UNIX® System V
Programmer's Reference Manual

©1989 AT&T

©1986,1987,1988,1989 Sun Microsystems, Inc.
©1985 Regents of the University of California
All Rights Reserved

Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

ACKNOWLEDGEMENT

AT&T gratefully acknowledges the X/Open Company Limited for permission
‘portions of its copyrighted X/Open Portability Guide, Issue 3.

TRADEMARKS

ACT, Micro-Term, and MIME are trademarks of Micro-Term.

Ann Arbor is a trademark of Ann Arbor Terminals.

Beehive is a trademark of Beehive International.

Concept is a trademark of Human Designed Systems.

DEC, PDP, VAX and VT100 are trademarks of Digital Equipment Corporation.
Diablo is a registered trademark of Xerox Corporation.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.

HP is a trademark of Hewlett-Packard.

LSl is a trademark of Lear Siegler.

Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
Teleray is a registered trademark of Research, Inc.

TELETYPE, UNIX, and WE are registered trademarks of AT&T.
TeleVideo is a registered trademark of TeleVideo Systems.

Introduction

This manual describes the programming features of the UNIX system. It con-
tains individual manual pages that describe commands, system calls, subrou-
tines, file formats, and other useful topics, such as the ASCII table shown on
ascii(5). It provides neither a general overview of the UNIX system nor details
of the implementation of the system.

Not all commands, features, and facilities described in this manual are available
in every UNIX system. Some of the features require additional utilities that may
not exist on your system.

The manual is divided into five sections:

1. Commands

2. System Calls

3. Subroutines:
3C. C Programming Language Library Routines
3S. Standard 1/0 Library Routines
3E. Executable and Linking Format Library Routines
3G. General Purpose Library Routines
3M. Math Library Routines
3X. Specialized Library Routines

4. File Formats

5. Miscellaneous Facilities

Section 1 (Commands) describes commands that support C and other program-
ming languages.

Section 2 (System Calls) describes the access to the services provided by the
UNIX system kernel, including the C language interface.

Section 3 (Subroutines) describes the available general subroutines. In many
cases, several related subroutines are described on the same manual page. Their
binary versions reside in various system libraries. See intro(3) for descriptions
of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out (4).
Excluded are files used by only one command (for example, the assembler’s
intermediate files, if any). In general, the C language structures corresponding
to these formats can be found in the directories /usr/include and
/usr/include/sys.

Introduction 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is con-
tained in the appropriate section of another manual. References with (1) follow-
ing the command mean that the utility is contained in this manual or the User’s
Reference Manual. In these cases, the SEE ALSO section of the entry in which the
reference appears will point you to the correct book.

Each section consists of a number of independent entries of a page or so each.
Entries within each section are alphabetized, with the exception of the introduc-
tory entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, alphabetized under
its “primary’’ name, the name that appears at the upper corners of each manual
page. Subsections 3C and 3S are grouped together because their functions con-
stitute the standard C library.

All entries are based on a common format, not all of whose parts always
appear:

m The NAME part gives the name(s) of the entry and briefly states its pur-
pose.

m The SYNOPSIS part summarizes the use of the program or function being
described. A few conventions are used, particularly in Section 2 (System
Calls):

o Constant width typeface strings are literals and are to be typed
just as they appear.

o Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the manual.

o Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as name
or file, it always refers to a file name.

o Ellipses ... are used to show that the previous argument prototype
may be repeated.

o A final convention is used by the commands themselves. An argu-
ment beginning with a minus — or plus + sign is often taken to be
some sort of flag argument, even if it appears in a position where a
file name could appear. Therefore, it is unwise to have files whose
names begin with — or +.

2 Programmer’s Reference Manual

Introduction

The DESCRIPTION part describes the utility.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be
produced. Messages that are intended to be self-explanatory are not
listed.

m The NOTES part gives generally helpful hints about the use of the utility.

A “Table of Contents” and a “Permuted Index” derived from that table precede
Section 1. The “Permuted Index” is a list of keywords, given in the second of
three columns, together with the context in which each keyword is found. Key-
words are either topical keywords or the names of manual entries. Entries are
identified with their section numbers shown in parentheses. This is important
because there is considerable duplication of names among the sections, arising
principally from commands and functions that exist only to exercise a particular
system call. The right column lists the name of the manual page on which each
keyword may be found. The left column contains useful information about the
keyword.

Introduction 3

Table of Contents

1. Commands

11113 (01§ LU OSSPV Y introduction to programming commands
admin(1) create and administer SCCS files
ar(l) ... maintain portable archive or library
AS(I) cerrerrieersieennenes sttt st s s s s s e g s s e R RS s s s AR e assembler
cb(1) C program beautifier
CCL) werreceerceer e ce e eesae s seesse e stesae s seesssessessssesasass s ssssnnssnsessessnsasersansrntessasssesnsenssessasasrassasans C compiler
cde(1) change the delta comment of an SCCS delta
CEIOW (L) couerctentc st st ses b ensses s sa st sa s e e s b generate C flowgraph
chRtbI(IM) ..o generate character classification and conversion tables
cof2elf (1) cucuererencriencenane COFF to ELF object file translation
COLBI(IM) ot snsans create collation database
comb(1) combine SCCS deltas
CONVEIE(1) ettt s senens convert archive files to common formats
cscope(1) interactively examine a C program
ctrace(l) .ovnenrnernnnen. C program debugger
CXTEE (1) wervertnencrctsttentc st s sars e generate C program cross-reference
delta(l) cooeeeerrrereeeericrct ettt s make a delta (change) to an SCCS file
[ST1 ¢ § JO— e ea s s asa seres object code disassembler
AUMP(D) oottt ereasasss st ss dump selected parts of an object file
BEL(L) e b e get a version of an SCCS file
help(1) ask for help with message numbers or SCCS commands
INStALIIM) oot s s s s install commands
1d(1) link editor for object files
I€X(1) ettt et saees generate programs for simple lexical tasks
lint(1) a C program checker
lorder(1) find ordering relation for an object library
Iprof(1) display line-by-line execution count profile data
MA(D) e . . macro processor
make(1) .. maintain, update, and regenerate groups of programs
mcs(1) manipulate the comment section of an object file
IONEDI(IM) oo s ssssssssssssssssssessss s ssasssssssssssenes create monetary database
AMUL) oo e s print name list of an object file
PTOF(L) ettt s s s bt sbesan s s s a s bbb display profile data
PIS(L) et s n st s e e bR s R s print an SCCS file
£=7=0 0 1] o (0) T OO SR VT regular expression compile
IMAEI(D) oot remove a delta from an SCCS file
sact(1) .. print current SCCS file editing activity
scesdiff(1) ... compare two versions of an SCCS file

Table of Contents

Table of Contents

SAD (L) cereteerentreeen sttt st st e e s st s s s s s s s ensene symbolic debugger
SIZE(1) ettt print section sizes in bytes of object files
strip(1) strip symbol table, debugging and line number information from an object file
ESOTE (1) cuueeeeceeercennes et s s s b s e nesa s topological sort
UNZEL(L) coreeeteeeree ettt e rasnaas undo a previous get of an SCCS file
VAL(L) ettt st st s s s sr s s s s validate an SCCS file
VE(1) correereteteesetnesnes ettt sae s s n s s s s sh bR s st st s s e s R s R s s R s version control
what(1) eereersrsannenaenes print identification strings
YACC(L) cerrieeeeetetece et s st st r st st yet another compiler-compiler

2. System Calls

intro(2) e s enneaes introduction to system calls and error numbers
access(2) . erea b e e b b e seR R sR e s bsne e sR e determine accessibility of a file
acct(2) enable or disable process accounting
alarm(2) eereeaereenets e b s snesaes set a process alarm clock
brk, sbrk(2) change data segment space allocation
ChAIT(2) oot es change working directory
ChMOA (2) .ottt s s sr s s s sae e e een change mode of file
chown(2) .. ceree e s e b bR s bR SRR e been change owner and group of a file
CRIOOL(2) ettt st sb s s nesa st enn change root directory
close(2) e s e s s close a file descriptor
creat(2) create a new file or rewrite an existing one
AUP(2) ettt s bbb duplicate an open file descriptor
exec: execl, execv, execle, execve, execlp, eXeCVP(2)ccvevenereeesnernseensesssnsassenns execute a file
€Xit, _EXIt(2) vttt e e st a R terminate process
fentl(2) st teeR bR e RS e RR SRR AR SRR AR SRR RS e s bR SRR s s e file control
OTK(2) coveeteenenrtcet sttt s s s s s seb s ssn s e s sbasbasa s s s s s s sen create a new process
getdents(2) read directory entries and put in a file system independent format
GEMSZ() oot e e e get next message off a stream
getpid, getpgrp, getppid(2)cccceeeevueenunne get process, process group, and parent process IDs
getuid, geteuid, getgid, getegid (2)

... get real user, effective user, real group, and effective group IDs
ioctl(2) ettt e et s e e R e e e R SRR R s e R R AR R s s b e e control device
kill(2) send a signal to a process or a group of processes
HNK(2) oottt s b b s b s s e b e link to a file

... move read/write file pointer
... make a directory
.. make a directory, or a special or ordinary file
... mount a file system

2 Programmer’s Reference Manual

Table of Contents

MSGCLI(D) oot s e message control operations
MSGEEL(D) .ottt s s seas e s e s s p s s e e s are s e e get message queue
msgop(2) creer ettt enaneen message operations
nice(2) SR change priority of a process
open(2) open for reading or writing
pause(2) suspend process until signal
PIPE(2) oottt s e e create an interprocess channel
PIOCK(2) ottt rssn b s e lock process, text, or data in memory
poll(2) et s et a bR s e STREAMS input/output multiplexing
Profil(2) ... execution time profile
PTACE(2) c.oveetrteteeet ettt s h b e a s s s s e e R R R e e bR process trace
PULMSE(2) ottt ssses s sesss s esess b sns s et snssnanes send a message on a stream
TEAA () ettt s SO read from file
TINAIT(2) cviircccrc b e st bbb e et remove a directory
semctl(2) . semaphore control operations
SEIMNGE(2) couveereusierrereiscis et tis ettt st s s e get set of semaphores
ETS3 4103 T TR semaphore operations
L1190 =4 X 07 1RO set process group ID
setuid, SetZid(2) ..ottt set user and group IDs
SAMCI(2) ceee e shared memory control operations
shmget(2) ... get shared memory segment identifier
SAIMOP (2) ettt shared memory operations
SIENAL(2) cveveererrsetenrererr et e naee specify what to do upon receipt of a signal
sigset, sighold, sigrelse, sigignore, sigpause(2)ccvuvuvievevenensnrnsensennens signal management
Stat, fStAt(2) ..o e s snrenes get file status
statfs, fstatfs(2) get file system information
stime(2) et e e R s e e bR bR bbb R e AR s AR R SRR ae set time
SYNIC(2) cuorerreerreees ettt ss s bt e e e e R b bR s update super block
SYSES(2) wevrurrrrrritiie ettt aan get file system type information
HIME(2) oottt e R R bR s e get time
HMES(2) coverrrrtererentter e s s e get process and child process times
UAAMUN(2) ettt s sae s s a e e administrative control
ulimit(2) et get and set user limits
umask(2) ...cccoeereernrnnne. ... set and get file creation mask
UMOUNE(2) wovirecurmcnisintnisstsessescserssssssas st se s sesessesssssssssssssssassssssssssss sns unmount a file system
UNAME(2) ooovivincerernseresis s s ssssssss s sssssestesssssssssnes get name of current UNIX system
UNBNK(2) oot s s s bt sbesns remove directory entry
USEAL(2) coreeevrtetcee ettt bbb sar s r s s get file system statistics
utime(2) ceeree b b anaeen set file access and modification times
Wait(2) oot <. Wait for child process to stop or terminate

Table of Contents 3

Table of Contents

WITEE(2) «eereeerereereeressesesseee e e sesssasssesaessessassassessesssessassasesssssssnsessesassannsessasasessesaesassnassse write on a file

3. Functions

b1E0 (o] () OO introduction to functions and libraries
aé4l, 164a(3C) . convert between long integer and base-64 ASCII string
ADOTE(BC) oottt e st an generate an abnormal termination signal
abs, 1aDS(BC) ...uuuriircir st ees return integer absolute value
addseverity(3C) build a list of severity levels for an application for use with fmtmsg
atexit(3C) ... add program termination routine
bsearch(3C) ...t binary search a sorted table
clock(BQ) et bR bR R e b e e s R R AR AR e et report CPU time used
conv: toupper, tolower, _toupper, _tolower, t0ascii(3C)cccevrrernrrrnennnnes translate characters
crypt, setkey, encrypt(3C)urrrrenteeeererntee st e generate encryption
CerMIA (BS) weceneveeecn et e generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C)ccccuevvuverveerecuenee convert date and time to string
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,

isprint, isgraph, isascii(3C)cervmrrrremerretrereeeninirsrens s ens s ssesaenas character handling
CUSETIA (3S) «.cvvvverenrrreresssiensenr s sssnsesss s snsanns get character login name of the user
dIaAl(BC) et establish an out-going terminal line connection
difftime(3C) computes the difference between two calendar times
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C) directory operations
div, IdiVBC) ettt compute the quotient and remainder
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,

lcong48(3C) et generate uniformly distributed pseudo-random numbers
AUP2(BC) ettt ettt s e duplicate an open file descriptor
ecvt, fcvt, gevt(BC) e .. convert floating-point number to string
end, etext, edata(3C) e s s e s last locations in program
fclose, fflush(3S) close or flush a stream
ferror, feof, clearerr, fileno(3S) stream status inquiries
FES(BC) wvrrrnrrereernent it e s s s e R e R bbb s find first set bit
fmtmsg(3C) ceerseet s e s pe s as display a message on stderr or system console
fopen, freopen, fdOPen(3S) ...ttt s . open a stream
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky(3C)

................................. IEEE floating-point environment control
fread, FWIItE(3S) ..ccvvicrireeinriceeeree et b e sessessareressassessssesnsnassarsesasnen binary input/output
frexp, 1dexp, logb, modf, modff, nextafter, scalb(3C)

ertrstas st e Rt sna st an et enes manipulate parts of floating-point numbers

fseek, rewind, ftell(3S)ccmmieeeveeicreereeeeeeeee e reposition a file pointer in a stream
fsetpos, fGEtPOS(3C) w.urmrrrerirnrnrrnisinsinsss s sisssesiensneens reposition a file pointer in a stream

4 Programmer’s Reference Manual

Table of Contents

FEW(BC) it s s s R R R e abe walk a file tree
getc, getchar, fgetc, getw(3S) get character or word from a stream
BECWA (BC) vttt st s s get pathname of current working directory
BEtENV(BC) ettt s s aae b s return value for environment name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent(3C) get group file entry
getlogin(3C) ..., cereresnere e get login name
getmntent, getmntany (3C) get mnttab file entry
BELOPL(BC) et get option letter from argument vector
BELPASS(BC) vttt s s s s s s read a password
BELPW(BC) s e e sba s get name from UID
getpwent, getpwuid, getpwnam setpwent, endpwent, fgetpwent(3C)
.. manipulate password file entry
BEtS, fEELS(BS) e e get a string from a stream
BEtSUDOPL(BC) .ottt s parse suboptions from a string
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname(3C)
... access utmp file entry
hsearch, hcreate, hdestroy (3C)coveerirrncsenenensscurecrsencecssnsssesesessenens manage hash search tables
insque, remque(3C) ... s insert/remove element from a queue
isnan, isnand, isnanf, finite, fpclass, unordered (3C)
.. determine type of floating-point number
13t0], 013 (BC) et convert between 3-byte integers and long integers
10€aleconV(3C)uiuiieciniisiiensesisiie e eseessssssssssssssns get numeric formatting information
lockf(3C) e b srens ettt p e e st record locking on files
Isearch, 1find (3C)ccocevervrvinnireccnniininnns linear search and update
malloc, free, realloc, CalloC(BC) ...uiiriicrieeesieseresse s sesssesessesssassesessssnes memory allocator
mbchar: mbtowc, mblen, Wctomb (BC)uveeeeeeeereeeeeecreerene e multibyte character handling
mbstring: mbstowcs, WesStombS(3C)ueeuevcirierineereeseneseseesessesens multibyte string functions
memory: memccpy, memchr, memcmp, memcpy, memmove, memset(3C)
... memory operations
mkfifo(3C) s e R create a new FIFO
mktemp (3C) make a unique file name
MKHMEBC) .ocverrrrrere it sassnis converts a tm structure to a calendar time
monitor (3C) feete et e e e e R e R R R a R eas prepare execution profile
offsetof (3C) offset of structure member
PEITOT(BC) sttt b ss st s b ses print system error messages
popen, pclose(3S) initiate pipe to/from a process
printf, fprintf, sprintf(3S) ceneas .. print formatted output
putc, putchar, fputc, putw(3S)ccouceereeccvsinireireeciessnnsenes put character or word on a stream
PULENV(BC) ettt st tsn s sassssr s s aenens change or add value to environment
PUPWENL(BC) .ot WEAt€ password file entry

Table of Contents 5

Table of Contents

PUuts, fPUtS(3S) ...ttt put a string on a stream
GSOTE(BC) ettt ss et st s R R s e s e e e Rt R s s s quicker sort
V=T (<) O send signal to program
rand, STaNA(BC) ...ttt ess e snssesnees simple random-number generator
remove(3QC)ccerennen. cerersssnssas s es remove file
rename(3C) cereeteret s s et e et s s et enenn rename file
scanf, fscanf, sscanf(3S)ccueruernsererrnsieserssrnssrnenns convert formatted input
setbuf, setvbuf(3S) ... «..... assign buffering to a stream
setimp, I0NGIMP(BC) .ottt st sesns non-local goto
5€tloCale(BC) ..ttt e modify and query a program’s locale
SIEEP(BC) ettt s e e e suspend execution for interval
ssignal, gsignal(3C) ...t . software signals
Stdio(3S) ..vuveererrereernnnns standard buffered input/output package
stdipc: ftOK(BC) curemrerccccecicrcnrcrcicsisesenae standard interprocess communication package
10 (o) < O string collation
SEIEITOT (BC) euveerneettentecresest s e ss s sssn s get error message string
strftime, cftime, ascftime, (BC)coeeeeeererecereereeeeceeeseverensessnens convert date and time to string
string: strcat, strdup, strncat, strcmp, strncmp, strepy, strnepy, strlen, strchr,

strrchr, strpbrk, strspn, strespn, strtok, strstr(3C) string operations
Strtod, atof, (BC) ...t eeseessese s e convert string to double-precision number
strtol, strtoul, atol, atoi(3C) convert string to integer
SEIXFITN(BC) oo s s string transformation
SWAD(BC) ettt s s e s R R R s ba s swap bytes
system(35) issue a shell command
tMPAIE(3S) ettt e create a temporary file
tmpnam, tempnam(3S)vmiermienninniniess s create a name for a temporary file
tsearch, tfind, tdelete, twalk(3C)ccccoriiirrcrrirrinrcrncscseesssciens manage binary search trees
ttyname, iSatty (BC) ...t e sen s snssnsnns find name of a terminal
ttySIOt(BC) ettt find the slot in the utmp file of the current user
ungetc(3S)cuernnee. . push character back onto input stream
vprintf, vfprintf, vsprintf(3S)ceccevueuunes print formatted output of a variable argument list
EIf(BE) e e assn s s s se st s e snnes object file access library
€lf DEGIN(BE) ..ottt st e snssns s s nsssnssans make a file descriptor
elf cntl(3E) control a file descriptor
elf end(3E) finish using an object file
elf errmsg, elf_errno(3E) fee ettt s e e e s e R R e be R R R e e e ean error handling
€lf_fill(BE) wueueeeteircitiirctcst sttt s e bt s sesaas s asssnssnes set fill byte
elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr, elf_flagscn, elf flagshdr(3E)

.. manipulate flags
elf_fsize: elf32_fsize(BE)covvivrvruviinirciiinscncnnnenesecssenees return the size of an object file type

6 Programmer’s Reference Manual

Table of Contents

elf_getarhdr(BE) ...ttt snsssanens retrieve archive member header
elf_getarSyMEBE) ...ttt retrieve archive symbol table
elf_getbase(3E)ccoeureureemieretentrenierie ettt get the base offset for an object file
elf getdata, elf newdata, elf rawdata(3E) ... - get section data
elf_getehdr: elf32_getehdr, elf32_newehdr(3E) retrieve class-dependent object file header
elf_getident(3E) retrieve file identification data
elf getphdr: elf32_getphdr, elf32_newphdr(3E)

............ retrieve class-dependent program header table
elf_getscn, elf ndxscn, elf_newscn, elf nextscn(3E)ccccoeuemureeunennnene. get section information
elf_getshdr: elf32_getshdr(3E) retrieve class-dependent section header
elf_hash(3E)ccceuuuuee.. st ... compute hash value
elf KiNd(BE) ...t determine file type
€lf NEXE(BE) ..ottt s sequential archive member access
elf rand(3E)cevninnnnen. e s e s random archive member access
elf TaWfile(3E) ... retrieve uninterpreted file contents
€lf_SEIPLL(BE) oottt s ee make a string pointer
elf_ Update(3E) ... update an descriptor
elf version(3E)ccceeuunnece. «eeeeeeene cOOTdinate library and application versions
elf xlate: elf32_xlatetof, elf32 xlatetom(BE) class-dependent data translation
NLSBE) et . get entries from name list
basename(3G) return the last element of a path name
DBEELS(BG) ettt s aeon read stream up to next delimiter
bufsplit(3G) split buffer into fields
COPYLISt (BG) oovirrc sttt s s copy a file into memory
dirname(3G) ..o report the parent directory name of a file path name
gmatch(3G) et b R s an e shell global pattern matching
isencrypt(3G) ...t determine whether a character buffer is encrypted
mkdirp, rmdirp(3G) ... create, remove directories in a path
p2open, p2close(3G)ovevicricnrnncrinnnne open, close pipes to and from a command
pathfind 3G) search for named file in named directories
regCmp, T€ZEX(3G) .uurunrrererreerrrcennrenenrensersssess s snaasn compile and execute regular expression
regexpr: compile, step, advance(3G) regular expression compile and match routines
str: strfind, strrspn, strtrns(3G) e e .. string manipulations
strccpy: streadd, strcadd, strecpy(3G) .. copy stnngs compressing or expanding escape codes
INTOBM) e introduction to the math library
bessel: j0, j1, jn, Y0, Y1, YIEBM) ettt eee s Bessel functions
erf, erfc(3M) . error function and complementary error function
exp, expf, cbrt, log, logf, log10, log10f, pow, powf, sqrt, sqrtf(3M)

.............. exponential, logarithm, power, square root functions

Table of Contents 7

Table of Contents

floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint, remainder(3M)

... floor, ceiling, remainder, absolute value functions
gamma, 1gamma(BM) ... s st log gamma function
RYPOL(BM) ittt s sn s sasssnsnsssess s sases Euclidean distance function
MAtheIT(BM) ..o s s aees error-handling function
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh(3M) hyperbolic functions

trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf, atan2,
atan2f(BM) ... trigonometric functions

assert(3X) . verify program assertion
crypt(3X) password and file encryption functions
HbWINAOWS (BX) ..ecureerrciiieieeeiessetetnntc e snss e windowing terminal function library
MAilloCK(BX) .ot s manage lockfile for user’s mailbox
malloc, free, realloc, calloc, mallopt, mallinfo(3X)cucevuvenincnrinnnsererscannns memory allocator
sputl, sgetl(8X) ...coevrreerreereerernnnen access long integer data in a machine-independent fashion

4. File Formats

INEFO(4) coovvictrcetcte bbb s s b b bbb s introduction to file formats
A.0UL(4) e ELF (Executable and Linking Format) files
AT(4) ettt s b s s e s s archive file format
(<o) (=TC:) RO e s e et st e R bR R R R e e s n s R b core image file
limits(4)ccooereunnee. header file for implementation-specific constants
scesfile(d) ..onrennenninnns R R b s format of SCCS file
SEFFHIME(4) «veveeeerci et s e saen language specific strings
HMEZONE(4) ..oeeeriereertcii s s s s nenes set default system time zone
UtMP, WEMP(4) oottt s saeee utmp and wtmp entry formats

5. Miscellaneous Facilities

introduction to miscellany
map of ASCII character set
user environment

fentl(5) vt file control options
JABENE(S) c.crvviercriccrce s s host control of windowing terminal
layers(5)cooeereerennrnns protocol used between host and windowing terminal under layers(1)
math(5) math functions and constants
PIOf(5) et cererrerrsssesssssnsssssse s Profile within a function
regexp: compile, step, advance(5)ccuuue. regular expressxon complle and match routines
SEAL(D) cueereircinnrin et e e e aens data returned by stat system call
e -4 () OO handle variable argument list

8 Programmer’s Reference Manual

Table of Contents

types(5) cereeres sttt et e e et sna e primitive system data types
values(5)cvmeeirurincnnnn. ... machine-dependent values
VATATGS (5) cuveuerrrretsernnisisis s sis st sisss s s ns s s ass st s saae handle variable argument list
xtproto (5) ... multiplexed channels protocol used by xt driver

Table of Contents 9

PERMUTED INDEX

Permuted Index

13tol, 1tol3 convert between

integer and base-64 ASCII string
abort generate an

termination signal

value

abs, labs return integer

floor, ceiling, remainder,

utime set file

file

elf next sequential archive member
elf rand random archive member
elf object file
machine-independent/ sputl, sgetl
setutent, endutent, utmpname
access determine

acct enable or disable process
accounting

/cos, cosf, tan, tanf, asin, asinf,

/ cosf, tan, tanf, asin, asinf, acos,
/coshf, tanh, tanhf, asinh,

print current SCCS file editing
atexit

putenv change or

severity levels for an application/
files

admin create and

uadmin

and match/ regexp: compile, step,
and match/ regexpr: compile, step,
alarm set a process

brk, sbrk change data segment space
free, realloc, calloc memory

calloc, mallopt, mallinfo memory
Format) files

/a list of severity levels for an

elf version coordinate library and

library
ar

convert convert

elf next sequential

elf rand random
elf_getarhdr retrieve
ar maintain portable
elf_getarsym retrieve
stdarg handle variable

Permuted Index

3-byte integers and long integers 13tol(3C)
ab4l, 164a convert between long a641(3C)
abnormal termination signal abort(3C)
abort generate an abnormal abort(3C)
abs, labs return integer absolute abs(3C)
absolute value abs(3C)
absolute value functions /remainder ... floor(3M)
access and modification times utime(2)
access determine accessibility of a access(2)
access elf next(3E)
access : elf rand(3E)
access library elf(3E)
access long integer data in a v sputli(3X)
access utmp file entry /pututline,crescsscns getut(3C)
accessibility of a file access(2)
accounting acct(2)
acct enable or disable process acct(2)
acos, acosf, atan, atanf, atan2,/ trig(3M)
acosf, atan, atanf, atan2, atan2f/ trig(3M)
acosh, atanh hyperbolic functionsceminianisse sinh(3M)
activity sact sact(1)
add program termination routineewuernenn. atexit(3C)
add value to environment putenv(3C)
addseverity build a list of addseverity(3C)
admin create and administer SCCScocoierviercnnns admin(1)
administer SCCS files admin(1)
administrative control uadmin(2)
advance regular expression compileccccoueeerereerrennns regexp(5)
advance regular expression compilecoccererereeens regexpr(3G)
alarm clock alarm(2)
alarm set a process alarm clock alarm(2)
allocation brk(2)
allocator malloc, malloc(3C)
allocator mallog, free, realloc, malloc(3X)
a.out ELF (Executable and Linking a.out(4)
application for use with fmtmsgc...... addseverity(3C)
application versions elf version(3E)
ar archive file format ar(4)
ar maintain portable archive or ar(1)
archive file format ar(4)
archive files to common formats .. convert(l)
archive member access elf next(3E)
archive member access elf_rand(3E)
archive member header elf getarhdr(3E)
archive or library . ar(1)
archive symbol table elf_getarsym(3E)
argument list ... stdarg(5)

Permuted Index

varargs handle variable
formatted output of a variable
getopt get option letter from
string strftime, cftime,

ascii map of

between long integer and base-64
time to/ ctime, localtime, gmtime,
/sin, sinf, cos, cosf, tan, tanf,
/sinf, cos, cosf, tan, tanf, asin,
/cosh, coshf, tanh, tanhf,

or SCCS commands help

as

assert verify program

setbuf, setvbuf

tanf, asin, asinf, acos, acosf,
asinf, acos, acosf, atan, atanf,
/acos, acosf, atan, atanf, atan2,
/asin, asinf, acos, acosf, atan,
tanh, tanhf, asinh, acosh,
routine

double-precision number strtod,
strtol, strtoul, atol,

integer strtol, strtoul,
elf_getbase get the

convert between long integer and
a path name

cb C program

bessel: j0, j1, jn, y0, y1, yn
Bessel functions

delimiter

fread, fwrite

bsearch

tfind, tdelete, twalk manage
ffs find first set

sync update super

allocation

table

bufsplit split

determine whether a character
stdio standard

setbuf, setvbuf assign

an application for use/ addseverity
elf fill set fill
size print section sizes in

argument list varargs(5)
argument list /vsprintf print vprintf(3S)
argument vector getopt(3C)
ascftime, convert date and time t0ccecereererevenenene strftime(3C)
ASCII character set ascii(5)
ascii map of ASCII character set asdii(5)
ASCII string a64l, 164a convert a641(30)
asctime, tzset convert date and ctime(3C)
asin, asinf, acos, acosf, atan,/ trig(3M)
asinf, acos, acosf, atan, atanf,/ trig(3M)
asinh, acosh, atanh hyperbolic/ sinh (3M)
ask for help with message numbers help(1)
ASSEMDIET ...ttt e as(1)
assert verify program assertion assert(3X)
assertion assert(3X)
assign buffering to a stream setbuf(3S)
atan, atanf, atan2, atan2f/ /tan, trig(3M)
atan2, atan2f trigonometric/ /asin, ... trig(3M)
atan2f trigonometric functions trig(3M)
atanf, atan2, atan2f trigonometric/ trig(3M)
atanh hyperbolic functions /coshf, sinh (3M)
atexit add program termination atexit(3C)
atof, convert string to strtod(3C)
atoi convert string to integer strtol(3C)
atol, atoi convert string to strtol(3C)
base offset for an object file elf_getbase(3E)
base-64 ASCII string aé4l, 164a a641(30)
basename return the last element of basename(3G)
beautifier cb(1)
Bessel functions bessel(3M)
bessel: j0, j1, jn, y0, y1, yn bessel(3M)
bgets read stream up to next bgets(3G)
binary input/output fread(3S)
binary search a sorted table bsearch(3C)
binary search trees tsearch, tsearch(3C)
bit ffs(3C)
block sync(2)
brk, sbrk change data segment spacec..coccoeuvvuvcunccuenne. brk(2)
bsearch binary search a sorted bsearch(3C)
buffer into fields bufsplit(3G)
buffer is encrypted isencrypt ... isencrypt(3G)
buffered input/output package stdio(3S)
buffering to a stream setbuf(3S)
bufsplit split buffer into fields bufsplit(3G)
build a list of severity levels for ... addseverity(3C)
byte elf fill(3E)
bytes of object files size(1)

