
ATlaT

UNIX® System V
Programmer's Reference Manual

©1989 AT&T
©1986,1987,19~8,1989 Sun Microsystems, Inc.
©1985 Regents of the University of California
All Rights Reserved
Printed in USA

NOTICE

The information in t~is document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

ACKNOWLEDGEMENT

AT&T gratefully acknowledges the X/Open Company Limited for permission
portions of its copyrighted X/Open Portability Guide, Issue 3.

TRADEMARKS

ACT, Micro-Term, and MIME are trademarks of Micro-Term.
Ann Arbor is a trademark of Ann Arbor Terminals.
Beehive is a trademark of Beehive International.
Concept is a trademark of Human Designed Systems.
DEC, PDP, VAX andVT1 00 are trademarks of Digital Equipment Corporation.
Diablo is a registered trademark of Xerox Corporation.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
HP is a trademark of Hewlett-Packard.
LSI is a trademark of Lear Siegler.
Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
Teleray is a registered trademark of Research, Inc.
TELETYPE, UNIX, and WE are registered trademarks of AT&T.
TeleVideo is a registered trademark of TeleVideo Systems.

Introduction

This manual describes the programming features of the UNIX system. It con­
tains individual manual pages that describe commands, system calls, subrou­
tines, file formats, and other useful topics, such as the ASCII table shown on
ascii(5). It provides neither a general overview of the UNIX system nor details
of the implementation of the system.

Not all commands, features, and facilities described in this manual are available
in every UNIX system. Some of the features require additional utilities that may
not exist on your system.

The manual is divided into five sections:

1. Commands
2. System Calls
3. Subroutines:

3C. C Programming Language Library Routines
3S. Standard I/O Library Routines
3E. Executable and Linking Format Library Routines
3G. General Purpose Library Routines
3M. Math Library Routines
3X. Specialized Library Routines

4. File Formats
5. Miscellaneous Facilities

Section 1 (Commands) describes commands that support C and other program­
ming languages.

Section 2 (System Calls) describes the access to the services provided by the
UNIX system kernel, including the C language interface.

Section 3 (Subroutines) describes the available general subroutines. In many
cases, several related subroutines are described on the same manual page. Their
binary versions reside in various system libraries. See intro(3) for descriptions
of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a. out (4).
Excluded are files used by only one command (for example, the assembler's
intermediate files, if any). In general, the C language structures corresponding
to these formats can be found in the directories /usr/include and
/usr/include/sys.

Introduction 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is con­
tained in the appropriate section of another manual. References with (1) follow­
ing the command mean that the utility is contained in this manual or the User's
Reference Manual. In these cases, the SEE ALSO section of the entry in which the
reference appears will point you to the correct book.

Each section consists of a number of independent entries of a page or so each.
Entries within each section are alphabetized, with the exception of the introduc­
tory entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, alphabetized under
its "primary" name, the name that appears at the upper corners of each manual
page. Subsections 3C and 3S are grouped together because their functions con­
stitute the standard C library.

All entries are based on a common format, not all of whose parts always
appear:

2

• The NAME part gives the name(s) of the entry and briefly states its pur­
pose.

• The SYNOPSIS part summarizes the use of the program or function being
described. A few conventions are used, particularly in Section 2 (System
Calls):

o Constant width typeface strings are literals and are to be typed
just as they appear.

o Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the manual.

o Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as name
or file, it always refers to a file name.

D Ellipses ... are used to show that the previous argument prototype
may be repeated.

D A final convention is used by the commands themselves. An argu­
ment beginning with a minus - or plus + sign is often taken to be
some sort of flag argument, even if it appears in a position where a
file name could appear. Therefore, it is unwise to have files whose
names begin with - or +.

Programmer's Reference Manual

Introduction

• The DESCRIPTION part describes the utility.

• The EXAMPLE(S) part gives example(s) of usage, where appropriate.

• The FILES part gives the file names that are built into the program.

• The SEE ALSO part gives pointers to related information.

• The DIAGNOSTICS part discusses the diagnostic indications that may be
produced. Messages that are intended to be self-explanatory are not
listed.

• The NOTES part gives generally helpful hints about the use of the utility.

A "Table of Contents" and a "Permuted Index" derived from that table precede
Section 1. The "Permuted Index" is a list of keywords, given in the second of
three columns, together with the context in which each keyword is found. Key­
words are either topical keywords or the names of manual entries. Entries are
identified with their section numbers shown in parentheses. This is important
because there is considerable duplication of names among the sections, arising
principally from commands and functions that exist only to exercise a particular
system call. The right column lists the name of the manual page on which each
keyword may be found. The left column contains useful information about the
keyword.

Introduction 3

Table of Contents

1. Commands

intro(1) ... introduction to programming commands
admin(1) ... create and administer sees files
ar(1) ... maintain portable archive or library
as(1) ;... assembler
cb(l) .. e program beautifier
cc(1) ... e compiler
cdc(1) .. change the delta comment of an sees delta
cflow(1) .. generate e flowgraph
chrtbl(1M) .. generate character classification and conversion tables
cof2elf(1) ... eOFF to ELF object file translation
colltbl(1M) .. create collation database
comb(1) ... combine sees deltas
convert(1) ... convert archive files to common formats
cscope(1) ... interactively examine a e program
ctrace(1) .. e program debugger
cxref(1) .. generate e program cross-reference
delta(1) .. make a delta (change) to an sees file
dis(1) ... object code disassembler
dump(1) ... dump selected parts of an object file
get(1) ... get a version of an sees file
help(1) ... ask for help with message numbers or sees commands
install(1M) .. install commands
Id(1) ... link editor for object files
lex(1) .. generate programs for simple lexical tasks
lint(1) ... a C program checker
lorder(l) .. find ordering relation for an object library
lprof(l) .. display line-by-line execution count profile data
m4(1) ... macro processor
make(1) ... maintain, update, and regenerate groups of programs
mcs(1) ... manipulate the comment section of an object file
montbl(lM) .: ... : .. create monetary database
nm(l) ... print name list of an object file
prof(1) .. display profile data
prs(1) .. print an sees file
regcmp(1) ... regular expression compile
rmdel(1) .. remove a delta from an sees file
sact(1) .. ; print current sees file editing activity
sccsdiff(1) .. compare two versions of an sees file

Table of Contents 1

Table of Contents

sdb(1) .. symbolic debugger
size(1) .. print section sizes in bytes of object files
strip(1) strip symbol table, debugging and line number information from an object file
tsort(1) .. topological sort
unget(1) .. undo a previous get of an sees file
val(1) ... validate an sees file
vc(1) ... version control
what(1) ... ~............................... print identification strings
yacc(1) ... yet another compiler-compiler

2. System Calls
intro(2) .. introduction to system calls and error numbers
access(2) .. determine accessibility of a file
acct(2) .. enable or disable process accounting
alarm (2) set a process alarm clock
brk, sbrk(2) .. change data segment space allocation
chdir(2) ... change working directory
chmod(2) ... change mode of file
chown(2) ... change owner and group of a file
chroot (2) change root directory
close(2) ... close a file descriptor
creat(2) ... create a new file or rewrite an existing one
dup(2) ... duplicate an open file descriptor
exec: execl, execv, execle, execve, execlp, execvp(2) .. execute a file
exit, _exit (2) terminate process
fcntl (2) ... file control
fork(2) .. create a new process
getdents(2) read directory entries and put in a file system independent format
getmsg(2) .. get next message off a stream
getpid, getpgrp, getppid(2) get process, process group, and parent process IDs
getuid, geteuid, getgid, getegid (2)

... get real user, effective user, real group, and effective group IDs
ioctl (2) control device
kill(2) .. send a signal to a process or a group of processes
link(2) link to a file
lseek(2) .. move read/write file pointer
mkdir(2) ... make a directory
mknod (2) make a directory, or a special or ordinary file
mount(2) ... mount a file system

2 Programmer's Reference Manual

Table of Contents

msgctl(2) .. message control operations
msgget(2) .. get message queue
msgop(2) ... message operations
nice(2) ... change priority of a process
open (2) open for reading or writing
pause(2) ... suspend process until signal
pipe(2) ... create an interprocess channel
plock(2) .. lock process, text, or data in memory
poll(2) .. STREAMS input/output multiplexing
profil (2) execution time profile
ptrace(2) .. process trace
putmsg(2) ... send a message on a stream
read (2) read from file
rmdir(2) .. remove a directory
semctl(2) .. semaphore control operations
semget(2) ... get set of semaphores
semop(2) ... semaphore operations
setpgrp(2) .. set process group 10
setuid, setgid(2) ... set user and group IDs
shmctl(2) ... shared memory control operations
shmget(2) ... get shared memory segment identifier
shmop(2) .. shared memory operations
signa1(2) ... specify what to do upon receipt of a signal
sigset, sighold, sigrelse, sigignore, sigpause(2) ... signal management
stat, fstat (2) get file status
statfs, fstatfs(2) .. get file system information
stime(2) set time
sync(2) .. update super block
sysfs(2) ... get file system type information
time(2) ... get time
times(2) .. get process and child process times
uadmin(2) ... administrative control
ulimit(2) .. get and set user limits
umask(2) set and get file creation mask
umount(2) .. unmount a file system
uname(2) .. get name of current UNIX system
unlink(2) remove directory entry
ustat(2) ... get file system statistics
utime(2) .. set file access and modification times
wait(2) ... wait for child process to stop or terminate

Table of Contents 3

Table of Contents

write(2) .. write on a file

3. Functions

intro(3) .. introduction to functions and libraries
a64l, l64a(3C) .. convert between long integer and base-64 ASCII string
abort(3C) .. generate an abnormal termination signal
abs, labs(30 ... return integer absolute value
addseverity(3C) build a list of severity levels for an application for use with fmtmsg
atexit(3C) .. add program termination routine
bsearch(30 ... binary search a sorted table
clock(3C) ... report CPU time used
conv: toupper, tolower, _toupper, _tolower, toascii(3C) translate characters
crypt, setkey, encrypt(30 .. generate encryption
ctermid (35) generate file name for terminal
ctime, localtime, gmtime, asctime, tzset (30 convert date and time to string
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,

isprint, isgraph, isascii(3C) ... character handling
cuserid (35) get character login name of the user
dial(3C) ... establish an out-going terminal line connection
difftime(3C) .. ; ... computes the difference between two calendar times
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C) directory operations
div, ldiv(3C) ... compute the quotient and remainder
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,

lcong48(3C) generate uniformly distributed pseudo-random numbers
dup2(3C) duplicate an open file descriptor
ecvt, fcvt, gcvt(3C) .. convert floating-point number to string
end, etext, edata(3C) .. last locations in program
fclose, fflush(35) ... close or flush a stream
ferror, feof, clearerr, fileno(3S) ... stream status inquiries
ffs (3C) find first set bit
fmtmsg(3C) ... display a message on stderr or system console
fopen, freopen, fdopen(35) .. open a stream
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky(3C)

.. IEEE floating-point environment control
fread, fwrite(3S) ... binary input/output
frexp, ldexp, 10gb, modf, modff, nextafter, scalb(3C)

... manipulate parts of floating-point numbers
fseek, rewind, ftell(3S) .. reposition a file pointer in a stream
fsetpos, fgetpos(3C) ... reposition a file pointer in a stream

4 Programmer's Reference Manual

Table of Contents

ftw(3C) ... walk a file tree
getc, getchar, fgetc, getw(3S) ... get character or word from a stream
getcwd (3C) .. get pathname of current working directory
getenv(3C) ... return value for environment name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent(3C) get group file entry
getlogin (3C) get login name
getmntent, getmntany(3C) .. get mnttab file entry
getopt(3C) ... get option letter from argument vector
getpass(3C) .. read a password
getpw(3C) get name from UID
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C)

.. manipulate password file entry
gets, fgets(3S) .. get a string from a stream
getsubopt (3C) parse suboptions from a string
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname(3C)

... access utmp file entry
hsearch, hcreate, hdestroy(3C) .. manage hash search tables
insque, remque(3C) ... insert/remove element from a queue
isnan, isnand, isnanf, finite, fpclass, unordered (3C)

.. determine type of floating-point number
13tol, ltoI3(3C) ... convert between 3-byte integers and long integers
localeconv(3C) .. get numeric formatting information
lockf(3C) ... record locking on files
lsearch, lfind(3C) .. linear search and update
maUoc, free, reaUoc, calloc (3C) memory allocator
mbchar: mbtowc, mblen, wctomb(3C) , multibyte character handling
mbstring: mbstowcs, wcstombs(3C) .. multibyte string functions
memory: memccpy, memchr, memcmp, memcpy, memmove, memset(3C)

... memory operations
mkfifo (3C) create a new FIFO
mktemp(3C) ... make a unique file name
mktime(3C) ... converts a tm structure to a calendar time
monitor (3C) prepare execution profile
offsetof(3C) ... offset of structure member
perror(3C) print system error messages
popen, pclose(3S) ... initiate pipe to/from a process
printf, fprintf, sprintf(3S) .. print formatted output
putc, putchar, fputc, putw(3S) .. put character or word on a stream
putenv(3C) .. change or add value to environment
putpwent(3C) ... write password file entry

Table of Contents 5

Table of Contents

puts, fputs (35) put a string on a stream
qsort(3C) ... quicker sort
raise(3C) .. send signal to program
rand, srand(3C) ... simple random-number generator
remove(3C) .. remove file
rename(3C) .. rename file
seanf, fseanf, sseanf(3S) convert formatted input
setbuf, setvbuf(3S) assign buffering to a stream
setjmp, 10ngjmp(3C) ... non-local goto
setlocale(3C) .. modify and query a program's locale
sleep(3C) .. suspend execution for interval
ssignal, gsignal(3C) .. software signals
stdio(3S) ... standard buffered input/output package
stdipc: ftok(3C) ... standard interprocess communication package
strcoll(3C) .. string collation
strerror (3C) get error message string
strftime, cftime, ascftime, (3C) convert date and time to string
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,

strrchr, strpbrk, strspn, strcspn, strtok, strstr(3C) string operations
strtod, atof, (3C) .. convert string to double-precision number
strtol, strtoul, atol, atoi(3C) ... convert string to integer
strxfrm(3C) .. string transformation
swab(3C) .. swap bytes
system (35) issue a shell command
tmpfile(3S) ... create a temporary file
tmpnam, tempnam(3S) ... create a name for a temporary file
tsearch, tfind, tdelete, twalk(3C) ... manage binary search trees
ttyname, isatty(3C) ... find name of a terminal
ttyslot(3C) ... find the slot in the utmp file of the current user
ungetc(3S) .. push character back onto input stream
vprintf, vfprintf, vsprintf(3S) print formatted output of a variable argument list
elf(3E) ... object file access library
elf_begin(3E) ... make a file descriptor
elf_cntl(3E) ; .. control a file descriptor
elf_end(3E) .. :. finish using an object file
elf_errmsg, elf_errno(3E) ... error handling
elf_fill(3E) ... set fill byte
elUlagdata, elUlagehdr, elf _ flagelf, elf _ flagphdr, elf _ flagscn, elf _ flagshdr(3E)

.. manipulate flags
elUsize: elf32 _fsize(3E) .. return the size of an object file type

6 Programmer's Reference Manual

Table of Contents

elf...,getarhdr(3E) .. retrieve archive member header
elf...,getarsym(3E) .. retrieve archive symbol table
elf-Betbase(3E) .. get the base offset for an object file
elf-Betdata, eltnewdata, eltrawdata(3E) .. get section data
elf -Betehdr: elf32 -Betehdr, elf32 _ newehdr(3E) retrieve class-dependent object file header
elf-Betident(3E) ... retrieve file identification data
elf-Betphdr: elf32-Betphdr, elf32_newphdr(3E)

... retrieve class-dependent program header table
elf -Betscn, elt ndxscn, elf _ newscn, elf _ nextscn (3E) get section information
elf-Betshdr: elf32-Betshdr(3E) : retrieve class-dependent section header
elf_hash(3E) ... compute hash value
elf_kind(3E) .. determine file type
elf_next(3E) .. sequential archive member access
elf_rand(3E) ... random archive member access
elfJawfile(3E) ... retrieve uninterpreted file contents
elf_strptr(3E) ... make a string pointer
elf_update(3E) .. update an descriptor
elf_version(3E) .. coordinate library and application versions
elf _ xlate: elf32 _ xlatetof, elf32 _ xlatetom (3E) class-dependent data translation
nlist(3E) .. get entries from name list
basename(3G) ... return the last element of a path name
bgets(3G) .. read stream up to next delimiter
bufsplit(3G) ... split buffer into fields
copylist (3G) copy a file into memory
dirname(3G) ... report the parent directory name of a file path name
gmatch(3G) .. shell global pattern matching
isencrypt(3G) .. determine whether a character buffer is encrypted
mkdirp, rmdirp(3G) .. create, remove directories in a path
p20pen, p2close(3G) .. open, close pipes to and from a command
pathfind (3G) search for named file in named directories
regcmp, regex(3G) .. compile and execute regular expression
regexpr: compile, step, advance(3G) regular expression compile and match routines
str: strfind, strrspn, strtrns(3G) ... string manipulations
strCCPY: streadd, strcadd, strecpy(3G) .. copy strings, compressing or expanding escape codes
intro(3M) ... introduction to the math library
bessel: jO, jl, jn, yO, yl, yn(3M) .. Bessel functions
erf, erfc(3M) ... error function and complementary error function
exp, expf, cbrt, log, logf, loglO, loglOf, pow, powf, sqrt, sqrtf(3M)

...................... exponential, logarithm, power, square root functions

Table of Contents 7

Table of Contents

floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, £absf, rint, remainder(3M)
.. floor, ceiling, remainder, absolute value functions

gamma, Igamma(3M) ... log gamma function
hypot(3M) ... Euclidean distance function
matherr(3M) .. error-handling function
sinh, sinhf, cosh, CQshf, tanh, tanhf, asinh, acosh, atanh(3M) hyperbolic functions
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, alan, atanf, atan2,

atan2f(3M) .. trigonometric functions
assert(3X) ... veri£y program assertion
crypt(3X) ... password and file encryption functions
libwindows(3X) .. windowing terminal function library
maillock(3X) ... manage lockfile for user's mailbox
malIoc, free, realloc, calloc, mallopt, mallinfo(3X) ... memory allocator
sputl, sget1(3X) access long integer data in a machine-independent fashion

4. File Formats

intro(4) ... introduction to file formats
a.out(4) .. ELF (Executable and Linking Format) files
ar(4) .. archive file format
core(4) .. core image file
limits(4) .. header file for implementation-specific constants
sccsfile(4) ,.. format of secs file
strftime(4) ... language specific strings
timezone(4) ... set defauJt system time zone
utmp, wtmp(4) ... utmp and wtmp entry formats

5. Miscellaneous Facilities
intro(S) ... introduction to miscellany
ascii(S) map of ASCII character set
environ(S) ... user environment
fcntl(S) .. file control options
jagent(S) .. host control of windowing terminal
layers(S) protocol used between host and windowing terminal under layers(1)
math(S) ... math functions and constants
prof(S) ... profile within a function
regexp: compile, step, advance(S) regular expression compile and match routines
stat(S) ... data returned by stat system call
stdarg(S) ... handle variable argument list

8 Programmer's Reference Manual

Table of Contents

types(5) ... primitive system data types
values(S) ... machine-dependent values
varargs(S) ... handle variable argument list
xtproto(S) ... multiplexed channels protocol used by xt driver

Table of Contents 9

Permuted Index

13tol, ltol3 convert between
integer and base-64 ASCII string

abort generate an
termination signal

value
abs, labs return integer

floor, ceiling, remainder,
utime set file

file
elf_next sequentiall!l"chive member

elf rand random archive member
- elf object file

machine-independent/ sputl, sgetl
setutent, endutent, utmpname

access determine
acct enable or disable process

accounting
/ cos, cosf, tan, tanf, asin, asinf,

/ cosf, tan, tanf, asin, asinf, acos,
/ coshf, tanh, tanhf, asinh,

print current sces file editing
atexit

putenv change or
severity levels for an application/

files
admin create and

uadmin
and match/ regexp: compile, step,

and match/ regexpr: compile, step,
alarm set a process

brk, sbrk change data segment space
free, realloc, calloc memory

calloc, mallopt, mallinfo memory
Format) files

/ a list of seventy levels for an
elf_version coordinate library and

library
l!l"

convert convert
elf_next sequential

elf rand random
elf~etarhdr retrieve
ar maintain portable

elf _getarsym retrieve
stdarg handle variable

Permuted Index

3-byte integers and long integers 13to1(3C)
a641, 164a convert between long .. a641(3C)
abnormal termination signal ... abort(3C)
abort generate an abnormal ,.................................... abort(3C)
abs, labs return integer absolute .. abs(3C)
absolute value .. abs(3C)
absolute value functions /remainder floor(3M)
access and modification times .. utime(2)
access determine accessibility of a.................. access(2)
access ... elf_next(3E)
access .. eIf_rand(3E)
access library ... elf(3E)
access long integer data in a.. sputl(3X)
aCcess utmP file entry /pututline, getut(3C)
accessibility of a file ... access(2)
accounting .. acct(2)
acct enable or disable process .. acct(2)
acos, acosf, atan, atanf, atan2,! ... trig (3M)
acosf, atan, atanf, atan2, atan2f/ .. trig(3M)
acosh, atanh hyperbolic functions sinh(3M)
activity sact ... sact(1)
add program termination routine atexit(3C)
add value to environment .. putenv(3C)
addseverity build a list of addseverity(3C)
admin create and administer sees adrnin(1)
administer sees files .. admin(1)
administriltive control ... uadmin(2)
advance regular expression compile regexp(5)
ildvance regular expression compile regexpr(3G)
alarm clock : ... alarm(2)
alarm set il process alarm clock .. alarm(2)
allocation brk(2)
allocator maUoe, ... maUoc(3C)
allocator maUoe, free, realloc, .. malloc(3X)
a.out ELF (Executable and linking a.out(4)
application for use with fmtmsg addseverity(3C)
application versions .. elf _ version(3E)
ar archive file format ... ar(4)
ar maintain portable archive or ... ar(l)
archive ftIe format .. ar(4)
archive files to common formats convert(1)
archive member access ... el~next(3E)
archive member access .. elf rand(3E)
archive member header .. elf_get~hdr(3E)
archive or library ... ar(1)
archive symbol table .. eIf_getillSym(3E)
argument list ... stdarg(5)

1

Permuted Index

varargs handle variable
formatted output of a variable

getopt get option letter from
string strftime, cftime,

ascii map of

between long integer and base-64
time tot ctime, loca1time, gmtime,

/sin, sinf, cos, cosf, tan, tanf,
/ sinf, COS, cosf, tan, tanf, asin,

/cosh, coshf, tanh, tanhf,
or sces commands help

as

assert verify program
setbuf, setvbuf

tanf, asin, asinf, acos, acosf,
asinf, acos, acosf, atan, atanf,

/ acos, acosf, atan, atanf, atan2,
/ asin, asinf, acos, acosf, atan,

tanh, tanhf, asinh, acosh,
routine

double-precision number strtod,
strtol, strtoul, atol,

in teger strtol, strtoul,
el(.getbase get the

convert between long integer and
a path name

cbCprogram
bessel: jO, jl, jn, yO, yI, yn

Bessel functions
delimiter

fread, fwrite
bsearch

tfind, tdelete, twalk manage
ffs find first set

sync update super
allocation

table
bufsplit split

determine whether a character
stdio standard

setbuf, setvbuf assign

an application for use/ addseverity
elf_fill set fill

size print section sizes in

2

argument list ... varargs(5)
argument list /vsprintfprint ... vprintf(3S)
argument vector .. getopt(3C)
ascftime, convert date and time to strftime(30
ASCII character set ;... ascii(5)
ascii map of ASCII character set ... ascii(5)
ASCII string a641, 164a convert .. a64I(30
asctime, tzset convert date and .. ctime(3C)
asin, asinf, acos, acosf, atan,/ .. trig(3M)
asinf, acos, acosf, atan, atanf,/ .. trig(3M)
asinh, acosh, atanh hyperbolic/ sinh (3M)
ask for help with message numbers help(l)
assembler ... as(1)
assert verify program assertion assert(3X)
assertion ... assert(3X)
assign buffering to a stream ... setbuf(3S)
atan, atanf, atan2, atan2f/ /tan, .. trig(3M)
atan2, atan2f trigonometric/ / asin, trig(3M)
atan2f trigonometric functions .. trig(3M)
atanf, atan2, atan2f trigonometric/ trig(3M)
atanh hyperbolic functions /coshf, sinh (3M)
atexit add program termination atexit(3C)
atof, convert string to .. strtod(30
atoi convert string to integer ... strtol(3C)
atol, atoi convert string to ... strtol(3C)
base offset for an object file el(getbase(3E)
base-64 ASCII string a64I, 164a .. a64I(30
basename re~ the last element of basename(3G)
beautifier ... cb(l)
Bessel functions ... bessel(3M)
bessel: jO, jI, jn, yO, yl, yn ... bessel(3M)
bgets read stream up to next .. bgets(3G)
binary input! output .. fread(3S)
binary search a sorted table .. bsearch(30
binary search trees tsearch, ... tsearch(30
bit .. ffs(30
block ... sync(2)
brk, sbrk change data segment space :................................... brk(2)
bsearch binary search a sorted bsearch(30
buffer into fields .. bufsplit(3G)
buffer is encrypted isencrypt isencrypt(3G)
buffered input/output package ... stdio(3S)
buffering to a stream ... setbuf(3S)
bufsplit split buffer into fields bufsplit(3G)
build a list of severity levels for addseverity(30
byte elf _ fill(3E)
bytes of object files ... size(1)

Programmer's Reference Manual

swab swap
cc

cflow generate
cb

lint a
cxref generate

cscope interactively examine a
ctrace

mktime converts a tm structure to a
computes the difference between two

stat data returned by stat system
allocator malloc, free, realloc,

malloc, free, realloc,
intro introduction to system

pow, powf, sqrt, sqrtf/ exp, expf,

SCCS delta
fabs, fabsf, rint,! floor, floorf,
fabsf, rint,! floor, floorf, ceil,

/fabs, fabsf, rint, remainder floor,

time to string strftime,
allocation brk, sbrk

chmod
putenv
chown

nice
chroot

delta cdc
delta make a delta

chdir
pipe create an interprocess

xtproto multiplexed
ungetc push

isencrypt determine whether a
conversion tables chrtbl generate

ispunct, isprint, isgraph, isascii
mbtowc, mblen, wctomb multibyte

cuserid get
getc, getchar, fgetc, getw get

putc, putchar, fputc, putw put
ascii map of ASOI

_ tolower, toascii translate

lint a C program
times get process and

Permuted Index

Permuted Index

bytes ... swab(3C)
C compiler ; .. cc(1)
C flowgraph .. cflow(1)
C program beautifier .. cb(1)
C program checker .. lint(1)
C program cross-reference cxref(1)
C program ... cscope(1)
C program debugger .. ctrace(1)
calendar time mktime(3C)
calendar times difftime ... difftime(30
call stat(5)
calloc, mallopt, mallinfo memory....................... malloc(3X)
calloc memory allocator ... malloc(3C)
calls and error numbers ... intro(2)
cb C program beautifier ... cb(1)
cbrt, log, logf, log10, log10f, .. exp(3M)
cc C compiler .. cc(1)
cdc change the delta comment of an cdc(1)
ceil, ceilf, copysign, fmod, fmodf, floor(3M)
celli, copysign, fmod, fmodf, fabs, floor(3M)
ceiling, remainder, absolute value/ floor(3M)
cflow generate C flowgraph .. cflow(1)
dtime, asdtime, convert date and strftime(3C)
change data segment space ... brk(2)
change mode of file chmod(2)
change or add value to environment putenv(3C)
change owner and group of a file chown(2)
change priority of a process nice(2)
change root directory........ chroot(2)
change the delta comment of an SCCS cdc(1)
(change) to an SCCS file .. delta(1)
change working directory ... chdir(2)
channel.. pipe(2)
channels protocol used by xt driver xtproto(5)
character back onto input stream ungetc(3S)
character buffer is encrypted isencrypt(3G)
character classification and chrtbl(1M)
character handling /iscntrl, ... ctype(30
character handling mbchar: .. mbchar(3C)
character login name of the user cuserid(3S)
character or word from a stream getc(3S)
character or word on a stream .. putc(3S)
character set .. ascii(5)
characters /tolower, _toupper, ... conv(3C)
chdir change working directory.................. chdir(2)
ch«ker lint(1)
child process times times(2)

3

Permuted Index

wait wait for

file

classification and conversion/
/ e1f32 _ xlatetof, e1f32 _ xlatetom

/e1f32 newehdr retrieve
table / e1f32 '::-newphdr retrieve

eltgetshdr: elf32 ~etshdr retrieve
tables chrtbl generate character

inquiries ferror, feof,
alarm set a process alarm

close

fclose, fflush
p20pen, p2close open,

/telldir, seekdir, rewinddir,
dis object

compressing or expanding escape
translation

cof2elf
colltbl create
strcoll string

comb
open, close pipes to and from a

system issue a shell
help with message numbers or sees

install install
intro introduction to programming

cdc change the delta
mes manipulate the

convert convert archive files to
stdipe: ftok standard interprocess

file sccsdiff
expression regcmp, regex

/step, advance regular expression
/step, advance regular expression

regcmp regular expression
expression compile and/ regexp:

expression compile and/ regexpr:
ccC

yacc yet another
erf, erfc error function and

/ strcadd, strecpy copy strings,

4

child process to stop or terminate wait(2)
chmod change mode of file ... chmod(2)
chown change owner and group of a chown(2)
chroot change root directory .. chroot(2)
chrtbl generate character .. chrtbl(1M)
class-dependent data translation elf_xlate(3E)
class-dependent object file header elf _getehdr(3E)
class-dependent program header elf ~etphdr(3E)
class-dependent section header elf ...zetshdr(3E)
classification and conversion ... chrtbl(1M)
clearerr, fileno stream status ... ferror(3S)
clock ... alarm(2)
clock report CPU time used .. clock(30
close a file descriptor close(2)
close close a file descriptor ... close(2)
close or flush a stream .. fclose(3S)
close pipes to and from a command p20pen(3G)
closedir directory operations directory(3C)
code disassembler dis(1)
codes / strecpy copy strings, .. strccpy(3G)
cof2elf COFF to ELF object file .. cof2e1f(1)
COFF to ELF object file translation cof2e1f(1)
collation database ... colltbl(1M)
collation ... strcoll(30
colltbl create collation database colltbl(1M)
comb combine secs deltas .. comb(1)
combine sees deltas ... comb(1)
command p2open, p2close ... p20pen(3G)
command .. system(3S)
commands help ask for ... help(1)
commands .. install(1M)
commands .. intro(1)
comment of an sees delta .. cdc(1)
comment section of an object file .. mes(1)
common formats ... convert(1)
communication package ... stdipe(30
compare two versions of an sees sccsdiff(1)
compile and execute regular ... regcmp(3G)
compile and match routines regexp(5)
compile and match routines ... regexpr(3G)
compile ... regcmp(1)
compile, step, advance regular ... regexp(5)
compile, step, advance regular regexpr(3G)
compiler ... cc(1)
compiler-compiler .. yacc(1)
complementary error function .. erf(3M)
compressing or expanding escape/ strccpy(3G)

Programmer's Reference Manual

elf hash
di;' Idiv

calendar times difftime
an out-going terminal line

a message on stderr or system
file for implementation-specific

math math functions and
retrieve uninterpreted file

elf entl
ioctl

fentl file
IEEE floating-point environment

jagent host
msgctl message

semctl semaphore
shmctl shared memory

fentl file
uadmin administrative

vc version
_ tolower, toascii translate/
character classification and

formats convert
long integers l3tol, Itol3

base-64 ASOI string a641, 164a
common formats

/localtime, gmtime, asctime, tzset
strftime, cftime, ascftime,

string ecvt, fevt, gevt
scanf, fscanf, sscanf

number strtod, atof,
strtol, strtoul, atol, atoi
calendar time mktime

versions elf version
copylist

strccpy: streadd, strcadd, strecpy

rint,! floor, floorf, ceil, celli,

core
acos, acosf,! trig: sin, sinf,

acosf, atan,! trig: sin, sinf, cos,
asinh, acosh,! sinh, sinhf,
acosh,! sinh, sinhf, cosh,

display line-by-line execution
clock report

an existing one
tmpnam, tempnam

Permuted Index

Permuted Index

compute hash value ... elf _ hash(3E)
compute the quotient and remainder div(3Q
computes the difference between two difftime(3Q
connection dial establish ... dial(3Q
console fmtmsg display...................... fmtmsg(3C)
constants limits header .. limits(4)
constants math(S)
contents elf rawfile ... elf rawfile(3E)
control a file-descriptor ... -elf _ entl(3E)
control device ioctl(2)
control .. fentl(2)
control /fpgetsticky, fpsetsticky fpgetround(3Q
control of windowing terminal .. jagent(S)
control operations .. msgctl(2)
control operations semctl(2)
control operations .. shmctl(2)
control options ... fentl(5)
control .. uadmin(2)
control .. vc(1)
conv: toupper, tolower, _toupper, conv(3C)
conversion tables chrtbl generate chrtbl(1M)
convert archive files to common convert(1)
convert between 3-byte integers and 13tol(3Q
convert between long integer and a641(3Q
convert convert archive files to convert(1)
convert date and time to string .. ctime(3C)
convert date and time to string strftime(3C)
convert floating-point number to ecvt(3Q
convert formatted input .. scanf(3S)
convert string to double-precision strtod(3C)
convert string to integer ... strtol(3C)
converts a tm structure to a.. mktime(3C)
coordinate library and application elf _ version(3E)
copy a file into memory .. copyllst(3G)
copy strings, compressing or/ strccpy(3G)
copylist copy a file into memory................................. copyllst(3G)
copysign, fmod, fmodf, fabs, fabsf, floor(3M)
core core image file .. core(4)
core image file .. core(4)
cos, cosf, tan, tanf, asin, asinf, ... trig(3M)
cosf, tan, tanf, asin, asinf, acos, ... trig(3M)
cosh, coshf, tanh, tanhf, .. sinh (3M)
coshf, tanh, tanhf, asinh, .. sinh(3M)
count profile data Iprof .. Iprof(1)
CPU time used . .. clock(3Q
creat create a new file or rewrite ... creat(2)
create a name for a temporary file tmpnam(3S)

5

Permuted Index

mkfifo
existing one creat

fork
tmpfile

pipe
admin
colltbl

montbl
path mkdirp, rmdirp
umask set and get file

cxref generate e program
functions

encryption
program
terminal

tzset convert date and time tol

isupper, isalpha, isalnum,l
sact print

uname get name of
the slot in the utmp file of the

getcwd get pathname of
the user

cross-reference
elfJawdata get section

retrieve file identification
sputl, sgetl access long integer

plock lock process, text, or
execution count profile

prof display profile
stat

brk, sbrk change
elf32 Jlatetom class-dependent

types primitive system
colltbl create collation

montbl create monetary
gmtime, asctime, tzset convert

strftime, cftime, ascftime, convert
ctrace e program

sdb symbolic
strip strip symbol table,

timezone set
bgets read stream up to next

change the delta comment of an sees
delta make a

cdc change the
rmdel remove a

6

create a new FIFO mkfifo(3e)
create a new file or rewrite an creat(2)
create a new process .. fork(2)
create a temporary file tmpfile(3S)
create an interprocess channel .. pipe(2)
create and administer sees files admin(1)
create collation database .. colltbl(1M)
create monetary database .. montbl(1M)
create, remove directories in a....... mkdirp(3G)
creation mask umask(2)
cross-reference cxref(1)
crypt password and file encryption crypt(3X)
crypt, setkey, encrypt generate crypt(3C)
cscope interactively examine a e cscope(1)
ctermid generate file name for ctermid(3S)
ctime, local time, gmtime, asctime, ctime(3C)
ctrace e program debugger .. ctrace(1)
ctype: isdigit, isxdigit, islower, ... ctype(3C)
current sees file editing activity .. sact(1)
current UNIX system uname(2)
current user ttyslot find ttyslot(3C)
current working directory .. getcwd(3C)
cuserid get character login name of cuserld(3S)
cxref generate e program ... cxref(1)
data elf...zetdata, elf_newdata, elf_getdata(3E)
data elf...zetident .. elf_getident(3E)
data in a machine-independent 1 sputl(3X)
data in memory.. plock(2)
data Iprof display line-by-line ... Iprof(1)
data ... prof(1)
data returned by stat system call ... stat(5)
data segment space allocation ... brk(2)
data translation 1 elf32 _ xlatetof, elf _ xlate(3E)
data types .. types(5)
database .. colltbl(1M)
database .. montbl(1M)
date and time to string Iloca1time, ctime(3C)
date and time to string strftime(3C)
debugger ... ctrace(1)
debugger sdb(1)
debugging and line number 1 ... strip(1)
default system time zone .. tirnezone(4)
delimiter .. bgets(3G)
delta cdc ... cdc(1)
delta (change) to an sees file .. delta(1)
delta comment of an sees delta .. cdc(1)
delta from an sees file ... rmdel(l)

Programmer's Reference Manual

sees file
comb combine secs

close close a file
dup duplicate an open file

dup2 duplicate an open file
elf_begin make a file
elf cntl control a file

elf_update update an
access

elf kind
/isnanf, finite, fpclass, unordered

buffer is encrypted isencrypt
ioctl control

terminal line connection
times difftime computes the
between two calendar times

mkdirp, rmdirp create, remove
search for named file in named

chdir change working
chrootchangeroot

system independent/ getdents read
unlink remove

get pathname of current working
mkdir make a

dirname report the parent
telldir, seekdir, rewinddir,/
seekdir, rewinddir, closedir

file mknod make a
rmdir remove a

name of a file path name

acct enable or
dis object code

system console fmtmsg
count profile data lprof

prof
hypot Euclidean

/seed48, lcong48 generate uniformly
remainder

strtod, atof, convert string to
mrand48, jrand48, srand48, seed48,/

channels protocol used by xt

Permuted Index

object file
file dump
descriptor
deScriptor

dup

Permuted Index

delta make a delta (change) to an delta(l)
.. deltas .. comb(l)
descriptor close(2)
descriptor ... dup(2)
descriptor .. dup2(3Q
descriptor .. elf_begin(3E)
descriptor ... elC cntl(3E)
descriptor ... elf_update(3E)
determine accessibility of a file access(2)
determine file type ... elf_kind(3E)
determine type of floating-point! isnan(3C)
determine whether a character isencrypt(3G)
device ... ioct1(2)
dial establish an out-going ... dial(3Q
difference between two calendar difftime(3Q
difftime computes the difference difftime(3Q
directories in a path mkdirp(3G)
directories pathfind pathfmd(3G)
directory chdir(2)
directory '" .,. '" ... '" '" '" chroot(2)
directory entries and put in a file getdents(2)
directory entry .. unlink(2)
directory getcwd getcwd(3C)
directory.................. mkdir(2)
directory name of a file path name dimame(3G)
directory: opendir, readdir, .. directory(3C)
directory operations /telldir, directory(3C)
directory, or a special or ordinary mknod(2)
directory......... rmdir(2)
dimame report the parent directory...... dimame(3G)
dis object code disassembler .. dis(l)
disable process accounting .. acct(2)
disassembler .. dis(l)
display a message on stderr or fmtmsg(3C)
display line-by-line execution ... lprof(l)
display profile data .. prof(l)
distance function hypot(3M)
distributed pseudo-random numbers drand48(3Q
div, ldiv compute the quotient and div(3Q
double-precision number .. strtod(3C)
drand48, erand48, Irand48, mand48, drand48(3Q
driver xtproto multiplexed .. xtproto(5)
dump dump selected parts of an dump(l)
dump selected parts of an object dump(l)
dup duplicate an open file dup(2)
dup2 duplicate an open file dup2(3Q
duplicate an open file descriptor ... dup(2)

7

Permuted Index

8

dup2
floating-point number to string

end, etext,
sad print current sees file

Id link
effective user, real group, and
I getgid, getegid get real user,

insque, rem que insert/remove
basename return the last

files a.out

cof2eU COFF to
object file type eU Jsize:

retrieve! eU _getehdr:
retrieve I el(getphdr:

class-dependent I eU_getshdr:
elf _getehdr: elf32 -setehdr,

eU -setphdr: elf32 _getphdr,
class-dependent datal eU_xlate:

eli _ xlate: e1f32 _ xlatetof,

handling
el(etnnsg,

el(flagelf, elf _ flagphdrJ
eU .-:flagphdrJ elf _ flagdata,

eU _ flagdata, elf_ flagehdr,
I elf _ flagehdr, el(flagelf,
leU_flagelf, elf_flagphdr,

I el(flagphdr, el(fiagscn,
Size of an object file type

member header
symbol table
an Object file

elf Jawdata get section data
e1f32_newehdr retrievel

identification data
e1f32_ne~hdrretrievel
elCnextsen get sectionl

claSS-dependent section header

get section I el(getsen,
section data elf -setdata,

el(getscn, eU_ndxscn,

duplicate an open file descriptor dup2(3Q
ecvt. fevt, gevt convert ecvt(3C)
edata last locations in program ... end(3Q
editing activity .. sact(1)
editor for object files Id(1)
effective group IDs Iget real user, getuid(2)
effective user, real group, andl .. getuid(2)
element from a queue : insque(3C)
element of a path name basename(3G)
ELF (Executable and Linking Format) a.out(4)
eU object file access library elf(3E)
ELF object file translation ... cof2eli(1)
elf32 fsize return the size of an eli fsize(3E)
eU32 :=Setehdr, elf32 _ newehdr eU -setehdr(3E)
e1f32 -Setphdr' e1f32 _ ne~hdr elf _getphdr(3E)
e1f32-setshdr retrieve ... elf-setshdr(3E)
e1f32 _ newehdr retrievel .. elf _getehdr(3E)
elf32_newphdr retrieve I ... elf_getphdr(3E)
e1f32 xlatetof, elf32 xlatetom elf xlate(3E)
e1f3(xlatetom cla~dependent datal elf:xlate(3E)
eU _ begin make a file descriptor elf _ begin(3E)
eU _ cntl control a file descriptor elf _ cntl(3E)
elf_end finish using an object file elf_end(3E)
eU _ etnnsg, elf _ errno error eU _ errmsg(3E)
elt ermo error handling eli _ errmsg(3E)
elf_fill set fill byte .. eU_fIll(3E)
elf _ flagdata, elUlagehdr, .. elf _ flagdata(3E)
eU _ flagehdr, elf _ flagelf, elf _ flagdata(3E)
el(tlagelf, eltflagphdrJ .. elf .-:flagdata(3E)
elf jlagphdr, elf _ flagscnJ elf _ flagdata(3E)
e1tflagscn, elf_flagshdrl .. elf_flagdata(3E)
elf_flagshdr manipulate flags elf_flagdata(3E)
elf fSize:elf32 fsize return the elf fsize(3E)
el(getarhdr r;trieve archive elf _getarhdr(3E)
elf_getarsym retrieve archive elf-setarsym(3E)
elf _getbase get the base offset for elf _getbase(3E)
e1tgetdata, elf_newdata, .. elf_getdata(3E)
elf _getehdr: elf32 -setehdr, elf _getehdr(3E)
elf~etident retrieve file .. elf_getident(3E)
elf_getphdr: elf32-setphdr, elf_getphdr(3E)
elf ~etsen, elU1dxseni elt newseni eltgetsen(3E)
elf _getshdr: e1f32-setshdr retrieve elf -setshdr(3E)
elf_hash Compute hash value elf_hash(3E)
eli}dnd determine file type ... el(kind(3E)
elf_ ndxsen, elf_ newscn, elf_nextscn elf-setsen(3E)
elf _ newdata, elf Jawdata get elf _getdata(3E)
eli _ newscn, elf _ nextscn get sectionl elf ~etscn(3E)

Programmer's Reference Manual

access
elf _getsen, elf _ ndxsen, elf _ newscn,

access
el(getdata, elf _newdata,

file contents

application versions
elf32_xlatetom class-dependent/

accounting a.cct
crypt, setkey,

whether a character buffer is
crypt, setkey, encrypt generate

crypt password and me
program

/getgrgid, getgrnam, setgrent,
/ getpwuid, getpwnam, setpwent,

I getutline, pututline, setutent,
getdents read directory

nlist get
ulmp, wimp Ulmp and wimp

endgrent, fgetgrent g€t group file
getmntany get mnttab file

fgetpwent manipulate password file
endut€nt, ulmpname access Ulmp file

putpwent write password file
unlink remO\lC ilire(:tory

fpsetsticky lEEE floating-p<lit,t
environ U!ler

getenv returll value for
putenv change or add value to

jrand48, srand48, !leCd48,/ dr;md48,
complemelltary error funct~on

complementary error function erf,
error function ed, erfc

error function and complementary
elf _ errmsg, elf _ ermo

strerror get
perror print system

introduction to system calls and
matherr

strings, compressing or expanding
line connection dial

program end,
hypot

escope interactively

Permuted Index

Permuted Index

elf_next seq~entil)l archive member .. " .. ,', .. ,""""' elf_llext(3E)
elf nexl!lCll get section information elf getsen(3E)
elf~fand random iu:chive member " "'."'".,,", elf rand(3E)
elf:rawdata get section data,. e1tgetdata(3E)
elf_rawfile retrieve uninterpreted elf_I"awfile(3E)
el,f_strptr make a string pointer ,. •.. f1lf_strptr(3E)
elf_update update an d~ptor , elf_update(3E)
elf_version coordinate Uhrary and elf _ version(3E)
elf _ xlate: e1f32 _ xlatetof, ... elf _ xlate(3E)
enable .or disable proces'> .. acct(2)
encrypt generate ,encryption .. c;:rypt(3C)
ellcrypted isencrypt de.t.ermine isencrypt(3G)
encryption crypt(3C)
encryption functions ... crypt(3X)
end, etext, edata last locations in .. end(3C)
endsrent, fgetgrent get group filet getgrent(3Q
cndpwent, fgctpwent manipulate/ ". getpwent(3C)
endutent, utmpname access utmp filel gE)tut(3C)
entries and put in a file systeml getclents(2)
entries from name list nlist(3E)
entry formats ... ,., ,... ulII\p(4)
entry Igetgrnam, setgrent, ... getgrent(3C)
entry getmntent, .. getnmtl;!l)t(3C)
entry l!letpwent, endpw€nt, getpwe!lt(3C)
entry /pututllile, setutcnt, , gelut(3C)
entry ... putpwent(3C)
entry , , unlink(2)
environ UlJer environment ... onviron(5)
envirOnment control /fpgelstkky,, ... ipgetl"OlUld(3Q
environment .. , environ(5)
environment name getenv(3C)
\1nviron(nent , ... , " put~v(3C)
erand4S, !rand48, nrand48, mrand48, dranq48(3C)
ed, erfc error function and,.............................. erf(3M)
edc error function and .. ,........ erf(3M)
error function and complementary.. erf(3M)
error function erf, erfc .. erf(3M)
error handling ... elf _ errmsg(3E)
error message string strerror(3C)
error messages ... perror(3C)
error numbers intro ... intro(2)
error-handling function .. matherr(3M)
escape codes /strcadd, strecpy copy strccpy(3G)
establish an out-going terminal ... dial(3C)
etext, edata last locations in ... end(3C)
Euclidean distance function ... hypot(3M)
examine a C program , .. escope(1)

9

Permuted Index

execlp, execvp execute a file
exedp, execvp execute al exec:
execute a file exec: execl, execv,

exec: execl, execv, execle, execve,
files a.out ELF

execle, execve, execlp, execvp
regcrnp, regex compile and

Iprof display line-by-line
sleep suspend

monitor prepare
profil

execvp execute a file exec: execl,
file exec: execl, execv, execle,
execv,execle,execve,execlp,

create a new file or rewrite an

exit,
10glOf, pow, powf, sqrt, sqrtf/

copy strings, compressing or
log10f, pow, powf, sqrt,! exp,
IloglOf, pow, powf, sqrt, sqrtf

Icompile, step, advance regular
I compile, step, advance regular

regcrnp regular
regex compile and execute regular
I ceil, ceilf, copysign, fmod, fmodf,
I ceilf, copysign, fmod, fmodf, fabs,

data in a machine-independent
stream

number to string ecvt,
fopen, £reopen,

status inquiries ferror,
stream status inquiries

fclose,

from a stream getc, getchar,
Igetgrnam, setgrent, endgrent,

in a stream fsetpos,
Igetpwnam, setpwent, endpwent,

gets,
bufsplit split buffer into

mkfifo create a new
utime set
elf object

access determine accessibility of a

10

exec: execl, execv, execle, execve, ... exec(2)
execl, execv, execle, execve, ... exec(2)
execle, execve, execlp, execvp .. exec(2)
execlp, execvp execute a file .. exec(2)
(Executable and Linking Format) .. a.out(4)
execute a file exec: execl, execv, exec(2)
execute regular expression regcrnp(3G)
execution count profile data ... Iprof(l)
execution for interval .. sleep(30
execution profile monitor(30
execution time profile ... profil(2)
execv, execle, execve, execlp, ... exec(2)
execve, execlp, execvp execute a ... exec(2)
execvp execute a file exec: execl, exec(2)
existing one creat creat(2)
exit, _exit terminate process .. exit(2)
_exit terminate process exit(2)
exp, expf, cbrt, log, logf, log10, .. exp(3M)
expanding escape codes I strecpy strccpy(3G)
expf, cbrt, log, logE, log10, ... exp(3M)
exponential, logarithm, power,! .. exp(3M)
expression compile and matchl regexp(S)
expression compile and matchl regexpr(3G)
expression compile .. regcrnp(1)
expression regcrnp, .. regcrnp(3G)
fabs, fabsf, rint, remainder floor,! floor(3M)
fabsf, rint, remainder floor,! ... floor(3M)
fashion Isgetl access long integer sputl(3X)
fclose, fflush close or flush a ... fclose(3S)
fentl file con trol fen tl(2)
fentl file control options ... fentl(S)
fcvt, gcvt convert floating-point ... ecvt(3q
fdopen open a stream fopen(3S)
feof, clearerr, fileno stream .. ferror(3S)
ferror, feof, clearerr, fileno ferror(3S)
fflush close or flush a stream ,. fclose(3S)
ffs find first set bit .. fis(3C)
fgetc, getw get character or word getc(3S)
fgetgrent get group file entry· getgrent(3q
fgetpos reposition a file pointer fsetpos(30
fgetpwent manipulate password fIlel getpwent(3q
fgets get a string from a stream gets(3S)
fields .. bufsplit(3G)
FIFO mkfifo(3C)
file access and modification times utime(2)
file access library ... elf(3E)
file access(2)

Programmer's Reference Manual

chmod change mode of
chown change owner and group of a

elf Jawfile retrieve uninterpreted
fentl
fentl

core core image
umask set and get

make a delta (change) to an SCCS
close close a

dup duplicate an open
dup2 duplicate an open

elf_begin make a
elf entl control a

dump selected parts of an object
sact print current SCCS

elf_end finish using an object
get the base offset for an object

crypt password and
endgrent, fgetgrent get group

getmntent, getmntany get mnttab
fgetpwent manipulate password

endutent, utmpname access utmp
putpwent write password

execve, execlp, execvp execute a
constants limits header

ar archive
intro introduction to

get get a version of an SCCS
retrieve class-dependent object

elf -zetident retrieve
pathfind search for named

copylist copy a
link link to a

the comment section of an object
directory, or a special or ordinary

ctermid generate
mktemp make a unique

nm print name list of an object
ttyslot find the slot in the utmp

creat create a new
the parent directory name of a
fseek, rewind, ftell reposition a

fsetpos, fgetpos reposition a
lseek move read/write

prs print an sces
read read from
remove remove

Permuted Index

Permuted Index

file chmod(2)
file chown(2)
file contents ... elf_rawfile(3E)
file con trol fen tl(2)
file control options ... fentl(5)
file ... core(4)
file creation mask•.. umask(2)
file delta delta(1)
file descriptor ... close(2)
file descriptor .. dup(2)
file descriptor ... dup2(3Q
file descriptor elf_begin (3E)
file descriptor .. elf _ entl(3E)
file dump ... dump(1)
file editing activity .. sact(1)
file elf _ end(3E)
file elf -zetbase elf _getbase(3E)
file encryption functions crypt(3X)
file entry /getgrnam, setgrent, getgrent(3Q
file entry ... getrnntent(3C)
file entry /setpwent, endpwent, getpwent(3C)
file entry /pututline, setutent, ... getut(3Q
file entry .. putpwent(3C)
file exec: execl, execv, execle, ... exec(2)
file for implementation-specific ... limits(4)
file format ar(4)
file formats ... intro(4)
file ... get(1)
file header / elf32 _newehdr elf _getehdr(3E)
file identification data .. elf_getident(3E)
file in named directories pathfind(3G)
file into memory ... copylist(3G)
file .. link(2)
file mcs manipulate ... mcs(1)
file mknod make a .. mknod(2)
file name for terminal ... ctermid(3S)
file name mktemp(3C)
file ... nm(1)
file of the current user .. ttyslot(3C)
file or rewrite an existing one ... creat(2)
file path name dimame report dimame(3G)
file pointer in a stream .. fseek(3S)
file pointer in a stream .. fsetpos(3Q
file pointer ; ... lseek(2)
file ... prs(1)
file read(2)
file remove(3C)

11

Permuted Index

rename rename
rmdel remove a delta from an sees

compare two versions of an sees
sccsfile format of sces

stat, fstat get
number information from an object
Iread directory entries and put in a

statfs, fstatfs get
mount mount a

uslat get
sysfs get

umount unmount a
tmpfile create a temporary

create a name for a temporary
cof2eH COFF to ELF object

ftw walk a
return the size of an object

elf)dnd determine
undo a previous get of an sees

val validate an secs
write write on a

ferror, feof, clearerr,
admin create and administer sces

ELF (Executable and Linking Format)
ld link editor for object
lockf record locking on

section sizes in bytes of object
convert convert archive

elf fill set
ffs

ttyname, isatty
objeCt library larder

the current user Ityslot
elf end

detern'linel isnan, isnancl., isnanf,
eltflagshdrmanip\.11ate

Ifpgetsticky, fpsetsticky IEEE
unordered determine type of

ecvt, feVI, gcvt convert
scalb manipwateparts of

IfIllOOf, fabs, fabsf, rint, remainder
copysign, fmod, fmOdf, labs,!

fmod, fmodf, fabs, fabsf,! flOOf,
cfloW' gellerate C

fclose, fflush close or
I floorf, Ceil,ceili, copysign,
lCeil, ceilf, copysign, fmod,

12

file rename(3C)
file .. rmdel(1)
file sccsdiff .. sccsdiff(1)
file sccsflle(4)
file status stat(2)
file Itable, debugging and line .. strip(1)
file system independent format getdents(2)
file system information ... statfs(2)
file system ... mount(2)
file system statistics ustat(2)
file system type information sysfs(2)
file system ... umount(2)
file tmpfile(3S)
file tmpnam, tempnam ... tmpnam(3S)
file translation ... cof2elf(1)
file tree ftw(3C)
file type elf _fsize: elf32 _fsize eIUsize(3E)
file type ... elf _ kind(3E)
file unget .. unget(1)
file ... val(1)
file ... write(2)
fileno stream status inquiries .. ferror(3S)
files .. admin(1)
files a.out ... a.out(4)
files Id(1)
files lockf(3C)
files size print ... size(1)
files to common formats ... converl(1)
fill byte ... elf_fiU(3E)
find first set bit '0...................................... ffs(3C)
find name Of a terminal .. ttyname(3C)
find ordering relation for all .. 10rder(1)
find the slot in the tltmp file of ttyslot(3C)
fmish llsing an object fileelf_ end(3E)
fmite, fpclass, unordered isnan(3C)
flags /eltflagphdr, elUlagscn, eltflagdata(3E)
floating-poinlenvironment control fpgetround(3C)
floating-point number Ifpclass, isnan(3C)
floating-poin t lltlm her to strin'g .. ecvt(3C)
floating-point numbers Inextafter, frexp(3C)
floor, ceiling, remainder, absolute I floor(3M)
floor, floorf, ceil, ceilf, fioor(3M)
floor!, ceil, ceilf, copysign, floor(3M)
flowgraph .. cflow(1)
flush a stream fclose(3S)
fmod, fmOdf, labs, fabsf, rint,! ... floor(3M)
fmodf, labs, fabsf, lint, remainder I floor(3M)

for an application for use with
or system console

stream

ar archive file
a.out ELF (Executable and Linking

put in a file system independent
sccsfile

convert archive files to common
intro introduction to file

utmp, wtmp utmp and wtmp entry
scanf, fscani, sscanf convert

vprintf, vfprintf, vsprintf print
printf, fprintf, sprintf print

10caleL'Onv get numeric
of! isnan, isnand, isnanf, finite,

fpgetround, fpsetround,
fpsetmask, fpgetsticky,/

/fpsetround, fpgetmask, fpsetmask,
output printf,

fpgetround, fpsetround, fpgetmask,
fpgetsticky,/ fpgetrOlmd,

/fpgetmask, fpsetmask, fpgetsticky,
on a stream putc, putchar,

puts,

mallinfo memory allocator maUoc,
allocator malloc,

fopen,
nextafter, scalb manipulate parts/

input scanf,
file pointer in a stream

pointer in a stream
stat,

statfs,
a stream fseek, rewind,

communication package stdipe:

function erf, erfc error
function and complementary error

gamma, 19amma log gamma
hypot Euclidean distance

lib windows windowing terminal
matherr error-handling

prof profile within a
math math

intro introduction to

Permuted Index

Permuted Index

fmtmsg /a list of severity levels addseverlty(3C)
fmtmsg display a message on stderr fmtmsg(3C)
fopen, freopen, fdopen open a .. fopen(3S)
fork create a new process fork(2)
format are 4)
Format) files ... a.out(4)
format tread directory entries and getdents(2)
format of sees file ... sccsfile(4)
formats convert ... convert(1)
formats .. intro(4)
formals ... utmp(4)
formatted input ... scanf(3S)
formatted output of a variable/ vprintf(3S)
formatted output ... printf(3S)
formatting information ... localeconv(3C)
fpclass, unordered determine type isnan(3C)
fpgetmask, ipsetmask, fpgetsticky'/ fpgetround(3C)
fpgetround, fpsctround, fpgetmask, fpgetround(3C)
fpgetsticky, fpsetsticky IEEE/ fpgetround(3C)
fprintf, sprintf print formatted .. printf(3S)
fpsetmask, fpgetsticky, fpsetstkky / fpgetround(3C)
fpselround, fpgetmask, fpsetmask, fpgetround(3C)
fpsctsticky IEEE floating-point/ fpgetround(3C)
fpute, putw put character or word putc(3S)
fputs put a string on a stream .. puts(3S)
fread, fwrite binary input/output fread(3S)
free, realloc, ealloc, maUapt, .. malloc(3X)
free, realloc, ealloe memory .. malloc(3C)
freopen, fdopen open a stream ... fopen(35)
frexp, ldexp, 10gb, modf, modif, frexp(3C)
fscanf, sscanf convert formatted .. scanf(3S)
fseek, rewind, ftell reposition a... fseek(3S)
fsetpos, fgetpos reposition a file fsetpos(3C)
fstat get file stahlS ... stat(2)
fstatfs get file system information statfs(2)
ftell reposition a file pointer in .. fseek(3S)
ftok standard interprocess .. stdipe(3C)
ftw walk a file tree ... ftw(3C)
function and complementary error erf(3M)
function erf, erfc error .. erf(3M)
function .. gamma(3M)
function ... hypot(3M)
function library ... libwindows(3X)
function matherr(3M)
function prof(5)
functions and constants ... math(5)
functions and libraries ... intro(3)

1.3

Permuted Index

iO, iI, in, yO, yl, yn Bessel
crypt password and file encryption

logarithm, power, square root
ceiling, remainder, absolute value

mbstowcs, wcstombs multibyte string
asinh, acosh, atanh hyperbolic

atanf, atan2, atan2f trigonometric
fread,

gamma, 19amma log

to string ecvt, fevt,
signal abort

cflow
cxref

and conversion tables chrtbl
crypt, setkey, encrypt

ctermid
lexical tasks lex

/jrand48, srand48, seed48, lcong48
rand, srand simple random-number

character or word from a stream
or word from a stream getc,

working directory
put in a file system independent/

user,! getuid, geteuid, getgid,
name

user, effective user, real/ getuid,
effective user,! getuid, geteuid,

setgrent, endgrent, fgetgrent get/
endgrent, fgetgrent get/ getgrent,
fgetgrent get/ getgrent, getgrgid,

getmntent,
file entry

stream
argument vector

process group, and parenti getpid,
process, process group, and parenti

and parenti getpid, getpgrp,

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent, getpwuid,
endpwent, fgetpwent/ getpwent,

14

stream
string

get real user, effective user,!

functions bessel: besse1(3M)
functions crypt(3X)
functions / sqrt, sqrtf exponential, exp(3M)
functions /rint, remainder floor, floor(3M)
functions mbstring: ... mbstring(3Q
functions / coshf, tanh, tanhf, ... sinh(3M)
functions / acos, acosf, atan, trig(3M)
fwrite binary input/output .. fread(3S)
gamma function .. gamma(3M)
gamma, 19amma log gamma function gamma(3M)
gevt convert floating-point number ecvt(3Q
generate an abnormal termination abort(3Q
generate C flowgraph ... cflow(l)
generate C program cross-reference cxref(l)
generate character classification chrtbl(lM)
generate encryption crypt(3C)
generate file name for terminal ctermid(3S)
generate programs for simple .. lex(1)
generate uniformly distributed/ drand48(3C)
generator .. rand(3C)
getc, getchar, fgetc, getw get getc(3S)
getchar, fgetc, getw get character getc(3S)
getcwd get pathname of current getcwd(30
getdents read directory entries and getdents(2)
getegid get real user, effective ... getuid(2)
getenv return value for environment getenv(30
geteuid, getgid, getegid get real .. getuid(2)
getgid, getegid get real user, getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3Q
getgrnam, setgrent, endgrent, getgrent(3Q
getlogin get login name .. getlogin(3C)
getmntany get mnttab file entry getrnntent(3C)
getmntent, getmntany get mnUab getmntent(3C)
getmsg get next message off a........................... getrnsg(2)
getopt get option letter from ... getopt(3Q
getpass read a password getpass(3Q
getpgrp, getppid get process, .. getpid(2)
getpid, getpgrp, getppid get .. getpid(2)
getppid get process, process group, getpid(2)
getpw get name from UID ... getpw(30
getpwent, getpwuid, getpwnam, getpwent(3Q
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
gets, fgets get a string from a .. gets(3S)
getsubopt parse suboptions from a......................... getsubopt(3C)
getuid, geteuid, getgid, getegid getuid(2)

Programmer's Reference Manual

getutline, pututline, setuten t,!
pututline, setutent,! getut:
setutent,! getut: getutent,

getut: getuten t, getutid,
stream getc, getchar, fgetc,

gmatch shell
matching

and time tol ctime,localtime,
setjrnp, longjmp non-local

Iget real user, effective user, real
1 getppid get process, process

setgrent, endgrent, fgetgrent get
setpgrp set process

user, real group, and effective
setuid, setgid set user and
chown change owner and

send a signal to a process or a
maintain, update, and regenerate

ssignal,
stdarg

varargs
isprint, isgraph, isascii character

elf _ errmsg, elf _ errno error
mblen, wctomb multibyte character
hsearch, hcreate, hdestroy manage

elf_hash compute
search tables hsearch,

hsearch, hcreate,
retrieve archive member

class-dependent object file
retrieve class-dependent section
implementation-specific 1 limits

retrieve class-dependent program
numbers or secs commands

commands help ask for
layers protocol used between

jagent
hash search tables

tanhf, asinh, acosh, atanh

setpgrp set process group
elf _getident retrieve file

what print
shmget get shared memory segment

process group, and parent process
real group, and effective group

setuid, setgid set user and group

Permuted Index

Permuted Index

getut: getutent, getutid, .. getut(3q
getutent, getutid, getutline, .. getut(3Q
getutid, getutline, pututline, getut(3Q
getutline, pututline, setutent,1 .. getut(3Q
getw get character or word from a................. getc(3S)
global pattern matching ... gmatch(3G)
gmatch shell global pattern ... gmatch(3G)
gmtime, asctime, tzset convert date ctime(3C)
goto .. setjmp(3C)
group, and effective group IDs ... getuid(2)
group, and parent process IDs .. getpid(2)
group file entry Igetgmam, getgrent(3q
group ID setpgrp(2)
group IDs 1 get real user, effective getuid(2)
group IDs setuid(2)
group of a file ... chown(2)
group of processes kill .. kill(2)
groups of programs make .. make(1)
gsignal software signals .. ssignal(3Q
handle variable argument list .. stdarg(5)
handle variable argument list varargs(5)
handling liscntrl, ispunct, ... ctype(3Q
handling elf _ errmsg(3E)
handling mbchar: mbtowc, ... mbchar(3C)
hash search tables ... hsearch(3C)
hash value .. elf_hash(3E)
hcreate, hdestroy manage hash hsearch(3Q
hdestroy manage hash search tables hsearch(3C)
header elf_getarhdr ... elf_getarhdr(3E)
header 1 elf32 _ newehdr retrieve elf _getehdr(3E)
header eltgetshdr: elf32 _getshdr elf _getshdr(3E)
header file for ... limits(4)
header table lelf32_newphdr elf_getphdr(3E)
help ask for help with message .. help(1)
help with message numbers or secs help(1)
host and windowing terminal under 1 layers(5)
host control of windowing terminal jagent(5)
hsearch, hcreate, hdestroy manage hsearch(3C)
hyperbolic functions Itanh, .. sinh(3M)
hypot Euclidean distance function hypot(3M)
ID setpgrp(2)
identification data .. elf _getident(3E)
identification strings ... what(1)
identifier shmget(2)
IDs 1 getpgrp, getppid get process, getpid(2)
IDs Iget real user, effective user, getuid(2)
IDs setuid(2)

15

Permuted Index

/fpsetmask, fpgetsticky, fpsetsticky
core core

limits header file for
entries and put in a file system

elf _ newscn, elf _ nextscn get section
/table, debugging and line number
localeconv get numeric formatting

statfs, fstatfs get file system
sysfs get file system type

popen, pclose
fscanf, sscanf convert formatted

ungetc push character back onto
fread, fwrite binary

poll STREAMS
stdio standard buffered

clear err, fileno stream status
insque, rem que

element from a queue
install

abs, labs return
a641, 164a convert between long

sputl, sgetl access long
atol, atoi convert string to

I3tol, ltol3 convert between 3-byte
between 3-byte integers and long

escope
pipe create an

stdipc: ftok standard
sleep suspend execution for

libraries

commands
and error numbers

library
intro

libraries in tro
intro

commands intro
error numbers intro

intro

16

/islower, isupper, isalpha,
/isxdigit, islower, isupper,

/iscntrl, ispunct, isprint, isgraph,
ttyname,

IEEE floating-point environment/ fpgetround(30
image file ... core(4)
implementation-specific constants limits(4)
independent format /read directory getdents(2)
information / elf _ ndxscn, .. elf .-Setscn(3E)
information from an object file ... strip(1)
information .. localeconv(3C)
information statfs(2)
information sysfs(2)
initiate pipe to/from a process .. popen(3S)
input scanf, ... scanf(3S)
input stream ... ungetc(3S)
input/output ... fread(3S)
input/output multiplexing ... poll(2)
input/output package ... stdio(3S)
inquiries ferror, feof, ferror(3S)
insert/remove element from a queue insque(3C)
insque, rem que insert/remove insque(3C)
install commands .. instal1(1M)
install install commands .. instal1(1M)
integer absolute value .. abs(3Q
integer and base-64 ASCII string .. a641(30
integer data in a/ ... sputl(3X)
in teger strtol, strtoul, strtol(3C)
integers and long integers ... 13to1(30
integers l3tol, Ho13 convert .. 13101(30
interactively examine a C program cscope(1)
interprocess channel .. pipe(2)
interprocess communication package stdipc(30
interval ... sleep(30
intro introduction to file formats ... intro(4)
intro introduction to functions and intro(3)
intro introduction to miscellany ... intro(5)
intro introduction to programming intro(1)
intro introduction to system calls .. intro(2)
intro introduction to the math .. intro(3M)
in troduction to file formats ... intro(4)
introduction to functions and ... intro(3)
introduction to miscellany ... intro(5)
introduction to programming ... intro(1)
introduction to system calls and .. intro(2)
introduction to the math library intro(3M)
ioctl control device ... ioct1(2)
isalnum, isspace, iscntrl, ispunct,/ ctype(30
isalpha, isalnum, isspace, iscntrl,/ ctype(30
isascii character handling ctype(30
isatty find name of a terminal ttyname(30

Programmer's Reference Manual

/isupper, isalpha, isalnum, isspace,
isupper, isalpha, isalnum,/ ctype:

character buffer is encrypted
/isspace, iscntrl, iSpunct, isprint,
isspace,/ ctype: isdigit, isxdigit,

fpclass, unordered determine type/
unordered determine type off isnan,

determine type of! isnan, isnand,
/isalnum, isspace, iscntrl, ispunct,
/isalpha, isalnum, isspace, iscntrl,

/islower, isupper, isalpha, isalnum,
system

ctype: isdigit, isxdigit, islower,
isalpha, isalnum,/ ctype: isdigit,

functions bessel:
bessel: jO,
terminal

bessel: jO, jl,
/erand48, lrand48, nrand48, mrand48,

a group of processes
integers and long integers

and base-64 ASCII string a641,
abs,

strftime
and windowing terminal under /

host and windowing terminal under
/mrand48, jrand48, srand48, seed48,

nextafter, scalb manipulate/ frexp,
remainder div,

getopt get option
with/ /build a list of severity

lexical tasks
lex generate programs for Simple

lsearch,
gamma,

intro introduction to functions and
elf version coordinate

ar maintain portable archive or
elf object file access

intro introduction to the math
windowing terminal function

ordering relation for an object
function library

implementation-specific constants
ulimit get and set user

establish an out-gOing terminal

Permuted Index

Permuted Index

iscntrl, ispunct, isprint, isgraph,/ ctype(3Q
isdigit, isxdigit, islower, ... ctype(3C)
isencrypt determine whether a.................................. isencrypt(3G)
isgraph, isascii character handling ctype(3C)
islower, isupper, isalpha, isalnum, ctype(3Q
isnan, isnand, isnanf, finite, ... isnan(3C)
isnand, isnanf, finite, fpc1ass, .. isnan(3C)
isnanf, finite, fpc1ass, unordered isnan(3C)
isprint, isgraph, isascii character / ctype(3Q
ispunct, isprint, isgraph, isascii/ ctype(3Q
isspace, iscntrl, ispunct, isprint,! ctype(3Q
issue a shell command system(3S)
isupper, isalpha, isalnum, isspace,/ ctype(3Q
isxdigit, islower, isupper, .. ctype(3C)
jO, jl, jn, yO, yt, yn Bessel .. bessel(3M)
jl, jn, yO, yt, yn Bessel functions bessel(3M)
jagent host control of windowing jagent(5)
jn, yO, yl, yn Bessel functions ... bessel(3M)
jrand48, srand48, seed48, lcong48/ drand48(3Q
kill send a signal to a process or kill(2)
13tol, ltol3 convert between 3-byte 13tol(3Q
164a convert between long integer a641(3C)
labs return integer absolute value abs(3C)
language specific strings .. strftime(4)
layers protocol used between host layers(5)
layers(1) /protocol used between layers(5)
lcong48 generate uniformly / drand48(3Q
Id link editor for object files .. Id(1)
Idexp, 10gb, modi, modif, .. frexp(3C)
ldiv compute the quotient and ... div(3C)
letter from argument vector .. getopt(3C)
levels for an application for use addseverlty(3C)
lex generate programs for simple ... lex(t)
lexical tasks .. lex(1)
lfind linear search and update lsearch(3C)
19amma log gamma function garnma(3M)
libraries intro(3)
library and application versions elf _ version(3E)
library........ ar(1)
library elf(3E)
library .. intro(3M)
library libwindows libwindows(3X)
library lorder find ... lorder(1)
libwindows windowing terminal libwindows(3X)
limits header file for .. limits(4)
limits ulimit(2)
line connection dial .. dial(3C)

17

Permuted Index

Istrip symbol table, debugging and
lsearch, Hind

proIDe data Iprof display
Id

link
a.out ELF (Executable and

nlist get entries from name
nm print name

application I addseverity build a
stdarg handle variable argument

varargs handle variable argument
output of a variable argument

modify and query a program's
information

convert date and time tol ctime,
end, etext, eda ta last

memory plock

maillock manage
lockf record

gamma, Igamma
powf, sqrt, sqrtfl exp, expf, cbrt,

sqrtfl exp, expf, cbrt, log, logf,
exp, expf, cbrt, log, logf, 10glO,

/pow, powf, sqrt, sqrtf exponential,
manipulate parts ofl frexp, Idexp,

sqrt, sqrtf/ exp, expf, cbrt, log,
getlogin get

cuserid get character
setjmp,

an object library
execution count proIDe data

srand48, seed48,1 drand48, erand48,
update

integers and long integers 13tol,

values
sgetl access long integer data in a

m4
maillock manage 10ckIDe for user's

mailbox
library ar

groups of programs make
free, realloc, calloc, mallopt,

18

line number information from ani strip(l)
linear search and update Isearch(3C)
line-by-line execution count .. Iprof(1)
link editor for object IDes Id(1)
link link to a IDe link(2)
link to a IDe link(2)
linking Format) files ... a.out(4)
lint a C program checker ... lint(1)
list nlist(3E)
list of an object file '" nm (1)
list of severity levels for an addseverity(3C)
list stdarg(5)
list varargs(5)
list Ivsprintf print formatted .. vprintf(3S)
locale setlocale .. setlocale(3C)
localeconv get numeric formatting localeconv(3C)
local time, gmtime, asctime, tzset ctime(3C)
locations in program end(3C)
lock process, text, or data in .. plock(2)
lockf record locking on IDes lockf(3C)
10ckIDe for user's mailbox .. maillock(3X)
locking on files lockf(3C)
log gamma function ... gamrna(3M)
log, logf, 10glO, 10glOf, pow, ... exp(3M)
10glO, 10glOf, pow, powf, sqrt, ... exp(3M)
10glOf, pow, powf, sqrt, sqrtfl ... exp(3M)
logarithm, power, square root! .. exp(3M)
10gb, modf, modff, nextafter, scalb frexp(3C)
logf, 10glO, 10glOf, pow, powf, ... exp(3M)
login name ... getlogin(3C)
login name of the user cuserid(3S)
longjmp non-local goto setjmp(3C)
lorder flnd ordering relation for .. 10rder(1)
Iprof display line-by-line ... lprof(1)
lrand48, nrand48, mrand48, jrand48, drand48(3C)
lsearch, Hind linear search and lsearch(3C)
lseek move read/write IDe pointer lseek(2)
lto13 convert between 3-byte ... 13to1(3C)
m4 macro processor m4(1)
machine-dependent values ... values(5)
machine-independent fashion sputl, sputl(3X)
macro processor m4(1)
mailbox .. maillock(3X)
maillock manage lockfile for user's maillock(3X)
maintain portable archive or ... ar(1)
maintain, update, and regenerate make(1)
mallinfo memory allocator malloc, malloc(3X)

Programmer's Reference Manual

mall opt, mallinfo memory allocator
memory allocator

malloc, free, realloc, calloe,
tsearch, tfind, tdelete, twalk

hsearch, hcreate, hdestroy
maillock

sigignore, sigpause signal
elf _ flagscn, elf)lagshdr

110gb, modf, modff, nextafter, sca1b
lsetpwent, endpwent, fgetpwent

an object file mes
strfind, strrspn, strtrns string

ascii
urnask set and get file creation

regular expression compile and
regular expression compile and

gmatch shell global pattern
math

intro introduction to the

multibyte character handling
handling mbchar: mbtowc,

functions mbstring:
multibyte string functions

character handling mbchar:
of an object file

elf_next sequential archive
elf rand random archive

elf _getarhdr retrieve archive
offsetof offset of structure

memm·ove, memset memory I memory:
memset memory I memory: memccpy,

memory I memory: memccpy, memchr,
memory: memccpy, memchr, memcrnp,

Imemccpy, memchr, memcrnp, memcpy,
malloe, free, realloc, calloc

realloc, calloc, mall opt, mallinfo
shmctl shared

copylist copy a file into
memcpy, memmove, memset memory I
memcrnp, memcpy, memmove, memset

shmop shared
lock process, text, or data in

shmget get shared
memchr, memcrnp, memcpy, memmove,

msgctl

Permuted Index

Permuted Index

malloe, free, realloc, calloc, malloc(3X)
malloe, free, realloc, calloc malloc(3C)
mallopt, mallinfo memory allocator malloc(3X)
manage binary search trees tsearch(3C)
manage hash search tables .. hsearch(3C)
manage lockflle for user's mailbox maillock(3X)
management Isighold, sigrelse, .. sigset(2)
manipulate flags lelf_flagphdr, elf_flagdata(3E)
manipulate parts of floating-point I frexp(3C)
manipulate password file entry getpwent(3C)
manipulate the comment section of mesO)
manipulations str: ... str(3G)
map of ASCII character set .. ascii(5)
mask urnask(2)
match routines Istep, advance .. regexp(5)
match routines Istep, advance regexpr(3G)
matching ... gmatch(3G)
math functions and constants .. math(5)
math library ... intro(3M)
math math functions and constants math(5)
matherr error-handling function matherr(3M)
mbchar: mbtowc, mblen, wctomb mbchar(3C)
mblen, wctomb multibyte character mbchar(3C)
mbstowcs, wcstombs multibyte string mbstring(3C)
mbstring: mbstowcs, westombs mbstring(3C)
mbtowc, mblen, wctomb multibyte mbchar(3C)
mes manipulate the comment section mesO)
member access ... elf _ next(3E)
member access .. elf _rand(3E)
member header .. elf_getarhdr(3E)
member .. offsetof(3C)
memccpy, memchr, memcrnp, memcpy, memory(3C)
memchr, memcrnp, memcpy, memmove, memory(3C)
memcrnp, memcpy, memmove, memset memory(3C)
memcpy, memmove, memset memory I memory(3C)
memmove, memset memory operations memory(3C)
memory allocator .. malloc(3C)
memory allocator malloc, free, malloc(3X)
memory control operations .. shmctl(2)
memory copylist(3G)
memory: memccpy, memchr, memcrnp, memory(3C)
memory operations Imemccpy, memchr, memory(3C)
memory operations ... shmop(2)
memory plock plock(2)
memory segment identifier shmget(2)
memset memory operations Imemccpy, memory(3C)
message control operations .. msgctl(2)

19

Permuted Index

help ask for help with
getmsg get next
putmsg send a

fmtmsg display a
msgop

msgget get
strerror get error

perror print system error
intro introduction to

directories in a path

special or ordinary file

calendar time
getmntent, getmntany get

chmod change
manipulate/ frexp, ldexp, 10gb,

parts oft frexp, Idexp, 10gb, modf,
utime set file access and

setlocale
montbl create

mount

!seek
drand48, erand48, lrand48, nrand48,

mbchar: mbtowc, mblen, wctomb
mbstring: mbstowcs, wcstombs

by xt driver xtproto
poll STREAMS input/output

return the last element of a path
directory name of a file path

tmpnam, tempnam create a
ctermid generate file

getpw get
getenv return value for environment

getlogin get login
nlist get entries from

nm print
mktemp make a unique file

dirname report the parent directory
ttyname, isatty find

20

message numbers or sees commands help(1)
message off a stream .. getmsg(2)
message on a stream putmsg(2)
message on stderr or system console fmtmsg(3C)
message operations msgop(2)
message queue .. msgget(2)
message string strerror(3q
messages perror(3C)
miscellany intro(5)
mkdir make a directory................. mkdir(2)
mkdirp, rmdirp create, remove mkdirp(3G)
mkfifo create a new FIFO mkfifo(30
mknod make a directory, or a .. mknod(2)
mktemp make a unique file name mktemp(30
mktime converts a tm structure to a........................... mktime(30
mnttab file entry ... getmntent(3C)
mode of file chmod(2)
modf, modff, nextafter, sca1b .. frexp(3C)
modff, nextafter, scalb manipulate frexp(30
modification times ... utime(2)
modify and query a program's locale setlocale(30
monetary database .. montbl(1M)
monitor prepare execution profile monitor(3q
montbl create monetary database montbl(1M)
mount a file system ... mount(2)
mount mount a file system .. mount(2)
move read/write file pointer .. lseek(2)
mrand48, jrand48, srand48, seed48,/ drand48(30
msgcll message control operations msgcU(2)
msgget get message queue msgget(2)
msgop message operations msgop(2)
multibyte character handling .. mbchar(30
multibyte string functions ... mbstring(30
multiplexed channels protocol used xtproto(5)
multiplexing ... poll(2)
name basename basename(3G)
name dimame report the parent dimame(3G)
name for a temporary file ... tmpnam(3S)
name for terminal ctermid(3S)
name from UID .. getpw(3Q
name .. getenv(3Q
name ... getlogin(3C)
name list .. nlist(3E)
name list of an object file ... nm(1)
name ... mktemp(3C)
name of a file path name dimame(3G)
name of a terminal ttyname(3Q

Programmer's Reference Manual

uname get
cuserid get character login

pathfind search for named file in
pathfind search for

bgets read stream up to
getmsg get

frexp, Idexp, 10gb, modf, modff,

file
setjrnp, longjmp

seed48,/ drand48, erand48, Irand48,
Isymbol table, debugging and line

determine type of floating-point
convert string to double-precision

fevt, gevt convert floating-point
uniformly distributed pseudo-random

manipulate parts of floating-point
to system calls and error

help ask for help with message
localeconv get

dis
elf

dump dump selected parts of an
elf_end finish using an

get the base offset for an
retrieve class-dependent

the comment section of an
nm print name list of an

and line number information from an
cof2elf COFF to ELF

elf32 fsize return the size of an
ld link editor for

print section sizes in bytes of
find ordering relation for an

elf ~etbase get the base
offsetof

ungetc push character back
fopen, freopen, fdopen

command p20pen,p2close
dup duplicate an

dup2 duplicate an
open

rewinddir, closedirl directory:
rewinddir, closedir directory

Permuted Index

Permuted Index

name of current UNIX system .. uname(2)
name of the user cuserid(3S)
named directories pathfind(3G)
named file in named directories ,. pathfind(3G)
next delimiter bgets(3G)
next message off a stream ... getmsg(2)
nextafter, scalb manipulate partsl frexp(3q
nice change priority of a process ... nice(2)
nlist get en tries from name list nlist(3E)
nm print name list of an object ... nm(1)
non-local goto setjmp(3C)
nrand48, mrand48, jrand48, srand48, drand48(3Q
number information from an objectl strip(1)
number lfinite, ipclass, unordered isnan(3Q
number strtod, atof, .. strtod(3C)
number to string ecvt, ... ecvt(3Q
numbers Isced48, lcong48 generate drand48(3Q
numbers Imodff, nextafter, scalb frexp(3Q
numbers intro introduction ... intro(2)
numbers or sees commands .. help(1)
numeric formatting information localeconv(3C)
object code disassembler ... dis(1)
object file access library..................... elf(3E)
object file .. dump(1)
object file .. elf _ end(3E)
object file elf _getbase elf _getbase(3E)
object file header I e1f32 _ newehdr elf _getehdr(3E)
object file mes manipulate ... mes(1)
object file ... nm(1)
object file Itable, debugging .. strip(1)
object file translation ... cof2elf(1)
object file type elUsize: ... elf jsize(3E)
object files .. Id(1)
object files size ... size(1)
object library lorder .. 10rder(1)
offset for an object file .. elf ~etbase(3E)
offset of structure member .. offsetof(3Q
offsetof offset of structUre member offsetof(3Q
onto input stream ungetc(3S)
open a stream ... fopen(3S)
open, close pipes to and from a p20pen(3G)
open file descriptor dup(2)
open file descriptor ... dup2(3Q
open for reading or writing .. open(2)
open open for reading or writing .. open(2)
opendir, readdir, telldir, seekdir, directory(3Q
operations Itelldir, seekdir, directory(3Q

21

Permuted Index

D1erncpy,D1eD1D1ove,D1eD1setD1eD1ory
D1sgctl D1essage control

D1sgop D1essage
seD1ctl seD1aphore control

seD10P seD1aphore
shD1ctl shared D1eD1ory control

shD10p shared D1eD1ory
strcspn, strtok, strstr string

getopt get
fentl file control

library lorder fmd
D1ake a directory, or a special or

dial establish an
/vfprintf, vsprintf print fOTD1atted

fprintf, sprintf print fOTD1atted
chown change

frOD1 a cOD1D1and p2open,
to and froD1 a cOD1D1and

standard buffered input/output
standard interprocess COD1D1unication

path naD1e dirnaD1e report the
get process, process group, and

getsubopt
dUD1p dUD1p selected

/D1odff, nextafter, scalb D1anipulate
functions crypt

endpwent, fgetpwent D1anipulate
putpwent write

getpass read a
create, reD10ve directories in a

return the last eleD1ent of a
the parent directory naD1e of a file

naD1ed directories
directory getcwd get

gDlatch shell global

22

process popen,

popen, pclose initiate
p2open, p2close open, close

in D1eD1ory
elf _strptr D1ake a string

rewind, ftell reposition a file
fsetpos, fgetpos reposition a file

lseek D10ve read/ write file
D1ultiplexing

operations /D1eD1chr, D1eD1CD1P, D1eD1ory(3C)
operations D1sgctl(2)
operations D1sgop(2)
operations .. 5eD1ctl(2)
operations seD1op(2)
operations shD1ctl(2)
operations shD1op(2)
operations /strpbrk, strspn, .. string(3C)
option letter frOD1 arg=ent vector getopt(3C)
options ... fentl(5)
ordering relation for an object ... lorder(1)
ordinary file D1knod .. D1knod(2)
out-going teTD1inalline connection dial(3Q
output of a variable arg=ent list vprintf(3S)
output printf, .. , printf(3S)
owner and group of a file chown(2)
p2close open, close pipes to and p2open(3G)
p2open, p2close open, close pipes p20pen(3G)
package stdio stdio(3S)
package stdipc: ftok ... stdipc(3Q
parent directory naD1e of a file dimaD1e(3G)
parent process IDs /getppid .. getpid(2)
parse suboptions froD1 a string getsubopt(3C)
parts of an object file .. dUD1p(1)
parts of floating-point nUD1bers .. frexp(3C)
password and file encryption .. crypt(3X)
password file entry /setpwent, getpwent(3C)
password file entry ... putpwent(3C)
password ... getpass(3C)
path D1kdirp, TD1dirp ... D1kdirp(3G)
path naD1e basenaD1e basenaD1e(3G)
path naD1e dimaD1e report dimaD1e(3G)
pathfind search for naD1ed file in pathfind(3G)
pathnaD1e of current working getcwd(3Q
pattern D1atching ... gDlatch(3G)'
pause suspend process until signal pause(2)
pclose initiate pipe to/froD1 a .. popen(3S)
perror print systeD1 error D1essages perror(3C)
pipe create an interprocess channel pipe(2)
pipe to/froD1 a process ... popen(3S)
pipes to and frOD1 a cOD1D1and p2open(3G)
plock lock process, text, or data plock(2)
pointer ... elf _strptr(3E)
pointer in a streaD1 fseek, .. fseek(3S)
pointer in a streaD1 fsetpos(3C)
pointer .. lseek(2)
poll STREAMS input/output ... poll(2)

Programmer's Reference Manual

a process
ar maintain

/cbrt, log, logf, loglO, loglOf,
sqrt, sqrtf exponential, logarithm,

flog, logf, loglO, loglOf, pow,
monitor

unget undo a
types

prs
activity sact

vprintf, vfprintf, vsprintf
printf, fprintf, sprintf

what
nm

object files size
perror

formatted output
nice change

acct enable or disable
alarm set a

times get
exit, _exit terminate

fork create a new
IDs / getpgrp, getppid get process,

setpgrp set
process, process group, and parent

nice change priority of a
kill send a signal to a

pclose initiate pipe to/from a
getpid, getpgrp, getppid get

plock lock
times get process and child

wait wait for child
ptrace

pause suspend
a signal to a process or a group of

m4macro

line-by-line execution count
prof display

monitor prepare execution
profil execution time

prof
assert verify

cbC

Permuted Index

Permuted Index

popen, pclose initiate pipe to/from popen(3S)
portable archive or library ... ar(1)
pow, powf, sqrt, sqrtf exponential,! exp(3M)
power, square root functions /powf, exp(3M)
powf, sqrt, sqrtf exponential,! .. exp(3M)
prepare execution profile .. monitor(3Q
previous get of an sees file ... unget(1)
primitive system data types ... types(5)
print an sces file .. prs(1)
print current sees file editing ... sact(1)
print formatted output of a/ .. vprintf(3S)
print formatted output ... printf(3S)
print identification strings ... what(1)
print name list of an object file ... nm(1)
print section sizes in bytes of size(1)
print system error messages ... perror(3C)
printf, fprintf, sprintf print .. printf(3S)
priority of a process nice(2)
process accounting acct(2)
process alarm clock ... alarm(2)
process and child process times times(2)
process .. : ... exit(2)
process fork(2)
process group, and parent process getpid(2)
process group 10 setpgrp(2)
process IDs / getpgrp, getppid get getpid(2)
process nice(2)
process or a group of processes kill(2)
process popen, popen(3S)
process, process group, and parenti getpid(2)
process, text, or data in memory......................... plock(2)
process times times(2)
process to stop or terminate wait(2)
process trace ptrace(2)
process until signal ... pause(2)
processes kill send kill (2)
processor m4(1)
prof display profile data ... prof(1)
prof profile within a function .. prof(5)
profil execution time profile .. , ... profil(2)
profile data lprof display ... Iprof(1)
profile data prof(1)
profile monitor(3Q
profile profil(2)
profile within a function prof(5)
program assertion ... ,. assert(3X)
program beautifier .. cb(1)

23

Permuted Index

lint a C
cxref generate C

cscope interactively examine a C
ctrace C

end, etext, edata last locations in
retrieve class-dependent

raise send signal to
atexit add

intro introduction to
lex generate

setlocale modify and query a
update, and regenerate groups of

windowing tenninal under/ layers
xtproto multiplexed channels

generate uniformly distributed

stream ungetc
puts, fputs

putc, putchar, £putc, putw
getdents read directory entries and

character or word on a stream
or word on a stream putc,

environment

stream
/getutent, getutid, getutline,
stream putc, putchar, fpUlc,

setlocale modify and
remque insert/remove element from a

msgget get message
qsort

div, ldiv compute the

generator
elfJand

rand, srand simple
getpass

file system independent/ getdents
read

24

bgets
rewinddir,/ directory: opendir,

open open for
lseek move

program checker .. lintO)
program cross-reference cxref(l)
program cscopeO)
program debugger .. ctrace(1)
program ... end(3q
program header table /elf32_newphdr elf_getphdr(3E)
program raise(3C)
program termination routine atexit(3C)
programming conlDlands .. intro(1)
programs for simple lexical tasks .. lex(1)
program's locale .. setlocale(3C)
programs make maintain, ... make(1)
protocol used between host and iayers(S)
protocol used by xl driver xtproto(S)
prs print an sces file ... prs(1)
pseudo-random numbers /1cong48 drand48(3C)
plrace process trace .. ptrace(2)
push character back onlo input ungetc(3S)
put a string on a stream puts(3S)
put character or word on a stream putc(3S)
put in a file system independent/ getdents(2)
putc, putcllar, fputc, putw put .. putc(3S)
putchar, fputc, putw put character putc(3S)
putenv change or add value to putenv(3C)
putmsg send a message on a stream putmsg(2)
putpwent write password file entry plltpwent(3C)
puts, £puts put a string on a.................................. puts(3S)
putulline, setutent, endutent,/ .. getut(3q
putw put character or word on a putc(3S)
qsort quicker sort qsort(3C)
query a program's locale ... setlocale(3q
queue insque, insque(3C)
queue msgget(2)
quicker sort qsort(3q
quotient and remainder ... div(3q
raise send signal to program ... raise(3C)
rand, srand simple random-number rand(3q
random archive member access elfJand(3E)
random-number generator ... rand(3C)
read a password getpass(3C)
read directory entries and put in a getdents(2)
read from file read(2)
read read from file read(2)
read stream up to next delimiter bgets(3G)
readdir, telldir, seekdir, ... directory(3C)
reading or writing .. open(2)
read/write file pointer ... lseek(2)

