EEEEEEEE

ATsl

UNIX System /366

Release 37

ATer

W

UNIX® System V/386
Release 3.2

System Administrator’s Reference
Manual

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Catalog Card Number: 88-62532

Editorial/production supervision: Karen Skrable Fortgang
Manufacturing buyer: Mary Ann Gloriande

© 1989 by AT&T. All rights reserved.
Published by Prentice-Hall, Inc.

A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in
this document.

DOCUMENTER’S WORKBENCH is a trademark of AT&T.
Intel is a trademark of Intel Corporation.

PDP is a trademark of Digital Equipment Corporation.
TEKTRONIX is a registered trademark of Tektronix, Inc.
TELETYPE is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T.

VAX is a trademark of Digital Equipment Corporation.
VERSATEC is a registered trademark of Versatec, Inc.
Xerox is a trademark of Xerox Corporation.

XENIX is a registered trademark of Microsoft Corporation.

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write or call:

Special Sales

Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, NJ 07632

(201) 592-2498

Printed in the United States of America

10987 65 4321

ISBN 0-13-944950-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

TABLE OF CONTENTS

1. Commands

intro(1) introduction to commands and application programs
300(1)handle special functions of DASI 300 and 300s terminals
40141)o 0oL . . paginator for the TEKTRONIX 4014 terminal
450(1) handle special functions of the DASI 450 terminal
accept(lM) e e e e e e e e e e allow or prevent LP requests
acct(IM) overview of accounting and miscellaneous accounting commands
acctems(IM) command summary from per-process accounting records
acctcom(1)00 search and print process accounting file(s)
accteon(IM)o e connect-time accounting
acctmerg(IM) 0L merge or add total accounting files
acctpre(IM) oL Lo s e e process accounting
acctsh(IM)o 0000 shell procedures for accounting
adduser(1) o000 e .. create a login for a new user
adv(IM)o Lo 0oL advertise a directory for remote access
1 (1 execute commands at a later time
awk(l) . . .o o000 oL . . pattern scanning and processing language
backup(lM) e e e e e performs backup functions
banner(1) i L e e e e e e e e e e e e make posters
basename(1) L. deliver portions of path names
be(l) . . . o o oo oo s arbitrary-precision arithmetic language
bdiff(1) o o o e e e e e big diff
bfs(1) . . & ¢ ¢« o e e e e e e e e e e e e e e e e e e e big file scanner
boot(IM) L0 oo UNIX system boot program
bre(IM) Lo oo system initialization procedures
cal(l) .« v v v v e e e e e e e e e e e e e e e e e e e print calendar
calendar(l) e e e e e e e reminder service
captoinfo(IM) convert a termcap description into a terminfo description
cat(l) . . v e e e e e e e e e e e e e e e concatenate and print files
< [change working directory
chmod(1) v v v i e e e e e e e e e e e e e e e change mode
chown(l) oo Lo o e change owner or group
chroot(1M) change root directory for a command
chrtbl(IM) generate character classification and conversion tables
clear(l1) o e e e e e e e e . clear terminal screen
cdri(IM) . . o e e e e e e e e e e e e e e e clear inode
enp(l) . . . L s s compare two files
col(1) « v v v e e e e e e e e e e e filter reverse line-feeds
comm(1) select or reject lines common to two sorted files
opy(1) . v v v e e e e e e e e e copy, groups of files
o o () copy, link, or move files
cpio(l) « v o o e e e copy file archives in and out
cash(IM) 00000 oo examine system images
con(IM) . . . L. L e e e e e e e e e e e e e e clock daemon
crontab(1) L e e e e e e e . user crontab file
aypt(l) . . o oo e e e e e e encode/decode
ecsh(l). invoke a shell command interpreter that uses C-like syntax
esplit(1) « . o . v . o e e e e e e context split

Table of Contents

(1C) ..o spawn getty to a remote terminal
caw(lC) . . o o e e e e e e e e e e e e e e call another UNIX system
custom(IM) install specific portions of a XENIX package
cut(l)o oo oo cut out selected fields of each line of a file
date(1) . . v ¢ ¢ v o i e e e e e e e e e e e e e print and set the date
o 1< (5 desk calculator
deopy(IM)o oL copy file systems for optimal access time
dd(IM)o e s e convert and copy a file
deluser(l) v v v v v v v v e remove a login from the system
deroff(1) remove nroff /troff, tbl, and eqn constructs
devnm(IM) L.l e e e e e e e e e e e e e e device name
dfiM)00 0oL report number of free disk blocks and inodes
diff(1) . . . ¢ v v ot e e e e e e e e e e differential file comparator
diff3(1)o e e e 3-way differential file comparison
diremp(1) o o oo oo directory comparison
diskadd(IM) o000 000 disk partitioning utility
diskusg(IM) generate disk accounting data by user ID
displaypkg(1)o o000 o display installed packages
dname(1M) Print Remote File Sharing domain and network names
du(IM)o e e e e e summarize disk usage
echo(l) . . o v v v i i e e e e e e e e e e e e e echo arguments
ed(1) . v v v e text editor
edit(l)0 text editor (variant of ex for casual users)
egrep(1) search a file for a pattern using full regular expressions
enable(1) Ll e e e e e e enable/disable LP printers
env(l)o oL set environment for command execution
exX(1) v v e text editor
expr(l) o oo oo o evaluate arguments as an expression
factor(1) ¢ o o oo 000 e obtain the prime factors of a number
fdisk(IM) create or modify hard disk partition table
Y list file names and statistics for a file system
fgrep(l) oo oL search a file for a character string
file(1) « « v v v v o e e e e e e e e e e e e e determine file type
4T (0 find files
fixperm(1IM) correct or initialize XENIX file permissions and ownership
format(IM) 00000 e e e e format floppy disk tracks
fsck(IM) « . . v v Lo s s check and repair file systems
fsdb(IM) o e e e e e file system debugger
fsstat(IM) v o oo report file system status
fstyp(IM) oo 000 s e determine file system identifier
fumount(lM) forced unmount of an advertised resource
fusage(IM) o Lo e e e e e e e disk access profiler
fuser(IM) identify processes using a file or file structure
fwtmp(IM)o manipulate connect accounting records
getopt(1) . . .« . . . Lo e parse command options
getopts(1)o Lo o s parse command options
getty(IM) set terminal type, modes, speed, and line discipline
graph(1G) oo e e e e e e e e e e draw a graph
greek(l) . . . v o e e e e e e e e e e e select terminal filter

Table of Contents

grep(1) . . .« . o o o e e search a file for a pattern
hd(1l) o v oo display files in hexadecimal format
hp(1) o oo handle special functions of Hewlett-Packard terminals
d(IM) .o print user and group IDs and names
idbuilddM)o 0000 oo o build new UNIX system kernel
idcheck(IM) ¢ v v v v v v v v e e returns selected information
idinstall(1M) add, delete, update, or get device driver configuration data
idload(IM) Remote File Sharing user and group mapping
idmkinit(IM)o 0000 L. read files containing specifications
idmknod(IM) removes nodes and reads specifications of nodes
idspace(IM) oot investigates free space
idtune(IM) attempts to set value of a tunable parameter
infoomp(IM) compare or print out terminfo descriptions
nit(IM) Lo process control initialization
install(IM) L e e e e e e e install commands
installpkg(1) L0000 oo s e e install package
iperm(1) remove a message queue, semaphore set, or shared memory id
ipes(1)o report inter-process communication facilities status
ismpx(1)o oo s e return windowing terminal state
join(l) v v v v v v v i e e e e e e e relational data base operator
jterm(1) Lo oo reset layer of windowing terminal
jwin(l) « . . o o 0L e e e e e e e e e print size of layer
S) terminate a process
killall(IM) o v 0o e e e e . kill all active processes
labelit(IM), provide labels for file systems
layers(1) layer multiplexer for windowing terminals
Hne(l) . ¢ v v v v v i e e e e e e e e e e e e e e e e e e e read one line
Ink(IM) v v 0o s o e link and unlink files and directories
login(l)« . 0 0 o i e e e e e e e e e e e e sign on
logname(1) Lo o oo e get login name
Ip(1) . . . oo oo oo send/cancel requests to an LP print service
lpadmin(IM) 00000 configure the LP print service
lpfilter(IM) administer filters used with the LP print service
lpforms(IM) administer forms used with the LP print service
lpsched(IM) start/stop the LP print service and move requests
lpstat(1) print information about status of LP print service
lpusers(IM) oo 0oL set printing queue priorities
Is(1) & & v v v v e e e e e e e e e e e e e e e e list contents of directory
machid(1) 00000 get processor type truth value
mail(1)o oo o oo s send mail to users or read mail
mailx(1) o000 oL interactive message processing system
makekey(1)o 0000000 generate encryption key
mesg(l)o oot L e s e s e e e permit or deny messages
mkdir(1) . . .« . s e s e e s e e e e e e e e e e e make directories
mkfs(IM)o e e construct a file system
mknod(IM) Lo e e e e e e e e e e e build special file
mkpart(IM)00 s s disk maintenance utility
more(l) 0. view a file one full screen at a time
mount(lM) mount and unmount file systems and remote resources

Table of Contents

mountall(IM) mount, unmount multiple file systems
mvdir(IM) e e e e e e e e e e e e e e move a directory
nawk(l)00 000 pattern scanning and processing language
ncheck(IM) generate path names from i-numbers
newform(l) change the format of a text file
newgrp(IM) Lo oo oo e e log in to a new group
news(l) . . . v o L e e e e e e e e e e e e e e e e print news items
nice(l) . « v v v v vt e e e e e e run a command at low priority
01 () line-numbering filter
nlsadmin(IM) network listener service administration
nohup(l) run a command immune to hangups and quits
nsquery(IM) Remote File Sharing name server query
od(1) .« . o e octal dump
pack(l)o Lo e compress and expand files
passmgmt(IM)o password files management
passwd(l) change login password and password attributes
passwd(IM) change login password and password attributes
paste(1) merge same lines of several files or subsequent lines of one file
PE() « v v o e e e e e e e file perusal filter for CRTs

