ATsT

UNIX System /388

Release 32 :
- PROGRAMMER'S GUIDE, Vol i

| cosmpy OBE //\ WEISAS XINN

Il "IOA '3AIN9D SHININYEO0Hd

EEEEEEEE
LL

4l|||ﬂﬂb
-

UNIX® System V/386
Release 3.2
Programmer’s Guide, Vol. I

I ’

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Catalog Card Number: 88-62526

Editorial/production supervision: Karen Skrable Fortgang
Manufacturing buyer: Mary Ann Gloriande

© 1989 by AT&T. All rights reserved.
Published by Prentice-Hall, Inc.

A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduccd, in any form or by any means,
without permission in writing from the publisher.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in
this document.

DEC, PDP, VAX. and VT100 arc trademarks of Digital Equipment Corporation.
DOCUMENTER'S WORKBENCH is a registered trademark of AT&T.

Intel is a registered trademark of Intel Corporation.

TELETYPE is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T.

WRITER'S WORKBENCH is a registered trademark of AT&T.

The publisher offers discounts on this book when ordercd
in bulk quantitics. For more information, write or call:

Special Sales

Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, NJ 07632

(201) 592-2498

Printed in the United States of America

109 87 6 5 43 21

ISBN 0-13-944885-3

Prentice-Hall International (UK) Limited, London
Preatice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc.. Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokye

Simon & Schuster Asia Pte. Lid., Singapore

Editora Prentice-Hall do Brasil, Lida., Rio de Janeiro

Table of Contents

Volume |
Introduction
Introduction XXV
1 Programming in A UNIX System
Environment: An Overview
Introduction 1-1
UNIX System Tools and Where You Can Read About
Them 1-4
Three Programming Environments 1-7
Summary 1-9
2 Programming Basics
Introduction 241
Choosing a Programming Language 2-2
After Your Code Is Written 2-7
The Interface Between a Programming Language and
the UNIX System 2-11
Analysis/Debugging 2-43
Program Organizing Utilities 2-66
3 Application Programming
Introduction ' 3-1
Application Programming 3-2

TABLE OF CONTENTS iii

Table of Contents

Language Selection 3-5
Advanced Programming Tools 3-13
Programming Support Tools 3-21
Project Control Tools 3-34
liber, A Library System 3-38
4 awk
Introduction 4-1
Basic awk 4-2
Patterns 4-12
Actions 4-20
Output 4-38
Input 4-43
Using awk with Other Commands and the Shell 4-49
Example Applications 4-52
awk Summary 4-58

5 lex

An Overview of lex Programming 5-1
Writing lex Programs 5-3
Running lex under the UNIX System 5-18

6 yacc

Introduction 6-1
Basic Specifications 6-4
Parser Operation 6-13
Ambiguity and Conflicts 6-18
Precedence 6-24
Error Handling 6-28
The yacc Environment 6-32
Hints for Preparing Specifications 6-34
Advanced Topics 6-38

iv PROGRAMMER’S GUIDE

Table of Contents

7 File and Record Locking

Introduction 71
Terminology 7-2
File Protection 7-4
Selecting Advisory or Mandatory Locking 7-18

8 Shared Libraries

Introduction 8-1
Using a Shared Library 8-2
Building a Shared Library 8-15
Summary 8-59
9 Interprocess Communication
Introduction 9-1
Messages 9-2
Semaphores 9-38
Shared Memory 9-75
Glossary
Glossary G-1
Index
Index I-1
Volume II
10 Extended Terminal Interface
Overview 10-1
What is ETI? 10-5
Basic ETI Programming 10-9

TABLE OF CONTENTS v

Table of Contents

Simple Input and Output 10-18
Windows 10-58
Panels 10-69
Compiling and Linking Panel Programs 10-70
Creating Panels 10-71
Elementary Panel Window Operations 10-72
Moving Panels to the Top or Bottom of the Deck 10-75
Updating Panels on the Screen 10-76
Making Panels Invisible 10-78
Fetching Panels Above or Below Given Panels 10-80
Setting and Fetching the Panel User Pointer 10-82
Deleting Panels 10-85
Menus 10-86
Compiling and Linking Menu Programs 10-87
Overview: Writing Menu Programs in ETI 10-88
Creating and Freeing Menu Items 10-92
Two Kinds of Menus: Single- and Multi-Valued 10-95
Manipulating Item Attributes 10-97
Setting the Item User Pointer 10-102
Creating and Freeing Menus 10-105
Manipulating Menu Attributes 10-108
Displaying Menus 10-112
Menu Driver Processing 10-130
Manipulating the Menu User Pointer 10-153
Setting and Fetching Menu Options 10-156
Forms 10-160
Compiling and Linking Form Programs 10-161
Overview: Writing Form Programs in ETI 10-162
Creating and Freeing Fields 10-169
Manipulating Field Attributes 10-173
Setting the Field Foreground, Background, and Pad

Character 10-185
Some Helpful Features of Fields 10-187
Manipulating Field Options 10-195
Creating and Freeing Forms 10-199
Manipulating Form Attributes 10-203
Displaying Forms 10-206
Form Driver Processing 10-214
Setting and Fetching the Form User Pointer 10-241

vi PROGRAMMER’S GUIDE

Table of Contents

Setting and Fetching Form Options 10-243
Creating and Manipulating Programmer-Defined Field

Types 10-246
Other ETI Routines 10-259
Routines for Drawing Lines and Other Graphics 10-260
Routines for Using Soft Labels 10-262
Working with More than One Terminal 10-264
Working with terminfo Routines 10-266
Working with the terminfo Database 10-272
TAM Transition Library 10-284

Compiling and Running TAM Applications under ETI 10-285
Tips for Polishing TAM Application Programs

Running under ETI 10-286
How the TAM Transition Library Works 10-287
Program Examples 10-286

11

Common Object File Format (coff)
The Common Object File Format (COFF) 11-1

12

The Link Editor

The Link Editor 12-1
Link Editor Command Language 12-4
Notes and Special Considerations 12-22
Syntax Diagram for Input Directives 12-32
413 make
Introduction 13-1
Basic Features 13-2
Description Files and Substitutions 13-7
Recursive Makefiles 13-11
Source Code Control System File Names: the Tilde 13-17
Command Usage 13-21
Suggestions and Warnings 13-24
Internal Rules 13-25

TABLE OF CONTENTS vii

Table of Contents

14

Source Code Control System

(sccs)
Introduction 14-1
SCCS For Beginners 14-2
Delta Numbering 14-7
SCCS Command Conventions 14-10
SCCS Commands 14-12
SCCS Files 14-37

15

sdb—the Symbolic Debugger

Introduction 15-1
Using sdb 15-2
16 lint
Introduction 16-1
Usage 16-2
lint Message Types 16-4
17 C Language
Introduction 17-1
Lexical Conventions 17-2
Storage Class and Type 17-6
Operator Conversions 17-9
Expressions and Operators 17-12
Declarations 17-23
Statements 17-37
External Definitions 17-43
Scope Rules 17-45
Compiler Control Lines 17-47
Types Revisited 17-52
Constant Expressions 17-57
Portability Considerations 17-68
Syntax Summary 17-59

viii PROGRAMMER’S GUIDE

Table of Contents

18

C Programmer’s Productivity

Tools
Introducing the C Programmer’s Productivity Tools 18-1
cscope 18-3
lprof 18-29
Profiling Examples 18-47

Index to Utilities

Appendix A: Index to Utilities A-1
Glossary

Glossary G-1
Index

Index I-1

TABLE OF CONTENTS ix

List of Figures

Figure 2-1: Using Command Line Arguments to Set Flags 2-13
Figure 2-2: Using argv(n] Pointers to Pass a File Name 2-14
Figure 2-3: C Language Standard I/O Subroutines 217
Figure 2-4: String Operations 2-19
Figure 2-5: Classifying ASCII Character-Coded Integer Values 2-19
Figure 2-6: Conversion Functions and Macros 2-20
Figure 2-7: Manual Page for gets(3S) 2-23
Figure 2-8: How gets Is Used in a Program 2-24
Figure 2-9: A Version of stdio.h (Sheet 1 of 2) 2-25
Figure 2-9: A Version of stdio.h (Sheet 2 of 2) 2-26
Figure 2-10: Environment and Status System Calls 2-33
Figure 2-11: Process Status 2-34
Figure 2-12: Example of fork 2-37
Figure 2-13: Example of a popen pipe 2-39
Figure 2-14: Signal Numbers Defined in

/usr/include/sys/signal.h 2-41
Figure 2-15: Source Code for Sample Program (Sheet 1 of 4) 2-44
Figure 2-15: Source Code for Sample Program (Sheet 2 of 4) 2-45

LIST OF FIGURES xi

List of Figures

Figure 2-15:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-20:
Figure 2-20:
Figure 2-21:
Figure 2-21:
Figure 2-21:
Figure 2-21:
Figure 2-21:
Figure 2-22:
Figure 2-23:
Figure 2-24:
Figure 2-25:
Figure 2-25:
Figure 2-25:
Figure 2-25:
Figure 2-25:

Source Code for Sample Program (Sheet 3 of 4)
Source Code for Sample Program (Sheet 4 of 4)
cflow Output, No Options

cflow Output, Using r Option

cflow Output, Using ix Option

cflow Output, Using r and ix Options
ctrace Output (Sheet 1 of 3)

ctrace Output (Sheet 2 of 3)

ctrace Output (Sheet 3 of 3)

cxref Output, Using ¢ Option (Sheet 1 of 5)
cxref Output, Using ¢ Option (Sheet 2 of 5)
cxref Output, Using ¢ Option (Sheet 3 of 5)
cxref Output, Using ¢ Option (Sheet 4 of 5)
cxref Output, Using ¢ Option (Sheet 5 of 5)
lint Output

prof Output

make Description File

nm Output, with f Option (Sheet 1 of 5)
nm Output, with f Option (Sheet 2 of 5)
nm Output, with f Option (Sheet 3 of 5)
nm Output, with f Option (Sheet 4 of 5)
nm Output, with f Option (Sheet 5 of 5)

xii PROGRAMMER’S GUIDE

2-46
2-47
2-48
2-49
2-50
2-51
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-64
2-67
2-70
2-71
2-72
2-73
2-74

Figure 3-1:
Figure 3-2:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 8-1:

Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 8-9:

List of Figures

The fentl.h Header File 3-16
Object File Library Functions (Sheet 1 0f 2) 3-25
Object File Library Functions (Sheet 2 0f 2) 3-26
awk Program Structure and Example 4-2
The Sample Input File countries 4-4
awk Comparison Operators 4-14
awk Regular Expressions 4-18
awk Built-in Variables 4-20
awk Built-in Arithmetic Functions 4-23
awk Built-in String Functions 4-24
awk printf Conversion Characters 4-39
getline Function 4-47
Creation and Use of a Lexical Analyzer with lex 5-2
a.out Files Created Using an Archive Library and a

Shared Library 8-8
Processes Using an Archive and a Shared Library 8-9
A Branch Table in a Shared Library 8-12
Imported Symbols in a Shared Library 8-32
File log.c 8-50
File poly.c 8-51
File stats.c 8-52
Header File maux.h 8-53
Specification File 8-56

LIST OF FIGURES xiii

List of Figures

Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-4:
Figure 9-4:
Figure 9-5:
Figure 9-5:
Figure 9-5:
Figure 9-5:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-7:
Figure 9-8:
Figure 9-9:
Figure 9-9:
Figure 9-9:

ipc_perm Data Structure

Operation Permissions Codes

Control Commands (Flags)

msgget() System Call Example (Sheet 1 of 3)
msgget() System Call Example (Sheet 2 of 3)
msgget() System Call Example (Sheet 3 of 3)
msgctl() System Call Example (Sheet 1 of 4)
msgctl() System Call Example (Sheet 2 of 4)
msgctl() System Call Example (Sheet 3 of 4)
msgctl() System Call Example (Sheet 4 of 4)
msgop() System Call Example (Sheet 1 of 7)
msgop() System Call Example (Sheet 2 of 7)
msgop() System Call Example (Sheet 3 of 7)
msgop() System Call Example (Sheet 4 of 7)
msgop() System Call Example (Sheet 5 of 7)
msgop() System Call Example (Sheet 6 of 7)
msgop() System Call Example (Sheet 7 of 7)
Operation Permissions Codes

Control Commands (Flags)

semget() System Call Example (Sheet 1 of 3)
semget() System Call Example (Sheet 2 of 3)
semget() System Call Example (Sheet 3 of 3)

xiv PROGRAMMER’S GUIDE

9-5
9-8
9-9

9-13

9-14

9-15

9-20

9-21

9-22

9-23

9-31

9-32

9-33

9-34

9-35

9-36

9-37

9-46

9-46

9-50

9-51

9-52

Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-11:
Figure 9-11:
Figure 9-11:
Figure 9-11:
Figure 9-12:
Figure 9-13:
Figure 9-14:
Figure 9-15:
Figure 9-15:
Figure 9-15:
Figure 9-16:
Figure 9-16:
Figure 9-16:
Figure 9-16:
Figure 9-16:

semctl() System Call Example (Sheet 1 of 7)
semctl() System Call Example (Sheet 2 of 7)
semctl() System Call Example (Sheet 3 of 7)
semctl() System Call Example (Sheet 4 of 7)
semctl() System Call Example (Sheet 5 of 7)
semctl() System Call Example (Sheet 6 of 7)
semctl() System Call Example {Sheet 7 of 7)
semop(2) System Call Example (Sheet 1 of 4)
semop(2) System Call Example (Sheet 2 of 4)
semop(2) System Call Example (Sheet 3 of 4)
semop(2) System Call Example (Sheet 4 of 4)
Shared Memory State Information