Programmer's Reference ManUal

/get real user, effective user,
/ geteuid, getgid, getegid get

memory allocator maUoc, free,
maUoc, free,

signal specify what to do upon
lockf

regular expression

make maintain, update, and
expression regcrnp,

regular expression compile and/
regular expression compile and/

regexp: compile, step. advance
regexpr: compile, step, advance

regcmp
regcmp, regex compile and execute

lorder find ordering
/rint, remainder floor, ceiling,

div, ldiv compute the quotient and
/fmod, fmodf, fabs, fabsf, rint,

rmdel
rmdir

mkdirp, rmdirp create,
unlink

remove

queue insque,
rename

clock
a file path name dirname

stream fseek, rewind, ftell
stream fsetpos, fgetpos

elf~etarhdr
elf ~etaTsym

file/ / e1f32 ~etehdr, elf32 _ newehdr
/ eif32 _getphdr, elf32~newphdr

header elf ..zetshdr: elf32 ~etshdr
elf~getident

contents elf rawfile
;ilis, labs

name basename
type elf jsize: elf32 jSize

getenv
stat data

poInter in a stream fseek,
/opendir, readdiri telldir, seekdir,

Permuted Index

Permuted Inda:x

real group, and effective group IDs getuid(2)
real user, effective user, real/ ... getuid(2)
realloc, calloc, mallopt, mallirtfo malloc(3X)
realloc, calloc memory allocator malloc(3C)
receipt of a signal signa1(2)
record locking on files ... lockf(3C)
regcmp, regex compile and execute regcmp(3G)
regcmp regular expression compile regcmp(1)
regenerate groups of programs make(l)
regex compile and execute regular regcmp(3G)
regexp: compile, step, advance ... regexp(S)
regexpr: compile, step, advance regexpr(3G)
regular expression compile and/ regexp(S)
regular expression compile and/ regexpr(3G)
regular expression compile .. regcmp(1)
regular expression ... regcrnp(3G)
relation for an object library ... 10rder(1)
remainder, absolute value functions floor(3M)
remainder div(3C)
remainder floor, ceiling,/ .. floor(3M)
remove a delta from an secs file rmdel(1)
remove a directory............... rmdir(2)
remove directories ill a path ... mkdirp(3G)
remove directory entry...................... unlink(2)
remove file remove(3C)
remove remove file remove(3C)
rcmque insert/remove element from a insque(3C)
rename file .. rename(3C)
rename rename file rename(3C)
report CPU time used ... clock(3C)
report the parent directory name of dirname(3G)
reposition a file pointer in a ... fseek(3S)
reposition a file pointer in a ... fsetpos(3C)
retrieve archive member header eltgetarhdr(3E)
retrieve archive symbol table elf_getarsym(3E)
retrieve class-dependent object elf~etehdr(3E)
retrieve class-dependent program/ eif_getphdr(3E)
retrieve class-dependent seCtion elf~etshdr(3E)
retrieve file identifiCation data eif_getident(3E)
retrieve uninterpreted file ... elf]awfile(3E)
return integer absolute value ... abs(3C)
return the last element of a path basename(3G)
return the size of an object file eltfsize(3E)
return value for environment name getenv(3C)
returned by stat system call .. stateS)
rewind, nell reposilion a file .. fseek(3S)
rewinddir, closedir directory I ditectory(3C}

Permuted Index

creat create a new file or
/copysign, fmod, £modf, fabs, fabsf,

file

in a path mkdirp,
chroot change

logarithm, power, square
atexit add program termination

expression compile and match
expression compile and match

editing activity
allocation br k,

10gb, modf, modff, nextafter,
formatted input

for help with message numbers or
cdc change the delta comment of an

comb combine
delta make a delta (change) to an

sact print current
get get a version of an

prs print an
rmdel remove a delta from an

sccsdiff compare two versions of an
scesfile format of

unget undo a previous get of an
val validate an

admin create and administer
sees file

bsearch binary
lsearch, lfind linear

directories pathfmd
hcreate, hdestroy manage hash

tfind, tdelete, twalk manage binary
eltnewdata, elfJawdata get

retrieve class-dependent
elf _newscn, elf _ nextscn get

mes manipulate the comment
files size print

/nrand48, mrand48, jrand48, srand48,
/opendir, readdir, telldir,

shmget get shared memory
brk, sbrk change data

dump dump
semctl
semop

26

rewrite an eXisting one creat(2)
rint, remainder floor, ceiling,/ .. floor(3M)
rmdel remove a delta from an secs rmdel(1)
rmdir remove a directory.. rmdir(2)
rmdirp create, remove directories mkdirp(3G)
root directory... chroot(2)
root functions /sqrtf exponential, exp(3M)
routine ... atexit(3C)
routines /step, advance regular regexp(5)
routines /step, advance regular regexpr(3G)
sact print current sces file .. sact(1)
sbrk change data segment space .. brk(2)
scalb manipulate parts of! /ldexp, frexp(3C)
scanf, fscanf, sscanf convert .. scanf(3S)
sees commands help ask .. help(1)
sees delta .. cdc(1)
sees deltas ... comb(1)
sees file ... delta(1)
sees file editing activity .. sact(1)
sees file .. get(1)
sees file .. prs(1)
sees file rmdel(1)
sees file .. sccsdiff(1)
sees file ... scesfile(4)
sees file ... unget(1)
sees file .. val(1)
sees files .. admin(1)
scesdiff compare two versions of an scesdiff(1)
scesfile format of secs file ... sccsfile(4)
sdb symbolic debugger .. sdb(1)
search a sorted table ... bsearch(3C)
search and update lsearch(3C)
search for named file in named pathfind(3G)
search tables hsearch, ; hsearch(3C)
search trees tsearch, tsearch(3C)
section data elf _getdata, .. eltgetdata(3E)
section header / elf32 ~etshdr elf ~etshdr(3E)
section information / elf _ ndxscn, eltgetscn(3E)
section of an object file .. mcs(1)
section sizes in bytes of object .. size(1)
seed48, lcong48 generate uniformly / drand48(3C)
seekdir, rewinddir, closedir/ directory(3C)
segment identifier ... shmget(2)
segment space allocation .. brk(2)
selected parts of an object file .. dump(1)
semaphore control operations .. semctl(2)
semaphore operations semop(2)

Programmer's Reference Manual

semget get set of

putmsg
group of processes kill

raise
elf next

alarm
umask

ascii map of ASCII character
ffs find first

timezone
times utime

elf fill
semget get

setpgrp
stime

setuid, setgid
ulimit get and

a stream
setuid,

getgrent, getgrgid, getgrnam,

crypt,
program's locale

getpwent, getpwuid, getpwnam,
IDs

I getutid, getutline, pututline,
stream setbuf,

for I addseverity build a list of
machine-independent fashion sputl,

shmctl
shmop

shmget get
system issue a

gmatch
operations

identifier

sigpause signal management sigset,
sigset, sighold, sigrelse,

generate an a.bnormal termination
sigreIse, sigignore, sigpause
pause suspend process until
what to do upon receipt of a

Permuted Index

Permuted Index

semaphores .. semget(2)
semctl semaphore control operations semctl(2)
semget get set of semaphores ... semget(2)
semop semaphore operations .. semop(2)
send a message on a stream .. putmsg(2)
send a signal to a process or a .. kill(2)
send signal to program ... raise(3q
sequential archive member access elf_next(3E)
set a process alarm clock ... alarm(2)
set and get file creation mask .. umask(2)
set .. ascii(S)
set bit .. ffs(3C)
set default system time zone ... timezone(4)
set file access and modification .. utime(2)
set fill byte ... elf _ fill(3E)
set of semaphores ... semget(2)
set process group ID ... setpgrp(2)
set time ... stime(2)
set user and group IDs .. setuid(2)
set user limits .. ulimit(2)
setbuf, setvbuf assign buffering to setbuf(3S)
setgid set user and group IDs .. setuid(2)
setgrent, endgrent, fgetgrent getl getgrent(3q
setjmp, longjmp non-local goto setjmp(3C)
setkey, encrypt generate encryption crypt(3C)
setlocale modify and query a...................................... setlocale(3C)
setpgrp set process group ID .. setpgrp(2)
setpwent, endpwent, fgetpwentl getpwent(3C)
setuid, setgid set user and group setuid(2)
setutent, endutent, utmpname access I getut(3Q
setvbuf assign buffering to a.. setbuf(3S)
severity levels for an application addseverity(3Q
sgetl access long integer data in a.................................... sputl(3X)
shared memory control operations shmctl(2)
shared memory operations .. shmop(2)
shared memory segment identifier shmget(2)
shell command ... system(3S)
shell global pattern matching .. gmatch(3G)
shmctl shared memory control... shmctl(2)
shmget get shared memory segment shmget(2)
shmop shared memory operations shmop(2)
sighold, sigre1se, sigignore, .. sigset(2)
sigignore, sigpause signal I .. sigset(2)
signal abort .. abort(3Q
signal management sigset, sighold, sigset(2)
signal ... pause(2)
signal signal specify.. signal(2)

27

Permuted Jm:tex

receipt of a signal
processes kill send a

raise send
ssignal, gsignal software

sighold, sigrelse, sigignore,
signal management sigset, sighold,

sigignore, sigpaulle signal/
lex generate programs for

rand, srand
allin, asinf, 'aoos, acosf,/ trig:
asin f, ecos, arost, I trig: sin,

tanh, tanhf, asinh, acosh,/
tanhf, asinh, acosh,/ sinh,

elf Jsize: eU32 _fsize return the
of object files

size print section
interval

current user ttyslot find the
ssignal, gsignal

qsort quicker
tsart topolOgical

bsearch binary search a
brk, sbrk change data segment
mknod make a directory, or a

strftime language
a signal signal

bufsplit
printf, fprintf,

data in a machine-independent/
/logf, log10, loglOf, pow, powf,
/log10, loglOf, pow, powf, sqrt,
exponential, logarithm, power,

generator rand,
/lrand48, nrand48, mrand48, jrand48,

scanE, £SCanf,

28

package stdio
package stdipc: ftok

call

stat data returned by
information

ustat get file system
foof, clearerr, fileno stream

stat, fstat get file
list

fmtmsg display a message on

signal specify what to do upon .. signal(2)
signal to a process or a group of .. kill(2)
signal to program ... raise(3C)
signals m .. ' ssignal(3Q
sigpause signal management sigset, sigset(2)
sigrelse, sigignore, sigpause .. sigset(2)
sigset, sighold, sigrelse, sigsct(2)
simple lexical tasks .. lex(1)
simple random-number generator rand(3C)
sin,sinf, cos, cosf, tan, tanf, '............... trig(3M)
sinf, cos, cosf, tan, tanf, asin, ... trig(3M)
sinh, sinhf, cosh, coshf, ... sinh (3M)
sinhf, cosh, coshf, tanh, .. sinh(3M)
size of an object file type ... elf_fsize(3E)
size print section sizes in bytes .. size(1)
sizes in bytes of object files size(1)
sleep suspend execution for .. sleep(3Q
slot in the utmp me of the ... ttyslot(3C)
software signals .. ssignal(3C)
sort qsort(3C)
sort tsort(1)
sorted table bscarch(3Q
space allocation .. brk(2)
special or ordinary file ... mknod(2)
specific strings strftime(4)
specify what to do upon receipt of signal(2)
split buffer into fields ... bu.fsplit(3G)
sprintf print formatted output .. printf(3S)
sputl, sgetl access long integer .. sput1(3X)
sqrt, sqrtf exponential, logarithm,! exp(3M)
sqrtf exponential, logarithm,/ ... exp(3M)
square root functions /sqrt, sqrtf eXp(3M)
srand simple random-number ... rand.(3C)
srand48, seed48, kong48 generate/ drand48(3Q
sscanf convert formatted input .. scanf(3S)
ssignal, gslgnal software signals sstgnal(3C)
standard buffered input/output .. stcli0(3S)
standard interprocess commUnication stdipc(3C)
stat data returned by stat system ... stat(5)
stat, fstat get me status .. siat(2)
stat system call ' ' ' stat(5)
statfs, fstatfs get file system ... statfs(2)
statistics .. ustat(2)
status inquiries ferror, ... fetror(3S)
status ... stat(2)
stdarg handle variable argument stdarg(S)
siderr or system console .. fmtJnsg(3t)

input/output package
communication package

compile and match/ regexp: compile,
compile and/ regexpr: compile,

wait wait for child process to
string manipulations

compressing or / strccpy: streadd,
strncmp, strcpy, strncpy,! string:

copy strings, compressing or /
/stmcmp, str .. "PY, stmcpy, strlen,

string: strcat, strdup, strncat,

/stldup, strncat, strcmp, stmcmp,
/strchr, slrrchr, strpbrk, slrspn,
strcpy, strllcpy'/ string: strcat,

slJings, compressing or / strccpy:
fdose, fflush close or flush a

tOpell, freopen, fdopen open a
reposition a file pointer in a
reposition a file pointer ill a

getw get character or word from a
getmsg get next message off a
gl'ts, fgets gl't a string from a

putw put character or word on a
putmsg send a message on a
puts, £puts put a string on a
setvbuf assign buffering to a

ferror, feof, cll'arerr, fileno
push charactl'f back onto input

bgets read
poll

or/ strccpy: su'eadd, strcadd,

manipulations str:
date and time to sbing

long integer and ba':ie-64 ASOI
strcoll

tzset convert date and time to
convert floating-point number to

gets, fgets get a
mbstowcs, wcstombs multibyte

getsubopt parse suboptions from a
str: strfind, strrspn, strtrns

puts, fputs put a
strspn, strespn, strtok, strstr

Permuted Index

Permuted Index

stdiostandard buffered ... stdio(3S)
stdipc: ftok standard interprocess stdipc(3C)
step, advance regular expression regexp(5)
step, advance regular expn.'5sion regexpr(3G)
stime set time .. stime(2)
stop or terminate ... wait(2)
str: strfind, strrspn, strtrns ... str(3G)
strcadd, strecpy copy strings, strccpy(3G)
strcat, strdup, strncat, strcmp, ... string(3Q
strccpy: streadd, strcadd, strecpy strccpy(3G)
strchr, ShTclu', strpbrk, strspn,! string(3Q
strcmp, strncmp, sh'cpy, slmcpy,! string(3Q
strcoll string collation .. strcoll(3Q
slrcpy, stmcpy, strJen, strchr,/ .. string(3Q
strcspn, strtok, slrntr string/ .. string(3Q
strdup, stmcat, sh'emp, stmcmp, string(3Q
streadd, strcadd, strecpy copy strccpy(3G)
stream , .. fclose(3S)
streanl , .. fopen(3S)
stream fseek, rewind, flell ... fseek(3S)
stream fsetpoo, fgetpos fsetpos(3Q
stream getc, getchar, fgetc, .. getc(3S)
stream getmsg(2)
stream , , , gets(3S)
stream pute, putchar, fputc, ,., putc(3S)
stream , ... putmsg(2)
stream , , .. ,', .. """' ... , ... puts(3S)
stream selbuf, , , , setbuf(3S)
stream status inquiries ... " .. ferror(3S)
stream lmgetc "", .. , , ungetc(3S)
stream up to next delimiter bgets(3G)
STREAMS input/output multiplexing poll(2)
slrecpy copy strings, compressing strccpy(3G)
strerror get error message string strerror(3Q
strfind, strrspn, struns string str(3G)
strftime, cftime, ascftime, convert strftime(3C)
strftinle language specific strings !iuftime(4)
string a64l, 164a convert between a641(3Q
shing collation , , ... strcoll(3Q
string /localtime, gmtime, asctime, ctime(3Q
string ecvt, fevt, gcvl ecvt(3C)
string from a stream .. gets(3S)
string flIDctions mbstring: .. mbstring(3C)
string ... , getsubopt(3Q
string manipulations , .. str(3G)
string on a stream puts(3S)
string operations /strpbrk, .. string(3Q

29

Permuted Index

elf _strptr make a
strcmp, strncmp, strcpy, strncpy'/

strerror get error message
ascftime, convert date and time to

strtod, atof, convert
strtol, strtoul, atol, atoi convert

strxfrm
/streadd, strcadd, strecpy copy

strftime language specific
what print identification

and line number information from/
line number information from/ strip

/strcmp, strncmp, strcpy, strncpy,
strncpy'/ string: strcat, strdup,
/strcat, strdup, strncat, strcmp,

/stmcat, strcmp, strncmp, strcpy,
/strncpy, strlen, strchr, strrchr,
/strcpy, strncpy, strlen, strehr,

manipulations str: strfind,

30

/strlen, strchr, strrehr, strpbrk,
strpbrk, strspn, strcspn, strtok,

double-precision number
/strrchr, strpbrk, strspn, strcspn,

string to integer
to integer strtol,

str: strfind, strrspn,
offsetof offset of

mktime converts a tm

getsubopt parse
sync update

sleep
pause

swab
number information/ strip strip

elf .-8etarsym retrieve archive
sdb

information
stat data returned by stat

intro introduction to
display a message on stderr or

types primitive
perror print

directory entries and put in a file
statfs, fstatfs get file

string pointer ... elf _strptr(3E)
string: strcat, strdup, strncat, ... string(3Q
string .. strerror(3Q
string strftime, cftime, ... strftime(3C)
string to double-precision number strtod(3C)
string to integer strtol(3C)
string transformation .. strxfrm(3C)
strings, compressing or expanding/ strccpy(3G)
strings .. strftime(4)
strings ... what(1)
strip strip symbol table, debugging strip(1)
strip symbol table, debugging and strip(1)
strien, strchr, strrchr, strpbrk,/ .. string(3C)
stmcat, strcmp, strncmp, strcpy, string(3C)
strncmp, strcpy, stmcpy, strlen,/ string(3C)
stmcpy, strlen, strchr, strrchr,/ string(3Q
strpbrk, strspn, strcspn, strtok,/ string(3C)
strrchr, strpbrk, strspn, strcspn'/ string(3C)
strrspn, strtrns string ... str(3G)
strspn, strcspn, strtok, strstr / .. string(3Q
strstr string operations /strrchr, string(3C)
strtod, atof, convert string to strtod(3C)
strtok, strstr string operations string(3C)
strtol, strtoul, atol, atoi convert strtol(3C)
strtoul, atol, atoi convert string .. strtol(3C)
strtrns string manipulations ... str(3G)
structure member .. offsetof(3C)
structure to a calendar time .. mktime(3C)
strxfrm string transformation .. strxfrm(3C)
suboptions from a string ... getsubopt(3C)
super block sync(2)
suspend execution for interval sleep(3Q
suspend process until signal ... pause(2)
swab swap bytes swab(3Q
swap bytes swab(3Q
symbol table, debugging and line .. strip(1)
symbol table .. elf .-8etarsym(3E)
symbolic debugger .. sdb(1)
sync update super block sync(2)
sysfs get file system type sysfs(2)
system call .. stat(5)
system calls and error numbers ... intro(2)
system console fmtmsg fmtmsg(3C)
system data types types(5)
system error messages .. perror(3C)
system independent format /read getdents(2)
system information statfs(2)

Programmer's Reference Manual

mount mount a file
ustat get file

timezone set default
sysfs get file

umount unmount a file
uname get name of current UNIX

bsearch binary search a sorted
information/ strip strip symbol

retrieve archive symbol
class-dependent program header

classification and conversion
hdestroy manage hash search

acosf,/ trig: sin, sinf, cos, cosf,
trig: sin, sinf, cos, cosf, tan,

sinh, sinhf, cosh, coshf,
/sinhf, cosh, coshf, tanh,

programs for simple lexical
trees tsearch, tfind,

directory: opendir, readdir,
temporary file tmpnam,

tmpfile create a
tmpnam, tempnam create a name for a

ctermid generate file name for
lib windows windowing

jagent host control of windowing
dial establish. an out-going

ttyname, isatty find name of a
used between host and windowing

exit, _exit
wait for child process to stop or

atexit add program
abort generate an abnormal

plock lock process,
search trees tsearch,

the difference between two calendar
times

times get process and child process
set file access and modification

zone
mktime converts a

temporary file
/tolower, _to upper, _tolower,

popen, pclose initiate pipe
conv: toupper, tolower, _toupper,
toascii translate/ conv: toupper,

Permuted Index

Permuted Index

system issue a shell command system(3S)
system mount(2)
system statistics ... ustat(2)
system time zone ... timezone(4)
system type information .. sysfs(2)
system .. umount(2)
system uname(2)
table ... bsearch(3C)
table, debugging and line number strip(1)
table elf ~etarsym ... elf _getarsym(3E)
table / elf32 _ newphdr retrieve elf _getphdr(3E)
tables chrtbl generate character chrtbl(1M)
tables hsearch, hcreate, ... hsearch(3C)
tan, tanf, asin, asinf, acos, trig(3M)
tanf, asin, asinf, acos, acosf,/ trig(3M)
tanh, tanhf, asinh, acosh,/ ... sinh(3M)
tanhf, asinh, acosh, atanh/ .. sinh (3M)
tasks lex generate .. lex(1)
tdelete, twalk manage binary search tsearch(3C)
telldir, seekdir, rewinddir,/ .. directory(3C)
tempnam create a name for a tmpnam(3S)
temporary file .. tmpfile(3S)
temporary file .. tmpnam(3S)
terminal .. ctermid(3S)
terminal function library................. libwindows(3X)
terminal............. jagent(S)
terminal line connection ... dial(30
terminal.............................. ttyname(3C)
terminal under layers(1) /protocol layers(S)
terminate process .. exit(2)
terminate wait wait(2)
termination routine ... atexit(30
termination signal......... abort(3C)
text, or data in memory.. plock(2)
tfind, tdelete, twalk manage binary tsearch(30
times difftime computes ... difftime(3Q
times get process and child process times(2)
times times(2)
times utime ... utime(2)
timezone set default system time timezone(4)
tm structure to a calendar time mktime(3C)
tmpfile create a temporary file tmpfile(3S)
tmpnam, tempnam create a name for a tmpnam(3S)
toascii translate characters .. conv(3C)
to/from a process .. popen(3S)
_tolower, toascii translate/ ... conv(3C)
tolower, _toupper, _tolower, .. conv(3C)

31

Permuted Index

tsort
translate I conv: toupper, tolower,
_tolower, toascii translate I conv:

ptrace process
strxfrm string

_toupper, _tolower, toascii
cof2elf COFF to ELF object file

e1f32 _ xlatetom class-dependent data
ftw walk a rue

tde1ete, twalk manage binary search
tanf, asin, asinf, acos, acosf./

acosf, atan, atanf, atan2, atlllh2f
manage binary search trees

terminal
file of the current user
tsearch, tfind, tdelete,

return the size of an object file
elf kind determine file

sysfs get file system
lfpc1ass, unordered determine

types primitive system data
ctime, localtime, gmtime, asctime,

getpw get name from

mask

system
unget

sees file
input stream

Isrand48, seed48, lcong48 generate
elf rawfile retrieve

mktemp make a
uname get name of current

32

umount
isnand, isnanf, finite, fpclass,

pause suspend process
elf_update

programs make maintain,
lsearch, lfind linear search and

sync
signal specify what to do

levels for an application for

topolOgical sort .. tsort(1)
_toupper, _tolower, toascii ... conv(3Q
toupper, tolower, _toupper, ... conv(3C)
trace ptrace(2)
transformation .. strxfrm(3C)
translate characters Itolower, ... conv(3C)
translation cof2elf(1)
translation I e1f32 _ xlatetof, .. elf _xlate(3E)
tree ftw(3Q
trees tsearch, tfind, tsearch(3Q
trig: sin, sin!, cos, cosf, tan, ... trig(3M)
trigonometric functions I acos, trig(3M)
tsearch, tfind, tdelete, twalk tsearch(3Q
tsort topolOgical sort tsort(1)
ttyname, isatty find name of a..................................... ttyname(3Q
ttyslot find the slot in the utmp ttyslot(3C)
twalk manage binary search trees tsearch(3C)
type elf_fsize: elf32jsize .. elf_fsize(3E)
type elf _ kind(3E)
type information ... sysfs(2)
type of floating-point number .. isnan(3C)
types primitive system data types types(5)
types ... types(5)
tzset convert date and time tol .. ctime(3Q
uadmin administrative control .. uadmin(2)
UID getpw(3C)
ulimit get and set user limits .. ulimit(2)
umask set and get file creation ... umask(2)
umount unmount a file system umount(2)
uname get name of current UNIX uname(2)
undo a previous get of an sees file unget(1)
unget undo a previous get of an .. unget(1)
ungetc push character back onto ungetc(3S)
uniformly distributed pseudo-random I drand48(3Q
uninterpreted file contents .. elfJawfile(3E)
unique file name mktemp(3C)
UNIX system uname(2)
unlink remove directory entry............................... unlink(2)
unmount a file system .. umount(2)
unordered determine type ofl isnan, isnan(3Q
until signal.......................... pause(2)
update an descriptor .. elf _ update(3E)
update, and regenerate groups of make(1)
update .. lsearch(3C)
update super block .. sync(2)
upon receipt of a signal ... signal(2)
use with fmtmsg I a list of severity addseverity(3Q

Programmer's Reference Manual

setuid, setgid set
get character login name of the

/ geteuid, getgid. getegid get real
environ

ulimit get and set
/getegid get real user, effective
in the utmp me of the current

maillock manage lockfile for
elC end finish

modification times
. utmp,wtmp

setutent, endutent, utmpname access
ttyslot find the slot in the

formats
/pututline, setutent, eridutent,

val
abs, labs return integer absolute

elf_hash compute hash
getenv return

floor, ceiling, remainder, absolute
putenv change or add

values machine-dependent
list

stdarg handle
varargs handle

print formatted output of a

get option letter from argument
assert

vc
get get a

coordinate library and application
sccsdiff compare two

output of a variable/ vprintf,
formatted output of a variable/

a variable/ vprintf, vfprintf,
terminate wait

or terminate
ftw

mbstring: mbstowcs,
mbchar: mbtowc, mblen,

encrypted isencrypt determine
libwindows

jagent host control of

Permuted Index

Permuted Index

user and group IDs setuid(2)
user cuserid .. cuserid(3S)
user, effective user, real group,! getuid(2)
user environment ... environ(5)
user limits ... ulimit(2)
user, real group, and effective/ .. getuid(2)
user ttyslot find the slot ttyslot(3C)
user's mailbox .. maiIlock(3X)
using an object file ... elf _ end(3E)
ustat get me system statistics ustat(2)
utime set file access and ... utime(2)
utmp and wtmp entry formats .. utmp(4)
utmp file entry /pututline, ... getut(3q
utmp file of the current user ... ttyslot(3C)
utmp, wtmp utmp and wtmp entry utmp(4)
utmpname access utmp file entry.................................... getut(3Q
val validate an sees file .. val(l)
validate an sees file ... val(1)
value .. abs(3Q
value ... elf_hash(3E)
value for environment name .. getenv(3Q
value functions /rint, remainder floor(3M)
value to environment .. puteI\v(3C)
values machine-dependent values values(5)
values ... values(5)
varargs handle variable argument varargs(5)
variable argument list ... stdarg(5)
variable argument list ... varargs(5)
variable argument list /vsprintf vprintf(3S)
vc version control .. : vc(l)
vector getopt ... getopt(3C)
verify program assertion ... assert(3X)
version control ... vc(l)
version of an sees file ... get(1)
versions elf_version ... elf _ version(3E)
versions of an sees file .. sccsdiff(1)
vfprintf, vsprintf print formatted vprintf(3S)
vprintf, vfprintf, vsprintf print vprintf(3S)
vsprintf print formatted output of vprintf(3S)
wait for child process to stop or ... wait(2)
wait wait for child process to stop wait(2)
walk a file tree ... ftw(3C)
wcstombs multibyte string functions mbstring(3Q
wctomb multibyte character handling mbchar(3C)
whether a character buffer is isencrypt(3G)
windowing terminal function library libwindows(3X)
windowing terminal ... jagent(5)

33

Permuted Index

34

/protocol used between host and
prof profile

fgetc, getw get character or
fputc, putw put character or

chdir change
getcwd get pathname of current

write
putpwent

open open for reading or
utmp, wtmp utmp and

utmp,
channels protocol used by
protocol used by xt driver

bessel: jO, jI, jn,
bessel: jO, jI, jn, yO,

yacc
bessel: jO, jI, jn, yO, yI,

timezone set default system time

windowing terminal under layers(1) layers(5)
within a function .. prof(5)
word from a stream getc, getchar, getc(3S)
word on a stream putc, putchar, putc(3S)
working directory chdir(2)
working directory getcwd(3Q
write on a file .. write(2)
write password file entry ... putpwent(3Q
write write on a file ... write(2)
writing .. open(2)
wtmp entry formats ... utmp(4)
wtmp utmp and wtmp entry formats utmp(4)
xt driver xtproto multiplexed xtproto(5)
xtproto multiplexed channels ... xtproto(5)
yO, yI, yn Bessel functions .. bessel (3M)
yl, yn Bessel functions ... bessel(3M)
yacc yet another compiler-compiler yacc(1)
yet another compiler-compiler .. yacc(1)
yn Bessel functions bessel(3M)
zone ... ; timezone(4)

Programmer's Reference Manual

Intro (1) Intro (1)

NAME
intro - introduction to programming commands

DESCRIPTION
This section describes the programming commands in alphabetical order. Unless
otherwise noted, the commands accept options and other arguments according to
the following syntax:
name [option(s)] [cmdarg(s)]

where:

name
option

is the name of an executable file.

is -noargletter(s) or -arg1etter <> optarg, where:

noargletter is a single letter representing an option without an
option argument;

arg1etter is a single letter representing an option requiring an option
argument;

<> is optional white space;

optarg is an option argument (character string) satisfying the
preceding arg1etter.

cmdarg is "-" by itself, which indicates the standard input, or a path name
(or other command argument) not beginning with "-".

Throughout the manual pages there are references to TMPDIR, BINDIR, !NeDIR,
and LIBDIR. These represent directory names whose value is specified on each
manual page as necessary. For example, TMPDIR might refer to /usr/trrp.
These are not environment variables and cannot be set. [There is an environment
variable called TMPDIR which can be set. See trrpnam(3S).] There are also refer­
ences to LIBPATH, the default search path of the link editor and other tools.

SEE ALSO
exit(2), wait(2), getopt(3C).
getopts(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

10/89

Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal" ter­
mination) one supplied by the program [see wait(2) and exit(2»). The former
byte is 0 for normal termination; the latter is customarily 0 for successful execu­
tion and non-zero to indicate troubles such as erroneous parameters, or bad or
inaccessible data. It is called variously "exit code," "exit status," or "return
code," and is described only where special conventions are involved.

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and there­
fore become confused upon encountering a null character (the string terminator)
within a line.

Page 1

admln(1} admln(1}

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[name)) [-rrel] [-t[name)) [-fflag[flag-val)] [-cIflag[flag-val)] [-alogin]

[-elogin] [-m[mrlist)) [-y[comment]] [-h) [-z] files

DESCRIPTION

10/89

admin is used to create new sees files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu­
ments (that begin with -) and named files (note that sees file names must begin
with the characters s.). If a named file does not exist, it is created and its param­
eters are initialized according to the specified keyletter arguments. Parameters
not initialized by a keyletter argument are assigned a default value. If a named
file does exist, parameters corresponding to specified keyletter arguments are
changed, and other parameters are left unchanged.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed. Again, non-sees files and
unreadable files are silently ignored.

The keyletter arguments are listed below. Each argument is explained as if only
one named file were to be processed because the effect of each argument applies
independently to each named file.

-n
-i[name]

-rrel

-t[name1

This keyletter indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is to be
taken. The text constitutes the first delta of the file (see -r
keyletter for delta numbering scheme). If the -i keyletter is used,
but the file name is omitted, the text is obtained by reading the
standard input until an end-of-file is encountered. If this keyletter
is omitted, then the sees file is created empty. Only one sees file
may be created by an admin command on which the i keyletter is
supplied. Using a single admin to create two or more sees files
requires that they be created empty (no -i keyletter). Note that
the -i keyletter implies the -n keyletter.

The release into which the initial delta is inserted. This keyletter
may be used only if the -i keyletter is also used. If the -r
keyletter is not used, the initial delta is inserted into release 1.
The level of the initial delta is always 1 (by default initial deltas
are named 1.1).

The name of a file from which descriptive text for the sees file is
to be taken. If the -t keyletter is used and admin is creating a
new sees file (the -n and/or -i keyletters also used), the descrip­
tive text file name must also be supplied. In the case of existing
sees files: (1) a -t keyletter without a file name causes removal
of the descriptive text (if any) that is currently in the sees file,
and (2) a -t keyletter with a file name causes text (if any) in the

Page 1

admln(1)

-fflag

b

cceil

ffloor

dSID

i[str]

j

llist

n

p,age 2

admln(1)

named file to replace the descriptive text (if any) that is currently
in the sees file.

This keyletter specifies a flag, and, possibly, a value for the flag, to
be placed in the sees file. Several -f keyletters may be supplied
on a single ac:lmin command line. The allowable flags and their
values are:

Allows use of the -b key letter on a get command to create
branch deltas.

The highest release (i.e., ceiling): a number greater than 0
but less than or equal to 9999 that may be retrieved by a get
command for editing. The default value for an unspecified c
flag is 9999.
The lowest release (Le., floor): a number greater than 0 but
less than 9999 that may be retlieved by a get command for
editing. The default value for an unspecified f flag is 1.

The default delta number (SID) to be used. by a get com­
mand.

Causes the No id keywords <ge6) message issued by get
or delta to be treated as a fatal error. In the absence of this
flag, the message is only a warning. The message is issued if
no sees id~ntification keywords [see get(1)] are found in the
text retrieved or ston..>d in the sees file. If a value is sup­
plied, the keywords must exactly match the given string.
The string must contain a keyword, and no embedded new­
lines.

Allows concurrent get commands for editing on the same
SID of an sees file. This flag allows multiple concurrent
updates to the same version of the sees file.

A list of releases to which deltas can no longer be made (get
-e against one of these "locked" releases fails). The list has
the following syntax:

<list> ::= <range> I <list> I <.range>
<range> ::= REI-EASE NUMBER I a

The character a in the list is equivalent to specifying all
releases for the named. sees file.

Causes delta to create a null delta in each of those releases
(if any) being skipped when a delta is made in a new release
(e.g., in making delta 5.1 after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as anchor points so that
branch deltas may later be created from them. The absence
of this flag causes skipped releases to be non-existent in the
sees file, preventing branch deltas from being created from
them in the future.

admln (1) admln (1)

qtext User-definable text substituted for all occurrences of the %Q%
keyword in sees file text retrieved by get.

rrmod module name of the sees file substituted for all occurrences
of the %M% keyword in sees file text retrieved by get. If the
m flag is not specified, the value assigned is th<! name oi the
sees file with the leading s. removed.

ttype type of module in the sees file sl1hstitutcd for all 1)(,Clllrcnccs
of %Y% keyword. in secs file text retrieved hy get.

vipgm] Causes delta to prompt for Modifkation R~lu<.!st (,vIR)
numbers as the reason for creating a delta. The optional
value specifies the name of an MR number validity checking
program [see delta(l)]. This program will re::eivc as an~u­
ments the m(\dl1h~ name, the value o£ the type flag (see ttype
above), and the mrlist. (If this flag is set when creating an
sees file, the m keyletter must also be used even if its value
is nul!).

-dflag Causes removal (deletl0n) of the srccifil.,<l flag from an sees file.
The -d keylctter may be specified Dnly when processing exi:;ting
sees files. 5<~veral -d keyletters may be supplied in a single
admill command. See the -f keyletter for allowable flag nameb.

(llist used with -d indicates a list of releases to be unlocked. See
the -f keylettcr for a description of the 1 flag and the syntax of a
list.)

-alogin A login name, or numerical UNIX System group ID, to be added to
the Ust of users who may make deltas (changes) to the SC(",.5 file.
A gronp lD is equivalent to specifying all login names common 10
that group ID. Several a keyk>tters may be usoo on a sil'gle ndmin
command line. As many logins or numerical group 10s ~s rlcsirccl
may be on the list simultaneously. If the list of users is empty,
then anyone may add deltas. If login or group ID is precected by
a! they arc to be denied permission to make delt;ls.

-elogin A login name, or numerical group ID, to be emsed [rom the list of
users allowed to make deltas (changes) to the sees me. Specify­
ing a group 10 is equivalent to specifying all login names com­
mon to that group 10. Several -e key letters may be used on a sin·
gle admin command line.

-m[mrlist] The list of Modification Requests (MR) numbers is inserted into
the sees file as the reason for creating the initial delta in a
manner identical to delta. The v flag must be set and the MR
numbers are validated if the v flag has a value (the name of an MR
number validation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

-y[commentj The comment text is inserted into the sees file as a comment for
the initial delta in a manner identical to that of delta. Omission
of the -y keyletter results in a default comment line being
inserted.

10/89 Page 3

admin(1) admln(1)

FILES

-h

-z

The -y keyletter is valid only if the -i and/or -n keyletters are
specified (Le., a new sees file is being created).

Causes admin to check the structure of the sees file [see
sccsfile(4)], and to compare a newly computed check-sum (the
sum of all the characters in the sees file except those in the first
line) with the check-sum that is stored in the first line of the sees
file. Appropriate error diagnostics are produced. This keyletter
inhibits writing to the file, nullifying the effect of any other
keyletters supplied; therefore, it is only meaningful when process­
ing existing files.

The sees file check-sum is recomputed and stored in the first line
of the sees file (see -h, above). Note that use of this keyletter on
a truly corrupted file may prevent future detection of the corrup­
tion.

The last component of all sees file names must be of the form s. file. New sees
files are given mode 444 [see cluood(1)]. Write permission in the pertinent direc­
tory is, of course, required to create a file. All writing done by admin is to a tem­
porary x-file, called x.file, [see get(1)], created with mode 444 if the admin com­
mand is creating a new sees file, or with the same mode as the sees file if it
exists. After successful execution of admin, the sees file is removed (if it exists),
and the x-file is renamed with the name of the sees file. This renaming process
ensures that changes are made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and that
sees files themselves be mode 444. The mode of the directories allows only the
owner to modify sees files contained in the directories. The mode of the sees
files prevents any modification at all except by sees commands.

admin also makes use of a transient lock file (called z .file), which is used to
prevent simultaneous updates to the sees file by different users. See get(1) for
further information.

x-file
z-file
bdiff

[see delta(1)]
[see delta(1)]
Program to compute differences between the "gotten" file and
the g-file [see get(1)].

SEE ALSO
bdiff(1), ed(1), delta(1), get(1), help(1), prs(1), what(1), sccsfile(4).

DIAGNOSTICS

NOTES

Page 4

Use the help command for explanations.

If it is necessary to patch an sees file for any reason, the mode may be changed
to 644 by the owner allowing use of a text editor. You must run admin -h on the
edited file to check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the sees file is valid.

10/89

ar(1) ar(1)

NAME
ar - maintain portable archive or library

SYNOPSIS
ar [-v] - key [arg] [posname] afile [name. . .

DESCRIPTION

10/89

The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files. However, it can be used for any
similar purpose. The magic string and the file headers used by ar consist of
printable ASCII characters. If an archive is composed of printable files, the entire
archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor Id
to effect multiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named
file that is always the first file in the archive. This file is never mentioned or
accessible to the user. Whenever the ar command is used to create or update the
contents of such an archive, the symbol table is rebuilt. The s option described
below will force the symbol table to be rebuilt.

The -v option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The
key is formed with one of the following letters: drqtprnx:. Arguments to the key,
alternatively, are made with one of more of the following set: vuaibcls.
posname is an archive member name used as a reference point in positioning other
files in the archive. afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r

q

t

p

m

Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. This option is useful to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files
in the archive are listed. If names are given, only those files are listed.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

Page 1

ar (1) ar (1)

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, print the
filename preceding each extraction.

c Suppress the message that is produced by default when afile is created.

1 This option is obsolete. It is recognized, but ignored, and will be removed
in the next release.

s Force the regeneration of the archive symbol table even if ar(1) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

SEE ALSO

NOTES

Page 2

1d(1), lorder(l), strip(l), a. out(4), ar(4).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

Since the archiver no longer uses temporary files, the -1 option is obsolete and
will be removed in the next release.

By convention, archives are suffixed with the characters . a.

10/89

8S(1) 85(1)

NAME
as - assembler

SYNOPSIS
as [opt ions 1 file

DESCRIPTION

FILES

The as command creates object files from assembly language source files. The
following flags may be specified in any order:

-0 objfile Put the output of the assembly in objfile. By default, the output file
name is formed by removing the . s suffix, if there is one, from the
input file name and appending a .0 suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Obsolete. Assembler issues a warning saying that it is ignoring the
-dloption.

-T Accept obsolete assembler directives.

-v Write the version number of the assembler being run on the stan-
dard error output.

-Q{y I n} If -Qy is specified, place the version number of the assembler being
run in the object file. The default is -Qn.

-y hndl,dir Find the m4 preprocessor (m) and/or the file of predefined macros
(d) in directory dir instead of in the customary place.

By default, as creates its temporary files in /usr/tnp. This location can be
changed by setting the environment variable TMPDIR [see tenpnam in tnpn~3S)1.

SEE ALSO

NOTES

10/89

cc(l), ld(1), m4(1), I1JO:l), strip(l), tnpnam(3S), a. out(4).

If the -m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)1 cannot be used as symbols (variables, functions, labels) in the input file
since m4 cannot determine which keywords are assembler symbols and which
keywords are real m4 macros.

The . align assembler directive may not work in the . text section when
long/short address optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expres­
sion.

Whenever possible, you should access the assembler through a compilation sys­
tem interface program such as cc.

Page 1

cb(1) cb(1)

NAME
cb - C program beautifier

SYNOPSIS
cb [-8] [-j] [-lleng] [-V] [file ...]

DESCRIPTION

NOTES

The cb comand reads syntactically correct C programs either from its arguments
or from the standard input, and writes them on the standard output with spacing
and indentation that display the structure of the C code. By default, cb preserves
all user new-lines.

cb accepts the following options.

-8

-j

-lleng

-V

Write the code in the style of Kernighan and Ritchie found in The C
Programming Language.

Put split lines back together.

Split lines that are longer than leng.

Print on standard error output the version of cb invoked.

cb treats a8m as a keyword.

The format of structure initializations is unchanged by cb.

Punctuation that is hidden in preprocessing directives causes indentation errors.

SEE ALSO
cc(1).

10/89

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi­
tion, Prentice-Hall, 1988.

Page 1

cc(1) cc(1)

NAME
cc - C compiler

SYNOPSIS
cc [options) file ...

DESCRIPTION

10/89

cc is the interface to the C compilation system. The compilation tools conceptu­
ally consist of a preprocessor, compiler, optimizer, basic block analyzer, assem­
bler, and link editor. cc processes the supplied options and then executes the
various tools with the proper arguments. cc accepts several types of files as
arguments.

Files whose names end with . c are taken to be C source files and may be prepro­
cessed, compiled, optimized, instrumented for profiling, assembled, and link
edited. The compilation process may be stopped after the completion of any pass
if the appropriate options are supplied. If the compilation process runs through
the assembler, then an object file is produced whose name is that of the source
with .0 substituted for . c. However, the .0 file is normally deleted if a single C
file is compiled and then immediately link edited. In the same way, files whose
names end in . s are taken to be assembly source files; they may be assembled
and link edited. Files whose names end in . i are taken to be preprocessed C
source files, and they may be compiled, optimized, instrumented for profiling,
assembled, and link edited. Files whose names do not end in . c, . s, or . i are
handed to the link editor, which produces an executable whose name by default
is a.out.

Since cc usually creates files in the current directory during the compilation pro­
cess, it is necessary to run cc in a directory in which a file can be created.

The following options are interpreted by cc:

-A name[(tokens»)
Associates name as a predicate with the specified tokens as if by a tassert
preprocessing directive.

Preassertions: system (unix)
cpu (i386)
machine (i386)

-A - Causes all predefined macros (other than those that begin with __) and
predefined assertions to be forgotten.

-C Cause the preprocessing phase to pass along all comments other than
those on preprocessing directive lines.

-c Suppress the link editing phase of the compilation and do not remove any
produced object files.

-0 name[=tokens)
Associates name with the specified tokens as if by a tdefine preprocessing
directive. If no =tokens is specified, the token 1 is supplied. These
predefinitions only exist under the -Xt and -Xa modes.

Page 1

cc(1) cc(1)

Predefinitions: i386
unix

-E Only preprocess the named C files and send the result to the standard
output. The output will contain preprocessing directives for use by the
next pass of the compilation system.

-f This option is obsolete and will be ignored.

-g Cause the compiler to generate additional information needed for the use
of sdb. Use of sdb on a program compiled with both the -g and -0
options is not recommended unless the user understands the behavior of
optimization.

-H Print, one per line, the path name of each file included during the current
compilation on the standard error output.

- I dir Alter the search for included files whose names do not begin with / to
look in dir prior to the usual directories. The directories for multiple -I
options are searched in the order specified.

-K PIC
Causes position-independent code (PIC) to be generated.

-L dir Add dir to the list of directories searched for libraries by 1d This option
and its argument are passed to 1d.

-1 name
Search the library 1ibname. a. Its placement on the command line is
significant as a library is searched at a point in time relative to the place­
ment of other libraries and object files on the command line. This option
and its argument are passed to 1d.

-0 Arrange for compilation phase optimization. This option has no effect on
. s files.

-0 pathname
Produce an output object file pathname, instead of the default a. out. This
option and its argument are passed to 1d.

-P Only preprocess the named C files and leave the result in corresponding
files suffixed . i. The output will not contain any preprocessing directives,
unlike -E.

-p Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, profiled versions of
1ibc.a and 1ibm.a (with the -1m option) are linked. A lOOn. out file will
then be produced at normal termination of execution of the object pro­
gram. An execution profile can then be generated by use of prof.

-Q c c can be either y or n. If c is y, identification information about each
invoked compilation tool will be added to the output files (the default
behavior). This can be useful for software administration. Giving n for c
suppresses this information.

Page 2 10/89

cc(1) cc(1)

10/89

-q c c can be either 1 or p. -ql causes the invocation of the basic block
analyzer and arranges for the production of code that counts the number
of times each source line is executed. A listing of these counts can be gen­
erated by use of lprof. -qp is a synonym for -po

-8 Compile, optimize (if -0 is present), and do not assemble or link edit the
named C files. The assembler-language output is left in corresponding
files suffixed . s.

-u name
Causes any definition of name to be forgotten, as if by a 'undef prepro­
cessing directive. If the same name is specified for both -0 and -u, name is
not defined, regardless of the order of the options.

-v Cause each invoked tool to print its version information on the standard
error output.

-v Cause the compiler to perform more and stricter semantic checks, and to
enable certain lint-like checks on the named C files.

-w tool, arg1[, arg2 ... J
Hand off the argument(s) arg j each as a separate argument to tool. Each
argument must be separated from the preceding by only a comma. (A
comma can be part of an argument by escaping it by an immediately
preceding backslash (\) character; the backslash is removed from the
resulting argument.) tool can be one of the following:

p A synonym for 0
o compiler
2 optimizer
b basic block analyzer
a assembler
1 link editor

For example, -Wa,-o,objfi1e passes -0 and objfi1e to the assembler, in that
order.

The order in which the argument(s) are passed to a tool with respect to
the other specified command line options may change.

-x c Specify the degree of conformance to the ANSI C standard. c can be one
of the following:

t (transition)
The compiled language includes all new features compatible with
older (pre-ANSI) C (the default behavior). The compiler warns
about all language constructs that have differing behavior between
the new and old versions and uses the pre-ANSI C interpretation.
This includes, for example, warning about the use of trigraphs the
new escape sequence \a, and the changes to the integral promotion
rules.

a (ANSI)
The compiled language includes all new features of ANSI C and
uses the new interpretation of constructs with differing behavior.
The compiler continues to warn about the integral promotion rule

Page 3

cc(1)

FILES

Page 4

cc(1)

changes, but does not warn about trigraph replacements or new
escape sequences.

c (conformance)
The compiled language and associated header files are ANSI C
conforming, but include all conforming extensions of -Xa. Warn­
ings will be produced about some of these. Also, only ANSI
defined identifiers are visible in the standard header files.

The predefined macro __ STDC_ has the value 0 for -Xt and -xa, and 1
for -Xc. All warning messages about differing behavior can be eliminated
in -Xa through appropriate coding; for example, use of casts can eliminate
the integral promotion change warnings.

-y item, dir
Specify a new directory dir for the location of item. item can consist of any
of the characters representing tools listed under the -w option or the fol­
lowing characters representing directories containing special files:

I directory searched last for include files: INCDIR (see -I)
S directory containing the start-up object files: LIBDIR
L obsolete. Use -yp instead. For this release, -YL will be simulated

using -YP. -YL will be removed in the next release.
u obsolete. Use -yP instead. For this release, -YO will be simulated

using -YP. -YO will be removed in the next release.
P Change the default directories used for finding libraries. dir is a

colon-separated path list.

If the location of a tool is being specified, then the new path name for the
tool will be dir/tool. If more than one -Y option is applied to anyone
item, then the last occurrence holds.

cc recognizes -a, -e, -m, -0, -r, -s, -t, -u, and -z and passes these options and
their arguments to Id. cc also passes any unrecognized options to Id without
any diagnostic.

When cc is put in a file prefixcc, the prefix will be recognized and used to prefix
the names of each tool executed. For example, OIDcc will execute OLDaconp,
OLDoptim,. OLDbasicblk, OLDas, and OLDld, and will link the object file(s) with
OLDcrtl. o. Therefore, be careful when moving co around. The prefix applies to
the compiler, optimizer, basic block analyzer, assembler, link editor, and the
start-up routines.

fi1e·c
fi1e·i
fi1e·o
fi1e·s
a.out
LIBDIR/*crti.o
LIBDIR/*crtl.o

C source file
preprocessed C source file
object file
assembly language file
link-edited output
startup initialization code
startup routine

10/89

cc(1)

LIBDlR/*crtn.o
TMPDlR/*
LIBDlR/ acorcp
LIBDlR/ optim
LIBDlR/basicblk
BINDIR/as
BINDIR/ld
LIBDlR/Ubc. a

INCDlR
LIBDlR
BINDIR
TMPDlR

last startup routine
temporary files
preprocessor and compiler
optimizer
basic block analyzer
assembler
link editor
standard C library

usually /usr/ include
usually /usr/ccs/lw
usually /usr/ccs/bin

cc(1)

usually /usr/trrp but can be redefined by setting the
environment variable TMPDIR (see tercpnam in
trrpnan(3S» .

SEE ALSO

NOTES

10/89

as(1), ld(1), lint(1), lprof(1), prof(1), sdb(l), IOOnitor(3C), trrpnanl:3S).
The "C Compilation System" chapter in the Programmer's Guide: ANSI C and Pro­
gramming Support Tools.
Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Second Edi­
tion, Prentice-Hall, 1988.
American National Standard for Information Systems - Programming Language
C, X3.159-1989.

Obsolescent but still recognized cc options include -f, -F, -YL, and -YO. The -ql
and -0 options do not work together; -0 will be ignored.

Page 5

cdc(1} cdc(1 }

NAME
cdc - change the delta comment of an sees delta

SYNOPSIS
cdc -r SID [-m[mrlist]] [-y[comment]] file ...

DESCRIPTION

10/89

cdc changes the delta comment, for the SID (sees identification string) specified
by the -r keyletter, of each named sees file.

The delta comment is the Modification Request (MR) and comment information
normally specified via the -m and -y keyletters of the delta command.

If file is a directory, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCes files (last component of the path
name does not begin with a.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see the NOTFS section) and each
line of the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu­
ments and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the sees IDentification (SID) string of a delta for
which the delta comment is to be changed.

-mmrlist If the sees file has the v flag set [see aclmin(1)] then a list of MR
numbers to be added and/or deleted in the delta comment of the
SID specified by the -r keyletter may be supplied. A null MR list
has no effect.

mrlist entries are added to the list of MRs in the same manner as
that of delta. In order to delete an MR, precede the MR number
with the character ! (see the EXAMPLFS section). If the MR to be
deleted is currently in the list of MRs, it is removed and changed
into a comment line. A list of all deleted MRs is placed in the
comment section of the delta comment and preceded by a com­
ment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the stan­
dard input is read; if the standard input is not a terminal, no
prompt is issued. The~? prompt always precedes the can­
menta? prompt (see -y keyletter).

mrlist entries in a list are separated by blanks and/or tab charac­
ters. An unescaped new-line character terminates the MR list.

Note that if the v flag has a value [see aclmin(1»), it is taken to be
the name. of a program (or shell procedure) that validates the
correctness of the MR numbers. If a non-zero exit status is
returned from the MR number validation program, cdc ter­
minates and the delta comment remains unchanged.

Page 1

cdc(1)

-y[comment]

cdc(1)

Arbitrary text used to replace the comment(s) already existing for
the delta specified by the -r keyletter. The previous comments
are kept and preceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the
prompt COJIIIIBnts? is issued on the standard output before the
standard input is read; if the standard input is not a terminal, no
prompt is issued. An unescaped new-line character terminates
the comment text.

If you made the delta and have the appropriate file permissions, you can change
its delta comment. If you own the file and directory you can modify the delta
comment.

EXAMPLES

FILES

cdc -r1.6 -m"bl88-12345 !bl87-54321 bl89-00001" -ytrouble s.file

adds bl88-12345 and b189-00001 to the MR list, removes bI87-54321 from the MR
list, and adds the comment trouble to delta 1 .6 of s. file.

Entering:

cdc -rl.6 s.file
MRs? !bl87-54321 b188-12345 b189-00001
cOJIIIIents? trouble

produces the same result.

x-file [see delta(l)]
z-file [see delta(l)]

SEE ALSO
admin(1), delta(1), get(1), help(l), prs(1), sccsfile(4).

DIAGNOSTICS

NOTES

Page 2

Use help for explanations.

If sees file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

10/89

cflow(1) cflow(1)

NAME
cflow - generate C flowgraph

SYNOPSIS
cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION

10/89

The cflow command analyzes a collection of C, yacc, lex, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with . y, .1, and . c are processed by yacc, lex, and the C compiler as appropri­
ate. The results of the preprocessed files, and files suffixed with . i, are then run
through the first pass of lint. Files suffixed with . s are assembled. Assembled
files, and files suffixed with .0, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references
that is written on the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol followed
by a colon and its definition. Normally only function names that do not begin
with an underscore are listed (see the -i options below). For information
extracted from C source, the definition consists of an abstract type declaration
<e.g., char *), and, delimited by angle brackets, the name of the source file and
the line number where the definition was found. Definitions extracted from
object files indicate the file name and location counter under which the symbol
appeared (e.g., text). Leading underscores in C-style external names are deleted.
Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found.
For undefined references, only < > is printed.

As an example, suppose the following code is in file. c:

int i;

main 0
{

fO
(

fO;
gO;
fO;

i hO;

The command

cflow -ix file.c

produces the output

1 main: intO, <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1>
5 g: <>

Page 1

cflow(1) cflow(1)

When the nesting level becomes too deep, the output of cflow can be piped to
the pr command, using the -e option, to compress the tab expansion to some­
thing less than every eight spaces.

In addition to the -0, -I, and -u options [which are interpreted just as they are
by ccl, the following options are interpreted by cflow:

-r Reverse the "caller:callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexico­
graphical order by callee.

-ix Include external and static data symbols. The default is to include only
functions in the flowgraph.

-i Include names that begin with an underscore. The default is to exclude
these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is
cut off. By default this number is very large. Attempts to set the cutoff
depth to a non positive integer will be ignored.

SEE ALSO
as(l), ce(1), lex(l), !int(1), nm(l), yacc(1).
pr(l) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Complains about multiple definitions and only believes the first.

Files produced by lex and yacc cause the reordering of line number declarations,
which can confuse cflow. To get proper results, feed cflow the yacc or lex
input.

10/89

chrtbl(1M) chrtbl(1M)

NAME
chrtbl - generate character classification and conversion tables

SYNOPSIS
chrtbl [file]

DESCRIPTION

10/89

The chrtbl command creates two tables containing information on character
classification, upper/lower-case conversion, character-set width, and numeric
editing. One table is an array of (257*2) + 7 bytes that is encoded so a table
lookup can be used to determine the character classification of a character, con­
vert a character (see ctype(3C», and find the byte and screen width of a charac­
ter in one of the supplementary code sets. The other table is 2 bytes long: the
first byte specifies the decimal delimiter; the second byte specifies the thousands
delimiter.

chrtbl reads the user-defined character classification and conversion information
from file and creates three output files in the current directory. To construct file,
use the file supplied in /usr/lib/locale/C/chrtbl_C as a starting point. You
may add entries, but do not change the original values supplied with the system.
For example, for other locales you may wish to add eight-bit entries to the ASOI
definitions provided in this file.

One output file, ctype. c (a C-Ianguage source file), contains a (257*2)+7-byte
array generated from processing the information from file. You should review
the content of ctype. c to verify that the array is set up as you had planned. (In
addition, an application program could use ctype. c.) The first 257 bytes of the
array in ctype.c are used for character classification. The characters used for ini­
tializing these bytes of the array represent character classifications that are
defined in /usr/include/ctype.h; for example, _L means a character is lower
case and _S I_B means the character is both a spacing character and a blank. The
second 257 bytes of the array are used for character conversion. These bytes of
the array are initialized so that characters for which you do not provide conver­
sion information will be converted to themselves. When you do provide conver­
sion information, the first value of the pair is stored where the second one would
be stored normally, and vice versa; for example, if you provide <Ox41 Ox61>,
then Ox61 is stored where Ox41 would be stored normally, and Ox61 is stored
where Ox41 would be stored normally. The last 7 bytes are used for character
width information for up to three supplementary code sets.

The second output file (a data file) contains the same information, but is struc­
tured for efficient use by the character classification and conversion routines (see
ctype(3C». The name of this output file is the value you assign to the keyword
LC _ CTYPE read in from file. Before this file can be used by the character
classification and conversion routines, it must be installed in the
/usr/lib/locale/locale directory with the name LC_CTYPE by someone who is
super-user or a member of group bin. This file must be readable by user, group,
and other; no other permissions should be set. To use the character classification
and conversion tables in this file, set the LC CTYPE environment variable
appropriately (see environ(5) or setlocale(3C». -

Page 1

chrtbl(1M) chrtbl(1M)

The third output file (a data file) is created only if numeric editing information is
specified in the input file. The name of this output file is the value you assign to
the keyword LC _NUMERIC read in from file. Before this file can be used, it must
be installed in the /usr/lib/locale/locale directory with the name LC_NUMERIC
by someone who is super-user or a member of group bin. This file must be
readable by user, group, and other; no other permissions should be set. To use
the numeric editing information in this file, set the LC_NUMERIC environment vari­
able appropriately (see environ(S) or setlocale(3C».

The name of the locale where you install the files LC_CTYPE and LC_NUMERIC
should correspond to the conventions defined in file. For example, if French con­
ventions were defined, and the name for the French locale on your system is
french, then you should install the files in /usr/lib/locale/french.

If no input file is given, or if the argument "-" is encountered, chrtbl reads from
standard input ..

The syntax of file allows the user to define the names of the data files created by
chrtbl, the assignment of characters to character classifications, the relationship
between upper and lower-case letters, byte and screen widths for up to three sup­
plementary code sets, and two items of numeric editing information: the decimal
delimiter and the thousands delimiter. The keywords recognized by chrtbl are:

LC CTYPE name of the data file created by chrtbl to contain
character classification, conversion, and width informa­
tion

isupper character codes to be classified as upper-case letters

islower character codes to be classified as lower-case letters

isdigit character codes to be classified as numeric

isspace character codes to be classified as spacing (delimiter)
characters

ispunct character codes to be classified as punctuation charac-
ters

iscntrl character codes to be classified as control characters

isblank character code for the blank (space) character

isxdigit character codes to be classified as hexadecimal digits

ul relationship between upper- and lower-case characters

cswidth byte and screen width information (by default, each is
one character wide)

LC NUMERIC name of the data file created by chrtbl to contain
numeric editing information

decimalJ>oint decimal delimiter

thousands _ sep thousands delimiter

Page 2 10/89

chrtbl(1M) chrtbl(1M)

Any lines with the number sign (.) in the first column are treated as comments
and are ignored. Blank lines are also ignored.

Characters for isupper, islower, isdigit, isspace, ispunct, iscntrl,
isblank, isxdigit, and ul can be represented as a hexadecimal or octal constant
(for example, the letter a can be represented as Ox61 in hexadecimal or 0141 in
octal). Hexadecimal and octal constants may be separated by one or more space
and/or tab characters.

The dash character (-) may be used to indicate a range of consecutive numbers.
Zero or more space characters may be used for separating the dash character
from the numbers.

The backslash character (\) is used for line continuation. Only a carriage return
is permitted after the backslash character.

The relationship between upper- and lower-case letters (ul) is expressed as
ordered pairs of octal or hexadecimal constants: <upper-case _charader lower­
case_cMrader>. These two constants may be separated by one or more space
characters. Zero or more space characters may be used for separating the angle
brackets « » from the numbers.

The following is the format of an input specification for cswidth:
n1:51,n2:52,n3:s3
where,

n1
51
n2
52
n3
53

byte width for supplementary code set I, required
screen width for supplementary code set 1
byte width for supplementary code set 2
screen width for supplementary code set 2
byte width for supplementary code set 3
screen width for supplementary code set 3

EXAMPLE

10/89

The following is an example of an input file used to create the ASOI code set
definition table in a file named ascii.

I.e Cl'YPE ascii
iSUR;>er Ox41 - oxSa
islower 0x61 - Ox7a
isdigit 0x30 - 0x39
isspace 0x20 0x9 - Oxd
ispunct 0x21 - Ox2f Ox3a - Ox40 \

isc:ntrl
isblank
isxdigit

ul

OxSb - Ox60 Ox7b - Ox7e
OXO - Oxlf Ox7f
0x20
0x30 - 0x39 Ox61 - Ox66 \
Ox41 - Ox46

<Ox41 Ox61> <Ox42 Ox62> <ox43 Ox63> \
<Ox44 Ox64> <Ox45 Ox65> <ox46 Ox66> \
<Ox47 Ox67> <Ox48 Ox68> <Ox49 Ox69> \
<Ox4a Ox6a> <Ox4b Ox6b> <Ox4c Ox6c> \
<Ox4d Ox6d> <Ox4e Ox6e> <Ox4f Ox6f> \
<OxSO Ox70> <OxSl Ox71> <OxS2 Ox72> \
<OxS3 Ox73> <OXS4 Ox74> <OxS5 Ox75> \

Page 3

chrtbl(1M) chrtbl (1M)

FILES

<OxS6 Ox76> <OxS7 Ox77> <OxSS OX7S> \
<OxS9 Ox79> <OxSa Ox7a>

cswidth 1:1,0:0,0:0
LC lU£RIC num ascii
decimal. pint -
tOOusands _ sep

/usr / lib/ locale/ locale/LC CTYPE
data files containing character classification, conversion, and
character-set width information created by chrtbl

/usr/lib/locale/locale/LC NUMERIC
data files containing numeric editing information created by
chrtbl

/usr/include/ctype.h
header file containing information used by character
classification and conversion routines

/usr/lib/locale/C/chrtbl C
input file usedto construct LC_CTYFE and LC_NUMERIC in the
default locale.

SEE ALSO
environ(S).
ctype(3C), setlocale(3C) in the Programmer's Reference Manual.

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self-explanatory.
They indicate errors in the command line or syntactic errors encountered within
the input file.

WARNING

Page 4

Changing the files in /usr/lib/locale/C will cause the system to behave
unpredictably.

10/89

cof2elf(1) cof2elf(1)

NAME
cof2elf - COFF to ELF object file translation

SYNOPSIS
cof2elf [-iqV] [-Q{yn}] [-8 directory] files

DESCRIPTION
cof2elf converts one or more COFF object files to ELF. This translation occurs
in place, meaning the original file contents are modified. If an input file is an
archive, each member will be translated as necessary, and the archive will be
rebuilt with its members in the original order. cof2elf does not change input
files that are not COFF.

Options have the following meanings.

-i Normally, the files are modified only when full translation occurs.
Unrecognized data, such as unknown relocation types, are treated as
errors and prevent translation. Giving the -i flag ignores these par­
tial translation conditions and modifies the file anyway.

-q Normally, cof2elf prints a message for each file it examines, telling
whether the file was translated, ignored, etc. The -q flag (for quiet)
suppresses these messages.

-Qarg If arg is y, identification information about cof2elf will be added to
the output files. This can be useful for software administration.
Giving n for arg explicitly asks for no such information, which is the
default behavior.

-sdirectory As mentioned above, cof2elf modifies the input files. This option
saves a copy of the original files in the specified directory, which
must exist. cof2elf does not save files it does not modify.

-v This flag tells cof2elf to print a version message on standard error.

SEE ALSO

NOTES

10/89

Id(1), elf(3E), a. out(4), ar(4).

Some debugging information is discarded. Although this does not affect the
behavior of a running program, it may affect the information available for sym­
bolic debugging.

cof2elf translates only COFF relocatable files. It does not translate executable or
static shared library files for two main reasons. First, the operating system sup­
ports executable files and static shared libraries, making translation unnecessary.
Second, those files have specific address and alignment constraints determined by
the file format. Matching the constraints with a different object file format is
problematic.

When poSSible, programmers should recompile their source code to build new
object files. cof2elf is provided for those times when source code is unavailable.

Page 1

colltbl(1M) colltbl (1 M)

NAME
co11tbl - create collation database

SYNOPSIS
co11tbl [file I - 1

DESCRIPTION
The co11tbl command takes as input a specification file, file, that describes the
collating sequence for a particular language and creates a database that can be
read by strxfrm(3C) and strco11(3C). strxfrm(3C) transforms its first argu­
ment and places the result in its second argument. The transformed string is such
that it can be correctly ordered with other transformed strings by using
strcnp(3C), strncnp(3C) or mem:::rrp(3C). strco11(3C) transforms its arguments
and does a comparison.

If no input file is supplied, stdin is read.

The output file produced contains the database with collating sequence informa­
tion in a form usable by system commands and routines. The name of this out­
put file is the value you assign to the keyword codeset read in from file. Before
this file can be used, it must be installed in the lusr/lwllocale/locale directory
with the name LC_COLLATE by someone who is super-user or a member of group
bin. locale corresponds to the language area whose collation sequence is
described in file. This file must be readable by user, group, and other; no other
permiSSions should be set. To use the collating sequence information in this file,
set the LC_COLLATE environment variable appropriately (see environ(5) or
setlocale(3C)).

The co11tbl command can support languages whose collating sequence can be
completely described by the following cases:

• Ordering of single characters within the codeset. For example, in Swedish, V
is sorted after U, before X and with W (V and Ware considered identical as far
as sorting is concerned).

• Ordering of "double characters" in the collation sequence. For example, in
Spanish, ch and 11 are collated after c and 1, respectively.

• Ordering of a single character as if it consists of two characters. For exam­
ple, in German, the "sharp s", 13, is sorted as ss. This is a special instance of
the next case below.

• Substitution of one character string with another character string. In the
example above, the string 13 is replaced with ss during sorting.

• Ignoring certain characters in the codeset during collation. For example, if -
were ignored during collation, then the strings re-locate and relocate
would be equal.

• Secondary ordering between characters. In the case where two characters are
sorted together in the collation sequence, (Le., they have the same "primary"
ordering), there is sometimes a secondary ordering that is used if two strings
are identical except for characters that have the same primary ordering. For
example, in French, the letters e and e have the same primary ordering but e
comes before e in the secondary ordering. Thus the word lever would be
ordered before lever, but lever would be sorted before levitate. (Note

1~9 ~e1

colltbl(1M) colltbl(1M)

Page 2

that if e came before e in the primary ordering, then lever would be sorted
after levitate.)

The specification file consists of three types of statements:

1. codeset filename

filename is the name of the output file to be created by colltbl.

2. order is order list

order _list is a list of symbols, separated by semicolons, that defines the collat­
ing sequence. The special symbol, ... , specifies symbols that are lexically
sequential in a short-hand form. For example,

order is a;b;c;d; ... ;x;y;z

would specify the list of lower_case letters. Of course, this could be further
compressed to just a; ... ; z.

A symbol can be up to two bytes in length and can be represented in any
one of the following ways:

• the symbol itself (e.g., a for the lower-case letter a),

• in octal representation (e.g., \141 or 0141 for the letter a), or

• in hexadecimal representation (e.g., \x61 or Ox61 for the letter a).

Any combination of these may be used as well.

The backslash character, \ , is used for continuation. No characters are per­
mitted after the backslash character.

Symbols enclosed in parenthesis are assigned the same primary ordering but
different secondary ordering. Symbols enclosed in curly brackets are
assigned only the same primary ordering. For example,

order is a;b;c;ch;d; (e;e);f; ... ;z;\
{1; ... ;9};A; ... ;Z

In the above example, e and e are assigned the same primary ordering and
different secondary ordering, digits 1 through 9 are assigned the same pri­
mary ordering and no secondary ordering. Only primary ordering is
assigned to the remaining symbols. Notice how double letters can be
specified in the collating sequence (letter ch comes between c and d).

If a character is not included in the order is statement it is excluded from
the ordering and will be ignored during sorting.

3. substitute string with repl

The substitute statement substitutes the string string with the string repl.
This can be used, for example, to provide rules to sort the abbreviated month
names numerically:

10/89

colltbl(1M) colltbl (1 M)

substitute "Jan" with "01"
substitute "Feb" with "02"

substitute "Dec" with "12"

A simpler use of the substitute statement that was mentioned above was
to substitute a single character with two characters, as with the substitution
of p with ss in German.

The substitute statement is optional. The order is and codeset statements
must appear in the specification file.

Any lines in the specification file with a t in the first column are treated as com­
ments and are ignored. Empty lines are also ignored.

EXAMPLE

10/89

The following example shows the collation specification required to support a
hypothetical telephone book sorting sequence.

The sorting sequence is defined by the following rules:

a. Upper and lower case letters must be sorted together, but upper case
letters have precedence over lower case letters.

b. All special characters and punctuation should be ignored.

c. Digits must be sorted as their alphabetic counterparts (e.g., 0 as zero, 1 as
one).

d. The Ch, ch, CH combinations must be collated between C and D.

e. V and W, v and w must be collated together.

The input specification file to colltbl will contain:

codeset

order is

substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute
substitute

telephone

A;a;B;b;C;c;CH;Ch;ch;D;d;E;e;F;f;\
G;g;H;h:I;i;J;j;K;k;L;l;M;m;N;n;O;o;P;p;\
Q;q;R;r;S;s;T;t;U;u;{V;W};{v;w};X;x;Y;y;Z;z

"0" with "zero"
"111 with "one"
"2" with "two"
"3" with "three"
'14" with "four"
"5" with "five"
"6" with "six"
"7" with "seven"
"8" with "eight"
"9" with "nine"

Page 3

colltbl(1M) colltbl(1M)

FILES
/lib/locale/wcak/LC COLLATE

LC _ CO'iLATE database for locak

/usr/lib/locale/C/oolltbl C
input file used to construct LC_COLLATE in the default locale.

SEE ALSO

Page 4

mem:>ry(3C), setlocale(3C), strooll(3C), string(3Q, strxfon(3Q, environ(5)
in the Programmer's Reference Manual.

10/89

comb(1) comb(1)

NAME
cad,:) - combine sees deltas

SYNOPSIS
COII'b [-0] [-s] [-pSID] [-clist] files

DESCRIPTION

FILES

COII'b generates a shell procedure [see sh(l)] that, when run, reconstructs the
given sees files. The reconstructed files are typically smaller than the original
files. The arguments may be specified in any order, but all keyletter arguments
apply to all named sees files. If a directory is named, COII'b behaves as though
each file in the directory were specified as a named file, except that non-sees files
(last component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is read; each line
of the input is taken to be the name of an sees file to be processed; non-sees
files and unreadable files are silently ignored. The generated shell procedure is
written on the standard output.

The keyletter arguments are as follows. Each argument is explained as if only
one named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.
-0 For each get -e, this argument causes the reconstructed file to be

accessed at the release of the delta to be created, otherwise the recon­
structed file would be accessed at the most recent ancestor. Use of the -0

keyletter may decrease the size of the reconstructed sees file. It may also
alter the shape of the delta tree of the original file.

-s This argument causes COII'b to generate a shell procedure that, when run,
produces a report that gives for each file: the file name, size (in blocks)
after combining, original size (also in blocks), and percentage change com­
puted by:

100 • (original - combined) / original
It is recommended that before any sees files are actually combined, one
should use this option to determine exactly how much space is saved by
the combining process.

-pSID The sees identification string (SID) of the oldest delta to be preserved. All
older deltas are discarded in the reconstructed file.

-clist A list of deltas to be preserved. All other deltas are discarded. See get(l)
for the syntax of a list.

If no keyletter arguments are specified, COII'b preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

s.COMB
COII'b?????

the reconstructed sees file
temporary file

SEE ALSO

10/89

admin(l), delta(1), get(l), help(l), prs(1), sccsfile(4).
shO) in the User's Reference Manual.

Page 1

comb(1) comb(1)

DIAGNOSTICS
Use help(l) for explanations.

NOTES
coIrb may rearrange the shape of the tree of deltas.

coIrb may not save any space; in fact, it is possible for the reconstructed file to be
larger than the original.

Page 2 10/89

convert (1) convert (1)

NAME
convert - convert archive files to common formats

SYNOPSIS
convert [-xl infi1e outfi1e

DESCRIPTION

FILES

The convert command transforms input infi1el to output outfi1e. infi1e must be a
UNIX System V Release 1.0 archive file and outfi1e will be the equivalent UNlX
System V Release 2.0 archive file. All other types of input to the convert com­
mand will be passed unmodified from the input file to the output file (along with
appropriate warning messages).

The -x option is required to convert a XENIX archive. (XENIX is a registered
trademark of Microsoft Corporation.) Using this option will convert the general
archive but leave archive members unmodified.

infi1e must be different from outfi1e.

TMPDIRlconv* temporary files

TMPDIR is usually lusr/trrp but can be redefined by setting the environment
variable 'lMPDIR [see tenpnani) in trrpnam(3S)].

SEE ALSO
ar(l), trrpnam(3S), a.out(4), ar(4).

10189 Page 1

cscope(1) cscope(1)

NAME
cscape - interactively examine a C program

SYNOPSIS
cscope [options] files . ..

DESCRIPTION

10/89

cscope is an interactive screen-oriented tool that allows the user to browse
through C source files for specified elements of code.

By default, cscope examines the C (. c and . h), lex (.1), and yacc (. y) source
files in the current directory. cscope may also be invoked for source files named
on the command line. In either case, cscope searches the standard directories for
#include files that it does not find in the current directory. cscape uses a sym­
bol cross-reference, cscape. out by default, to locate functions, function calls,
macros, variables, and preprocessor symbols in the files.

cscope builds the symbol cross-reference the first time it is used on the source
files for the program being browsed. On a subsequent invocation, cscope
rebuilds the cross-reference only if a source file has changed or the list of source
files is different. When the cross-reference is rebuilt, the data for the unchanged
files are copied from the old cross-reference, which makes rebuilding faster than
the initial build.

The following options can appear in any combination:

-b Build the cross-reference only.

-c
-c

-d

-e
-f reffile

-I incdir

-i name file

Ignore letter case when searching.

Use only ASCII characters in the cross-reference file, that is, do
not compress the data.

Do not update the cross-reference.

Suppress the Ae command prompt between files.

Use reffile as the cross-reference file name instead of the default
cscope.out.

Look in incdir (before looking in INCDIR, the standard place for
header files, normally /usr/include) for any #include files
whose names do not begin with / and that are not specified on
the command line or in namefile below. (The #include files may
be specified with either double quotes or angle brackets.) The
incdir directory is searched in addition to the current directory
(which is searched first) and the standard list (which is searched
last). If more than one occurrence of -I appears, the directories
are searched in the order they appear on the command line.

Browse through all source files whose names are listed in namefile
(file names separated by spaces, tabs, or new-lines) instead of the
default (cscope. files). If this option is specified, cscope
ignores any files appearing on the command line.

Page 1

cscope(1) cscope(1)

-L

-1

-num pattern

-P path

-p n

-s dir

-T

-u

-u

-v

Do a single search with line-oriented output when used with the
-num pattern option.

Line-oriented interface (see "Line-Oriented Interface" below).

Go to input field num (counting from 0) and find pattern.

Prepend path to relative file names in a pre-built cross-reference
file so you do not have to change to the directory where the
cross-reference file was built. This option is only valid with the
-d option.

Display the last n file path components instead of the default (1).
Use 0 to not display the file name at all.

Look in dir for additional source files. This option is ignored if
source files are given on the command line.

Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a
period (.) will not match any symbol if its minimum length is
greater than eight characters.

Do not check file time stamps (assume that no files have
changed).

Unconditionally build the cross-reference file (assume that all
files have changed).

Print on the first line of screen the version number of cscope.

The -I, -p, and -T options can also be in the cscope . files file.

Requesting the Initial Search
After the cross-reference is ready, escope will display this menu:

Find this C symbol:
Find this function definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files tincluding this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be used:

1-9 Edit the file referenced by the given line number.
SPACE Display next set of matching lines.
+ Display next set of matching lines.

Page 2 10/89

cscope(1) cscope(1)

Ae

>
I

Display previous set of matching lines.
Edit displayed files in order.
Append the displayed list of lines to a file.
Pipe ail lines to a shell command.

At any time these single-character commands can also be used:

TAB Move to next input field.
RETURN Move to next input field.
An Move to next input field.
A p Move to previous input field.
Ay Search with the last text typed.
Ab Move to previous input field and search pattern.
Af Move to next input field and search pattern.
Ae Toggle ignore/use letter case when searching. (When ignoring letter

case, search for FILE will match File and file.)
A r Rebuild the cross-reference.
! Start an interactive shell (type Ad to return to escope).
Ai Redraw the screen.
? Give help information about eseape commands.
Ad Exit escope.

Note: If the first character of the text to be searched for matches one of the above
commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, eseope will prompt for the new
text, and then it will display the lines containing the old text. Select the lines to
be changed with these single-character commands:

1-9 Mark or unmark the line to be changed.
* Mark or unmark all displayed lines to be changed.
SPACE Display next set of lines.
+ Display next set of lines.

Display previous set of lines.
a Mark all lines to be changed.
Ad Change the marked lines and exit.
ESCAPE Exit without changing the marked lines.

Start an interactive shell (type Ad to return to escope).
Ai Redraw the screen.
? Give help information about eseape commands.

Special Keys
If your terminal has arrow keys that work in vi(1), you can use them to move
around the input fields. The up-arrow key is useful to move to the previous
input field instead of using the TAB key repeatedly. If you have CLEAR,. NEXT, or
PREY keys they will act as the Ai, +, and - commands, respectively.

line-Oriented Interface

10/89

The -1 option lets you use escope where a screen-oriented interface would not
be useful, e.g., from another screen-oriented program.

escope will prompt with » when it is ready for an input line starting with the
field number (counting from 0) immediately followed by the search pattern, e.g.,

Page 3

~pe(1} CSCQpe(1)

!main finds the definition of the main function. If you just want a single search,
instead of the -1 option use the -:L and -num pattern options, and you won't get
the » prompt.

For -I, cscq>e outputs the number (:)f reference lines
cscope: 2 lines

For each reference found, cscope outputs a line consisting of the file name, func­
tion name, line number, and line text, separated by spaces, e.g.,

main.c main 161 main(argc, argv)
Note that the editor is not called to display a single reference, unlike the screen­
oriented interface.

You can use the r command to rebuild the database.

cscq>e will quit when it detects end-of-file, or when the first character of an
input line is Ad or q.

ENVIRONMENT VARIABLES

FilES

EDITOR Preferred editor, which defaults to vi(l).
INCWDEDIRS Colon-separated list of directories to search for tinclude files.
HOME: Home directory, which is automatically set at login.
SHELL Preferred shell, which defaults to shO).
SOURCED IRS Colon-separated list of directories to search for additional source

files.
TERM Terminal type, which must bea screen terminal.
TERMINFO Terminal information directory full path name. If your terminal

is not in the standard termint'o directory, see curses and ter­
minfo for how to make your own terminal description.

TMPDIR Temporary file directory, which defaults to /usr/tnp.
VIEWER Preferred file display program {such as pg], which overrides EDI­

TOR (see above).
VPATH A colon-separated Iist(!)f directories, each of which has the same

directory structure below it. If VPATH is set,cscope searches for
source files in the directories specified; if it is not set, cscope
searches only in the current directory.

cscq>e ,fHes Default files containing -I, ""'P, and -T options and the list of
source files (ovetridden by the -i option).

cscape . out Symbol cross-reference file, which is put in the home directory if
it cannot be created ih the current directory.

ncs~ . out Temporary file containIng new cross-referehce before it replaces
the old cross-reference.

INCDIR Standard directory for tihclude files '(usually !usr/ihclude).

SEE ALSO

Page 4

the ."¢scq>e"chapter ih the Programmer's Guide: ANSI Cand Programming Sup­
poft Tools.
cut~es 'andterminfo in the Programmer's Guide: Character User Interfaee(FMLI
and BTl).

cscope(1) cscope(1)

NOTES

1.0/8.9

cscope recognizes function definitions of the form:

[name blank (args) white arg_decs white {

where:

[name

blank

args

white

is the function name

is zero or more spaces or tabs, not including newlines

is any string that does not contain a " or a newline

is zero or more spaces, tabs, or newlines

are zero or more argument declarations (arg_decs may include com­
ments and white space)

It is not necessary for a function declaration to start at the beginning of a line.
The return type may precede the function name; cscope will still recognize the
declaration. Function definitions that deviate from this form will not be recog­
nized by cscq:>e.

The Function column of the search output for the menu option Find functions
called by this function: input field will only display the first function
called in the line, that is, for this function

eO
{

return (f() + g(»i

the display would be
Functions called by this function: e

File Function Line
a.c f 3 return(f() + g(»;

Occasionally, a function definition or call may not be recognized because of
braces inside tif statements. Similarly, the use of a variable may be incorrectly
recognized as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recog­
nized as a global definition, e.g.,

LDFlLE *
tif ARl6WR

Preprocessor statements can also prevent the recognition of a global definition,
e.g.,

char flag
tifdef ALLOCATE_STORAGE

-1
tendif

Pagjt 5

cscope(1) cscope(1)

Page 6

A· function declaration inside a function is incorrectly recognized as a function
call, e.g.,

fO
{

void 90;
}

is incorrectly recognized as a call to 90.

cscape recognizes C++ classes by looking for the class keyword, but doesn't
recognize that a struct is also a class, so it doesn't recognize inline member
function definitions in a structure. It also doesn't expect the class keyword in a
typedef, so it incorrectly recognizes X as a definition in

typedef class X • y;

It also doesn't recognize operator function definitions
Bool Feature::operator--(const Feature & other)
{

10/89

ctrace(1) ctrace(1)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [optionsl [filel

DESCRIPTION

10/89

The ctrace command allows the user to monitor the sequential execution of a C
program as each program statement executes. The effect is similar to executing a
shell procedure with the -x option. ctrace reads the C program in file (or from
standard input if the user does not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. The output
of ctrace must be placed into a temporary file because the ceO) command does
not allow the use of a pipe. This file can then be compiled and executed.

As each statement in the program executes, it will be listed at the terminal, fol­
lowed by the name and value of any variables referenced or modified in the
statement; these variable names and values will be followed by any output from
the statement. Loops in the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements within the loop is exe­
cuted. A warning message is printed after each 1000 loop cycles to help the user
detect infinite loops. The trace output goes to the standard output so the user
can put it into a file for examination with an editor or the bfs(1) or tailO) com­
mands.

The options commonly used are:

-f functions Trace only these functions.
-v functions Trace all but these functions.

The user may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. double
variables are printed as floating point numbers in scientific notation. The user
can request that variables be printed in additional formats, if appropriate, with
these options:

-0 Octal
-x Hexadecimal
-u Unsigned
-e Floating point

These options are used only in special circumstances:

-1 n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from loops.

-s Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of
the = operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The diagnostics section explains when to use this option.

Page 1

ctrace(1) ctrace(1)

-p Preprocess the input before tracing it. The user can also use the -D, -I,
and -0 cc(l) options.

-p string
Change the trace print function from the default of printf. For example,
fprintf (stderr, would send the trace to the standard error output.

-r f Use file f in place of the runtime. c trace function package. This replace­
ment lets the user change the entire print function, instead of just the
name and leading arguments (see the -p option).

-v Prints version information on the standard error.
~rg If arg is y, identification information about ctrace will be added to the

output files. This can be useful for software administration. Giving n for
arg exlicitly asks for no such information, which is the default behavior.

EXAMPLE
If the file lc. c contains this C program:

1 'include <stdio.h>
2 main () /* count lines in input */
3 {
4
5
6
7
8
9

10
11

int c, nl;

nl - 0;
while «c = qetcharO) != EOF)

if (c - '\n')
++nl;

printf("%d\n", nl};

these commands and test data are entered:

cc lc.c
a.out
1
(cntl-d)

the program will be compiled .and executed. The output of the program win be
the number 2, which is incorrect because there is only one line in the test data.
The error in this program is common, but subtle. If the user invokes ctrace
with these commands:

ctrace 1c.c >tenp.c
cc teJrp.c
a.out

tbe output will be:
2 mainO
6 n1 - 0;

/. nl -0 ./
7 whil-e He .. qe:t.r(» !", EO!')

The' prbgramis n'ow.W:aitirig for· input, If the user enters' the same' test data as
befOre> the output will be:

/* ci == 49 or' '1' *1
8 if. CO" ,. \0')

/*' ci 1:0' or' , '\.ri' .1
9' #Ml'i;

I,; iili ' :il ,;/
1" whlle f(c:; <je'tc1la;t()')' !l., EofY

/* ci == 10 or "o' *1
§ £f (<6'''' , '\.n')'

/,ji.' c~ == 10 or '\ii' */
9 ++011;,

/~' tit]· -" z, ,;/
i while «c.' get:6ha:i f)' j !'. EOF'~'

If an' ei\d'-'Of-file' character (cfttf-'d)' is' en'fetool the 6na'16ulput wilt be~:
lJl e ' -"-11 >ill

liO' Piin~t~·i'%d~rii~ I iiI)' f
I.' n'f 2: */2'
return

N6~~ .~he mfarma~fi'priRt~ Ouf at fh~' erid!M tlle' tr~'C~ .li~e' tort1t€, ri~*ariabie
f{jll~Wirig. l~rie 10'. &1$01 nofe'tl\e' ret:im\'colrimeiil ~dd~ by e~r~ce at the' end ()f
fhe frace' output. This shows fne implicit return at the fetminatmg, brace in' the
function'.

the' ~fa~ output sMw~ fhat·. vatiabI~ ci iiS'" assigri~ the. value Ii' in iin~ 7: but iIi
line 8 it has the v'alue'\ot." On'ceuser' alfe'rition rsdtilwli' to' Otis' if statement; he
01' she will prob~blytealizeJ~al tne' assi$nmer,rt ?perator ~ .. ~, was ti~: in plitce of
the equality operator (. ")'. This e'tr6t can' easily be mis~ (lutIng; cOde' rea'dirig.·

EXEG.(JtjGN~fiME: TRAGe: CONTROL·
The' default operation for et::raee istd trace'tne entir,e'Pf6gta,m tileiurilesSfhe ,~f
or ,,;,v 0IXions are used to trace specific function's'. "The' default operation does n<>t
give the, u~er ,sta:tement-by~~tatem~nt cOntrol of ,t~eftadrigyn6r does ff let the
user turn the traeing off and on when exetilHng. the' traced program.
Tne user c:ariclo both 6f these bya~,l:irig, o€:tOff(}' and etron(.}' filriciioii calls to
theprogfumfeturn ~tte fra~rig ,off an'dOni tespectlvely; ,at execution time .. thus~
complex criteriacancbearbitrariif: cOdediot tface'cotrtrol with ifStatem~ntsi and
this code' can even, be conditionally included betause' ctFace defmes {he CTRA'GE
preproeesS'o'f ,I'atiab1e, Fot example:

'H4e'f c~E'
if' (0 =ii:ii ; (f && i)i 10'0'0'1

et:t'onO:
teiidif

These, fUndions, can also be called from sdb(i) if they are cOmpiled with, the -<j
option, For examplei to trace all but lines 7 to 10 in the main function, enter:

ctrace(1) ctrace(1)

FILES

sdb a.out
main: 7b ctroff 0
main: 11b ctron ()
r

The trace can be turned off and on by setting static variable tr _ ct _ to 0 and 1,
respectively. This on/off option is useful if a user is using a debugger that can
not call these functions directly.

/usr/ccs/lib/ctrace/runtime.c run-time trace package

SEE ALSO
sdb(l), ctype(3C), fclose(3S), printf(3S), string(3C).
bfs(1), tail(1) in the User's Reference Manual.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since the
traced code often gets some cc warning messages. The user can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics

NOTES

Page 4

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression" error. Use the -t option to increase
this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that tabs are used
to indent the code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by tifdef/ tendif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a tdefine
preprocessor statement.

'if ... else if' sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -0, -I, and -u preprocessor options.

Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and NULL are
#defined constants. Declaring any of these to be variables, e.g., "int EOF;", will
cause a syntax error.

Pointer values are always treated as pointers to character strings.

10/89

ctrace(1) ctrace(1)

10189

ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entire aggregate. ctrace may
choose to print the address of an aggregate or use the wrong format (e.g.,
3.149050e-311 for a structure with two integer members) when printing the
value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file
program. Separate output elimination can result in functions called from a loop
still being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

Page 5

cxref (1) cxref(1)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION
The exref command analyzes a collection of C files and builds a cross-reference
table. cxref uses a special version of ee to include tdefine'd information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each
individual file, or, with the -c option, in combination. The table includes four
fields: NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the
LINE field also show reference marks as appropriate. The reference marks
include:

assignment
declaration -
definition ..

If no reference marks appear, you can assume a general reference.

OPTIONS

10/89

cxref interprets the -0, -I, -u options in the same manner that ee does. In
addition, cxref interprets the following options:

-e

-d

-1

-0 file

-8

-t

-wnum

-c

-F
-Lcols

-v

Combine the source files into a single report. Without the -e option,
exref generates a separate report for each file on the command line.

Disables printing declarations, making the report easier to read.

Does not print local variables. Prints only global and file scope statistics.

Direct output to file.

Operates silently; does not print input file names.

Format listing for 8O-column width.

Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51.

Runs only the first pass of cxref, creating a . ex file that can later be
passed to exref. This is similar to the -e option of cc or lint.

Prints the full path of the referenced file names.

Modifies the number of columns in the LINE field. If you do not specify
a number, exref defaults to five columns.

Prints version information on the standard error.

-wname,file, function, line
Changes the default width of at least one field. The default widths are:

Field Characters

NAME
FILE
FUNCTION
LINE

15
13
15
20 (4 per column)

Page 1

cxref(1)

FILES
TMPDIR/tcx.*

TMPDIR/cx.*

LIBDIR/xref

temporary files

temporary files

accessed by cxref

usually /usr/ccs/l1b

cxref (1)

LIBDIR

TMPDIR usually /usr/tnp but can be redefined by setting the
environment variable 'lMPDIR [see tenpnam in tnpnam(3S)].

EXAMPLE
a.c

1 main 0
2 {
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8

Resulting cross-reference table:

NAME FILE FUNCTION
c a.c
i a.c main
main a.c
u3b2 predefined
unix predefined

SEE ALSO
ccO), !intO).

DIAGNOSTICS

LINE
4- 7=
3* 6= 7
2*
0*
0*

Error messages usually mean you cannot compile the files.

Page 2 10/89

delta(1) delta (1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-a] [-n] [-glist] [-m[mrlist]] [-y[commentll [-p] files

DESCRIPTION

10/89

delta is used to permanently introduce into the named sees file changes that
were made to the file retrieved by get _ (called the g-file or generated file).

delta makes a delta to each named sees file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-sees files (last component of the path name does not begin with a.)
and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see the NOTES section); each line of the standard input is taken to
be the name of an sees file to be processed.

delta may issue prompts on the standard output depending on certain keyletters
specified and flags [see admin(1)] that may be present in the sees file (see -m and
-y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the sees
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the same
sees file were done by the same person (login name). The
SID value specified with the -r keyletter can be either the
SID specified on the get command line or the SID to be
made as reported by the get command [see get(1)]. A
diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

-a

-n

-glist

-m[mrlist]

Suppresses the issue, on the standard output, of the created
delta's SID, as well as the number of lines inserted, deleted
and unchanged in the sees file.

Specifies retention of the edited g-file (normally removed at
completion of delta processing).

Specify a list [see get(1) for the definition of list] of deltas
that are to be ignored when the file is accessed at the
change level (SID) created by this delta.

If the sees file has the v flag set [see admin(l)] then a
Modification Request (MR) number must be supplied as the
reason for creating the new delta. If -m is not used and the
standard input is a terminal, the prompt MRs? is issued on
the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The
MRa? prompt always precedes the conmenta? prompt (see
-y keyletter). MRs in a list are separated by blanks and/or
tab characters. An unescaped new-line character terminates
the MR list. Note that if the v flag has a value [see
admin(1)], it is taken to be the name of a program (or shell

Page 1

delta (1) delta(1)

FILES
g-file

p-file

q-file

x-file

d-file

procedure) that will validate the correctness of the MR
numbers. If a non-zero exit status is returned from the MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

-y[commentl Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment. If -y is
not specified and the standard input is a terminal, the
prompt ccmnents? is issued on the standard output before
the standard input is read; if the standard input is not a ter­
minal, no prompt is issued. An unescaped new-line charac­
ter terminates the comment text.

-p Causes delta to print (on the standard output) the sees
file differences before and after the delta is applied in a
diff(1) format.

Existed before the execution of delta; removed after comple­
tion of delta.
Existed before the execution of delta; may exist after comple­
tion of delta.
Created during the execution of delta; removed after comple­
tion of delta.
Created during the execution of delta; renamed to sees file
after completion of delta.
Created during the execution of delta; removed during the
execution of delta.
Created during the execution of delta; removed after comple­
tion of delta.

bdiff Program to compute differences between the "gotten" file and
the g-file.

SEE ALSO
admin(1), cdc(1), get(1), help(1), prs(1), rndel(1), sccsfile(4).
bdiff(1) in the User's Reference Manual.

DIA.GNOSTICS

NOTES

Peg~. ~

Use help(1) for explanations.

A get of many sees files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.

If the standard input (-) is specified on the delta command line, the -In (if neces­
sary) and -y keyletters must also be present. Omission of these keyletters causes
an error.

Comments are limited to text strings of at most 1024 characters. Line lengths
greater than 1000 characters cause undefined results.

10/89

dls(1) dls(1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-0] [-V] [-L] [-s] [41 sec] [-0 sec] [-F function] [-t sec] [-1 string] file ...

DESCRIPTION

to/a9

The dis command produces an assembly language listing of file, which may be
an object file or an archive of object files. The listing includes assembly state­
ments and an octal or hexadecimal representation of the binary that produced
those statements.

The following options are interpreted by the disassembler and may be specified in
any order.

41 sec Disassemble the named section as data, printing the offset of the
data from the beginning of the section.

-0 sec Disassemble the named section as data, printing the actual address
of the data.