12) T print files
profiler(IM)o oo e e UNIX system profiler
PS(1) « v v v e e e e report process status
pwek(IM) Lo password/group file checkers
pweonv(IM) Lo e install and update
pwd(l)o e e e e e e e e e working directory name
random(1)00 0o e e e e . generate a random number
rcO(IM) 0oL run commands performed to stop the operating system
re2M) ... run commands performed for multiuser environment
relogin(IM) rename login entry to show current layer
removepkg(l)o oo remove installed package
restore(IM) oo oo restore file to original directory
rfadmin(lM) Remote File Sharing administration
rfpasswd(IM) change Remote File Sharing host password
rfstart(IM) . . . o o o 0 e e e e e e e e e e e e e start Remote File Sharing
fstop(IM)o stop the Remote File Sharing environment
rfuadmin(lM) Remote File Sharing notification shell script
rfudaemon(IM) Remote File Sharing daemon process
m(l) . . . e e e e e e e e e e e e e remove files or directories
rmntstat(IM)o o0 display mounted resource information
rmount(IM)o oo e e retry remote resource mounts
rmountall(lIM) mount, unmount Remote File Sharing resources
rumount(IM)o cancel queued remote resource request
runacct(IM) Lo Lo e e e e e e e e e e e run daily accounting
T () S system activity graph
sar(l) « . ¢ . o e e e e e e e e e e e e e e e e system activity reporter
sar(IM) v o oo e e e e e e e e e e system activity report package
sdiff(1) . . v v v v v oo e e e e side-by-side difference program
Y=Y [S stream editor
setmnt(IM) o . o0 0 e e e e e e e e e e establish mount table

Table of Contents

settime(1) change a files access and modification dates
sh(l) shell, the standard/restricted command programming language
shi(1) . . . o o v v s e shell layer manager
shutdown(IM) shut down system, change system state
sleep(1) o o oo oo s suspend execution for an interval
7o) o (01 T sort and/or merge files
spell(1) . . .« o o o e e e e e e find spelling errors
spline(1G) o000 o e interpolate smooth curve
split(1) . . v o . o o e e s e split a file into pieces
strace(IM) 000000 print STREAMS trace messages
strclean(IM)0 STREAMS error logger cleanup program
strerr(IM)o o000 oo STREAMS error logger daemon
strings(1) find the printable strings in an object file
stty(1) « v v v o e e e e e e e e e e e e set the options for a terminal
su(lM) o0 s s e s become super-user or another user
suloginIM)o o000 oo oL access single-user mode
sum(1) L0000 print checksum and block count of a file
swap(IM)o swap administrative interface
sync(IM) . . . oo e e e e e e e e e update the super block
sysdef(IM) output values of tunable parameters
tabs(1) e e e e e e e e e e set tabs on a terminal
tail(1)o oo display the last part of a file
tapeentl(1)00 L. tape control for QIC-24/QIC-02 tape device
122 ¢ (0 T file archiver
10 (1 T pipe fitting
test(l1) . . v ¢ ¢ o oo e e e e e e e e e e condition evaluation command
He(IM) . o o o o e e s e e e terminfo compiler
me(l) .« v v v v e time a command
timex(1) time a command; report process data and system activity
touch(1l) o oo oL update access and modification times of a file
tplot(1G) oo e e e e e e e e graphics filters
tput(l) initialize a terminal or query terminfo data base
tr(1) & o e translate characters
true(l) Lo e e e e s e e e e e e e e e provide truth values
tset(l)o o000 o o provide information to set terminal modes
113770 T get the name of the terminal
Uutry(IM) try to contact remote system with debugging on
uadmin(IM) 0000 s s e e administrative control
umask(l) o0 e e e e e set file-creation mode mask
unadv(lIM)00 0L, unadvertise a Remote File Sharing resource
uname(l) Lo print name of current UNIX system
uniq(l) o oo oL e e e report repeated lines in a file
units(1)o oo o e e e e . conversion program
uucheck(IM) check the uucp directories and permissions file
uucico(IM)o 0oL file transport program for the uucp system
uucleanup(IM)o L0 uucp spool directory clean-up
uucp(IC) . . . o oo UNIX-to-UNIX system copy
uugetty(IM) set terminal type, modes, speed, and line discipline
uusched(IM) the scheduler for the uucp file transport program

- vii -

Table of Contents

uustat(1C) o000 uucp status inquiry and job control
uuto(1C) oo s L public UNIX system to UNIX system file copy
uux(1C)00 . UNIX system to UNIX system command execution
uuxqt(IM) . . . oo o000l L e e e execute remote command requests
vi(l) . . o0 o e e e e e screen-oriented (visual) display editor based on ex
volcopy(IM) o oo make literal copy of file system
wait(l) oo oo e await completion of process
wall(l) . . & . v o e e e e e s e e e e e e e e e e write to all users
WE1) - v v v i i e e e e e e e e e .wordcount
who(l) . . ¢ . v v v v v v e e e e « . who is on the system
whodo(IM) oo oo who is doing what
write(1) .« . . 0 o o e e e e e e e e e e e e e e e e e write to another user
wtinit(iM) object downloader for the 5620 DMD terminal
xargs(l) . « oo oL construct argument list(s) and execute command
xfsck(IM) . . . oo o s e check and repair XENIX filesystems
xinstall(IM)00 0o XENIX installation shell script
xrestore(IM) invoke XENIX incremental filesystem restorer
xtd(IM)o s e e e e extract and print xt driver link structure
xts(IM) 0o e e e e e e extract and print xt driver statistics
xtt(IM) .« . . oo e s extract and print xt driver packet traces
yes(1) « v v v i e e e e e e e e e e e e e e e repeatedly print string

7. Special Files

INro(7) « v v v v v e e e e e e e e e e e e e e introduction to special files
ASY(7) v ¢ v e asynchronous serial port
cone(7) oo ... open any minor device on a STREAMS driver
console(7) « v vt v e console interface
Cram(7) « v v v v e e e e e e e e e e e e e e e e e e e CMOS RAM interface
disk(7) « ¢ ¢ v b e e e e e e e e e e random access bulk storage medium
display(7) . . « « ¢ ¢ 0 o oo e e e e e e system console display
fA(7) « o e e e e e e e e e e e e e e e e e e diskette (floppy disk)
(7o (72 T hard (fixed) disk
keyboard(7)o oo oo system console keyboard
log?) « « « « .« ... interface to STREAMS error logging and event tracing
=72 parallel port interface
¢ (=3 121/ core memory
null(7) . .« . .0 e e e e e e e e e e e e e e e e e e e the null file
Prf(7) « o« o e e e e e e e e e e e e e e operating system profiler
Qi7) « . e e e e e e e QIC cartridge magnetic tape streamer interface
€ (o 0 T real time clock interface
streamio(7) . .« .+ .« ¢ v e e e e e e e e e e e e e e STREAMS ioctl commands
SXH7) v v v v e pseudo-device driver
termio(7) . . . e e e e e e e e e e e e e e e e e e general terminal interface
timod(7) Transport Interface cooperating STREAMS module
tirdwr(7) Transport Interface read /write interface STREAMS module
11 /4 T T TR T controlling terminal interface
XU7) e v v v e e e e e e multiplexed tty driver for AT&T windowing terminals

-Viij-

Introduction

This manual describes the features of the UNIX System. It provides nei-
ther a general overview of the UNIX System nor details of the implementation
of the system. Commands that constitute the basic software running on your
computer are described.

The manual is divided into three sections:

B 1 - System Commands, System Maintenance Commands, and Applica-
tion Programs

B 7 - Special Files
B Index to Packages.

Throughout this volume each reference of the form name(1M), name(7), or
followed by a (1), (1C), or (1G), refers to entries in this manual. The numbers
following the command are intended for easy cross-reference. (Section 1 com-
mands appropriate for use by programmers are located in the Programmer’s
Reference Manual.) All other references to entries of the form name(N), where
N is a number [(2), (3), (4), or (5)] possibly followed by a letter, refer to entry
name in Section N of the Programmer’s Reference Manual.

Each entry in the "Commands" section appears under a single name
shown at the upper corners of its page(s). Entries are alphabetized, with the
exception of the intro(1) entry, which is first. Entries may consist of more
than one page. Some entries may describe several routines, commands, etc.
In such cases, the entry appears only once, alphabetized under its " primary"
name, the name that appears at the upper corners of the page. An example of
such an entry is mount(1M), which also describes the umount command.

The "secondary" commands are listed directly below their associated primary
command.

Section 1 (System Commands, System Maintenance Commands and Applica-
tion Programs) contains commands and programs that are:

B Used in administering a UNIX System.

B Invoked directly by the user or by command language procedures, as
opposed to subroutines, which are called by the user’s programs.

INTRODUCTION 1

Introduction

Commands generally reside in the directory /bin (for binary programs).
In addition, some programs reside in /usr/bin. These directories are searched
automatically by the command interpreter called the shell. The shell will
search the path in your .profile. Make sure you have set this path in your
.profile file. UNIX Systems running on your computer also have a directory
called /usr/lbin, containing local commands.

The following sub-classes are in this section:
B 1 - General-purpose Commands

B 1C - Communications Commands

B 1G - Graphics Commands

B 1M - Maintenance Commands

Each entry in the "Commands" section appears under a single name
shown at the upper corners of its page(s).

Section 7 (Special Files) discusses the characteristics of system files that
refer to input/output devices. The names in this section generally refer to
device names for the hardware, rather than to the names of the special files

themselves.
Index to Packages. The utilities packages represented in this section are:

1. Base System
2. Editing Package
3. Remote Terminal Package

The Security Administration Utilities Package is expressly provided for
U. S. customers.

All entries are presented using the following format (though some of these
headings might not appear in every entry):

B NAME gives the primary name [and secondary name(s), as the case
may be] and briefly states its purpose.

