROCESS,-then it stops when it finds an entry
whose type is one of these four and whose ut id field matches the ut id
field of id. If the end-of-file is reached witho~t a match, getutid fails.

The UNIX System User's Manual 573

Software Development

The routine getutline searches forward from the current point in the
/etc/utmp file until it finds an entry of the type LOGIN_PROCESS or
USER PROCESS which also has a ut line value matching that of
line~ If the end-of-file is reached without it match, getutline fails.

The routine pututline writes out the supplied /etc/utmp structure
into the /etc/utmp file. It uses getutid to search forward for the
proper place if it finds that it is not already at the proper place. It is expected
that normally the user of pu t utI in e will have searched for the proper
entry using one of the above routines. If so, pututline will not search. If
pututline does not find a matching slot for the new entry, it will add a
new entry to the end of the file.

The routine setutent resets the input stream to the beginning of the file.
To examine the entire file, it must be reset before each search for a new entry.

The routine endutent closes the currently open file.

The routine u tmpname allows the user to change the name of the file exam­
ined by these routines, from /etc/utmp to any other file, usually this other
file is / etc /wtmp. If the file does not exist, this will not show up until the
first attempt to reference the file because u tmpname does not open the file;
it just closes the old file if it is currently open and saves the new file-name.

RETURN VALUE

A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

FILES
/etc/utmp
/etc/wtmp

APPLICATION USAGE
The most current entry is saved in a static structure that must be copied
before making further accesses.

Each call to either getutid or getutline sees the routine examine the
static structure before performing more 110. If the contents of the static
structure match what it is searching for, it looks no further. For this reason,
to use get utI in e to search for multiple occurrences, it is necessary to zero
out the static after each success, or getutline will just return the same
pointer over and over again.

There is one exception to the rule about removing the structure before doing
further reads. If the user modifies the contents of the static structure returned
by getutent, getutid, or getutline, and passes the pointer back
to pututline, the implicit read done by pututline (if it finds that it
is not already at the correct place in the file) does not hurt the contents.

The sizeof operator finds the sizes of the arrays in the structure.

574 The UNIX System User's Manual

MARK(SD _LIB)

NAME
MARK - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK(name)

DESCRIPTION

Software Development

The macro MARK will introduce a mark called name that will be treated
the same as a function entry point. Execution of the mark will add to a
counter for that mark, and program-counter time spent will be accounted to
the immediately preceding mark or to the function if there are no preceding
marks within the active function.

The identifier name may be any combination of letters, numbers or under­
scores. Each name in a single compilation must be unique, but may be the
same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file <prof. h> is included. This may be defined by a preprocessor
directive as in the synopsis, or by a command line argument, i.e.:

cc -p -DMARK foo. c

If MARK is not defined, the MARK (name) statements may be left in the
source files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in
each loop. Unless this example is compiled with MARK defined on the com­
mand line, the marks are ignored.

#include <prof.h>

foot)
{

int i, j;

MARK (loop1);
for (i = 0; i < 2000; i++) {

MARK(loop2);
for (j = 0; j < 2000; j++) {

SEE ALSO.
PROFIL(KE_SYS), MONITOR(SD_LlB), PROF(SD_CMD).

The UNIX System User's Manual 575

Software Development MONITOR(SD _LIB)

NAME

monitor - prepare execution profile

SYNOPSIS

#include <mon.h>

void monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION
The routine monitor is an interface to the profil system service rou­
tine [see PROFIL(KE_SYS»); lowpc and highpc are the addresses of two
functions; bu f fer is the address of a (user supplied) array of bu f s i z e
WORDs (WORD is defined in the <mon. h> header file). The monitor
routine arranges to record a histogram of periodically sampled values of the
program-counter, and of counts of calls of certain functions, in the buffer.
The lowest address sampled is that of lowpc and the highest is just below
highpc; lowpc may not equal 0 for this use of monitor. At most
nfunc call counts can be kept; only calls of functions compiled with the
profiling option - p of c c are recorded.

An executable program created by using the -p option with cc automati­
cally includes calls for the moni tor routine with default parameters; there­
fore moni tor need not be called explicitly except to gain fine control over
profiling.

For the results to be significant, especially where there are small, heavily used
routines, it is suggested that the buffer be no more than a few times smaller
than the range of locations sampled.

To profile the entire program, it is sufficient to use the following:

externintetext();

moni tor ((int (*) () } 2, etext, buf , bufsize, nfunc) ;

The routine etext lies just above all the program text.

To stop execution monitoring and write the results, use the following:

moni tor ((in t (*) () } 0, (in t (*) ()) 0 , 0 , 0, 0) ;

The command prof [see PROF(SD_CMD») can then be used to examine the
results.

The name of the file written by moni tor is controlled by the environmental
variable profdir. If PROFDIR is not set, then the file mon. out is
created in the current directory. If PROFDIR is set to the null-string, then
no profiling is done and no output file is created. Otherwise, the value of
PROFDIR is used as the name of the directory in which to create the output
file. If PROFDIR is dirname, then the output file is named

576 The UNIX System User's Manual

MONITOR(SD _LIB) Software Development

dirname/pid. mon. out, where pid is the program's process-ID. (When
moni tor is called automatically by using the -p option of cc, the file
created is dirname/pid.progname, where progname is the name of the
program).

FILES

mon.out

SEE ALSO
PROFIL(KE_SYS), CC(SD_CMD), PROF(SD_CMD).

The UNIX System Users Manual 577

Software Development

NAME

nlist - get entries from name list

SYNOPSIS
#include <nIist.h>

int nIist(fiIename, nIl
char *filename;
struct nlist *nl;

DESCRIPTION

NLlST(SD _LIB)

The routine n lis t examines the name list in the executable file whose name
is pointed to by f i I ename, and selectively extracts a list of values and puts
them in the array of n lis t structures pointed to by n 1. The name-list
nl consists of an array of structures containing names of variables, types and
values. The list is terminated with a null-name; that is, a null-string is in the
name position of the structure. Each variable-name is looked up in the name­
list of the file. If the name is found, the type and value of the name are
inserted in the next two fields. The type field will be set to 0 unless the file
was compiled with the - g option of c c . If the name is not found, both
entries are set to O.

This function is useful for examining the system name-list kept in the
name lis t file. In this way programs can obtain system-addresses that are
up to date.

RETURN VALUE

Returns - 1 upon error; otherwise returns O.

All value entries are set to 0 if the file cannot be read or if it does not con­
tain a valid name-list.

578 The UNIX System User's Manual

" !j
I

PUTPWENT(SD _LIB)

NAME

putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent(p, f)
struct passwd *p;
FILE *f;

DESCRIPTION

Software Development

The routine putpwent is the inverse of getpwent. Given a pointer to a
password structure created by getpwent (or getpwuid or
getpwnam), putpwent writes a line on tJ:2Vule f, which must h the
format of /etc/passwd.

RETURN VALUE

Returns a non-zero value if an error was detected during its operation, other­
wise returns O.

SEE ALSO
GETPWENT(SD _LIB).

The UNIX System User's Manual 579

Software Development SPUTL(SD _LIB)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion.

SYNOPSIS
void sputl(value, buffer)
long value;
char *buffer;

long sgetl(buffer)
char *buffer;

DESCRIPTION

J

The routine sputl takes the four bytes of the long integer value and
places them in memory starting at the address pointed to by buffer. The
ordering of the bytes is the same across all machines.

The routine sgetl retrieves the four bytes in memory starting at the
address pointed to by buffer and returns the long integer value in the byte
ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent
way of storing long numeric data in a file in binary form without conversion to
characters.

A program which uses these functions must be compiled with the object file
library, by using the -11 d option of c c.

580 The UNIX System User's Manual

Part IV

Environment

Chapter 9

Base System
Environment

DEVCON(BA_ENV)

NAME
devcon - system console interface

SYNOPSIS

/dev/console

DESCRIPTION

Base System

/dev/console is a generic name given to the system console. It is usually
linked to a particular machine-dependent special file, and provides a basic I/O
interface to the system console through the termio interface [see
TERMIO(BA_ENV)].

SEE ALSO

TERMIO(BA_ENV).

The UNIX System User's Manual 585

Base System DEVNUL(BA _ ENV)

NAME

devnul - the null file

SYNOPSIS

/dev/null

DESCRIPTION
Data written on a null special file are discarded.

Read operations from a null special file always return 0 bytes.

Output of a command is written to the special file /dev/null when the
command is executed for its side effects and not for its output.

SEE ALSO
FILSYS(BA_ENV).

586 The UNIX System User's Manual

DEVTTY(BA_ENV) Base System

NAME

devtty - controlling terminal interface

SYNOPSIS
/dev/tty

DESCRIPTION
The file / dev /t ty is, in each process, a synonym for the control-terminal
associated with the process group of that process, if any. It is useful for pro­
grams that wish to be sure of writing messages on the terminal no matter how
output has been redirected [see SYSTEM(BA_SYS)]. It can also be used for pro­
grams that demand the name of a file for output when typed output is desired
and as an alternative to identifying what terminal is currently in use.