-F function Disassemble only the named function in each object file specified on
the command line. The -F option may be specified multiple times
on the command line.

-L Lookup source labels for subsequent printing. This option works
only if the file was compiled with additional debugging information
[e.g., the -g option of eel.

-1 string Disassemble the archive file specified by string. For example, one
would issue the command dis -1 x -1 z to disassemble 1ibx.a
and 1ibz.a, which are assumed to be in LIBDIR.

-0 Print numbers in octal. The default is hexadecimal.

-s Perform symbolic disassembly where possible. Symbolic disassembly
output will appear on the. line following the instruction. Symbol
names will be printed using C syntax.

-t sec Disassemble the named section as text.

-v Print, on standard error, the version number of the disassembler
being executed.

If the 41, -0 or -t options ate specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections containing
text will be disassembled.

On output, a numberendosed in brackets at the beginning of a.line, such as [5],
indicates that the break-pointable line number starts with the following instruc­
tion. These line numbers will be printed. only H the file was compiled with addi­
tional debugging information fe.g., the -g optionofee) .. Anexpressioit such as
<40> in the operand field or in the symboliC disassembly, foHowl.n~a relative dis­
placement for control transfer instructions, is lhe computed address . within the
sectionlo which control will be transferred. Afurrctionname wtnappear in the
first column, followed bye) if the object f"ilecontainsasymboltable.

dls(1) dls(1)

FILES
LIBDIR usually /usr/ces/lilJ

SEE ALSO
as(1), ce(1), Id(1), a. out(4).

DIAGNOSTICS

NOTES

Page 2

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

Since the -da option did not adhere to the command syntax rules, it has been
replaced by -D.

At this time, symbolic disassembly does not take advantage of additional infor­
mation available if the file is compiled with the -q option.

10/89

dump(1) dump(1)

NAME
dunp - dump selected parts of an object file

SYNOPSIS
dunp [options I files

DESCRIPTION

10/89

The dunp command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following options:

-a
-c
-c

-0

-f

-g

-h

-L

-1

-0

-r

-5

Dump the archive header of each member of an archive.

Dump decoded C++ symbol table names.

Dump the string table(s).

Dump debugging information.

Dump each file header.

Dump the global symbols in the symbol table of an archive.

Dump the section headers.

Dump dynamic linking information and static shared library infor­
mation, if available.

Dump line number information.

Dump each program execution header.

Dump relocation information.

Dump section contents in hexadecimal.

-T index or -T indexl, index2
Dump only the indexed symbol table entry defined by index or a
range of entries defined by indexl, index2.

-t Dump symbol table entries.

-u

-v

When reading a COFF object file, dunp translates the file to ELF inter­
nally (this translation does not affect the file contents). This option
controls how much translation occurs from COFF values to ELF.
Normally (without -u), the COFF values are preserved as much as
possible, showing the actual bytes in the file. If -u is used, dunp
updates the values and completes the internal translation, giving a
consistent ELF view of the contents. Although the bytes displayed
under this option might not match the file itself, they show how the
file would look if it were converted to ELF. (See cof2elf(1) for
more information.)

Print version information.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

Page 1

dump(1) dump(1)

-d number or -d numberl, number2

-n name

-p

-v

Dump the section number indicated by number or the range of sec­
tionsstartingat numberl and ending at number2. This modifier can
be used with -h, -s, and -r. When -d is used with -h .or -s, the
argument is treated as the number of a section or range of sections.
When -dis used with -r, the argument is treated as the number of
the section or range of sections to which the relocation applies. For
example, to print out all relocation entries associated with the . text
section, specify the number of the section as the argument to -d. If
.text is section number 2 in the file, dUI'l'p -r -d 2 will print all
associated entries. To print out a specific relocation section use
dWtp -s -n name for raw data output, or dUI'l'p -sv -n name for
interpreted output.

Dump information pertaining only to the named entity. This
modifier can be used with -'h, -s, -r, and -to When -n is used
with -h or -s, the argument will be treated as the name of a sec­
tion. When -n is used with -t or -r, the argument will be treated
as the name of a symbol. For example, dWtp -t -n . text will
dump the symbol table entry associated with the symbol whose
name is . text, where dWtp -h -n . text will dump the section
header information for the . text section.

Suppress printing of the headings.

Dump information in symbolic representation rather than numeric.
This modifier can be used with -a (date, user id, group id), -f
(class, data, type, machine, version, flags), -h (type, flags), -0 (type,
flags), -r (name, type), -s (interpret section contents wherever pos­
sible), -t (type, bind), and -L (value). When -v is used with -s, all
sections that can be interpreted, such as the string table or symbol
table, will be interpreted. For example, dWtp -sv -n .symtab files
will produce the same formatted output as dunp -tv files, but duIrf?
-s -no symtab files .wiil p.rintraw data in hexadecimal. Without
additional modifiers, dunp -sv files will dump all sections in the
files interpreting all those that it can and dumping the rest (such as
. text or . data) as raw data.

The dWtpcommandattempts to format the information it dumps in a meaningful
way, printing certain informadon in character, hexadecimal, octal ,or decimal
representation as appropriate.

SEE ALSO
a . out (4).ar(4).

Page '2 10.189

gat (1) 9at (1)

NAME
get - get a version of an sees file

SYNOPSIS
get [-aseq-no.] [-ccutoffJ [-ilist] [-rSID] [-wstring] [-xlist] [-lIp]] [-b] [-e] [-g]

[-k] [-m] [-n] [-p] [-s] [-t] file ...

DESCRIPTION

101&9

get generates an AseII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The argu­
ments may be specified in any order, but all keyletter arguments apply to all
named sees files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-sees files (last com­
ponent of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed.

The generated text is normally written into a file called the g-file whose name is
derived from the sees file name by simply removing the leading "s." (see also
the FILES section below).

Each of the keyletter arguments is explained below as though only one sees file
is to be processed, but the effects of any keyletter argument apply independently
to each named file.

-rSID The sees identification string (SID) of the version (delta) of an
sees file to be retrieved. Table 1 below shows, for the most use­
ful cases, what version of an sees file is retrieved (as well as the
SID of the version to be eventually created by delta(1) if the -e
keyletter is also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SSlllll

No changes (deltas) to the sees file that were created after the
specified cutoff date-time are included in the generated ASOI text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to -c750228235959.
Any number of non-numeric characters may separate the two­
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form:

-c"77/212 9:22:25".

-ilist A list of deltas to be included (forced to be applied) in the crea-
tion of the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any form shown
in the "SID Specified" column of Table 1.

Page 1

get (1)

-xlist

-e

-b

-k

-lIp]

-p

-8

-m

-n

Page 2

get (1)

A list of deltas to be excluded in the creation of the generated file.
See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making a
change (delta) to the sees file via a subsequent use of delta(1).
The -e keyletter used in a get for a particular version (SID) of the
sees file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the sees file
[see admin(1)]. Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re­
executing the get command with the -k keyletter in place of the
-e keyletter.

sees file protection specified via the ceiling, floor, and authorized
user list stored in the sees file [see admin(1)] are enforced when
the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table 1. This keyletter
is ignored if the b flag is not present in the fue [see admin(1)] or if
the retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the sees file tree.) A branch delta may
always be created from a non-leaf delta. Partial SIDs are inter­
preted as shown in the "SID Retrieved" column of Table 1.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The -k keyletter is implied by
the -e keyletter.

Causes a delta summary to be written into an I-file. If -lp is
used, then an I-file is not created; the delta summary is written on
the standard output instead. See IDENTIFICATION KEYWORDS
for detailed information on the I-file.

Causes the text retrieved from the sees file to be written on the
standard output. No g-file is created. All output that normally
goes to the standard output goes to file descriptor 2 instead,
unless the -8 keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

Causes each text line retrieved from the sees file to be preceded
by the SID of the delta that inserted the text line in the sees file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -In and -n keyletters are used, the format is: %M%

10/89

get (1)

10/89

get(1)

value, followed by a horizontal tab, followed by the -m keyletter
generated format.

-g Suppresses the actual retrieval of text from the sees file. It is pri­
marily used to generate an I-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created delta in a given release
(e.g., -rl), or release and level (e.g., -d. 2).

-w string Substitute string for all occurrences of %W% when getting the file.
Substitution occurs prior to keyword expansion.

-aseq-no. The delta sequence number of the sees file delta (version) to be
retrieved. This keyletter is used by the com command; it is not a
generally useful keyletter. If both the -r and -a keyletters are
specified, only the -a keyletter is used. Care should be taken
when using the -a keyletter in conjunction with the -e keyletter,
as the SID of the delta to be created may not be what one expects.
The -r keyletter can be used with the -a and -e keyletters to con­
trol the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the sees file.

If the -e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the -i keyletter is used,
included deltas are listed following the notation "Included"; if the -x keyletter is
used, excluded deltas are listed following the notation "Excluded".

Page 3

get(1) get (1)

TABLE 1. Determination of sees Identification String
SID" -b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created
no net
nonet
R
R
R
R

R

R

RL
RL

RL

RLB
RL.B
R[.B.S
RL.B.S
RL.B.S

..

no R aefaults to mR mRmL mR(mL+U
yes R defaults to mR mR.mL mRmL.(mB+ 1).1
no R>mR mRm[RI""'!I'
no R=mR mRmL mR(mL+l)
~es R>mR mRmL mRmL.(mB+l).1
~es R=mR mRmL mRmL.(mB+ 1).1

R< mRand hRmL hRmL.<mB+l).1 R does not exist
Trunk succ.#
in release> R RmL RmL.(mB+ 1).1
and R exists

no l'Jo trunK succ. R.L R.(L+i)
~es No trunk succ. RL RL.(mB+ 1).1

Trunk succ. RL RL.(mB+ 1).1
in release ~ R

no l'Jo "6ranch succ. RLB.mS RLB.{mS+U
yes No branch succ. RL.B.mS RL.(mB+l).1
no l'Jo "6ranch succ. RLB.S RLB.{S+U
~es No branch succ. RL.B.S RL.(mB+l).1

Branch succ. RL.B.S RL.(mB+ 1).1

"R", "L", ''B'', and "5" are the "release", "level", ''branch'', and "sequence"
components of the SID, respectively; "m" means "maximum". Thus, for
example, "RmL" means "the maximum level number within release R";
''R.L.(mB+ 1).1" means "the first sequence number on the new branch (Le.,
maximum branch number plus one) of level L within release R". Note that
if the SID specified is of the form "RL", ''R.L.B'', or "RL.B.S", each of the
specified components must exist.

.... ''hR'' is the highest existing release that is lower than the specified, nonex-
istent, release R

...... This is used to force creation of the first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag [see admin(1) 1 is present in the

file. An entry of - means "irrelevant". * This case applies if the d (default SID) flag is not present ,in the file. If the d
flag is present in the file, then the SID obtained from the d flag is interpreted
as if it had been specified on the command line. Thus, one of the other cases
in this table applies.

IDENTIFICATION KEYWORDS

Page 4

Identifying information is inserted into the text retrieved from the sees file by
replacing identification keywords with their value wherever they occur. The fol­
lowing keywords may be used in the text stored in an sees file:

10f89

10/89

~eyword Valn-e'
%~; Madltde: name:: eifher. t1\e: verlae' of tl\~ m flag, in' the file' Usee admin(1)i),

Of' i~: abSE!I\t~, die' n~' of tFie'SCes file' with the' l~ading Si. removed.
~it. SG':CS; idientiika"tibn: ~SJID)l CtR~,.%'L%,. %8%: .,%,S%~! of the retrieved text.
%a~, It'el_.-;,
!lit%; 1i.ewll.
!liS~ Br.artc:h!..
%$!f5 Sequence.
%0% Clittent date(YYIMM.{DVJ~
%H% Clittent dlafe (MMIDDfY11~
%'J!-~ C:ar:tEinif; tim~ (11fl:MM~$S} •.
%Et Olite' rtew(lst Ci'p-pfiw' delta; Wet'S: crt:lated' (¥YIMMkDYD}'.
tG% Datene~est:c1ipp~i~i delfa; wa'S: created. (MM/Dvyrr).
%u'i Time newes~ apl'lie~f dielt.l: was created (HH:MM:SS).
iY:~ Module t)'p'e':: 'Valu'e' Qf the: t flag in: the' sees file [see adlnin(1)].
%'F% sees· fi\l~ rta;trre~·
%;P%' Fti1ty qlt:l~lifiedl ~. £il''e' name~
%<1%' The valt\1;e of Ute q; fl~:g; in: tke file: fS'E\e' ad.'"niin(l.H.
%~ Ctttrent: fitrte n.~be~ ~ keyword iig jjntend~ fOr identifying mes­

~~ O'tl'tp'\i!.t by the pto'gtllrn: such. ~ "this shouJ'd: not nave hap­
pettedY' type: errors, It is' rot mtended to be used. on evety line to pro­
\"ide S'aiuet'ice numbers.:

tzi: Th'e wttt-cnarac(er string @(f)' rt!Cogniz<l.ble by the what command.
~.1A It sbort.Mcnd notation for oonsfruding:what. strings for UNIX System

program fUes. ~wt· .• U%%M*<tab,.U%
%;A% A.nother shorthanli notation for constrUcting: what strings for non-

UNIX System ptogri1m files: %Jtl '" U%%Y% %M% %IHZ%

several at\X.i1iary files may be created. by 9'Et .. These files a.re known generically
as the g-file, I-fife, p·file, and. z-file'. The letter before the hyphen is called the tag.
An auxiliary file name is formed from the sees file name: the last component of
all sees file names must be of the form til. modulMtame, the auxiliary files are
named by replacing thE! leading s with the tag. The g-file is an exception to this
scheme: . the g-file is named by removing the s. prefix. For example, s. xyz . c,
the auxiliary file names would be ~. c, 1. xyz • c, p . xyz . c, and z . xyz . c,
respectively.

The g-file, which contains the generated text, is created in the current directory
(unless the .'""P keyletter is used). Ag-file is created in all cases, whether or not
any lines of text were generated by the get,. It is owned by the real user. If the
-It keyletter is used or iml'lied, its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The 1-file contains a. table showing which deltas were applied in generating the
retrieved text. The I-lile is created in the current directory if the -1 keyletter is
Usedi its mode i5444 and it is owned by the real user. Only the real user need
have Write permission in the current directory.

Page 5

get(1 }

FILES

get (1)

Lines in the I-file have the following format:

a. A blank character if the delta was applied; • otherwise.
b. A blank character if the delta was applied or was not applied and

ignored; • if the delta was not applied and was not ignored.
c. A code indicating a "special" reason why the delta was or was not

applied: "I" (included), "X' (excluded), or "(f' (cut off by a -c
keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
h. Blank.
L Login name of person who created delta.
The comments and MR data follow on subsequent lines, indented one hor­
izontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an -e keyletter for the same SID until delta is executed or the joint edit
flag, j, [see admin(1)] is set in the sees file. The p-file is created in the directory
containing the sees file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The format of
the p-file is: the gotten SID, followed by a blank, followed by the SID that the
new delta will have when it is made, followed by a blank, followed by the login
name of the real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the -i keyletter argument if it was
present, followed by a blank and the -x keyletter argument if it was present, fol­
lowed by a new-line. There can be an arbitrary number of lines in the p-file at
any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its con­
tents are the binary (2 bytes) process ID of the command (Le., get) that created
it. The z-file is created in the directory containing the sees file for the duration
of get. The same protection restrictions as those for the p-file apply for the z-file.
The z-file is created with mode 444.

g-file
p-file
q-file
z-file
bdiff

Created by the execution of get.
[see delta(1)]
[see delta(1)]
[see delta(1)]
Program to compute differences between the "gotten" file and
the g-file.

SEE ALSO

Page 6

admin(l), delta(l), help(l), prs(1), what(l).
bdiff(1) in the User's Reference Manual.

10/89

get(1) get (1)

DIAGNOSTICS

NOTES

10/89

Use help(1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the
directory containing the sees files, but the real user does not, then only one file
may be named when the -e keyletter is used.

Page 7

help (1) help(1)

NAME
help - ask for help with message numbers or sees commands

SYNOPSIS
help [args]

DESCRIPTION

FILES

10189

help finds information to explain a message from a command or explain the use
of a sees command. Zero or more arguments may be supplied. If no argu­
ments are given, help will prompt for one.

The arguments may be either information within the parentheses following a
message or sees command names.

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try "help stuck".

LIBDIR/help

LIBDIR/help/helploc

LIBDIR

directory containing files of message text.

file containing locations of help files not in
LIBDIR/help.

usually /usr/ccs/lib

Page 1

Install (1 M) Install (1M)

NAME
install - install commands

SYNOPSIS
fete/install [-e dira] [-f dirb] [-i] [-n dire] [-m mode] [-u user] [-g group] [-0]
[-s] file [dirx ...]

DESCRIPTION

10/89

The install command is most commonly used in "makefiles" [see make(1)] to
install a file (updated target file) in a specific place within a file system. Each file
is installed by copying it into the appropriate directory, thereby retaining the
mode and owner of the original command. The program prints messages telling
the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/bin, /usr/bin, fete, /lib, and /usr/lib, in that order) for
a file with the same name as file. When the first occurrence is found, install
issues a message saying that it is overwriting that file with file, and proceeds to
do so. If the file is not found, the program states this and exits without further
action.

If one or more directories (dirx ...) are specified after file, those directories will
be searched before the directories specified in the default list.

The meanings of the options are:

-c dira Installs a new command <file) in the directory specified by
dira, only if it is not found. If it is found, install issues a
message saying that the file already exists, and exits
without overwriting it. May be used alone or with the -s
option.

-f dirb

-i

-n dire

-m mode

-u user

Forces file to be installed in given directory, whether or not
one already exists. If the file being installed does not
already exist, the mode and owner of the new file will be
set to 755 and bin, respectively. If the file already exists,
the mode and owner will be that of the already existing file.
May be used alone or with the -0 or -s options.

Ignores default directory list, searching only through the
given directories (dirx ...). May be used alone or with any
other options except -e and -f.

If file is not found in any of the searched directories, it is
put in the directory specified in dire. The mode and owner
of the new file will be set to 755 and bin, respectively.
May be used alone or with any other options except -e and
-f.

The mode of the new file is set to mode.

The owner of the new file is set to user.

Page 1

Install (1 M)

-q group

-0

-8

SEE ALSO
ma1ce(1).

Pag~ 2

Install (1M)

The group id of the new file is set to group. Only available
to the superuser.

If file is found, this option saves the "found" file by copy­
ing it to oLDfile in the directory in which it was found. This
option is useful when installing a frequently used file such
as Ibinl sh, where the existing file cannot be removed.
May be used alone or with any other options except -c.

Suppresses printing of messages other than error messages.
May be used alone or with any other options.

10/89

Id (1) Id (1)

NAME
Id - link editor for object files

SYNOPSIS
Id [options] files ...

DESCRIPTION

10/89

The Id command combines relocatable object files, performs relocation, and
resolves external symbols. Relocatable object files given as arguments are com­
bined to produce an executable object file, or, if the -r option is specified, relocat­
able object files are combined to produce one relocatable object file. The output
of Id is left in a. out by default.

If any argument is a library, it is searched exactly once at the point it is encoun­
tered in the argument list. Only those routines defining an unresolved external
reference are loaded. The archive library symbol table [see ar(4)] is searched
sequentially with as many passes as are necessary to resolve external references
that can be satisfied by library members. Thus, the ordering of members in the
library is functionally unimportant, unless there exist multiple library members
defining the same external symbol.

The following options are recognized by Id:

-a Produce an executable object file; give errors for undefined references.
This is the default behavior. -a may not be used with the -r option.

-e epsym
Set the entry point address for the output file to be that of the symbol
epsym.

-Ix Search a library, li.Qx.a, the conventional name for archive lipraries. A
library is searched When its name is encountered, so the placement of -1
is significant.

-m Produce a memory map or listing of the input/output sections on the
standard output.

-0 out file
Produce an output object file named outfile. The name of the default
object file is a. out.

-r Cornbine relocatable object files to p~duce one relocatable object file. Id
will not complain about uiuesolved references. This option cannot be
used with "'-a.

-8 Strip symbolic information from the output file. The debug and line ~c­
tionsand their associated relocation entries will be removal. Except for
relocatable files, the symbol table and string table sections will also Pe
removed from the output opjff:t file.

-t Turn off the warning about multiply defined symbols that are not the
sarnesize,

-u symname
Enter symname as an undefined. symbol in the symbol table. This is useful
for loading entirely from an .archive library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading of the

Id (1)

FILES

-L path

Id (1)

first routine. The placement of this option on the command line is
significant; it must be placed before the library that will define the symbol.

Add path to the library search directories. 1d searches for libraries first in
any directories specified with -L options, then in the standard directories.
This option is effective only if it precedes the -1 option on the command
line.

-M rrulpfile
Read mapfile as a text file of directives to 1d. Because these directives
change the shape of the output file created by 1d, use of this option is
strongly discouraged.

-Q[Ylnl
Under -Qy, an ident string is added to the .comnent section of the out­
put file to identify the version of the link editor used to create the file.
This will result in multiple 1d idents when there have been multiple
linking steps, such as when using 1d -r. This is identical with the default
action of the cc command. -on suppresses version.

-v Output a message giving information about the version of 1d being used.

-x Generate a standard UNIX System file header within the "optional
header" field in the output file.

-YP, dirlist
Change the default directories used for finding libraries. dirlist is a colon­
separated path list.

The environment variable LD_LIBRARY_PATH may be used to specify library
search directories. In the most general case, it will contain two directory lists
separated by a semicolon:

dirlist1; dirlist2

If 1d is called with any number of occurences of -L, as in

1d ... -!.path1 ... -Lpathn ...

then the search path ordering is

1ibx.a
a.out
LIB PATH

dirlistl path1 ... pathn dirlist2 LIBP ATH

libraries
output file
usually /usr/ccs/1ib:/1ib:/usr/1ib

SEE ALSO

Page 2

as(1), cc(1), exec(2), exit(2), end(3C), a. out(4), ar(4).
The "C Compilation System" chapter and the ''Mapfile Option" appendix in the
Programmer's Guide: ANSI C and Programming Support Tools.

10/89

Id (1)

NOTES

10/89

Id(1)

Through its options, the link editor gives users great flexibility; however, those
who use the -M mapfi1e option must assume some added responsibilities. Use of
this feature is strongly discouraged.

Page 3

lex(1) lex (1)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex[-ctvn -v -Q[yln]] [fire)

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis of
text.

The input fires (standard input default> contain strings and expressions to be
searched for and C text to be executed when these strings are found.

lex generates a file named lex.yy.c. When lex.yy.c is compiled and linked
with the lex library, it copies the input to the output except when a string
specified in the file is found. When a specified string is found, then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array. Matching is done in order of the patterns in
the fire. The patterns may contain square brackets to indicate character classes, as
in [abx-z] to indicate a, b, x. y, and z; and the operators *, +, and? mean,
respectively, any non-negative number of, any positive number of, and either zero
or one occurrence of, the previous character or character class. Thus, [a-zA-Z] +
matches a string of letters. The character. is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are
also supported. The notation r{d,e} in a rule indicates between d and e instances
of regular expression r. It has. higher precedence than I , but lower than *, ?, +,
and concatenation. The character A at the beginning of an expression permits a
successful match only immediately after a new-line, and the character $ at the
end of an expression requires a trailing new~line. The character I in an expres­
sion indicates trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must follow in the input
stream. An operator character may be used as an ordinary symbol if it is within
n symbols or preceded by \.

Three m;lcros are expected: input () to read a char<l.cter; unput (e) to replace a
char<l.cter re<l.d; and output (e) to place an output character. They are defined in
terms of the standard streams, but you can override them. The program gen~
eratErl is named yylex 0, iind the lex library contains ;l IlBin () that calls it. The
action RJ!:JECT on the right side of the rule causes this m<l.tch to be rejected and
the next s.uitable match executed; the function yym:>re () accumulates additional
characters into the same yytext; and the function yyless (n) pushes b;lCk
yyleng -0 chCiracters into the input stream. (yyleng is an external int variable
giving the length of yytext.) The miiCrOS input and output use files yyin and
yyout to ~adfrom and write to, def;mlted to stdin and st(iout, respectively.

Any line beginning w~th a bl@k is assumed to contiiin only C text and is copied;
~f it precedes %%~ it is copied into the external definition iirea of the lex. yy. c file.
All ru,les shoulci follo\VCi %~, as in yaCO. Lines preceding %% that begin with ii.
noJ;\~~lan~ chwacter defiJ;l1a the string 'on the left to' be the remainder of the line; it
can ~e cal1eci out later by surrounding it with {}. In this section, C code (@d
preprocessor statements) can also be inclucied between % { @Q. %}. Note that
curly brackets do not imply parentheses; only string substitution is done.

lex (1) leX(1)

EXAMPLE

Page 2

o [0-9]
%(
void
skipcommnts(void)
{

}
%}
%%
if
[a-z]+
O{D}+
{D}+
"++"
n+"
"\nlt
"/*"
%%

for (; ;)
(

while (input () !='*')

if (input 0==' I')
return;

else

unput(yytext[yyleng-l]);

printf("IF statement\n");
printf ("tag, value %s\n", yytext} ;
printf ("octal nunt>er %s\n", yytext);
printf ("decimal nunt>er %s\n ", yytext) ;
printf(IIunary op\n");
printf("binary q>\nn);
;I*no action *1

skipcOlllmts 0 ;

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files.

-c Indicates C actions and is the default.

-t Causes the lex. yy. c program to be written instead to standard output.

-v Provides a two-line summary of statistics.

-n Will not print out the -v summary.

-v Print out version information on standard error.

-Q [y I n] Print out version information to output file lex. yy. c by using -Qy.
The -Qn option does not print out version information and is the
default.

Multiple files are treated as a single file. If no files are specified, standard input
is used.

Certain default table sizes are too small for some users. The table sizes for the
resulting finite state machine can be set in the definitions section:

10/89

lex(1)

%p n

%n n

%e n

%a n

%k n

%0 n

number of positions is n (default 2500)

number of states is n (500)

number of parse tree nodes is n (1000)

number of transitions is n (2000)

number of packed character classes is n (2500)

size of output array is n (3000)

lex(1)

The use of one or more of the above automatically implies the -v option, unless
the -n option is used.

SEE ALSO
yacc(1).

10/89

The "lex" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

Page 3

IInt(1J lint (1)

NAME
lint - a C program checker

SYNOPSIS
lint [optiOns] files

DESCRiPtiON
lint detects features of C program files which are likely to be bugs, non­
portable, or wasteful. It also checks type usage more strictly than the compiler.
lint issues error and warning messages. Among the things it detects are
unreachable statements, loops not entered at the top, automatic variables declared
and not used, and logical expressions whose value is constant. lint checks for
functions that return values in some places and not in others, functions called
with varying numbers or types of arguments, and functions whose values are not
used or Whose values are used but none returned.

Ar~uments whose names end with . c are taken to be C source files. Arguments
whoSe names end with .In are taken to be the result of an earlier invocation of
lint with either the -c or the -0 option used. The .lri £iles are analogous to .0
(object) files that ate produced by the ec(1) command when given a . c file as
input. Files with other suffixes are warned about and ignored.

iirit takes all the . c, . In, and llib-Ix. In (specified by -Ix) files and processes
them. in their command line order. By default, lint appends the sta'ndard Clint
li:t>rary (ll~-:-lc. lri) to .. the end of the list of files. When the -c option: is used,
the .In and the llib-lx .In files are ignored. When the -c option is not used,
the second pass of lint checks the . In and the llib-lx. In list of files for
mutual compatibility.

Any numberoflint options may be used, in any order; intermixed with fi(e~
name arguments. The following options are used to suppress certiiti kinds of
complaints:

"';a Suppress complaints about assignments of long values to variables that
are riot long.

-b Suppress complaints about break statements that cannot be reached.
-h Do nol apply heuristic tests that attempt to intuit bugs; improve style, and

reduce waste.

4n S'U'ppress; cofupWirts about external symbolS' that cduld be deciared stalit.
-u S\lPpre~s coinplaints abouffundionsand external variables used and not

defined, or qefined .aild nof .used. (This option is suitable foi' running
lint on d. subset of files of a larger program).

-if SuppresS' cO'mplaints about unused arguments iii functions.

-x DO jtot repbtf variables referred to by exterriaJ declarations bUt nevet
used.

The foliowirig, argttriterit!l alter lint's beha:vior:
,;;, I:I1if SeafClr Eiii included W&der fllt!'§ iit tHe dfrectoiji dif before searching··. the

c\'l':frent directory ti:rid/or tn:e Sfa1ri'dara place~

IInt(1) lint (1)

Page 2

-Ix Include the lint library !lib-Ix .In. For example, you can include a lint
version of the math library !lib-lIn. In by inserting -lIn on the command
line. This argument does not suppress the default use of !lib-Ie . In.
These lint libraries must be in the assumed directory. This option can be
used to reference local lint libraries and is useful in the development of
multi-file projects.

-Ldir Search for lint libraries in dir before searching the standard place.

-n Do not check compatibility against the standard C lint library.

-p Attempt to check portability to other dialects of C. Along with stricter
checking, this option causes all non-external names to be truncated to
eight characters and all external names to be truncated to six characters
and one case.

-8 Produce one-line diagnostics only. lint occasionally buffers messages to
produce a compound report.

-k Alter the behavior of /*LINTED [message]*/ directives. Normally, lint
will suppress warning messages for the code following these directives.
Instead of suppressing the messages, lint prints an additional message
containing the comment inside the directive.

-y Specify that the file being linted will be treated as if the /*LINTLIBRARY*/
directive had been used. A lint library is normally created by using the
/*LINTLIBRARY*/ directive.

-F Print pathnames of files. lint normally prints the filename without the
path.

-e Cause lint to produce a .In file for every . e file on the command line.
These .In files are the product of lint's first pass only, and are not
checked for inter-function compatibility.

-ox Cause lint to create a lint library with the name !lib-Ix .In. The-e
option nullifies any use of the -0 option. The lint library produced is the
input that is given to lint's second pass. The -0 option simply causes
this file to be saved in the named lint library. To produce a !lib-lx.ln
without extraneous messages, use of the -x option is suggested. The-v
option is useful if the source file(s) for the lint library are just external
interfaces.

-v

Some of the above settings are also available through the use of "lint com­
ments" (see below).

Write to standard error the product name and release.

10/89

lint (1)

10/89

lint (1)

-Wfile Write a .In file to file, for use by cflow(l).

-Rfile Write a .In file to file, for use by =ef(1).

lint recognizes many cc(1) command line options, including -0, -U, -g, -0, -Xt,
-Xa, and -Xc, although -g and -0 are ignored. Unrecognized options are warned
about and ignored. The predefined macro lint is defined to allow certain ques­
tionable code to be altered or removed for lint. Thus, the symbol lint should
be thought of as a reserved word for all code that is planned to be checked by
lint.

Certain conventional comments in the C source will change the behavior of lint:

/*ARGSUSEDn* /
makes lint check only the first n arguments for usage; a missing
n is taken to be 0 (this option acts like the -v option for the next
function).

/*CONSTCOND*/ or /*CONSTANTCOND*/ or /*CONSTANTCONDITION*/
suppresses complaints about constant operands for the next
expression.

/*EMPTY*/
suppresses complaints about a null statement consequent on an if
statement. This directive should be placed after the test expres­
sion, and before the semicolon. This directive is supplied to sup­
port empty if statements when a valid else statement follows. It
suppresses messages on an empty else consequent.

/*FALLTHRU*/ or /*FALLTHROUGH*/
suppresses complaints about fall through to a case or default
labelled statement. This directive should be placed immediately
preceding the label.

/*LINTLIBRARY* /
at the beginning of a file shuts off complaints about unused func­
tions and function arguments in this file. This is equivalent to
using the -v and -x options.

/*LINTED [message]*/
suppresses any intra-file warning except those dealing with unused
variables or functions. This directive should be placed on the line
immediately preceding where the lint warning occurred. The-k
option alters the way in which lint handles this directive. Instead
of suppressing messages, lint will print an additional message, if
any, contained in the comment. This directive is useful in conjunc­
tion with the -s option for post-lint filtering.

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.
[This comment is typically placed just after calls to functions like
exit(2)j.

Page 3

IInf(1)

FILES

Iint{1)

/*PRINTFtlKEn'*/
makes lint check the first (n-1) arguments as usua.l. The nth
argument is interpreted as a prin.tf format string that is used to
check the remaining arguments.

/*PROTOLlBn* 1
causes lint to treat function declaration prototypes as function
defiriitions if n is non-zero. This directive can only be used in con­
junction with the
1* LlNTLlBRARY */ direCtive. If n is zero, function prototypes will
be treated nonnally.

I*SCANFLlKEn*/
makes lint check the first (n-l) arguments as usual. The nth argu­
ment is interpreted as a scanf format string that is used to check
the remaining arguments.

I*VARARGSn*/
suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first n
arguments are checked; a missing n is taken to be O. The use of
the ellipsis terminator C ..) in the definition is suggested in new or
updated code.

lint produces its nrst output on a per-saurce-file basis. Complaints regarding
included files are collected. and rrinted after all source files have been processed,
if -s is not specified. Finally, i the -c option is not used, information gathered
from aU input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question mark.

The behavior of the -c an.d the. -0 options .allows for incremental use of lint on
a set of C . source files. Generally, one invokes lint once for each source file with
the -c option. Each of these invocations produces a .In file that corresponds to
the ,cfile, and prints all messagesthat are about just that source file. Aftetall
the source files have been separately run through lint, it is invoked once more
(wHhdutthe.;.<;: option), listin.g all the .In files with the needed -"Ix options. This
will. print all the inter-file inconsistencies. This scheme works weU with make; it
allows make to be used to lint only the source files that have been modified
since the last time the set of source files were linted.

LIBDIR the directory where the Hnt libraries specified by the ~ IX
option. must eXist

LIBDIRIHnt [12] firSf arid SeCond pasSes. . . .
LIBDIR/ llib-10. in declarations for C Library functions (binary formati source

is in L1BDtR/11il:rlc)
LIBPATH/llib-liII.ln

declarations .. for Math Library functions (binary format;
source is in LIBDIR/llib-hn)

10/89

lint (1)

TMPDIR/*lint*
TMPDIR

LIBDIR
LIBPATH

lint (1)

temporaries
usually /usr/tIrp but can be redefined by setting the
environment variable 'lMPDIR [see tenpnam in tIrpnam(3S»).
usually Ices/lib
usually /usr/ccs/lib:/lib:/usr/lib

SEE ALSO

10/89

cc(1), make(1).

See the '1int" chapter in the C Programmer's Guide: ANSI C and Programming Sup­
port Tools.

lorder (1) lorder(1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files [see ar(l»). The standard
output is a list of pairs of object file or archive member names; the first file of the
pair refers to external identifiers defined in the second. The output may be pro­
cessed by tsort(l) to find an ordering of a library suitable for one-pass access by
ld. Note that the link editor ld is capable of multiple passes over an archive in
the portable archive format [see ar(4») and does not require that lorder be used
when building an archive. The usage of the lorder command may, however,
allow for a more efficient access of the archive during the link edit process.

The following example builds a new library from existing .0 files.

ar -cr library , lorder *.0 I tsort'

TMPDIR/ *symref

TMPDIR/*syrrdef

TMPDIR

temporary files

temporary files

usually /var/tJrp but can be redefined
environment variable TMPDIR [see
tJrpnam(3S»).

by setting the
tenpnam() in

SEE ALSO

NOTES

10/89

ar(1), ld(1), tsort(1), tenpnam(3S), tnpname(3S), ar(4).

lorder will accept as input any object or archive file, regardless of its suffix, pro­
vided there is more than one input file. If there is but a single input file, its suffix
must be .0.

Page 1

Iprof(1) Iprof(1)

iNAME
Iprof~displayline~by4ineexecutioncountprofiledata

SYNOPSIS
Iprof[-.pl[-sl . [-xl '[-lincdirl ;[-rsrcfilelf-ccntfilil '[-0 progl,["::vl

Iprof --m fili1. cnt fili2.Ctlt filett .ont [-TI -d destfili .Ctlt

DESCRIPTION
lprofreportsthe executioncharatteristics 'of .a ipt()gtam on' a . (sotil'ce) line by 'line
basis. This is useful as a 'means ,to determine whiCh and how often 'pOrtions ,Of
'the'code were,executed.
Iprof interprets a profile file <prog;cnt 'by default) produced by ,the:profiled 'pro­
gram prog (a. out by default).progcreatesaprofile file if it has been loaded with
the -ql option of co. The profile information is computed for functions in a
source file iffhe-qlopt40n was used when fhesoutce file was compiled.

By default, Iprofprints a tisting of source ,flIes (the names of whiehare stored in
the symbol table of the executableflle), witheac"h line preceded by 'its line
number (in the source file) and the rtumberof times the Hnewasexecuted.

The following options may appear singly or be combined· in any order:

-p Print listing, eaC'h line preceded by the line mimber and fhenumber ,Of
times it Was executed {default). This '<>ption can beusedtogethetwithfhe
-8 option to print :both 'fhe sOurce listlhg and summirry 'information.

-'$ Printsu1i1mary information·(jf 'pElrcentageof lines of Code executed ,per
'f\'lIlction.

""'x Insteadofprilltingt,heexecufio'h 'cc>untnurnbers foteachline,ptint 'each
Hnepreceded :b)' its line number ~nda IU]lfthe linewasnotexectifed. If
the line was 'executed, printon1y the line ,humber.

'-linCitir
Lodk. ·:for . source 'ot headetf.iles :in dle 'directory incdir 'ihadaifion'to. !t!he
current 'ditectotyand. the standard place f.or tiilclude files (ustia'lly
/usr/;tilclude). The usetcan specify lhote than onedireetory by using
m1il.ltiple-itoptions .

...;r srCfi1e
Instead ,of .printingaHsdUrce ,flIes! print . only those flIes named in ,'-1."
options (to be used with the '"'P0j)tion ·only). lJheusefca.nspecifymtrlti­
pIe tiles With a Single coption.

~ccntftle
Use the ifiae ''C1ittftle inStead 'Of ip'ri1g • 'chtas themI'd!: !pro'flle ifile .

.... oprog
t:Jseifhenatlle 'of ~hepTog~m 'prog ifiSteadof:ntenameusedwltcncreaUng
t<ne;prof,ile ifiile .. ,Because tilte pr~g:f!amnamestoted in the pi'on~e file coh­
~ins tlie 'relatiive ,pat.h, t'h4Soption IS n:ecessa~ g tllre 'c'xecutabte file 'or
profUe file has been moved.

Iprof(1) Iprof(1)

-v Print, on standard error, the version number of Iprof.

Merging Data Flies
Iprof can also be used to merge profile files. The -In option must be accom­
panied by the -d option:

-m file1. cnt file2. cnt filen. cnt -d destfile. cnt
Merge the data files filel . cnt through filen . cnt by summing the execution
counts per line, so that data from several runs can be accumulated. The
result is written to destfile. cnt. The data files must contain profiling data
for the same prog (see the -T option below).

-T Time stamp override. Normally, the time stamps of the executable files
being profiled are checked, and data files will not be merged if the time
stamps do not match. If -T is specified, this check is skipped.

CONTROLUNG THE RUN-TIME PROFIUNG ENVIRONMENT

Page 2

The environment variable PROFOPTS provides run-time control over profiling.
When a profiled program (or shared object) is about to terminate, it examines the
value of PROFOPTS to determine how the profiling data are to be handled. A ter­
minating shared object will honor every PROFOPTS option except file=filename.

The environment variable PROFOPTS is a comma-separated list of options inter­
preted by the program being profiled. If PROFOPTS is not defined in the environ­
ment, then the default action is taken: The profiling data are saved in a file (with
the default name, prog. cnt) in the current directory. If PROFOPTS is set to the
null string, no profiling data are saved. The following are the available options:

msg=[yln]
If msg=y is specified, a message stating that profile data are being saved is
printed to stderr. If msg=n is specified, only the profiling error messages
are printed. The default is msg=y.

merge=[y I n]
If merge=y is specified, the data files will be merged after successive runs.
If merge=n is specified, the data files are not merged after successive runs,
and the data file is overwritten after each execution. The merge will fail if
the program has been recompiled, and the data file will be left in TM?DIR.
The default is merge=n.

pid=[yln]
If pid=y is specified, the name of the data file will include the process ID
of the profiled program. Inclusion of the process ID allows for the crea­
tion of different data files for programs calling fork. If pid=n is specified,
the default name is used. The default is pid=n. For Iprof to generate its
profiling repmt, the -c option must be specified with Iprof otherwise the
default will fail.

dir=dirname
The data file is placed in the directory dirname if this option is specified.
Otherwise, the data file is created in the directory that is current at the
end of execution.

10/89

Iprof(l) Iprof (1)

FILES

file=filename
filename is used as the name of the data file in dir created by the profiled
program if this option is specified. Otherwise, the default name is used.
For Iprof to generate its profiling report, the -c option must be specified
with Iprof if the file option has been used at execution time; otherwise
the default will fail.

prog.cnt
TMPDIR

profile data
usually /usr/tlIp but can be redefined by setting the environment
variable 'lMPDIR [see tenpnam in tlIpnam(3S»).

SEE ALSO

NOTES

10/89

cc(1), prof(1), fork(2), tlIpnam(3S).
The "lprof" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

For the -In option, if destfile. cnt exists, its previous contents are destroyed.

Optimized code cannot be profiled; if both optimization and line profiling are
requested, profiling has precedence.

Different parts of one line of a source file may be executed different numbers of
times (e.g., the for loop below); the count corresponds to the first part of the line.

For example, in the following for loop

main 0
1 [2] {

int j;

1 [5] for (j 0; j < 5; j++)
5 [6] sub(j);

1 [8]

sub (a)
int a;

5 [12]
5 [13] printf(na is %d\nn, a) ;
5 [14] }

line 5 consists of three parts. The line count listed, however, is for the initializa­
tion part, that is, j = O.

Page 3

m4(1) m4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION

10189

The m4 command is a macro processor intended as a front end for C, assembler,
and other languages. Each of the argument files is processed in order; if there are
no files, or if a file name is -, the standard input is read. The processed text is
written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuf­
fered.

-8 Enable line sync output for the C preprocessor (tline ...)

-Bint Change the size of the push-back and argument collection buffers from
the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199.
The size should be prime.

-sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, the above flags must appear before any file names and before any
-0 or -U flags:

-oname[=val]
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no
arguments. Potential macro names consist of alphanumeric characters and under­
score (_), where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu­
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses that happen to turn up within the value of a nested call are as
effective as those in the original input text. After argument collection, the value
of the macro is pushed back onto the input stream and rescanned.

Page 1

m4(1)

Page 2

m4(1)

m4 makes available the following built-in macros. These macros may be
redefined, but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the replace­
ment text, where n is a digit, is replaced by the n-th argument.
Argument 0 is the name of the macro; missing arguments are
replaced by the null string; $f is replaced by the number of argu­
ments; $* is replaced by a list of all the arguments separated by
commas; $@ is like $*, but each argument is quoted (with the
current quotes).

undefine

defn

pushdef

popdef

ifdef

shift

changequote

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previ­
ous one, if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is null.
The word unix is predefined.

returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies
the effect of the extra scan that will subsequently be performed.

change quote symbols to the first and second arguments. The sym­
bols may be up to five characters long. changequote without
arguments restores the original values (Le.,' ,).

changecom change left and right comment markers from the default t and
new-line. With no arguments, the comment mechanism is effec­
tively disabled. With one argument, the left marker becomes the
argument and the right marker becomes new-line. With two argu­
ments, both markers are affected. Comment markers may be up to

divert

undivert

five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output is
the concatenation of the streams in numerical order; initially stream
o is the current stream. The divert macro changes the current
output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu­
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

10/89

m4(1)

10/89

divnum

dnl

ifelse

incr

decr

eval

len

index

substr

translit

include

sinclude

syscmi

sysval

maketenp

m4exit

m4wrap

m4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next new­
line.

has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is repeated
with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string as a
decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, -, *, I, %, ** (exponentiation), bit­
wise &, I, ,.., and -; relationals; parentheses. Octal and hex
numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument may
be used to specify the minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argu­
ment begins (zero origin), or -1 if the second argument does not
occur.

returns a substring of its first argument. The second argument is a
zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

transliterates the characters in its first argument from the set given
by the second argument to the set given by the third. No abbrevia­
tions are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is inac­
cessible.

executes the UNIX System command given in the first argument.
No value is returned.

is the return code from the last call to syscmi.

fills in a string of XXXXX in its argument with the current process
ID.
causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is O.

argument 1 will be pushed back at final EOF; example:
m4wrap (, cleanup () ,)

Page 3

m4(1)

errprint

durrpdef

traceon

traceoff

SEE ALSO
as(l), ce(1).

Page 4

m4(1)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for all
if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

10189

make(1) make(1)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
mak~ [-f makefile] [-eiknpqrstl [names]

DESCRIPTION

10/89

make allows the programmer to maintain, update, and regenerate groups of com­
puter programs. make executes commands in makefile to update one or more tar­
get names (names are typically programs). If the -f option is not present, then
make file, Makefile, and the Source Code Control System (SCCS) files
8.makefile, and s·.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prere­
quisite files of a target are added recursively to the list of targets. Missing files
are deemed to be outdated.

The following list of four directives can be included in makefile to extend the
options provided by make. They are used in makefile as if they were targets:

• DEFAULT: If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
• DEFAULT are used if it exists .

• IGNORE: Same effect as the -i option .

• PRECIOOS: Dependents of the .PRECIOUS entry will not be removed. when
quit or interrupt are hit .

• SrUNT: Same effect as the -8 option.

The options for make are listed below:

-f makefile

-k

-q

-r

-8

-t

Environment variables override assignments within makefiles.

Description filename (makefile is assumed to be the name of a
description file).

Ignore error codes returned by invoked commands.

Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

No execute mode. Print commands, but do not execute them.
Even command lines beginning with an @ are printed.

Print out the complete set of macro definitions and target
descriptions.

Question. make returns a zero or non-zero status code depend­
ing on whether or not the target file has been updated.

Do not use the built-in rules.

Silent mode. Do not print command lines before executing.

Touch the target files (causing them to be updated) rather than
issue the usual commands.

Page 1

make (1) make(1)

Creating the makefile

Page 2

The makefile invoked with the -f option is a carefully structured file of explicit
instructions for updating and regenerating programs, and contains a sequence of
entries that specify dependencies. The first line of an entry is a blank-separated,
non-null list of targets, then a :, then a (possibly null) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin with a tab are
shell commands to be executed to update the target. The first non-empty line
that does not begin with..a tab or t begins a new dependency or macro definition.
Shell commands may be continued across lines with a backslash-new-line (\
new-line) sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (t) and new-line surround comments including contained \ new-line
sequences.

The following makefile says that pgm depends on two files a. 0 and b. 0, and that
they in turn depend on their corresponding source files (a.c and b.c) and a com­
mon file incl. h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to exe­
cute commands. The default is /bin/ sh. The first one or two characters in a
command can be the following: @, -, @-, or -@. If @ is present, printing of the
command is suppressed. If - is present, make ignores an error. A line is printed
when it is executed unless the -s option is present, or the entry . SILENT: is
included in makefi1e, or unless the initial character sequence contains a @. The-n
option specifies printing without execution; however, if the command line has the
string $ (MAKE) in it, the line is always executed (see the discussion of the
MAKEFLAGS macro in the "Environment" section below). The -t (touch) option
updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option
is present, if the entry . IGNORE: is included in makefi1e, or if the initial character
sequence of the command contains -, the error is ignored. If the -k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

10/89

make(1) make(1)

Interrupt and quit cause the target to be deleted unless the target is a dependent
of the directive . PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and are processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The -e option causes the environment
to override the macro assignments in a makefile. Suffixes and their associated
rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -f and -p) defined for the command line. Further,
upon invocation, make "invents" the variable if it is not in the environment, puts
the current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This feature proves very
useful for "super-makes". In fact, as noted above, when the -n option is used,
the command $ (MAKE) is executed anyway; hence, one can perform a make -n
recursively on a whole software system to see what would have been executed.
This result is possible because the -n is put in MAKEFIAGS and passed to further
invocations of $ (MAKE). This usage is one way of debugging all of the makefiles
for a software project without actually doing anything.

Include Flies
If the string include appears as the first seven letters of a line in a make file, and
is followed by a blank or a tab, the rest of the line is assumed to be a filename
and will be read by the current invocation, after substituting for any macros.

Macros
Entries of the form stringl = string2 are macro definitions. string2 is defined as
all characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(stringl[: subst1=[subst2]]) are replaced by string2. The
parentheses are optional if a single-character macro name is used and there is no
substitute sequence. The optional :subst1 =subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of subst1 in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are del­
imited by blanks, tabs, new-line characters, and beginnings of lines. An example
of the use of the substitute sequence is shown in the ''Libraries'' section below.

Internal Macros
There are five internally maintained macros that are useful for writing rules for
building targets.

$* The macro $* stands for the filename part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module that is outdated with respect to the target (the "manufac­
tured" dependent file name). Thus, in the . c. 0 rule, the $< macro would
evaluate to the . c file. An example for making optimized .0 files from . c
files is:

10/89 Page 3

·C.o:
cc -c -0 $*.c

or:
.c.o:

cc -c -0 $<

$1 The $1 macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequ:isites that are outdated with respect to the
target, and essentially those modufes that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib (file. 0). In this case, $@ evaluates to lib and $%
evaluates to the library member, file. o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to "dire<:tory part"
for D and "file part" for F. Thus, $ (@D) refers to the dire<:tory part of the string
$@. If there is no dire<:tory part, . / is generated. The only macro excluded from
this alternative form is $1.

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites
such as .c, .S, etc. If no update commands for such a file appear in makefi1e, and
if an inferable prerequisite exists, that prerequisite is compiled to make the target.
In this case, make has inference rules that allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .c- .f .f- .S .s- .sh .sh- .C .C-

.c.a .c.o .c-.a .C-.C .C-.O .f.a .f.o .f-.a. .f-.f .f-.o

.h-.h .1.c .1.0 .1-.c .1-.1 .1-.0 .s.a .$.. 0 .s-.a .S-.O

.S-.S .sh-.$h .y.c .y.o .y-.c .y-.o .y-.y .C.a .C.o .C':".a

.C-.C .C-.o .L.C .L.o .L-.C .L-.L .L-.o .Y.C .Y.o .Y-.C

.Y-.o .Y-.Y

The internal rules for make are contained in the source file ru1es.c for the make
program .. These rules can be locally modified. To print out the rules compiled
into the make on any machine in a form suitable for recompilation, the following
cornmand is used:

maJee -pf - 2>/dev/nuli </dev'/ilull

A tilde in the above rules refersto an sets file. [see sCc$file(4)J. Th'4s, tM. rule
. c-.o would transform an sees C soutce file into an obj~ file (. o).l3ecause the
s. ()f the sees files. is a prefix, it . is incompatible \Vith the make suffix point. of
view. Hence, the tilde is a way of changing any file reference into an sees file
reference.

A rule wIth Ohly'. one suffix (fur example, . c:) is the .definitiOn of ,how to builcl.x
frorn x .c. In effect, the other suffix isn1l1L !h:is feature is useful f?r building
targets from only one source file, for example, shell procedures and: simple C pro'­
grams.

make(1) make,(1)

Additional suffixes are given as the dependency list for . SUFFIXES. Order is
significant: the first possible name for which both a file and a rule exist is inferred
as a prerequisite. The default list is:

.SDi'F,IXES: .0 .C .c ... y .y'" .1 .1'" .8 .S- .8h .sh- .h .h- .f .f- .C

.c- .Y .Y- .L .L-
Here again, the above (:oDUnand for printing the internal rules will display the list
of suffixes implemented on the current U\achine, Multiple suffix lists a(:cumulate;
• SUfFlXiS :wjth no dependencies clears the list of suffixes.

Inference RuIN
The first example (:an be done more briefly.

pgm: •. Q b.o
c:c •• 0 1;>.0 -Q pgm

•• 0 b.o; 1ncl.b
This abbreviation is possible because make MS a set of internal rules for puilding
fi~. The u~ may add rules to thi.$llst by Simply putting them in the makefile.

Cenlilm m~~ are used Py *be defauH i~r.f!n~ MQII to ~rnti~ the inclusion of
optional tniltter in ,allyresWMg ,(:0:1Ilmands.F()r example,~s, UIAGS, aIld
~Iilre used for (:om.pile:ropti<)IlS to cc(1), l~(l), and yacc(l), respeqiveJy.
4gaJn, the pnwiO\ls fl).f!thi>4 fQrexa,nmu.ng~:b,e ,(:~ Mes j,s re-commerid.eQ.

The inferenc;e .of prerequisites can ~ controlled. The ruie to create a file with
suffix ,QfrQR\ a file witbsuffix .c is specified as an entry with .c.o: as the tar,..
get a.nc;i no kpe~ellts. Shell commands associated with the target defjpe the
iule wr mJking a ,0 filem>m a . c file. Anyt,arget that has no sl~hes in It AA4
$rJ;s w4h a ~t is ~ti~ ,as ,8 rule ,and ,ngt a ~~ ~rg~.

J..ibr •••
Jf a large!: ,Qr 4epen4enI=Y name ,cQntains pilrentheses, it ~sasswne4,to J?e aP
","~b.ve 1ib!i"iIorr,~hestriPgwitldn parenthese!i ,r,eferri.n:g ~ am~ber wifuj,J1. tpe
lil>f.ary. 1h!.JS, 1.~(f11e;C» and $(~I;e) (file.o)botbre~ ,to lin :archive l~brm
tb~ (:On-tam.!! file . .E). (This exampleassum.es tbe ~IB macro has been prevj.ouS'ly
4e6ned, " ·)The .exp, ress,', 10, n, $, (~~,;e:)"(t~,,J,.e:L., Q ,f~,: ~e~, .9), is Jl.9t, ~gal, . ~lJ1e, s, ,per$:,(lip.,.
ing tp archiVe libraries bave the fQn.t:\ • XX·a wbere the XX is the s~fflx h,Qn'l
wJl.~ the armIve ,~~ ,is ,~ ~ m~e.· ,4n l.UIJ()~W1,a~ by~pr94~ 9 f ~e
c~ent ffl:lpl~li!ipn ~9i~t~ X¥ t9 pe ,c:i#f,er,ep.t f~m the suffi", of ~e
~T!=h~ve 1ll,elJl~r, Th~, Q,J:le ~~ ~Ve ,l,i.b(fgflj,Q) Q.epgnc:l u"!'9n f~~e.c9
e~p~,icj..tJy. The mg,~ ,~9!l).mPl\ u$eof ~he .arcNve interface' foHgw$. Hexe, we
~s~ the SP!l'~ mes ,~reCl"» CW~SOl1rce:

:L,~: ~~,(f,i.~+.,g,) iI,!9\(,f~~~,9~ :L~,(f,i.!!~,9'
@ec:Qo 14.P ,i.~ n9Y ~-to.~~.f!

"C.!il;
,§(~,a) .~ §(.~~~ $<
$~Nl'~ $~~l?) .$@ $!I',.o
~ ~f ,$:1'.9

make(1) make(1)

FILES

In fact, the . c . a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib (filel.o) lib(file2.o) lib(file3.o)
$ (CC) -c $(CFLAGS) $(?:.o=.c)
$ (AR) $ (ARFLAGS) lib $?
:rm $?
@echo lib is now up-to-date

.c.a: ;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object filenames (inside lib) whose C source files are out­
dated. The substitution mode translates the .0 to .c. (Unfortunately, one cannot
as yet transform to .c~; however, this transformation may become possible in the
future.) Also note the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

[MIn] akefile and a. [MIn] akefile
/bin/sh

SEE ALSO

NOTES

Page 6

cc(1), lex(1), yacc(1), printf(3S), sccsfile(4).
cd(1), ah(1) in the User's Reference Manual.
See the "make" chapter in the Programmer's Guide: ANSI C and Programming Sup­
port Tools.

Some commands return non-zero status inappropriately; use -i or the - com­
mand line prefix to overcome the difficulty.

Filenames with the characters = : @ will not work. Commands that are directly
executed by the shell, notably cd(1), are ineffectual across new-lines in make. The
syntax lib(file1.o file2.0 file3.0) is illegal. You cannot build
lib (file. 0) from file. o.

10/89

mcs(1) mcs(1)

NAME
lICS - manipulate the comment section of an object file.

SYNOPSIS
lICS [-a string] [-c] [-d] [-n name] [-p] [-V] file ...

DESCRIPTION
The lICS command is used to manipulate a section, by default the .corrment sec­
tion, in an ELF object file. It is used to add to, delete, print, and compress the
contents of a section in an ELF object file, and only print the contents of a section
in a COFF object file. lICS must be given one or more of the options described
below. It applies each of the options in order to each file.

The following options are available.

-a string
Append string to the comment section of the ELF object files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section of the ELF object files. All
duplicate entries are removed. The ordering of the remaining entries is
not disturbed.

-d Delete the contents of the comment section from the ELF object files. The
section header for the comment section is also removed.

-n name
Specify the name of the comment section to access if other than . coIlll\ent.
By default, m::s deals with the section named . corrment. This option can
be used to specify another section.

-p Print the contents of the comment section on the standard output. Each
section printed is tagged by the name of the file from which it was
extracted, using the format filename [member_name] : for archive files; and
filename: for other files.

-V Print, on standard error, the version number of m::s.

If the input file is an archive [see ar(4)], the archive is treated as a set of indivi­
dual files. For example, if the -a option is specified, the string is appended to the
comment section of each ELF object file in the archive; if the archive member is
not an ELF object file, then it is left unchanged.

If m::s is executed on an archive file the archive symbol table will be removed,
unless only the -p option has been specified. The archive symbol table must be
restored by executing the ar command with the -s option before the archive can
be linked by the ld command. lICS will produce appropriate warning messages
when this situation arises.

EXAMPLES
m::s -p file t Print file's comment section

m::s -a string file t Append string to file's comment section

1M9 ~~1

mca.(1) mca(1}

FILES
TMPDIRlrrcs*

TMPDIR

temporary files
usually lusrltrrp but can be redefined by setting the
environment variable 'l'HPDU. [see t~am() in
trrpnam(3S) I.

SEe ALSO

NOlES

ar{1), as(1), ccO), ldtn, trrp~3S), a.Qut(4), cu:(4).
See the UObject File!!" chapt.er in Prl)gr4rnmer'~ GtJ.ide: ANSI C lind Programming
Support TODls.

lICS cannot add to, delete or compress the contents of a sectiOn that ill contained
within a segment.

~ffiontbl{1M)

"N'AMi:
lttIbtit::bl - 'Ci'eate'fu6~tlilly 'tiatabase

'SYNOPSIS
ITOrltbl:[-'6 'otitfileJinfile

'dESCRrPTidlll
Tne 1OOritb'1'cotnmandtiikesas input illipecification file,injite, tha't'descnbesthe
'foiinat'firig .converifidnsforn ume:dcquantHies(monetary aridot:herwise) for' a
specific locale .
.:.ooutfile Writ~'tHe oiliputon Ulitfile;otheTwise, wtite the o1'itput on a file

narnooLe:t«)NETMY.

The 'Otltput. ofnrintbl is suitable. 'for ,usebythel.ocal.~'cOrivOfundion ,. (see
IdCaleconvpC». ..Bef()r~ ,outfilecan .. 1?e. used by It;>ealecdnVO, .it must be
'tt!stalledin,the lusr/lj:.b/l.oC~'l.ellotale ditect6ry With thettame Lc J«>NETARYby
someone whO 'is. 'super-Mer .ora . member of group 'bin. lOeale is 'the l~ale wh()se
inlmericfOtmattingc6nventionsare 'desCribe<'lin infile. This file 'ttnlstbefettdable
by user, 'gtou:p~ ll.M dtIler; M -otherfJCr'missidns .should be~E?t. To use f0tiita:tth1g
conventions f6rnumetfcquitntities des:Cribed HI this file, settheLC_MONETARY
erivironment variltbleapproprib:tely (seeE!n'Viron(5) or setlocalE!(3C».

'()nceinsta1'led~th'isfileWfll he. used . by thelOc:a.lecOnvO runt;tiontoiItitializea
structure of 'type,13t'i'Udt lcot\'V. 'Fora description 6fea'ch field in this structure,
see 16calecoIlv(3C).

struct lcdti'lr'{
char *d:ecimill..,POint; 1* n. n 'tel
char *thous~dSiJgt>; 1* nn 'C:t~ro l~n'9thstrin9')*1
'char '*g'r6rlt)l!iig; - . j'* '''i, . ~I
'2hA'r* l:ti't mz.rsynbol; /*i,n '* j
char *curl?enc:y-s~l; 1*'''' '*1
c&ar*m::mdecirilalJ'>61.Nt; 1* ni, 'wI
c:har*1OOICtlt6U:S'&lds~ep; Flrnn *1
cha'r "'%Mil-grouping; - 1* ni'*1
char ~sI't~v'es~~; 1* :',n*1
Char *ne9'~'t~ve ~sign; 1*, n "* I
char intfracdiqits; /* 'CHARMA}{.*1
Char:fr~cdi(Jits;/*c~·W\X '*'1
Char p~Cs~rece'des; ." /*c~~~;1
cfiarp.sepbyspace; 1* CHAR MAX *1

!~~ '~{it;C~~:~t ~'~ ;'~== !:~
c&arp Sl.gtljpO'sn; 1*'CHKaMAX*1
'char fn=st9itdXisn; /* Cfu}mx*/

'fhes~ifi~afion file):oIltafrrs 'the:vatue,:ea~h ~sti:Jlc,t i,copvmein1ier 'shou1cI.'fje
set to,excel't f9!tlle.first:two 'me'iriBets,diqmalydintalid 'thous~nds }ep, Whlch.· are
set ~r the:r.c~~uMERIC. ca,tegoryto '$,etl~~1~(3C): .. ' E.ad~n:r~~1?~(s~~l~e.)~/given
onasel'aratehneand In the order hsfed 1n thestructlconv'demntlonabove.

montbl(1M) montbl(1M)

FILES

Lines starting with a t are taken to be comments and are ignored. All other lines
are assumed to describe their corresponding structure member. A blank line
describes the null string for structure members that are pointers to strings. A
character in a string may be in octal or hex representation. For example, \141 or
\x61 could be used to represent the letter 'a'.

Given below is an example of what the specification file for Italy would look like:

t Italy
3
ITL.
L.

\3

o
o
1
o
1
o
1
1

Note that the first non-comment line in the specification file describes the group­
ing field.

/lil:>/locale/locale/LC K>NETARY
LC K>NETARY database for locale

/usr/lil:>/locale/C/montbl C
input file used to construct LC .J«)NETARY in the default locale.

SEE ALSO
localeconv(3C), setlocale(3C) in the Programmer's Reference Manual.

Page 2 10/89

nm(1) nm(1)

NAME
nm - print name list of an object file

SYNOPSIS
nm [-oxhvnefurplVT I files

DESCRIPTION

10/89

The nm command displays the symbol table of each ELF or COFF object file,
specified by file(s). The file may be a relocatable or absolute ELF or COFF object
file; or it may be an archive of relocatable or absolute ELF or COFF object files.
For each symbol, the following information will be printed:

Index The index of the symbol. (The index appears in brackets.)

Value The value of the symbol is one of the following: a section offset for
defined symbols in a relocatable file; alignment constraints for symbols
whose section index is SHN C~N; a virtual address in executable and
dynamic library files. -

Size The size in bytes of the associated object.

Type A symbol is of one of the following types: NOTYPE (no type was
specified), OBJECT (a data object such as an array or variable), FUNC (a
function or other executable code), SECTION (a section symbol), or FILE
(name of the source file).

Bind The symbol's binding attributes. LOCAL symbols have a scope limited
to the object file containing their definition; GLOBAL symbols are visible
to all object files being combined; and WEAK symbols are essentially glo­
bal symbols with a lower precedence than GLOBAL.

Other A field reserved for future use, currently containing O.

Shndx Except for three special values, this is the section header table index in
relation to which the symbol is defined. The following special values
exist: ABS indicates the symbol's value will not change through reloca­
tion; C~N indicates an unallocated block and the value provides
alignment constraints; and UNDEF indicates an undefined symbol.

Name The name of the symbol.

The output of nm may be controlled using the following options:

-0

-x
-h

-v

-n

-e

-f

-u

Print the value and size of a symbol in octal instead of decimal.

Print the value and size of a symbol in hexadecimal instead of decimal.

Do not display the output heading data.

Sort external symbols by value before they are printed.

Sort external symbols by name before they are printed.

See NOTES below.

See NOTES below.

Print undefined symbols only.

Page 1

~m(1)

-r

-p

-1

-v

-T

nm(1)

Prepend the name of the ob~t file or archive to each output line.

Produce easily parsable, terse output. Each symbol name is preceded
by its value (blanks if undefined) and one of the letters U (undefined), N
(symbol has no type), 0 (data object symbol), T (text symbol), S (section
symbol), or F (file symbol). If the symbol's binding attribute is LOCAL,
the key letter is lower case; if the symbol's binding attribute is WEAK,
the key letter is upper case; if the -1 modifier is specified, the upper
case key letter is followed by a *; if the symbol's binding attribute is
GLOBAL, the key letter is upper case.

Distinguish between WEAK and GLOBAL symbols by appending a .. to the
key letter for WEAK symbols.

Print the version of the nm command executing on the standard error
output.

See NOTES below.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. When conflicting options are specified
(such as nm -v -n) the first is taken and the second ignored with a warning mes­
sage to the user.

SEE ALSO

NOTES

as(l), ce(1), dunp(l), 1d(1), a.out(4), ar(4).

The following options are obsolete because of changes to the ob~t file format
and will be deleted in a future release.

-e Print only external and static symbols. The symbol table now contains
only static and external symbols. Automatic symbols no longer appear
in the symbol table. They do appear in the debugging information pro­
duced by cc -9, which may beexamined using d\lIlP(1).

-f

-T

Produce full output. Redundant symbols (such as .text, .data, etc).
which existed previously do not exist and prodUcing full output will be
identical to the default output. .

By default, nm prints the entire name of the symbols listed. Since sym­
hoI ncp:nes have been moved to the lastc;olumn, the problem of
overflow is removed and it is no longer necessary to truncate the sym­
bol name.

101$9

prof{1) prof{1)

NAME
prof - display profile data

SYNOPSIS
prof [-t I c I a I nl [-0 I xl [-g I 11 [-zl [-hl [-sl [-mmdatal-v[progl

DESCRIPTION

10/89

The prof command interprets a profile file produced by the m::mitor function.
The symbol table in the object file prog (a. out by default) is read and correlated
with a profile file (m::m. out by default). For each external text symbol the percen­
tage of time spent executing between the address of that symbol and the address
of the next is printed, together with the number of times that function was called
and the average number of milliseconds per call.

The mutually exclusive options -t, -c, -a, and -n determine the type of sorting
of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options -0 and -x specify the printing of the address of
each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.

~x Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options -g and -1 control the type of symbols to be
reported. The -1 option must be used with care; it applies the time spent in a
static function to the preceding (in memory) global function, instead of giving the
static function a separate entry in the report. If all static functions are properly
located (see example below), this feature can be very useful. If not, the resulting
report may be misleading.

Assume that A and B are global functions and only A calls static function s. If S
is located immediately after A in the source code (that is, if s is properly
located), then, with the -1 option, the amount of time spent in A can easily be
determined, including the time spent in s. If, however, both A and Beall S,
then, if the -1 option is used, the report will be misleading; the time spent dur­
ing B's call to S will be attributed to A, making it appear as if more time had
been spent in A than really had. In this case, function S cannot be properly
located.

-(J Include static (non-global) functions.

-1 Do not include static (non-global) functions (default).

The following options may be used in any combination:

Indude all symbols in the profile range, eVen if associated with zero
number of calls and zero time.

Page 1

prof(1) prof(1)

FILES

-h Suppress the heading normally printed on the report. (fhis is useful
if the report is to be processed further.)

-8 Print a summary of several of the monitoring parameters and statistics
on the standard error output.

-m mdata Use file mdata instead of IOOn. out as the input profile file.

-v Print prof version information on the standard error output.

A program creates a profile file if it has been link edited with the -p option of
cc. This option to the cc command arranges for calls to IOOnitor at the begin­
ning and end of execution. The call to IOOnitor at the end of execution causes
the system to write a profile file. The number of calls to a function is tallied if
the -p option was used when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environ­
mental variable PROFDIR. If PROFDIR is not set, IOOn. out is produced in the
directory current when the program terminates. If PROFDIR=string,
stringlpid.progname is produced, where progname consists of argv[O] with any
path prefix removed, and pid is the process ID of the program. If PROFDIR is set,
but null, no profiling output are produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro [see prof(5)].

IOOn. out default profile file
a. out default namelist (object) file

SEE ALSO

NOTES

Page 2

cc(1), Iprof(1), exit(2), profH(2), IOOnitor(3C), prof(5).
The "1prof" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden back­
ground or asynchronous processes may blur the data. In rare cases, the clock
ticks initiating recording of the program counter may "beat" with loops in a pro­
gram, grossly distorting measurements. Call counts are always recorded pre­
cisely, however.

Only programs that call exit or return from main are guaranteed to produce a
profile file, unless a final call to IOOnitor is explicitly coded.

The times for static functions are attributed to the preceding external text symbol
if the -g option is not used. However, the call counts for the preceding function
are still correct; that is, the static function call counts are not added to the call
counts of the external function.

If more than one of the options -t, -c, -a, and -n is specified, the last option
specified is used and the user is warned.

10/89

prs(1) prs (1)

NAME
prs - print an sees file

SYNOPSIS
prs [-d{dataspecll [-r[SID)) [-e) [-1) [-c[date-timell [-a) files

DESCRIPTION
prs prints, on the standard output, parts or all of an sees file [see sccsfile(4»)
in a user-supplied format. If a directory is named, prs prints the files in that
directory, except the non-SCes files (last component of the path name does not
begin with s.) and unreadable files. If a name of - is given, the standard input
is read; each line of the standard input is taken to be the name of an sees file or
directory to be processed. prs silently ignores non-sees files and unreadable
files.

Arguments to prs, which may appear in any order, consist of keyletter argu­
ments and file names.

The keyletter arguments apply independently to each named file:

-d[dataspec) Specifies the output data specification. The dataspec is a
string consisting of sees file data keywords (see the DATA
KEYWORDS section) interspersed with optional user­
supplied text.

-r[SID) Specifies the sees identification (SID) string of a delta for
which information is desired. The default is the top delta.

-e Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter or the
date given by the -c option.

-1 Requests information for all deltas created later than and
including the delta designated via the -r keyletter or the
date given by the -c option.

-c[date-time] The cutoff date-time in the form:

-a

YY[MM[DD[HH[MM[SSIllIl

Units omitted from the date-time default to their max­
imum possible values; for example, -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters
may separate the fields of the cutoff date; for example,
"-c77/2/2 9:22:25".

Requests printing of information for both removed, i.e.,
delta type = R, [see rm:iel(1)] and existing, i.e., delta type =
D, deltas. If the -a keyletter is not specified, information
for existing deltas only is provided.

DATA KEYWORDS

10/89

Data keywords specify those parts of an sces file that are to be retrieved and
output. All parts of an sees file [see sccsfile(4)] have an associated data key­
word. There is no limit on the number of times a data keyword may appear in a
dataspec.

Page 1

prs (1) prs(1)

The infonnation printed by prs consists of: (1) the user-supplied text; and (2)
appropriate values (extracted from the sees file) substituted for the recognized
data keywords in the order of appearance in the dataspec. The format of a data
keyword value is either "5imple" (5), in which keyword substitution is direct, or
"Multi-line" (M), in which keyword substitution is followed by a carriage return.

User-supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \no The default data
keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COM£NTS:\n:C:"

Keyword Data Item File Section Value Format
:Dt: Delta information Delta Table See below" 5
:DL: Delta line statistics :Li:/:Ld:/:Lu: 5
:Li: Lines inserted by Delta nnnnn 5
:Ld: Lines deleted by Delta nnnnn 5
:Lu: Lines unchanged by Delta nnnnn 5
:DT: Delta type D or R 5
:I: seC5 ID string (5ID) :R:. :L:. :B:. :S: 5
:R: Release number nnnn 5
:L: Level number nnnn 5
:B: Branch number nnnn 5
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th: : :Tm:: :Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: ... 5
:Dx: Deltas excluded (seq #) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... 5
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flags text M

Page 2 10/89

prs(1) prs(1)

Keyword Data Item File Section Value Format
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:KV: Keyword validation string text S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S
:LK: Locked releases :R: ... S
:Q: User-defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :I: S
:ND: Null delta flag yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what(1) string N/A :Z: :M:\t:I: S
:A: A form of what(1) string N/A :Z: :Y: :M: :I: :Z: S
:Z: what(1) string delimiter N/A @ (I) S
:F: secs file name N/A text S

:PN: secs file path name N/A text S

.. : Dt: = : DT: : I : : D: : T: : P : : DS: : DP :

EXAMPLES

10/89

The command

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

The command

prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -r
s.file

may produce on the standard output:

Newest delta for pg.m main.c: 3.7 Created 77/12/1 By cas

The default case:

prs s.file

Page 3

prs (1)

FILES

produces on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
C<Ml1ENTS:
this is the comment line for s.file initial delta

prs(1)

for each delta table entry of the "D" type. The only keyletter argument allowed
to be used with the "special case" is the -a keyletter.

/usr/trrp/pr?????

SEE ALSO
aclmin(1), delta(1), get(1), help(1), sccsfile(4).

DIAGNOSTICS
Use help(1) for explanations.

Page 4 10/89

regcmp(1) regcmp(1)

NAME
reqcnp - regular expression compile

SYNOPSIS
reqcnp [-] file ...

DESCRIPTION
The reqcnp command performs a function similar to regcnp and, in most cases,
precludes the need for calling regcnp from C programs. Bypassing regCI!p saves
on both execution time and program size. The command regcnp compiles the
regular expressions in file and places the output in file. i. If the - option is used,
the output is placed in file. c. The format of entries in file is a name (C variable)
followed by one or more blanks followed by one or more regular expressions
enclosed in double quotes. The output of regcnp is C source code. Compiled
regular expressions are represented as extern char vectors. file. i files may thus
be 'included in C programs, or file. c files may be compiled and later loaded.
In the C program that uses the regcnp output, regex (abc, line) applies the reg­
ular expression named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name

telno

"([A-Za-z] [A-Za-zO-9_] *)$0"

"\({0,1} ([2-9] [01] [1-9])$0\){0,1} *"
"([2-9] [0-9] {2})$1[-] {0,1}"
"([0-9] (4})$2"

The three arguments to telno shown above must all be entered on one line.

In the C program that uses the regCI!p output,

regex(telno, line, area, exch, rest)

applies the regular expression named telno to line.

SEE ALSO
reqcnp(3G).

10/89 Page 1

rmdel{1) rmdel{1)

NAME
DlViel - remove a delta from an sees file

SYNOPSIS
DlViel -rSID files

DESCRIPTION

FILES

DlViel removes the delta specified by the SID (sees identification string) from
each named sees file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named sees file. In addition, the
delta specified must not be that of a version being edited for the purpose of mak­
ing a delta; that is, if a p-file exists for the named sees file [see get(1)], the delta
specified must not appear in any entry of the p-file.

The -r option specifies the SID level of the delta to be removed.

If a directory is named, DlViel behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed; non-sees files and unread­
able files are silently ignored.

The rules governing the removal of a delta are as follows: if you make a delta
and have appropriate file permissions, you can remove it; if you own the file and
directory in which a new delta file resides, you can remove the delta.

x.file
z.file

[See delta(1)]
[See delta(1)]

SEE ALSO
delta(1), get(1), help(1), prs(1), sccsfile(4).

DIAGNOSTICS
Use help(1) for explanations.

10/89 Page 1

sact(1) sact(1)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

DESCRIPTION
sact informs the user of any impending deltas to a named sees file. This situa­
tion occurs when get with the -e option has been previously executed without a
subsequent execution of delta. If a directory is named on the command line,
sact behaves as though each me in the directory were specified as a named me,
except that non-SCeS mes and unreadable files are silently ignored. If a name of
- is given, the standard input is read with each line being taken as the name of
an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the sees file
to which changes will be made to make the new delta.

Field 2

Field 3

Field 4

Field 5

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (Le.,
executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

SEE ALSO
delta(1), diff(1), get(1), help(1), unget(1).

DIAGNOSTICS
Use help(1) for explanations.

10/89 Page 1

sccsdiff(1) sccsdiff(1)

NAME
sccsdiff ~ compare two versions of an sees file

SYNOPSIS
sccsdiff ~r5IDl ~rSID2 [~pl [~snl files

DESCRiPTION

FILES

sccsdiff compares two verdons of an sees file and generates the differences
between the two versions. Any number of sees files may be specified, but argu­
ments apply to all files.

~rSIDl ~rSID2

~p

~sn

5IDI and 5ID2 specify the deltas of an sees file that are
to be compared. Versions are passed to bdiff in the
order given.

pipe output for each file through pro

n is the file segment size that bdiff will pass to diff.
This option is useful when diff fails due to a high sys­
tem load.

/usr/tnp/get????? temporary files

SEE ALSO
get(1), help(1).
diff(1), bdiff(1), pr(1) in the User's Reference Manual.

10/89 Pige 1

sdb (1) sdb(1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-el [-s signol [-vl [-wl [-wl [objfile [corfile [directory-list]]]

DESCRIPTION

10/89

sdb is the symbolic debugger for C and assembly programs. sdb may be used to
examine executable program files and core files. It may also be used to examine
live processes in a controlled execution environment.

The objfile argument is the name of an executable program file. To take full
advantage of the symbolic capabilities of sdb, this file should be compiled with
the -g (debug) option. If it has not been compiled with the -g option, the sym­
bolic capabilities of sdb will be limited, but the file can still be examined and the
program debugged.

The corfile argument is the name of a core image file. A core image file is pro­
duced by the abnormal termination of objfile or by the use of gcore. A core
image file contains a copy of the segments of a program. The default for cor file is
core. A core image file need not be present to use sdb. Using a hyphen (-)
instead of corfile forces sdb to ignore an existing core image file.

The directory-list argument is a colon-separated list of directories that is used by
sdb to locate source files used to build objfile. If no directory list is specified, sdb
will look in the current directory.

The following options are recognized by sdb:

-e Ignore symbolic information and treat nonsymbolic addresses as file
offsets.

-s signo
Where signo is a decimal number that corresponds to a signal number [see
signal(2) 1, do not stop live processes under control of sdb that receive
the signal. This option may be used more than once on the sdb command
line.

-v Print version information. If no objfile argument is specified on the com­
mand line, sdb will exit after printing the version information.

-w Suppress warnings about corfile being older than objfile or about source
files that are older than objfile.

-w Allow user to write to objfile or corfile.

sdb recognizes a current line and a current file. When sdb is examining an exe­
cutable program file without a core file, the current line and current file are ini­
tially set to the line and file containing the first line of main. If corfile exists, then
current line and current file are initially set to the line and file containing the
source statement where the process terminated. The current line and current file
change automatically as a live process executes. They may also be changed with
the source file examination commands.

Page 1

sdb(1) selb(1)

Names of variables are written as in C. Variables local to a procedure may be
accessed using the form procedure: variable. If no procedure name is given, the
procedure containing the current line is used by default.

Structure members may be referred to as variable.member, pointers to structure
members as variable->member, and array elements as variable [number] . Pointers
may also be dereferenced by using the form pointer[number]. Combinations of
these forms may also be used. The form number->member may be used where
number is the address of a pointer, and number. member where number is inter­
preted as the address of a structure instance. The template of the structure type
used in this case will be the last structure type referenced. When sdb displays
the value of a structure, it does so by displaying the value of all elements of the
structure. The address of a structure is displayed by displaying the address of
the structure instance rather than the addresses of individual elements.

Elements of a multidimensional array may be referred to as variable
[number] [number] ... , or as variable [number, number, ... J. In place of rrumber, the
form number; number may be used to indicate a range of values, ... may be used to
indicate all legitimate values for that subscript, or subscripts may be omitted
entirely if they are the last subscripts and the full range of values is desired. If
no subscripts are specified, sdb will display the value of all elements of the array.

A particular instance of a variable on the stack is referred to as
procedure: variable, number. The number is the occurrence of the specified pro­
cedure on the stack, with the topmost occurrence being 1. The default procedure
is the one containing the current line.

Addresses may be used in sdb commands as well. Addresses are specified by
decimal, octal, or hexadecimal numbers.

Line numbers in the source program are specified by the form filename: rrumber or
procedure: number. In either case, the number is relative to the beginning of the file
and corresponds to the line number used by text editors or the output of pro A
number used by itself implies a line in the current file.

While a live process is running under sdb, all addresses and identifiers refer to
the live process. When sdb is not examining a live process, the addresses and
identifiers refer to objfile or corfile.

Commands

Page 2

The commands for examining data in the program are:

t Prints a stack trace of the terminated or halted program. The function
invoked most recently is at the top of the stack. For C programs, the stack
ends with _start, which is the startup routine that invokes main.

T Prints the top line of the stack trace.

variable/elm
Print the value of variable according to length I and format m. The numeric
count c indicates that a region of memory, beginning at the address implied
by variable, is to be displayed. The length specifiers are:

10/89

sdb(1)

10/89

b

h

1

one byte

two bytes (half word)

four bytes (long word)

Legal values for mare:

c character

d signed decimal

u unsigned decimal

o octal

x hexadecimal

f 32-bit single precision floating point

9 64-bit double precision floating point

sdb(1)

s Assumes that variable is a string pointer and prints characters start­
ing at the address pointed to by the variable.

a Prints characters starting at the variable's address. Do not use this
with register variables.

p pointer to procedure

i Disassembles machine-language instruction with addresses printed
numerically and symbolically.

I Disassembles machine-language instruction with addresses printed
numerically only.

Length specifiers are effective with formats c, d. u, 0, x. The length specifier
determines the output length of the value to be displayed. This value may
be truncated. The count specifier c displays that many units of memory,
starting at the address of the variable. The number of bytes in the unit of
memory is determined by 1 or by the size associated with the variable. If the
specifiers c, 1, and m are omitted, sdb uses defaults. If a count specifier is
used with the s or a command, then that many characters are printed. Oth­
erwise, successive characters are printed until either a null byte is reached
or 128 characters are printed. The last variable may be redisplayed with the
./ command.

For a limited form of pattern matching, use the sh metacharacters * and ?
within procedure and variable names. (sdb does not accept these metachar­
acters in file names, as the function name in a line number when setting a
breakpoint, in the function call command, or as the argument to the e com­
mand.) If no procedure name is supplied, sdb matches both local and glO­
bal variables. If the procedure name is specified, then sdb matches only
local variables. To match global variables only, use : pattern. To print all
variables, use * : *.

Page 3

sdb(1)

Page 4

sdb(1)

linenumber? 1m
variable: ?lm

Prints the value at the address from the executable or text space given by
linen umber or variable (procedure name), according to the format 1m. The
default format is i.

variable=lm
linenumber=lm
number=lm

Prints the address of variable or linen umber, or the value of number. 1 specifies
length and m specifies the format. If no format is specified, then sdb uses
lx (four-byte hex). m allows you to convert between decimal, octal, and
hexadecimal.

variable! value
Sets variable to the given value. The value may be a number, a character
constant, or a variable. The value must be well-defined; structures are
allowed only if assigning to another structure variable of the same type.
Character constants are denoted 'character. Numbers are viewed as integers
unless a decimal point or exponent is used. In this case, they are treated as
having the type double. Registers, except the floating point registers, are
viewed as integers. Register names are identical to those used by the assem­
bler (for example, %regname where regname is the name of a register). If the
address of a variable is given, it is regarded as the address of a variable of
type into C conventions are used in any type conversions necessary to per­
form the indicated assignment.

x Prints the machine registers and the current machine-language instruction.

X Prints the current machine-language instruction.

The commands for examining source files are:

e
e procedure
e filename
e directory/

e, without arguments, prints the name of the current file. The second form
sets the current file to the file containing the procedure. The third form sets
the current file to filename. The current line is set to the first line in the
named procedure or file. Source files are assumed to be in the directories in
the directory list. The fourth form adds directory to the end of the directory
list.

/regular expression/
Searches forward from the current line for a line containing a string match­
ing regular expression, as in ed. The trailing / may be omitted, except when
associated with a breakpoint.

?regular expression?
Searches backward from the current line for a line containing a string
matching regular expression, as in ed. The trailing? may be omitted, except
when associated with a breakpoint.

10/89

sdb(1)

10/89

p

z

w

sdb(1)

Prints the current line.

Prints the current line and the following nine lines. Sets the current line to
the last line printed.

Prints the 10 lines (the window) around the current line.

number
Specifies the current line. Prints the new current line.

count+
Advances the current line by count lines. Prints the new current line.

count-
Resets the current line by count lines back. Prints the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Runs the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program. The R command
runs the program with no arguments. An argument beginning with < or >
redirects the standard input or output, respectively. Full sh syntax is
accepted. If count is given, it specifies the number of breakpoints to be
ignored.

linenumber c count
linenumber c count

Continues execution. sdb stops when it encounters count breakpoints. The
signal that stopped the program is reactivated with the c command and
ignored with the c command. If a line number is specified, then a tem­
porary breakpoint is placed at the line and execution continues. The break­
point is deleted when the command finishes.

linenumber g count
Continues with execution resumed at the given line. If count is given, it
specifies the number of breakpoints to be ignored.

s count
S count

s single steps the program through count lines or if no count is given, then
the program runs for one line. s will step from one function into a called
function. S also steps a program, but it will not step into a called function.
It steps over the function called.

i count
I count

Single steps by count machine-language instructions. The signal that caused
the program to stop is reactivated with the I command and ignored with
the i command.

Page 5

sdb(1)

Page 6

variable$m count
address:m count

sdb(1)

Single steps (as with s) until the specified location is modified with a new
value. If count is omitted, it is, in effect, infinity. Variable must be accessible
from the current procedure. This command can be very slow.

level v
Toggles verbose mode. This is for use when single stepping with s, s, or m.
If level is omitted, then just the current source file and/or function name is
printed when either changes. If level is 1 or greater, each C source line is
printed before it executes. If level is 2 or greater, each assembler statement
is also printed. A v turns verbose mode off.

k Kills the program being debugged.

procedure (argl,arg2,,,.)
procedure (argl,arg2,,,.) /m

Executes the named procedure with the given arguments. Arguments can
be register names, integer, character, or string constants, or names of vari­
ables accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m. If no
format is given, it defaults to d.

linenumber b commands
Sets a breakpoint at the given line. If a procedure name without a line
number is given (e.g., proc:), a breakpoint is placed at the first line in the
procedure even if it was not compiled with the -9 option. If no linen umber
is given, a breakpoint is placed at the current line. If no commands are
given, execution stops at the breakpoint and control is returned to sdb.
Otherwise the commands are executed when the breakpoint is encountered.
Multiple commands are specified by separating them with semicolons.
Nested associated commands are not permitted; setting breakpoints within
the associated environments is permitted.

B Prints a list of the currently active breakpoints.

linen umber d
Deletes a breakpoint at the given line. If no linenumber is given, then the
breakpoints are deleted interactively. Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or d,
then the breakpoint is deleted.

D Deletes all breakpoints.

1 Prints the last executed line.

linenumber a
Announces a line number. If linenumber is of the form proc:number, the
command effectively does a linenumber:b l;c. If linen umber is of the form
proc :, the command effectively does a proc: b T; c.

10/89

sdb{1)

Miscellaneous commands:

trest-ol-line
The rest-ol-line represents comments that are ignored by sdb.

!command
The command is interpreted by sh.

new-line

sdb(1)

If the previous command printed a source line, then advance the current
line by one line and print the new current line. If the previous command
displayed a memory location, then display the next memory location. If the
previous command disassembled an instruction, then disassemble the next
instruction.

end-of-file character
Scrolls the next 10 lines of instructions, source, or data depending on which
was printed last. The end-of-file character is usually control-<i

<filename
Read commands from filename until the end of file is reached, and then con­
tinue to accept commands from standard input. Commands are echoed,
preceded by two asterisks, just before being executed. This command may
not be nested; < may not appear as a command in a file.

M Prints the address maps.

" string"
Prints the given string. The C escape sequences of the form \character,
\octaidigits, or \xhexdigits are recognized, where character is a nonnumeric
character. The trailing quote may be omitted.

q Exits the debugger.

V Prints version stamping information.

SEE ALSO

NOTES

10/89

cc(1), signal(2), a. out(4), core(4).
ed(1), gcore(1), sh(l) in the User's Reference Manual.
The "sdb" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

The objfile argument is accessed directly for debugging information while the pro­
cess is created via the PATH variable.

Page 7

slze(1) size(1)

NAME
size - print section sizes in bytes of object files

SYNOPSIS
size [-F -f -n -0 -v -xl files

DESCRIPTION

10/89

The size command produces segment or section size information in bytes for
each loaded section in ELF or COFF object files. size prints out the size of the
text, data, and bss (uninitialized data) segments (or sections) and their total.

size processes ELF and COFF object files entered on the command line. If an
archive file is input to the size command, the information for each object file in
the archive is displayed.

When calculating segment information, the size command prints out the total
file size of the non-writable segments, the total file size of the writable segments,
and the total memory size of the writable segments minus the total file size of the
writable segments.

If it cannot calculate segment information, size calculates section information.
When calculating section information, it prints out the total size of sections that
are allocatable, non-writable, and not NOBITS, the total size of the sections that
are allocatable, writable, and not NOBITS, and the total size of the writable sec­
tions of type NOBITS. (NOBITS sections do not actually take up space in the file.)

If size cannot calculate either segment or section information, it prints an error
message and stops processing the file.

-F Prints out the size of each load able segment, the permission flags of the
segment, then the total of the loadable segment sizes. If there is no seg­
ment data, size prints an error message and stops processing the file.

-f

-n

-0

-v

-x

Prints out the size of each allocatable section, the name of the section,
and the total of the section sizes. If there is no section data, size prints
out an error message and stops processing the file.

Prints out non-loadable segment or non-allocatable section sizes. If seg­
ment data exists, size prints out the memory size of each load able seg­
ment or file size of each non-Ioadable segment, the permission flags, and
the total size of the segments. If there is no segment data, size prints
out, for each allocatable and non-allocatable section, the memory size,
the section name, and the total size of the sections. If there is no seg­
ment or section data, size prints an error message and stops processing.

Prints numbers in octal, not decimal.

Prints the version information for the size command on the standard
error output.

Prints numbers in hexadecimal; not decimal.

Page 1

SIz8(1)

EXAMPLES
The examples below are typical size output.

size file 2724 + 88 + 0 = 2812

size -f file

size -F file

SEE ALSO

26(.text) + 5(.init) + 5(.fini) = 36

2724(r-x) + 88(rwx) + O(rwx) - 2812

as(l), ce(1), Id(1), a.out(4), ar(4).

NOTES

SIZ8(1)

Since the size of bss sections is not known until link-edit time, the size command
will not give the true total size of pre-linked objects.

Page 2 10/89

strip (1) strip (1)

NAME
strip - strip symbol table, debugging and line number information from an
object file.

SYNOPSIS
strip [-b1rVx] file ...

DESCRIPTION

FILES

The strip command strips the symbol table, debugging information, and line
number information from ELF object files; COFF object files can no longer be
stripped. Once this stripping process has been done, no symbolic debugging
access will be available for that file; therefore, this command is normally run only
on production modules that have been debugged and tested.

If strip is executed on a common archive file [see ar(4») in addition to process­
ing the members, strip will remove the archive symbol table. The archive sym­
bol table must be restored by executing the ar(1) command with the -s option
before the archive can be linked by the ld(l) command. strip will produce
appropriate warning messages when this situation arises.

The amount of information stripped from the ELF object file can be controlled by
using any of the following options:

-b Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-1 Strip line number information only; do not strip the symbol table or
debugging information.

-r Same effect as the default behavior. This option is obsolete and will be
removed in the next release.

-v Print, on standard error, the version number of strip.

-x Do not strip the symbol table; debugging and line number information
may be stripped.

strip is used to reduce the file storage overhead taken by the object file.

TMPDIR/strp*

TMPDIR

temporary files

usually /usr/tnp but can be redefined by setting the
environment variable 'lMPDIR [see tenpnamO in
tnpnam(3S»).

SEE ALSO

NOTES

10/89

ar(1), as(1), cc(1), 1d(1), tnpnam(3S), a. out(4), ar(4).

The symbol table section will not be removed if it is contained within a segment,
or the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are con­
tained within a segment, or their associated relocation section is contained within
a segment.

Page 1

tsort(1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

tsort (1)

The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file. If no
file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

10/89 Page 1

unget(1) ungl!t(1)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSID] [-8] [-n] files

DESCRIPTION

FILES

unget undoes the effect of a qflt -e done prior to creating the intended new
delta. If a directory is namoc, unget behaves as though each file in the directory
were specified as a named file, except that non-SCes files and unreadable files are
silently ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The
use of this keyletter is necessary only if two 01' more outstand­
ing gets for editing on the same sees file were done by the
same person (login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary and omitted on the com­
mand line.

-8 Suppresses the printout, on the standard output, of the
intended delta's sm.

-n Causes the retention of the gotten file, which would normally
be removed from the current directory.

unget must be performed by the same user who performeci the original get -e.

p-file

q-file

z-file

[:;;ee d,elta(1)]

[see d,elta(1))

[see de.Ita(1))

SEE ALSO
delta(1), get(1), help(l), 8act(1).

DIAGNOSTICS
Use help(1) for explanations.

1018!! Pag~ 1

val(1) val(1)

NAME
val - validate an sees file

SYNOPSIS
val -

val [-8] [-rSID] [-mname] [-ytype] files

DESCRIPTION

10/89

val determines if the specified file is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments, which begin with a -, and
named files.

val has a special argument, -, which causes reading of the standard input until
an end-of-file condition is detected. Each line read is independently processed as
if it were a command line argument list.

val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code on exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argu­
ment apply independently to each named file on the command line.

