

System V Interface Definition

System V
Interface Definition

Issue 2

Volume II

-- -----AT.T

ISBN 0-932764-10-X

Library of Congress Catalog Card No. 85-063224

Select Code No. 320-012

Copyright © 1986 AT&T. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means -
graphic, electronic, electrical, mechanical, or chemical, including photocopying, recording in
any medium, taping, by any computer or information storage and retrieval systems, etc.,
without prior permission in writing from AT&T.

IMPORTANT NOTE TO USERS
While every effort has been made to ensure the accuracy of all information in this document,
AT&T assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. AT&T further assumes no liability arising out of the application
or use of any product or system described herein; nor any liability for incidental or consequen­
tial damages arising from the use of this document. AT&T disclaims all warranties regarding
the information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

AT&T makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of license to make, use or sell equipment constructed in accordance
with this description.

AT&T reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

This document was set on an AUTOLOGIC, Inc. APS-S phototypesetter driven by the troff

formatter operating on UNIX System V on an AT&T 3820 computer.

• UNIX is a trademark of AT&T.
APS-5 is a trademark of AUTOLOGIC, Inc ..

How to Order

To order copies of the System V Interface Definition by phone, you may call:

(800) 432-6600 (Inside U.S.A.)
(800) 255-1242 (Inside Canada)
(317) 352-8557 (Outside U.S.A. & Canada)

You must use a major credit card for orders made by phone.

To order copies of the System V Interface Definition by mail, write to:

AT &T Customer Information Center (CIC)
Attn: Customer Service Representative
P.O. Box 19901
Indianapolis, IN 46219
U.S.A.

Be sure to include the address the books should be shipped to and a check or
money order made payable to AT&T.

Please identify the books you want to order by Select Code. Select Codes for the
System V Interface Definition are:

320-011
320-012
307-127

Volume I
Volume II
All Volumes

System V Interface Definition Page v

Preface

Part I A General Introduction to the
System V Interface Definition

Chapter 1 General Introduction
Chapter 2 Future Directions

Part II Base Utilities Extension Definition

Chapter 3 Introduction
Chapter 4 Commands and Utilities

Part III Advanced Utilities Extension Definition

Chapter 5 Introduction
Chapter 6 Commands and Utilities

Table of
Contents

Page

ix

3
9

19
21

133
135

Part IV Administered Systems Extension Definition

Chapter 7 Introduction 231
Chapter 8 Commands and Utilities 235

Part V Software Development Extension

Chapter 9 Introduction 293
Chapter 10 Library Routines 297
Chapter 11 Commands and Utilities 317

Part VI Terminal Interface Extension Definition

Chapter 12 Introduction 401
Chapter 13 Environment 405
Chapter 14 Library Routines 425
Chapter 15 Commands and Utilities 449

Indexes Volume II

General Index 455
Command and Function Index 459

System V Interface Definition Page vii

Preface

The System V Interface Definition specifies an operating system environment that
allows users to create applications software that is independent of any particular
computer hardware. The System V Interface Definition applies to computers that
range from personal computers to mainframes. Applications that conform to this
specification will allow users to take advantage of changes in technology and to
choose the computer that best meets their needs from among many manufacturers
while retaining a common computing environment.

The System V Interface Definition specifies the operating system components avail­
able to both end-users and application programs. The functionality of components
is defined, but the implementation is not. The System V Interface Definition
specifies the source-code interfaces of each operating system component as well as
the run-time behavior seen by an application program or an end-user. The
emphasis is on defining a common computing environment for application programs
and end-users; not on the internals of the operating system, such as the scheduler
or memory manager.

An application program using only components defined in the System V Interface
Definition will be compatible with and portable to any computer that supports the
System V Interface. While the source-code may have to be re-compiled to move
an application program to a new computer system that supports the System V
Interface, the presence and behavior of the operating system components as defined
by the System V Interface Definition would be assured.

The System V Interface Definition is organized into a Base System Definition plus
a series of Extension Definitions. The Base System Definition specifies the com­
ponents that all System V operating systems must provide. The Extensions to the
Base System are not required to be present in a System V operating system, but
when a component is present it must conform to the specified functionality. The
System V Interface Definition lets end-users and application developers identify the
features and functions available to them on any System V operating system.

System V Interface Definition Page ix

Part I

A General Introduction to the
System V Interface Definition

1.1 AUDIENCE AND PURPOSE

Chapter 1
General Introduction

The System V Interface Definition (SVID) is intended for use by anyone who must
understand the operating system components that are consistent across all System
V environments.

As such, its primary audience is the application developer building C language
application programs whose source-code must be portable from one System V
environment to another. A system builder should also view these volumes as a
necessary condition for supporting a System V environment that will host such
applications.

This publication is intended to serve the following major purposes:

• To serve as a single reference source for the definition of the external interfaces
to services that are provided by all System V environments. These services are
designated as the Base System. This includes source-code interfaces and run­
time behavior as seen by an application program. It does not include the
details of how the operating system implements these functions.

• To define all additional services (such as networking and data management) at
an equivalent external interface level and to group these services into Extensions
to the Base System.

• To serve as a complete definition of System V external interfaces, so that appli­
cation source-code that conforms to these interfaces and is compiled in an
environment that conforms to these interfaces, will execute as defined in a Sys­
tem V environment. It is assumed that source-code is recompiled for the proper
target hardware. The basic objective is to facilitate the writing of application
program source-code that is directly portable across all System V implementa­
tions. Facilities outside of the Base System would require that the appropriate
Extension be installed on the target environment.

1.2 STRUCTURE AND CONTENT

1.2.1 Partitioning into Base System and Extensions

The System V Interface Definition partitions System V components into a Base
System and Extensions to that Base System. This does not change the definition of
System V. It is instead a recognition that some of the functionality of System V
may be unnecessary in certain environments, especially on small hardware
configurations. It also recognizes that different computing environments require
some functions that others do not.

System V Interface Definition Page 3

The Base System functionality has been structured to provide a minimal, stand­
alone run-time environment for applications originally written in a high-level
language, such as C. In this environment, the end-user is not expected to interact
directly with the traditional System V shell and commands. An example of such a
system would be a dedicated-use system. That is, a system devoted to a single
application, such as a vertically integrated application package for managing a
legal office, To execute, many applications programs will require only the com­
ponents in the Base System. Other applications will need one or more Extensions.

The Extensions to this Base System have been structured to provide a growth path
in natural functional increments that leads to a full System V configuration. The
division between Base and Extensions will allow system builders to create machines
tailored for different purposes and markets, in an orderly fashion. Thus, a small
business/professional computer system designed for novice single users might
include only the Base System and the Basic Utilities Extension. A system for
advanced business/professional users might add to this the Advanced Utilities
Extension. A system designed for high-level language software development would
include the Base System, the Kernel Extension and the Basic Utilities, Advanced
Utilities, and Software Development Extensions. Although the Extensions are not
meant to specify the physical packaging of System V for a particular product, it is
expected that the Extensions will lead to a fairly consistent packaging scheme.

This partitioning allows an application to be built using a basic set of components
that are consistent across all System V implementations. This basic set is the Base
System. Where necessary, an application developer can choose to use components
from an Extension and require the run-time environment to support that Extension
in addition to the Base System.

Facilities or side effects that are not explicitly stated in the SVID are not
guaranteed, and should not be used by applications that require portability.

1.2.2 Conforming Systems

All conforming systems must support the source code interfaces and runtime
behavior of the components of the Base System. A system may conform to none or
some Extensions. All the components of an Extension must be present for a system
to meet the requirements of the Extension. This does not preclude a system from
including only a few components from some Extension, but the system would not
then be said to have the Extension. Some Extensions require that other Extensions
be present on a system, for example, the Advanced Utilities Extension requires the
Basic Utilities Extension.

This issue of the System V Interface Definition corresponds to functionality in
AT&T System V Release 1.0 and System V Release 2.0. An implementation of
System V may conform to the System V Release 1.0 functionality or the System V
Release 2.0 functionality. All System V Release 2.0 enhancements to System V
Release 1.0 are identified as such in the SVID.

Page 4 System V Interface Definition

1.2.3 Organization of Technical Information

For ease of use, the SVID has been divided into several Volumes containing the
following Extensions:

Volume 1. Base System

Kernel Extension

Volume 2. Basic Utilities Extension

Advanced Utilities Extension

Software Development Extension

Administered System Extension

Terminal Interface Extension

Additional Volumes will define any further Extensions to System V.

The SVID defines the source-code interface and the run-time behavior of the com­
ponents that make up the Base System and each Extension. Components include,
for example, operating system service routines, general library routines, system
data files, special device files, and end-user utilities {commands}.

When referred to individually, components will be identified by a suffix of the form
(XX_YYY) where xx identifies the Base System or the Extension that the component
is in and YYY identifies the type of the component. For example, components
defined in the Operating System Service Routines section of the Base System will
be identified by (BA _OS), components defined in General Library Routines of the
Base System will be identified by (BA_LIB), and components defined in the Operat­
ing System Service Routines section of the Kernel Extension will be identified by
(KE_OS). Possible types are OS, LIB, CMD {commands or utilities} and ENV
{environment} .

The definition of the Base System includes an overview followed by chapters that
provide detailed definitions of each component in the Base System. Similarly, the
definition of each Extension includes an overview followed by chapters that provide
detailed definitions of each component in the Extension.

Pages containing the detailed component definitions are labeled with the name of
the component being defined. Some utilities and routines are described with other
related utilities or routines, and therefore do not have detailed definition pages of
their own.

An alphabetical index is provided in each Volume listing all components defined in
that Volume. The index points to the detailed definition pages on which a com­
ponent is to be found; the header for these pages may not contain the name of the
component being sought. For example, in Volume I, the entry for the function
call 0 c points to the MALLOC(BA _OS) pages, because the function call 0 c is
defined with the function ma 11 0 c on pages labeled MALLOC(BA _OS).

System V Interface Definition Page 5

Each component definition follows the same structure. The sections are listed
below; not all the following sections may be present in each description. If present,
however, they will be in the given order. Sections entitled EXAMPLE, APPLICATION

USAGE, and USAGE are not considered part of the formal definition of a com­
ponent.

• NAME - name of component

• SYNOPSIS - summary of source-code or user-level interface

• DESCRIPTION - interface and runtime behavior

• RETURN VALUE - value returned by the function

• ERRORS - possible error condidions

• FILES - names of files used

• APPLICATION USAGE or USAGE - guidance on use

• EXAMPLE - example

• SEE ALSO - list of related components

• FUTURE DIRECTIONS - planned enhancements

• LEVEL - see MECHANISM FOR EVOLUTION below

In general, components that are utilities do not have a RETURN VALUE section.
Except as noted in the detailed definition for a particular utility, utilities return a
zero exit code for success, and non-zero for failure.

The component definitions are similar in format to AT & T System V manual pages,
but have been extended or modified as follows:

• All machine-specific or implementation-specific information has been removed.
All implementation-specific constants have been replaced by symbolic names,
which are defined in a separate section [see Implementation-specific constants in
Volume I: Part II - Base System Definition: Chapter 4 - Definitions]. When
these symbolic names are used they always appear in curly brackets, e.g.,
{PROC_MAXl. The symbolic names correspond to those defined by the
November 1985 draft of the IEEE PI003 Standard to be in a <limits. h>
header file; however, in this document, they are not meant to be read as sym­
bolic constants defined in header files.

• A section entitled FUTURE DIRECTIONS has been added to selected component
definitions. This section indicates how a component will evolve. The informa­
tion ranges from specific changes in functionality to more general indications of
proposed development.

• A section entitled APPLICATION USAGE or USAGE has been added to guide
application developers on the expected or recommended usage of certain com­
ponents. Detailed definitions of operating system services and library routines
have an APPLICATION USAGE paragraph while utilities have a USAGE para­
graph. While operating system services and library routines are only used by

Page 6 System V Interface Definition

programs, utilities may be used by programs, by end-users or by system
administrators. The USAGE paragraph indicates which of these three is
appropriate for a particular utility (this is not meant to be prescriptive, but
rather to give guidance). The following terms are used in the USAGE para­
graph: application program, end-user, system administrator, or general. The
term general indicates that the utility might be used by all three: application
programs, end-users and system administrators.

• A section entitled LEVEL defines each component's commitment level:

Level-l components will remain in the SVID and can be modified only in
upwardly compatible ways. Any change in its definition will preserve the previ­
ous source-code interface and run-time behavior in order to ensure that the
component remains upwardly compatible.

Level-l components will remain unchanged for at least three years following
entry into level-2, after which time the component may be modified in a non­
upwardly compatible way or may be dropped from the SVID. Level-2 com­
ponents are labeled with the starting date of this three-year period.

1.3 MECHANISM FOR EVOLUTION

The SVID will be reissued as necessary to reflect developments in the System V
Interface. In conjunction with these updates, the following changes may be made
to the definitions:

• Level-l components may be moved to Level-2. The date of their entry into
Level-2 will be the date of the reissue of the SVID in which the change is
made.

• Level-l components will not move from one Extension into another Extension.

• Components may move from existing Extensions into the Base System. Com­
ponents will not move from the Base System into an Extension.

• New Extensions may be introduced with completely new functionality.

1.4 C LANGUAGE DEFINITION

Source-code interfaces described in the SVID are for the C language.

The following two references define the C language for System V Release 1.0 and
System V Release 2.0 respectively:

• UNIX'IM System V Programming Guide, Issue 1, February 1982.

• UNIX'IM System V Programming Guide, Issue 2, April 1984.

System V Interface Definition Page 7

2.1 NETWORK SERVICES EXTENSION

Chapter 2
Future Directions

The Network Services Extension will provide advanced standard interfaces to sup­
port networking applications. It is divided into three functional areas. The Open
Systems Networking Interfaces section describes a protocol-independent application
interface to transport services based on the Open Systems Interconnection (OSI)
Reference Model [Is 7498]. The Streams I/O Interfaces section describes the
operating system service routines that provide direct access to protocol modules
implemented using the streams framework. The Shared Resource Environment sec­
tion describes new capabilities for sharing and administering resources among
interconnected machines.

2.2 OPERATING SYSTEM STANDARDS

The IEEE P1OO3 working group is currently pursuing a draft standard for a portable
operating system interface. The System V Interface Definition is consistent with
the trial-use standard (November 1985)t with several minor exceptions. Full con­
formance to the IEEE standard will be strongly considered after its formal approval.

2.3 C LANGUAGE STANDARDIZATION

AT & T is committed to support the standardization of the C language being pur­
sued by ANSI X3Jll t in which its representatives take a leading role. Full confor­
mance to the ANSI standard will be strongly considered after formal approval.