APPLICATION USAGE

Normally, application programs should not need to use this file interface. The
standard input, standard output and standard error files should be used
instead. These file are accessed through the stdin, stdout and
s t d err stdio interfaces [see stdlo-stream in Definitions].

SEE ALSO

TERMIO(BA_ENV).

The UNIX System User's Manual 587

Base System ENVVAR(BA_ENV)

NAME

envvar - environmental variables

DESCRIPTION

When a process begins execution, the EXEC(BA_SYS) routines make available
an array of strings called the environment [see also SYSTEM(BA_SYS)]. By
convention, these strings have the form va ria b 1 e = val u e, for example,
PATH=/bin/usr/bin. These environmental variables provide a way to
make information about an end-user's environment available to programs. The
following environmental variables can be used by applications and are
expected to be set in the target run-time environment.

Variable

HOME

PATH

TERM

TZ

Use

Full path-name of the user's home-directory, the user's initial­
working-directory [see PASSWD(BA_ENV)].

Colon-separated ordered list of path-names that determine the
search sequence used in locating files [see SYSTEM(BA_SYS)].

The kind of terminal for which output is prepared. This infor­
mation is used by applications that may exploit special capabili-
ties of the terminal.

Time-zone information. TZ must be a three-letter, local time­
zone abbreviation, followed by a number (an optional minus
sign, for time-zones east of Greenwich, followed by a series of
digits) that is the difference in hours between this time-zone and
Greenwich Mean Time. This may be followed by an optional
three-letter daylight local time-zone. For example, EST5EDT
for Eastern Standard, Eastern Daylight Savings Time.

Other variables might be set in a particular environment but are not required
to be included in the Base System.

SEE ALSO

EXEC(BA_SYS), SYSTEM(BA_SYS), FILSYS(BA_ENV).

CAVEATS
The number in T Z will be defined as an optional minus sign followed by two
hour digits and two minute digits, hhmm, in order to represent fractional
time-zones.

588 The UNIX System User's Manual

ERRNO(BA _ ENV) Base System

NAME
errors - error code and condition definitions

SYNOPSIS
#include <errno.h>

extern int errno;

DESCRIPTION

The numerical value represented by the symbolic name of an error condition is
assigned to the external variable errno for errors that occur when executing
a system service routine or general library routine.

The component definitions list possible error conditions for each routine and
the meaning of the error in that context. The order in which possible errors
are listed is not significant and does not imply precedence. The value of
errno should be checked only after an error has been indicated; that is,
when the return value of the component indicates an error, and the component
definition specifies that errno will be set. A program that checks the value
of errno must include the <errno. h> header file. The errno value
o is reserved; no error condition will be equal to zero.

Additional error conditions may be defined by Extensions to the Base System
or by particular implementations.

The following list describes the general meaning of each error:

E2BIG

EACCES

EAGAIN

EBADF

EBUSY

Argument list too long
An argument list longer than {ARG_MAX} bytes was presented
to a member of the EXEC(BA_SYS) family of routines.

Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

Resource temporarily unavailable, try again later,
For example, the FORK(BA_SYS) routine failed because the
system's process table is full.

Bad file number
Either a file-descriptor specifies no open file, or a read (respec­
tively, write) request was made to a file that is open only for
writing (respectively, reading).

Device or resource busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on which
there is an active file (open file, current directory, mounted-on
file, active text segment). It will also occur if an attempt is
made to enable accounting when it is already enabled. The dev­
ice or resource is currently unavailable.

The UNIX System User's Manual 589

Base System

ECHILD No child processes
The WAIT(BA_SYS) routine was executed by a process that had
no existing or unwaited-for child processes.

EDEADLK Deadlock avoided
The request would have caused a deadlock; the situation was
detected and avoided.

EDOM Math argument
The argument of a function in the math package is out of the
domain of the function.

EEXI ST File exists

EFAULT

EFBIG

EINTR

EINVAL

EIO

EISDIR

EtolFILE

An existing file was specified in an inappropriate context (e.g., a
call to the LINK(BA_SYS) routine}.

Bad address
The system encountered a hardware fault in attempting to use
an argument of a routine. For example, errno potentially may
be set to EFAULT any time a routine that takes a pointer argu­
ment is passed an invalid address, if the system can detect the
condition. Because systems will differ in their ability to reliably
detect a bad address, on some implementations passing a bad
address to a routine will result in undefined behavior.

File too large
The size of a file exceeded the maximum file size, {FCHR_MAX}
[see ULlMIT(BA_SYS»).

Interrupted system service
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system service rou­
tine. If execution is resumed after processing the signal, it will
appear as if the interrupted routine returned this error condition.

Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in a call to the SIGNAL(BA_SYS)

or KILL(BA_SYS) routine}. Also set by math routines.

I/O error
Some physical I/O error has occurred. This error may, in some
cases, occur on a call following the one to which it actually
applies.

Is a directory
An attempt was made to write on a directory.

Too many open files in a process
No process may have more than {OPEN_MAX} file descriptors
open at a time.

590 The UNIX System User's Manual

ERRNO(BA_ENV) Base System

EMLINK Too many links
An attempt to make more than the maximum number of links,
ILINK_MAX}, to a file.

ENFILE Too many open files in the system
The system file table is full (j.e., ISYS_OPEN) files are open, and
temporarily no more opens can be accepted).

ENODEV No such device
An attempt was made to apply an inappropriate operation to a
device (e.g., read a write-only device).

ENOENT No such file or directory
A file-name is specified and the file should exist but does not, or
one of the directories in a path-name does not exist.

ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid format.

ENOLCK No locks available

ENOMEM

ENOSPC

There are no more locks available. The system lock table is full.

Not enough space
During execution of an EXEC(BA_SYS) routine, a program asks
for more space than the system is able to supply. This is not a
temporary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement of text,
data, and stack segments requires too many segmentation regis­
ters, or if there is not enough swap space during execution of the
FORK(BA_SYS) routine.

No space left on device
While writing an ordinary file or creating a directory entry,
there is no free space left on the device.

ENOTBLKBlock device required
A non-block file was specified where a block device was required
(e.g., in a call to the MOUNT(BA_SYS) routine).

ENOTDIR Not a directory
A non-directory was specified where a directory is required (e.g.,
in a path-prefix or in a call to the CHDIR(BA_SYS) routine).

ENOTTY Not a character device
A call was made to the IOCTL(BA_SYS) routine specifying a file
that is not a special character device.

ENXIO No such device or address
I/O on a special file specifies a subdevice which does not exist, or
exists beyond the limits of the device. It may also occur when,
for example, a tape drive is not on-line or no disk pack is loaded
on a drive.

The UNIX System User's Manual 591

Base System ERRNO(BA_ENV)

EPERM No permission match
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
if the signal is ignored.

ERANGE Result too large
The value of a function in the math package is not representable
within machine precision.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

ESPIPE Illegal seek
A call to the LSEEK(BA_SYS) routine was issued to a pipe.

ESRCH No such process
No process can be found corresponding to that specified by
pid in the KILL(BA_SYS) or PTRACE(KE_SYS) routine.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that
is currently open for writing. Also an attempt to open for writ­
ing a pure-procedure program that is being executed.

EXDEV Cross-device link
A link to a file on another device was attempted.

APPLICATION USAGE

Because a few routines may not have an error return value, an application
may set errno to zero, call the routine, and then check errno again to
see if an error has occurred.

592 The UNIX System User's Manual

FILSYS(BA_ENV) Base System

NAME
file system - directory tree structure

DESCRIPTION
U;reClQry Tree Siruciure

Below is a diagram of the minimal directory tree structure expected to be on
any UNIX System V operating system.

/

bin dev etc tmp usr

bin tmp

The following guidelines apply to the contents of these directories:

• /bin, /dev, /etc, and /tmp are primarily for the use of the sys­
tem. Most applications should never create files in any of these directories,
though they may read and execute them. Applications, as well as the sys­
tem, can use /usr/bin and /usr/tmp.

• /bin holds executable system-commands (utilities), if any.

• / dev holds special device files.

• /etc holds system-data-files, such as /etc/passwd.

• /tmp holds temporary files created by utilities in /bin and by other
system-processes.

• /u s r /bi n holds (user-level) executable application and system­
commands.

• /usr/tmp holds temporary files created by applications and the system.

Some Extensions to the Base System will have additional requirements on the
tree structure when the Extension is installed on a system. Directory tree
requirements specific to an Extension will be identified when the Extension is
defined in detail.

System Data Files

The Base System Definition specifies only these system-resident data files:

/etc/passwd
/etc/profile

The UNIX System User's Manual 593

Base System FILSYS(BA_ENV)

The /etc/passwd and /etc/profile files are owned by the system
and are readable but not writable by ordinary users.