Programmer’s Reference Manual

swab swap

cc

cflow generate

cb

lint a

cxref generate

cscope interactively examine a
ctrace

mktime converts a tm structure to a
computes the difference between two
stat data returned by stat system
allocator malloc, free, realloc,
malloc, free, realloc,

intro introduction to system

pow, powf, sqrt, sqrtf/ exp, expf,

SCCS delta
fabs, fabsf, rint,/ floor, floorf,
fabsf, rint,/ floor, floorf, ceil,

/fabs, fabsf, rint, remainder floor,

time to string strftime,
allocation brk, sbrk

chmod

putenv

chown

nice

chroot

delta cdc

delta make a delta

chdir

pipe create an interprocess
xtproto multiplexed

ungetc push

isencrypt determine whether a
conversion tables chrtbl generate
ispunct, isprint, isgraph, isascii
mbtowc, mblen, wctomb multibyte
cuserid get

getc, getchar, fgetc, getw get
putc, putchar, fputc, putw put
ascii map of ASCII

_tolower, toascii translate

lint a C program
times get process and

Permuted Index

Permuted Index

bytes ... swab(3C)
C COMPIIET ..oueeerivirirniisirnississsssssssnseir s essessess s sy seeees cc(1)
C flowgraph . cflow(1)
C program beautifier cb(1)
C program checkeroiiinniiinnnnsinessesssssnsns lint(1)
C program Cross-referenceooeoosesssssississenss cxref(1)
C program cscope(1)
C program debugger . ctrace(1)
calendar time mktime(3C)
calendar times difftime difftime(3C)
call stat(5)
calloc, mallopt, mallinfo Memorycccoecveevereivinrennnnee. malloc(3X)
calloc memory allocatorciiineireiennenieesesenenes malloc(3C)

calls and error numbers

.. intro(2)

e CB(1)

cb C program beautifiercoouvuenee

cbrt, log, logf, log10, log10f, exp(3M)
cc C compilerveeeennreeencecinennen. cce(1)
cdc change the delta comment of an cde(1)
ceil, ceilf, copysign, fmod, fmodf,ccoeeeeeininniinnnns floor(3M)
ceilf, copysign, fmod, fmodf, fabs, floor(3M)
ceiling, remainder, absolute value/uencennne. floor(3M)
cflow generate C flowgraph cflow(1)
cftime, ascftime, convert date andcccceeveerervenenn. strftime(3C)
change data segment SPaceccoovuieieeeeennieenicieeae brk(2)
change mode of fileciieirierinieniiciieree e chmod(2)
change or add value to environment putenv(3C)
change owner and group of a fileuvivrvrnnnne. chown(2)
change priority of a Processooieeieinniientenncencininnns nice(2)
change root directory . chroot(2)
change the delta comment of an SCCSccceeureeruceernnn cdc(1)
(change) to an SCCS file ... delta(1)
change working directory chdir(2)
channel pipe(2)
channels protocol used by xt driver ... xtproto(5)
character back onto input streamccecevuvviincrncnns ungetc(3S)
character buffer is encrypted isencrypt(3G)
character classification andccceeeveereeeerereierevenencen chrtbl(1IM)
character handling /iscntrl, ctype(3C)
character handling mbchar:ocinnencevicinernennee mbchar(3C)
character login name of the userccocovvevvinennennee cuserid(3S)
character or word from a streamccooeeveeennrrnnricnnnnn getc(3S)
character or word on a stream putc(3S)
character setccoceeveneeeneneeinennnenn ascii(5)
characters /tolower, _toupper, conv(3C)
chdir change working directoryceeveneceeceneenne chdir(2)
CRECKETeeeeetereeesercrenseseten s sseetanaesasesans s snsssssssssssessnesssssnssane lint(1)
child process times times(2)

Permuted Index

wait wait for
file

classification and conversion/
/elf32_xlatetof, elf32_xlatetom
/elf32_newehdr retrieve

table /elf32_newphdr retrieve
elf_getshdr: elf32_getshdr retrieve
tables chrtbl generate character
inquiries ferror, feof,

alarm set a process alarm

close

fdlose, fflush

p2open, p2close open,

/telldir, seekdir, rewinddir,

dis object

compressing or expanding escape
translation

cof2elf

colltbl create

strcoll string

comb

open, close pipes to and from a
system issue a shell

help with message numbers or SCCS
install install

intro introduction to programming
cdc change the delta

mcs manipulate the

convert convert archive files to
stdipc: ftok standard interprocess
file sccsdiff

expression regcmp, regex

/step, advance regular expression
/step, advance regular expression
regcmp regular expression
expression compile and/ regexp:
expression compile and/ regexpr:
ccC

yacc yet another

erf, erfc error function and
/strcadd, strecpy copy strings,

child process to stop or terminate wait(2)
chmod change mode of file chmod(2)
chown change owner and group of accoeveevvereereenene chown(2)
chroot change root directory chroot(2)
chrtbl generate character chrtbl(1IM)
class-dependent data translationcccovecveenneinenns elf xlate(3E)
class-dependent object file header . . elf_getehdr(3E)
class-dependent program header .. . elf_getphdr(3E)
class-dependent section headercccueeunnee elf_getshdr(3E)
classification and conversion chrtbl(1IM)
clearerr, fileno stream statuscccoceeveeeeeerececeneceinenns ferror(3S)
clock alarm(2)
clock report CPU time used ... clock(3C)
close a file descriptor close(2)
close close a file deSCIIPOrcoccoveiverrerininenrensenrenrensinienne close(2)
close or flush a stream fclose(3S)
close pipes to and from a commandceuneiennee p2open(3G)
closedir directory operations directory(3C)
code disassembler dis(1)
codes /strecpy copy strings, ... strccpy(3G)
cof2elf COFF to ELF object file cof2elf(1)
COFF to ELF object file translationcoocovcuvcuviivernninne cof2elf(1)
collation database colltbl(1IM)
collation strcoll(3C)
colltbl create collation database colltbl(1M)
comb combine SCCS deltas comb(1)
combine SCCS deltas comb(1)
command p2open, p2close p2open(3G)
command .. system(3S)
commands help ask for help(1)
COMMANGS cvvcrvreteriranisrenrnseeninsniessensssasssesssessans install(1IM)
commands intro(1)
comment of an SCCS delta cde(1)
comment section of an object file mcs(1)
common formats ... convert(1)
communication package stdipc(3C)

compare two versions of an SCCScumeveercvnrrennnn. scesdiff(1)

compile and execute regular ... regemp(3G)
compile and match routines .. regexp(5)
compile and match routines regexpr(3G)
compile Tegemp(1)
compile, step, advance regular regexp(5)
compile, step, advance regularcccccveiivincnnnn. regexpr(3G)
compiler cc(1)
compiler-compiler yacc(1)
complementary error function erf(3M)
compressing or expanding escape/coceerrenrinns strecpy(3G)

Programmer’s Reference Manual

elf_hash

div, 1div

calendar times difftime

an out-going terminal line

a message on stderr or system
file for implementation-specific
math math functions and
retrieve uninterpreted file

elf cntl

ioctl

fentl file

IEEE floating-point environment
jagent host

msgctl message

semct]l semaphore

shmctl shared memory

fentl file

uadmin administrative

vc version

_tolower, toasdii translate/
character classification and
formats convert

long integers 13tol, 1tol3
base-64 ASCII string a64l, 164a
common formats

/localtime, gmtime, asctime, tzset
strftime, cftime, ascftime,
string ecvt, fcvt, gevt

scanf, fscanf, sscanf

number strtod, atof,

strtol, strtoul, atol, atoi
calendar time mktime
versions elf version

copylist

strccpy: streadd, strcadd, strecpy

rint,/ floor, floorf, ceil, ceilf,

core
acos, acosf,/ trig: sin, sinf,
acosf, atan,/ trig: sin, sinf, cos,
asinh, acosh,/ sinh, sinhf,
acosh,/ sinh, sinhf, cosh,
display line-by-line execution
clock report

an existing one

tmpnam, tempnam

Permuted Index

compute hash value

Permuted Index

elf_hash(3E)

compute the quotient and remaindercoereieeiverienenns div(3C)
computes the difference between twocccccvereenens difftime(3C)
connection dial establish dial(3C)
console fmtmsg display fmtmsg(3C)
constants limits header limits(4)
constants math(5)
contents elf rawfile .. elf_rawfile(3E)
control a file descriptor elf_cntl(3E)
control device ioctl(2)
control fentl(2)
control /fpgetsticky, fpsetstickycccoueveererinnnae fpgetround(3C)
control of windowing terminal jagent(5)
control operations msgctl(2)
control operations semctl(2)
control operations shmctl(2)
control options fentl(5)
control uadmin(2)
control ve(l)
conv: toupper, tolower, toupper,c.oerennns conv(3C)
conversion tables chrtbl generatecccceueenreirnnrnnne chrtbl(1IM)
convert archive files to common convert(1)
convert between 3-byte integers andcccueeeueuuenneenr 13t01(3C)
convert between long integer and a641(3C)
convert convert archive files to convert(1)
convert date and time to string ctime(3C)
convert date and time to Stringcccoeveeenrinnienrecnns strftime(3C)
convert floating-point number to ecvt(3C)
convert formatted input scanf(3S)
convert string to double-precisionccoeeurrereruennen strtod (3C)
convert string to integer strtol(3C)
converts a tm structure to a mktime(3C)

coordinate library and application

............... elf version(3E)

copy a file into memory
copy strings, compressing or/

copylist(3G)
strccpy(3G)

copylist copy a file into memory

copysign, fmod, fmodf, fabs, fabsf,
core core image file

................... copylist(3G)
......................... floor(3M)

core(4)

core image file

...... core(4)

cos, cosf, tan, tanf, asin, asinf,

trig(3M)

cosf, tan, tanf, asin, asinf, acos,
cosh, coshf, tanh, tanhf,

trig(3M)
sinh(3M)

coshf, tanh, tanhf, asinh,

sinh(3M)

count profile data lprof
CPU time used

Iprof(1)
clock(3C)

creat create a new file or rewrite

creat(2)

create a name for a temporary file

.................... tmpnam(3S)

Permuted Index

mkfifo

existing one creat

fork

tmpfile

pipe

admin

colltbl

montbl

path mkdirp, rmdirp
umask set and get file
cxref generate C program
functions

encryption

program

terminal

tzset convert date and time to/

isupper, isalpha, isalnum,/
sact print

uname get name of

the slot in the utmp file of the
getcwd get pathname of

the user

cross-reference

elf rawdata get section
retrieve file identification
sputl, sgetl access long integer
plock lock process, text, or
execution count profile

prof display profile

stat

brk, sbrk change
elf32_xlatetom class-dependent
types primitive system

colltbl create collation

montbl create monetary
gmtime, asctime, tzset convert
strftime, cftime, ascftime, convert
ctrace C program

sdb symbolic

strip strip symbol table,
timezone set

bgets read stream up to next
change the delta comment of an SCCS
delta make a

cdc change the

rmdel remove a

create a new FIFO

create a new file or rewrite an

mkfifo(3C)
creat(2)

create a new process

wveenen fOrk(2)

create a temporary file
create an interprocess channel
create and administer SCCS files

tmpfile(3S)

pipe(2)
admin(1)

create collation databaseccccecereeninniiennnveneineenieneenens

colltbl(1M)

create monetary database
create, remove directories in a

montbl(1IM)
. mkdirp(3G)

creation mask ...

umask(2)

cross-reference
crypt password and file encryption
crypt, setkey, encrypt generate

cxref(1)
crypt(3X)
crypt(3C)

cscope interactively examine a C

cscope(1)

ctermid generate file name for
ctime, localtime, gmtime, asctime,
ctrace C program debugger

ctermid(3S)
ctime(3C)
ctrace(1)

ctype: isdigit, isxdigit, islower,c..c...c.......
current SCCS file editing activity

current UNIX system

«... ctype(3C)
sact(1)
uname(2)

current user ttyslot find

ttyslot(3C)

current working directory
cuserid get character login name of
cxref generate C program

getewd(30)
cuserid(3S)
.. cxref(1)

data elf _getdata, elf newdata,
data elf _getident

elf getdata(3E)
elf_getident(3E)

data in a machine-independent/cccccovsuirenrrnrnrnnnne. sputl(3X)
data in MEMOTY ...t st enrnnn plock(2)
data lprof display line-by-lineccceeuuu... lprof(1)
data prof(1)
data returned by stat system call stat(5)
data segment space allocation brk(2)
. data translation /elf32_xlatetof,cuiiirinnnns elf_xlate(3E)
data types types(5)
AAtabasecccovecemieieririenree sttt st enenes et colltbl(1M)
AAtAbASEccvevererrrierrrcernrce et s ser et sssssssnesnsse s montbl(1IM)
date and time to string /localtime,ccccocovvruveurencncce ctime(3C)
date and time to string .. strftime(3C)
debugger ... ctrace(1)
debugger ... sdb(1)
debugging and line number/ strip(1)
default system time zonecccoceerverrirenns timezone(4)
delimiter bgets(3G)
delta cdc cde(1)
delta (change) to an SCCS file delta(1)
delta comment of an SCCS delta cde(1)
delta from an SCCS filecccouvevevereerenereennreneseisessssesesesens rmdel(1)

Programmer’s Reference Manual

Permuted Index

SCCs file

comb combine SCCS

close close a file

dup duplicate an open file

dup2 duplicate an open file
elf_begin make a file

elf_cntl control a file

elf_update update an

access

elf kind

/isnanf, finite, fpclass, unordered
buffer is encrypted isencrypt
ioctl control

terminal line connection

times difftime computes the
between two calendar times
mkdirp, rmdirp create, remove
search for named file in named
chdir change working

chroot change root

system independent/ getdents read
unlink remove

get pathname of current working
mkdir make a

dirname report the parent
telldir, seekdir, rewinddir,/
seekdir, rewinddir, closedir

file mknod make a

rmdir remove a

name of a file path name

acct enable or

dis object code

system console fmtmsg

count profile data lprof

prof

hypot Euclidean

/seed48, lcong48 generate uniformly
remainder

strtod, atof, convert string to
mrand48, jrand48, srand48, seed48,/
channels protocol used by xt

object file

file dump

descriptor

descriptor

dup

Permuted Index

delta make a delta (change) to an delta(1)
_deltas comb(1)
AeSCTIPLOr ..ottt close(2)
deSCriptoruueitccnciriineinenasiens dup(2)
descriptor oo AUP2(3C)
AESCTIPLOTL ..ccverrrreeteirentess ettt it ssesssssenes elf_begin(3E)
descriptor .. elf_cntl(3E)
deSCTIPLOT .ttt elf_update(3E)
determine accessibility of a fileccccoeuvvrerneireirenrennnne access(2)
determine file typecccoeeuuee . elf kind(3E)
determine type of floating-point/ccoceeiviieninrennnnee. isnan(3C)
determine whether a charactercccoeervenrnnnne. isencrypt(3G)
device ioctl(2)
dial establish an out-goingccceuecrvivverenncinicnncnsnnccnees dial(3C)
difference between two calendar .. . difftime(3C)
difftime computes the differenceccccovruvveneinccnce difftime(3C)
directories in a path mkdirp(3G)
directories pathfind pathfind(3G)
QUTECEOTY .ottt st chdir(2)
directory ... reeeereesteerraersreeeraeesaeasaee beae st aeaeseranane chroot(2)
directory entries and put in a fileccccovererveirniennnns getdents(2)
directory entry ...t unlink(2)
directory getcwd getcwd(3C)
AUTECLOTY ..ot essenesenns mkdir(2)
directory name of a file path name dirname(3G)
directory: opendir, readdir, directory(3C)
directory operations /telldir,ccccceueeceruruunene.. directory(3C)
directory, or a special or ordinaryccoeveeeecreenens mknod(2)
dIirectory rmdir(2)

dirname(3G)
dis(1)
acct(2)

dirname report the parent directory
dis object code disassembler
disable process accounting

AISASSEINDIETooeveveveereeecreiecietrer e e ere st b s s esssnessesasssssns dis(1)
display a message on stderr or fmtmsg(3C)
display line-by-line execution lprof(1)
display profile data ... prof(1)
distance function_ hypot(3M)
distributed pseudo-random numbers drand48(3C)
div, 1div compute the quotient and div(30)
double-precision NUMDETciinicrinneniecsencsenee strtod(3C)
drand48, erand48, Irand48, nrand48,cuuuu... drand48(3C)
driver xtproto multiplexed xtproto(5)
dump dump selected parts of anceervrcineincnnncn. dump(1)
dump selected parts of an objectccceeeuuericrrenrncerrnnne. dump(1)
dup duplicate an open file dup(2)
dup?2 duplicate an open file dup2(3C)
duplicate an open file descriptor dup(2)

Permuted Index

dup2

floating-point number to string
end, etext,

sact print current SCCS file

1d link

effective user, real group, and
/getgid, getegid get real user,
insque, remque insert/remove
basename return the last

files a.out

cof2elf COFF to

object file type elf fsize:
retrieve/ elf getehdr:

retrieve/ elf getphdr:
class-dependent/ elf getshdr:
elf getehdr: elf32_getehdr,
elf_getphdr: elf32_getphdr,
class-dependent data/ elf xlate:
elf_xlate: elf32_xlatetof,

handling
elf_errmsg,

elf_flagelf, elf flagphdr,/
elf flagphdr,/ elf flagdata,
elf_flagdata, elf_flagehdr,
/elf_flagehdr, elf flagelf,
/elf_flagelf, elf_flagphdr,
/elf_flagphdr, elf flagsen,
size of an object file type
member header

symbol table

an object file

elf rawdata get section data
elf32_newehdr retrieve/
identification data
elf32_newphdr retrieve/
elf_nextscn get section/
class-dependent section header

get section/ elf getscn,
section data elf_getdata,
elf getscn, elf_ndxscn,

duplicate an open file descriptor dup2(3C)
ecvt fcvt, gevt convert ecvt(3C)
edata last locations in program end(30)
editing activity .. sact(1)
editor for object files 1d(1)
effective group IDs /get real user,coceveeviernsiecnnees getuid(2)
effective user, real group, and/ ceeeee getuid(2)
element from a queueeeeereeiirennnn. Ceossaenasessesesss insque(3C)
element of a path name .. basename(3G)
ELF (Executable and Linking Format)c.ccccoveuveieuneirnns a.out(4)
elf object file access library elf(3E)
ELF object file translation cof2elf(1)
elf32_fsize return the size of ancccoeevveereeinrieriennne elf_fsize(3E)
elf32_getehdr, elf32_newehdr elf_getehdr(3E)
elf32_getphdr, elf32_newphdrcovciieinnirnenns elf_getphdr(3E)
elf32_getshdr retrieve elf_getshdr(3E)

elf32_newehdr retrieve/
elf32_newphdr retrieve/
elf32_xlatetof, elf32_xlatetom elf_xlate(3E)
elf32_xlatetom class-dependent data/ elf_xlate(3E)
elf_begin make a file descriptorccoercenerinrrins elf begin(3E)
elf_centl control a file descriptor elf entl(3E)
elf_end finish using an object filecc.cvvveeveiccrieninnn. elf end(3E)
elf errmsg, elf_errno errorcueecercvvciinniinensens elf_errmsg(3E)
elf_errno error handling . elf_errmsg(3E)

elf_getehdr(3E)
. elf_getphdr(3E)

elf_fill set fill BYteovveevvunceciinmiisneninrimncinnsissssnirseens elf fill(3E)
elf flagdata, elf_flagehdr, elf flagdata(3E)
elf flagehdr, elf flagelf, elf_flagdata(3E)
elf flagelf, elf flagphdr,/ elf flagdata(3E)

elf_flagphdr, elf_flagscn,/
elf_flagsen, elf_flagshdr/

elf flagshdr manipulate flags
elf fsize: elf32_fsize return theciivvenciunne. elf_fsize(3E)
elf_getarhdr retrieve archive elf_getarhdr(3E)
elf_getarsym retrieve archiveociviininne. -elf_getarsym(3E)
elf_getbase get the base offset for ... elf_getbase(3E)
elf_getdata, elf_newdata,coeuierveiereriisinninnnns elf_getdata(3E)
elf_getehdr: elf32_getehdr, elf_getehdr(3E)
elf_getident retrieve file ... elf_getident(3E)
elf_getphdr: elf32_getphdr,ccciinciiincrinnnce. elf_getphdr(3E)

elf_flagdata(3E)
elf flagdata(3E)
.. elf_flagdata(3E)

elf_getscn, elf_ndxscn, elf newsen, ... elf_getsen(3E)
elf_getshdr: elf32_getshdr retrieve elf_getshdr(3E)
elf_hash compute hash value elf_hash(3E)
elf kind determine file typecccovvuuirirans elf_kind(3E)
elf_ndxscn, elf_newscn, elf_nextscn elf_getsen(3E)

elf newdata, elf_rawdata get elf_getdata(3E)
elf newscn, elf_nextscn get section/oieeriirinne elf_getscn(3E)

Programmer’s Reference Manual

Permuted Index

access
elf getscn, elf_ndxscn, elf newscn,
access

elf_getdata, elf newdata,

file contents

application versions

elf32_xlatetom class-dependent/
accounting acct

crypt, setkey,

whether a character buffer is

crypt, setkey, encrypt generate
crypt password and file

program

/getgrgid, getgrnam, setgrent,
/getpwuid, getpwnam, setpwent,
/getutline, pututline, setutent,
getdents read directory

nlist get

utmp, wimp utmp and wtmp
endgrent, fgetgrent get group file
getmntany get mnttab file
fgetpwent manipulate password file
endutent, utmpname aceess utmp file
putpwent write password file
unlink remove directory

fpsetsticky TEEE floating-paint
environ user

getenv return value for

putenv change or add value to
jrand48, srand48, seed48,/ drand48,
complementary error function
complementary error function erf,
error function erf, erfc

error function and complementary
elf errmsg, elf errno

strerror get

perror print system

introduction to system calls and
matherr

strings, compressing or expanding
line connection dial

program end,

hypot

cscope interactively

Permuted Index

elf_next sequentml archive membercccccoerervnrenres elf_next(3E)
elf_ _nextsen get section information .. elf getscn(3E)
elf | _rand random archive member ...y €lf_rand(3E)
elf_rawdata get section data cervesenrerennnenr €lf_getdata(3E)
elf_rawfile retrieve uninterpretedcocooeirrinenes elf_rawfile(3E)
elf _strptr make a string pointerc..cocunrineens €lf_Strptr(3E)
elf updgte update an descriptor ... elf_update(3E)
elf version coordinate library and werersirens , elf_version(3E)
elf_xlate elf32_xlatetof, elf_xlate(3E)
enable or disable process acct(2)
encrypt generate encryption . crypt(3C)
encrypted isencrypt determineccoevevunencen. vernne. iseNCrypt(3G)
encryption crypt(3C)
encryption functions . crypt(3X)
end, etext, edata last locations inccceevevereeereervereeneenne end(3C)

endgrent, fgetgrent get group file/ . -
endpwent, fgetpwent manipulate/ getpwent(3C)
endutent, utmpname access utmp file/eeorecerirenes getut(3C)
entries and put in a file system/cccvervniieniricrinnnnns getdents(Z)

.. getgrent(3C)

entries from name list nlist(3E)
entry formats utmp(4)
entry /getgrnam, setgrent getgrent(3C)
entry getmntent, getmntent(3C)
entry /setpwent endpwent getpwent(3C)
entry /pututline, setutent, getut(3C)
entry putpwent(3C)
entry . . . unlink(2)
environ user environment eeenen environ(5)
environment control /fpgetsticky,renn. fpgetround3C)
environment eresneressarenenersesenas . environ(5)
environment name getenv(3C)
environment ... L. putenv(3C)
erand48, lrand48, nrand48, mrand48,c.cecoer.. drand48(3C)
erf, erfc error function and erf(3M)
erfc error function and erf(3M)
error function and complementary erf(3M)
error function erf, erfc erf(3M)
error handling elf_errmsg(3E)
error message string strerror(3C)
erTor messages perror(3C)
error numbers intro intro(2)
error-handling function matherr(3M)

escape codes /strcadd, Strecpy coOpycumerresrinnee strecpy(3G)

establish an out-going terminal dial(30)
etext, edata last locations in end(3C)
Euclidean distance function hypot(3M)
examine a C program cscope(1)

Permuted Index

execlp, execvp execute a file

execlp, execvp execute a/ exec:

execute a file exec: execl, execv,
exec: exed, execv, execle, execve,
files a.out ELF

execle, execve, execlp, execvp
regcmp, regex compile and

lprof display line-by-line

sleep suspend

monitor prepare

profil

execvp execute a file exec: execl,
file exec: execl, execv, execle,
execv, execle, execve, execlp,
create a new file or rewrite an

exit,

log10f, pow, powf, sqrt, sqrtf/
copy strings, compressing or
log10f, pow, powf, sqrt,/ exp,
/log10f, pow, powf, sqrt, sqrtf
/compile, step, advance regular
/compile, step, advance regular
regcmp regular

regex compile and execute regular
/ceil, ceilf, copysign, fmod, fmodf,
/ceilf, copysign, fmod, fmodf, fabs,
data in a machine-independent
stream

number to string ecvt,
fopen, freopen,

status inquiries ferror,
stream status inquiries
fclose,

from a stream getc, getchar,
/getgrnam, setgrent, endgrent,

in a stream fsetpos,

/getpwnam, setpwent, endpwent,
gets,

bufsplit split buffer into

mkfifo create a new

utime set

elf object

access determine accessibility of a

10

exec: execl, execv, execle, €XECVEe,owrrrcreinrncrensseneennnes exec(2)
execl, execv, execle, execve, exec(2)
execle, execve, exedp, EXECVPirncninieinisenssianisnnes exec(2)
execlp, execvp execute a file exec(2)
(Executable and Linking Format)ccoveveiinninnnnns a.out(4)
execute a file exec: execl, execv, exec(2)
execute regular expression regcmp(3G)
execution count profile dataccceevevemeveeiereeresrinrsinrnnnes Iprof(1)
execution for interval .. sleep(3C)
execution profile .. monitor(3C)
execution time Profile ... profil(2)
execv, execle, execve, execlp, ...t exec(2)

execve, execlp, eXeCcVp eXeCUte @cvereeeiinenernenierenns exec(2)

execvp execute a file exec: exed], exec(2)
existing one creat creat(2)
exit, _exit terminate process exit(2)
_exit terminate process exit(2)
exp, expf, cbrt, log, logf, log10, exp(3M)
expanding escape codes /Strecpyocoivrnnne strecpy(3G)
expf, cbrt, log, logf, logl10, exp(3M)
exponential, logarithm, power,/ceeiiienrnninnnns exp(3M)
expression compile and match/ regexp(5)
expression compile and match/ regexpr(3G)
expression compileceeieeunne regemp(1)

€XPIresSiON TEZCIMP, ..owveverernerersesessersressssssssnssssessassssssasnes regcmp(3G)
fabs, fabsf, rint, remainder floor,/ccccceeerevevveererennes floor(3M)
fabsf, rint, remainder floor,/cccoceeeverrrnecereereseesrenenes floor(3M)

fashion /sgetl access long integer ... sputl(3X)
fclose, fflush close or flush a ... fclose(3S)
fentl file control ... fentl(2)
fentl file control options fentl(5)
fevt, gevt convert floating-point ecvt(3C)
fdopen open a stream fopen(3S)
feof, clearerr, fileno stream ferror(3S)
ferror, feof, clearerr, fileno ferror(3S)
fflush close or flush a stream fclose(3S)
ffs find first set bit ... ffs(3C)
fgetc, getw get character or word getc(35)

fgetgrent get group file entrycwereceecsereren getgrent(3C)
fgetpos reposition a file pointerccocceeuireiiinrennnne fsetpos(3C)

fgetpwent manipulate password file/ getpwent(3C)
fgets get a string from a stream gets(3S)
fields bufsplit(3G)
FIFO oo snssssssmnsssssssmsssassssnsssssssssnsssasseses mkfifo(3C)
file access and modification mescccceeveereriisrenrren utime(2)
file access IDIary ... essens elf (3E)
file access(2)

Programmer’s Reference Manual

Permuted Index

chmod change mode of

chown change owner and group of a
elf rawfile retrieve uninterpreted
fentl

fentl

core core image

umask set and get

make a delta (change) to an SCCS
close close a

dup duplicate an open

dup? duplicate an open

elf begin make a

elf_cntl control a

dump selected parts of an object
sact print current SCCS

elf_end finish using an object

get the base offset for an object
crypt password and

endgrent, fgetgrent get group
getmntent, getmntany get mnttab
fgetpwent manipulate password
endutent, utmpname access utmp
putpwent write password
execve, execlp, execvp execute a
constants limits header

ar archive

intro introduction to

get get a version of an SCCS
retrieve class-dependent object
elf getident retrieve

pathfind search for named
copylist copy a

link link to a

the comment section of an object
directory, or a special or ordinary
ctermid generate

mktemp make a unique

nm print name list of an object
ttyslot find the slot in the utmp
creat create a new

the parent directory name of a
fseek, rewind, ftell reposition a
fsetpos, fgetpos reposition a
Iseek move read/write

prs print an SCCS

read read from

remove remove

Permuted Index

file chmod(2)
file chown(2)
file contents elf rawfile(3E)
file control fentl(2)
file control options fentl(5)
file core(4)
file creation mask umask(2)
file delta delta(1)
file descriptor close(2)
file descriptor dup(2)
file descriptor dup2(30)
file descriptor elf begin(3E)
file descriptor elf cntl(3E)
file dump dump(1)
file editing activity sact(1)
file elf_end(3E)
file elf getbase elf_getbase(3E)
file encryption functions aypt3X)
file entry /getgrnam, setgrent,ccocouennns getgrent(3C)
file entry getmntent(3C)
file entry /setpwent, endpwent,coevievmernnnns getpwent(3C)
file entry /pututline, setutent, getut(30)
file entry putpwent(3C)
file exec: execl, execv, execle, exec(2)
file for implementation-specific limits(4)
file format ar(4)
file formats intro(4)
file get(1)

file header /elf32_newehdr
file identification data

elf_getehdr(3E)

elf_getident(3E)

file in named directories pathfind(3G)
file into memory copylist(3G)
file link(2)
file mcs manipulate mes(1)
file mknod make a mknod(2)
file name for terminal ctermid(3S)
file name mktemp(3C)
file nm(1)
file of the current user ttyslot(3C)
file or rewrite an existing one creat(2)
file path name dirname reportccooeuvvinnivnecnns dirname(3G)
file pointer in a stream rereeeere f5€€K(3S)
file pointer in a stream fsetpos(3C)
file pointer 1seek(2)
file prs()
file read(2)
file remove(3C)

1

Permuted Index

rename rename
rmdel remove a delta from an SCCS
compare two versions of an SCCS
sccsfile format of SCCS

stat, fstat get

number information from an object
/read directory entries and put in a
statfs, fstatfs get

mount mount a

ustat get

sysfs get

umount unmount a

tmpfile create a temporary

create a name for a temporary
cof2elf COFF to ELF object

ftw walk a

return the size of an object
elf_kind determine

undo a previous get of an SCC5
val validate an SCCS

write write on a

ferror, feof, clearerr,

admin create and administer SCCS
ELF (Executable and Linking Format)
1d link editor for object

lockf record locking on

section sizes in bytes of object
convert convert archive

elf fill set

ffs

ttyname, isatty

object library lorder

the current user ttyslot

elf end

determine/ isnan, isnand, isnanf,
elf_flagshdr manipulate
/fpgetsticky, fpsetsticky IEEE
unordered determine type of

ecvt, fcvt, gevt convert

scalb manipulate parts of

/fmodf, fabs, fabsf, rint, remainder
copysign, fmod, fmodf, fabs,/
fmod, fmodf, fabs, fabsf,/ floor,
cflow genérate C

fclose, fflush close or

/floorf, ceil, ceilf, copysign,

7 ceil, ceilf, copysign, fmod,

12

file rename(3C)
file rmdel(1)
file sccsdiff scesdiff(1)
1 (- scesfile(4)
file status stat(2)
file /table, debugging and linecocvveverieninniennnsinsenenns strip(1)
file system independent formatcccocveerniivererinnnn getdents(2)
file system information .. statfs(2)
file SYSEEM ..coonivvirrerereeresinissniressssssrenssssesaens mount(2)
file system statistics ustat(2)
file system type information .. sysfs(2)
file SYSLEIM .o umount(2)
fle it een tmpfile(3S)
file tmpnam, tempnam tmpnam(35)
file translation cof2elf(1)
file tree ...oveeverernesrnerinnns ftw(3C)
file type elf_fsize: elf32_fsize elf_fsize(3E)
file type elf kind(3E)
file unget . unget(1)
file .. val(1)
file write(2)
fileno stream status inquiries ferror(3S)
fIlES oot s s s admin(1)
fIleS A.0UL .o e a.out(4)
files 1d(1)
files i, lockf(3C)
files size print ... size(1)
files to common formatseuvninerncnisionnns convert(1)
fill DYt o e elf fill(3E)
find first set bit " £fs(3C)
find name of a terminal ttyname(3C)
find ordering relation for an lorder(1)
find the slot in the utmp file of ttyslot(3C)
finish using an object file elf end3E)
finite, fpclass, unordered ..o isnan(3C)

flags /elf flagphdr, elf flagscn,
floating-point environment control ..
floating-point number /fpclass,
floating-point number to string

floating-point numbers /nextafter,

.......................... .. elf_flagdata(3E)