-8

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic message nor­
mally generated on the standard output for any error that is
detected while processing each named file on a given command line.

The argument value SID (sees identification string) is an sees delta
number. A check is made to determine if the SID is ambiguous (e.
g., -rl is ambiguous because it physically does not exist but implies
1.1, 1.2, etc., which may exist) or invalid (e. g., rl. 0 or rl.1. 0 are
invalid because neither can exist as a valid delta number). If the SID
is valid and not ambiguous, a check is made to determine if it actu­
ally exists.

The argument value name is compared with the sees %M% keyword
in file.

The argument value type is compared with the sees %Y% keyword in
file.

The 8-bit code returned by val is a disjunction of the possible errors; it can be
interpreted as a bit string where (moving from left to right) set bits are inter­
preted as follows:

bit 0 = missing file argument
bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted sees file
bit 3 = cannot open file or file not sees
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not exist
bit 6 = %Y%, -y mismatch
bit 7 = %M%, -m mismatch

Page 1

val(1) val(1)

val can p~ess two or more flIes on a given command line and in turn can pro­
cess multiple command lines (when reading the standard input). In these cases
an aggregate code is. returned: a logical OR of the codes generated for each com­
mand line and file processed.

SEE ALSO
adml.n(1), delta(1), get(1), help(1, pra(1).

DIAGNOSTICS
Use help(1) for explanations.

NOTES
val can process up to 50 files on a single command line.

Page 2 10/89

yc(1) Yc(1)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-8] [keyword=Value ... /reyword=value]

DESCRIPTION

10/89

This command is obsolete and will be removed in the next release.

The vc command copies lines from the standard input to the standard output
under control of its arguments and of "control statements" encountered in the
standard input. In the process of performing the copy operation, user-declared
keywords may be replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard output is condi­
tional, based on tests (in control statements) of keyword values specified in con­
trol statements or as vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon
(:), except as modified by the -c keyletter (see below). Input lines beginning
with a backslash (\) followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines beginning with
a backslash followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed; a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a keyletter
(see below) forces replacement of keywords in all lines of text. An uninterpreted
control character may be included in a value by preceding it with \. tf a literal \
is desired, then it too must be preceded by \.

The following options are valid:

-a Forces replacement of keywords surrounded by control characters
with their assigned value in all text lines and not just in vc state­
ments.

-t

-cchar

-8

All characters from the beginning of a line up to and including the
first tab character are ignored for the purpose of detecting a control
statement. If a control statement is found, all characters up to and
including the tab are discarded.

Specifies a control character to be used in place of the":" default.

Silences warning messages (not error) that are normally printed on
the diagnostic output.

vc recognizes the following version control statements:

: del /reyword(, ... , keyword]
Declare keywords. All keywords must be declared.

Page 1

vc(1)

Page 2

vc(1)

: asg keyword-value
Assign values to keywords. An asg statement overrides the assignment
for the corresponding keyword on the vc command line and all previous
asg statements for that keyword. Keywords that are declared but are not
assigned values have null values.

: if condition

: end
Skip lines of the standard input. If the condition is true, all lines between
the if statement and the matching end statement are copied to the stan­
dard output. If the condition is false, all intervening lines are discarded,
including control statements. Note that intervening if statements and
matching end statements are recognized solely for the purpose of main­
taining the proper if-end matching.

The syntax of a condition is:

<cond> .. - ["not"] <.or>
<.or> •• - <and> I <and> "I" <.or>
<and> .. - <exp> I <exp> "," <and>
<exp> .. -" (" <.or> ")" I <value> <op> <valUe>
<op> .. - "=" I "!=" I "<" I">"
<value> .. - <arbitrary ASOI string> I <numeric string>

The available operators and their meanings are:

equal
!= not equal
, and
I or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and when

present, inverts the value of the entire condition

The > and < operate only on unsigned integer values (e.g., : 012 > 12 is
false). All other operators take strings as arguments (e.g., : 012 != 12 is
true).

The precedence of the operators (from highest to lowest) is:

.. ! '" > < all of equal precedence ,
I

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one
blank or tab.

10/89

vc(1}

: : text

:on

vc(1}

Replace keywords on lines that are copied to the standard output. The
two leading control characters are removed, and keywords surrounded by
control characters in text are replaced by their value before the line is
copied to the output file. This action is independent of the -a keyletter.

: off Turn on or off keyword replacement on all lines.

:ctl ehilr
Change the control character to ehilr.

:msq message
Print message on the diagnostic output.

: err message
Print message followed by:

ERROR: err statement on line ... (915)

on the diagnostic output. vc halts execution, and returns an exit code of 1.

SEE ALSO
help(l).
ed(1) in the User's Reference Manual.

10/89 Page 3

what.(1) what(1)

NAME
what - print identification strings

SYNOPSIS
what [-8] files

DESCRIPTION
what searches the given files. for aU occurrences of the pattern that the get com­
mand substitutes for %z% (this is. @ (I) at this printing) and prints out what fol­
lows until the first ", >, new-line, \, or null character. For example, if the C pro­
gram in file f . c contains

tident "@ (t) identification information"

and f. c is compiled to yield f. a and a .. out, then the. command

what f.c f .. o a.out

prints

f.c:
identification information

f.o:
identification information

a.out:
identification information

what is intended to be used in conjunction with the get command, which
automatically inserts identifying information, but it can also be used where the
information is. inserted manually. Only one option exists:

-8 Quit after finding the first occurrence of pattern in each file.

SEE ALSO
get(1), he~pUh mesH).

DIAGNOSTICS

10188

Exit status is 0' if any matches are found, otherwise 1. See helpU) for explana­
tions.

Page 1

yacc(1) yacc(1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vVd1t] [-Q[yln]] file

DESCRIPTION

FILES

10/89

The yacc command converts a context-free grammar into a set of tables for a
simple automaton that executes an LALR(1) parsing algorithm. The grammar may
be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y. tab. c, must be compiled by the C compiler to produce a pro­
gram yyparse. This program must be loaded with the lexical analyzer program,
yy1ex. as well as main and yyerror, an error handling routine. These routines
must be supplied by the user; the 1ex(1) command is useful for creating lexical
analyzers usable by yacc.

-v Prepares the file y. output, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the gram­
mar.

- d Generates the file y. tab. h with the tdefine statements that associate
the yacc-assigned "token codes" with the user-declared "token names."
This association allows source files other than y. tab . c to access the
token codes.

-1 Specifies that the code produced in y.tab.c will not contain any tUne
constructs. This option should only be used after the grammar and the
associated actions are fully debugged.

-Q[y I nl The -Qy option puts the version stamping information in y. tab. c.
This allows you to know what version of yacc built the file. The-Qn
option (the default) writes no version information.

-t Compiles runtime debugging code by default. Runtime debugging
code is always generated in y. tab. c under conditional compilation
control. By default, this code is not included when y. tab. c is com­
piled. Whether or not the -t option is used, the runtime debugging
code is under the control of YYDEBUG, a preprocessor symbol. If YYDE­
BUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and execu­
tion time of a program produced without the runtime debugging code
will be smaller and slightly fast~r.

-v Prints on the standard error output the version information for yacc.

y.output
y.tab.c
y.tab.h
yacc.tnp,
yacc.debug, yacc.acts

defines for token names

temporary files

Page 1

yacc(1} yacc(1)

LIBDIRlyaccpar
LIBDIR

parse.r prototype for C programs
usually lusr/c.cs/lib.

SEE ALSO
le~lJ.
The "yacc" chapter in the Programmer's Guide: ANSI C and Programming Support
Tools.

DIAGNOSTICS

NOTES

The number of reduce-reduce and shift-reduce conflicts is reported on the stan­
dard error output.; a mQl"e detailed report is found in the y.output file. Simi­
larly, if some rules are not. reachable from the start symbol, this instance is also
reported.

Because. file names are fixed, at most one yacc process can be active in a given
directory at a. gj:ven time.

1.01&9

Intro(2) Intro(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
tinclude <errno.h>

DESCRIPTION

10/89

This section describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise impossible
returned value. This is almost always -1 or the NULL pointer; the individual
descriptions specify the details. An error number is also made available in the
external variable errno. errno is not cleared on successful calls, so it should be
tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The fol­
lowing is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way for­
bidden except to its owner or super-user. It is also returned for attempts
by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist
but doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill(2)
or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is resumed
after processing the signal, it will appear as if the interrupted system call
returned this error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond
the limits of the device. It may also occur when, for example, a tape drive
is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of the
exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid magic number [see a. out(4)j.

Page 1

IntrQ(2) IntrQ(2)

Page 2

9 E~ADF s..d file number
Either a file descriptor refers to no open file, or a read(2) [respectively,
wd,te(2)] request. is made to a file which is open only for writing (respec­
tively, reading).

10 ECHILD No. child processes
A wait was executed by a process that had no existing or unwaited-for
child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the user is not
allowed to create any more processes. Or a system call failed because of
insufficient memory or swap space.

12 ENOMEM Not enough space
During an exec(2), brk(2), or sbrk(2), a program asks for more space than
the system is able to supply. This may not be a temporary condition; the
maximum space size is a system parameter. The error may also occur if
the arrangement of text, data, and stack segments requires too many seg­
mentation registers, or if there is not enough swap space during a fork(2).
If this error occurs on a resource associated with Remote File Sharing
(RFS), it indicates a memory depletion wich may be temporary, dependent
on system activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argu­
ment of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g.,
in m::>unt(2).

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link(2).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device;
e.g., read a write-only device.

10/89

lntro(2) Intro(2)

10189

20 ENOfDIR Not a directory
A non-directory was specified where a directory is required, for example
in a path prefix or as an argument to chdir(2).

21 ElSDIR Is a directory
An attempt was made to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; men­
tioning an undefined signal in signal(2) or kill(2); reading or writing a
file for which lseek(2) has generated a negative pointer). Also set by the
math functions described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than NOFILES (default 20) descriptors open at
a time.

25 ENOTI'Y Not a character device (or) Not a typewriter
An attempt was made to ioctl(2) a file that is not a special character dev­
ice.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or to
remove a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size or tJUMIT [see
ulimit(2»).

28 ENOSPC No space left on device
Ouring a write(2) to an ordinary file, there is no free space left on the
device. In fcntl(2), the setting or removing of record locks on a file can­
not be accomplished because there are no more record entries left on the
system.

29 ESPIPE Illegal seek
An lseek(2) was issued to a pipe.

go EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a
file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal is
ignored.

Page 3

Intro(2) Intro(2)

Page 4

33 EOOM Math argument
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable
within machine precision.

3S ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist
on the specified message queue [see msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the remo­
val of an identifier from the file system's name space [see msgctl(2),
senctl(2), and shroc:t1(2)].

37-44 Reserved numbers

45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains to file
and record locking.

46 ENOLCK No lock
In fcnt1(2) the setting or removing of record locks on a file cannot be
accomplished because there are no more record entries left on the system.

60 ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on a file descriptor
that is not a STREAMS device.

62 ETIME Stream ioctl timeout
The timer set for a STREAMS ioct1(2) call has expired. The cause of this
error is device specific and could indicate either a hardware or software
failure, or perhaps a timeout value that is too short for the specific opera­
tion. The status of the ioctl(2) operation is indeterminate.

63 ENOSR No stream resources
Insufficient STREAMS memory resources are available to perform a
STREAMS related system call. This is a non-recoverable error and requires
the system to be reconfigured with additional STREAMS memory
resources.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try
to advertise, unadvertise, mount, or unmount remote resources while the
machine has not done the proper startup to connect to the network.

65 ENOPKG No package
This error occurs when users attempt to use a system call from a package
which has not been installed.

10/89

Intro (2) Intro (2)

10/89

66 EREMOTE Resource is remote
This error is RFS specific. It occurs when users try to advertise a resource
which is not on the local machine, or try to mount/unmount a device (or
pathname) that is on a remote machine.

67 ENOLINK Virtual circuit is gone
This error is RFS specific. It occurs when the link (virtual circuit) connect­
ing to a remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource
which has been advertised already, or try to stop the RFS while there are
resources still advertised, or try to force unmount a resource when it is
still advertised.

69 FSRMNT Srmount error
This error is RFS specific. It occurs when users try to stop RFS while there
are resources still mounted by remote machines.

70 ECOMM Communication error
This error is RFS specific. It occurs when trying to send messages to
remote machines but no virtual circuit can be found.

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is gen­
erally not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote
resources which are not directly accessible.

77 EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) I_RECVFD system call to a
STREAMS device, something has come to the head of the queue that can't
be processed. That something depends on the system call:

read(2) - control information or a passed file descriptor.
getmsg(2) - passed file descriptor.
ioctl(2) - control or data information.

83 ELIBACC Cannot access a needed shared library
Trying to exec(2) an a. out that requires a shared library (to be linked in)
and the shared library doesn't exist or the user doesn't have permission to
use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec(2) an a. out that requires a shared library (to be linked in)
and exec(2) could not load the shared library. The shared library is prob­
ably corrupted.

85 ELIBSCN .lib section in a. out corrupted
Trying to exec(2) an a.out that requires a shared library (to be linked in)
and there was erroneous data in the .lib section of the a. out. The .lib sec­
tion tells exec(2) what shared libraries are needed. The a. out is probably
corrupted.

Page 5

infro(2) Intro(2)

86 ELlBMAX Attempting to link in more shared libraries than system limit
Trying to exec(2) an a. out that requires more shared. libraries (to be
linked in) than is allowed on the current configuration of the system. See
the system Administrator's Guide.

87 ELIBEXEC Cannot exec a shared library directly
Trying to exec(2) a shared library directly. This is not allowed.

DEFINITIONS

Process 10 Each active process in the system is uniquely identified by a positive
integer called a process 10. The range of this 10 is from 1 to 30,000.

Parent Process 10 A new process is created by a currently active process !see
fork(2)}. The parent process ID of a process is the process ID of its creator.

Process Group 10 Each active process is a member of a process group that is
identified by a positive integer called the process group 10. This ID is the process
10 of the group leader. This grouping permits the Signaling of related processes
[see kl11(2»).

Tty Group rb Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group 10. This grouping is used to
terminate a group of related processes upon termination of one of the prOCesses
in the group [see E!Xlt(2) and sigrial(2»).

Real tIser I'D and Real Group 10 Each user allowed on the system is identified
by a positive integer (0 to 65535) called a real user 10.

Each user is also a member of a group. The group is identified by a positive
integer called the real group 10.

An active process has a real user ID and real group 10 that are set to the real user
IDand real sroup 10, respectively, of the user responsible for the creation of the
protess.

13lfedivf Us~ 10 artd Elfective Group 10 An active p~cess has an effecti~e user
It> and an. effective group ID that are used to determine file access permissions
(~ below).1'he effective user II) and {lffuctive group 10 are equal to the
p~ss's toeal mer ID Illid real gtouptDrespectively, unless the process or one of
its ancestors evolved from a file that had the set-user-ID bit or set-group 10 bit set
[see exec(2».

Super-user Al:>i'Ocess is ra:08nized as it $upet-u5er process and is granted special
privilege!!, such as itntrtUhity from file permissions, if its effective User ID is 0.

Special Processes The processes with a prt)CE!SS It> of 0 and Ii process 10 of 1 are
special processes and are referred to a!! procO and proc1.

101ft

Intro(2) Intro(2)

10/89

prod) is the scheduler. procl is the initialization process (init). proc1 is the ances­
tor of every other process in the system and is used to control the process struc­
ture.

File Descriptor A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from 0 to (NOFILES - 1). A process may have no
more than NOFILES file descriptors open simultaneously. A file descriptor is
returned by system calls such as open(2), or pipe(2). The file descriptor is used
as an argument by calls such as read(2), write(2), ioctl(2), and close(2).

File Name Names consisting of 1 to 14 characters may be used to name an ordi­
nary file, special file or directory.

These characters may be selected from the set of all character values excluding 'D
(null) and the ASOI code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because
of the special meaning attached to these characters by the shell [see sh(1)].
Although permitted, the use of unprintable characters in file names should be
avoided.

Path Name and Path Prefix A path name is a null-terminated character string
starting with an optional slash U), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a
non-existent file.

Directory Directory entries are called links. By convention, a directory contains
at least two links, . and .. , referred to as dot and dot-dot respectively. Dot
refers to the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory Each process has associated with
it a concept of a root directory and a current working directory for the purpose
of resolving path name searches. The root directory of a process need not be the
root directory of the root file system.

File Access Pennissions Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of
the file and the appropriate access bit of the "owner" portion (0700) of the
file mode is set.

Page 7

Intro(2) Intro(2)

Page 8

The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process matches the
group of the file and the appropriate access bit of the "group" portion
(0070) of the file mode is set.

The effective user ID of the process does not match the user ID of the
owner of the file, and the effective group ID of the process does not match
the group ID of the file, and the appropriate access bit of the "other" por­
tion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier A message queue identifier (msqid) is a unique posi­
tive integer created by a msgget(2) system call. Each msqid has a message queue
and a data structure associated with it. The data structure is referred to as
msqid _ ds and contains the following members:

struct ipc yerm msgyerm;
struct msg *msg_ first;
struct msg *msg_last;
ushort msg_cbytes;
ushort msg_ qnum;
ushort msg_qbytes;
ushort msg lspid;
ushort msg-lrpid;
time t msg=:stime;
time -t msg rtime;
time=:t msg=:ctime;

msgyerm is an ipc _perm structure that specifies the message operation permis­
sion (see below). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w pennission */
ushort seq; /* slot usage sequence t */
key_t key; /* key */

msg *msg first
is a pointer to the first message on the queue.

msg *msg last
is a pointer to the last message on the queue.

msg cbytes
- is the current number of bytes on the queue.

msgqnum
- is the number of messages currently on the queue.

10/89

Intro(2) Intro(2)

10/89

msg qbytes
- is the maximum number of bytes allowed on the quet:.~.

msg lspid
- is the process id of the last process that performed a msgsnd operation.

msg ll:pid
- is the process id of the last process that performed a msgrcv operation.

msg stime
- is the time of the last msgsnd operation.

msg rtime
- is the time of the last msgrcv operation.

msg ctime
- is the time of the last msgctl(2) operation that changed a member of the

above structure.

Message Operation Permissions In the msgop(2) and msgctl(2) system call
descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed, interpreted as follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a msqid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msgyerm. cuid or
msgyerm. uid in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of msgyerm.mode is set.

The effective group ID of the process matches msgyerm. cgid or
msgyerm. gid and the appropriate bit of the "group" portion (060) of
msgyerm.roode is set.

The appropriate bit of the "other" portion (006) of msgyerm.trode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier A semaphore identifier (semid) is a unique positive integer
created by a semget(2) system call. Each semid has a set of semaphores and a
data structure associated with it. The data structure is referred to as semid ds
and contains the following members:

struct ipcyerm sernyerm; /* operation permission struct */
struct sern *sern base; /* ptr to first semaphore in set * /
ushort sern_nsems; /* number of serns in set */
time t sern_otime; /* last operation time */

Page 9

Intro(2) tntro(2)

/* last. change time */
/* Timesneasured in se<::s since * /
/* 00:00:00 GMT, Jan. 1, 1970 */

SelIIJ>eXM is an ipcJ>erm strudme that specifies the semaphore operation permis­
sion (see below). This structure includes the foliowingmembers:

'Oshort uid; /* user id * /
usbort gid; 1* group id * /
uShort coid; 1* creat.or user id * /
ushortcgid.i I*ereatorqroup id * /
UShorttoodei /* '1:/a permission */
ushortseqi / * slot usage sequence number * /
key_t key; /* key*/

SelII nSem8
- is equal to the number of semaphores in the set. Each semaphore in the

set is referenced by a positive integer referred to as a sem~ nu.m. sem_ nu.m
values run sequentially from 0 to the value of sem_nsems minus 1.

SelII otine
- is the time of the last settDp(2) operation.

'SelII ctine
- is the time of the last sem::tl(2) operation that changed a member of the

above structure.

A semaphore isa data structure called sem that contains the following members:

ushort semva! i / * semaphore value * /
Short Sen:pid.i /* pid.of last operation */
uSbort semncnti /* I awaitinq se:mval > eva! */
ushort Semzcnti /* I awaiting semval= 0 */

semvaJ.
is a non-negative integer which is the actual value of the semphore.

senpid
is equal to the process ID of the last process that performed a semaphore
operation on this semaphore.

semnetlt
isacoUfit of the number of processes that are currently suspended await­
ing this semaphore's semval to become greater than its current value.

s~cnt
is a. co'Untof the number of processes that are currently suspended await­
ing this semaphore/sse~val to become zero.

Intro(2) Intro(2)

10iU

Semaphore Operation Permissions In the sezoop(2) and semc:tl('2.) system call
descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed int.erpreted as follows:.

00400 Read by user
00200 Alter by user
00040 Read by group
00020 Alter by group
00004 Read by others
00002 Alter by others

Read and alter permissions on a semid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The efrective user ID of the process matches semye:rm.cuid or
sem.J?9:rm.uid in the data structure associated with semid and the
appropriate bit of the "user" portion (06QO) of sem...pe:rm.1OOde is set.

The effective group ID of the process matches semye:rm.cgid or
semyex:m.gid and the appropriate bit of the "group" portion (060) of
sem~~.~ is set.
The appropriate bit of the "other" portion (006) of semye:rm.mxle is set.

Otherwise, the corresponding permissions are denied.

Shared MemQry Identifier A shared memory identifier (shmid) is a unique posi­
tive int~er created by a sbm;Jet(2) system call. Each shmid has a segment of
memQrY (~~ed to as a shared memory segment) and a data struct.ure ~soci­
ated with it~ (Note that these shared memory segments must be explicitly
removed by the user after the last reference to them is removed,) The data struc­
tut:e is ~red to as sbmi,d:... ds and contains the following members:

st~. ipc;ye:rm sbm.J?9:rn1; /* operation pe:rmissic>D struct */
int. sbll_~7:; /* size ~ segment */
at.,ruQt. :region *shBl reg; /*ptr to region structure. */
chal:: pa4[4l; - /* for SNap COJII)atj,bility */
ushort; shm lpid; 1* pid of last operation */
ushort sbm c:pid; /* c:reator pid *1
ushort shm-nattch; /* nUl'li::ler of c;ur~t at~clma *1
ushOl;;t shm:cnattch; 1* used onl¥ ftu: $~fq, */
tiJTle t shm atime; /* last at~ time *1
tiJTle:) shBl:dti.lne. 1* last. <letach time */
tiJl1e, t shm ctiIIle.; /* last chanqe time *'1

..... - II\< Tu.a JIeiilIl~~ ~. ~. ei~ *1
/* 00:00:00 GHr, Jafl. 1, 19,70 1\<'

.. ..,J?ean. is an i~~m. structure that s~ ~. s~ ~1Ml")!: opeta~
~i~ (~be_Wl, 'l'hm ~ure i~des~· follQ.~; ~~::

Intro(2) Intro(2)

ushort cuid; / * creator user id * /
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */
ushort seq; /* slot usage sequence t */'
key_t key; /* key */

shIn_segsz specifies the size of the shared memory segment in bytes.

shIn _ cpid is the process id of the process that created the shared memory
identifier.

shIn _lpid is the process id of the last process that performed a shlrop(2)
operation.

shIn nattch is the number of processes that currently have this segment
attached.

shIn atime

shIn dtime

shIn ctime

is the time of the last shmat operation.

is the time of the last shITdt operation.

is the time of the last shm:tl(2) operation that changed one of the
members of the above structure.

Shared Memory Operation Permissions In the shlrop(2) and shm:tl(2) system
call descriptions, the permission required for an operation is given as "{token}",
where "token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00040 Read by group
00020 Write by group
00004 Read by others
00002 Write by others

Read and write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shIn...,Perm.cuid or
shIn...,Perm. uid in the data structure associated with shmid and the
appropriate bit of the "user" portion (0600) of shIn...,Perm.mode is set.

The effective group ID of the process matches shInyerm.cgid or
shInyerm.gid and the appropriate bit of the "group" portion (060) of
shInyerm.m:>de is set.

The appropriate bit of the "other" portion (06) of shIn...,Perm.m:>de is set.

Otherwise, the corresponding permissions are denied.

Page 12 10/89

Intro(2} Intro(2}

10/89

STREAMS A set of kernel mechanisms that support the development of network
services and data communication drivers. It defines interface standards for char­
acter input/output within the kernel and between the kernel and user level
processes. The STREAMS mechanism is composed of utility routines, kernel facili­
ties and a set of data structures.

Stream A stream is a full-duplex data path within the kernel between a user pro­
cess and driver routines. The primary components are a stream head, a driver and
zero or more modules between the stream head and driver. A stream is analogous to
a Shell pipeline except that data flow and processing are bidirectional.

Stream Head In a stream, the stream head is the end of the stream that provides the
interface between the stream and a user process. The principle functions of the
stream head are processing STREA1v!5-related system calls, and passing data and
information between a user process and the stream.

Driver In a stream, the driver provides the interface between peripheral hardware
and the stream. A driver can also be a pseudo-driver, such as a multiplexor or log
driver [see log(7)], which is not associated with a hardware device.

Module A module is an entity containing processing routines for input and out­
put data. It always exists in the middle of a stream, between the stream's head
and a driver. A module is the STREAMS counterpart to the commands in a shell
pipeline except that a module contains a pair of functions which allow indepen­
dent bidirectional (downstream and upstream) data flow and processing.

Downstream In a stream, the direction from stream head to driver.

Upstream In a stream, the direction from driver to stream head.

Message In a stream, one or more blocks of data or information, with associated
STREAMS control structures. Messages can be of several defined types, which
identify the message contents. Messages are the only means of transferring data
and communicating within a stream.

Message Queue In a stream, a linked list of messages awaiting processing by a
module or driver.

Read Queue In a stream, the message queue in a module or driver containing mes­
sages moving upstream.

Write Queue In a stream, the message queue in a module or driver containing mes­
sages moving downstream.

Page 13

Intro (2) Intro.(2.~

Multiplexor A multiplexor is a driver that allows stTeams assodated with several
user processes to be connected to a single driver, or several drivers to be connected·
to a single user process. STREAMS does not provide a general multiplexing driver,.
but does provide the facilities for constructing them, and for connecting multi".
plexed configurations of streams.

SEE ALSO
intro(3).

Page 14

access (2) access (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

DESCRIPTION
path points to a path name naming a file. access checks the named file for acces­
sibilityaccording to the bit pattern contained in amode, using the real user 10 in
place of the effective user 10 and the real group 10 in place of the effective group
10. The bit pattern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

{ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

[ENOENT]
[EACCES]

[EROPS]

[ETXTBSY]

{EACCES]

{EFAULT]

[EIN1R]

[ENOLINK]

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.
Write access is requested for a pure procedure
(shared text) file that is being executed.
Permission bits of the file mode do not permit
the requested access.
path points outside the allocated address
space for the process.
A signal was caught during the access
system call.
path points to a remote machine and the link
to that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple
remote machines.

The owner of a file has permission checked with respect to the "owner" read,
write, and execute mode bits. Members of the file's group other than the owner
have permissions checked with respect to the "group" mode bits, and all others
have permissions checked with respect to the "other" mode bits.

SEE ALSO
ctuood(2), .stat(2).

18/89 Page 1

access (2) access (2)

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

Page 2 10/89

acct(2) acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char "'path;

DESCRIPTION
acct is used to enable or disable the system process accounting routine. If the
routine is enabled, an accounting record will be written on an accounting file for
each process that terminates. Termination can be caused by one of two things: an
exit call or a signal [see exit(2) and signal(2»). The effective user ID of the cal­
ling process must be superuser to use this call.

path points to a pathname naming the accounting file. The accounting file format
is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during
the system call. It is disabled if path is zero and no errors occur during the sys­
tem call.

acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not superuser.

[EBUSy]

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

An attempt is being made to enable accounting when it is
already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file pathname do not
exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

path points to an illegal address.

SEE ALSO
exit(2), signal(2), acct(4).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

alarm (2)

NAME
ala,rm - set a process alarm clock

SYNOPSIS
UI'lsigned alarm (sec)
unsigned sec;

DESCRIPTION
alarm instructs the alarm clock of the calling process to send the signal SIGALRM
to the calling process after the number of real time seconds specified by sec have
elapsed [see signal(2»).

Alarm requests are not stacked; successive calls reset the alarm clock of the cal­
ling process.

If ~ is 0, any previously made alarm request is canceled.

SEEAL$O
pause(2), signal(2), sigpause(2), sigset(2).

DIAGNOSTICS

10189

alarm returns. the amount of time previously remaining in the alarm clock of the
calling process.

brk(2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;
char *sbrk (incr)
int incr;

DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated for
the calling process's data segment [see exec(2»). The change is made by resetting
the process's break value and allocating the appropriate amount of space. The
break value is the address of the first location beyond the end of the data seg­
ment. The amount of allocated space increases as the break value increases.
Newly allocated space is set to zero. If, however, the same memory space is real­
located to the same process its contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space accord­
ingly. incr can be negative, in which case the amount of allocated space is
decreased.

brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

[ENOMEM] Such a change would result in more space being allocated
than is allowed by the system-imposed maximum process
size [see ulimit(2»).

[EAGAIN] Total amount of system memory available for a read during
physical 10 is temporarily insufficient [see shIooP(2»). This
may occur even though the space requested was less than
the system-imposed maximum process size [see ulimit(2»).

SEE ALSO
exec(2), shm::>p(2), ulimit(2), end(3C).

DIAGNOSTICS

10/89

Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and erma is set to indicate the
error.

Page 1

chdlr(2) chdlr(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
path points to the path name of a directory. chdir causes the named directory to
become the current working directory, the starting point for path searches for
path names not beginning with /.

chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path
name.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the chdir system call.

[ENOLINK] path points to a remote machine and the link to that machine is
no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chroot(2).

DIAGNOSTICS

10/89

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and errna is set to indicate the error.

Page 1

chmod(2} chmod(2)

NAME
cluood - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION

10/89

path points to a path name naming a file. chm::xi sets the access permission por­
tion of the named file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000
020#0

Set user ID on execution.
Set group ID on execution if # is 7, 5, 3, or 1

01000
00400
00200
00100
00070
00007

Enable mandatory file/record locking if # is 6, 4, 2, or 0
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super­
user to change the mode of a file.

If the effective user ID of the process is not super-user and the file is not a direc­
tory, mode bit 01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID
of the process does not match the group ID of the file, mode bit 02000 (set group
ID on execution) is cleared.

If a 410 executable file has the sticky bit (mode bit 01(00) set, the operating sys­
tem will not delete the program text from the swap area when the last user pro­
cess terminates. If a 413 executable file has the sticky bit set, the operating sys­
tem will not delete the program text from memory when the last user process ter­
minates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it,
thus making execution faster.

If the executing process is not owned by the super-user, chIood will mask the
sticky-bit but will not return an error.

If a directory is writable and has the sticky bit set, files within that directory can
be removed only if one or more of the following is true [see unlink(2»):

the user owns the file
the user owns the directory
the file is writable by the user
the user is the super-user

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010

Page 1

chmod(2) chmod (2)

(execute or search by group) is not set, mandatory file/record locking will exist
on a regular file. This may effect future calls to open(2), creat(2), read(2), and
write(2) on this file.

chrood will fail and the file mode will be unchanged if one or more of the follow­
ing are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permiSSion is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the
effective user ID is not super-user.

[EROFS) The named file resides on a read-only file system.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the chrood system call.

[ENOLINK] path points to a remote machine and the link to that machine is
no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), write(2).
chm:xi(1) in the User's Reference Manual.

DIAGNOSTICS

Page 2

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89

chown(2) chown(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
path points to a path name naming a file. The owner ID and group ID of the
named file are set to the numeric values contained in owner and group respec­
tively.

Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID
bits of the file mode, 04000 and 02000 respectively, will be cleared.

chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the
effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the chown system call.

[ENOLINK] path points to a remote machine and the link to that machine is
no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chIood(2).
chown(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
path points to a path name naming a directory. chroot causes the named direc­
tory to become the root directory, the starting point for path searches for path
names beginning with /. The user's working directory is unaffected by the
chroot system call.

The effective user ID of the process must be super-user to change the root direc­
tory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root
directory.

chroot will fail and the root directory will remain unchanged if one or more of
the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENn The named directory does not exist.

[EPERM]

[EFAULT]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

The effective user ID is not super-user.

path points outside the allocated address space of the process.

A signal was caught during the chroot system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

SEE ALSO
chdir(2).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errna is set to indicate the error.

Page 1

close (2) close (2)

NAME
close - close a me descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
fiTdes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system
call. close closes the file descriptor indicated by fi1des. All outstanding record
locks owned by the process (on the file indicated by fi1des) are removed.

If a STREAMS [see intro(2») file is closed, and the calling process had previously
registered to receive a SIGPOLL signal [see signal(2) and sigset(2») for events
associated with that file [see I_SETSIG in streamio(7»), the calling process will be
unregistered for events associated with the file. The last close for a stream
causes the stream associated with fi1des to be dismantled. If O_NDELAY is not set
and there have been no signals posted for the stream, close waits up to 15
seconds, for each module and driver, for any output to drain before dismantling
the stream. If the 0_ NDELA Y flag is set or if there are any pending signals, close
does not wait for output to drain, and dismantles the stream immediately.

The named file is closed unless one or more of the following are true:

[EBADF] filties is not a valid open file descriptor.

[EINTR)

[ENOLINK)

A signal was caught during the close system call.

filties is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
creat(2), dUP(2), exec(2), fentl(2), intro(2), open(2), pipe(2), signal(2), sig­
set(2).
streamio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS

10189

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

creat(2) creat(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char .path;
int mode;

DESCRIPTION

10/89

creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the effective user ID, of the
process the group ID of the process is set to the effective group ID, of the process
and the low-order 12 bits of the file mode are set to the value of mode modified
as follows:

All bits set in the process's file mode creation mask are cleared [see
wnask(2)].

The "save text image after execution bit" of the mode is cleared [see
cluood(2)].

Upon successful completion, a write-only file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file pointer is set
to the beginning of the file. The file descriptor is set to remain open across exec
system calls [see fcntl(2)]. No process may have more than 20 files open simul­
taneously. A new file may be created with a mode that forbids writing.

creat fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EACCES]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSy]

[EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

[ENFILE]

A component of the path prefix does not exist.

Search permission is denied on a component of the path prefix.

The path name is null.

The file does not exist and the directory in which the file is to be
created does not permit writing.

The named file resides or would reside on a read-only file sys­
tem.

The file is a pure procedure (shared text) file that is being exe­
cuted.

The file exists and write permission is denied.

The named file is an existing directory.

NOFILES file descriptors are currently open.

path points outside the allocated address space of the process.

The system file table is full.

Page 1

creat(2) creat(2)

[EAGAIN]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

[ENOSPC]

The file exists, mandatory file/record locking is set, and there are
outstanding record locks on the file [see cluood(2)j.

A signal was caught during the creat system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

The file system is out of inodes.

SEE ALSO
chIood(2), close(2), dup(2), fcntl(2), lseek(2), open(2), read(2), umask(2),
write(2).

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

10/89

dup(2) dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system
call. dup returns a new file descriptor having the following in common with the
original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fent1(2)].

The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

[EBADF] fillies is not a valid open file descriptor.

[EINTR] A signal was caught during the dup system call.

[EMFILE)

[ENOUNK]

NOFILES file descriptors are currently open.

fillies is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
close(2), creat(2), exec(2), fent1(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and erma is set to indicate the
error.

Page 1

exec(2) exec(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, (char *)0)
char *path, *argO, *argl, ... , *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, argl, ... , argn, (char *)0, envp)
char *path, *argO, *argl, ... , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, argl, ... , argn, (char *)0)
char *file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *file, *argv[];

DESCRIPTION

10/89

exec in all its forms transforms the calling process into a new process. The new
process is constructed from an ordinary, executable file called the new process file.
This file consists of a header [see a.out(4)], a text segment, and a data segment.
The data segment contains an initialized portion and an uninitialized portion
(bss). There can be no return from a successful exec because the calling process
is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count, argo is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environ­
ment strings. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

path points to a path name that identifies the new process file.

file points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PATH =" [see
environ(S)]. The environment is supplied by the shell [see shO)].

argO, argl, ... , argn are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By convention,
at least argO must be present and point to a string that is the same as path (or its
last component).

argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process. By convention, argo
must have at least one member, and it must point to a string that is the same as
path (or its last component). argo is terminated by a null pointer.

Page 1

exec(2} exec(2)

Page 2

envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process. envp is terminated by a null
pointer. For execl and execv, the C run-time start-off routine places a pointer to
the environment of the calling process in the global cell:

extern char **environ;

and it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fcntl(2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new pro­
cess. Signals set to be ignored by the calling process will be set to be ignored by
the new process. Signals set to be caught by the calling process will be set to ter­
minate new process; see signal(2).

For signals set by sigset(2), exec will ensure that the new process has the same
system signal action for each signal type whose action is SIG_DFL, SIG_IGN, or
SIG _HOLD as the calling process. However, if the action is to catch the signal,
then the action will be reset to SIG_DFL, and any pending signal for this type
will be held.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec sets
the effective user 10 of the new process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process file is set, the effective
group ID of the new process is set to the group ID of the new process file. The
real user ID and real group ID of the new process remain the same as those of the
calling process. However, if the effective user-ID is root or Super-user, the set­
user-ID and set-group-ID bits will be honored when the process is being con­
trolled by ptrace(2).

The shared memory segments attached to the calling process will not be attached
to the new process [see shIoop(2)].

Profiling is disabled for the new process; see profH(2).

The new process also inherits the following attributes from the calling process:

nice value [see nice(2)]
process ID
parent process ID
process group ID
semadj values [see seIOOp(2)]
tty group ID [see exit(2) and signal(2)]
trace flag [see ptrace(2) request 0]
time left until an alarm clock signal [see alarm(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

10/89

exec(2) exec(2)

utime, stime, cutime, and stime [see times(2)]
file-locks [see fcntl(2) and lockf(3C)]

exec will fail and return to the calling process if one or more of the following are
true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

[EFAULT]

[EAGAIN]

[ELIBACC]

[ELIBEXEC]

[EINTR]

[ENOLINK]

[EMULTIHOP]

One or more components of the new process path name of the
file do not exist.

A component of the new process path of the file prefix is not a
directory.

Search permission is denied for a directory listed in the new pro­
cess file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process file
has the appropriate access permission but an invalid magic
number in its header.

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

The number of bytes in the new process's argument list is greater
than the system-imposed limit of 5120 bytes.

Required hard ware is not present.

An a.out that was compiled with the MAU or 32B flag is running
on a machine without a MAU or 32B.

path, argv, or envp point to an illegal address.

Not enough memory.

Required shared library does not have execute permission.

Trying to exec a shared library directly.

A signal was caught during the exec system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

SEE ALSO
alarn(2), exit(2), fcntl(2), fork(2), nice(2), ptrace(2), seIOOp(2), signaH2),
sigset(2), times(2), ulimit(2), umask(2), lockf(3C), a. out(4), environ(S).
sh(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

If exec returns to the calling process an error has occurred; the return value will
be -1 and errno will be set to indicate the error.

Page 3

exlt(2) exit (2)

NAME
exit, _exit - tenninate process

SYNOPSIS
void exit (status)
int status;
void exit (status)
int status;

DESCRIPTION
exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of the
calling process's termination and the low order eight bits (Le., bits 0377) of status
are made available to it [see wait(2»).

If the parent process of the calling process is not executing a wait, the calling
process is transformed into a zombie process. A zombie process is a process that
only occupies a slot in the process table. It has no other space allocated either in
user or kernel space. The process table slot that it occupies is partially overlaid
with time accounting information (see <.sys/proc. h» to be used by times.

The parent process ID of all of the calling processes' existing child processes and
zombie processes is set to 1. This means the initialization process [see intro(2»)
inherits each of these processes.

Each attached shared memory segment is detached and the value of shm_nattach
in the data structure associated with its shared memory identifier is decremented
by 1.

For each semaphore for which the calling process has set a semadj value [see
semop(2»), that semadj value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2»).

An accounting record is written on the accounting file if the system's accounting
routine is enabled [see acct(2»).

If the process ID, tty group ID, and process group ID of the calling process are
equal, the SIGHUP signal is sent to each process that has a process group ID equal
to that of the calling process.

A death of child signal is sent to the parent.

The C function exit may cause cleanup actions before the process exits. The
function _exit circumvents all cleanup.

SEE ALSO
acct(2), intro(2), plock(2), sem:>p(2), si9Oal(2), sigset(2), wait(2).

DIAGNOSTICS
None. There can be no return from an exit system call.

10/89 Page 1

fcntl (2) fcntl (2)

NAME
fcntl - file control

SYNOPSIS
'include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION

10f89

fentl provides for control over open files. fildes is an open file descriptor [see
intro(2)].

The data type, value and use of arg are specific to the value of cmd. cmd specifies
the operation to be performed by fcnt! and may be one of the following:

F_DUPFD Return a new file descriptor as follows:

F GETFD

F SETFD

F SETFL

F GETLK

Lowest numbered available file descriptor greater than or equal
to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (Le., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (Le., both file descriptors share the same
file status flags).

The c1ose-on-exec flag (see F _ GETFD) associated with the new
file descriptor is set to remain open across exec(2) system calls.

Get the c1ose-on-exec flag associated with fildes. If the low­
order bit is 0, the file will remain open across exec. Otherwise,
the file will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the low-order
bit of arg (0 or 1 as above).

Get fildes status flags.

Set fildes status flags to arg. Only certain flags can be set [see
fcntl(S)].

Get the first lock which blocks the lock description given by the
variable of type struct flock pointed to by argo The information
retrieved overwrites the information passed to fcnt! in the flock
structure. If no lock is found that would prevent this lock from
being created, then the structure is passed back unchanged
except for the lock type which will be set to F _ UNLCK.

Set or clear a file segment lock according to the variable of type
struct flock pointed to by arg [see fcnt!(S)]. The cmd F_SETLK is
used to establish read (F RDLCK) and write (F WRLCK) locks, as
well as remove either type of lock (F _ UNLCK). If a read or
write lock cannot be set, fcntl will return immediately with an
error value of -1.

Page 1

fentl (2) fentl (2)

Page 2

F SETLKW This emd is the same as F _SETLK except that if a read or write
lock is blocked by other locks, fentl will block until the seg­
ment is free to be locked.

A read lock prevents any process from write locking the protected area. More
than one read lock may exist for a given segment of a file at a given time. The
file descriptor on which a read lock is being placed must have been opened with
read access.

A write lock prevents any process from read locking or write locking the pro­
tected area. Only one write lock may exist for a given segment of a file at a
given time. The file descriptor on which a write lock is being placed must have
been opened with write access.

The flock structure describes the type (I_type), starting offset (I_whence), relative
offset (I_start), size (lJen), process id (lyid), and RFS system id (tsysid) of the
segment of the file to be affected. The process id and system id fields are used
only with the F _ GETLK emd to return the values for a blocking lock. Locks may
start and extend beyond the current end of a file, but may not be negative rela­
tive to the beginning of the file. A lock may be set to always extend to the end of
file by setting I_len to zero (0). If such a lock also has I_whence and I_start set to
zero (0), the whole file will be locked. Changing or unlocking a segment from
the middle of a larger locked segment leaves two smaller segments for either end.
Locking a segment that is already locked by the calling process causes the old
lock type to be removed and the new lock type to take effect. All locks associ­
ated with a file for a given process are removed when a file descriptor for that
file is closed by that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process in a fork(2) system call.

When mandatory file and record locking is active on a file [see chmod(2)], read(2)
and write(2) system calls issued on the file will be affected by the record locks in
effect.

fent! will fail if one or more of the following are true:

[EBADF]

[EBADF]

[EBADF]

[EM FILE]

[EINVAL]

fildes is not a valid open file descriptor.

emd is F _SETLK or F _SETLKW , the type of lock (I_type) is a read
lock (F _RDLCK) and fildes is not a valid open file descriptor open
for reading.

emd is F _SETLK or F _SETLKW , the type of lock (Uype) is a write
lock (F_WRLCK) and fildes is not a valid open file descriptor open
for writing.

emd is F _ DUPFD and the number of file descriptors currently
open in the calling process is the configured value for the max­
imum number of open file descriptors allowed each user.

emd is F _DUPFD and arg is either negative, or greater than or
equal to the configured value for the maximum number of open
file descriptors allowed each user.

10/89

Icntl (2) Icntl (2)

[EINVAL]

[EINVAL]

[EACCES]

[ENOLCK]

[EDEADLK]

[EFAULT]

[EINTR]

[ENOLINK]

cmd is not a valid value.

cmd is F_GETLK, F_SETLK, or F_SETLKW and arg or the data it
points to is not valid.

cmd is F_SETLK, the type of lock (I_type) is a read (F_RDLCK) lock
and the segment of a file to be locked is already write locked by
another process or the type is a write (F _ WRLCK) lock and the
segment of a file to be locked is already read or write locked by
another process.

cmd is F _ SETLK or F _ SETLKW, the type of lock is a read or write
lock, and there are no more record locks available (too many file
segments locked) because the system maximum has been
exceeded.

cmd is F _SETLKW, the lock is blocked by some lock from another
process, and if fentl blocked the calling process waiting for that
lock to become free, this would cause a deadlock.

cmd is F_GETLK, F_SETLK or F_SETLKW and the value pointed to
by arg resulted in an address outside the program address space.

A signal was caught during the fent! system call.

fildes is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
fentl(S).
elose(2), ereat(2), dup(2), exee(2), fork(2), open(2), pipe(2).

DIAGNOSTICS

NOTES

10/89

Upon successful completion, the value returned depends on cmd as follows:
F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F SETFD Value other than-l.
F=GETFL Value of file status flags.
F SETFL Value other than-l.
F-GETLK Value other than-l.
F-SETLK Value other than-l.
F-SETLKW Value other than-l.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

Because, in the future, the variable ermo will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, portable
application programs should expect and test for either value.

Page 3

fork(2) fork(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION

10/89

fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child process
inherits the following attributes from the parent process:

environment
close-on-exec flag [see exec(2)]
signal handling settings (i.e., SIG_DFL. SIG_IGN, SIG_HOLD, function
address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value [see nice(2)]
all attached shared memory segments [see shIoop(2)]
process group 10
tty group 10 [see exit(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

The child process differs from the parent process in the following ways:

The child process has a unique process 10.

The child process has a different parent process 10 (i.e., the process 10 of
the parent process).

The child process has its own copy of the parent's file descriptors. Each
of the child's file descriptors shares a common file pointer with the
corresponding file descriptor of the parent.

All semadj values are cleared [see seIOOp(2)].

Process locks, text locks and data locks are not inherited by the child [see
plock(2)].

The child process's utime, stime, cutime, and cstime are set to O. The
time left until an alarm clock signal is reset to O.

fork will fail and no child process will be created if one or more of the following
are true:

[EAGAIN]

[EAGAIN]

The system-imposed limit on the total number of processes under
execution would be exceeded.

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

Page 1

fork(2) fork(2)

[EAGAIN] Total amount of system memory available when reading via raw
10 is temporarily insufficient.

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), senop(2), shIoop(2), signal(2), sigset(2),
times(2), ulimit(2), umask(2), wait(2).

DIAGNOSTICS

Page 2

Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a
value of -1 is returned to the parent process, no child process is created, and
e"no is set to indicate the error.

10/89

getdents(2) getdents (2)

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
'include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
fildes is a file descriptor obtained from an open(2) or dup(2) system call.

getdents attempts to read nbyte bytes from the directory associated with fildes
and to format them as file system independent directory entries in the buffer
pointed to by buf. Since the file system independent directory entries are of vari­
able length, in most cases the actual number of bytes returned will be strictly less
than nbyte.

The file system independent directory entry is specified by the dirent structure.

On devices capable of seeking, getdents starts at a position in the file given by
the file pointer associated with fildes. Upon return from getdents, the file
pointer is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir routine [for a
description see directory(3C)I, and should not be used for other purposes.

getdents will fail if one or more of the following are true:

[EBADF] fildes is not a valid file descriptor open for reading.

[EFAULT]

[EINVAL]

[ENOENn

[ENOLINK]

[ENOTDIR]

[EIO]

buf points outside the allocated address space.

nbyte is not large enough for one directory entry.

The current file pointer for the directory is not located at a valid
entry.

fildes points to a remote machine and the link to that machine is
no longer active.

fildes is not a directory.

An I/O error occurred while accessing the file system.

SEE ALSO
directory(3C).

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. A value of 0 indicates the end of the directory has
been reached. If the system call failed, a -1 is returned and erma is set to indi­
cate the error.

Page 1

getmsg(2) getmsg(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
tinclude <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

DESCRIPTION

10/89

getmsg retrieves the contents of a message [see intro(2)] located at the stream
head read queue from a STREAMS file, and places the contents into user specified
buffer(s). The message must contain either a data part, a control part or both.
The data and control parts of the message are placed into separate buffers, as
described below. The semantics of each part is defined by the STREAMS module
that generated the message.

fd specifies a file descriptor referencing an open stream. dlptr and dataptr each
point to a strbuf structure which contains the following members:

int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* ptr to buffer */

where buf points to a buffer in which the data or control information is to be
placed, and maxlen indicates the maximum number of bytes this buffer can hold.
On return, len contains the number of bytes of data or control information actu­
ally received, or is 0 if there is a zero-length control or data part, or is -1 if no
data or control information is present in the message. flags may be set to the
values 0 or RS _ HIPRI and is used as described below.

dlptr is used to hold the control part from the message and dataptr is used to
hold the data part from the message. If dlptr (or dataptr) is NULL or the maxlen
field is -1, the control (or data) part of the message is not processed and is left on
the stream head read queue and len is set to -1. If the maxlen field is set to 0 and
there is a zero-length control (or data) part, that zero-length part is removed from
the read queue and len is set to O. If the maxlen field is set to 0 and there are
more than zero bytes of control (or data) information, that information is left on
the read queue and len is set to O. If the maxlen field in dlptr or dataptr is less
than, respectively, the control or data part of the message, maxlen bytes are
retrieved. In this case, the remainder of the message is left on the stream head
read queue and a non-zero return value is provided, as described below under
DIAGNOSTICS. If information is retrieved from a priority message, flags is set to
RS HIPRI on return.

By default, getmsg processes the first priority or non-priority message available
on the stream head read queue. However, a user may choose to retrieve only
priority messages by setting flags to RS _ HIPRI. In this case, getmsg will only pro­
cess the next message if it is a priority message.

Page 1

getmsg(2) getmsg(2)

If O_NDELAY has not been set, qetmsg blocks until a message, of the type(s)
specified by flags (priority or either), is available on the stream head read queue. If
o _NDELA Y has been set and a message of the specified type(s) is not present on
the read queue, qetmsg fails and sets ermo to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
qetmsg will continue to operate normally, as described above, until the stream
head read queue is empty. Thereafter, it will return 0 in the len fields of ctlptr and
dataptr.

qetmsg fails if one or more of the following are true:

[EAGAIN] The 0 _NDELA Y flag is set, and no messages are available.

[EBADF] fd is not a valid file descriptor open for reading.

[EBADMSG]

[EFAULT]

[EINTR]

[EINVAL]

(ENOSTR)

Queued message to be read is not valid for getmsg.

ctlptr, dataptr, or flags points to a location outside the allocated
address space.

A signal was caught during the getmsg system call.

An illegal value was specified in flags, or the stream referenced by
fd is linked under a multiplexor.

A stream is not associated with fd.

A getmsq can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value contained in
the STREAMS error message.

SEE ALSO
intro(2), read(2), poll(2), putmsg(2), write(2).
STREAMS Primer
STREAMS Programmer's Guide

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative value is returned. A value of 0 indi­
cates that a full message was read successfully. A return value of MORECI'L indi­
cates that more control information is waiting for retrieval. A return value of
MOREDATA indicates that more data is waiting for retrieval. A return value of
MORECI'L I MOREDATA indicates that both types of information remain. Subse­
quent getmsg calls will retrieve the remainder of the message.

10/89

getpld (2) getpld(2)

NAME
getpid, getpgl:P, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgl:P ()

int getppid ()

DESCRIPTION
getpid returns the process ID of the calling process.

getpgz;p returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

10/89 Page 1

getuld(2) getuld (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short

unsigned short

short

getuid ()

geteuid ()

getgid () unsigned

unsigned short getegid ()

DESCRIPTION
getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

10/89 Page 1

loctl(2) loctl(2)

NAME
ioctl - control device

SYNOPSIS
int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

10/89

ioctl performs a variety of control functions on devices and STREAMS. For
non-STREAMS files, the functions performed by this call are device-specific control
functions. The arguments request and arg are passed to the file designated by
fildes and are interpreted by the device driver. This control is infrequently used
on non-STREAMS devices, with the basic input/output functions performed
through the read(2) and write(2) system calls.

For STREAMS files, specific functions are performed by the ioctl call as described
in streamio(7).

fildes is an open file descriptor that refers to a device. request selects the control
function to be performed and will depend on the device being addressed. arg
represents additional information that is needed by this specific device to perform
the requested function. The data type of arg depends upon the particular control
request, but it is either an integer or a pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are pro­
vided by more than one device driver, for example, the general terminal interface
[see tennio(7)].

ioctl will fail for any type of file if one or more of the following are true:

[EACCES] Future error.

[EBADF] fildes is not a valid open file descriptor.

[ENOITY] fildes is not associated with a device driver that accepts control
functions.

[EINTR] A signal was caught during the ioctl system call.

ioctl will also fail if the device driver detects an error. In this case, the error is
passed through ioctl without change to the caller. A particular driver might not
have all of the following error cases. Other requests to device drivers will fail if
one or more of the following are true:

[EFAULT] request requires a data transfer to or from a buffer pointed to by
arg, but some part of the buffer is outside the process's allocated
space.

[EINVAL]

[EIO]

[ENXIO]

request or arg is not valid for this device.

Some physical I/O error has occurred.

The request and arg are valid for this device driver, but the ser­
vice requested can not be performed on this particular subdevice.

Page 1

ioctl(2) ioctl (2)

[ENOLINK] fildes is on a remote machine and the link to that machine is no
longer active.

STREAMS errors are described in streamio(7).

SEE ALSO
streamio(7), termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS

Page 2

Upon successful completion, the value returned depends upon the device control
function, but must be a non-negative integer. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

10/89

kill (2) kill (2)

NAME
kill- send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
kill sends a signal to a process or a group of processes. The process or group
of processes to which the signal is to be sent is specified by pid. The signal that
is to be sent is specified by sig and is either one from the list given in signal(2),
or O. If sig is 0 (the null signa}), error checking is performed but no signal is
actually sent. This can be used to check the validity of pid.
The real or effective user ID of the sending process must match the effective or
saved effective ID [from exec(2)] user ID of the receiving process, unless the effec­
tive user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes
[see intro(2)] and will be referred to below as procO and proc1, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc1 whose pro­
cess group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be
sent to all processes excluding procO and proc1 whose real user ID is equal to the
effective user 10 of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent to
all processes excluding procO and proc1.
If pid is negative but not -1, sig will be sent to all processes whose process group
ID is equal to the absolute value of pid.
kill will fail and no signal will be sent if one or more of the following are true:

[EINV AL] sig is not a valid signal number.

[EINV AL] sig is SIGKILL and pid is 1 (procl).

[ESRCH]

[EPERM]

SEE ALSO

No process can be found corresponding to that specified by pid.
The user 10 of the sending process is not super-user, and its real
or effective user ID does not match the real or effective user ID of
the receiving process.

getpid(2), setpgrp(2), signal(2), sigset(2).
kill(1) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89 Page 1

IInk(2) IInk(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION
path1 points to a path name naming an existing file. path2 points to a path name
naming the new directory entry to be created. link creates a new link (directory
entry) for the existing file.

link will fail and no link will be created if one or more of the following are true:

[ENOTDIR) A component of either path prefix is not a directory.

[ENOENT)

[EACCFS)

[ENOENT)

[EEXIST)

[EPERM)

[EXDEV)

[ENOENT)

[EACCFS)

[EROFS)

[EFAULT)

[EMLINK)

[EINTR)

[ENOLINK)

[EMULTIHOP)

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by path1 does not exist.

The link named by pathl exists.

The file named by path1 is a directory and the effective user ID is
not super-user.

The link named by path2 and the file named by path1 are on dif­
ferent logical devices (file systems).

path2 points to a null path name.

The requested link requires writing in a directory with a mode
that denies write permission.

The requested link requires writing in a directory on a read-only
file system.

path points outside the allocated address space of the process.

The maximum number of links to a file would be exceeded.

A signal was caught during the link system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

SEE ALSO
unlink(2).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

Iseek(2) Iseek(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
fildes is a file descriptor returned from a creat, c.pen, dup, or fentl system call.
lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is I, the pointer is set to its current location plus offset.
If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes
from the beginning of the file, is returned. Note that if fildes is a remote file
descriptor and offset is negative, lseek will return the file pointer even if it is
negative.

lseek will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EBADF] fildes is not an open file descriptor.

[ESPIPE] fildes is associated with a pipe or fifo.

[EINV AL and SIGSYS signal]
Whence is not 0, I, or 2.

[EINV AL] fildes is not a remote file descriptor, and the resulting file pointer
would be negative.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcnt1(2), c.pen(2).

DIAGNOSTICS

10/89

Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and ermo is set to indicate
the error.

Page 1

mkdlr(2) mkdlr(2)

NAME
mkdir - make a directory

SYNOPSIS
int mkdir (path, mode)
char *path;
int mode;

DESCRIPTION
The routine mkdir creates a new directory with the name path. The mode of the
new directory is initialized from the mode. The protection part of the mode argu­
ment is modified by the process's mode mask [see umask(2)].

The directory's owner 10 is set to the process's effective user 10. The directory's
group ID is set to the process's effective group ID. The newly created directory is
empty with the possible exception of entries for "." and " .. ". mkdir will fail and
no directory will be created if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[ENOLINK]

[EMULTIHOP]

[EACCES]

[ENOENT]

[EEXIST]

[EROFS]

[EFAULT]

[EMLINK]

A component of the path prefix does not exist.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

Either a component of the path prefix denies search permission
or write permission is denied on the parent directory of the
directory to be created.

The path is longer than the maximum allowed.

The named file already exists.

The path prefix resides on a read-only file system.

path points outside the allocated address space of the process.

The maximum number of links to the parent directory would be
exceeded.

[EIO]

DIAGNOSTICS

An I/O error has occurred while accessing the file system.

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and ermo is set to indicate the error.

Page 1

mknod(2) mknod(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION

10/89

mknod creates a new file named by the path name pOinted to by path. The mode
of the new file is initialized from mode. Where the value of mode is interpreted as
follows:

0170000 file type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
00020#0 set group ID on execution if # is 7, 5, 3, or 1

enable mandatory file/record locking if # is 6, 4, 2, or 0
0001000 save text image after execution
0000777 access permissions; constructed from the following:

0000400 read by owner
0000200 write by owner
OOOOlDO execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group
ID of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used.
The low-order 9 bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared [see
umask(2)]. If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/O device. If mode
does not indicate a block special or character special device, dev is ignored.

mknod may be invoked only by the super-user for file types other than FIFO spe­
cial.

mknod will fail and the new file will not be created if one or more of the follow­
ing are true:

[EPERM]

[ENOTDIR]

The effective user ID of the process is not super-user.

A component of the path prefix is not a directory.

Page 1

mknod(2) mknod (2)

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[ENOSPC)

[EINTR]

[ENOLINK]

[EMUL TIHOP]

A component of the path prefix does not exist.

The directory in which the file is to be created is located on a
read-only file system.

The named file exists.

path points outside the allocated address space of the process.

No space is available.

A signal was caught during the mknod system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

SEE ALSO
chm:x1(2), exec(2), umask(2), fs(4).
mkdir(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

If mknod is used to create a device in a remote directory (Remote File Sharing),
the major and minor device numbers are interpreted by the server.

10/89

mount(2) mount(2)

NAME
JOOunt - mount a file system

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/mount.h>

int mount (spec, dir, mflag, fstyp, dataptr, datalen)
char * spec, *dir;
int mflag, fstyp;
char *dataptr;
int datal en;

DESCRIPTION
JOOunt requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names. fstyp is the file system type number. The sysfs(2) sys­
tem call can be used to determine the file system type number. Note that if both
the MS_DATA and MS_FSS flag bits of mflag are off, the file system type will
default to the root file system type. Only if either flag is on will fstyp be used
to indicate the file system type.

If the MS_DATA flag is set in mflag the system expects the dataptr and data len
arguments to be present. Together they describe a block of file-system specific
data at address dataptr of length datalen. This is interpreted by file-system specific
code within the operating system and its format depends upon the file system
type. A particular file system type may not require this data, in which case
dataptr and datalen should both be zero. Note that MS _ FSS is obsolete and will be
ignored if MS_DATA is also set, but if MS_FSS is set and MS_DATA is not,
dataptr and datalen are both assumed to be zero.

Upon successful completion, references to the file dir will refer to the root direc­
tory on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file
system; if 1, writing is forbidden, otherwise writing is permitted according to
individual file accessibility.

JOOunt may be invoked only by the super-user. It is intended for use only by the
JOOunt(1M) utility.

JOOunt will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a directory.

[EREMOTE] spec is remote and cannot be mounted.

[ENOLINK] path points to a remote machine and the link to that machine is
no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

1~9 ~~1

mount(2) mount(2)

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBU5y]

[EBU5y]

[EBU5y]

[EROFS]

[ENOSPC]

[EINVAL]

spec is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

spec or dir points outside the allocated address space of the pro­
cess.

dir is currently mounted on, is someone's current working direc­
tory, or is otherwise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

spec is write protected and mflag requests write permission.

The file system state in the super-block is not FsOKA Y and mflag
requests write permission.

The super block has an invalid magic number or the fstyp is
invalid or mflag is not valid.

SEE ALSO
sysfs(2), u:roount(2).
mount(1M), fs(4) in the System Administrator's Reference Manual.

DIAGNOSTICS

Page 2

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

10/89

msgctl(2) msgctl(2)

NAME
msgctl - message control operations

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/msg.h>

int msgctl (msqid, crOO, buf)
int msqid, cm:1i
struct msqid _ ds *buf i

DESCRIPTION

10/89

msgctl provides a variety of message control operations as specified by cmd.
The following cmds are available:

!PC SET

Place the current value of each member of the data structure
associated with msqid into the structure pointed to by buf. The
contents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure
associated with msqid to the corresponding value found in the
structure pointed to by buf:

msgyerm. uid
msgyerm. gid
msgyerm.m:xie /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective
user ID equal to either that of super user, or to the value of
msgyerm. cuid or msgyerm. uid in the data structure associ­
ated with msqid. Only super user can raise the value of
msg_ qbytes.

Remove the message queue identifier specified by msqid from the
system and destroy the message queue and data structure associ­
ated with it. This cmd can only be executed by a process that has
an effective user ID equal to either that of super user, or to the
value of msgyerm. cuid or msgyerm. uid in the data structure
associated with msqid.

msgctl will fail if one or more of the following are true:

[EINV AL] msqid is not a valid message queue identifier.

[EINVAL]

[EACCES]

[EPERM]

cmd is not a valid command.

cmd is equal to !PC_STAT and {READ} operation permission is
denied to the calling process [see intro(2)].

cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the
calling process is not equal to that of super user, or to the value
of msgJ>E!rm. cuid or msgyerm. uid in the data structure associ­
ated with msqid.

Page 1

msgctl(2}

[EPERM]

[EFAULT]

SEE ALSO

msgctl(2}

emd is equal to IPC_SET, an attempt is being made to increase to
the value of ms9_qbytes, and the effective user ID of the calling
process is not equal to that of super user.

but points to an illegal address.

intro(2), msgget(2), msgop(2).

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89

msgget(2) msgget(2)

NAME
msgget - get message queue

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/msg.h>

int msgget (key, msgflg)
key t key;
int - msgflg;

DESCRIPTION
msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure [see
intro(2)] are created for key if one of the following are true:

key is equal to IPC]RIVATB.

key does not already have a message queue identifier associated with it,
and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

msg...,.Perm. cuid, msg...,.Perm. uid, msg...,.Perm. cgid, and msg...,.Perm. gid are
set equal to the effective user lO and effective group lO, respectively, of
the calling process.

The low-order 9 bits of msg...,.Perm. mode are set equal to the low-order 9
bits of msgflg.

msg qnum, msg lspid., msg lrpid, msg stime, and msg_rtime are set
equal to O. - - -

msg_ctime is set equal to the current time.

msg_ qbytes is set equal to the system limit.

msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation permis­
sion [see intro(2)] as specified by the low-order 9 bits of msgflg
would not be granted.

[ENOENT]

[ENOSPC]

[EEXIST]

A message queue identifier does not exist for key and (msgflg &
!PC _ CREAT) is "false".

A message queue identifier is to be created but the system­
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

A message queue identifier exists for key but «msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL}} is "true".

SEE ALSO
intro(2), msgctl(2), msgop(2).

10/89 Page 1

msgget(2) msgget(2)

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

10189

msgop(2) msgop(2)

NAME
JIlSgop - message operations

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/JIlSg.h>

int msgsnd (msqid, JIlSgp, JIlSgsz, msgflg)
int msqid;
struct JIlSgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long JIlSgtyp;
int msgflg;

DESCRIPTION

10/89

JIlSgsnd is used to send a message to the queue associated with the message
queue identifier specified by msqid. {WRITE} msgp points to a structure containing
the message. This structure is composed of the following members:

long mtype; /* message type */
char mtext [1 ; / * message text * /

mtype is a positive integer that can be used by the receiving process for message
selection (see msgrcv below). mtext is any text of length msgsz bytes. msgsz can
range from 0 to a system-imposed maximum.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_ qbytes [see
intro(2)].

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWArT) is "true", the message will not be sent and the
calling process will return immediately.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend execu­
tion until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

msqid is removed from the system [see JIlSgctl(2)]. When this
occurs, errna is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes exe­
cution in the manner prescribed in signal(2).

Page 1

msgop(2) msgop(2)

Page 2

msgsnd will fail and no message will be sent if one or more of the following are
true:

msqid is not a valid message queue identifier. [EINVALJ

[EACCESJ Operation permission is denied to the calling process [see
intro(2}].

mtype is less than 1. [EINVALJ

[EAGAINJ The message cannot be sent for one of the reasons cited above
and (msgflg & IPC_NOWAIT) is "true".

[EINVALJ

[EFAULTJ

msgsz is less than zero or greater than the system-imposed limit.

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2)].

msg_ qnum is incremented by 1.

msg_lspid is set equal to the process ID of the calling process.

msg_ stine is set equal to the current time.

msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by msgp.
{READ} This structure is composed of the following members:

long mtype; /* message type */
char mtext []; /* message text */

mtype is the received message's type as specified by the sending process. mtext is
the text of the message. msgsz specifies the size in bytes of mtext. The received
message is truncated to msgsz bytes if it is larger than msgsz and (msgflg &
MSG_N~ is "true". The truncated part of the message is lost and no indica­
tion of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on
the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process will return immedi­
ately with a return value of -1 and errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend execu­
tion until one of the following occurs:

A message of the desired type is placed on the queue.

10/89

msgop(2) msgop(2)

msqid is removed from the system. When this occurs, ermo is set
equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes
execution in the manner prescribed in signal(2).

msgrcv will fail and no message will be received if one or more of the following
are true:

[EINVAL]

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

[EFAULT]

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

msgsz is less than O.

mtext is greater than msgsz and (msgfig & MSG_NOERROR) is "false".

The queue does not contain a message of the desired type and
(msgtyp & IPC_NOWAIT) is "true".

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro(2)].

msg_ qnum is decremented by 1.

msg_lrpid is set equal to the process ID of the calling process.

msg_ rtime is set equal to the current time.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

DIAGNOSTICS

10/89

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned
to the calling process and ermo is set to EINTR. If they return due to removal of
msqid from the system, a value of -1 is returned and ermo is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of O.

msgrcv returns a value equal to the number of bytes actually placed into
mtext.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

Page 3

nlce(2) nlce(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
nice adds the value of incr to the nice value of the calling process. A process's
nicevalue is a non-negative number for which a more positive value results in
lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the
system. ([he default nice value is 20.) Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

[EPERM] nice will fail and not change the nice value if incr is negative or
greater than 39 and the effective user ID of the calling process is
not super-user.

SEE ALSO
exec(2).
nice(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, nice returns the new nice value minus 20. Other­
wise, a value of -1 is returned and errna is set to indicate the error.

Page 1

open(2) open(2)

NAME
open - open for reading or writing

SYNOPSIS
tinclude <fcntl.h>
int open (path, oflaq[,mode])
char *path;
int oflaq, mode;

DESCRIPTION

10/89

path points to a path name naming a file. open opens a file descriptor for the
named file and sets the file status flags according to the value of oflag. For non­
STREAMS [see intro(2)] files, oflag values are constructed by or-ing flags from the
following list (only one of the first three flags below may be used):

O_RDONLY

O_WRONLY

O_RDIiR

O_NDELAY

Open for reading only.

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes [see read(2) and
write(2)].

When opening a FIFO with 0_ RDONL Y or 0_ WRONL Y set:

If 0 NDELA Y is set:

An open for reading-only will return without delay. An
open for writing-only will return an error if no process
currently has the file open for reading.

If 0_ NDELA Y is clear:

An open for reading-only will block until a process opens
the file for writing. An open for writing-only will block
until a process opens the file for reading.

When opening a file associated with a communication line:

If 0 NDELA Y is set:

The open will return without waiting for carrier.

If 0 _NDELA Y is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior to each
write. -

When opening a regular file, this flag affects subsequent writes. If
set, each write(2) will wait for both the file data and file status to
be physically updated.

If the file exists, this flag has no effect. Otherwise, the owner ID
of the file is set to the effective user ID of the process, the group
ID of the file is set to the effective group ID of the process, and the
low-order 12 bits of the file mode are set to the value of mode
modified as follows [see creat(2)]:

Page 1

open (2) open(2)

Page 2

All bits set in the file mode creation mask of the process
are cleared [see unlask(2)].

The "save text image after execution bit" of the mode is
cleared [see chmod(2)].

O_'lRIJNC If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail ifthe file exists.

When opening a STREAMS file, oflag may be constructed from 0_ NDELA Y or-ed
with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not appli­
cable to STREAMS devices and have no effect on them. The value of 0 NDELA Y
affects the operation of STREAMS drivers and certain system calls [see- read(2),
getmsq(2), putmsq(2) and write(2)]. For drivers, the implementation of
o _NDELA Y is device-specific. Each STREAMS device driver may treat this option
differently.

Certain flag values can be set following open as described in fcntl(2).

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is set to remain open across exec system calls [see
fcntl(2)].

The named file is opened unless one or more of the following are true:

[EACCE'S] A component of the path prefix denies search permission.

[EACCE'S] oflag permission is denied for the named file.

[EAGAIN]

[EEXIST]

[EFAULT]

[EINTR]

[EIO]

[EISDIR]

[EMFILE]

[EMULTIHOP]

[ENFILE]

[ENOENT]

[ENOLINK]

[ENOMEM]

The file exists, mandatory file/record locking is set, and there are
outstanding record locks on the file [see chmod (2)].

0_ CREA T and 0_ EXCL are set, and the named file exists.

path points outside the allocated address space of the process.

A signal was caught during the open system call.

A hangup or error occurred during a STREAMS open.

The named file is a directory and oflag is write or read/write.

NOFILES file descriptors are currently open.

Components of path require hopping to multiple remote
machines. '

The system file table is full.

0_ CREA T is not set and the named file does not exist.

path points to a remote machine, and the link to that machine is
no longer active.

The system is unable to allocate a send descriptor.

10/89

open(2) open (2)

[ENOSPC]

[ENOSR]

[ENOTDIR]

[ENXIO]

[ENXIO]

[ENXIO]

[EROFS]

[ETXTBSy]

o CREAT and 0 EXCL are set, and the file system is out of
in odes. -

Unable to allocate a stream.

A component of the path prefix is not a directory.

The named file is a character special or block special file, and the
device associated with this special file does not exist.

o NDELAY is set, the named file is a FIFO, 0 WRONLY is set, and
no process has the file open for reading. -

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and oflag is
write or read/write.

The file is a pure procedure (shared text) file that is being exe­
cuted and oflag is write or read/write.

SEE ALSO
chIood(2), close(2), creat(2), duP(2), fcntl(2), intro(2), lseek(2), read(2),
getmsg(2), putmsg(2), umask(2), write(2).

DIAGNOSTICS

10/89

Upon successful completion, the file descriptor is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

Page 3

pause (2) pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
pause suspends the calling process until it receives a signal. The signal must be
one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function [see signal(2)], the calling process resumes execution
from the point of suspension; with a return value of -1 from pause and errno set
to EINTR.

SEE ALSO
alarn(2), kill(2), signal(2), sigpause(2), wait(2).

10/89 Page 1

plpe(2) plpe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes [2] ;

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[O] and fi'des[I]. Fildes[O] is opened for reading and fildes[1] is opened for
writing.

Up to 5120 bytes of data are buffered by the pipe before the writing process is
blocked. A read only file descriptor fildes [0] accesses the data written to fildes [1]
on a first-in-first-out (FIFO) basis.

pipe will fail if:

[EMFILE]

[ENFILE]

SEE ALSO

NOFILES file descriptors are currently open.

The system file table is full.

read(2), write(2).
sh(1) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89 Page 1

plock(2) plock(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
tinclude <sys/lock.h>

int plock (op)
int cp;

DESCRIPTION
plock allows the calling process to lock its text segment (text lock), its data seg­
ment (data lock), or both its text and data segments (process lock) into memory.
Locked segments are immune to all routine swapping. plock also allows these
segments to be unlocked. The effective user ID of the calling process must be
super-user to use this call. op specifies the following:

PROCLOCK -

TXTLOCK -

DATLOCK -

UNLOCK -

lock text and data segments into memory (process lock)

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

plock will fail and not perform the requested operation if one or more of the fol­
lowing are true:

[EPERM] The effective user ID of the calling process is not super-user.

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EAGAIN]

op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

op is equal to UNLOCK and no type of lock exists on the calling
process.

Not enough memory.

SEE ALSO
exec(2), exit(2), fork(2).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned to the calling process. Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

Page 1

poll (2) poll (2)

NAME
poll- STREAMS input/output multiplexing

SYNOPSIS
tinclude <stropts.h>
tinclude <poll.h>

int poll (fds, nfds, timeout)
struct pollfd fds[];
unsigned long nfds;
int timeout;

DESCRIPTION
poll provides users with a mechanism for multiplexing input/output over a set
of file descriptors that reference open streams [see intro(2)]. poll identifies those
streams on which a user can send or receive messages, or on which certain events
have occurred. A user can receive messages using read(2) or getmsg(2) and can
send messages using write(2) and putmsg(2). Certain ioctl(2) calls, such as
I_RECVFD and I_SENDFD [see streamio(7)], can also be used to receive and send
messages.

fds specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one element for each open file
descriptor of interest. The array's elements are pollfd structures which contain the
following members:

int fd; /* file descriptor */
short events; / * requested events * /
short revents; /* returned events */

where fd specifies an open file descriptor and events and revents are bitmasks con­
structed by or-ing any combination of the following event flags:

POL LIN A non-priority or file descriptor passing message (see I_RECVFD) is
present on the stream head read queue. This flag is set even if the
message is of zero length. In revents, this flag is mutually exclusive
with POLLPRI.

POLLPRI A priority message is present on the stream head read queue. This
flag is set even if the message is of zero length. In revents, this flag
is mutually exclusive with POLLIN.

POLLOUT The first downstream write queue in the stream is not full. Priority
control messages can be sent (see putmsg) at any time.

POLLERR An error message has arrived at the stream head. This flag is only
valid in the revents bitmask; it is not used in the events field.

POLLHUP A hangup has occurred on the stream. This event and POLLOUT are
mutually exclusive; a stream can never be writable if a hangup has
occurred. However, this event and POLLIN or POLLPRI are not
mutually exclusive. This flag is only valid in the revents bitmask; it
is not used in the events field.

10/89 Page 1

poll (2) poll (2)

POLlNV AL The specified fd value does not belong to an open stream. This flag
is only valid in the revents field; it is not used in the events field.

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to be
examined is specified by nfds. If nfds exceeds NOFILES, the system limit of open
files [see ulimit(2)I, poll will fail.

If the value fd is less than zero, events is ignored and revents is set to 0 in that
entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd structure.
Bits are set in the revents bitmask to indicate which of the requested events are
true. If none are true, none of the specified bits is set in revents when the poll
call returns. The event flags POLLHUP, POLLERR and POLlNV AL are always set in
revents if the conditions they indicate are true; this occurs even though these flags
were not present in events.

If none of the defmed events have occurred on any selected file descriptor, poll
waits at least timeout msec for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is -1, poll
blocks until a requested event occurs or until the call is interrupted. poll is not
affected by the O_NDELAY flag.

poll fails if one or more of the following are true:

[EACAIN] Allocation of internal data structures failed but request should be
attempted again.

[EFAULT]

[EINTR]

[EINVAL]

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

The argument nfds is less than zero, or nfds is greater than NOFILES.

SEE ALSO
intro(2), read(2), getmsg(2), putmsg(2), write(2).
streamio(7) in the System Administrator's Reference Manual.
STREAMS Primer.
STREAMS Programmer's Guide.

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (Le., file
descriptors for which the revents field is non-zero). A value of 0 indicates that the
call timed out and no file descriptors have been selected. Upon failure, a value of
-1 is returned and ermo is set to indicate the error.

10/89

profll (2) profil (2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
buff points to an area of core whose length (in bytes) is given by bufsiz. After this
call, the user's program counter (pc) is examined each clock tick. Then the value
of offset is subtracted from it, and the remainder multiplied by scale. If the result­
ing number corresponds to an entry inside buff, that entry is incremented. An
entry is defined as a series of bytes with length sizeof(short).

The scale is interpreted as an unsigned, fixed-point fraction with binary point at
the left: Oxffffffff (hex) gives a 1-1 mapping of pc's to words in buff; Ox7fffffff
(hex) maps each pair of instruction words together. 02(octal) maps all instruc­
tions onto the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giv­
ing a bufsiz of O. Profiling is turned off when an exec is executed, but remains
on in child and parent both after a fork. Profiling will be turned off if an update
in buff would cause a memory fault.

SEE ALSO
prof(1), times(2).

10/89 Page 1

ptrace(2) ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data)
int request, pid, addr, data;

DESCRIPTION

10/89

ptrace provides a means by which a parent process may control the execution of
a child process. Its primary use is for the implementation of breakpoint debug­
ging [see sdb(1)]. The child process behaves normally until it encounters a signal
[see signal(2) for the list], at which time it enters a stopped state and its parent
is notified via wait (2). When the child is in the stopped state, its parent can
examine and modify its "core image" using ptrace. Also, the parent can cause
the child either to terminate or continue, with the possibility of ignoring the sig­
nal that caused it to stop.

The request argument determines the precise action to be taken by ptrace and is
one of the following:

o This request must be issued by the child process if it is to be traced
by its parent. It turns on the child's trace flag that stipulates that the
child should be left in a stopped state upon receipt of a signal rather
than the state specified by June [see signal(2)]. The pid, addr, and
data arguments are ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process. For each,
pid is the process 10 of the child. The child must be in a stopped state before
these requests are made.

1, 2
With these requests, the word at location addr in the address space
of the child is returned to the parent process. If I and D space are
separated, request 1 returns a word from I space, and request 2
returns a word from D space. If I and D space are not separated,
either request 1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of -1 is returned
to the parent process and the parent's ermo is set to ErO.

3 With this request, the word at location addr in the child's USER area
in the system's address space (see <sys/user.h» is returned to the
parent process. The data argument is ignored. This request will fail
if addr is not the start address of a word or is outside the USER area,
in which case a value of -1 is returned to the parent process and the
parent's errno is set to ErO.

4, 5
With these requests, the value given by the data argument is written
into the address space of the child at location addr. If I and D space
are separated, request 4 writes a word into I space, and request 5
writes a word into D space. If I and D space are not separated,

Page 1

ptrace(2) ptrace(2)

either request 4 or request 5 may be used with equal results. Upon
successful completion, the value written into the address space of the
child is returned to the parent. These two requests will fail if addr is
not the start address of a word. Upon failure a value of -1 is
returned to the parent process and the parent's ermo is set to ElO.

6 With this request, a few entries in the child's USER area can be writ­
ten. data gives the value that is to be written and addr is the location
of the entry. The few entries that can be written are:

the general registers

the condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the data argu­
ment is 0, all pending signals including the one that caused the child
to stop are canceled before it resumes execution. If the data argu­
ment is a valid signal number, the child resumes execution as if it
had incurred that Signal, and any other pending signals are canceled.
The addr argument must be equal to 1 for this request. Upon suc­
cessful completion, the value of data is returned to the parent. This
request will fail if data is not 0 or a valid signal number, in which
case a value of -1 is returned to the parent process and the parent's
ermo is set to ElO.

S This request causes the child to terminate with the same conse­
quences as exit(2).

9 This request sets the trace bit in the Processor Status Word of the
child and then executes the same steps as listed above for request 7.
The trace bit causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exec(2) calls. If a traced process calls exec, it will stop before executing the first
instruction of the new image showing signal SIGTRAP. ptrace will in general fail
if one or more of the following are true:

[ElO] request is an illegal number.

[ESRCH) pid identifies a child that does not exist or has not executed a
ptrace with request o.

SEE ALSO
sdb(1), exec(2), signal(2), wait(2).

Page 2 10/89

putmsg(2) putmsg(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
tinclude <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

DESCRIPTION

10/89

putmsg creates a message [see intro(2») from user specified buffer(s) and sends
the message to a STREAMS file. The message may contain either a data part, a
control part or both. The data and control parts to be sent are distinguished by
placement in separate buffers, as described below. The semantics of each part is
defined by the STREAMS module that receives the message.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure which contains the following members:

int maxlen; I'" not used .. /
int len; I'" length of data .. /
char "buf; I'" ptr to buffer .. /

ctiptr points to the structure describing the control part, if any, to be included in
the message. The buf field in the strbuf structure points to the buffer where the
control information resides, and the len field indicates the number of bytes to be
sent. The maxlen field is not used in putmsg [see getmsg(2»). In a similar
manner, dataptr specifies the data, if any, to be included in the message. flags
may be set to the values 0 or RS_HIPRI and is used as described below.

To send the data part of a message, dataptr must be non-NULL and the len field of
dataptr must have a value of 0 or greater. To send the control part of a message,
the corresponding values must be set for ctlptr. No data (control) part will be
sent if either dataptr (ctlptr) is NULL or the len field of dataptr (ctlptr) is set to -l.

If a control part is specified, and flags is set to RS _ HIPRI, a priority message is sent.
If flags is set to 0, a non-priority message is sent. If no control part is specified,
and flags is set to RS_HIPRI, putmsg fails and sets errno to EINVAL. If no control
part and no data part are specified, and flags is set to 0, no message is sent, and 0
is returned.

For non-priority messages, putmsg will block if the stream write queue is full due
to internal flow control conditions. For priority messages, putmsg does not block
on this condition. For non-priority messages, putmsg does not block when the
write queue is full and 0_ NDELA Y is set. Instead, it fails and sets errno to
EAGAIN.

putmsg also blocks, unless prevented by lack of internal resources, waiting for the
availability of message blocks in the stream, regardless of priority or whether
0_ NDELA Y has been specified. No partial message is sent.

Page 1

putmsg (2) putmsg(2}

putmsg fails if one or more of the following are true:

[EACAIN] Anon-priority message was specified, the 0 _NDELA Y flag is set
and the stream write queue is full due to internal flow control con­
ditions.

[EBADF] fd is not a valid file descriptor open for writing.

[EFAULT]

[EINTR]

[EINVAL]

[EINVAL]

(ENOSR]

(ENOSTR]

[ENXIO]

[ERANCE]

dZptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or flags is set to RS _ HIPRI
and no control part was supplied.

The stream referenced by fd is linked below a multiplexor.

Buffers could not be allocated for the message that was to be
created due to insufficient STREAMS memory resources.

A stream is not associated with fd.
A hangup condition was generated downstream for the specified
stream.
The size of the data part of the message does not fall within the
range specified by the maximum and minimum packet sizes of the
topmost stream module. This value is also returned if the control
part of the message is larger than the maximum configured size of
the control part of a message, or if the data part of a message is
larger than the maximum configured size of the data part of a mes­
sage.

A putmsg also fails if a STREAMS error message had been processed by the stream
head before the call to putmsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
intro(2), read(2), getmsg(2), poll(2), write(2).
STREAMS Primer.
STREAMS Programmer's Guide.

DIAGNOSTICS

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

10/89

read (2) read (2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

10/89

fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2), or
pipe(2) system call.

read attempts to read nbyte bytes from the file associated with fildes into the
buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyte if the file is associated
with a communication line [see ioctl(2) and termio(7)], or if the number of
bytes left in the file is less than nbyte bytes. A value of 0 is returned when an
end-of-file has been reached.

A read from a STREAMS [see intro(2)] file can operate in three different modes:
"byte-stream" mode, "message-nondiscard" mode, and "message-discard" mode.
The default is byte-stream mode. This can be changed using the tSRDOPT ioctl
request [see streamio(7)], and can be tested with the I_GRDOPT ioctl. In byte­
stream mode, read will retrieve data from the stream until it has retrieved nbyte
bytes, or until there is no more data to be retrieved. Byte-stream mode ignores
message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has read nbyte
bytes, or until it reaches a message boundary. If the read does not retrieve all
the data in a message, the remaining data are replaced on the stream, and can be
retrieved by the next read or getmsg(2) call. Message-discard mode also
retrieves data until it has retrieved nbyte bytes, or it reaches a message boundary.
However, unread data remaining in a message after the read returns are dis­
carded, and are not available for a subsequent read or getmsg.

When attempting to read from a regular file with mandatory file/record locking
set [see chm:x1(2)], and there is a blocking (Le. owned by another process) write
lock on the segment of the file to be read:

If 0_ NDELA Y is set, the read will return a -1 and set errno to EAGAIN.

If O_NDELAY is clear, the read will sleep until the blocking record lock is
removed.

Page 1

read (2) read (2)

Page 2

When attempting to read from an empty pipe (or FIFO):

If 0_ NDELA Y is set, the read will return a O.

If 0 NDELA Y is clear, the read will block until data is written to the file or
the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently
available:

If 0_ NDELA Y is set, the read will return a O.

If 0_ NDELA Y is clear, the read will block until data becomes available.

When attempting to read a file associated with a stream that has no data currently
available:

If 0_ NDELA Y is set, the read will return a -1 and set errno to EAGAIN.

If 0 _NDELA Y is clear, the read will block until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is determined
by the current read mode setting. In byte-stream mode, read accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte
message block is encountered. read then returns the number of bytes read, and
places the zero-byte message back on the stream to be retrieved by the next read
or getmsg. In the two other modes, a zero-byte message returns a value of 0 and
the message is removed from the stream. When a zero-byte message is read as
the first message on a stream, a value of 0 is returned regardless of the read
mode.

A read from a STREAMS file can only process data messages. It cannot process
any type of protocol message and will fail if a protocol message is encountered at
the stream head.

read will fail if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, 0 _NDELA Y was set, and
there was a blocking record lock.

[EAGAIN]

[EAGAIN]

[EBADF]

[EBADMSG]

[EDEADLK]

[EFAULT]

[EINTR]

[EINVAL]

Total amount of system memory available when reading via raw
10 is temporarily insufficient.

No message waiting to be read on a stream and 0 _NDELA Y flag
set.

fildes is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data message.

The read was going to go to sleep and cause a deadlock situation
to occur.

buf points outside the allocated address space.

A signal was caught during the read system call.

Attempted to read from a stream linked to a multiplexor.

10/89

read (2) read (2)

[ENOLCK) The system record lock table was full, so the read could not go
to sleep until the blocking record lock was removed.

[ENOLINK) fildes is on a remote machine and the link to that machine is no
longer active.

A read from a STREAMS file will also fail if an error message is received at the
stream head. In this case, ermo is set to the value returned in the error message. If
a hangup occurs on the stream being read, read will continue to operate normally
until the stream head read queue is empty. Thereafter, it will return O.

SEE ALSO
creat(2), dup(2), fcnt1(2), ioctl(2),intro(2), open(2), pipe(2), getmsg(2).
streamio(7), termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and ermo is set to
indk3.te the error.

Page 3

rmdlr (2) rmdlr(2)

NAME
rndir - remove a directory

SYNOPSIS
int rndir (path)
char *path;

DESCRIPTION
rndir removes the directory named by the path name pointed to by path. The
directory must not have any entries other than "." and " .. ".

The named directory is removed unless one or more of the following are true:

[EINV AL] The current directory may not be removed.

[EINVAL] The "." entry of a directory may not be removed.

[EEXIST]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[EIO]

[ENOLINK]

[EMUL TIHOP]

The directory contains entries other than those for "." and " .. ".

A component of the path prefix is not a directory.

The named directory does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the direc­
tory to be removed.

The parent directory has the sticky bit set and
the parent directory is not owned by the user and
the directory is not owned by the user and
the directory is not writable by the user and
the user is not superuser

The directory to be removed is the mount point for a mounted
file system.

The directory entry to be removed is part of a read-only file sys­
tem.

path points outside the process's allocated address space.

An I/O error occurred while accessing the file system.

path points to a remote machine, and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
mkdir(2).
rndir(l), rm(1), and mkdir(1) in the User's Reference Manual.

10/89 Page 1

semctl(2) semctl(2)

NAME
semctl - semaphore control operations

SYNOPSIS
'include <sys/types.h>
'include <sys/ipc.h>
'include <sys/sem.h>

int semctl (semid, SeJmum, CIId., arq)
int semid, cmd;
int semnum;
union SellllD (

int val;
struct semid _ ds *buf;
ushort *array;

arq;

DESCRIPTION
semctl provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid
and semnum:

GBTVAL

SBTVAL

GBTPm

GB'l'NCNT

GBTZCNT

Return the value of semval [see intro(2»). {READ}

Set the value of semval to arg.val. {ALTER} When this cmd is
successfully executed, the semadj value corresponding to the
specified semaphore in all processes is cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of sema­
phores.

GBTALL Placesemvals into array pointed to byargA"ay. {READ}

SBTALL Set semvals according to the array pointed to by argA"ay.
{ALTER} When this cmd is successfully executed the semadj
values corresponding to each specified semaphore in all
processes are cleared.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf.
The contents of this structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to byarg.buf:

10/89 Page 1

semetl (2)

SEE ALSO

semetl (2)

sern J>E!rm. uid
sern J>E!rm. gid
sernJ>E!rm.m:xie /* only low 9 bits */

This cmd can only be executed by a process that has an effec­
tive user ID equal to either that of super-user, or to the value
of sern J>E!rm. cuid or sern J>E!rm. uid in the data structure
associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a pro­
cess that has an effective user ID equal to either that of super­
user, or to the value of sernJ>E!rm.cuid or sernJ>E!rm.uid in
the data structure associated with semid.

sem::tl fails if one or more of the following are true:

[EINV AL] semid is not a valid semaphore identifier.

[EINVAL]

[EINVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULn

semnum is less than zero or greater than sern _ nsems.

emd is not a valid command.

Operation permission is denied to the calling process [see
intro(2»).

emd is SETVAL or SETALL and the value to which semval is
to be set is greater than the system imposed maximum.

emd is equal to IPC_RMID or !PC_SET and the effective user
ID of the calling process is not equal to that of super-user,
or to the value of sern J>E!rm. cuid or sern J>E!rm. uid in
the data structure associated with semid.

arg.buf points to an illegal address.

intro(2), semget(2), senop(2).

DIAGNOSTICS
Upon successfuJ completion, the value returned depends on cmd as follows:

GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Page 2 10/89

semget(2) semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/sern.h>

key t key;
int-nsems, semflg;

DESCRIPTION

10/89

semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro(2)] are created for key if one of the following is true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated with it, and
(semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier is
initialized as follows:

semJ>erm.cuid, sernJ>erm.uid, semJ>erm.cgid, and semyerm.gid are
set equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of sernJ>erm.IOOde are set equal to the low-order 9
bits of semflg.

sem ysems is set equal to the value of nsems.

sern _ otime is set equal to 0 and sern _ ctime is set equal to the current
time.

semget fails if one or more of the follOWing are true:

[EINV AL] nsems is either less than or equal to zero or greater than the
system-imposed limit.

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

A semaphore identifier exists for key, but operation permission
[see intro(2)] as specified by the low-order 9 bits of semflg
would not be granted.

A semaphore identifier exists for key, but the number of sema­
phores in the set associated with it is less than nsems, and nsems
is not equal to zero.

A semaphore identifier does not exist for key and (semflg &
IPC_CREAT) is "false".

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphore identifiers
system wide would be exceeded.

Page 1

semget(2) semget(2)

[ENOSPC]

[EEXISn

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores system
wide would be exceeded.

A semaphore identifier exists for key but «semflg & IPC_CREAT)
and (semflg & IPC_EXCL» is "true".

SEE ALSO
intro(2), semctl(2), senDp(2).

DIAGNOSTICS

Page 2

Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

10/89

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct senbuf **sops;
unsigned nsops;

DESCRIPTION

10/89

semop is used to automatically perform an array of semaphore operations on the
set of semaphores associated with the semaphore identifier specified by semid.
sops is a pointer to the array of semaphore-operation structures. Nsops is the
number of such structures in the array. The contents of each structure includes
the following members:

short sem yum; / * semaphore nuni:>er * /
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem _ op is performed on the corresponding
semaphore specified by semid and sem _ num.

sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval [see intro(2)] is greater than or equal to the absolute
value of sem_op, the absolute value of sem_op is subtracted from
semval. Also, if (semJlg & SEH_UNDO) is "true", the absolute value
of sem_op is added to the calling process's semadj value [see
exit(2)] for the specified semaphore.