The format and contents of /etc/passwd are defined on
PASSWD(BA_ENV). This is a generally useful file, readable by applications,
that makes available to application programs some basic information about
end-users on a system. It has one entry for each user. Minimally, each user's
entry contains a string that is the name by which the user is known on the sys­
tem, a numerical user-ID, and the home-directory or initial-working-directory
of the user.

Conventionally, the information in this file is used during the initialization of
the environment for a particular user. However, the /etc/passwd file is
also useful as a standardly formatted database of information about users,
which can be used independently of the mechanisms that maintain the data
file.

The /etc/profile file may contain a string assignment of the PATH
and TZ variables defined in ENVVAR(BA_ENV).

CAVEATS

The following directory structure and guidelines are proposed for applications
("add-ons") that are to be installed on a system:

/usr

I
bin etc lib opt tmp

x y

• /usr/etc would hold data and log files for commands in /usr/bin.

• /usr/lib would hold any executable files for commands in
/usr/bin.

• /usr/opt would hold sub-directories for each add-on to hold data files
private to the add-on (e.g., add-on x)

• /usr/opt/x would hold files and/or directories private to add-on x,
/usr/opt/y would hold files and/or directories private to add-on y.

594 The UNIX System User's Manual

PASSWD(BA_ENV) Base System

NAME

passwd - password file

SYNOPSIS
/etc/passwd

DESCRIPTION

The file / etc / pa s s wd contains the following information for each user:

name
encrypted password (may be empty)
numerical user-ID
numerical group-lD (may be empty)
free field
initial-working-directory
program to use as command interpreter (may be empty)

This ASCII file resides in directory / etc. It has general read permission and
can be used, for example, to map numerical user-IDs to names.

Each field within each user's entry is separated from the next by a colon.
Fields 2, 4, and 7 may be empty. However, if they are not empty, they must
be used for their stated purpose. Field 5 is a free field that is
implementation-specific. Fields beyond 7 are also free but may be standard­
ized in the future. Each user's entry is separated from the next by a new-line.

The name is a character string that identifies a user. Its composition should
follow the same rules used for file-names.

By convention, the last element in the path-name of the initial-working­
directory is typically name.

SEE ALSO

CRYPT(BA _LIB).

The UNIX System User's Manual 595

Base System

NAME

termio - general terminal interface

SYNOPSIS

#include <termio.h>

ioctl(fildes, request, arg)
struct termio *arg;

ioctl(fildes, request, arg)
int arg;

DESCRIPTION

TERMIO(BA _ENV)

The termio facility offers a general interface for asynchronous communica­
tions ports that is hardware-independent and that has the common features
discussed in this section.

When a terminal file is opened, it normally causes the process to wait until a
connection is established. Typically, these files are opened by the system ini­
tialization process and become the standard input, standard output, and stan­
dard error files [see stdlo-stream in Definitions], The very first terminal file
opened by the process-group-leader but not already associated with a process­
group becomes the control-terminal for that process-group. The control­
terminal plays a special role in handling quit and interrupt signals [see below}.
The control-terminal is inherited by a new process during a FORK(BA _ SYS) or
EXEC(BA_SYS) operation. A process can break this association by changing its
process-group with the SETPGRP(BA_SYS) routine.

A terminal associated with one of these files ordinarily operates in full-duplex
mode. This means characters may be typed at any time, even while output is
occurring. Characters are only lost when the system's character input buffers
become completely full, or when an input line exceeds {MAX_CHAR}, the max­
imum allowable number of input characters. When the input limit is reached,
all the saved characters may be thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by
the new-line (ASCII LF) character, end-of-file (ASCII EOT) character, or end­
of-line character. This means that a program attempting to read will be
suspended until an entire line has been typed. Also, no matter how many
characters may be requested in a read, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number of characters_
may be requested in a read, even one, without losing information.

Some characters have special meaning when input. For example, during
input, erase and kill processing is normally done. The ERASE character erases
the last character typed, except that it will not erase beyond the beginning of
the line. Typically, the default ERASE character is the character #. The
KILL character kills (deletes) the entire input line, and optionally outputs a
new-line character. Typically, the default KILL character is the character @'

Both characters operate on a key-stroke basis independently of any backspac­
ing or tabbing.

596 The UNIX System User's Manual

TERMIO(BA _ENV) Base System

Special Characters.
Some characters have special functions on input. These functions and their
typical default character values are summarized below:

INTR (Typically, rubout or ASCII DEL) generates an interrupt signal, which
is sent to all processes with the associated control-terminal. Nor­
mally, each such process is forced to terminate, but arrangements
may be made either to ignore the signal or to receive a trap to an
agreed-upon location [see SIGNAL(BA_SYS»).

QUIT (Typically, control-\ or ASCII FS) generates a quit signal. Its treat­
ment is identical to the interrupt signal except that, unless a receiv­
ing process has made other arrangements, it will not only be ter­
minated but the abnormal termination routines will be execut~.

ERASE (Typically, the character #) erases the preceding character. It will
not erase beyond the start of a line, as delimited by an EOF, EOL or
NL character.

KILL (Typically, the character @) deletes the entire line, as delimited by
an EOF, EOL or NL character.

EOF (Typically, control-d or ASCII EOT) may be used to generate an EOF,
from a terminal. When received, all the characters waiting to be
read are immediately passed to the program, without waiting for a
new-line, and the EOF is discarded. Thus, if there are no characters
waiting, which is to say the EOF occurred at the beginning of a line,
zero characters will be passed back, which is the standard end-of-file
indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or
escaped.

EOL (Typically, ASCII NUL) is an additional line delimiter, like NL. It is
not normally used.

STOP (Typically, control-s or ASCII OC3) is used to temporarily suspend
output. It is useful with CRT terminals to prevent output from disap­
pearing before it can be read. While output is suspended, STOP
characters are ignored and not read.

START (Typically, control-q or ASCII OCt) is used to resume output
suspended by a STOP character. While output is not suspended,
START characters are ignored and not read. The START/STOP char­
acters can not be changed or escaped.

MIN Used to control terminal 110 during raw mode (ICANON off) pro­
cessing [see the MIN/TIME Interaction section below 1.

TIME Used to control terminal 110 during raw mode (I CANON off) pro­
cessing [see the MIN/TIME Interaction section below)'

The UNIX System User's Manual 597

Base System TERMIO(BA _ ENV)

The ERASE, KILL and EOF characters may be entered literally, their special
meaning escaped, by preceding them with the escape character. In this case,
no special function is performed and the escape character is not read as input.

When one or more characters are written, they are transmitted to the terminal
as soon as previously-written characters have finished typing. Input characters
are echoed by putting them in the output queue as they arrive. If a process
produces characters more rapidly than they can be typed, it will be suspended
when its output queue exceeds some limit. When the queue has drained down
to some threshold, the program is resumed.

When a modem disconnect is detected, a hang-up signal, SIGHUP, is sent to
all processes that have this terminal as the control-terminal. Unless other
arrangements have been made, this signal causes the processes to terminate.
If the hang-up signal is ignored, any subsequent read returns with an end-of­
file indication. Thus, programs that read a terminal and test for end-of-file
can terminate appropriately when hung up on.

IOCTL(BA_SYS) Requests.
The primary IOCTL(BA_SYS) requests to a terminal have the form:

ioctl(fildes, request, arg}
struct termio *arg;

The requests using this form are:

TCGETA Get the parameters associated with the terminal and store in the
structure termio referenced by argo

TCSETA Set the parameters associated with the terminal from the struc­
ture termio referenced by argo The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters.
This form should be used when changing parameters that will
affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set
the new parameters.

AdditionaIIOCTL(BA_SYS) requests to a terminal have the form:

ioctl(fildes, request, arg}
int arg;

The requests using this form are:

TCSBRK

TCXONC

TCFLSH

Wait for the output to drain.
If arg is 0, then send a break (zero bits for 0.25 seconds).

Start/stop control.
If a r g is 0, suspend output; if 1, restart suspended output.

Flush queues
If arg is 0, flush the input queue; if 1, flush the output
queue; if 2, flush both the input and output queues.

598 The UNIX System User's Manual

TERMIO(BA _ ENV) Base System

Several IOCTL(BA_SYS) requests apply to terminal files and use the structure
termio which is defined by the <termio. h> header file. The structure
termio includes the following members:

unsigned short c iflag; 1* input modes *1 -
unsigned short c of lag; 1* output modes *1 -
unsigned short c cflag; 1* control modes *1 -
unsigned short c lflag; 1* local modes *1 -
char c line; 1* line-discipline *1 -
unsigned char c cc[NCC] ; 1* control chars *1 -

The special control-characters are defined by the array c cc. The symbolic
name NCC is the size of the control-character array and is also defined by the
<termio. h> header file. The relative positions, subscript names and typi­
cal default values for each entry are as follows:

0 VINTR ASCII DEL
1 VQUIT ASCII FS
2 VERASE #
3 VKILL @

4 VEOF ASCII EOT
4 VMIN
5 VEOL ASCII NUL
5 VTIME
6 reserved
7 reserved

Input Modes.