Operation Permissions Codes

Control Commands (Flags)

shmget(2) System Call Example (Sheet 1 of 3)
shmget(2) System Call Example (Sheet 2 of 3)
shmget(2) System Call Example (Sheet 3 of 3)
shmctl(2) System Call Example (Sheet 1 of 6)
shmctl(2) System Call Example (Sheet 2 of 6)
shmctl(2) System Call Example (Sheet 3 of 6)
shmctl(2) System Call Example (Sheet 4 of 6)
shmctl() System Call Example (Sheet 5 of 6)

LIST OF FIGURES

List of Figures

9-60
9-61
9-62
9-63
9-64
9-65
9-66
9-71
9-72
9-73
9-74
9-78
9-82
9-82
9-86
9-87
9-88
9-93
9-94
9-95
9-96
9-97

Xv

List of Figures

Figure 9-16:
Figure 9-17:
Figure 9-17:
Figure 9-17:
Figure 9-17:
Figure 10-1:
Figure 10-2:

Figure 10-3:

Figure 10-3:

Figure 10-4:

Figure 10-5:
Figure 10-6:
Figure 10-7:

Figure 10-7:

Figure 10-7:

Figure 10-8:

Figure 10-9:
Figure 10-10:

xvi PROGRA

shmctl(2) System Call Example (Sheet 6 of 6)
shmop() System Call Example (Sheet 1 of 4)
shmop() System Call Example (Sheet 2 of 4)
shmop() System Call Example (Sheet 3 of 4)
shmop() System Call Example (Sheet 4 of 4)
A Simple ETI Program

The Purposes of initscr(), refresh(), and endwin()
in a Program

The Relationship between stdscr and a Terminal
Screen

The Relationship Between stdscr and a Terminal
Screen (continued)

Multiple Windows and Pads Mapped to a Physical
Screen

Input Option Settings for ETI Programs
Using wnoutrefresh() and doupdate()

The Relationship Between a Window and a Termi-
nal Screen

The Relationship Between a Window and a Termi-
nal Screen (continued)

The Relationship Between a Window and a Termi-
nal Screen (continued)

Sample Routines for Low-Level ETI (curses) Inter-
face

Example Using Panel User Pointer

A Sample Menu

MMER’S GUIDE

9-98
9-103
9-104
9-105
9-106

10-6

10-11

10-15

10-16

10-17
10-54
10-60

10-61

10-62

10-63

10-67
10-83
10-86

Figure 10-11: Sample Menu Program to Create a Menu in ET!
Figure 10-12: Creating an Array of Items

Figure 10-13: Using item_value() in Menu Processing
Figure 10-14: Using an Item User Pointer

Figure 10-15: Changing the Items Associated With a Menu
Figure 10-16: Examples of Menu Format (2, 2)

Figure 10-17: Examples of Menu Format (3, 2)

Figure 10-18: Examples of Menu Format (4, 3)

Figure 10-19: Menu Functions Write to Subwindow, Application
to Window

Figure 10-20: Creating a Menu with a Border
Figure 10-21: Sample Routines Displaying and Erasing Menus

Figure 10-22: Sample Routine that Translates Keys into Menu
Requests

Figure 10-23: Integer Ranges for ETI Key Values and MENU
Requests

Figure 10-24: Sample Menu Output (2)
Figure 10-25: Sample Program Calling the Menu Driver

Figure 10-26: Using an Initialization Routine to Generate Item
Prompts

Figure 10-27: Returning Cursor to its Correct Position for Menu
Driver Processing

Figure 10-28: Example Setting and Using A Menu User Pointer
Figure 10-29: Sample Form Display

List of Figures

10-90
10-93
10-96
10-103
10-109
10-114
10-115
10-115

10-121
10-122
10-128

10-132

10-136
10-137
10-140

10-145

10-150
10-154
10-160

. LIST OF FIGURES xvii

List of Figures

Figure 10-30: Code To Produce a Simple Form

Figure 10-31: Example Shifting All Form Fields a Given Number

of Rows
Figure 10-32: Setting a Field to TYPE_ENUM of Colors
Figure 10-33: Using the Field Status to Update a Database
Figure 10-34: Using the Field User Pointer to Match Items
Figure 10-35: Creating a Form

Figure 10-36: Form Functions Write to Subwindow, Application
to Window

Figure 10-37: Creating a Border Around a Form
Figure 10-38: Posting and Unposting a Form
Figure 10-39: A Sample Key Virtualization Routine
Figure 10-40: Sweepstakes Form Output

Figure 10-41: An Example of Form Driver Usage

Figure 10-42: Sample Termination Routine that Updates a
Column Total

Figure 10-43: Field Initialization and Termination to Highlight
Current Field

Figure 10-44: Example Manipulating the Current Field

Figure 10-45: Example Changing and Checking the Form Page
Number

Figure 10-46: Repositioning the Cursor After Printing Page
Number

Figure 10-47: Pattern Match Example Using form User Pointer

Figure 10-48: Creating a Programmer-Defined Field Type

XV PROGRAMMER’S GUIDE

10-165

10-175
10-180
10-190
10-193
10-201

10-209
10-210
10-212
10-217
10-224
10-228

10-233

10-234
10-236

10-238

10-239
10-242
10-249

Figure 10-49:

Figure 10-50:
Figure 10-51:
Figure 10-52:
Figure 10-53:

Figure 10-53:

Figure 10-53:

Figure 10-53:

Figure 10-54:
Figure 10-55:

Figure 11-1:
Figure 11-2:
Figure 11-3:
Figure 11-4:
Figure 11-5:
Figure 11-6:
Figure 11-7:
Figure 11-8:
Figure 11-9:

List of Figures

Creating TYPE_HEX with Padding and Range

Arguments 10-254
Creating a Next Choice Function for a Field Type 10-257
Sending a Message to Several Terminals 10-265
Typical Framework of a terminfo Program 10-267

Translations from TAM to ETI Function Calls

(Sheet 1 of 4) 10-287
Translations from TAM to ETI Function Calls
(Sheet 2 of 4) 10-288
Translations from TAM to ETI Function Calls
(Sheet 3 of 4) 10-289
Translations from TAM to ETI Function Calls
(Sheet 4 of 4) 10-289
TAM High-Level Functions 10-291

Translation Between TAM Escape Sequences and

Virtual Key Values 10-294
Object File Format 11-2
File Header Contents 11-4
File Header Flags 11-5
File Header Declaration 11-6
Optional Header Contents 11-7
UNIX System Magic Numbers 11-8
aouthdr Declaration 11-9
Section Header Contents 11-10
Section Header Flags 11-11

LIST OF FIGURES xix

List of Figures

Figure 11-10:
Figure 11-11:
Figure 11-12:
Figure 11-13:
Figure 11-14:
Figure 11-15:
Figure 11-16:
Figure 11-17:
Figure 11-18:
Figure 11-19:
Figure 11-20:
Figure 11-21:
Figure 11-22:
Figure 11-23:
Figure 11-24:
Figure 11-25:
Figure 11-26:
Figure 11-27:
Figure 11-28:
Figure 11-29:
Figure 11-30:
Figure 11-31:

Section Header Declaration
Relocation Section Contents
Relocation Types

Relocation Entry Declaration
Line Number Grouping

Line Number Entry Declaration
COFF Symbol Table

Special Symbols in the Symbol Table
Special Symbols (.bb and .eb)
Nested blocks

Example of the Symbol Table
Symbols for Functions

Symbol Table Entry Format
Name Field

Storage Classes

Storage Class by Special Symbols
Restricted Storage Classes
Storage Class and Value

Section Number

Section Number and Storage Class
Fundamental Types

Derived Types

XX PROGRAMMER’S GUIDE

11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31

11-32

Figure 11-32:
Figure 11-33:
Figure 11-34:
Figure 11-35:
Figure 11-36:
Figure 11-37:
Figure 11-38:
Figure 11-39:
Figure 11-40:
Figure 11-41:
Figure 11-42:
Figure 11-43:
Figure 11-43:
Figure 11-44:
Figure 12-1:
Figure 12-2:
Figure 12-2:
Figure 12-2:
Figure 12-2:
Figure 13-1:
Figure 13-2:
Figure 13-2:

List of Figures

Type Entries by Storage Class 11-33
Symbol Table Entry Declaration 11-35
Auxiliary Symbol Table Entries 11-36
Format for Auxiliary Table Entries for Sections 11-37
Tag Names Table Entries 11-38
Table Entries for End of Structures 11-38
Table Entries for Functions 11-39
Table Entries for Arrays 11-39
End of Block and Function Entries 11-40
Format for Beginning of Block and Function 11-40
Entries for Structures, Unions, and Enumerations 11-41
Auxiliary Symbol Table Entry (Sheet 1 of 2) 11-42
Auxiliary Symbol Table Entry (Sheet 2 of 2) 11-43
String Table 11-44
Operator Symbols 12-5
Syntax Diagram for Input Directives (Sheet 1 of 4) 12-32
Syntax Diagram for Input Directives (Sheet 2 of 4) 12-33
Syntax Diagram for Input Directives (Sheet 3 of 4) 12-34
Syntax Diagram for Input Directives (Sheet 4 of 4) 12-35
Summary of Default Transformation Path 13-13
make Internal Rules (Sheet 1 of 5) 13-25
make Internal Rules (Sheet 2 of 5) 13-26

LIST OF FIGURES xxi

List of Figures

Figure 13-2:
Figure 13-2:
Figure 13-2:
Figure 14-1:
Figure 14-2:
Figure 14-3:
Figure 14-4:
Figure 15-1:
Figure 15-1:
Fiéure 15-1:
Figure 17-1:
Figure 17-2:
Figure 18-1:
Figure 18-2:
Figure 18-3:
Figure 18-4:
Figure 18-5:
Figure 18-6:
Figure 18-7:
Figure 18-8:
Figure 18-9:
Figure 18-10:

make Internal Rules (Sheet 3 of 5)

make Internal Rules (Sheet 4 of 5)

make Internal Rules (Sheet 5 of 5)

Evolution of an SCCS File

Tree Structure with Branch Deltas

Extended Branching Concept

Determination of New SID

Example of sdb Usage (Sheet 1 of 3)
Example of sdb Usage (Sheet 2 of 3)
Example of sdb Usage (Sheet 3 of 3)

Escape Sequences for Nongraphic Characters
Computer Hardware Characteristics

The cscope Menu of Tasks

Menu Manipulation Commands

Requesting a Search for a Text String

cscope Lists Lines Containing the Text String
Commands for Use After Initial Search

Examining a Line of Code Found by cscope

Requesting a List of Functions that Call alloctest

cscope Lists Functions that Call alloctest
cscope Lists Functions that Call mymalloc

Viewing dispinit in the Editor

xxii PROGRAMMER’S GUIDE

13-27
13-28
13-29
14-7
14-8
14-9
14-21
15-13
15-14
15-15
17-4
17-7
18-6
18-7
18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15

Figure 18-11:
Figure 18-12:
Figure 18-13:
Figure 18-14:
Figure 18-15:
Figure 18-16:
Figure 18-17:
Figure 18-18:
Figure 18-19:
Figure 18-20:
Figure 18-21:
Figure 18-22:
Figure 18-23:
Figure 18-24:
Figure 18-25:
Figure 18-26:
Figure 18-27:

Using cscope to Fix the Problem

Commands for Selecting Lines to be Changed
Changing a Text String

cscope Prompts for Lines to be Changed
Marking Lines to be Changed

cscope Displays Changed Lines of Text
Escaping from cscope to the Shell

Example of lprof Output

Example of Output Produced by the x Option
Example of lprof s Output

prof Output

Iprof Output for the Function CAfind

Iprof Output for New Version of Function CAfind
prof Output for New Version of lprof

Iprof Summary Output for a Test Suite
Fragment of Output from lprof x

Output from lprof x for Function putdata

List of Figures

18-16
18-20
18-21
18-22
18-23
18-24
18-25
18-37
18-39
18-41
18-48
18-50
18-54
18-56
18-57
18-59
18-60

LIST OF FIGURES xxiii

10

Extended Terminal Interface

Overview 10-1
How this Chapter is Organized 10-1
Conventions Used in this Chapter 10-3
What is ETI? 10-5
The ETI Libraries 10-5
The ETI/terminfo Connection 10-7
Basic ETI Programming 10-9
What Every ETI Program Needs 10-9
s The Header File <curses.h> 10-9
a The Routines initscr(), refresh(), endwin() 10-10
Compiling an ETI Program 10-12
m Using the TAM Transition Library 10-12
Running an ETI Program 10-13
More about initscr() and Lines and Columns 10-13
More about refresh() and Windows 10-14
m Pads 10-17
Simple Input and Output 10-18
Output 10-18
m addch() 10-19
m addstr() 10-21
u printw() 10-22
a move() 10-24
m clear() and erase() 10-26

Extended Terminal Interface

s clrtoeol() and clrtobot() 10-27
Input 10-30
s getch() 10-31
m getstr() 10-34
a scanw() 10-36
Output Attributes 10-38
m attron(), attrset(), and attroff() 10-41
m standout() and standend() 10-42
m Color Manipulation 10-43
Bells, Whistles, and Flashing Lights: beep() and
flash(10-52
Input Options 10-53
m echo() and noecho() 10-56
m cbreak() and nocbreak() 10-57
Windows 10-58
Output and Input 10-58
The Routines wnoutrefresh() and doupdate() 10-59
New Windows 10-64
= newwin() 10-64
a subwin() 10-65
ETI Low-Level Interface (curses) to High-Level
Functions 10-66
Panels 10-69