2.4 FLOATING POINT STANDARDS

The IEEE P7S4 Standard for Binary Floating Point Arithmetic will be supported by
System V. The existing library routines that deal with floating point numbers t and
which are likely to change in order to support the IEEE P7S4 Standard t belong to
the following classes:

• routines that do arithmetic operations;

• routines that do input/output;

• routines that manipulate floating point numbers.

However t these changes are hardware dependent and will appear only on the
machines whose underlying floating point data representation and exception han­
dling mechanisms are those specified by the IEEE P7S4 Standard.

System V Interface Definition Page 9

2.S GRAPHICS EXTENSION

This Extension will track current industry efforts to define standards for graphics
functions. One area under active consideration is the Graphical Kernel Subsystem
(GKS).

2.6 TERMINAL INTERFACE EXTENSION

The current Terminal Interface Extension consists of the facilities provided by the
curses/terminfo package to allow application programs to perform terminal­
handling functions in a way that is independent of the type of terminal acutally in
use. This Extension will be enhanced to support applications on both character and
bit-mapped terminals and to provide capabilities for handling windows, menus,
icons, etc. which can be accessed by a keyboard or other input device, such as a
mouse. Applications written in this environment will have a uniform and easily
used human interface. In addition, applications which rely on curses/terminfo will
be compatible with the new environment.

2.7 INTERNATIONALIZATION

Where necessary, modifications will be made, in an upwardly compatible way, to
existing System V components to support internationalization. In addition, new
components will be added to support features not currently available in System V.
These will include tools that will allow national supplements to be added to an
implementation of System V.

National supplements would be small packages that contained the necessary sup­
plementary information, such as messages, databases, documentation, and device­
drivers that, when installed, would allow an implementation of System V to process
different national languages and support hardware (i.e., terminals, printers) and
local conventions found in different countries. System builders would be able to
create national supplements using the tools provided in System V.

More than one national supplement could be installed on a system at a time,
resulting in a system with multiple language capabilities; however, national supple­
ments are envisioned as self-contained, not requiring or depending on other
installed national supplements.

Facilities that System V will provide to support internationalization and the
development of national supplements are:

• Messages and text from the kernel, utilities, and application programs will be
separated to enable support for national languages.

• Local conventions, or environments, will be supported transparently, depending
on the language selected by the user. Among the conventions that will be sup­
ported are date and time formats, collating sequences, and numeric representa­
tions.

• Supplementary code-sets will be supported. This will allow use of multiple
code-sets, and consequently character symbols, in addition to the ASCII code­
set.

Page 10 System V Interface Definition

• Sixteen-bit code-sets will be supported. This will allow languages of Far
Eastern countries (Japan, Republic of China, Korea, the People's Republic of
China, etc.) to be used .

• Language selection will be provided at the user-level to allow users of different
languages to use the same system at the same time in their respective
languages.

Message Handling. In the future, System V will support a facility to produce mes­
sages and text in national languages. In conjunction with the Error Handling
Standards defined in Volume I: Part II - Base System Definition: Chapter 7 -
General Library Routines, messages and text from the kernel, utilities, and applica­
tions would be stored separately. In addition, a set of administrative utilities would
be provided to allow the creation of new messages and strings, as well as
modification to existing ones.

Local Conventions. Local conventions define the common forms and rules used to
communicate information. The aim of internationalization is to provide System V
applications and utilities with the capability to interact with the end-user according
to these local conventions. At the same time, applications and utilities must be
portable and easily adapted to other conventions (i.e., they must be shielded from
any particular set of conventions). Existing utilities and interfaces will be modified
to support both implicit and explicit invocation of these conventions, with the fol­
lowing areas targeted for support:

Collating Sequence: The capability to define one or more collating sequences for a
specific code-set will be provided. Utilities providing sorted output or requiring
sorted input will be modified to allow invocation of different collating sequences.
In addition, tools will be provided to support the definition of specific collating
sequences.

Character Classification: The capability to define, on a language-by-language
basis, character classes will be provided. The CTYPE(BA_LlB) library will be
enhanced to provide character classification in local languages. Where possible,
this capability will be provided through the existing classification routines. In addi­
tion, new routines will be provided to support new capabilities (i.e., returning an
indication of which code-set a particular character comes from).

Date and Time Format: The capability to enter and display date and time in the
local language and according to local formats will be provided. This applies to all
utilities or services that operate with dateltime specifications.

Numeric Representation: The capability to define the rules for numeric editing
(such as decimal delimiter) will be provided.

Currency Representation: The capability to specify rules and formats for editing
local currency will be provided.

System V Interface Definition Page 11

8th-bit Cleanup. To support code-sets in addition to ASCII, all 8-bits of a byte will
be used for character encoding. For example, some existing routines or utilities
reject characters with octal values greater than 1 77. Future releases will elim­
inate this and similar problems.

Code-Set and Character Support. There are essentially two representations that
make up the code-set:

the external code-set and the internal code-set.

The external code-set are those code-sets generated by input/output devices (i.e.,
terminals, printers, etc.). The most notable example is the seven-bit ASCII l code­
set produced by most terminals and printers connected to System V today.

The internal code-set is a transformation of the external code-set according to the
rules presented in this section, and is used to represent bytes throughout the rest of
System V. Normally, no part of System V, except a device-driver, will see the
external code-set; however, in many cases, the external and internal encodings will
be the same with only minor exceptions.

The device-driver has the sole responsibility of mapping an external code-set
to an internal code-set and vice-versa.

The following sections describe a template for transforming externally coded char­
acters into internally coded characters, methods of designating a particular code-set
to be used, and methods of designating a particular language to be used.

A Code-Set Template is a template for transforming externally coded characters
into internally coded characters accessible by the System V operating system, utili­
ties, and applications. The internal coding method discussed here is based on the
ISO 2022-1982 standard for code extension techniques, which suggests the following
two techniques for shifting between code-sets:

• Single-shift

• Locking-shift

The single-shift is a single byte used to announce a temporary shift to another
code-set. The byte, or bytes, immediately following the single-shift code are inter­
preted as part of a new code-set. Subsequent characters are interpreted as belong­
ing to the primary code-set.

1. ASCII, as it is used here, is defined as the seven-bit code-set used for information interchange in the
United States. It does not refer to the extended eight-bit ASCII code-set, sometimes known as ASCII-8,
or local derivatives of the seven-bit ASCII code-set used in parts of Europe.

Page 12 System V Interface Definition

The ISO standard defines two single-shift characters:

1. SS2, or single-shift two, and

2. SS3, or single-shift three.

The SS2 character is represented by hexadecimal 8e, while the SS3 character is
represented by hexadecimal 8 f.

The locking-shift technique is used to temporarily shift-in and shift-out of code­
sets. It consists of a pair of character sequences that allow a new code-set to be
used for more than one character. While in the context of a locking-shift
sequence, all characters, with the exception of single-shifted characters, are
assumed to belong to the new code-set.

Because of the context sensitivity of the locking-shift sequence, this method is not
recommended for use in System V. Therefore, the use of the single-shift sequence
is recommended to reduce the context sensitivity to as little as possible.

In addition to using the single-shifts to distinguish characters, the eighth-bit will
also be used to distinguish between the primary code-set and characters in one of
the three supplementary code-sets. By using the combination of eighth-bit and
single-shift characters, the internal coding method specifies a template for allowing
four code-sets to coexist simultaneously: one primary code-set and three supple­
mentary code-sets, with the two of the latter denoted by a single-shift character.
The representations for these internal code-sets are shown below:

Code-Set

Set 0 (Primary code-set>

Set 1 (Supplementary code-set #1)

Set 2 (Supplementary code-set #2)

Set 3 (Supplementary code-set #3)

Internal Representation

OXXXXXXX

1XXXXXXX
- or -

1XXXXXXX 1XXXXXXX

552 1XXXXXXX
- or -

552 1XXXXXXX 1XXXXXXX

553 1XXXXXXX
- or -

553 1XXXXXXX 1XXXXXXX

Designation of the exact value of the four code-sets is performed through a code­
set designation and is discussed in the following section.

A Code-Set Designation will be dynamic and accessible/modifiable at the operat­
ing system, utility and application levels to satisfy the specific needs for supporting
multiple code-sets. It will also reside at the file level, so files with different code-set
designations can exist on the same machine. That is, one file may be encoded with
one set of code-sets while another file is encoded with another set of code-sets.

System V Interface Definition Page 13

Specifically, it is desirable for code-set designation to meet the following require­
ments:

1. Code-set designations should be supported at the file level. Each file would
contain its own set of code-set designation values.

2. At file creation time, all files would be designated with a system-wide default
value.

3. Code-set designations could be changed dynamically.

4. The code-set designation value should contain information about:

• The width of a character in the code-set,

• The specific code-set designated (e.g., DIS 8859/12, JIS 62263, etc.),

5. Code-set designation information should be transferrable with the file con­
tents across networks.

In addition to the code-set designation, a language-designation would offer the
ability to designate which of several languages should be used for producing sys­
tems messages and for establishing an overall profile of the user's environment.
One method under consideration for this type of designation is to use one or more
exported environment variables. For example, a LANGUAGE variable would be
used to denote the language (e.g., French, German, Italian, Japanese, English).
This variable would also be used as an index to user profile information to deter­
mine which local conventions to use. The variable could be assigned at initiation of
the login session and could also be changed at any time. In this way, language­
designation is performed at user-level and controls the language of all system mes­
sages and text coming out of the operating system, utilities and applications, as
well as particular national conventions.

Handling Non-standard Code-Sets. There are several code-sets in the world that
the code-set template described here cannot support. The problem centers around
the use of the eighth-bit to distinguish between characters in different code-sets.
Specifically, these code-sets are as follows:

• The shifted-US code-set used in Japan,

• The packed Hangul code-set used in Korea,

• The Big 5 code-set used in the Republic of China (Taiwan),

• The Chinese Code for Data Communcations also used in the Republic of
China.

2. DIS 8859/1 Latin Language no. I is the newly-adopted ISO standard code-set, supporting most of the
Western European characters. It is an 8-bit code-set that contains us ASCII as a subset.

3. JIS 6116 is a ISO standard code-set for supporting the Japanese language. It is a 16-bit code-set that
contains both the hiragana and katakana alphabets, as well as about 7000 of the kanji ideograms.

Page 14 System V Interface Definition

Present plans are to provide limited support for these code-sets. Limited support
means that files containing these code-sets could be stored on System V machines.
No other suppport is currently planned; this implies that the mechanism for pro­
cessing these files would have to be built into applications.

Character Support. In some applications it will be necessary to manipulate the
variable-width characters coming from the supplementary code-sets. Although
some application developers may choose to develop their own facilities for support­
ing this, System V will provide a generic facility for manipulating internally coded
eight-bit bytes to a data type that can represent characters in a consistent manner.
Initially, a new data type will be defined in the C programming language to sup­
port up to 16-bits of information. In addition, routines that use this new data type
will be provided to allow application developers to perform operations on them.

System V Interface Definition Page 15

Part II

Basic Utilities Extension Definition

3.1 OVERVIEW

Chapter 3
Introduction

The Basic Utilities Extension defines an environment that provides basic user-level
functionality. It includes: the sh (shell) command interpreter, and shell program­
ming aids; facilities for basic directory and file manipulation; and facilities for text
file editin~ and processing.

The System V Base is a prerequisite for the Basic Utilities Extension.

The Advanced Utilities Extension provides the next logical expansion step up from
the Basic Utilities Extension.

3.2 DESCRIPTION

UTILITIES

ar diff nl sort
awk dirname nohup spell
banner du pack split
basename echo paste sum
cal ed pcat tail
calendar expr pg + tee
cat false pr test
cd file ps touch
chmod find pwd tr
cmp grep red true
col kill rm umask
comm line rmail una me
cp In rmdir uniq
cpio Is rsh unpack
cut mail sed wait
date mkdir sh wc
df mv sleep

+ New in System V Release 2.

System V Interface Definition Page 19

System V Interface Definition

Chapter 4
Commands and Utilities

Page 21

NAME

ar - archive and library maintainer for portable archives

SYNOPSIS

ar option [posname] afi1e [name] ...

DESCRIPTION

The a r command maintains groups of files combined into a single archive
file. It is used to create and update library files as used by the link editor
[see LD(SD_CMD)]. It can be used, however, for any similar purpose. If an
archive file is created from printable files, the entire archive file is printable.

Archives of text files created by a r are portable between implementations of
System V.

When ar creates an archive file, it creates administrative information in a
format that is portable across all machines. When there is at least one object
file (that ar recognizes as such) in the archive, an archive symbol table is
created in the archive file and maintained by ar. The archive symbol table
is never mentioned or accessible to the user. (It is used by the link editor to
search the archive file.) Whenever the ar command is used to create or
update the contents of such an archive, the symbol table is rebuilt. The s
modifier character described below forces the symbol table to be rebuilt.

The argument option is a - followed by one character from the set
drqtpmx which may be optionally concatenated with one or more charac­
ters to modify the action. These modifier characters are taken from the set
vuab i cIs but not all modifiers make sense with all options. See below for
further explanation. The argument posname is the name of a file in the
archive file, used for relative positioning; see options -r and -m below.
The argument a f i 1 e is the archive file. The name s are constituent files
in the archive file.

The meanings of the option characters are:

-d Delete the named files from the archive file. Valid modifiers are vI.

-r Replace the named files in the archive file. Valid modifiers are vua-
b i c 1. If the modifier u is used, then only those files with dates of
modification later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the posname
argument must be present, and specifies that new files are to be placed
after (a) or before (b or i) posname. Otherwise new files are
placed at the end.

-q Quickly append the named files to the end of the archive file. Valid
modifiers are vc 1. In this case ar does not check whether the added
members are already in the archive. This is useful to bypass the
searching otherwise done, when creating a large archive piece-by-piece.

-t Print a table of contents of the archive file. If no names are given, all
files in the archive are listed. If names are given, only those files are

Page 22 System V Interface Definition

listed. Valid modifiers are v s . The v modifier gives a long listing of
all information about the files.

-p Print the named files from the archive. Valid modifiers are v s.

-m Move the named files to the end of the archive. Valid modifiers are
vabi 1. If a positioning modifier from the set abi is present, then
the posname argument must be present, and, as with the option
character r, it specifies where the files are to be moved.

-x Extract the named files. If no names are given, all files in the archive
are extracted. The archive file is not changed. Valid modifiers are
vs.

The meanings of the modifier characters are:

v Give verbose output. When used with the option characters d, r, q,
or m, this gives a verbose file-by-file description of the making of a new
archive file from the old archive (if one exists) and the constituent files.
When used with x, this precedes each file with its name.

c Suppress the message that is produced by default when the archive file
afile is created.

1 Place temporary files in the local current working directory, rather than
in the directory specified by the environment variable TMPDIR or in
the default directory.

s Force the regeneration of the archive symbol table even if ar is not
invoked with a command which will modify the archive file contents.
This command is useful to restore the archive symbol table after it has
been stripped [see STRIP(SD_CMD)1.