B SYNOPSIS summarizes the usage of the program being described. A
few explanatory conventions are used, particularly in Section 1M and
the SYNOPSIS:

2 USER’S /| SYSTEM ADMINISTRATOR’S REFERENCE MANUAL

Introduction

O Boldface strings are literals and are to be typed just as they
appear.

O Italic strings usually represent substitutable argument prototypes
and command names found elsewhere in the manual. (They are
underlined in the typed version of the entries.)

O Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
"name" or "file," it always refers to a file name.

O Ellipses ... are used to show that the previous argument prototype
may be repeated.

OO A final convention is used by the commands themselves. An
argument beginning with a minus (-), plus (+), or an equal sign (=)
is often taken to be some sort of flag argument, even if it appears in
a position where a file name could appear. Therefore, it is unwise
to have files whose names begin with -, +, or =.

DESCRIPTION discusses how to use these commands.
EXAMPLE(S) gives example(s) of usage, where appropriate.

FILES contains the file names that are referenced by the program.

EXIT CODES discusses values set when the command terminates. The
value set is available in the shell environment variable ‘?’ [see sh(1)].

B NOTES gives information that may be helpful under the particular cir- -
cumstances described.

B SEE ALSO offers pointers to related information.

B DIAGNOSTICS discusses the error messages that may be produced.
Messages that are intended to be self-explanatory are not listed.

B WARNINGS discusses the limits or boundaries of the respective com-
mands.

B BUGS lists known faults in software that have not been rectified.
Occasionally, a suggested short-term remedy is also described.

INTRODUCTION 3

Introduction

Preceding Section 1 are a "Table of Contents" (listing both primary and
secondary command entries) and a "Permuted Index." Each line of the
"Table of Contents" lists an abstract of the command. The "Permuted
Index" is used by searching the middle column for a key word or phrase.

The right column will then contain the name of the manual page that contains
the command. The left column contains additional useful information about
the command.

How to Get Started

This discussion provides the basic information you need to get started on
the UNIX System: how to log in and log out, how to communicate through
your terminal, and how to run a program. (See the User’s Guide for a more
complete introduction to the system.)

Logging In

You must connect to the UNIX System from the console or a full-duplex
ASCII terminal. You must also have a valid login id, which may be obtained
[together with how to access your UNIX System] from the administrator of
your system. Common terminal speeds are 120, 240, 480, and 960 characters
per second (1200, 2400, 4800, and 9600 baud). Some UNIX Systems have dif-
ferent ways of accessing each available terminal speed, while other systems
offer several speeds through a common access method. In the latter case,
there is one "preferred" speed; if you access it from a terminal set to a dif-
ferent speed, you will be greeted by a string of meaningless characters (the
login: message at the wrong speed). Keep hitting the "break," "interrupt,"
or "attention" key until the login: message appears.

Most terminals have a speed switch that should be set to the appropriate
speed and a half-/full-duplex switch that should be set to full-duplex. When
a connection has been established, the system types login:. You respond by
typing your login id followed by the "return" key. If you have a password,
the system asks for it but will not print, or "echo," it on the terminal. After
you have logged in, the "return," "new-line," and "line-feed" keys all have
equivalent meanings.

Make sure you type your login name in lowercase letters. Typing upper-
case letters causes the UNIX System to assume that your terminal can generate
only uppercase letters and will treat all letters as uppercase for the remainder
of your login session.

4 USER’S | SYSTEM ADMINISTRATOR’S REFERENCE MANUAL

Iintroduction

When you log in, a message-of-the-day may greet you before you receive
your prompt. For more information, consult login(1), which discusses the
login sequence in more detail, and stty(1), which tells you how to describe
your terminal to the system. profile(4) (in the Programmer’s Reference Manual)
explains how to accomplish this last task automatically every time you log in.

Logging Out
There are two ways to log out:

B If you've dialed in, you can simply hang up the phone.

B You can log out by typing an end-of-file indication (ASCII EOT charac-
ter, usually typed as "CTRL-D") to the shell. The shell will terminate,
and the login: message will appear again.

How to Communicate Through Your Terminal

When you type to the UNIX System, your individual characters are being
gathered and temporarily saved. Although they are echoed back to you, these
characters will not be given to a program until you type a "return" (or
"new-line") as described above in "Logging In."

UNIX System terminal input/output is full duplex. It has full read-ahead,
which means that you can type at any time, even while a program is display-
ing information for you. Of course, if you type during output, your input
characters will have output characters interspersed among them. In any case,
whatever you type will be saved and interpreted in the correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely
to be exceeded.

The character @ cancels all the characters typed before it on a line, effec-
tively deleting the line. (@ is called the line kill character.) The character #
erases the last character typed. Successive uses of # will erase characters back
to, but not beyond, the beginning of the line; @ and # can be typed as them-
selves by preceding them with \ (thus, to erase a \, you need two #s). These
default erase and line kill characters can be changed; see stty(1).

CTRL-S (also known as the ASCII DC3 character) is typed by pressing the
control key and the alphabetic s simultaneously and is used to stop output
temporarily. It is useful with CRT terminals to prevent output from disappear-
ing before it can be read. Output is resumed when a CTRL-Q (also known as
DC1) is typed. Thus, if you had typed cat yourfile and the contents of your-
file were passing by on the screen more rapidly than you could read it, you
would type CTRL-S to freeze the output. Typing CTRL-Q would allow the

INTRODUCTION 5

Introduction

output to resume its rapid pace. The CTRL-S and CTRL-Q characters are not
passed to any other program when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs but
instead generates an interrupt signal, just like the "break," "interrupt," or
"attention" signal. This signal generally causes whatever program you are
running to terminate. It is typically used to stop a long printout that you do
not want. Programs, however, can arrange either to ignore this signal alto-
gether or to be notified and take a specific action when it happens (instead of
being terminated). The editor ed(1), for example, catches interrupts and stops
what it is doing, instead of terminating, so an interrupt can be used to halt an
editor printout without losing the file being edited.

Besides adapting to the speed of the terminal, the UNIX System tries to be
intelligent as to whether you have a terminal with the "new-line" function, or
whether it must be simulated with a "carriage-return" and "line-feed" pair.
In the latter case, all input "carriage-return" characters are changed to "line-
feed" characters (the standard line delimiter), and a "carriage-return" and
"line-feed" pair is echoed to the terminal.

Tab characters are used freely in UNIX System source programs. If your
terminal does not have the tab function, you can arrange to have tab charac-
ters changed into spaces during output, and echoed as spaces during input.
Again, the stty(1) command will set or reset this mode. The system assumes
that tabs are set every eight character positions. The tabs(1) command will set
tab stops on your terminal, if that is possible.

How to Run a Program

When you have successfully logged into the UNIX System, a program
called the shell is communicating with your terminal. The shell reads each
line you type, splits the line into a command name and its arguments, and
executes the command. A command is simply an executable program. Nor-
mally, the shell looks first in your current directory (see "The Current Direc-
tory" below) for a program with the given name, and if none is there, then in
system directories, such as /bin and /usr/bin. There is nothing special about
system-provided commands except that they are kept in directories where the
shell can find them. You can also keep commands in your own directories
and instruct the shell to find them there. See the manual entry for sh(1),
under the sub-heading "Parameter Substitution," for the discussion of the
$PATH shell environment variable.

6 USER’S | SYSTEM ADMINISTRATOR’S REFERENCE MANUAL

Introduction

The command name is the first word on an input line to the shell; the
command and its arguments are separated from one another by space or tab
characters.

When a program terminates, the shell will ordinarily regain control and
give you back your prompt to indicate that it is ready for another command.
The shell has many other capabilities, which are described in detail in sh(1).

The Current Directory

The UNIX System has a file system arranged in a hierarchy of directories.
When you received your login id, the system administrator also created a
directory for you (ordinarily with the same name as your login id, and known
as your login or home directory). When you log in, that directory becomes
your current or working directory, and any file name you type is, by default,
assumed to be in that directory. Because you are the owner of this directory,
you have full permissions to read, write, alter, or remove its contents. Permis-
sions to enter or modify other directories and files will have been granted or
denied to you by their respective owners or by the system administrator. To
change the current directory, use cd(1).

Path Names

To refer to files or directories not in the current directory, you must use a
path name. Full path names begin with /, which is the name of the root
directory of the whole file system. After the slash comes the name of each
directory containing the next subdirectory (followed by a /), until finally the
file or directory name is reached (e.g., /usr/ae/filex refers to file filex in
directory ae, while ae is itself a subdirectory of usr, and usr is a subdirectory
of the root directory). Use pwd(1) to print the full path name of the directory
you are working in. See intro(2) in the Programmer’s Reference Manual for a
formal definition of path name.

If your current directory contains subdirectories, the path names of their
respective files begin with the name of the corresponding subdirectory
(without a prefixed /). A path name may be used anywhere a file name is
required.

INTRODUCTION 7

Introduction

Important commands that affect files are cp(1), mv (see cp(1)), and rm(1),
which respectively copy, move (i.e., rename), and remove files. To find out
the status of files or directories, use Is(1). Use mkdir(1) for making directories
and rmdir [see rm(1)] for removing them.

Text Entry and Display

Almost all text is entered through an editor. Common examples of UNIX
System editors are ed(1) and vi(1). The commands most often used to print
text on a terminal are cat(1), pr(1), and pg(1). The cat(1) command displays
the contents of ASCII text files on the terminal, with no processing at all. The
pr(1) command paginates the text, supplies headings, and has a facility for
multi-column output. The pg(1) command displays text in successive portions
no larger than your terminal screen.

Communicating with Others

Certain commands provide inter-user communication. Even if you do not
plan to use them, it would be well to learn something about them because
someone else may try to contact you. mail(1) or mailx(1) will leave a message
whose presence will be announced to another user when he or she next logs
in and at periodic intervals during the session. To communicate with another
user currently logged in, write(1) is used. The corresponding entries in this
manual also suggest how to respond to these two commands if you are their
target.