.. fpgetround(3C)

..................................... isnan(3C)

ecvt(3C)

frexp(3C)

floor, ceiling, remainder, absolute/ floor(3M)
floor, floorf, ceil, ceilf, floor(3M)
floorf, ceil, ceilf, copysign, floor(3M)
flowgraph cflow(1)
flush a stream fdose(3S)
fmod, fmodf, fabs, fabsf, rint,/ floor(3M)
fmodf, fabs, fabsf, rint, remainder/ccveniiiniinn floor(3M)

Programmer’s Reference Manual

Permuted Index

for an application for use with
or system console
stream

ar archive file

a.out ELF (Executable and Linking
put in a file system independent
sccsfile

convert archive files to common
intro introduction to file

utmp, wtmp utmp and wtmp entry
scanf, fscanf, sscanf convert
vprintf, vfprintf, vsprintf print
printf, fprintf, sprintf print
localeconv get numeric

of/ isnan, isnand, isnanf, finite,
fpgetround, fpsetround,

fpsetmask, fpgetsticky, /
/fpsetround, fpgetmask, fpsetmask,
output printf,

fpgetround, fpsetround, fpgetmask,
fpgetsticky,/ fpgetround,
/fpgetmask, fpsetmask, fpgetsticky,
on a stream putc, putchar,

puts,

mallinfo memory allocator malloc,
allocator malloc,

fopen,

nextafter, scalb manipulate parts/
input scanf,

file pointer in a stream

pointer in a stream

stat,

statfs,

a stream fseek, rewind,
communication package stdipc:

function erf, erfc error

function and complementary error
gamma, lgamma log gamma
hypot Euclidean distance
libwindows windowing terminal
matherr error-handling

prof profile within a

math math

intro introduction to

Permuted Index

fmtmsg /a list of severity levelsccceunune. addseverity(3C)
fmtmsg display a message on stderrccoeerverinne. fmtmsg(3C)
fopen, freopen, fdopen open a fopen(3S)
fork create a new process fork(2)
format ar(4)
Format) files a.out(4)
format /read directory entries andc.couueernnnes getdents(2)
format of SCCS file scesfile(4)
formats convert convert(1)
formats intro(4)
formats utmp(4)
formatted input scanf(3S)
formatted output of a variable/ vprintf(3S)
formatted output printf(3S)
formatting informationceiieienienienrinnsnsenns localeconv(3C)
fpclass, unordered determine typeo.cecereeeinenens isnan(3C)
fpgetmask, fpsetmask, fpgetsticky,/ ..., fpgetround(3C)
fpgetround, fpsetround, fpgetmask,cuue. fpgetround(3C)
fpgetsticky, fpsetsticky IEEE/ccoovuvvuerernnnnnne fpgetround(3C)
fprintf, sprintf print formatted printf(3S)

fpsetmask, fpgetsticky, fpsetsticky/ccconvurenne. fpgetround(3C)

fpsetround, fpgetmask, fpsetmask, fpgetround(3C)
fpsetsticky IEEE floating-point/cccoviiuiane fpgetround(3C)
fputc, putw put character or word putc(3S)
fputs put a string on a stream puts(3S)
fread, fwrite binary input/output fread(3S)
free, realloc, calloc, mallopt, malloc(3X)
free, realloc, calloc memory malloc(3C)
freopen, fdopen open a stream fopen(3S)
frexp, 1dexp, logb, modf, modff, frexp(3C)
fscanf, sscanf convert formatted scanf(35)
fseek, rewind, ftell reposition a fseek(3S)
fsetpos, fgetpos reposition a filecoeeereniievennns fsetpos(3C)
fstat get file status stat(2)
fstatfs get file system information statfs(2)
ftell reposition a file pointer in fseek(3S)
ftok standard interprocess stdipc(3C)
ftw walk a file tree ftw(3C)
function and complementary error erf(3M)
function erf, erfc error erf(3M)
function gamma(3M)
function_ hypot(3M)
function library libwindows(3X)
function matherr(3M)
function prof(5)
functions and constants math(5)
functions and libraries intro(3)

13

Permuted Index

j0, j1, jn, y0, y1, yn Bessel

aypt password and file encryption
logarithm, power, square root
ceiling, remainder, absolute value
mbstowcs, westombs multibyte string
asinh, acosh, atanh hyperbolic

atanf, atan2, atan2f trigonometric
fread,

gamma, lgamma log

to string ecvt, fcvt,

signal abort

cflow

cxref

and conversion tables chrtbl
crypt, setkey, encrypt

ctermid

lexical tasks lex

/jrand48, srand48, seed48, lcong48
rand, srand simple random-number
character or word from a stream
or word from a stream getc,
working directory

put in a file system independent/
user,/ getuid, geteuid, getgid,
name

user, effective user, real/ getuid,
effective user,/ getuid, geteuid,
setgrent, endgrent, fgetgrent get/
endgrent, fgetgrent get/ getgrent,
fgetgrent get/ getgrent, getgrgid,

getmntent,

file entry

stream
argument vector

process group, and parent/ getpid,
process, process group, and parent/
and parent/ getpid, getpgrp,

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent, getpwuid,
endpwent, fgetpwent/ getpwent,
stream

string

get real user, effective user,/

14

functions bessel:cceirvirveiiereericrennnee bessel(3M)
functions crypt(3X)
functions /sqrt, sqrtf exponential,cccooverrererererrisnnnne exp(3M)
functions /rint, remainder floor, floor(3M)
functions mbstring: mbstring(3C)

functions /coshf, tanh, tanhf,ccovvenienncenverennenes sinh (3M)

functions /acos, acosf, atan, trig(3M)
fwrite binary input/output fread(3S)
gamma function gamma(3M)
gamma, lgamma log gamma function «rer. gamma(3M)
gevt convert floating-point numbercoeeieieiinieennns ecvt(3C)
generate an abnormal terminationccoevviceiieiinnns abort(3C)
generate C flOWgraphccooeinvionevnncnisnsss s snesenns cflow(1)
generate C program cross-referencec.oeeeeverrennes cxref(1)
generate character classificationc.ccvecucucecuncnnens chrtbl(1M)
generate encryption .. crypt(3C)
generate file name for terminal ctermid(3S)
generate programs for simple lex(1)
generate uniformly distributed/couvvvvvennnncns drand48(3C)
generator rand(3C)
getc, getchar, fgetc, getw getcvevviiniinciccnnnes getc(35)
getchar, fgetc, getw get character ..., getc(35)
getcwd get pathname of current ... getewd(3C)
getdents read directory entries and getdents(2)
getegid get real user, effective getuid(2)
getenv return value for environment . . getenv(3C)
geteuid, getgid, getegid get real getuid(2)
getgid, getegid get real user, ..., getuid(2)

getgrent, getgrgid, getgrnam,o.cevrveeeicienne getgrent(3C)

getgrgid, getgrnam, setgrent, .. getgrent(3C)
getgrnam, setgrent, endgrent,cocevveniciiinenens getgrent(3C)
getlogin get login name getlogin(3C)

getmntany get mnttab file entrycccevunennee. getmntent(3C)
getmntent, getmntany get mnttab getmntent(3C)
getmsg get next message off a .. getmsg(2)
getopt get option letter fromoeveeveuenereeeenciicnne getopt(3C)

getpass read a pasSWOrdcoeeerveicineennisensesnennnns getpass(3C)
getpgrp, getppid get process,ccceevviiiiininnnn. getpid(2)
getpid, getpgrp, getppid get ... getpid(2)
getppid get process, process group, ... getpid(2)
getpw get name from UID ..., getpw(30)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwnam, setpwent,ccccevevieirninnnes getpwent(3C)
gets, fgets get a string from a . gets(35)
getsubopt parse suboptions from accecceveueee. getsubopt(3C)
getuid, geteuid, getgid, getegid getuid(2)

Programmer’s Reference Manual

Permuted Index

getutline, pututline, setutent,/
pututline, setutent,/ getut:
setutent,/ getut: getutent,

getut: getutent, getutid,

stream getc, getchar, fgetc,
gmatch shell

matching

and time to/ ctime, localtime,
setjmp, longjmp non-local

/get real user, effective user, real
/getppid get process, process
setgrent, endgrent, fgetgrent get
setpgrp set process

user, real group, and effective
setuid, setgid set user and
chown change owner and

send a signal to a process or a
maintain, update, and regenerate
ssignal,

stdarg

varargs

isprint, isgraph, isascii character
elf_errmsg, elf_errno error
mblen, wctomb multibyte character
hsearch, hcreate, hdestroy manage
elf_hash compute

search tables hsearch,

hsearch, hcreate,

retrieve archive member
class-dependent object file
retrieve class-dependent section
implementation-specific/ limits
retrieve class-dependent program
numbers or SCCS commands
commands help ask for

layers protocol used between
jagent

hash search tables

tanhf, asinh, acosh, atanh

setpgrp set process group
elf_getident retrieve file

what print

shmget get shared memory segment
process group, and parent process
real group, and effective group
setuid, setgid set user and group

Permuted Index

getut: getutent, getutid, getut(3C)
getutent, getutid, getutline,coooeveeereeeeneieirerennnnes getut(3C)

getutid, getutline, pututline, getut(3C)
getutline, pututline, setutent,/ getut(3C)
getw get character or word from a getc(3S)
global pattern matching gmatch(3G)
gmatch shell global pattern gmatch(3G)
gmtime, asctime, tzset convert datecccccecerennenen. ctime(3C)
00T (o O RRURON ... setimp(3C)
group, and effective group IDscccoveeenenniinrnninns getuid(2)
group, and parent process IDscccceeueee.n. getpid(2)
group file entry /getgrnam,cooeiveiciieeinnne getgrent(3C)
group ID setpgrp(2)

group IDs /get real user, effective getuid(2)
IOUP IDS oot setuid(2)

group of a file chown(2)
group of processes Killoveivrereievcecrennniensenennen, kill(2)
groups of programs make ... make(1)
gsignal software signalscovevvreinieneciieniennnenne ssignal(3C)

handle variable argument list
handle variable argument list

stdarg(5)
varargs(5)

handling /isentrl, ispunct, ... ctype(3C)
handling ... elf_errmsg(3E)
handling mbchar: mbtowg,cceveeiivvinniiciicnrnees mbchar(3C)
hash search tables hsearch(3C)
hash value elf hash(3E)
hcreate, hdestroy manage hash hsearch(3C)
hdestroy manage hash search tablescceceeuuee hsearch(3C)

header elf getarhdr ...,
header /elf32_newehdr retrieve ...
header elf getshdr: elf32_getshdr

elf_getarhdr(3E)
... elf_getehdr(3E)
......................... elf getshdr(3E)

header file for limits(4)
header table /elf32 newphdreunaes elf_getphdr(3E)
help ask for help with message help(1)
help with message numbers or SCCS help(1)
host and windowing terminal under/ .. . layers(5)
host control of windowing terminalccccowecreuniinennes jagent(5)
hsearch, hcreate, hdestroy manageccueunee. hsearch(3C)
hyperbolic functions /tanh, sinh(3M)
hypot Euclidean distance functionccecconeveureunnnes hypot(3M)
ID et res s s s e ebesar e ssa s bes b anssaerennennenans setpgrp(2)

identification datacccceveererenreneereeerereereerenee elf_getident(3E)

identification StTINGScccoovvvivineinrriiicicserees s what(1)
identifier shmget(2)
IDs /getpgrp, getppid get process, getpid(2)
IDs /get real user, effective USer,ceveieererervernns getuid(2)
IDS ettt s setuid(2)

15

Permuted Index

/fpsetmask, fpgetsticky, fpsetsticky
core core

limits header file for

entries and put in a file system

elf newscn, elf_nextscn get section
/table, debugging and line number
localeconv get numeric formatting
statfs, fstatfs get file system

sysfs get file system type

popen, pclose

fscanf, sscanf convert formatted
ungetc push character back onto
fread, fwrite binary

poll STREAMS

stdio standard buffered

clearerr, fileno stream status
insque, remque

element from a queue

install

abs, labs return

ab4l, 164a convert between long
sputl, sgetl access long

atol, atoi convert string to

13tol, Itol3 convert between 3-byte
between 3-byte integers and long
cscope

pipe create an

stdipc: ftok standard

sleep suspend execution for

libraries

commands

and error numbers
library

intro

libraries intro
intro

commands intro
error numbers intro
intro

/islower, isupper, isalpha,
/isxdigit, islower, isupper,
/isentrl, ispunct, isprint, isgraph,
ttyname,

16

IEEE floating-point environment/cccoo...... fpgetround(3C)
image file core(4)
implementation-specific constants limits(4)
independent format /read directorycoeirenne getdents(2)
information /elf ndxscn, elf_getscn(3E)
information from an object file strip(1)
information localeconv(3C)
information statfs(2)
information sysfs(2)
initiate pipe to/from a process popen(3S)
input scanf, scanf(3S)
input stream ungetc(3S)
input/output fread(3S)
input/output multiplexing poll(2)
input/output package stdio(3S)
inquiries ferror, feof, ferror(3S)
insert/remove element from a queueccvverennnee insque(3C)
insque, remque insert/remove insque(3C)
install commands install(IM)
install install commands install(1M)
integer absolute value abs(3C)
integer and base-64 ASCII Stringc.ccoueverennens a641(3C)
integer data in a/ sputl(3X)
integer strtol, strtoul, strtol(3C)
integers and long integers 13tol(3C)
integers 13to], ltol3 convert 13tol(3C)

interactively examine a C programcccceeucvvcvncvnninnce. cscope(1)

interprocess channel pipe(2)
interprocess communication packagec..ccoovuniinn stdipc(3C)
interval sleep(3C)
intro introduction to file formatscccovenciiciciinecn, intro(4)

intro introduction to functions and intro(3)

intro introduction to miscellany intro(5)
intro introduction to programming intro(1)
intro introduction to system calls intro(2)
intro introduction to the math intro(3M)
introduction to file formats intro(4)
introduction to functions and intro(3)
introduction to miscellany intro(5)
introduction to programming intro(1)
introduction to system calls and intro(2)
introduction to the math library intro(3M)
ioctl control device ioctl(2)
isalnum, isspace, iscntrl, ispunct,/overiiincinininns ctype(3C)
isalpha, isalnum, isspace, iscntrl,/coccoemreerierirnnenne. ctype(3C)
isascii character handling ctype(3C)
isatty find name of a terminal ttyname(3C)

Programmer’s Reference Manual

/isupper, isalpha, isalnum, isspace,
isupper, isalpha, isalnum,/ ctype:
character buffer is encrypted
/isspace, iscntrl, ispunct, isprint,
isspace,/ ctype: isdigit, isxdigit,
fpclass, unordered determine type/
unordered determine type of/ isnan,
determine type of/ isnan, isnand,
/isalnum, isspace, iscntrl, ispunct,
/isalpha, isalnum, isspace, iscntrl,
/islower, isupper, isalpha, isalnum,
system

ctype: isdigit, isxdigit, islower,
isalpha, isalnum,/ ctype: isdigit,
functions bessel:

bessel: jO,

terminal

bessel: j0, j1,

/erand48, Irand48, nrand48, mrand48,
a group of processes

integers and long integers

and base-64 ASCII string a64l,

abs,

strftime

and windowing terminal under/
host and windowing terminal under
/mrand48, jrand48, srand48, seed48,

nextafter, scalb manipulate/ frexp,
remainder div,

getopt get option

with/ /build a list of severity
lexical tasks

lex generate programs for simple
Isearch,

gamma,

intro introduction to functions and
elf_version coordinate

ar maintain portable archive or

elf object file access

intro introduction to the math
windowing terminal function
ordering relation for an object
function library
implementation-specific constants
ulimit get and set user

establish an out-going terminal

Permuted Index

Permuted Index

isentrl, ispunct, isprint, isgraph,/ ..., ctype(3C)
isdigit, isxdigit, islower, ctype(3C)
isencrypt determine whether acccouvecvviviinircnnes isencrypt(3G)
isgraph, isascii character handlingcccuvueveeeennces ctype(3C)
islower, isupper, isalpha, isalnum,coreiniinnnrnnnnes ctype(3C)
isnan, isnand, isnanf, finite, isnan(3C)
isnand, isnanf, finite, fpclass, isnan(3C)
isnanf, finite, fpclass, unorderedocuiecinniriirnns isnan(3C)

isprint, isgraph, isascii character/ ..
ispunct, isprint, isgraph, isascii/
isspace, iscntrl, ispunct, isprint,/

... ctype(3C)
.. ctype(3C)
ctype(3C)

issue a shell command system(3S)
isupper, isalpha, isalnum, isspace,/cccccuervrrrrnenecs ctype(3C)
isxdigit, islower, iSUPPeT,cocvervirnrninrnirircirieicrinens ctype(3C)
j0, j1, jn, y0, y1, yn Bessel bessel(3M)
j1,jn, y0, y1, yn Bessel functionsoceucrsiunennes bessel(3M)
jagent host control of windowing jagent(5)
jn, ¥0, y1, yn Bessel functions bessel(3M)
jrand48, srand48, seed48, lcong48/ceovueviecrennen drand48(3C)
kill send a signal to a process or ... kill(2)
13tol, 1tol3 convert between 3-byteccocevcrveeirerrirrennns 13tol(3C)
164a convert between long integer a641(30C)
labs return integer absolute value abs(3C)
language specific strings strftime(4)
layers protocol used between hostcccecoveccescrvernecunns layers(5)
layers(1) /protocol used between layers(5)
lcong48 generate uniformly/ciicecirsnencinnes drand48(3C)
1d link editor for object files 1d(1)
ldexp, logb, modf, modff, frexp(3C)
1div compute the quotient and div(3C)
letter from argument vector getopt(3C)
levels for an application for useccccvecurunen. addseverity(3C)
lex generate programs for simple lex(1)
lexical tasks lex(1)
Ifind linear search and update Isearch(3C)
lgamma log gamma functioncieinsiiecennnens gamma(3M)
libraries intro(3)
library and application Versionsocecmenee elf_version(3E)
library ar(1)
library elf(3E)
BDIary ..ceecnnsesiiiinessesssssssneninns intro(3M)
library libwindows .. libwindows(3X)
library lorder find lorder(1)
libwindows windowing terminalccccccecuvcunne. libwindows(3X)
limits header file for limits(4)
limits ulimit(2)
line connection dial dial(3C)

17

Permuted Index

/strip symbol table, debugging and
Isearch, Ifind

profile data lprof display

Id

link
a.out ELF (Executable and

nlist get entries from name

nm print name

application/ addseverity build a
stdarg handle variable argument
varargs handle variable argument
output of a variable argument
modify and query a program’s
information

convert date and time to/ ctime,
end, etext, edata last

memory plock

maillock manage

lockf record

gamma, lgamma

powf, sqrt, sqrtf/ exp, expf, cbrt,
sqrtf/ exp, expf, cbrt, log, logf,
exp, expf, cbrt, log, logf, log10,
/pow, powf, sqrt, sqrtf exponential,
manipulate parts of/ frexp, ldexp,
sqrt, sqrtf/ exp, expf, cbrt, log,
getlogin get

cuserid get character

setjmp,

an object library

execution count profile data
srand48, seed48,/ drand48, erand48,

update

integers and long integers 13tol,

values

sgetl access long integer data in a
m4

maillock manage lockfile for user’s
mailbox

library ar

groups of programs make

free, realloc, calloc, mallopt,

18

line number information from an/ strip(1)
linear search and update Isearch(3C)
line-by-line execution count 1prof(1)
link editor for object files 1d(1)
link link to a file link(2)
link to a file link(2)
Linking Format) files a.out(4)
lint a C program checker lint(1)
list nlist(3E)
list of an object file nm(1)
list of severity levels for an addseverity(3C)
list stdarg(5)
list varargs(5)
list /vsprintf print formatted vprintf(3S)
locale setlocale setlocale(3C)
localeconv get numeric formattingcccceceeueenne localeconv(3C)
localtime, gmtime, asctime, tzset ctime(3C)
locations in program end(3C)
lock process, text, or data in plock(2)
lockf record locking on files lockf(3C)
lockfile for user’s mailbox maillock(3X)
locking on files lockf(3C)
log gamma function gamma(3M)
log, logf, 10g10, 10g10f, POW, ...cccesvrrrrnrererrrernncnrnnrinsnnsnresenns exp(3M)
log10, log10f, pow, powf, sqrt,ceee exp(3M)
log10f, pow, powf, sqrt, sqrtf/ceveverreevnennnee exp(3M)
logarithm, power, square root/ exp(3M)
logb, modf, modff, nextafter, scalb frexp(3C)
logf, 1og10, log10f, pow, powf,ccceeviveirninnnee exp(3M)
login name getlogin(3C)
login name of the user .. cuserid(3S)
longjmp non-local Gotovieiviennnvieriinninnieninnrcirnnines setimp(3C)
lorder find ordering relation for lorder(1)
lprof display line-by-line lprof(1)
Irand48, nrand48, mrand48, jrand48, ... drand48(3C)
Isearch, Ifind linear search and Isearch(3C)
Iseek move read/write file pointer Iseek(2)
Itol3 convert between 3-byte 1Btol(3C)
m4 macro processor m4(1)
machine-dependent values values(5)
machine-independent fashion sputl,cccovirverirunnrnne. sputl(3X)
Macro processor m4(1)
mailbox maillock(3X)
maillock manage lockfile for user’sccooevnruunnnee. maillock(3X)
maintain portable archive or ar(1)
maintain, update, and regenerate make(1)
mallinfo memory allocator malloc,cccevirererernens malloc(3X)

Programmer’s Reference Manual

Permuted Index

mallopt, mallinfo memory allocator
memory allocator

mallog, free, realloc, calloc,

tsearch, tfind, tdelete, twalk
hsearch, hcreate, hdestroy

maillock

sigignore, sigpause signal

elf flagsen, elf flagshdr

/logb, modf, modff, nextafter, scalb
/setpwent, endpwent, fgetpwent
an object file mcs

strfind, strrspn, strtrns string

ascii

umask set and get file creation
regular expression compile and
regular expression compile and
gmatch shell global pattern

math

intro introduction to the

multibyte character handling

handling mbchar: mbtowc,

functions mbstring:

multibyte string functions

character handling mbchar:

of an object file

elf next sequential archive

elf rand random archive

elf_getarhdr retrieve archive

offsetof offset of structure

memmove, memset memory/ memory:
memset memory/ memory: memccpy,
memory/ memory: memccpy, memchr,
memory: memccpy, memchr, mememp,
/memccpy, memchr, memcmp, memcpy,
mallog, free, realloc, calloc

realloc, calloc, mallopt, mallinfo

shmctl shared

copylist copy a file into

memcpy, memmove, memset memory /
memcmp, memcpy, memmove, memset
shmop shared

lock process, text, or data in

shmget get shared

memchr, memcmp, memcpy, memmove,
msgctl

Permuted Index

mallog, free, realloc, calloc, malloc(3X)
mallog, free, realloc, calloc malloc(3C)
mallopt, mallinfo memory allocatorccoeuvrerenne. malloc(3X)
manage binary search treesccooveiinierieiiineieennniens tsearch(3C)
manage hash search tables .. hsearch(3C)

manage lockfile for user’s mailboxcccocvveeuenene maillock(3X)

management /sighold, sigrelse, sigset(2)
manipulate flags /elf flagphdr, ... elf flagdata(3E)
manipulate parts of floating-point/cccouuiviriunens frexp(3C)
manipulate password file entrycccuuun. getpwent(3C)
manipulate the comment section ofcccocvivvrrnennens mces(1)
manipulations str: str(3G)
map of ASCII character set ascii(5)
mask umask(2)
match routines /step, advancevvirieiennnnns regexp(5)
match routines /step, advance ... regexpr(3G)
matching gmatch(3G)
math functions and constants math(5)
math library intro(3M)

math math functions and constantscccccceevevererererenes math(5)
matherr error-handling function matherr(3M)
mbchar: mbtowc, mblen, wctomb mbchar(3C)
mblen, wctomb multibyte characterccoceuencneee mbchar(3C)
mbstowcs, westombs multibyte strmg ... mbstring(3C)
mbstring: mbstowcs, westombs mbstring(3C)
mbtowc, mblen, wctomb multibyte mbchar(3C)
mcs manipulate the comment sectionccceeiereninnnnnns mcs(1)

member access .. elf_next(3E)

IMEMDET ACCESSoeererrerereerereerrereerenr e eressesrreasersenes elf rand(3E)
member header elf_getarhdr(3E)
member offsetof(3C)
memccpy, memchr, memcmp, memcpy, memory(3C)

memchr, memcmp, memcpy, memmove,
memcmp, memcpy, memmove, memset ...
memcpy, memmove, memset memory/ ...
memmove, memset memory operations
memory allocator
memory allocator malloc, free,

... memory(3C)
... memory(3C)
.. memory(3C)
memory(3C)
malloc(3C)
malloc(3X)

memory control operations shmctl(2)
mMemory ... copylist(3G)
memory: memccpy, memchr, memcmp, memory(3C)
memory operations /memccpy, memchr, memory(3C)
memory operations shmop(2)
memory plock plock(2)
memory segment identifier shmget(2)

memset memory operations /memccpy,co..e memory(3C)
message control operations msgctl(2)

19

Permuted Index

help ask for help with
getmsg get next

putmsg send a

fmtmsg display a

msgop

msgget get

strerror get error

perror print system error
intro introduction to

directories in a path
special or ordinary file

calendar time

getmntent, getmntany get

chmod change

manipulate/ frexp, 1dexp, logb,
parts of/ frexp, ldexp, logb, modf,
utime set file access and

setlocale

montbl create

mount

Iseek
drand48, erand48, Irand48, nrand48,

mbchar: mbtowc, mblen, wctomb
mbstring: mbstowcs, westombs

by xt driver xtproto

poll STREAMS input/output
return the last element of a path
directory name of a file path
tmpnam, tempnam create a
ctermid generate file

getpw get

getenv return value for environment
getlogin get login

nlist get entries from

nm print

mktemp make a unique file
dirname report the parent directory
ttyname, isatty find

20

message numbers or SCCS commands ... emiisrsns help(1)
message off a stream getmsg(2)
message on a stream putmsg(2)

message on stderr or system consoleveennns fmtmsg(3C)

message operations msgop(2)
message queue msgget(2)
message string rosssesniestonasnons strerror(3C)
INESSAZES wovuvveverscrsebensssssnsssssarsanstssnsnstssstsrsssessessssssssssonans perror(3C)
miscellany intro(5)
mkdir make a directory mkdir(2)
mkdirp, rmdirp create, removecovriinrinriirininnns mkdirp(3G)
mkfifo create a new FIFO reeesente bt et ser e ss bt saseaes mkfifo(3C)
mknod make a directory, or a mknod(2)
mktemp make a unique file namecccoeenreiriennnns mktemp(3C)
mktime converts a tm structure to a mktime(3C)
mnttab file entry getmntent(3C)
mode of file chmod(2)
modf, modff, nextafter, scalb frexp(3C)
modff, nextafter, scalb manipulatecvcvnevriniurernne frexp(3C)
modification times utime(2)
modify and query a program’s locale setlocale(3C)
monetary database montbl(1M)
monitor prepare execution profile ... monitor(3C)
montbl create monetary databaseoveeuveriiennens montbl(1M)
mount a file SYStem ..o mount(2)
mount mount a file system mount(2)
move read/write file pointer Iseek(2)
mrand48, jrand48, srand48, seed48,/ . .. drand48(3C)

msgctl message control operationscmnivicrieinnnne msgctl(2)

msgget get message queue msgget(2)
msgop message operations .. MSgOP(2)
multibyte character handling mbchar(3C)
multibyte string functions mbstring(3C)
multiplexed channels protocol usedccccovevmicrniuns xtproto(5)
multiplexing poll(2)
name basename basename(3G)
name dirname report the parentcoovvevernnnee. dirname(3G)
name for a temporary file tmpnam(3S)
name for terminal ctermid(3S)
name from UID getpw(3C)
name getenv(3C)
name getlogin(3C)
NAME LSt ..ottt beas s s b enes nlist(3E)
name list of an object file . nm(1)
name mktemp(3C)
name of a file path name dirname(3G)
name of a terminal ttyname(3C)

Programmer’s Reference Manual

uname get

cuserid get character login
pathfind search for named file in
pathfind search for

bgets read stream up to

getmsg get

frexp, Idexp, logb, modf, modff,

file

setjmp, longjmp

seed48,/ drand48, erand48, Irand48,
/symbol table, debugging and line
determine type of floating-point
convert string to double-precision
fevt, gevt convert floating-point
uniformly distributed pseudo-random
manipulate parts of floating-point

to system calls and error

help ask for help with message
localeconv get

dis

elf

dump dump selected parts of an
elf_end finish using an

get the base offset for an

retrieve class-dependent

the comment section of an

nm print name list of an

and line number information from an
cof2elf COFF to ELF

elf32_fsize return the size of an

1d link editor for

print section sizes in bytes of

find ordering relation for an

elf getbase get the base

offsetof

ungetc push character back
fopen, freopen, fdopen
command p2open, p2close
dup duplicate an

dup?2 duplicate an

open

rewinddir, closedir/ directory:
rewinddir, closedir directory

Permuted Index

Permuted Index

name of current UNIX system uname(2)
name of the user cuserid(3S)
named directories pathfind(3G)
named file in named directoriesccovvcernrrrencs pathfind(3G)
next delimiter bgets(3G)
next message off a stream getmsg(2)
nextafter, scalb manipulate parts/cocmnicisenenns frexp(3C)
nice change priority of a process nice(2)
nlist get entries from name list nlist(3E)
nm print name list of an object nm(1)
non-local goto setimp(3C)
nrand48, mrand48, jrand48, srand48, drand48(3C)
number information from an object/ ... covennennes StTAP(1)
number /finite, fpclass, unordered isnan(3C)
number strtod, atof, strtod(3C)
number to string ecvt, ecvt(3C)
numbers /seed48, lcong48 generatecceeuueeee drand48(3C)
numbers /modff, nextafter, scalb frexp(3C)
numbers intro introduction intro(2)
numbers or SCCS commands help(1)
numeric formatting informationccccevveninnnnnns localeconv(3C)
object code disassembler dis(1)
object file access library elf(3E)
object file dump(1)
object file elf_end(3E)
object file elf getbase elf_getbase(3E)
object file header /elf32_newehdr elf_getehdr(3E)
object file mcs manipulate mcs(1)
object file nm(1)
object file /table, debugging strip(1)
object file translation cofelf(1)
object file type elf fsize: elf_fsize(3E)
object files 1d(1)
object files size size(1)
object library lorder lorder(1)
offset for an object file elf getbase(3E)
offset of structure member offsetof(3C)
offsetof offset of structure memberccccoveierrrrenne offsetof(3C)
onto input stream ungetc(3S)
open a stream fopen(3S)
open, close pipes to and from aeeevecienieieneanns p2open(3G)
open file descriptor dup(2)
open file descriptor dup2(3C)
open for reading or writing open(2)
open open for reading or writing open(2)
opendir, readdir, telldir, seekdir,cccoverennnnnee. directory(3C)
operations /telldir, seekdir, directory(3C)

21

Permuted Index

memcpy, memmove, memset memory
msgctl message control

msgop message

semctl semaphore control

semop semaphore

shmctl shared memory control
shmop shared memory

strespn, strtok, strstr string

getopt get

fentl file control

library lorder find

make a directory, or a special or
dial establish an

/vfprintf, vsprintf print formatted
fprintf, sprintf print formatted
chown change

from a command p2open,

to and from a command

standard buffered input/output
standard interprocess communication
path name dirname report the
get process, process group, and
getsubopt

dump dump selected

/modff, nextafter, scalb manipulate
functions crypt

endpwent, fgetpwent manipulate
putpwent write

getpass read a

create, remove directories in a
return the last element of a

the parent directory name of a file
named directories

directory getcwd get

gmatch shell global

process popen,

popen, pclose initiate

p2open, p2close open, close

in memory

elf_strptr make a string
rewind, ftell reposition a file
fsetpos, fgetpos reposition a file
Iseek move read/ write file
multiplexing