Compiling and Linking Panel
Programs 10-70

Creating Panels 10-71

Extended Terminal Interface

Elementary Panel Window

Operations 10-72
Fetching Pointers to Panel Windows 10-72
Changing Panel Windows 10-72
Moving Panel Windows on the Screen 10-73
Moving Panels to the Top or
Bottom of the Deck 10-75
Updating Panels on the Screen 10-76
Making Panels Invisible 10-78
Hiding Panels 10-78
m Checking If Panels are Hidden 10-79
Reinstating Panels 10-79
Fetching Panels Above or Below
Given Panels 10-80
Setting and Fetching the Panel
User Pointer 10-82
Deleting Panels 10-85

10-86

Extended Terminal Interface

Compiling and Linking Menu
Programs 10-87

Overview: Writing Menu Programs

in ETI 10-88
Some Important Menu Terminology 10-88
What a Menu Application Program Does 10-89
A Sample Menu Program 10-89

Creating and Freeing Menu Items 10-92

Two Kinds of Menus: Single- and

Multi-Valued 10-95
Manipulating an Item’s Select Value in a Multi-

Valued Menu 10-95
Manipulating Item Attributes 10-97
Fetching Item Names and Descriptions 10-97
Setting Item Options 10-97
Checking an Item’s Visibility 10-100
Changing the Current Default Values for Item

Attributes 10-100
Setting the Item User Pointer 10-102

Creating and Freeing Menus 10-105

Extended Terminal Interface

Manipulating Menu Attributes 10-108
Fetching and Changing Menu Items 10-108
Counting the Number of Menu Items 10-110
Changing the Current Default Values for Menu
Attributes 10-110
Displaying Menus 10-112
Determining the Dimensions of Menus 10-112
m Specifying the Menu Format 10-113
m Changing Your Menu'’s Mark String 10-117
B Querying the Menu Dimensions 10-118
Associating Windows and Subwindows with Menus 10-119
Fetching and Changing A Menu’s Display
Attributes 10-123
Posting and Unposting Menus 10-126
Menu Driver Processing 10-130
Defining the Key Virtualization Correspondence 10-130
ETI Menu Requests 10-132
s Item Navigation Requests 10-133
m Directional Item Navigation Requests 10-133
m Menu Scrolling Requests 10-134
m Multi-Valued Menu Selection Request 10-134
a Pattern Buffer Requests 10-134
Application-Defined Commands 10-136
Calling the Menu Driver 10-136
Establishing, Item and Menu Initialization and
Termination Routines 10-142
= Function set_menu_init() 10-143
w Function set_item_init() 10-143
m Function set_item term() 10-143
a Function set_menu_term() 10-144
Fetching and Changing the Current Item 10-146

Extended Terminal Interface

Fetching and Changing the Top Row 10-148
Positioning the Menu Cursor 10-149
Changing and Fetching the Pattern Buffer 10-150

Manipulating the Menu User
Pointer 10-153

Setting and Fetching Menu
Options 10-156

Forms 10-160

Compiling and Linking Form
Programs 10-161

Overview: Writing Form Programs

in ETI 10-162
Some Important Form Terminology 10-162
What a Typical Form Application Program Does 10-163
A Sample Form Application Program 10-163
Creating and Freeing Fields 10-169
Manipulating Field Attributes 10-173
Obtaining Field Size and Location Information 10-173
Moving a Field 10-174

Changing the Current Default Values for Field
Attributes 10-175

Extended Terminal interface

Setting the Field Type To Ensure Validation 10-176
m TYPE_ALPHA 10-178
m TYPE_ALNUM 10-178
s TYPE_ENUM 10-179
s TYPE_INTEGER 10-180
m TYPE_NUMERIC 10-181
m TYPE_REGEXP 10-182
Justifying Data in a Field 10-183
Setting the Field Foreground,
Background, and Pad Character 10-185
Some Helpful Features of Fields 10-187
Setting and Reading Field Buffers 10-187
Setting and Reading the Field Status 10-189
Setting and Fetching the Field User Pointer 10-191
Manipulating Field Options 10-195
Creating and Freeing Forms 10-199
Manipulating Form Attributes 10-203
Changing and Fetching the Fields on an Existing
Form 10-203
Counting the Number of Fields 10-204
Changing ETI Form Default Attributes 10-205
Displaying Forms 10-206
Determining the Dimensions of Forms 10-206

Extended Terminal Interface

m Scaling the Form 10-206
Associating Windows and Subwindows with a
Form 10-207
Posting and Unposting Forms 10-211
Form Driver Processing 10-214
Defining the Virtual Key Mapping 10-214
ETI Form Requests 10-218
m Page Navigation Requests 10-218
m Inter-Field Navigation Requests on the Current
Page 10-218
m Intra-Field Navigation Requests 10-219
m Field Editing Requests 10-221
m Scrolling Requests 10-222
m Field Validation Requests 10-222
m Choice Requests 10-223
Application-Defined Commands 10-223
Calling the Form Driver 10-224
Establishing Field and Form Initialization and
Termination Routines 10-230
m Function set_form_init(Q 10-231
m Function set_field_init() 10-231
= Function set_field term(10-231
m Function set_form_term(10-231
Manipulating the Current Field 10-235
‘Changing the Form Page 10-237
Positioning the Form Cursor 10-238

Setting and Fetching the Form
User Pointer 10-241

Setting and Fetching Form Options 10-243

Extended Terminal Interface

Creating and Manipulating
Programmer-Defined Field Types 10-246
Building a Field Type from Two Other Field Types 10-246

Creating a Field Type with Validation Functions 10-247
Freeing Programmer-Defined Field Types 10-250
Supporting Programmer-Defined Field Types 10-251
m Argument Support for Field Types 10-251
m Supporting Next and Previous Choice Functions 10-255
Other ETI Routines 10-259

Routines for Drawing Lines and
Other Graphics 10-260

Routines for Using Soft Labels 10-262

Working with More than One

Terminal 10-264
Working with terminfo Routines 10-266
What Every terminfo Program Needs 10-266
Compiling and Running a terminfo Program 10-268
An Example terminfo Program 10-268

Working with the terminfo
Database 10-272
Writing Terminal Descriptions 10-272

Extended Terminal Interface

a Name the Terminal 10-272

m Learn About the Capabilities 10-273

m Specify Capabilities 10-274

a Compile the Description 10-280

m Test the Description 10-281
Comparing or Printing terminfo Descriptions 10-282
Converting a termcap Description to a terminfo

Description 10-282
TAM Transition Library 10-284

Compiling and Running TAM
Applications under ETI 10-285

Tips for Polishing TAM Application
Programs Running under ETI 10-286

How the TAM Transition Library

Works 10-287
Translations from TAM Calls to ETI Calls 10-287
The TAM Transition Keyboard Subsystem 10-291
Program Examples 10-296
The editor Program 10-296
The highlight Program 10-303
The scatter Program 10-305
The show Program 10-307
The two Program 10-309
The window Program 10-312

The colors Program 10-314

Overview

Screen management programs are a common component of many com-
mercial computer applications. These programs handle input and output at a
video display terminal. A screen program might move a cursor, print a
display, divide a terminal screen into windows, or change the definition of
colors. Many screen management programs build end-user terminal interfaces
to help users enter and retrieve information from a database — interfaces such
as forms, menus, and help and error message displays.

This chapter explains how to use the Extended Terminal Interface (ETI)
package to write screen management programs on a UNIX System V/386 sys-
tem. (It also tells you what you need to know about the terminfo database to
use ETIL) To start you writing screen management programs as soon as possi-
ble, the information in this chapter does not cover every routine in the
libraries. Although it covers all routines in the high-level libraries (those that
build panels, menus, and forms), it covers only the most frequently used rou-
tines in the low-level library (curses). For more information, this chapter
points you to the curses(3X), terminfo(4), and other manual pages in the
Programmer’s Reference Manual. Keep this manual close at hand; you’ll find it
invaluable when you want to know more about these and other routines.

Because the routines are compiled C functions, you should be familiar
with the C programming language before using ETI. You should also be fami-
liar with the UNIX System/C language standard 1/O package (see "System
Calls and Subroutines" and "Input/Output® in Chapter 2 and the stdio(3S)
manual page of the Programmer’s Reference Manual). With that knowledge
and an appreciation for the UNIX System philosophy of building on the work
of others, you can design screen management programs for many purposes.

How this Chapter is Organized
This chapter contains eleven sections:
B Introduction to ETI

This is the present section. It briefly describes the ETI libraries and
how ETI works with the terminfo database.

B Basic ETI Programming

This section describes the routines and other components that every
ETI program needs to work properly, tells you how to compile and run

EXTENDED TERMINAL INTERFACE 10-1

Overview

low-level ETI (curses) programs, and introduces important concepts
such as refreshing.

B Simple Input and Output

This section describes the routines in the low-level ETI (curses) library
for writing to, and reading from, a screen and manipulating colors. It

also covers the suite of video attributes and options which enable you

to enhance your displays with striking visual effects.

B Windows

This section explains the use of windows and subwindows. It delves
more deeply into the refresh operation and covers the functions
wnoutrefresh() and doupdate().

B Panels

This section begins the treatment of the high-level ETI functions. It
describes the use of panels—windows with interrelationships of
depth—and covers the set of panel functions, which enable you to
create panels, move them, associate them with different windows, place
them on top of other panels, and so forth.

B Menus

This section explains the suite of menu functions. It explains how to
create menu items and menus, display them, change menu video attri-
butes, have users interact with menus, and more.

B Forms

This section covers the wealth of form functions. It shows how to
create fields and forms, display them, change form video attributes,
have users interact with forms, and more.

B Other ETI Routines

This section covers routines for screen management programs that draw
line graphics, use a terminal’s soft labels, and work with more than one
terminal at the same time.

B Working with terminfo Routines

This section describes a subset of routines in the curses library. These
routines access and manipulate data in the terminfo database. They
are used to set up and handle special terminal capabilities such as pro-
grammable function keys. This section also describes the terminfo

10-2 PROGRAMMER’S GUIDE

Overview

database, related support tools, and their relationship to the curses
library.

B Terminal Access Method (TAM) Transition Library

This section explains how to use the TAM transition library and how to
rewrite TAM application programs to run efficiently under ETI without
the TAM transition library.

B Program Examples

This section includes programs that illustrate uses of low level ETI
curses routines.

Conventions Used in this Chapter
This section uses the following conventions to discuss ETI routines:

B In program text, the major ETI data types appear in uppercase. They
are as follows:

O WINDOW-—a rectangular area of the screen treated as a unit

0O PANEL—a window with relations of depth to other windows so
that regions hidden behind other windows are invisible

0 ITEM—a character string consisting of a name and an optional
description

0O MENU—a screen display that presents a set of items from which
the user chooses one or more, depending on the type of menu

O FIELD—an m x n block of character positions within a form that
ETI functions can manipulate as a unit

0O FORM—a collection of one or more pages of fields

O FIELDTYPEa field attribute that determines what kind of data may
occupy the field

B Every ETI function is introduced with a SYNOPSIS that describes the
type of its arguments and return value, if any. The first line of the
SYNOPSIS proper describes the routine, while the following lines
describe its arguments. On each line, the type of the return value or
arguments precedes their names. As an example, consider

EXTENDED TERMINAL INTERFACE 10-3

Overview

SYNOPSIS

int set merm win (memu, window)
MENU * merm;
WINDOW * window;

This says that the function set_menu_win() returns a value of type int
and that it takes two arguments, menu and window. The argument menu is
of type MENU * (pointer to a menu), while the argument window is of type
WINDOW * (pointer to a window).

B The terms window, panel, menu, and form are often shorthand for the
phrases window pointer, panel pointer, menu pointer, and form pointer,
respectively. All ETI routines pass or return pointers to these objects,
not the objects themselves.

10-4 PROGRAMMER’S GUIDE

What is ETI?

ETl is a set of C library routines that promote the development of applica-
tion programs that display and manipulate windows, panels, menus, and
forms and run under the UNIX System. The rest of this section explains the
nature of these libraries and the connection between ETI and the terminfo
library and database.

The ETI Libraries

ETI consists of the following libraries.
low-level (curses)
panel

menu

form
B TAM Transition.

The routines are C functions and macros; many of them resemble routines in
the standard C library. For example, there’s a routine printw() that behaves
much like printf(3S) and another routine getch() that behaves like getc(3S).
The automatic teller program at your bank might use printw() to print its
menus and getch() to accept your requests for withdrawals (or, better yet,
deposits). A visual screen editor like the UNIX System screen editor vi(1) (see
the User’s /System Administrator’s Reference Manual) might also use these and
other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minim-
izes the amount a cursor has to move around a screen to update it. For exam-
ple, if you designed a screen editor program with ETI routines and edited the
sentence

ETI is a great package for creating forms and menus.
to read
ETI is the best package for creating forms and menus.

the program would change only the best in place of a great. The other
characters would be preserved. Because the amount of data transmitted—the
output—is minimized, cursor optimization is also referred to as output

EXTENDED TERMINAL INTERFACE 10-5

What is ETI?

optimization.

Cursor optimization takes care of updating the screen in a manner
appropriate for the terminal on which an ETI program is run. This means that
ETI can do whatever is required to update many different terminal types. It
searches the terminfo database (described below) to find the correct descrip-
tion for a terminal.