See Chapter 8 of the Operations/System Administration Guide for more
information on communicating with others.

8 USER’S | SYSTEM ADMINISTRATOR’S REFERENCE MANUAL

INTRO(1) INTRO(1)

NAME
intro — introduction to commands and application programs

DESCRIPTION

This section describes, in alphabetical order, commands (including system
maintenance commands) available for your computer. The commands in
this section should be used along with those listed in Sections 1,2, 3,4, and
5 of the Programmer’s Reference Manual. References of the form name(1),
name(2), name(3), name(4), and name(5) refer to entries in the above manual.
References of the form name(1), name(1M), name(1C), name(1G), name(7), or
name(8) refer to entries in this manual. Certain distinctions of purpose are
made in the headings.

The following Utility packages are delivered with the computer:

Base System

Editing Package

Extended Terminal Interface

Security Administration Package

2 Kilobyte File System Utility Package
Network Support Utilities Package
Remote File Sharing Utilities Package

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a
manual page accept options and other arguments according to the following
syntax and should be interpreted as explained below.

name [-option...] [cmdarg...]

where:

[1 Surround an option or cmdarg that is not required.
Indicates multiple occurrences of the option or cmdarg.
name The name of an executable file.

option (Always preceded by a “-"'.

noargletter ... or,
argletter optarg],...]

noargletter A single letter representing an option without an option-
argument. Note that more than one noargletter option can be
grouped after one “~”’ (Rule 5 in the following text).

argletter A single letter representing an option requiring an option-
argument.
optarg An option-argument (character string) satisfying a preceding

argletter. Note that groups of optargs following an argletter
must be separated by commas or separated by white space
and quoted (Rule 8 below).

cmdarg Path name (or other command argument) not beginning with
“-", or =" by itself indicating the standard input.

INTRO(1) INTRO(1)

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but
all new commands use them. getopts(1) should be used by all shell pro-
cedures to parse positional parameters and to check for legal options. It
supports Rules 3-10 below. The enforcement of the other rules must be
done by the command itself.

1. Command names (name above) must be between two and nine
characters long.

2. Command names must include only lowercase letters and

digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by “-".

5. Options with no arguments may be grouped after a single “~"".

6. The first option-argument (optarg above) following an option
must be preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either

be separated by commas or separated by white space and
quoted (e.g., —o0 xxx,z,yyor —o "xxx z yy").

9. All options must precede operands (cmdarg above) on the
command line.

10. “--" may be used to indicate the end of the options.

11. The order of the options relative to one another should not
matter.

12. The relative order of the operands (cmdarg above) may affect
their significance in ways determined by the command with
which they appear.

13. “-” preceded and followed by white space should only be
used to mean standard input.

SEE ALSO
getopts(1), exit(2).

wait(2), getopt(3C) in the Programmer’s Reference Manual.
How to Get Started at the front of this document.

DIAGNOSTICS

Upon termination each command returns two bytes of status, one supplied
by the system and giving the cause for termination and (in the case of “nor-
mal” termination) one supplied by the program [see wait(2) and exit(2)].
The former byte is 0 for normal termination; the latter is customarily 0 for
successful execution and non-zero to indicate troubles such as erroneous
parameters or bad or inaccessible data. It is called variously “exit code,”
“exit status,” or “return code” and is described only where special conven-
tions are involved.

INTRO(1) INTRO(1)

BUGS
Regrettably, not all commands adhere to the aforementioned syntax.

WARNINGS
Some commands produce unexpected results when processing files contain-
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

300(1)

NAME

(Extended Terminal Interface) 300(1)

300, 300s — handle special functions of DASI 300 and 300s terminals

SYNOPSIS

300 [+12][-n] [-dt]lc]
300s [+12 | [-n] [-dt)c]

DESCRIPTION

The 300 command supports special functions and optimizes the use of the
DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same functions
for the DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line for-
ward, half-line reverse, and full-line reverse motions to the correct vertical
motions. In the following discussion of the 300 command, it should be
noted that unless your system contains the DOCUMENTER'S WORKBENCH
Software, references to certain commands (e.g., nroff, neqn, eqn, etc.) will
not work. It also attempts to draw Greek letters and other special symbols.
It permits convenient use of 12-pitch text. It also reduces printing time 5 to
70%. The 300 command can be used to print equations neatly, in the
sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to han-
dle 12-pitch text, fractional line spacings, messages, and delays. .

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor-
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch com-
bination, the user should turn the PITCH switch to 12, and use the
+12 option.

-n controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a 10-pitch line-feed requires 8 increments,
while a 12-pitch line-feed needs only 6. The first digit of n over-
rides the default value, thus allowing for individual taste in the
appearance of subscripts and superscripts. For example, nroff
half-lines could be made to act as quarter-lines by using -2. The
user could also obtain appropriate half-lines for 12-pitch, 8
lines/inch mode by using the option -3 alone, having set the
PITCH switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300
terminals sometimes produce peculiar output when faced with
very long lines, too many tab characters, or long strings of blank-
less, non-identical characters. One null (delay) character is
inserted in a line for every set of t tabs, and for every contiguous
string of ¢ non-blank, non-tab characters. If a line is longer than [
bytes, 1+(total length)/20 nulls are inserted at the end of that
line. Items can be omitted from the end of the list, implying use
of the default values. Also, a value of zero for ¢ (c) results in two

-1-

300(1)

(Extended Terminal Interface) 300(1)

null bytes per tab (character). The former may be needed for C
programs, the latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters printed and
the load on a system, the user may have to experiment with these
values to get correct output. The -d option exists only as a last
resort for those few cases that do not otherwise print properly.
For example, the file /etc/passwd may be printed using -d3,30,5.
The value -d0,1 is a good one to use for C programs that have
many levels of indentation.

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stty(1) modes nl0 cr2 or
nl0 cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when
it is necessary to insert paper manually or change fonts in the middle of a
document. Instead of hitting the return key in these cases, you must use
the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:
nroff ~T300 files ... and nroff files ... | 300
nroff ~T300-12 files ... and nroff files ... | 300 +12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimization
of 300 may produce better aligned output.

SEE ALSO

BUGS

NOTE

450(1), mesg(1), graph(1G), stty(1), tabs(1), tplot(1G).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

troff(1), nroff(1), and eqn(1) are not part of this UNIX system release.

4014(1) (Extended Terminal Interface) 4014(1)

NAME
4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [-t][-n][-cN][-pL] [file]

DESCRIPTION
The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N columns,
and contributes an eight-space page offset in the (default) single-column
case. Tabs, spaces, and backspaces are collected and plotted when neces-
sary. TELETYPE Model 37 half- and reverse-line sequences are interpreted
and plotted. At the end of each page, 4014 waits for a new-line (empty
line) from the keyboard before continuing on to the next page. In this wait
state, the command !cmd will send the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).
-n Start printing at the current cursor position and never erase the
screen.

-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and 1
(lines); default is lines.

SEE ALSO
pr(1).

450(1)

NAME

(Extended Terminal Interface) 450(1)

450 - handle special functions of the DASI 450 terminal

SYNOPSIS

450

DESCRIPTION

The 450 command supports special functions of, and optimizes the use of,
the DASI 450 terminal, or any terminal that is functionally identical, such as
the Diablo 1620 or Xerox 1700. It converts half-line forward, half-line
reverse, and full-line reverse motions to the correct vertical motions. It also
attempts ‘to draw Greek letters and other special symbols in the same
manner as 300(1). It should be noted that, unless your system contains
DOCUMENTER’S WORKBENCH Software, certain commands (e.g., eqn, nroff,
tbl, etc.) will not work. Use 450 to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: Make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of
hitting the return key in these cases, you must use the line-feed key to get
any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one
of the following;:

nroff -T450 files ...
or
nroff -T450-12 files ...
The use of 450 can thus often be avoided unless special delays or options

are required; in a few cases, however, the additional movement optimization
of 450 may produce better aligned output.

SEE ALSO

BUGS

NOTE

300(1), mesg(1), stty(1), tabs(1), graph(1G), tplot(1G).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter
has a tendency to slip when reversing direction, distorting Greek characters
and misaligning the first line of text after one or more reverse line-feeds.

troff(1), nroff(1), and eqn(1) are not part of this UNIX system release.

-1-

UUTRY(1M) (Base System) UUTRY(1M)

NAME

Uutry - try to contact remote system with debugging on
SYNOPSIS

/usr/lib/uucp/Uutry [-x debug_level] [-r] system_name
DESCRIPTION

Uutry is a shell that is used to invoke uucico to call a remote site. Debug-
ging is turned on (default is level 5); -x will override that value. The -r
overrides the retry time in /usr/spool/uucp/.status. The debugging output
is put in file /tmp/system_name. A tail -f of the output is executed. A
<DELETE> or <BREAK> will give control back to the terminal while the
uucico continues to run, putting its output in /tmp/system_name.

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp /Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Maxuuxqts
/usr/lib/uucp/Maxuuscheds
/usr/spool /uucp/*
/usr/spool /locks /LCK*
/usr/spool /uucppublic/*
/tmp/system_name

SEE ALSO
uucico(1M), uucp(1C), uux(1C).

ACCEPT(1M) (Base System) ACCEPT(1M)

NAME
accept, reject — allow or prevent LP requests

SYNOPSIS
Jusr/lib/accept destinations
/Jusr/lib/reject [-r[reason]] destinations

DESCRIPTION
The accept command allows Ip(1) to accept requests for the named destina-
tions. A destination can be either a line printer (LP) or a class of printers.
Use Ipstat(1) to find the status of destinations.

The reject command prevents Ip(1) from accepting requests for the named
destinations. A destination can be either a printer or a class of printers. Use
Ipstat(1) to find the status of destinations. The following option is useful
with reject.