22

operations /memchr, memcemp,cooeeeiirienennnnne memory(3C)
operations msgctl(2)
OPETALIONS covvvvusirsiteinsensiaiisissssnsissasssesas s sssssssessessessesssssesses msgop(2)
operations semctl(2)
operations semop(2)
operations shmctl(2)
operations shmop(2)
operations /strpbrk, strspn, . string(3C)
option letter from argument vectorccceeceriennee getopt(3C)
options ... fentl(5)
ordering relation for an object lorder(1)
ordinary file mknod mknod(2)
out-going terminal line connectioncccvuvevreviuivnnnn. dial(3C)
output of a variable argument listc.cccoevvrerrnrenrnnens vprintf(3S)
output printf, .. printf(3S)
owner and group of a file chown(2)
p2close open, close pipes to andc.cccuevvruiiniincnns p2open(3G)
p2open, p2close open, close Pipescccoiuvrreruenunns p20open(3G)
package stdio . stdio(3S)
package stdipc: ftok stdipc(3C)
parent directory name of a filecoreieriinnnenee. dirname(3G)
parent process IDs /getppid getpid(2)
parse suboptions from a Stringccevirenrnnece getsubopt(3C)
parts of an object file «... dump(1)
parts of floating-point numbersccoeeeereereniecrennennes frexp(3C)
password and file encryptioneeeieiierneniennene, crypt(3X)
password file entry /setpwent,cceiireinennce. getpwent(3C)
password file entry .. putpwent(3C)
PASSWOTIA ..ttt s sassassassassns getpass(3C)
path mkdirp, rmdirp mkdirp(3G)
path name basename ... basename(3G)
path name dirname report dirname(3G)
pathfind search for named file inccccoevuevrvunneeee. pathfind(3G)
pathname of current working . getewd(3C)
pattern matching gmatch(3G)
pause suspend process until signalc.cceiuneireiecininne pause(2)
pclose initiate pipe to/from a popen(3S)
perror print system error messagescoewecrensens perror(3C)
pipe create an interprocess channel pipe(2)
pipe to/from a process popen(3S)
pipes to and from a commandccereriveerreeenennnns p2open(3G)
plock lock process, text, or dataceevereiiriceicineinnes plock(2)
POIRLET oottt s e arsnanne elf strptr(3E)
pointer in a stream fseek, fseek(3S)
pointer in a stream fsetpos(3C)
POINLET ..ottt b sae b b e e Iseek(2)
poll STREAMS input/outputeivmiuneunenncencencirnninnns poll(2)

Programmer’s Reference Manual

Permuted Index

a process

ar maintain

/cbrt, log, logf, log10, log10f,
sqrt, sqrtf exponential, logarithm,
/log, logf, log10, log10f, pow,
monitor

unget undo a

types

prs

activity sact

vprintf, vfprintf, vsprintf

printf, fprintf, sprintf

what

nm

object files size

perror

formatted output

nice change

acct enable or disable

alarm set a

times get

exit, _exit terminate

fork create a new

IDs /getpgrp, getppid get process,
setpgrp set

process, process group, and parent
nice change priority of a

kill send a signal to a

pclose initiate pipe to/from a
getpid, getpgrp, getppid get
plock lock

times get process and child

wait wait for child

ptrace

pause suspend

a signal to a process or a group of
m4 macro

line-by-line execution count
prof display

monitor prepare execution
profil execution time

prof

assert verify

cb C

Permuted Index

popen, pclose initiate pipe to/fromccviieeivennan. popen(3S)
portable archive or library .. ar(1)
pow, powf, sqrt, sqrtf exponentxal / exp(3M)
power, square root functions /powf,cceieinenne. exp(3M)
powf, sqrt, sqrtf exponential,/ . exp(3M)
prepare execution profile monitor(3C)

previous get of an SCCS file
primitive system data types

unget(1)
types(5)

print an SCCS file prs(1)
print current SCCS file editingc.ccccvevevrueveeiceceivenererninnn sact(1)
print formatted output of a/cceecervenieriniienierinienne vprintf(3S)
print formatted output printf(3S)
print identification strings what(1)
print name list of an object file nm(1)
print section sizes in bytes of ... size(1)
print system error messagesc.cweeresreresiiesrnsenns perror(3C)
printf, fprintf, sprintf print printf(3S)
priority of a process nice(2)
Process aCCOUNINGc.ovvverrennresinsieresisenniniesnssissn s sss s ssssnsas acct(2)
process alarm clock alarm(2)
process and child process times times(2)
process ... exit(2)
PTOCESS ..ccuueuerircnninnininssesisensesesssss s s sssssssssssssssssses fork(2)
process group, and parent Processe.eseesessessenns getpid(2)
process group ID setpgrp(2)
process IDs /getpgrp, getppid getccouveriverenrennes getpid(2)
Processocoeevennnen nice(2)
process or a group of processes kill(2)
PIOCESS POPEN,oernrerirtcriececiie s ersiesses s esserseas s esanees popen(3S)
process, process group, and parent/ getpid(2)
process, text, or data in memory plock(2)
process times times(2)
process to stop or terminate wait(2)
ProCeSs tracecuivmeeeensiesessnsnsesesssansenes ptrace(2)
process until signal pause(2)
processes kill send kill(2)
processor m4(1)
prof display proﬂle data prof(1)
prof profile within a function prof(5)
profil execution time profile ... profil(2)
profile data 1prof displayeecenciiccniieenineenenn, Iprof(1)
profile data prof(1)
profile monitor(3C)
profile profil(2)
profile within a functioncccceeeecuueee. prof(5)
program assertion assert(3X)
program beautifier cb(1)

23

Permuted Index

linta C

cxref generate C

cscope interactively examine a C
ctrace C

end, etext, edata last locations in
retrieve class-dependent

raise send signal to

atexit add

intro introduction to

lex generate

setlocale modify and query a
update, and regenerate groups of
windowing terminal under/ layers
xtproto multiplexed channels

generate uniformly distributed

stream ungetc

puts, fputs

putc, putchar, fputc, putw
getdents read directory entries and
character or word on a stream

or word on a stream putc,
environment

stream
/getutent, getutid, getutline,
stream putc, putchar, fputc,

setlocale modify and

remque insert/remove element from a
msgget get message

qsort

div, 1div compute the

generator

elf rand

rand, srand simple

getpass

file system independent/ getdents
read

bgets
rewinddir,/ directory: opendir,

open open for
Iseek move

24

program checker lint(1)
program cross-reference cxref(1)
program cscope(1)
program debugger ctrace(1)
program end(30)
program header table /elf32 newphdr elf_getphdr(3E)
program raise(3C)
program termination routine atexit(3C)
programming commands intro(1)
programs for simple lexical tasks .. lex(1)
program’s locale setlocale(3C)
programs make maintain, make(1)
protocol used between host andovrvirriiiriciiinnns layers(5)
protocol used by xt driver xtproto(5)
prs print an SCCS file prs(1)
pseudo-random numbers /lcong48 ... drand48(3C)
ptrace process trace ptrace(2)
push character back onto inputcceeiernirincnnenn, ungetc(3S)
put a string on a streamtcooeeeuee <o puts(3S)
put character or word on a stream covreeicivninnieninns putc(3S)
put in a file sysiem independent/ getdents(2)
putc, putchar, fputc, putw put .., putc(3S)
putchar, fputc, putw put character ... putc(3S)
putenv change or add value tocvuvverninenciiiiinns putenv(3C)
putmsg send a message On a SITEaM ...ccceccverveririuirrenns putmsg(2)
putpwent write password file entry putpwent(3C)
puts, fputs put a string on a ... puts(3S)
pututline, setutent, endutent,/ getut(3C)
putw put character or word on a putc(3S)
gsort quicker sort .. gsort(3C)
query a program'’s locale setiocale(3C)
queue INSQUE, ...ccevcreveverenerurerinnnines insque(3C)
QUELE ettt ssresnssnas s snsons msgget(2)
quicker sort gsort(3C)
quotient and reMAINAEr ..., div(30)
raise send signal to program 1aise(3C)
rand, srand simple random-nUMDbeTcc.cvvmrrurecrrnruneneen rand(3C)

random archive member accessc.ccceverrrernnerinnens elf rand(3E)

random-number generator rand(3C)
read a password ... getpass(3C)
read directory entries and put inaocoviviiniiins getdents(2)
read from file ... read(2)
read read from file ververeeese TEAA(2)
read stream up to next delimiter bgets(3G)
readdir, telldir, seekdir, directory(3C)
reading or writing open(2)
read / write file POINLErvvivienricieniieenrens Iseek(2)

Programmer’s Reference Manual
g

Permuted Index

/get real user, effective user,

/ geteuid, getgid, getegid get
memory allocator malloc, free,
malloc, free,

signal specify what to do upon
lockf

regular expression

make maintain, update, and
expression regemp,

regular expression compile and/
regular expression compile and/
regexp: compile, step, advance
regexpr: compile, step, advance
regcmp

regcmp, regex compile and execute
lorder find ordering

/rint, remainder floor, ceiling,

div, ldiv compute the quotient and
/fmod, fmodf, fabs, fabsf, rint,
rmdel

rmdir

mkdirp, rmdirp create,

unlink

remove

queue insque,
rename

clock

a file path name dirname

stream fseek, rewind, ftell
stream fsetpos, fgetpos
elf_getarhdr

elf_getarsym

file/ /elf32 getehdr, elf32_newehdr
/elf32_getphdr, elf32_newphdr
header e¢lf getshdr: elf32_getshdr
elf_getident

contents elf rawfile

abs, labs

name basename

type elf fsize: elf32_fsize

getenv

stat data

pointer in a stream fseek,
/opendir, readdir, telldir, seekdir,

Permuted Index

real group, and effective group IDsccoeurrierrerrerenne. getuid(2)
real user, effective user, real/ getuid(2)
realloc, calloc, mallopt, mallinfo malloc(3X)
realloc, calloc memory allocator malloc(3C)
receipt of a signal signal(2)
record locking on files lockf(3C)
regemp, regex compile and execute regemp(3G)
regemp regular expression compilecooeieiienrennennns regemp(1)
regenerate groups of programs make(1)
regex compile and execute regularcccoevueenrenne. regemp(3G)
regexp: compile, step, advancecouevereevuererserecsinnns regexp(5)
regexpt: compile, step, advance regexpr(3G)
regular expression compile and/ ... ceveener TEGEXP(5)
regular expression compile and/ regexpr(3G)
regular expression compileiiieiiinseiniens regemp(1)
regular eXpressiono.oiieiieieseiessnsssssunns regemp(3G)
relation for an object library lorder(1)
remainder, absolute value funcions ... floor(3M)
remainder div(3C)
remainder floor, ceiling, / floor(3M)

remove a delta from an SCCS file rmdel(1)

remove a directory rmdir(2)
remove directories in a path mkdirp(3G)
remove directory entry ..o unlink(2)
TeMOVE file ..ot sssiesesnnens. TEMOVE(3C)
remove remove filecceeveerieiveienn remove(3C)
remque insert/remove element from acccecevernnes insque(3C)
rename file rename(3C)
renarne rename file rename(3C)
report CPU time used clock(30)
report the parent directory name ofcceoven.. dirname(3G)
reposition a file pointer in a v fseek(3S)
reposition a file pointer in ac.ccconeeiieiieieneiininnnns fsetpos(3C)
retrieve archive member header . .. elf_getarhdr(3E)

retrieve archive symbol table elf_getarsym(3E)
retrieve class-dependent objectcccoevviceieiennns elf_getehdr(3E)
retrieve class-dependent program/ ... elf_getphdr(3E)
retrieve class-dependent sectioncccccvcueienieens elf_getshdr(3E)
retrieve file identification dataccceoeviverrnes elf_getident(3E)
retrieve uninterpreted file .. elf_rawfile(3E)
return integer absolute value abs(3C)
return the last element of a pathccoiinniinas basename(3G)
return the size of an object file elf fsize(3E)

return value for environment name getenv(3C)
réturned by stat system call stat(5)
rewind, ftell reposition a file N s fseek(3S)
rewinddir, closedir directory/ ROTTTAIRIIN directory(3C)

25

Permuted Index

creat create a new file or
/copysign, fmod, fmodf, fabs, fabsf,
file

in a path mkdirp,

chroot change

logarithm, power, square

atexit add program termination
expression compile and match
expression compile and match
editing activity

allocation brk,

logb, modf, modff, nextafter,
formatted input

for help with message numbers or
cdc change the delta comment of an
comb combine

delta make a delta (change) to an
sact print current

get get a version of an

prs print an

rmdel remove a delta from an
scesdiff compare two versions of an
sccsfile format of

unget undo a previous get of an
val validate an

admin create and administer
SCCs file

bsearch binary

Isearch, Ifind linear

directories pathfind

hcreate, hdestroy manage hash
tfind, tdelete, twalk manage binary
elf_newdata, elf rawdata get
retrieve class-dependent
elf_newscn, elf_nextscn get

mcs manipulate the comment

files size print

/nrand48, mrand48, jrand48, srand48,
/opendir, readdir, telldir,

shmget get shared memory

brk, sbrk change data

dump dump

semctl

semop

26

rewrite an existing one . creat(2)
rint, remainder floor, ceiling,/ccccoeveevveeeieeeerrnnnnne, floor(3M)
rmdel remove a delta from an SCCS rmdel(1)
rmdir remove a directoryooeereereereerenieerennens rmdir(2)
rmdirp create, remove directoriescccoeveeriierennne. mkdirp(3G)
root directory chroot(2)
root functions /sqrtf exponential, exp(3M)

routine atexit(3C)
routines /step, advance regular regexp(5)
routines /step, advance regularccoeeverrerenrennens regexpr(3G)

sact print current SCCS fileoeeverveennnrnnrieeieenrereene sact(1)

sbrk change data segment space brk(2)
scalb manipulate parts of/ /ldexp, frexp(3C)
scanf, fscanf, sscanf convert scanf(3S)
SCCS commands help askeereeencinniecnicceecrcrerenns help(1)
SCCS delta cdce(1)
SCCS deltas comb(l)
SCCS file ovevrrrerrerrerrereneecreeeeesrenaenes delta(1)
SCCS file editing actiVitycoeceeueemeninsercacniaennenee sact(1)
SCECS fle aonnverericrireinrinerereesresnessessesessessessssssessesssaesserssessessessesnaes get(1)
SCCS fle aouvevireerrreresrcrnrenesrerseressereessessesessessenss prs(1)
SCCS file rmdel(1)
SCCS file oot sesesstesessresevesens scesdiff(1)
SCCS £l .uvueeerreererenrereereneseeseseresesesssesennes scesfile(4)
SCCs file unget(1)
SCCS file val(1)
SCCS files admin(1)
sccsdiff compare two versions of aneiivennennn. scesdiff(1)
sccsfile format of SCCS file sccsfile(4)
sdb symbolic debugger sdb(1)
search a sorted tableccoeeeverereerenreneereceeeencnenes bsearch(3C)
search and update trveerseessreeeseestaseeraaensaeeerseesrasns Isearch(3C)
search for named file in named pathfind(3G)
search tables hsearch, . hsearch(3C)
search trees tSearch,occoecveneneneceneseneseesenes tsearch(3C)
section data elf_getdata, elf_getdata(3E)
section header /elf32 getshdrceuecnnncs elf getshdr(3E)

section information /elf ndxscn,oviceeuncnns elf_getscn(3E)

section of an object file mes(1)
section sizes in bytes of object size(1)
seed48, lcong48 generate uniformly/cccvevvvinees drand48(3C)
seekdir, rewinddir, closedir/coornrrvevrererverevenn. directory(3C)
segment identifier shmget(2)
segment space allocationccceeuververerereiicriennenns brk(2)
selected parts of an object file ... dump(1)
semaphore control operationsccceeeeeu .. semctl(2)
semaphore Operations ... semop(2)

Programmer’s Reference Manual

semget get set of

putmsg

group of processes kill
raise

elf next

alarm

umask

ascii map of ASCII character
ffs find first

timezone

times utime

elf _fill

semget get

setpgrp

stime

setuid, setgid

ulimit get and

a stream

setuid,

getgrent, getgrgid, getgrnam,

crypt,
program’s locale

getpwent, getpwuid, getpwnam,
IDs

/getutid, getutline, pututline,
stream setbuf,

for/ addseverity build a list of
machine-independent fashion sputl,
shmctl

shmop

shmget get

system issue a

gmatch

operations

identifier

sigpause signal management sigset,
sigset, sighold, sigrelse,

generate an abnormal termination
sigrelse, sigignore, sigpause

pause suspend process until

what to do upon receipt of a

Permuted Index

semaphores

Permuted Index

semget(2)

semctl semaphore control operations
semget get set of semaphores

........................ semctl(2)

semget(2)

semop semaphore operations
send a message on a stream

semop(2)
putmsg(2)

send a signal to a process or a ...

kill(2)

raise(3C)

send signal to program

sequential archive member access

................... elf_next(3E)

set a process alarm clock alarm(2)
set and get file creation mask umask(2)
set ascii(5)
set bit ffs3C)
set default system time zone timezone(4)
set file access and modification utime(2)
set fill byte elf fill(3E)
set of semaphores semget(2)
set process group ID setpgrp(2)
set time stime(2)
set user and group IDS ...t setuid(2)
set user limits ulimit(2)
setbuf, setvbuf assign buffering tocccoeevrrnirecirennnes setbuf(3S)
setgid set user and group IDs setuid(2)
setgrent, endgrent, fgetgrent get/cooerisimnrennnne getgrent(3C)
setjmp, longjmp non-local goto setjmp(3C)
setkey, encrypt generate encryptioneeeeiniennne crypt(3C)
setlocale modify and query a setlocale(3C)
setpgrp set process group ID setpgrp(2)
setpwent, endpwent, fgetpwent/ getpwent(3C)
setuid, setgid set user and groupcccoeereieriecninne. setuid(2)
setutent, endutent, utmpname access/cecerrrrireeens getut(3C)
setvbuf assign buffering to a setbuf(3S)
severity levels for an application addseverity(3C)
sgetl access long integer data in aceeeceenrennennns sputl(3X)
shared memory control operationsccceueeriniivennens shmctl(2)
shared memory operations shmop(2)
shared memory segment identifierccocooveeeennens shmget(2)
shell command system(35)
shell global pattern matching gmatch(3G)
shmctl shared memory control shmctl(2)
shmget get shared memory segmentccooceverinnenne shmget(2)
shmop shared memory operationscoeeeurvrvireeunnnns shmop(2)
sighold, sigrelse, sigignore, sigset(2)
sigignore, sigpause signal/ sigset(2)
signal abort abort(3C)
signal management sigset, sighold,cccccouvevereeennne sigset(2)
signal pause(2)
signal signal specify signal(2)

27

Permuted Index

receipt of a signal

processes kill send a

raise send

ssignal, gsignal software
sighold, sigrelse, sigignore,
signal management sigset, sighold,
sigignore, sigpause signal/

lex generate programs for
rand, srand

asin, asinf, acos, acosf,/ trig:
asinf, acos, acosf,/ trig: sin,
tanh, tanhf, asinh, acosh,/
tanhf, asinh, acosh,/ sinh,

elf fsize: elf32_fsize return the
of object files

size print section

interval

current user ttyslot find the
ssignal, gsignal

gsort quicker

tsort topological

bsearch binary search a

brk, sbrk change data segment
mknod make a directory, or a
strftime language

a signal signal

bufsplit

printf, fprintf,

data in a machine-independent/
/logf, log10, logl0f, pow, powf,
/log10, log10f, pow, powf, sqrt,
exponential, logarithm, power,
generator rand,

/1Irand48, nrand48, mrand48, jrand48,
scanf, fscanf,

package stdio
package stdipe: ftok
call

stat data returned by
information

ustat get file system

feof, clearerr, fileno stream
stat, fstat get file

list

fmtmsg display a message on

28

signal specify what to do upon signal(2)
signal to a process or a group of kill(2)
signal to program raise(3C)
signals ssignal(3C)
sigpause signal management sigset,coccoeviiiniierinnnen sigset(2)
sigrelse, sigignore, sigpause sigset(2)
sigset, sighold, sigrelse, sigset(2)
simple lexical taskscoonns lex(1)
simple random-number generator rand(3C)
sin, sinf, cos, cosf, tan, tanf, trig(3M)
sinf, cos, cosf, tan, tanf, asin, trig(3M)
sinh, sinhf, cosh, COShE,cocerrrrcinircencre e s sinh (3M)
sinhf, cosh, coshf, tanh, sinh (3M)
size of an object file type elf fsize(3E)
size print section sizes in bytes size(1)
sizes in bytes of object files ... size(1)
sleep suspend execution for ... sleep(3C)
slot in the utmp file of the .. ttyslot(3C)
software signals ssignal(3C)
sort .. Drresiressarare st bt arsaas o s e gsort(3C)
sort ree i ey senssessa s s aR R sOR s tsort(1)
sorted tablecccoeirenen. bsearch(3C)
space allocation .. RSN o ¢ (V2]
special or ordinary file .. . mknod(2)
specific StHNGS ..o e strftime(4)
specify what to do upon receipt ofccccvereivernerneriniiens signal(2)
split buffer into fields bufsplit(3G) -
sprintf print formatted output ..., printf(3S)
sputl, sgetl access long integer ... sputl(3X)
sqrt, sqrtf exponential, logarithm,/ ..o exp(3M)
sqrtf exponential, logarithm,/ exp(3M)
square root functions /sqrt, sqrtf exp(3M)
srand simple random-number rand(3C)
srand48, seed48, lcongd8 generate/cccevvviiene. drand48(3C)
sscanf convert formatted input ... scanf(3S)
ssignal, gsignal software signals ssignal(3C)
standard buffered input/output wore Stdio(3S)

standard interprocess cOMmMUNICAtionc.ceeeccseeeenes stdipc(3C)

stat data returned by stat system . stat(5)
stat, fstat get file status . stat(2)
stat system call SRR - stat(5)
statfs, fstatfs get file System ... statfs(2)
statistics s .. ustat(2)
status inquiries ferror, .. ferror(3S)
status stat(2)
stdarg handle variable argument . stdarg(5)
stderr or system console fmtmsg(3C)

Programmer’s Reference Manual

Permuted Index

input/output package
communication package

compile and match/ regexp: compile,
compile and/ regexpr: compile,

wait wait for child process to
string manipulations

compressing or/ strccpy: streadd,
strncmp, strepy, strnepy,/ string:
copy strings, compressing or/
/strnamp, strepy, strnepy, strler,
string: strcat, strdup, strncat,

/strdup, strncat, stremp, strnemg,
/strchr, strrchr, strpbrk, strspn,
sticpy, strnepy,/ string: strcat,

strings, compressing or/ strccpy:

fclose, fflush close or flush a
fopen, freopen, fdopen open a
reposition a file pointer in a
reposition a file pointer in a
getw get character or word from a
getmsg get next message off a
gets, fgets get a string from a
putw put character or word on a
putmsg send a message on a
puts, fputs put a string on a
setvbuf assign buffering to a
ferror, feof, clearerr, fileno

push character back onto input
bgets read

poll

or/ strccpy: streadd, strcadd,

manipulations str:
date and time to string

long integer and base-64 ASCII
strcoll

tzset convert date and time to
convert floating-point number to
gets, fgets get a

mbstowcs, westombs multibyte
getsubopt parse suboptions from a
str: strfind, strrspn, strtrns

puts, fputs put a

strspn, strespn, strtok, strstr

Permuted Index

stdio standard buffered stdio(35)
stdipc: ftok standard interprocessoeeeierseenrnns stdipc(3C)
step, advance regular expression regexp(5)
step, advance regular expressionccceemerenrenes regexpr(3G)
stime set time stime(2)
stop or terminate . wait(2)
str: strfind, strrspn, strtrns str(3G)
strcadd, strecpy copy strings, strccpy(3G)
strcat, strdup, strncat, strcmp, string(3C)
strecpy: streadd, strcadd, Strecpyeveeininieceeniennns strcepy(3G)
strchr, strrch, strpbrk, strspn,/ string(3C)
stremp, strnemp, strepy, StINCpy,/ ooevevnrennreiesininnns string(3C)
strcol] string collationcvereeiennncennininnns strcoll(3C)
strepy, strnepy, strlen, strchr, / string(3C)
strespn, strtok, Strstr StNgG/ ...eiverveineinnssierennnns string(3C)
strdup, strncat, stranp, stmcmp, string(3C)
streadd, strcadd, strecpy copy strecpy(3G)
stream fclose(3S)
Streanteerereenenieinne fopen(3S)
stream fseek, rewind, ftell fseek(3S)
stream fsetpos, {getpos fsetpos(3C)
stream getc, getchar, fgetc, getc(3S)
streain getmsg(2)
S{reamoeverereunnes gets(3S)
stream putc, putchar, fputc, putc(3S)
SHEAM vttt putmsg(2)
stream puts(3S)
stream setbuf,cvecnceinnnne .. setbuf(3S)
stream status inquiries ferror(3S)
stream ungetc ungetc(3S)
stream up to next delimiter bgets(3G)

STREAMS input/output multiplexingccuecrsernens poll(2)
strecpy copy strings, compressing ... strecpy(3G)
strerror get error message string strerror(3C)

strfind, strrspn, strtrns string str(3G)
strftime, cftime, ascftimie, cOnvertc..c.cccecveereenenn, Strftime(3C)
stritime language spedific StrNGScccvevmnnverreninnns strftime(4)
string a64l, 164a convert between a641(30)
string collatoneervercerennr . streoll(3C)
string /localtime, gmtime, asctime,ccevicecrennrinen. cime(3C)
string ecvt, fevt, gevlt e ecvt(3C)
string from a stream gets(3S)
string functions mbstring: mbstring(3C)
string getsubopt(3C)
string manipulations .. str(3G)
string on a stream ..., puts(3S)
string operations /strpbrk, string(3C)

29

Permuted Index

elf_strptr make a

stremp, strnemp, strepy, strnepy,/
strerror get error message
ascftime, convert date and time to
strtod, atof, convert

strtol, strtoul, atol, atoi convert
strxfrm

/streadd, strcadd, strecpy copy
strftime language specific

what print identification

and line number information from/
line number information from/ strip
/stremp, strnemp, strepy, strncpy,
strnepy,/ string: strcat, strdup,
/strcat, strdup, strncat, stremp,
/strncat, stremp, strnemp, strepy,
/strnepy, strlen, strchr, strrchr,
/strcpy, strnepy, strlen, strchr,
manipulations str: strfind,
/strlen, strchr, strrchr, strpbrk,
strpbrk, strspn, strespn, strtok,
double-precision number

/strrchr, strpbrk, strspn, strespn,
string to integer

to integer strtol,

str: strfind, strrspn,

offsetof offset of

mktime converts a tm

getsubopt parse
sync update
sleep

pause

swab

number information/ strip strip
elf_getarsym retrieve archive
sdb

information

stat data returned by stat

intro introduction to

display a message on stderr or
types primitive

perror print

directory entries and put in a file
statfs, fstatfs get file

30

string pointer elf strptr(3E)

string: strcat, strdup, strncat, string(3C)
string strerror(3C)
string strftime, cftime, strftime(3C)
string to double-precision numbercccocvereeierne. strtod(3C)
string to integer strtol(3C)
string transformation strxfrm(3C)
strings, compressing or expanding/ strcepy(3G)
strings . strftime(4)
strings what(1)
strip strip symbol table, debuggingccoccouervevnrerrinnnnne strip(1)
strip symbol table, debugging andccceerrerrrrrererinnn. strip(1)
strlen, strchr, strrchr, strpbrk,/oeeveeviveeiveniiesinsinnnes string(3C)
strncat, stremp, strncmp, strepy, string(3C)
strnemp, strepy, strnepy, strlen,/ .., string(3C)
strnepy, strlen, strchr, strrchr,/ string(3C)
strpbrk, strspn, strcspn, strtok,/ string(3C)
strrchr, strpbrk, strspn, Strespn,/ ..., string(3C)
strrspn, strtrns string str(3G)
strspn, strespn, strtok, strstr/ string(3C)
strstr string operations /strrchr,oeieienienncnnn, string(3C)
strtod, atof, convert string to strtod(3C)

strtok, strstr string operationscocvevevereererereinennes string(3C)

strtol, strtoul, atol, atoi convert . strtol(3C)
strtoul, atol, atoi convert Stringccccoeueeeeeiveiivereincnnne strtol(3C)
strtrns string manipulationsceveeieiiennersnienninnennennnns str(3G)
structure member .. offsetof(3C)
structure to a calendar timecccoevevveeeneineeneisennnns mktime(3C)
strxfrm string transformationc.eveeeereeeieiennennnnns strxfrm(3C)
suboptions from a string getsubopt(3C)
SUPET DIOCK .ottt arnnes sync(2)
suspend execution for interval sleep(3C)
suspend process until signal pause(2)
swab swap bytes swab(3C)
swap bytes swab(3C)
symbol table, debugging and line strip(1)
symbol table elf_getarsym(3E)
symbolic debugger .. sdb(1)
sync update super block sync(2)
sysfs get file system typecccvuuennace sysfs(2)
SYStem Call ..ottt s stat(5)
system calls and error numbers .. intro(2)
system console fmMtMSGcoeveieierrirncnecinenns fmtmsg(3C)
system data types types(5)
system error messages perror(3C)

system independent format /readivnereunne. getdents(2)
system information statfs(2)

Programmer’s Reference Manual

mount mount a file

ustat get file

timezone set default

sysfs get file

umount unmount a file

uname get name of current UNIX
bsearch binary search a sorted
information/ strip strip symbol
retrieve archive symbol
class-dependent program header
classification and conversion
hdestroy manage hash search
acosf,/ trig: sin, sinf, cos, cosf,
trig: sin, sinf, cos, cosf, tan,

sinh, sinhf, cosh, coshf,

/sinhf, cosh, coshf, tanh,
programs for simple lexical

trees tsearch, tfind,

directory: opendir, readdir,
temporary file tmpnam,

tmpfile create a

tmpnam, tempnam create a name for a
ctermid generate file name for
libwindows windowing

jagent host control of windowing
dial establish.an out-going
ttyname, isatty find name of a
used between host and windowing
exit, _exit

wait for child process to stop or
atexit add program

abort generate an abnormal

plock lock process,

search trees tsearch,

the difference between two calendar
times

times get process and child process
set file access and modification
zone

mktime converts a

temporary file

/tolower, _toupper, _tolower,
popen, pclose initiate pipe

conv: toupper, tolower, _toupper,
toascii translate/ conv: toupper,

Permuted Index

Permuted Index

system issue a shell command system(3S5)
system mount(2)
system statistics ustat(2)
system time zone timezone(4)
system type information sysfs(2)
system umount(2)
system uname(2)
table bsearch(3C)
table, debugging and line number strip(1)

table elf getarsym

elf getarsym(3E)

table /elf32_newphdr retrieveccoocerrnennee. elf_getphdr(3E)
tables chrtbl generate character chrtbl(1M)
tables hsearch, hcreate, hsearch(3C)
tan, tanf, asin, asinf, acos, trig(3M)
tanf, asin, asinf, acos, acosf,/ trig(3M)
tanh, tanhf, asinh, acosh,/cccecevreverrerereeereerecercernnens sinh(3M)
tanhf, asinh, acosh, atanh/ sinh(3M)
tasks lex generate lex(1)
tdelete, twalk manage binary searchcceeverieene tsearch(3C)
telldir, seekdir, rewinddir,/ directory(3C)
tempnam create a name for a tmpnam(35)
temporary file tmpfile(3S)
temporary file tmpnam(3S)
terminal ctermid(3S)
terminal function library libwindows(3X)
terminal jagent(5)
terminal line connection dial(3C)
terminal ttyname(3C)
terminal under layers(1) /protocolorevenenne layers(5)
terminate process exit(2)
terminate wait wait(2)
termination routine atexit(3C)
termination signal abort(3C)
text, or data in memory plock(2)
tfind, tdelete, twalk manage binaryccccocceeueeerinecns tsearch(3C)
times difftime computes difftime(3C)
times get process and child processcmenenseenn. times(2)
times times(2)
times utime utime(2)
timezone set default system timeccccoeuverircuriunnees timezone(4)
tm structure to a calendar timeccceeververrereerenens mktime(3C)
tmpfile create a temporary file tmpfile(3S)
tmpnam, tempnam create a name for aceeeue.s tmpnam(3S)
toascii translate characters conv(3C)
to/from a process popen(3S)
_tolower, toascii translate/ conv(3C)
tolower, _toupper, _tolower, conv(3C)