How does cursor optimization help you and those who use your pro-
grams? First, it saves you time in describing in a program how you want to
update screens. Second, it saves a user’s time when the screen is updated.
Third, it reduces the load on your UNIX System’s communication lines when
the updating takes place. Fourth, you don’t have to worry about the myriad
of terminals on which your program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to
move a cursor to the middle of a terminal screen and-print the character string
BullsEye. Each of these routines is described later in this section. For now,
just look at their names, and you will get an idea of what each of them does:

Cﬁmﬂe <curses.h>

main()
{
initscr();

move(LINES/2 - 1, OOLS/2 - 4);
addstr("Bulls");
refresh();
addstr("Eye”);
refresh();
endwin();
}

- /

Figure 10-1: A Simple ETI Program

10-6 PROGRAMMER’S GUIDE

What is ETI?

The ETIl/terminfo Connection

terminfo is both a set of routines that make use of the capabilities of a
wide range of terminals and a database that contains descriptions of the termi-
nals that can be used with ETI. Its use as a database is our concern here. See
the section "Working with terminfo Routines® for details on its use as a set
of routines.

A screen management program with ETI routines refers to the terminfo
database at run time to obtain the information it needs about the terminal
being used—what we’ll call the current terminal from here on.

Suppose, for instance, that you are using an AT&T Teletype 5425 terminal
to run the simple ETI program shown in Figure 10-1. To execute properly,
the program needs to know how many lines and columns the terminal screen
has to print the BullsEye in the middle of it. The description of the AT&T
Teletype 5425 in the terminfo database has this information, as well as other
information about the terminal’s capabilities and how it performs various
operations — for example, how its control characters are interpreted. All ETI
needs to know before it goes looking for the information is the name of your
terminal.

You tell the program the name by putting it in the environment variable
$TERM when you log in or by setting and exporting $TERM in your .profile
file [see profile(4)]. Knowing $TERM, an ETI program run on the current ter-
minal can search the terminfo database to find the correct terminal descrip-
tion.

For example, assume that the following lines are in a .profile:

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line exports it. (See
profile(4) in the Programmer’s Reference Manual.) The third line of the exam-
ple tells the UNIX System to initialize the current terminal. That is, it makes
sure that the terminal is set up according to its description in the terminfo
database. (The order of these lines is important. $TERM must be defined
and exported first, so that when tput(1) [see the User’s/System Administrator’s
Reference Manual] is called the proper initialization for the current terminal
will take place.) If you had these lines in your .profile and you ran an ETI

EXTENDED TERMINAL INTERFACE 10-7

What is ETI?

program, the program would get the information that it needs about your ter-
minal from the file /usr/lib/terminfo/5/5425 in the database, which provides
a match for STERM. For more information about the terminfo database, see
the section "Working with terminfo Routines".

10-8 PROGRAMMER’S GUIDE

Basic ETI Programming

This section describes the low-level routines and other components that
every ETI program needs to work properly. It tells you how to compile and
run ETI applications using the low-level libraries and introduces important
concepts (such as refreshing) that recur throughout this document.

What Every ETI Program Needs

All ETI programs need to include the header files <menu.h>, <form.h>,
and <panel.h> and call the routines initscr(), refresh() or similar routines,
and endwin(). Some of the other header files, however, include file curses.h.

The Header File <curses.h>

The header files <menu.h>, <form.h>, and <panel.h> define several
global variables and data structures.

To begin, let’s consider the variables and data structures defined.
<curses.h>, among other things, defines the integer variables LINES and
COLS; when an ETI program is run on a particular terminal, these variables
are assigned the vertical and horizontal dimensions of the terminal screen,
respectively, by the routine initscr() described below.

The integer variables COLORS and COLOR_PAIRS are also defined in
<curses.h>. These will be assigned, respectively, the maximum number of
colors and color-pairs the terminal can support. These variables are initialized
by the start_color() routine. (See the section "Color Manipulation. ")

LINES and COLS are external (global) variables that represent the size
NOTE| of a terminal screen. Two similar variables, SLINES and $COLUMNS,
may be set in a user’s shell environment; an ETI program uses the

I environment variables to determine the size of a screen. Whenever we
refer to the environment variables in this section, we will use the $ to
distinguish them from the C declarations in the <curses.h> header file.

For more information about these variables, see the following sections:
"The Routines initscr(), refresh(), and endwin()" and “"More about
initscr() and Lines and Columns. "

The header files define the integer constants OK, E_OK, ERR, and others
listed in the following sections. ETI routines that return int values return
these constants under the following conditions:

EXTENDED TERMINAL INTERFACE 10-9

Basic ETl Programming

OK returned if a low-level or panel function completes prop-
erly

E_OK returned if a menu or form function does so

ERR returned if a low-level or panel function encounters an
error

The other error values returned by the high-level functions are described in
the appropriate sections below.

Now let’s consider the macro definitions. <curses.h> defines many ETI
routines as macros that call other macros or ETI routines. For instance, the
simple routine refresh() is a macro. The line

#define refresh() wrefresh(stdscr)

shows that when refresh is called, it is expanded to call the ETI routine
wrefresh(). In turn, wrefresh() (although it is not a macro) calls the two ETI
routines wnoutrefresh() and doupdate(). Many other routines also group two
or three routines together to achieve a particular result.

Macro expansion in ETI programs may cause problems with certain
sophisticated C features, such as the use of automatic incrementing vari-
ables.

One final point about <curses.h>: it automatically includes <stdio.h>
and the <termio.h> tty driver interface file. Including either file again in a
program is harmless but wasteful.

The Routines initscr{), refresh(), endwin()

The routines initscr(), refresh(), and endwin() initialize a terminal screen
to an "in ETI state," update the contents of the screen, and restore the termi-
nal to an "out of ETI state," respectively. Consider the simple program intro-
duced earlier and reproduced in Figure 10-2.

10-10 PROGRAMMER’S GUIDE

Basic ETI Programming

leude <curses.h>

main()
{
initscr(); /* initialize terminal settings and <curses.h>
data structures and variables */

move(LINES/2 - 1, OOLS/2 - 4);
addstr("Bulls");

refresh(); /* serd ocutput to (update) terminal screen */
addstx(“"Eye");

refresh(); /* send more output to terminal screen */
endwin(); /* restore all terminal settings */

| /

Figure 10-2: The Purposes of initscr(), refresh(), and endwin() in a Program

An ETI program usually starts by calling initscr(); your program should
call initscr() only once. This routine uses the environment variable $TERM to
determine what terminal is being used. (See the Chapter 1 section, "The
ETI/terminfo Connection," for details.) It then initializes all the declared
data structures and other variables from <curses.h>. For example, initscr()
would initialize LINES and COLS for the sample program on whatever termi-
nal it was run. If the TELETYPE 5425 terminal were used, this routine would
initialize LINES to 24 and COLS to 80. Finally, this routine writes error mes-
sages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by rou-
tines like move() and addstr() in the sample program. For example,

move(LINES/2 - 1, OOLS/2 - 4);
says to move the cursor to the left of the middle of the screen. The line
addstr(“"Bulls");

says to write the character string Bulls. For example, if the TELETYPE 5425
terminal were used, these routines would position the cursor and write the

character string at (11,36).

EXTENDED TERMINAL INTERFACE 10-11

Basic ETI Programming

All ETI routines that move the cursor move it from its home position in the
NOTE| upper left corner of a screen. The (LINES,COLS) coordinate at this position
is (0,0) not (1,1). Notice that the vertical coordinate is given first and the

| horizontal second, which is the opposite of the common ‘x,y’ order of screen
(or graph) coordinates. The -1 in the sample program takes the (0,0) posi-
tion into account to place the cursor on the center line of the terminal
screen.

Routines like move() and addstr() do not actually change a physical termi-
nal screen when they are called. The screen is updated only when refresh() is
called after one or more windows (internal representations of the screen) are
updated. This is a very important concept, which we discuss below under
"More about refresh() and Windows. "

Finally, an ETI program ends by calling endwin(). This routine restores
all terminal settings and positions the cursor at the lower left corner of the
screen.

Compiling an ETI Program

You compile programs that include ETI routines as C language programs.
This means that you use the c¢(1) command (documented in the Programmer’s
Reference Manual) to invoke the C compiler. (See Chapter 2 for details.)

The routines are usually stored in the library /usr/lib/libX.a, where X
signifies either curses, panel, menu, or form, depending on which library
your program needs. To direct the link editor to search this library, you must
use the -1 option with the cc command.

The general command line for compiling an ETI program follows:
cc filee [-1X] -lcurses -o file

where X is either panel, menu, or form; file.c is the name of the source pro-
gram; and file is the executable object module. See the appropriate section
below for more information.

Using the TAM Transition Library

Some users may have applications using the TAM library routines that
originally ran on the UNIX System PC. "The TAM Transition Library,"
Appendix B of this document, explains how to compile and run these
applications.

10-12 PROGRAMMER’S GUIDE

Basic ETI Programming

Running an ETI Program

ETI programs count on certain information being in a user’s environment
to run properly. Specifically, users of a program should usually include the
following three lines in their .profile files:

TERM=current terminal type
export TERM
tput init

For an explanation of these lines, turn again to the section " The
ETI/terminfo Connection® in this chapter. Users of an ETI program could
also define the environment variables $LINES, $COLUMNS, and $TER-
MINFO in their .profile files. However, unlike $TERM, these variables do
not have to be defined.

If an ETI program does not run as expected, you might want to debug it
with sdb(1), which is documented in the Programmer’s Reference Manual.
When using sdb, you have to keep a few points in mind. First, an ETI pro-
gram is interactive and always has knowledge of where the cursor is located.
An interactive debugger like sdb, however, may cause changes to the contents
of the screen of which the ETI program is not aware.

Second, an ETI program doesn’t output to a window until refresh() or a
similar routine is called. Because output from the program may be delayed,
debugging the output for consistency may be difficult.

Third, setting break points on ETI routines that are macros, such as
refresh(), does not work. You have to use the routines defined for these mac-
ros, instead; for example, you have to use wrefresh() instead of refresh(). See
the above section, "The Header File <curses.h>," for more information about
macros.

More about initscr() and Lines and Columns

After determining a terminal’s screen dimensions, initscr() sets the vari-
ables LINES and COLS. These variables are set from the terminfo variables
lines and columns. These, in turn, are set from the values in the terminfo
database, unless these values are overridden by the values of the environment
$LINES and $COLUMNS.

EXTENDED TERMINAL INTERFACE 10-13

Basic ETI Programming

More about refresh() and Windows

As mentioned above, ETI routines do not update a terminal until refresh()
is called. Instead, they write to an internal representation of the screen called
a window. When refresh() is called, all the accumulated output is sent from
the window to the current terminal screen.

A window acts a lot like a buffer does when you use a UNIX System edi-
tor. When you invoke vi(1) (see the User’s/System Administrator’s Reference
Manual), for instance, to edit a file, the changes you make to the contents of
the file are reflected in the buffer. The changes become part of the permanent
file only when you use the w or ZZ command. Similarly, when you invoke a
screen program made up of ETI routines, they change the contents of a win-
dow. The changes become part of the current terminal screen only when
refresh() is called.

<curses.h> supplies a default window named stdscr (standard screen),
which is the size of the current terminal’s screen, for all programs using ETI
routines. The header file defines stdscr to be of the type WINDOWH#, a
pointer to a C structure which you might think of as a two-dimensional array
of characters representing a terminal screen. The program always keeps track
of what is on the physical screen, as well as what is in stdscr. When refresh()
is called, it compares the two screen images and sends a stream of characters
to the terminal that make the physical screen look like stdscr. An ETI pro-
gram considers many different ways to do this, taking into account the various
capabilities of the terminal and similarities between what is on the screen and
what is on the window (stdscr). It optimizes output by printing as few char-
acters as possible. Figure 10-3 illustrates what happens when you execute the
sample ETI program that prints BullsEye at the center of a terminal screen.
Notice in the figure that the terminal screen retains whatever garbage is on it
until the first refresh() is called. This refresh() clears the screen and updates
it with the current contents of stdscr.

10-14 PROGRAMMER’S GUIDE

initser()

move(LINES/2-1,
COLS/1-4)
23]

addstr (°Bulls")

refresh()

Basic ETI Programming

stdscr physical screen
(garbage)
stdscr physical screen
(n] (garbage)
stdscr physical screen
Bulls O (garbage)
stdscr physical screen
Bulls g Bulls O

Figure 10-3: The Relationship between stdscr and a Terminal Screen

EXTENDED TERMINAL INTERFACE 10-15

Basic ETI Programming

stdscr physical screen
addstr ("Eye")
BullsEye O Bulls O
stdscr physical screen
refresh()
BullsEye O BullsEye O
stdscr physical screen
endwin(
BullsEye O BullsEye
o

Figure 10-3: The Relationship Between stdscr and a Terminal Screen (contin-
ued)

You can create other windows and use them instead of stdscr. Windows
are useful for maintaining several different screen images. For example, many
data entry and retrieval applications use two windows: one to control input
and output and one to print error messages that don’t mess up the other win-
dow. It’s possible to subdivide a screen into many windows, refreshing each
one of them as desired. And it's possible to create a window within a win-
dow; the smaller window is called a subwindow. See the section, "Win-
dows, " for more information.

10-16 PROGRAMMER’S GUIDE

Basic ETI Programming

Some ETI routines are designed to work with a special type of window
called a pad. A pad is a window whose size is not restricted by the size of a
screen or associated with a particular part of a screen. You can use a pad
when you have a particularly large window or only need part of the window
on the screen at any one time. For example, you might use a pad for an
application with a spread sheet.