SEE ALSO
LD(SD _ CMD), STRIP(SD _ CMD).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 23

NAME

awk - pattern-directed scanning and processing language

SYNOPSIS

awk -Fe
parameters

]

] [
-f

file
progfile 'program'
. ..]

DESCRIPTION

The a wk command executes programs written in the awk programming
language, which is specialized for data manipulation. An awk program is a
sequence of patterns and corresponding actions. When input is read that
matches a pattern, the action associated with that pattern is carried out.

The f i 1 e arguments contain the input to be read. If no files are given or
the filename - is given, the standard input is used.

Each line of input is matched in turn against the set of patterns in the pro­
gram. The awk program may either be in a file progfile or may be
specified in the command line as a string enclosed in single quotes.

Each line of input is matched in turn against each pattern in the program.
For each pattern matched, the associated action is executed.

The a wk command interprets each input line as a sequence of fields where,
by default, a field is a string of non-blank, non-tab characters. This default
whitespace field delimiter can be changed by using the - Fe option, or the
variable F S; see below. The command a wk denotes the first field in a line
$1, the second $2, and so forth. $0 refers to the entire line. Setting any
other field causes the re-evaluation of $0.

Pattern-action statements in an awk program have the form:

pattern { action}

In any pattern-action statement, either the pattern or the action may be
omitted. A missing action means print the input line to the standard output;
a missing pattern is always matched, and its associated action is executed for
every input line read.

Patterns

Page 24

Patterns are special patterns or arbitrary Boolean combinations (!, /I,
& &, and parentheses) of regular expressions and relational expressions.
The operator ! has the highest precedence, then & & and then /I.
Evaluation is left to right and stops when truth or falsehood has been
determined.

System V Interface Definition

AWK(BU_CMD)

Boolean
Operator Meaning

negation
&& and

II or

Special Patterns
The a wk command recognizes two special patterns, BEGIN and END.

BEGIN is matched once and its associated action executed before the
first line of input is read. END is matched once and its associated
action executed after the last line of input has been read. (See exam­
ples 4 and 5.) These two patterns must have associated actions.

Relational Expressions
A pattern may be any expression that compares strings of characters or
numbers. A relational expression is either an

expression relational-operator expression

or an

expression matching-operator regular-expression

The six relational operators are shown in the table below; regular
expression matching operators are described later. In a comparison, if
both operands are numeric, a numeric comparison is made, otherwise, a
string comparison is made.

Regular Expressions

~----------------------------,
Relational
Operator Meaning

< less than
< - less than or equal to
> grea ter than

> - greater than or equal to
!- not equal to

equal to

A regular expression must be surrounded by slashes. If re is a regu­
lar expression, then the pattern

Irel
matches any line of input that contains a substring specified by the reg­
ular expression. A regular expression comparison may be limited to a
specific field by one of the two regular expression matching operators,
and! .

$4 Irel
matches any line in with the 4th field matches the regular expression
Irel.

$4! Ire I
matches any line in which the 4th field does not match the regular
expression Ire I

System V Interface Definition Page 25

AWK(BU_CMD)

Regular expressions recognized by a wk are those recognized by the
ed [see ED(BU_CMD)] except for \(and \) and with the addition of the
special characters +, ?, I, and (). Below is a summary of regular
expressions recognized by a wk. The special meaning of a special
character can be turned off by preceding the character with a \. The
special characters *, + and ? have the highest precedence, then con­
catenation, then alternation. All are left associative.

Regular
Expression

c

\c

$

[s]

[AS]

r*

r+

r?

(r)

rx

rlx

Pattern
Matched

the character c where c is not a special
character.
the character c where c is any character.
the beginning of the string being compared.
the end of the string being compared.
any character in the input but newline.
any character in the set s where s is a
sequence of characters and/or a range of
characters, c-c.
any character not in the set s, where s is
defined as above.
zero or more successive occurrences of the
regular expression r.
one or more successive occurrences of the
regular expression r.
zero or one occurrence of the regular
expression r.
the regular expression r. (Grouping)
the occurrence of regular expression r fol­
lowed by the occurrence of regular expres­
sion x. (Concatenation)
the occurrence of regular expression r or
the occurrence of regular expression x.

Pattern Ranges
A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the
first pattern and the following occurrence of the second pattern.

Variables and Special Variables

Page 26

Variables may be used in an awk program by assigning to them.
They do not need to be declared. Like field variables, all variables are
treated as string variable unless used in a clearly numeric context (see
Relational Expressions). Field variables are designated by a $ followed
by a number or numerical expression. New field variables may be
created by assigning a value to them. Other special variables set by
a wk are shown in the table below.

System V Interface Definition

AWK(BU_CMD)

Actions

Special
Variable

Sn
FS

FILENAME
NF
NR

OFMT

OFS

ORS

Meaning

The string read as field n.
Input field separator. Set to whi­
tespace by default.
Name of the current input file.
Number of fields in the current record.
Ordinal number of the current record
from the start of input.
Print statement output format for
numbers. %.6g by default.
Print statement output field separation.
One blank by default.
Print statement output record separa­
tor. Newline by default.

An action is a sequence of statements. A statement can be one of the
following. Square brackets indicate optional elements. Keywords are
shown in bold font.

if (expression) statement [else statement]
while (expression) statement
for (expression ; expression ; expression) statement
break
continue
{ [statement] ... }
variable - expression
print [expression-list] [>expression]
printf format [, expression-list] [> expression]
next
exit (expression)

Any single statement may be replaced by a statement list enclosed in
curly braces. The statements in a statement list are separated by new­
lines or semicolons. The symbol # anywhere in a program line begins a
comment, with is terminated by the end of the line.

Statements are terminated by semicolons, newlines, or right braces. A
long statement may be split across several lines by ending each partial
line with a \. An empty expression-list stands for the whole input line.
Expressions take on string or numeric values as appropriate, and are
built using the operators + (addition), - (subtraction), * (multiplica­
tion), 1 (division), % (modulus operator), and concatenation (indicated
by a blank between strings in an expression). The C language opera­
tors ++, --, +-, --, *-, 1-, and %- are also available in expressions.
Variables may be scalars, array elements (denoted xli)) or fields. Vari­
ables are initialized to the null string. Array subscripts may be any

System V Interface Definition Page 27

EXAMPLES

string, not necessarily numeric.

String constants are surrounded by double quotes (" ... "). A string
expression is created by concatenating constants, variables, field names,
array elements, functions and other expressions.

The expression acting as the conditional in an if statement can include
the relational operators, the regular expression matching operators, logi­
cal operators, juxtaposition for concatenation and parentheses for
grouping. Expression is evaluated and if it is non-zero and non-null,
statement is executed, otherwise if else is present, the statement follow­
ing the else is executed.

The while, for, break, and continue statements are as in the C language.

The print statement prints its arguments on the standard output (or on
a file if >expr is present), separated by the current output field separa­
tor (see variable OFS below), and terminated by the output record
separator (see variable ORS below). The printf statement formats its
expression list according to format [see PRINTF(BA_lIB)].

The next statement causes the next input line to be scanned, skipping
the remaining characters on the current input line. The exit statement
causes the termination of the a wk program, skipping the rest of the
input.

The built-in function length(s) returns the length of its arguments
taken as a string, or of the whole line, $0, if there is no argument.
There are also built-in functions exp(x) (the exponential function of x),
log(x) (natural logarithm of x), sqrt(x) (square root of x), and int(x)
(truncates its argument to an integer). substr(s, p, n) returns the at
most n-character substring of s that begins at position p.

The function sprintf(fmt, expr, expr, .. J formats the expressions
according to the PRINTF(BA_LlB) format given by fmt and returns the
resulting string.

The following are examples of simple a wk programs:

Print on the standard output all input lines for which field 3 is greater than
5.

$3 > 5

Print every 10th line.

(NR % 10) == 0

Print any line with a substring matching the regular expression.

I(GIO)(2[0-9][a-zA-Z]*)1

Print the second to the last and the last field in each line. Separate the fields
by a colon.

Page 28 System V Interface Definition

AWK(BU_CMD)

{OFS=":";print $(NF-1), $NF}

Print the line number and number of fields in each line. The 3 string~
representing the line number, the colon and the number of fields are con­
catenated and that string is printed.

BEGIN {line = O}
{line = line + 1
print line ":" NF}

Print lines longer than 72 characters.
length > 72

Print first two fields in opposite order separated by the OFS.

{ print $2, $1 }

Add up first column, print sum and average.

{s += $1
is", s/NR}

END

Print fields in reverse order:

{print "sum is " s,

{ for (i = NF; i > 0; --i) print $i }

Print all lines between occurrences of the strings "start" and "stop":

Istart/, Istopl

Print all lines whose first field is different from the previous one:
$1 1= prev { print; prev = $1 }

Print file, filling in page number starting at 5:
IPagel { $2 = n++; }

{ print }

command line: awk -f program n=5 input

USAGE
General.

" average

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string ("") to it.

LEVEL
Level 1.

System V Interface Definition Page 29

BANNER(BU _ CMD)

NAME

banner - make large letters

SYNOPSIS

banner strings

DESCRIPTION
The command banner prints each argument in large letters (across the
page) on the standard output, putting each argument on a separate "line".
Spaces can be included in an argument by surrounding it with quotes. The
maximum number of characters that can be accomodated in a line is imple­
mentation dependent; excess characters are simply ignored.

SEE ALSO
ECHO(BU_CMD)

USAGE
General.

LEVEL
Levell.

Page 30 System V Interface Definition

NAME

basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION

BASENAME(BU_CMD)

The command basename deletes any prefix ending in I and the suffix
(if present in string) from string, and prints the result on the stan­
dard output. It is normally used inside substitution marks (' ') within com­
mand procedures.

The command dirname delivers all but the last level of the path name in
string.

EXAMPLES

The following example moves the named file to a file named xy z in the
current directory:

mv abc ~asename /p/q/xyz.c ~c"

The following example will set the variable NAME to /usr/src/cmd:

NAME=~irname /usr/src/cmd/xyz~'

SEE ALSO
SH(BU_CMD)

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 31

NAME

cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION

The cal command prints a calendar for the specified year. If a month is
also specified, a calendar just for that month is printed. If neither is
specified, a calendar for the present month is printed. The argument year
can be between 1 and 9999. (Note that "cal 83" refers to 83 A.D., not
1983.) The month is a number between 1 and 12.

USAGE
End-user.

LEVEL

Levell.

Page 32 System V Interface Definition

NAME

calendar - reminder service

SYNOPSIS
calendar

DESCRIPTION

CALENDAR(BU _CMD)

The command calendar consults the file calendar in the current
directory and prints out lines that contain today's or tomorrow's date any­
where in the line. Month-day date formats such as "Aug. 24," "august 24,"
"8/24," are recognized. On weekends, "tomorrow" extends through Monday.

USAGE
End-user.

LEVEL
Levell.

System V Interface Definition Page 33

NAME

cat - concatenate and print files

SYNOPSIS
cat [-8] file ...

DESCRIPTION

The command cat reads each f i 1 e in sequence and writes it on the stan­
dard output. Thus:

cat file

prints the file, and:

cat file1 file2 >file3

concatenates the first two files and places the result in the third.

If no input file is given, or if the argument - is encountered, cat reads
from the standard input file. The -8 option makes cat silent about non­
existent files.

USAGE

General.

Command formats such as
cat file1 file2 >file1

will cause the original data in f i 1 e 1 to be lost.

LEVEL

Levell.

Page 34 System V Interface Definition

NAME

cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION

If directory is not specified, the value of the environmental variable
HOME is used as the new working directory. If directory specifies a
complete path starting with /, ., or •• , directory becomes the new work­
ing directory. If neither case applies, cd tries to find the designated direc­
tory relative to one of the paths specified by the CD PATH environmental
variable. cDPATH has the same syntax as, and similar semantics to, the
PATH variable [see SH(BU_CMD)]. The command cd must have execute
(search) permission in directory.

SEE ALSO
PWD(BU _ CMD), SH(BU _ CMD), CHDIR(BA _aS)

USAGE
General.

LEVEL

Levell.

System V Interface Definition Page 35

CHMOD(BU _ CMD)

NAME

chmod - change mode

SYNOPSIS

chmod mode files

DESCRIPTION

The permissions of the named f i 1 e s are changed according to mode,
which may be absolute or symbolic.

An absolute mode is a four-octal-digit number constructed from the logical
"OR" (sum) of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 Reserved
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0040 read by group
0020 write by group
0010 execute (search) by group
0004 read by others
0002 write by others
0001 execute (search) by others

A symbolic mode has the form:

EXAMPLES

[who] op permission [op permission]]

The who part is a combination of the letters u (user), g (group) and
o (other). The letter a stands for ugo, the default if who is omitted.

The argument op can be + to add permission to the file's mode, - to
take away permission, or = to assign permission absolutely (all other
bits will be reset).

The argument permission is any combination of the letters r (read),
w (write), x (execute), and s (set owner or group ID); u, g, or 0

indicate that permission is to be taken from the current mode. Omit­
ting permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Opera­
tions are performed in the order specified. The letter s is only useful
with u or g.

Only the owner of a file (or the super-user) may change its mode. In
order to set set-group-ID, the group of the file must correspond to the
user's current group ID.

The first example denies write permission to others, the second makes a file
executable:

chmod o-w file

Page 36 System V Interface Definition

chmod +x file

SEE ALSO
LS(BU _ CMD), CHMOD(BA _OS).

USAGE
General.

FUTURE DIRECTIONS

CHMOD(BU _CMD)

The command chmod will be used to specify mandatory locking
(enable/disable) on a file. This will be done as follows:

An absolute mode of 20#0 specifies "set-group-ID" if # is 1, 3, 5, or 7;
specifies "enable mandatory locking" if # is 0, 2, 4, or 6.

A symbolic mode of 1 specifies mandatory locking, + to enable, - to
disable.

It will not be possible to have set-group-ID set and mandatory locking
enabled on a file simultaneously.

LEVEL
Level 1.

System V Interface Definition Page 37

CMP(BU_CMD)

NAME

cmp - compare two files

SYNOPSIS
cmp [-1] [-s] fi1e1 fi1e2

DESCRIPTION
The command cmp compares two files. (If f i 1 e 1 is -, the standard
input is used.) Under default options, cmp makes no comment if the files
are the same; if they differ, it announces the byte and line number at which
the difference occurred. If one file is identical to the first part of the other,
then it is reported that end-of-file was reached in the shorter file (before any
differences were found).

Options:

-1 Print the byte number (decimal) and the differing bytes (octaD for
each difference.

-s Print nothing for differing files; return codes only.

ERRORS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

SEE ALSO
COMM(BU _ CMD), DIFF(BU _ CMD)

USAGE
General.