The following values for c _ i f 1 a g define basic terminal input control:

IGNBRK

BRKINT

IGNPAR

PARMRK

Ignore break condition.
If IGNBRK is set, the break condition (a character framing
error with data all zeros) is ignored (i.e., not put on the input
queue and therefore not read by any process). Otherwise, see
BRKINT.

Signal interrupt on break.
If BRKINT is set, the break condition generates an interrupt
signal and flushs both the input and output queues.

Ignore characters with parity errors.
If IGNPAR is set, characters with other framing and parity
errors are ignored.

Mark parity errors.
If PARMRK is set, a character with a framing or parity error
which is not ignored is read as the three-character sequence:
0377, 0, x, where 0377, 0 is a two-character flag preced­
ing each sequence and X is the data of the character received in
error. To avoid ambiguity in this case, if ISTRIP is not set, a
valid character of 0 3 7 7 is read as 0 3 7 7, 0 3 7 7 .

The UNIX System User's Manual 599

Base System

INPCK

ISTRIP

INLCR

IGNCR

ICRNL

IUCLC

IXON

IXANY

IXOFF

TERMIO(BA _ ENV)

If PARMRK is not set, a framing or parity error which is not
ignored is read as the character ASCII NUL (ASCII code 0) .

Enable input parity check.
If INPCK is set, input parity checking is enabled.

If INPCK is not set, input parity checking is disabled allowing
output parity generation without input parity errors.

Strip character.
If IS TR I P is set, valid input characters are first stripped to 7-
bits, otherwise all 8-bits are processed.

Map NL to ASCII CR on input.
If INLCR is set, a received NL character is translated into a
ASCII CR character.

Ignore ASCII CR.
If IGNCR is set, a received ASCII CR character is ignored (not
read).

Map ASCII CR to NL on input.
If ICRNL is set, a received ASCII CR character is translated
into a NL character.

Map upper-case to lower-case on input.
If IUCLC is set, a received upper-case alphabetic character is
translated into lower-case.

Enable start/stop output control.
If IXON is set, start/stop output control is enabled. A received
STOP character will suspend output and a received START char­
acter will restart output. All start/stop characters are ignored
and not read.

Enable any character to restart output.
If IXANY is set, any input character, will restart output which
has been suspended.

Enable start/stop input control.
If IXOFF is set, the system will transmit START/STOP charac­
ters when the input queue is nearly empty/full.

The initial input control value is all bits clear.

Output Modes.
The following values for c _ of lag define system treatment of output:

OPOST Postprocess output.
If OPOST is set, output characters are post-processed as indi­
cated by the remaining flags; otherwise characters are transmit­
ted without change.

600 The UNIX System User's Manual

TERMIO(BA _ ENV) Base System

OLCUC

ONLCR

OCRNL

ONOCR

ONLRET

OFILL

OFDEL

Map lower case to upper on output.
If OLCUC is set, a lower-case alphabetic character is transmit­
ted as the corresponding upper-case character. This function is
often used in conjunction with IUCLC.

Map NL to ASCII CR-NL on output.
If ONLCR is set, the NL character is transmitted as the ASCII
CR-NL character pair.

Map ASCII CR to NL on output.
If OCRNL is set, the ASCII CR character is transmitted as the
NL character.

No ASCII CR output at column O.
If ONOCR is set, no ASCII CR character is transmitted when at
column 0 (first position).

NL performs ASCII CR function.
If ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to 0
and the delays specified for ASCII CR will be used. Otherwise
the NL character is assumed to do just the line-feed function; the
column pointer will remain unchanged. The column pointer is
also set to 0 if the ASCII CR character is actually transmitted.

Use fill-characters for delay.
If OFILL is set, fill-characters will be transmitted for delay
instead of a timed delay. This is useful for high baud-rate ter­
minals that need only a minimal delay.

Fill is ASCII DEL, else ASCII NUL.
If OFDEL is set, the fill-character is ASCII DEL, otherwise
ASCII NUL.

The delay-bits specify how long transmission stops to allow for mechanical or
other movement when certain characters are sent to the terminal. In all cases
a value of 0 indicates no delay. The actual delays depend on line-speed and
system-load.

NLDLY

CRDLY

New-line delay lasts about 0.10 seconds.

If ONLRET is set, the carriage-return delays are used instead
of the new-line delays.

If OFILL is set, two fill-characters will be transmitted.

Select new-line delays:
NL 0 New-Line character type 0
NL 1 New-Line character type 1

Carriage-return delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 is about 0.15
seconds.

The UNIX System User's Manual 601

Base System

TABDLY

BSDLY

VTDLY

FFDLY

TERMIO(BA _ ENV)

If OFILL is set, delay type 1 transmits two fill-characters, and
type 2, four fill-characters.

Select carriage-return delays:
CRO Carriage-return delay type 0
CR 1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3

Horizontal-tab delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 specifies that
tabs are to be expanded into spaces.

If OFILL is set, two fill-characters will be transmitted for any
delay.

Select horizontal-tab delays:
TABO Horizontal-tab delay type 0
TAB 1 Horizontal-tab delay type 1
TAB2 Horizontal-tab delay type 2
TAB 3 Expand tabs to spaces.

Backspace delay lasts about 0.05 seconds.

If OFILL is set, one fill-character will be transmitted.

Select backspace delays:
BSO Backspace delay type 0
BS 1 Backspace delay type 1

Vertical-tab delay lasts about 2.0 seconds.

Select vertical-tab delays:
VTO Vertical-tab delay type 0
VT 1 Vertical-tab delay type 1

Form-feed delay lasts about 2.0 seconds.

Select form-feed delays:
FFO Form-feed delay type 0
FF 1 Form-feed delay type 1

The initial output control value is all bits clear.

Control Modes.

The following values for c _ c f 1 aq define hardware control for terminals:

HUPCL Hang up on last close.
If HUPCL is set, the modem control lines for the port will be
lowered when the last process with the line open closes it or ter­
minates. In other words, the data-terminal-ready signal will not
be asserted.

602 The UNIX System User's Manual

TERMIO(BA _ ENV) Base System

CLOCAL

CBAUD

CSIZE

Local line, else dial-up.
If CLOCAL is set, the line is assumed to be a local, direct con­
nection with no modem control. Otherwise modem control is
assumed.

Under normal circumstances, an OPEN(BA_SYS) operation will
wait for the modem connection to complete. However, if the
0_ NDELAY flag is set, or CLOCAL is set, the OPEN(BA_SYS)

operation will return immediately without waiting for the con­
nection. For those files on which the connection has not been
established, or has been lost, and for which CLOCAL is not set,
both READ(BA_SYS) and WRITE(BA_SYS) operations will return a
zero character count. For the READ(BA_SYS) operation, this is
equivalent to an end-of-file condition. The initial hardware con­
trol value after the OPEN(BA_SYS) operation is implementation­
dependent.

Specify the baud-rate.
The zero baud-rate, BO, is used to hang up the connection. If
BO is specified, the data-terminal-ready signal will not be
asserted. Normally, this will disconnect the line. For any par­
ticular hardware, unsupported speed changes are ignored.

Select baud rate:
BO Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

Specify the character size in bits for both transmission and
reception. This size does not include the parity-bit, if any.

Select character size:
CS5 5-bits
CS6 6-bits
CS7 7-bits
CS8 8-bits

The UNIX System User's Manual 603

Base System

CSTOPB

CREAD

PARENB

PARODD

TERMIO(BA _ ENV)

Send two stop-bits, else one.
If CSTOPB is set, two stop-bits are used, otherwise one stop­
bit. For example, at 110 baud, two stop-bits are normally used.

Enable receiver.
If CREAD is set, the receiver is enabled. Otherwise no charac­
ters will be received.

Enable parity.
If PARENB is set, parity generation and detection is enabled
and a parity-bit is added to each character.

Specify odd parity, else even.
If parity is enabled, the PARODD flag specifies odd parity if set,
otherwise even parity is used.

Local Modes and Line Discipline.
The line-discipline uses c lflag to control terminal functions. The basic
line-discipline, c_line set to 0, provides the following:

ISIG Enable signals.

ICANON

XCASE

If I S I G is set, each input character is checked against the spe­
cial control characters INTR and QUIT. If an input character
matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, no check­
ing is done. Thus these special input functions are possible only
if ISIG is set. These functions may be disabled individually
by changing the value of the control character to an unlikely or
impossible value (e.g., 0377).

Canonical input (ERASE and KILL processing).
If ICANON is set, canonical processing is enabled. This
enables the ERASE and KILL edit functions, and the assembly of
input characters into lines delimited by the EOF, EOL or NL
characters. If ICANON is not set, read requests are satisfied
directly from the input queue. A read will not be satisfied until
at least MIN characters have been received or the time-out value
TIME has expired between characters [see the MIN/TIME Interac­
tion section below 1. This allows fast bursts of input to be read
efficiently while still allowing single character input. The MIN
and TIME values are stored in the position for the EOF and EOL
characters, respectively. The time-value is expressed in units of
0.10 seconds.