Figure 10-4 represents what a pad, a subwindow, and some other win-
dows could look like in comparison to a physical screen.

terminal screen

window window

pad

pad subpad

subwindow

window

Figure 10-4: Multiple Windows and Pads Mapped to a Physical Screen

The later section "Windows" describes the routines you use to create and
use windows and pads. If you'd like to see an ETI program with windows
now, turn to the window program under the section *ETI Program Exam-
ples" in this chapter.

EXTENDED TERMINAL INTERFACE 10-17

Simple Input and Output

This section explains the numerous functions that enable you to do I/0O
under the ETI environment. It also covers the set of video attributes and
options which can enhance ETI output with striking visual effects.

Output

The routines that low-level ETI provides for writing to stdscr are similar
to those provided by the stdio(3S) library for writing to a file. They let you

B write a character at a time — addch()

B write a string — addstr()

B format a string from a variety of input arguments — printw()
[

move a cursor or move a cursor and print character(s) — move(),
mvaddch(), mvaddstr(), mvprintw()

B clear a screen or a part of it — clear(), erase(), clrtoeol(), clrtobot()

Following are descriptions and examples of these routines.
The ETI library provides its own set of input and output functions. You
should not use other 1/0O routines or system calls, like printf(3S) and

scanf(35), in an ETI program. They may cause undesirable results when
you run the program.

10-18 PROGRAMMER'’S GUIDE

Simple Input and Output

addch()

SYNOPSIS

#include <curses.h>
int addch(ch)

chtype ch;

NOTES

B addch() writes a single character to stdscr and advances the cursor to
the next character position.

M The character is of the type chtype, which is defined in <curses.h>.
chtype contains data and attributes (see "Output Attributes” in this
chapter for information about attributes).

B When working with variables of this type, make sure you declare them
as chtype and not as the basic type (for example, unsigned long) that
chtype is declared to be in <curses.h>. This will ensure future compa-
tibility.

B addch() does some translations. For example, it converts

O the <NL> character to a clear to end of line and a move to the
next line

O the tab character to an appropriate number of blanks
O other control characters to their "X notation

B addch() normally returns OK. The only time addch() returns ERR is
after adding a character to the lower right-hand corner of a window
that does not scroll.

B addch() is a macro.

EXTENDED TERMINAL INTERFACE 10-19

Simple Input and Output

EXAMPLE
#include <curses.h>

main()

{
initscr();
addch('a’);
refresh();
endwin();

The output from this program will appear as follows, with ‘a’ in position
0,0:

$0

See also the show program under "ETI Example Programs* in this
chapter.

10-20 PROGRAMMER’S GUIDE

Simple Input and Output

addstr({)

SYNOPSIS
#include <curses.h>

int addstr(str)
char *str;

NOTES

addstr() writes a string of characters to stdscr.
addstr() calls addch() to write each character.

addstr() follows the same translation rules as addch().
addstr() returns OK on success and ERR on error.

addstr() is a macro.

EXAMPLE

Recall the sample program that prints the character string BullsEye. See
Figures 10-2, 10-3, and 10-4.

EXTENDED TERMINAL INTERFACE 10-21

Simple Input and Output

printw()

SYNOPSIS
#include <curses.h>

int printw(fmt [arg...])
char sfmt

NOTES
B printw() handles formatted printing on stdscr.

B Like printf, printw() takes a format string and a variable number of
arguments.

B Like addstr(), printw() calls addch() to write the string.

B printw() returns OK on success and ERR on error.

10-22 PROGRAMMER’S GUIDE

Simple Input and Output

EXAMPLE

#include <curses.h>

main()

{
char* title = "Not specified";
int no = 03

/* Missing code. */

initscr();

/* Missing code. */

printw("%s is not in stock.\n", title);
printw("Please ask the cashier to order %d for you.\n", no);

refresh();
endwin() ;

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$a

EXTENDED TERMINAL INTERFACE 10-23

Simple Input and Output

move()

SYNOPSIS
#include <curses.h>

int move(y, x);
inty, x;

NOTES

B move() positions the cursor for stdscr at the given row y and the given
column x.

B Notice that move() takes the y coordinate before the x coordinate.
The upper left-hand coordinates for stdscr are (0,0), the lower right-
hand (LINES - 1, COLS - 1). See the section "The Routines initscr(),
refresh(), and endwin()* for more information.

B move() may be combined with the write functions to form

0O mvaddch(y, x, ch), which moves to a given position and prints a
character

0O mvaddstr(y, x, str), which moves to a given position and prints a
string of characters

O mvprintw(y, x, fmt [,arg...]),
which moves to a given position and prints a formatted string.

B move() returns OK on success and ERR on error. Trying to move to a
screen position of less than (0,0) or more than (LINES - 1, COLS - 1)
causes an error.

M move() is a macro.

10-24 PROGRAMMER’S GUIDE

Simple Input and Output

EXAMPLE
#include <curses.h>

main()

{
initscr();
addstr("Cursor should be here --> if move() works.");
printw("\n\n\nPress <CR> to end test.");
move(0,25);
refresh();
getch(); /* Gets <CR>; discussed below. */
endwin();

}

Here’s the output generated by running this program:

Qursor should be here -->[lif move() works.

Press <CR> to end test.

After you press <CR>, the screen looks like this:

Cursor should be here --> if move() works.

Press <CR> to end test.

See the scatter program under "ETI Program Examples" in this chapter for
another example using move().

EXTENDED TERMINAL INTERFACE 10-25

Simple Input and Output

clear{) and erase()

SYNOPSIS
#include <curses.h>

int clear()
int erase()

NOTES
B Both routines change stdscr to all blanks.

B clear() assumes that the screen may have garbage that it doesn’t know
about; this routine first calls erase() and then clearok() which clears the
physical screen completely on the next call to refresh() for stdscr. See
the low-level ETI or curses(3X) manual page for more information
about clearok().

B initscr() automatically calls clear().
B clear() and erase() always return OK.

B Both routines are macros.

10-26 PROGRAMMER’S GUIDE

Simple Input and Output

clrtoeol() and clrtobot()

SYNOPSIS
#include <curses.h>

int clrtoeol()
int clrtobot()

NOTES

B clrtoeol() changes the remainder of a line to all blanks.

B clrtobot() changes the remainder of a screen to all blanks.
B Both begin at the current cursor position inclusive.
]

Neither returns any useful value.

EXTENDED TERMINAL INTERFACE 10-27

Simple Input and Output

EXAMPLE
The following sample program uses clrtobot().

#include <curses.h>

main()
{
initscr();
addstr("Press <CR> to delete from here to the end of the line and on.");
addstr("\nDelete this too.\nAnd this.");
move(0,30);
refresh();
getch();
clrtobot();
refresh();
endwin();

Here's the output generated by running this program:

Press <CR> to delete from here[ho the end of the line and on.
Delete this too.
Ard this.

Notice the two calls to refresh(): one to send the full screen of text to a
terminal, the other to clear from the position indicated to the bottom of a
screen.

Here’s what the screen looks like when you press <CR>:

10-28 PROGRAMMER’S GUIDE

Simple Input and Output

Press <CR> to delete fram here

s0

See the show and two programs under "Program Examples" for other
uses of clrtoeol().

EXTENDED TERMINAL INTERFACE 10-29

Simple Input and Cutput

Input

Low-level routines for reading from the current terminal are similar to
those provided by the stdio(3S) library for reading from a file. They let you
do the following:

B read one character at a time — getch()
B read a <NL>-terminated string — getstr()

B parse input, converting and assigning selected data to an argument list
— scanw()

The primary routine is getch(), which processes a single input character
and then returns that character. This routine is like the C library routine
getchar()(3S) except that it makes several terminal- or system-dependent
options available that are not possible with getchar(). For example, you can
use getch() with the ETI routine keypad(), which allows a low-level ETI pro-
gram to interpret extra keys on a user’s terminal, such as arrow keys, function
keys, and other special keys that transmit escape sequences, and treat them as
just another key. See the descriptions of getch() and keypad() on the
curses(3X) manual page for more information about keypad().

The following pages describe and give examples of the basic routines for
getting input in a screen program.

10-30 PROGRAMMER’S GUIDE

Simple Input and Output

getch()
SYNOPSIS

#include <curses.h>
int getch()
NOTES
B getch() reads a single character from the current terminal.

B getch() returns the value of the character or ERR on ‘end of file,’
receipt of signals, or nonblocking read with no input.

B getch() is a macro.

B See the discussions about echo(), noecho(), cbreak(), nocbreak(), raw(),
noraw(), halfdelay(), nodelay(), and keypad() on the following pages
and in curses(3X).

EXTENDED TERMINAL INTERFACE 10-31

Simple Input and Cutput

EXAMPLE

#include <curses.h>

main()
{
int ch;

initscr();

cbreak(); /* Explained later in the section "Imput Options" */
addstr("Press any character: ");

refresh();

ch = getch();

printw("\n\n\nThe character entered was a '%c'.\n", ch);

refresh();

endwin();

The output from this program follows. The first refresh() sends the
addstr() character string from stdscr to the terminal.

Press any character: 0O

Now assume that a w is typed at the keyboard. getch() accepts the char-
acter and assigns it to ch. Finally, the second refresh() is called and the
screen appears as follows:

10-32 PROGRAMMER’S GUIDE

Simple Input and Output

w

(essany character:

The character entered was a 'w'.

$0O

For another example of getch(), see the show program under "Program
Examples" in this chapter.

EXTENDED TERMINAL INTERFACE 10-33

Simple Input and Output

getstr()

SYNOPSIS
#include <curses.h>

int getstr(str)
char sstr;

NOTES

B getstr() reads characters and stores them in a buffer until a <CR>,
<NL>, or <ENTER> is received from stdscr. getstr() does not check
for buffer overflow.

B The characters read and stored are in a character string.
B getstr() is a macro; it calls getch() to read each character.

B getstr() returns ERR if getch() returns ERR to it. Otherwise it returns
OK. '

B See the discussions on echo(), noecho(), cbreak(), nocbreak(), raw(),
noraw(), halfdelay(), nodelay(), and keypad() on the following pages
and in ETI curses(3X).

10-3¢ PROGRAMMER’S GUIDE

Simple Input and Output

EXAMPLE

#include <curses.h>

main()

{

char str[256];

initscx();

cbreak(); /* Explained later in the section "Input Options" */
addstr("Enter a character string terminated by <CR>:\n\n");
refresh()

getstr(str);

printw("\n\n\nThe string entered was \n'%s'\n", str);

refresh();

endwin();

Assume you entered the string ‘I enjoy learning about the UNIX System.’

The final screen (after entering <CR>) would appear as follows:

C&ra character string terminated by <CR>:

I enjoy learning about the UNIX System.

The string entered was
‘I enjoy learning about the UNIX System.'

$0O

J

EXTENDED TERMINAL INTERFACE 10-35

Simple Input and Cutput

scanw()

SYNOPSIS
#include <curses.h>

int scanw(fmt [, arg...])
char *fmt;

NOTES
B scanw() calls getstr() and parses an input line.

B Like scanf(35), scanw() uses a format string to convert and assign to a
variable number of arguments.

B scanw() returns the same values as scanf().

B See scanf(3S) for more information.

10-36¢ PROGRAMMER’S GUIDE

Simple Input and Output

EXAMPLE
#include <curses.h>

main()

{
char string[100];
float number;

initser();

cbreak(); /% Explained later in the */

echo(); /* section "Input Options" */

addstr("Enter a number and a string separated by a camma: ");
refresh();

scanw("%f ,%s" ,&mumber , string) ;

clear();

printw("The string was \"%s\" and the mmber was %f.",string,mmber);
refresh();

endwin();

Notice the two calls to refresh(). The first call updates the screen with the
character string passed to addstr(), the second with the string returned from
scanw(). Also notice the call to clear(). Assume you entered the following
when prompted: 2,twin. After running this program, your terminal screen
would appear, as follows:

The string was “twin" and the number was 2.000000.

sO

EXTENDED TERMINAL INTERFACE 10-37

Simple Input and Output

Output Attributes

When we talked about addch(), we said that it writes a single character of
the type chtype to stdscr. chtype has two parts: a part with information
about the character itself and another part with information about a set of
attributes associated with the character. The attributes allow a character to be
printed in reverse video, bold, a particular color, underlined, and so on.

stdscr always has a set of current attributes that it associates with each
character as it is written. However, using the routine attrset() and related ETI
routines described below, you can change the current attributes. Below is a
list of the attributes and what they mean:

B A_BLINK—blinking

A_BOLD—extra bright or bold

A_DIM—half bright

A_REVERSE—reverse video

A_STANDOUT—a terminal’s best highlighting mode
A_UNDERLINE—underlining

A_ALTCHARSET—alternate character set (see the section "Drawing
Lines and Other Graphics” in this chapter)

B COLOR_PAIR()—change foreground and background colors (see the
section on "Color Manipulation® in this section)

To use these attributes, you must pass them as arguments to attrset() and
related routines; they can also be ORed with the bitwise OR (i) to addch().

Not all terminals are capable of displaying all attributes. If a particular ter-
NOTE| minal cannot display a requested attribute, an ETI program attempts to find
a substitute attribute. If none is possible, the attribute is ignored.

10-38 PROGRAMMER’S GUIDE

Simple Input and Output

Let’s consider a use of one of these attributes. To display a word in bold,
you would use the following code:

4

printw("A word in *);
attrset(A_BOLD);
printw(“boldface");

attrset(0);

printw(® really stands ocut.\n");

%sh();

Attributes can be turned on singly, such as attrset(A_BOLD) in the exam-
Ple, or in combination. To turn on blinking bold text, for example, you would
use attrset(A_BLINK! A_BOLD). Individual attributes can be turned on and
off with the ETI routines attron() and attroff() without affecting other attri-
butes. attrset(0) turns all attributes off, including changes you may have
made to foreground and background color.