31

Permuted Index

tsort

translate/ conv: toupper, tolower,
_tolower, toascii translate/ conv:
ptrace process

strxfrm string

_toupper, _tolower, toascii

cof2elf COFF to ELF object file
elf32_xlatetom class-dependent data
ftw walk a file

tdelete, twalk manage binary search
tanf, asin, asinf, acos, acosf,/

acosf, atan, atanf, atan2, atan2f
manage binary search trees

terminal

file of the current user
tsearch, tfind, tdelete,

return the size of an object file
elf kind determine file

sysfs get file system

/fpclass, unordered determine

types primitive system data
ctime, localtime, gmtime, asctime,

getpw get name from
mask

system

unget

SCCs file

input stream

/srand48, seed48, lcong48 generate
elf rawfile retrieve

mktemp make a

uname get name of current

umount

isnand, isnanf, finite, fpclass,
pause suspend process

elf update

programs make maintain,
Isearch, Ifind linear search and
sync

signal specify what to do
levels for an application for

32

topological sort tsort(1)
_toupper, _tolower, toascii conv(3C)
toupper, tolower, _toupper, conv(3C)
trace ptrace(2)
transformationccoeisineieeissississ s iesses s ss s s eene strxfrm(3C)
translate characters /tolower, conv(3C)
translation cof2elf(1)
translation /elf32_xlatetof, elf xlate(3E)
tree . ftw(3C)
trees tsearch, tfind, tsearch(3C)
trig: sin, sinf, cos, cosf, tan, trig(3M)
trigonometric functions /acos, trig(3M)
tsearch, tfind, tdelete, twalk tsearch(3C)
tsort topological sort tsort(1)
ttyname, isatty find name of a ttyname(3C)
ttyslot find the slot in the utmp ttyslot(3C)
twalk manage binary search treesocomsriirrnens tsearch(3C)
type elf_fsize: elf32_fsize elf fsize(3E)
type elf kind(3E)
type information . sysfs(2)
type of floating-point nUMberccovevreeeveicenirerrinsreernnns isnan(3C)
types primitive system data types types(5)
types . types(5)
tzset convert date and time to/ ctime(3C)
uadmin administrative control uadmin(2)
UID getpw(30)
ulimit get and set user limits ulimit(2)
umask set and get file creation .. umask(2)
umount unmount a file system umount(2)
uname get name of current UNIXccoviivecnnnns uname(2)
undo a previous get of an SCCS fileccerercrrerrenenns unget(1)
unget undo a previous get of an unget(1)
ungetc push character back ontoccccocovevirirninnenns ungetc(3S)
uniformly distributed pseudo-random/ drand48(3C)
uninterpreted file contents elf_rawfile(3E)
unique file NAME ... mktemp(3C)
UNIX system uname(2)
unlink remove directory entryoeoeverierineseennnnns unlink(2)
unmount a file system umount(2)
unordered determine type of/ isnan, ... isnan(3C)
until signal pause(2)
update an descriptor elf update(3E)
update, and regenerate groups of make(1)
update Isearch(3C)
update super block sync(2)
upon receipt of a signal signal(2)
use with fmtmsg /a list of severity addseverity(3C)

Programmer’s Reference Manual

setuid, setgid set

get character login name of the
/geteuid, getgid, getegid get real
environ

ulimit get and set

/getegid get real user, effective
in the utmp file of the current
maillock manage lockfile for
elf_end finish

modification times

. utmp, wtmp

setutent, endutent, utmpname access
ttyslot find the slot in the

formats

/pututline, setutent, endutent,

val

abs, labs return integer absolute
elf_hash compute hash

getenv return

floor, ceiling, remainder, absolute
putenv change or add

values machine-dependent
list

stdarg handle

varargs handle

print formatted output of a

get option letter from argument
assert

ve

get geta

coordinate library and application
scesdiff compare two

output of a variable/ vprintf,
formatted output of a variable/
a variable/ vprintf, vfprintf,
terminate wait

or terminate

ftw

mbstring: mbstowcs,

mbchar: mbtowc, mblen,
encrypted isencrypt determine
libwindows

jagent host control of

Permuted Index

Permuted Index

user and group IDs setuid(2)
user cuserid cuserid(3S)
user, effective user, real group,/ getuid(2)
user environment environ(5)
user limits ulimit(2)
user, real group, and effective/ getuid(2)
user ttyslot find the slot ttyslot(3C)
user’s mailbox maillock(3X)
using an object file elf_end(3E)
ustat get file system statistics ustat(2)
utime set file access and utime(2)
utmp and wtmp entry formats utmp(4)
utmp file entry /pututline, getut(3C)
utmp file of the current user ttyslot(3C)
utmp, wtmp utmp and Wtmp entryoeecerveeresnunns utmp(4)
utmpname access utmp file entryoovivnrecereereennns getut(3C)
val validate an SCCS file val(1)
validate an SCCS file val(1)
value abs(3C)
value elf_hash(3E)
value for environment name getenv(3C)
value functions /rint, remainderc.ccovevirnecrererennene floor(3M)
value to environment putenv(3C)
values machine-dependent valuesc.coocevercuneivcinees values(5)
values values(5)
varargs handle variable argumentccoccoeerveurcennee varargs(5)
variable argument list stdarg(5)
variable argument list varargs(5)
variable argument list /vsprintfc.cccoeerureeenrennne vprintf(3S)
vc version control ve(l)
vector getopt getopt(3C)
verify program assertion assert(3X)
version control ve(l)
version of an SCCS file get(1)

versions elf_version

versions of an SCCS file

........ elf version(3E)

scesdiff(1)

vfprintf, vsprintf print formatted

.................... vprintf(3S)

vprintf, vfprintf, vsprintf print

vsprintf print formatted output of

wait for child process to stop or

vprintf(35)

.................... vprintf(3S)

wait(2)

wait wait for child process to stop
walk a file tree

wait(2)
ftw(3C)

wcstombs multibyte string functions
wctomb multibyte character handling
whether a character buffer is

............... mbstring(3C)
reversnienensene. bchar(3C)

isencrypt(3G)

windowing terminal function library
windowing terminal

........... libwindows(3X)

jagent(5)

33

Permuted Index

/protocol used between host and
prof profile

fgetc, getw get character or
fputc, putw put character or
chdir change

getcwd get pathname of current
write

putpwent

open open for reading or
utmp, wtmp utmp and
utmp,

channels protocol used by
protocol used by xt driver
bessel: j0, j1, jn,

bessel: j0, j1, jn, y0,

yacc

bessel: j0, j1, jn, y0, y1,
timezone set default system time

34

windowing terminal under layers(1)cccocoeveuneeennnennes layers(5)
within a function prof(5)
word from a stream getc, getchar, getc(3S)
word on a stream putc, putchar, putc(3S)
working directory chdir(2)
working directory getcwd(3C)
WTite ON @ file .ottt write(2)
write password file entry putpwent(3C)
write write on a file write(2)
writing open(2)
wtmp entry formats utmp(4)
wtmp utmp and wtmp entry formats utmp(4)
xt driver xtproto multiplexed xtproto(5)
xtproto multiplexed channels xtproto(5)
y0, y1, yn Bessel functions bessel(3M)
y1, yn Bessel functions . bessel(3M)

yacc yet another compiler-compiler
yet another compiler-compilerccocoeceevnreirernerninsrnnrennnne
yn Bessel functions
zone

Programmer’s Reference Manual

COMMANDS (1)

intro(1) intro (1)

NAME

intro — introduction to programming commands

DESCRIPTION

This section describes the programming commands in alphabetical order. Unless
otherwise noted, the commands accept options and other arguments according to
the following syntax:

name [option(s)] [cmdarg(s)]

where:

name is the name of an executable file.

option is —noargletter(s) or —argletter <> optarg, where:

noargletter is a single letter representing an option without an
option argument;

argletter is a single letter representing an option requiring an option
argument;

<> is optional white space;

optarg is an option argument (character string) satisfying the
preceding argletter.

cmdarg is =" by itself, which indicates the standard input, or a path name
(or other command argument) not beginning with -,

Throughout the manual pages there are references to TMPDIR, BINDIR, INCDIR,
and LIBDIR. These represent directory names whose value is specified on each
manual page as necessary. For example, TMPDIR might refer to /usr/tmp.
These are not environment variables and cannot be set. [There is an environment
variable called TMPDIR which can be set. See tmpnam(3S).] There are also refer-
ences to LIBPATH, the default search path of the link editor and other tools.

SEE ALSO

exit(2), wait(2), getopt(3C).
getopts(l) in the User’s Reference Manual.

DIAGNOSTICS

NOTES

10/89

Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of “normal” ter-
mination) one supplied by the program [see wait(2) and exit(2)]. The former
byte is 0 for normal termination; the latter is customarily 0 for successful execu-
tion and non-zero to indicate troubles such as erroneous parameters, or bad or
inaccessible data. It is called variously “exit code,” “exit status,” or “return
code,” and is described only where special conventions are involved.

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and there-
fore become confused upon encountering a null character (the string terminator)
within a line.

Page 1

admin (1) admin (1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-£flaglflag-vall]l [-dflaglflag-vall] [-alogin]

[—elogin] [-m[mrlist]] [~ylcomment]] [-h] [~z] files

DESCRIPTION '
admin is used to create new SCCS files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu-
ments (that begin with -) and named files (note that SCCS file names must begin
with the characters s.). If a named file does not exist, it is created and its param-
eters are initialized according to the specified keyletter arguments. Parameters
not initialized by a keyletter argument are assigned a default value. If a named
file does exist, parameters corresponding to specified keyletter arguments are
changed, and other parameters are left unchanged.
If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-5CCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again, non-SCCS files and
unreadable files are silently ignored.
The keyletter arguments are listed below. Each argument is explained as if only
one named file were to be processed because the effect of each argument applies
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

—i[name] The name of a file from which the text for a new SCCs file is to be
taken. The text constitutes the first delta of the file (see -r
keyletter for delta numbering scheme). If the —i keyletter is used,
but the file name is omitted, the text is obtained by reading the
standard input until an end-of-file is encountered. If this keyletter
is omitted, then the SCCS file is created empty. Only one SCCS file
may be created by an admin command on which the i keyletter is
supplied. Using a single admin to create two or more SCCS files
requires that they be created empty (no —-i keyletter). Note that
the —i keyletter implies the —n keyletter.

~rrel The release into which the initial delta is inserted. This keyletter
may be used only if the —i keyletter is also used. If the -r
keyletter is not used, the initial delta is inserted into release 1.
The level of the initial delta is always 1 (by default initial deltas
are named 1.1).

-t[name] ~ The name of a file from which descriptive text for the SCCS file is
to be taken. If the -t keyletter is used and admin is creating a
new SCCS file (the —n and/or —i keyletters also used), the descrip-
tive text file name must also be supplied. In the case of existing
SCCS files: (1) a -t keyletter without a file name causes removal
of the descriptive text (if any) that is currently in the SCCS file,
and (2) a -t keyletter with a file name causes text (if any) in the

10/89 Page 1

admin(1)

Page 2

-fflag

cceil

£floor

dsin

i[str]

1list

admin(1)

named file to replace the descriptive text (if any) that is currently
in the SCCS file.

This keyletter specifies a flag, and, possibly, a value for the flag, to
be placed in the SCCS file. Several —f keyletters may be supplied
on a single admin command line. The allowable flags and their
values are:

Allows use of the -b keyletter on a get command to create
branch deltas.

The highest release (i.e., ceiling): a number greater than 0
but less than or equal to 9999 that may be retrieved by a get
command for editing. The default value for an unspecified ¢
flag is 9999.

The lowest release (i.¢, floor): a number greater than 0 but
less than 9999 that may be retrieved by a get command for
editing. The default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a get com-
mand.

Causes the No id keywords (ge6) message issued by get
or delta to be treated as a fatal error. In the absence of this
flag, the mmessage is only a warning. The message is issued if
no SCCS identification keywords [see get(1)] are found in the
text retrieved or stored in the SCCS file. If a value is sup-
plied, the keywords must exactly match the given string.
The string must contain a keyword, and no embedded new-
lines.

Allows concurrent get commands for editing on the same
SID of an SCCS file. This flag allows multiple concurrent
updates to thie same version of the SCCS file.

A list of releases to which deltas can no longer be made (get
-e against one of these "locked” releases fails). The list has
the following syntax:

<list> = <range> | <list> , <range>
<range> = RELEASE NUMBER | a

The character a in the list is equivalent to specifying all
releases for the named SCCS file.

Causes delta to create a null delta in each of those releases
(if any) being skipped when a delta is made in a new release
(e.g., in making delta 5.1 after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as anchor points so that
branch deltas may later be created from them. The absence
of this flag causes skipped releases to be non-existent in the
SCCs file, preventing branch deltas from being created from
them in the future.

10/89

admin(1)

10/89

qtext

nvnod

ttype

vipgm]

—dflag

—alogin

—elogin

—m{mrlist]

-ylcomment)

admin (1)

User-definable text substituted for all occurrences of the %Q%
keyword in SCCS file text retrieved by get.

module name of the SCCS file substituted for all occurrences
of the $M% keyword in SCCS file text retrieved by get. If the
m flag is not specified, the value assigned is the name of the
SCCs file with the leading s. removed.

type of module in the SCCS file substituted for all occurrences
of $Y% keyword in SCCS file text retrieved by gat.

Causes delta to prompt for Modification Request (MR)
numbers as the reason tor creating a delta. The optional
value specifies the name of an MR number validity checking
program [see delta(l)]. This program will receive as argu-
ments the module name, the value of the type flag (see ttype
above), and the mrlist. (If this flag is set when creating an
5CCs file, the m keyletter must also be used even it its value
is null).

Causes removal (deletion) of the specified flag from an SCCS file.
The -d keyletter rnay be specifiecd pnly when processing existing
SCCs files. Several -d keyletters may be supplied in a single
admin command. See the -f keyletter for allowable flag names.

(Llist used with -d indicates a list of releases to be unlocked. Gee
the ~f keyletter for a description of the 1 flag and the syntax of a
list.)

A login name, or numerical UNIX System group ID, to be added to
the list of users who may make deitas {(changes) to the 5CC5 file.
A group 1D is equivalent to specifying all login names common o
that group ID. Several a keyletters may be used on a singie admin
command line. As many logins or nuerical group 1Ds as desired
may be on the list simultaneously. If the list of users is empty,
then anyone may add deltas. If login or group ID is preceded by
a ! they are to be denied permission to make deltas.

A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the SCCS file. Specify-
ing a group ID is equivalent to specifying all loyin names com-
mon to that group ID. Several —e keyletters may be used on a sin-
gle admin command line.

The list of Modification Requests (MR) numbers is inserted into
the SCCS file as the reason for creating the initial delta in a
manner identical to delta. The v flag must be set and the MR
numbers are validated if the v flag has a value (the name of an MR
number validation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

The comment text is inserted into the SCCS file as a comment for
the initial delta in a manner identical to that of delta. Omission
of the -y keyletter results in a default comment line being
inserted.

Page 3

admin (1) admin (1)

The -y keyletter is valid only if the —i and/or —-n keyletters are
specified (i.e., a new SCCS file is being created).

-h Causes admin to check the structure of the SCCS file [see
sccsfile(4)], and to compare a newly computed check-sum (the
sum of all the characters in the SCCS file except those in the first
line) with the check-sum that is stored in the first line of the SCCS
file. Appropriate error diagnostics are produced. This keyletter
inhibits writing to the file, nullifying the effect of any other
keyletters supplied; therefore, it is only meaningful when process-
ing existing files.

-z The SCCS file check-sum is recomputed and stored in the first line
of the SCCS file (see -h, above). Note that use of this keyletter on
a truly corrupted file may prevent future detection of the corrup-
tion.

The last component of all SCCS file names must be of the form s.file. New SCCS
files are given mode 444 [see chmod(1)]. Write permission in the pertinent direc-
tory is, of course, required to create a file. All writing done by admin is to a tem-
porary x-file, called x.file, [see get(1)], created with mode 444 if the admin com-
mand is creating a new SCCS file, or with the same mode as the SCCS file if it
exists. After successful execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file. This renaming process
ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that
SCCs files themselves be mode 444. The mode of the directories allows only the
owner to modify SCCS files contained in the directories. The mode of the SCCS
files prevents any modification at all except by SCCS commands.

admin also makes use of a transient lock file (called z.file), which is used to
prevent simultaneous updates to the SCCS file by different users. See get(1) for
further information.

FILES
x-file [see delta(1)]
z-file [see delta(1)]
bdiff Program to compute differences between the “gotten” file and
the g-file [see get(1)].
SEE ALSO

bdiff(1), ed(1), delta(l), get(l), help(1), prs(1), what(l), sccsfile(4).
DIAGNOSTICS
Use the help command for explanations.
NOTES
If it is necessary to patch an SCCS file for any reason, the mode may be changed
to 644 by the owner allowing use of a text editor. You must run admin -h on the

edited file to check for corruption followed by an admin -z to generate a proper
check-sum. Another admin ~h is recommended to ensure the SCCS file is valid.

Page 4 10/89

ar(1) ar(1)

NAME

ar - maintain portable archive or library
SYNOPSIS

ar [-V] - key [arg] [posname] afile [name. . .]
DESCRIPTION

The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files. However, it can be used for any
similar purpose. The magic string and the file headers used by ar consist of
printable ASCII characters. If an archive is composed of printable files, the entire
archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor 1d
to effect multiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named
file that is always the first file in the archive. This file is never mentioned or
accessible to the user. Whenever the ar command is used to create or update the
contents of such an archive, the symbol table is rebuilt. The s option described
below will force the symbol table to be rebuilt.

The -V option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The
key is formed with one of the following letters: drqtpmx. Arguments to the key,
alternatively, are made with one of more of the following set: vuaibcls.
posname is an archive member name used as a reference point in positioning other
files in the archive. 4file is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. This option is useful to
avoid quadratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files
in the archive are listed. If names are given, only those files are listed.

P Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character

is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

10/89 Page 1

ar(1)

X

ar(1)

Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v

SEE ALSO

Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, print the
filename preceding each extraction.

Suppress the message that is produced by default when 4file is created.

This option is obsolete. It is recognized, but ignored, and will be removed
in the next release.

Force the regeneration of the archive symbol table even if ar(l) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

1d(1), lorder(1), strip(1), a.out(4), ar(4).

NOTES

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

Since the archiver no longer uses temporary files, the -1 option is obsolete and
will be removed in the next release.

By convention, archives are suffixed with the characters .a.

Page 2

10/89

as(1) as(1)

NAME

as — assembler
SYNOPSIS

as [options] file
DESCRIPTION

The as command creates object files from assembly language source files. The

following flags may be specified in any order:

—o objfile Put the output of the assembly in objfile. By default, the output file
name is formed by removing the .s sulffix, if there is one, from the
input file name and appending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

—d1 Obsolete. Assembler issues a warning saying that it is ignoring the
-d1 option.

-T Accept obsolete assembler directives.

-v Write the version number of the assembler being run on the stan-
dard error output.

—{y |n} If —Qy is specified, place the version number of the assembler being
run in the object file. The default is —Qn.

-Y [md],dir Find the m4 preprocessor (m) and/or the file of predefined macros
(d) in directory dir instead of in the customary place.

FILES

By default, as creates its temporary files in /usr/tmp. This location can be
changed by setting the environment variable TMPDIR [see tempnam in tmpnam(3S)].
SEE ALSO ‘
cc(1), 1d(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4).
NOTES
If the -m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)] cannot be used as symbols (variables, functions, labels) in the input file
since m4 cannot determine which keywords are assembler symbols and which
keywords are real m4 macros.

The .align assembler directive may not work in the .text section when
long/short address optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expres-
sion.

Whenever possible, you should access the assembler through a compilation sys-
tem interface program such as cc.

10/89 Page 1

cb(1) cb(1)

NAME

cb — C program beautifier
SYNOPSIS

cb [-s] [-3] [-1lleng] [-V] [file ...]
DESCRIPTION

The cb comand reads syntactically correct C programs either from its arguments
or from the standard input, and writes them on the standard output with spacing
and indentation that display the structure of the C code. By default, cb preserves
all user new-lines.

cb accepts the following options.

-8 Write the code in the style of Kernighan and Ritchie found in The C
Programming Language.

-3 Put split lines back together.

-1 leng Split lines that are longer than leng.

-v Print on standard error output the version of cb invoked.

NOTES
cb treats asm as a keyword.

The format of structure initializations is unchanged by cb.

Punctuation that is hidden in preprocessing directives causes indentation errors.

SEE ALSO
cc(1).

Kernighan, B. W,, and Ritchie, D. M., The C Programming Language, Second Edi-
tion, Prentice-Hall, 1988.

10/89 Page 1

cc(1) cc(1)

NAME
cc — C compiler

SYNOPSIS
cc [options] file ...

DESCRIPTION
cc is the interface to the C compilation system. The compilation tools conceptu-
ally consist of a preprocessor, compiler, optimizer, basic block analyzer, assem-
bler, and link editor. cc processes the supplied options and then executes the
various tools with the proper arguments. cc accepts several types of files as
arguments.

Files whose names end with .c are taken to be C source files and may be prepro-
cessed, compiled, optimized, instrumented for profiling, assembled, and link
edited. The compilation process may be stopped after the completion of any pass
if the appropriate options are supplied. If the compilation process runs through
the assembler, then an object file is produced whose name is that of the source
with .o substituted for .c. However, the .o file is normally deleted if a single C
file is compiled and then immediately link edited. In the same way, files whose
names end in .s are taken to be assembly source files; they may be assembled
and link edited. Files whose names end in .i are taken to be preprocessed C
source files, and they may be compiled, optimized, instrumented for profiling,
assembled, and link edited. Files whose names do not end in .c, .s, or .i are
handed to the link editor, which produces an executable whose name by default
is a.out.

Since cc usually creates files in the current directory during the compilation pro-
cess, it is necessary to run cc in a directory in which a file can be created.

The following options are interpreted by cc:

-A name| (tokens)]
Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive.
Preassertions: system(unix)
cpu (i386)
machine (1386)
-A - Causes all predefined macros (other than those that begin with __) and
predefined assertions to be forgotten.

-C Cause the preprocessing phase to pass along all comments other than
those on preprocessing directive lines.

-c Suppress the link editing phase of the compilation and do not remove any
produced object files.

-D name[=tokens]
Associates name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied. These
predefinitions only exist under the —Xt and —Xa modes.

10/89 Page 1

cc(1)

Page 2

cc(1)
Predefinitions: i386
unix

-E Only preprocess the named C files and send the result to the standard
output. The output will contain preprocessing directives for use by the
next pass of the compilation system.

-£ This option is obsolete and will be ignored.

-g Cause the compiler to generate additional information needed for the use
of sdb. Use of sdb on a program compiled with both the —g and -0
options is not recommended unless the user understands the behavior of
optimization.

-H Print, one per line, the path name of each file included during the current
compilation on the standard error output.

-I dir Alter the search for included files whose names do not begin with / to
look in dir prior to the usual directories. The directories for multiple -I
options are searched in the order specified.

-K PIC
Causes position-independent code (PIC) to be generated.

-L dir Add dir to the list of directories searched for libraries by 1d. This option
and its argument are passed to 1d.

=1 name
Search the library libname.a. Its placement on the command line is
significant as a library is searched at a point in time relative to the place-
ment of other libraries and object files on the command line. This option
and its argument are passed to 1d.

-0 Arrange for compilation phase optimization. This option has no effect on

.8 files.

—o pathname

P

Qc

Produce an output object file pathname, instead of the default a.out. This
option and its argument are passed to 1d.

Only preprocess the named C files and leave the result in corresponding
files suffixed .i. The output will not contain any preprocessing directives,
unlike -E.

Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, profiled versions of
libc.a and libm.a (with the —1m option) are linked. A mon.out file will
then be produced at normal termination of execution of the object pro-
gram. An execution profile can then be generated by use of prof.

¢ can be either y or n. If c¢ is y, identification information about each
invoked compilation tool will be added to the output files (the default
behavior). This can be useful for software administration. Giving n for ¢
suppresses this information.

10/89

cc(1)

10/89

_qc

cc(1)

¢ can be either 1 or p. —ql causes the invocation of the basic block
analyzer and arranges for the production of code that counts the number
of times each source line is executed. A listing of these counts can be gen-
erated by use of lprof. —qp is a synonym for —p.

Compile, optimize (if -0 is present), and do not assemble or link edit the
named C files. The assembler-language output is left in corresponding
files suffixed .s.

-U name

-V

-V

Causes any definition of name to be forgotten, as if by a #undef prepro-
cessing directive. If the same name is specified for both -D and -U, name is
not defined, regardless of the order of the options.

Cause each invoked tool to print its version information on the standard
error output.

Cause the compiler to perform more and stricter semantic checks, and to
enable certain lint-like checks on the named C files.

-W tool, argll, arg, .|

-Xc

Hand off the argument(s) arg; each as a separate argument to tool. Each
argument must be separated from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character; the backslash is removed from the
resulting argument.) tool can be one of the following:

A synonym for 0

P

0 compiler

2 optimizer

b basic block analyzer
a assembler

1 link editor

For example, -Wa, ~o, objfile passes —o and objfile to the assembler, in that
order.

The order in which the argument(s) are passed to a tool with respect to
the other specified command line options may change.

Specify the degree of conformance to the ANSI C standard. ¢ can be one
of the following;:

t (transition)
The compiled language includes all new features compatible with
older (pre-ANSI) C (the default behavior). The compiler warns
about all language constructs that have differing behavior between
the new and old versions and uses the pre-ANSI C interpretation.
This includes, for example, warning about the use of trigraphs the
new escape sequence \a, and the changes to the integral promotion
rules.

a (ANSI)
The compiled language includes all new features of ANSI C and
uses the new interpretation of constructs with differing behavior.
The compiler continues to warn about the integral promotion rule

Page 3

cc(1)

FILES

Page 4

cc(1)

changes, but does not warn about trigraph replacements or new
escape sequences.

c (conformance)
The compiled language and associated header files are ANSI C
conforming, but include all conforming extensions of -Xa. Warn-
ings will be produced about some of these. Also, only ANSI
defined identifiers are visible in the standard header files.

The predefined macro __STDC__ has the value 0 for -Xt and -Xa, and 1
for -Xc. All warning messages about differing behavior can be eliminated
in —Xa through appropriate coding; for example, use of casts can eliminate
the integral promotion change warnings.

-Y item, dir

Specify a new directory dir for the location of item. item can consist of any
of the characters representing tools listed under the -W option or the fol-
lowing characters representing directories containing special files:

I directory searched last for include files: INCDIR (see —I)
s directory containing the start-up object files: LIBDIR

L obsolete. Use -YP instead. For this release, —YL will be simulated
using -YP. -YL will be removed in the next release.

U obsolete. Use -YP instead. For this release, —-YU will be simulated
using -YP. -YU will be removed in the next release.

P Change the default directories used for finding libraries. dir is a

colon-separated path list.

If the location of a tool is being specified, then the new path name for the
tool will be dir/tool. If more than one -Y option is applied to any one
item, then the last occurrence holds.

cc recognizes -a, —e, -m, —o, -r, -8, —-t, —u, and -z and passes these options and
their arguments to 1d. cc also passes any unrecognized options to 1d without
any diagnostic.

When cc is put in a file prefixcc, the prefix will be recognized and used to prefix
the names of each tool executed. For example, OLDcc will execute OLDaconp,
OLDoptim, OLDbasicblk, OLDas, and OLD1d, and will link the object file(s) with
OLDcrtl.o. Therefore, be careful when moving cc around. The prefix applies to
the compiler, optimizer, basic block analyzer, assembler, link editor, and the
start-up routines.

file.c C source file

file.i preprocessed C source file
file.o object file

file.s assembly language file
a.out link-edited output
LIBDIR/*crti.o startup initialization code
LIBDIR/*crtl.o startup routine

10/89

cc(1)

LIBDIR/*crtn.o
TMPDIR/*
LIBDIR/acomp
LIBDIR/optim
LIBDIR/basicblk
BINDIR/as
BINDIR/14
LIBDIR/1libc.a

INCDIR
LIBDIR
BINDIR
TMPDIR

SEE ALSO
as(1), 1d(1), lint(1), 1pro£(1), pro£(1), sdb(1), monitor(3C), tmpnam(3S).
The “C Compilation System” chapter in the Programmer’s Guide: ANSI C and Pro-

NOTES

10/89

gramming Support Tools.

cc(1)

last startup routine
temporary files
preprocessor and compiler
optimizer

basic block analyzer
assembler

link editor

standard C library

usually /usr/include

usually /usr/ccs/1ib

usually /usr/ccs/bin

usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR (see tempnam in
tmpnam(35)).

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi-

tion, Prentice-Hall, 1988.

American National Standard for Information Systems — Programming Language

C, X3.159-1989.

Obsolescent but still recognized cc options include -f, -F, -YL, and -YU. The —q1
and -0 options do not work together; -0 will be ignored.

Page 5

cdc(1) cdc(1)

NAME

cdc — change the delta comment of an SCCS delta
SYNOPSIS

cdc -r SID [-m[mrlist] 1 [-ylcomment]] file...
DESCRIPTION

cdc changes the delta comment, for the SID (SCCS identification string) specified
by the —r keyletter, of each named SCCS file.

The delta comment is the Modification Request (MR) and comment information
normally specified via the -m and -y keyletters of the delta command.

If file is a directory, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of — is given, the standard input is read (see the NOTES section) and each
line of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu-
ments and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the SCCS IDentification (SID) string of a delta for
which the delta comment is to be changed.

—mnrlist If the SCCs file has the v flag set [see admin(1)] then a list of MR
numbers to be added and/or deleted in the delta comment of the
SID specified by the —r keyletter may be supplied. A null MR list
has no effect.

mrlist entries are added to the list of MRs in the same manner as
that of delta. In order to delete an MR, precede the MR number
with the character ! (see the EXAMPLES section). If the MR to be
deleted is currently in the list of MRs, it is removed and changed
into a comment line. A list of all deleted MRs is placed in the
comment section of the delta comment and preceded by a com-
ment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the stan-
dard input is read; if the standard input is not a terminal, no
prompt is issued. The MrRs? prompt always precedes the com—
ments? prompt (see -y keyletter).

mrlist entries in a list are separated by blanks and/or tab charac-
ters. An unescaped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is taken to be
the name of a program (or shell procedure) that validates the
correctness of the MR numbers. If a non-zero exit status is
returned from the MR number validation program, cdc ter-
minates and the delta comment remains unchanged.

10/89 Page 1

cdc(1) cdc (1)

—ylcomment]
Arbitrary text used to replace the comment(s) already existing for
the delta specified by the —r keyletter. The previous comments
are kept and preceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the
prompt comments? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped new-line character terminates
the comment text.

If you made the delta and have the appropriate file permissions, you can change
its delta comment. If you own the file and directory you can modify the delta
comment.
EXAMPLES
cdc -rl.6 —-m"bl88--12345 !bl87-54321 bl89-00001" -ytrouble s.file
adds bl88-12345 and bl89-00001 to the MR list, removes bl87-54321 from the MR
list, and adds the comment trouble to delta 1.6 of s.file.

Entering:

cdc -rl.6 s.file
MRs? !b187-54321 b188-12345 b189-00001
comments? trouble

produces the same result.