Canonical upper/lower presentation.
If both XCASE and ICANON are set, an upper-case letter is
input by preceding it with the character \, and is output pre­
ceded by the character \.

604 The UNIX System User's Manual

TERMIO(BA _ ENV) Base System

ECHO

With canonical upperllower presentation, the following escape
sequences are generated on output and accepted on input:

for:

{

}

\

use:
\. '
\I
\,..

\.(

\)
\\

A is input as \a, \n as \ \n, and \N as \ \ \n.

Enable echo.
If ECHO is set, characters are echoed back to the terminal as
received.

When ICANON is set, the following echo functions are possible:

ECHOE

ECHOK

ECHONL

NOFLSH

Echo the ERASE character as ASCII BS-SP-BS.
If both ECHOE and ECHO are set, the ERASE character is
echoed as ASCII BS-SP-BS, which will clear the last character
from a CRT screen.

If ECHOE is set but ECHO is not set, the ERASE character is
echoed as ASCII SP-BS.

Echo the NL character after the KILL character.
If ECHOK is set, the NL character will be echoed after the KILL
character to emphasize that the line will be deleted. Note that
an escape character preceding the ERASE character or the KILL
character removes any special function.

Echo the NL character.
If ECHONL is set, the NL character will be echoed even if
ECHO is not set. This is useful for terminals set to local-echo
(also called half-duplex). Because ASCII EOT is the default EOF
character, the EOF character is not echoed unless escaped, to
prevent terminals that respond to ASCII EOT from hanging up.

Disable flush after interrupt or quit.
If NOFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters will not
be done.

The initial line-discipline control value is all bits clear.

MIN/TIME Interaction.
MIN represents the minimum number of characters that should be received
when the read is satisfied (i.e., the characters are returned to the user). TIME
is a timer of 0.10 second granularity used to time-out bursty and short-term
data transmissions.

The UNIX System User's Manual 605

Base System TERMIO(BA _ ENV)

The four possible values for MIN and TIME and their interactions follow:

1. MIN> 0, TIME> o. In this case, TIME serves as an inter-character timer
activated after receipt of the first character, and reset upon receipt of
each character. MIN and TIME interact as follows:

As soon as a character is received, the inter-character timer starts.

If MIN characters are received before the inter-character timer
expires, the read is satisfied.

If the inter-character timer expires before MIN characters are
received, the characters received to that point are returned to the
user.

A REAO(BA_SYS) operation will sleep until the MIN and TIME mechanisms
are activated by the receipt of the first character; thus, at least one char­
acter must be returned.

2. MIN> 0, TIME = o. In this case, because TIME = 0, the timer plays no role
and only MIN is significant. A REAO(BA_SYS) operation is not satisfied
until MIN characters are received.

3. MIN=O, TIME>O. In this case, because MIN = 0, TIME no longer serves
as an inter-character timer, but now serves as a read timer that is
activated as soon as the REAO(BA_SYS) operation is processed (in canon).
A READ(BA_SYS) operation is satisfied as soon as a single character is
received or the timer expires, in which case, the REAO(BA_SYS) operation
will not return any characters.

4. MIN = 0, TIME = o. In this case, return is immediate. If characters are
present, they will be returned to the user.

SEE ALSO

FORK(BA_SYS), IOCTL(BA_SYS), SETPGRP(BA_SYS), SIGNAL(BA_SYS).

606 The UNIX System User's Manual

Chapter 10

Kernel Extension
Environment

..

EFFECTS(KE _ ENV) Kernel Extension

NAME
effects - effects of the Kernel Extension on the Base System.

DESCRIPTION
Kernel Extension Routines have the following effects on Base System Rou­
tines:

EXEC(BA_SYS)

The AFORK flag in the ac_flag field of the accounting record is turned
off, and the ac comm field is reset by executing an EXEC(BA SYS) routine
[see ACCT(KE_SYS)1. -

Any process-locks, data-locks, or text locks are removed and not inherited by
the new process [see PLOCK(KE_SYS)1.

Profiling is disabled for the new process [see PROFIL(KE_SYS)].

The shared-memory-segments attached to the calling-process will not be
attached to the new process [see SHMOP(KE_SYS)1.

The new process inherits these added attributes from the calling-process:

nice-value [see NICE(KE_SYS)];

semadj values [see SEMOP(KE_SYS)];

trace flag [see request 0 in PTRACE(KE_SYS)1.

EXIT(BA_SYS)
An accounting record is written on the accounting file if the system's account­
ing routine is enabled [see ACCT(KE_SYS)1.

Any process-locks, data-locks, or text-locks are removed [see PLOCK(KE_SYS)].

Each attached shared-memory-segment is detached and the value of
shm nattch in the data structure associated with its shared-memory­
identifier is decremented by 1.

For each semaphore for which the calling-process has set a semadj value
[see SEMOP(KE_SYS)l, that semadj value is added to the semval of the
specified semaphore.

FORK(BA_SYS)

The AFORK flag is turned on when the function fork is executed.

The child-process inherits these added attributes from the parent-process:

The ac _ comm contents of the accounting record [see ACCT(KE_SYS)];

nice-value [see NICE(KE_SYS)];

profiling on/off status [see PROFIL(KE_SYS)];

all attached shared-memory-segments [see SHMOP(KE_SYS)].

The UNIX System User's Manual 609

Kernel Extension EFFECTS(KE_ENV)

The child-process differs from the parent-process in these other ways:

All semadj values are cleared [see SEMOP(KE_SYS)].

The child-process does not inherit process-locks, data-locks, and text­
locks [see PLOCK(KE_SYS)].

SEE ALSO
ACCT(KE _ SYS), NICE(KE _ SYS), PLOCK(KE _ SYS), PROFIL(KE_ SYS),

PTRACE(KE _ SYS), SEMOP(KE _ SYS), SHMOP(KE _ SYS),

610 The UNIX System User's Manual

ERRNO(KE _ ENV) Kernel Extension

NAME

error - error codes and condition definitions

SYNOPSIS

#include <errno.h>

extern int errno;

DESCRIPTION
In addition to the values defined in the Base System for the external variable
errno [see ERRNO(BA_ENV»). two additional error conditions are defined in
the Kernel Extension:

ENOMSG

EIDRM

No message of desired type.
An attempt was made to receive a message of a type that does
not exist on the specified message queue.

Identifier removed.
This error is returned to processes that resume execution because
of the removal of an identifier [see MSGCTL(KE_SYS).

SEMCTL(KE_SYS). and SHMCTL(KE_SYS)1.

SEE ALSO

ERRNO(BA_ ENV).

The UNIX System User's Manual 611

Chapter 11

Administered Systems
Environment

SYSINIT(AS_ENV)

NAME
sysinit - system initialization

SYNOPSIS
/etc/inittab

DESCRIPTION

Administered Systems

This section is intended to provide some background information about the
system-process-spawner Onit), and about how a user is logged in (getty and
login). The description here is a general one; there may be minor differences
between different implementations of UNIX System V.

INIT
The init-process is invoked at system-initialization, as one of the steps in the
boot procedure; its primary role is to create processes according to entries in
the file /etc/ini ttab.

One kind of entry in this file specifies how the getty-process (see GETTY section
below) is to be executed on the individual terminal lines available for users to
log in. Other entries control the initiation of autonomous processes required
by any particular system.

The system-administrator communicates with the init-process by executing the
ini t command [see INIT(AS_CMD)]. (It is important to keep in mind the dis­
tinction between the two; here init refers to the special system-process, while
in i t refers to the command that allows communication with the special
system-process) .

The init-process considers the system to be in a particular run-level at any
given time. A run-level can be viewed as a software configuration of the sys­
tem, where each configuration is defined by the collection of processes that are
to be spawned. The specification of the run-levels (that is, the specification of
the processes to be spawned by init) is defined in the /etc/ini ttab file.
There are eight allowed run-levels, 0 to 6 and s (or S). The run-level may be
changed when the administrator runs the ini t command.

When it is invoked at system-initialization, the first thing the init-process does
is to look for the / etc / i nit tab file and see if there is an entry of the
type ini tdefaul t. If there is, init uses the run-level specified in that
entry as the initial run-level to enter. If this entry is not in
/etc/ini ttab, then init requests that the user enter a run-level from the
virtual system console, /dev/console.

The run-level s (S) corresponds to SINGLE USER level. This is the only run­
level that does not require the existence of a properly formatted
/etc/inittab file. If /etc/inittab doesn't exist, then by default
init enters SINGLE USER level. (Note: Since other run-levels may also be
configured for single-user, SINGLE USER level need not be the only level in
which only one user is allowed on the system).

The levels 0 through 6 have no special meaning; they are defined by the
entries in the /etc/inittab file.