Notice the attribute called A_STANDOUT. You might use it to make text
attract the attention of a user. The particular hardware attribute used for stan-
dout is the most visually pleasing attribute a terminal has. Standout is typi-
cally implemented as reverse video or bold. Many programs don't really need
a specific attribute, such as bold or reverse video, but instead just need to
highlight some text. For such applications, the A_STANDOUT attribute is
recommended. Two convenient functions, standout() and standend() can be
used to turn on and off this attribute. standend(), in fact, turns off all attri-
butes.

In addition to the attributes listed above, there are two bit masks called
A_CHARTEXT and A_ATTRIBUTES. You can use these bit masks with the
ETI function inch() and the C logical AND (&) operator to extract the char-
acter or attributes of a position on a terminal screen. See the discussion of
inch() on the curses(3X) manual page. A third bit mask, A_COLOR, can be
used to extract information about the color-pair field of a position on a termi-
nal screen.

EXTENDED TERMINAL INTERFACE 10-39

Simple Input and Output

Following are descriptions of attrset() and the other ETI routines that you
can use to manipulate attributes.

10-40 PROGRAMMER’S GUIDE

Simple Input and Output

attron(), attrset(), and attroff()

SYNOPSIS
#include <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

B attron() turns on the requested attribute attrs in addition to any that
are currently on. attrs is of the type chtype and is defined in
<curses.h>,

B attrset() turns on the requested attributes attrs instead of any that are
currently turned on.

W attroff() turns off the requested attributes attrs if they are on.
B The attributes may be combined using the bitwise OR (1).
B All return OK.
EXAMPLE
See the highlight program under "Program Examples" in this chapter.

EXTENDED TERMINAL INTERFACE 10-41

Simple Input and Output

standout() and standend()

SYNOPSIS
#include <curses.h>

int standout()
int standend()

NOTES

B standout() turns on the preferred highlighting attribute,
A_STANDOUT, for the current terminal. This routine is equivalent to
attron(A_STANDOUT).

B standend() turns off all attributes. This routine is equivalent to
attrset(0), where attrset() takes the argument 0.

B Both always return OK.
EXAMPLE

Again, see the highlight program under "Program Examples" in this
chapter.

10-42 PROGRAMMER’S GUIDE

Simple Input and Output

Color Manipulation

The ETI color manipulation routines allow you to use colors on an
alphanumeric terminal as you would use any other video attribute. You can
find out if the ETI library on your system supports the color routines by
checking the file /usr/include/curses.h to see if it defines the macro
COLOR_PAIR(n).

This section begins with a description of the color feature at a general
level. Then, the use of color as an attribute is explained. Next, the ways to
define color-pairs and change the definitions of colors is explained. Finally,
there are guidelines for ensuring the portability of your program, and a section
describing the color manipulation routines and macros, with examples.

How the Color Feature Works

Colors are always used in pairs, consisting of a foreground color (used for
the character) and a background color (used for the field on which the charac-
ter is displayed). ETI uses this concept of color-pairs to manipulate colors. In
order to use color in a ETI program, you must first define (initialize) the indi-
vidual colors, then create color-pairs using those colors, and finally, use the
color-pairs as attributes.

Actually, the process is even simpler, since ETI maintains a table of initial-
ized colors for you. This table has as many entries as the number of colors
your terminal can display at one time. Each entry in the table has three fields:
one each for the intensity of the red, green, and blue components in that
color.

ETI uses RGB (Red, Green, Blue) color notation. This notation allows
NOTE| you to specify directly the intensity of red, green, and blue light to be
generated in an additive system. Some terminals use an alternative nota-
[tion, known as HSL (Hue, Saturation, Luminosity) color notation. Termi-
nals that use HSL can be identified in the terminfo database, and ETI
will make conversions to RGB notation automatically.

At the beginning of any ETI program that uses color, all entries in the colors
table are initialized with eight basic colors, as follows:

EXTENDED TERMINAL INTERFACE 10-43

Simple Input and Output

Intensity of Component

(R)ed = (G)reen _ (B)lue
/* black: 0 */ 0 0 0
/* blue: 1 */ 0 0 1000
/* green: 2 */ 0 1000 0
/* cyan: 3 */ 0 1000 1000
[*red:4*/ 1000 0 0
/* magenta: 5 */ | 1000 0 1000
/* yellow: 6 */ 1000 1000 0
/* white: 7 */ 1000 1000 1000

The Default Colors Table

Most color alphanumeric terminals can display eight colors at the same time,
but if your terminal can display more than eight, then the table will have
more than eight entries. The same eight colors will be used to initialize addi-
tional entries. If your terminal can display only N colors, where N is less than
eight, then only the first N colors shown in the Colors Table will be used.

You can change these color definitions with the routine init_color(), if
your terminal is capable of redefining colors. If your terminal is not able to
change the definition of a color, use of init_color() returns ERR.

The following color macros are defined in curses.h and have numeric

values corresponding to their position in the Colors Table.

OOLCR_BLACK
COLOR _ELUE
COLOR_GREEN
COLOR_CYAN
COLOR_RED
COLOR_MAGENTA
COLOR _YELIOW
COLOR_WHITE

10-44 PROGRAMMER'’S GUIDE

0

NOU bW o

Simple Input and Output

ETI also maintains a table of color-pairs, which has space allocated for as
many entries as the number of color-pairs that can be displayed on your ter-
minal screen at the same time. Unlike the colors table, however, there are no
default entries in the pairs table: it is your responsibility to initialize any
color-pair you want to use with init_pair(), before you use it as an attribute.

Each entry in the pairs table has two fields: the foreground color, and the
background color. For each color-pair that you initialize, these two fields will
each contain a number representing a color in the colors table. (Note that
color-pairs can only be made from previously initialized colors.)

The following example pairs table shows that a programmer has used
init_pair() to initialize color-pair 1 as a blue foreground (entry 1 in the
default color table) on yellow background (entry 6 in the default color table).
Similarly, the programmer has initialized color-pair 2 as a cyan foreground on
a magenta background. Not-initialized entries in the pairs table would actu-
ally contain zeros, which corresponds to black on black.

Note that color-pair 0 is reserved for use by ETI and should not be
changed or used in application programs.

Color-Pair Number _ Foreground = Background

0 0 0
1 1 6
2 3 5
3 0 0
4 0 0
5 0 0

Example of a Pairs Table

Two global variables used by the color routines are defined in
<curses.h>. They are COLORS, which contains the maximum number of
colors the terminal supports, and COLOR_PAIRS, which contains the max-
imum number of color-pairs the terminal supports. Both are initialized by the
start_color() routine to values it gets from the terminfo database.

EXTENDED TERMINAL INTERFACE 10-45

Simple Input and Output

Using the COLOR_PAIR(n) Attribute

If you choose to use the default color definitions, there are only two
things you need to do before you can use the attribute COLOR_PAIR(n).
First, you must call the routine start_color(). Once you've done that, you can
initialize color-pairs with the routine init_pair(pair, f, b). The first argument,
pair, is the number of the color-pair to be initialized (or changed), and must
be between 1 and COLOR_PAIRS-1. The arguments f and b are the fore-
ground color number and the background color number. The value of these
arguments must be between 0 and COLORS-1. For example, the two color-
pairs in the pairs table described earlier can be initialized in the following
way:

init pair (1, COLOR BLUE, COLOR YELLOW);
init pair (2, COLOR CYAN, COLOR MAGENTA);

Once you've initialized a color-pair, the attribute COLOR_PAIR(n) can be
used as you would use any other attribute. COLOR_PAIR(#) is a macro,
defined in <curses.h>. The argument, n, is the number of a previously ini-
tialized color-pair. For example, you can use the routine attron() to turn on a
color-pair in addition to any other attributes you may currently have turned
on:

attron (COLOR PAIR(1));

If you had initialized color-pair 1 in the way shown in the example pairs
table, then characters displayed after you turned on color-pair 1 with attron()
would be displayed as blue characters on a yellow background.

You can also combine COLOR_PAIR(n) with other attributes, for exam-
ple,

attrset(A BLINK | COLOR PATR(1));

would turn on blinking and whatever you have initialized color-pair 1 to be.
(attron() and attrset() are described in the " Controlling Input and Output*®
section of this chapter, and also on the curses(3X) manual page in the
Programmer’s Reference Manual.)

Changing the Definitions of Colors. If your terminal is capable of redefin-
ing colors, you can change the predefined colors with the routine
init_color(color, , g, b). The first argument, color, is the numeric value of the
color you want to change, and the last three, 7, g, and b, are the intensities of
the red, green, and blue components, respectively, that the new color will

10-46 PROGRAMMER’S GUIDE

Simple Input and Output

contain. Once you change the definition of a color, all occurrences of that
color on your screen change immediately.

So, for example, you could change the definition of color 1
(COLOR_BLUE by default), to be light blue, in the following way.

init_color (COLOR BLUE, 0, 700, 1000);

Portability Guidelines

Like the rest of ETI the color manipulation routines have been designed to
be terminal independent. But it must be remembered that the capability of
terminals vary. For example, if you write a program for a terminal that can
support 64 color-pairs, that program would not be able to produce the same
color effects on a terminal that supports at most 8 color-pairs.

When you are writing a program that may be used on different terminals,
you should follow these guidelines:

Use at most seven color-pairs made from at most eight colors.

Programs that follow this guideline will run on most color terminals.
Only seven, not eight, color-pairs should be used, even though many ter-
minals support eight color-pairs, because curses reserves color-pair 0 for
its own use.

Do not use color 0 as a background color.

This is recommended because on some terminals, no matter what color
you have defined it to be, color 0 will always be converted to black when
used for a background.

Combine color and other video attributes.

Programs that follow this guideline will provide some sort of highlighting,
even if the terminal is monochrome. On color terminals, as many of the
listed attributes as possible would be used. On monochrome terminals,
only the video attributes would be used, and the color attribute would be
ignored.

Use the global variables COLORS and COLOR-PAIRS rather than con-
stants when deciding how many colors or color-pairs your program
should use.

EXTENDED TERMINAL INTERFACE 10-47

Simple Input and Output

Other Macros and Routines
There are two other macros defined in <curses.h> that you can use to
obtain information from the color-pair field in characters of type chtype.

B A_COLOR is a bit mask to extract color-pair information. It can be
used to clear the color-pair field, and to determine if any color-pair is
being used.

B PAIR_NUMBER(attrs) is the reverse of COLOR_PAIR(n). It returns
the color-pair number associated with the named attribute, attrs.

There are two color routines that give you information about the terminal
your program is running on. The routine has_colors() returns a Boolean
value: TRUE if the terminal supports colors, FALSE otherwise. The routine
can_change_colors() also returns a Boolean value: TRUE if the terminal sup-
ports colors and can change their definitions, FALSE otherwise.

There are two color routines that give you information about the colors
and color-pairs that are currently defined on your terminal. The routine
color_content() gives you a way to find the intensity of the RGB components
in an initialized color. It returns ERR if the color does not exist or if the ter-
minal cannot change color definitions, OK otherwise. The routine
pair_content() allows you to find out what colors a given color-pair consists
of. It returns ERR if the color-pair has not been initialized, OK otherwise.

These routines are explained in more detail on the curses(3X) manual
page in the Programmer’s Reference Manual.

The routines start_color(), init_color(), and init_pair() are described on
the following pages, with examples of their use. You can also refer to the pro-
gram colors in the section "Program Examples," at the end of this chapter,
for an example of using the attribute of color in windows.

10-48 PROGRAMMER’S GUIDE

Simple Input and Output

start_color()

SYNOPSIS
#include <curses.h>

int start_color()

NOTES

B This routine must be called if you want to use colors, and before any
other color manipulation routine is called. It is good practice to call it
right after initscr().

B It initializes eight default colors (black, blue, green, cyan, red, magenta,
yellow, and white), and the global variables COLORS and
COLOR_PAIRS. If the value corresponding to COLOR_PAIRS in the
terminfo database is greater than 64, COLOR_PAIRS will be set to
64.

B It restores the terminal’s colors to the values they had when the termi-
nal was just turned on.

B It returns ERR if the terminal does not support colors, OK otherwise.
EXAMPLE

See the example under init_pair().

EXTENDED TERMINAL INTERFACE 10-949

Simple Input and Output

init_pair()

SYNOPSIS
#include <curses.h>

int init_pair (pair, £, b)
short pair, f, b;

NOTES
B init_pair() changes the definition of a color-pair.

B Color-pairs must be initialized with init_pair() before they can be
used as the argument to the attribute macro COLOR_PAIR(n).

B The value of the first argument, pair, is the number of a color-pair, and
must be between 1 and COLOR_PAIRS-1.

M The value of the f (foreground) and b (background) arguments must be
between 0 and COLORS-1.

B If the color-pair was previously initialized, the screen will be refreshed
and all occurrences of that color-pair will change to the new definition.

B It returns OK if it was able to change the definition of the color-pair,
ERR otherwise.

EXAMPLE
#include <curses.h>
main()
{
initser ();
if (start colar () == K)
{
init pair (1, OCOLOR RED, QOLOR GREEN);
attren (OOLCR_PAIR (1));
addstr ('Red on Green");
refresh(});
}
endwin();
}

Also see the program colors in the section "Program Examples."