FILES
x-file [see delta(1)]
z-file [see delta(1)]
SEE ALSO
admin(1), delta(l), get(1), help(1l), prs(l), sccsfile(4).
DIAGNOSTICS
Use help for explanations.
NOTES

If SCCs file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

Page 2 10/89

cflow(1) cflow(1)

NAME

cflow — generate C flowgraph

SYNOPSIS

cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION

10/89

The cflow command analyzes a collection of C, yacc, lex, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with .y, .1, and .c are processed by yacc, lex, and the C compiler as appropri-
ate. The results of the preprocessed files, and files suffixed with .i, are then run
through the first pass of lint. Files suffixed with .s are assembled. Assembled
files, and files suffixed with .o, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references
that is written on the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol followed
by a colon and its definition. Normally only function names that do not begin
with an underscore are listed (see the —i options below). For information
extracted from C source, the definition consists of an abstract type declaration
(e.g., char *), and, delimited by angle brackets, the name of the source file and
the line number where the definition was found. Definitions extracted from
object files indicate the file name and location counter under which the symbol
appeared (e.g., text). Leading underscores in C-style external names are deleted.
Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found.
For undefined references, only <> is printed.

As an example, suppose the following code is in file.c:
int i;
main ()
{
£(0);

gQ):
£0:

£0
{
i=h0;
}
The command
cflow -ix file.c
produces the output

main: int(), <file.c 4>
f: int(), <file.c 11>
h: <
i: int, <file.c 1>
g: <>

G W

Page 1

cflow(1) cflow (1)

When the nesting level becomes too deep, the output of cflow can be piped to
the pr command, using the —e option, to compress the tab expansion to some-
thing less than every eight spaces.

In addition to the -D, ~I, and -U options [which are interpreted just as they are
by cc], the following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexico-
graphical order by callee.

-ix Include external and static data symbols. The default is to include only
functions in the flowgraph.

-i Include names that begin with an underscore. The default is to exclude
these functions (and data if —ix is used).

—dnum The num decimal integer indicates the depth at which the flowgraph is
cut off. By default this number is very large. Attempts to set the cutoff
depth to a nonpositive integer will be ignored.

SEE ALSO

as(1), cc(1), 1lex(1), 1int(1), nm(1), yace(1).

pr(1) in the User’s Reference Manual.

DIAGNOSTICS
Complains about multiple definitions and only believes the first.

NOTES
Files produced by lex and yacc cause the reordering of line number declarations,
which can confuse cflow. To get proper results, feed cflow the yacc or lex
input.

Page 2 10/89

chrtbl (1M) chrtbl (1M)

NAME

chrtbl — generate character classification and conversion tables
SYNOPSIS

chrtbl [file]
DESCRIPTION

10/89

The chrtbl command creates two tables containing information on character
classification, upper/lower-case conversion, character-set width, and numeric
editing. One table is an array of (257*2) + 7 bytes that is encoded so a table
lookup can be used to determine the character classification of a character, con-
vert a character (see ctype(3C)), and find the byte and screen width of a charac-
ter in one of the supplementary code sets. The other table is 2 bytes long: the
first byte specifies the decimal delimiter; the second byte specifies the thousands
delimiter.

chrtbl reads the user-defined character classification and conversion information
from file and creates three output files in the current directory. To construct file,
use the file supplied in /usr/lib/locale/C/chrtbl C as a starting point. You
may add entries, but do not change the original values supplied with the system.
For example, for other locales you may wish to add eight-bit entries to the ASCII
definitions provided in this file.

One output file, ctype.c (a C-language source file), contains a (257*2)+7-byte
array generated from processing the information from file. You should review
the content of ctype.c to verify that the array is set up as you had planned. (In
addition, an application program could use ctype.c.) The first 257 bytes of the
array in ctype.c are used for character classification. The characters used for ini-
tializing these bytes of the array represent character classifications that are
defined in /usr/include/ctype.h; for example, _L means a character is lower
case and _S| _B means the character is both a spacing character and a blank. The
second 257 bytes of the array are used for character conversion. These bytes of
the array are initialized so that characters for which you do not provide conver-
sion information will be converted to themselves. When you do provide conver-
sion information, the first value of the pair is stored where the second one would
be stored normally, and vice versa; for example, if you provide <0x41 0x61>,
then 0x61 is stored where 0x41 would be stored normally, and 0x61 is stored
where 0x41 would be stored normally. The last 7 bytes are used for character
width information for up to three supplementary code sets.

The second output file (a data file) contains the same information, but is struc-
tured for efficient use by the character classification and conversion routines (see
ctype(3C)). The name of this output file is the value you assign to the keyword
LC CTYPE read in from file. Before this file can be used by the character
classification and conversion routines, it must be installed in the
/usr/lib/localeflocale directory with the name LC_CTYPE by someone who is
super-user or a member of group bin. This file must be readable by user, group,
and other; no other permissions should be set. To use the character classification
and conversion tables in this file, set the LC_CTYPE environment variable
appropriately (see environ(5) or setlocale(3C)).

Page 1

chrtbi(1M) chrtbl (1M)

Page 2

The third output file (a data file) is created only if numeric editing information is
specified in the input file. The name of this output file is the value you assign to
the keyword LC_NUMERIC read in from file. Before this file can be used, it must
be installed in the /usr/lib/locale/locale directory with the name LC_NUMERIC
by someone who is super-user or a member of group bin. This file must be
readable by user, group, and other; no other permissions should be set. To use
the numeric editing information in this file, set the LC_NUMERIC environment vari-
able appropriately (see environ(5) or setlocale(3C)).

The name of the locale where you install the files LC_CTYPE and LC_NUMERIC
should correspond to the conventions defined in file. For example, if French con-
ventions were defined, and the name for the French locale on your system is
french, then you should install the files in /usr/1lib/locale/french.

If no input file is given, or if the argument
standard input.

The syntax of file allows the user to define the names of the data files created by
chrtbl, the assignment of characters to character classifications, the relationship
between upper and lower-case letters, byte and screen widths for up to three sup-
plementary code sets, and two items of numeric editing information: the decimal
delimiter and the thousands delimiter. The keywords recognized by chrtbl are:

is encountered, chrtbl reads from

LC_CTYPE name of the data file created by chrtbl to contain
character classification, conversion, and width informa-
tion

isupper character codes to be classified as upper-case letters

islower character codes to be classified as lower-case letters

isdigit character codes to be classified as numeric

isspace character codes to be classified as spacing (delimiter)
characters

ispunct character codes to be classified as punctuation charac-
ters

iscntrl character codes to be classified as control characters

isblank character code for the blank (space) character

isxdigit character codes to be classified as hexadecimal digits

ul relationship between upper- and lower-case characters

cswidth byte and screen width information (by default, each is
one character wide)

LC_NUMERIC name of the data file created by chrtbl to contain

numeric editing information
decimal point decimal delimiter
thousands_sep thousands delimiter

10/89

chrtbl (1M) chrtbl (1M)

Any lines with the number sign (#) in the first column are treated as comments
and are ignored. Blank lines are also ignored.

Characters for isupper, islower, isdigit, isspace, ispunct, iscntrl,
isblank, isxdigit, and ul can be represented as a hexadecimal or octal constant
(for example, the letter a can be represented as 0x61 in hexadecimal or 0141 in
octal). Hexadecimal and octal constants may be separated by one or more space
and/or tab characters.

The dash character (-) may be used to indicate a range of consecutive numbers.
Zero or more space characters may be used for separating the dash character
from the numbers.

The backslash character (\) is used for line continuation. Only a carriage return
is permitted after the backslash character.

The relationship between upper- and lower-case letters (ul) is expressed as
ordered pairs of octal or hexadecimal constants: <upper-case_character lower-
case_character>. These two constants may be separated by one or more space
characters. Zero or more space characters may be used for separating the angle
brackets (< >) from the numbers.

The following is the format of an input specification for cswidth:
nl:s1,n2:s2,n3:s3
where,

nl byte width for supplementary code set 1, required

s1 screen width for supplementary code set 1

n2 byte width for supplementary code set 2

s2 screen width for supplementary code set 2

n3 byte width for supplementary code set 3

s3 screen width for supplementary code set 3

EXAMPLE

10/89

The following is an example of an input file used to create the ASCII code set
definition table in a file named ascii.

IC CTYPE ascii

isupper O0x41 - Ox5a

islower 0x61 - Ox7a

isdigit 0x30 - 0x39

isspace 0x20 0x9 — Oxd

ispunct 0x21 - Ox2f Ox3a — 0x40 \

0xS5b - 0x60 O0x7b - Ox7e
iscntrl Ox0 - Ox1f 0x7£

isblank 0x20
isxdigit 0x30 - 0x39 0x61 — 0x66 \
0x41 — 0x46
ul <0x41 0x61> <0x42 0x62> <0x43 0x63>

<0x44 0x64> <0x45 0x65> <0x46 0x66>
<0x47 0x67> <0x48 0x68> <0x49 0x69>
<Ox4a 0x6a> <0x4b 0x6b> <Ox4c Ox6c>
<0x4d 0x6d> <Ox4e Ox6e> <Ox4f Ox6£>
<0x50 0x70> <0x51 0x71> <0x52 0x72>
<0x53 0x73> <0x54 0x74> <0x55 0x75>

P i

Page 3

chrtbl(1M) chribl (1M)

<0x56 0x76> <0x57 0x77> <0x58 0x78> \
<0x59 0x79> <0x5a 0x7a>

cswidth 1:1,0:0,0:0
LC NMERIC num ascii
thousands sep A

FILES
/usr/lib/locale/locale/LC_CTYPE
data files containing character classification, conversion, and
character-set width information created by chrtbl
/usr/lib/locale/locale/L.C_NUMERIC
data files containing numeric editing information created by
chrtbl
/usr/include/ctype.h
header file containing information used by character
classification and conversion routines
/usr/lib/locale/C/chrtbl _C
input file used to construct LC_CTYPE and LC_NUMERIC in the
default locale.

SEE ALSO
environ(5).
ctype(3C), setlocale(3C) in the Programmer’s Reference Manual.

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self-explanatory.
They indicate errors in the command line or syntactic errors encountered within
the input file.

WARNING

Changing the files in /usr/lib/locale/C will cause the system to behave
unpredictably.

Page 4 10/89

cof2elf(1) cof2elf (1)

NAME

cof2elf — COFF to ELF object file translation

SYNOPSIS

cof2elf [-iqV] [-Q{yn}] [-s directory] files

DESCRIPTION

cof2elf converts one or more COFF object files to ELF. This translation occurs
in place, meaning the original file contents are modified. If an input file is an
archive, each member will be translated as necessary, and the archive will be
rebuilt with its members in the original order. cof2elf does not change input
files that are not COFF.

Options have the following meanings.

-i Normally, the files are modified only when full translation occurs.
Unrecognized data, such as unknown relocation types, are treated as
errors and prevent translation. Giving the -i flag ignores these par-
tial translation conditions and modifies the file anyway.

-q Normally, cof2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The —q flag (for quiet)
suppresses these messages.

—Qarg If arg is y, identification information about cof2elf will be added to
the output files. This can be useful for software administration.
Giving n for arg explicitly asks for no such information, which is the
default behavior.

—sdirectory As mentioned above, cof2elf modifies the input files. This option
saves a copy of the original files in the specified directory, which
must exist. cof2elf does not save files it does not modify.

-V This flag tells cof2elf to print a version message on standard error.

SEE ALSO

NOTES

10/89

1d(1), el£(3E), a.out(4), ar(4).

Some debugging information is discarded. Although this does not affect the
behavior of a running program, it may affect the information available for sym-
bolic debugging.

cof2elf translates only COFF relocatable files. It does not translate executable or
static shared library files for two main reasons. First, the operating system sup-
ports executable files and static shared libraries, making translation unnecessary.
Second, those files have specific address and alignment constraints determined by
the file format. Matching the constraints with a different object file format is
problematic.

When possible, programmers should recompile their source code to build new
object files. cof2elf is provided for those times when source code is unavailable.

Page 1

colltbl (1M) colltbl (1M)

NAME

colltbl — create collation database

SYNOPSIS

colltbl [file | -]

DESCRIPTION

10/89

The colltbl command takes as input a specification file, file, that describes the
collating sequence for a particular language and creates a database that can be
read by strxfrm(3C) and strcoll(3C). strxfrm(3C) transforms its first argu-
ment and places the result in its second argument. The transformed string is such
that it can be correctly ordered with other transformed strings by using
strcmp(3C), strncmp(3C) or memcmp(3C). strcoll(3C) transforms its arguments
and does a comparison.

If no input file is supplied, stdin is read.

The output file produced contains the database with collating sequence informa-
tion in a form usable by system commands and routines. The name of this out-
put file is the value you assign to the keyword codeset read in from file. Before
this file can be used, it must be installed in the /usr/lib/localeflocale directory
with the name LC_COLLATE by someone who is super-user or a member of group
bin. locale corresponds to the language area whose collation sequence is
described in file. This file must be readable by user, group, and other; no other
permissions should be set. To use the collating sequence information in this file,
set the LC_COLLATE environment variable appropriately (see environ(5) or
setlocale(3Q)).

The colltbl command can support languages whose collating sequence can be
completely described by the following cases:

¢ Ordering of single characters within the codeset. For example, in Swedish, v
is sorted after U, before X and with W (V and W are considered identical as far
as sorting is concerned).

* Ordering of "double characters" in the collation sequence. For example, in
Spanish, ch and 11 are collated after ¢ and 1, respectively.

¢ Ordering of a single character as if it consists of two characters. For exam-
ple, in German, the "sharp s", B, is sorted as ss. This is a special instance of
the next case below.

e Substitution of one character string with another character string. In the
example above, the string B is replaced with ss during sorting.

e Ignoring certain characters in the codeset during collation. For example, if -
were ignored during collation, then the strings re-locate and relocate
would be equal.

* Secondary ordering between characters. In the case where two characters are
sorted together in the collation sequence, (i.e., they have the same "primary"
ordering), there is sometimes a secondary ordering that is used if two strings
are identical except for characters that have the same primary ordering. For
example, in French, the letters e and & have the same primary ordering but e
comes before & in the secondary ordering. Thus the word lever would be
ordered before léver, but léver would be sorted before levitate. (Note

Page 1

colitbl (1M) colitbl (1M)

Page 2

that if e came before & in the primary ordering, then 1éver would be sorted
after levitate.)

The specification file consists of three types of statements:

1.

codeset filename
filename is the name of the output file to be created by colltbl.
order is order_list

order_list is a list of symbols, separated by semicolons, that defines the collat-
ing sequence. The special symbol, ..., specifies symbols that are lexically
sequential in a short-hand form. For example,

order is a;b;c;d;...;x;yiz
would specify the list of lower_case letters. Of course, this could be further
compressed to just a;...;z.

A symbol can be up to two bytes in length and can be represented in any
one of the following ways:

¢ the symbol itself (e.g., a for the lower-case letter a),

® in octal representation (e.g., \141 or 0141 for the letter a), or

¢ in hexadecimal representation (e.g., \x61 or 0x61 for the letter a).
Any combination of these may be used as well.

The backslash character, \ , is used for continuation. No characters are per-
mitted after the backslash character.

Symbols enclosed in parenthesis are assigned the same primary ordering but
different secondary ordering. Symbols enclosed in curly brackets are
assigned only the same primary ordering. For example,

order is a;b;c;ch;d; (e;&);£;...;z;\
{1;...;9};7;...:2
In the above example, e and & are assigned the same primary ordering and
different secondary ordering, digits 1 through 9 are assigned the same pri-
mary ordering and no secondary ordering. Only primary ordering is
assigned to the remaining symbols. Notice how double letters can be
specified in the collating sequence (letter ch comes between ¢ and d).

If a character is not included in the order is statement it is excluded from
the ordering and will be ignored during sorting.

substitute string with repl

The substitute statement substitutes the string string with the string repl.
This can be used, for example, to provide rules to sort the abbreviated month
names numerically:

10/89

colitbl (1M)

substitute "Jan" with "01"
substitute "Feb" with "02"

substitute "Dec" with "12"

A simpler use of the substitute statement that was mentioned above was
to substitute a single character with two characters, as with the substitution
of B with ss in German.

colltbl (1M)

The substitute statement is optional. The order is and codeset statements
must appear in the specification file.

Any lines in the specification file with a # in the first column are treated as com-

ments and are ignored. Empty lines are also ignored.

EXAMPLE
The following example shows the collation specification required to support a
hypothetical telephone book sorting sequence.

10/89

The sorting sequence is defined by the following rules:

a. Upper and lower case letters must be sorted together, but upper case
letters have precedence over lower case letters.

b. All special characters and punctuation should be ignored.

c. Digits must be sorted as their alphabetic counterparts (e.g., 0 as zero, 1 as
one).

d. The Ch, ch, CH combinations must be collated between C and D.

e. V and W, v and w must be collated together.

The input specification file to colltbl will contain:

codeset

order is

substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute

telephone
Aya;B;b;C;c;CH;C
G;g;H;h:1;i;3;73
Q:q;R;x;S:8;T;t;
"0 " with llzero"
lllll with llonell
"2 " with "twoll
1!3 " With "three "
"4 " with ”n four "
ll5" With. "five "
" 6 " wim " sixll
"7 n with " seven"
"8 n wim "eight "
"9" with llninell

ch;D;d;E;e;F; £;\
k;L;1;M;m;N;n;0;0;P;p;\

h
;K;
Usu (VW {v;w): Xex: Y y: 22

Page 3

colltbl (1M) colltbl (1M)

FILES
/1lib/locale/locale/LC_COLLATE
LC_COLILATE database for locale

/usr/lib/locale/C/colltbl_C
input file used to construct LC_COLLATE in the default locale.

SEE ALSO
memory(3C), setlocale(3C), strcoll(3C), string(3C), strxfrm(3C), environ(5)
in the Programmer’s Reference Manual.

Page 4 10/89

comb(1) comb (1)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [-o] [-s8] [-pSID] [-clist] files

DESCRIPTION

FILES

comb generates a shell procedure [see sh(1)] that, when run, reconstructs the
given SCCS files. The reconstructed files are typically smaller than the original
files. The arguments may be specified in any order, but all keyletter arguments
apply to all named SCCS files. If a directory is named, comb behaves as though
each file in the directory were specified as a named file, except that non-5CCs files
(last component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is read; each line
of the input is taken to be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored. The generated shell procedure is
written on the standard output.

The keyletter arguments are as follows. Each argument is explained as if only
one named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-o For each get -e, this argument causes the reconstructed file to be
accessed at the release of the delta to be created, otherwise the recon-
structed file would be accessed at the most recent ancestor. Use of the —o
keyletter may decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

-s This argument causes comb to generate a shell procedure that, when run,
produces a report that gives for each file: the file name, size (in blocks)
after combining, original size (also in blocks), and percentage change com-
puted by:

100 * (original — combined) / original
It is recommended that before any SCCS files are actually combined, one

should use this option to determine exactly how much space is saved by
the combining process.

-pSID The SCCS identification string (SID) of the oldest delta to be preserved. All
older deltas are discarded in the reconstructed file.

—clist A list of deltas to be preserved. All other deltas are discarded. See get(1)
for the syntax of a list.

If no keyletter arguments are specified, comb preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

s.COMB the reconstructed SCCS file
comb????? temporary file

'SEE ALSO

10/89

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).
sh(1) in the User’s Reference Manual.

Page 1

comb (1) comb (1)

DIAGNOSTICS
Use help(1) for explanations.

NOTES
comb may rearrange the shape of the tree of deltas.

comb may not save any space; in fact, it is possible for the reconstructed file to be
larger than the original.

Page 2 10/89

convert(1) convert(1)

NAME

convert — convert archive files to common formats

SYNOPSIS

convert [-x] infile outfile

DESCRIPTION

FILES

The convert command transforms input infilel to output outfile. infile must be a
UNIX System V Release 1.0 archive file and outfile will be the equivalent UNIX
System V Release 2.0 archive file. All other types of input to the convert com-
mand will be passed unmodified from the input file to the output file (along with
appropriate warning messages).

The —x option is required to convert a XENIX archive. (XENIX is a registered
trademark of Microsoft Corporation.) Using this option will convert the general
archive but leave archive members unmodified.

infile must be different from outfile.

TMPDIR/conv* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO

10/89

ar(1), tmpnam(3S), a.out(4), ar(4).

Page 1

cscope (1) cscope (1)

NAME

cscope — interactively examine a C program
SYNOPSIS

cscope [options] files. ..
DESCRIPTION

cscope is an interactive screen-oriented tool that allows the user to browse
through C source files for specified elements of code.
By default, cscope examines the C (.c and .h), lex (.1), and yacc (.y) source
files in the current directory. cscope may also be invoked for source files named
on the command line. In either case, cscope searches the standard directories for
#include files that it does not find in the current directory. cscope uses a sym-
bol cross-reference, cscope.out by default, to locate functions, function calls,
macros, variables, and preprocessor symbols in the files.
cscope builds the symbol cross-reference the first time it is used on the source
files for the program being browsed. On a subsequent invocation, cscope
rebuilds the cross-reference only if a source file has changed or the list of source
files is different. When the cross-reference is rebuilt, the data for the unchanged
files are copied from the old cross-reference, which makes rebuilding faster than
the initial build.

The following options can appear in any combination:

-b Build the cross-reference only.

- Ignore letter case when searching.

-c Use only ASCII characters in the cross-reference file, that is, do
not compress the data.

-d Do not update the cross-reference.

-e Suppress the “e command prompt between files.

~£ reffile Use reffile as the cross-reference file name instead of the default
cscope .out.

-1 incdir Look in incdir (before looking in INCDIR, the standard place for
header files, normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on
the command line or in namefile below. (The #include files may
be specified with either double quotes or angle brackets.) The
incdir directory is searched in addition to the current directory
(which is searched first) and the standard list (which is searched
last). If more than one occurrence of -I appears, the directories
are searched in the order they appear on the command line.

-1 namefile Browse through all source files whose names are listed in namefile
(file names separated by spaces, tabs, or new-lines) instead of the
default (cscope.files). If this option is specified, cscope
ignores any files appearing on the command line.

10/89 Page 1

—num pattern
-P path

_p n

-s dir

cscope(1)

Do a single search with line-oriented output when used with the
—num pattern option.

Line-oriented interface (see ‘’Line-Oriented Interface” below).
Go to input field num (counting from 0) and find pattern.

Prepend path to relative file names in a pre-built cross-reference
file so you do not have to change to the directory where the
cross-reference file was built. This option is only valid with the
~d option.

Display the last # file path components instead of the default (1).
Use 0 to not display the file name at all.

Look in dir for additional source files. This option is ignored if
source files are given on the command line.

Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a
period (.) will not match any symbol if its minimum length is
greater than eight characters.

Do not check file time stamps (assume that no files have
changed).

Unconditionally build the cross-reference file (assume that all
files have changed).

Print on the first line of screen the version number of cscope.

The -1, —p, and -T options can also be in the cscope. files file.

Requesting the Initial Search
After the cross-reference is ready, cscope will display this menu:

Find this C symbol:

Find this function definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.
SPACE Display next set of matching lines.
+ Display next set of matching lines.

Page 2

10/89

cscope (1) cscope (1)

- Display previous set of matching lines.

~e Edit displayed files in order.

> Append the displayed list of lines to a file.
| Pipe all lines to a shell command.

At any time these single-character commands can also be used:

TAB Move to next input field.

RETURN Move to next input field.

“n Move to next input field.

“p Move to previous input field.

y Search with the last text typed.

“b Move to previous input field and search pattern.

~f Move to next input field and search pattern.

~c Toggle ignore/use letter case when searching. (When ignoring letter
case, search for FILE will match File and file.)

~r Rebuild the cross-reference.

! Start an interactive shell (type ~d to return to cscope).

~1 Redraw the screen.

? Give help information about cscope commands.

~d Exit cscope.

Note: If the first character of the text to be searched for matches one of the above
commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text

After the text to be changed has been typed, cscope will prompt for the new
text, and then it will display the lines containing the old text. Select the lines to
be changed with these single-character commands:

1-9 Mark or unmark the line to be changed.

* Mark or unmark all displayed lines to be changed.
SPACE Display next set of lines.

+ Display next set of lines.

- Display previous set of lines.

a Mark all lines to be changed.

~d Change the marked lines and exit.

ESCAPE Exit without changing the marked lines.
! Start an interactive shell (type ~d to return to cscope).

~1 Redraw the screen.
? Give help information about cscope commands.
Special Keys

If your terminal has arrow keys that work in vi(1), you can use them to move
around the input fields. The up-arrow key is useful to move to the previous
input field instead of using the TAB key repeatedly. If you have CLEAR, NEXT, or
PREV keys they will act as the ~1, +, and — commands, respectively.

Line-Oriented Interface

10/89

The -1 option lets you use cscope where a screen-oriented interface would not
be useful, e.g., from another screen-oriented program.

cscope will prompt with >> when it is ready for an input line starting with the
field number (counting from 0) immediately followed by the search pattern, e.g.,

Page 3

cscope(1) cscope(1)

1main finds the definition of the main function. If you just want a single search,
instead of the —1 option use the =L and —-num pattern options, and you won’t get
the >> prompt.
For -1, cscope outputs the number of reference lines

cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func-
tion name, line number, and line text, separated by spaces, e.g.,

main.c main 161 main(argc, argv)
Note that the editor is not called to display a single reference, unlike the screen-
oriented interface.
You can use the r command to rebuild the database.

cscope will quit when it detects end-of-file, or when the first character of an
input line is ~d or q.

ENVIRONMENT VARIABLES

EDITOR Preferred editor, which defaults to vi(1).

INCLUDEDIRS Colon-separated list of directories to search for #include files.

HOME Home directory, which is automatically set at login.

SHELL Preferred shell, which defaults to sh(1).

SOURCEDIRS Colon-separated list of directories to search for additional source
files.

TERM Terminal type, which must be a screen terminal.

TERMINFO Terminal information directory full path name. If your terminal

is not in the standard terminfo directory, see curses and ter-
minfo for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /usr/tmp.

VIEWER Preferred file display program [such as pgl, which overrides EDI-
TOR (see above).

VPATH A colon-separated list of directories, each of which has the same

directory structure below it. If VPATH is set, cscope searches for
source files in the directories specified; if it is not set, cscope
searches only in the current directory.

FILES
cscope.files Default files containing —-I, ~p, and -T options and the list of
source files (overridden by the —i option).
cscope . out Symbol cross-reference file, which is put in the home directory if
it cannot be created in the current directory.
ncscope.out Temporary file containing new cross-reference before it replaces
the old cross-reference.
INCDIR Standard directory for #include files (usually /usr/include).
SEE ALSO

Page 4

The “cscope” chapter in the Programmet's Guide: ANSI C and Programming Sup-
port Tools. ‘

‘cufrg?‘_s and terminfo in the Programmer’s Guide: Character User Interface (FMLI
and ETI).

10/89

cscope (1) ‘ cscope (1)

NOTES
cscope recognizes function definitions of the form:

fname blank (args) white arg_decs white {

where:

fname is the function name

blank is zero or more spaces or tabs, not including newlines
args is any string that does not contain a " or a newline
white is zero or more spaces, tabs, or newlines

arg decs are zero or more argument declarations (arg_decs may include com-
ments and white space)

It is not necessary for a function declaration to start at the beginning of a line.
The return type may precede the function name; cscope will still recognize the
declaration. Function definitions that deviate from this form will not be recog-
nized by cscope.

The Function column of the search output for the menu option Find functions

called by this function: input field will only display the first function
called in the line, that is, for this function

e()
{
return (£() + g());
}
the display would be

Functions called by this function: e

File Function Line
a.c £ 3 return(f() + g()):

Occasionally, a function definition or call may not be recognized because of
braces inside #if statements. Similarly, the use of a variable may be incorrectly
recognized as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recog-
nized as a global definition, e.g.,

LDFILE *

#if AR16WR

Preprocessor statements can also prevent the recognition of a global definition,
e.g.,
char flag
#ifdef ALLOCATE_STORAGE
=-1
tendif

.
’

10/89 Page 5

cscope(1) cscope (1)

Page 6

A function declaration inside a function is incorrectly recognized as a function
call, e.g.,
£0
{
void g():
}
is incorrectly recognized as a call to g ().

cscope recognizes C++ classes by looking for the class keyword, but doesn’t
recognize that a struct is also a class, so it doesn’t recognize inline member
function definitions in a structure. It also doesn’t expect the class keyword in a
typedef, so it incorrectly recognizes X as a definition in

typedef class X * Y;

It also doesn’t recognize operator function definitions
Bool Feature::operator==(const Feature & other)
{

}

10/89

ctrace(1) ctrace (1)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace [options] [file]
DESCRIPTION

10/89

The ctrace command allows the user to monitor the sequential execution of a C
program as each program statement executes. The effect is similar to executing a
shell procedure with the —x option. ctrace reads the C program in file (or from
standard input if the user does not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. The output
of ctrace must be placed into a temporary file because the cc(1) command does
not allow the use of a pipe. This file can then be compiled and executed.

As each statement in the program executes, it will be listed at the terminal, fol-
lowed by the name and value of any variables referenced or modified in the
statement; these variable names and values will be followed by any output from
the statement. Loops in the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements within the loop is exe-
cuted. A warning message is printed after each 1000 loop cycles to help the user
detect infinite loops. The trace output goes to the standard output so the user
can put it into a file for examination with an editor or the bfs(1) or tail(l) com-
mands.

The options commonly used are:

-f functions Trace only these functions.
-v functions Trace all but these functions.

The user may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. double
variables are printed as floating point numbers in scientific notation. The user
can request that variables be printed in additional formats, if appropriate, with
these options:

-o Octal

-x Hexadecimal
-u Unsigned

-e Floating point

These options are used only in special circumstances:

-1n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from loops.

-8 Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of
the = operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The diagnostics section explains when to use this option.

Page 1

ctrace (1) ctrace (1)

-P Preprocess the input before tracing it. The user can also use the -D, -I,
and -U cc(1) options.
-p string

Change the trace print function from the default of printf. For example,
fprintf (stderr, would send the trace to the standard error output.

-rf Use file f in place of the runtime.c trace function package. This replace-
ment lets the user change the entire print function, instead of just the
name and leading arguments (see the —p option).

-v Prints version information on the standard error.

—Qarg If arg is y, identification information about ctrace will be added to the
output files. This can be useful for software administration. Giving n for
arg exlicitly asks for no such information, which is the default behavior.

EXAMPLE
If the file 1c.c contains this C program:

#include <stdio.h>
main() /* count lines in input */
{

nl = 0;
while ((c = getchar()) != EOF)
if (c = '\n’)
++nl;
10 printf ("$d\n", nl);
11}

these commands and test data are entered:

1
2
3
4 int ¢, nl;
5
6
7
8

o

cc lc.c
a.out

1
(cntl-d)

the program will be compiled and executed. The output of the program will be
the number 2, which is incorrect because there is only one line in the test data.
The error in this program is common, but subtle. If the user invokes ctrace
with these commands:

ctrace lc.c >tenp.c

cc temp.c

a.out

the output will be:

2 main()

6 nl=0;
/* nl = 0 */

7 while ((c = getchar()) != EOF)

Page 2 10/89

ctrace (1) ctrace (1)

The program is now waiting for input: If the user enters the' same test data as
before; the otitput will be:

/¥ ¢ == 49 or "1’ */

8 if (¢ = '\n")
N /¥ ¢ == 10 or '\n’ */
9 +Hal;

/¥ Rl s 1%/ v
whilé ((¢ = getchar()) != EOF)
/¥ & == 10 or "\n’ */

§ if (@ = '\ar)
/¥ & == 10 or ‘\n’ */

™

~

7 while ((c = géﬁdﬁzifé)‘)"- !‘t-‘-‘- EOFY
If dn end-of-file' character (¢ntl-d) is entered, the final output will be:
/’& ¢ == =1 %/
/* AL == 2 +/2
return
Note the inforrmation printéd out at the end of thie trace line for the al variable
following line 10. Alo nioté the réturn comment added by ctrace at the end of

the trace output. This shows the implicit returni at the terminating brace in the
furiction.

The trace outpuit shows that variable ¢ is asmgned the valie ‘i’ i lifie 7, but in
line 8 it has the valué ‘\n’. Once usér attention i¢ drawn to this if staternent, he
or she will probably realize that the assxgnment operator (=) was used in placé of
the eqiuality operator (==). This etror ¢an easily be missed during code reading.