-r{reason] Associates a reason with preventing Ip from accepting requests.
This reason applies to all printers mentioned up to the next -r
option. Reason is reported by Ip when users direct requests to
the named destinations and by Ipstat(1). If the -r option is not
present or the -r option is given without a reason, then a
default reason will be used.

FILES
/usr/spool/lp/*

SEE ALSO
enable(1), Ip(1), lpadmin(1M), lpsched(1M), lpstat(1).

ACCT(1M) (Base System) ACCT(1M)

NAME

acct: acctdisk, acctdusg, accton, acctwtmp - overview of accounting and
miscellaneous accounting commands

SYNOPSIS

/usr/lib/acct/acctdisk
/ust/lib/acct/acctdusg [-u file] [-p file]
/usr/lib/acct/accton [file]
/usr/lib/acct/acctwtmp "reason"

DESCRIPTION

Accounting software is structured as a set of tools (consisting of both C pro-
grams and shell procedures) that can be used to build accounting systems.
When the system is installed, accounting is initially in the “off” state.
acctsh(1M) describes the set of shell procedures built on top of the C pro-
grams.

Connect time accounting is handled by various programs that write records
into /etc/utmp, as described in utmp(4). The programs described in
acctcon(1M) convert this file into session and charging records, which are
then summarized by acctmerg(1M).

Process accounting is performed by the UNIX system kernel. Upon termina-
tion of a process, one record per process is written to a file (normally
/usr/adm/pacct). The programs in acctprc(1M) summarize this data for
charging purposes; acctcms(1IM) is used to summarize command usage.
Current process data may be examined using acctcom(1).

Process accounting and connect time accounting [or any accounting records
in the format described in acct(4)] can be merged and summarized into total
accounting records by acctmerg [see tacct format in acct(4)]. prtacct [see
acctsh(1M)] is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk
blocks and converts them to total accounting records that can be merged
with other accounting records.

acctdusg reads its standard input (usually from find / -print) and computes
disk resource consumption (including indirect blocks) by login. If -u is
given, records consisting of those file names for which acctdusg charges no
one are placed in file (a potential source for finding users trying to avoid
disk charges). If -p is given, file is the name of the password file. This
option is not needed if the password file is /etc/passwd. [See diskusg(1M)
for more details.]

accton alone turns process accounting off. If file is given, it must be the
name of an existing file-to which the kernel appends process accounting
records [see acct(2) and acct(4)).

acctwtmp writes a utmp(4) record to its standard output. The record con-
tains the current time and a string of characters that describe the reason. A
record type of ACCOUNTING is assigned [see utmp(4)]. Reason must be a
string of 11 or fewer characters, numbers, $, or spaces. For example, the
following are suggestions for use in reboot and shutdown procedures,

-1 -

ACCT(1M) (Base System) ACCT(1M)

respectively:

acctwtmp uname >> /etc/wtmp
acctwtmp "file save" >> /etc/wtmp

FILES
/etc/passwd -used for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in sub-class 1M of
this manual
/usr/adm/pacct current process accounting file
/etc/wtmp login/logoff history file
SEE ALSO

acctems(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), diskusg(1M), fwtmp(1M), runacct(1M).

acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

ACCTCMS(1M) (Base System) ACCTCMS(1M)

NAME

acctcms — command summary from per-process accounting records
SYNOPSIS

Jusr/lib/acct/acctcms [options] files
DESCRIPTION

acctcms reads one or more files, normally in the form described in acct(4). It

adds all records for processes that executed identically-named commands,

sorts them, and writes them to the standard output, normally using an inter-
nal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format.
The output includes command name, number of times executed,
total kcore-minutes, total CPU minutes, total real minutes, mean size
(in K), mean CPU minutes per invocation, “hog factor”, characters
transferred, and blocks read and written, as in acctcom(1). Output is
normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.

-j Combine all commands invoked only once under ““##+other”.

-n Sort by number of command invocations.

] Any file names encountered hereafter are already in internal sum-
mary format.

-t Process all records as total accounting records. The default internal
summary format splits each field into prime and non-prime time
parts. This option combines the prime and non-prime time parts
into a single field that is the total of both, and provides upward
compatibility with old (i.e., UNIX System V) style acctcms internal
summary format records.

The following options may be used only with the -a option.

-p Output a prime-time-only command summary.

-0 Output a non-prime (offshift) time only command summary.

When -p and -o are used together, a combination prime and non-prime

time report is produced. All the output summaries will be total usage

except number of times executed, CPU minutes, and real minutes which will
be split into prime and non-prime.

A typical sequence for performing daily command accounting and for main-

taining a running total is:
acctems file ... >today
cp total previoustotal
acctcms -s today previoustotal >total
acctcms -a -s today

SEE ALSO

acct(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), runacct(1M).

acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

ACCTCMS(1M) (Base System) ACCTCMS(1M)

BUGS
Unpredictable output results if -t is used on new style internal summary

format files, or if it is not used with old style internal summary format files.

ACCTCOM(1) (Base System) ACCTCOM(1)

NAME

acctcom - search and print process accounting file(s)
SYNOPSIS

acctcom [[options][file]] . . .
DESCRIPTION

acctcom reads file, the standard input, or fusr/adm/pacct, in the form
described by acct(4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork /exec flag: 1 for
fork without exec), STAT (the system exit status), HOG FACTOR, KCORE
MIN, CPU FACTOR, CHARS TRNSFD, and BLOCKS READ (total blocks read
and written).

The command name is prepended with a # if it was executed with super-
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a termi-
nal or /dev/null (as is the case when using & in the shell),
/usr/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward, i.e., in chronological order by process comple-
tion time. The file /usr/adm/pacct is usually the current file to be exam-
ined; a busy system may need several such files of which all but the current
file are found in /usr/adm/pacct?. The options are:

-a Show some average statistics about the processes selected.
The statistics will be printed after the output records.

-b Read backwards, showing latest commands first. This option
has no effect when the standard input is read.

-f Print the fork/exec flag and system exit status columns in the
output.

-h Instead of mean memory size, show the fraction of total avail-

able CPU time consumed by the process during its execution.
This “hog factor” is computed as:

(total CPU time)/(elapsed time).

-i Print columns containing the I/0 counts in the output.

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times.

-v Exclude column headings from the output.

-1 line Show only processes belonging to terminal /dev/line.

-u user Show only processes belonging to user that may be specified

by: a user ID, a login name that is then converted to a user ID,
a # which designates only those processes executed with
super-user privileges, or ? which designates only those
processes associated with unknown user IDs.

-1-

ACCTCOM(1)

(Base System) ACCTCOM(1)

-g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

-s time Select processes existing at or after time, given in the format
hr [:min [:sec]].

-e time Select processes existing at or before time.

=S time Select processes starting at or after time.

-E time Select processes ending at or before time. Using the same time
for both -S and -E shows the processes that existed at time.

-n pattern Show only commands matching pattern that may be a regular
expression as in ed(1) except that + means one or more
occurrences.

-q Do not print any output records; just print the average statis-
tics as with the -a option.

-o ofile Copy selected process records in the input data format to ofile;
suppress standard output printing.

-H factor =~ Show only processes that exceed factor, where factor is the
““hog factor” as explained in option -h above.

-0 sec Show only processes with CPU system time exceeding sec
seconds.

-C sec Show only processes with total CPU time, system plus user,
exceeding sec seconds.

-1 chars Show only processes transferring more characters than the
cut-off number given by chars.

FILES

/etc/passwd

/usr/adm/pacct

/etc/group

SEE ALSO

acct(1M), acctems(1M), acctcon(1M), acctmerg(1M), acctpre(1M), acctsh(1M),

fwtmp(1M), ps(1), runacct(1M), su(1M).

acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

BUGS

acctcom reports only on processes that have terminated; use ps(1) for active
processes. If time exceeds the present time, then time is interpreted as

occurring on

the previous day.

ACCTCON(1M)

NAME

(Base System) ACCTCON(1M)

acctcon: acctconl, acctcon2 - connect-time accounting

SYNOPSIS

/usr/lib/acct/acctconl [options]
/usr/lib/acct/acctcon2

DESCRIPTION

acctconl converts a sequence of login/logoff records read from its standard
input to a sequence of records, one per login session. Its input should nor-
mally be redirected from /etc/wtmp. Its output is ASCII, giving device, user
ID, login name, prime connect time (seconds), non-prime connect time
(seconds), session starting time (numeric), and starting date and time. The
options are:

-P
-t

-1 file

-o file

Print input only, showing line name, login name, and time (in both
numeric and date/time formats).

acctconl maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that its
input is a current file, so that it uses the current time as the ending
time for each session still in progress. The -t flag causes it to use,
instead, the last time found in its input, thus assuring reasonable
and repeatable numbers for non-current files.

File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number of
logoffs. This file helps track line usage, identify bad lines, and find
software and hardware oddities. Hang-up, termination of login(1)
and termination of the login shell each generate logoff records, so
that the number of logoffs is often three to four times the number of
sessions. See init(1M) and utmp(4).

File is filled with an overall record for the accounting period, giving
starting time, ending time, number of reboots, and number of date
changes.

acctcon? expects as input a sequence of login session records and converts
them into total accounting records [see tacct format in acct(4)].

EXAMPLES

These commands are typically used as shown below. The file ctmp is
created only for the use of acctprc(1M) commands:

acctconl —t -1 lineuse —o reboots <wtmp | sort +1n +2 >ctmp
acctcon2 <ctmp | acctmerg >ctacct

FILES

/etc/wtmp

SEE ALSO

acct(1M), acctems(1M), acctcom(1), acctmerg(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), init(1M), runacct(1M).

acct(2),

acct(4), utmp(4) in the Programmer’s Reference Manual.

-1-

ACCTCON(1M) (Base System) ACCTCON(1M)

BUGS
The line usage report is confused by date changes. Use wtmpfix [see

fwtmp(1M)] to correct this situation.