If semval is less than the absolute value of sem_op and (semJlg &
IPC_NOWAIT) is "true", SeIOOp will return immediately.

If semval is less than the absolute value of sem_op and (semJlg &
IPC_NOWAIT) is "false", senop will increment the semncnt associ­
ated with the specified semaphore and suspend execution of the
calling process until one of the following conditions occur.

semval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the value of semncnt associated with
the specified semaphore is decremented, the absolute value of
sem_op is subtracted from semval and, if (semJlg & SEM_UNDO) is
"true", the absolute value of sem_op is added to the calling
process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is
removed from the system [see sem:t1(2)]. When this occurs,
errno is set equal to EIDRM, and a value of -1 is returned.

Page 1

semop(2) semop(2)

Page 2

The calling process receives a signal that is to be caught. When
this occurs, the value of semncnt associated with the specified
semaphore is decremented, and the calling process resumes exe­
cution in the manner prescribed in signal(2).

If sem _op is a positive integer, the value of sem _op is added to semval
and, if (sem Jlg & SE'~'L UNDO) is "true", the value of sem _ op is subtracted
from the calling process's semadj value for the specified semaphore.
{ALTER}

If sem _op is zero, one of the following will occur: {READ}

If semval is zero, SeIOOp will return immediately.

If semval is not equal to zero and (semJlg & IPC_NOWAIT) is
"true", sem:>p will return immediately.

If semval is not equal to zero and (semJlg & I1?C_NOWAIT) is
"false", sem:>p will increment the semzcnt associated with the
specified semaphore and suspend execution of the calling process
until one of the following occurs:

semval becomes zero, at which time the value of semzcnt associ­
ated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is
removed from the system. When this occurs, errno is set equal
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When
this occurs, the value of semzcnt associated with the specified
semaphore is decremented, and the calling process resumes exe­
cution in the manner prescribed in signal(2).

SemJP will fail if one or more of the following are true for any of the semaphore
operations specified by sops:
[EINV AL] semid is not a valid semaphore identifier.

[EFBIC]

[E2BIC]

[EACCES]

[EACAIN]

[ENOSPC]

[EINVAL]

sem _ num is less than zero or greater than or equal to the number
of semaphores in the set associated with semid.
nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process [see
intro(2)]

The operation would result in suspension of the calling process
but (semJlg & II?C_NOWAIT) is "true".

The limit on the number of individual processes requesting an
SEM UNDO would be exceeded.

The number of individual semaphores for which the calling pro­
cess requests a SEM _ UNDO would exceed the limit.

10/89

semop(2) semop(2)

[ERANGE]

[ERANGE]

[EFAULT]

An operation would cause a semval to overflow the system­
imposed limit.

An operation would cause a semadj value to overflow the
system-imposed limit.

sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in
the array pointed to by sops is set equal to the process ID of the calling process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), seroc:tl(2), sexrqet(2).

DIAGNOSTICS

10/89

If semop returns due to the receipt of a signal, a value of -1 is returned to the cal­
ling process and errno is set to EINTR. If it returns due to the removal of a semid
from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Page 3

setpgrp(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION

setpgrp(2)

setpgrp sets the process group ID of the calling process to the process ID of the
calling process and returns the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

DIAGNOSTICS
setpgrp returns the value of the new process group ID.

10/89 Page 1

setuld(2} setuld(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uidi

int setgid (gid)
int gidi

DESCRIPTION
setuid (setgid) is used to set the real user (group) ID and effective user (group)
ID of the calling process.

If the effective user ID of the calling process is super-user, the real user (group) ID
and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but the saved set­
user (group) ID from exec(2) is equal to uid (gid), the effective user (group) ID is
set to uid (gid).

setuid (setgid) will fail if the real user (group) ID of the calling process is not
equal to uid (gid) and its effective user ID is not super-user. [EPERM]

The uid is out of range. [EINV AL]

SEE ALSO
getuid(2), intro(2).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and e"no is set to indicate the error.

Page 1

shmctl(2) shmctl (2)

NAME
shm:tl - shared memory control operations

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/shm.h>

int shm:tl (shmid, cmd, buf)
int shmid, cmd;
struct shmid _ ds *buf;

DESCRIPTION

10/89

shm:tl provides a variety of shared memory control operations as specified by
cmd. The following cmds are available:

IPC SET

Place the current value of each member of the data structure associ­
ated with shmid into the structure pointed to by buf. The contents of
this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure associ­
ated with shmid to the corresponding value found in the structure
pointed to by buf:

shIn yermo uid
shIn yermo gid
shInyerm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user
ID equal to that of super user, or to the value of shIn yermo cuid or
shIn yerm. uid in the data structure associated with shmid.

Remove the shared memory identifier specified by shmid from the
system and destroy the shared memory segment and data structure
associated with it. This cmd can only be executed by a process that
has an effective user ID equal to that of super user, or to the value of
shIn yermo cuid or shIn yermo uid in the data structure associated
with shmid.

SBM LOCK Lock the shared memory segment specified by shmid in memory.
This cmd can only be executed by a process that has an effective user
ID equal to super user.

SBM UNLOCK Unlock the shared memory segment specified by shmid. This cmd
can only be executed by a process that has an effective user ID equal
to super user.

shm:tl will fail if one or more of the following are true:

[EINV AL] shmid is not a valid shared memory identifier.

cmd is not a valid command. [EINVAL]

[EACCES] cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process [see intro(2)].

Page 1

shmctl(2) shmctl(2)

[EPERM]

[EPERM]

[EFAULT]

and is equal to IPC_RMID or IPC_SET and the effective user ID of the
calling process is not equal to that of super user, or to the value of
shJn....perm.cuid or slun...,Perm.uid in the data structure associated
with shmid.

and is equal to SBM_LOCK or SBM_tJNLOCK and the effective user ID of
the calling process is not equal to that of super user.

buf points to an illegal address.

[ENOMEM] and is equal to SBM_LOCK and there is not enough memory.

SEE ALSO
shmget(2), shJoop(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference
to them has been removed.

10/89

shmget(2) shmget(2)

NAME
shmqet - get shared memory segment identifier

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>
tinclude <sys/shm.h>

key_t keYi
int size, shmflgi

DESCRIPTION

10/89

shmqet returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes [see intro(2}] are created for key if one of the fol­
lowing are true:

key is equal to IPC]RIVATE.

key does not already have a shared memory identifier associated with it,
and (shmflg & IPC_CREM) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

shm ...,Perm. cuid, shm ...,Perm. uid, shm ...,Perm. cgid, and shmPerm. gid are
set equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of shm...,Perm.lOOde are set equal to the low-order 9
bits of shmflg. shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal to O.

shm_ctime is set equal to the current time.

shmqet will fail if one or more of the following are true:

[EINV AL) size is less than the system-imposed minimum or greater than the
system-imposed maximum.

[EACCES)

[EINVAL)

[ENOENT)

(ENOSPC]

A shared memory identifier exists for key but operation permis­
sion [see intro(2)] as specified by the low-order 9 bits of shmflg
would not be granted.

A shared memory identifier exists for key but the size of the seg­
ment associated with it is less than size and size is not equal to
zero.

A shared memory identifier does not exist for key and (shmflg &
IPC_CREAT) is "false".

A shared memory identifier is to be created but the system­
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

Page 1

shmget(2) shmget(2)

[ENOMEM]

[EEXIST]

A shared memory identifier and associated shared memory seg­
ment are to be created but the amount of available memory is
not sufficient to fill the request.

A shared memory identifier exists for key but «shmflg &
IPC_CREAT) and (shmflg& IPC_EXCL» is "true".

SEE ALSO
intro(2), shm::tl(2), shm:>p(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

The user must explicitly remove shared memory segments after the last reference
to them has been removed.

10/89

shmop(2) shmop(2)

NAME
shloop - shared memory operations

SYNOPSIS
'include <sys/types.h>
'include <sys/ipc.h>
'include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char * shmaddr;
int shmflg;

int shnrlt (shmaddr)
char *shmaddr;

DESCRIPTION

10/89

shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The seg­
ment is attached at the address specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available
address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SIDoLRND) is "true", the seg­
ment is attached at the address given by (shmaddr - (shmaddr modulus
sHMLBA).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false", the seg­
ment is attached at the address given by shmaddr.

shmdt detaches from the calling process's data segment the shared memory seg­
ment located at the address specified by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true" {READ},
otherwise it is attached for reading and writing {READ/WRITE}.

shmat will fail and not attach the shared memory segment if one or more of the
following are true:

[EINV AL) shmid is not a valid shared memory identifier.

[EACCES) Operation permission is denied to the calling process [see
intro(2»).

[ENOMEM)

[EINVAL)

[EINVAL)

[EMFILE)

The available data space is not large enough to accommodate the
shared memory segment.

shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SHMLBA» is an illegal address.

shmaddr is not equal to zero, <shmflg & SHM_RND) is "false", and
the value of shmaddr is an illegal address.

The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

Page 1

shmop(2} shmop(2}

[EINVAL] shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared
memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errna is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference
to them has been removed.

10/89

8Ignal(2) 8Ignal(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
tinclude <signal.h>

void (*signal (sig, func» ()
int sig;
void (*func) ();

DESCRIPTION

10/89

signal allows the calling process to choose one of three ways in which it is pos­
sible to handle the receipt of a specific signal. sig specifies the signal and fune
specifies the choice.

sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT Q3(1) quit
SIGILL 04[1) illegal instruction (not reset when caught)
SIGTRAP 05(1) trace trap (not reset when caught)
SIGIOT 06(1) lOT instruction
SIGEMT oil) EMT instruction
SIGFPE 08(1) floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10(1) bus error
SIGSEGV 11(1) segmentation violation
SIGSYS 12(1) bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRl 16 user-defmed signal 1
SIGUSR2 17 user-defined si8nal 2
SIGCLD 18[2) death of a chi!
SIGPWR 19[2) power fail
SIGPOLL 2i3) selectable event pending

fune is assigned one of three values: SIG_DFL, SIG_IGN, or a function address.
SIG_DFL, and SIG_IGN, are defined in the include file signal.h. Each is a macro that
expands to a constant expression of type pointer to function returning void, and
has a unique value that matches no declarable function.

The actions prescribed by the values of fune are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be terminated
with all of the consequences outlined in exit(2). See NOTE [1] below.

SIG _ IGN - ignore signal
The signal sig is to be ignored.

Page 1

8Ignal(2) slgnal(2)

Note: the signal SIGKILL cannot be ignored.

function address - catch signal
Upon receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by fune. The signal number sig
will be passed as the only argument to the signal-catching function.
Additional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching func­
tion, the value of fune for the caught signal will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, or SIGI?1iR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read(2), a write(2),
an open(2), or an ioctl(2) system call on a slow device (like a termi­
nal; but not a file), during a pause(2) system call, or during a wait(2)
system call that does not return immediately due to the existence of a
previously stopped or zombie process, the signal catching function will
be executed and then the interrupted system call may return a -1 to
the calling process with errno set to EINTR.

signal will not catch an invalid function argument, fune, and results
are undefined when an attempt is made to execute the function at the
bad address.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL signal.

signal will fail if sig is an illegal signal number, including SIGKILL. [EINV ALl

NOTES
[11

[21

Page 2

If SIG_DFL is assigned for these signals, in addition to the process being ter­
minated, a "core image" will be constructed in the current working directory
of the process, if the following conditions are met:

The effective user ID and the real user ID of the receiving process are
equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following pro­
perties:

a mode of 0666 modified by the file creation mask [see
umask(2)]

a file owner ID that is the same as the effective user ID of
the receiving process.

a file group ID that is the same as the effective group ID of
the receiving process

For the signals SIGCLD and SIGPWR. fune is assigned one of three values:
SIG_DFL, SIG_IGN, or a function address. The actions prescribed by these values
are:

10/89

signal (2) slgnal(2)

[3]

SIG _DFL - ignore signal
The signal is to be ignored.

SIG _ IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process's child processes will not create zombie processes when
they terminate [see exit(2)].

function address - catch signal
If the signal is SIGPWR. the action to be taken is the same as that
described above for fune equal to function address. The same is
true if the signal is SIGCLD with one exception: while the process
is executing the signal-catching function, any received SIGeLD sig­
nals will be ignored. (This is the default action.)

In addition, SIGCLD affects the wait, and exit system calls as follows:

wait If the fune value of SIGCLD is set to SIG_IGN and a wait is exe­
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -1 with errno set
to ECHILD.

exit If in the exiting process's parent process the func value of SIGCLD
is set to SIG_IGN, the exiting process will not create a zombie pro­
cess.

When processing a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into
in this manner (and thus become the parent of other processes) should take
care not to set SIGCLD to be caught.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a "selectable" event pending. A process must specifically
request that this signal be sent using the I_SETSIG ioctl call. Otherwise, the
process will never receive SIGPOLL.

SEE ALSO
intro(2), kill(2), pause(2), ptrace(2), wait(2), setjnp(3C), sigset(2).
kill(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, signal returns the previous value of func for the
specified signal sig. Otherwise, a value of SIG _ERR is returned and errno is set to
indicate the error. SIG_ERR is defined in the include file signal.h.

Page 3

8Igset(2) 8Igset(2)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
tinclude <signal.h>

void (*sigset (sig, func» ()
int sig;
void (*func) ();

int sighold (sig)
int sig;

int sigrelse (sig)
int sig;

int sigignore (sig)
int sig;

int sigpause (sig)
int sig;

DESCRIPTION

10/89

These functions provide signal management for application processes. sigset
specifies the system signal action to be taken upon receipt of signal sig. This
action is either calling a process signal-catching handler June or performing a
system-defined action.

sig can be assigned anyone of the following values except SICKILL. Machine or
implementation dependent signals are not included (see NOTES below). Each
value of sig is a macro, defined in <signal. h>, that expands to an integer con­
stant expression.

SIGHUP
SIGINT
SIGQUIT*
SIGII.L*
SIGTRAP*
SIGABRT*
SIGFPE*
SIGKII.L
SIGSYS*
SIGPIPE
SIGAUU(
SIGTERM
SIGUSRl
SIGUSR2
SIGCID
SIGPWR
SIGPOLL

hangup
interrupt
quit
illegal instruction (not held when caught)
trace trap (not held when caught)
abort
floating point exception
kill (can not be caught or ignored)
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defined signal 1
user-defined signal 2
death of a child (see NarES below)
power fail (see NOTES below)
selectable event pending (see NarES below)

See below under SIC _ DFL regarding asterisks CO) in the above list.

Page 1

8Ig88t(2) 5Ig8et(2)

Page 2

The following values for the system-defined actions of func are also defined in
<signal. h>. Each is a macro that expands to a constant expression of type
pointer to function returning void and has a unique value that matches no declar­
able function.

SIG_DFL - default system action
Upon receipt of the signal sig, the receiving process is to be terminated
with all of the consequences outlined in exit(2). In addition a "core
image" will be made in the current working directory of the receiving
process if sig is one for which an asterisk appears in the above list and
the following conditions are met:

The effective user ID and the real user ID of the receiving pro­
cess are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

SIG _ IGN - ignore signal

a mode of 0666 modified by the file creation mask
[see umask(2)]

a file owner ID that is the same as the effective user
ID of the receiving process.

a file group ID that is the same as the effective group
ID of the receiving process

Any pending signal sig is discarded and the system signal action is set to
ignore future occurrences of this signal type.

SIG_HOlD - hold signal
The signal sig is to be held upon receipt. Any pending signal of this
type remains held. Only one signal of each type is held.

Otherwise, func must be a pointer to a function, the signal-catching handler, that
is to be called when Signal sig occurs. In this case, sigset specifies that the pro­
cess will call this function upon receipt of signal sig. Any pending signal of this
type is released. This handler address is retained across calls to the other signal
management functions listed here.

When a signal occurs, the signal number sig will be passed as the only argument
to the signal-catching handler. Before calling the signal-catching handler, the sys­
tem signal action will be set to SIC _HOLD. During normal return from the
signal-catching handler, the system signal action is restored to Junc and any held
signal of this type released. If a non-local goto (longjmp) is taken, then sigrelse
must be called to restore the system signal action and release any held signal of
this type.

In general, upon return from the signal-catching handler, the receiving process
will resume execution at the point it was interrupted. However, when a signal is
caught during a read(2), a write(2), an open(2), or an ioctl(2) system call dur­
ing a sigpause system call, or during a wait(2) system call that does not return
immediately due to the existence of a previously stopped or zombie process, the

10/89

slgset(2) slgset(2)

signal-catching handler will be executed and then the interrupted system call may
return a -1 to the calling process with ermo set to EINTR.

sig-hold and sig-relse are used to establish critical regions of code. sig-hold is
analogous to raising the priority level and deferring or holding a signal until the
priority is lowered by sig-relse. sig-relse restores the system signal action to
that specified previously by sig-set.

sig-ignore sets the action for signal sig to SIC)CN (see above).

sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is released
and the system signal action taken. This system call is useful for testing variables
that are changed on the occurrence of a signal. The correct usage is to use sig-­
hold to block the signal first, then test the variables. If they have not changed,
then call sigpause to wait for the signal. sig-set will fail if one or more of the
following are true:

[EINV AL] sig is an illegal signal number (including SIGKILL) or the default
handling of sig cannot be changed.

[EINTR] A signal was caught during the system call sigpause.

DIAGNOSTICS
Upon successful completion, sig-set returns the previous value of the system sig­
nal action for the specified signal sig. Otherwise, a value of SIC_ERR is returned
and errno is set to indicate the error. SIC_ERR is defined in <signal.h>.

For the other functions, upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

NOTES

10/89

kill(2), pause(2), signal(2), wait(2), setjnp(3C).

Two signals that behave differently than the signals described above exist in this
release of the system:

SIGCID death of a child (reset when caught)
SIGPWR power fail (not reset when caught)

For these signals, func is assigned one of three values: SIC _ DFL, SIC)CN, or a
function address. The actions prescribed by these values are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG _ IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process's
child processes will not create zombie processes when they terminate
[see exit(2»).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for func equal to function address. The same is true if
the signal is SIGCLD with one exception: while the process is executing
the signal-catching function, any received SIGCLD signals will be
ignored. (This is the default action.)

Page 3

slgsel(2) slgsel(2)

Page 4

The SIGCLD affects two other system calls [wait(2), and exit(2)) in the following
ways:

wait If the June value of SIGCLD is set to SIG_IGN and a wait is executed, the
wait will block until all of the calling process's child processes ter­
minate; it will then return a value of -1 with ermo set to ECHILD.

exit If in the exiting process's parent process the June value of SIGCID is set
to SIG_IGN , the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the
parent of the proceeding processes. A process that may be piped into in this
manner (and thus become the parent of other processes) should take care not to
set SIGCLD to be caught.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a "selectable" event pending. A process must specifically
request that this signal be sent using the I_SETSIG ioctl(2) call [see
streamio(7)]. Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of signals
rather than their values and use only the set of signals defined here. The action
for the signal SIGKILL can not be changed from the default system action.

Specific implementations may have other implementation-defined signals. Also,
additional implementation-defined arguments may be passed to the signal­
catching handler for hardware-generated signals. For certain hardware­
generated signals, it may not be possible to resume execution at the point of
interruption.

The signal type SIGSEGV is reserved for the condition that occurs on an invalid
access to a data object. If an implementation can detect this condition, this sig­
nal type should be used.

The other signal management functions, signal(2) and pause(2), should not be
used in conjunction with these routines for a particular signal type.

10/89

stat (2) stat (2)

NAME
stat, fstat - get file status

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION
path points to a path name naming a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path name leading
to the file must be searchable. stat obtains information about the named file.

Note that in a Remote File Sharing environment, the information returned by
stat depends upon the user/group mapping set up between the local and
remote computers. [See idload(1M)].

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which information is placed concerning
the file.

The contents of the structure pointed to by buf include the following members:
ushort st m:xie; /* File m:xie [see mknod(2) I */
ino t s()no; / * Inode munber * /
dev_t st_dev; /* IO of device containing */

dev t

short
ushort
ushort
off t
tiIM't
time-t
time-t

st nlink;
st-uid;
st=gid;
st size;
st-atime;
st=mtime;
st_ctime;

/* a directory entry for this file */
/* IO of device */
/* This entry is defined only for */
/* character or block special files */
/* Number of links */
/* User IO of the file's owner */
/* Group IO of the file's group */
/* File size in bytes */
/* Time of last access */
/* Time of last data m:xiification */
/* Time of last file status change */
/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

st m:xie The mode of the file as described in the mknod(2) system call.

st_ino This field uniquely identifies the file in a given file system. The pair
st_ino and st_ dev uniquely identifies regular files.

stat(2) stat(2)

st dev This field uniquely identifies the file system that contains the file. Its
value may be used as input to the ustat(2) system call to determine
more information about this file system. No other meaning is associ­
ated with this value.

st rdev This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

st_nlink This field should be used only by administrative commands.

st uid The user ID of the file's owner.

st_9id The group ID of the file's group.

st size For regular files, this is the address of the end of the file. For pipes or
fifos, this is the count of the data currently in the file. For block spe­
cial or character special, this is not defined.

st_atime Time when file data was last accessed. Changed by the following sys­
tem calls: creat(2), mknod(2), pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following system
calls: creat(2), mknod(2), pipe(2), utime(2), and write(2).

st_ctime Time when file status was last changed. Changed by the following
system calls: chIood(2), chown(2), creat(2), link(2), mknod(2), pipe(2),
unlink(2), utime(2), and write(2).

stat will fail if one or more of the following are true:

[ENOTDIR) A component of the path prefix is not a directory.

[ENOENT) The named file does not exist.

[EACCES]

[EFAULT)

[EINTR)

[ENOLINK)

[EMUL TIHOP)

Search permission is denied for a component of the path prefix.

buf or path points to an invalid address.

A signal was caught during the stat system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

fstat will fail if one or more of the following are true:

[EBADFJ fildes is not a valid open file descriptor.

[EFAULT)

[ENOLINK)

buf points to an invalid address.

fildes points to a remote machine and the link to that machine is
no longer active.

SEE ALSO

Page 2

chIood(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

10/89

8t8t(2) stat (2)

DIAGNOSTICS

10/89

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 3

statfs(2) statfs(2)

NAME
statfs, fstatfs - get file system information

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/statfs.h>

int statfs (path, bUf, len, fstyp)
char *path;
struct statfs *buf;
int len, fstyp;

int fstatfs (fildes, buf, len, fstyp)
int fildes;
struct statfs *buf;
int len, fstyp;

DESCRIPTION

10/89

statfs returns a "generic superblock" describing a file system. It can be used to
acquire information about mounted as well as unmounted file systems, and usage
is slightly different in the two cases. In all cases, buf is a pointer to a structure
(described below) which will be filled by the system call, and len is the number of
bytes of information which the system should return in the structure. len must
be no greater than sizeof (struct statfs) and ordinarily it will contain
exactly that value; if it holds a smaller value the system will fill the structure with
that number of bytes. (This allows future versions of the system to grow the
structure without invalidating older binary programs.)

If the file system of interest is currently mounted, path should name a file which
resides on that file system. In this case the file system type is known to the
operating system and the fstyp argument must be zero. For an unmounted file
system path must name the block special file containing it and fstyp must con­
tain the (non-zero) file system type. In both cases read, write, or execute permis­
sion of the named file is not required, but all directories listed in the path name
leading to the file must be searchable.

The statfs structure pointed to by buf includes the following members:
short f fstyp; /* File system type */
short {bsize; /* Block size */
short f-frsize; /* Fragment size */
long f -blocks; / * Total murber of blocks * /
long f-bfree; /* Count of free blocks */
long f-files; /* Total number of file nodes */
long f-ffree; /* Count of free file nodes */
char f-fname[6] ;/* Volume name */
char f=fpack[6];/* Pack name */

fstatfs is similar, except that the file named by path in statfs is instead
identified by an open file descriptor Jiledes obtained from a successful open(2),
creat(2), dup(2), fcntl(2), or pipe(2) system call.

Page 1

statfs(2) statfs(2)

statfs obsoletes ustat(2) and should be used in preference to it in new pro­
grams.

statfs and fstatfs will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]

[EFAULT]

[EBADF]

[EINVAL]

[ENOLINK]

[EMULTIHOP]

Search permission is denied for a component of the path prefix.

buf or path points to an invalid address.

fildes is not a valid open file descriptor.

fstyp is an invalid file system type; path is not a block special file
and fstyp is nonzero; len is negative or is greater than sizeof
(struct statfs).

path points to a remote machine, and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

Page 2

clurod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), fs(4).

10/89

stlme(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

stlme(2)

stime sets the system's idea of the time and date. tp points to the value of time
as measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM)

SEE ALSO
time(2).

DIAGNOSTICS

stime will fail if the effective user ID of the calling process is not
super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errna is set to indicate the error.

10/89 Page 1

sync(2) sync(2)

NAME
sync - update super block

SYNOPSIS
void sync ()

DESCRIPTION

10/89

sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block I/O.

lt should be used by programs which examine a file system, for example fsck,
df, etc. It is mandatory before are-boot.

The writing, although scheduled, is not necessarily complete upon return from
sync.

Page 1

sysfs(2) sysfs(2)

NAME
sysfs - get file system type information

SYNOPSIS
'include <sys/fstyp.h>
'include <sys/fsid.h>

int sysfs (opcode, fsname)
int opcode;
char *fsname;

int sysfs (opcode, fs_index, buf)
int opcode;
int fS_index;
char *buf;

int sysfs (opcode)
int opcode;

DESCRIPTION
sysfs returns information about the file system types configured in the system.
The number of arguments accepted by sysfs varies and depends on the apcade.
The currently recognized apcades and their functions are described below:

GETFSIND translates fsname, a null-terminated file-system
identifier, into a file-system type index.

GETFSTYP

GETNFSTYP

translates fs _index, a file-system type index, into a null­
terminated file-system identifier and writes it into the
buffer pointed to by buf; this buffer must be at least of
size FSTYPSZ as defined in <.sys/fstyp.h>.

returns the total number of file system types
configured in the system.

sysfs will fail if one or more of the following are true:

[EINV AL] fsname points to an invalid file-system identifier;
fs _index is zero, or invalid; opcade is invalid.

[EFAULT] buf or fsname point to an invalid user address.

DIAGNOSTICS

10/89

Upon successful completion, sysfs returns the file-system type index if the apcade
is GETFSIND, a value of 0 if the apcade is GETFSTYP, or the number of file system
types configured if the apcade is GETNFSTYP. Otherwise, a value of -1 is returned
and errna is set to indicate the error.

Page 1

tlme(2)

NAME
time - get time

SYNOPSIS
tinclude <sys/types.h>

time t time (tloc)
long-.tloc;

DESCRIPTION

time (2)

time returns the value of time in seconds since 00:00:00 GMT, January I, 1970.

If tloc is non-zero, the return value is also stored in the location to which floc
points.

SEE ALSO
stime(2).

WARNING
time fails and its actions are undefined if tloc points to an illegal address.

DIAGNOSTICS

10/89

Upon successful completion, time returns the value of time. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

Page 1

tlmes(2) times (2)

NAME
times - get process and child process times

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
times fills the structure pointed to by buffer with time-accounting information.
The following are the contents of this structure:

struct tms {

} ;

time t
time -t
time t
time t

tms utime;
tms-stime;
tms - cutime;
tms::::cstime;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait. All times are reported in clock ticks
per second. Clock ticks are a system-dependent parameter. The specific value for
an implementation is defined by the variable HZ, found in the include file
param.h.

tms _ utime is the CPU time used while executing instructions in the user space of
the calling process.

tms _stime is the CPU time used by the system on behalf of the calling process.

tms _ cutime is the sum of the tms _ utime sand tms _ cutime s of the child processes.

tmsJstime is the sum of the tms_stimes and tms_cstimes of the child processes.

[EFAULT] times will fail if buffer points to an illegal address.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

DIAGNOSTICS

10/89

Upon successful completion, times returns the elapsed real time, in clock ticks
per second, from an arbitrary point in the past (e.g., system start-up time). This
point does not change from one invocation of times to another. If times fails, a
-1 is returned and errno is set to indicate the error.

Page 1

uadmln(2) uadmln(2)

NAME
uaclmin - administrative control

SYNOPSIS
tinclude <sys/uadmin.h>

int uadmin (cm::I., fcn, rrd.ep)
int cm::I., fen, rrd.ep;

DESCRIPTION
uaclmin provides control for basic administrative functions. This system call is
tightly coupled to the system administrative procedures and is not intended for
general use. The argument mdep is provided for machine-dependent use and is
not defined here.

As specified by cmd, the following commands are available:

A SHUTDOWN The system is shutdown. All user processes are killed, the buffer
cache is flushed, and the root file system is unmounted. The
action to be taken after the system has been shut down is
specified by fen. The functions are generic; the hardware capa­
bilities vary on specific machines.

AD HALT Halt the processor and turn off the power.

AD BOOT Reboot the system, using /unix.

AD lBOOT Interactive reboot; user is prompted for system
name.

A REBOOT The system stops immediately without any further processing.
The action to be taken next is specified by fen as above.

A REMOUNT The root file system is mounted again after having been fixed.
This should be used only during the startup process.

uaclmin fails if any of the following are true:

[EPERM] The effective user ID is not super-user.

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

A SHUTDOWN Never returns.
A REBOOT Never returns.
A REMOUNT 0

Otherwise, a value of -1 is returned and errno is set to indicate the error.

10/89 Page 1

ullmlt(2) ulimlt(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmdi
long newlimiti

DESCRIPTION
This function provides for control over process limits. The cmd values available
are:

1 Get the regular file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read.

2 Set the regular file size limit of the process to the value of newlimit. Any
process may decrease this limit, but only a process with an effective user ID
of super-user may increase the limit. ulimit fails and the limit is
unchanged if a process with an effective user ID other than super-user
attempts to increase its regular file size limit. [EPERM]

3 Get the maximum possible break value [see brk(2»).

4 Get the current value of the maximum number of open files per process
configured in the system.

SEE ALSO
brk(2), write(2).

WARNING
ulimit is effective in limiting the growth of regular files. Pipes are currently lim­
ited to 5,120 bytes.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

Page 1

umask(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

umask(2)

umask sets the process's file mode creation mask to cmask and returns the previ­
ous value of the mask. Only the low-order 9 bits of cmask and the file mode crea­
tion mask are used.

SEE ALSO
chmxl.(2), creat(2), mknod(2), open(2).
rnkdir(1), sh(1) in the User's Reference Manual.

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

10/89 Page 1

umount(2) umount(2)

NAME
UIOOunt - unmount a file system

SYNOPSIS
int umount (file)
char *file;

DESCRIPTION
UIOOunt requests that a previously mounted file system contained on the block
special device or directory identified by file be unmounted. file is a pointer to a
path name. After unmounting the file system, the directory upon which the file
system was mounted reverts to its ordinary interpretation.

UIOOunt may be invoked only by the super-user.

UIOOunt will fail if one or more of the following are true:

[EPERMI The process's effective user ID is not super-user.

[EINV ALI file does not exist.

[ENOTBLKI

[EINVALI

[EBUSYI

[EFAULTI

[EREMOTEI

[ENOLINKI

[EMULTIHOPI

file is not a block special device.

file is not mounted.

A file on file is busy.

file points to an illegal address.

file is remote.

file is on a remote machine, and the link to that machine is no
longer active.

Components of the path pointed to by file require hopping to
multiple remote machines.

SEE ALSO
mount(2).

DIAGNOSTICS

10/89

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

uname(2) uname(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
tinclude <sys/utsname.h>

int uname (name)
struct utsname * name;

DESCRIPTION
uname stores information identifying the current UNIX system in the structure
pointed to by name.

uname uses the structure defined in <sys/utsname . h> whose members are:

char sysname [9] ;
char nodename [9] ;
char release [9] ;
char version [9] ;
char machine [9] ;

uname returns a null-terminated character string naming the current UNIX system
in the character array sysname. Similarly, nodename contains the name that the
system is known by on a communications network. release and version further
identify the operating system. machine contains a standard name that identifies
the hardware that the UNIX system is running on.

[EFAULTj uname will fail if name points to an invalid address.

SEE ALSO
uname(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

Page 1

unllnk(2) unlink(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by path.
The named file is unlinked unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EACCES]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSy]

[EROFS]

[EFAULT]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

The parent directory has the sticky bit set and
the file is not writable by the user and
the user does not own the parent directory and
the user does not own the file and
the user is not superuser

The named file is a directory and the effective user 10 of the pro­
cess is not super-user.

The entry to be unlinked is the mount point for a mounted file
system.

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only file sys-
tem.

path points outside the process's allocated address space.

A signal was caught during the unlink system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more
processes have the file open when the last link is removed, the removal is post­
poned until all references to the file have been closed.

SEE ALSO
close(2), link(2), open(2).
rm(l) in the User's Reference Manual.

10/89 Page 1

unlink(2) unlink(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 2 10/89

ustat(2) ustat(2)

NAME
ustat - get file system statistics

SYNOPSIS
tinclude <sys/types.h>
tinclude <ustat.h>

int ustat (dev, buf)
dev_t dev;
struct ustat *buf;

DESCRIPTION
ustat returns information about a mounted file system. dev is a device number
identifying a device containing a mounted file system. buf is a pointer to a ustat
structure that includes the following elements:

daddr tf tfree; /* Total free blocks */
ino t - f - tinode; / * Nunber of free inodes * /
char f-fname[6]; /* Filsys name */
char f=fpack[6]; /* Filsys pack name */

ustat will fail if one or more of the following are true:

[EINV ALI dev is not the device number of a device containing a mounted
file system.

[EFAULT]

[EINTR]

[ENOLINK]

[ECOMM]

buf points outside the process's allocated address space.

A signal was caught during a ustat system call.

dev is on a remote machine and the link to that machine is no
longer active.

dev is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
stat(2), fs(4).

DIAGNOSTICS

10/89

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Page 1

utlme(2) uti me (2)

NAME
utime - set file access and modification times

SYNOPSIS
'include <sys/types.h>
int utime (path, times)
char *path;
struct utiIrbuf *times;

DESCRIPTION

10/89

path points to a path name naming a file. utime sets the access and modification
times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and
the access and modification times are set to the values contained in the desig­
nated structure. Only the owner of the file or the super-user may use utime this
way.

The times in the following structure are measured in seconds since 00:00:00 GMT,
Jan. 1, 1970.

struct utiIrbuf {

} ;

time t actime;
time=t m:xitime;

/* access time */
/* modification time */

utime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDIR) A component of the path prefix is not a directory.

[EACCES) Search permission is denied by a component of the path prefix.

[EPERM]

[EACCES]

[EROFS)

[EFAULT]

[EFAULT]

[EINTR)

[ENOLINK)

[EMUL TIHOP)

The effective user ID is not super-user and not the owner of the
file and times is not NULL.

The effective user ID is not super-user and not the owner of the
file and times is NULL and write access is denied.

The file system containing the file is mounted read-only.

times is not NULL and points outside the process's allocated
address space.

path points outside the process's allocated address space.

A signal was caught.during the utime system call.

path points to a remote machine and the link to that machine is
no longer active.

Components of path require hopping to multiple remote
machines.

Page 1

uti me (2)

SEE ALSO
stat(2).

DIAGNOSTICS

utlme(2)

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errna is set to indicate the error.

Page 2 10/89

walt(2) wait(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat lac)
int *stat_lac;-

DESCRIPTION
wait suspends the calling process until until one of the immediate children ter­
minates or until a child that is being traced stops, because it has hit a break point.
The wait system call will return prematurely if a signal is received and if a child
process stopped or terminated prior to the call on wait, return is immediate.

If stat lac is non-zero, 16 bits of information called status are stored in the low
order 16 bits of the location pointed to by stat _lac. status can be used to differen­
tiate between stopped and terminated child processes and if the child process ter­
minated, status identifies the cause of termination and passes useful information
to the parent. This is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8
bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits of
status will be zero and the high order 8 bits will contain the low order 8
bits of the argument that the child process passed to exit [see exit(2)].

If the child process terminated due to a signal, the high order 8 bits of
status will be zero and the low order 8 bits will contain the number of the
signal that caused the termination. In addition, if the low order seventh bit
(Le., bit 200) is set, a "core image" will have been produced [see sig­
nal(2)].

If a parent process terminates without waiting for its child processes to terminate,
the parent process ID of each child process is set to 1. This means the initializa­
tion process inherits the child processes [see intro(2)].

wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

NOTES
wait fails and its actions are undefined if stat _lac points to an invalid address.

See NOTES in signal(2).

DIAGNOSTICS

10189

If wait returns due to the receipt of a signal, a value of -1 is returned to the cal­
ling process and erma is set to EINTR. If wait returns due to a stopped or ter­
minated child process, the process ID of the child is returned to the calling pro­
cess. Otherwise, a value of -1 is returned and erma is set to indicate the error.

Page 1

wrlte(2) write(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

10/89

fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2), or
pipe(2) system call.

write attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the posi­
tion in the file indicated by the file pointer. Upon return from write, the file
pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

If the 0_ APPEND flag of the file status flags is set, the file pointer will be set to
the end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the write will not
return until both the file data and file status have been physically updated. This
function is for special applications that require extra reliability at the cost of per­
formance. For block special files, if O_SYNC is set, the write will not return until
the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is set
[see chIood(2»), and there is a record lock owned by another process on the seg­
ment of the file to be written. If O_NDELAY is not set, the write will sleep until
the blocking record lock is removed.

For STREAMS [see intro(2») files, the operation of write is determined by the
values of the minimum and maximum nbyte range ("packet size") accepted by the
stream. These values are contained in the topmost stream module. Unless the
user pushes [see I_PUSH in streamio(7») the topmost module, these values can
not be set or tested from user level. If nbyte falls within the packet size range,
nbyte bytes will be written. If nbyte does not fall within the range and the
minimum packet size value is zero, write will break the buffer into maximum
packet size segments prior to sending the data downstream (the last segment may
contain less than the maximum packet size). If nbyte does not fall within the
range and the minimum value is non-zero, write will fail with errno set to
ERANGE. Writing a zero-length buffer (nbyte is zero) sends zero bytes with zero
returned.

For STREAMS files, if O_NDELAY is not set and the stream can not accept data (the
stream write queue is full due to internal flow control conditions), write will
block until data can be accepted. O_NDELAY will prevent a process from blocking
due to flow control conditions. If O_NDELAY is set and the stream can not accept
data, write will fail. If 0_ NDELA Y is set and part of the buffer has been written

Page 1

write (2) write(2)

Page 2

when a condition in which the stream can not accept additional data occurs,
write will terminate and return the number of bytes written.

write will fail and the file pointer will remain unchanged if one or more of the
following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was set, and
there was a blocking record lock.

[EAGAIN]

[EAGAIN]

[EBADF]

[EDEADLK]

[EFAULT]

[EFBIG]

(EINTR]

[EINVAL]

[ENOLCK]

[ENOLINK]

[ENOSR]

[ENOSPC]

Total amount of system memory available when reading via raw
10 is temporarily insufficient.

Attempt to write to a stream that can not accept data with the
0_ NDELA Y flag set.

fildes is not a valid file descriptor open for writing.

The write was going to go to sleep and cause a deadlock situa­
tion to occur.

buf points outside the process's allocated address space.

An attempt was made to write a file that exceeds the process's
file size limit or the maximum file size [see ulimit(2»).

A signal was caught during the write system call.

Attempt to write to a stream linked below a multiplexor.

The system record lock table was full, so the write could not go
to sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

Attempt to write to a stream with insufficient STREAMS memory
resources available in the system.

During a write to an ordinary file, there is no free space left on
the device.

[ENXIO] A hangup occurred on the stream being written to.

[EPIPEand SIGPIPE signal]

IERANGE]

An attempt is made to write to a pipe that is not open for read­
ing by any process.

Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum value is
non-zero.

If a write requests that more bytes be written than there is room for (e.g., the
ulimit [see ulimit(2») or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512-bytes will return 20.
The next write of a non-zero number of bytes will give a failure return (except as
noted below).

10/89

write (2) write (2)

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag
word is set, then write to a full pipe (or FIFO) will return a count of O. Otherwise
(O_NDELAY clear), writes to a full pipe (or FIFO) will block until space becomes
available.

A write to a STREAMS file can fail if an error message has been received at the
stream head. In this case, ermo is set to the value included in the error message.

SEE ALSO
creat(2), dup(2), fcnt1(2), intro(2), lseek(2), open(2), pipe(2), ulimit(2).

DIAGNOSTICS

10/89

Upon successful completion the number of bytes actually written is returned.
Otherwise, -1 is returned and ermo is set to indicate the error.

Page 3

Intro(3) Intro(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries, other than those func­
tions that directly invoke UNIX system primitives, which are described in Sec­
tion 2 of this volume. Function declarations can be obtained from the #include
files indicated on each page. Certain major collections are identified by a letter
after the section number:

(3C) These functions, together with those of Section 2 and those marked (3S),
constitute the standard C library, libc, which is automatically linked by
the C compilation system. The standard C library is implemented as an
archive, libc. a.

(3S) These functions constitute the "standard I/O package" [see stdio(3S)].

(3E) These functions constitute the ELF access library, libelf. This library is
not automatically linked by the C compilation system. Specify -lelf on
the cc command line to link with this library.

(3G) These functions constitute the general-purpose library, libgen. This
library is not automatically linked by the C compilation system. Specify
-lgen on the cc command line to link with this library.

(3M) These functions constitute the math library, libm. [See intro(3M) and
math(S).] This library is not automatically linked by the C compilation sys­
tem. Use the -1m option on the cc command line to link with the libm
library.

(3X) Specialized libraries. The files in which these libraries are found are given
on the appropriate pages.

DEFINITIONS

FILES

10/89

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, conventionally represented in the C
language as \0. A character array is a sequence of characters. A null-terminated
character array (a string) is a sequence of characters, the last of which is the null
character. The null string is a character array containing only the terminating
null character. A NULL pointer is the value that is obtained by casting 0 into a
pointer. C guarantees that this value will not match that of any legitimate
pointer, so many functions that return pointers return NULL to indicate an error.
The macro NULL is defined in stdio. h. Types of the form size _tare defined in
the appropriate header files.

INCDIR
LIBDIR
LIBDIR/ libc. a
LIBDIR/libgen. a
LIBDIR/libm.a

usually /usr/include
usually /usr/ccs/lib

Page 1

Intro (3) intro(3)

SEE ALSO
ar(1), oe(1), 1d(1), lint(l), nm:l), intro(2), intro(3M), 8tdio(3S), math(5).
The "c Compilation System" chapter in the Programmer's Guide: ANSI C and Pro­
gramming Support Tools.

DIAGNOSTICS

NOTES

Page 2

Error handling varies, for functions that return floating-point values, according to
compilation mode. Under the -Xt (default) option to cc, these functions return
the conventional values 0, ±HUGE, or NaN when the function is undefmed for the
given arguments or when the value is not representable. In the -X'a and -Xc
compilation modes, ±HUGE_VAL is returned instead of ±HUGE. (HUGE_VAL and
HUGE are defined in math. h to be infinity and the largest-magnitude single­
precision number, respectively.)

None of the functions, external variables, or macros should be redefined in the
user's programs. Any other name may be redefined without affecting the
behavior of other library functions, but such redefinition may conflict with a
declaration in an included header file.

The header files in INCDlR provide function prototypes (function declarations
including the types of arguments) for most of the functions listed in this manual.
Function prototypes allow the compiler to check for correct usage of these func­
tions in the user's program. The lint program checker may also be used and
will report discrepancies even if the header files are not included with #include
statements. Definitions for Sections 2, 3C, and 35 are checked automatically.
Other definitions can be included by using the -1 option to lint. (For example,
-1m includes definitions for 1ibm.) Use of lint is highly recommended.

Users should carefully note the difference between STREAMS and stream.
STREAMS is a set of kernel mechanisms that support the development of network
services and data communication drivers. It is composed of utility routines, ker­
nel facilities, and a set of data structures. A stream is a file with its associated
buffering. It is declared to be a pointer to a type FILE defined in stdio. h.

In detailed definitions of components, it is sometimes necessary to refer to sym­
bolic names that are implementation-specific, but which are not necessarily
expected to be accessible to an application program. Many of these symbolic
names describe boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given
symbolic names. These names always appear enclosed in curly brackets to distin­
guish them from symbolic names of other implementation-specific constants that
are accessible to application programs by header files. These names are not
necessarily accessible to an application program through a header file, although
they may be defined in the documentation for a particular system.

In general, a portable application program should not refer to these symbolic
names in its code. For example, an application program would not be expected
to test the length of an argument list given to a routine to determine if it was
greater than {ARG_MAX}.

10/89

a641(3C) a64I(3C)

NAME
a641, l64a - convert between long integer and base-64 ASCII string

SYNOPSIS
tinclude <stdlib.h>

long a641 (const char *s);

char *164a (long 1);

DESCRIPTION

NOTES

10189

These functions are used to maintain numbers stored in base-64 ASCII characters.
These characters define a notation by which long integers can be represented by
up to six characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38--63.

a64l takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

a641 scans the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number.

l64a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, l64a returns a pointer to a null string.

The value returned by l64a is a pointer into a static buffer, the contents of which
are overwritten by each call.

Page 1

abort (3C)

NAME
abort - generate an abnormal termination signal

SYNOPSIS
tinclude <stdlib.h>

void abort (void);

DESCRIPTION

abort (3C)

abort first closes all open files, stdio(3S) streams, and directory streams, if pos­
sible, then causes the signal SIGABRT to be sent to the calling process.

SEE ALSO
sdb(1), exit(2), kill(2), signal(2), stdio(3S).
sh(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

If SIGABRT is neither caught nor ignored, and the current directory is writable, a
core dump is produced and the message abort - core dWtped is written by the
shell [see sh(1)].

Page 1

abs(3C)

NAME
abs, labs - return integer absolute value

SYNOPSIS
'include <stdlib.h>

int abs (int val);

long labs (long lval);

DESCRIPTION

abs(3C)

abs returns the absolute value of its int operand. labs returns the absolute
value of its long operand.

SEE ALSO
floor(3M).

NOTES

10/89

In 2's-complement representation, the absolute value of the largest magnitude
negative integral value is undefined.

Page 1

addseverlty (3C) addseverlty (3C)

NAME
addseverity - build a list of severity levels for an application for use with
frntmsg"

SYNOPSIS
tinclude <fmtmsg.h>

int addseverity(int severity, const char *string);

DESCRIPTION
The addseverity function builds a list of severity levels for an application to be
used with the message formatting facility, fmtmsg. severity is an integer value
indicating the seriousness of the condition, and string is a pointer to a string
describing the condition (string is not limited to a specific size).

If addseverity is called with an integer value that has not been previously
defined, the function adds that new severity value and print string to the existing
set of standard severity levels.

If addseverity is called with an integer value that has been previously defined,
the function redefines that value with the new print string. Previously defined
severity levels may be removed by supplying the NULL string. If addseverity is
called with a negative number or an integer value of 0, 1, 2, 3, or 4, the function
fails and returns -1. The values 0-4 are reserved for the standard severity levels
and cannot be modified. Identifiers for the standard levels of severity are:

~ HALT indicates that the application has encountered a severe
fault and is halting. Produces the print string HALT.

~ ERROR indicates that the application has detected a fault. Pro­
duces the print string ERROR.

~ WARNING indicates a condition that is out of the ordinary, that might
be a problem, and should be watched. Produces the print
string WARNING.

MI.I_ INFO provides information about a condition that is not in error.
Produces the print string INFO.

~ NOSEV indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV _ LEVEL environment
variable [see fmtmsg(3C»).

EXAMPLES

10/89

When the function addseverity is used as follows:

addseverity(7, "ALERT")

the following call to fmtmsg:

fmtmsg(MM PRINT, "UX:cat", '7, "invalid syntax", "refer to
manual", "UX:cat:001")

produces:

Page 1

addseverlty (3C) addseverlty (3C)

UX: cat: ALERT: invalid syntax
TO FIX: refer to manual UX:cat:OOl

SEE ALSO
fmtmsg(3C), printf(3S).

DIAGNOSTICS
addseverity returns ~_OK on success or ~_NOTOK on failure.

Page 2 10/89

atexlt(3C)

NAME
atexit - add program termination routine

SYNOPSIS
tinclude <stdlib.h>

int atexit (void (*func) (void));

DESCRIPTION

atexlt(3C)

atexit adds the function func to a list of functions to be called without argu­
ments on normal termination of the program. Normal termination occurs by
either a call to the exit system call or a return from main. At most 32 functions
may be registered by atexit; the functions will be called in the reverse order of
their registration.

atexit returns 0 if the registration succeeds, nonzero if it fails.

SEE ALSO
exit(2).

10/89 Page 1

bsearch (3C) bsearch (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
'include <stdlib.h>

void *bsearch (const void * key, const void *base, size t nel,
size_t size, int (*compar) (const void *, const void *»;

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B.
It returns a pointer into a table (an array) indicating where a datum may be
found or a null pointer if the datum cannot be found. The table must be previ­
ously sorted in increasing order according to a comparison function pointed to by
compar. key points to a datum instance to be sought in the table. base points to
the element at the base of the table. nel is the number of elements in the table.
size is the number of bytes in each element. The function pointed to by compar is
called with two arguments that point to the elements being compared. The func­
tion must return an integer less than, equal to, or greater than 0 as accordingly
the first argument is to be considered less than, equal to, or greater than the
second.

EXAMPLE

10/89

The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This program reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

'include <stdio.h>
'include <stdlib.h>
'include <string.h>

struct node { /* these are stored in the table */
char *string;
int length;

} ;
static struct node table[] /* table to be searched */
{

} ;

main 0
(

"asparagus", 10 },
"beans", 6 },
"tomato", 7 },
"watennelon", 11 },

struct node *nodeytr, node;
/* routine to conpare 2 nodes * /
static int node compare(const void *, const void *);
char str_space[20]; /* space to read string into */

Page 1

bsearch (3C) bsearch (3C)

node. string = str space;
while (scanf("%20s", node. string) != EOF) (

nodeytr = bsearch(&node,
table, sizeof(table)/sizeof(struct node),
sizeof (struct node), node corcpare);

if (node ytr ! = NULL) (-
(void) printf("string = %20s, length = %d\n",

nodeytr->string, nodeytr->length);
else {

}
return(O);

(void)printf("not found: %20s\n", node. string) ;

/* routine to corcpare two nodes based on an */
/* alphabetical ordering of the string field */
static int
node_conpare (const void *nodel, const void *node2)
{

return (strcnp (
«const struct node *)nodel)->string,
«const struct node *)node2)->string»;

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS

NOTES

Page 2

A null pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table,
nel should be the lower number.

10/89

clock(3C) clock(3C)

NAME
clock - report CPU time used

SYNOPSIS
tinclude <time.h>

clock_t clock (void);

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used since the first call
to clock in the calling process. The time reported is the sum of the user and sys­
tem times of the calling process and its terminated child processes for which it
has executed the wait system call, the pclose function, or the system function.

Dividing the value returned by clock by the constant CLOCKS_PER _SEC, defined
in the time. h header file, will give the time in seconds.

SEE ALSO

NOTES

10/89

times(2), wait(2), popen(3S), systeni3S).

The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the
value returned will wrap around after accumulating only 2147 seconds of CPU
time (about 36 minutes). If the process time used is not available or cannot be
represented, clock returns the value (clock_t)-l.

Page 1

conv(3C) conv(3C)

NAME
conv: toupper, tolower, _ toupper, _ tolower, toaseii - translate characters

SYNOPSIS
tinelude <ctype.h>

int toupper (int e)i

int tolower (int e)i

int _toupper (int e) i

int _tolower (int e)i

int toaseii (int e)i

DESCRIPTION
toupper and tolower have as their domain the range of the function gete: all
values represented in an unsigned char and the value of the macro EOF as
defined in stdio. h. If the argument of toupper represents a lower-case letter,
the result is the corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

The macros _ toupper and _ tolower accomplish the same things as toupper and
tolower, respectively, but have restricted domains and are faster. _toupper
requires a lower-case letter as its argument; its result is the corresponding upper­
case letter. _tolower requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside the domain cause
undefined results.

toaseii yields its argument with all bits turned off that are not part of a stan­
dard 7-bit ASCII character; it is intended for compatibility with other systems.

toupper, tolower, _ toupper, and _ tolower are affected by LC _ CTYPE. In the c
locale, or in a locale where shift information is not defined, these functions deter­
mine the case of characters according to the rules of the ASCII-coded character set.
Characters outside the ASCII range of characters are returned unchanged.

SEE ALSO
etype(30, gete(3S), setlocale(30, environ(S).

10/89 Page 1

crypt (3C) crypt (3C)

NAME
crypt, setkey, encrypt - generate encryption

SYNOPSIS
'include <crypt.h>

char *crypt (const char *key, const char *salt);

void setkey (const char *key);

void encrypt (char *block, int edflag);

DESCRIPTION
crypt is the password encryption function. It is based on a one-way encryption
algorithm with variations intended (among other things) to frustrate use of
hardware implementations of a key search.

key is the input string to encrypt, for instance, a user's typed password. Only the
first eight characters are used; the rest are ignored. salt is a two-character string
chosen from the set a-zA-ZO-9./; this string is used to perturb the hashing algo­
rithm in one of 4096 different ways, after which the input string is used as the
key to encrypt repeatedly a constant string. The returned value points to the
encrypted input string. The first two characters of the return value are the salt
itself.

The setkey and encrypt functions provide (rather primitive) access to the actual
hashing algorithm. The argument of setkey is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. This string is divided
into groups of 8, the low-order bit in each group is ignored; this gives a 56-bit
key that is set into the machine. This is the key that will be used with the hash­
ing algorithm to encrypt the string block with the encrypt function.

The block argument of encrypt is a character array of length 64 containing only
the characters with numerical value 0 and 1. The argument array is modified in
place to a similar array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by setkey. The argument
ed{lag, indicating decryption rather than encryption, is ignored; use encrypt in
libcrypt [see crypt(3X)] for decryption.

SEE ALSO
getpass(3C), crypt(3X), passwd(4).
login(1), passwd(1) in the User's Reference Manual.

NOTES
The return value for crypt points to static data that are overwritten by each call.

10/89 Page 1

ctermid (35) ctermid (35)

NAME
ctermid - generate file name for terminal

SYNOPSIS
tinclude <stdio.h>

char *ctermid (char *s);

DESCRIPTION
ctermid generates the path name of the controlling terminal for the current pro­
cess, and stores it in a string.

If 5 is a NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to ctermid, and the address of which is
returned. Otherwise, 5 is assumed to point to a character array of at least
L _ ctermid elements; the path name is placed in this array and the value of 5 is
returned. The constant L ctermid is defined in the stdio. h header file.

SEE ALSO
ttyname(3C).

NOTES

10/89

The difference between ctermid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while ctermid returns a string (/dev/tty) that will refer
to the terminal if used as a file name. Thus ttyname is useful only if the process
already has at least one file open to a terminal.

Page 1

ctlme(3C) ctlme(3C)

NAME
ctime, local time, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
tinclude <time.h>

char *ctime (const time_t *clock);

struct tm *localtime (const time_t *clock);

struct tm *gmtime (const time_t *clock);

char *asctime (const struct tm *tm);

extern time_t timezone, altzone;

extern int daylight;

extern char *tzname [2];

void tzset (void);

DESCRIPTION

10/89

ctime, localtime, and gmtime accept arguments of type time_t, pointed to by
clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970.
ctime returns a pointer to a 26-character string as shown below. Time zone and
daylight savings corrections are made before the string is generated. The fields
are constant in width:

Fri Sep 13 00:00:00 1986\n\0

localtime and gmtime return pointers to tm structures, described below. local­
time corrects for the main time zone and possible alternate ("daylight savings")
time zone; gmtime converts directly to Coordinated Universal Time (UTC), which
is the time the UNIX system uses internally.

asctime converts a tm structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
time.h header file. The structure declaration is:

struct tm {
int tm_sec; 1* seconds after the minute - [0, 61] *1

1* for leap seconds */
int tm_min; 1* minutes after the hour - [0, 59] *1
int tm_hour; 1* hour since midnight - [0, 23] *1
int tm_rOOay; 1* day of the roonth - [1, 31] *1
int tm_roon; 1* roonths since January - [0, 11] *1
int tmJear; 1* years since 1900 *1
int tm_wday; I * days since Sunday - [0, 6] *1
int tmJday; 1* days since January 1 - [0, 365] */
int tm_isdst; 1* flag for alternate daylight *1

1* savings time *1
} ;

Page 1

ctlme(3C) ctlme(3C)

Page 2

The value of tm_isdst is positive if daylight savings time is in effect, zero if day­
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of tm _ isdst was defined as non-zero if daylight savings
time was in effect.)

The external time t variable altzone contains the difference, in seconds,
between Coordinated Universal Time and the alternate time zone. The external
variable timezone contains the difference, in seconds, between UTC and local
standard time. The external variable daylight indicates whether time should
reflect daylight savings time. Both timezone and altzone default to 0 (UTC).
The external variable daylight is non-zero if an alternate time zone exists. The
time zone names are contained in the external variable tzname, which by default
is set to:

char *tzname [2] = { "GMT"," "};

These functions know about the peculiarities of this conversion for various time
periods for the u.s. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.

tzset uses the contents of the environment variable TZ to override the value of
the different external variables. The function tzset is called by asetime and
may also be called by the user. See environ(5) for a description of the TZ
environment variable.

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New
Jersey in 1986 could be

EST5EDT4,116/2:00:00,298/2:00:00

or simply

EST5EDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KST10:OO,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[O] is EST,
timezone will be set to 5*60*60, tzname[l] is EDT, altzone will be set to
4*60*60, the starting date of the alternate time zone is the 117th day at 2 AM, the
ending date of the alternate time zone is the 299th day at 2 AM (using zero-based
Julian days), and daylight will be set positive. Starting and ending times are
relative to the alternate time zone. If the alternate time zone start and end dates
and the time are not provided, the days for the United States that year will be
used and the time will be 2 AM. If the start and end dates are provided but the
time is not provided, the time will be 2 AM. The effects of tzset are thus to
change the values of the external variables timezone, altzone, daylight, and
tzname. etime, localtime, mktime, and strftime will also update these exter­
nal variables as if they had called tzset at the time specified by the time _tor
struet tm value that they are converting.

Note that in most installations, TZ is set to the correct value by default when the
user logs on, via the local fete/profile file [see profile(4) and timezone(4)].

10/89

ctlme(3C) ctlme(3C)

FILES
/usr/lib/locale/language/LC_TIME - file containing locale specific date and
time information

SEE ALSO

NOTES

10/89

time(2), getenv(3C), m1ctime(3C), putenv(3C), printf(3S), setlocale(3C),
strftime(3C), cftime(4), profile(4), timezone(4), environ(S).

The return values for ctime, localtime, and gmtime point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from time zone to altzone or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

Page 3

ctype(3C) ctype(3C)

NAME
ctype: isciigit, isxdigit, is lower, isupper, isalpha, isaln~ isspace,
iscntrl, ispunct, isprint, isgraph, isascii - character handling

SYNOPSIS
tinclude <ctype.h>

int isalpha(int c);

int isupper(int c);

int is lower (int c);

int isdigit(int c);

int isxdigit (int c);

int isalnum(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int c);

int isgraph(int c);

int iscntrl(int c);

int isascii(int c);

DESCRIPTION

10/89

These macros classify character-coded integer values. Each is a predicate return­
ing non-zero for true, zero for false. The behavior of these macros, except
isascii, is affected by the current locale [see setlocale(3C)j. To modify the
behavior, change the LC_TYPE category in set locale, that is, set locale
(LC_CTYPE, newlocaIe). In the C locale, or in a locale where character type infor­
mation is not defined, characters are classified according to the rules of the US­
AsaI 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are defined only
where the argument is an int, the value of which is representable as an
unsigned char, or EOF, which is defined by the stdio. h header file and
represents end-of-file.

isalpha tests for any character for which isupper or islower is true, or
any character that is one of an implementation-defined set of
characters for which none of iscntrl, isdigit, ispunct, or
isspace is true. In the C locale, isalpha returns true only for
the characters for which isupper or islower is true.

isupper tests for any character that is an upper-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or islower is true. In
the C locale, isupper returns true only for the characters defmed
as upper-case AsaI characters.

Page 1

ctype(3C) ctype(3C)

FILES

is lower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

tests for any character that is a lower-case letter or is one of an
implementation~efined set of characters for which none of
iscntrl, isdigit, ispunct, isspace, or isupper is true. In
the C locale, islower returns true only for the characters defined
as lower-case ASCII characters.

tests for any decimal~igit character.

tests for any hexadecimal~igit character ([0-9], [A-F] or
[a-fJ).

tests for any character for which isalpha or isdigit is true
(letter or digit).

tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of an
implementation~efined set of characters for which isalnum is
false. In the C locale, isspace returns true only for the standard
white-space characters.

tests for any printing character which is neither a space nor a
character for which isalnum is true.

tests for any printing character, including space (" ").

tests for any printing character, except space.

tests for any "control character" as defined by the character set.

tests for any ASCII character, code between 0 and 0177 inclusive.

All the character classification macros and the conversion functions and macros
use a table lookup.

Functions exist for all the above~efined macros. To get the function form, the
macro name must be undefined (e.g., tundef isdigit).

/usr/lib/locale/locale/LC_CTYPE

SEE ALSO
chrtbl(lM), setlocale(3C), stdio(3S), ascii(S), environ(S).

D'lAGNOSnCS

Page 2

If the argument to any of the character handling macros is not in the domain of
the function, the result is undefined.

10/89

cuserld (35) cuserld (35)

NAME
cuserid - get character login name of the user

SYNOPSIS
'include <stdio.h>

char *cuserid (char *s);

DESCRIPTION
cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, s is assumed to point to an array of at least L _ cuserid
characters; the representation is left in this array. The constant L_cuserid is
defined in the stdio. h header file.

SEE ALSO
getlogin(3C), getpwent(3C).

DIAGNOSTICS

10/89

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character' \0' will be placed at s [0].

Page 1

dial (3C) dial(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
tinclude <dial.h>

int dial (CALL call);

void undial (int fd);

DESCRIPTION

10/89

dial returns a file-descriptor for a terminal line open for read/write. The argu­
ment to dial is a CALL structure (defined in the dial. h header file).

When finished with the terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal dev­
ice.

The definition of CALL in the dial. h header file is:

typedef struct {
struct termio *attr; /*
int baud; /*
int
char
char
int
char
int
} CALL;

speed;
*line;
*telno;
m:xiem;
*device;
dev_Ien;

/*
/*
/*
/*
/*
/*

pointer to termio attribute struct */
transmission data rate */
212A modem: low=300, high=1200 */
device name for out-going line */
pointer to tel-no digits string */
specify m:xiem control for direct lines */
unused */
unused */

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be either 300 or 1200 to identify the 113A modem, or
the high- or low-speed setting on the 212A modem. Note that the 113A modem
or the low-speed setting of the 212A modem will transmit at any rate between 0
and 300 bits per second. However, the high-speed setting of the 212A modem
transmits and receives at 1200 bits per second only. The CALL element baud is for
the desired transmission baud rate. For example, one might set baud to 110 and
speed to 300 (or 1200). However, if speed is set to 1200, baud must be set to
high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name
should be placed in the line element in the CALL structure. Legal values for
such terminal device names are kept in the Devices file. In this case, the value of
the baud element should be set to -1. This value will cause dial to determine the
correct value from the Devices file.

The telno element is for a pointer to a character string representing the tele­
phone number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dial *
dial #

wait for secondary dial tone
delay for approximately 4 seconds

Page 1

dlal(3C) dial (3C)

FILES

The CALL element roodem is used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element
attr is a pointer to a termio structure, as defined in the termio.h header file.
A NULL value for this pointer element may be passed to the dial function, but if
such a structure is included, the elements specified in it will be set for the outgo­
ing terminal line before the connection is established. This setting is often impor­
tant for certain attributes such as parity and baud-rate.

The CALL elements device and dev _len are no longer used. They are retained in
the CALL structure for compatibility reasons.

letc/uucp/Devices
letc/uucp/systems
Ivarl spool/uucp/LCK .. tty-device

SEE ALSO
alarni2), read(2), write(2).
termio(7) in the System Administrator's Reference Manual.
uuCP(lC) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the dial. h
header file.

INTRPT
D HUNG
NO ANS
ILL BD
APRoB
L PROB
NO Ldv
DV NT A
DV NT K
NO BD A
NO=BD=K
DV NT E
BAD SYS

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13

1* interrupt occurred *1
1* dialer hung (no return from write) *1
1* no answer within 10 seconds *1
1* illegal baud-rate *1
1* acu problem (open() failure) *1
1* line problem (open() failure) *1
/* can't open Devices file */
1* requested device not available *1
1* requested device not known *1
1* no device available at requested baud *1
1* no device known at requested baud */
1* requested speed does not match *1
1* system not in Systems file*1

Including the dial. h header file automatically includes the termio. h header file.

An alarni2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of "touching" the LCK.. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uuCP(lC) may simply
delete the LCK .. entry on its 9O-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call, causing an
apparent error return. If the user program expects to be around for an hour or
more, error returns from reads should be checked for (errno=-EINTR), and the
read possibly reissued.

10/89

dlffllme (3C)

NAME
difftime - computes the difference between two calendar times

SYNOPSIS
finclude <time.h>

double difftime (time_t timel, time t timeO);

DESCRIPTION

dlfflime (3C)

difftime computes the difference between two calendar times. difftime returns
the difference (timel-timeO) expressed in seconds as a double. This function is
provided because there are no general arithmetic properties defined for type
time t.

SEE ALSO
ctime(3C).

10/89 Page 1

directory (3C) directory (3C)

NAME
directory: opendir, readdir, te11dir, seekdir, rewinddir, c10sedir -
directory operations

SYNOPSIS
tinc1ude <dirent.h>

OIR *opendir (const char *fi1ename);

struct dirent *readdir (OIR *dirp);

long te11dir (OIR *dirp);

void seekdir (OIR *dirp, long 100);

void rewinddir (OIR *dirp);

int c10sedir (OIR *dirp);

DESCRIPTION

10/89

opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A
null pointer is returned if filename cannot be accessed or is not a directory, or if it
cannot malloo(3C) enough memory to hold a OIR structure or a buffer for the
directory entries.

readdir returns a pointer to the next active directory entry and positions the
directory stream at the next entry. No inactive entries are returned. It returns
NULL upon reaching the end of the directory or upon detecting an invalid location
in the directory. readdir buffers several directory entries per actual read opera­
tion; readdir marks for update the st _atime field of the directory each time the
directory is actually read.

te11dir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the position associated with the directory stream at
the time the telldir operation that provides loe was performed. Values
returned by telldir are valid only if the directory has not changed because of
compaction or expansion. This situation is not a problem with System V, but it
may be a problem with some file system types.

rewinddir resets the position of the named directory stream to the beginning of
the directory. It also causes the directory stream to refer to the current state of
the corresponding directory, as a call to opendir would.

c10sedir closes the named directory stream and frees the OIR structure.

The following errors can occur as a result of these operations.

opendir returns NULL on failure and sets errno to one of the following values:

ENOTDIR A component of filename is not a directory.

EACCES A component of filename denies search permission.

Page 1

directory (3C) directory (3C)

EACCES

EMFILE

ENFILE

EFAULT

ENOENT

Read permission is denied on the specified directory.

The maximum number of file descriptors are currently
open.

The system file table is full.

filename points outside the allocated address space.

A component of filename does not exist or is a null path­
name.

readdir returns NULL on failure and sets errno to one of the following values:

ENOENT The current file pointer for the directory is not located at a
valid entry.

EBADF The file descriptor determined by the OIR stream is no
longer valid. This result occurs if the OIR stream has been
closed.

telldir, seekdir, and closedir return -1 on failure and set errno to the fol­
lowing value:

EBADF The file descriptor determined by the OIR stream is no
longer valid. This results if the OIR stream has been closed.

EXAMPLE
Here is a sample program that prints the names of all the files in the current
directory:

'include <stdio.h>
'include <dirent.h>

main 0
(

OIR *dirp;
struct dirent *direntp;

dirp - opendir(".");
while ((direntp = readdir(dirp » !- NULL)

(void)printf("%s\n", direntp->d name);
closedir(dirp); -
return (0);

SEE ALSO
getdents(2), dirent(4).

NOTES
rewinddir is implemented as a macro, so its function address cannot be taken.

Page 2 10/89

dlv(3C) div(3C)

NAME
diy, ldiv - compute the quotient and remainder

SYNOPSIS
tinclude <stdlib.h>

div_t div (intnumer, int denom);

ldiv_t ldiv (long int numer, long int denom);

DESCRIPTION

10/89

div computes the quotient and remainder of the division of the numerator numer
by the denominator denom. This function provides a well-defined semantics for
the signed integral division and remainder operations, unlike the
implementation-defined semantics of the built-in operations. The sign of the
resulting quotient is that of the algebraic quotient, and, if the division is inexact,
the magnitude of the resulting quotient is the largest integer less than the magni­
tude of the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quotient * denom + remainder will equal numer.

div returns a structure of type div_t, comprising both the quotient and
remainder:

typedef struct div t {
int quot; /*quotient*/
int rem; /*remainder*/

div_t;

ldiv is similar to div, except that the arguments and the members of the
returned structure (which has type ldiv_t) all have type long into

Page 1

drand48 (3C) drand48 (3C)

NAME
drand48, erand48, 1rand48, nrand48, mrand48, jrand48, srand48, seed48,
1cong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
tinc1ude <std1ib.h>

double drand48 (void);

double erand48 (unsigned short xsubi [3]);

long 1rand48 (void);

long nrand48 (unsigned short xsubi[3]);

long mrand48 (void);

long jrand48 (unsigned short xsubi [3]) ;

void srand48 (long seedva1);

unsigned short *seed48 (unsigned short seed16v[3]);

void 1cong48 (unsigned short param[7]);

DESCRIPTION

10/89

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating­
point values uniformly distributed over the interval [0.0, 1.0).

Functions 1rand48 and nrand48 return non-negative long integers uniformly dis­
tributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distri­
buted over the interval [-231, 231).

Functions srand48, seed48, and 1cong48 are initialization entry points, one of
which should be invoked before either drand48, 1rand48, or mrand48 is called.
(Although it is not recommended practice, constant default initializer values will
be supplied automatically if drand48, 1rand48, or mrand48 is called without a
prior call to an initialization entry point.) Functions erand48, nrand48, and
jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula

Xn+1 = (aXn+c)modm n~O.

The parameter m = 248 ; hence 48-bit integer arithmetic is performed. Unless
1cong48 has been invoked, the multiplier value a and the addend value care
given by

a = 5DEECE66D 16 = 273673163155 8

C = 8 16 = 13 8 •

The value returned by any of the functions drand48, erand48, 1rand48,
nrand48, mrand48, or jrand48 is computed by first generating the next 48-bit Xi
in the sequence. Then the appropriate number of bits, according to the type of

Page 1

drand48(3C) drand48 (3C)

data item to be returned, are copied from the high-order (leftmost) bits of X; and
transformed into the returned value.

The functions drand48, lrand48, and mrand48 store the last 48-bit Xi generated
in an internal buffer. X; must be initialized prior to being invoked. The func­
tions erand48, nrand48, and jrand48 require the calling program to provide
storage for the successive Xi values in the array specified as an argument when
the functions are invoked. These routines do not have to be initialized; the cal­
ling program must place the desired initial value of X; into the array and pass it
as an argument. By using different arguments, functions erand48, nrand48, and
jrand48 allow separate modules of a large program to generate several indepen­
dent streams of pseudo-random numbers, i.e., the sequence of numbers in each
stream will not depend upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits
contained in its argument. The low-order 16 bits of X; are set to the arbitrary
value 330E16 .

The initializer function seed48 sets the value of X; to the 48-bit value specified in
the argument array. In addition, the previous value of Xi is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some future
time - use the pointer to get at and store the last Xi value, and then use this
value to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi, the
multiplier value a, and the addend value c. Argument array elements param[O-21
specify Xi' param[3-51 specify the multiplier a, and param[61 specifies the 16-bit
addend c. After lcong48 has been called, a subsequent call to either srand48 or
seed48 will restore the "standard" multiplier and addend values, a and c,
specified on the previous page.

SEE ALSO
rand(3C).

Page 2 10/89

dup2(3C) dup2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
'include <unistd.h>

int dup2 (int fildes, int fildes2);

DESCRIPTION
fildes is a file descriptor referring to an open file, and fildes2 is a non-negative
integer less than {OPEN_MAX} (the maximum number of open files). dup2 causes
fildes2 to refer to the same file as fildes. If fildes2 already referred to an open file,
not fildes, it is closed first. If fildes2 refers to fildes, or if fildes is not a valid open
file deSCriptor, fildes2 will not be closed first.

dup2 will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EBADF fildes2 is negative or greater than or equal to {OPEN_MAX}.

EINTR a signal was caught during the dup2 call.

% [EMFlLE {OPEN_MAX} file descriptors are currently open.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C), limits(4).

DIAGNOSTICS

10/89

Upon successful completion a non-negative integer, namely, the file descriptor, is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the
error.

Page 1

ecvt(3C} ecvt(3C}

NAME
ecvt, fcvt, qcvt - convert floating-point number to string

SYNOPSIS
'include <stdlib.h>

char *ecvt (double value, int ndiqit, int *decpt, int *siqn) ;

char *fcvt (double value, int ndiqit, int *decpt, int *siqn) ;

char *qcvt (double value, int ndiqit, char *buf);

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The high-order digit is non-zero, unless the value is zero. The
low-order digit is rounded. The position of the decimal point relative to the
beginning of the string is stored indirectly through decpt (negative means to the
left of the returned digits). The decimal point is not included in the returned
string. If the sign of the result is negative, the word pointed to by sign is non­
zero, otherwise it is zero.

fcvt is identical to ecvt, except that the correct digit has been rounded for
printf %f output of the number of digits specified by ndigit.

qcvt converts the value to a null-terminated string in the array pointed to by buf
and returns buf. It attempts to produce ndigit significant digits in %f format if
possible, otherwise %e format (scientific notation), ready for printing. A minus
sign, if there is one, or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

NOTES

10/89

The values returned by ecvt and fcvt point to a single static data array whose
content is overwritten by each call.

Page 1

end (3C) end (3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern etext;

extern edata;

extern end;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents;
only their addresses are meaningful.

etext The address of etext is the first address above the program text.

edata The address of edata is the first address above the initialized data region.

end The address of end is the first address above the uninitialized data region.

SEE ALSO

NOTE

10/89

eeO}, brk(2}, malloc(3C}, stdio(3S}.

When execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines brk, mal­
loc, the standard input/output library [see stdio(3S}], by the prome (-p) option
of ee, and so on. Thus, the current value of the program break should be deter­
mined by sbrk «char *) 0) [see brk(2}].

Page 1

fclose(3S) fclose(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
tinclude <stdio.h>

int fclose (FILE *stream);

int fflush (FILE *stream);

DESCRIPTION
fclose causes any buffered data waiting to be written for the named stream [see
intro(3)] to be written out, and the stream to be closed. If the underlying file
pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with
the byte after the last one read from or written to the file being closed.

fclose is performed automatically for all open files upon calling exit.

If stream points to an output stream or an update stream on which the most
recent operation was not input, fflush causes any buffered data waiting to be
written for the named stream to be written to that file. Any unread data buffered
in stream is discarded. The stream remains open. If stream is open for reading,
the underlying file pointer is not already at end of file, and the file is one capable
of seeking, the file pointer is adjusted so that the next operation on the open file
pointer deals with the byte after the last one read from or written to the stream.

When calling fflush, if stream is a null pointer, all files open for writing are
flushed.

SEE ALSO
close(2), exit(2), intro(3), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

10/89

Upon successful completion these functions return a value of zero. Otherwise EOF
is returned.

Page 1

ferror(3S) ferror(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
tinclude <stdio.h>

int ferror (FILE *stream);

int feof (FILE *stream);

void clearerr (FILE *stream);

int fileno (FILE *stream);

DESCRIPTION
ferror returns non-zero when an error has previously occurred reading from or
writing to the named stream [see intro(3)], otherwise zero.

feof returns non-zero when EOF has previously been detected reading the named
input stream, otherwise zero.

clearerr resets the error indicator and EOF indicator to zero on the named
stream.

fileno returns the integer file descriptor associated with the named stream; see
open(2).

SEE ALSO
open(2), fopen(3S), stdio(3S).

10/89 Page 1

ffs(3C)

NAME
ffs - find first set bit

SYNOPSIS
'include <string.h>

int ffs(const int i);

DESCRIPTION

ffs(3C)

ffs finds the first bit set in the argument passed it and returns the index of that
bit. Bits are numbered starting at 1 from the low order bit. A return value of
zero indicates that the value passed is zero.

10/89 Page 1

fmtmsg{3C) fmtmsg{3C)

NAME
fmtmsg - display a message on stderr or system console

SYNOPSIS
'include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
Based on a message's classification component, fmtmsg writes a formatted mes­
sage to stcierr, to the console, or to both.

fmtmsg can be used instead of the traditional printf interface to display mes­
sages to stderr. fmtmsg provides a simple interface for producing language­
independent applications.

A formatted message consists of up to five standard components as defined
below. The component, classification, is not part of the standard message
displayed to the user, but rather defines the source of the message and directs the
display of the formatted message.

classification
Contains identifiers from the following groups of major classifications and
subclassifications. Anyone identifier from a subclass may be used in com­
bination by ~Ring the values together with a single identifier from a dif­
ferent subclass. Two or more identifiers from the same subclass should not
be used together, with the exception of identifiers from the display sub­
class. (Both display subclass identifiers may be used so that messages can
be displayed to both stderr and the system console).

"Major classifications" identify the source of the condition. Identifiers
are: ~_HARD (hardware), ~_SOFT (software), and ~_FIRM (firmware).

"Message source subclassifications" identify the type of software in
which the problem is spotted. Identifiers are: MM_APPL (application),
~_UTIL (utility), and ~_OPSYS (operating system).

"Display subclassifications" indicate where the message is to be
displayed. Identifiers are: !"'LPRINT to display the message on the
standard error stream, ~ _CONSOLE to display the message on the sys­
tem console. Neither, either, or both identifiers may be used.

"Status subclassifications" indicate whether the application will recover
from the condition. Identifiers are: MM RECOVER (recoverable) and
~_NRECOV (non-recoverable). -

An additional identifier, ~ NULLMC, indicates that no classification
component is supplied for the message.

label Identifies the source of the message. The format of this component is two
fields separated by a colon. The first field is up to 10 characters long; the
second is up to 14 characters. Suggested usage is that label identifies the
package in which the application resides as well as the program or applica­
tion name. For example, the label UX:cat indicates the UNIX System V
package and the cat application.

10/89 Page 1

fmtmsg(3C) fmtmsg(3C)

severity
Indicates the seriousness of the condition. Identifiers for the standard lev­
els of severity are:

~_HALT indicates that the application has encountered a severe fault
and is halting. Produces the print string HALT.

~_ERROR indicates that the application has detected a fault. Produces
the print string ERROR.

~ _WARNING indicates a condition out of the ordinary that might be a
problem and should be watched. Produces the print string WARNING.

~_INFO provides information about a condition that is not in error.
Produces the print string INFO.

~_NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseverity routine.

text Describes the condition that produced the message. The text string is not
limited to a specific size.

action Describes the first step to be taken in the error recovery process. fmtmsg
precedes each action string with the prefix: TO FIX:. The action string is
not limited to a specific size.

tag An identifier which references on-line documentation for the message.
Suggested usage is that tag includes the label and a unique identifying
number. A sample tag is UX:cat:146.

Environment Variables

Page 2

There are two environment variables that control the behavior of fmtmsg:
MSGVERB and SEV LEVEL.

MSGVERB tells fmtmsg which message components it is to select when writing
messages to stderr. The value of MSGVERB is a colon-separated list of optional
keywords. MSGVERB can be set as follows:

MSGVERB=[keyword[: keyword[: ...]])
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB con­
tains a keyword for a component and the component's value is not the
component's null value, fmtmsg includes that component in the message when
writing the message to stderr. If MSGVERB does not include a keyword for a
message component, that component is not included in the display of the mes­
sage. The keywords may appear in any order. If MSGVERB is not defined, if its
value is the null-string, if its value is not of the correct format, or if it contains
keywords other than the valid ones listed above, fmtmsg selects all components.

The first time fmtmsg is called, it examines the MSGVERB environment variable to
see which message components it is to select when generating a message to write
to the standard error stream, stderr. The values accepted on the initial call are
saved for future calls.

10/89

fmtmsg(3C) fmtmsg(3C)

MSGVERB affects only which components are selected for display to the standard
error stream. All message components are included in console messages.

SEV _LEVEL defines severity levels and associates print strings with them for use
by fmtmsg. The standard severity levels shown below cannot be modified. Addi­
tional severity levels can also be defined, redefined, and removed using
addseverity [see addseverity(3C»). If the same severity level is defined by
both SEV_LEVEL and addseverity, the definition by addseverity is controlling.

o (no severity is used)
1 HALT
2 ERROR
3 WARNING
4 INFO

SEV LEVEL can be set as follows:

SEV _ LEVEL=[description[: description[: ... JJJ
export SEV _LEVEL

description is a comma-separated list containing three fields:

description=severity _keyword, level, printstring

severity_keyword is a character string that is used as the keyword on the -s severity
option to the fmtmsg command. (fhis field is not used by the fmtrnsg function.)

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3,
or 4, which are reserved for the standard severity levels). If the keyword
severity_keyword is used, level is the severity value passed on to the fmtmsg func­
tion.

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If a description in the colon list is not a three-field comma list, or, if the second
field of a comma list does not evaluate to a positive integer, that description in the
colon list is ignored.

The first time fmtmsg is called, it examines the SEV LEVEL environment variable,
if defined, to see whether the environment expandsthe levels of severity beyond
the five standard levels and those defined using addseverity. The values
accepted on the initial call are saved for future calls.

Use In Applications

10/89

One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that com­
ponent.

The table below indicates the null values and identifiers for fmtmsg arguments.

Page 3

fmtmsg(3C) fmtmsg(3C)

Argument Type Null-Value Identifier
label char* (char*) NULL ~ NULLLBL
severity int 0 ~ NULLSEV
class long OL ~ NULLMC
text char* (char*) NULL ~ NULLTXT
action char* (char*) NULL ~ NULLACT
tag char * (char*) NULL ~ NULLTAG

Another means of systematically omitting a component is by omitting the com­
ponent keyword(s) when defining the MSGVERB environment varial>le (see the
"Environment Variables" section).

EXAMPLES
Example 1:

The following example of fmtmBg:

fmtmsg(~_PRINT, "UX:cat", ~_ERROR, "invalid syntax", "refer
to manual", "UX:cat:001")

produces a complete message in the standard message format:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:OOl

Example 2:

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg produces:

ERROR: invalid syntax
TO FIX: refer to manual

Example 3:

When the environment variable SEV LEVEL is set as follows:

SEV_LEVE~ote,S,NOTE

the following call to fmtmsg:

fmtmsg (MM UTIL I ~ PRINT, "UX: cat" , 5, "invalid syntax" ,
"refer to-manual", "UX:cat:001")

produces:

UX: cat: NOTE: invalid syntax
TO FIX: refer to manual UX:cat:OOl

SEE ALSO
addseverity(3C), printf(3S).

Page 4 10/89

fmtmsg(3C) fmtmsg(3C)

DIAGNOSTICS
The exit codes for fmtmsq are the following:

f!.M OK The function succeeded.

f!.M NOTOK The function failed completely.

f!.M NCMSG The function was unable to generate a message on the standard
error stream, but otherwise succeeded.

f!.M NOCON The function was unable to generate a console message, but other­
wise succeeded.

10/89 Page 5

fopen(3S) fopen(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
tinclude <stdio.h>

FILE *fopen (const char *filename, const char *type);

FILE *freopen (const char * filename, const char *type, FILE
*stream) ;

FILE *fdopen (int fildes, const char *type);

DESCRIPTION

10/89

fopen opens the file named by filename and associates a stream with it. fopen
returns a pointer to the FILE structure associated with the stream.

filename points to a character string that contains the name of the file to be
opened.

type is a character string beginning with one of the following sequences:

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing

"r+", "r+b" or "rb+"
open for update (reading and writing)

"w+", "w+b" or "wb+"
truncate or create for update

"a+", "a+b" or "ab+"
append; open or create for update at end-of-file

The "b" is ignored in the above types. The ''b'' exists to distinguish binary files
from text files. However, there is no distinction between these types of files on a
UNIX system.

freopen substitutes the named file in place of the open stream. A flush is first
attempted, and then the original stream is closed, regardless of whether the open
ultimately succeeds. Failure to flush or close stream successfully is ignored.
freopen returns a pointer to the FILE structure associated with stream.

freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files. stderr is by default unbuffered, but the use
of freopen will cause it to become buffered or line-buffered.

fdopen associates a stream with a file descriptor. File descriptors are obtained
from open, dup, creat, or pipe, which open files but do not return pointers to a
FILE structure stream. Streams are necessary input for almost all of the Section
3S library routines. The type of stream must agree with the mode of the open file.
The file position indicator associated with stream is set to the position indicated
by the file offset associated with fildes.

Page 1

fopen(3S} fopen(3S}

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input without
an intervening fflusb. fseek, fsetpos, or rewind, and input may not be
directly followed by output without an intervening fseek, fsetpos, or rewind,
or an input operation that encounters end-of-file.

When a file is opened for append (Le., when type is "a", "ab", "a+", or "ab+"), it
is impossible to overwrite information already in the file. fseek may be used to
reposition the file pointer to any position in the file, but when output is written
to the file, the current file pointer is disregarded. All output is written at the end
of the file and causes the file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append, each process may write
freely to the file without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the file in the order in
which it is written.

When opened, a stream is fully buffered if and only if it can be determined, not to
refer to an interactive device. The error and end-of-file indicators are cleared for
the stream.

SEE ALSO
close(2), creat(2), duP(2), open(2), pipe(2), write(2), fclose(3S), fseek(3S),
setbuf(3S), stdio(3S).

DIAGNOSTICS

Page 2

The functions fopen and freopen return a null pointer if path cannot be accessed,
or if type is invalid, or if the file cannot be opened.

The function fdopen returns a null pointer if fildes is not an open file descriptor,
or if type is invalid, or if the file cannot be opened.

The functions fopen or fdopen may fail and not set errno if there are no free
stdio streams.

File descriptors used by fdopen must be less than 255.

10/89

fpgetround (3C) fpgetround (3C)

NAME
fpqetround. fpsetround. fpqetmask, fpsetmask, fpqetsticky, fpsetsticky­
IEEE floating-point environment control

SYNOPSIS
tinclude <ieeefp.h>

fp _ rnd fpqetround (void);

fp_rnd fpsetround (fp_rnd rnd_dir);

fp_except fpqetmask (void);

fp_except fpsetmask (fp_except mask);

fp_except fPgetsticky (void);

fp_except fpsetsticky (fp_except sticky);

DESCRIPTION
There are five floating-point exceptions: divide-by-zero, overflow, underflow,
imprecise (inexact) result, and invalid operation. When a floating-point exception
occurs, the corresponding sticky bit is set (1), and if the mask bit is enabled (1),
the trap takes place. These routines let the user change the behavior on
occurrence of any of these exceptions, as well as change the rounding mode for
floating-point operations.

FP_X_INV
FP X OFL
FP X UFL
FP X DZ
FP-X-IMP
FP RN
FP RP
FP RM
FP RZ

'* invalid operation exception *' '* overflow exception *' '* underflow exception *' '* divide-by-zero exception *' '* imprecise (loss of precision) *' '* round to nearest representative number *' '* round to plus infinity *' '* round to minus infinity *' '* round to zero (truncate) *'
fpqetround returns the current rounding mode.

fpsetround sets the rounding mode and returns the previous rounding mode.

fpqetmask returns the current exception masks.

fpsetmask sets the exception masks and returns the previous setting.

fpqetsticky returns the current exception sticky flags.

fpsetsticky sets (clears) the exception sticky flags and returns the previous set­
ting.

The default environment is rounding mode set to nearest (FP_RN) and all traps
disabled.

Individual bits may be examined using the constants defined in ieeefp. h.

SEE ALSO
isnan(3C).

10/89 Page 1

fpgetround (3C) fpgetround (3C)

NOTES

Page 2

fpsetsticky modifies all sticky flags. fpsetmask changes all mask bits. fpset­
mask clears the sticky bit corresponding to any exception being enabled.

C requires truncation (round to zero) for floating point to integral conversions.
The current rounding mode has no effect on these conversions.

One must clear the sticky bit to recover from the trap and to proceed. If the
sticky bit is not cleared before the next trap occurs, a wrong exception type may
be signaled.

10/89

fread(35) fread (35)

NAME
fread. fwrite - binary input/output

SYNOPSIS
tinclude <stdio.h>

size_t fread (void *ptr, size_t size, size t nitems, FILE *stream);

size t fwrite (canst void *ptr, size t size, size_t nitems, FILE
*stream) ;

DESCRIPTION
fread reads into an array pointed to by ptr up to nitems items of data from
streJlm, where an item of data is a sequence of bytes (not necessarily terminated
by a null byte) of length size. fread stops reading bytes if an end-of-file or error
condition is encountered while reading stream, or if nitems items have been read.
fread increments the data pointer in stream to point to the byte following the last
byte read if there is one. fread does not change the contents of stream. fread
returns the number of items read.

fwrite writes to the named output stream at most nitems items of data from the
array pointed to by ptr, where an item of data is a sequence of bytes (not neces­
sarily terminated by a null byte) of length size. fwrite stops writing when it has
written nitems items of data or if an error condition is encountered on streJlm.
fwrite does not change the contents of the array pointed to by ptr. fwrite
increments the data-pointer in streJlm by the number of bytes written. fwrite
returns the number of items written.

If size or nitems is zero, then fread and fwrite return a value of 0 and do not
effect the state of streJlm.

The ferror or feof routines must be used to distinguish between an error condi­
tion and end-of-file condition.

SEE ALSO
exit(2), lseek(2), read(2), write(2), abort(3C), fclose(3S), fopen(3S), getc(3S),
gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
If an error occurs, the error indicator for streJlm is set.

10/89 Page 1

frexp{3C) frexp{3C)

NAME
frexp, ldexp, 10gb, m:x:if, m:xiff, nextafter, scalb - manipulate parts of
floating-point numbers

SYNOPSIS
tinclude <math.h>

double frexp (double value, int *eptr);

double ldexp (double value, int exp);

double 10gb (double value);

double nextafter (double valuel, double value2);

double scalb (double value, double exp);

double modf (double value, double *iptr);

float modff (float value, float *iptr);

DESCRIPTION
Every non-zero number can be written uniquely as x * 2 n, where the "mantissa"
(fraction) x is in the range 0.5 S I x I < 1.0, and the "exponent" n is an integer.
frexp returns the mantissa of a double value, and stores the exponent indirectly
in the location pointed to by eptr. If value is zero, both results returned by frexp
are zero.

ldexp and scalb return the quantity value * 2 exp. The only difference between
the two is that scalb of a signaling NaN will result in the invalid operation
exception being raised.

10gb returns the unbiased exponent of its floating-point argument as a double­
precision floating-point value.

modf and m:xiff (single-precision version) return the signed fractional part of
value and store the integral part indirectly in the location pointed to by iptr.

nextafter returns the next representable double-precision floating-point value
following value1 in the direction of value2. Thus, if value2 is less than value1,
nextafter returns the largest representable floating-point number less than
value1.

SEE ALSO
cc(1), intro(3M).

DIAGNOSTICS

10/89

If ldexp would cause overflow, ±HUGE (defined in math.h) is returned (according
to the sign of value), and errno is set to ERANGE. If ldexp would cause
underflow, zero is returned and errno is set to ERANGE. If the input value to
ldexp is NaN or infinity, that input is returned and errno is set to EDOM. The
same error conditions apply to scalb except that a signaling NaN as input will
result in the raising of the invalid operation exception.

10gb of NaN returns that NaN, 10gb of infinity returns positive infinity, and
10gb of zero returns negative infinity and results in the raising of the divide by
zero exception. In each of these conditions errno is set to EDOM.

Page 1

frexp(3C) frexp(3C)

Page 2

If input valuel to nextafter is positive or negative infinity, that input is returned
and errno is set to EDOM. The overflow and inexact exceptions are signalled
when input valuel is finite, but nextafter (valuel, value2) is not. The underflow
and inexact exceptions are signalled when nextafter (valuel, value2) lies strictly
between ±2-1022. In both cases errno is set to ERANGE.

When the program is compiled with the cc options -Xc or -Xa, HUGE VAL is
returned instead of HUGE.

10/89

fseek(3S) fseek(3S)

NAME
fseek, rewind. ftell - reposition a file pointer in a stream

SYNOPSIS
'include <stdio.h>

int fseek (FILE * stream, long offset, int ptrname)i

void rewind (FILE *stream)i

long ftell (FILE *stream)i

DESCRIPTION
fseek sets the position of the next input or output operation on the stream [see
intro(3»). The new position is at the signed distance offset bytes from the begin­
ning, from the current position, or from the end of the file, according to a ptrname
value of SEEK_SET, SEEK_CUR, or SEEK_END (defined in stdio.h) as follows:

SEEK SET set position equal to offset bytes.

SEEK CUR set position to current location plus offset.
SEEK END set position to EOF plus offset.
fseek allows the file position indicator to be set beyond the end of the existing
data in the file. If data is later written at this point, subsequent reads of data in
the gap will return zero until data is actually written into the gap. fseek, by
itself, does not extend the size of the file.

rewind (stream) is equivalent to:

(void) fseek (stream, OL, SEEK_SET)i

except that rewind also clears the error indicator on stream.

fseek and rewind clear the EOF indicator and undo any effects of ungetc on
stream. After fseek or rewind. the next operation on a file opened for update
may be either input or output.