EXECUTION-TIM : TRAGE CONTROL

16/89

The defailt opeération for ctrace is to trace the entire program file, unless the £
or =v optlons are used to trace specific functions: The default operation does not
give the user statement-by-statement control of the tracing, nor does it let the
user turn the tracing off and on when executing the tracéd program.

The user can do both of these by addmg ctroff() and ctron() function calls to
the progfam to' turht the tracing off ard on respectWely, at execution time. Thus;
complex criteria can be ar’bltra”nly coded for trace control with if statéments, and
this code can even be conditionally included becaiise ctrace defines the CTRACE
preprocessor variable. For example:

#ifdef CTRACE -
if (¢ == 1’ gg i > 1000)

.) - étron() ;s

#eéndif

These fiinctions can also be called from sdb(1) if they are compiled with the —g
option: For examiple, to trace all but liries 7 to 10 in the main function, enter:

Page- §

ctrace(1) ctrace (1)

FILES

sdb a.out
main:7b ctroff ()
main:1lb ctron()
r

The trace can be turned off and on by setting static variable tr_ct_to 0 and 1,

respectively. This on/off option is useful if a user is using a debugger that can
not call these functions directly.

/usr/ccs/lib/ctrace/runtime.c run-time trace package

SEE ALSO

sdb(1), ctype(3C), £close(3S), print£(3S), string(3C).
bfs(1), tail(1l) in the User's Reference Manual.

DIAGNOSTICS

This section contains diagnostic messages from both ctrace and cc(1), since the
traced code often gets some cc warning messages. The user can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics

NOTES

Page 4

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression” error. Use the -t option to increase
this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that tabs are used
to indent the code, not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #define
preprocessor statement.

"if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and —U preprocessor options.

Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will
cause a syntax error.

Pointer values are always treated as pointers to character strings.

10/89

ctrace (1) ctrace (1)

10/89

ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entire aggregate. ctrace may
choose to print the address of an aggregate or use the wrong format (e.g.,
3.149050e-311 for a structure with two integer members) when printing the
value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file
program. Separate output elimination can result in functions called from a loop
still being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

Page 5

cxref(1) cxref(1)

NAME

cxref — generate C program cross-reference
SYNOPSIS

cxref [options] files
DESCRIPTION

The cxref command analyzes a collection of C files and builds a cross-reference
table. cxref uses a special version of cc to include #define’d information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each
individual file, or, with the —c option, in combination. The table includes four
fields: NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the
LII\lIEd field also show reference marks as appropriate. The reference marks
include:

assignment
declaration
definition

* |

If no reference marks appear, you can assume a general reference.

OPTIONS
cxref interprets the -D, —I, -U options in the same manner that cc does. In
addition, cxref interprets the following options:

-c Combine the source files into a single report. Without the —-c option,
cxref generates a separate report for each file on the command line.

-d Disables printing declarations, making the report easier to read.

-1 Does not print local variables. Prints only global and file scope statistics.

-o file Direct output to file.

-8 Operates silently; does not print input file names.

-t Format listing for 80-column width.

-wnum Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51.

-C Runs only the first pass of cxref, creating a .cx file that can later be
passed to cxref. This is similar to the —c option of cc or lint.
-F Prints the full path of the referenced file names.

-Leols Modifies the number of columns in the LINE field. If you do not specify
a number, cxref defaults to five columns.

-v Prints version information on the standard error.

—Wname file, function, line
Changes the default width of at least one field. The default widths are:

Field Characters

NAME 15

FILE 13

FUNCTION 15

LINE 20 (4 per column)

10/89 Page 1

cxref(1)

FILES

TMPDIR/tcx. *

temporary files

cxref(1)

usually /usr/tmp but can be redefined by setting the

environment variable TMPDIR [see tempnam in tmpnam(3S)].

TMPDIR/cx.* temporary files
LIBDIR/xref accessed by cxref
LIBDIR usually /usr/ccs/1lib
TMPDIR
EXAMPLE
a.c
1 main ()
2 {
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8 }

Resulting cross-reference table:

NAME
c
i
main
u3b2
unix

SEE ALSO

FILE FUNCTION
a.c -

a.c main

a.c -
predefined -——
predefined -———

cc(1), 1int(1).

DIAGNOSTICS

Error messages usually mean you cannot compile the files.

Page 2

LINE

4- =
3% 6=
2%

ox*x

(1)1

10/89

delta(1) delta(1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [-rSID] [-s] [-n] [—glist] [-m{mrlist]] [-ylcomment]] [-p] files

DESCRIPTION
delta is used to permanently introduce into the named SCCS file changes that
were made to the file retrieved by get -—e (called the g-file or generated file).

delta makes a delta to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see the NOTES section); each line of the standard input is taken to
be the name of an SCCS file to be processed.

delta may issue prompts on the standard output depending on certain keyletters
specified and flags [see admin(1)] that may be present in the SCCS file (see ~m and
-y keyletters below).

Keyletter arguments apply independently to each named file.

-xSID Uniquely identifies which delta is to be made to the SCCS
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the same
SCCs file were done by the same person (login name). The
SID value specified with the —r keyletter can be either the
SID specified on the get command line or the SID to be
made as reported by the get command [see get(1)]. A
diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

-s Suppresses the issue, on the standard output, of the created
delta’s SID, as well as the number of lines inserted, deleted
and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally removed at
, completion of delta processing).
—glist Specify a list [see get(1) for the definition of list] of deltas

that are to be ignored when the file is accessed at the
change level (SID) created by this delta.

~m{mrlist] If the SCCS file has the v flag set [see admin(1)] then a
Modification Request (MR) number must be supplied as the
reason for creating the new delta. If —m is not used and the
standard input is a terminal, the prompt MRs? is issued on
the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments? prompt (see
-y keyletter). MRs in a list are separated by blanks and/or
tab characters. An unescaped new-line character terminates
the MR list. Note that if the v flag has a value [see
admin(1)], it is taken to be the name of a program (or shell

10/89 Page 1

delta(1)

—ylcomment]

FILES
g-file

p-file
q-file
x-file
z-file
d-file
bdiff

SEE ALSO

delta(1)

procedure) that will validate the correctness of the MR
numbers. If a non-zero exit status is returned from the MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment. If -y is
not specified and the standard input is a terminal, the
prompt camments? is issued on the standard output before
the standard input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped new-line charac-
ter terminates the comment text.

Causes delta to print (on the standard output) the SCCS
file differences before and after the delta is applied in a
diff(1) format.

Existed before the execution of delta; removed after comple-
tion of delta.

Existed before the execution of delta; may exist after comple-
tion of delta.

Created during the execution of delta; removed after comple-
tion of delta.

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after comple-
tion of delta.

Program to compute differences between the “gotten” file and
the g-file.

admin(1), edc(1), get(1), help(1), prs(1), rmdel(1), sccsfile(4).
bdiff(1) in the User’s Reference Manual.

DIAGNOSTICS

Use help(1) for explanations.

NOTES

A get of many SCCS files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.

If the standard input (=) is specified on the delta command line, the —m (if neces-
sary) and -y keyletters must also be present. Omission of these keyletters causes

an error,

Comments are limited to text strings of at most 1024 characters. Line lengths
greater than 1000 characters cause undefined results.

Page 2

10/89

dis(1) dis(1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-o] [-V] [-L] [-s] [-d sec] [-D sec] [-F function] [t sec] [-1 string] file ...
DESCRIPTION
The dis command produces an assembly language listing of file, which may be
an object file or an archive of object files. The listing includes assembly state-
ments and an octal or hexadecimal representation of the binary that produced
those statements.

The following options are interpreted by the disassembler and may be specified in

any order.

—d sec Disassemble the named section as data, printing the offset of the
data from the beginning of the section.

-D sec Disassemble the named section as data, printing the actual address

of the data.

~F function Disassemble only the named function in each object file specified on
the command line. The -F option may be specified multiple times
on the command line.

-L Lookup source labels for subsequent printing. This option works
only if the file was compiled with additional debugging information
[e.g., the —g option of cc].

-1string Disassemble the archive file specified by string. For example, one
would issue the command dis -1 x -1 z to disassemble libx.a
and libz.a, which are assumed to be in LIBDIR.

-o Print numbers in octal. The default is hexadecimal.

-8 Perform symbolic disassembly where possible. Symbolic disassembly
output will appear on the_line following the instruction. Symbol
names will be printed using C syntax.

-t sec Disassemble the named section as text.

-V Print, on standard error, the version number of the disassembler
being executed.

If the —d, -D or -t options are specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections containing
text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
indicates that the break-pointable line number starts with the following instruc-
tion. These line numbers will be printed only if the file was compiled with addi-
tional debugging information [e.g., the —g option of cc]. An expression such as
<40> in the operand field or in the symbolic disassembly, following a relative dis-
placement for control transfer instructions, is the computed address within the
section to which control will be transferred. A function name will appear in the
first column, followed by () if the object file contains a symbol table.

10789 Page 1

dis(1) dis(1)

FILES

LIBDIR usually /usr/ccs/1ib
SEE ALSO

as(1), cc(1), 1d(1), a.out(4).
DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

NOTES

Since the —-da option did not adhere to the command syntax rules, it has been
replaced by -D.

At this time, symbolic disassembly does not take advantage of additional infor-
mation available if the file is compiled with the —g option.

Page 2 10/89

dump (1)

NAME

dump(1)

dump — dump selected parts of an object file

SYNOPSIS

dump [options] files

DESCRIPTION

The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following options:

—-a
-
-C

-

-8

Dump the archive header of each member of an archive.
Dump decoded C++ symbol table names.

Dump the string table(s).

Dump debugging information.

Dump each file header.

Dump the global symbols in the symbol table of an archive.
Dump the section headers.

Dump dynamic linking information and static shared library infor-
mation, if available.

Dump line number information.
Dump each program execution header.
Dump relocation information.

Dump section contents in hexadecimal.

—T index or -T index1, index2

-u

'

Dump only the indexed symbol table entry defined by index or a
range of entries defined by index1, index2.

Dump symbol table entries.

When reading a COFF object file, dump translates the file to ELF inter-
nally (this translation does not affect the file contents). This option
controls how much translation occurs from COFF values to ELF.
Normally (without —u), the COFF values are preserved as much as
possible, showing the actual bytes in the file. If —u is used, dump
updates the values and completes the internal translation, giving a
consistent ELF view of the contents. Although the bytes displayed
under this option might not match the file itself, they show how the
file would look if it were converted to ELF. (See cof2elf(1) for
more information.)

Print version information.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

10/89

Page 1

dump(1)

Page 2

dump(1)

—d number or —d number1, number2

-n name

P
-v

Dump the section number indicated by number or the range of sec-
tions starting at numberl and ending at number2. This modifier can
be used with -h, —s, and —-r. When —d is used with -h or -s, the
argument is treated as the number of a section or range of sections.
When -d is used with -r, the argument is treated as the number of
the section or range of sections to which the relocation applies. For
example, to print out all relocation entries associated with the .text
section, specify the number of the section as the argument to —d. If
.text is section number 2 in the file, dump —r —-d 2 will print all
associated entries. To print out a specific relocation section use
dump —s -n name for raw data output, or dump -sv -n name for
interpreted output.

Dump information pertaining only to the named entity. This
modifier can be used with -h, —s, -r, and -t. When -n is used
with —h or —s, the argument will be treated as the name of a sec-
tion. When -n is used with -t or -r, the argument will be treated
as the name of a symbol. For example, dump -t -n .text will
dump the symbol table entry associated with the symbol whose
name is .text, where dump -h -n .text will dump the section
header information for the .text section.

Suppress printing of the headings.

Dump information in symbolic representation rather than numeric.
This modifier can be used with -a (date, user id, group id), -£
(class, data, type, machine, version, flags), ~h (type, flags), —o (type,
flags), —r (name, type), —s (interpret section contents wherever pos-
sible), -t (type, bind), and -L (value). When -v is used with -s, all
sections that can be interpreted, such as the string table or symbol
table, will be interpreted. For example, dump —-sv -n .symtab files
will produce the same formatted output as dump ~tv files, but dump
-s -n .symtab files will print raw data in hexadecimal. Without
additional modifiers, dump -sv files will dump all sections in the
files interpreting all those that it can and dumping the rest (such as
.text or .data) as raw data.

The dump command attempts to format the information it dumps in a meaningful
way, printing certain information in character, hexadecimal, octal or decimal
representation as appropriate.

SEE ALSO
a.out(4), ar(4).

10/89

get(1) get(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [-aseq-no.] [-ccutoff] [-ilist] [-xSID] [-wstring] [—xlist] [-1[p]] [-b] [-e] [—g]
[-k] [-m] [-n] [-p] [-s] [-t] file...

DESCRIPTION

get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with -. The argu-
ments may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-SCCS files (last com-
ponent of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.

The generated text is normally written into a file called the g-file whose name is
derived from the SCCS file name by simply removing the leading “s.” (see also
the FILES section below).

Each of the keyletter arguments is explained below as though only one SCCS file
is to be processed, but the effects of any keyletter argument apply independently
to each named file.

-xSID The SCCS identification string (SID) of the version (delta) of an
SCCS file to be retrieved. Table 1 below shows, for the most use-
ful cases, what version of an SCCS file is retrieved (as well as the
SID of the version to be eventually created by delta(l) if the —e
keyletter is also used), as a function of the SID specified.

—ccutoff Cutoff date-time, in the form:
YYIMMI[DD[HHIMMISSIIII

No changes (deltas) to the SCCS file that were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, —-c7502 is equivalent to —c750228235959.
Any number of non-numeric characters may separate the two-
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form:

-c"77/2/2 9:22:25".

—ilist A list of deltas to be included (forced to be applied) in the crea-
tion of the generated file. The list has the following syntax:

<list> = <range> | <list> , <range>
<range> ::= SID | SID — SID

SID, the SCCS Identification of a delta, may be in any form shown
in the “SID Specified” column of Table 1.

10/89 . Page 1

get(1)

Page 2

—xlist

-e

-1lpl

-s

-m

-n

get(1)

A list of deltas to be excluded in the creation of the generated file.
See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of delta(l).
The —e keyletter used in a get for a particular version (SID) of the
SCCs file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the SCCS file
[see admin(1)]. Concurrent use of get —e for different SIDs is
always allowed.

If the g-file generated by get with an —e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the get command with the -k keyletter in place of the
—e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file [see admin(1)] are enforced when
the —e keyletter is used.

Used with the —e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table 1. This keyletter
is ignored if the b flag is not present in the file [see admin(1)] or if
the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the SCCS file tree.) A branch delta may
always be created from a non-leaf delta. Partial SIDs are inter-
preted as shown in the “SID Retrieved” column of Table 1.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The -k keyletter is implied by
the —e keyletter.

Causes a delta summary to be written into an l-file. If -1p is
used, then an l-file is not created; the delta summary is written on
the standard output instead. See IDENTIFICATION KEYWORDS
for detailed information on the l-file.

Causes the text retrieved from the SCCS file to be written on the
standard output. No g-file is created. All output that normally
goes to the standard output goes to file descriptor 2 instead,
unless the —s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded
by the SID of the delta that inserted the text line in the SCCS file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -n keyletters are used, the format is: %M%

10/89

get(1)

10/89

get(1)

value, followed by a horizontal tab, followed by the -m keyletter
generated format.

-g Suppresses the actual retrieval of text from the SCCS file. It is pri-
marily used to generate an l-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created delta in a given release

(e.g., —rl), or release and level (e.g., -r1.2).

—w string Substitute string for all occurrences of $W% when getting the file.
Substitution occurs prior to keyword expansion.

—aseq-no. The delta sequence number of the SCCS file delta (version) to be
retrieved. This keyletter is used by the comb command; it is not a
generally useful keyletter. If both the -r and -a keyletters are
specified, only the -a keyletter is used. Care should be taken
when using the —a keyletter in conjunction with the —e keyletter,
as the SID of the delta to be created may not be what one expects.
The -r keyletter can be used with the —a and —e keyletters to con-
trol the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the —i keyletter is used,
included deltas are listed following the notation “Included”’; if the -x keyletter is
used, excluded deltas are listed following the notation “Excluded”.

Page 3

get(1) get(1)
TABLE 1. Determination of SCCS Identification String
SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonef no R defaults to mR mR.mL mR.(mL+T)
none} yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no K> mR mR.mL R.T*™**
R no R = mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R <mR and
R - R does not exist hR.mL** hR.mL.(mB+1).1
Trunk succ.#
R - in release > R R.mL R.mL.(mB+1).1
and R exists
RL no No trunk succ. RL R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.
R.L - in release > R R.L R.L.(mB+1).1
R.LB no No branch succ. R.L.B.mS R.LB.(mS+1)
R.LB yes No branch succ. R.L.B.mS R.L.(mB+1).1
R.LBS no No branch succ. RILBS R.LB.(5+1)
R.L.BS yes No branch succ. R.L.BS R.L.mB+1).1
R.L.BS - Branch succ. R.L.BS R.L.mB+1).1
* “R"”, “L”, “B"”, and ‘‘S” are the “release”, “level”, “branch”, and “sequence”
components of the SID, respectively; “m” means “maximum’’. Thus, for
example, “RmL” means ““the maximum level number within release R”;
“R.L.(mB+1).1” means “the first sequence number on the new branch (i.e,
maximum branch number plus one) of level L within release R”. Note that
if the SID specified is of the form “R.L”, “R.L.B”, or “R.L.B.S”, each of the
specified components must exist.
** “hR” is the highest existing release that is lower than the specified, nonex-
istent, release R.
** This is used to force creation of the first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag [see admin(1)] is present in the
file. An entry of — means “irrelevant”.
1 This case applies if the d (default SID) flag is not present in the file. If the d

flag is present in the file, then the SID obtained from the d flag is interpreted
as if it had been specified on the command line. Thus, one of the other cases
in this table applies.

IDENTIFICATION KEYWORDS

Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The fol-
lowing keywords may be used in the text stored in an SCCS file:

Page 4

10/89

get(t)

10/89

get(1)
Keyword Value
SME Module: name; either the value of the m flag in the file [see admin(1)],
or if absent, the name of the SCCS file with the leading s.. removed.
1% $CCS identification: (SID) ($R%. $L%. $B%.38%) of the retrieved text.
RY Release:
L% Level.
$B% Brarich.
S% Sequence.
D% Current date (YY/MM/DD).
SHS Current date (MM/DD/YY).
$T% Current time (HH:MM:SS).
$E% Date newest applied delta was created (YY/MM/DD).
$G% Date newest applied delta was created (MM/DD/YY).
$U% Time newest applied delta was created (HH:MM:SS).
Y% Moduile type: value of the t flag in the SCCS file [see admin(1)].
$E% $CCs file niartie.
$P% Fully qualified SCCS file name.
0% The value of the q flag in the file [see: admin(1)].
$C% Cutrent line number. This keyword is intended for identifying mes-

sages output by the program such as “this should not have hap-
pened” type errors. It is not intended to be used on every line to pro-

vide sequence numbers.
$2% The four-character string @ (#) recognizable by the what command.
W A shorthand notation for constructing what strings for UNIX System
program files. $W% = $2%3Mi<tab>31%
K% Another shorthand notation for constructing what strings for non-

UNIX System program files: %A% = $2%%Y% ¥M% $I1%%2%

Several auxiliary files may be created by get. These files are known generically
as the g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag.
An auxiliary file name is formed from the SCCS file name: the last component of
all SCCS file names must be of the form s.module-name, the auxiliary files are
named by replacing the leading s with the tag. The g-file is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
tespectively.

The g-file, which contains the generated text, is created in the current directory
(unless the -p keyletter is used). A g-file is created in all cases, whether or not
any lines of text were generated by the get. It is owned by the real user. If the
=k keyletter is used or implied, its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The l-file is created in the current directory if the -1 keyletter is
used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.

Page 5

get(1)

get(1)
Lines in the I-file have the following format:

a. A blank character if the delta was applied; * otherwise.

b. A blank character if the delta was applied or was not applied and
ignored; * if the delta was not applied and was not ignored.

c. A code indicating a “special” reason why the delta was or was not
applied: “I"” (included), “X” (excluded), or “C” (cut off by a -c
keyletter).

d. Blank.

e. SCCS identification (SID).

f. Tab character.

8 Date and time (in the form YY/MM/DD HH:MM:SS) of creation.

h. Blank.

i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one hor-
izontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an —e keyletter for the same SID until delta is executed or the joint edit
flag, j, [see admin(1)] is set in the SCCS file. The p-file is created in the directory
containing the SCCS file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The format of
the p-file is: the gotten SID, followed by a blank, followed by the SID that the
new delta will have when it is made, followed by a blank, followed by the login
name of the real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the —i keyletter argument if it was
present, followed by a blank and the —x keyletter argument if it was present, fol-
lowed by a new-line. There can be an arbitrary number of lines in the p-file at
any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its con-
tents are the binary (2 bytes) process ID of the command (i.e., get) that created
it. The z-file is created in the directory containing the SCCS file for the duration
of get. The same protection restrictions as those for the p-file apply for the z-file.
The z-file is created with mode 444.

FILES
g-file Created by the execution of get.
p-file [see delta(1)]
g-file [see delta(1)]
z-file [see delta(1)]
bdiff Program to compute differences between the “gotten” file and
the g-file.
SEE ALSO

Page 6

admin(1), delta(1), help(1l), prs(1), what(1).
bdiff(1) in the User’s Reference Manual.

10/89

get(1) get(1)

DIAGNOSTICS
Use help(1) for explanations.

NOTES
If the effective user has write permission (either explicitly or implicitly) in the
directory containing the SCCS files, but the real user does not, then only one file
may be named when the —e keyletter is used.

10/89 Page 7

help(1) help (1)

NAME

help — ask for help with message numbers or SCCS commands
SYNOPSIS

help [args]

DESCRIPTION
help finds information to explain a message from a command or explain the use
of a SCCS command. Zero or more arguments may be supplied. If no argu-
ments are given, help will prompt for one.

The arguments may be either information within the parentheses following a
message or SCCS command names.

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try “help stuck”.

FILES
LIBDIR/help directory containing files of message text.
LIBDIR/help/helploc file containing locations of help files not in
LIBDIR/help.
LIBDIR usually /usr/ccs/1lib

10/89 Page 1

install (1M) install (1M)

NAME

install - install commands

SYNOPSIS

/etc/install [-c dira] [-£ dirb] [-i] [-n dirc] [-m mode] [~u user] [-g group] [-o]
[-s] file [dirx ..]

DESCRIPTION

10/89

The install command is most commonly used in “makefiles” [see make(1)] to
install a file (updated target file) in a specific place within a file system. Each file
is installed by copying it into the appropriate directory, thereby retaining the
mode and owner of the original command. The program prints messages telling
the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/bin, /usr/bin, /etc, /1ib, and /usr/1lib, in that order) for
a file with the same name as file. When the first occurrence is found, install
issues a message saying that it is overwriting that file with file, and proceeds to
do so. If the file is not found, the program states this and exits without further
action.

If one or more directories (dirx ...) are specified after file, those directories will
be searched before the directories specified in the default list.

The meanings of the options are:

—-c dira Installs a new command (file) in the directory specified by
dira, only if it is not found. If it is found, install issues a
message saying that the file already exists, and exits
without overwriting it. May be used alone or with the -s
option.

-£ dirb Forces file to be installed in given directory, whether or not
one already exists. If the file being installed does not
already exist, the mode and owner of the new file will be
set to 755 and bin, respectively. If the file already exists,
the mode and owner will be that of the already existing file.
May be used alone or with the —o or —s options.

-i Ignores default directory list, searching only through the
given directories (dirx ...). May be used alone or with any
other options except ~c and -£.

-n dirc If file is not found in any of the searched directories, it is
put in the directory specified in dirc. The mode and owner
of the new file will be set to 755 and bin, respectively.
May be used alone or with any other options except —c and

-f. .
-m mode The mode of the new file is set to mode.
-u user The owner of the new file is set to user.

Page 1

Iinstall (1M)

-g group
-o
-8
SEE ALSO
make(1).
Page 2

install (1M)

The group id of the new file is set to group. Only available
to the superuser.

If file is found, this option saves the “found” file by copy-
ing it to oLDfile in the directory in which it was found. This
option is useful when installing a frequently used file such
as /bin/sh, where the existing file cannot be removed.
May be used alone or with any other options except —c.

Suppresses printing of messages other than error messages.
May be used alone or with any other options.

10/89

Id(1) Id(1)

NAME
1d ~ link editor for object files

SYNOPSIS
1d [options] files ...

DESCRIPTION
The 1d command combines relocatable object files, performs relocation, and
resolves external symbols. Relocatable object files given as arguments are com-
bined to produce an executable object file, or, if the —r option is specified, relocat-
able object files are combined to produce one relocatable object file. The output
of 1d is left in a.out by default.

If any argument is a library, it is searched exactly once at the point it is encoun-
tered in the argument list. Only those routines defining an unresolved external
reference are loaded. The archive library symbol table [see ar(4)] is searched
sequentially with as many passes as are necessary to resolve external references
that can be satisfied by library members. Thus, the ordering of members in the
library is functionally unimportant, unless there exist multiple library members
defining the same external symbol.

The following options are recognized by 1d:

-a Produce an executable object file; give errors for undefined references.
This is the default behavior. —a may not be used with the —r option.

—e epsym
Set the entry point address for the output file to be that of the symbol
epsym.

-1x Search a library, 1libx.a, the conventional name for archive libraries. A
library is searched when its name is encountered, so the placement of -1
is significant.

-m Produce a memory map or listing of the input/output sections on the
standard output.

-o outfile
Produce an output object file named outfile. The name of the default
object file is a.out.

-r Combine relocatable object files to produce one relocatable object file. 1d
will not complain about unresolved references. This option cannot be
used with =a.

-8 Strip symbolic information from the output file. The debug and line sec-
tions and their associated relocation entries will be removed. Except for
relocatable files, the symbol table and string table sections will also be
removed from the output objéct file.

-t Turn off the warning about multiply defined symbols that are net the
same size.

-u symname , o
Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from an archive library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading of the

10/89 Page 1

id(1) id(1)

first routine. The placement of this option on the command line is
significant; it must be placed before the library that will define the symbol.
-L path
Add path to the library search directories. 1d searches for libraries first in
any directories specified with -L options, then in the standard directories.
This option is effective only if it precedes the -1 option on the command
line.
-M mapfile
Read mapfile as a text file of directives to 1d. Because these directives
change the shape of the output file created by 1d, use of this option is
strongly discouraged.

—Qly|n]
Under —Qy, an ident string is added to the .comment section of the out-
put file to identify the version of the link editor used to create the file.
This will result in multiple 1d idents when there have been multiple
linking steps, such as when using 1d -r. This is identical with the default
action of the cc command. —Qn suppresses version.

-v Output a message giving information about the version of 1d being used.

-X Generate a standard UNIX System file header within the ‘‘optional
header” field in the output file.

-YP, dirlist
Change the default directories used for finding libraries. dirlist is a colon-
separated path list.

The environment variable LD _LIBRARY PATH may be used to specify library
search directories. In the most general case, it will contain two directory lists
separated by a semicolon:

dirlist1; dirlist2
If 1d is called with any number of occurences of -1, as in

1d ... -Lpathl ...-Lpathn ...
then the search path ordering is

dirlist1 pathl ... pathn dirlist2 LIBPATH

FILES

libx.a libraries

a.out output file

LIBPATH usually /usr/ccs/lib:/1lib:/usr/1lib
SEE ALSO

as(1), cc(1), exec(2), exit(2), end(3C), a.out(4), ar(4).
The “C Compilation System’” chapter and the “Mapfile Option” appendix in the
Programmer’s Guide: ANSI C and Programming Support Tools.

Page 2 10/89

Id(1) id(1)

NOTES
Through its options, the link editor gives users great flexibility; however, those
who use the —M mapfile option must assume some added responsibilities. Use of
this feature is strongly discouraged.

10/89 Page 3

lex(1) lex(1)

NAME
lex — generate programs for simple lexical tasks
SYNOPSIS
lex [-ctvn -V —Q[yIn]] [file]
DESCRIPTION
The lex command generates programs to be used in simple lexical analysis of
text.

The input files (standard input default) contain strings and expressions to be
searched for and C text to be executed when these strings are found.

lex generates a file named lex.yy.c. When lex.yy.c is compiled and linked
with the lex library, it copies the input to the output except when a string
specified in the file is found. When a specified string is found, then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array. Matching is done in order of the patterns in
the file. The patterns may contain square brackets to indicate character classes, as
in [abx-z] to indicate a, b, %, y, and z; and the operators *, +, and ? mean,
respectively, any non-negative number of, any positive number of, and either zero
or one occurrence of, the previous character or character class. Thus, [a~zA-Z]+
matches a string of letters. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are
also supported. The notation r{d, e} in a rule indicates between d and e instances
of regular expression r. It has higher precedence than | , but lower than *, ?, +,
and concatenation. The character ~ at the beginning of an expression permlts a
successful match only immediately after a new-line, and the character $ at the
end of an expression requires a trailing new-line. The character / in an expres-
sion indicates trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must follow in the input
stream. An operator character may be used as an ordinary symbol if it is within
" symbols or preceded by \.

Three macros are expected: input () to read a character; unput (c) to replace a
character read; and output (c) to place an output character. They are defined in
terms of the standard streams, but you can override them. The program gen-
erated is named yylex (), and the lex library contains a main () that calls it. The
action REJECT on the right side of the rule causes this match to be rejected and
the next suitable match executed; the function yymore() accumulates additional
characters into the same yytext; and the function yyless(n) pushes back
yyleng -n characters into the input stream. (yyleng is an external int variable
giving the length of yytext.) The macros input and output use files yyin and
yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied;
if it precedes %%, it is copied into the external definition area of the lex.yy.c file.
All rules should follow a %%, as in yacc. Lines preceding %% that begin with a
non-blank character define the string on the left to be the remainder of the line; it
can be called out later by surrounding it with {}. In this section, C code (and
preprocessor statements) can also be included between %{ and %}. Note that
curly brackets do not imply parentheses; only string substitution is done.

10/89 Page 1

lex(1)

EXAMPLE

The external names generated by lex all begin with the prefix yy or YY.

D [0-9]
%{
void
skipcommnts (void)
{
for(;;)
{
while (input () !='*')
if (input ()=="/")
return;
else
unput (yytext [yyleng-1]);
}
}
%}
%%
if printf ("IF statement\n");
[a-z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n", yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n"):;
" printf ("binary op\n");
"\n" ;/*no action */
VA A skipcommnts () ;
%%

The flags must appear before any files.

-
-t
-V
-n
-v
—Qlyln]

Indicates C actions and is the default.

lex(1)

Causes the lex.yy.c program to be written instead to standard output.
Provides a two-line summary of statistics.

Will not print out the —v summary.

Print out version information on standard error.

Print out version information to output file lex.yy.c by using —Qy.
The -On option does not print out version information and is the

default.

Muiltiple files are treated as a single file. If no files are specified, standard input

is used.

Certain default table sizes are too small for some users.
resulting finite state machine can be set in the definitions section:

Page 2

The table sizes for the

10/89

lex(1)

¥pn
snn
%en
%an
sk n
on

lex(1)

number of positions is n (default 2500)
number of states is n (500)

number of parse tree nodes is n (1000)
number of transitions is n (2000)

number of packed character classes is n (2500)
size of output array is n (3000)

The use of one or more of the above automatically implies the —v option, unless
the -n option is used.

SEE ALSO
yacc(1).

The “lex” chapter in the Programmer’s Guide: ANSI C and Programming Support

Tools.

10/89

Page 3

lint(1) lint(1)

NAME

lint — a C program checker
SYNOPSIS

lint [options] files
DESCRIPTION

lint detects features of C program files which are likely to be bugs, non-
portable, or wasteful. It also checks type usage more strictly than the compiler.
lint issues error and warning messages. Among the things it detects are
unreachable statements, loops not entered at the top, automatic variables declared
and not used, and logical expressions whose value is constant. lint checks for
functions that return values in some places and not in others, functions called
with varying numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments
whose names end with .1n are taken to be the result of an earlier invocation of
lint with either the —c or the —o option used. The .1n files are analogous to .o
(object) files that are produced by the e¢c(1) command when given a .c file as
input. Files with other suffixes are warned about and ignored.

lint takes all the .c, .1n, and 11ib-1x.1n (specified by —1x) files and processes
them in their command line order. By default, 1int appends the standard C lint
library (11ib-1c.1n) to the end of the list of files. When the —c option is used,
the .1n and the 11ib-1x.1n files are ignored. When the —c option is not used,
the second pass of lint checks the .1n and the 1lib-1x.1ln list of files for
mutual compatibility.