ACCTMERG(1M) (Base System) ACCTMERG(1M)

NAME

acctmerg — merge or add total accounting files

SYNOPSIS

/usr/lib/acct/acctmerg [options] [file] . . .

DESCRIPTION
acctmerg reads its standard input and up to nine additional files, all in the
tacct format [see acct(4)] or an ASCII version thereof. It merges these inputs
by adding records whose keys (normally user ID and name) are identical,
and expects the inputs to be sorted on those keys. Options are:

-a
-i
P
-t
-u
-V

EXAMPLES

Produce output in ASCII version of tacct.

Input files are in ASCII version of tacct.

Print input with no processing.

Produce a single record that totals all input.

Summarize by user ID, rather than user ID and name.

Produce output in verbose ASCII format, with more precise notation for
floating point numbers.

The following sequence is useful for making “repairs” to any file kept in
this format:

SEE ALSO

acctmerg -v <filel >file2
edit file2 as desired ...
acctmerg —i <file2 >filel

acct(1M), acctems(1M), acctcom(1), acctcon(1M), acctprc(1M), acctsh(1M),
fwtmp(1M), runacct(1M).

acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

ACCTPRC(1M) (Base System) ACCTPRC(1M)

NAME

acctpre: acctprel, acctprc2 — process accounting

SYNOPSIS

Jusr/lib/acct/acctprcl [ctmp]
Jusr/lib/acct/acctprc2

DESCRIPTION

FILES

acctprcl reads input in the form described by acct(4), adds login names
corresponding to user IDs, then writes for each process an ASCII line giving
user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in memory segment units). If ctmp is given, it is
expected to contain a list of login sessions, in the form described in
acctcon(1M), sorted by user ID and login name. If this file is not supplied, it
obtains login names from the password file. The information in ctmp helps
it distinguish among different login names that share the same user ID.

acctprc2 reads records in the form written by acctprcl, summarizes them by
user ID and name, then writes the sorted summaries to the standard output
as total accounting records.

These commands are typically used as shown below:
acctprcl ctmp </usr/adm/pacct | acctprc2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct(1M), acctcms(1M), acctcom(1) acctcon(1M), acctmerg(1M), acctsh(1M),
cron(1M), fwtmp(1M), runacct(1M).

acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

Although it is possible to distinguish among login names that share user IDs
for commands run normally, it is difficult to do this for those commands
run from cron(1M), for example. More precise conversion can be done by
faking login sessions on the console via the acctwtmp program in acct(1M).

CAVEAT

A memory segment of the mean memory size is a unit of measure for the
number of bytes in a logical memory segment on a particular processor. For
example, on a PDP-11/70 this measure would be in 64-byte units, while on
a VAX11/780 it would be in 512-byte units.

ACCTSH(1M) (Base System) ACCTSH(1M)

NAME

acctsh: chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
prdaily, prtacct, runacct, shutacct, startup, turnacct — shell procedures for
accounting

SYNOPSIS

/usr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks]
/usr/lib/acct/dodisk [-o] [files ...]
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladm file
/usr/lib/acct/prctmp
Jusr/lib/acct/prdaily [-1] [-c] [mmdd]
/usr/lib/acct/prtacct file ["heading"]
/usr/lib/acct/runacct [mmdd] [mmdd state]
/usr/lib/acct/shutacct ["reason"]
/usr/lib/acct/startup
Jusr/lib/acct/turnacct on | off | switch

DESCRIPTION

chargefee can be invoked to charge a number of units to login-name. *A
record is written to /usr/adm/fee to be merged with other accounting
records during the night.

ckpacct should be initiated via cron(1M). It periodically checks the size of
/usr/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will
be invoked with argument switch. If the number of free disk blocks in the
/Jusr file system falls below 500, ckpacct will automatically turn off the col-
lection of process accounting records via the off argument to turnacct.
When at least this number of blocks is restored, the accounting will be
activated again. This feature is sensitive to the frequency at which ckpacct
is executed, usually by cron.

dodisk should be invoked by cron to perform the disk accounting functions.
By default, it will do disk accounting on the special files in /etc/fstab. If the
-0 flag is used, it will do a slower version of disk accounting by login direc-
tory. Files specify the one or more file system names where disk accounting
will be done. If files are used, disk accounting will be done on these file
systems only. If the -o flag is used, files should be mount points of
mounted file system. If omitted, they should be the special file names of
mountable file systems.

lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog,
which shows the last date on which each person logged in.

monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. If number is not given, it

-1 -

ACCTSH(1M) (Base System) ACCTSH(1M)

FILES

defaults to the current month (01-12). This default is useful if monacct is to
executed via cron(1M) on the first day of each month. monacct creates sum-
mary files in /usr/adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

nulladm creates file with mode 664 and ensures that owner and group are
adm. It is called by various accounting shell procedures.

prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctcon(1M).

prdaily is invoked by runacct to format a report of the previous day’s
accounting data. The report resides in /usr/adm/acct/sum/rprtmmdd
where mmadd is the month and day of the report. The current daily account-
ing reports may be printed by typing prdaily. Previous days’ accounting
reports can be printed by using the mmdd option and specifying the exact
report date desired. The -1 flag prints a report of exceptional usage by login
id for the specified date. Previous daily reports are cleaned up and there-
fore inaccessible after each invocation of monacct. The -c flag prints a
report of exceptional resource usage by command, and may be used on
current day’s accounting data only.

prtacct can be used to format and print any total accounting (tacct) file.

runacct performs the accumulation of connect, process, fee, and disk
accounting on a daily basis. It also creates summaries of command usage.
For more information, see runacct(1M).

shutacct is invoked during a system shutdown to turn process accounting
off and append a “reason” record to /etc/wtmp.

startup is called by /etc/init.d/acct to turn the accounting on whenever the
system is brought to a multiuser state.

turnacct is an interface to accton [see acct(1M)] to turn process accounting
on or off. The switch argument turns accounting off, moves the current
/usr/adm/pacct to the next free name in /usr/adm/pacctincr (where incr
is a number starting with 1 and incrementing by one for each additional
pacct file), then turns accounting back on again. This procedure is called by
ckpacct and thus can be taken care of by the cron and used to keep pacct to
a reasonable size. acct starts and stops process accounting via init and shut-
down accordingly.

/usr/adm/fee accumulator for fees

/usr/adm/pacct current file for per-process accounting

/usr/adm/pacct* used if pacct gets large and during execution of
daily accounting procedure

/etc/wtmp login /logoff summary

/usr/lib/acct/ptelus.awk contains the limits for exceptional usage by login
id

/usr/lib/acct/ptecms.awk contains the limits for exceptional usage by com-
mand name
/usr/adm/acct/nite working directory

-2-

ACCTSH(1M) (Base System) ACCTSH(1M)

/usr/lib/acct holds all accounting commands listed in sub-
class 1M of this manual
/usr/adm/acct/sum summary directory, should be saved
SEE ALSO

acct(1M), acctems(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M),
cron(1M), diskusg(1M), fwtmp(1M), runacct(1M).

acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

ADDUSER(1)

NAME

ADDUSER(1)

adduser - create a login for a new user

SYNOPSIS

adduser loginid name userid logdir Yes/No

DESCRIPTION

Adduser is used to create a login for a new user and must be given the fol-
lowing arguments:

loginid
name

userid

logdir

This is the user’s login name. It can be no longer than eight
alphanumeric characters.

This is the user’s full name. It identifies the person to whom the
login is assigned. If name contains spaces, it must be in quotes.

This is the numerical user id that will be associated with the
loginid. It must be between 100 and 50000 and must be unique for
each user.

This is the user's home directory. It must be a valid directory
name and cannot already exist on the system. Typically the user’s
home directory matches the login name. For example, the login
"ams" might have a home directory of /usr/ams.

Yes/No If the user will have system administration privileges.

ADV(1M)

NAME

(Remote File Sharing Utilities) ADV(1M)

adv - advertise a directory for remote access

SYNOPSIS

adv [-r] [-d description] resource pathname [clients...]

adv -m resource -d description | [clients...]

adv -m resource [-d description] | clients...

adv
DESCRIPTION

The adv command is the Remote File Sharing command used to make a
computer’s resource available to other computers. The machine that adver-
tises the resource is called the server, while computers that mount and use
the resource are clients. [See mount(1M).] (A resource represents a directory,
which could contain files, subdirectories, named pipes and devices.)

There are three ways adv is used: 1. to advertise the directory pathname
under the name resource so it is available to Remote File Sharing clients; 2.
to modify client and description fields for currently advertised resources; or
3. to print a list of all locally advertised resources.

The following options are available:

-r

-d description

resource

pathname

clients

Restricts access to the resource to a read-only basis. The
default is read /write access.

Provides brief textual information about the advertised
resource. description is a single argument surrounded by
double quotes (") and has a maximum length of 32 charac-
ters.

This is the symbolic name used by the server and all
authorized clients to identify the resource. It is limited to a
maximum of 14 characters and must be different from every
other resource name in the domain. All characters must be
printable ASCII characters but must not include periods (.),
slashes (/), or white space.

This is the local path name of the advertised resource. It is
limited to a maximum of 64 characters. This path name
cannot be the mount point of a remote resource and it can
only be advertised under one resource name.

These are the names of all clients that are authorized to
remotely mount the resource. The default is that all
machines that can connect to the server are authorized to
access the resource. Valid input is of the form nodename,
domain.nodename, domain., or an alias that represents a list
of client names. A domain name must be followed by a
period (.) to distinguish it from a host name. The aliases
are defined in /etc/host.alias and must conform to the
alias capability in mailx(1).

ADV(1M) (Remote File Sharing Utilities) ADV(1M)

- resource This option modifies information for a resource that has
already been advertised. The resource is identified by a
resource name. Only the clients and description fields can
be modified. (To change the pathname, resource name, or
read/write permissions, you must unadvertise and re-
advertise the resource.)