10-50 PROGRAMMER’S GUIDE

Simple Input and Cutput

SYNOPSIS
#include <curses.h>

int init_color(color, 1, g, b)
short color, 1, g b;

NOTES
M init_color() changes the definition of a color.

B The first argument, color, is the number of the color to be changed.
The value of color must be between 0 and COLORS-1.

B The last three arguments, r, g, and b, are the amounts of red, green,
and blue (RGB) components in the new color. The values of these
three arguments must be between 0 and 1000.

B When init_color() is used to change the definition of an entry in the
colors table, all places where the old color was used on the screen
immediately change to the new color.

B It returns OK if it was able to change the definition of the color, ERR
otherwise.

EXAMPLE
#include <curses.h>
main()
{
initser();
if (start color == OK)
{
init pair (1, COLOR RED, COLOR GREEN);
attren (OOLOR PAIR (1));
if (init_color (COLOR RED, 0, 0, 1000) == CK)
addstr (“BLUE ON GREEN");
else
addstr ("RED QN GREEN");
refresh ();

}
endwin();

EXTENDED TERMINAL INTERFACE 10-51

Simple Input and Output

Bells, Whistles, and Flashing Lights: beep() and
flash()

Occasionally, you may want to get a user’s attention. Two low-level ETI
routines are designed to help you do this—they let you ring the terminal’s
chimes and flash its screen.

flash() flashes the screen if possible, and otherwise rings the bell. Flash-
ing the screen is intended as a bell replacement, and is particularly useful if
the bell bothers someone within ear shot of the user. The routine beep() can
be called when a real beep is desired. (If for some reason the terminal is
unable to beep, but able to flash, a call to beep() will flash the screen.)

SYNOPSIS
#include <curses.h>

int flash(
int beep()

NOTES

B flash() tries to flash the terminal screen, if possible, and, if not, tries to
ring the terminal bell.

B beep() tries to ring the terminal bell, if possible, and, if not, tries to
flash the terminal screen.

B beep will not work if you redefine TRUE to something other than 1.

B Neither returns any useful value.

10-52 PROGRAMMER’S GUIDE

Simple Input and Output

Input Options

The UNIX System does a considerable amount of processing on input
before an application ever sees a character. For example, it does the follow-

ing:
B echoes (prints back) characters to a terminal as they are typed

B interprets an erase character (typically #) and a line kill character (typ-
ically @)
@ interprets a CTRL-D (control d) as end of file (EOF)

B interprets interrupt and quit characters
B strips the character’s parity bit

B translates <CR> to <NL>

Because an ETI program maintains total control over the screen, low-level
ETI turns off echoing on the UNIX System and does echoing itself. At times,
you may not want the UNIX System to process other characters in the stan-
dard way in an interactive screen management program. Some ETI routines,
noecho() and cbreak(), for example, have been designed so that you can
change the standard character processing. Using these routines in an applica-
tion controls how input is interpreted. Figure 10-5 shows some of the major
routines for controlling input.

Every low-level ETI program accepting input should set some input
options. This is because when the program starts running, the terminal on
which it runs may be in cbreak(), raw(), nocbreak(), or noraw() mode.
Although the low-level ETI program starts up in echo() mode, as Figure 10-5
shows, none of the other modes are guaranteed.

The combination of noecho() and cbreak() is most common in interactive
screen management programs. Suppose, for instance, that you don’t want the
characters sent to your application program to be echoed wherever the cursor
currently happens to be; instead, you want them echoed at the bottom of the
screen. The ETI routine noecho() is designed for this purpose. However,
when noecho() turns off echoing, normal erase and kill processing is still on.
Using the routine cbreak() causes these characters to be uninterpreted.

EXTENDED TERMINAL INTERFACE 10-53

Simple Input and Output

Input Characters
Options Interpreted Uninterpreted
Normal interrupt, quit
‘out of ETI stripping
state’ <CR> to <NL>
echoing
erase, kill
EOF
Normal echoing All else
ETI 'start up | (simulated) undefined.
state’
cbreak() interrupt, quit erase, kill
and echo() stripping EOF
echoing
cbreak() interrupt, quit echoing
and noecho() | stripping erase, kill
EOF
nocbreak() break, quit echoing
and noecho() | stripping
erase, kill
EOF
nocbreak() See caution below.
and echoy()
nl() <CR> to <NL>
nonl() <CR> to <NL>
raw() break, quit
(instead of stripping
cbreak())

Figure 10-5: Input Option Settings for ETI Programs

10-54 PROGRAMMER’S GUIDE

Simple Input and Output

Do not use the combination nocbreak() and echo(). If you use it in a
program and also use getch(), the program will go in and out of
cbreak() mode to get each character. Depending on the state of the tty
driver when each character is typed, the program may produce undesir-
able output.

In addition to the routines noted in Figure 10-5, you can use the ETI rou-
tines noraw(), halfdelay(), and nodelay() to control input. See the curses(3X)
manual page for discussions of these routines.

The next few pages describe noecho(), cbreak() and the related routines
echo() and nocbreak() in more detail.

EXTENDED TERMINAL INTERFACE 10-55

Simple Input and Cutput

echo() and noechof)

SYNOPSIS
#include <curses.h>

int echo()
int noecho()

NOTES

B echo() turns on echoing of characters by ETI as they are read in. This
is the initial setting.

B noecho() turns off the echoing.
B Neither returns any useful value.

B ETI programs may not run properly if you turn on echoing with noc-
break(). See Figure 10-5 and accompanying caution. After you turn
echoing off, you can still echo characters with addchy).

EXAMPLE

See the editor and show programs under "Program Examples" in this
chapter.

10-56 PROGRAMMER’S GUIDE

Simple Input and Output

cbreak() and nocbreak()

SYNOPSIS

#include < curses.h >
int cbreak(
int nocbreak()

NOTES

B cbreak() turns on ‘break for each character’ processing. A program
gets each character as soon as it is typed, but the erase, line kill, and
CTRL-D characters are not interpreted.

B nocbreak() returns to normal ‘line at a time’ processing. This is typi-
cally the initial setting.

B Neither returns any useful value.

B ETI programs may not run properly if cbreak() is turned on and off
within the same program or if the combination nocbreak() and echo()
is used.

B See Figure 10-5 and accompanying caution.
EXAMPLE

See the editor and show programs under "Program Examples" in this
chapter.

EXTENDED TERMINAL INTERFACE 10-57

Windows

An earlier section in this chapter, *More about refresh() and Windows, "
explained what windows and pads are and why you might want to use them.
This section describes the ETI routines you use to manipulate and create win-
dows and pads.

Output and Input

The routines that you use to send output to and get input from windows
and pads are similar to those you use with stdscr. The only difference is that
you have to give the name of the window to receive the action. Generally,
these functions have names formed by putting the letter w at the beginning of
the name of a stdscr routine and adding the window name as the first param-
eter. For example, addch(’c’) would become waddch(mywin, ‘c’) if you
wanted to write the character ¢ to the window mywin. Here’s a list of the
window (or w) versions of the output routines discussed in "Simple Input and
Output.®

B waddch(win, ch)

mvwaddch(win, y, x, ch)
waddstr(win, str)

mvwaddstr(win, y, x, str)
wprintw(win, fmt [, arg...])
mvwprintw(win, y, x, fmt [, arg...])
wmove(win, y, x)

wclear(win) and werase(win)

wclrtoeol(win) and wclrtobot(win)

wrefresh(win)

You can see from their declarations that these routines differ from the ver-
sions that manipulate stdscr only in their names and the addition of a win
argument. Notice that the routines whose names begin with mvw take the
win argument before the y, x coordinates, which is contrary to what the names
imply. See curses(3X) for more information about these routines or the ver-

sions of the input routines getch, getstr(), and so on that you should use with
windows.

10-58 PROGRAMMER’S GUIDE

Windows

All w routines can be used with pads except for wrefresh() and
wnoutrefresh() (see below). In place of these two routines, you have to use
prefresh() and pnoutrefresh() with pads.

The Routines wnoutrefresh() and doupdate()

If you recall from the earlier discussion about refresh(), we said that it
sends the output from stdscr to the terminal screen. We also said that it was
a macro that expands to wrefresh(stdscr) (see "What Every ETI Program
Needs® and "More about refresh() and Windows").

The wrefresh() routine is used to send the contents of a window (stdscr
or one that you create) to a screen; it calls the routines wnoutrefresh() and
doupdate(). Similarly, prefresh() sends the contents of a pad to a screen by
calling pnoutrefresh() and doupdate().

Using wnoutrefresh()—or pnoutrefresh() (this discussion will be limited
to the former routine for simplicity)—and doupdate(), you can update termi-
nal screens more efficiently than using wrefresh() by itself. wrefresh() works
by first calling wnoutrefresh(), which copies the named window to a data
structure referred to as the virtual screen. The virtual screen contains what a
program intends to display at a terminal. After calling wnoutrefresh(),
wrefresh() then calls doupdate(), which compares the virtual screen to the
physical screen and does the actual update. If you want to output several
windows at once, calling wrefresh() will result in alternating calls to
wnoutrefresh() and doupdate(), causing several bursts of output to a screen.
However, by calling wnoutrefresh() for each window and then doupdate()
only once, you can minimize the total number of characters transmitted and
the processor time used. Figure 10-6 shows a sample program that uses only
one doupdate().

EXTENDED TERMINAL INTERFACE 10-59

g <curses.h>

main()
{
WINDOW *w1, *w2;

initser();

w1 = newwin(2,6,0,3);
w2 = newwin(1,4,5,4);
waddstr(wl, "Bulls");
wnoutrefresh(w1) ;
waddstr(w2, "Eye");
wnoutrefresh(w2) ;
doupdate();

endwin();

_ /

Figure 10-6: Using wnoutrefresh() and doupdate()

Notice from the sample that you declare a new window at the beginning
of an ETI program. The lines

newwin(2,6,0,3);
newwin(1,4,5,4);

wl
w2

declare two windows named w1 and w2 with the routine newwin() according
to certain specifications. newwin() is discussed in more detail below.

Figure 10-7 illustrates the effect of wnoutrefresh() and doupdate() on
these two windows, the virtual screen, and the physical screen.

10-60 PROGRAMMER’S GUIDE

stdscr @ (0,0) virtual screen physical screen
initscr((] a

(garbage)

stdscr @ (0,0) virtual screen physical screen

wl=newwin

@603) |° o
(garbage)
wl@ (0,3)
a
stdscr @ (0,0) virtual screen physical screen
w2=newwin
(1.45.4) o a

(garbage)

wi@ (03) w2@ (5.4)
a o

Figure 10-7: The Relationship Between a Window and a Terminal Screen

EXTENDED TERMINAL INTERFACE 10-61

stdser @ (0,0) virtual screen physical screen

waddstr (w1,Bulls) a =

(garbage)

wi@ (03) w2@ (54)
o

Bulls O

stdser @ (0,0) virtual screen physical screen

wnoutrefresh (w1) o Bulls O

(garbage)

wl @ (0,3) w2 @ (54)

Bulls g o

stdscr @ (0,0) virtual screen physical screen

waddstr (w2,Eye) o Bulls O
(garbage)

wli@ (03) w2@ (54)

Bulls O EyeD

Figure 10-7: The Relationship Between a Window and a Terminal Screen (con-
tinued)

10-62 PROGRAMMER’S GUIDE

wnoutrefresh(w2)

doupdate()

endwin()

stdser @ (0,0)

virtual screen

Windows

physical screen

(=]
Bulls
(garbage)
EyeQ
wl@(©03) w2@ (54)
Bulls O EyeQ

stdscr @ (0,0)

virtual screen

physical screen

stdser @ (0,0)

= Bulls Bulls
EyeD Eye O
wl @ (0,3) w2 @ (54)
Bullsg Eyen

virtual screen

physical screen

0 Bulls Bulls
Eye O o Eye

wl@ (03) w2@ (54)

Bulls O Eye O

Figure 10-7: The Relationship Between a Window and a Terminal Screen (con-

tinued)

EXTENDED TERMINAL INTERFACE

10-63

New Windows

Following are descriptions of the routines newwin() and subwin(), which
you use to create new windows. For information about creating new pads
with newpad() and subpad(), see the curses(3X) manual page.

newwin()

SYNOPSIS
#include <curses.h>

WINDOW #*newwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin_y, begin_x;

NOTES
B newwin() returns a pointer to a new window with a new data area.
M The variables nlines and ncols give the size of the new window.

B begin_y and begin_x give the screen coordinates from (0,0) of the
upper left corner of the window as it is refreshed to the current screen.

EXAMPLE

Recall the sample program using two windows; see Figure 10-7. Also see
the window program under "Program Examples" in this chapter.

10-64 PROGRAMMER'’S GUIDE

Windows

subwin()

SYNOPSIS
#include <curses.h>

WINDOW #*subwin(orig, nlines, ncols, begin_y, begin_x)
WINDOW +orig;
int nlines, ncols, begin_y, begin_x;

NOTES

B subwin() returns a new window that points to a section of another
window, orig.

B nlines and ncols give the size of the new window.

B begin_y and begin_x give the screen coordinates of the upper left
corner of the window as it is refreshed to the current screen.

B Subwindows and original windows can accidentally overwrite one
another.

Subwindows of subwindows do not work (as of the copyright date of
this Programmer’s Guide).