Any number of lint options may be used, in any order; intermixed with file-
name arguments. The following options are used to suppress certain kinds of

combplaints:

-a Suppress complaints about assignments of long values to variables that
are not long.

-b Suppress complaints about break statements that cannot be reached.

-h Do not apply heuristic tests that attempt to intuit bugs; improve style, and
reduce waste.

-m Suppress complaints about external symbols that could be declared static.

-u Suppress complaints about functions and external variables used and not
defined, or defined and not used. (This option is suitable for running
lint on a subset of files of d larger program).

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never
used.

The following arguments alter 1int’s behavior:

-1dif Séarch for included header files in the directory dir before searchirg the
current directory and/or the standard place.

10/89 page 1

lint(1)

Page 2

-Ldir
-n

-P

-s

Y

lint(1)

Include the lint library 11ib-1x.1n. For example, you can include a lint
version of the math library 11ib-1m.1n by inserting —1m on the command
line. This argument does not suppress the default use of 1lib-lc.ln.
These lint libraries must be in the assumed directory. This option can be
used to reference local lint libraries and is useful in the development of
multi-file projects.

Search for lint libraries in dir before searching the standard place.
Do not check compatibility against the standard C lint library.

Attempt to check portability to other dialects of C. Along with stricter
checking, this option causes all non-external names to be truncated to
eight characters and all external names to be truncated to six characters
and one case.

Produce one-line diagnostics only. lint occasionally buffers messages to
produce a compound report.

Alter the behavior of /*LINTED [messagel*/ directives. Normally, lint
will suppress warning messages for the code following these directives.
Instead of suppressing the messages, lint prints an additional message
containing the comment inside the directive.

Specify that the file being linted will be treated as if the /*LINTLIBRARY*/
directive had been used. A lint library is normally created by using the
/*LINTLIBRARY*/ directive.

Print pathnames of files. lint normally prints the filename without the
path.

Cause lint to produce a .1n file for every .c file on the command line.
These .1n files are the product of lint’s first pass only, and are not
checked for inter-function compatibility.

Cause lint to create a lint library with the name 1lib-1x.1n. The —c
option nullifies any use of the —o option. The lint library produced is the
input that is given to lint’s second pass. The —o option simply causes
this file to be saved in the named lint library. To produce a 11ib-1x.1n
without extraneous messages, use of the —x option is suggested. The -v
option is useful if the source file(s) for the lint library are just external
interfaces.

Some of the above settings are also available through the use of "lint com-
ments" (see below).

Write to standard error the product name and release.

10/89

lint(1) flint(1)

-Wfile Write a . 1n file to file, for use by cflow(1).
-Rfile Write a .1n file to file, for use by cxref(1).

lint recognizes many cc(1) command line options, including -D, -U, -g, -0, -Xt,
-Xa, and -Xc, although —g and -0 are ignored. Unrecognized options are warned
about and ignored. The predefined macro lint is defined to allow certain ques-
tionable code to be altered or removed for lint. Thus, the symbol 1lint should
be thought of as a reserved word for all code that is planned to be checked by
lint.

Certain conventional comments in the C source will change the behavior of lint:

/*ARGSUSEDn*/
makes lint check only the first n arguments for usage; a missing
n is taken to be 0 (this option acts like the —v option for the next
function).

/*CONSTCOND*/ or /*CONSTANTCOND*/ or /+*CONSTANTCONDITION*/
suppresses complaints about constant operands for the next
expression.

/*EMPTY*/
suppresses complaints about a null statement consequent on an if
statement. This directive should be placed after the test expres-
sion, and before the semicolon. This directive is supplied to sup-
port empty if statements when a valid else statement follows. It
suppresses messages on an empty else consequent.

/*FALLTHRU*/ or /*FALLTHROUGH*/
suppresses complaints about fall through to a case or default
labelled statement. This directive should be placed immediately
preceding the label.

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused func-
tions and function arguments in this file. This is equivalent to
using the —v and -x options.

/*LINTED [message]*/
suppresses any intra-file warning except those dealing with unused
variables or functions. This directive should be placed on the line
immediately preceding where the lint warning occurred. The -k
option alters the way in which lint handles this directive. Instead
of suppressing messages, 1int will print an additional message, if
any, contained in the comment. This directive is useful in conjunc-
tion with the —s option for post-lint filtering.

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.
[This comment is typically placed just after calls to functions like
exit(2)].

10/89 Page 3

lint(1)

FILES

Pige 4

lint(1)

/*PRINTFLIKEn* /
makes lint check the first (n-1) arguments as usual. The nth
argument is interpreted as a printf format string that is used to
check the remaining arguments.

/*PROTOLIBn* /
causes lint to treat function declaration prototypes as function
definitions if n is non-zero. This directive can only be used in con-
junction with the
/* LINTLIBRARY */ directive. If n is zero, function prototypes will
be treated normally.

/*SCANFLIKEn*/
makes 1lint check the first (n-1) arguments as usual. The nth argu-
ment is interpreted as a scanf format string that is used to check
the remaining arguments.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first n
arguments are checked; a missing n is taken to be 0. The use of

the ellipsis terminator (...) in the definition is suggested in new or
updated code.

lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been processed,
if ~s is not specified. Finally, if the —¢ option is not used, information gathered
from all input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question mark.

The behavior of the —¢ and the —o options allows for incremental use of lint on
a set of C source files. Generally, one invokes lint once for each source file with
the —c option. Each of these invocations produces a .1n file that corresponds to
the .c file, and prints all messages that are about just that source file. After all
the source files have been separately run through lint, it is invoked once more
(without the ~c option), listing all the . 1n files with the needed ~1x options. This
will print all the inter-file inconsistencies. This scheme works well with make; it
allows make to be used to lint only the source files that have been modified
since the last time the set of source files were linted.

LIBDIR the directory where the lint libraries specified by the =1x
» option must exist
LIBDIR/1int[12] first and second passes
LIBDIR/11ib-1c.1n declarations for C Library functions (binary format; source
, ’ is in LIBDIR/11ib~1¢)
LIBPATH/11ib-1m. 1n -
declarations for Math Library functions (binary format;
sotirce is in LIBDIR /1lib-1m)

10/89

lint(1) lint(1)

TMPDIR/*1int* temporaries

TMPDIR usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam in tmpnam(3S)].
LIBDIR usually /ccs/1ib
LIBPATH usually /usr/ccs/lib:/1ib:/usr/1lib
SEE ALSO

cc(1), make(1).
See the “lint”” chapter in the C Programmer’s Guide: ANSI C and Programming Sup-
port Tools.

10/89 Page 5

lorder (1) lorder (1)

NAME

lorder - find ordering relation for an object library
SYNOPSIS

lorder file ...
DESCRIPTION

The input is one or more object or library archive files [see ar(1)]. The standard
output is a list of pairs of object file or archive member names; the first file of the
pair refers to external identifiers defined in the second. The output may be pro-
cessed by tsort(1) to find an ordering of a library suitable for one-pass access by
1d. Note that the link editor 1d is capable of multiple passes over an archive in
the portable archive format [see ar(4)] and does not require that lorder be used
when building an archive. The usage of the lorder command may, however,
allow for a more efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.

ar —cr library ' lorder *.o | tsort’

FILES
TMPDIR/*symref temporary files

TMPDIR/ *symdef temporary files

TMPDIR usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam() in
tmpnam(3S)].

SEE ALSO
ar(1), 1d(1), tsort(1), tempnam(3S), tmpname(3S), ar(4).
NOTES

lorder will accept as input any object or archive file, regardless of its suffix, pro-
vided there is more than one input file. If there is but a single input file, its suffix
must be .o.

10/89 Page 1

Iprof(1) Iprof(1)

:NAME .
1prof - display line-by-line execution count profile data

SYNOPSIS _
1prof [-p] [-s].[-x]‘[~T incdir] [-r srcfile] [-c cntfile]‘[-o prog][-V]
1prof -m filel.cnt file2.cnt filen.cnt [-T] —d destfile.cnt

‘DESCRIPTION
lprof reports the execution characteristics of :aprogram on a:(soutrce) line by line
basis. This is ‘useful as a means ‘to ‘determine which and how often ‘portions -of
ithe‘code were‘executed.
1prof interprets a profile file (prog.cnt by default) produced by the iprofiled ‘pro-
gram prog (a.out by default). prog creates a proﬁle file if it has been loaded with

the —ql option of cc. The profile information is computed for functions in a
source file if the —q1 option was used ‘when the source file was compiled.

By default, 1prof prints a listing of source files (the names of which are stored in
the symbol table of the executable file), with each line preceded by its line
number (in the source file) and the number of times the line ‘was executed.

The following options may appear singly or be combiried in any order:
-p Print listing, ‘each line preceded by the line number and the nhumber of

times it was executed (default). This option can be used together with the
-s option to print both the source listing and ‘summary information.

-8 Print ‘summary information ‘of percentage ‘of lines ‘of code éxecuted per
function.

-x Instead ‘of ; printing the execution ‘count numbers for each line, print ‘each
line preceded by its line humber and a [U] if the line was not executed. If
the line was ‘executed, print only the line number.

=1 incdir
Look for 'source ‘or header files in the ‘directory incdir in -addition to ‘the
current directory and the standard place for #include files (usually
/usxr/include). The user can specify more than one directory by using
multiple ~I options.

~r srcfile
Instead of printing all source files, print only those files named in =r
‘options (to be used with the =p option only). The user ¢an spécify multi-
ple files with a single - option.

~c cntfile
Use the file cntfile instead of prog.ent as the input profile file.

~o prog
Use ‘the name of the program prog instead of the name used when creating
the profile file. Because the program name stored in the profile file con-
tains the relative path, this option is necessary if the executable file or
profile file has been moved.

10/89 Page 1

Iprof(1) Iprof(1)

-V Print, on standard error, the version number of lprof.

Merging Data Files
lprof can also be used to merge profile files. The -m option must be accom-
panied by the —d option:

-m filel.cnt file2.cat filen.cnt —d destfile.cnt
Merge the data files filel .cnt through filen.cnt by summing the execution
counts per line, so that data from several runs can be accumulated. The
result is written to destfile.cnt. The data files must contain profiling data
for the same prog (see the —T option below).

-T Time stamp override. Normally, the time stamps of the executable files
being profiled are checked, and data files will not be merged if the time
stamps do not match. If -T is specified, this check is skipped.

CONTROLLING THE RUN-TIME PROFILING ENVIRONMENT
The environment variable PROFOPTS provides run-time control over profiling.
When a profiled program (or shared object) is about to terminate, it examines the
value of PROFOPTS to determine how the profiling data are to be handled. A ter-
minating shared object will honor every PROFOPTS option except file=filename.

The environment variable PROFOPTS is a comma-separated list of options inter-
preted by the program being profiled. If PROFOPTS is not defined in the environ-
ment, then the default action is taken: The profiling data are saved in a file (with
the default name, prog.cnt) in the current directory. If PROFOPTS is set to the
null string, no profiling data are saved. The following are the available options:

msg=[y|nl
If msg=y is specified, a message stating that profile data are being saved is
printed to stderr. If msg=n is specified, only the profiling error messages
are printed. The default is msg=y.

merge=[y|n]
If merge=y is specified, the data files will be merged after successive runs.
If merge=n is specified, the data files are not merged after successive runs,
and the data file is overwritten after each execution. The merge will fail if
the program has been recompiled, and the data file will be left in T™MPDIR.
The default is merge=n.

pid=[y|n]
If pid=y is specified, the name of the data file will include the process ID
of the profiled program. Inclusion of the process ID allows for the crea-
tion of different data files for programs calling fork. If pid=n is specified,
the default name is used. The default is pid=n. For lprof to generate its
profiling report, the —c option must be specified with 1prof otherwise the
default will fail.

dir=dirname
The data file is placed in the directory dirname if this option is specified.
Otherwise, the data file is created in the directory that is current at the
end of execution.

Page 2 10/89

Iprof (1) Iprof(1)

file=filename
filename is used as the name of the data file in dir created by the profiled
program if this option is specified. Otherwise, the default name is used.
For 1prof to generate its profiling report, the —c option must be specified
with lprof if the file option has been used at execution time; otherwise
the default will fail.
FILES
prog.cnt profile data
TMPDIR usually /usr/tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam in tmpnam(35)].
SEE ALSO
cc(1), prof(1), fork(2), tmpnam(3S).
The “1prof” chapter in the Programmer’s Guide: ANSI C and Programming Support
Tools.
NOTES
For the —m option, if destfile.cnt exists, its previous contents are destroyed.

Optimized code cannot be profiled; if both optimization and line profiling are
requested, profiling has precedence.

Different parts of one line of a source file may be executed different numbers of
times (e.g., the for loop below); the count corresponds to the first part of the line.

For example, in the following for loop

main ()

1 [2] {
int j;

1 [5] for (j = 0; j < 5; j++)
5 [6] sub (j);
1 [8] }

sub (a)

int a;
S [12] {
5 [13] printf("a is %d\n", a);
S [14] }

line 5 consists of three parts. The line count listed, however, is for the initializa-
tion part, that is, j = 0.

10/89 Page 3

m4(1) m4(1)

NAME

m4 — macro processor
SYNOPSIS

md4 [options] [files]
DESCRIPTION

The m4 command is a macro processor intended as a front end for C, assembler,
and other languages. Each of the argument files is processed in order; if there are
no files, or if a file name is —, the standard input is read. The processed text is
written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuf-
fered.
-s Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers from
the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199.
The size should be prime.

-sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, the above flags must appear before any file names and before any
-D or -U flags:
—Dname[=val]

Defines name to val or to null in val’s absence.

~Uname
undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no
arguments. Potential macro names consist of alphanumeric characters and under-
score (_), where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu-
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses that happen to turn up within the value of a nested call are as
effective as those in the original input text. After argument collection, the value
of the macro is pushed back onto the input stream and rescanned.

10/89 Page 1

m4(1)

Page 2

m4(1)

m4 makes available the following built-in macros. These macros may be
redefined, but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define

undefine
defn

pushdef
popdef

ifdef

shift

changequote

changecom

divert

undivert

the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $z in the replace-
ment text, where n is a digit, is replaced by the n-th argument.
Argument 0 is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the number of argu-
ments; $* is replaced by a list of all the arguments separated by
commas; $@ is like $*, but each argument is quoted (with the
current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previ-
ous one, if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is null.
The word unix is predefined.

returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies
the effect of the extra scan that will subsequently be performed.

change quote symbols to the first and second arguments. The sym-
bols may be up to five characters long. changequote without
arguments restores the original values (ie., ~ ~).

change left and right comment markers from the default # and
new-line. With no arguments, the comment mechanism is effec-
tively disabled. With one argument, the left marker becomes the
argument and the right marker becomes new-line. With two argu-
ments, both markers are affected. Comment markers may be up to
five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output is
the concatenation of the streams in numerical order; initially stream
0 is the current stream. The divert macro changes the current
output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu-
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

10/89

m4(1) m4(1)

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next new-
line.

ifelse has three or more arguments. If the first argument is the same

string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is repeated
with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string as a
decimal number.

decr returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, -, *, /, %, ** (exponentiation), bit-
wise & |, ~, and ~; relationals; parentheses. Octal and hex
numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument may
be used to specify the minimum number of digits in the result.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argu-
ment begins (zero origin), or —1 if the second argument does not
occur.

substr returns a substring of its first argument. The second argument is a

zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

translit transliterates the characters in its first argument from the set given
by the second argument to the set given by the third. No abbrevia-
tions are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inac-
cessible.

syscmd executes the UNIX System command given in the first argument.
No value is returned.

sysval is the return code from the last call to syscmd.

maketemp fills in a string of XXXXX in its argument with the current process
ID.

mdexit causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is 0.

mdwrap argument 1 will be pushed back at final EOF; example:

mdwrap (~ cleanup() ~)

10/89 Page 3

m4(1) m4(1)

errprint = prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all
if no arguments are given.
traceon with no arguments, turns on tracing for all macros (including

built-ins). Otherwise, turns on tracing for named macros.

traceoff turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.
SEE ALSO
as(1), cc(1).

Page 4 10/89

make (1) make (1)

NAME

make — maintain, update, and regenerate groups of programs

SYNOPSIS

make [-f makefile] [—eiknpqrst] [mnames]

DESCRIPTION

10/89

make allows the programmer to maintain, update, and regenerate groups of com-
puter programs. make executes commands in makefile to update one or more tar-
get names (names are typically programs). If the —£ option is not present, then
makefile, Makefile, and the Source Code Control System (SCCS) files
s.makefile, and s.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one ~f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prere-
quisite files of a target are added recursively to the list of targets. Missing files
are deemed to be outdated.

The following list of four directives can be included in makefile to extend the
options provided by make. They are used in makefile as if they were targets:

.DEFAULT: If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

- IGNORE : Same effect as the —i option.

.PRECIOUS: Dependents of the .PRECIOUS entry will not be removed when
quit or interrupt are hit.

~SILENT: Same effect as the —s option.
The options for make are listed below:
-e Environment variables override assignments within makefiles.

~£ makefile Description filename (makefile is assumed to be the name of a
description file).

-i Ignore error codes returned by invoked commands.

-k Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

-n No execute mode. Print commands, but do not execute them.
Even command lines beginning with an @ are printed.

-p Print out the complete set of macro definitions and target
descriptions.

~-q Question. make returns a zero or non-zero status code depend-
ing on whether or not the target file has been updated.

~r Do not use the built-in rules.

=8 Silent mode. Do not print command lines before executing.

-t Touch the target files (causing them to be updated) rather than

issue the usual commands.

Page 1

make (1) make (1)

Creating the makefile

The makefile invoked with the ~f option is a carefully structured file of explicit
instructions for updating and regenerating programs, and contains a sequence of
entries that specify dependencies. The first line of an entry is a blank-separated,
non-null list of targets, then a :, then a (possibly null) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin with a tab are
shell commands to be executed to update the target. The first non-empty line
that does not begin withea tab or # begins a new dependency or macro definition.
Shell commands may be continued across lines with a backslash-new-line (\
new-line) sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce
ab
exactly the same as the shell would.

Sharp (#) and new-line surround comments including contained \ new-line
sequences.

The following makefile says that pgm depends on two files a.o and b.o, and that
they in turn depend on their corresponding source files (a.c and b.c) and a com-
mon file incl.h:

pgm: a.o b.o

cc a.o b.o —o pgm
a.o: incl.h a.c

cc -c a.c
b.o: incl.h b.c

cc -c b.c

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to exe-
cute commands. The default is /bin/sh. The first one or two characters in a
command can be the following: @, -, @, or —@. If @ is present, printing of the
command is suppressed. If - is present, make ignores an error. A line is printed
when it is executed unless the —s option is present, or the entry .SILENT: is
included in makefile, or unless the initial character sequence contains a @. The -n
option specifies printing without execution; however, if the command line has the
string $(MAKE) in it, the line is always executed (see the discussion of the
MAKEFLAGS macro in the “Environment” section below). The -t (touch) option
updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the —i option
is present, if the entry .IGNORE: is included in makefile, or if the initial character
sequence of the command contains —, the error is ignored. If the ~k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

Page 2 10/89

make (1) make (1)

Interrupt and quit cause the target to be deleted unless the target is a dependent
of the directive .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be macro
definitions and are processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The —e option causes the environment
to override the macro assignments in a makefile. Suffixes and their associated
rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except —f and -p) defined for the command line. Further,
upon invocation, make “invents’”’ the variable if it is not in the environment, puts
the current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This feature proves very
useful for “super-makes”. In fact, as noted above, when the -n option is used,
the command $ (MAKE) is executed anyway; hence, one can perform a make -n
recursively on a whole software system to see what would have been executed.
This result is possible because the -n is put in MAKEFLAGS and passed to further
invocations of $ (MAKE). This usage is one way of debugging all of the makefiles
for a software project without actually doing anything.

Include Files

If the string include appears as the first seven letters of a line in a makefile, and
is followed by a blank or a tab, the rest of the line is assumed to be a filename
and will be read by the current invocation, after substituting for any macros.

Macros

Entries of the form stringl = string2 are macro definitions. string2 is defined as
all characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(stringl[:substl=[subst2]]) are replaced by string2. The
parentheses are optional if a single-character macro name is used and there is no
substitute sequence. The optional :subst]=subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are del-
imited by blanks, tabs, new-line characters, and beginnings of lines. An example
of the use of the substitute sequence is shown in the “Libraries” section below.

Internal Macros

10/89

There are five internally maintained macros that are useful for writing rules for
building targets.

$* The macro $* stands for the filename part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module that is outdated with respect to the target (the “manufac-
tured”” dependent file name). Thus, in the .c.o rule, the $< macro would
evaluate to the .c file. An example for making optimized .o files from .c
files is:

Page 3

make (1) make (1)

cc ¢ -0 $*.c
or:
.c.o: ‘
cc —© -0 $<
$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are outdated with respect to the
target, and essentially those modules that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to 1ib and $%
evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to “directory part”
for D and “file part” for F. Thus, $(@D) refers to the directory part of the string
$@. If there is no directory part, ./ is generated. The only macro excluded from
this alternative form is $?2.

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites
such as .c, .s, etc. If no update commands for such a file appear in makefile, and
if an inferable prerequisite exists, that prerequisite is compiled to make the target.
In this case, make has inference rules that allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.C .c~ £ £~ .8 .8~ .sh .sh~ .C .C~
.c.a_.c.o .c~.a .c~.c¢ .c~.0 .f.a .f.o .f~.a .f~.f .f~.
.h~.h .l.c .l1.o .l~.¢ .1~.1 .l~.0 .s.a .s.0 .s~.a .s~.
.8~.8 .sh~.sh .y.¢ .y.0 .y~.¢ .y~.0 .y~.y .C.a .C.o .C~.
.C~.C .C~.0 L.c .L.o .L~.C .L~.L .L~.0 .Y.C .Y.0o .Y~.
Y~.0 .Y~.Y

The internal rules for make are contained in the source file rules.c for the make
program. These rules can be locally modified. To print out the rules compiled
into the make on any machine in a form suitable for recompilation, the following
command is used:

make -pf — 2>/dev/null </dev/null
A tilde in the above rules refers to an SCCS file [see sccsfile(4)]. Thus, the rule
.c~.o would transform an SCCS C source file into an object file (.0). Because the
s. of the SCCS files is a prefix, it is incompatible with the make suffix point of

view. Hence, the tilde is a way of changing any file reférence into an SCCS file
reference.

A rule with only oneé suffix (for example, .c:) is the definition of how to build x
from x.c. In effect; the other suffix is null. This feature is useful for building
targets from only one source file, for example; shell procedures and simple C pro-
grams.

Page 4 10789

QMmoo

make (1) make(1)

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant: the first possible name for which both a file and a rule exist is inferred
as a prerequisite. The default list is:

.SUFFIXES: .0 .c .c~ .y .y~ .1 .1~ .8 .s~ .sh .sh~ .h .h~ .f .f~.C
.C~ .Y .Y~ .L .L~

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules

The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o —o pgm
a.o b.o: incl.h

This abbreviation is possible because make has a set of internal rules for building
files. The user may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc(1), lex(1), and yace(1), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with
suffix .o from a file with suffix .c is specified as an entry with .c.o: as the tar-
get and no dependents. Shell commands associated with the target define the
rule for making a .o file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

Libraries

10/89

If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within the
library. Thus, 1ib(file.o) and $ (LIB) (file.o) both refer to an archive library
that contains £ile.o. (This example assumes the LIB macro has been previously
defined.) The expression $ (LIB) (filel.o file2.0) is not legal. Rules pertain-
ing to archive libraries have the form .XX.a where the XX is the suffix from
which the archive member is to be made. An unfortunate by-product of the
current implementation requires the XX to be different from the suffix of the
archive member. Thus, one cannot have lib(file.o) depend upon file.o
explicitly. The most common use of the archive interface follows. Here, we
assume the source files are all C type source:
1ib: 1lib(filel.o) lib(file2.0) lib(file3.o)
@echo 1lib is now up-to-date
.c.a:
$(ce) ~c $(CFLAGS) $<
$(AR) $(ARFIAGS) $@ $*.o0
m -f $*.0

Page 5

make (1) make (1)

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.o0)
$(CC) -¢c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) lib $7?
rm $?
@echo lib is now up-to-—date
.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object filenames (inside 1ib) whose C source files are out-
dated. The substitution mode translates the .o to .c. (Unfortunately, one cannot
as yet transform to .c~; however, this transformation may become possible in the
future.) Also note the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

FILES
[Mm]akefile and s. [Mm] akefile
/bin/sh

SEE ALSO
cc(1), 1lex(1), yace(1), print £(3S), sccsfile(4).
cd(1), sh(1) in the User’s Reference Manual.
See the “make” chapter in the Programmer’s Guide: ANSI C and Programming Sup-
port Tools.

NOTES
Some commands return non-zero status inappropriately; use —i or the — com-
mand line prefix to overcome the difficulty.
Filenames with the characters = : @ will not work. Commands that are directly
executed by the shell, notably cd(1), are ineffectual across new-lines in make. The
syntax lib(filel.o file2.o0 file3.0) is illegal. You cannot build
lib(file.o) from file.o.

Page 6 10/89

mes(1) mces(1)

NAME

mcs — manipulate the comment section of an object file.

SYNOPSIS

mes [-a string] [—c] [-d] [-n name] [-p] [-V] file ...

DESCRIPTION

The mcs command is used to manipulate a section, by default the .comment sec-
tion, in an ELF object file. It is used to add to, delete, print, and compress the
contents of a section in an ELF object file, and only print the contents of a section
in a COFF object file. mcs must be given one or more of the options described
below. It applies each of the options in order to each file.

The following options are available.

-a string
Append string to the comment section of the ELF object files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section of the ELF object files. All
duplicate entries are removed. The ordering of the remaining entries is
not disturbed.

-d Delete the contents of the comment section from the ELF object files. The
section header for the comment section is also removed.

-n name
Specify the name of the comment section to access if other than .comment.
By default, mcs deals with the section named .comment. This option can
be used to specify another section.

-p Print the contents of the comment section on the standard output. Each
section printed is tagged by the name of the file from which it was
extracted, using the format filename [member_name] : for archive files; and
filename: for other files.

-V Print, on standard error, the version number of mcs.

If the input file is an archive [see ar(4)], the archive is treated as a set of indivi-
dual files. For example, if the —a option is specified, the string is appended to the
comment section of each ELF object file in the archive; if the archive member is
not an ELF object file, then it is left unchanged.

If mcs is executed on an archive file the archive symbol table will be removed,
unless only the —p option has been specified. The archive symbol table must be
restored by executing the ar command with the —-s option before the archive can
be linked by the 1d command. mcs will produce appropriate warning messages
when this situation arises.

EXAMPLES

10/89

mcs -p file # Print file’s comment section

mcs -a string file # Append string to file’s comment section

Page 1

mes(1) mcs(1)

FILES
TMPDIR/mcs* temporary files
TMPDIR usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam() in
tmpnan(3S)].
SEE ALSO

ar(1), as(1), ec(1), 1d(1), tmpnam(3S), a.out(4), ar(4).
See the “Object Files” chapter in Programmer’s Guide: ANSI C and Programming
Support Tools.

NOTES

mcs cannot add to, delete or compress the contents of a section that is contained
within a segment.

Page 2 10/89

‘Montbi(1M) montbif(¥i)

NAidE

fstithl - create thohetry ‘Yatabase

'SYNOPSIS

‘monitbl [~o outfile] infile

‘DESCRIPTION

Yo/se

The onitbl ‘command takes as itiput a specxfrcat:on file, itfile, thit describes ‘the
formattirig ‘converitions for nutneric ‘quantities (monetary and otherwise) for a
specific locale.

“ooutfile Write the ‘output on outfile; otherwise, write the output on a file
named LC_MONETARY.

The ‘output of montbl is suitable for use by the 1dcaleconw() function (see
1ocaleconv(3C)). Before outﬁle can be used by localeconv(), it must be
inistalled in the /usr/1ib/localeflocale ditectory with ‘the name LC_MONETARY by
someornie who lis super-uSer or ‘a member of group bin. Iocale i ‘the locale whose
numeric formatting conventions are described in infile. This file must be readable
by ‘user, group, and other; no other permissions should be set. To use formattmg
conventions for nuheric quantities described in this file, set the LC_MONETARY
environment variable appropridtely (sée énviron(5) or setlocale(3C)).

‘Once mstélléd this file will be used by the lécaleconw() function to initialize a
structure of type struct lconv. For a déscription of each field in this structure,
see localeconv(3C).

struct 1conv 1{
‘char *decunal _point; /* ".n */
char *thousands_sép; /* o (zéro length string) */
‘char “grduping; VALY ‘ ‘
chir *iAt ‘curr symbol; [* vy
‘char *currency _symbol; [* nnox/

char *mon_décimal point; /* " */

‘char *moh_tlidusands sep; /* " */

char *ién _grouping; /* "/

‘char *po ‘:L'?tlve s:Lgn, [* "%/

char *negative sign; /* "" x/

char int_frac digits; /* ‘CHAR.MAX */

‘char frac d:Lg:Lts, /* CHAR MAX */
char p_cs prededes; /* CHAR MAX */

Oy. space; /* CHAR MAX */

/* CHRR MAX */

ep /% ‘CHAR 1 MAX */
char p. s:.gn_posn, Vil CHAR MAX */
‘char ‘n.sign. pésn; /* CHAR MAX */

¥:

The specxﬁcatlon f1Ie contams the value each struct 1conv member should be

LT

set by the LC. NUMERLC category to setlocale(BC) Each member’s value given
on a ‘separate line and in the order listed in the struct 1lconv definition above.

TiEEE 41

montbl(1M) montbl (1M)

FILES

Lines starting with a # are taken to be comments and are ignored. All other lines
are assumed to describe their corresponding structure member. A blank line
describes the null string for structure members that are pointers to strings. A
character in a string may be in octal or hex representation. For example, \141 or
\x61 could be used to represent the letter ‘a’.

Given below is an example of what the specification file for Italy would look like:
Italy
3

ITL.
L.

.
w

HHEFOFFOFROO |

Note that the first non-comment line in the specification file describes the group-
ing field.

/1lib/locale/locale/LC_MONETARY
LC_MONETARY database for locale

/usr/1lib/locale/C/montbl_C
input file used to construct LC_MONETARY in the default locale.

SEE ALSO

Page 2

localeconv(3C), setlocale(3C) in the Programmer’s Reference Manual.

10/89

nm(1)

NAME

nm(1)

nm — print name list of an object file

SYNOPSIS

nm [—oxhvnefurplVT] files

DESCRIPTION

The nm command displays the symbol table of each ELF or COFF object file,
specified by file(s). The file may be a relocatable or absolute ELF or COFF object
file; or it may be an archive of relocatable or absolute ELF or COFF object files.
For each symbol, the following information will be printed:

Index

Value

Size

Bind

Other
Shndx

Name

The index of the symbol. (The index appears in brackets.)

The value of the symbol is one of the following: a section offset for
defined symbols in a relocatable file; alignment constraints for symbols
whose section index is SHN_COMMON; a virtual address in executable and
dynamic library files.

The size in bytes of the associated object.

A symbol is of one of the following types: NOTYPE (no type was
specified), OBJECT (a data object such as an array or variable), FUNC (a
function or other executable code), SECTION (a section symbol), or FILE
(name of the source file).

The symbol’s binding attributes. LOCAL symbols have a scope limited
to the object file containing their definition; GLOBAL symbols are visible
to all object files being combined; and WEAK symbols are essentially glo-
bal symbols with a lower precedence than GLOBAL.

A field reserved for future use, currently containing 0.

Exce