If stream is writable and buffered data has not been written to the underlying file,
fseek and rewind cause the unwritten data to be written to the file.

ftell returns the offset of the current byte relative to the beginning of the file
associated with the named stream.

SEE ALSO
lseek(2), write(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS

NOTES

10/89

fseek returns -1 for improper seeks, otherwise zero. An improper seek can be,
for example, an fseek done on a file that has not been opened via fopen; in par­
ticular, fseek may not be used on a terminal or on a file opened via popen.
After a stream is closed, no further operations are defined on that stream.

Although on the UNIX system an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset, portability to non­
UNIX systems requires that an offset be used by fseek directly. Arithmetic may
not meaningfully be performed on such an offset, which is not necessarily meas­
ured in bytes.

Page 1

fsetpos(3C) fsetpos(3C)

NAME
fsetpos, fgetpos - reposition a file pointer in a stream

SYNOPSIS
finclude <stdio.h>

int fsetpos (FILE * stream, const fpos_t *pos);

int fgetpos (FILE * stream, fpos_t *pos);

DESCRIPTION
fsetpos sets the position of the next input or output operation on the stream
according to the value of the object pointed to by pos. The object pointed to by
pos must be a value returned by an earlier call to fgetpos on the same stream.

fsetpos clears the end-of-file indicator for the stream and undoes any effects of
the ungetc function on the same stream. After fsetpos, the next operation on a
file opened for update may be either input or output.

fgetpos stores the current value of the file position indicator for stream in the
object pointed to by pos. The value stored contains information usable by fset­
pos for repositioning the stream to its position at the time of the call to fgetpos.

If successful, both fsetpos and fgetpos return zero. Otherwise, they both return
nonzero.

SEE ALSO
fseek(3S), lseek(2) ungetc(3S).

10/89 Page 1

ftw(3C) ftw(3C)

NAME
ftw - walk a file tree

SYNOPSIS
tinclude <ftw.h>

int ftw (const char *path, int (*fn) (const char *, const struct
stat *, int), int depth);

DESCRIPTION
ftw recursively descends the directory hierarchy rooted in path. For each object
in the hierarchy, ftw calls the user-defined function fn, passing it a pointer to a
null-terminated character string containing the name of the object, a pointer to a
stat structure (see stat(2» containing information about the object, and an
integer. Possible values of the integer, defined in the <ftw.h> header file, are:

FTW_F The object is a file.

FTW 0

FTW ONR

FTW NS

The object is a directory.

The object is a directory that cannot be read. Descendants of the
directory will not be processed.

stat failed on the object because of lack of appropriate permission
or the object is a symbolic link that points to a non-existent file. The
stat buffer passed to fn is undefined.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns
a nonzero value, or some error is detected within ftw (such as an I/O error). If
the tree is exhausted, ftw returns zero. If fn returns a nonzero value, ftw stops
its tree traversal and returns whatever value was returned by fn. If ftw detects
an error other than EACCES, it returns -1, and sets the error type in ermo.

ftw uses one file descriptor for each level in the tree. The depth argument limits
the number of file descriptors so used. If depth is zero or negative, the effect is
the same as if it were 1. depth must not be greater than the number of file
descriptors currently available for use. ftw will run more quickly if depth is at
least as large as the number of levels in the tree. When ftw returns it closes any
file descriptors which it has opened. It does not close any file descriptors which
may have been opened by fn.

SEE ALSO

NOTES

10/89

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory fault
when applied to very deep file structures.

ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is
forcibly terminated, such as by longjnp being executed by fn or an interrupt rou­
tine, ftw will not have a chance to free that storage, so it will remain per­
manently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its next
invocation.

Page 1

getc(3S) getc(3S)

NAME
gete, get char, fgete, getw - get character or word from a stream

SYNOPSIS
tinelude <stdio.h>

int gete (FILE *stream);

int getehar (void);

int fgete (FILE *stream);

int getw (FILE *stream);

DESCRIPTION
gete returns the next character (i.e., byte) from the named input stream [see
intro(3)] as an unsigned ehar converted to an into It also moves the file
pointer, if defined, ahead one character in stream. getehar is defined as
gete (stdin). gete and getchar are macros.

fgete behaves like gete, but is a function rather than a macro. fgete runs more
slowly than gete, but it takes less space per invocation and its name can be
passed as an argument to a function.

getw returns the next word (i.e., integer) from the named input stream. getw
increments the associated file pointer, if defined, to point to the next word. The
size of a word is the size of an integer and varies from machine to machine.
getw assumes no special alignment in the file.

SEE ALSO
felose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), pute(3S), seanf(3S),
stdio(3S), ungete(3S).

DIAGNOSTICS

NOTES

10/89

These functions return the constant EOF at end-of-file or upon an error and set the
EOF or error indicator of stream, respectively. Because EOF is a valid integer, fer­
ror should be used to detect getw errors.

If the integer value returned by gete, getehar, or fgete is stored into a charac­
ter variable and then compared against the integer constant EOF, the comparison
may never succeed, because sign-extension of a character on widening to integer
is implementation dependent.

The macro version of gete evaluates a stream argument more than once and may
treat side effects incorrectly. In particular, gete (*f++) does not work sensibly.
Use fgete instead.

Because of possible differences in word length and byte ordering, files written
using putw are implementation dependent, and may not be read using getw on a
different processor.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (e.g., tundef gete).

Page 1

getcwd(3C) getcwd(3C)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
'include <unistd.h>

char *getcwd (char *buf, int size);

DESCRIPTION
getcwd returns a pointer to the current directory pathname. The value of size
must be at least one greater than the length of the pathname to be returned.

If buf is not NULL, the pathname will be stored in the space pointed to by buf.
If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C).
In this case, the pointer returned by getcwd may be used as the argument in a
subsequent call to free.

getcwd will fail if one or more of the following are true:

EACCES A parent directory cannot be read to get its name.

EINVAL size is equal to O.

ERANGE size is less than 0 or is greater than 0 and less than the length of the
pathname plus 1.

EXAMPLE
Here is a program that prints the current working directory.

'include <unistd.h>
'include <stdio.h>

main 0
{

char *cwd;
if «cwd = getcwd(NULL, 64» NULL)
{

perror ("pwd") ;
exit (2);

(void)printf ("%s\n", cwd);
return(O);

SEE ALSO
malloc(3C)

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function.

10/89 Page 1

getenv(3C)

NAME
getenv - return value for environment name

SYNOPSIS
tinclude <stdlib.h>

char *getenv (const char *name)i

DESCRIPTION

getenv(3C)

getenv searches the environment list [see environ(S)] for a string of the form
name=value and, if the string is present, returns a pointer to the value in the
current environment. Otherwise, it returns a null pointer.

SEE ALSO
exec(2), putenv(3C), environ(S).

10/89 Page 1

getgrent(3C) getgrent (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group
file entry

SYNOPSIS
tinclude <grp.h>
struct group *getgrent (void);

struct group *getgrgid (gid_t gid);

struct group *getgrnam (const char *name);

void setgrent (void);

void endgrent (void);

struct group *fgetgrent (FILE *f);

DESCRIPTION

FILES

getgrent, getgrgid, and getgrnam each return pointers to an object containing
the broken-out fields of a line in the letc/group file. Each line contains a
"group" structure, defined in the grp.h header file with the following members:

char *gr name; 1* the name of the group *1
char *gryasswd; 1* the encrypted group password *1
gid_t gr_gid; 1* the numerical group ID *1
char **gr_mem; 1* vector of pointers to member names *1

When first called, getgrent returns a pointer to the first group structure in the
file; thereafter, it returns a pointer to the next group structure in the file; so, suc­
cessive calls may be used to search the entire file. getgrgid searches from the
beginning of the file until a numerical group id matching gid is found and returns
a pointer to the particular structure in which it was found.

getgrnam searches from the beginning of the file until a group name matching
name is found and returns a pointer to the particular structure in which it was
found. If an end-of-file or an error is encountered on reading, these functions
return a null pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. endgrent may be called to close the group file when processing is
complete.

fgetgrent returns a pointer to the next group structure in the stream f, which
matches the format of I etcl group.

letc/group

SEE ALSO
getlogin(3C), getpwent(3C).
group(4) in the System Administrator's Reference Manual.

10/89 Page 1

getgrent(3C) getgrent (3C)

DIAGNOSTICS

NOTES

Page 2

getgrent, getgrgid, getgrnam, and fgetgrent return a null pointer on EOF or
error.

All information is contained in a static area, so it must be copied if it is to be
saved.

10/89

getlogln (3C) getlogln (3C)

NAME
getlogin - get login name

SYNOPSIS
tinclude <stdlib.h>

char *getlogin (void);

DESCRIPTION

FILES

get login returns a pointer to the login name as found in /etc/utIrp. It may be
used in conjunction with getpwnam to locate the correct password file entry when
the same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it returns
a NULL pointer. The correct procedure for determining the login name is to call
cuserid, or to call get login and if it fails to call getpwuid.

/etc/utrrp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), ut.rrp(4).

DIAGNOSTICS
Returns the NULL pointer if the login name is not found.

NOTES
The return values point to static data whose content is overwritten by each call.

10/89 Page 1

getmntent (3C) getmntent (3C)

NAME
getmntent, getmntany - get mnttab file entry

SYNOPSIS
'include <stdio.h>
'include <sys/mnttab.h>

int getmntent (FILE *fp, struct mnttab *:np) i

int getmntany (FILE *fp, struct mnttab *:np, struct mnttab *npref);

DESCRIPTION

FILES

getmntent and getmntany each fill in the structure pointed to by mp with the
broken-out fields of a line in the /etc/mnttab file. Each line in the file contains
a mnttab structure, declared in the sys/mnttab. h header file:

struct mnttab {

} i

char *mnt_speciali
char *mnt IOOuntPi
char *mnt=fstypei
char *mnt mntopts i
char *mnt=timei

The fields have meanings described in mnttab(4).

getmntent returns a pointer to the next mnttab structure in the file; so successive
calls can be used to search the entire file. getmntany searches the file referenced
by fp until a match is found between a line in the file and mpref. mpref matches
the line if all non-null entries in mpref match the corresponding fields in the file.
Note that these routines do not open, close, or rewind the file.

/etc/mnttab

SEE ALSO
mnttab(4).

DIAGNOSTICS
If the next entry is successfully read by getmntent or a match is found with
getmntany, 0 is returned. If an end-of-file is encountered on reading, these func­
tions return -1. If an error is encountered, a value greater than 0 is returned.
The possible error values are:

MNT _ TOOLONG A line in the file exceeded the internal buffer size of
MNT LINE MAX.

MNT _ TOOMANY

MNT TOOFEW

NOTES

A line in the file contains too many fields.

A line in the file contains too few fields.

10/89

The members of the mnttab structure point to information contained in a static
area, so it must be copied if it is to be saved.

Page 1

getopt(3C) getopt(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
tinclude <stdlib.h>

int getopt (int argc, char * const *argv, const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

DESCRIPTION
get opt returns the next option letter in argv that matches a letter in optstring. It
supports all the rules of the command syntax standard [see intro(l)]. Since all
new commands are intended to adhere to the command syntax standard, they
should use getopts(1), getopt(3C), or getsubopts(3C) to parse positional
parameters and check for options that are legal for that command.

optstring must contain the option letters the command using getopt will recog­
nize; if a letter is followed by a colon, the option is expected to have an argu­
ment, or group of arguments, which may be separated from it by white space.
optarg is set to point to the start of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to be processed.
optind is external and is initialized to 1 before the first call to getopt. When all
options have been processed (Le., up to the first non-option argument), getopt
returns EOF. The special option "--" (two hyphens) may be used to delimit the
end of the options; when it is encountered, EOF is returned and "--" is skipped.
This is useful in delimiting non-option arguments that begin with "_" (hyphen).

EXAMPLE

10/89

The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the option. 0,

which requires an argument:

tinclude <stdlib.h>
tinclude <stdio.h>

main (int argc, char **argv)
{

int c;
extern char * optarg;
extern int optind;
int aflg = 0;
int bflg = 0;
int errflg = 0;
char *ofile = NULL;

while «c = getopt(argc, argv, "abo:"» != EOF)
switch (c) {
case' a' :

if (bflg)
errflg++;

Page 1

getopt{3C) getopt(3C)

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bflg++;

break;
case '0':

ofile = optarg;
(void)printf ("ofile = %s\n", ofile);
break;

case '?':
errflg++;

}
if (errflg) {

(void)fprintf(stderr,
"usage: end [-a I-b] [-o<file>] files ... \n ") ;

exit (2);

for (; optind < argc; optind++)
(void)printf ("%s\n", argv[optind]);

return 0;

SEE ALSO
getsubopt(3C).
getopts(1), intro(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

getopt prints an error message on the standard error and returns a "?" (ques­
tion mark) when it encounters an option letter not included in optstring or no
argument after an option that expects one. This error message may be disabled
by setting opterr to O. The value of the character that caused the error is in
optopt.

The library routine getopt does not fully check for mandatory arguments. That
is, given an option string a:b and the input -a -b, getopt assumes that -b is the
mandatory argument to the option -a and not that -a is missing a mandatory
argument.

It is a violation of the command syntax standard [see intro(1)] for options with
arguments to be grouped with other options, as in cmj -aboxxx file, where a
and b are options, 0 is an option that requires an argument, and xxx is the argu­
ment to o. Although this syntax is permitted in the current implementation, it
should not be used because it may not be supported in future releases. The
correct syntax is end -ab -oxxx file.

10/89

getpass{3C) getpass (3C)

NAME
getpass - read a password

SYNOPSIS
'include <stdlib.h>

char *getpass (const char *pronpt);

DESCRIPTION

FILES

NOTE

10/89

getpass reads up to a newline or EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters.
If /dev/tty cannot be opened, a null pointer is returned. An interrupt will ter­
minate input and send an interrupt signal to the calling program before return­
ing.

/dev/tty

The return value points to static data whose content is overwritten by each call.

Page 1

getpw(3C)

NAME
getpw - get name from UID

SYNOPSIS
tinclude <stdlib.h>

int getpw (uid _ t uid, char *buf);

DESCRIPTION

getpw(3C)

getpw searches the password file for a user id number that equals uid, copies the
line of the password file in which uid was found into the array pointed to by buf,
and returns O. getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should not
be used; see getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C).
passwd(4) in the System Administrator's Reference Manual.

DIAGNOSTICS
getpw returns non-zero on error.

10/89 Page 1

getpwent (3C) getpwent (3C)

NAME
getpwent, getpwuid. getpwnam, setpwent, endpwent, fgetpwent - manipulate
password file entry

SYNOPSIS
tinclude <pwd.h>

struct passwd *getpwent (void);

struct passwd *getpwuid (uid_t uid);

struct passwd *getpwnam (const char *name);

void setpwent (void);

void endpwent (void);

struct passwd *fgetpwent (FILE *f);

DESCRIPTION

FILES

10/89

getpwent, getpwuid, and getpwnam each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the / etc/passwd
file. Each line in the file contains a passwd structure, declared in the pwd. h
header file:

struct passwd {

} ;

char *pw _name;
char *pw~sswd;
uid tpw uid;
gid::::tpw::::gid;
char *pw age;
char *pw:::: conment;
char *pw gecos;
char *pw - dir;
char *pw:::: shell;

getpwent when first called returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file; so suc­
cessive calls can be used to search the entire file. getpwuid searches from the
beginning of the file until a numerical user id matching uid is found and returns
a pointer to the particular structure in which it was found. getpwnam searches
from the beginning of the file until a login name matching name is found, and
returns a pointer to the particular structure in which it was found. If an end-of­
file or an error is encountered on reading, these functions return a null pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. endpwent may be called to close the password file when pro­
cessing is complete.

fgetpwent returns a pointer to the next passwd structure in the stream f, which
matches the format of / etc/passwd

/etc/passwd

Page 1

getpwent (3C) getpwent (3C)

SEE ALSO
getlogin(3C), getgrent(3C).
passwd(4) in the System Administrator's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

getpwent, getpwnid, getpwnam, and fgetpwent return a null pointer on EOF or
error.

All information is contained in a static area, so it must be copied if it is to be
saved.

10/89

gets (3S) gets{3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
tinclude <stdio.h>

char *gets (char *s);

char *fgets (char *s, int n, FILE *stream);

DESCRIPTION
gets reads characters from the standard input stream [see intro(3)], stdin, into
the array pointed to by 5, until a newline character is read or an end-of-file condi­
tion is encountered. The newline character is discarded and the string is ter­
minated with a null character.

fgets reads characters from the stream into the array pointed to by 5, until n-l
characters are read, or a newline character is read and transferred to 5, or an
end-of-file condition is encountered. The string is then terminated with a null
character.

When using gets, if the length of an input line exceeds the size of 5, indeter­
minate behavior may result. For this reason, it is strongly recommended that
gets be avoided in favor of fgets.

SEE ALSO
lseek(2), read(2), ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S),
stdio(3S), ungetc(3S).

DIAGNOSTICS

10/89

If end-of-file is encountered and no characters have been read, no characters are
transferred to 5 and a null pointer is returned. If a read error occurs, such as try­
ing to use these functions on a file that has not been opened for reading, a null
pointer is returned and the error indicator for the stream is set. If end-of-file is
encountered, the EOF indicator for the stream is set. Otherwise 5 is returned.

Page 1

getsubopt (3C) getsubopt (3C)

NAME
getsubopt - parse suboptions from a string

SYNOPSIS
tinclude <stdlib.h>

int getsubopt (char **optionp, char * const * tokens , char **valuep);

DESCRIPTION
getsubopt parses suboptions in a flag argument that was initially parsed by
getopt. These suboptions are separated by commas and may consist of either a
single token or a token-value pair separated by an equal sign. Since commas
delimit suboptions in the option string, they are not allowed to be part of the
suboption or the value of a suboption. A command that uses this syntax is
IOOunt(1M), which allows the user to specify mount parameters with the -0

option as follows:

IOOunt -0 rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of
which has an associated value of 1024.

getsubopt takes the address of a pointer to the option string, a vector of possible
tokens, and the address of a value string pointer. It returns the index of the
token that matched the suboption in the input string or -1 if there was no match.
If the option string at optionp contains only one subobtion, getsubopt updates
optionp to point to the null character at the end of the string; otherwise it isolates
the suboption by replacing the comma separator with a null character, and
updates optionp to point to the start of the next suboption. If the suboption has
an associated value, getsubopt updates valuep to point to the value's first charac­
ter. Otherwise it sets valuep to NULL.

The token vector is organized as a series of pointers to null strings. The end of
the token vector is identified by a null pointer.

When getsubopt returns, if valuep is not NULL, then the suboption processed
included a value. The calling program may use this information to determine if
the presence or lack of a value for this subobtion is an error.

Additionally, when getsubopt fails to match the suboption with the tokens in
the tokens array, the calling program should decide if this is an error, or if the
unrecognized option should be passed to another program.

EXAMPLE

10/89

The following code fragment shows how to process options to the IOOunt com­
mand using getsubopt.

tinclude <stdlib.h>

char *myopts [] = {
tdefine READONLY 0

"ro" ,
tdefine READWRlTE 1

"rw",

Page 1

getsubopt(3C) getsubopt (3C)

Page 2

tdefine WRlTESIZE 2
"wsize",

tdefine READSIZE 3
"rsize",
NULL};

main (argc, argv)
int argc;
char **argv;

int sc, c, errflag;
char * options, *value;
extern char *optarg;
extern int optind;

while «c = getopt (argc, argv, "abf: 0: "}) ! = -1) {
switch (c) {
case ' a' : /* process a option */

break;
case 'b' : /* process b option */

break;
case ' f' :

ofile = optarg;
break;

case ' ?' :
errflag++;
break;

case '0':
options = optarg;
while (*options != '\0') {

switch(getsubopt(&options,myopts,&value)
case READONLY : /* process ro option */

break;
case READWRlTE / * process rw option * /

break;
case WRlTESIZE /* process wsize option */

if (value == NULL) {
error_no_argO;
errflag++;

else
write size = atoi(value);

break;
case READSIZE : /* process rsize option */

if (value == NULL) {
error_no _arg 0 ;
errflag++;

else

10/89

getsubopt (3C) getsubopt (3C)

read_size = atoi(value);
break;

default :

break;

if (errflag)

/* process unknown token */
error_bad_token(value);
errflag++;
break;

/* print usage instructions etc. */

for (; optind<argc; optind++) {
/* process remaining arguments */

SEE ALSO
getopt(3C).

DIAGNOSTICS

NOTES

10/89

getsubopt returns -1 when the token it is scanning is not in the token vector.
The variable addressed by valuep contains a pointer to the first character of the
token that was not recognized rather than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be parsed, or a null
character if there are no more options.

During parsing, commas in the option input string are changed to null characters.
White space in tokens or token-value pairs must be protected from the shell by
quotes.

Page 3

getut(3C) getut(3C)

NAME
getut: getutent, getutid, getutline,pututlin~ setutent, endutent, utmp­
name - access utmp file entry

SYNOPSIS
tinclude <utmp.h>

struct utmp *getutent (void);

struct utmp *getutid (const struct utmp *id);

struct utmp *getutline (const struct utmp *line);

struct utmp *pututline (const struct utmp *utmp);

void setutent (void);

void endutent (void);

int utmpname (const char *file);

DESCRIPTION

10/89

getutent, getutid, getutline, and pututline each return a pointer to a struc­
ture with the following members:

char ut user[8]; /* User login name */
char ut-id[4]; /* /etc/inittab id (usually line t) */
char ut-line[12]; /* device name (console, lnxx) */
short u(:Pid; /* process id */
short ut type; /* type of entry */
struct exit status {
} ut_exit; - /* The exit status of a process

/* marked as DEAD PROCESS. */
time t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp file until it finds an
entry with a ut _ type matching id->ut _type if the type specified is RUN _ LVL,
BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN PROCESS, USER PROCESS or DEAD PROCESS, then getutid will return a
pointer to the first entry whose type is one of these four and whose ut _ id field
matches id->ut _ ill. If the end of file is reached without a match, it fails.

getutline searches forward from the current point in the utmp file until it finds
an entry of the type LOGIN_PROCESS or USER_PROCESS that also has a ut _line
string matching the line->ut _line string. If the end of file is reached without a
match, it fails.

Page 1

getut(3C) getut{3C)

FILES

pututline writes out the supplied utnp structure into the utnp file. It uses
getutid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututline will have
searched for the proper entry using one of the getut routines. If so, pututline
will not search. If pututline does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utnp struc­
ture.

setutent resets the input stream to the beginning of the file. This reset should
be done before each search for a new entry if it is desired that the entire file be
examined.

endutent closes the currently open file.

utnpname allows the user to change the name of the file examined, from
/etc/utnp to any other file. It is most often expected that this other file will be
/ etc/wtnp. If the file does not exist, this will not be apparent until the first
attempt to reference the file is made. utnpname does not open the file. It just
closes the old file if it is currently open and saves the new file name. If the file
name given is longer than 79 characters, utnpname returns O. Otherwise, it will
return 1.

/etc/utnp
/etc/wtnp

SEE ALSO
ttyslot(3C), utnp(4).

DIAGNOSTICS

NOTES

Page 2

A NULL pointer is returned upon failure to read, whether for permissions or hav­
ing reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. On each call to either getutid
or getutline, the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks
no further. For this reason, to use getutline to search for multiple occurrences,
it would be necessary to zero out the static area after each success, or getutline
would just return the same structure over and over again. There is one exception
to the rule about emptying the structure before further reads are done. The
implicit read done by pututline (if it finds that it is not already at the correct
place in the file) will not hurt the contents of the static structure returned by the
getutent, getutid or getutline routines, if the user has just modified those
contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes trying
to modify the utnp and wtnp files.

10/89

hsearch (3C) hsearch (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
tinclude <search.h>

ENTRY *hsearch (ENTRY item, ACTION action);

int hcreate (size_t nel);

void hdestroy (void);

DESCRIPTION
hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D.
It returns a pointer into a hash table indicating the location at which an entry can
be found. The comparison function used by hsearch is strcrrp [see string(3C)].
item is a structure of type ENTRY (defined in the search.h header file) containing
two pointers: item.key points to the comparison key, and item.data points to any
other data to be associated with that key. (Pointers to types other than void
should be cast to pointer-to-void.) action is a member of an enumeration type
ACTION (defined in search. h) indicating the disposition of the entry if it cannot
be found in the table. ENTER indicates that the item should be inserted in the
table at an appropriate point. Given a duplicate of an existing item, the new item
is not entered and hsearch returns a pointer to the existing item. FIND indicates
that no entry should be made. Unsuccessful resolution is indicated by the return
of a null pointer.

hcreate allocates sufficient space for the table, and must be called before
hsearch is used. nel is an estimate of the maximum number of entries that the
table will contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another call to
hcreate.

EXAMPLE

10/89

The following example will read in strings followed by two numbers and store
them in a hash table, discarding duplicates. It will then read in strings and find
the matching entry in the hash table and print it out.

tinclude <stdio.h>
tinclude <search.h>
tinclude <string.h>
tinclude <stdlib.h>

struct info {
int age, room;

} ;

tdefine HUM EM?L

main()
{

/* this is the info stored in table */
/* other than the key */

5000 /* t of elements in search table */

/* space to store strings */

Page 1

hsearch (3C)

Page 2

hsearch (3C)

char string space [NUM EMPL*20];
/* space to-store employee info */
struct info info space [NUM EMPL] ;
/* next avail space in string space */
char *str-ptr = string_space;-
/* next avail space in info space */
struct info * info -ptr = info_space;
ENTRY item, *found item;
/ * name to look for in table * /
char name to find[30];
int i = 0; -

/* create table */
(void) hcreate(NUM_EHPL);
while (scanf("%s%d%d", str-ptr, &info-ptr->age,

&info-ptr->room) != EOF && i++ < NUM].MI?L)
/* put info in structure, and structure in item */
item. key = str-ptr;
item.data = (void *)info-ptr;
str-ptr += strlen(str-ptr) + 1;
info -ptr++;
/* put item into table */
(void) hsearch (item, ENTER);

/* access table */
item. key = name to find;
while (scanf ("%s",-item. key) !=EOF) {

if «found item = hsearch(item, FIND» != NULL) {
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found it~>key,
«struct info *)found it~>data)->age,
«struct info *) found-it~>data)->room);

else { -
(void) printf ("no such employee %s\n",

name_to_find)

return 0;

10/89

hsearch (3C) hsearch (3C)

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS

NOTES

10/89

hsearch returns a null pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

hcreate returns zero if it cannot allocate sufficient space for the table.

hsearch and hcreate use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

Page 3

Insque(3C) Insque(3C)

NAME
insque, renque - insert/remove element from a queue

SYNOPSIS
include <search.h>

void insque (struct qelem *elem, struct qelem *pred);

void renque (struct qelem *elem);

DESCRIPTION

10/89

insque and renque manipulate queues built from doubly linked lists. Each ele­
ment in the queue must be in the following form:

struct qelem
struct qelem *<Lforw;
struct qelem *<Lback;
char <L data [] ;

};

insque inserts e1em in a queue immediately after pred. renque removes an entry
e1em from a queue.

Page 1

Isnan(3C) Isnan(3C)

NAME
isnan, isnand, isnanf, finite, fpclass, unordered - determine type of
floating-point number

SYNOPSIS
'inelude <ieeefp.h>

int isnand (double dsre);

int isnanf (float fsre);

int finite (double dsre);

fpclass_t fpclass (double dsre);

int unordered (double dsrel, double dsre2);

'inelude <math.h>

int isnan (double dsre);

DESCRIPTION
isnan, isnand, and isnanf return true (1) if the argument dsre or fsre is a NaN;
otherwise they return false (0). The functionalty of isnan is identical to that of
isnand.

isnanf is implemented as a macro included in the ieeefp.h header file.

fpclass returns the class the dsre belongs to. The 10 possible classes are as fol­
lows:

FP SNAN
FP_QNAN
FP NINF
FP PINF
FP NDENORM
FP PDENORM
FP NZERO
FP-PZERO
FP NNORM
FP PNORM

signaling NaN
quiet NaN
negative infinity
positive infinity
negative denormalized non-zero
positive denormalized non-zero
negative zero
positive zero
negative normalized non-zero
positive normalized non-zero

finite returns true (1) if the argument dsre is neither infinity nor NaN; otherwise
it returns false (0).

unordered returns true (1) if one of its two arguments is unordered with respect
to the other argument. This is equivalent to reporting whether either argument is
NaN. If neither of the arguments is NaN, false (0) is returned.

None of these routines generate any exception, even for signaling NaNs.

SEE ALSO
fpgetround(3C), intro(3M).

10/89 Page 1

13tol(3C) 13tol(3C)

NAME
l3tol, lto13 - convert between 3-byte integers and long integers

SYNOPSIS
tinclude <stdlib.h>

void l3tol (long *lp, const char *cp, int n);

void lto13 (char *cp, const long *lp, int n);

DESCRIPTION
13tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp.

Itol3 performs the reverse conversion from long integers (lp) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block numbers
are three bytes long.

SEE ALSO
fs(4).

NOTES

10/89

Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

Page 1

localeconv (3C) localeconv (3C)

NAME
localeconv - get numeric formatting information

SYNOPSIS
'include <locale.h>

struct lconv *localeconv (void);

DESCRIPTION

10/89

localeconv sets the components of an object with type struct lconv (defined
in locale. h) with the values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale [see
setlocale(3C)j. The definition of struct lconv is given below (the values for
the fields in the C locale are given in comments):

char *decimalyoint; /* */
char *thousands sep; /* (zero length string) */
char *grouping;- /* */
char *int curr synbol; /* */
char *currency-synbol; /* */
char *IOOn_deci.iiia.lyoint; /* */
char *IOOn thousands sep; /* */
char *IOOn -grouping; - /* * /
char *posItive_sign; /* */
char *negative sign; /* */
char int_frac_digits; /* CHAR MAX */
char frac_digits; /* CHAR=MAX */
char p _ cs ""precedes; /* CHAR MAX * /
char p_sep_by_space; /* CHAR-MAX */
char n _ cs ""precedes; /* CHAR-MAX * /
char n sep by space; /* CHAR-MAX */
char p=sigOyOsn; /* CHAR-MAX */
char n_signyosn; /* CHAR=MAX */

The members of the structure with type char * are strings, any of which (except
decimalyoint) can point to , to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in the limits.h header file) to
indicate that the value is not available in the current locale. The members are the
following:

char *decimal ""point
The decimal-point character used to format non-monetary quantities.

char *thousands sep
The character used to separate groups of digits to the left of the decimal­
point character in formatted non-monetary quantities.

char *.grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted non­
monetary quantity. The elements of grouping are interpreted according
to the following:

Page 1

localeconv (3C) localeconv (3C)

Page 2

No further grouping is to be performed. CHAR-MAX

o The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size
of the next group of digits to the left of the current group.

char * int curr symbol
The international currency symbol applicable to the current locale, left­
justified within a four-character space-padded field. The character
sequences should match with those specified in: ISO 4217 Codes for the
Representation of Currency and Funds.

char *currency symbol
The local currency symbol applicable to the current locale.

char *lOOn _decimal JX>int
The decimal point used to format monetary quantities.

char *lOOn thousands sep
The separator for groups of digits to the left of the decimal point in for­
matted monetary quantities.

char *lOOn grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted mone­
tary quantity. The elements of lOOn_grouping are interpreted according
to the rules described under grouping.

char *positive sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char *negative sign
The string used to indicate a negative-valued formatted monetary quan­
tity.

char int frac digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in an internationally formatted monetary quantity.

char frac digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in a formatted monetary quantity.

char p _ cs ""precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds
the value for a nonnegative formatted monetary quantity.

char p sep by space
-Set to ror 0 if the currency_symbol respectively is or is not separated
by a space from the value for a nonnegative formatted monetary quantity.

10/89

localeconv(3C) localeconv (3C)

char n _ cs yrecedes
Set to 1 or 0 if the currency_syni:>ol respectively precedes or succeeds
the value for a negative formatted monetary quantity.

char n sep by space
-Set to 1-or 0 if the currency _ syni:>ol respectively is or is not separated
by a space from the value for a negative formatted monetary quantity.

char p_signyosn
Set to a value indicating the positioning of the positive_sign for a non­
negative formatted monetary quantity. The value of p _sign yosn is
interpreted according to the following:

o Parentheses surround the quantity and currency_syni:>ol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_syni:>ol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

char n _sign yosn
Set to a value indicating the positioning of the negative_sign for a
negative formatted monetary quantity. The value of n_signyosn is
interpreted according to the rules described under p_signyosn.

EXAMPLES

10/89

The following table illustrates the rules used by four countries to format mone­
tary quantities.

Country Positive format Negative format International format

Italy
Netherlands
Norway
Switzerland

L.1.234
F 1.234,56
krl.234,56
SFrs.1,234.56

-L.1.234
F -1.234,56
krl.234,56-
SFrs.1,234.56C

ITL.1.234
NLG 1.234,56
NOK 1.234,56
CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by localeconv are as follows:

Italy Netherlands Norway Switzerland

int_curr_symbol "ITL." "NLG " "NOK " "CHF "
currency syni:>ol I1L." ifF" "kr" "SFrs."
IOOn_d.eciiiialyoint "n " " " " II " , ,
IOOn_thousands_sep " " " " " " " " ,
lOOn grouping "\3" "\3" "\3" "\3"
posItive_sign
negative sign n_n n_n It_U "C"
int_frac::::digits 0 2 2 2
frac_digits 0 2 2 2
p_csyrecedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_csyrecedes 1 1 1 1

Page 3

localeconv (3C)

FILES

n sep by space
p=:sigilyOsn
n _sign J>Osn

o
1
1

/usr/lib/locale/locale/LC K>NETARY
/usr/ lib/ locale/locale/LC =: NUMERIC

SEE ALSO

1
1
4

chrtbl(1M), IOOntbl(1M), setlocale(3C).

DIAGNOSTICS

o
1
2

localeconv (3C)

o
1
2

LC K>NETARY database for locale
LC-NUMERIC database for locale

localeconv returns a pointer to the filled-in object. The structure pointed to by
the return value may be overwritten by a subsequent call to localeconv.

Page 4 10/89

lockf(3C} lockf(3C}

NAME
lockf - record locking on files

SYNOPSIS
tinclude <unistd.h>

int lockf (int fildes, int function, long size);

DESCRIPTION

10/89

lockf allows sections of a file to be locked; advisory or mandatory write locks
depending on the mode bits of the file [see chmod(2»). Locking calls from other
processes that attempt to lock the locked file section will either return an error
value or be put to sleep until the resource becomes unlocked. All the locks for a
process are removed when the process terminates. [See fcntl(2) for more infor­
mation about record locking.)

fildes is an open file deScriptor. The file descriptor must have O_WRONLY or
0_ RDWR permission in order to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in unistd.h as follows:

tdefine F ULOCK 0 /* unlock previously locked section */
tdefine F-LOCK 1 /* lock section for exclusive use */
tdefine F-TLOCK 2 /* test & lock section for exclusive use */
tdefine F-TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F _TEST is used to detect if a lock by another process is present on the specified
section. F LOCK and F TLOCK both lock a section of a file if the section is avail­
able. F uLOcK removeS-locks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to
be locked or unlocked starts at the current offset in the file and extends forward
for a positive size and backward for a negative size (the preceding bytes up to
but not including the current offset). If size is zero, the section from the current
offset through the largest file offset is locked (Le., from the current offset through
the present or any future end-of-file). An area need not be allocated to the file in
order to be locked as such locks may exist past the end-of-file.

The sections locked with F _LOCK or F _ TLOCK may, in whole or in part, contain or
be contained by a previously locked section for the same process. Locked sec­
tions will be unlocked starting at the the point of the offset through size bytes or
to the end of file if size is (off t) O. When this situation occurs, or if this situa­
tion occurs in adjacent sections, the sections are combined into a single section. If
the request requires that a new element be added to the table of active locks and
this table is already full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F _LOCK will cause the calling process to sleep until the resource is
available. F TLOCK will cause the function to return a -1 and set errno to
EACCES if the section is already locked by another process.

Page 1

lockf(3C) lockf(3C)

F _ ULOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining
sections are still locked by the process. Releasing the center section of a locked
section requires an additional element in the table of active locks. If this table is
full, an errno is set to ENOLK and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process's locked resource. Thus calls to lockf or
fentl scan for a deadlock prior to sleeping on a locked resource. An error
return is made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm system call may
be used to provide a timeout facility in applications that require this facility.

lockf will fail if one or more of the following are true:

EBADF fildes is not a valid open descriptor.

EAGAIN

EDEADLK

ENOLK

EC~

cmd is F TLOCK or F TEST and the section is already locked by
another process. -

cmd is F LOCK and a deadlock would occur.

cmd is F LOCK, F TLOCK, or F ULOCK and the number of entries in
the lock table woUid exceed the number allocated on the system.

fildes is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
intro(2), alann(2), ehmod(2), elose(2), ereat(2), fentl(2), open(2), read(2),
write(2).

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard
I/O package is the most common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN rather than EACCES
when a section of a file is already locked by another process, portable application
programs should expect and test for either value.

10/89

lsearch (3C) lsearch (3C)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
'include <search.h>

void *lsearch (const void *key, void * base, size t *nelp,
size_t width, int (*compar) (const void *, const void *»;

void *lfind (const void *key, const void *base, size t *nelp,
size_t width, int (*compar) (const void *, const void *»;

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table. key points to the datum
to be sought in the table. base points to the first element in the table. nelp points
to an integer containing the current number of elements in the table. The integer
is incremented if the datum is added to the table. width is the size of an element
in bytes. compar is a pointer to the comparison function that the user must supply
(strcnp, for example). It is called with two arguments that point to the elements
being compared. The function must return zero if the elements are equal and
non-zero otherwise.

lfind is the same as lsearch except that if the datum is not found, it is not
added to the table. Instead, a null pointer is returned.

NOTES
The pointers to the key and the element at the base of the table may be pointers
to any type.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value returned should be cast into type pointer-to-element.

EXAMPLE

10/89

This program will read in less than TABSIZE strings of length less than ELSIZE
. and store them in a table, eliminating duplicates, and then will print each entry.

'include <search.h>
'include <string.h>
'include <stdlib.h>
'include <stdio.h>

'define TABSIZE 50
'define ELSIZE 120

main 0
{

char line[ELSIZE); /* buffer to hold input string */
char tab[TABSIZE) [ELSIZE); /* table of strings */
size_t nel = 0; /* nWli>er of entries in tab */
int i;

Page 1

Isearch (3C) Isearch (3C)

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) lsearch(line, tab, &nel, ELSIZE, mycnp);

for(i = 0; i < nel; i++)
(void)fputs(tab[i], stdout);

return 0;

SEE ALSO

NOTES

Page 2

bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

If the searched-for datum is found, both lsearch and lfind return a pointer
to it. Otherwise, lfind returns NULL and lsearch returns a pointer to the
newly added element.

Undefined results can occur if there is not enough room in the table to add
a new item.

10/89

malloc(3C) malloc(3C)

NAME
malloc, free, realloc, calloc - memory allocator

SYNOPSIS
'include <stdlib.h>

void *malloc (size_t size);

void free (void *ptr);

void *realloc (void *ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.
malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc,
calloc or realloc. After free is performed this space is made available for
further allocation. If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes. If ptr is NULL, realloc behaves like malloc
for the specified size. If size is zero and ptr is not a null pointer, the object
pointed to is freed.

calloc allocates space for an array of ne1em elements of size elsize. The space is
initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

malloc, realloc, and calloc will fail if there is not enough available memory.

SEE ALSO
malloc(3X).

DIAGNOSTICS

10/89

If there is no available memory, malloc, realloc, and calloc return a null
pointer. When realloc returns NULL, the block pointed to by ptr is left intact. If
size, ne1em or elsize is 0, a unique pointer to the arena is returned.

Page 1

mbchar(3C} mbchar(3C}

NAME
mbchar: rrbtowc, rrblen, wctorrb - multibyte character handling

SYNOPSIS
tinclude <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size t n);

int mblen (const char *s, size_t n);

int wctomb (char *s, wchar_t wchar);

DESCRIPTION

10/89

Multibyte characters are used to represent characters in an extended character set.
This is needed for locales where 8 bits are not enough to represent all the charac­
ters in the character set.

The multibyte character handling functions provide the means of translating mul­
tibyte characters into wide characters and back again. Wide characters have type
wchar_t (defined in stdlib.h), which is an integral type whose range of values
can represent distinct codes for all members of the largest extended character set
specified among the supported locales.

A maximum of 3 extended character sets are supported for each locale. The
number of bytes in an extended character set is defined by the LC_CTYPE category
of the locale [see setlocale(3C)]. However, the maximum number of bytes in
any multibyte character will never be greater than MB _ LEN_MAX (see stdlib. h).
The maximum number of bytes in a character in an extended character set in the
current locale is given by the macro MB_CUR_MAX (see stdlib.h).

rrbtowc determines the number of bytes that comprise the multibyte character
pointed to by s. Also, if pwc is not a null pointer, mbtowc converts the multibyte
character to a wide character and places the result in the object pointed to by pwc.
(The value of the wide character corresponding to the null character is zero.) At
most n characters will be examined, starting at the character pointed to by s.

If 5 is a null pointer, rrbtowc simply returns O. If 5 is not a null pointer, then, if 5

points to the null character, rrbtowc returns 0; if the next n or fewer bytes form a
valid multibyte character, mbtowc returns the number of bytes that comprise the
converted multibyte character; otherwise,s does not point to a valid multibyte
character and mbtowc returns -1.

mblen determines the number of bytes comprising the multibyte character
pointed to by s. It is equivalent to

rrbtowc «wchar_t *) 0, s, n);

wctomb determines the number of bytes needed to represent the multibyte charac­
ter corresponding to the code whose value is wclu2r, and, if 5 is not a null pointer,
stores the multibyte character representation in the array pointed to by s. At
most MB CUR MAX characters are stored.

Page 1

mbchar(3C) mbchar(3C)

If s is a null pointer, wctotrb simply returns o. If s is not a null pointer, wctoITb
returns -1 if the value of wchar does not correspond to a valid multibyte charac­
ter; otherwise it returns the number of bytes that comprise the multibyte charac­
ter corresponding to the value of wchar.

SEE ALSO
chrtbl(1M), mbstring(3C), setlocale(3C), environ(5).

Page 2 10/89

mbstrlng (3C) mbstring (3C)

NAME
mstring: mstowcs, wcstoJl'bs - multibyte string functions

SYNOPSIS
tinclude <stdlib.h>

size_t mstowcs (wchar_t *pwcs, const char *s, size_t n);

size_t wcstoJl'bs (char *s, const wchar_t *pwcs, size_t n);

DESCRIPTION
mstowcs converts a sequence of multibyte characters from the array pointed to
by 5 into a sequence of corresponding wide character codes and stores these
codes into the array pointed to by PWC5, stopping after n codes are stored or a
code with value zero (a converted null character) is stored. If an invalid multi­
byte character is encountered, mstowcs returns (size _ t)-l. Otherwise,
mstowcs returns the number of array elements modified, not including the ter­
minating zero code, if any.

wcstOll'i::ls converts a sequence of wide character codes from the array pointed to
by pwC5 into a sequence of multibyte characters and stores these multibyte charac­
ters into the array pointed to by 5, stopping if a multibyte character would exceed
the limit of n total bytes or if a null character is stored. If a wide character code
is encountered that does not correspond to a valid multibyte character, wcstoJl'bs
returns (size _ t)-l. Otherwise, wcstoJl'bs returns the number of bytes modified,
not including a terminating null character, if any.

SEE ALSO
chrtbl(1M), Jl'bchar(3C), setlocale(3C), environ(5).

10/89 Page 1

memory (3C) memory (3C)

NAME
rnem;)ry: men¥::CPY, men¥::hr, mem:::np, memc::py, ~ve, memset - memory opera­
tions

SYNOPSIS
tinclude <string.h>

void *men¥::CPY (void *sl, const void *s2, int c, size t n);

void *men¥::hr (const void *s, int c, size_t n);

int mem:::np (const void *sl, const void *s2, size_t n);

void *memcpy (void *sl, const void *s2, size_t n);

void *~ve (void *sl, const void *s2, size t n);

void *memset (void *s, int c, size_t n);

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
bytes bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

rnenccpy copies bytes from memory area 52 into 51, stopping after the first
occurrence of c (converted to an unsigned char) has been copied, or after n
bytes have been copied, whichever comes first. It returns a pointer to the byte
after the copy of c in 51, or a null pointer if c was not found in the first n bytes
of 52.

rnenchr returns a pointer to the first occurrence of c (converted to an unsigned
char) in the first n bytes (each interpreted as an unsigned char) of memory area
5, or a null pointer if c does not occur.

mem:::np compares its arguments, looking at the first n bytes (each interpreted as
an unsigned char), and returns an integer less than, equal to, or greater than 0,
according as 51 is leXicographically less than, equal to, or greater than 52 when
taken to be unsigned characters.

memcpy copies n bytes from memory area 52 to 51. It returns 51.

meIlI'OOVe copies n bytes from memory areas 52 to 51. Copying between objects
that overlap will take place correctly. It returns 51.

memset sets the first n bytes in memory area 5 to the value of c (converted to an
unsigned char). It returns 5.

SEE ALSO
string(3C).

10/89 Page 1

mkfifo(3C) mkflfo(3C)

NAME
mkfifo - create a new FIFO

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stat.h>

int mkfifo (const char *path, lOOde_t m::x1e);

DESCRIPTION
The mkfifo routine creates a new FIFO special file named by the pathname
pointed to by path. The mode of the new FIFO is initialized from mode. The file
permission bits of the mode argument are modified by the process's file creation
mask [see umask(2»).

The FIFO's owner id is set to the process's effective user id. The FIFO's group id
is set to the process's effective group id, or if the S_ISGID bit is set in the parent
directory then the group id of the FIFO is inherited from the parent.

mkfifo calls the system call mknod to make the file.

SEE ALSO
chm::x1(2), exec(2), mknod(2), wnask(2), fs(4), stat(5).
mkdir(l) in the User's Reference Manual.

DIAGNOSTICS

NOTES

10/89

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Bits other than the file permission bits in mode are ignored.

Page 1

mktemp(3C)

NAME
mktenp - make a unique file name

SYNOPSIS
tinclude <stdlib.h>

char *mktenp (char *tenplate);

DESCRIPTION

mktemp(3C)

mktenp replaces the contents of the string pointed to by template with a unique
file name, and returns template. The string in tempklte should look like a file
name with six trailing Xs; mktenp will replace the xs with a character string that
can be used to create a unique file name.

SEE ALSO
tnpfile(3S), tnpnam(3S).

DIAGNOSTIC
mktenp will assign to tempklte the empty string if it cannot create a unique name.

NOTES
mktenp can create only 26 unique file names per process for each unique template.

10/89 Page 1

mktlme(3C) mktime(3C)

NAME
mlctime - converts a tm structure to a calendar time

SYNOPSIS
tinclude <time.h>

time_t mktime (struct tm *timeptr);

DESCRIPTION

10/89

mlctime converts the time represented by the tm structure pointed to by timeptr
into a calendar time (the number of seconds since 00:00:00 UTe, January 1, 1970).

The tm structure has the following format.

struct tm {
int tm sec; /* seconds after the minute [0, 61] */
int tm=min; /* minutes after the hour [0, 59] */
int tm_hour; /* hour since midnight [0, 23] */
int tm_m::Iay; /* day of the month [1, 31] */
int tm_mon; / * months since January [0, 11] */
int tm~ar; /* years since 1900 */
int tm_wday; /* days since Sunday [0, 6] */
int tlnJday; /* days since January 1 [0, 365] */
int tm_isdst; /* flag for daylight savings time */

} ;

In addition to computing the calendar time, mlctime normalizes the supplied tm
structure. The original values of the tm_wday and tm""yday components of the
structure are ignored, and the original values of the other components are not
restricted to the ranges indicated in the definition of the structure. On successful
completion, the values of the tm_wday and tm""yday components are set appropri­
ately, and the other components are set to represent the specified calendar time,
but with their values forced to be within the appropriate ranges. The final value
of tm_m::Iay is not set until tm_mon and tm...,Year are determined.

The original values of the components may be either greater than or less than the
specified range. For exam pIe, a tm _hour of -1 means 1 hour before midnight,
tm_m::Iay of 0 means the day preceding the current month, and tm_mon of -2
means 2 months before January of tm....Year.

If tm _ isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise,
if tm_ isdst is zero, the original values are assumed to be in the main timezone
and are converted to the alternate timezone if the main timezone is not valid. If
tm_isdst is negative, the correct timezone is determined and the components are
not adjusted.

Local timezone information is used as if mlctime had called tzset.

mlctime returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-l.

Page 1

mktlme(3C} mktlme(3C}

EXAMPLE
What day of the week is July 4, 2001?

tinclude <stdio.h>
tinclude <time.h>

static char *const wday[] = {

};

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

struct tm time str;
/* ... */ -
time_str.tm~ar= 2001 - 1900;
time str.tm IlDn - 7 - 1;
time-str.tm-mday= 4;
time-str.tm-hour= 0;
time=str.tm=min = 0;
time_str.tm_sec = 1;
time str.tm isdst = -1;
if <iiiktime{&time str)= -1)

time str. tm wday=7;
printf ("%s\n", wday[time_str. tm_wday]) ;

SEE ALSO

NOTES

Page 2

ctime(3C), getenv(3C), timezone(4).

tm~ar of the tm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

10/89

monitor (3C) monitor (3C)

NAME
m:>nitor - prepare execution profile

SYNOPSIS
tinclude <mon.h>

void m:>nitor (int (*lowpc) (), int (*highpc) (), WORD *buffer,
size_t bufsize, size_t nfunc);

DESCRIPTION

10/89

monitor is an interface to profil, and is called automatically with default
parameters by any program created by cc -po Except to establish further control
over profiling activity, it is not necessary to explicitly call monitor.

When used, monitor is called at least at the beginning and the end of a program.
The first call to monitor initiates the recording of two different kinds of
execution-profile information: execution-time distribution and function call count.
Execution-time distribution data is generated by profil and the function call
counts are generated by code supplied to the object file (or files) by cc -po Both
types of information are collected as a program executes. The last call to moni­
tor writes this collected data to the output file mon. out.

lowpc and highpc are the beginning and ending addresses of the region to be
profiled.

buffer is the address of a user-supplied array of WORD (WORD is defined in the
header file mon .h). buffer is used by monitor to store the histogram generated by
profil and the call counts.

bufsize identifies the number of array elements in buffer.

nfunc is the number of call count cells that have been reserved in buffer. Addi­
tional call count cells will be allocated automatically as they are needed.

bufsize should be computed using the following formula:

where:

size of buffer =
- sizeof (struct hdr) +

nfunc * sizeof(struct cnt) +
((highpc-lowpc) /BARSIZE) * sizeof (WORD) +
sizeof(WORD) - 1 ;

bufsize = (size_of_buffer / sizeof(WORD» ;

lowpc, highpc, nfunc are the same as the arguments to monitor;

BARSIZE is the number of program bytes that correspond to each histo­
gram bar, or cell, of the profil buffer;

the hdr and cnt structures and the type WORD are defined in the header
file mon.h.

Page 1

monitor (3C) monitor (3C)

FILES

The default call to IOOnitor is shown below:

IOOnitor (&eprol, &etext, wbuf, wbufsz, 600);
where:

eprol is the beginning of the user's program when linked with cc -p [see
end(3C)];

etext is the end of the user's program [see end(3C)];

wbuf is an array of WORD with wbufsz elements;

wbufsz is computed using the bufsize formula shown above with BARSIZE
of 8;

600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribu­
tion histogram that uses profil for the entire program, initially reserves room
for 600 call count cells in buffer, and prOVides for enough histogram cells to gen­
erate significant distribution-measurement results. [For more information on the
effects of bufsize on execution-distribution measurements, see profil(2).]

To stop execution monitoring and write the results to a file, use the following:

IOOnitor((int (*) ())0, (int (*) ())0, (WORD *)0, 0, 0);

Use prof to examine the results.

IOOn.out

SEE ALSO

NOTE

Page 2

cc(1), prof(1), profil(2), end(3C).

Additional calls to IOOnitor after main has been called and before exit has been
called will add to the function-call count capacity, but such calls will also replace
and restart the profil histogram computation.

The name of the file written by IOOnitor is controlled by the environment vari­
able PROFDIR. If PROFDIR does not exist, the file lOOn. out is created in the
current directory. If PROFDIR exists but has no value, IOOnitor does no profiling
and creates no output file. If PROFDIR is dirtulme, and IOOnitor is called automati­
cally by compilation with cc -p, the file created is dirtulme/pid.progtulme where
progname is the name of the program.

10/89

offsetof (3C)

NAME
offsetof - offset of structure member

SYNOPSIS
tinclude <stddef.h>

size_t offsetof (type, member-designator);

DESCRIPTION

offsetof(3C)

offsetof is a macro defined in stddef. h which expands to an integral constant
expression that has type size _ t, the value of which is the offset in bytes, to the
structure member (designated by member-designator), from the beginning of its
structure (designated by type).

10/89 Page 1

perror(3C) perror(3C)

NAME
perror - print system error messages

SYNOPSIS
tinclude <stdio.h>

void perror (const char *s);

DESCRIPTION
perror produces a message on the standard error output (file descriptor 2),
describing the last error encountered during a call to a system or library function.
The argument string S is printed first, then a colon and a blank, then the message
and a newline. (However, if s is a null pointer or points to a null string, the
colon is not printed.) To be of most use, the argument string should include the
name of the program that incurred the error. The error number is taken from the
external variable errno, which is set when errors occur but not cleared when
non-erroneous calls are made.

SEE ALSO
intro(2), fmtmsg(3C), strerror(3C).

10/89 Page 1

popen(3S) popen(3S)

NAME
popen, pelose - initiate pipe to/from a process

SYNOPSIS
tinclude <stdio.h>

FILE *popen (const char *cOI'll'l'land, const char *type);

int pelose (FILE *stream);

DESCRIPTION
popen creates a pipe between the calling program and the command to be exe­
cuted. The arguments to popen are pointers to null-terminated strings. command
consists of a shell command line. type is an I/O mode, either r for reading or w
for writing. The value returned is a stream pointer such that one can write to the
standard input of the command, if the I/O mode is w, by writing to the file stream
[see intro(3)]; and one can read from the standard output of the command, if the
I/O mode is r, by reading from the file stream.

A stream opened by popen should be closed by pelose, which waits for the asso­
ciated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter
and a type w as an output filter.

EXAMPLE
Here is an example of a typical call:

tinclude <stdio.h>
tinclude <stdlib.h>

main()
{

char *ClIrl = "/usr/bin/ls *.c";
char buf[BUFSIZ];
FILE *ptr;

if «ptr = popen(ClIrl, "r"» != NULL)
while (fgets(buf, BUFSIZ, ptr) != NULL)

(void) printf ("%s", buf);
return 0;

This program will print on the standard output [see stdio(3S)] all the file names
in the current directory that have a . c suffix.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), stdio(3S), syste!ti3S).

DIAGNOSTICS
popen returns a null pointer if files or processes cannot be created.

pelose returns -1 if stream is not associated with a popened command.

10/89 Page 1

popen(3S) popen(3S)

NOTES

Page 2

If the original and popened processes concurrently read or write a common file,
neither should use buffered I/O. Problems with an output filter may be
forestalled by careful buffer flushing, e.g., with fflush [see fclose(3S)].

A security hole exists through the IFS and PATH environment variables. Full
pathnames should be used (or PATH reset) and IFS should be set to space and tab
(n \tn).

10/89

prlntf(3S) prlntf(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
tinclude <stdio.h>

int printf(const char * format, ... f* arqs *f);
int fprintf(FlLE *strm, const char * format, ... f* arqs */);

int sprintf(char *s, const char *format, ... f* arqs *f);
DESCRIPTION

10/89

printf places output on the standard output stream stdout.

fprintf places output on strm.

sprintf places output, followed by the null character (\0), in consecutive bytes
starting at s. It is the user's responsibility to ensure that enough storage is avail­
able. Each function returns the number of characters transmitted (not including
the \0 in the case of sprint f) or a negative value if an output error was encoun­
tered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains three types of objects defined
below:

1. plain characters that are simply copied to the output stream;

2. escape sequences that represent non-graphic characters;

3. conversion specifications.

The following escape sequences produce the associated action on display devices
capable of the action:

\a Alert. Ring the bell.

\b Backspace. Move the printing position to one character before the current
position, unless the current position is the start of a line.

\f Form feed. Move the printing position to the initial printing position of
the next logical page.

\n Newline. Move the printing position to the start of the next line.

\r Carriage return. Move the printing position to the start of the current
line.

\t Horizontal tab. Move the printing position to the next implementation­
defined horizontal tab position on the current line.

\v Vertical tab. Move the printing position to the start of the next
implementation-defined vertical tab position.

All forms of the printf functions allow for the insertion of a language-dependent
decimal-point character. The decimal-point character is defined by the program's
locale <category LC_NUMERIC). In the C locale, or in a locale where the decimal­
point character is not defined, the decimal-point character defaults to a period (.).

Page 1

prlntf{3S) prlntf{3S)

Page 2

Each conversion specification is introduced by the character %. After the charac­
ter %, the following appear in sequence:

An optional field, consisting of a decimal digit string followed by a $,
specifying the next args to be converted. If this field is not provided, the
args following the last args converted will be used.

Zero or more flags, which modify the meaning of the conversion
specification.

An optional string of decimal digits to specify a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag (-), described
below, has been given) to the field width.

An optional precision that gives the minimum number of digits to appear
for the d, i, 0, u, x, or X conversions (the field is padded with leading
zeros), the number of digits to appear after the decimal-point character for
the e, E, and f conversions, the maximum number of significant digits for
the g and G conversions, or the maximum number of characters to be
printed from a string in s conversion. The precision takes the form of a
period (.) followed by a decimal digit string; a null digit string is treated
as zero. Padding specified by the precision overrides the padding
specified by the field width.

An optional h specifies that a following d, i, 0, u, x, or X conversion
specifier applies to a short int or unsigned short int argument (the
argument will be promoted according to the integral promotions and its
value converted to short int or unsigned short int before printing);
an optional h specifies that a following n conversion specifier applies to a
pointer to a short int argument. An optional 1 (ell) specifies that a fol­
lowing d, i, 0, u, x, or X conversion specifier applies to a long int or
unsigned long int argument; an optional 1 (ell) specifies that a follow­
ing n conversion specifier applies to a pointer to long int argument. An
optional L specifies that a following e, E, f, g, or G conversion specifier
applies to a long double argument. If an h, 1, or L appears before any
other conversion specifier, the behavior is undefined.

A conversion character (see below) that indicates the type of conversion to
be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer args supplies the field width or precision. The args
that is actually converted is not fetched until the conversion letter is seen, so the
args specifying field width or precision must appear before the args (if any) to be
converted. If the precision argument is negative, it will be changed to zero. A
negative field width argument is taken as a - flag, followed by a positive field
width.

In format strings containing the *digits$ form of a conversion specification, a field I

width or precision may also be indicated by the sequence *digits$, giving the
position in the argument list of an integer args containing the field width or preci­
sion.

10/89

prlntf(3S) prlntf(3S)

10/89

When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N-1)th, be specified
in the format string.

The flag characters and their meanings are:

The result of the conversion will be left-justified within the field. (It will
be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or -).
(It will begin with a sign only when a negative value is converted if this
flag is not specified.)

space If the first character of a signed conversion is not a sign, a space will be
placed before the result. This means that if the space and + flags both
appear, the space flag will be ignored.

t The value is to be converted to an alternate form. For c, d, i, s, and u
conversions, the flag has no effect. For an ° conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or x)
conversion, a non-zero result will have Ox (or OX> prepended to it. For e,
E, f, g, and G conversions, the result will always contain a decimal-point
character, even if no digits follow the point (normally, a decimal point
appears in the result of these conversions only if a digit follows it). For 9
and G conversions, trailing zeros will not be removed from the result as
they normally are.

o For d, i, 0, U, x, X, e, E, f, g, and G conversions, leading zeros (following
any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored. For d, i, 0, u, x, and X conversions, if a preciSion is specified, the
o flag will be ignored. For other conversions, the behavior is undefined.

Each conversion character results in fetching zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), (unsigned
octal (0), unsigned decimal (u), or unsigned hexadecimal notation
(x and X). The x conversion uses the letters abcdef and the X
conversion uses the letters ABCDEF. The precision specifies the
minimum number of digits to appear. If the value being con­
verted can be represented in fewer digits than the specified
minimum, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a preci­
sion of zero is no characters.

f The double args is converted to decimal notation in the style
[-] ddd. ddd, where the number of digits after the decimal-point
character [see setlocale(3C») is equal to the precision
specification. If the precision is omitted from arg, six digits are
output; if the precision is explicitly zero and the t flag is not
specified, no decimal-point character appears. If a decimal-point

Page 3

prlntf(3S} prlntf(3S}

Page 4

e,E

g,G

c

s

p

n

%

character appears, at least 1 digit appears before it. The value is
rounded to the appropriate number of digits.

The double args is converted to the style [-] d • ddde±dd, where
there is one digit before the decimal-point character (which is
non-zero if the argument is non-zero) and the number of digits
after it is equal to the precision. When the precision is missing,
six digits are produced; if the precision is zero and the t flag is
not specified, no decimal-point character appears. The E conver­
sion character will produce a number with E instead of e intro­
ducing the exponent. The exponent always contains at least two
digits. The value is rounded to the appropriate number of digits.

The double args is printed in style f or e (or in style E in the case
of a G conversion character), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as
one. The style used depends on the value converted: style e (or
E) will be used only if the exponent resulting from the conver­
sion is less than - 4 or greater than or equal to the precision.
Trailing zeros are removed from the fractional part of the result.
A decimal-point character appears only if it is followed by a
digit.

The int args is converted to an unsigned char, and the result­
ing character is printed.

The args is taken to be a string (character pointer) and characters
from the string are written up to (but not including) a terminat­
ing null character; if the precision is specified, no more than that
many characters are written. If the precision is not specified, it is
taken to be infinite, so all characters up to the first null character
are printed. A NULL value for args will yield undefined results.

The args should be a pointer to void. The value of the pointer is
converted to an implementation-ciefined set of sequences of
printable characters, which should be the same as the set of
sequences that are matched by the %p conversion of the scanf
function.

The argument should be a pointer to an integer into which is
written the number of characters written to the output standard
I/O stream so far by this call to printf, fprintf, or sprintf.
No argument is converted.

Print a %; no argument is converted.

If the character after the % or %digits$ sequence is not a valid conversion character,
the results of the conversion are undefined.

If a floating-point value is the internal representation for infinity, the output is
[±linf, where in! is either inf or INF, depending on the conversion character.
Printing of the sign follows the rules described above.

10/89

prlntf(3S) prlntf(3S)

If a floating-point value is the internal representation for "not-a-number," the
output is [±)nanOxm. Depending on the conversion character, nan is either nan or
NAN. Additionally, Oxm represents the most significant part of the mantissa.
Again depending on the conversion character, x will be x or X, and m will use the
letters abcdef or ABCDEF. Printing of the sign follows the rules described above.

In no case does a non-existent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printf and
fprintf are printed as if the putc routine had been called.

EXAMPLE
To print a date and time in the form Sunday, July 3, 10: 02, where weekday
and IOOnth are pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d",
weekday, IOOnth, day, hour, min);

To print 1t to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0»;

SEE ALSO
exit(2), lseek(2), write(2), abort(3C), ecvt(3C), putc(3S), scanf(3S),
setlocale(3C), stdio(3S).

DIAGNOSTICS

10/89

printf, fprintf, and sprintf return the number of characters transmitted, or
return a negative value if an error was encountered.

Page 5

putc(3S) putc(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
tinclude <stdio.h>

int putc (int c, FILE *stream);

int putchar (int c);

int fputc (int c, FILE *stream);

int putw (int w, FILE *stream);

DESCRIPTION
putc writes c (converted to an unsigned char) onto the output stream [see
intro(3») at the position where the file pointer (if defined) is pointing, and
advances the file pointer appropriately. If the file cannot support positioning
requests, or stream was opened with append mode, the character is appended to
the output stream. putchar (c) is defined as putc (c, stdout). putc and
putchar are macros.

fputc behaves like putc, but is a function rather than a macro. fputc runs more
slowly than putc, but it takes less space per invocation and its name can be
passed as an argument to a function.

putw writes the word (Le., integer) w to the output stream (where the file pointer,
if defined, is pointing). The size of a word is the size of an integer and varies
from machine to machine. putw neither assumes nor causes special alignment in
the file.

SEE ALSO
exit(2), lseek(2), write(2), abort (3C), fclose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), puts(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

NOTES

10/89

On success, these functions (with the exception of putw) each return the value
they have written. putw returns ferror (stream). On failure, they return the
constant EOF. This result will occur, for example, if the file stream is not open for
writing or if the output file cannot grow.

Because it is implemented as a macro, putc evaluates a stream argument more
than once. In particular, putc(c, *f++); doesn't work sensibly. fputc should
be used instead.

Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a dif­
ferent processor.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (e.g., tundef putc).

Page 1

putenv(3C} putenv(3C}

NAME
putenv - change or add value to environment

SYNOPSIS
tinclude <stdlib.h>

int putenv (char +strinq);

DESCRIPTION
string points to a string of the form "name=value." putenv makes the value of the
environment variable name equal to value by altering an existing variable or creat­
ing a new one. In either case, the string pointed to by string becomes part of the
environment, so altering the string will change the environment. The space used
by string is no longer used once a new string-defining name is passed to putenv.
Because of this limitation, string should be declared static if it is declared within a
function.

SEE ALSO
exec(2), qetenv(3C), malloc(3C), environ(S).

DIAGNOSTICS

NOTES

10/89

putenv returns non-zero if it was unable to obtain enough space via malloc for
an expanded environment, otherwise zero.

putenv manipulates the environment pointed to by environ, and can be used in
conjunction with qetenv. However, envp (the third argument to main) is not
changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order. A
potential error is to call the function putenv with a pointer to an automatic vari­
able as the argument and to then exit the calling function while string is still part
of the environment.

Page 1

putpwent (3C)

NAME
putpwent - write password file entry

SYNOPSIS
tinclude <pwd.h>

int putpwent (const struct passwd *p, FILE *f);

DESCRIPTION

putpwent (3C)

putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure
created by getpwent (or getpwuid or getpwnam.), putpwent writes a line on the
stream /' which matches the format of /etc/passwd.

SEE ALSO
getpwent(3C).

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its operation, other­
wise zero.

10/89 Page 1

puts (3S) puts{3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
tinclude <stdio.h>

int puts (const char *s);

int fPuts (const char *s, FILE *stream);

DESCRIPTION
puts writes the string pointed to by s, followed by a new-line character, to the
standard output stream stdout [see intro(3»).

fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

SEE ALSO
exit(2), Iseek(2), write (2), abort(3C), fclose(3S), ferror(3S), fopen(3S),
fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS

NOTES

10/89

On success both routines return the number of characters written; otherwise they
return EOF.

puts appends a new-line character while fputs does not.

Page 1

qsort(3C) qsort(3C)

NAME
qsort - quicker sort

SYNOPSIS
tinclude <stdlib.h>

void qsort (void* base, size t nel, size t width), int (*compar)
(const void *, const void *»;

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It sorts a table of data
in place. The contents of the table are sorted in ascending order according to the
user-supplied comparison function.

base points to the element at the base of the table. nel is the number of elements
in the table. width specifies the size of each element in bytes. compar is the name
of the comparison function, which is called with two arguments that point to the
elements being compared. The function must return an integer less than, equal
to, or greater than zero to indicate if the first argument is to be considered less
than, equal to, or greater than the second.

The contents of the table are sorted in ascending order according to the user sup­
plied comparison function.

SEE ALSO

NOTES

10/89

bsearch(3C), lsearch(3C), string(3C).
sort(1) in the User's Reference Manual.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredict­
able.

Page 1

raise (3C)

NAME
raise - send signal to program

SYNOPSIS
'include <signal.h>

int raise (int sig);

DESCRIPTION
raise sends the signal sig to the executing program.

raise (3C)

raise returns zero if the operation succeeds. Otherwise, raise returns -1 and
errno is set to indicate the error. raise uses kill to send the signal to the exe­
cuting program:

kill(getpid(), sig);

See kill(2) for a detailed list of failure conditions. See signal(2) for a list of sig­
nals.

SEE ALSO
getpid(2), kill(2), signal(2).

10/89 Page 1

rand (3C) rand (3C)

NAME
rand. srand - simple random-number generator

SYNOPSIS
tinclude <stdlib.h>

int rand (void);

void srand (unsigned int seed);

DESCRIPTION

NOTES

rand uses a multiplicative congruential random-number generator with period 232

that returns successive pseudo-random numbers in the range from 0 to RAND_MAX
(defined in stdlib.h).

The function srand uses the argument seed as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to the function rand.
If the function srand is then called with the same seed value, the sequence of
pseudo-random numbers will be repeated. If the function rand is called before
any calls to srand have been made, the same sequence will be generated as when
srand is first called with a seed value of 1.

The spectral properties of rand are limited. drand48(3C) provides a much better,
though more elaborate, random-number generator.

SEE ALSO
drand48 (3C).

10f89 Page 1

remove (3C) remove (3C)

NAME
reIOOve - remove file

SYNOPSIS
tinclude <stdio.h>

int reIOOve(const char *path);

DESCRIPTION
reIOOve causes the file or empty directory whose name is the string pointed to by
path to be no longer accessible by that name. A subsequent attempt to open that
file using that name will fail, unless the file is created anew.

For files, reIOOve is identical to unlink. For directories, reIOOve is identical to
rnrlir.

See mrlir(2) and unlink(2) for a detailed list of failure conditions.

SEE ALSO
rnrlir(2), unlink(2).

RETURN VALUE

10/89

Upon successful completion, reIOOve returns a value of 0; otherwise, it returns a
value of -1 and sets errno to indicate an error.

Page 1

rename (3C)

NAME
rename - rename file

SYNOPSIS
'include <stdio.h>

int rename (const char *old, const char *new);

DESCRIPTION

rename (3C)

rename causes the file whose name is the string pointed to by old to be known by
the name given by the string pointed to by new. The file named old is no longer
accessible by that name. If a file named by the string pointed to by new exists
prior to the call to rename, rename fails.

rename returns zero if the operation succeeds. Otherwise, rename returns -1
and, if the file existed previously, it is still known by its original name.

rename simply performs the following operations:

link (old, new);
unlink (old) ;

[See link(2) and unlink(2) for a detailed list of failure conditions.]

SEE ALSO
link(2), unlink(2).

10/89 Page 1

scanf(3S) scanf(3S)

NAME
seanf, fseanf, sscanf - convert formatted input

SYNOPSIS
tinclude <stdio.h>

int scanf(const char * format, ...);

int fseanf(FlLE *strm, const char * format, ...);

int sscanf(const char *s, const char *format, ...);

DESCRIPTION

10/89

scanf reads from the standard input stream, stdin.

fseanf reads from the stream strm.

sseanf reads from the character string s.

Each function reads characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control string, format,
described below and a set of pointer arguments indicating where the converted
input should be stored. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are simply ignored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) that,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %) that must match the next character of the
input stream.

3. Conversion specifications consisting of the character % or the character
sequence %digits$, an optional assignment suppression character *, a
decimal digit string that specifies an optional numerical maximum field
width, an optional letter 1 (ell), L, or h indicating the size of the receiv­
ing object, and a conversion code. The conversion specifiers d, i, and n
should be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to
long into Similarly, the conversion specifiers 0, u, and x should be
preceded by h if the corresponding argument is a pointer to unsigned
short int rather than a pointer to unsigned int, or by 1 if it is a
pointer to unsigned long into Finally, the conversion specifiers e, f,
and g should be preceded by 1 if the corresponding argument is a
pointer to double rather than a pointer to float, or by L if it is a
pointer to long double. The h, 1, or L modifier is ignored with any
other conversion specifier.

A conversion specification directs the conversion of the next input field; the result
is placed in the variable pointed to by the corresponding argument unless assign­
ment suppression was indicated by the character *. The suppression of assign­
ment provides a way of describing an input field that is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next

Page 1

scanf(3S) scanf(3S)

inappropriate character or until the maximum field width, if one is specified, is
exhausted. For all descriptors except the character [and the character c, white
space leading an input field is ignored.

Conversions can be applied to the nth argument in the argument list, rather than
to the next unused argument. In this case, the conversion character % (see above)
is replaced by the sequence %digits$ where digits is a decimal integer n, giving the
position of the argument in the argument list. The first such argument, %1$,
immediately follows format. The control string can contain either form of a
conversion specification, i.e., % or %digits$, although the two forms cannot be
mixed within a single control string.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion codes
are valid:

% A single % is expected in the input at this point; no assignment is done.

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 10
for the base argument. The corresponding argument should be a pointer
to integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value
10 for the base argument. The corresponding argument should be a
pointer to unsigned integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 8
for the base argument. The corresponding argument should be a pointer
to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of the strtoul .function with
the value 16 for the base argument. The corresponding argument should
be a pointer to unsigned integer.

i Matches an optionally signed integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 0
for the base argument. The corresponding argument should be a pointer
to integer.

n No input is consumed. The corresponding argument should be a pointer
to integer into which is to be written the number of characters read from
the input stream so far by the call to the function. Execution of a %n
directive does not increment the assignment count returned at the comple­
tion of execution of the function.

e,f,g Matches an optionally signed floating point number, whose format is the
same as expected for the subject string of the strtod function. The
corresponding argument should be a pointer to floating.

~~2 1M9

scanf(3S) scanf(3S)

10/89

s

c

A character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

Matches a sequence of characters of the number specified by the field
width (1 if no field width is present in the directive). The corresponding
argument should be a pointer to the initial character of an array large
enough to accept the sequence. No null character is added. The normal
skip over white space is suppressed.

Matches a nonempty sequence of characters from a set of expected charac­
ters (the scanset). The corresponding argument should be a pointer to the
initial character of an array large enough to accept the sequence and a ter­
minating null character, which will be added automatically. The conver­
sion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (]). The characters between the
brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (A), in which case the scanset contains all char­
acters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins with [] or [A], the right
bracket character is in the scanlist and the next right bracket character is
the matching right bracket that ends the specification; otherwise the first
right bracket character is the one that ends the specification.

A range of characters in the scanset may be represented by the construct
first - last; thus [0123456789] may be expressed [0-9]. Using this con­
vention, first must be lexically less than or equal to last, or else the dash
will stand for itself. The character - will also stand for itself whenever it is
the first or the last character in the scanlist. To include the right bracket
as an element of the scanset, it must appear as the first character (possibly
preceded by a circumflex) of the scanlist and in this case it will not be
syntactically interpreted as the closing bracket. At least one character
must match for this conversion to be considered successful.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the %p conversion
of the printf function. The corresponding argument should be a pointer
to void. The interpretation of the input item is implementation-defined. If
the input item is a value converted earlier during the same program exe­
cution, the pointer that results shall compare equal to that value; other­
wise, the behavior of the %p conversion is undefined.

If an invalid conversion character follows the %, the results of the operation may
not be predictable.

The conversion specifiers E, G, and X are also valid and, under the -Xa and -Xc
compilation modes [see cc(1)], behave the same as e, g, and x, respectively.
Under the -Xt compilation mode, E, G, and X behave the same as Ie, 19, and Ix,
respectively.

Page 3

scanf(3S) scanf(3S)

Each function allows for detection of a language-dependent decimal point charac­
ter in the input string. The decimal point character is defined by the program's
locale (category LC_NUMERIC). In the "C" locale, or in a locale where the decimal
point character is not defined, the decimal point character defaults to a period (.).

The scanf conversion terminates at end of file, at the end of the control string, or
when an input character conflicts with the control string.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space, where permitted), execution of the current directive ter­
minates with an input failure; otherwise, unless execution of the current directive
is terminated with a matching failure, execution of the following directive (if any)
is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input char­
acter is left unread in the input stream. Trailing white space (including new-line
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed assignments is not directly determinable other than via
the %n directive.

EXAMPLES
The call to the function scanf:

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name
will contain thonpson\O.

The call to the function scanf:

int i; float x; char name[50];
(void) scanf ("%2d%f%*d % [0-9]", &i, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the characters 56\0 in name.
The next character read from stdin will be a.

SEE ALSO
ccO), printf(3S), strtod(3C), strtol(3C), strtoul(3C).

DIAGNOSTICS

Page 4

These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early matching failure between
an input character and the control string. If the input ends before the first match­
ing failure or conversion, EOF is returned.

10/89

setbuf{3S) setbuf{3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
tinclude <stdio.h>

void setbuf (FILE * stream, char *buf);

int setvbuf (FILE * stream, char *buf, int type, size_t size);

DESCRIPTION
setbuf may be used after a stream [see intro(3») has been opened but before it is
read or written. It causes the arraYlointed to by buf to be used instead of an
automatically allocated buffer. If bu is the NULL pointer input/output will be
completely unbuffered.

While there is no limititation on the size of the buffer, the constant BUFSIZ,
defined in the <stdio. h> header file, is typically a good buffer size:

char buf[BUFSIZ];

setvbuf may be used after a stream has been opened but before it is read or
written. type determines how stream will be buffered. Legal values for type
(defined in stdio.h) are:

IOFBF causes input/output to be fully buffered.

IOLBF

IONBF

causes output to be line buffered; the buffer will be flushed when a
newline is written, the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. size specifies the size of the buffer to
be used. If input/output is unbuffered, but and size are ignored.

For a further discussion of buffering, see stdio{3S).

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

NOTES

10/89

If an illegal value for type is provided, setvbuf returns a non-zero value. Other­
wise, it returns zero.

A common source of error is allocating buffer space as an "automatic" variable in
a code block, and then failing to close the stream in the same block.

Parts of buf will be used for internal bookkeeping of the stream and, therefore,
buf will contain less than size bytes when full. It is recommended that the
automatically allocated buffer is used when using setvbuf.

Page 1

setjmp{3C) setjmp{3C)

NAME
setjnp, longjnp - non-local goto

SYNOPSIS
'include <setjmp.h>

int set jnp (jmp _ buf env);

void longjnp (jmp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

setjnp saves its stack environment in env (whose type, jmp_buf, is defined in the
<setjnp.h> header file) for later use by longjnp. It returns the value O.

longjnp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execution
continues as if the corresponding call of setjnp had just returned the value val.
(The caller of setjmp must not have returned in the interim.) longjmp cannot
cause setjmp to return the value O. If longjmp is invoked with a second argu­
ment of 0, setjnp will return 1. At the time of the second return from setjmp,
all external and static variables have values as of the time longjnp is called (see
example). The values of register and automatic variables are undefined.

Register or automatic variables whose value must be relied upon must be
declared as volatile.

EXAMPLE

10/89

'include <stdio.h>
'include <stdlib.h>
'include <setjmp.h>

jmp buf env;
int-i .. 0;
main ()
(

void exit 0 ;

if (setjnp (env) != 0) (
(void) printf("value of i on 2nd return from setjnp: %d\n", i);
exit(O);

gO
(

}
(void) printf("value of i on 1st return from setjnp: %d\n", i);
i = 1;
gO;
/*NOTREACHED*/

longjmp(env, 1);
/*NOTREACHED*/

Page 1

setjmp(3C) setjmp(3C)

If the a. out resulting from this C language code is run, the
output will be:

value of i on 1st return from setjmp:O

value of i on 2nd return from setjmp:1

SEE ALSO
signal(2).

NOTES

Page 2

If longjnp is called even though env was never primed by a call to setjnp, or
when the last such call was in a function that has since returned, absolute chaos
is guaranteed.

10/89

setlocale (3C) setlocale (3C)

NAME
set locale - modify and query a program's locale

SYNOPSIS
tinclude <locale.h>

char *setlocale (int category, const char *locale);

DESCRIPTION

10189

set locale selects the appropriate piece of the program's locale as specified by
the category and locale arguments. The category argument may have the following
values: LC CTYPE, LC NUMERIC, LC TIME, LC COLLATE, LC M:>NETARY, and
LC ALL. These names are defined in the locale:-h header file. I.e CTYPE affects
thebehavior of the character handling functions (isdiqit, tolower, etc.) and the
multibyte character functions (such as ll'i:>towc and wctOJTb). LC_NUMERIC affects
the decimal-point character for the formatted input/output functions and the
string conversion functions as well as the non-mandatory formatting information
returned by localeconv. [See localeconv(3C).] LC _ TIME affects the behavior of
ascftime, cftime, qetclate and strftime. LC COLLATE affects the behavior of
strcoll and strxfrm. LC _ M:>NETARY affects the-monetary formatted information
returned by localeconv. LC_ALL names the program's entire locale.

Each category corresponds to a set of databases which contain the relevant infor­
mation for each defined locale. The location of a database is given by the follow­
ing path, /usr/Ub/locale/locale/category, where locale and category are the
names of locale and category, respectively. For example, the database for the
LC_CTYPE category for the "german" locale would be found in
/usr/lib/locale/german/LC_CTYPE.

A value of "C" for locale specifies the default environment.

A value of "" for locale specifies that the locale should be taken from environment
variables. The order in which the environment variables are checked for the vari­
ous categories is given below:

Category
LC_CTYPE:
LC _COLLATE :
LC TIME:

1st Env. Var.
LC CTYPE
LC COLLATE
LC TIME

LC NUMERIC: LC NUMERIC
LC _ MJNETARY: LC M:>NETARY

At program startup, the equivalent of

set locale (LC_ALL, "C")

2nd Env. Var
LANG
LANG
LANG
LANG
LANG

is executed. This has the effect of initializing each category to the locale
described by the environment "C".

If a pointer to a string is given for locale, setlocale attempts to set the locale for
the given category to locale. If setlocale succeeds, locale is returned. If setlo­
cale fails, a null pointer is returned and the program's locale is not changed.

Page 1

setlocale (3C) setlocale (3C)

FILES

For category LC _AIL, the behavior is slightly different. If a pointer to a string is
given for locale and LC_ALL is given for category, set locale attempts to set the
locale for all the categories to locale. The locale may be a simple locale, consisting
of a single locale, or a composite locale. A composite locale is a string beginning
with a "/" followed by the locale of each category separated by a " /". If
setlocale fails to set the locale for any category, a null pointer is returned and
the program's locale for all categories is not changed. Otherwise, locale is
returned.

A null pointer for locale causes setlocale to return the current locale associated
with the category. The program's locale is not changed.

/usr/lilJ/locale/C/LC CTYPE - LC CTYPE database for the C locale.
/usr/lilJ/locale/C/LC -NUMERIC - Lc NUMERIC database for the C locale.
/usr/lilJ/locale/C/LC-TIME - LC TIME database for the C locale.
/usr/lilJ/locale/C/LC-COLLATE --LC COLLATE database for the C locale.
/usr/lilJ/locale/locaJe7category -files containing the locale specific information
for each locale and category.

SEE ALSO

Page 2

ctime(3C), ctype(3C), getdate(3C), localeconv(3C), nbtowc(3C), printf(3S),
strcoll(3C), strftime(3C), strtod(30, strxf~3C), wctonb(30, environ(5).

10/89

sleep (3C) sleep (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
tinclude <unistd.h>

unsigned sleep (unsigned seconds);

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested because any caught signal will terminate the sleep following execution
of that signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount because of the scheduling of other activity in
the system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an alarm set
to go off earlier than the end of the requested sleep time, or premature arousal
because of another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal) occurs. The previous state of the alarm signal is saved and
restored. The calling program may have set up an alarm signal before calling
sleep. If the sleep time exceeds the time until such alarm signal, the process
sleeps only until the alarm signal would have occurred. The caller's alarm catch
routine is executed just before the sleep routine returns. But if the sleep time is
less than the time till such alarm, the prior alarm time is reset to go off at the
same time it would have without the intervening sleep.

SEE ALSO
alaru(2), pause(2), signal(2), wait(2).

10189 Page 1

sslgnal (3C) sslgnal (3C)

NAME
ssiqnal, gsiqnal - software signals

SYNOPSIS
tinclude <signal.h>

int (*ssiqnal (int sig, int (*action) (int») (int);

int gsignal (int sig);

DESCRIPTION
ssiqnal and gsiqnal implement a software facility similar to siqnal(2). This
facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 17. A call to ssiqnal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to gsig­
nal. Raising a software signal causes the action established for that signal to be
taken.
The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the action; it is
either the name of a (user-defined) action function or one of the manifest constants
SIG_OFL (default) or SIG_IGN (ignore). ssiqnal returns the action previously
established for that signal type; if no action has been established or the signal
number is illegal, ssiqnal returns SIG_OFL.

gsiqnal raises the signal identified by its argument, sig:
If an action function has been established for sig, then that action is reset to
SIG_OFL and the action function is entered with argument sig. gsiqnal
returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsiqnal returns the value 1 and takes no
other action.

If the action for sig is SIG_OFL, gsignal returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig, gsiqnal
returns the value 0 and takes no other action.

SEE ALSO
siqnal(2), sigset(2), raise(3C).

10/89 Page 1

stdlo(3S) stdlo(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
tinelude <stdio.h>

FILE *stdin, *stdout, *stderr;

DESCRIPTION

10/89

The functions described in the entries of sub-class 3S of this manual constitute an
efficient, user-level I/O buffering scheme. The in-line macros gete and pute han­
dle characters quickly. The macros getchar and putchar, and the higher-level
routines fgete, fgets, fprintf, fpute, fputs, fread, fscanf, fwrite, gets,
getw, printf, puts, putw, and scanf all use or act as if they use gete and pute;
they can be freely intermixed.

A file with associated buffering is called a stream [see intro(3)] and is declared to
be a pointer to a defined type FILE. f~n creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio. h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

The following symbolic values in <unistd. h> define the file descriptors that will
be associated with the C-Ianguage stdin, stdout and stderr when the application is
started:

STDIN FILENO Standard input value, stdin. It has the value of O.
STDOoT FILENO Standard output value, stdout. It has the value of l.
STDERR FILENO Standard error value, stderr. It has the value of 2.

A constant null designates a null pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

An integer constant FILENAME_MAX specifies the size needed for an array of char
large enough to hold the longest file name string that the implementation guaran­
tees can be opened.

An integer constant FOPEN_MAX specifies the minimum number of files that the
implementation guarantees can be open simultaneously. Note that no more than
255 files may be opened via fopen, and only file descriptors 0 through 255 are
valid.

Any program that uses this package must include the header file of pertinent
macro definitions, as follows:

tinelude <stdio.h>

Page 1

stdlo(3S) stdlo(3S)

The functions and constants mentioned in the entries of sub-class 35 of this
manual are declared in that header file and need no further declaration. The con­
stants and the following "functions" are implemented as macros (redeclaration of
these names is perilous): getc, getchar, putc, put char, ferror, feof, clear­
err, and fileno. There are also function versions of getc, getchar, putc,
putchar, ferror, feof, clearerr, and fileno.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream stderr is by default unbuffered,
but use of freopen [see fopen(35)] will cause it to become buffered or line­
buffered. When an output stream is unbuffered, information is queued for writ­
ing on the destination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the destination termi­
nal as soon as the line is completed (that is, as soon as a new-line character is
written or terminal input is requested). setbuf or setvbuf [both described in
setbuf(35)] may be used to change the stream's buffering strategy.

SEE ALSO
open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S),
cuserid(35), fclose(35), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S),
gets(35), popen(3S), printf(35), putc(35), puts(35), scanf(35), setbuf(3S),
system(35), tnpfile(3S), tnpnaM:35), ungetc(35).

DIAGNOSTICS

Page 2

Invalid stream pointers usually cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error condi­
tions.

10/89

stdlpc(3C) stdipc(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/ipc.h>

key_t ftok(const char *path, int id);

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be
used by the msgget(2), senqet(2), and shm3et(2) system calls to obtain interpro­
cess communication identifiers. One suggested method for forming a key is to
use the ftok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining por­
tion as a sequence number. There are many other ways to form keys, but it is
necessary for each system to define standards for forming them. If some stan­
dard is not adhered to, it will be possible for unrelated processes to unintention­
ally interfere with each other's operation. It is still possible to interface intention­
ally. Therefore, it is strongly suggested that the most significant byte of a key in
some sense refer to a project so that keys do not conflict across a given system.

ftok returns a key based on path and id that is usable in subsequent msgget,
senqet, and shmget system calls. path must be the path name of an existing file
that is accessible to the process. id is a character that uniquely identifies a project.
Note that ftok will return the same key for linked files when called with the
same id and that it will return different keys when called with the same file name
but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS

NOTES

10/89

ftok returns (key_t) -1 if path does not exist or if it is not accessible to the pro­
cess.

If the file whose path is passed to ftok is removed when keys still refer to the
file, future calls to ftok with the same path and id will return an error. If the
same file is recreated, then ftok is likely to return a different key than it did the
original time it was called.

Page 1

strcoll (3C) strcoll (3C)

NAME
strcoll - string collation

SYNOPSIS
tinclude <string.h>

int strcoll (const char *s1, const char *s2);

DESCRIPTION

FILES

strcoll returns an integer greater than, equal to, or less than zero in direct
correlation to whether string s1 is greater than, equal to, or less than the string s2.
The comparison is based on strings interpreted as appropriate to the program's
locale for category LC_COLLATE [see setlocale(3C».

Both strcoll and strxfrm provide for locale-specific string sorting. strcoll is
intended for applications in which the number of comparisons per string is small.
When strings are to be compared a number of times, strxfrm is a more appropri­
ate utility because the transformation process occurs only once.

/usr/lib/locale/locale/LC_COLLATE LC_COLLATE database for locale.

SEE ALSO
colltbl(1M), setlocale(3C), string(3C), strxfrm(3C), environ(S).

10/89 Page 1

strerror (3C)

NAME
strerror - get error message string

SYNOPSIS
tinclude <string.h>

char *strerror (int errnum);

DESCRIPTION

strerror (3C)

strerror maps the error number in errnum to an error message string, and
returns a pointer to that string. strerror uses the same set of error messages as
perror. The returned string should not be overwritten.

SEE ALSO
perror(3C).

10/89 Page 1

strftlme (3C) strftlme (3C)

NAME
strftime, cftime, ascftime, - convert date and time to string

SYNOPSIS
tinclude <time.h>

size t *strftime (char *s, size_t maxsize,
const char * format, const struct tIn *timeptr);

int cftime (char *s, char *format, const time_t *clock);

int ascftime (char *s, const char *format,
const struct tIn *timeptr);

DESCRIPTION

10/89

strftime, ascftime and cftime place characters into the array pointed to by s
as controlled by the string pointed to by format. The format string consists of zero
or more directives and ordinary characters. All ordinary characters (including the
terminating null character) are copied unchanged into the array. For strftime,
no more than maxsize characters are placed into the array.

If format is (char *)0, then the locale's default format is used. For strftime the
default format is the same as "%c", for cftime and ascftime the default format
is the same as "%C". cftime and ascftime first try to use the value of the
environment variable CFTlME, and if that is undefined or empty, the default for­
mat is used.

Each directive is replaced by appropriate characters as described in the following
list. The appropriate characters are determined by the LC_TlME category of the
program's locale and by the values contained in the structure pointed to by
timeptr for strftime and ascftime, and by the time represented by clock for
cftime.

%%
%a
%A
%b
%8
%c
%C
%d
%0
%e
%h
%H
%I
%j
%m
%M
%n
%p

same as %
locale's abbreviated weekday name
locale's full weekday name
locale's abbreviated month name
locale's full month name
locale's appropriate date and time representation
locale's date and time representation as produced by date(1)
day of month (01 - 31)
date as %m/%d/%y
day of month (1-31; single digits are preceded by a blank)
locale's abbreviated month name.
hour (00 - 23)
hour (01 - 12)
day number of year (001 - 366)
month number (01 - 12)
minute (00 - 59)
same as \n
locale's equivalent of either AM or PM

Page 1

strftlme (3C) strftlme (3C)

%r
%R
%8
%t
%T
%U
%w
%W
%x
%X
%y
%y
%Z

time as %I:%M:%S [AM I PMl
time as %H:%M
seconds (00 - 61), allows for leap seconds
insert a tab
time as %H:%M:%S
week number of year (00 - 53), Sunday is the first day of week 1
weekday number (0 - 6), Sunday = 0
week number of year (00 - 53), Monday is the first day of week 1
locale's appropriate date representation
locale's appropriate time representation
year within century (00 - 99)
year as ccyy (e.g. 1986)
time zone name or no characters if no time zone exists

The difference between %U and %W lies in which day is counted as the first of the
week. Week number 01 is the first week in January starting with a Sunday for %U
or a Monday for %W. Week number 00 contains those days before the first Sun­
day or Monday in January for %U and %W, respectively.

If the total number of resulting characters including the terminating null character
is not more than maxsize, strft.ilne, cft.ilne and ascft.ilne return the number of
characters placed into the array pointed to by 5 not including the terminating null
character. Otherwise, zero is returned and the contents of the array are indeter­
minate. cft.ilne and ascft.ilne return the number of characters placed into the
array pointed to by 5 not including the terminating null character.

Selecting the Output's Language
By default, the output of strft.ilne, cft.ilne, and ascft.ilne appear in US English.
The user can request that the output of strftime, cft.ilne or ascft.ilne be in a
specific language by setting the locale for category LC _ TIME in setlocale.

Tlmezone
The timezone is taken from the environment variable TZ [see ctime(3C) for a
description of Tzl.

EXAMPLES

FILES

The example illustrates the use of strft.ilne. It shows what the string in str
would look like if the structure pointed to by tmptr contains the values
corresponding to Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, ,j%A %b %d %j", tnptr)

This results in str containing "Thursday Aug 28 240".

lusr/lib/locale/localelLC_TlME - file, containing locale specific date and time
information

SEE ALSO
ct.ilne(3C), getenv(3C), setlocale(3Q, strft.ilne(4), t.ilnezone(4), environ(5).