LEVEL
Levell.

Page 38 System V Interface Definition

COL(BU_CMD)

NAME

col - filter reverse line-feeds

SYNOPSIS
col [-bfpx]

DESCRIPTION

The command col reads from the standard input and writes onto the stan­
dard output. It performs the line overlays implied by reverse line feeds, and
by forward and reverse half-line feeds.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to appear
in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is moved
to the next lower full-line boundary. This treatment can be suppressed by
the -f (fine) option; in this case, the output from col may contain for­
ward half-line feeds, but will still never contain either kind of reverse line
motion.

Unless the -x option is given, col will convert white space to tabs on out­
put wherever possible to shorten printing time.

The ASCII control characters SO and SI are assumed by col to start and
end text in an alternate character set. The character set to which each input
character belongs is remembered, and on output SI and SO characters are
generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, newline, SI, SO, VT, reverse line feed, forward half-line feed, and
reverse half-line feed. The VT character is an alternate form of full reverse
line-feed, included for compatibility with some earlier programs of this type.
All other non-printing characters are ignored.

The ASCII codes for the control functions and line-motion sequences men­
tioned above are as given in the table below. ESC stands for the ASCII
"escape" character, with the octal code 033; ESC-x means a sequence of two
characters, ESC followed by the character x.

reverse line feed
reverse half-line feed
forward half-line feed
vertical tab (VT)
start-of-text (SO)
end-of-text (sO

ESC-7
ESC-8
ESC-9

013
016
017

Normally, col will remove any escape sequences found in its input that are
unknown to it; the -p option may be used to force these to be passed
through unchanged. The use of this option is discouraged unless the user is

System V Interface Definition Page 39

COL(BU_CMD)

aware of the consequences.

USAGE
General.

Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result t the first line must not have any
superscripts.

LEVEL
Levell.

Page 40 System V Interface Definition

NAME

comm - select or reject lines common to two sorted files

SYNOPSIS
comm [-[123] file1 file2

DESCRIPTION

COMM(BU_CMD)

The command comm reads f i 1 e 1 and f i 1 e 2, which should be
ordered in ASCII collating sequence [see SORT(BU_CMD»), and produces a
three-column output: lines only in f i 1 e 1; lines only in f i 1 e 2; and
lines in both files. The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus c omm
-12 prints only the lines common to the two files; comm -23 prints only
lines in the first file but not in the second; c omm -1 23 is a no-op.

SEE ALSO
CMP(BU _ CMD), DIFF(BU _ CMD), SORT(BU _ CMD), UNIQ(BU _ CMD).

USAGE
General.

LEVEL

Levell.

System V Interface Definition Page 41

NAME

cp, In, mv - copy, link or move files

SYNOPSIS

cp fiIe1 [fiIe2 ... J target
In [-f J fiIe1 [fiIe2 ... J target
mv [-f J fiIe1 [fiIe2 ... J target

DESCRIPTION

These commands respectively copy, link, or move files; f i I e 1 and tar -
get may not be the same. If target is not a directory, then only one file
may be specified before it; if target is an existing file, its contents are
destroyed, otherwise (t a r get is neither an existing file nor a directory) the
file target is created. If target is a directory, then more than one file
may be specified before it; the specified files are respectively copied, linked, or
moved to that directory.

cp

In

mv

Page 42

If tar get is not a directory, c p copies f i I e 1 to tar get. If
target exists, its contents are overwritten, but the mode, owner, and
group are not changed. If target is a link to a file, all links remain
(the file is changed).

If target is a directory, then the specified files are copied to that
directory. For each file named, a new file, with the same mode, is
created in the target directory; the owner and the group are those of
the user making the copy.

If tar get is not a directory, I n links f i I e 1 to tar get, that
is, the name tar get is linked to the file f i 1 e 1 . If tar get
exists, and its mode forbids writing, the mode is printed, and the user
asked for a response; if the response begins with a y, (and the user is
permitted) then the In occurs. No questions are asked and the In is
done where permitted when the -f option is used or if the standard
input is not a terminal.

If target is a directory, then the specified files are linked to that
directory. That is, files with the same names are created in the direc­
tory, linked to the specified files.

If tar get is not a directory, m v moves (renames) f i I e 1 as
directed. If target does not exist, and has the same parent as
f i I e 1, f i I e 1 may be a directory: this allows a directory rename.

If target is a directory, then the specified files are moved to that
directory.

If f i I e 1 is a file and tar get is a link to another file with links,
the other links remain and target becomes a new file.

System V Interface Definition

If target is a file, and its mode forbids writing, the mode is printed,
and the user asked for a response; if the response begins with a y,
(and the user is permitted) then the mv occurs. No questions are
asked and the mv is done where permitted when the -f option is
used or if the standard input is not a terminal.

SEE ALSO
CPIO(BU _ CMD), RM(BU _ CMD), CHMOD(BU _ CMD).

USAGE
General.

If file 1 and target lie on different file systems, mv may achieve the
move by copying the file and deleting the original. In this case any linking
relationship with other files is lost.

1 n will not link across file systems.

LEVEL
Levell.

System V Interface Definition Page 43

CPIO(BU _CMD)

NAME

cpio - copy file archives in and out

SYNOPSIS

epio -0 [aeBv]

epio -i[Bedmrtuvf] [patterns]

epio -p[ad1mruv] directory

DESCRIPTION

The command epio -0 (copy out) reads the standard input to obtain a
list of path names and copies those files onto the standard output together
with path name and status information. Output is padded to a 512-byte
boundary.

The command epio -i (copy in) extracts files from the standard input,
which is assumed to be the product of a previous epio -0. Only files
with names that match patterns are selected. The arguments pat­
terns are simple regular expressions given in the name-generating notation
of the shell [see SH(BU_CMD»). In patterns, meta-characters 1, *, and
[.. .I match the / character. Multiple patterns may be specified and if
no patterns are specified, the default for patterns is * (i.e., select
all files). The extracted files are conditionally created and copied into the
current directory tree based upon the options described below. The permis­
sions of the files will be those of the previous e p i 0 -0. The owner and
group of the files will be that of the current user unless the user is super-user,
which causes epio to retain the owner and group of the files of the previ­
ous epio -0.

The command epio -p (pass) reads the standard input to obtain a list of
path names of files that are conditionally created and copied into the destina­
tion directory tree based upon the options described below.

Archives of text files created by e p i 0 are portable between implementations
of System V.

The meanings of the available options are:

a Reset access times of input files after they have been copied. [When
option -1 (see below) is also specified, the linked files do not have
their access times reset.]

B Input/output is to be blocked 5120 bytes to the record (does not apply
to the pa s s option; meaningful only with data directed to or from
character special files).

d Directories are to be created as needed.
e Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally, an older file will not replace a newer

file with the same name).

Page 44 System V Interface Definition

CPIO(BU_CMD)

v Verbose: causes the names of the affected files to be printed. With the
t option, provides a detailed listing.

1 Whenever possible, link files rather than copying them. Usable only
with the -p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

f Copy in all files except those in pat t ern s .

EXAMPLES

The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

SEE ALSO

Is I epio -oe >/dev/mt/Om

cd olddir
find . -depth -print I cpio -pdl newdir

AR(BU_CMD), FIND(BU_CMD), LS(BU_CMD), TAR(AU_CMD).

USAGE
General.

Only the super-user can copy special files.

LEVEL
Levell.

System V Interface Definition Page 45

NAME

cut - cut out selected fields of each line of a file

SYNOPSIS

cut -clist [file1 file2 ... J
cut -flist [-dchar] [-s] [file1 file2 ...]

DESCRIPTION

The command cut cuts out columns from a table or fields from each line of
a file. The fields as specified by lis t can be of fixed length, specified by
character position (-c option), or the length can vary from line to line and
be marked with a field delimiter character like tab (-f option). The com­
mand cut can be used as a filter; if no files are given, the standard input is
used.

The option qualifier list (see options -c and -f below) is a comma­
separated list of integers (in increasing order), with optional - to indicate
ranges; e.g., 1,4,7; 1-3,8; -5, 10 (short for 1-5, 10); or 3-
(short for third through last).

The meanings of the options are:

- c lis t The lis t following -c (no space) specifies character positions
(e.g., -c 1-72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be
separated in the file by a delimiter character (see -d); e.g.,
-f 1 , 7 copies the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table subhead­
ings), unless - s is specified.

-dchar The character following -d is the field delimiter (used with the
-f option only). Default is the tab character. Space or other
characters with special meaning to the command interpreter must
be quoted.

-s Suppresses lines with no delimiter characters when used with the
-f option. Unless specified, lines with no delimiters will be
passed through untouched.

Either the -c or the -f option must be specified.

EXAMPLES
The following maps user IDs to names:

cut -d: -f1,5 /etc/passwd

SEE ALSO
GREP(BU_CMD), PASTE(BU_CMD), SH(BU_CMD).

USAGE
General.

Use grep to make horizontal "cuts" (by context) through a file, or
paste to put files together column-wise (i.e., horizontally). To reorder

Page 46 System V Interface Definition

columns in a table, use cut and paste.

LEVEL
Levell.

System V Interface Definition

CUT(BU_CMD)

Page 47

NAME

date - print or set the date

SYNOPSIS
date mmddhhmm[yy]

date [+format]

DESCRIPTION
The first form of date sets the current date and time; it is usable only by
the super-user. The first mm is the month (number); dd is the day
(number) of the month; hh is the hour (number, 24 hour system); the
second mm is the minute (number); yy is the last 2 digits of the year and is
optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year
is given. The system operates in GMT; date takes care of the conversion to
and from local standard and daylight time. (The environment variable TZ
specifies the local time-zone; therefore its value affects the conversion
between the internal GMT clock and the local time.)

In the second form, if no argument is given, the current date and time are
printed. (As above, the environment variable TZ specifies the local time­
zone, and therefore its value affects the output.) If an argument beginning
with + is given, the output of date is under the control of the user. The
format for the output is similar to that of the first argument to the printf
routine [see PRINTF(BA_LlB»). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by % and will be replaced in
the output by its corresponding value. A single % is encoded by %%. All
other characters are copied to the output without change. The string is
always terminated with a newline character.

Field Descriptors:

n insert a newline character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday - 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

Page 48 System V Interface Definition

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates the output:
DATE: 08/01176
TIME: 14:45:05

SEE ALSO
PRINTF(BA_LIB).

USAGE
General.

It is a bad practice to change the date while the system is running multi-user.

LEVEL

Levell.

System V Interface Definition Page 49

NAME

df - report free disk space

SYNOPSIS

df [-t] [file-system

DESCRIPTION

The command df prints out the free space Gn 512-byte units) and the
number of free file slots ("inodes") available for on-line file systems. The
argument file-system may be specified either by device name (e.g.,
/dev/dsk/Os 1) or by mounted directory name (e.g., /usr). If no
f i 1 e - s y stem is specified, the free space on all of the mounted file sys­
tems is printed.

The -t option causes the total allocated space figures to be reported as well.

USAGE

General.

LEVEL

Levell.

Page 50 System V Interface Definition

NAME

diff - differential file comparator

SYNOPSIS
diff [-efbh] file1 file2

DESCRIPTION
The command d iff tells what lines must be changed in two files to bring
them into agreement. If f i 1 e 1 (f i 1 e 2) is -, the standard input is
used. If f i 1 e 1 (f i 1 e 2) is a directory, then a file in that directory with
the name f i 1 e 2 (f i 1 e 1) is used. The normal output contains lines of
these forms:

n 1 a n3, n4

n 1 ,n2 d n3

n 1 ,n2 c n3, n4

These lines resemble e d commands to convert f i 1 e 1 into f i 1 e 2. The
numbers after the letters pertain to f i 1 e 2. In fact, by exchanging a for d
and reading backward one may ascertain equally how to convert f i 1 e 2
into f i 1 e 1. As in ed, identical pairs, where n 1 - n2 or n3 -
n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file flagged
by>.

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor
ed, which will recreate f i 1 e 2 from f i 1 e 1 .

The -f option produces a similar script, not useful with ed, in the oppo­
site order.

Option -h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length.

Options -e and -f are unavailable with the -h option.

SEE ALSO
CMP(BU _ CMD), COMM(BU _ CMD), ED(BU _ CMD).

ERRORS

Exit status is:

o no differences

some differences

2 errors

System V Interface Definition Page 51

DIFF(BU_CMD)

USAGE
General.

Editing scripts produced under the -e or -f option may be incorrect when
dealing with lines consisting of a single period.

LEVEL
Level 1.

Page 52 System V Interface Definition

NAME

du - estimate file space usage

SYNOPSIS
du (-ars] (file ...]

DESCRIPTION
The command d u gives an estimate, in 512-byte units, of the file space con­
tained in all the specified files. Whenever a directory is named, all files
within it are reported; sub-directories are traversed recursively. If no f i 1 e
is specified, the current directory is used.

The option - s causes only the grand total (for each of the specified
f i 1 es) to be given. The option -a causes a report to be generated for
eac!, file. With no options, a report is given for each directory only.

d u is normally silent about directories that cannot be read, files that cannot
be opened, etc. The -r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

USAGE
General.

If the -a option is not used, non-directories given as arguments are not
listed.

Files with holes in them may get an incorrect (high) estimate.

LEVEL

Level I.

System V Interface Definition Page 53

ECHO(BU_CMD)

NAME

echo - echo arguments

SYNOPSIS

echo [arg] ...

DESCRIPTION

The command echo writes its arguments separated by blanks and ter­
minated by a newline on the standard output. It also understands the follow­
ing escape conventions.

\b backspace
\ c print arguments up to this point, without newline; ignore

remainder of command line
\f form-feed
\n newline
\ r carriage return
\t tab
\ v vertical tab
\ \ backs lash
\ 0 n n must be a 1-, 2- or 3-digit octal number; specifies the

corresponding ASCII character

SEE ALSO
SH(BU_CMD).

USAGE

General.

The command echo is useful for producing diagnostics in command scripts
and for sending known data into a pipe.

Arguments containing blanks and escape sequences must be enclosed in dou­
ble quotes.

LEVEL

Levell.

Page 54 System V Interface Definition

NAME

ed, red - text editor

SYNOPSIS
ed [-] [-p string] [file]

red [-] [-p string] [file]

DESCRIPTION

The command e d is a text editor. If the f i 1 e argument is given, e d
simulates an e command (see below) on the named file; that is to say, the
file is read into the ed buffer so that it can be edited.

The option - suppresses the printing of character counts bye, r, and w
commands, of diagnostics from e and q commands, and of the I prompt
after a !command.

The -p option allows the user to specify a prompt string. (This option is
new in System V Release 2.)

ed operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the
text being edited resides in a temporary file called the buffer. There is only
one buffer.