The UNIX System User's Manual 615

Administered Systems SYSINIT(AS _ ENV)

Whenever a new run-level is entered, init scans the /etc/inittab file
and processes all entries corresponding to that run-level. In addition, entry to
and exit from SINGLE USER level results in some special actions, as follows:

1. When SINGLE USER level is entered in the boot-sequence,
/etc/ini ttab is scanned for any entries of the type sysini t.
These entries are processed before any other actions in state s.

2. The first time init leaves SINGLE USER level, it scans
/etc/ini ttab for special entries of the type boot and
bootwai t. Entries of this type, for which the specified run-level
matches the new run-level to be entered, are performed before any nor­
mal processing of /etc/inittab takes place.

In this way any special initialization of the operating system, such as mounting
file systems, can take place before users are allowed onto the system.

In a normal operating environment (mUlti-used, the /etc/ini ttab file is
usually set up so that init will create a process for each terminal on the sys­
tem.

After it has spawned all of the processes specified by the /etc/inittab
file, init waits for one of its child-processes to die, a powerfail signal, or until a
request is made via the ini t command to change the system's run-level.
When one of the above three conditions occurs, init re-examines the
/etc/ini ttab file. New entries can be added to this file at any time;
however, init still waits for one of the above three conditions to occur. To get
an immediate response the ini t command may be invoked with the option
q in order to force init to re-examine the / etc / in itt a b file.

When init is requested to change run-levels, all processes defined in the
current run-level, that are undefined in the target run-level, are terminated.
This is done by first sending the signal S IGTERM (which serves as a warning
for processes that catch it), and, after a brief delay, sending the signal S I G­
KILL.

If init finds that it is continuously respawning an entry from
/etc/inittab (more frequently than some specified rate), it will assume
that there is an error in the command string, generate an error message on the
system console, and refuse to respawn this entry until either some time has
elapsed or it receives a directive from the ini t command. This prevents init
from eating up system resources when someone makes a typographical error in
the /etc/inittab file or a program is removed that is referenced in
/etc/ini ttab.

GETTY
The getty-process is invoked by the init-process, to allow a user to login on a
terminal-line. It is thus the getty-process that the user encounters when log­
ging in to the system.

The actions of getty are controlled by entries in the file
/etc/gettydefs. These entries specify what line speed should be used

616 The UNIX System Users Manual

SYSINIT(AS _ ENV) Administered Systems

initially, what the login message should look like, what the initial tty settings
are, and what speed to try next should the user indicate that the speed is inap­
propriate (by typing a BREAK-character).

If a null character (or framing error) is received, it is assumed to be the result
of the user pushing the BREAK-key. This will cause getty to attempt the next
speed in a sequence defined in letc/gettydefs.

Finally, the login command is called to allow the user to complete logging in.

LOGIN
The login-process is invoked by the getty-process, as described above, at the
beginning of each terminal session. It is the means by which the user is
identified to the system.

If the user has a password, login asks for it, and verifies its correctness. If sys­
tem echoing has been enabled, it is turned off during the typing of the pass­
word. (However, echoing will continue to occur if local echo has been
enabled).

If the login is not completed successfully within a certain period of time, (e.g.,
one minute) the user may be disconnected.

After a successful login, the user-ID, the groupoID, the working-directory, and
the command-interpreter, are initialized.

SEE ALSO
GETTY(AS_CMD), LOGIN(AS_CMD), INIT(AS_CMD).

The UNIX System User's Manual 617

Part V

Definitions

Chapter 12

Base System
Definitions

Definitions Base System

ASCII character set
The following maps of the ASCII character set give octal and hexadecimal
equivalents for each character. Although the ASCII code does not use the eighth­
bit in an octet, this bit should not be used for other purposes because codes for
other languages may need to use it.

Octal map of ASCII character set.

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 0;7 si
020 dIe 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em
040 sp 041
050 (051
060 0 061
070 8 071 9
100@ 101A
110H 1111
120p 121Q
130X 131Y
140' 141 a
150h 151i
160 P
170 x

00 nul
08 bs
10 dIe
18 can
20 sp
28 (
30 0
38 8
40 @
48 H
50 P

58 X
60 '
68 h
70 p

78 x

161 q
171 Y

01 soh
09 ht
11 dc1
19 em
21
29
31 1
39 9
41 A
49 I
51 Q

59 Y
61 a
69 i
71 q

79 Y

032 sub 033 esc 034 fs
042" 043 # 044 $

052 *
062 2
072
102 B
112 J
122 R
132 Z
142 b
152 j
162 r
172 z

053 +

063 3
073
103 C
113 K

123 S
133 [
143 c
153 k
163 s
173

054 ,
064 4
074 <

104 D
114 L

124 T
134 \
144 d
154 I
164 t
174

035 gs

045 "
055 -
065 5
075
105 E
115 M

125 U
135]
145 e
155 m
165 u
175

036 rs
046 &
056
066 6
076 >

106 F
116 N
126 V
136 A

146 f
156 n
166 v
176 ~

Hexadecimal map of ASCII character set.

02 stx
Oa nl
12 dc2
1a sub
22 ..

2a *
32 2
3a
42 B

4a J
52 R
Sa z
62 b
6a j
72 r
7a z

03 etx
Ob vt
13 dc3
1b esc
23 #
2b +

33 3
3b
43 C
4b K

53 S
5b [
63 c
6b k
73 s
7b

04 eot
Oc np
14 dc4
1c fs
24 $

2c
34 4
3c <

44 D
4c L

54 T
5c \
64 d
6c I
74 t

7c

05 enq
Od cr
15 nak
1d gs

25 "
2d -
35 5
3d
45 E
4d M
55 U
5d]
65 e
6d m
75 u

7d

06 ack
Oe so
16 syn
1e rs
26 &
2e
36 6
3e >

46 F

4e N

56 V
5e A

66 f
6e n
76 v
7e ~

037 us
047 '
057 /
067 7
077 ?
107 G
117 0

127 W
137
147 g
157 0

167 w
177 del

07 bel
Of si
17 etb
1f us
27 '
2f /
37 7
3f ?
47 G
4f 0
57 W
Sf
67 g

6f 0

77 w
7f del

The UNIX System User's Manual 623

Base System Definitions

directory
Directories organize files into a hierarchical system of files with directories as the
nodes in the hierarchy. A directory is a file that catalogs the list of files, including ,j

directories (sub-directories), that are directly beneath it in the hierarchy. Entries
in a directory file are called links. A link associates a file-identifier with a file­
name. By convention, a directory contains at least two links, • (dot) and ••
(dot-dot). The link called dot refers to the directory itself while dot-dot refers to
its parent-directory. The root-directory, which is the top-most node of the hierar­
chy, has itself as its parent-directory. The path-name of the root directory is /
and the parent-directory of the root-directory is /.

effectlve-user-ID and effectlve-group-ID
An active process has an effective-user-ID and an effective-groupoID that are used
to determine file-access-permissions (see below). The effective-user-ID and
effective-groupoID are equal to the process's real-user-ID and real-groupoID respec­
tively, unless the process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-groupoID bit set [see EXEC(BA_SYS»). In addition, they can be
reset with the SETUID(BA_SYS) and SETGID(BA_SYS) routines, respectively.

environmental variables
When a process begins, an array of strings called the environment is made avail­
able by the EXEC(BA_SYS) routine [see also SYSTEM(BA_SYS)]. By convention,
these strings have the form variable=value, for example,
PATH=: /bin: /usr/bin. These environmental variables provide a way to
make information about an end-user's environment available to programs [see
ENVVAR(BA_ENV»).

file-access-permlsslons
Read, write, and execute/search permlSSlons [see CHMOD(BA SYS)] on a file are
granted to a process if one or more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches the user-ID of the owner of the file
and the appropriate access-permission-bit of the owner portion of the file-mode
is set.

• The effective-user-ID of the process does not match the user-ID of the owner of
the file and the effective-groupoID of the process matches the group of the file
and the appropriate access-permission-bit of the group portion of the file-mode
is set.

• The effective-user-ID of the process does not match the user-ID of the owner of
the file and the effective-groupoID of the process does not match the groupoID
of the file and the appropriate access-permission-bit of the other portion of the
file-mode is set.

Otherwise, the corresponding permissions are denied.

624 The UNIX System User's Manual

Definitions Base System

file-descriptor
A file-descriptor is a small integer used to identify a file for the purposes of doing
110. The value of a file-descriptor is from 0 to {OPEN_MAX}-1. An open file­
descriptor is obtained from a call to the CREAT(BA_SYS), DUP(BA_SYS),
FCNTL(BA_SYS), OPEN(BA_SYS), or PIPE(BA_SYS) routine. A process may have no
more than {OPEN_MAX} file-descriptors open simultaneously.

A file-descriptor has associated with it information used in performing I/O on the
file: a file-pointer that marks the current position within the file where I/O will
begin; file-status and access-modes (e.g., read, write, read/write) [see
OPEN(BA_SYS»); and close-on-exec flag [see FCNTL(BA_SYS)1. Multiple file­
descriptors may identify the same file. The file-descriptor is used as an argument
by such routines as the READ(BA_SYS), WRITE(BA_SYS), IOCTL(BA_SYS), and
CLOSE(BA_SYS) routines.

file-name
Strings consisting of 1 to {NAME_MAX} characters may be used to name an ordi­
nary file, a special file or a directory. {NAME_MAX} must be at least 14. These
characters may be selected from the set of all character values excluding the char­
acters null and slash (;).