When used with no options, adv displays all local resources that have been
advertised; this includes the resource name, the path name, the description,
the read/write status, and the list of authorized clients. The resource field
has a fixed length of 14 characters; all others are of variable length. Fields
are separated by two white spaces, double quotes (") surround the descrip-
tion, and blank lines separate each resource entry.

This command may be used without options by any user; otherwise, it is
restricted to the super-user.

Remote File Sharing must be running before adv can be used to advertise or
modify a resource entry.

EXIT STATUS

If there is at least one syntactically valid entry in the clients field, a warning
will be issued for each invalid entry and the command will return a success-
ful exit status. A non-zero exit status will be returned if the command fails.

ERRORS

FILES

If (1) the network is not up and running, (2) pathname is not a directory, (3)
pathname isn’t on a file system mounted locally, or (4) there is at least one
entry in the clients field but none are syntactically valid, an error message
will be sent to standard error.

/etc/host.alias

SEE ALSO

mailx(1) mount(1M), rfstart(1M), unadv(1M).

AT(1)

NAME

(Base System) AT(1)

at, batch — execute commands at a later time

SYNOPSIS

at time [date] [+ increment]
at -r job ...
at -1 [job ...]

batch

DESCRIPTION

The at and batch commands read commands from standard input to be exe-
cuted at a later time. at allows you to specify when the commands should
be executed, while jobs queued with batch will execute when system load
level permits. at may be used with the following options:

-r Removes jobs previously scheduled with at.
-1 Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless
they are redirected elsewhere. The shell environment variables, current
directory, umask, and ulimit are retained when the commands are executed.
Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If
at.deny is empty, global usage is permitted. The allow/deny files consist of
one user name per line. These files can only be modified by the super-user.

The time may be specified as 1, 2, or 4 digits. One- and two-digit numbers
are taken to be hours, four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning
hour:minute. A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a
day number (and possibly year number preceded by an optional comma) or
a day of the week (fully spelled or abbreviated to three characters). Two
special ““days”, today and tomorrow are recognized. If no date is given,
today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less than the
current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following;:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

AT(1)

(Base System) AT(1)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

The at -r command removes jobs previously scheduled by at or batch. The
job number is the number given to you previously by the at or batch com-
mand. You can also get job numbers by typing at -1. You can remove only
your own jobs unless you are the super-user.

EXAMPLES

The at and batch commands read from standard input the commands to be
executed at a later time. sh(1) provides a different way of specifying stan-
dard input. Within your commands, it may be useful to redirect standard
output.

This sequence can be used at a terminal:

| batch
: sort filename >outfile
<control-D> (hold down ’control’ and depress ‘'D’)

This sequence, which demonstrates redirecting standard error to a pipe, is
useful in a shell procedure (the sequence of output redirection specifications
is significant):

batch <<!

sort filename 2>&1 >outfile } mail loginid

!
To have a job reschedule itself, invoke at from within the shell procedure
by including code similar to the following within the shell file:

echo "sh shellfile™ | at 1900 thursday next week

FILES
/usr/lib/cron main cron directory
/usr/lib/cron/at.allow list of allowed users
/usr/lib/cron/at.deny list of denied users
/usr/lib/cron/queue scheduling information
/usr/spool/cron/atjobs spool area

SEE ALSO
cron(1M), kill(1), mail(1), nice(1), ps(1), sh(1), sort(1).

DIAGNOSTICS

Complains about various syntax errors and times out of range.

AWK(1) (Editing Package) AWK(1)

NAME
awk — pattern scanning and processing language

SYNOPSIS
awk [-Fc] [prog] [parameters] [files]

DESCRIPTION
The awk language scans each input file for lines that match any of a set of
patterns specified in prog. With each pattern in prog there can be an associ-
ated action that will be performed when a line of a file matches the pattern.
The set of patterns may appear literally as prog, or in a file specified as -f
file. The prog string should be enclosed in single quotes (') to protect it
from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The
file name - means the standard input. Each line is matched against the pat-
tern portion of every pattern-action statement; the associated action is per-
formed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS; see below). The fields are denoted $1, $2, ...;
$0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol-
lowing;:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list | [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +, -, *,
/, %, and concatenation (indicated by a blank). The C operators ++, --,

=, -=, *=, /=, and %= are also available in expressions. Variables may
be scalars, array elements (denoted x[i]), or fields. Variables are initialized
to the null string. Array subscripts may be any string, not necessarily
numeric; this allows for a form of associative memory. String constants are
quoted (").

AWK(1) (Editing Package) AWK(1)

The print statement prints its arguments on the standard output (or on a file
if >expr is present), separated by the current output field separator, and ter-
minated by the output record separator. The printf statement formats its
expression list according to the format [see printf(3S) in the Programmer’s
Reference Manual].

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument is present. There are also built-in
functions exp, log, sqrt, and int. The last truncates its argument to an
integer; substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fmt, expr, expr, ...) formats the expressions
according to the printf(3S) format given by fmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, | |, &&, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep [see grep(1)]. Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where relop is any of the six relational operators in C, and matchop is either
~ (for contains) or " (for does not contain). A conditional is an arithmetic
expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
END the last.

A single character ¢ may be used to separate the fields by starting the pro-
gram with:

BEGIN { FS = ¢ }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separator
(default blank); ORS, the output record separator (default new-line); and
OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

_2-

AWK(1) (Editing Package) AWK(1
8 (1)

{ print $2, $1 }

Add up first column, print sum and average:
{s+= %1}
END { print "sum is", s, " average is", s/NR }
Print fields in reverse order:
{ for (i = NF; i > 0; ——i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: awk —f program n=5 input

SEE ALSO
grep(1), sed(1).
lex(1), printf(3S) in the Programmer’s Reference Manual.

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number, add 0 to it; to force it to be treated as
a string, concatenate the null string (" ") to it.

BACKUP(1M)

NAME

BACKUP(1M)

backup - performs backup functions

SYNOPSIS

backup [-t] [-p | -¢ | -f <files> | -u "<userl> [user2]"]
-d <device>

backup -h
DESCRIPTION
-h produces a history of backups. Tells the user when the last com-

-C

P

-f

-u

-d

-t

plete and incremental /partial backups were done.

complete backup. All files changed since the system was installed
are backed up.

incremental /partial backup. If an incremental/partial backup was
done, all files modified since that time are backed up, otherwise all
files modified since the last complete backup are backed up. A
complete backup must be done before a partial backup.

backup files specified by the <files> argument. File names may
contain characters to be expanded (i.e., *, .) by the shell. The argu-
ment must be in quotes.

backup a user’s home directory. All files in the user’s home direc-
tory will be backed up. At least one user must be specified but it
can be more. The argument must be in quotes if more than one
user is specified. If the user name is "all", then all the user’s home
directories will be backed up.

used to specify the device to be wused. It defaults to
/dev/rdsk/f0q15d (the 1.2M floppy).

used when the device is a tape. This option must be used with the
~-d option when the tape device is specified.

A complete backup must be done before a partial backup can be done. Raw
devices rather than block devices should always be used. The program can
handle multi-volume backups. The program will prompt the user when it is
ready for the next medium. The program will give you an estimated
number of floppies/tapes that will be needed to do the backup. Floppies
MUST be formatted before the backup is done. Tapes do not need to be
formatted. If backup is done to tape, the tape must be rewound.

SEE ALSO
qt(7).

BANNER(1) (Base System) BANNER(1)

NAME

banner — make posters
SYNOPSIS

banner strings
DESCRIPTION

The banner command prints its arguments (each up to 10 characters long) in
large letters on the standard output. Spaces can be included in an argument
by surrounding it with quotes. The maximum number of characters that can
be accommodated in a line is implementation-dependent; excess characters
are simply ignored.

SEE ALSO
echo(1).

BASENAME(1) (Base System) BASENAME(1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
The basename command deletes any prefix ending in / and the suffix (if
present in string) from string, and prints the result on the standard output.
It is normally used inside substitution marks (**) within shell procedures.

The dirname command delivers all but the last level of the path name in
string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c,
compiles the named file and moves the output to a file named cat in the
current directory:

cc $1
mv a.out ‘basename $1 "\.c"

The following example will set the shell variable NAME to /usr/src/cmd:
NAME="dirname /usr/src/cmd/cat.c’

SEE ALSO
sh(1).

BC(1) (Base System) BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be[-c][-1]] file ..]
DESCRIPTION

The bc command is an interactive processor for a language that resembles C
but provides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The bc(1) utility is actually a prepro-
cessor for dc(1), which it invokes automatically unless the -c option is
present. In this case the dc input is sent to the standard output instead.
The options are as follows:

-c Compile only. The output is send to the standard output.
-1 Argument stands for the name of an arbitrary precision math
library.

The syntax for bc programs is as follows; L means letter a—z, E means
expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]

7y

The words “ibase”’, “‘obase’’, and “‘scale’’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators ~ .
+ - *x / % (% is remainder; is power)
++ -- (prefix and postfix; apply to names)
= <= >= = < >
= =4 == =% =/ =0A) ="
Statements
E
{S;..;8}
if(E)S
while (E) S

for(E;E;E)S
null statement
break

quit

BC(1) (Base System) BC(1)

Function definitions
define L (L,..., L) {

autoL, ..., L
S;...S
return (E)

}

Functions in -1 math library
s(x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent

j(n,x) Bessel function
All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(1). Assignments to
ibase or obase set the input and output number radix, respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. “Auto” variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables, empty square brackets
must follow the array name.

EXAMPLE
scale = 20
define e(x){
autoa, b, ¢ i, s

a=1
b=1
s=1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c=a/b
if(c == 0) return(s)
s = s+c
}
}
defines a function to compute an approximate value of the exponential func-
tion and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten
integers.

BC(1) (Base System) BC(1)

FILES
/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper
SEE ALSO
dc(1).
BUGS

The bc command does not yet recognize the logical operators, && and | |.
For statement must have all three expressions (E’s).
Quit is interpreted when read, not when executed.