The command red is a restricted version of e d. It will only allow editing
of files in the current directory, and prohibits executing commands via !com­
mand. Attempts to bypass these restrictions result in an error message.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses, so
that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (.) alone at the beginning of a line.

e d supports a limited form of regular expression notation; regular expres­
sions are used in addresses to specify lines and in some commands (e.g., s) to
specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by e d are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

System V Interface Definition Page 55

ED(BU_CMD)

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except
when they appear within square brackets (II; see 1.4
below).

b. "(caret or circumfleX>, which is special at the beginning of
an entire RE (see 3.1 and 3.2 below), or when it immedi­
ately follows the left of a pair of square brackets ([J) (see
1.4 below).

c. $ (currency symbol), which is special at the end of an entire
RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE,
which is special for that RE (for example, see how slash (/)
is used in the g command, below).

1.3 A period (.) is a one-character RE that matches any character except
newline.

1.4 A non-empty string of characters enclosed in square brackets (I J) is a
one-character RE that matches anyone character in that string. If,
however, the first character of the string is a caret ("), the one­
character RE matches any character except newline and the remaining
characters in the string. The " has this special meaning only if it
occurs first in the string. The minus (-) may be used to indicate a
range of consecutive ASCII characters; for example, 10 -91 is equivalent
to [01234567891. The - loses this special meaning if it occurs first
(after an initial ", if any) or last in the string. The right square
bracket (J) does not terminate such a string when it is the first charac­
ter within it (after an initial ", if any); e.g., [Ja -fl matches either a
right square bracket (J) or one of the letters a through f inclusive. The
four characters listed in 1.2.a above stand for themselves within such a
string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character
RE matches.

2.2 A one-character RE followed by an asterisk (.) is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that
matches a range of occurrences of the one-character RE. The values of
m and n must be non-negative integers less than 256; \{m\} matches
exactly m occurrences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n inclusive.

Page 56 System V Interface Definition

Whenever a choice exists, the RE matches as many occurrences as pos­
sible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \ (and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same RE. Here n is a digit; the sub-expression specified is that begin­
ning with the n-th occurrence of \ (counting from the left. For exam­
ple, the expression "\(.*\)\1$ matches a line consisting of two repeated
appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex (") at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction ,.. entire RE$ constrains the entire RE to match the entire
line.

The null RE (e.g., / /) is equivalent to the last RE encountered.

To understand addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current line is the last line
affected by a command; the exact effect on the current line is discussed under
the description of each command. Addresses are constructed as follows:

1. The character • addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. x addresses the line marked with the mark name character x. which
must be a lower-case letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the
RE. If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so that the
entire buffer is searched.

6. A RE enclosed in question marks (1) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string

System V Interface Definition Page 57

matching the RE. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line.

7. An address followed by a plus sign (+) or a minus sign (-) followed
by a decimal number specifies that address plus (respectively minus)
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e.g, -5 is understood to mean. -5.

9. If an address ends with + or -, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address - refers to the line preceding the
current line. Moreover, trailing + and - characters have a cumulative
effect, so - - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an error. Commands that
accept one or two addresses assume default addresses when an insufficient
number of addresses is given; if more addresses are given than such a com­
mand requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They
may also be separated by a semicolon (;). In the latter case, the current line
(.) is set to the first address, and only then is the second address calculated.
This feature can be used to determine the starting line for forward and back­
ward searches (see rules 5. and 6. above). The second address of any two­
address sequence must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. How­
ever, any command (except e, f, r, or w) may be suffixed by 1, n, or
p in which case the current line is either listed, numbered or printed, respec­
tively, as discussed below under the 1, n, and p commands.

(.) a
<text>

Page 58

The append command reads the given text and appends it after the
addressed line; the current line becomes the last inserted line, or, if
there were none, the addressed line. Address 0 is legal for this com­
mand: it causes the "appended" text to be placed at the beginning of
the buffer. The maximum number of characters that may be entered
from a terminal is 256 per line {including the newline character}.

System V Interface Definition

(.) c
<text>

The change command deletes the addressed lines, then accepts input
text that replaces these lines; • is left at the last line input, or, if there
were none, at the first line that was not deleted.

(• , .) d

e file

E file

f file

The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; • is set to the last line of
the buffer. If no file name is given, the currently-remembered file
name, if any, is used (see the f command). The number of characters
read is typed; the name file is remembered for possible use as a default
file name in subsequent e, r, and w commands. If file is replaced by
!, the rest of the line is taken to be a command whose output is to be
read. Such a command is not remembered as the current file name.

The E (edit) command is like e, except that the editor does not check
to see if any changes have been made to the buffer since the last w

command.

If file is given, the file-name command changes the currently­
remembered file name to file; otherwise, it prints the currentlY­
remembered file name.

(1 , $) g / RE/command list
In the global command, the first step is to mark every line that matches
the given RE. Then, for every such line, the given command list is exe­
cuted with. initially set to that line. A single command or the first of a
list of commands appears on the same line as the global command. All
lines of a multi-line list except the last line must be ended with a \; a,
i, and c commands and associated input are permitted. The. ter­
minating input mode may be omitted if it would be the last line of the
command list. An empty command list is equivalent to the p com­
mand. The g, G, v, and V commands are not permitted in the com­
mand list.

(1 , $) G/RE/
In the interactive global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed, • is changed to that line, and anyone command (other than
one of the a, c, i, g, G, v, and V commands) may be input and

System V Interface Definition Page 59

h

H

is executed. After the execution of that command, the next marked
line is printed, and so on; a newline acts as a null command; an &
causes the re-execution of the most recent command executed within
the current invocation of G. Note that the commands input as part of
the execution of the G cQmmand may address and affect any lines in
the buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

The help command gives a short error message that explains the reason
for the most recent ? diagnostic.

The help command causes ed to enter a mode in which error messages
are printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

(.) i
<text>

The insert command inserts the given text before the addressed line; • is
left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the place­
ment of the input text. Address 0 is not legal for this command. The
maximum number of characters that may be entered from a terminal is
256 per line (including the newline character).

(• , • + 1) j
The join command joins contiguous lines by removing the appropriate
newline characters. If exactly one address is given, this comm~nd does
nothing.

(•) kx
The mark command marks the addressed line with name x, which
must be a lower-case letter. The address 'x then addresses this line; •
is unchanged.

(. , .) 1
The list command prints the addressed lines in an unambiguous way: a
few non-printing characters (e.g., tab, backspace) are represented by
(hopefully) mnemonic overstrikes. All other non-printing characters
are printed in octal, and long lines are folded. An 1 command may be
appended to any other command other than e, f, r, or w.

(• , •) ma

Page 60

The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if address
a falls within the range of moved lines; • is left at the last line moved.

System V Interface Definition

(• , •) n
The number command prints the addressed lines, preceding each line
by its line number and a tab character; . is left at the last line printed.
The n command may be appended to any other command other than
e, t, r, or w.

(• , •) p

p

q

Q

The print command prints the addressed lines; • is left at the last line
printed. The p command may be appended to any other command
other than e, t, r, or w. For example, dp deletes the current line
and prints the new current line.

The editor will prompt with a • for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit.

The editor exits without checking if changes have been made in the
buffer since the last w command.

($) r file
The read command reads in the given file after the addressed line. If
no file name is given, the currently-remembered file name, if any, is
used (see e and t commands). The currently-remembered file name
is not changed unless file is the very first file name mentioned since e d
was invoked. Address 0 is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; • is set to the last line read in. If file is
replaced by!, the rest of the line is taken to be a command whose out­
put is to be read. Such a command is not remembered as the current
file name.

· , .) sl RElreplacementl or
• , •) sl RElreplacementlg or
• , •) sl RElreplacementln n - 1-512

The substitute command searches each addressed line for an occurrence
of the specified RE. In each line in which a match is found, all (non­
overlapped) matched strings are replaced by the replacement if the glo­
bal replacement indicator g appears after the command. If the global
indicator does not appear, only the first occurrence of the matched
string is replaced. If a number n appears after the command, only the
n-th occurrence of the matched string on each addressed line is
replaced. It is an error for the substitution to fail on all addressed
lines. Any character other than space or newline may be used instead
of I to delimit the RE and the replacement; . is left at the last line on
which a substitution occurred.

System V Interface Definition Page 61

ED(BU_CMD)

An ampersand (&.) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &.
in this context may be suppressed by preceding it by \. As a more gen­
eral feature, the characters \n, where n is a digit, are replaced by the
text matched by the n-th regular sUbexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions
are present, n is determined by counting occurrences of \ (starting from
the left. When the character % is the only character in the replace­
ment, the replacement used in the most recent substitute command is
used as the replacement in the current substitute command. The %
loses its special meaning when it is in a replacement string of more
than one character or is preceded by a \.

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it by \. Such
substitution cannot be done as part of a g or v command list.

(. , .) ta

u

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); • is left at
the last line of the copy.

The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, c, d,
g, i, j, m, r, S, t, v, G, or V command.

(1 , $) v I REI command list
This command is the same as the global command g except that the
command list is executed with. initially set to every line that does not
match the RE.

(1 , $)VIREI
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do not
match the RE.

(1 , $) w file
The write command writes the addressed lines into the named file. The
currently-remembered file name is not changed unless file is the very
first file name mentioned since e d was invoked. If no file name is
given, the currently-remembered file name, if any, is used (see e and
f commands); • is unchanged. If the command is successful, the
number of characters written is typed. If file is replaced by!, the rest
of the line is taken to be a command whose standard input is the
addressed lines. Such a command is not remembered as the current file
name.

($) =

Page 62

The line number of the addressed line is typed; • is unchanged by this
command.

System V Interface Definition

I command
The remainder of the line after the ! is sent to the command interpreter
to be interpreted as a command. Within the text of that command, the
unescaped character "is replaced with the remembered file name; if a
I appears as the first character of the command, it is replaced with
the text of the previous command. Thus, I I will repeat the last com­
mand. If any expansion is performed, the expanded line is echoed; • is
unchanged .

• + 1)
An address alone on a line causes the addressed line to be printed. A
newline alone is equivalent to • + Ip; it is useful for stepping forward
through the buffer.

If an interrupt signal (BREAK) is sent, ed prints a ? and returns to its com­
mand level.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be
the last character before a newline, that delimiter may be omitted, in which
case the addressed line is printed. The following pairs of commands are
equivalent:

s/slls2 slslls2lp
glsl glsllp
1s1 1s11

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
the editor buffer via the e or q commands. It prints? and allows the user
to continue editing. A second e or q command at this point will take
effect. The - command-line option inhibits this feature.

ERRORS

? for command errors.

?file for an inaccessible file.

The hand H (help) commands for detailed explanations).

FILES

ed.hup work is saved here if the terminal is hung up.

SEE ALSO
GREP(BU_CMD), SED(BU_CMD), SH(BU_CMD).

USAGE

General.

A ! command cannot be subject to a g or a v command.

The sequence \0 in a RE does not match a newline character.

System V Interface Definition Page 63

If the editor input is coming from a command file (Le., ed file < ed-cmd­
file), the editor will exit at the first failure of a command that is in the com­
mand file.

FUTURE DIRECTIONS
The option - will be replaced by -5, in order to conform to the syntax stan­
dard. The old form of the option will continue to be accepted for some time.

LEVEL
Levell.

Page 64 System V Interface Definition

EXPR(BU_CMD)

NAME

expr - evaluate expression

SYNOPSIS
expr expression

DESCRIPTION
The command expr evaluates an expression and writes the result on the
standard output. Terms of the expression must be separated by blanks.
Characters special to the command interpreter must be escaped. Note that 0
is returned to indicate a zero value, rather than the null string. Strings con­
taining blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign.

The operators are listed below. Characters that need to be escaped are pre­
ceded by \. The list is in order of increasing precedence, with equal pre­
cedence operators grouped within {} symbols. The symbol arg represents an
argument.

arg \1 arg
returns the first arg if it is neither null nor 0, otherwise returns the
second argo

arg \& arg
returns the first arg if neither arg is null or 0, otherwise returns o.

arg { -, \>, \> -, \<, \< -, !- } arg
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

arg { +, - } arg
addition or subtraction of integer-valued arguments.

arg { \., /, % } arg
multiplication, division, or remainder of the integer-valued arguments.

arg: arg

EXAMPLES

The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression syn­
tax is the same as that of ed, except that all patterns are "anchored"
(i.e., begin with A) and, therefore, A is not a special character, in that
context. Normally, the matching operator returns the number of char­
acters matched (0 on failure). Alternatively, the \C .. \) pattern sym­
bols can be used to return a portion of the first argument.

1. a='expr Sa + l'

adds 1 to the variable a.

2. For $a equal to either "/usr/abc/file" or just "file"

System V Interface Definition Page 65

expr $a : '.*/\(.*\)' \/ $a

returns the last segment of a path name (i.e., file). Watch out for
/ alone as an argument: expr will take it as the division operator.

3. A better representation of example 2.

expr //$a : '.*/\(.*\)'

The addition of the / / characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

4. expr $VAR
, ,
.*

returns the number of characters in $VAR.

SEE ALSO

ED(BU_CMD), SH(BU_CMD).

ERRORS

As a side effect of expression evaluation, expr returns the following exit
values:

o if the expression is neither null nor 0

1 if the expression is null or 0

2 for invalid expressions.

USAGE

General.

After argument processing [see SH(BU_CMD)], expr cannot tell the
difference between an operator and an operand except by the value. If $a is
-, the command:

expr $a

looks like:

expr

as the arguments are passed to expr (and they will all be taken as the
operator). The following works:

LEVEL

Levell.

Page 66

expr X$a X=

System V Interface Definition

NAME

file - determine file type

SYNOPSIS
file [-f lfile] file ...

DESCRIPTION

The command f i 1 e performs a series of tests on each specified f i 1 e in
an attempt to classify it. If it appears to be a text file, f i 1 e examines an
initial segment and makes a guess about its language. (The answer is not
guaranteed to be correct.) If an argument is an executable ("a.out") file it is
identified as such, and any other available information is reported.

If the -f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 67

NAME

find - find files

SYNOPSIS

find path-name-list expression

DESCRIPTION

The command find recursively descends the directory hierarchy for each
path name in the path-name-list (i.e., one or more path names) seek­
ing files that match a boolean expression written in the primaries given
below. In the following descriptions, the argument n is used as a decimal
integer where +n means more than n, -n means less than nand n means
exactly n.

The expression argument is made up of:

-name file True if file matches the current file name. The argument
syntax of sh [see SH(BU_CMD)] may be used if escaped
(especially note (, ? and .».

-permonum True if the file permission flags exactly match the octal
number onum [see CHMOD(BU_CMD)] If onum is prefixed
by a minus sign, more flag bits (017777) [see
STAT(BA_OS)] become significant and the flags are com­
pared.