Note that it is generally unwise to use *, ?, I, [, or] as part of file-names
because of the special meaning attached to these characters for file-name expansion
by the command interpreter [see SYSTEM(BA_SYS)1. Other characters to avoid are
the hyphen, blank, tab, <, >, backslash, single and double quotes, accent grave,
vertical bar, caret, curly braces, and parentheses. It is also advisable to avoid the
use of non-printing characters in file names.

Implementation-specific constants
In detailed definitions of components, it is sometimes necessary to refer to constants
that are implementation-specific, but which are not necessarily expected to be
accessible to an application-program. Many of these constants describe boundary­
conditions and system-limits.

In the SVID, for readability, these constants are replaced with symbolic names.
These names always appear enclosed in curly brackets to distinguish them from
symbolic names of other implementation-specific constants that are accessible to
application-programs by header files. These names are not necessarily accessible to
an application-program through a header file, although they may be defined in the
documentation for a particular system.

In general, a portable application program should not refer to these constants in its
code. For example, an application-program would not be expected to test the
length of an argument list given to an EXEC(BS_SYS) routine to determine if it was
greater than {ARG_MAX}.

The UNIX System User's Manual 625

Base System Definitions

The following lists implementation-specific constant~ used in component definitions:

Name
(ARG_MAX)
(CHAR_BIT)
(CHAR_MAX)
(CHILD_MAX)
(CLK_TCK)
(FCHR_MAX)
lINT_MAX)
(LINK_MAX)
(LOCK_MAX)
(LONG_BIT)
(LONG_MAX)
(MAXDOUBLE)
(MAX_CHAR)
(NAME_MAX)
(OPEN_MAX)
(PASS_MAX)
(PATH_MAX)
(PID_MAX)
(PIPE_BUF)
(PIPE_MAX)
(PROC_MAX)
(SHRT_MAX)
(STD_BLK)
(SYS_NMLN)
(SYS_OPEN)
(TMP_MAX)
(UID_MAX)
(USI_MAX)
(WORD_BIT)
(CHAR_MIN)
(INT_MIN)
(LONG_MIN)
(SHRT_MIN)

Description
max. length of argument to exec
number of bits in a char
max. integer value of a char
max. number of processes per user-ID
number of clock ticks per second
max. size of a file in bytes
max. decimal value of an int
max. number of links to a single file
max. number of entries in system lock table
number of bits in a long
max. decimal value of a long
max. decimal value of a double
max. size of character input buffer
max. number of characters in a file-name
max. number of files a process can have open
max. number of significant characters in a password
max. number of characters in a path-name
max. value for a process-ID
max. number bytes atomic in write to a pipe
max. number of bytes written to a pipe in a write
max. number of simultaneous processes, system wide
max. decimal value of a short
number of bytes in a physical I/O block
number of characters in string returned by uname
max. number of files open on system
max. number of unique names generated by tmpnam
max. value for a user-ID or groupoID
max. decimal value of an unsigned
number of bits in a word or int
min. integer value of a char
min. decimal value of an int
min. decimal value of a long
min. decimal value of a short

parent-proceSS-ID
The parent-process-ID of a process is the process-ID of its creator. A new process
is created by a currently active-process [see FORK(BA_SYS)].

626 The UNIX System User's Manual

Definitions Base System

path-name and path-prefix
In a C program, a path-name is a null-terminated character-string starting with an
optional slash V), followed by zero or more directory-names separated by slashes,
optionally followed by a file-name. A null string is undefined and may be con­
sidered an error.

More precisely, a path-name is a null-terminated character-string as follows:

<path name>: :=<file name>l<path prefix><file name>l/l. I ..
<path-prefix>: :=<rtprefix>!/<rtprefix>!empty­
<rtpr~fix>::=<dirname>/l<rtprefix><dirname>1

where < f i 1 e name> is a string of 1 to {NAME MAX} significant characters
other than slash and null, and <dirname> is a string of 1 to {NAME_MAX}
significant characters (other than slash and null) that names a directory. The
result of names not produced by the grammar are undefined.

If a path-name begins with a slash, the path search begins at the root-directory.
Otherwise, the search begins from the current-working-directory.

A slash by itself names the root-directory. The meanings of . and •. are
defined under directory.

process-group-ID
Each active-process is a member of a process-group. The process-group is uniquely
identified by a positive-integer, called the process-groupoID, which is the process-ID
of the group-leader (see below). This grouping permits the signaling of related
processes [see KILL(BA_SYS»).

process-group-Ieader
A process group leader is any process whose process-groupoID is the same as its
process-ID. Any process may detach itself from its current process-group and
become a new process-group-leader by calling the SETPGRP(BA_SYS) routine. A
process inherits the process-groupoID of the process that created it [see
FORK(BA_SYS) and EXEC(BA_SYS»).

process-ID
Each active-process in the system is uniquely identified by a positive-integer called
a process-ID. The range of this ID is from 0 to {PID_MAX}. By convention,
process-ID 0 and 1 are reserved for special system-processes.

real-user-ID and real-group-ID
Each user allowed on the system is identified by a positive-integer called a real­
user-ID. Each user is also a member of a group. The group is identified by a
positive-integer called the real-groupoID.

An active-process has a real-user-ID and real-groupoID that are set to the real­
user-ID and real-groupoID, respectively, of the user responsible for the creation of
the process. They can be reset with the SETUID(BA_SYS) and SETGID(BA_SYS) rou­
tines, respectively.

The UNIX System User's Manual 627

Base System Definitions

root-directory and current-worklng-dlrectory
Each process has associated with it a concept of a root-directory and a current­
working-directory for the purpose of resolving path searches. The root-directory of
a process need not be the root-directory of the root file system.

special-processes
All special-processes are system-processes (e.g., a system's process-scheduler). At
least process-IDs 0 and 1 are reserved for special-processes.

stdlo-routines
A set of routines described as Standard 110 (stdio) routines constitute an efficient,
user-level 110 buffering scheme. The complete set of Standard I/O, stdio routines
is shown below [see also the definition of stdlo-stream below 1. Detailed component
definitions of each can be found in either the Base System (BA_SYS) routines or the
Base Library (BA_LlB) routines.

clearerr, fclose, fdopen, feof, ferror, fileno,
fflush, fopen, fread, freopen, fseek, ftell,
fwrite, pop en, pclose, rewind.

ctermid, fgetc, fgets, fprintf, fputc, fputs,
fscanf, getc, getchar, gets, getw, printf, putc,
put char, puts, putw, scanf, setbuf, setvbuf,
sprintf, tempnam, tmpfile, tmpnam, ungetc,
vprintf. vfprintf. vsprintf.

The Standard I/O routines and constants are declared in the <stdio. h> header
file and need no further declaration. The following functions are implemented as
macros and must not be redeclared: getc, getchar, putc, putchar,
ferror, feof, clearerr, and fileno. The macros getc and putc
handle characters quickly. The macros getchar and putchar, and the
higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread,
fscanf, fwrite, gets, getw, printf, puts, putw, and scanf
all use or act as if they use getc and putc; they can be freely intermixed.

The < S td i 0 • h> header file also defines three symbolic constants used by the
stdio routines:

The defined constant NULL designates a nonexistent null pointer.

The integer constant EOF is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual component
definitions for details).

The integer constant BUFSIZ specifies the size of the stdio buffers used
by the particular implementation.

Any application-program that uses the stdio routines must include the
<stdio. h> header file.

628 The UNIX System User's Manual

Definitions Base System

stdlo-stream
A file with associated stdio buffering is called a stream. A stream is a pointer to a
type FILE defined by the < stdio. h> header file. The FOPEN(BA_SYS) rou­
tine creates certain descriptive data for a stream and returns a pointer that
identifies the stream in all further transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the function fopen or
one of three streams that are associated with three files that are expected to be
open in the Base System [see TERMIO(BA_ENV)1. These three streams are declared
in the <stdio. h> header file:

stdin
stdout
stderr

the standard input file.
the standard output file.
the standard error file.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default
unbuffered. When an output stream is unbuffered, information is queued for writ­
ing on the destination file or terminal as soon as written; when it is buffered, many
characters are saved up and written as a block. When it is line-buffered, each line
of output is queued for writing on the destination terminal as soon as the line is
completed (that is, as soon as a new-line character is written or terminal input is
requested). The SETBUF(BA_LlB) routines may be used to change the stream's
buffering strategy.

super-user
A process is recognized as a super-user process and is granted special privileges if
its eff ective-user-ID is 0 .

tty-group-ID
Each active-process can be a member of a terminal-group that shares a control ter­
minal [see DEVTTY(BA_ENV)] and is identified by a positive-integer called the tty­
groupoID. This grouping is used to terminate a group of related processes upon
termination of one of the processes in the group [see EXIT(BA_SYS) and
SIGNAL(BA_SYS)].