NOTE
cft.ilne and ascft.ilne are obsolete. strft.ilne should be used instead.

Page 2 10/89

string (3C) string (3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strle~
strchr, strrchr, strpbrk, strspn, strcspn. strtok, strstr - string opera­
tions

SYNOPSIS
tinclude <string.h>

char *strcat (char *sl, const char *s2);

char *strdup (const char *sl);

char *strncat (char *sl, const char *s2, size_t n);

int strcmp (const char *sl, const char *s2);

int strncmp (const char *sl, const char *s2, size t n);

char *strcpy (char *sl, const char *s2);

char *strncpy (char *sl, const char *s2, size t n);

size_t strlen (const char *s);

char *strchr (const char *s, int c);

char *strrchr (const char *s, int c);

char *strpbrk (const char *sl, const char *s2);

size_t strspn (const char *sl, const char *s2);

size_t strcspn (const char *sl, const char *s2);

char *strtok (char *sl, const char *s2);

char *strstr (const char *sl, const char *s2);

DESCRIPTION

10/89

The arguments 5, 51, and 52 point to strings (arrays of characters terminated by a
null character). The functions strcat, strncat, strcpy, strncpy, and strtok.
all alter 51. These functions do not check for overflow of the array pointed to by
51.

strcat appends a copy of string 52, including the terminating null character, to
the end of string 51. strncat appends at most n characters. Each returns a
pointer to the null-terminated result. The initial character of 52 overrides the null
character at the end of 51.

strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, based upon whether 51 is lexicographically less than, equal to, or
greater than 52. strncmp makes the same comparison but looks at at most n
characters. Characters following a null character are not compared.

strcpy copies string 52 to 51 including the terminating null character, stopping
after the null character has been copied. strncpy copies exactly n characters,
truncating 52 or adding null characters to 51 if necessary. The result will not be
null-terminated if the length of 52 is n or more. Each function returns 51.

Page 1

string (3C) string (3C)

strdup returns a pointer to a new string which is a duplicate of the string
pointed to by 51. The space for the new string is obtained using malloc(3C). If
the new string can not be created, a NULL pointer is returned.

strlen returns the number of characters in 5, not including the terminating null
character.

strchr (or strrchr) returns a pointer to the first (last) occurrence of c (con­
verted to a char) in string 5, or a NULL pointer if c does not occur in the string.
The null character terminating a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string 51 of any character
from string 52, or a NULL pointer if no character from 52 exists in 51.

strspn (or strcspn) returns the length of the initial segment of string 51 which
consists entirely of characters from (not from) string 52.

strtok considers the string 51 to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string 52.
The first call (with pointer 51 specified) returns a pointer to the first character of
the first token, and will have written a null character into 51 immediately follow­
ing the returned token. The function keeps track of its poSition in the string
between separate calls, so that subsequent calls (which must be made with the
first argument a NULL pointer) will work through the string 51 immediately fol­
lowing that token. In this way subsequent calls will work through the string 51
until no tokens remain. The separator string 52 may be different from call to call.
When no token remains in 51, a NULL pointer is returned.

strstr locates the first occurrence in string 51 of the sequence of characters
(excluding the terminating null character) in string 52. strstr returns a pointer
to the located string, or a null pointer if the string is not found. If 52 points to a
string with zero length (Le., the string ""), the function returns 51.

SEE ALSO

NOTES

Page 2

malloc(3C), setlocale(3C), strxfrm:3C).

All of these functions assume the default locale "c." For some locales, strxfrm
should be applied to the strings before they are passed to the functions.

10/89

strtod (3C) strtod(3C)

NAME
strtod, atof, - convert string to double-precision number

SYNOPSIS
tinclude <stdlib.h>

double strtod (const char +nptr, char ++endptr);

double atof (const char +nptr);

DESCRIPTION
strtod returns as a double-precision floating-point number the value represented
by the character string pointed to by nptr. The string is scanned up to the first
unrecognized character.

strtod recognizes an optional string of "white-space" characters [as defined by
isspace in ctype(3C»), then an optional sign, then a string of digits optionally
containing a decimal point character, then an optional exponent part including an
e or E followed by an optional sign, followed by an integer.

If the value of endptr is not (char ++)NULL, a pointer to the character terminat­
ing the scan is returned in the location pointed to by endptr. If no number can be
formed, +endptr is set to nptr, and zero is returned.

atof (nptr) is equivalent to:
strtod(nptr, (char ++)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS

10/89

If the correct value would cause overflow, ±HUGE is returned (according to the
sign of the value), and ermo is set to ERANGE.
If the correct value would cause underflow, zero is returned and ermo is set to
ERANGE.
When the -Xc or -Xa compilation options are used, HUGE_VAL is returned instead
of HUGE.

Page 1

strtol (3C) strtol(3C}

NAME
strtol, strtoul, atol, atoi - convert string to integer

SYNOPSIS
tinclude <stdlib.h>

long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (const char *str, char **ptr, int base);

long atol (const char *str);

int atoi (const char *str);

DESCRIPTION
strtol returns as a long integer the value represented by the character string
pOinted to by str. The string is scanned up to the first character inconsistent
with the base. Leading "white-space" characters [as defined by isspace in
ctype(3C)] are ignored.

If the value of ptr is not (char **) NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no integer can be
formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and "0,," or "OX" is
ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading "Ox" or "OX"
hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

If the value represented by str would cause overflow, LONG_MAX or LONG_MIN is
returned (according to the sign of the value), and ermo is set to the value,
ERANGE.

strtoul is similar to strtol except that strtoul returns as an unsigned long
integer the value represented by str. If the value represented by str would cause
overflow, ULONG_MAX is returned, and errno is set to the value, ERANGE.

Except for behavior on error, atol (str) is equivalent to: strtol (str, (char
**) NULL, 10).

Except for behavior on error, atoi (str) is equivalent to: (int) strtol (str,
(char **)NULL, 10).

DIAGNOSTICS
If strtol is given a base greater than 36, it returns 0 and sets ermo to EINVAL.

SEE ALSO

NOTES

10/89

ctype(3C), scanf(3S), strtod(3C).

strtol no longer accepts values greater than LONG MAX as valid input. Use
strtoul instead.

Page 1

strxfrm (3C) strxfrm (3C)

NAME
strxfnn - string transformation

SYNOPSIS
'include <string.h>

size_t strxfnn (char *sl, const char *s2, size_t n);

DESCRIPTION
strxfnn transforms the string 52 and places the resulting string into the array 51.
The transformation is such that if strcnp is applied to two transformed strings, it
will return the same result as strcoll applied to the same two original strings.
The transformation is based on the program's locale for category LC_COLLATE
[see setlocale(3C»).

No more than n characters will be placed into the resulting array pointed to by
51, including the terminating null character. If n is 0, then 51 is permitted to be a
null pointer. If copying takes place between objects that overlap, the behavior is
undefined.

strxfnn returns the length of the transformed string (not including the terminat­
ing null character). If the value returned is n or more, the contents of the array 51
are indeterminate.

EXAMPLE

FILES

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by 5.

1 + strxfnn(NULL, s, 0);

/usr/lib/locale/locale/LC_COLLATE LC COLLATE database for locale.

SEE ALSO
colltbl(1M), setlocale(3C), strcoll(3C), string(3C), environ(S).

DIAGNOSTICS
On failure, strxfnn returns (size_t) -1.

10/89 Page 1

swab (3C)

NAME
swab - swap bytes

SYNOPSIS
'include <stdlib.h>

void swab (const char * from, char *to, int nbytes);

DESCRIPTION

swab (3C)

swab copies nbytes bytes pointed to by from to the array pointed to by to,
exchanging adjacent even and odd bytes. nbytes should be even and non­
negative. If nbytes is odd and positive, swab uses nbytes-l instead. If nbytes is
negative, swab does nothing.

10/89 Page 1

system (3S) system (3S)

NAME
system - issue a shell command

SYNOPSIS
'include <stdlib.h>

int system (const char *string);

DESCRIPTION
system causes the string to be given to the shell [see sh(1)] as input, as if the
string had been typed as a command at a terminal. The current process waits
until the shell has completed, then returns the exit status of the shell in the for­
mat specified by wait.

If string is a NULL pointer, system checks if Ibin/sh exists and is executable. If
Ibin/sh is available, system returns non-zero; otherwise it returns zero.

system fails if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

EINTR system was interupted by a signal.

ENOMEM The new process requires more memory than is allowed by the
system-imposed maximum {MAXMEM}.

SEE ALSO
exec(2), wait(3C).
sh(1) in the User's Reference Manual.

DIAGNOSTICS

10/89

system forks to create a child process that in turn execs Ibinl sh in order to exe­
cute string. If the fork or exec fails, system returns a value of -1 and sets errno.

Page 1

tmpflle (3S) tmpfile(3S)

NAME
tnpfile - create a temporary file

SYNOPSIS
tinclude <stdio.h>

FILE *tnpfile (void);

DESCRIPTION
tnpfile creates a temporary file using a name generated by the tnpnam routine
and returns a corresponding FILE pointer. If the file cannot be opened, a NULL
pointer is returned. The file is automatically deleted when the process using it
terminates or when the file is closed. The file is opened for update ("w+").

SEE ALSO

10/89

creat(2), open(2), unHnk(2), fopen(3S), mktenp(3C), perror(3C), stdio(3S),
tnpnam(3S).

Page 1

tmpnam(3S) tmpnam(3S)

NAME
tIlpnam. tenpnam - create a name for a temporary file

SYNOPSIS
tinclude <stdio.h>

char *tIlpnam (char *s);

char *tenpnam (const char *dir, const char *pfx);

DESCRIPTION

FILES

These functions generate file names that can safely be used for a temporary file.

tIlpnam always generates a file name using the path-prefix defined as P _ tnpdi.r
in the <stdio. h> header file. If s is NULL, tIlpnam leaves its result in an internal
static area and returns a pointer to that area. The next call to tIlpnam will des­
troy the contents of the area. If s is not NULL, it is assumed to be the address of
an array of at least L_tIlpnam bytes, where L_tIlpnam is a constant defined in
<stdio.h>; tIlpnam places its result in that array and returns s.

tenpnam allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is
NULL or points to a string that is not a name for an appropriate directory, the
path-prefix defined as P_tIlpdir in the <stdio.h> header file is used. If that
directory is not accessible, /tIIp will be used as a last resort. This entire sequence
can be up-staged by providing an environment variable TMPDIR in the user's
environment, whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter
sequences in their names. Use the pIx argument for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few char­
acters of the temporary-file name.

tenpnam uses malloc to get space for the constructed file name, and returns a
pointer to this area. Thus, any pointer value returned from telTpnam may serve
as an argument to free [see malloc(3C)]. If tenpnam cannot return the expected
result for any reason--e.g., malloc failed--or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL pointer will be
returned.

tenpnam fails if there is not enough space.

P_tmpdir /usr/tIIp

SEE ALSO

NOTES

10/89

creat(2), unlink(2), fopen(3S), malloc(3C), mktenp(3C), tnpfile(3S).

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only
in the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user's responsibility to remove the file when its use is
ended.

Page 1

tmpnam(3S) tmpnam(3S)

Page 2

If called more than TMP_MAX (defined in stdio.h) times in a single process, these
functions start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for
some other process to create a file with the same name. This can never happen if
that other process is using these functions or mJetenp and the file names are
chosen to render duplication by other means unlikely.

10/89

tsearch (3C) tsearch (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
tinclude <search.h>

void *tsearch (const void *key, void **rootp, int (*compar)
(const void *, const void *»;

void *tfind (const void *key, void * const * rootp , int (*compar)
(const void *, const void *»;

void *tdelete (const void *key, void * * rootp , int (*compar)
(const void *, const void *»;

void twalk (void *root, void (*action) (void *, VISIT, int»;

DESCRIPTION

10/89

tsearch, tfind, tdelete, and twalk are routines for manipulating binary
search trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This routine is called with
two arguments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than 0, according to whether the first argu­
ment is to be considered less than, equal to or greater than the second argument.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

tsearch is used to build and access the tree. key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to *key (the value
pointed to by key), a pointer to this found datum is returned. Otherwise, *key is
inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data. rootp points to a variable that points to the root of
the tree. A NULL value for the variable pointed to by rootp denotes an empty tree;
in this case, the variable will be set to point to the datum which will be at the
root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, tfind will return a NULL pointer. The
arguments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same
as for tsearch. The variable pointed to by rootp will be changed if the deleted
node was the root of the tree. tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree to be traversed.
(Any node in a tree may be used as the root for a walk below that node.) action
is the name of a routine to be invoked at each node. This routine is, in tum,
called with three arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf} VISIT; (defined in the search.h header
file), depending on whether this is the first, second or third time that the node
has been visited (during a depth-first, left-to-right traversal of the tree), or
whether the node is a leaf. The third argument is the level of the node in the
tree, with the root being level zero.

Page 1

tsearch (3C) tsearch (3C)

The pointers to the key and the root of the tree should be of type pointer-to­
element, and cast to type pointer-to-<:haracter. Similarly, although declared as
type pointer-to-<:haracter, the value returned should be cast into type pointer-to­
element.

EXAMPLE

Page 2

The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the
stored strings and their lengths in alphabetical order.

tinclude <string.h>
tinclude <stdio.h>
tinclude <search.h>

struct node {

} ;

char *string;
int length;

char string space[10000];
struct node-nodes[500];
void *root = NULL;

int node_compare(const void *node1, const void *node2) {
return strcmp«(const struct node *) node1)->string,

«const struct node *) node2)->string);

void print node (void * * node , VISIT order, int level)
if (order = preorder I I order = leaf)

printf("length=%d, string=%20s\n",
(*(struct node **)node)->length,
(*(struct node **)node)->string);

main 0
char *strptr = string space;
struct node *nodeptr ;; nodes;
int i = 0;

while (gets (strptr) != NULL && i++ < 500)
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch((void *)nodeptr,

&root, node_corrpare);
strptr += nodeptr->length + 1;
nodeptr++;

twalk(root, print_node);

10/89

tsearch (3C) tsearch (3C)

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C).

DIAGNOSTICS

NOTES

10/89

A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.
A NULL pointer is returned by tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

The root argument to twalk is one level of indirection less than the rootp argu­
ments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are
visited. tsearch uses preorder, postorder and endorder to refer respectively to
visiting a node before any of its children, after its left child and before its right,
and after both its children. The alternate nomenclature uses preorder, inorder
and postorder to refer to the same visits, which could result in some confusion
over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Page 3

ttyname (3C) ttyname (3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
.include <stdlib.h>

char *ttyname (int fildes);

int isatty (int fildes);

DESCRIPTION

FILES

ttyname returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

/dev/*
DIAGNOSTICS

NOTES

10/89

ttyname returns a NULL pointer if fildes does not describe a terminal device in
directory / dev.

The return value points to static data whose content is overwritten by each call.

Page 1

ttyslot (3C) ttyslot (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
'include <stdlib.h>

int ttyslot (void);

DESCRIPTION

FILES

ttyslot returns the index of the current user's entry in the /etc/utrrp file. The
returned index is accomplished by scanning files in /dev for the name of the ter­
minal associated with the standard input, the standard output, or the standard
error output (0, 1, or 2).

/etc/utnp

SEE ALSO
qetut(3C), ttyname(3Q.

DIAGNOSTICS

10/89

A value of -1 is returned if an error was encountered while searching for the ter­
minal name or if none of the above file descriptors are associated with a terminal
device.

Page 1

ungetc(3S) ungetc(3S)

NAME
ungetc - push character back onto input stream

SYNOPSIS
tinclude <stdio.h>

int ungetc (int c, FILE *stream);

DESCRIPTION
ungetc inserts the character specified by c (converted to an unsigned char) into
the buffer associated with an input stream [see intro(3)]. That character, c, will
be returned by the next getc(3S) call on that stream. ungetc returns c, and
leaves the file corresponding to stream unchanged. A successful call to ungetc
clears the EOF indicator for stream.

Four bytes of pushback are guaranteed.

The value of the file position indicator for stream after reading or discarding all
pushed-back characters will be the same as it was before the characters were
pushed back.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

fseek, rewind [both described on fseek(3S)l, and fsetpos erase the memory of
inserted characters for the stream on which they are applied.

SEE ALSO
fseek(3S), fsetpos(3C), getc(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
ungetc returns EOF if it cannot insert the character.

10/89 Page 1

vprlntf(3S) vprlntf (35)

NAIIE
vprintf, vfprintf, vsprintf - print formatted output of a variable argument
list

SYNOPSIS
'include <stdio.h>
'include <stdarq.h>

int vprintf(const char *format, va_list ap);

int vfprintf (FILE *stTetlm, const char *foTmllt, va_list ap);

int vsprintf (char *s, const char *format, va_list ap);

DESCRIPTION
vprintf, vfprintf and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of being called with a variable number
of arguments, they are called with an argument list as defined· by the <stdarg. h>
header file.

The <stdarg.h> header file defines the type va_list and a set of macros for
advancing through a list of arguments whose number and types may vary. The
argument ap to the vprint family of routines is of type va_list. This argument
is used with the <stdarg. h> header file macros va start, va arg and va end
[see va start, va arq, and va end in stdarq(5»). The EXAMPLE section below
shows their use with vprintf. -

EXAMPLE

10/89

The following demonstrates how vfprintf could be used to write an error rou­
tine:

'include <stdio.h>
'include <stdarg.h>
/*
* error should be called like
* error (function_name, foaat, arg1, ...);
*/

void error (char *function_name, char *foaat, ...)

va_list ap;

va start (ap, foaat);
/*-print out name of function causing error */
(void) fprintf(stderr, "ERR in %s: ", function name);
va arq(ap, char*); -
/*-print out remainder of message */
(void) vfprintf(stderr, foaat, ap);
va_end (ap) ;
(void) abort;

Page 1

vprlntf(3S) vprlntf(3S)

SEE ALSO
printf(3S), stdarg(5).

DIAGNOSTICS
vprintf and vfprintf return the number of characters transmitted, or return -1
if an error was encountered.

Page 2 10/89

elf(3E) elf(3E)

NAME
elf - object file access library

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

iinclude <libelf.h>

DESCRIPTION
Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header file
provides type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF
descriptor. That is, when the program starts working with a file, elf_begin
creates an ELF descriptor through which the program manipulates the structures
and information in the file. These ELF descriptors can be used both to read and
to write files. After the program establishes an ELF descriptor for a file, it may
then obtain section descriptors to manipulate the sections of the file [see
elf_getscn(3E)J. Sections hold the bulk of an object file's real information, such
as text, data, the symbol table, and so on. A section descriptor ''belongs'' to a
particular ELF deSCriptor, just as a section belongs to a file. Finally, data descrip­
tors are available through section descriptors, allowing the program to manipulate
the information associated with a section. A data descriptor ''belongs'' to a sec­
tion descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a
data descriptor is associated with one section descriptor, which is associated with
one ELF descriptor, which is associated with one file. Although descriptors are
private, they give access to data that may be shared. Consider programs that
combine input files, using incoming data to create or update another file. Such a
program might get data descriptors for an input and an output section. It then
could update the output descriptor to reuse the input descriptor's data. That is,
the descriptors are distinct, but they could share the associated data bytes. This
sharing avoids the space overhead for duplicate buffers and the performance
overhead for copying data unnecessarily.

FILE CLASSES

10/89

ELF provides a framework in which to define a family of object files, supporting
multiple processors and architectures. An important distinction among object
files is the class, or capacity, of the file. The 32-bit class supports architectures in
which a 32-bit object can represent addresses, file sizes, etc., as in the following
table.

Page 1

elf{3E) elf{3E)

Name
Elf32 Addr
Elf32-Half
Elf32-0ff
Elf32 -Sword
Elf32-Word
unsigned char

Pur ose
Unsigned address
Unsigned medium integer
Unsigned file offset
Signed large integer
Unsigned large integer
Unsi ned small inte er

Other classes will be defined as necessary, to support larger (or smaller)
machines. Some library services deal only with data objects for a specific class,
while others are class-independent. To make this distinction clear, library func­
tion names reflect their status, as described below.

DATA REPRESENTATIONS
Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied
by the header files work on the native machine, which may have different data
encodings (size, byte order, etc.) than the target machine. Although native
memory objects should be at least as big as the file objects (to avoid information
loss), they may be bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations.
Some library routines convert data automatically, while others leave conversion
as the program's responsibility. Either way, programs that create object files
must write file-typed objects to those files; programs that read object files must
take a similar view. See elf_xlate(3E) and elf_fsize(3E) for more informa­
tion.

Programs may translate data explicitly, taking full control over the object file lay­
out and semantics. If the program prefers not to have and exercise complete con­
trol, the library provides a higher-level interface that hides many object file
details. elf_begin and related functions let a program deal with the native
memory types, converting between memory objects and their file equivalents
automatically when reading or writing an object file.

ELF VERSIONS

Page 2

Object file versions allow ELF to adapt to new requirements. Three­
independent-versions can be important to a program. First, an application pro­
gram knows about a particular version by virtue of being compiled with certain
header files. Second, the access library similarly is compiled with header files
that control what versions it understands. Third, an ELF object file holds a value
identifying its version, determined by the ELF version known by the file's creator.
Ideally, all three versions would be the same, but they may differ.

If a program's version is newer than the access library, the program
might use information unknown to the library. Translation routines
might not work properly, leading to undefined behavior. This condition
merits installing a new library.

10/89

8If(3E) 8If(3E)

The library's version might be newer than the program's and the file's.
The library understands old versions, thus avoiding compatibility prob­
lems in this case.

Finally, a file's version might be newer than either the program or the
library understands. The program might or might not be able to process
the file properly, depending on whether the file has extra information
and whether that information can be safely ignored. Again, the safe
alternative is to install a new library that understands the file's version.

To accommodate these differences, a program must use elf_version to pass its
version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper
representations. When the library reads object files, it uses each file's version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program's working version for the file data.

SYSTEM SERVICES
As mentioned above, elf_begin and related routines provide a higher-level
interface to ELF files, performing input and output on behalf of the application
program. These routines assume a program can hold entire files in memory,
without explicitly using temporary files. When reading a file, the library routines
bring the data into memory and perform subsequent operations on the memory
copy. Programs that wish to read or write large object files with this model must
execute on a machine with a large process virtual address space. If the underly­
ing operating system limits the number of open files, a program can use
elf _ cotl to retrieve all necessary data from the file, allowing the program to
close the file descriptor and reuse it.

Although the elf_begin interfaces are convenient· and efficient for many pro­
grams, they might be inappropriate for some. In those cases, an application may
invoke the elf_xlatedata translation routines directly. These routines perform
no input or output, leaving that as the application's responsibility. By assuming a
larger share of the job, an application controls its input and output model.

LIBRARY NAMES

10/89

Names associated with the library take several forms.

elf name

elf32 name

ELF C CMD

These class-independent names perform some service, name, for
the program.

Service names with an embedded class, 32 here, indicate they
work only for the designated class of files.

Data types can be class-independent as well, distinguished by
Type.
Class-dependent data types have an embedded class name, 32
here.

Several functions take commands that control their actions.
These values are members of the Elf_Cm:i enumeration; they
range from zero through ELF _ C _ NUM-l,

Page 3

elf(3E) elf(3E)

ELF F FLAG Several functions take flags that control library status and/or
actions. Flags are bits that may be combined.

ELF32 FSZ TYPE
- - These constants give the file sizes in bytes of the basic ELF types

for the 32-bit class of files. See elf fsize for more informa­
tion.

ELF K KIND

ELF T TYPE

The function elf kind identifies the KIND of file associated
with an ELF descriptor. These values are members of the
Elf_Kind enumeration; they range from zero through
ELF K NUM-l.

When a service function, such as elf xlate, deals with multi­
ple types, names of this form specifythe desired TYPE. Thus,
for example, ELF_T_EHDR is directly related to Elf32_Ehdr.
These values are members of the Elf_Type enumeration; they
range from zero through ELF _ T _ NUM-l.

SEE ALSO

NOTES

Page 4

cof2elf(1), elf begin(3E), elf cntl(3E), elf end(3E), elf error(3E),
elf fill(3E), elf flag(3E), eil fsize(3E), elf getarhdr(3E),
elf-getarsym(3E);-elf getbase(3E), elf getdata(3E), elf getehdr(3E),
elf -getident(3E), elf -getphdr(3E), elf -getscn(3E), elf getshdr(3E),
elf-hash(3E), elf kind(3E), elf next(3E), elf rand(3E), elf rawfile(3E),
elrstrptr(3E), elf update(3E);-elf version{3E), elf xlate(3E), a.out(4)
ar(4) - - -
The "Object Files" in the chapter Programmer's Guide: ANSI C and Programming
Support Tools.

Information in the ELF header files is separated into common parts and
processor-specific parts. A program can make a processor's information available
by including the appropriate header file: <sys/elfYAME.h> where NAME
matches the processor name as used in the ELF file header.

S mbol Processor
M32 AT&T WE 32100
SPARe SPARe
386 Intel 80386
486 Intel 80486
860 Intel 80860
68K Motorola 68000
88K Motorola 88000

Other processors will be added to the table as necessary. To illustrate, a program
could use the following code to "see" the processor-specific information for the
WE 32100.

tinclude <libelf.h>
tinclude <sys/elf_M32.h>

10/89

alf(3E) alf(3E)

Without the <sys/ elf M32. h> definition, only the common ELF information
would be visible. -

10/89 Page 5

elf_begin (3E) elt begin (3E)

NAME
elf_begin - make a file descriptor

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

DESCRIPTION

10/89

elf_begin, elf_next, elf_rand, and elf_end work together to process ELF
object files, either individually or as members of archives. After obtaining an ELF
descriptor from elf_begin, the program may read an existing file, update an
existing file, or create a new file. fildes is an open file descriptor that elf_begin
uses for reading or writing. The initial file offset [see lseek(2)J is unconstrained,
and the resulting file offset is undefined.

cmd may have the following values.

ELF C NULL When a program sets emil to this value, elf_begin returns a
null pointer, without opening a new descriptor. ref is ignored
for this command. See elf_next(3E) and the examples below
for more information.

ELF C READ When a program wishes to examine the contents of an existing
file, it should set emil to this value. Depending on the value of
ref, this command examines archive members or entire files.
Three cases can occur.

First, if ref is a null pointer, elf_begin allocates a new ELF
descriptor and prepares to process the entire file. If the file
being read is an archive, elf_begin also prepares the resulting
descriptor to examine the initial archive member on the next call
to elf_begin, as if the program had used elf_next or
elf_rand to "move" to the initial member.

Second, if ref is a non-null descriptor associated with an archive
file, elf_begin lets a program obtain a separate ELF descriptor
associated with an individual member. The program should
have used elf_next or elf_rand to position ref appropriately
(except for the initial member, which elf_begin prepares; see
the example below). In this case, fildes should be the same file
descriptor used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,
elf begin increments the number of activations for the
desCriptor and returns ref, without allocating a new descriptor
and without changing the descriptor's read/write permissions.
To terminate the descriptor for ref, the program must call
elf end once for each activation. See elf next(3E) and the
examples below for more information. -

Page 1

elf_begin (3E)

ELF C RDWR This command duplicates the actions of ELF_C_READ and addi­
tionally allows the program to update the file image [see
elf_update(3E)]. That is, using ELF_C_READ gives a read-only
view of the file, while ELF_C_RDWR lets the program read and
write the file. ELF C RDWR is not valid for archive members. If
ref is non-null, it must have been created with the ELF _ C _ RDWR
command.

ELF C WRITE If the program wishes to ignore previous file contents, presum­
ably to create a new file, it should set cmd to this value. ref is
ignored for this command.

elf_begin "works" on all files (including files with zero bytes), providing it can
allocate memory for its internal structures and read any necessary information
from the file. Programs reading object files thus may call elf_kind or
elf_getehdr to determine the file type (only object files have an ELF header). If
the file is an archive with no more members to process, or an error occurs,
elf_begin returns a null pointer. Otherwise, the return value is a non-null ELF
descriptor.

Before the first call to elf_begin, a program must call elf_version to coordi­
nate versions.

SYSTEM SERVICES
When processing a file, the library decides when to read or write the file, depend­
ing on the program's requests. Normally, the library assumes the file descriptor
remains usable for the life of the ELF descriptor. If, however, a program must
process many files simultaneously and the underlying operating system limits the
number of open files, the program can use elf_cntl to let it reuse file descrip­
tors. After calling elf_cntl with appropriate arguments, the program may close
the file descriptor without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end ter­
minates the descriptor's last activation. After the descriptors have been ter­
minated, the storage is released; attempting to reference such data gives
undefined behavior. Consequently, a program that deals with multiple input (or
output) files must keep the ELF descriptors active until it finishes with them.

EXAMPLES

Page 2

A prototype for reading a file appears below. If the file is a simple object file, the
program executes the loop one time, receiving a null descriptor in the second
iteration. In this case, both elf and arf will have the same value, the activation
count will be two, and the program calls elf_end twice to terminate the descrip­
tor. If the file is an archive, the loop processes each archive member in turn,
ignoring those that are not object files.

10/89

10/89

if (elf_version (EV_CURRENT) -- EV_NONE)
{

}

/* library out of date */
/* recover from error */

end = ELF C READ;
arf = elf-begin(fildes, end, (Elf *)0);
while «elf - elf_begin(fildes, end, arf» !- 0)
{

}

if «ehdr = elf32_getehdr(elf» != 0)
(

/* process the file ... */

end - elf next(elf);
elf_end(elf);

elf_end (arf) ;

Alternatively, the next example illustrates random archive processing. After iden­
tifying the file as an archive, the program repeatedly processes archive members
of interest. For clarity, this example omits error checking and ignores simple
object files. Additionally, this fragment preserves the ELF descriptors for all
archive members, because it does not call elf_end to terminate them.

elf version(EV CURRENT);
arf-= elf begin(fildes, ELF C READ, (Elf *)0);
if (elf kInd(arf) != ELF K AR)
{- --

/* not an archive */
}

/* initial processing */
/* set offset = ... for desired member header */
while (elf_rand (arf, offset) == offset)
{

if «elf = elf_begin(fHdes, ELF_C_READ, arf» 0)
break;

if «ehdr = elf32_getehdr(elf» != 0)
{

/* process archive member ... */
}
/* set offset = ... for desired member header */

The following outline shows how one might create a new ELF file. This example
is simplified to show the overall flow.

Page 3

elf_begin (3E)

elf version (EV CURRENT);
fildes = open("path/name", 0 RDWRIO TRUNCIO CREAT, 0666);
if «elf = elf_begin(fildes,-ELF_cjiRITE, (Elf *)0» == 0)

return;
ehdr = elf32 newehdr(elf);
phdr = elf32::::newphdr(elf, count);
sen = elf newsen(elf);
shdr = elf32_getshdr(scn);
data = elf_newdata(sen);
elf update(elf, ELF C WRITE);
elf=end(elf); --

Finally, the following outline shows how one might update an existing ELF file.
Again, this example is simplified to show the overall flow.

elf version(EV CURRENT);
fildes = q>en ("path/name", 0 RDWR);
elf = elf_begin(fildes, ELF_C_RDWR, (Elf *)0);

/* add new or delete old information ... */

close (creat ("path/name", 0666»;
elf update(elf, ELF C WRITE);
elf=end(elf); --

In the example above, the call to creat truncates the file, thus ensuring the
resulting file will have the "right" size. Without truncation, the updated file
might be as big as the original, even if information were deleted.

SEE ALSO

NOTES

Page 4

cof2elf(1), creat(2), Iseek(2), open(2), elf(3E), elf cnt1(3E), elf end(3E),
elf getarhdr(3E), elf getbase(3E), elf getdata(31!:), elf getehdX(3E),
elf-getphdr(3E), elf getsen(3E), elf kInd(3E), elf next(3E), elf rand(3E),
elf::::rawfile(3E), elf::::update(3E), elf::::version(3E), ar(4) -

COFF is an object file format that preceded ELF. When a program calls
elf_begin on a COFF file, the library translates COFF structures to their ELF
equivalents, allowing programs to read (but not to write) a COFF file as if it were
ELF. This conversion happens only to the memory image and not to the file
itself. After the initial elf begin, file offsets and addresses in the ELF header,
the program headers, and the section headers retain the original COFF values [see
elf_getehdr, elf_getphdr, and elf_getshdr). A program may call
elf_update to adjust these values (without writing the file), and the library will
then present a consistent, ELF view of the file. Data obtained through
elf_getdata are translated (the COFF symbol table is presented as ELF, etc.).
Data viewed through elf_rawdata undergo no conversion, allowing the program
to view the bytes from the file itself.

Some COFF debugging information is not translated, though this does not affect
the semantics of a running program.

Although the ELF library supports COFF, programmers are strongly encouraged
to recompile their programs, obtaining ELF object files.

10/89

elf_ cntl (3E) e1t entl (3E)

NAME
elf _ cntl - control a file descriptor

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

int elf_cntl(Elf *elf, Elf_Cmd cmd);

DESCRIPTION
elf _ cntl instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3E) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Gen­
erally, elf_cntl commands apply to all activations of elf. Moreover, if the ELF
descriptor is associated with an archive file, descriptors for members within the
archive will also be affected as described below. Unless stated otherwise, opera­
tions on archive members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF C FDDONE
This value tells the library not to use the file descriptor associated with
elf. A program should use this command when it has requested all
the information it cares to use and wishes to avoid the overhead of
reading the rest of the file. The memory for all completed operations
remains valid, but later file operations, such as the initial elf _getdata
for a section, will fail if the data are not in memory already.

ELF C FDREAD
- - This command is similar to ELF _ C _FDDONE, except it forces the library

to read the rest of the file. A program should use this command when
it must close the file descriptor but has not yet read everything it
needs from the file. After elf_cntl completes the ELF_C_FDREAD
command, future operations, such as elf _getdata, will use the
memory version of the file without needing to use the file descriptor.

If elf cntl succeeds, it returns zero. Otherwise elf was null or an error
occurred, and the function returns -1.

SEE ALSO

NOTE

10/89

elf(3E), elf_begin(3E), elf_getdata(3E), elf_rawfile(3E).

If the program wishes to use the "raw" operations [see elf_rawdata, which
elf_getdata(3E) describes, and elf_rawfile(3E)J after disabling the file descrip­
tor with ELF_C_FDDONE or ELF_C_FDREAD, it must execute the raw operations
explicitly beforehand. Otherwise, the raw file operations will fail. Calling
elf_rawfile makes the entire image available, thus supporting subsequent
elf rawdata calls.

Page 1

NAME
elf_end - finish using an object file

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

int elf_end(Elf *elf);

DESCRIPTION
A program uses elf_end to terminate an ELF descriptor, elf, and to deallocate
data associated with the descriptor. Until the program terminates a descriptor,
the data remain allocated. elf should be a value previously returned by
elf_begin; a null pointer is allowed as an argument, to simplify error handling.
If the program wishes to write data associated with the ELF descriptor to the file,
it must use elf_update before calling elf_end.

As elf_begin(3E) explains, a descriptor can have more than one activation. Cal­
ling elf_end removes one activation and returns the remaining activation count.
The library does not terminate the descriptor until the activation count reaches
zero. Consequently, a zero return value indicates the ELF descriptor is no longer
valid.

SEE ALSO
elf(3E), elf_begin(3E), elf_update(3E).

10/89 Page 1

elf_ error(3E) elt error (3E)

NAME
elf _ ernnsg, elf _ errno - error handling

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

const char *elf ernnsg(int err);
int elf_errno(~id);

DESCRIPTION
If an ELF library function fails, a program may call elf _ errno to retrieve the
library's internal error number. As a side effect, this function resets the internal
error number to zero, which indicates no error.

elf ernnsg takes an error number, err, and returns a null-terminated error mes­
sage(with no trailing new-line) that describes the problem. A zero err retrieves a
message for the most recent error. If no error has occurred, the return value is a
null pointer (not a pointer to the null string). Using err of -1 also retrieves the
most recent error, except it guarantees a non-null return value, even when no
error has occurred. If no message is available for the given number, elf _ ernnsg
returns a pointer to an appropriate message. This function does not have the side
effect of clearing the internal error number.

EXAMPLE
The following fragment clears the internal error number and checks it later for
errors. Unless an error occurs after the first call to elf_errno, the next call will
return zero.

(void)elf errno();
while (IOOre to do)
{ - -

/* processing ... */
if ((err = elf errno(» != 0)
{ -

msg = elf ernnsg(err);
/* print iiisg */

SEE ALSO
elf(3E), elf _ version(3E).

10/89 Page 1

eIUIII(3E) eIUIII(3E)

NAME
elf_fill - set fill byte

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

void elf_fill(int fill);

DESCRIPTION
Alignment constraints for ELF files sometimes require the presence of ''holes.''
For example, if the data for one section are required to begin on an eight-byte
boundary, but the preceding section is too "short," the library must fill the inter­
vening bytes. These bytes are set to the fill character. The library uses zero bytes
unless the application supplies a value. See elf_getdata(3E) for more informa­
tion about these holes.

SEE ALSO

NOTE

10/89

elf(3E), elf_getdata(3E), elf_flag(3E), elf_update(3E).

An application can assume control of the object file organization by setting the
ELF_F_LAYOOT bit [see elf_flag(3E)J. When this is done, the library does not fill
holes.

Page 1

elUlag{3E) elUlag{3E)

NAME
elf flagdata, elf flagehdr, elf flagelf, elf_flagphdr, elf_flagsen,
el()lagshdr - mai\i.pulate flags -

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

unsigned elf_flagdata(Elf_Data * data, Elf_end cOO, unsigned flags);

unsigned elf_flagehdr(Elf *elf, Elf_end cOO, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_end end, unsigned flags);

unsigned elf_flagphdr(Elf *elf, Elf_end cOO, unsigned flags);

unsigned elf_flagsen(Elf_Sen *sen, Elf_end end, unsigned flags);

unsigned elf_flagshdr (Elf_Sen *sen, Elf_QId end, unsigned flags);

DESCRIPTION

10/89

These functions manipulate the flags associated with various structures of an ELF
file. Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor
(sen), the functions may set or clear the associated status bits, returning the
updated bits. A null descriptor is allowed, to simplify error handling; all func­
tions return zero for this degenerate case.

and may have the following values.

ELF C CLR The functions clear the bits that are asserted in flags. Only
the non-zero bits in flags are cleared; zero bits do not change
the status of the descriptor.

ELF C SET The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the
status of the descriptor.

Descriptions of the defined flags bits appear below.

ELF F DIRTY

ELF F LAYOUT

When the program intends to write an ELF file, this flag
asserts the associated information needs to be written to the
file. Thus, for example, a program that wished to update the
ELF header of an existing file would call elf_flagehdr with
this bit set in flags and and equal to ELF_C_SET. A later call
to elf_update would write the marked header to the file.

Normally, the library decides how to arrange an output file.
That is, it automatically decides where to place sections, how
to align them in the file, etc. If this bit is set for an ELF
descriptor, the program assumes responsibility for determin­
ing all file positions. This bit is meaningful only for
elf _flagelf and applies to the entire file associated with the
descriptor.

Page 1

e1tflag (3E)

When a flag bit is set for an item, it affects all the subitems as well. Thus, for
example, if the program sets the ELFy_DIRTY bit with elf_flagelf, the entire
logical file is "dirty."

EXAMPLE
The following fragment shows how one might mark the ELF header to be written
to the output file.

ehdr = elf32 getehdr(elf);
/* dirty ehdr ... */
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

SEE ALSO
elf(3E), elf_end(3E), elf_getdata(3E), elf_getehdr(3E), elf_update(3E).

Page 2 10/89

eIUslze(3E)

NAME
elf_fsize: elf32_fsize - return the size of an object file type

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

DESCRIPTION
elf32_fsize gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size [see
elf(3E) and elf_version(3E)J.

Constant values are available for the sizes of fundamental types.

Elf_Type File Size Memory Size

ELF T ADDR ELF32 FSZ ADDR sizeof (Elf32 Mdr)
ELF T BYTE 1 sizeof(unsigned char)
ELF T HALF ELF32 FSZ HALF sizeof(Elf32_Half)
ELT T OFF ELF32 FSZ OFF sizeof(Elf32 Off)
ELF T SWORD ELF32-FSZ-SWORD sizeof(Elf32=SwOrd)
ELF T WORD ELF32-FSZ-WORD sizeof(Elf32_WOrd)

elf32 fsize returns zero if the value of type or ver is unknown. See
elf_xlate(3E) for a list of the type values.

SEE ALSO
elf(3E), elf _ version(3E), elf _ xlate(3E).

10/89 Page 1

elf_getarhdr (3E) elf _getarhdr (3E)

NAME
elf_getarhdr - retrieve archive member header

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *elf);

DESCRIPTION
elf _getarhdr returns a pointer to an archive member header, if one is available
for the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf _getarhdr then returns a null value. The header
includes the following members.

char
time t
long
long
unsigned long
off t
char

*ar_name;
ar_date;
ar_uid;
ar gid;
ar=:lOOde;
ar_size;
*ar_rawname;

An archive member name, available through ar _name, is a null-terminated string,
with the ar format control characters removed. The ar rawname member holds a
null-terminated string that represents the original name bytes in the file, including
the terminating slash and trailing blanks as specified in the archive format.

In addition to "regular" archive members, the archive format defines some spe­
cial members. All special member names begin with a slash (/), distinguishing
them from regular members (whose names may not contain a slash). These spe­
cial members have the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf _getarsym. The information in the symbol table is useful for ran­
dom archive processing [see elf_rand(3E)J.

/ / This member, if present, holds a string table for long archive member
names. An archive member's header contains a 16-byte area for the
name, which may be exceeded in some file systems. The library
automatically retrieves long member names from the string table, setting
ar_name to the appropriate value.

Under some error conditions, a member's name might not be available. Although
this causes the library to set ar_name to a null pointer, the ar_rawname member
will be set as usual.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E), ar(4).

10/89 Page 1

elf _getarsym (3E) eltgetarsym (3E)

NAME
elf _getarsym - retrieve archive symbol table

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf_Arsym *elf_getarsym(Elf *elf, size_t *ptr);

DESCRIPTION
elf _getarsym returns a pointer to the archive symbol table, if one is available
for the ELF descriptor elf. Otherwise, the archive doesn't have a symbol table, an
error occurred, or elf was null; elf_getarsym then returns a null value. The
symbol table is an array of structures that include the following members.

char *as_name;
size t as_off;
unsigned long as_hash;

These members have the following semantics.

as name A pointer to a null-terminated symbol name resides here.

as off This value is a byte offset from the beginning of the archive to the
member's header. The archive member residing at the given offset
defines the associated symbol. Values in as_off may be passed as
arguments to elf_rand to access the desired archive member.

as hash This is a hash value for the name, as computed by elf_hash.

If ptr is non-null, the library stores the number of table entries in the location to
which ptr points. This value is set to zero when the return value is null. The
table's last entry, which is included in the count, has a null as_name, a zero value
for as_off, and -OUL for as_hash.

SEE ALSO
elf(3E), elf_getarhdr(3E), elf_hash(3E), elf_rand(3E), ar(4).

10/89 Page 1

elf_getbase (3E) eltgetbase(3E)

NAME
elf _getbase - get the base offset for an object file

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinc1ude <libe1f.h>

off_t e1f_getbase(E1f *e1f);

DESCRIPTION
e1f_getbase returns the file offset of the first byte of the file or archive member
associated with elf, if it is known or obtainable, and -1 otherwise. A null elf is
allowed, to simplify error handling; the return value in this case is -1. The base
offset of an archive member is the beginning of the member's information, not the
beginning of the archive member header.

SEE ALSO
elf(3E), elf_begin(3E), ar(4).

10/89 Page 1

elf_getdata(3E) elf_getdata(3E)

NAME
elf _getdata, elf _ newdata, elf _ rawdata - get section data

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]

'include <libelf.h>

Elf_Data *elf_getdata(Elf_Scn *scn, Elf_Data *data);

Elf Data *elf_newdata(Elf_Scn *scn);

Elf_Data *elf_rawdata(Elf_Scn *scn, Elf_Data *data);

DESCRIPTION

10/89

These functions access and manipulate the data associated with a section descrip­
tor, sen. When reading an existing file, a section will have a single data buffer
associated with it. A program may build a new section in pieces, however, com­
posing the new data from multiple data buffers. For this reason, "the" data for a
section should be viewed as a list of buffers, each of which is available through a
data descriptor.

elf _getdata lets a program step through a section's data list. If the incoming
data descriptor, data, is null, the function returns the first buffer associated with
the section. Otherwise, data should be a data descriptor associated with sen, and
the function gives the program access to the next data element for the section. If
sen is null or an error occurs, elf_getdata returns a null pointer.

elf _getdata translates the data from file representations into memory represen­
tations [see elf_xlate(3E)] and presents objects with memory data types to the
program, based on the file's class [see elf(3E)]. The working library version [see
elf_version(3E)] specifies what version of the memory structures the program
wishes elf_getdata to present.

elf_newdata creates a new data descriptor for a section, appending it to any
data elements already associated with the section. As described below, the new
data descriptor appears empty, indicating the element holds no data. For con­
venience, the descriptor's type (d_type below) is set to ELF_T_BYTE, and the ver­
sion (d _version below) is set to the working version. The program is responsi­
ble for setting (or changing) the descriptor members as needed. This function
implicitly sets the ELF_F_DIRTY bit for the section's data [see elf_flaq(3E)]. If
sen is null or an error occurs, elf_newdata returns a null pointer.

elf _ rawdata differs from elf _getdata by returning only uninterpreted bytes,
regardless of the section type. This function typically should be used only to
retrieve a section image from a file being read, and then only when a program
must avoid the automatic data translation described below. Moreover, a program
may not close or disable [see elf_cntl(3E)] the file descriptor associated with elf
before the initial raw operation, because elf_rawdata might read the data from
the file to ensure it doesn't interfere with elf getdata. See elf rawfile(3E)
for a related facility that applies to the entire file. When elf _getciata provides
the right translation, its use is recommended over elf _ rawdata. If sen is null or
an error occurs, elf_rawdata returns a null pointer.

Page 1

elf_getdata(3E) e1tgetdata (3E)

The Elf_Data structure includes the following members.

void *d _ buf;
Elf Type d type;
size t d:size;
off t doff;
size t d-align;
unsigned d:version;

These members are available for direct manipulation by the program. Descrip­
tions appear below.

d buf A pointer to the data buffer resides here. A data element with no
data has a null pointer.

d size

doff

d version

This member's value specifies the type of the data to which d_buf
points. A section's type determines how to interpret the section
contents, as summarized below.

This member holds the total size, in bytes, of the memory occu­
pied by the data. This may differ from the size as represented in
the file. The size will be zero if no data exist. [See the discussion
of SHT_NOBITS below for more information.]

This member gives the offset, within the section, at which the
buffer resides. This offset is relative to the file's section, not the
memory object's.

This member holds the buffer's required alignment, from the
beginning of the section. That is, d_off will be a multiple of this
member's value. For example, if this member's value is four, the
beginning of the buffer will be four-byte aligned within the sec­
tion. Moreover, the entire section will be aligned to the maximum
of its constituents, thus ensuring appropriate alignment for a
buffer within the section and within the file.

This member holds the version number of the objects in the
buffer. When the library originally read the data from the object
file, it used the working version to control the translation to
memory objects.

DATA ALIGNMENT

Page 2

As mentioned above, data buffers within a section have explicit alignment con­
straints. Consequently, adjacent buffers sometimes will not abut, causing "holes"
within a section. Programs that create output files have two ways of dealing with
these holes.

First, the program can use elf_fill to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to ini­
tialize the data there. The library's initial fill value is zero, and elf_fill lets the
application change that.

Second, the application can generate its own data buffers to occupy the gaps,
filling the gaps with values appropriate for the section being created. A program
might even use different fill values for different sections. For example, it could
set text sections' bytes to no-operation instructions, while filling data section holes

10/89

elf_getdata (3E) eltgetdata(3E)

with zero. Using this technique, the library finds no holes to fill, because the
application eliminated them.

SECTION AND MEMORY TYPES
elf_getdata interprets sections' data according to the section type, as noted in
the section header available through elf_getshdr. The following table shows
the section types and how the library represents them with memory data types
for the 32-bit file class. Other classes would have similar tables. By implication,
the memory data types control translation by elf _ xlate.

Section Type Elf_Type 32-Bit Type

SHT DYNAMIC ELF T DYN Elf32_Dyn
SHT DYNSYM ELF=X::SYM Elf32_Sym
SHT HASH ELF_T_WORD Elf32 Word
SHT NOBITS ELF T BYTE unsigned char
SHT-NOTE ELF ::X::SYTE unsigned char
SHT NULL none none
SHT PROGBITS ELF T BYTE unsigned char
SHT REL ELF::X::REL Elf32 Rel
SHT REIA ELF_T_RELA Elf32-Rela
SHT STRTAB ELF T BYTE unsigned char
SHT SYMl'AB ELF::::T::::SYM Elf32_Sym
other ELF_T_BYTE unsigned char

elf _ rawdata creates a buffer with type ELF _ T _BYTE.

As mentioned above, the program's working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type "belongs" to a version newer than the
application's working version, the library does not translate the section data.
Because the application cannot know the data format in this case, the library
presents an untranslated buffer of type ELF_T_BYTE, just as it would for an
unrecognized section type.

A section with a special type, SHT _ NOBITS, occupies no space in an object file,
even when the section header indicates a non-zero size. elf getdata and
elf_rawdata "work" on such a section, setting the data structure to have a null
buffer pointer and the type indicated above. Although no data are present, the
d_size value is set to the size from the section header. When a program is creat­
ing a new section of type SHT _ NOB ITS, it should use elf _ newdata to add data
buffers to the section. These "empty" data buffers should have the d_size
members set to the desired size and the d _ buf members set to null.

EXAMPLE

10/89

The following fragment obtains the string table that holds section names (ignor­
ing error checking). See elf_strptr(3E) for a variation of string table handling.

Page 3

elf_getdata{3E) e1tgetdata (3E)

ehdr = elf32 getehdr(elf);
sen = elf getsen(elf, (size t)ehdr->e shstrndx);
shdr = elf32_getshdr(scn); - -
if (shdr->sh type != SHT STRTAB)
{ - -

/* not a string table */

data = 0;
if «data = elf_getdata(sen, data» == 0 I I data->d size == 0)
(

/* error or no data */

The e shstrndx member in an ELF header holds the section table index of the
string table. The program gets a section descriptor for that section, verifies it is a
string table, and then retrieves the data. When this fragment finishes, data­
>d_buf points at the first byte of the string table, and data->d_size holds the
string table's size in bytes.

SEE ALSO

Page 4

elf(3E), elf cntl(3E), elf fill(3E), elf flag(3E), elf getehdr(3E),
elf getscn(3E), elf getshdr(3E), elf rawfile(3E), elf version(3E),
elf:::: xlate(3E). - - -

10/89

elf_getehdr(3E) eltgetehdr (3E)

NAME
elf_getehdr: elf32_getehdr, elf32_newehdr - retrieve class-dependent object
file header

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

'include <libelf.h>

Elf32_Ehdr +elf32_getehdr(Elf +elf);

Elf32_Ehdr +elf32_newehdr (Elf +elf);

DESCRIPTION
For a 32-bit class file, elf32_getehdr returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32 newehdr allocates a "clean" one, but it otherwise behaves the same as
elf32:=getehdr. It does not allocate a new header if one exists already. If no
header exists (for elf_getehdr), one cannot be created (for elf_newehdr), a sys­
tem error occurs, the file is not a 32-bit class file, or elf is null, both functions
return a null pointer.

The header includes the following members.

unsigned char
Elf32 Half
Elf32-Half
Elf32-Word
Elf32-Addr
Elf32-0ff
Elf32-0ff
Elf32-Word
Elf32-Half
Elf32-Half
Elf32-Half
Elf32-Half
Elf32-Half
Elf32-Half

e_ident[EI_NIDENT);
e type;
e:=machine;
e_version;
e entry;
e~hoff;
e_shoff;
e flags;
e-ehsize;
e~hentsize;
e...,phnum;
e_shentsize;
e_shnum;
e _ shstrndx;

elf32_newehdr automatically sets the ELF_F_DIRTY bit [see elf_flag(3E)J. A
program may use elf _getident to inspect the identification bytes from a file.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getident(3E).

10/89 Page 1

eltgetldent (3E) elf_getldent (3E)

NAME
elf _getident - retrieve file identification data

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

'include <libelf.h>

char *elf_getident(Elf *elf, size_t *ptr);

DESCRIPTION
As elf(3E) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits, etc. To accommodate these differences,
without forcing the larger sizes on smaller machines, the initial bytes in an ELF
file hold identification information common to all file classes. Every ELF header's
e_ident has EI_NIDENT bytes with the following interpretation.

e ident Index Value Purpose

EI MAGO ELFMAGO
EI MAG1 ELFMAG1 File identification
EI MAG2 ELFMAG2
EI MAG3 ELFMAG3

ELFCLASSNONE
EI CLASS ELFCLASS32 File class -

ELFCLASS64
ELFDATANONE

EI DATA ELFDATA2LSB Data encoding
ELFDATA2MSB

EI VERSION EV CURRENT File version -
7-15 0 Unused, set to zero

Other kinds of files [see elf_kind(3E)J also may have identification data, though
they would not conform to e _ ident.

elf_getident returns a pointer to the file's "initial bytes." If the library recog­
nizes the file, a conversion from the file image to the memory image may occur.
In any case, the identification bytes are guaranteed not to have been modified,
though the size of the unmodified area depends on the file type. If ptr is non­
null, the library stores the number of identification bytes in the location to which
ptr points. If no data are present, elf is null, or an error occurs, the return value is
a null pointer, with zero optionally stored through ptr.

SEE ALSO
elf(3E), elf_begin(3E), elf_getehdr(3E), elf_kind(3E), elf_rawfile(3E).

10/89 Page 1

elf_getphdr(3E) e1tgetphdr (3E)

NAME
elf getphdr: elf32 getphdr, elf32 newphdr - retrieve class-dependent pro-
gram header table - -

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf32 Phdr *elf32_getphdr(Elf *elf);

Elf32 Phdr *elf32_newphdr(Elf *elf, size_t count);

DESCRIPTION
For a 32-bit class file, elf32_getphdr returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.
elf32_newphdr allocates a new table with count entries, regardless of whether
one existed previously, and sets the ELF_F_DIRTY bit for the table [see
elf_flag(3E)]. Specifying a zero count deletes an existing table. Note this
behavior differs from that of elf32_newehdr [see elf32_getehdr(3E)J, allowing
a program to replace or delete the program header table, changing its size if
necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs,
or elf is nUll, both functions return a null pointer. Additionally, elf32_newphdr
returns a null pointer if count is zero.

The table is an array of Elf32_Phdr structures, each of which includes the fol­
lowing members.

Elf32 Word
Elf32-0ff
Elf32-Addr
Elf32 Addr
Elf32:=word
Elf32 Word
Elf32 Word
Elf32Word

p type;
p:=offset;
p_vaddr;
pyaddr;
p_filesz;
p_memsz;
p flags;
p:=align;

The ELF header's eyhnum member tells how many entries the program header
table has [see elf_getehdr(3E)]. A program may inspect this value to determine
the size of an existing table; elf32_newphdr automatically sets the member's
value to count. If the program is building a new file, it is responsible for creating
the file's ELF header before creating the program header table.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getehdr(3E).

10/89 Page 1

elf_getscn (3E) elf_getscn (3E)

NAME
elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn - get section information

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]

tinclude <libelf.h>

Elf_Scn *elf_getscn(Elf *elf, size t index);

size_t elf_ndxscn(Elf_Scn *sen);

Elf Sen *elf-pewscn(Elf *elf);

Elf Sen *elf_nextscn(Elf *elf, Elf_Sen *scn);

DESCRIPTION
These functions provide indexed and sequential access to the sections associated
with the ELF descriptor elf. If the program is building a new file, it is responsible
for creating the file's ELF header before creating sections; see elf_getehdr(3E).

elf _getscn returns a section descriptor, given an index into the file's section
header table. Note the first "real" section has index 1. Although a program can
get a section descriptor for the section whose index is 0 (SHN_UNDEF, the
undefined section), the section has no data and the section header is "empty"
(though present). If the specified section does not exist, an error occurs, or elf is
null, elf_getscn returns a null pointer.

elf _ newscn creates a new section and appends it to the list for elf. Because the
SHN _ UNDEF section is required and not "interesting" to applications, the library
creates it automatically. Thus the first call to elf_newscn for an ELF descriptor
with no existing sections returns a descriptor for section 1. If an error occurs or
elf is null, elf_newscn returns a null pointer.

After creating a new section descriptor, the program can use elf _getshdr to
retrieve the newly created, "clean" section header. The new section descriptor
will have no associated data [see elf_getdata(3E)]. When creating a new sec­
tion in this way, the library updates the e_shnum member of the ELF header and
sets the ELF_F_DIRTY bit for the section [see elf_flag(3E)]. If the program is
building a new file, it is responsible for creating the file's ELF header [see
elf_getehdr(3E)] before creating new sections.

elf_nextscn takes an existing section descriptor, sen, and returns a section
descriptor for the next higher section. One may use a null sen to obtain a section
descriptor for the section whose index is 1 (skipping the section whose index is
SHN_UNDEF). If no further sections are present or an error occurs, elf_nextscn
returns a null pointer.

elf_ndxscn takes an existing section descriptor, sen, and returns its section table
index. If sen is null or an error occurs, elf_ndxscn returns SHN_UNDEF.

EXAMPLE

10/89

An example of sequential access appears below. Each pass through the loop
processes the next section in the file; the loop terminates when all sections have
been processed.

Page 1

elf_getscn (3E)

SEE ALSO

sen = 0;
while «sen - elf_nextsen(elf, sen» != 0)
(

/* process section */

e1tgetscn (3E)

elf(3E), elf begin(3E), elf flag(3E), elf getdata(3E), elf getehdr(3E),
elf_getshdI(3E). - - -

Page 2 10/89

elf_getshdr(3E) eltgetshdr (3E)

NAME
elf_getshdr: elf32_getshdr - retrieve class-dependent section header

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J
tinclude <libelf.h>

Elf32_Shdr *elf32_getshdr(Elf_Scn *scn);

DESCRIPTION
For a 32-bit class file, elf32 _getshdr returns a pointer to a section header for the
section descriptor sen. Otherwise, the file is not a 32-bit class file, sen was null, or
an error occurred; elf32_getshdr then returns null.

The header includes the following members.

Elf32 Word sh_name;
Elf32-Word sh_type;
Elf32-Word sh flags;
Elf32-Addr sh:addr;
Elf32-off sh_offset;
Elf32-Word
Elf32-Word
Elf32-Word
Elf32-Word
Elf32-Word

sh size;
sh:link;
sh info;
sh -addralign;
sh:entsize;

If the program is building a new file, it is responsible for creating the file's ELF
header before creating sections.

SEE ALSO
elf(3E), elf_flag(3E), elf_getscn(3E), elf_strptr(3E).

10/89 Page 1

91f_ hash (3E)

NAME
elf_hash - compute hash value

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

unsigned long elf_hash(const char *name);

DESCRIPTION
elf_hash computes a hash value, given a null terminated string, name. The
returned hash value, h, can be used as a bucket index, typically after computing
h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash
uses unsigned arithmetic to avoid possible differences in various machines'
signed arithmetic. Although name is shown as char* above, elf_hash treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates
type conflicts with expressions such as elf_hash (nname n) .

ELF files' symbol hash tables are computed using this function [see
elf_getdata(3E) and elf_xlate(3E)J. The hash value returned is guaranteed
not to be the bit pattern of all ones (-OUL).

SEE ALSO
elf(3E), elf _getdata(3E), elf _ xlate(3E).

10/89 Page 1

81f_ kind (3E)

NAME
elf_kind - determine file type

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

Elf_Kind elf_kind(Elf *elf);

DESCRIPTION
This function returns a value identifying the kind of file associated with an ELF
descriptor (elf>. Currently defined values appear below.

ELF K COFF

ELF K ELF

ELF K NONE

The file is an archive [see ar(4)J. An ELF deSCriptor may also be
associated with an archive member, not the archive itself, and
then elf_kind identifies the member's type.

The file is a COFF object file. elf _ begin(3E) describes the
library's handling for COFF files.

The file is an ELF file. The program may use elf _getident to
determine the class. Other functions, such as elf getehdr, are
available to retrieve other file information. -

This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf
should be a value previously returned by elf_begin. A null pointer is allowed,
to simplify error handling, and causes elf_kind to return ELF_K_NONE.

SEE ALSO
elf(3E), elf_begin(3E), elf_getehdr(3E), elf_getident(3E), ar(4).

10/89 Page 1

NAME
elf_next - sequential archive member access

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

'include <libelf.h>

Elf_Cmd elf_next(Elf *elf);

DESCRIPTION
elf_next, elf_rand, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_next provides sequential access to the next archive member. That is, having
an ELF descriptor, elf, associated with an archive member, elf_next prepares the
containing archive to access the following member when the program calls
elf_begin. After successfully positioning an archive for the next member,
elfyext returns the value ELF_C_READ. Otherwise, the open file was not an
archive, elf was null, or an error occurred, and the return value is ELF _ C _NULL.
In either case, the return value may be passed as an argument to elf_begin,
specifying the appropriate action.

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elfJand(3E), ar(4).

10/89 Page 1

elfJand(3E)

NAME
elf_rand - random archive member access

SYNOPSIS
cc [flag ... J file ... -lelf !library ... J

tinclude <libelf.h>

size_t elf_rand(Elf *elf, size_t offset);

DESCRIPTION
elf_rand, elf_next, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_rand provides random archive processing, preparing elf to access an arbi­
trary archive member. elf must be a descriptor for the archive itself, not a
member within the archive. offset gives the byte offset from the beginning of the
archive to the archive header of the desired member. See elf getarsym(3E) for
more information about archive member offsets. When eif rand works, it
returns offset. Otherwise it returns 0, because an error occurred-;- elf was null, or
the file was not an archive (no archive member can have a zero offset). A pro­
gram may mix random and sequential archive processing.

EXAMPLE
An archive starts with a "magic string" that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns -1 for errors and 0 other­
wise).

#include <ar. h>
tinclude <libelf.h>

int
rewindelf(Elf *elf)
{

return 0;
return -1;

SARMAG)

SEE ALSO
elf(3E), elf_begin(3E), elf_getarsym(3E), elf_next(3E), ar(4).

10/89 Page 1

elUawflle (3E) elfJawflle (3E)

NAME
elf _ rawfile - retrieve uninterpreted file contents

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

'include <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

DESCRIPTION
elf_rawfile returns a pointer to an uninterpreted byte image of the file. This
function should be used only to retrieve a file being read. For example, a pro­
gram might use elf_rawfile to retrieve the bytes for an archive member.

A program may not close or disable [see elf_cnt1(3E)J the file descriptor associ­
ated with elf before the initial call to elf_rawfile, because elf_rawfile might
have to read the data from the file if it does not already have the original bytes in
memory. Generally, this function is more efficient for unknown file types than
for object files. The library implicitly translates object files in memory, while it
leaves unknown files unmodified. Thus asking for the uninterpreted image of an
object file may create a duplicate copy in memory.

elf_rawdata [see elf_getdata(3E)J is a related function, providing access to
sections within a file.

If ptr is non-null, the library also stores the file's size, in bytes, in the location to
which ptr points. If no data are present, elf is null, or an error occurs, the return
value is a null pointer, with zero optionally stored through ptr.

SEE ALSO

NOTE

10/89

elf(3E), elf begin(3E), elf cntl(3E), elf getdata(3E), elf getehdr(3E),
elf_getident(3E), elf_kind(3E). - -

A program that uses elf_rawfile and that also interprets the same file as an
object file potentially has two copies of the bytes in memory. If such a program
requests the raw image first, before it asks for translated information (through
such functions as elf_getehdr, elf_getdata, and so on), the library "freezes"
its original memory copy for the raw image. It then uses this frozen copy as the
source for creating translated objects, without reading the file again. Conse­
quently, the application should view the raw file image returned byelf_rawfile
as a read-only buffer, unless it wants to alter its own view of data subsequently
translated. In any case, the application may alter the translated objects without
changing bytes visible in the raw image.

Multiple calls to elf_rawfile with the same ELF descriptor return the same
value; the library does not create duplicate copies of the file.

Page 1

elf_ strptr (3E) elf_strptr(3E}

NAME
elf _ st:rptr - make a string pointer

SYNOPSIS
cc [flag ...] file ... -lelf [library ...]

'include <libelf.h>

char *elf_st:rptr(Elf *elf, size_t section, size_t offset);

DESCRIPTION
This function converts a string section offset to a string pointer. elf identifies the
file in which the string section resides, and section gives the section table index for
the strings. elf _ st:rptr normally returns a pointer to a string, but it returns a
null pointer when elf is null, section is invalid or is not a section of type
SHT_STRTAB, the section data cannot be obtained, offset is invalid, or an error
occurs.

EXAMPLE
A prototype for retrieving section names appears below. The file header specifies
the section name string table in the e_shstrndx member. The following code
loops through the sections, printing their names.

if «ehdr = elf32_getehdr(elf» == 0)
{

/* handle the error */
return;

ndx = ehdr->e shstrndx;
sen = 0; -
while «sen = elf_nextscn(elf, sen» != 0)
{

char *name = 0;
if «shdr = elf32 getshdr(scn» != 0)

name - elf st:rptr(elf, ndx, (size t)shdr->sh name);
printf("'%s'\n", name? name: "(null)"); -

SEE ALSO

NOTE

10/89

elf(3E), elf _getdata(3E), elf _getshdr(3E), elf _ xlate(3E).

A program may call el~getdata to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than
using elf _ st:rptr.

Page 1

elf_update (3E) el,-update (3E)

NAME
elf_update - update an ELF descriptor

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

tinclude <libelf.h>

off_t elf_update(Elf *elf, Elf_Cmd cmd);

DESCRIPTION

10/89

elf_update causes the library to examine the information associated with an ELF
descriptor, elf, and to recalculate the structural data needed to generate the file's
image.

cmd may have the following values.

ELF C NULL This value tells elf update to recalculate various values,
updating only the ELF descriptor's memory structures. Any
modified structures are flagged with the ELF _F _DIRTY bit. A
program thus can update the structural information and then
reexamine them without changing the file associated with the
ELF descriptor. Because this does not change the file, the ELF
descriptor may allow reading, writing, or both reading and
writing [see elf_begin(3E)J.

ELF C WRITE If cmd has this value, elf_update duplicates its ELF_C_NULL
actions and also writes any "dirty" information associated with
the ELF descriptor to the file. That is, when a program has used
elf_getdata or the elf_flag facilities to supply new (or
update existing) information for an ELF descriptor, those data
will be examined, coordinated, translated if necessary [see
elf_xlate(3E)), and written to the file. When portions of the
file are written, any ELF _F _DIRTY bits are reset, indicating those
items no longer need to be written to the file [see
elf flag(3E)J. The sections' data are written in the order of
their section header entries, and the section header table is writ­
ten to the end of the file.

When the ELF descriptor was created with elf_begin, it must
have allowed writing the file. That is, the elf_begin command
must have been either ELF C RDWR or ELF C WRITE. -- --

If elf_update succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns -1.

When updating the internal structures, elf_update sets some members itself.
Members listed below are the application's responsibility and retain the values
given by the program.

Page 1

elf_update (3E) 81f_ update (3E)

Member Notes
e _ ident [EI _DATAl Library controls other e _ ident values
etype
e-machine
eversion

ELF Header e _entry
eyhoff
e shoff
e_flags
e shstrndx

Program Header

Member
p_type
P offset
p::::vaddr
pyaddr
p_filesz
p_memsz
p flags
p::::align

Member

Section Header

sh name
sh_type
sh_flags
sh addr
sh offset
sh-size
sh-link
sh info

Only when ELF_F_LAYOUT asserted
Only when ELF_F_LAYOUT asserted

Notes
The application controls all
program header entries

Notes

Only when ELF _F _LAYOUT asserted
Only when ELF _F _LAYOUT asserted

sh::::addralign Only when ELF_F_LAYOUT asserted
sh_entsize

Page 2 10/89

e11_ update (3E) eltupdate(3E)

Data Descriptor

Member
d buf
d-type
d-size
doff
d-aHgn
d-version

Notes

Only when ELF _F _ IAYOUT asserted

Note the program is responsible for two particularly important members (among
others) in the ELF header. The e version member controls the version of data
structures written to the file. If the version is EV_NONE, the library uses its own
internal version. The e _ ident [EI _DATAl entry controls the data encoding used
in the file. As a special case, the value may be ELFDATANONE to request the native
data encoding for the host machine. An error occurs in this case if the native
encoding doesn't match a file encoding known by the library.

Further note that the program is responsible for the sh _ entsize section header
member. Although the library sets it for sections with known types, it cannot
reliably know the correct value for all sections. Consequently, the library relies
on the program to provide the values for unknown section type. If the entry size
is unknown or not applicable, the value should be set to zero.

When deciding how to build the output file, elf_update obeys the alignments of
individual data buffers to create output sections. A section's most strictly aligned
data buffer controls the section's alignment. The library also inserts padding
between buffers, as necessary, to ensure the proper alignment of each buffer.

SEE ALSO

NOTE

10/89

elf(3E), elf begin(3E), elf flag(3E), elf fsize(3E), elf getdata(3E),
elf_getehdI(3E), elf_getshdr(3E), elf_xlate(3E). -

As mentioned above, the ELF_C_WRITE command translates data as necessary,
before writing them to the file. This translation is not always transparent to the
application program. If a program has obtained pointers to data associated with
a file [for example, see elf_getehdr(3E) and elf_getdata(3E)], the program
should reestablish the pointers after calling elf_update.

As elf _ begin(3E) describes, a program may "update" a COFF file to make the
image consistent for ELF. The ELF_C_NULL command updates only the memory
image; one can use the ELF _ C _WRITE command to modify the file as well. Abso­
lute executable files (a. out files) require special alignment, which cannot nor­
mally be preserved between COFF and ELF . Consequently, one may not update
an executable COFF file with the ELF _ C _WRITE command (though ELF _ C _NULL is
allowed).

Page 3

elf_version (3E) elf_version (3E)

NAME
elf_version - coordinate ELF library and application versions

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J
tinclude <libelf.h>

unsigned elf_version(unsigned ver);

DESCRIPTION
As elf(3E) explains, the program, the library, and an object file have independent
notions of the "latest" ELF version. elf_version lets a program determine the
ELF library's internal version. It further lets the program specify what memory
types it uses by giving its own working version, ver, to the library. Every program
that uses the ELF library must coordinate versions as described below.

The header file <libelf. h> supplies the version to the program with the macro
EV_CURRENT. If the library's internal version (the highest version known to the
library) is lower than that known by the program itself, the library may lack
semantic knowledge assumed by the program. Accordingly, elf_version will
not accept a working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version to return the library's internal
version, without altering the working version. If ver is a version known to the
library, elf_version returns the previous (or initial) working version number.
Otherwise, the working version remains unchanged and elf_version returns
EV NONE.

EXAMPLE

NOTES

The following excerpt from an application program protects itself from using an
older library.

if (elf_version (EV_CURRENT) == EV_NONE)
{

/* library out of date */
/* recover from error */

The working version should be the same for all operations on a particular elf
descriptor. Changing the version between operations on a descriptor will prob­
ably not give the expected results.

SEE ALSO
elf(3E), elf_begin(3E), elf_xlate(3E).

10/89 Page 1

NAME
elf xlate: e1£32 xlatetof, elf32 xlatetom - class-dependent data transla-
tion- -

SYNOPSIS
cc [flag ... J file ... -lelf [library ... J

'include <libelf.h>

Elf Data *elf32 xlatetof(Elf Data *dst, const Elf_Data *src,
- unsigned encode); -

Elf Data *elf32 xlatetam(Elf Data *dst, const Elf Data *src,
- unsigned encode); -

DESCRIPTION

10/89

elf32 xlatetom translates various data structures from their 32-bit class file
representations to their memory representations; elf32 _ xlatetof provides the
inverse. This conversion is particularly important for cross development environ­
ments. src is a pointer to the source buffer that holds the original data; dst is a
pointer to a destination buffer that will hold the translated copy. encode gives the
byte encoding in which the file objects are (to be) represented and must have one
of the encoding values defined for the ELF header's e_ident rEI_DATAl entry [see
elf getident(3E)]. If the data can be translated, the functions return dst. Oth­
erwise, they return null because an error occurred, such as incompatible types,
destination buffer overflow, etc.

elf_getdata(3E) describes the Elf_Data descriptor, which the translation rou­
tines use as follows.

d buf Both the source and destination must have valid buffer pointers.

d_type This member's value specifies the type of the data to which d_buf
points and the type of data to be created in the destination. The
program supplies a d_type value in the source; the library sets
the destination's d type to the same value. These values are
summarized below.-

d size

d version

This member holds the total size, in bytes, of the memory occu­
pied by the source data and the size allocated for the destination
data. If the destination buffer is not large enough, the routines do
not change its original contents. The translation routines reset the
destination's d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

This member holds version number of the objects (desired) in the
buffer. The source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is,
dst->d_buf may equal src->d_buf. Other cases where the source and destina­
tion buffers overlap give undefined behavior.

Page 1

81f_ xlate (3E)

ELF T ADOR
ELF T BYTE
ELF T OYN
ELF T EHDR
ELF T HALF
ELT T OFF
ELF T PHDR
ELF T REL
ELF T RELA
ELF T SHDR
ELF T SWORD
ELF_T_SYM
ELF T WORD

32-Bit Memory Type

Elf32 Mdr
unsigned char
Elf32 Dyn
Elf32-Ehdr
Elf32-Half
Elf32-0ff
Elf32-Phdr
Elf32-Rel
Elf32-Rela
Elf32-Shdr
Elf32-Sword
Elf32=Sym
Elf32 Word

e1t xlate (3E)

"Translating" buffers of type ELF_T_BYTE does not change the byte order.

SEE ALSO
elf(3E), elf _ fsize(3E), elf _getdata(3E), elf _getident(3E).

Page 2 10/89

nllst(3E) nllst(3E)

NAME
nlist - get entries from name list

SYNOPSIS
cc [flag ...] file ... -lelf !library ...]
tinclude <nlist.h>

int nlist (const char *filename, struct nlist *nl);

DESCRIPTION
nlist examines the name list in the executable file whose name is pointed to by
file1Ulme, and selectively extracts a list of values and puts them in the array of
nlist structures pointed to by nl. The name list nl consists of an array of struc­
tures containing names of variables, types, and values. The list is terminated
with a null name, that is, a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the name is found,
the type, value, storage class, and section number of the name are inserted in the
other fields. The type field may be set to 0 if the file was not compiled with the
-g option to cc(1). nlist will always return the information for an external sym­
bol of a given name if the name exists in the file. If an external symbol does not
exist, and there is more than one symbol with the specified name in the file (such
as static symbols defined in separate files), the values returned will be for the last
occurrence of that name in the file. If the name is not found, all fields in the
structure except n_name are set to O.

This function is useful for examining the system name list kept in the file /unix.
In this way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(4)

DIAGNOSTICS

10/89

All value entries are set to 0 if the file cannot be read or if it does not contain a
valid name list.

nlist returns 0 on success, -Ion error.

Page 1

basename (3G) basename (3G)

NAME
basename - return the last element of a path name

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

char "'basename (char "'path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a path name,
basename returns a pointer to the last element of path. Trailing" I" characters
are deleted.

If path or "'path is zero, pointer to a static constant "." is returned.

EXAMPLES

SEE ALSO
dirname(3G).

Input string
lusr/lib
lusrl
I

Output pointer
lib
usr
I

basename(l) in the User's Reference Manual.

10/89 Page 1

bgets(3G) bgets(3G)

NAME
bgets - read stream up to next delimiter

SYNOPSIS
cc [flag ... 1 file ... -lgen [library ... 1

tinclude <libgen.h>

char *bgets (char *buffer, size t *count, FILE * stream,
Const char *breakstring); -

DESCRIPTION
bgets reads characters from stream into buffer until either count is exhausted or
one of the characters in breakstring is encountered in the stream. The read data is
terminated with a null byte ('\0') and a pointer to the trailing null is returned. If
a breakstring character is encountered, the last non-null is the delimiter character
that terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, "\nn);

is identical to

fgets (buffer, sizeof buffer, stream);

There is always enough room reserved in the buffer for the trailing null.

If breakstring is a null pointer, the value of breakstring from the previous call is
used. If breakstring is null at the first call, no characters will be used to delimit
the string.

EXAMPLES
tinclude <libgen.h>

char buffer[8];
/* read in first user name fram /etc/passwd */
fp = fopen("/etc/passwd", "rn);
bgets (buffer, 8, fp, ": n) ;

DIAGNOSTICS
NULL is returned on error or end-of-file. Reporting the condition is delayed to the
next call if any characters were read but not yet returned.

SEE ALSO
gets(3S).

10189 Page 1

bufsplit (3G) bufsplit(3G)

NAME
bufsplit - split buffer into fields

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

iinclude <libgen.h>

size_t bufsplit (char *buf, size_t n, char **a);

DESCRIPTION
bufsplit examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by tabs or
new-lines.

To change the characters used to separate fields, call bufsplit with buf pointing
to the string of characters, and n and a set to zero. For example, to use':', '.',
and ' , I as separators along with tab and new-line:

bufsplit (":.,\t\n", 0, (char**)O);

RETURN VALUE
The number of fields assigned in the array a. If buf is zero, the return value is
zero and the array is unchanged. Otherwise the value is at least one. The
remainder of the elements in the array are assigned the address of the null byte at
the end of the buffer.

EXAMPLES
/*

* set a[O] = "This", a[l] "is", a[2] "a",
* a[3] = "test"
*/

bufsplit("This\tis\ta\ttest\n", 4, a);

NOTES
bufsplit changes the delimiters to null bytes in buf.

10/89 Page 1

copyllst (3G) copylist (3G)

NAME
copylist - copy a file into memory

SYNOPSIS
cc [flag ... 1 file ... -lgen [library ... 1
'include <libgen.h>

char *copylist (const char *filenm, off_t *szptr);

DESCRIPTION
copylist copies a list of items from a file into freshly allocated memory, replac­
ing new-lines with null characters. It expects two arguments: a pointer filenm to
the name of the file to be copied, and a pointer szptr to a variable where the size
of the file will be stored.

Upon success, copylist returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc, or opening the file.

EXAMPLES
/* read "file" into buf */
off t size;
c:lulr *buf;
buf ... copylist (" file", &size);
for (i = 0; i < size; i++)

if(buf[iJ)
putchar(buf[iJ) ;

else
putchar (' \n') ;

SEE ALSO
malloc(3C).

10/89 Page 1

dlrname(3G) dlrname(3G)

NAME
dirname - report the parent directory name of a file path name

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

'include <libgen.h>

char *dirname (char *path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a file system
path name, dirname returns a pointer to a static constant string that is the parent
directory of that file. In doing this, it sometimes places a null byte in the path
name after the next to last element, so the content of path must be disposable.
Trailing"/" characters in the path are not counted as part of the path.

If path or *path is zero, a pointer to a static constant" ." is returned.

dirname and basename together yield a complete path name. dirname (path) is
the directory where basename (path) is found.

EXAMPLES
A simple file name and the strings "." and " .. " all have "." as their return
value.

Input string
lusr/lib
lusrl
usr
I

Output pointer
lusr
I

I

The following code reads a path name, changes directory to the appropriate
directory [see chdir(2)J, and opens the file.

char path[lOO], *pathcopy;
int fd;
gets (path);
pathcopy = strdup (path);
chdir (dirname (pathcopy));
fd '"' open (basename (path), 0_ RDONLY) ;

SEE ALSO
chdir(2), basename(3G).
basename(1) in the User's Reference Manual.

10/89 Page 1

gmatch(3G) gmatch (3G)

NAME
gmatch - shell global pattern matching

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

int gmatch (canst char *str, const char *pattern);

DESCRIPTION
gmatch checks whether the null-terminated string str matches the null-terminated
pattern string pattern. See the sh(1) section "File Name Generation" for a discus­
sion of pattern matching. gmatch returns non-zero if the pattern matches the
string, zero if the pattern doesn't. A backslash ('\') is used as an escape character
in pattern strings.

EXAMPLE
char *s;

gmatch (s, ,,* [a\-]")

gmatch returns non-zero (true) for all strings with 'a' or '-' as their last character.

SEE ALSO
sh(1) in the User's Reference Manual

10/89 Page 1

lsencrypt (3G) isencrypt (3G)

NAME
isencrypt - determine whether a character buffer is encrypted

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J
tinclude <libgen.h>

int isencrypt (const char *fbuf, size_t ninbuf);

DESCRIPTION
isencrypt uses heuristics to determine whether a buffer of characters is
encrypted. It requires two arguments: a pointer to an array of characters and the
number of characters in the buffer.

isencrypt assumes that the file is not encrypted if all the characters in the first
block are ASCII characters. If there are non-ASCII characters in the first ninbuf
characters, isencrypt assumes that the buffer is encrypted if the set locale
LC _ CTYPE category is set to C or ascii.

If the LC _ CTYPE category is set to a value other than C or ascii, then isencrypt
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf
has at least 64 characters, a chi-square test is used to determine if the bytes in the
buffer have a uniform distribution; and isencrypt assumes the buffer is
encrypted if it does. If the buffer has less than 64 characters, a check is made for
null characters and a terminating new-line to determine whether the buffer is
encrypted.

DIAGNOSTICS
If the buffer is encrypted, 1 is returned; otherwise zero is returned.

SEE ALSO
setlocale(3C).

10/89 Page 1

mkdlrp(3G) mkdirp(3G)

NAME
mkdil:p, rmil:p - create, remove directories in a path

SYNOPSIS
cc [flag ...] file ... -lgen [library ...]

tinclude <libgen.h>

int mkdil:p (const char *path, IOOde_t IOOde);

int rmil:p (char *d, char *dl);

DESCRIPTION
mkdil:p creates all the missing directories in the given path with the given mode.
[See chmod(2) for the values of mode.]

rmil:p removes directories in path d. This removal starts at the end of the path
and moves back toward the root as far as possible. If an error occurs, the
remaining path is stored in dl. rnrlil:p returns a 0 only if it is able to remove
every directory in the path.

EXAMPLES
/* create scratch directories */
if (mkdil:p (n/tnp/subl/sub2/sub3 n, 0755) == -1) (

fprintf(stderr, ncannot create directoryn);
exit(l);

}

chdir(n/tnp/subl/sub2/sub3n) ;

/* cleanup */
chdir(n/tnpn) ;
rnrlil:p (nsubl/sub2/sub3n) ;

SEE ALSO
mkdir(2), rmir(2).

DIAGNOSTICS

NOTES

10/89

If a needed directory cannot be created, mkdil:p returns -1 and sets errno to one
of the mkdir error numbers. If all the directories are created, or existed to begin
with, it returns zero.

mkdil:p uses maUoc to allocate temporary space for the string.

rmil:p returns -2 if a "." or " .. " is in the path and -3 if an attempt is made
to remove the current directory. If an error occurs other than one of the above,
-1 is returned.

Page 1

p2open(3G) p2open(3G)

NAME
p2open, p2close - open, close pipes to and from a command

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinclude <libgen.h>

int p20pen (const char *cmd, FILE *fp[2]);

int p2close (FILE *fp[2]);

DESCRIPTION
p20pen forks and execs a shell running the command line pointed to by cmd. On
return, fp[O] points to a FILE pointer to write the command's standard input
and fp [1] points to a FILE pointer to read from the command's standard output.
In this way the program has control over the input and output of the command.

The function returns 0 if successful; otherwise it returns -1.

p2close is used to close the file pointers that p20pen opened. It waits for the
process to terminate and returns the process status. It returns 0 if successful; oth­
erwise it returns -1.

EXAMPLES
tinclude <stdio.h>
tinclude <libgen.h>

main (argc, argv)
int argc;
char * *argv;
{

FILE *fp[2];
pid_t pid;
char buf[16];

pid=p2open("/usr/bin/cat", fp);
if (pid == 0) {

fprintf(stderr, "p2open failed\n");
exit (1);

write(fileno(fp[O]) ,"This is a test\n", 16);
if(read(fileno(fp[l]), buf, 16) <=0)

fprintf (stderr, "p2open failed\n");
else

write (1, buf, 16);
(void)p2close(fp);

SEE ALSO
fclose(3S), popen(3S), setbuf(3S).

DIAGNOSTICS

10/89

A common problem is having too few file descriptors. p2close returns -1 if the
two file pointers are not from the same p2open.

Page 1

p2open(3G) p2open(3G)

NOTES

Page 2

Buffered writes on fp [0] can make it appear that the command is not listening.
Judiciously placed fflush calls or unbuffering fp[O] can be a big helpi see
fclose(3S).

Many commands use buffered output when connected to a pipe. That, too, can
make it appear as if things are not working.

Usage is not the same as for popen, although it is closely related.

10/89

pathfind (3G) pathfind (3G)

NAME
pathfind - search for named file in named directories

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J

tinc1ude <libgen.h>

char "'pathfind (const char "'path, const char *name, const char
*IOOde) ;

DESCRIPTION
pathfind searches the directories named in path for the file name. The directories
named in path are separated by semicolons. mode is a string of option letters
chosen from the set rwxfbcdpugks:

Letter
r
w
x
f
b
c
d

P
u
g
k
s

Meaning
readable
writable
executable
normal file
block special
character special
directory
FIFO (pipe)
set user ID bit
set group ID bit
sticky bit
size nonzero

Options read, write, and execute are checked relative to the real (not the effective)
user ID and group ID of the current process.

If the file name, with all the characteristics specified by mode, is found in any of
the directories specified by path, then pathfind returns a pointer to a string con­
taining the member of path, followed by a slash character (f), followed by name.

If name begins with a slash, it is treated as an absolute path name, and path is
ignored.

An empty path member is treated as the current directory. . / is not prepended
at the occurrence of the first match; rather, the unadorned name is returned.

EXAMPLES
To find the ls command using the PATH environment variable:

pathfind (getenv ("PATH"), "ls", "rx")

SEE ALSO
access(2), mknod(2), stat(2), getenv(3C).
sh(1), test(1) in the User's Reference Manual.

DIAGNOSTICS
If no match is found, pathname returns a null pointer, «char *) 0).

10/89 Page 1

pathfind (3G) pathfind (3G)

NOTES

Page 2

The string pointed to by the returned pointer is stored in a static area that is
reused on subsequent calls to pathfind.

10/89

regcmp(3G) regcmp(3G)

NAME
regcnp, regex - compile and execute regular expression

SYNOPSIS
tinclude <libgen.h>

cc [flag ... J file ... ~ 1gen [library ... J
char *regcnp (canst char *stringl [, char *string2, ...],

(char *)0);

char *regex (canst char *re, canst char *subject
[, char *retO, ...]);

extern char *_locl;

DESCRIPTION

10/89

regcnp compiles a regular expression (consisting of the concatenated arguments)
and returns a pointer to the compiled form. malloc(3C) is used to create space
for the compiled form. It is the user's responsibility to free unneeded space so
allocated. A NULL return from regcnp indicates an incorrect argument.
regcnp(1) has been written to generally preclude the need for this routine at exe­
cution time.

regex executes a compiled pattern against the subject string. Additional argu­
ments are passed to receive values back. regex returns NULL on failure or a
pointer to the next unmatched character on success. A global character pointer
_locl points to where the match began. regcnp and regex were mostly bor­
rowed from the editor, ed(1); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and associated meanings.

[] * ." These symbols retain their meaning in ed(1).

$

+

Matches the end of the string; \n matches a newline.

Within brackets the minus means through. For example, [a-z] is
equivalent to [abed ... xyz]. The - can appear as itself only if used
as the first or last character. For example, the character class expres­
sion []-] matches the characters] and -.

A regular expression followed by + means one or more times. For
example, [0-9] + is equivalent to [0-9] [0-9] * .

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. The value m is the
minimum number and u is a number, less than 256, which is the max­
imum. If only m is present (Le., {m}), it indicates the exact number
of times the regular expression is to be applied. The value {m,} is
analogous to {m,infinity}. The plus (+) and star (*) operations are
equivalent to {l,} and {O, } respectively.

(...) $n
The value of the enclosed regular expression is to be returned. The
value will be stored in the (n+ l)th argument following the subject
argument. At most, ten enclosed regular expressions are allowed.
regex makes its assignments unconditionally.

Page 1

regcmp(3G) regcmp(3G)

(...) Parentheses are used for grouping. An operator, e.g., *, +, {}, can
work on a single character or a regular expression enclosed in
parentheses. For example, (a* (cb+) *) $0.

By necessity, all the above defined symbols are special. They must, therefore, be
escaped with a \ (backslash) to be used as themselves.

EXAMPLES
The following example matches a leading newline in the subject string pointed at
by cursor.

char *cursor, *newcursor, *ptr;

newcursor'" regex«ptr'" regcnp(""'\n", (char *)0», cursor);
free(ptr);

The following example matches through the string Testing3 and returns the
address of the character after the last matched character (the "4"). The string
Testing3 is copied to the character array retO.

char retO [9] ;
char *newcursor, *name;

name'" regcnp(" ([A-Za-z] [A-za-zO-9] {0,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", retO);

The following example applies a precompiled regular expression in file. i [see
regcrrp(1) 1 against string.

tinclude "file.i"
char * string, *newcursor;

newcursor = regex(name, string);

SEE ALSO

NOTES

Page 2

regcrrp(1), mal1oc(3C).
ed(1) in the User's Reference Manual.

The user program may run out of memory if regcrrp is called iteratively without
freeing the vectors no longer required.

10/89

regexpr(3G) regexpr (3G)

NAME
regexpr: conpile, step, advance - regular expression compile and match rou­
tines

SYNOPSIS
cc [flag ... J file ... -lgen [library ... J
tinclude <regexpr.h>

char *conpile (const char *instring, char *expbuf, char *endbuf);

int step (const char * string, char *expbuf);

int advance (const char * string, char *expbuf);

extern char * locl, * l0c2, * locs;

extern int nbra, regerrno, reglength;

extern char *braslist[], *braelist[];

DESCRIPTION

10/89

These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions compiled are in the form used
byed.

The syntax of the conpile routine is as follows:

conpile (instring, expbuf, endbuf)

The parameter instring is a null-terminated string representing the regular expres­
sion.

The parameter expbuf points to the place where the compiled regular expression
is to be placed. If expbuf is NULL, conpile uses malloc to allocate the space for
the compiled regular expression. If an error occurs, this space is freed. It is the
user's responsibility to free unneeded space after the compiled regular expression
is no longer needed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. This argument is ignored if expbuf is NULL. If
the compiled expression cannot fit in (endbuf- expbuJ> bytes, conpile returns
NULL and regerrno (see below) is set to 50.

If conpile succeeds, it returns a non-NULL pointer whose value depends on
expbuf. If expbuf is non-NULL, cortpile returns a pointer to the byte after the last
byte in the compiled regular expression. The length of the compiled regular
expression is stored in reglength. Otherwise, conpile returns a pointer to the
space allocated by malloc.

If an error is detected when compiling the regular expression, a NULL pointer is
returned from conpile and regerrno is set to one of the non-zero error numbers
indicated below:

Page 1

regexpr(3G) regexpr (3G)

Page 2

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\ (-\) imbalance.
Too many \(.
More than 2 numbers given in \ { -\}.
} expected after \.
First number exceeds second in \{ -\}.
[] imbalance.
Regular expression overflow.

The call to step is as follows:

step (string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for
a match. This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the
function conpile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two
external character pointers are set as a side effect to the call to step. The variable
set in step is lacl. lacl is a pointer to the first character that matched the regu­
lar expression. The variable lac2 points to the character after the last character
that matches the regular expression. Thus if the regular expression matches the
entire line, lacl points to the first character of string and loc2 points to the null
at the end of string.

The purpose of step is to step through the string argument until a match is
found or until the end of string is reached. If the regular expression begins with
A, step tries to match the regular expression at the beginning of the string only.

The function advance has the same arguments and side effects as step, but it
always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, locs
should be set equal to lac2, and step should be called with string equal to loc2.
lacs is used by commands like ed and sed so that global substitutions like
s/y*//g do not loop forever, and is NULL by default.

The external variable nbra is used to determine the number of subexpressions in
the compiled regular expression. braslist and brae list are arrays of character
pointers that point to the start and end of the nbra subexpressions in the
matched string. For example, after calling step or advance with string sabcdefg
and regular expression \ (abcdef\), braslist[O] will point at a and brael­
ist [0] will point at g. These arrays are used by commands like ed and sed for
substitute replacement patterns that contain the \n notation for subexpressions.

10/89

regexpr (3G) regexpr(3G)

Note that it isn't necessary to use the external variables regerrno, nbra, locl,
loc2 locs, braelist, and braslist if one is only checking whether or not a
string matches a regular expression.

EXAMPLES
The following is similar to the regular expression code from grep:

tinclude <regexpr.h>

if (compile (*argv, (char *)0, (char *)0)
regerr(regerrno);

if (step (linebuf, expbuf»
succeed 0 ;

SEE ALSO
regexp(5).
ed(1), grep(1), sed(1) in the User's Reference Manual.

10/89

(char *)0)

Page 3

str(3G) str(3G)

NAME
str: strfind, strrspn, strtrns - string manipulations

SYNOPSIS
cc [flag ... J file ... -lqen [library ... J

linclude <libgen.h>

int strfind (const char *asl, const char *as2);

char *strrspn (canst char * string, const char *tc);

char * strtrns (const char *str, canst char *old, const char *new,
char *result);

DESCRIPTION
strfind returns the offset of the second string, as2, if it is a substring of string
asl.

strrspn returns a pointer to the first character in the string to be trimmed (all
characters from the first character to the end of string are in te).

strtrns transforms str and copies it into result. Any character that appears in
old is replaced with the character in the same position in new. The new result is
returned.