-type c True if the type of the file is c, where c is b, c, d, p, or f
for block special file, character special file, directory, fifo
(named pipe), or plain file respectively.

-linksn True if the file has n links.

-useruname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it
is taken as a group ID.

-size n[c]

-atime n

-mtime n

-ctime n

-exec cmd

Page 68

True if the file is n "blocks" long (block - 512 bytes). If n
is followed by a c, the size is in characters.

True if the file has been accessed in n days. The access
time of directories in path-name-Iist is changed by find
itself.

True if the file has been modified in n days.

True if the file inode has been changed in n days,

True if the executed cmd returns a zero value as exit
status. The end of cmd must be punctuated by an escaped
semicolon. A command argument {} is replaced by the

System V Interface Definition

-ok cmd

-print

-newer file

-depth

(expression)

current path name.

Like -exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

Always true; causes the current path name to be printed.

True if the current file has been modified more recently
than the argument file.

Always true; causes descent of the directory hierarchy to
be done so that all entries in a directory are acted on
before the directory itself. This can be useful when
find is used with cpio [see CPIO(BU_CMD)] to transfer
files that are contained in directories without write permis­
sion.

True if the parenthesized expression is true (parentheses
must be escaped if they are special to the command inter-
preter).

The primaries may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtapo­
sition of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

To remove all files named tmp or ending in • xx that have not been
accessed for a week:

find / '(-name tmp -0 -name ' •• xx' ') -atime +7

-exec rm {} ';

FILES

/etc/passwd
/etc/group

SEE ALSO

CHMOD(BU_CMD), CPIO(BU_CMD), SH(BU_CMD), TEST(BU_CMD), STAT(BA_OS).

USAGE

General.

LEVEL
Levell.

System V Interface Definition Page 69

GREP(BU_CMD)

NAME

grep - search a file for a pattern

SYNOPSIS

grep [options] expression [files]

DESCRIPTION

The command 9 rep searches the input f i 1 e s (standard input default)
for lines matching a pattern. Normally, each line found is copied to the stan­
dard output. The patterns are limited regular expressions in the style
of ed.

The following options are recognized:

-v All lines but those matching are printed.
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons. (This option

is new in System V Release 2.)
-1 Only the names of files with matching lines are listed (once),

separated by newlines.
-n Each line is preceded by its relative line number in the file.
-s The error messages produced for nonexistent or unreadable files are

suppressed.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using characters in expression that may also be
meaningful to the command interpreter. It is safest to enclose the entire
expression argument in single quotes ' ... '.

ERRORS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files {even if matches were found}.

SEE ALSO
ED(BU _ CMD), EGREP(AU _ CMD), SED(BU _ CMD).

USAGE

General.

FUTURE DIRECTIONS

The functionality of egrep and fgrep [see EGREP(AU_CMD)] will eventu­
ally be provided in grep, and those two commands discontinued.

LEVEL
Levell.

Page 70 System V Interface Definition

KILL(BU_CMD)

NAME

kill - send signal to a process

SYNOPSIS
kill [-signal] PID

DESCRIPTION
The command kill sends the specified signal to the specified processes
(or process groups). If process number 0 is specified, all processes in the pro­
cess group are signaled. Process numbers can be found by using ps [see
PS(BU_CMD»).

The argument signa 1 must be specified as a numeric value; these values
are implementation dependent. (See FUTURE DIRECTIONS below.}

If no signal is specified, ki 11 sends SIGTERM (terminate). This will nor­
mally kill processes that do not catch or ignore the signal.

The specified process(es) must belong to the user unless the user is super­
user.

Further details are described in KILL(BA_OS).

SEE ALSO
PS(BU_CMD), KILL(BA_OS), SIGNAL(BA_OS).

USAGE
General.

FUTURE DIRECTIONS
The command ki 11 will be changed to use symbolic names rather than
numeric values of signals. The old form will continue to be accepted for
some time.

LEVEL
Levell.

System V Interface Definition Page 71

LlNE(BU_CMD)

NAME

line - read one line

SYNOPSIS

line

DESCRIPTION

The command line copies one line (up to a newline) from the standard
input and writes it on the standard output. It returns an exit code of 1 on
EOF and always prints at least a newline. It is often used within command
scripts to read from the user's terminal.

SEE ALSO
SH(BU_CMD).

USAGE
General.

LEVEL
Levell.

Page 72 System V Interface Definition

NAME

Is - list contents of directory

SYNOPSIS
ls [options] [file •••]

DESCRIPTION
For each f i 1 e, if it is directory 1 s lists the contents of the directory; if it
is a file, 1 s repeats its name and gives any other information requested.
The output is sorted alphabetically by default. When no f i 1 es are
specified, the current directory is listed. When several arguments are given,
the arguments are first sorted appropriately, but files appear before direc­
tories and their contents.

Note that the following options are new in System V Release 2: -C, -F,
-R, -m, -n, -q, and -x.

There are three major listing formats. The default format is to list one entry
per line; the options -c and -x enable multi-column formats; and the -m
option enables stream output format in which files are listed across the page,
separated by commas.

In order to determine output formats for the -c, -x, and -m options,
1 s uses the environmental variable COLUMNS to determine the number of
character positions available on one output line. If this variable is not set,
the terminfo database is used to determine the number of columns,
based on the environmental variable TERM. If this information cannot be
obtained, 80 columns is assumed.

There are a large number of options:

-C Multi-column output with entries sorted down the columns.

-F Put a slash (/) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

-R Recursively list subdirectories encountered.

-a List all entries; usually entries whose names begin with a period (.) are
not listed.

-c Use time of last modification of the i-node (file created, mode changed,
etc.) for sorting (-t) or printing (-1).

-d If an argument is a directory, list only its name (not its contents); often
used with -1 to get the status of a directory.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -1, -t, -s, and -r, and
turns on -a; the order is the order in which entries appear in the
directory.

-g The same as -1, except that the owner is not printed.

System V Interface Definition Page 73

-i For each file, print the inode number in the first column of the report.

-1 List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file
is a special file, the size field will instead contain the major and minor
device numbers rather than a size.

-m Stream output format; files are listed across the page, separated by
commas.

-n The same as -1, except that the owner's UID and group's GID
numbers are printed, rather than the associated character strings.

-0 The same as -1, except that the group is not printed.

-p Put a slash (/) after each filename if that file is a directory.

-q Force non-printing characters (in file names) to be displayed as the
character (?).

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

- s Give size of each file in 512-byte units.

-t Sort by time modified (latest first) instead of by name.

-u Use time of last access instead of last modification for sorting (with the
-t option) or printing (with the -1 option).

-x Multi-column output with entries sorted across rather than down the
page.

The mode printed under the -1 option consists of 10 characters that are
interpreted as described below.

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (named pipe) special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others in
the user-group of the file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and to execute the file
as a program, respectively. For a directory, "execute" permission is inter­
preted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

Page 74

r
w
x

if the file is readable;
if the file is writable;
if the file is executable (also see below);

System V Interface Definition

FILES

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set­
group-ID mode; likewise, the user-execute permission character is given as s
if the file has set-user-ID mode. These are given as S (capitalized) if the
corresponding execute permission is NOT set. (See, however, FUTURE DIREC­

TIONS below')

I etc/passwd to get user IDs for 1 s -1 and 1 S -0.

I etcl group to get group IDs for 1 S -1 and 1 S -g.
lusr/liblterminfo/*l* terminfo terminal information database

SEE ALSO

CHMOD(BU _ CMD), FIND(BU _ CMD).

USAGE

General.

FUTURE DIRECTIONS

The group execute permission will be shown as 1 if mandatory locking is
enabled for the file. It will not be possible to set-group-ID without also turn­
ing on group execute permission; therefore the group execute permission
character will have one of the following values: -, x, s, or I; (S will not be
possible).

LEVEL

Levell.

System V Interface Definition Page 75

MAIL(BU _ CMD)

NAME

mail, rmail - send or read· mail

SYNOPSIS

mail -epqr] [-f file

mail -t] name

rmail [-t] name •.•

DESCRIPTION

The command ma i 1 without arguments prints a user's mail, message-by­
message, in last-in first-out order. For each message, the user is prompted
with a ?, and a line is read from the standard input to determine the disposi­
tion of the message:

<newline>
+
d

P

s [file]
w [file]

m [name ...]

q
EOF
x
1 command
•

Go on to next message.
Same as <newline>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named file (mbox is default).
Save message, without its header, in the named file (mbox
is default).
Mail the message to the named users (names are user login
names; the default is the user).
Put undeleted mail back in the mailfile and stop.
(Usually control-D') Same as q.
Put all mail back in the mailfile unchanged and stop.
Escape to the command interpreter to execute command.
Print a command summary .

The optional arguments alter the printing of the mail:

-e causes mail not to be printed. An exit value of 0 is returned if the
user has mail; otherwise, an exit value of 1 is returned.

-p causes all mail to be printed without prompting for disposition.
-q causes ma i 1 to terminate after interrupts. Normally an interrupt

only causes the termination of the message being printed.
-r causes messages to be printed in first-in, first-out order.
-ffile causes ma i 1 to use file (e.g., mbox) instead of the default

mailfile.

When names (user login names) are given, ma i 1 takes the standard input
up to an end-of-file (or up to a line consisting of just a.) and adds it to each
user's mailfile. The message is preceded by the sender's name and a post­
mark. Lines in the message that begin with the word "From" are preceded
with a >. The -t option causes the message to be preceded by all users the
ma i 1 is sent to. If a user being sent mail is not recognized, or if ma i 1 is
interrupted during input, the file dead .letter will be saved to allow
editing and resending. Note that this is regarded as a temporary file in that

Page 76 System V Interface Definition

MAIL(BU _ CMD)

it is recreated every time needed, erasing the previous contents of
dead. letter.

To denote a recipient on a remote system, name is the user's login name
prefixed by the system name and an exclamation mark. Everything after the
first exclamation mark is interpreted by the remote system. In particular, if
name contains additional exclamation marks, it can denote a sequence of
machines through which the message is to be sent on the way to its ultimate
destination. For example, specifying a!b!cde as a recipient's name causes the
message to be sent to user b!cde on system a. System a will interpret that
destination as a request to send the message to user cde on system b. This
might be useful, for instance, if the sending system can access system a but
not system b, and system a has access to system b.

The mailfile may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to
person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment. In order for forwarding to work
properly the mailfile should have "mail" as group ID, and the group permis­
sion should be read-write.

The command rma i 1 only permits the sending of mail.

FILES

/etc/passwd
$HOME/mbox
dead. letter

USAGE
General.

LEVEL
Level 1.

to identify sender and locate persons
saved mail
unmailable text

System V Interface Definition Page 77

NAME

mkdir - make a directory

SYNOPSIS

mkdir dirname •••

DESCRIPTION

The command mkd i r creates the specified directories. Standard entries, .,
for the directory itself, and •• , for its parent, are made automatically.

The command mkdir requires write permission in the parent directory.

ERRORS

The command mkd i r returns exit code 0 if all directories were successfully
made; otherwise, it prints a diagnostic and returns non-zero.

SEE ALSO
RM(BU _ CMD).

USAGE

General.

LEVEL

Levell.

Page 78 System V Interface Definition

NL(BU_CMD)

NAME

nl - line numbering filter

SYNOPSIS
nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr]
[-p] [-lnum] [-ssep] [-wwidth] [-nformat]
[-ddelim] [file]

DESCRIPTION

The command n 1 reads lines from the named f i 1 e or the standard input
if no f i 1 e is named and reproduces the lines on the standard output.
Lines are numbered on the left in accordance with the command options in
effect.

n 1 views the text it reads in terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a body,
and a footer section. Empty sections are valid. Different line numbering
options are independently available for header, body, and footer (e.g., no
numbering of header and footer lines while numbering blank lines only in the
body).

The start of logical page se-.ctions are signaled by input lines containing noth­
ing but the following delimiter character(s):

Line Start of

\:\:\: header
\:\: body
\: footer

Unless otherwise specified, nl assumes the text being read is in a single log­
ical page body.

Options may appear in any order and may be intermingled with an optional
file name. Only one file may be named. The options are:

-btype

-htype

-ftype

-p

-vstart#

Specifies which logical page body lines are to be numbered.
Recognized type s and their meaning are: a, number all
lines; t, number lines with printable text only; n, no line
numbering; pstring, number only lines that contain the
regular expression specified in string. Default type
for logical page body is t (text lines numbered).

Same as -btype except for header. Default type for
logical page header is n (no lines numbered).

Same as -btype except for footer. Default for logical
page footer is n (no lines numbered).

Do not restart numbering at logical page delimiters.

The initial value used to number logical page lines. Default
is 1.

System V Interface Definition Page 79

-iincr

-ssep

-wwidth

-nformat

-Inum

-dxx

EXAMPLE

The command:

The increment value used to number logical page lines.
Default is 1.

The character(s) used in separating the line number and
the corresponding text line. Default sep is a tab.

The number of characters to be used for the line number.
Default width is 6.

The line numbering format. Recognized values are: In, left
justified, leading zeroes suppressed; rn, right justified, lead­
ing zeroes supressed; rz, right justified, leading zeroes kept.
Default forma t is rn (right justified).

The number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or -fa
option is set). Default is 1.

The delimiter characters specifying the start of a logical
page section may be changed from the default characters
(\:) to two user-specified characters. If only one character
is entered, the second character remains the default charac­
ter (:). No space should appear between the -d and the
delimiter characters. To enter a backslash, use two
backslashes.

nl -v10 -i10 -dl+ fiIe1

will number filel starting at line number 10 with an increment of ten. The
logical page delimiters are !+.

USAGE

General.

SEE ALSO

PR(BU_CMD).

LEVEL

Levell.

Page 80 System V Interface Definition

NAME

nohup - run a command immune to hangups and quits

SYNOPSIS

nohup command [arguments]

DESCRIPTION

NOHUP(BU _ CMD)

The command nohup executes command with the signals SIGH UP and
SIGQUIT ignored. If output is not re-directed by the user, both standard out­
put and standard error are sent to nohup. out. If nohup. out is not
writable in the current directory, output is redirected to
$HOME/nohup. out.

EXAMPLE

It i~ frequently desirable to apply nohup to pipelines or lists of commands.
This can be done only by placing pipelines and command lists in a single file;
this procedure can then be executed as command, and the nohup applies
to everything in the file.

USAGE
General.

SEE ALSO
SH(BU _ CMD), SIGNAL(BA_ OS).

LEVEL
Levell.

System V Interface Definition Page 81

NAME

pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [-] [-f] name •..

pcat name .•.

unpack name .••

DESCRIPTION

The command pack attempts to store the specified files in a compressed
form. Wherever possible (and useful), each input file name is replaced by
a packed file name.z with the same access modes, access and modified
dates, and owner as those of name. The option -f will force packing of
name. This is useful for causing an entire directory to be packed even if
some of the files will not benefit. If pack is successful, name will be
removed. Packed files can be restored to their original form using unpack
or pcat.