The UNIX System User's Manual 629

Chapter 13

Kernel Extension
Definitions

Definitions Kernel Extension

Ipc-permlsslons
The Kernel Extension includes three mechanisms for inter-process communication
(ipc): messages, semaphores, and shared-memory. All of these use a common
structure type, ipc _perm, to pass information used in determining permission to
use an ipc-operation.

The < ipc . h> header file defines the ipc _perm structure that includes the
following members:

llshort euid; /* creator user-ID *1
ushort cgid; 1* creator group-ID *1
ushort uid; 1* user-ID *1
ushort gid; 1* group-ID *1
ushort mode; 1* r/w permission *1

The < ipc • h> header file also defines the following symbolic constants:

Name
IPC CREAT
IPC EXCL
IPC NOWAIT
IPC PRIVATE
IPC RMID
IPC_SET
IPC STAT

message-queue-Identlfler

Description
create entry if key does not exist
fail if key exists
error if request must wait
private key
remove identifier
set options
get options

A message-queue-identifier msqid is a unique positive integer created by calling
the MSGGET(KE_SYS) routine. Each msqid has a message-queue and a data
structure msqid ds associated with it. The msqid_ ds structure contains the
following members:

struct ipc _perm msg perm; 1* operation perms *1 -
ushort msg_qnum; 1* no. of messages on q *1
ushort msg_qbytes; 1* max no. of bytes on q *1
ushort msg_ lspid; 1* pid, last msgsnd call *1
ushort msg lrpid; 1* pid, last msgrcv call *1 -
time t msg stime; 1* last msgsnd time *1 - -
time t msg_ rtime; - 1* last msgrcv time *1
time t msg ctime; 1* last change time *1 - -

1* time in secs since *1
1* 00:00:00 GMT 1 Jan 70 *1

msg _perm an ipc _perm structure [see ipc-permissions] that specifies the
message-operation-permission.

msg _ qnum the number of messages currently on the queue.

ms g _ qbyt e s the maximum number of bytes allowed on the queue.

msg _lspid the process-ID of last process to use a msgsnd operation.

msg_lrpid the process-ID of last process to use a msgrcvoperation.

The UNIX System User's Manual 633

Kernel Extension Definitions

msg _ stime the time of last msgsnd operation.

msg_rtime the time oflast msgrcvoperation.

msg _ ctime the time of last MSGCTL(KE_SYS) operation to change a member
of the above structure.

message-operation-permissions
In the MSGOP(KE_SYS) and MSGCTL(KE_SYS) routines, the permission required for
an operation is determined by the bit-pattern in msg perm. mode, where the
type of permission needed is interpreted as follows: -

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

The Read and Write permissions on a msqid are granted to a process if one or
more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches msg _perm. cuid or
msg perm. uid in the msqid ds structure and the appropriate bit of the
user portion (0600) of msg _pe;m. mode is set.

• The effective-user-ID of the process does not match msg prm. cuid or
msg _perm. uid, and the effective-groupoID of the process matches
msg perm. cgid or msg perm. gid, and the appropriate bit of the
group portion (0060) of msg_perm.mode is set.

• The effective-user-ID of the process does not match msg _perm. cuid or
msg _perm. uid, and the effective-groupoID of the process does not match
msg perm. cgid or msg perm. gid, and the appropriate bit of the
other-portion (0006) of msg=perm.mode is set.

Otherwise, the corresponding permissions are denied.

semaphore-identifier
A semaphore-identifier semid is a unique positive integer created by calling the
SEMGET(KE_SYS) routine. Each semid has a set of semaphores and a data struc­
ture semid ds associated with it. The semid ds structure contains the fol­
lowing members:

struct ipc perm sem_perm; 1* operation perms *1
ushort
time t
time t

sem_nsems; 1* count of sems in set *1
sem_otime; 1* last operation time *1
sem_ctime; 1* last change time *1

1* time in secs since *1
1* 00:00:00 GMT 1 Jan 70 *1

634 The UNIX System User's Manual

Definitions

sem nsems

semval

sempid

semncnt

semzcnt

Kernel Extension

an ipc _perm structure [see Ipc-permlsslons] that specifies the
semaphore-operation-permission.

the number of semaphores in the set. Each semaphore in the set
is referenced by a positive integer, sem num, that runs
sequentially from 0 to the value of -sem nsems-1.
s em ot ime is the time of last SEMOP(KE SYS) operation.
sem=ctime is the time of last SEMCTL(KE_SYS) operation to
change a member of the above structure.

A semaphore is a data structure with the following members:

ushort semvalj 1* semaphore value *1
short sempidj 1* pid of last operation */
ushort semnentj 1* no. awaiting semval > eval *1
ushort semzentj 1* no. awaiting semval = 0 *1

a non-negative integer.

the process-ID of last process to use a semaphore operation on
this semaphore.

a count of the suspended-processes currently waiting for the
semval of this semaphore exceed greater than its current
value.

a count of the suspended-processes currently waiting for the
semval of this semaphore exceed zero.

semaphore-operation-permissions
In the SEMOP(KE_SYS) and SEMCTL(KE_SYS) routines, the permission required for
an operation is determined by the bit-pattern in sem perm. mode, where the
type of permission needed is interpreted as follows: -

00400 Read by user
00200 Alter by user
00040 Read by group
00020 Alter by group
00004 Read by others
00002 Alter by others

The Read and Alter permissions on a semid are granted to a process if one or
more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches sem perm. cuid or
sem perm. uid in the semid ds structure and the appropriate bit of the
user Portion (0600) of sem_pe;m.mode is set.

• The effective-user-ID of the process does not match sem_perm. cuid or
sem_perm.uid, and the effective-groupoID of the process matches
sem perm.cgid or sem perm.gid, and the appropriate bit of the
group portion (0060) of sem __ perm.mode is set.

The UNIX System User's Manual 635

Kernel Extension Definitions

• The effective-user-ID of the process does not match sem perm. cuid or
sem perm. uid, and the effective-groupoID of the process does not match
sem - perm. cgid or sem perm. gid, and the appropriate bit of the
other-portion (0006) of sem~perm.mode is set.

Otherwise, the corresponding permissions are denied.

shared-memory-identlfler
A shared-memory-identifier shmid is a unique positive integer created by calling
the SHMGET(KE_SYS) routine. Each shmid has a segment of memory (referred
to as a shared-memory-segment) and a data structure shmid ds associated
with it. The s hm i d _ d s structure contains the following members:

struct ipc_perm shm perm; 1* operation perms *1 -
int
ushort
ushort
short
time t -
time t -
time t -

shm_segsz

shm_cpid

shm_lpid

shm nattch

shm atime

shm dtime

shm ctime

shm segsz; 1* size of segment *1
shm_cpid; 1* pid, creator *1
shm lpid; 1* - pid, last operation *1
shm nattch; 1* no. of current attaches *1 -
shm atime; 1* last attach time *1 -
shm dtime; 1* last detach time *1 -
shm ctime; 1* last change time *1 -

1* times in secs since ... 1
1* 00:00:00 GMT 1 Jan 70 *1

an ipc perm structure [see Ipc-permlssions] that specifies the
shared-memory-operation-permission.

specifies the size of the shared-memory-segment.

the process-ID of the creator of the shared-memory-identifier.

the process-ID of last process to use a shared-memory operation.

the number of processes with the segment currently attached.

the time of last shma t operation.

the time of last s hmd t operation.

the time of last SHMCTL(KE_SYS) operation to change one of the
members of the above structure.

shared-memory-operation-permissions
In the SHMOP(KE_SYS) and SHMCTL(KE_SYS) routines, the permission required for
an operation is determined by the bit-pattern in shm perm. mode, where the
type of permission needed is interpreted as follows: -

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
o 0 0 0 4 Read by others
00002 Write by others

636 The UNIX System User's Manual

Definitions Kernel Extension

The Read and Write permissions on a shmid are granted to a process if one or
more of the following are true:

• The effective-user-ID of the process is super-user.

• The effective-user-ID of the process matches shm_perm. cuid or
sem perm.uid in the shmid ds structure and the appropriate bit of the
user portion (0600) of shm_pe;m.mcde is set.

• The effective-user-ID of the process does not match shm _perm. cuid or
sem_perm.uid, and the effective-groupoID of the process matches
shm perm.cgid or sem perm.gid, and the appropriate bit of the
group portion (0060) of shm""_perm. mode is set.

• The effective-user-ID of the process does not match shm perm. cuid or
sem perm. uid, and the effective-groupoID of the proce;s does not match
shm-perm.cgid or sem perm.gid, and the appropriate bit of the
other-portion (0006) of shm ~perm. mode is set.

Otherwise, the corresponding permissions are denied.

The UNIX System User's Manual 637