BDIFF(1) (Editing Package) BDIFF(1)

NAME

bdiff — big diff

SYNOPSIS

bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

The bdiff command is used in a manner analogous to diff(1) to find which
lines in two files must be changed to bring the files into agreement. Its pur-
pose is to allow processing of files which are too large for diff.

The parameters to bdiff are:

filel (file2)
The name of a file to be used. If filel (file2) is —, the standard input
is read.

n The number of line segments. The value of n is 3500 by default. If
the optional third argument is given and it is numeric, it is used as
the value for n. This is useful in those cases in which 3500-line
segments are too large for diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent
option). Note, however, that this does not suppress possible diag-
nostic messages from diff(1), which bdiff calls.

The bdiff command ignores lines common to the beginning of both files,
splits the remainder of each file into n-line segments, and invokes diff upon
corresponding segments. If both optional arguments are specified, they
must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the
files, bdiff does not necessarily find a smallest sufficient set of file differ-
ences.

SEE ALSO

dif(1).

BFS(1) (Editing Package) BFS(1)

NAME
bfs — big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION

The bfs command is (almost) like ed(1) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes and 32K lines,
with up to 512 characters per line, including new-line (255 for 16-bit
machines). bfs is usually more efficient than ed(1) for scanning a file, since
the file is not copied to a buffer. It is most useful for identifying sections of
a large file where csplit(1) can be used to divide it into more manageable
pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional - suppresses printing of
sizes. Input is prompted with # if P and a carriage return are typed, as in
ed(1). Prompting can be turned off again by inputting another P and car-
riage return. Note that messages are given in response to errors if prompt-
ing is turned on.

All address expressions described under ed(1) are supported. In addition,
regular expressions may be surrounded with two symbols besides / and ?:
> indicates downward search without wrap-around, and < indicates upward
search without wrap-around. There is a slight difference in mark names:
only the letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under
ed(1). Commands such as ---, +++-, +++=, -12, and +4p are accepted.
Note that 1,10p and 1,10 will both print the first ten lines. The f command
only prints the name of the file being scanned; there is no remembered file
name. The w command is independent of output diversion, truncation, or
crunching (see the xo, xt, and xc commands below). The following addi-
tional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received or an error
occurs; reading resumes with the file containing the xf. The xf
commands may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k com-
mand).

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666 (readable
and writable by everyone), unless your umask setting [see
umask(1)] dictates otherwise. If file is missing, output is diverted
to the standard output. Note that each diversion causes trunca-
tion or creation of the file.

BFS(1) (Editing Package) BFS(1)

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label
are ignored. This command may also be used to insert com-
ments into a command file, since labels need not be referenced.

(.,.)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one
line in the specified range, including the first and last
lines.

On success, . is set to the line matched and a jump is made to
label. This command is the only one that does not issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xb/" / label

is an unconditional jump.
The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe, only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit][spaces][value]
The variable name is the specified digit following the xv. The
commands xv5100 or xv5 100 both assign the value 100 to the
variable 5. The command xv61,100p assigns the value 1,100p to
the variable 6. To reference a variable, put a % in front of the
variable name. For example, using the above assignments for
variables 5 and 6:

1,°/05p
1,%5
%6

will all print the first 100 lines.

g/ %5/p

BFS(1)

(Editing Package) BFS(1)

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \
must precede it.

g/ " *\%[cds]/p

could be used to match and list lines containing printf of charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of out-
put from a UNIX system command can be stored into a variable.
The only requirement is that the first character of value be an !.
For example:

-w junk

xv5lcat junk

rm junk

lecho "%5"
xvélexpr %6 + 1

would put the current line into variable 5, print it, and increment

the variable 6 by one. To escape the special meaning of ! as the
first character of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label
xbn label

These two commands will test the last saved return code from
the execution of a UNIX system command ({command) or nonzero
value, respectively, to the specified label. The two examples
below both search for the next five lines containing the string
size.

xv55

01

/size/

xv5lexpr %5 - 1
lif 0%5 !'= 0 exit 2
xbn 1

xv45

i1

/size/

xvé4lexpr %4 - 1

-3-

BFS(1) (Editing Package) BFS(1)

lif 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has
strings of tabs and blanks reduced to one blank and blank lines

suppressed.
SEE ALSO
csplit(1), ed(1), umask(1).
DIAGNOSTICS

? for errors in commands if prompting is turned off. Self-explanatory error
messages when prompting is on.

BOOT(1M) (Base System) BOOT(1M)

NAME
boot — UNIX system boot program

DESCRIPTION

The boot program interactively loads and executes stand-alone UNIX pro-
grams. While boot is used primarily for loading and executing the UNIX sys-
tem kernel, it can load and execute any other programs that are linked for
stand-alone execution. The boot program is a required part of the UNIX Base
Operating System software set and must be present in the root file system
to ensure successful loading of the UNIX System kernel. Note that during
installation of the UNIX operating system, a custom masterboot is placed on
the hard disk. The masterboot program resides on sector 0 of the hard disk
and is the default boot program for hard-disk boot procedures.

The system invokes the boot program each time the computer is started. It
tries to locate the boot program on the floppy disk drive first; if the floppy
disk drive is empty, the system invokes the hard-disk boot procedure. The
boot procedure depends on whether you are booting from a floppy disk or
hard disk, as described below.

The floppy-disk boot procedure has two stages:

1. The boot block in sector 0 of the file system loads boot.
2. boot executes and prompts the user.

The hard-disk boot procedure has three stages:

1. The ROMs load in the masterboot block from sector 0 on the
hard disk.

2. The masterboot boot block then loads the partition boot block
from sector 0 of the active partition [see fdisk(1M)].

3. The remainder of boot is loaded from the next 29 sectors of the
hard disk.

When first invoked, boot displays the following status message:
Booting the UNIX System ...

To instruct boot to use the default kernel and values specified in the boot
default file, /etc/default/boot, press RETURN. If you press any key other
than RETURN, boot pauses and prompts you for custom information. = If you
have just loaded the boot program from the distribution diskette, press
RETURN so boot will use the default values.

To load a program that is not the default program, press any key to inter-
rupt boot. The boot program pauses and prompts you with the following
message for the name of the program you want to load:

Enter the name of a kernel to boot:
The system waits at this point for you to type the name of the program you

want to load and press RETURN. The length of the pause is the number of
seconds specified with the TIMEOUT option in /etc/default/boot (see

-1-

BOOT(1M) (Base System) BOOT(1M)

“boot Options”). If you have not typed something after the specified
number of seconds and AUTOBOOT is set to YES in /etc/default/boot, boot
times out and behaves as though you pressed RETURN. The boot program
proceeds through the boot process, and init(1M) is passed an -a flag with no
prompt argument.

If you are booting from a program other than the boot program on the dis-
tribution diskette, you must specify the location of the program by provid-
ing a filename (if the program you want to load is on the default boot dev-
ice). The filename must include the full pathname of the file containing the
stand-alone program. To indicate a program other than the boot program
on the distribution diskette, use the following format:

filename

where filename is the standard UNIX system pathname. The filename argu-
ment must start with a slash if the program is not in the root directory. If
filename is the only argument typed at the boot prompt, boot looks for the
filename on the default boot device and tries to boot from it.

boot Options
Options for the boot program can be set or changed with keywords in
/etc/default/boot. The following keywords are recognized by boot:

AUTOBOOT=YES or NO Indicates whether or not boot starts loading
the kernel immediately or displays a boot
prompt first.

BOOTMSG=string The default boot message is changed to
string.

BOOTPROMPT=string The default boot prompt is changed to
string.

DEFBOOTSTR=bootstring Sets default bootstring to bootstring. This is

the string used by boot when the user
presses RETURN only to the boot prompt or
when boot times out.

INITPROG=path Specifies an initialization program to be
loaded and run before boot sizes memory.

MEMRANGE-=range[,range...] Tells boot where to look when sizing
memory. A range is a pair of decimal
addresses, separated by a dash (such as
1M-4M), followed by a set of one-byte
flags. This set of flags should be encoded
as an integer in the range of 0-55. Use a
colon (:) to separate addresses from flags.
Note that only two flags are currently
defined: 0 (indicates no special properties)
and 1 (indicates memory for which DMA is
not allowed). All other flags are currently
undefined and reserved for future use. In
addresses, use “M” to indicate the word

-2-

BOOT(1M) (Base System) BOOT(1M)

“megabyte” and “K” to indicate the word
“kilobyte.” Both upward (such as
15M-16M) and downward (such as
16M-15M) address ranges are supported.
The first address in the pair is inclusive; the
last address is exclusive.

TIMEOUT=number If boot is waiting for a boot line from the
user and TIMEOUT is set, boot will wait for
number seconds, then use the default boot
line defined by DEFBOOTSTR.

Customizing the Boot Process

You can set the boot process up to be automatic. To set up boot to run
automatically, using the default configuration information in the
/etc/default/boot file, set AUTOBOOT to YES in the /etc/default/boot file
on the default root file system. This causes boot to display the default boot
message and load the program. If an error occurs or a key is pressed during
this automatic boot process, boot returns to the boot prompt and tries to
load the program again. The boot program on the UNIX operating system
installation diskette performs this automatic boot procedure.

If AUTOBOOT is set to NO in the /etc/default/boot file on the default root
file system, boot gives you an opportunity to type a bootstring before boot
begins loading the program. If you do not type a bootstring at the prompt,
boot assumes the user wants the default configuration. At this point, boot
behaves as though AUTOBOOT is set to YES in the /etc/default/boot file.
The boot program reads the configuration in the /etc/default/boot file then
displays the default boot message (BOOTMSG) and begins loading the pro-
gram.

Kernel Configuration

The boot program passes any boot string typed at the boot prompt to the
kernel except for the prompt string. The kernel reads the boot string to
determine which peripherals are the root, pipe, swap, and dump devic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>