The command pack uses Huffman (minimum redundancy) codes on a
byte-by-byte basis. If the - argument is used, an internal flag is set that
causes the number of times each byte is used, its relative frequency, and the
code for the byte to be printed on the standard output. Additional
occurrences of - in place of name will cause the internal flag to be set and
reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distribu­
tion of characters, show little compression, the packed versions being about
90% of the original size.

The command pack returns a value that is the number of files that it failed
to compress.

No packing will occur if:

Page 82

the file appears to be already packed;
the file name has more than {NAME_MAX}-2 characters;
the file has links;
the file is a directory;
the file cannot be opened;
the file is empty;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;

System V Interface Definition

an I/O error occurred during processing.

The last segment of the file name must contain no more than
{NAME_MAX}-2 characters to allow space for the appended .z extension.

The command pca t does for packed files what cat does for ordinary files,
except that pca t cannot be used as a filter. The specified files are
unpacked and written to the standard output. Thus to view a packed file
named name.z use:

pcat name.z (or pca t name)

To make an unpacked copy, called abc, of a packed file named name. z
(without destroying name. z) use the command:

pc at name >nnn

The command pca t returns the number of files it was unable to unpack.
Failure may occur if:

the file name (exclusive of the .z) has more than {NAME_MAX}-2 char­
acters;
the file cannot be opened;
the file does not appear to be the output of pack.

The command unpack expands files created by pack. For each file
name specified in the command, a search is made for a file called name.z
(or just name, if name ends in .z). If this file appears to be a packed file,
it is replaced by its expanded version. The new file has the .z suffix stripped
from its name, and has the same access modes, access and modification dates,
and owner as those of the packed file.

The command unpack returns a value that is the number of files it was
unable to unpack. Failure may occur for the same reasons that it may in
pca t, as well as for the following:

a file with the "unpacked" name already exists;
the unpacked file cannot be created.

USAGE
General.

SEE ALSO
CAT(BU_CMD).

LEVEL
Levell.

System V Interface Definition Page 83

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file 1 fi1e2 ...
paste -d1ist file1 fi1e2
paste -s [-d1ist] fi1e1 fi1e2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given
input files f i 1 e 1 , f i 1 e 2, etc. The file-name - means standard input.
It treats each file as a column or columns of a table and pastes them together
horizontally (parallel merging) . In the last form above (-s option),
paste combines subsequent lines of the input file (serial merging).

In all cases, lines are glued together with the tab character, unless the -d
option is used (sec below).

Output is to the standard output, so that paste can be used as the start of
a pipe, or as a filter, if - is used in place of a file name.

Without the -d option, the newline characters of each but the last file (or
last line in case of the - s option) are replaced by a tab character.

When this option is used, a character from the 1 i s t immediately following
-d replaces the default tab as the line concatenation character. The list is
used circularly, Le., when exhausted, it is reused. In parallel merging (Le.,
no -s option), the lines from the last file are always terminated with a new­
line character, not from the 1 i s t. The list may contain the special escape
sequences: \0 (newline), \t (tab), \\ (backslash), and \0 (empty string, not a
null character>. Quoting may be necessary, if characters have special mean­
ing to the command interpreter.

EXAMPLES

1s I paste - - - -
list directory in four columns

paste -s -d"\t\n" file
combine pairs of lines into lines

USAGE
General.

SEE ALSO
CUT(BU_CMD), GREP(BU_CMD), PR(BU_CMD).

LEVEL
Levell.

Page 84 System V Interface Definition

NAME
pg - file perusal filter for soft-copy terminals

SYNOPSIS
pg [-number] [-p string] [-cefns] [+linenumber]
[+/pattern/] [files ..•]

DESCRIPTION

The command pg is a filter that allows the examination of f i 1 e s one
screenful at a time on a soft-copy terminal. (The file name - and/or null
arguments indicate that pg should read from the standard input.) Each
screenful is followed by a prompt. If the user types a carriage return,
another page is displayed; other possibilities are enumerated below.

This command is different from previous paginators in that it allows the user
to back up and review something that has already passed. The method for
doing this is explained below.

In order to determine terminal attributes, pg scans the terminfo data
base for the terminal type specified by the environmental variable TERM. If
TERM is not defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24 lines, the
ciefault window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string con­
tains a ""d", the first occurrence of ""d" in the prompt will be
replaced by the current page number when the prompt is issued. The
default prompt string is ":".

-c Home the cursor and clear the screen before displaying each page.
This option is ignored if clear_screen is not defined for this terminal
type in the terminfo data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (e.g., escape
sequences for underlining) generate undesirable results. The -f
option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a newline character. This
option causes an automatic end of command as soon as a command
letter is entered.

- s Causes pg. to print all messages and prompts in standout mode (usu­
ally inverse video).

System V Interface Definition Page 85

PG(BU_CMD)

+linenumber
Start up at linenumber.

+/patternl
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address,
an optionally signed number indicating the point from which further text
should be displayed. This address is interpreted in either pages or lines
depending on the command. A signed address specifies a point relative to the
current page or line, and an unsigned address specifies an address relative to
the beginning of the file. Each command has a default address that is used if
none is provided.

The perusal commands and their defaults are as follows:

(+O<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+0 I
With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified line.

(+1) d or "D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

• or "L

$

Typing a single period causes the current page of text to be redisplayed.

Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ED(BU_CMD) are available. They
must always be terminated by a <newline>, even if the -n option is
specified.

i/patternl
Search forward for the i th (default i = 1) occurrence of pa t­
tern. Searching begins immediately after the current page and con­
tinues to the end of the current file, without wrap-around.

i "pattern"
i?pattern?

Page 86

Search backwards for the i th (default i = 1) occurrence of pa t­
tern. Searching begins immediately before the current page and

System V Interface Definition

FILES

continues to the beginning of the current file, without wrap-around.
(The ,. notation is useful for terminals that do not properly handle the
1.)

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from now
on. The suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following
commands:

in Begin perusing the it h next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the i th previous file in the command line. i is an
unsigned number, default is 1.

i w Display another window of text. If i is present, set the window size to
i.

s filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional.
This command must always be terminated by a newl ine, even if the
-n option is specified.

h Help by displaying an abbreviated summary of available commands.

q or Q
Quit pg.

!command
The argument command is passed to the command interpreter, whose
name is taken from the SHELL environmental variable. If this is not
available, the default command interpreter is used. This command
must always be terminated by a newline, even if the -n option is
specified.

At any time when output is being sent to the terminal, the user can hit the
QUIT key (normally control-\) or the interrupt (BREAK) key. This causes
pg to stop sending output, and to display the prompt. The user may then
enter one of the above commands in the normal manner. Unfortunately,
some output is lost when this is done, due to the fact that any characters
waiting in the terminal's output queue are flushed when the quit signal
occurs.

If the standard output is not a terminal, pg acts just like the cat com­
mand, except that a header is printed before each file (if there is more than
one).

lusr/lib/terminfol*l* terminfo terminal information database

System V Interface Definition Page 87

USAGE
End-user.

While waiting for terminal input, pg responds to BREAK, DEL, and QUIT
by terminating execution. Between prompts, however, these signals interrupt
pg's current task and place the user in prompt mode. These signals should
be used with caution when input is being read from a pipe, since an interrupt
is likely to terminate the other commands in the pipeline.

If terminal tabs are not set every eight positions, undesirable results may
occur.

When pg is used as a filter with another command that changes the termi­
nal 110 options, terminal settings may not be restored correctly.

SEE ALSO
ED(BU _ CMD), GREP(BU _ CMD).

LEVEL
Levell.

New in System V Release 2.

Page 88 System V Interface Definition

PR(BU_CMD)

NAME

pr - print files

SYNOPSIS

pr [options] [files]

DESCRIPTION

The command pr prints the named files on the standard output. If f i 1 e
is -, or if no files are specified, the standard input is assumed. By default,
the listing is separated into pages, each headed by the page number, a date
and time, and the name of the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not trun­
cated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

The below options may appear singly, or may be combined in any order:

+k Begin printing with page k (default is 1).

- k Produce k - col umn output (default is 1). This option should not
be used with -m. The options -e and -i are assumed for
multi-column output.

-a Print multi-column output across the page. This option is appropri­
ate only with the -k option.

-m Merge and print all files simultaneously, one per column (overrides
the -k option).

-d Double-space the output.

-eck Expand input tabs to character positions k+ 1, 2.k+ 1, 3.k+ 1,
etc. If k is 0 or is omitted, default tab settings at every eighth
position are assumed. Tab characters in the input are expanded
into the appropriate number of spaces. If c (any non-digit charac­
ter) is given, it is treated as the input tab character (default for c
is the tab character).

-ick In output, replace white space wherever possible by inserting
tabs to character positions k+ 1, 2.k+ 1, 3.k + 1, etc. If k is 0 or
is omitted, default tab settings at every eighth position are assumed.
If c (any non-digit character) is given, it is treated as the output
tab character (default for c is the tab character).

-nck Provide k-digi t line numbering (default for k is 5). The
number occupies the first k + 1 character positions of each column
of normal output or each line of -m output. If c (any non-digit
character) is given, it is appended to the line number to separate it
from whatever follows (default for c is a tab).

System V Interface Definition Page 89

-wk Set the width of a line to k character positions for multi-column
output (default is 72).

-ok Offset each line by k character positions (default is 0). The
number of character positions per line is the sum of the width and
offset.

-1 k Set the length of a page to k lines (default is 66). If k is less
than what is needed for the page header and trailer, then the option
-t is in effect; that is, header and trailer lines are suppressed in
order to make room for text.

-h header
Use header as the header to be printed instead of the file name.

-p Pause before beginning each page if the output is directed to a ter­
minal (pr will ring the bell at the terminal and wait for a carriage
return).

-f Use form-feed character for new pages (default is to use a sequence
of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

-se Separate columns by the single character e instead of by the
appropriate number of spaces (default for e is a tab).

EXAMPLES

• Print f i 1 e 1 and f i 1 e 2 as a double-spaced, three-column listing
headed by "file list":

pr -3dh "file list" file1 file2

• Write file 1 on file2, expanding tabs to columns 10, 19,28, ... :

pr -e9 -t <file1 >file2

USAGE
General.

LEVEL
Levell.

Page 90 System V Interface Definition

NAME

ps - report process status

SYNOPSIS

ps [options

DESCRIPTION

The command ps prints certain information about active processes.
Without options, information is printed about processes associated with
the current terminal. The output consists of a short listing containing only
the process-ID, terminal identifier, cumulative execution time, and the com­
mand name. Otherwise, the information that is displayed is controlled by the
selection of options.

The options using lists as arguments can have the list specified in one of
two forms: a list of identifiers separated from one another by a comma, or a
list of identifiers enclosed in double quotes and separated from one another
by a comma and! or one or more spaces.

The options are:

-e
-d

-a

-f

-1
-n namelist

-t termlist

-p proC/ist

-u uidlist

-g grplist

Print information about all processes.
Print information about all processes, except process group
leaders.
Print information about all processes, except process group
leaders and processes not associated with a terminal.
Generate a full listing. (See below for meaning of columns
in a full listing).
Generate a long listing. See below.

The argument will be taken as the name of an alternate system
name 1 i s t file in place of the default.

Restrict listing to data about the processes associated with the
terminals given in t e r m 1 i st. Terminal identifiers maybe
specified in one of two forms: the device's file name (e.g.,
tty04) or if the device's file name starts with tty, just the digit
identifier (e.g., 04).

Restrict listing to data about processes whose process-ID
numbers are given in proc1ist.

Restrict listing to data about processes whose user-ID numbers
or login names are given in u i d 1 i st. In the listing, the
numerical-user-ID will be printed unless the -f option is used,
in which case the login name will be printed.

Restrict listing to data about processes whose process group
leaders are given in g r p 1 i st.

System V Interface Definition Page 91

The column headings and the meaning of the columns in a ps listing are
given below; the letters f arid I indicate the option (full or long) that
causes the corresponding heading to appear; all means that the heading
always appears. Note that these two options determine only what informa­
tion is provided for a process; they do not determine which processes will be
listed.

F (J)

s 0)
UIO (f,J)

PIO (aU)

PPJD (f,J)

C (f,J)

PRJ (J)

NI (J)

AOOR (J)

SZ (J)

WCHAN

STIME
TrY (aU)
TIME (aU)
CMO (ail)

Flags (octal and additive) associated with the process.
The state of the process.
The user ID number of the process owner; the login name
is printed under the -f option.
The process ID of the process; it is possible to kill a process
if you know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
The priority of the process; higher numbers mean lower
priority.
Nice value; used in priority computation.
The memory address of the process.
The size in blocks of the core image of the process.

0) The event for which the process is waiting or sleep­
ing; if blank, the process is running.

(f) Starting time of the process.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name; the full command name and its argu­
ments are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited for
by the parent, is marked defunct.

FILES

Under the option -f, ps tries to determine the command name and argu­
ments given when the process was created by examining memory or the swap
area. Failing this, the command name, as it would appear without the option
-f, is printed in square brackets.

/etc/passwd supplies UID information

USAGE
General.

Things can change while ps is running; the snap-shot it gives is only true
for an instant, and may not be accurate by the time it is displayed.

LEVEL
Levell.

Page 92 System V Interface Definition

NAME

pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
The command pwd prints the path name of the working (current) directory.

ERRORS

"Cannot open .. " and "Read error in .. " indicate possible file system trouble.

USAGE

General.

SEE ALSO
CD(BU_CMD).

LEVEL

Levell.

System V Interface Definition Page 93

RM(BU_CMD)

NAME

rm, rmdir - remove files or directories

SYNOPSIS

rm [-fri] file

rmdir dir

DESCRIPTION

The command rm removes the entries for one or more files from a directory.
If an entry was the last link to the file, the file is destroyed. Removal of a
file requires write permission in its directory, but neither read nor write per­
mission on the file itself.

If a file has no write permission and the standard input is a terminal, its per­
missions are printed and a line is read from the standard input. If that line
begins with y the file is deleted, otherwise the file remains. No questions are
asked when the option -f is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

If the option -i (interactive) is in effect, rm asks whether to delete each
file, and, under -r, whether to examine each directory.

The command rmdir removes entries for the named directories, which
must be empty.

ERRORS

It is forbidden to remove the file 00 in order to avoid the consequences of
inadvertently doing something like:

rm -r 0*

USAGE

General.

SEE ALSO
UNLlNK(BA _aS).

LEVEL

Levell.