EXAMPLES
/* find pointer to substring "hello" in asl */
i = strfind(asl, "hello");

/* trim junk from end of string */
s2 - strrspn(sl, "*?I$%");
*s2 ... '\0';

/* transform lower case to upper case */
al[I = "abcd.efghijklmnopqrstuvwxyz" ;
a2 [1 - "ABCl)EFGHIJKLMNOPQRSTUVWXYZ";
s2 - strtrns(sl, al, a2, s2);

SEE ALSO
string(3C).

DIAGNOSTICS
If the second string is not a substring of the first string strfind returns -1.

10/89 Page 1

strccpy(3G} strccpy(3G}

NAME
strccpy: streadd, strcadd, strecpy - copy strings, compressing or expanding
escape codes

SYNOPSIS
cc [flag ... 1 file ... -lgen !library ... 1
'include <libgen.h>

char *strccpy (char *output, const char *input);

char *strcadd (char *output, const char *input);

char *strecpy (char *output, const char *input, const char
*exceptions);

char *streadd (char *output, const char *input, const char
*exceptions);

DESCRIPTION
strccpy copies the input string, up to a null byte, to the output string, compress­
ing the C-Ianguage escape sequences (for example, \n, \001) to the equivalent
character. A null byte is appended to the output. The output argument must
point to a space big enough to accommodate the result. If it is as big as the space
pointed to by input it is guatanteed to be big enough. strccpy returns the output
argument.

strcadd is identical to strccpy, except that it returns the pointer to the null byte
that terminates the output.

strecpy copies the input string, up to a null byte, to the output string, expanding
non-graphic characters to their equivalent C-Ianguage escape sequences (for
example, \n, \001). The output argument must point to a space big enough to
accommodate the result; four times the space pointed to by input is guaranteed to
be big enough (each character could become \ and 3 digits). Characters in the
exceptions string are not expanded. The exceptions argument may be zero, mean­
ing all non-graphic characters are expanded. strecpy returns the output argu­
ment

streadd is identical to strecpy, except that it returns the pointer to the null byte
that terminates the output.

EXAMPLES
/* expand all but newline and tab */
strecpy(output, input, "\n\t");

/* concatenate and compress several strings */
cp = strcadd(output, input1);
cp - strcadd (cp, input2);
cp = strcadd (cp, input3);

SEE ALSO
string(3C), str(3G).

10/89 Page 1

Intro(3M) Intro (3M)

NAME
intro - introduction to the math library

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

tinclude <math.h>

DESCRIPTION
This section describes the functions in the math library, libm Declarations for
these functions may be obtained from the tinclude file math.h. Several gen­
erally useful mathematical constants are also defined there [see intro(3) and
math(5)J.

The math library is not automatically loaded by the C compilation system; use
the -1 option to cc to access the library as shown in above.

libm contains the full set of double-precision routines plus some single-precision
routines (designated by the suffix f) that give better performance with less preci­
sion. Selected routines are hand-optimized for performance. The optimized rou­
tines include sin, cos, tan, atan, atan2, exp, log, log10, pow, and sqrt and
their single-precision equivalents.

DEFINITIONS
See intro(3) for C language definitions.

FILES
LIBDIR usually /usr/ccs/lib
LIBDIR/ libm. a

SEE ALSO
cc(1), intro(2), intro(3), math(5).
The ''Floating Point Operations" chapter in the Programmer's Guide: ANSI C and
Programming Support Tools.

DIAGNOSTICS

10/89

Error handling varies according to compilation mode. Under the -Xt (default)
option to cc, these functions return the conventional values 0, ±HUGE, or NaN
when the function is undefined for the given arguments or when the value is not
representable. In the -Xa and -Xc compilation modes, ±HUGE_VAL is returned
instead of ±HUGE. (HUGE_VAL and HUGE are defined in math.h to be infinity and
the largest-magnitude single-precision number, respectively.) In every case, the
external variable errno [see intro(2)J is set to the value EDOM or ERANGE,
although the value may vary for a given error depending on compilation mode.
See the table under matherr(3M) below.

Page 1

bessel (3M) bessel (3M)

NAME
bessel: jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS
cc [flag ... 1 file ... -1m [library ... 1
tinclude <math.b>

double jO (double x);

double jl (double x);

double jn (int n, double x);

double yO (double x);

double yl (double x);

double yn (int n, double x) ;

DESCRIPTION
jO and jl return Bessel functions of x of the first kind of orders 0 and 1, respec­
tively. jn returns the Bessel function of x of the first kind of order n.

yO and yl return Bessel functions of x of the second kind of orders 0 and 1,
respectively. yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

SEE ALSO
matherr(3M).

DIAGNOSTICS

10189

Non-positive arguments cause yO, yl, and yn to return the value -HUGE and to set
errno to EOOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

Arguments too large in magnitude cause jO, jl, yO, and yl to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the
standard error output.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed.

Page 1

.rf(3M) erf(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

'include <math.h>
double erf (double x);

double erfc (double x);

DESCRIPTION
erf returns the error function of x, defined as

2 je~2 dt
~o

erfc, which returns 1.0 - erf (x), is provided because of the extreme loss of rela­
tive accuracy if erf (x) is called for large x and the result subtracted from 1.0
<e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

10/89 Page 1

exp(3M) exp(3M)

NAME
exp, expf, cbrt, log, logf, log10, log10f, pow, powf, sqrt, sqrtf - exponen­
tial, logarithm, power, square root functions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J
cc -0 -Ksd [flag ... J file ... -J sfm [library ... J
tinclude <math.h>

double exp (double xl;

float expf (float xl;

double cbrt (double xl;

double log (double xl;

float logf (float xl;

double log10 (double xl;

float log10f (float xl;

double pow (double x, double yl;

float powf (float x, float yl;

double sqrt (double xl;

float sqrtf (float xl;

DESCRIPTION
exp and expf return?

cbrt returns the cube root of x.

log and logf return the natural logarithm of x. The value of x must be positive.

log10 and log10f return the base ten logarithm of x. The value of x must be
positive.

pow and powf return xY. If x is 0, y must be positive. If x is negative, y must be
an integer.

sqrt and sqrtf return the non-negative square root of x. The value of x may
not be negative.

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS

10/89

exp and expf return HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and set errno to ERANGE.

log, logf, log10, and log10f return -HUGE and set errno to EDOM when x is
non-positive. A message indicating ~IN error is printed on standard error.

pow and powf return 0 and set errno to EDOM when x is 0 and y is non-positive,
or when x is negative and y is not an integer. In these cases, a message indicat­
ing DOMAIN error is printed on standard error. When the correct value for pow or
powf would overflow or underflow, these functions return ±HUGE or 0, respec­
tively, and set errno to ERANGE.

Page 1

exp(3M) exp(3M)

Page 2

sqrt and sqrtf return 0 and set errno to EDOM when x is negative. A message
indicating DOMAIN error is printed on standard error.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed. In these compilation modes, pow and powf return 1, with no error,
when both x and yare 0; when x is 0 and y is negative, they return -HUGE_VAL
and set errno to EDOM. Under -Xc, log and logf return -HUGE VAL and set
errno to ERANGE when x is O. Under -Xc, sqrt and sqrtf return NaN when x is
negative.

10/89

noor(3M) floor (3M)

NAME
floor, floorf, ceil, ceilf, copysign, flOOd,. flOOdf, fabs, fabsf, rint,
remainder - floor, ceiling, remainder, absolute value functions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J

tinclude <math.h>

double floor (double x);

float floorf (float x);

double ceil (double x);

float ceilf (float x);

double copysign (double x, double y);

double flOOd (double x, double y);

float flOOdf (float x, float y);

double fabs (double x);

float fabsf (float x);

double rint (double x);

double remainder (double x, double y);

DESCRIPTION
floor and floorf return the lar~t integer not greater than x. ceil and ceilf
return the smallest integer not less than x.

copysign returns x but with the slgn of y.

frood and fm::xif return the floating point remainder of the division of x by y.
More precisely, they return the numrer f with the same sign as x, sucn ~ x == iy
+ f for some integer i, and I f I < I y I .
fabs and fabsf return the absolute value of x, I x I .
rint returns the nearest integer value to its floating point argument x as a
double-precision floating point number. The returned value is rounded according
to the currently set machine rounding mode. If round-to-nearest (the default
mode) is set and the difference between the function argument and the rounded
result is exactly 0.5, then the result will be rounded to the nearest even integer.

remainder returns the floating point remainder of the division of x by y. More
precisely, it returns the value r = x - yn, where n is the integer nearest the exact
value x/Yo Whenever I n - x/y I = lIa, then n is even.

SEE ALSO
abs(3C), matherr(3M).

DIAGNOSTICS

10/89

fm::xi and fIOOdf return x when y is 0 and set errno to EDOM. remainder returns
NaN when y is 0 and sets errno to EDOM. In both cases, except in compilation
modes -Xa or -Xc, a message indicating DOMAIN error is printed on standard
error. Except under -Xc, these error-handling procedures may be changed with
the function matherr.

Page 1

gamma (3U) gamma(3M)

NAME
gaIl'llla, 19aIl'llla - log gamma function

SYNOPSIS
cc [flag ... J file ... -lm [library ... J

'include <math.h>

double gaIl'llla (double x);

double 19aIl'llla (double x);

extern int signgam;

DESCRIPTION
gaIl'llla and 19aIl'llla return

In(I nx) I)
where n x) is defined as

f e-1tX-1dt
o

The sign of n x) is returned in the external integer signgam. The argument x
may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if «y = gaIl'llla (x» > LlU~XOOUBLE)

error ();
y = signgam * exp (y) ;

where LN _ MAXDOUBLE is the least value that causes exp to return a range error,
and is defined in the values.h header file.

SEE ALSO
exp(3M), matherr(3M), values(S).

DIAGNOSTICS

10/89

For non-positive integer arguments HUGE is returned and errno is set to EDOM. A
message indicating SING error is printed on the standard error output.

If the correct value would overflow, gantna and 19amna. return HUGE and set
errno to ERANGE.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed.

Page 1

hypot{3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
cc [flag ... J file ... -lm [library ... J

'include <math.h>

double hypot (double x, double y);

DESCRIPTION
hypot returns

sqrt(x • x + Y • y)

taking precautions against unwarranted overflows.

SEE ALSO
matherr(3M).

DIAGNOSTICS

hypot{3M)

When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

10/89

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -xa or -Xc: compilation
options are used, HUGE_VAL is returned instead of HUGE.

Page 1

matherr (3M) matherr (3M)

NAME
matherr - error-handling function

SYNOPSIS
cc [flag ... J file... -lIn [library ... J

tinclude <math.h>

int matherr (struct exception *x);

DESCRIPTION

10/89

matherr is invoked by functions in the math libraries when errors are detected.
Note that matherr is not invoked when the -Xc compilation option is used.
Users may define their own procedures for handling errors, by including a func­
tion named matherr in their programs. matherr must be of the form described
above. When an error occurs, a pointer to the exception structure x will be
passed to the user-supplied matherr function. This structure, which is defined in
the math. h header file, is as follows:

struct exception
int type;
char *name;
double argl, arg2, retval;

};

The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables argl and arg2 are the arguments with which
the function was invoked. retval is set to the default value that will be returned
by the function unless the user's matherr sets it to a different value.

H the user's matherr function returns non-zero, no error message will be printed,
and errno will not be set.

H matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, ermo is set to
EDOM or ERANGE and the program continues.

Page 1

matherr (3M) matherr (3M)

Default Error Handling Procedures
Types of Errors

type DOMAIN SING OVERFI..CM UNDERFLOW TLOSS PLOSS
errno EDCM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - M,O -

yO, y1, yn (arg :S 0) M,-H - - - - -

EXP, EXPF: - - H 0 - -

LOG, LOGIQ:

LOGF, LOGIOF:

(arg < 0) M,-H - - - - -
(arg = 0) M,-H - - - - -

POW,POWF: - - ill 0 - -
neg •• non-in! M,O - - - - -

0 •• non-pos M,O - - - - -

SQRT, SQRTF: M,O - - - - -

FMOD, FMODF:

(arg2 = 0) M,X - - - - -
REMAINDER:

(arg2 = 0) M,N - - - - -

GAMMA, LGAMMA: - M,H H - - -

HYPOT: - - H - - -

SINH, SINHF: - - ill - - -

COSH, COSHF: - - H - - -
ASIN, ACOS, ATAN2:

ASINF, ACOSF, ATAN2F: M,O - - - - -

ACOSH: M,N - - - - -

ATANH:

<I argl > 1) M,N - - - - -

(I argl = 1) - M,N - - - -

Page 2 10/89

matherr (3M) matherr (3M)

M
H

-H
±H

o
X
N

Abbreviations
Message is printed (not with the -xa or -Xc options).
HUGE is returned (HUGE_VAL with the -xa or -Xc options).
-HUGE is returned (-HUGE_VAL with the -xa or -Xc options).
HUGE or -HUGE is returned.
(HUGI!LVAL or -HUGE_VAL with the -xa or -Xc options).
o is returned.
Qrgl is returned.
NaN is returned.

EXAMPLE

NOTES

10189

'include <math.h>
'include <stdio.h>
'include <stdlib.h>
'include <string.h>

int
matherr(register struct exception *x);
(

switch (x->type)
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 */
if (!strCllp(x->name, "sqrt"» (

x->retval = sqrt(-x->arq1);
return (0); /* print message and set errno */

}
case SING:

/* all other domain or sing errors, print message */
/* and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g)=%g\n",

x->name, x->arg1, x->retval);
return (1); /* take no other action */

return (0); /* all other errors, execute default procedure */

Error handling in -xa and -Xt modes [see cc(l)] is described more completely on
individual math library pages.

Page 3

sinh(3M) sinh (3M)

NAME
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh - hyperbolic func­
tions

SYNOPSIS
cc [flag ... J file ... -1m [library ... J
tinclude <math.h>

double sinh (double x);

float sinhf (float x);

double cosh (double x);

float coshf (float x);

double tanh (double x);

float tanhf (float x);

double asinh (double x) ;

double acosh (double x) ;

double atanh (double x) ;

DESCRIPTION
sinh, cosh, and tanh and the single-precision versions sinhf, coshf, and tanhf
return, respectively, the hyberbolic sine, cosine, and tangent of their argument.

asinh, acosh, and atanh return, respectively, the inverse hyperolic sine, cosine,
and tangent of their argument.

SEE ALSO
matherr(3M).

DIAGNOSTICS

10/89

sinh, sinhf, cosh, and coshf return HUGE (and sinh and sinhf may return
-HUGE for negative x) when the correct value would overflow and set errno to
ERANGE.

acosh returns NaN and sets errno to EDOM when the argument x is less than 1. A
message indicating DOMAIN error is printed on the standard error output.

atanh returns NaN and sets errno to EDOM if I x I ~ 1. If I x I = 1, a message
indicating SING error is printed on the standard error output; if I x I > 1 the mes­
sage will indicate DOMAIN error.

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, HUGE_VAL is returned instead of HUGE and no error messages
are printed.

Page 1

trig (3M) trlg(3M)

NAME
trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf,
atan2, atan2f - trigonometric functions

SYNOPSIS
cc [flag ...) file ... -1m [library ...)

cc -0 -Ksd [flag ...) file ... -J sfm [library ...)

'include <math.h>

double sin (double x);

float sinf (float x);

double cos (double x);

float cosf (float x);

double tan (double x);

float tanf (float x);

double asin (double x);

float asinf (float x);

double acos (double x);

float acosf (float x);

double atan (double x);

float atanf (float x);

double atan2 (double y, double x);

float atan2f (float y, float x);

DESCRIPTION
sin, cos, and tan and the single-precision versions sinf, cosf, and tanf return,
respectively, the sine, cosine, and tangent of their argument, x, measured in radi­
ans.

asin and asinf return the arcsine of x, in the range [-7t/2,+7t/2).

acos and acosf return the arccosine of x, in the range [0,+7t).

atan and atanf return the arctangent of x, in the range (-7tj2,+7tj2).

atan2 and atan2f return the arctangent of y j x, in the range (-7t,+7t), using the
signs of both arguments to determine the quadrant of the return value.

SEE ALSO
matherr(3M).

DIAGNOSTICS

10/89

If the magnitude of the argument of as in, asinf, acos, or acosf is greater than
1, or if both arguments of atan2 or atan2f are 0, ° is returned and errno is set
to EIXH In addition, a message indicating DOMAIN error is printed on the stan­
dard error output.

Page 1

trig (3M) trig (3M)

Page 2

Except when the -Xc compilation option is used, these error-handling procedures
may be changed with the function matherr. When the -Xa or -Xc compilation
options are used, no error messages are printed.

10/89

assert (3X) assert (3X)

NAME
assert - verify program assertion

SYNOPSIS
'include <assert.h>

void assert (int expression);

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed,
if expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement. The
latter are respectively the values of the preprocessor macros _FILE_and

LINE -
Compiling with the preprocessor option -DNDEBUG [see ccO)], or with the prepro­
cessor control statement 'define NDEBUG ahead of the 'include <assert. h>
statement, will stop assertions from being compiled into the program.

SEE ALSO

NOTES

10/89

cc(1), abort(3C).

Since assert is implemented as a macro, the expression may not contain any
string literals.

Page 1

crypt (3X) crypt (3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag ... J file ... -lcrypt [library ... J

tinclude <crypt.h>

char *crypt (const char *key, const char *salt);

void setkey (const char *key);

void encrypt (char *block, int flag);

char *des_crypt (const char *key, const char *salt);

void des_setkey (const char *key);

void des_encrypt (char *block, int flag);

int run_setkey (int *p, const char *key);

int run_crypt (long offset, char *buffer, unsigned int count,
int *p);

int crypt_close(int *p);

DESCRIPTION

10/89

des_crypt is the password encryption function. It is based on a one-way hash­
ing encryption algorithm with variations intended (among other things) to frus­
trate use of hardware implementations of a key search.

key is a user's typed password. salt is a two-character string chosen from the set
[a-zA-ZO-9. /J; this string is used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly
a constant string. The returned value points to the encrypted password. The first
two characters are the salt itself.

The des _ setkey and des_encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of des _ setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored,
thereby creating a 56-bit key that is set into the machine. This key is the key that
will be used with the hashing algorithm to encrypt the string block with the func­
tion des_encrypt.

The argument to the des_encrypt entry is a character array of length 64 contain­
ing only the characters with numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits of the argument after
having been subjected to the hashing algorithm using the key set by des _ set key.
If flag is zero, the argument is encrypted; if non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt. The
international version is part of the C Development Set, and the domestic version
is part of the Security Administration Utilities. If decryption is attempted with
the international version of des_encrypt, an error message is printed.

Page 1

crypt (3X) crypt (3X)

crypt, setkey, and encrypt are front-end routines that invoke des_crypt,
des _ setkey, and des _encrypt respectively.

The routines run _ setkey and run_crypt are designed for use by applications
that need cryptographic capabilities [such as ed(1) and vi(1)] that must be com­
patible with the crypt(1) user-level utility. run_set key establishes a two-way
pipe connection with the crypt utility, using key as the password argument.
run_crypt takes a block of characters and transforms the c1eartext or ciphertext
into their ciphertext or c1eartext using the crypt utility. offset is the relative byte
position from the beginning of the file that the block of text provided in block is
coming from. count is the number of characters in block, and connection is an
array containing indices to a table of input and output file streams. When encryp­
tion is finished, crypt close is used to terminate the connection with the crypt
utility. -

run_set key returns -1 if a connection with the crypt utility cannot be esta­
blished. This result will occur in international versions of the UNIX system in
which the crypt utility is not available. If a null key is passed to run _ setkey, 0
is returned. Otherwise, 1 is returned. run crypt returns -1 if it cannot write
output or read input from the pipe attached to crypt. Otherwise it returns O.

The program must be linked with the object file access routine library
libcrypt . a.

SEE ALSO
getpass(3C), passwd(4).
crypt(1), login(1), passwd(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

In the international version of crypt(3X), a flag argument of 1 to encrypt or
des_encrypt is not accepted, and errno is set to ENOSYS to indicate that the
functionality is not available.

The return value in crypt points to static data that are overwritten by each call.

10/89

IIbwlndows (3X) IIbwlndows (3X)

NAME
libwindows - windowing terminal function library

SYNOPSIS
cc [flag ...) file ... -lwindows [library ...)

int openaqent (void);

int New (int cntlfd, int origin_x, int origin-y,
int corner_x, int corner -y) ;

int Newlayer (int cntlfd, int origin_x, int origin-y,
int corner_x, int corner-y);

int openchan (int chan);

int Runlayer (int chan, char *command);

int Current (int cntlfd, int chan);

int Delete (int cntlfd, int chan);

int Top (int cntlfd, int chan);

int Bottom (int cntlfd, int chan);

int MJve (int cntlfd, int chan, int origin_x, int origin-y);

int Reshape (int cntlfd, int chan, int origin_x, int origin-y,
int corner_x, int corner-y);

int Exit (int cntlfd);

DESCRIPTION

10/89

This library of routines enables a program running on a host UNIX system to per­
form windowing terminal functions [see layers(l»).

The openaqent routine opens the control channel of the xt(7) channel group to
which the calling process belongs. Upon successful completion, openagent
returns a file descriptor that can be passed to any of the other libwindows rou­
tines except openchan and Runlayer. (I'he file descriptor can also be passed to
the close system call.) Otherwise, the value -1 is returned.

The New routine creates a new layer with a separate shell. The origin_x, origin...1/,
cOTner_x, and COTner...1/ arguments are the coordinates of the layer rectangle. If all
the coordinate arguments are 0, the user must define the layer's rectangle interac­
tively. The layer appears on top of any overlapping layers. The layer is not
made current (Le., the keyboard is not attached to the new layer). Upon success­
ful completion, New returns the xt(7) channel number associated with the layer.
Otherwise, the value -1 is returned.

The Newlayer routine creates a new layer without executing a separate shell.
Otherwise it is identical to New, described above.

The openchan routine opens the channel argument chan which is obtained from
the New or Newlayer routine. Upon successful completion, openchan returns a
file descriptor that can be used as input to write(2) or close(2). Otherwise, the
value -1 is returned.

Page 1

IIbwlndows (3X) IIbwlndows(3X)

FILES

The Runlayer routine runs the specified command in the layer associated with the
channel argument chan. This layer is usually a layer previously created with
Newlayer. Any processes currently attached to this layer will be killed, and the
new process will have the environment of the layers process.

The Current routine makes the layer associated with the channel argument chan
current (i.e., attached to the keyboard).

The Delete routine deletes the layer associated with the channel argument chan
and kills all host processes associated with the layer.

The Top routine makes the layer associated with the channel argument chan
appear on top of all overlapping layers.

The Bottan routine puts the layer associated with the channel argument chan
under all overlapping layers.

The Move routine moves the layer associated with the channel argument chan
from its current screen location to a new screen location at the origin point
(origin_x,origin"'y). The size and contents of the layer are maintained.

The Reshape routine reshapes the layer associated with the channel argument
chan. The arguments origin_x, origin"'y, corner_x, and corner"'y are the new coordi­
nates of the layer rectangle. If all the coordinate arguments are 0, the user is
allowed to define the layer's rectangle interactively.

The Exit routine causes the layers program to exit, killing all processes associ­
ated with it.

ULIBDIR/libwindows.a windowing terminal function library
ULIBDIR usually /usr/lib

SEE ALSO
close(2), write(2), jagent(S).
layers(1) in the User's Reference Manual.

DIAGNOSTICS

NOTES

Page 2

Upon successful completion, Runlayer, Current, Delete, Top, Bottom, Move,
Reshape, and Exit return 0, while openagent, New, Newlayer, and openchan
return values as described above under each routine. If an error occurs, -1 is
returned.

The values of layer rectangle coordinates are dependent on the type of terminal.
This dependency affects the routines that pass layer rectangle coordinates: Move,
New, Newlayer, and Reshape. Some terminals will expect these numbers to be
passed as character positions (bytes); others will expect the information to be in
pixels (bits).

10/89

IIbwlndows(3X) IIbwlndows(3X)

10/89

For example, for the AT&T 5620 DMD terminal, New, Newlayer, and Reshape
take minimum values of 8 (pixels) for origin_x and origin...JI and maximum values
of 792 (pixels) for corner _ x and 1016 (pixels) for corner...JI. The minimum layer
size is 28 by 28 pixels and the maximum layer size is 784 by 1008 pixels.

It is recommended that applications use /dev/xt/?? [0-7] instead of
/dev/xt?? [0-7] when accessing the xt driver.

Page. 3

maillock (3X) maillock (3X)

NAME
maillock - manage lockfile for user's mailbox

SYNOPSIS
cc [flag ... J file ... -lmail [library ... J

tinclude <maillock.h>

int maillock (const char *user, int retrycnt);

int mailunlock (void);

DESCRIPTION
The maillock function attempts to create a lockfile for the user's mailfile. If a
lockfile already exists, maillock assumes the contents of the file is the process ID
(as a null-terminated ASCII string) of the process that created the lockfile (presum­
ably with a call to maillock). If the process that created the lockfile is still alive,
maillock will sleep and try again retrycnt times before returning with an error
indication. The sleep algorithm is to sleep for 5 seconds times the attempt
number. That is, the first sleep will be for 5 seconds, the next sleep will be for 10
seconds, etc. until the number of attempts reaches retrycnt. When the lockfile is
no longer needed, it should be removed by calling mailunlock.

user is the login name of the user for whose mailbox the lockfile will be created.
maillock assumes that users' mailfiles are in the "standard" place as defined in
maillock. h.

RETURN VALUE

FILES

NOTES

10/89

The following return code definitions are contained in maillock.h.

tdefine
tdefine
tdefine
tdefine
tdefine
tdefine

L_SUCCESS
L NAMELEN
L 'IMPLOCK
L 'IMPWRlTE
L MAXTRYS
L ERROR

LlBDIR/llib-mail.ln
LlBDIR/mail. a
/var/mail/*
/var/mail/* . lock

o
1
2
3
4
5

/* Lockfile created or removed */
/* Recipient name > 13 chars */
/* Can't create tmp file */
/* Can't write pid into lockfile */
/* Failed after retrycnt attempts */
/* Check errno for reason */

mailunlock will only remove the lockfile created from the most previous call to
maillock. Calling maillock for different users without intervening calls to
mailunlock will cause the initially created lockfile(s) to remain, potentially block­
ing subsequent message delivery until the current process finally terminates.

Page 1

malloc(3X) malloc(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - memory allocator

SYNOPSIS
cc [flag ... J file ... -lmalloc [library ... J

tinclude <stdlib.h>

void *malloc (size_t size)

void free (void *ptr)

void *realloc (void *ptr, size_t size)

void *calloc (size_t nelem, size_t elsize)

tinclude <malloc.h>

int mallopt (int cnd, int value)

struct mallinfo mall info (void)

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.

malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation, and its
contents have been destroyed (but see mallopt below for a way to change this
behavior). If ptr is a null pointer, no action occurs.

Undefined results occur if the space assigned by malloc is overrun or if some
random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents are unchanged up to the
lesser of the new and old sizes. If ptr is a null pointer, realloc behaves like mal­
loc for the specified size. If size is zero and ptr is not a null pointer, the object it
points to is freed.

calloc allocates space for an array of nelem elements of size elsize. The space is
initialized to zeros.

mallopt provides for control over the allocation algorithm. The available values
for cmd are:

M MXFAST Set maxfast to value. The algorithm allocates all blocks below the
size of maxfast in large groups and then doles them out very quickly.
The default value for maxfast is 24.

M NLBLKS Set numlblks to value. The above mentioned "large groups" each
contain numlblks blocks. numlblks must be greater than O. The
default value for numlblks is 100.

M GRAIN Set grain to value. The sizes of all blocks smaller than maxfast are
considered to be rounded up to the nearest multiple of grain. grain
must be greater than O. The default value of grain is the smallest
number of bytes that will allow alignment of any data type. Value
will be rounded up to a multiple of the default when grain is set.

10/89 Page 1

malloc(3X) malloc(3X)

M KEEP Preserve data in a freed block until the next malloc, realloc, or
calloc. This option is provided only for compatibility with the old
version of malloc and is not recommended.

These values are defined in the malloc. h header file.

mallopt may be called repeatedly, but may not be called after the first small
block is allocated.

mallinfo provides instrumentation describing space usage. It returns the struc­
ture:

struct mall info
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int snblks; /* number of small blocks * /
int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */
int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

/* is used */

This structure is defined in the malloc . h header file.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS

NOTES

Page 2

malloc, realloc, and calloc return a NULL pointer if there is not enough avail­
able memory. When realloc returns NULL, the block pointed to by ptr is left
intact. If mallopt is called after any allocation or if cmd or value are invalid,
non-zero is returned. Otherwise, it returns zero.

Note that unlike malloc(3C), this package does not preserve the contents of a
block when it is freed, unless the M_KEEP option of mallopt is used.

Undocumented features of malloc(3C) have not been duplicated.

Function prototypes for malloc, realloc, calloc and free are also defined in
the <malloc.h> header file for compatibility with old applications. Newapplica­
tions should include <stdlib. h> to access the prototypes for these functions.

10/89

sputl(3X) sputl(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
cc [flag ... J file ... -lld [library ... J

'include <ldfcn.h>

void sputl (lonq value, char *buffer);

lonq sqetl (const char *buffer);

DESCRIPTION

10/89

sputl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

sqetl retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sqetl provides a machine-independent way of
storing long numeric data in a file in binary form without conversion to charac­
ters.

Page 1

Intro(4) Intro(4)

NAME
intro - introduction to file formats

DESCRIPTION

10189

This section outlines the formats of various files. The C structure declarations for
the file formats are given where applicable. Usually, the header files containing
these structure declarations can be found in the directories /usr/ include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
tinclude <filename.h> or tinclude <sys/filename.h> should be used.

Page 1

a.out (4) a.out(4)

NAME
a. out - ELF (Executable and Linking Format) files

SYNOPSIS
tinclude <elf.h>

DESCRIPTION

10/89

The file name a.out is the default output file name from the link editor, Id(1).
The link editor will make an a. out executable if there were no errors in linking.
The output file of the assembler, as(1), also follows the format of the a. out file
although its default file name is different.

Programs that manipulate ELF files may use the library that elf(3E) describes.
An overview of the file format follows. For more complete information, see the
references given below.

L' ki V' Execution View In ng lew
ELF header ELF header

Program header table Program header table
optional

Section 1 ... Segment 1

Section n ... Segment 2
..

Section header table Section header table
optional

An ELF header resides at the beginning and holds a "road map" describing the
file's organization. Sections hold the bulk of object file information for the link­
ing view: instructions, data, symbol table, relocation information, and so on.
Segments hold the object file information for the program execution view. As
shown, a segment may contain one or more sections.

A program header table, if present, tells the system how to create a process
image. Files used to build a process image (execute a program) must have a pro­
gram header table; relocatable files do not need one. A section header table con­
tains information describing the file's sections. Every section has an entry in the
table; each entry gives information such as the section name, the section size, etc.
Files used during linking must have a section header table; other object files may
or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header
has a fixed position in the file.

When an a. out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by unini­
tialized, the latter actually being initialized to all O's), and a stack. The text seg­
ment is not writable by the program; if other processes are executing the same
a . out file, the processes will share a single text segment.

Page 1

a.out(4) a.out(4)

The data segment starts at the next maximal page boundary past the last text
address. (If the system supports more than one page size, the "maximal page" is
the largest supported size.) When the process image is created, the part of the
file holding the end of text and the beginning of data may appear twice. The
duplicated chunk of text that appears at the beginning of data is never executed;
it is duplicated so that the operating system may bring in pieces of the file in
multiples of the actual page size without having to realign the beginning of the
data section to a page boundary. Therefore, the first data address is the sum of
the next maximal page boundary past the end of text plus the remainder of the
last text address divided by the maximal page size. If the last text address is a
multiple of the maximal page size, no duplication is necessary. The stack is
automatically extended as required. The data segment is extended as requested
by the brk(2) system call.

SEE ALSO

Page 2

as(l), ce(1), Id(1), brk(2), elf(3E).

The "Object Files" chapter in the Programmer's Guide: ANSI C and Programming
Support Tools.

10/89

ar(4) ar(4)

NAME
ar - archive file format

SYNOPSIS
tinclude <ar. h>

DESCRIPTION

10/89

The archive command ar(1) is used to combine several files into one. Archives
are used mainly as libraries to be searched by the link editor ld(1).

Each archive begins with the archive magic string.

tdefine ARMl\G
tdefine SARMl\G

n!<arch>\nn
8

/* magic string */
/* length of magic string * /

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following format:

tdefine ARFM1!G \n" /* header trailer string */

struct ar hdr /* file member header */
(

char ar_name [16]; /* ' /, te~nated file member name */
char ar date [12]; /* file member date */
char ar -uid[6] ; /* file member user identification */
char ar:=gid[6]; /* file member group identification */
char ar_IOOde [8] ; /* file member IOOde (octal) */
char ar size[10]; /* file member size */
char ar:=fmag[2] ; /* header trailer string */

} ;

All information in the file member headers is in printable ASCII. The numeric
information contained in the headers is stored as decimal numbers (except for
ar _mode which is in octal). Thus, if the archive contains printable files, the
archive itself is printable.

If the file member name fits, the ar _name field contains the name directly, and is
terminated by a slash U) and padded with blanks on the right. If the member's
name does not fit, ar _name contains a slash U) followed by a decimal representa­
tion of the name's offset in the archive string table described below.

The ar date field is the modification date of the file at the time of its insertion into
the archive. Common format archives can be moved from system to system as
long as the portable archive command ar(1) is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of
the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Page 1

ar(4)

Page 2

ar(4)

Each archive that contains object files [see a. out(4)] includes an archive symbol
table. This symbol table is used by the link editor ld(1) to determine which
archive members must be loaded during the link edit process. The archive sym­
bol table (if it exists) is always the first file in the archive (but is never listed) and
is automatically created and/or updated by ar.

The archive symbol table has a zero length name (Le., ar _name [0] is ' /, ,
ar_name[l]=' " etc.). All "words" in this symbol table have four bytes, using
the machine-independent encoding shown below. (All machines use the encoding
described here for the symbol table, even if the machine's "natural" byte order is
different.)

Ox01020304

The contents of this file are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes * "the number of
symbols".

3. The name string table. Length: aT_size - 4 bytes * ("the number of sym-
bols" + 1).

As an example, the following symbol table defines 4 symbols. The archive
member at file offset 114 defines name and object. The archive member at file
offset 426 defines function and a second version of name.

Offset +0 +1
o
4
8

+2 +3
4

114
114

12
16
20
24
28
32
36
40
44

426
426

n a m e
\0 0 b j
e c t \0
f u n c
t i 0 n
\0 n a m
e \0

4 offset entries
name
object
function
name

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there
are elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string. table (in order). The names in the string
table are all the defined global symbols found in the common object files in the
archive. Each offset is the location of the archive header for the associated sym­
bol.

10/89

ar(4) ar(4)

SEE ALSO

NOTES

10/89

ar(1), ld(1), strip(l), sputl(3X), a.out(4).

strip(l) will remove all archive symbol entries from the header. The archive
symbol entries must be restored via the -ts options of the ar(1) co!!!mand before
the archive can be used with the link editor ld(1).

Page 3

core (4) core (4)

NAME
core - format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated process when any of
various errors occur. See signal(2) fur the list of reasons; the most common are
memory violations, illegal instructions, bus errors, and user-generated quit sig­
nals. The core image is called core and is written in the process's working direc­
tory (provided it can be; normal access controls apply). A process with an effec­
tive user ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for the
process, including the registers as they were at the time of the fault. The size of
this section depends on the parameter usize, which is defined in <sys/param.h>.
The remainder represents the actual contents of the user's core area when the
core image was written. If the text segment is read-only and shared, or separated
from data space, it is not dumped.

The format of the information in the first section is described by the user struc­
ture of the system, defined in <sys/user.h>. Not included in this file are the
locations of the registers. These are outlined in <sys/ reg. h>.

SEE ALSO
sdb(1), setuid(2), signal(2).
crash(1M) in the System Administrator's Reference Manual.

10/89 Page 1

limits (4) IImlts(4)

NAME
limits - header file for implementation-specific constants

SYNOPSIS
'include <limits.h>

OESCRIPTION

10/89

The header file limits.h is a list of minimal magnitude limitations imposed by a
specific implementation of the operating system.

ARG_MU 5120
CHAR_BIT 8
CHAR_MU 127
CHAR MIN -128
CHILD MU 25
ClK TCK 100
DBL DIG 15
DBL_MU 1. 7976931348623157E+308
DBL_MIN 2.2250738585072014E-308
FCHR_MU 1048576
FLT_DIG 6
FLT_MU 3.40282347e+38F
FLT_MIN 1. 17549435E-38F
!NT_MU 2147483647
!NT MIN (-2147483647-1)
LINK_MU 1000
LOGN»E _MU 8
LONG_BIT 32
LONG_MU 2147483647
LONG_MIN (-2147483647-1)
MU CANON 256

MU_INPUT 512
MB_LEN_MU 5

N»E_MU 14
NGROUPS_MU 16
NL_ARGMAX 9

NL_LANGMAX 14
NL_MSGIAX 32767
NL N!WC 1

NL_SETMAX 255
NL TEXTMAX 255
NZERO 20
OPEN_MU 60

PASS_MU 8

/* max length of arguments to exec */
/* max • of bits in a "char" */
/* max value of a "char" */
/* min value of a "char" */
/* max • of processes per user id */
/* clock ticks per second */
/* digits of precision of a "double" */
/* max decimal value of a "double"*/
/* min decimal value of a "double"*/
/* max size of a file in bytes */
/* diqits of precision of a "float" */
/* max decimal value of a "float" */
/* min decimal value of a "float" */
/* max value of an "int" */
/* min value of an "int" */
/* max • of links to a sinqle file */
/* max • of characters in a loqin name */
/* • of bits in a "lonq" */
/* max value of a "lonq int" */
/* min value of a "lonq int" */
/* max bytes in a line for canonical
processinq */
/* max size of a char input l:luffer */
/* max • of bytes in a 1IU1tibyte
character */
/* max • of characters in a file name */
/* max • of qroups for a user */
/* max value of "diqit" in calls to the
NLS printf() and scanf() */
/* max • of bytes in a LANG name */
/* max message nUlli>er */
/* max • of bytes in N-to-1 mappinq
characters * /
/ * max set nuIIiler * /
/* max • of bytes in a message strinq */
/* default process priority */
/* max • of files a process can have
open */
/* max • of characters in a password */

Page 1

IImlts(4)

PATH MAX 256
PlD_MAX 30000
PIPE BUF 5120
PIPE MAX 5120

SCHAR_MAX 127
SCHAR_MIN (-128)
SHRT_MAX 32767
SHRT MIN (-32768)
STD_BIK 1024
SYS_NMLN 9

SYSPID_MAX 1
TMP_MAX 17576

UCHAR_MAX 255
UlD_MAX 60000
UINT_MAX 4294967295
ULONG MAX 4294967295
USHRT_MAX 65535
USI_MAX 4294967295
~RD_BIT 32

limits (4)

1* max , of characters in a path name *1
1* max value for a process ID *1
1* max , bytes atomic in write to a pipe *1
1* max , bytes written to a pipe
in a write *1
1* max value of a "signed char" *1
1* min value of a "signed char" *1
1* max value of a "short int" *1
1* min value of a "short int" *1
1* , bytes in a physical I/O block *1
1* 4.0 size of utsname elements *1
1* also defined in sys/utsname.h *1
1* max pid of system processes *1
1* max , of unique names generated
by tmpnam *1
1* max value of an "unsigned char" *1
1* max value for a user or group ID *1
1* max value of an "unsigned int" *1
1* max value of an "unsigned lonq int" *1
1* max value of an "unsigned short int" *1
1* max decimal value of an "unsigned" *1
1* , of bits in a "word" or "int" *1

The following POSIX definitions are the most restrictive values to be used by a
POSIX conformant application. Conforming implementations shall provide values
at least this large.

_POSIX_ARG_MAX 4096
_POSIX_CHILD_MAX 6
]OSIX_LINK_MAX 8
_POSlX_MAX_CANON 255
]OSIX_MAX_INPUT 255

_POSIX_N1IM!:_MAX 14
_POSIX_NGROUPS_MAX 0
_POSIX_OPEN_MAX 16
_POSIX_PATH_MAX 255
_POSIX_PIPE_BUF 512

Page 2

1* max lenqth of arquments to exec *1
1* max , of processes per user ID *1
1* max , of links to a sinqle file *1
1* max , of bytes in a line of input *1
1* max , of bytes in terminal
inPut queue * I
1* , of bytes in a filename *1
1* max , of qroups in a process *1
1* max , of files a process can have open *1
1* max , of characters in a pathname *1
1* max , of bytes atomic in write
to a pipe *1

10/89

sccsflle (4) sccsflle (4)

NAME
sees file - format of sces file

DESCRIPTION
An sces (Source Code Control System) file is an ASCII file. It consists of six logi­
cal parts: the checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of users who may
add deltas), flags (contains definitions of internal keywords), comments (contains
arbitrary descriptive information about the file), and the body (contains the actual
text lines intermixed with control lines).

Throughout an sces file there are lines which begin with the ASCII SOH (start of
heading) character (octal (01). This character is hereafter referred to as the con­
trol character and will be represented graphically as @. Any line described below
that is not depicted as beginning with the control character is prevented from
beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000
and 99999).

Each logical part of an sces file is described in detail below.

Checksum
The checksum is the first line of an sces file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first
line. The @h provides a magic number of (octal) 064001, depending on byte
order.

Delta table

10/89

The delta table consists of a variable number of entries of one of the following
forms:

@sDDDDD/DDDDD/DDDDD
@d <type> <sces ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD ...
@xDDDDD .••
@gDDDDD .••
@m <MR number>

@e <comments> ...

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@d) contains the type of the delta (normal: D or
removed: R), the sees ID of the delta, the date and time of creation of the delta,
the login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded,
and ignored, respectively. These lines are optional.

Page 1

sccsflJe(4) secsfile (4)

The @m lines (optional) each contain one MR number associated with the delta; the
@c lines contain comments associated with the delta. The @e line ends the delta
table entry.

User names
The list of login names and/or numerical group IDs of users who may add deltas
to the file, separated by new-lines. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing lines @u and @u. An
empty list allows anyone to make a delta. Any line starting with a! prohibits
the succeeding group or user from making deltas.

Flags

Page 2

Keywords used internally. See admin(1) for more information on their use. Each
flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t <type of program>
@f v <program name>
@f i <keyword string>
@f b
@f m <module name>
@f f <floor>
@f c <.ceiling>
@f d <default-sid>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword. The v flag
controls prompting for MR numbers in addition to comments; if the optional text
is present it defines an MR number validity checking program. The i flag con­
trols the warning/error aspect of the ''No id keywords" message. When the i
flag is not present, this message is only a warning; when the i flag is present, this
message causes a fatal error (the file will not be "gotten", or the delta will not be
made). When the b flag is present the -b keyletter may be used on the get com­
mand to cause a branch in the delta tree. The m flag defines the first choice for
the replacement text of the %M% identification keyword. The f flag defines the
floor release; the release below which no deltas may be added. The c flag defines
the ceiling release; the release above which no deltas may be added. The d flag
defines the default SID to be used when none is specified on a get command.
The n flag causes delta to insert a null delta (a delta that applies no changes) in
those releases that are skipped when a delta is made in a new release (e.g., when
delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence of the
n flag causes skipped releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The 1 flag defines a list of releases
that are locked against editing. The q flag defines the replacement for the %Q%
identification keyword. The z flag is used in specialized interface programs.

10/89

tlmezone (4)

NAME
time zone - set default system time zone

SYNOPSIS
/etc/TlMEZONE

DESCRIPTION
This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone.

EXAMPLES
/ etc/TlMEZONE for the east coast:

t Time Zone
TZ=ESTSEDT
export TZ

SEE ALSO
ctime(30, environ(S).
rc2(1M), profile(4) in the System Administrator's Reference Manual.

10/89

timezone (4)

Page 1

strftlme (4) strftlme (4)

NAME
strftime - language specific strings

DESCRIPTION
There can exist one printable file per locale to specify its date and time formatting
information. These files must be kept in the directory
iusrilibilocalei<locale>iLC...:l'IME. The contents of these files are;

1. abbreviated month names (in order)

2. month names (in order)

3. abbreviated weekday names (in order)

4. weekday names (in order)

5. default strings that specify formats for locale time (%X) and
locale date (%x).

6. default format for cftime, if the argument for cftime is zero or null.

7. AM (ante meridian) string

8. PM (post meridian) string

Each string is on a line by itself. All white space is Significant. The order of the
strings in the above list is the same order in which they must appear in the file.

EXAMPLE
/usr/lib/locale/C/LC_TIME

FILES

Jan
Feb

January
February

Sun
Mon

Sunday
Monday

%H:%M:%S
%m/%d/%y
%a %b %d %T %Z %Y
AM
PM

/usr/lib/locale/<1ocale>/LC_TIME

SEE ALSO
ctime(3C), setlocale(3C), strftime(3q.

10/89 Page 1

secsflle (4) secsflle (4)

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The comments
section typically will contain a description of the file's purpose.

Body
The body consists of text lines and control lines. Text lines do not begin with the
control character, control lines do. Tnere are three kinds of control lines: insert,
delete, and end, represented by:

@I DDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for
the control line.

SEE ALSO
admin(1), delta(1), get(l), pra(1).

10/89 Page 3

Intro (5)

NAME
intro - introduction to miscellany

DESCRIPTION

Intro (5)

This section describes miscellaneous facilities such as macro packages, character
set tables, etc.

10/89 Page 1

utmp(4) utmp(4)

NAME
utnp, wtJIp - utmp and wtmp entry formats

SYNOPSIS
tinclude <utnp.h>

DESCR!PT!O!l!

10/89

These files, which hold user and accounting information for such commands as
who, write, and login, have the following structure, defined in <utnp. h>:

tdefine U'1'K' FIIB "/etc/utnp"
tdefine W'lH' FIIB "/etc/wtrrp"
tdefine ut name ut user

utnp {
/* user login name */

struct
char
char

ut user[8];
u()d[4] ; /* /sbin/inittab id (created by process

} ;

char ut line[12];
short u(~pid;
short ut_type;
struct exit status

short e_termination;
short e_exit;

ut_exit;

that puts entry in utnp) */
/* device name (console, lnxx) */
/* process id */
/* type of entry */

/* process termination status */
/* process exit status */
/* exit status of a process
* marked as DEAD PROCESS */

/* time entry was-made * /

/* Definitions for ut_type */

tdefine EMPTY 0
tdefine RUN LVL 1
tdefine BOOT TIME 2
tdefine OLD TIME 3
tdefine NEW-TIME 4

/* process spawned by "init" */ tdefine INIT PROCESS 5
tdefine LOGIN PROCESS 6
tdefine USER PROCESS 7
tdefine DEAD-PROCESS 8
tdefine ACCOUNTING 9
tdefine UTMAXTYPE

/* a "getty" process waiting for login */
/* a user process */

ACCOUNTING /* max legal value of ut_type */

Page 1

utmp(4) utmp(4)

FILES

/* special strings or formats used in the "ut line" field when */
/* accounting for something other than a proCess */
/* no string for the ut line field can be more than 11 chars + */
/ * a null character in length * /
tdefine RUNLVL MSG "run-level %c"
tdefine BOOT MSG "system boot"
tdefine OTn£ MSG "old time"
tdefine NTDt(MSG "new time"

/etc/utnp
/etc/wtrrp

SEE ALSO

Page 2

login(1), who(1), write(1) in the User's Reference Manual
getut(3C).

10/89

ascII (5) ascii (5)

NAME
ascii - map of ASCII character set

DESCRIPTION
ascii is a map of the ASOI character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 1007 bel I
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si I
020 dIe 021 del 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb I
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us I
040 sp 041 042 " 043 # 044 $ 045 % 046 & 047

,
I

050 (051 052 • 053 + 054 , 055 - 056 . 057 / I
060 0 061 062 2 063 3 064 4 065 5 066 6 067 7 I
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ? I
100@ 101 A 102 B 103 C 104 D 105 E 106 F 107 G I
110H 111 I 112 J 113K 114 L 115M 116N 1170 I
120 P 121 Q 122 R 123 5 124 T 125 U 126 V 127 W I
130 X 131 Y 132Z 133 [134 \ 135 1 136 • 137 I
140 ' 141 a 142 b 143 c 144 d 145 e 146 f 147 g I
150 h 151 152 j 153 k 154 I 155 m 156 n 157 0 I
160 P 161 q 162 r 163 s 164 t 165 u 166 v 167 w I
170 x 171 Y 172 z 173 174 I 175 } 176 - 177 del I

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel I
08 bs 09 ht Oa nl Ob vt Oc np Od cr Oe so Of si I
10 die 11 del 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etbl
18 can 19 em la sub Ib esc Ie fs Id gs Ie rs If us I
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27

,
I

28 (29) 2a • 2b + 2c , 2d - 2e . 2f / I
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7 I
38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ? I
40@ 41 A 42 B 43 C 44 D 45 E 46 F 47 G I
48 H 49 I 4a J 4b K 4c L 4dM 4e N 4f 0 I
50 P 51 Q 52 R 53 5 54 T 55 U 56 V 57W I
58 X 59 Y Sa Z 5b [5c \ 5d 1 5e • Sf I
60 ' 61 a 62 b 63 c 64 d 65 e 66 f 67 g I
68 h 69 i 6a j 6b k 6c I 6dm 6e n 6f 0 I
70 P 71 q 72 r 73 s 74 75 u 76 v 77 w I
78 x 79 y 7a z 7b{ 7c 7d } 7e - 7f del I

FILES
/usr/pub/ascii

10/89 Page 1

environ (5) environ (5)

NAME
envin>n - user environment

DESCRIPTION

10189

When a process begins execution, exec routines make available an array of strings
called the environment [see exec(2»). By convention, these strings have the form
variable=value, for example, PATH=/bin: /usr/bin. These environmental vari­
ables provide a way to make information about a program's environment avail­
able to programs. The following environmental variables can be used by applica­
tions and are expected to be set in the target run-time environment.

HOME The name of the user's login directory, set by loqin(1) from the
password file (see passwd(4».

LANG The string used to specify localization information that allows users
to work with different national conventions. The setlocale(3C)
function looks for the LANG environment variable when it is called
with "" as the locale argument. LANG is used as the default locale if
the corresponding environment variable for a particular category is
unset.

For example, when setlocaleO is invoked as

setlocale (LC _ CTYPE, "") ,

setlocaleO will query the LC _ CTYPE environment variable first to
see if it is set and non-null. If LC CTYPE is not set or null, then set­
localeO will check the LANG enVironment variable to see if it is set
and non-null. If both LANG and LC CTYPE are unset or null, the
default C locale will be used to set the-LC_CTYPE category.

Most commands will invoke

setlocale(LC_ALL, "")

prior to any other processing. This allows the command to be used
with different national conventions by setting the appropriate
environment variables.

The following environment variables are supported to correspond
with each category of setlocale(3Q:

LC COLLATE This category specifies the collation sequence being
used. The information corresponding to this
category is stored in a database created by the
colltbl(1M) command. This environment variable
affects strcoll(3Q and strxf~3C).

This category specifies character classification, char­
acter conversion, and widths of multibyte charac­
ters. The information corresponding to this
category is stored in a database created by the
chrtbl(1M) command. The default C locale
corresponds to the 7-bit ASCII character set. This
environment variable is used by ctype(3C),

Page 1

environ (5) environ (5)

Page 2

MSGVERB

LC M:>NETARY

LC NUMERIC

LC TIME

nbchar(3C), and many commands; for example,
cat(1), ed(l), ls(l), and vi(1).

This category specifies the monetary symbols and
delimiters used for a particular locale. The informa­
tion corresponding to this category is stored in a
database created by the IOOntbl(1M) command.
This environment variable is used by
localeconv(3C).

This category specifies the decimal and thousands
delimiters. The information corresponding to this
category is stored in a database created by the
chrtbl(1M) command. The default C locale
corresponds to ". II as the decimal delimiter and no
thousands delimiter. This environment variable is
used by localeconv(3C), printf(3C), and
strtod(3C).

This category specifies date and time formats. The
information corresponding to this category is stored
in a database specified in strftime(4). The default
C locale corresponds to U.S. date and time formats.
This environment variable is used by many com­
mands and functions; for example: at(1), calen­
dar(1), date(1), strftime(3C), and getdate(3C).

Controls which standard format message components fmtmsg selects
when messages are displayed to stderr [see fmtmsg(3C»).

SEV LEVEL Define severity levels and associate and print strings with them in
standard format error messages [see addseverity(3C) and
fmtmsg(3C».

PATH The sequence of directory prefixes that sh(1), time(1), nice(1),
nohup(1), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). login(1) sets
PATH=/bin:/usr/bin. (For more detail, see sh(1).)

TERM The kind of terminal for which output is to be prepared. This infor­
mation is used by commands, such as nm(1) or vi(1), which may
exploit special capabilities of that terminal.

TZ Time zone information.
The contents of the environment variable named TZ are used by the
functions ctime(3C), localtime() (see ctime(3C», strftime(3C)
and mktime(3C) to override the default timezone. If the first char­
acter of TZ is a colon (:), the behavior is implementation defined,
otherwise TZ has the form:

std offset [dst [offset], [start [/ time] , end [/ time]]]

10/89

envlron(5}

10/89

envlron(5}

Where:

std and dst
Three or more bytes that are the designation for the standard
(std) and daylight savings time (dst) timezones. Only std is
required, if dst is missing, then daylight savings time does
not apply in this locale. Upper- and lower-case letters are
allowed. Any characters except a leading colon (:), digits, a
comma (,), a minus (-) or a plus (+) are allowed.

offset Indicates the value one must add to the local time to arrive
at Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour
(hh) is required and may be a single digit. The offset follow­
ing std is required. If no offset follows dst , daylight savings
time is assumed to be one hour ahead of standard time. One
or more digits may be used; the value is always interpreted
as a decimal number. The hour must be between 0 and 24,
and the minutes (and seconds) if present between 0 and 59.
Out of range values may cause unpredictable behavior. If
preceded by a "-", the timezone is east of the Prime Meri­
dian; otherwise it is west (which may be indicated by ,an
optional preceding "+" sign).

start / time, end/time
Indicates when to change to and back from daylight savings
time, where start/time describes when the change from stan­
dard time to daylight savings time occurs, and end/time
describes when the change back happens. Each time field
describes when, in current local time, the change is made.

The formats of start and end are one of the following:

In The Julian day n (1 S n S 365). Leap days are
not counted. That is, in all years, February 28 is
day 59 and March 1 is day 60. It is impossible
to refer to the occasional February 29.

n The zero-based Julian day (0 S n ~ 365). Leap
days are counted, and it is possible to refer to
February 29.

MIn.n.d h
The dt day, (0 S d S 6) of week n of month m
of the year (1 S n S 5, 1 S m S 12), where week
5 means "the last d-day in month m" which
may occur in either the fourth or the fifth
"'t~k). Week 1 is the first week in which the
d day occurs. Day zero is Sunday.

Page 3

environ (5) environ (5)

Implementation specific defaults are used for start and end if
these optional fields are not given.

The time has the same format as offset except that no leading
sign ("-" or "+") is allowed. The default, if time is not given
is 02:00:00.

Further names may be placed in the environment by the export command and
name=value arguments in sh(1), or by exec(2). It is unwise to conflict with cer­
tain shell variables that are frequently exported by .profile files: MAIL, PSl,
PS2, IFS [see profile(4)].

SEE ALSO

Page 4

strftime(4), passwd(4), profile(4) in the System Administrator's Reference
Manual.
chrtbl(1M), colltbl(1M), montbl(1M), exec(2), addseverity(3C), ctime(3C),
ctype(3C), fmtmsg(3C), getdate(3C), localeconv(3C), rrbchar(3C), mktime(3C),
printf(3C), strcoll(3C), strftime(3C), strtod(3C), strxfrm(3C), strftime(4),
timezone(4).
cat(1), date(1), ed(1), ls(1), login(1), nice(1), nohup(1), sh(1), sort(1), time(1),
vi(1) in the User's Reference Manual.
nm(l) in the DOCUMENTER'S WORKBENCH Software Technical Discussion and
Reference Manual.

10/89

fentl (5)

NAME
fentl - file control options

SYNOPSIS
tinelude <fentl.h>

DESCRIPTION

fentl (5)

The <fent!. h> header defines the following requests and arguments for use by
the functions fent! [see fentl(2)] and open [see open(2)].

10/89

Values for emd used by fentl (the following values are unique):
F _DUPFD Duplicate file descriptor
F_GETFD Get file descriptor flags
F SETFD Set file descriptor flags
F GETFL Get file status flags
F SETFL Set file status flags
F GETLK Get record locking information
F SETLK Set record locking information
F SETLKW Set record locking information;

wait if blocked

File descriptor flags used for fentl:
FD _ CLOEXEC Close the file descriptor upon

execution of an exec function [see exee(2)]

Values for I_type used for record locking with fentl
(the following values are unique):

F RDLCK Shared or read lock
F-UNLCK Unlock
F WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct:
Values for oflag used by open:

o CREAT Create file if it does not exist
O=EXCL Exclusive use flag
O_NOCTTY Do not assign controlling tty
0_ TRONC Truncate flag

File status flags used for open and fentl:
0_ APPEND Set append mode
O_NDELAY Non-blocking mode
o NONBLOCK Non-blocking mode (POSIX)
o SYNC Synchronous writes

Mask for use with file access modes:
o ACCM:>DE Mask for file access modes

Page 1

fcntl(S) fcntl(S)

File access modes used for open and fentl:
o _RDONLY Open for reading only
o _RDWR Open for reading and writing
0_ WRONLY Open for writing only

The structure flock describes a file lock. It includes the following members:

SEE ALSO

short
short
off t
off-t
lonq

. pid_t

l_type;
1 whence;
l-start;
l-len;
l-sysid;
(pid;

/* Type of lock */
/* Flaq for startinq offset */
/* Relative offset in bytes */
/* Size; if 0 then until EOF */
/* Returned with F GETLK */
/* Returned with F:GETLK */

creat(2), exec(2), fentl(2), open(2).

Page 2 10/89

jagent(5) jagent(5)

NAME
jagent - host control of windowing terminal

SVNOPSIS
tinclude <sys/jioctl.h>

int ioctl (int cntlfd; ,-TAGENT; &arg);

DESCRIPTION
The ioctl system call, when performed on an xt(7) device with the JAGENT
request, allows a host program to send information to a windowing terminal.

ioctl has three arguments:

cntlfd the xt(7) control channel file descriptor

JAGENT

&arg

the xt ioctl request to invoke a windowing terminal agent routine.

the address of a bagent structure, defined in <sys/jioctl.h> as fol­
lows:

struct

} ;

int
char
char

bagent {
size;
*src;
*dest;

/*
/*
/*

size of src in & dest out */
the source byte string */
the destination byte string */

The src pointer must be initialized to point to a byte string that is
sent to the windowing terminal. See layers(S) for a list of JAGENT
strings recognized by windowing terminals. Likewise, the dest
pointer must be initialized to the address of a buffer to receive a byte
string returned by the terminal. When ioctl is called, the size argu­
ment must be set to the length of the src string. Upon return, size is
set by ioctl to the length of the destination byte string, dest.

SEE ALSO
ioctl(2), libwindows(3X), layers(S).
xt(7) in the Programmer's Guide: STREAMS.

DIAGNOSTICS

10/89

Upon successful completion, a non-negative value, the size of the destination byte
string, is returned. If an error occurs, -1 is returned.

Page 1

layers (5) layers(5)

NAME
layers - protocol used between host and windowing terminal under layers(1)

DESCRIPTION

10/89

Layers are asynchronous windows supported by the operating system in a win­
dowing terminal. Communication between the UNIX System processes and ter­
minal processes under the layers command isee layers(1)] occurs via multi­
plexed channels managed by the respective operating systems using a protocol as
specified in xtproto(S).

The contents of packets transferring data between a UNIX System process and a
layer are asymmetric. Data sent from the UNIX System to a particular terminal
process are undifferentiated and it is up to the terminal process to interpret the
contents of packets.

Control information for terminal processes is sent via channel O. Process 0 in the
windowing terminal performs the designated functions on behalf of the process
connected to the designated channel. These packets take the form:

command, channel

except for JTIK)M and JAGENT information, which takes the form

command, data ...

The commands are the bottom eight bits extracted from the following ioctl(2)
codes:

JBOOT Prepare to load a new terminal program into the designated layer.

JTERM Kill the downloaded layer program, and restore the default window
program.

JTIM:M Set the timeout parameters for the protocol. The data consist of four
bytes in two groups: the value of the receive timeout in milliseconds
(the low eight bits followed by the high eight bits) and the value of the
transmit timeout (in the same format).

JZOMBOOT Like JBOOT, but do not execute the program after loading.

JAGENT Send a source byte string to the terminal agent routine and wait for a
reply byte string to be returned.

The data are from a bagent structure [see jagent(S)] and consist of a
one-byte size field followed by a two-byte agent command code and
parameters. Two-byte integers transmitted as part of an agent com­
mand are sent with the high-order byte first. The response from the
terminal is generally identical to the command packet, with the two
command bytes replaced by the return code: 0 for success, -1 for
failure. Note that the routines in the libwindows(3X) library all send
parameters in an agentrect structure. The agent command codes and
their parameters are as follows:

A _ NEWLAYER followed by a two-byte channel number and a rec­
tangle structure (four two-byte coordinates).

Page 1

layers(S) layers(S)

Page 2

A CURRENT followed by a two-byte channel number.

A_DELETE followed by a two-byte channel number.

A_TOP followed by a two-byte channel number.

A.;..BOT'l'CM followed by a two-byte channel number.

A K>VE followed by a two-byte channel number and a point
to move to (two two-byte coordinates).

A_RESHAPE followed by a two-byte channel number and the new
rectangle (four two-byte coordinates).

A NEW followed by a two-byte channel number and a rec­
tangle structure (four two-byte coordinates).

A_EXIT no parameters needed.

A ROMVERSION no parameters needed. The response packet contains
the size byte, two-byte return code, two unused
bytes, and the parameter part of the terminal ID
string (e.g., 8; 7; 3) .

JXTPROTO Set xt protocol type [see xtproto(5}). The data consist of one byte
specifying maximum size for the data part of regular xt packets sent
from the host to the terminal. This number may be lower than the
number returned by A_XTPROTO at lower baud rates or if the -m option
was specified upon invocation of layers(1}. A size of 1 specifies net­
work xt protocol.

Packets from the windowing terminal to the UNIX System all take the following
form:

command, data '"

The single-byte commands are as follows:

C_SENDCHAR Send the next byte to the UNIX System process.

C NEW

C UNBLK

C DELETE

C EXIT

C DEFUNCT

Create a new UNIX System process group for this layer.
Remember the window size parameters for this layer.
The data for this command is in the form described by
the jwinsize structure. The size of the window is
specified by two 2-byte integers, sent low byte first.

Unblock transmission to this layer. There are no data for
this command.

Delete the UNIX System process group attached to this
layer. There are no data for this command.

Exit. Kill all UNIX System process groups associated
with this terminal and terminate the session. There are
no data for this command.

Layer program has died, send a terminate signal to the
UNIX System process groups associated with this termi­
nal. There are no data for this command.

10/89

layers (5) layers(5)

FILES

C SENDNCHARS

C NOFLOW

C YESFLOW

The rest of the data are characters to be passed' to the
UNIX System process.

The layer has been reshaped. Change the window size
parameters for this layer. The data take the same form as
for the C _NEW command. A SIGWINCH signal is also sent
to the process in the window, so that the process knows
that the window has been reshaped and it can get the
new window parameters.

Disable network xt flow control [see xtproto(5)].

Enable network xt flow control [see xtproto(5)].

/usr/include/windows.h
/usr/include/sys/jioctl.h

SEE ALSO

10/89

layers(1), libwindows(3X), jagent(5), xtproto(5).
xt(7) in the Programmer's Guide: STREAMS.

Page 3

math (5) math (5)

NAME
math - math functions and constants

SYNOPSIS
tinclude <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library (described
in Section 3M), as well as various functions in the C Library (Section 3C) that
return floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling
mechanisms, including the following constant used as a error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M LOG2E

M LOGIOE

M LN2

M LNIO

M PI

M PI 2

M PI 4

M 1 PI

M 2 PI

M_2_SQRTPI

M_SQRT2

M_SQRTl_2

The base-2logarithm of e.
The base-IO logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

n, the ratio of the circumference of a circle to its diameter.

n/2.
n/4.

l/n.

2/n.

2I-.Jn.
The positive square root of 2.

The positive square root of 1/2.

The following mathematical constants are also defined in this header file:

MAXFLOAT The maximum value of a non-infinite single-precision floating
point number.

HUGE VAL positive infinity.

For the definitions of various machine-dependent constants, see values(S).

SEE ALSO
intro(3), matherr(3M), values(S).

10/89 Page 1

prof(5) prof(5)

NAME
prof - profile within a function

SYNOPSIS
tdefine MARK
tinclude <prof.h>

void MARK (name);

DESCRIPTION
MARK introduces a mark called name that is treated the same as a function entry
point. Execution of the mark adds to a counter for that mark, and program­
counter time spent is accounted to the immediately preceding mark or to the
function if there are no preceding marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in
a single compilation must be unique, but may be the same as any ordinary pro­
gram symbol.

For marks to be effective, the symbol MARK must be defined before the header file
prof.h is included, either by a preprocessor directive as in the synopsis, or by a
command line argument:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the source files
containing them and are ignored. prof -9 must be used to get information on
all labels.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARK defined on the command line,
the marks are ignored.

tinclude <prof.h>
foo()
(

int i, j;

MARK(loopl);
for (i = 0; i < 2000; i++) {

}
MARK(loop2);
for (j = 0; j < 2000; j++) (

SEE ALSO
prof(1), profU(2), m:mitor(3C).

10/89 Page 1

regexp(S) regexp(5)

NAME
regexp: corrpi1e, step, advance - regular expression compile and match rou­
tines

SYNOPSIS
Idefine INIT declarations
Ide fine GETC (void) getc code
Idefine PEEKC (void) peekc code
Idefine UNGETC (void) ungetc code
Idefine RETURN (ptr) return code
Idefine ERROR (val) error code

linc1ude <regexp.h>

char *corrpi1e(char *instring, char *expbuf, char *endbuf, int eof);

int step(char *string, char *expbuf);

int advance(char *string, char *expbuf);

extern char *loc1, *1002, *locs;

DESCRIPTION

10/89

These functions are general purpose regular expression matching routines to be
used in programs that perform regular expression matching. These functions are
defined by the <regexp. h> header file.

The functions step and advance do pattern matching given a character string
and a compiled regular expression as input.

The function conpile takes as input a regular expression as defined below and
produces a compiled expression that can be used with step or advance.

A regular expression specifies a set of character strings. A member of this set of
strings is said to be matched by the regular expression. Some characters have
special meaning when used in a regular expression; other characters stand for
themselves.

The regular expressions available for use with the regexp functions are con­
structed as follows:

Expression Meaning

c the character c where c is not a special character.

\c the character c where c is any character, except a digit in the range
1-9.

$

[s]

the beginning of the line being compared.

the end of the line being compared.

any character in the input.

any character in the set s, where s is a sequence of characters and/or
a range of characters, e.g., [c-c].

Page 1

regexp(5) regexp(5)

Page 2

["5]

r*

rx

any character not in the set 5, where 5 is defined as above.

zero or more successive occurrences of the regular expression r. The
longest leftmost match is chosen.

the occurrence of regular expression r followed by the occurrence of
regular expression x. (Concatenation)

r\ {m, n\} any number of m through n successive occurrences of the regular
expression r. The regular expression r\ {m\} matches exactly m
occurrences; r\{m, \} matches at least m occurrences.

\ (r\) the regular expression r. When \n (where n is a number greater
than zero) appears in a constructed regular ex~ression, it stands for
the regular expression x where x is the n regular expression
enclosed in \ (and \) that appeared earlier in the constructed regu­
lar expression. For example, \ (r\) x\ (y\)z\2 is the concatenation of
regular expressions rxyzy.

Characters that have special meaning except when they appear within square
brackets ([]) or are preceded by \ are: ., *, [, \. Other special characters, such
as $ have special meaning in more restricted contexts.

The character " at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

Two characters have special meaning only when used within square brackets.
The character - denotes a range, [c-c], unless it is just after the open bracket or
before the closing bracket, [-c] or [c-] in which case it has no special meaning.
When used within brackets, the character " has the meaning complement of if it
immediately follows the open bracket (example: ["c]); elsewhere between brack­
ets (example: [c]) it stands for the ordinary character ".

The special meaning of the \ operator can be escaped only by preceding it with
another \, e.g. \ \.
Programs must have the following five macros declared before the tinclude
<regexp. h> statement. These macros are used by the eonpile routine. The
macros GETC, PEEKC, and UNGETC operate on the regular expression given as
input to eonpile.

GETC This macro returns the value of the next character (byte) in the
regular expression pattern. Successive calls to GETC should
return successive characters of the regular expression.

PEEKC This macro returns the next character (byte) in the regular
expression. Immediately successive calls to PEEKC should return
the same character, which should also be the next character
returned by GETC.

UNGETC This macro causes the argument e to be returned by the next call
to GETC and PEEKC. No more than one character of pushback is
ever needed and this character is guaranteed to be the last char­
acter read by GETC. The return value of the macro UNGETC (e) is
always ignored.

10/89

regexp(5) regexp(5)

10/89

RETURN (ptr)

ERROR (val)

This macro is used on normal exit of the conpile routine. The
value of the argument ptr is a pointer to the character after the
last character of the compiled regular expression. This is useful
to programs which have memory allocation to manage.

This macro is the abnormal return from the conpile routine.
The argument val is an error number [see ERRORS below for
meaningsl. This call should never return.

The syntax of the conpile routine is as follows:

conpile (instring, expbuf, endbuf, eof)
The first parameter, instring, is never used explicitly by the conpile routine but
is useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call func­
tions to input characters or have characters in an external array can pass down a
value of (char *) 0 for this parameter.

The next parameter, expbuf, is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbuf) bytes, a call to ERROR (SO) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a I.
Each program that includes the <regexp. h> header file must have a Ide fine
statement for INIT. It is used for dependent declarations and initializations.
Most often it is used to set a register variable to point to the beginning of the reg­
ular expression so that this register variable can be used in the declarations for
GETC, PEEKC, and UNGETC. Otherwise it can be used to declare external variables
that might be used by GETC, PEEKC and UNGETC. [See EXAMPLE below.]

The first parameter to the step and advance functions is a pointer to a string of
characters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular expression which was
obtained by a call to the function conpile.

The function step returns non-zero if some substring of string matches the regu­
lar expression in expbuf and zero if there is no match. If there is a match, two
external character pointers are set as a side effect to the call to step. The variable
locl points to the first character that matched the regular expression; the variable
loc2 points to the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire input string, locl
will point to the first character of string and loc2 will point to the null at the end
of string.

The function advance returns non-zero if the initial substring of string matches
the regular expression in expbuf. If there is a match, an external character pointer,
loc2, is set as a side effect. The variable loc2 points to the next character in
string after the last character that matched.

Page 3

regexp(5) regexp(5)

When advance encounters a * or \ { \} sequence in the regular expression, it
will advance its pointer to the string to be matched as far as possible and will
recursively call itself trying to match the rest of the string to the rest of the regu­
lar expression. As long as there is no match, advance will back up along the
string until it finds a match or reaches the point in the string that initially
matched the * or \ { \}. It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer locs is
equal to the point in the string at sometime during the backing up process,
advance will break out of the loop that backs up and will return zero.

The external variables circf, sed., and nbra are reserved.

DIAGNOSTICS
The function conpile uses the macro RETURN on success and the macro ERROR on
failure (see above). The functions step and advance return non-zero on a suc­
cessful match and zero if there is no match. Errors are:

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \ (\) imbalance.

43 too many \ (.

44 more than 2 numbers given in \ { \}.
45 } expected after \.

46 first number exceeds second in \ { \ }.

49 [] imbalance.

50 regular expression overflow.

EXAMPLE

Page 4

The following is an example of how the regular expression macros and calls
might be defined by an application program:

tdefine INIT register char *sp = instring;
tdefine GETC (*sp++)
tdefine PEEKC (*sp)
tdefine UNGETC(c) (--sp)
tdefine RETURN(*c) return;
tdefine ERROR(c) regerr

tinclude <regexp.h>

(void) conpile(*argv, expbuf, &expbuf[ESIZE],'\O');

if (step (linebuf, expbuf»
succeed;

10/89

stat (5) stat (5)

NAME
stat - data returned by stat system call

SYNOPSIS
tinclude <sys/types.h>
tinclude <sys/stat.h>

DESCRIPTION

10/89

The system calls stat and fstat return data in a stat structure, which is
defined in stat. h.

The constants used in the st m:xie field are also defined in this file:

tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine
tdefine

5 IFMT
5 IAMB
S IFlFO
5 IFCHR
5 IFDIR
5 IFNAM
5 IN5EM
S IN5HD
5 IFBLK
5 IFREG
5 IFLNK
S 15UID
5 15GID
5 15VTX
5 lREAD
5 IWRlTE
5 IEXEC
S ENFMT
5 IRWXU
S IRU5R
5 lWU5R
5 lXU5R
S IRWXG
S IRGRP
5 IWGRP
S IXGRP
S IRWXO
S IROTH
S I~TH
S IXOTH

/* type of file */
/* access mode bits */
/* fifo */
/ * character special * /
/ * directory * /
/ * XENIX special named file * /
/* XENIX semaphore subtype of IFNAM */
/* XENIX shared data subtype of IFNAM */
/* block special */
/* regular * /
/* symbolic link */
/* set user id on execution */
/* set group id on execution */
/* save swapped text even after use */
/* read permission, owner */
/* write permission, owner */
/ * execute/search permission, owner * /
/ * record locking enforcement flag * /
/ * read, write, execute: owner * /
/* read permission: owner */
/* write permission: owner */
/ * execute permission: owner * /
/ * read, write, execute: group * /
/ * read permission: group * /
/* write permission: group */
r execute permission: group * /
r read, write, execute: other * /
r read permission: other * /
r write permission: other * /
r execute permission: other * /

Page 1

stat (5)

The following macros are forPOSIX conformance:

SEE ALSO

tdefine
tdefine
tdefine
tdefine
tdefine

stat(2), types(5).

Page 2

S_ISBLK(xoode)
S_ISCHR(xoode)
S ISDm (xoode)
S:ISFIFO (xoode)
S_ISREG(xoode)

block special file
character special file
directory file
pipe or fifo file
regular file

stat (5)

10/89

stdarg(5) stdarg(5)

NAME
stdarg - handle variable argument list

SYNOPSIS
tinclude <stdarg.h>

va_list pvar;

void va_start(va_list pvar, parmN);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable numbers of
arguments of variable types to be written. Routines that have variable argument
lists [such as printf] but do not use stdilrg are inherently non-portable, as dif­
ferent machines use different argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start () macro is invoked before any access to the unnamed arguments
and initializes pvar for subsequent use by va_argO and va_endO. The parame­
ter parmN is the identifier of the rightmost parameter in the variable parameter
list in the function definition (the one just before the, ...). If this parameter is
declared with the register storage class or with a function or array type, or
with a type that is not compatible with the type that results after application of
the default argument promotions, the behavior is undefined.

The parameter parmN is required under strict ANSI C compilation. In other com­
pilation modes, parmN need not be supplied and the second parameter to the
va_startO macro can be left empty [e.g., va_start (pvar,);]. This allows for
routines that contain no parameters before the ... in the variable parameter list.

The va_argO macro expands to an expression that has the type and value of the
next argument in the call. The parameter pvar should have been previously ini­
tialized by va_start o. Each invocation of va_argO modifies pvar so that the
values of successive arguments are returned in turn. The parameter type is the
type name of the next argument to be returned. The type name must be specified
in such a way so that the type of a pointer to an object that has the specified type
can be obtained simply by postfixing a * to type. If there is no actual next argu­
ment, or if type is not compatible with the type of the actual next argument (as
promoted according to the default argument promotions), the behavior is
undefined.

The va_end 0 macro is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

10/89

This example gathers into an array a list of arguments that are pointers to strings
(but not more than MAXARGS arguments) with function fl, then passes the array
as a single argument to function f2. The number of pointers is specified by the
first argument to flo

Page 1

stdarg(5) stdarg (5)

tinclude <stdarg.h>
tdefine MAXARGS 31

void f1(int n-ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n-ptrs > MAXARGS)
n -ptrs = MAXARGS;

va_start (ap, n...,Ptrs);
while (ptr_no < n-ptrs)

array [ptr_no++] = va_arg(ap, char*);
va end (ap) ;
f2(n-ptrs, array);

Each call to f1 shall have visible the definition of the function or a declaration
such as

void f1 (int, ...)

SEE ALSO
vprintf(3S).

NOTES

Page 2

It is up to the calling routine to specify in some manner how many arguments
there are, since it is not always possible to determine the number of arguments
from the stack frame. For example, execl is passed a zero pointer to signal the
end of the list. printf can tell how many arguments there are by the format. It
is non-portable to specify a second argument of char, short, or float to
va _arg, because arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float argu­
ments to double before passing them to a function.

10/89

types (5) types (5)

NAME
types - primitive system data types

SYNOPSIS
'include <sys/types.h>

DESCRIPTION

10/89

The data types defined in types. h are used in UNIX System code. Some data of
these types are accessible to user code:

typedef struct { int r[l]; } *physadr;
typedef long clock_t;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef ushort ino t;
typedef ushort uid-t;
typedef ushort gid-t;
typedef ushort nlink t;
typedef ulong roode_t;
typedef short cnt t;
typedef long tiJM t;
typedef int label_t [6];
typedef short dev_t;
typedef long off t;
typedef long pid:=t;
typedef unsigned long paddr_t;
typedef int key_t;
typedef unsigned char use t;
typedef short sysld_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;
typedef long clock_t;

The form daddr_t is used for disk addresses except in an i-node on disk, see
fs(4). Times are encoded in seconds since 00:00:00 UTe, January 1, 1970. The
major and minor parts of a device code specify kind and unit number of a device
and are installation-<iependent. Offsets are measured in bytes from the beginning
of a file. The label_t variables are used to save the processor state while
another process is running.

Page 1

values(5) values(5)

NAME
values - machin~ependent values

SYNOPSIS
tinclude <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for particular
processor architectures.

The model assumed for integers is binary representation (one's or two's comple­
ment), where the sign is represented by the value of the high-order bit.

BITS (type) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order bit set.

HIBITL

HIBITI

MAXSHORT

MAXLONG

The value of a long integer with only the high-order bit set.

The value of a regular integer with only the high-order bit set.

The maximum value of a signed short integer.

The maximum value of a signed long integer.

MAXINT The maximum value of a signed regular integer.

MAXFLOAT, LN MAXFLOAT
- The maximum value of a single-precision floating-point number,

and its natural logarithm.

MAXDOUBLE, LN MAXDOUBLE
The maximum value of a double-precision floating-point number,
and its natural logarithm.

MINFLOAT, LN MINFLOAT
- The minimum positive value of a single-precision floating-point

number, and its natural logarithm.

MINDOUBLE, LN MINDOUBLE

FSIGNIF

DSIGNIF

The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

The number of significant bits in the mantissa of a single-precision
floating-point number.

The number of significant bits in the mantissa of a double­
precision floating-point number.

SEE ALSO
intro(3), math(5).

10/89 Page 1

varargs(5) varargs(5)

NAME
varargs - handle variable argument list

SYNOPSIS
tinclude <varargs.h>

va alist

va del

va_list pvar;

void va_start(va_list pvar);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists
to be written. Routines that have variable argument lists [such as printf(3S)]
but do not use varargs are inherently non-portable, as different machines use
different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_del is a declaration for va_alist. No semicolon should follow va_del.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the
type the argument is expected to be. Different types can be mixed, but it is up to
the routine to know what type of argument is expected, as it cannot be deter­
mined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE

10189

This example is a possible implementation of execl [see exec(2)].

tinclude <unistd.h>
tinclude <varargs.h>
tdefine MAXARGS 100

/* execl is called by
execl(file, arg1, arg2, ... , (char *)0);

*/
execl(va alist)
va del -
{ -

va list ap;
char *file;
char *arqs[MAXARGS];
int arqno = 0;

/* assumed big enough*/

Page 1

varargs(5) varargs(5)

va start (ap) ;
file = va arg(ap, char *);
while «args[argno++l = va_arg(ap, char *» != 0)

va end (ap) ;
return execv(file, args);

SEE ALSO

NOTES

Page 2

exec(2), printf(3S), vprintf(3S), stdarg(5).

It is up to the calling routine to specify in some manner how many arguments
there are, since it is not always possible to determine the number of arguments
from the stack frame. For example, execl is passed a zero pointer to signal the
end of the list. printf can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float argu­
ments to double before passing them to a function.

stdarg is the preferred interface.

10/89

xtproto(S) xtproto(S)

NAME
xtproto - multiplexed channels protocol used by xt driver

DESCRIPTION

10/89

This xt protocol is used for communication between multiple UNIX System host
processes and an AT&T windowing terminal operating under the layers com­
mand; see xt(7). It is a multiplexed protocol that directs traffic between host
processes and terminal windows, thereby allowing multiple virtual terminal ses­
sions over a single connection. The protocol is implemented by the xt host driver
and corresponding firmware in a windowing terminal.

The xt driver implements two distinct low level protocols. Which protocol is
used depends on the media used for communication with the terminal. The regu­
lar xt protocol is used when communicating over unreliable media such as R5-
232. The regular xt protocol provides flow control and error correction, thereby
guaranteeing error-free delivery of data. The network xt protocol is used when
communicating over reliable media such as a local area network. In order to
achieve maximum possible throughput, the network xt protocol relies on the
underlying network to provide flow control and error correction.

The layers command queries the windowing terminal whether to use regular or
network xt protocol through an A _ XTPROTO JAGENT ioctl system call [see
layers(5)]. The layers command then decides what protocol to use based on
the return value of A_XTPROTO, baud rate, and the -m option of layers.

The regular xt protocol uses packets with a 2-byte header containing a 3-bit
sequence number, 3-bit channel number, control flag, and one byte for data size.
The data part of packets sent from the host to the terminal may not be larger
than 252 bytes. The maximum data part size can be less than 252 at lower baud
rates, or if the -m option of layers was specified. Also, when communicating
with some earlier windowing terminals, maximum data part size is fixed at 32
bytes. The maximum data part size of packets sent from the terminal to the host
is always fixed at 32 bytes. The trailer contains a CRC-16 code in 2 bytes. Each
channel is double-buffered.

Correctly received regular xt packets in sequence are acknowledged with a con­
trol packet containing an ACK; however, out of sequence packets generate a con­
trol packet containing a NAK, which causes the retransmission in sequence of all
unacknowledged packets.

Unacknowledged regular xt packets are retransmitted after a timeout interval
that is dependent on baud rate. Another timeout parameter specifies the interval
after which incomplete receive packets are discarded.

Network xt protocol uses a 3-byte header containing a 3-bit channel number,
various control flags, and 2-bytes for data size. The data part of packets sent from
the host to the terminal has no size limit. The data part of packets sent from the
terminal to the host is restricted to 1025 bytes.

Since network xt protocol relies on the underlying media to guarantee error-free
delivery of data, no CRC codes or timeouts are needed.

Page 1

xtproto(5) xtproto(5)

FILES

Network xt protocol provides a simple flow control mechanism to limit the
amount of data sent to a window in the terminal before a NE'nK>RK XT ACK ack­
nowledgement is received by the host. The intent of this flow control is to limit
the amount of data sent to a window in the terminal not reading its input
because, for example, the user has pressed the scroll lock key. This is necessary to
prevent data from backing up and blocking other data directed to other windows.
To improve overall throughput, network xt flow control can be disabled by
processes in the terminal that always read their input quickly.

/usr/ include/ sys/xtproto. h channel multiplexing protocol definitions

SEE ALSO

Page 2

jagent(S), layers(S).
layers(1) in the User's Reference Manual.
xt(7) in the Programmer's Guide: STREAMS.

10/89

	00_00-00
	00_00-01
	00_01-01
	00_01-02
	00_01-03
	00_02-01
	00_02-02
	00_02-03
	00_02-04
	00_02-05
	00_02-06
	00_02-07
	00_02-08
	00_02-09
	00_03-00
	00_03-01
	00_03-02
	00_03-03
	00_03-04
	00_03-05
	00_03-06
	00_03-07
	00_03-08
	00_03-09
	00_03-10
	00_03-11
	00_03-12
	00_03-13
	00_03-14
	00_03-15
	00_03-16
	00_03-17
	00_03-18
	00_03-19
	00_03-20
	00_03-21
	00_03-22
	00_03-23
	00_03-24
	00_03-25
	00_03-26
	00_03-27
	00_03-28
	00_03-29
	00_03-30
	00_03-31
	00_03-32
	00_03-33
	00_03-34
	01_000
	01_001-01
	01_002-01
	01_002-02
	01_002-03
	01_002-04
	01_003-01
	01_003-02
	01_004-01
	01_005-01
	01_006-01
	01_006-02
	01_006-03
	01_006-04
	01_006-05
	01_007-01
	01_007-02
	01_008-01
	01_008-02
	01_009-01
	01_009-02
	01_009-03
	01_009-04
	01_010-01
	01_011-01
	01_011-02
	01_011-03
	01_011-04
	01_012-01
	01_012-02
	01_013-01
	01_014-01
	01_014-02
	01_014-03
	01_014-04
	01_014-05
	01_014-06
	01_015-01
	01_015-02
	01_015-03
	01_015-04
	01_015-05
	01_016-01
	01_016-02
	01_017-01
	01_017-02
	01_018-01
	01_018-02
	01_019-01
	01_019-02
	01_020-01
	01_020-02
	01_020-03
	01_020-04
	01_020-05
	01_020-06
	01_020-07
	01_021-01
	01_022-01
	01_022-02
	01_023-01
	01_023-02
	01_023-03
	01_024-01
	01_024-02
	01_024-03
	01_025-01
	01_025-02
	01_025-03
	01_025-04
	01_025-05
	01_026-01
	01_027-01
	01_027-02
	01_027-03
	01_028-01
	01_028-02
	01_028-03
	01_028-04
	01_029-01
	01_029-02
	01_029-03
	01_029-04
	01_029-05
	01_029-06
	01_030-01
	01_030-02
	01_031-01
	01_031-02
	01_032-01
	01_032-02
	01_033-01
	01_033-02
	01_034-01
	01_034-02
	01_034-03
	01_034-04
	01_035-01
	01_036-01
	01_037-01
	01_038-01
	01_039-01
	01_039-02
	01_039-03
	01_039-04
	01_039-05
	01_039-06
	01_039-07
	01_040-01
	01_040-02
	01_041-01
	01_042-01
	01_043-01
	01_044-01
	01_044-02
	01_045-01
	01_045-02
	01_045-03
	01_046-01
	01_047-01
	01_047-02
	02_00
	02_01-01
	02_01-02
	02_01-03
	02_01-04
	02_01-05
	02_01-06
	02_01-07
	02_01-08
	02_01-09
	02_01-10
	02_01-11
	02_01-12
	02_01-13
	02_01-14
	02_02-01
	02_02-02
	02_03-01
	02_04-01
	02_05-01
	02_06-01
	02_07-01
	02_07-02
	02_08-01
	02_09-01
	02_10-01
	02_11-01
	02_11-02
	02_12-01
	02_13-01
	02_13-02
	02_13-03
	02_14-01
	02_15-01
	02_15-02
	02_15-03
	02_16-01
	02_16-02
	02_17-01
	02_18-01
	02_18-02
	02_19-01
	02_20-01
	02_21-01
	02_21-02
	02_22-01
	02_23-01
	02_24-01
	02_25-01
	02_26-01
	02_26-02
	02_27-01
	02_28-01
	02_29-01
	02_29-02
	02_30-01
	02_30-02
	02_31-01
	02_31-02
	02_31-03
	02_32-01
	02_33-01
	02_33-02
	02_33-03
	02_34-01
	02_35-01
	02_36-01
	02_37-01
	02_37-02
	02_38-01
	02_39-01
	02_39-02
	02_40-01
	02_40-02
	02_41-01
	02_41-02
	02_41-03
	02_42-01
	02_43-01
	02_43-02
	02_44-01
	02_44-02
	02_45-01
	02_45-02
	02_45-03
	02_46-01
	02_47-01
	02_48-01
	02_48-02
	02_49-01
	02_49-02
	02_50-01
	02_50-02
	02_51-01
	02_51-02
	02_51-03
	02_52-01
	02_52-02
	02_52-03
	02_52-04
	02_53-01
	02_53-02
	02_53-03
	02_54-01
	02_54-02
	02_55-01
	02_56-01
	02_57-01
	02_58-01
	02_59-01
	02_60-01
	02_61-01
	02_62-01
	02_63-01
	02_64-01
	02_65-01
	02_65-02
	02_66-01
	02_67-01
	02_67-02
	02_68-01
	02_69-01
	02_69-02
	02_69-03
	03_001
	03_002-01
	03_002-02
	03_003-01_3C_3S
	03_004-01
	03_005-01
	03_006-01
	03_006-02
	03_007-01
	03_008-01
	03_008-02
	03_009-01
	03_010-01
	03_011-01
	03_012-01
	03_013-01
	03_013-02
	03_013-03
	03_014-01
	03_014-02
	03_015-01
	03_016-01
	03_016-02
	03_017-01
	03_018-01
	03_018-02
	03_019-01
	03_020-01
	03_020-02
	03_021-01
	03_022-01
	03_023-01
	03_024-01
	03_025-01
	03_026-01
	03_027-01
	03_027-02
	03_027-03
	03_027-04
	03_027-05
	03_028-01
	03_029-02
	03_030-01
	03_030-02
	03_031-01
	03_032-01
	03_032-02
	03_033-01
	03_034-01
	03_035-01
	03_036-01
	03_037-01
	03_038-01
	03_039-01
	03_039-02
	03_040-01
	03_041-01
	03_042-01
	03_042-02
	03_043-01
	03_044-01
	03_045-01
	03_045-02
	03_046-01
	03_047-01
	03_047-02
	03_047-03
	03_048-01
	03_048-02
	03_049-01
	03_049-02
	03_049-03
	03_050-01
	03_051-01
	03_052-01
	03_053-01
	03_053-02
	03_053-03
	03_053-04
	03_054-01
	03_054-02
	03_055-01
	03_055-02
	03_056-01
	03_057-01
	03_057-02
	03_058-01
	03_059-01
	03_060-01
	03_061-01
	03_062-01
	03_062-02
	03_063-01
	03_063-02
	03_064-01
	03_065-01
	03_066-01
	03_066-02
	03_067-01
	03_067-02
	03_067-03
	03_067-04
	03_067-05
	03_068-01
	03_069-01
	03_070-01
	03_071-01
	03_072-01
	03_073-01
	03_074-01
	03_075-01
	03_076-01
	03_077-01
	03_077-02
	03_077-03
	03_077-04
	03_078-01
	03_079-01
	03_079-02
	03_080-01
	03_080-02
	03_081-01
	03_082-01
	03_083-01
	03_083-02
	03_084-01
	03_085-01
	03_086-01
	03_087-01
	03_087-02
	03_088-01
	03_088-02
	03_089-01
	03_090-01
	03_091-01
	03_092-01
	03_093-01
	03_094-01
	03_095-01
	03_095-02
	03_096-01
	03_096-02
	03_096-03
	03_097-01
	03_098-01
	03_099-01
	03_100-01
	03_100-02
	03_101-00_3E
	03_101-01
	03_101-02
	03_101-03
	03_101-04
	03_101-05
	03_102-01
	03_102-02
	03_102-03
	03_102-04
	03_103-01
	03_104-01
	03_105-01
	03_106-01
	03_107-01
	03_107-02
	03_108-01
	03_109-01
	03_110-01
	03_111-01
	03_112-01
	03_112-02
	03_112-03
	03_112-04
	03_113-01
	03_114-01
	03_115-01
	03_116-01
	03_116-02
	03_117-01
	03_118-01
	03_119-01
	03_120-01
	03_121-01
	03_122-01
	03_123-01
	03_124-01
	03_124-02
	03_124-03
	03_125-01
	03_126-01
	03_126-02
	03_127-01
	03_128-00_3G
	03_128-01
	03_129-01
	03_130-01
	03_131-01
	03_132-01
	03_133-01
	03_134-01
	03_135-01
	03_136-01
	03_136-02
	03_137-01
	03_137-02
	03_138-01
	03_138-02
	03_139-01
	03_139-02
	03_139-03
	03_140-01
	03_141-01
	03_142-00
	03_142-01
	03_143-01
	03_144-01
	03_145-01
	03_145-02
	03_146-01
	03_147-01
	03_148-01
	03_149-01
	03_149-02
	03_149-03
	03_150-01
	03_151-01
	03_151-02
	03_152-00_3X
	03_152-01
	03_153-01
	03_153-02
	03_154-01
	03_154-02
	03_154-03
	03_155-01
	03_156-01
	03_156-02
	03_157-01
	04_00
	04_01-01
	04_02-01
	04_02-02
	04_03-01
	04_03-02
	04_03-03
	04_04-01
	04_05-01
	04_05-02
	04_06-01
	04_06-02
	04_07-01
	04_08-01
	04_09-03
	05_001
	05_002
	05_01-01
	05_01-02
	05_02-01
	05_03-01
	05_03-02
	05_03-03
	05_03-04
	05_04-01
	05_04-02
	05_05-01
	05_06-01
	05_06-02
	05_06-03
	05_07-01
	05_08-01
	05_09-01
	05_09-02
	05_09-03
	05_09-04
	05_10-01
	05_10-02
	05_11-01
	05_11-02
	05_12-01
	05_13-01
	05_14-01
	05_14-02
	05_15-01
	05_15-02