EXTENDED TERMINAL INTERFACE 10-65

EXAMPLE

#include <curses.h>

main()

{

WINDOW *subj;
initscr();
box(stdscx, 'w', 'w'); /* See the curses(3X) manual page for box() */
mvwaddstr (stdscr, 7,10, "=————— this is 10,10");

mvwaddch(stdscr,8,10,'|');
mvwaddch(stdscr,9,10,'v');

sub = subwin(stdscr,10,20,10,10);
box(sub, 's','s');
wnoutrefresh(stdser) ;
wrefresh(sub) ;

endwin();

This program prints a border of w’s around stdscr (the sides of your ter-
minal screen) and a border of s’s around the subwindow sub when it is run.
For another example, see the window program under "Program Examples" in
this chapter.

ETI Low-Level Interface (curses) to High-Level
Functions

In the following sections, we will consider the ETI high-level functions,
which create and manipulate panels, menus, and forms. All application pro-
grams that use these high-level functions require a set of low-level ETI
(curses) calls that properly initialize and terminate the programs. For con-
venience, you may want to isolate these calls in appropriate routines. Figure
10-8 shows one way you might do this. It lists routines to start low-level ETI,
terminate it, and handle fatal errors.

10-66 PROGRAMMER’S GUIDE

Windows

Qcchar* joe |

static int CURSES

(char *) 0; /* program name */
FALSE; /* is curses initialized ? */

static void start_curses ()/* curses initialization */
{

QURSES = TRUE;

initser ();

nonl ()3

raw ();

noecho ();

wclear (stdscr);
}

static void end curses () /* curses termination */
{
if (CURSES)
{
CURSES = FALSE;
endwin ();

}

static void error (£, s) /* fatal error handler */
char * £;
char * s;
{
end curses ();
printf ("%s: ", PGM);
printf (£, s);
printf (%0);
exit (1);

| /

Figure 10-8: Sample Routines for Low-Level ETI (curses) Interface

These house-keeping routines use two global variables, PGM and CURSES.
PGM is initialized with the program’s name, while the Boolean CURSES is
initialized with FALSE because curses itself has not yet been invoked.

EXTENDED TERMINAL INTERFACE 10-67

Windows

Function start_curses() calls the low-level routines previously mentioned
and sets CURSES to TRUE to indicate that it has initialized curses. Function
end_curses() checks if curses is initialized and, if so, sets the variable
CURSES to FALSE and terminates curses. The check is necessary because
endwin(returns an error if called when curses is not initialized.

Function error is a universal fatal error handler—called whether or not
curses is initialized. Function error first calls end_curses() to terminate the
program if curses is on, and then prints the program’s name (PGM) and the
associated message. Finally, function error terminates the program itself using
exit().

10-68 PROGRAMMER’S GUIDE

Recall that a window is a rectangular area of the terminal screen on which
you can write using the low-level ETI (curses) routines. You can create many
windows on a screen, but if they overlap, portions of some windows intended
to be hidden may nonetheless be visible when you use the low-level routines
alone. To solve this problem, ETI uses the notion of a panel—a rectangle of
text with depth.

Panels have depth only in relation to other panels and stdscr, which lies
beneath all panels. The set of currently visible panels comprises the deck of
panels.

EXTENDED TERMINAL INTERFACE 10-69

Compiling and Linking Panel Programs

To use the panel routines, specify
#include <panel.h>
in your C program files and compile and link with the command line

cc [flags | files -lpanel -lcurses [libraries]

10-70 PROGRAMMER’S GUIDE

Creating Panels

This function creates a new panel on top of all existing panels in the deck.
Its argument is a pointer to a window.

SYNOPSIS

PANEL *new panel (window)
WINDOW *window; /* curses window to be associated with
new panel */

A pointer to the panel is returned if the panel is created; otherwise, the func-
tion returns NULL. The new_panel() operation fails if there is insufficient
memory or if the window pointer argument is NULL. The window whose
address is passed as an argument becomes associated with the panel. The size
and location of the panel are the same as that of the low-level ETI (curses)
window.

To create a panel, create a window, save the pointer to it, and use the
pointer as an argument to new_panel().

WINDOW *win;
PANEL *pptr;

win = newwin(2,6,0,3);
pptr = new panel(win); /* after execution, pptr stores pointer to
new panel */

Note that the newly created panel does not automatically have any adorn-
ments such as titles or borders. If you want your panel to have them, you
must call appropriate low-level ETI routines with the panel’s window as the
argument.

When you create a new panel, it is automatically placed on top of the
panel deck. Later, when you call doupdate() to adjust the visibility of all
panels, the top panel is completely visible. On lower levels, a portion of a
panel is visible only when no region of another panel is above it. Where two
panels overlap, the higher one hides the lower. (The higher one is the newer
one if neither has changed its position in the panel deck because of calls to
top—panel(), bottom_panel(), or show_panel() described below.) If the
panels do not overlap, the new panel is still logically above the old one.
Their relative depth is not apparent until one of them is moved and overlaps
the other.

EXTENDED TERMINAL INTERFACE 10-71

Elementary Panel Window Operations

This section explains how you can fetch pointers to panel windows,
change the windows associated with panels, and move panel windows to new
locations on the screen.

Fetching Pointers to Panel Windows

Each panel has a low-level ETI window associated with it. To retrieve a
pointer to this window, use function panel _window(.

SYNOPSIS

WINDOW *panel window(panel)
PANEL *panel; /% Panel whose window pointer is returnmed */

The function returns NULL if the panel pointer argument is NULL.

In general, you may use this returned pointer as an argument to any stan-
dard low-level (curses) routine that takes a pointer to a window as an argu-
ment. For example, you can insert a character ¢ at a location y,x in a panel
window with the function mvwinsch(win,y,x,c), where win is the window
pointer returned by panel_window().

WINDOW *win;
PANEL *panel;
int y, x;

chtype c;

win = panel window(panel);
mvwinsch(win,y,x,c);

Changing Panel Windows

To replace a panel’s pointer to a window with a pointer to another win-
dow, call function replace_panel(). After the call, the panel remains at the
same level within the panel deck.

10-72 PROGRAMMER’S GUIDE

Elementary Panel Window Operations

SYNOPSIS

int replace panel (panel, window)
PANEL *panel; /* Panel with window to be replaced */
WINDOW *window; /* New window pointer for panel */

This function returns OK if the operation is successful. If not, it returns ERR
and leaves the original panel unchanged. Operation replace_panel() fails if
the window pointer is NULL or there is insufficient memory.

To associate a panel with window win1 and later replace its window by
win2, you can write the following;:
WINDOW *win1, win2;
PANEL *panel;

panel = new panel(win1);
/* intervening processing with win1 as panel window */

replace panel(panel, win2); /* change window associated with panel to win2

Once you have created additional windows with the low-level function
newwin(), you in effect can reshape panel windows by using replace_panel().
To do so leaves the contents of the two windows unchanged.

Moving Panel Windows on the Screen

You should not move a panel’s window by calling the low-level function
mvwin(directly. To update the screen correctly, the panels subsystem must
know the location of all panel windows, but function mvwin() does not
inform the panels subsystem of the window’s new location. To move a
panel’s window, you must call the function move_panel(), which moves a
panel and its associated window and informs the panels subsystem of the
move.

EXTENDED TERMINAL INTERFACE 10-73

Elementary Panel Window Operations

SYNOPSIS

int move panel (panel, firstrow, firstcol)
PANEL *panel; /* Panel to be moved */
int firstrow, firstcol; /% row/col of upper left cormer of
" new location of window associated
with panel */

Note that the screen coordinates you specify are those for the upper left
corner of the window in its new location. The panel may be moved to any
location that the low-level ETI routines deem legitimate. In particular, a panel
may be partly off the screen. The size, contents, and relative depth of the
panel remain unchanged by move_panel(.

Function move_panel() returns OK if the operation was successful, ERR
otherwise. The move_panel() operation fails if the low-level ETI functions
are unable to move the panel’s window, or if there is insufficient memory to
satisfy the request. In these cases, the original panel remains unchanged.

To move the panel pointed to by panel such that its upper left corner is at
row 22, column 45, you can write

PANEL *panel;

move_panel(panel, 22, 45);

10-74 PROGRAMMER’S GUIDE

Moving Panels to the Top or Bottom of
the Deck

The relative depth of a panel can be changed by either pulling the panel
to the top of the deck or by pushing it to the bottom. In either case, all other
panels remain at the same depth relative to each other.

SYNOPSIS

int top panel(panel)
PANEL *panel;

int bottom panel (panel)
PANEL *panel;

Function top_panel() moves the panel pointed to by its argument to the top
of the panel deck, while function bottom_panel() moves the panel to the bot-
tom of the deck.

Both functions leave the size of the given panel, the contents of its associ-
ated window, and the relations of the other panels in the deck wholly intact.
Both return OK if the operation is successful, ERR if not. The functions fail if
the panel pointer argument is NULL or if the panel is hidden by a previous
call to function hide_panel() described below.

To move the panel pointed to by panell to the top of the deck of panels
and the panel pointed to by panel2 to the bottom of the deck, you can write
the following:

PANEL, * paneli1, * panel2;

top panel(panell);
bottom panel (panel2);

EXTENDED TERMINAL INTERFACE 10-75

Updating Panels on the Screen

Function update_panels() makes all low-level curses calls (such as
touchwin() and wnoutrefresh()) update all of the panels, so that proper depth
relationships are maintained and only appropriate portions of panels are
displayed.

SYNOPSIS

void update panels();

The function does not, however, actually refresh your terminal screen. To do
that, you must make a call to doupdate() whenever you want to display your
latest changes.

To avoid displaying text on hidden panels, you should not use the low-
level routines wnoutrefresh() and wrefresh() when working with panels.

In general, do not use the low-level routines wnoutrefresh() or wrefresh(

NOTE| to display a window associated with a panel. Instead, use function

| update_panels() and function doupdate() to display the entire deck of
panels.

If you use the low-level routines wnoutrefresh() or wrefresh() for a window
associated with a panel, it will not be displayed properly, unless it happens to
be associated with the top panel in the deck or is not hidden at all by other
panel windows.

Recall that panels are always above stdscr, the standard ETI window.
When a panel is moved or deleted, stdscr is updated along with the visible
panels to ensure that it appears beneath all panels. Although stdscr has
depth relative to other panels, it is not a panel, because panel operations like
top—panel() and bottom_panel() do not apply. However, because stdscr rests
beneath the deck of panels, you should always call update_panels() when
you work with panels and change stdscr, even if you do not change any
panels.

10-76 PROGRAMMER’S GUIDE

Updating Panels on the Screen

Function wgetch() automatically calls wrefresh(). Hence, if echo mode is
active, when you request input from a window associated with a panel, be
sure that the window is totally unobscured.

In summary, to update all panels and display them with their proper
depth relationship, write:

WINDOW *win;

update panels();
doupdate() ;

Finally, note that there is no way to display the updates to an obscured
panel without displaying the changes to all panels.

EXTENDED TERMINAL INTERFACE 10-77

Making Panels Invisible

ETI allows you to hide panels from the deck and later return them to it.

Panels may be temporarily hidden. This means that they are removed
from the panel deck, but the memory allocated to them is not released.

SYNOPSIS

int hide panel(panel)
PANEL *panel; /* Pointer to panel to be hidden */

Hidden panels are not refreshed to the screen, but you may nonetheless apply
nearly all panel operations to them.

Only the operations top_panel(), bottom_panel(), and hide_panel() may
NOTE| not be applied to hidden panels because their panel arguments must belong
to the deck of panels.

When you want to return a hidden panel to the deck of panels, use the
function show_panel() described in the next section. When the panel is
returned, it is placed on top of the deck.

To hide the panel pointed to by panel2 above, write
PANEL *panel2;

hide panel(panel2);

Function hide_panel() returns OK if the operation is successful and ERR if
its panel pointer argument is NULL.

If you use function hide_panel() wisely, your program’s performance can
increase. You can hide a panel temporarily if no portion of it is to be
displayed for awhile. An example is the hiding of a pop-up message. Interim
calls to function update_panels() will then execute faster. More importantly,
you do not incur the overhead of creating the pop-up message.

10-78 PROGRAMMER’S GUIDE

Making Panels Invisible

Checking If Panels are Hidden

To enable you to check if a given panel is hidden, ETI provides the fol-
lowing function.

SYNOPSIS
int panel hidden (panel)
PANEL * panel;

Function panel __hidden() returns a Boolean value (TRUE or FALSE) indicating
whether or not its panel argument is hidden.

You might want to use this function before calling functions top_panel()
or bottom_panel(), which do not operate on hidden panels. For example, to
minimize the risk of having the error value ERR returned when moving a
panel to the top of the deck, you can write

PANEL, * panel;

if (! panel hidden (panel)) /% panel in deck ? */
top panel (panel); /* move panel to top of deck */

Reinstating Panels

This function is the opposite of function hide_panel(). It returns the hid-
den panel referenced in its argument to the top of the panel deck.

SYNOPSIS
int show _panel (panel)
PANEL *panel; /% Panel to return to top of deck */

Note that the panel must have been hidden by a previous hide_panel() call.
The function returns OK if the operation is successful, and ERR if the panel
pointer is NULL, if there is insufficient memory, or if the panel is not hidden.

For example, to return panel2 to the deck, write

PANEL * panel2;

show_panel(panel2);

EXTENDED TERMINAL INTERFACE 10-79

Fetching Panels Above or Below Given
Panels

The following functions return a pointer to the panel immediately above
or below the given panel. They are helpful in walking the panel deck from
top to bottom or vice versa.

SYNOPSIS

PANEL +*panel above (panel)
PANEL, *panel; /* Get panel above this one */

PANEL *panel below (panel)
PANEL *panel; /* Get panel below this cne */

Because hidden panels have no depth, they are excluded from these traversals.

Function panel _above() returns the panel imme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>