Page 94 System V Interface Definition

NAME

sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfile] [files]

DESCRIPTION
The command sed copies the named file s (standard input default) to
the standard output, edited according to a script of commands. The -f
option causes the script to be taken from file sf i Ie; these options accumu­
late. If there is just one -e option and no -f options, the flag -e may be
omitted. The -n option suppresses the default output. A script consists of
editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern
space (unless there is something left after a D command), applies in
sequence all commands whose addresses select that pattern space, and at the
end of the script copies the pattern space to the standard output (except
under -n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address,
i.e., a/regular expression/ in the style of the ed command
modified as follows:

In a context address, the construction \?regular expression?,
where ? is any character, is identical to /regular expres­
sion/. Note that in the context address \.xabc\.xdefx, the
second x stands for itself, so that the regular expression is
abcxdef.

The escape sequence \n matches a newline embedded in the pattern
space.

A period. matches any character except the terminal newline of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from the

first pattern space that matches the first address through the next
pattern space that matches the second. (If the second address is
a number less than or equal to the line number first selected, only
one line is selected.) Thereafter the process is repeated, looking
again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use
of the negation function! (below).

System V Interface Definition Page 95

SED(BU_CMD)

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

The argument text consists of one or more lines, all but the last of which
end with \ to hide the newline. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used to
protect initial blanks and tabs against the stripping that is done on every
script line. The argument r f i 1 e or the argument wf i 1 e must terminate
the command line and must be preceded by exactly one blank. Each
wfile is created before processing begins. There can be at most 10 distinct
w f i 1 e arguments.

(1) a\

text Append. Place text on the output before reading the next
input line.

(2) b label

(2) c\
text

(2) H
(1) i \
text
(2) 1

Page 96

Branch to the: command bearing the label. If label is
empty, branch to the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at
the end of a 2-address range, place text on the output.
Start the next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
newline. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the
pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambigu­
ous form. Non-printing characters are spelled in two-digit
ASCII and long lines are folded.
Copy the pattern space to the standard output. Replace the
pattern space with the next line of input.
Append the next line of input to the pattern space with an
embedded newline. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
newline to the standard output.
Quit. Branch to the end of the script. Do not start a new
cycle.

rfile
Read the contents of r f i 1 e. Place them on the output
before reading the next input line.

System V Interface Definition

U)~regular expression/replacement/flags
Substitute the replacement string for instances of the
regular expre s s ion in the pattern space. Any charac­
ter may be used instead of I. For a fuller description see
ED(BU_CMD). The value of flags is zero or more of:

o n- 1 - 512. Substitute for just the n th occurrence
of the regular expression.

g Global. Substitute for all nonoverlapping instances
of the regular expression rather than just
the first one.

p Print the pattern space if a replacement was made.
w wfile

Write. Append the pattern space to wf i 1 e if a
replacement was made.

(2)t label Test. Branch to the: command bearing the label if any
substitutions have been made since the most recent reading of
an input line or execution of a t. If label is empty, branch
to the end of the script.

(2)w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y/string 1/string2/

Transform. Replace all occurrences of characters in
string 1 with the corresponding character in string2.
The lengths of string 1 and string2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is ()
only to lines not selected by the address (es) .

(0) : 1 abe 1 This command does nothing; it bears a 1 abe 1 for band t
commands to branch to.

(1) - Place the current line number on the standard output as a line.
(2) { Execute the following commands through a matching } only

when the pattern space is selected.
(0) An empty command is ignored.
(0) # If a # appears as the first character on the first line of a script

file, then that entire line is treated as a comment, with one
exception. If the character after the # is an 'n', then the
default output will be suppressed. The rest of the line after #0
is also ignored. A script file must contain at least one non­
comment line.

USAGE

General.

System V Interface Definition Page 97

SED(BU_CMD)

SEE ALSO

A WK(BU _ CMD), ED(BU _ CMD), GREP(BU _ CMD).

LEVEL

Levell.

Page 98 System V Interface Definition

NAME
sh, rsh - shell, the standard/restricted command interpreter

SYNOPSIS
sh [flags] [args]
rsh [flags] [args]

DESCRIPTION
The command sh is a command interpreter that executes commands read
from a terminal or a file. The command r s h is a restricted version of the
standard command interpreter s h; it is used to set up login names and exe­
cution environments whose capabilities are more controlled than those of the
standard shell. See Invocation below for the meaning of flags and other argu­
ments to the shell.

Definitions

A blank is a tab or a space.
A name is a sequence of letters, digits, or underscores beginning with a
letter or underscore.
A parameter is a name, a digit, or any of the characters *, @, #, ?,
$, and !.

Commands
A simple-command is a sequence of non-blank words separated by
blanks. The first word specifies the name of the command to be exe­
cuted. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as
argument 0 [see EXEC(BA_OS)]. The value of a simple-command is its
exit status if it terminates normally, or (octal) 200+status if it ter­
minates abnormally [see SIGNAL(BA_OS) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The
standard output of each command but the last is connected by a "pipe"
[see PIPE(BA_OS)] to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last com­
mand to terminate. The exit status of a pipeline is the exit status of
the last command.

A list is a sequence of one or more pipelines separated by ;, &., &.&.,
or 1 I, and optionally terminated by ; or &.. Of these four symbols,
; and &. have equal precedence, which is lower than that of &.& and
1 I· The symbols &.&. and 1 1 also have equal precedence. The symbol
; causes sequential execution of the preceding pipeline; the symbol &.
causes asynchronous execution of the preceding pipeline (i.e., the shell
does not wait for that pipeline to finish). The symbol &.&. (I I) causes
the list following it to be executed only if the preceding pipeline returns
a zero (non-zero) exit status. An arbitrary number of new lines may
appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that of the

System V Interface Definition Page 99

last simple-command executed in the command.

for name [in word ... J do list done
Each time a for command is executed, name is set to the next
word taken from the in word list. If in word ... is omitted,
then the f or command executes the do list once for each posi­
tional parameter that is set (see Parameter Substitution below).
Execution ends when there are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pat­
tern that matches word. The form of the patterns is the same as
that used for file-name generation (see File Name Generation)
except that a slash, a leading dot, or a dot immediately following
a slash need not be matched explicitly.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit
status, the list following the first then is executed. Otherwise,
the list following eli f is executed and, if its value is zero, the
list following the n~xt then is executed. Failing that, the
else list is executed. If no else list or then list is exe­
cuted, then the if command returns a zero exit status.

whi 1 e list do list done
A while command repeatedly executes the while list and, if
the exit status of the last command in the list is zero, executes the
do list; otherwise the loop terminates. If no commands in the
do list are executed, then the while command returns a zero
exit status; un til may be used in place of wh i 1 e to negate
the loop termination test.

(list)
Execute list in a sub-shell.

{list; }
list is simply executed. (The semi-colon may be replaced by a
newline.)

name () {list;}
(New in System V Release 2.) Define a function which is refer­
enced by name. The body of the function is the list of com­
mands between {. and } . (The semi-colon may be replaced by
a newline.) Execution of functions is described below (see Execu­
tion).

The following words are only recognized as the first word of a com­
mand and when not quoted:

if then else elif fi case esac for
esac for while until do done { }

Comments

Page 100

A word beginning with # causes that word and all the following char­
acters up to a newline to be ignored.

System V Interface Definition

Command Substitution
The standard output from a command enclosed in a pair of grave
accents (") may be used as part or all of a word; trailing newlines are
removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There
are two types of parameters, positional and keyword. If the parameter
name is a single digit (0 - 9), it is a positional parameter; otherwise, the
name must be a legal name as defined above, and gives a keyword
parameter. Positional parameters may be assigned values by set.
Keyword parameters (also known as variables) may be assigned values
by writing:

name =value [name = value] ...

Pattern-matching is not performed on value. There cannot be a func­
tion and a variable with the same name.

$ {parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. If
parameter is • or @, all the positional parameters, starting with
$ 1, are substituted (separated by spaces). Parameter $ 0 is set
from argument zero when the shell is invoked.

$ {parameter: -word}
If parameter is set and is non-null, substitute its value; otherwise
substitute word.

$ {parameter: =word}
If parameter is not set or is null set it to word; the value of the
parameter is substituted. Positional parameters may not be
assigned to in this way.

$ {parameter: ?word}
If parameter is set and is non-null, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, the mes­
sage "parameter null or not set" is printed.

$ {parameter: +word}
If parameter is set and is non-null, substitute word; otherwise
substitute nothing.

In the above, word is not evaluated unless it is to be used as the substi­
tuted string, so that, in the following example,. pwd is executed only if
d is not set or is null:

echo $ {d: -'pwd'}

If the colon (:) is omitted from the above expressions, the shell only
checks whether parameter is set or not.

System V Interface Definition Page 101

SH(BU_CMD)

Page 102

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.
Flags supplied to the shell on invocation or by the set
command.

? The decimal value returned by the last synchronously exe­
cuted command.

S The process number of this shell.
The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME

PATH

The default argument (home directory) for the cd com­
mand.

The search path for commands (see Execution below). The
user may not change PATH if executing under rsh.

CDPATH

MAIL

The search path for the cd command. The syntax and
usage is similar to that of PATH.

If this parameter is set to the name of a mail file, then the
shell informs the user of the arrival of mail in the specified
file. In System V Release 2, the user is informed only if
MAIL is set and MAILPATH is not set.

MAILCHECK
(New in System V Release 2.) This parameter specifies
how often (in seconds) the shell will check for the arrival of
mail in the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10 minutes).
If set to 0, the shell will check before each primary prompt.

MAILPATH

PS1

PS2

IFS

(New in System V Release 2.) The symbol : separated
list of file names. If this parameter is set, the shell informs
the user of the arrival of mail in any of the specified files.
Each file name can be followed by % and a message that
will be printed when the modification time changes. The
default message is "you have mail ".

Primary prompt string, by default "$ ".

Secondary prompt string, by default "> ".

Internal field separators, normally space, tab, and newline.
SHACCT

(New in System V Release 2.) If this parameter is set to
the name of a file writable by the user, the shell will write

System V Interface Definition

an accounting record in the file for each shell procedure
executed.

SHELL

(New in System V Release 2.) When the shell is invoked,
it scans the environment (see Environment below) for this
name. If it is found and there is an 'r' in the file name part
of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS 1, PS2, MAILCHECK and
IFS.

Blank Interpretation
After parameter and command substitution, the results of substitution
are scanned for internal field separator characters (those found in
IFS) and split into distinct arguments where such characters are
found. Explicit null arguments (" " or ") are retained. Implicit null
arguments (those resulting from parameters that have no values) are
removed.

File Name Generation
Following substitution, each command word is scanned for the charac­
ters *, ?, and [. If one of these characters appears the word is
regarded as a pattern. The word is replaced with alphabetically sorted
file names that match the pattern. If no file name is found that
matches the pattern, the word is left unchanged. The character • at
the start of a file name or immediately following a /, as well as the
character / itself, must be matched explicitly.

Quoting

* Matches any string, including the null string.
? Matches any single character.
[•••] Matches anyone of the enclosed characters. A pair of

characters separated by - matches any character lexically
between the pair, inclusive. If the first character following
the opening "[" is a "I" any character not enclosed is
matched.

The following characters have a special meaning to the shell and cause
termination of a word unless quoted:

&. < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding
it with a \. The pair \newline is ignored. All characters enclosed
between a pair of single quote marks ("), except a single quote, are
quoted. Inside double quote marks (""), parameter and command
substitution occurs and \ quotes the characters \, " ", and $.

" $ *" is equivalent to "$ 1 $ 2 ••• ", whereas "$@" is equivalent to
"$1" "$2" •••

System V Interface Definition Page 103

Prompting

When used interactively, the shell prompts with the value of PS 1

before reading a command. If at any time a newline is typed and
further input is needed to complete a command, the secondary prompt
(i.e., the value of PS2) is issued.

Input/Output

Page 104

Before a command is executed, its input and output may be redirected
using a special notation. interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command and are not passed on to the invoked command; substitution
occurs before word or digit is used:

<word Use fiie word as standard input (file descriptor 0).
> word Use file word as standard output (file descriptor 1). If

the file does not exist it is created; otherwise, it is trun­
cated to zero length .

. > > word Use file word as standard output. If the file exists out­
put is appended to it (by first seeking to the end-of­
file); otherwise, the file is created.

< <[- 1word The shell input is read up to a line that is the same as
word. or to an end-of-file. The resulting document
becomes the standard input. If any character of word
is quoted, no interpretation is placed upon the charac­
ters of the document; otherwise, parameter and com­
mand substitution occurs, (unescaped) \newline is
ignored, and \ must be used to quote the characters
\, $, ., and the first character of word. If - is
appended to < <, all leading tabs are stripped from
word and from the document.

<&.digit Use the file associated with file descriptor digit as stan­
dard input. Similarly for the standard output using
>&.digit.

< &. - The standard input is closed. Similarly for the stan-
dard output using >&'-.

If any of the above is preceded by a digit, the file descriptor which will
be associated with the file is that specified by the digit (instead of the
default 0 or 1). For example:

••• 2>&'1

associates file descriptor 2 with the file currently associated with file
descriptor 1.

The order in which redirections are specified is significant. The shell
evaluates redirections left-to-right. For example:

••• 1 > xxx 2>&1

System V Interface Definition

first associates file descriptor 1 with the file xxx. It associates file
descriptor 2 with the file associated with file descriptor 1 (i.e., xxx). If
the order of redirections were reversed, file descriptor 2 would be asso­
ciated with the terminal (assuming file descriptor 1 had been) and file
descriptor 1 would be associated with file xxx.

If a command is followed by &. the default standard input for the com­
mand is the empty file /dev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment is a list of name-value pairs that is passed to an exe­
cuted program in the same way as a normal argument list. The shell
interacts with the environment in several ways. On invocation, the shell
scans the environment and creates a parameter for each name found,
giving it the corresponding value. If the user modifies the value of any
of these parameters or creates new parameters, none of these affects the
environment unless the export command is used to bind the shell's
parameter to the environment (see also set -a). A parameter may
be removed from the environment with the un set command (new in
System V Release 2). The environment seen by any executed com­
mand is thus composed of any unmodified name-value pairs originally
inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export
commands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM= 123 cmd
(export TERM; TERM=123; cmd)

(where cmd uses the value of the environmental variable TERM) are
equivalent as far as the execution of cmd is concerned.

If the -k flag is set, all keyword arguments are placed in the environ­
ment, even if they occur after the command name. The following first
prints a=b c and c:

Signals

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &.; otherwise signals have the
values inherited by the shell from its parent (but see also the trap
command below).

System V Interface Definition Page 105

Execution
Each time a command is executed, the above substitutions are carried
out. If the command name matches one of the Special Commands
listed below, it is executed in the shell process. If the command name
does not match a Special Command, but matches the name of a defined
function (functions are new in System V Release 2), the function is
executed in the shell process (note how this differs from the execution
of shell procedures). The positional parameters $ 1, $ 2, ••• are set to
the arguments of the function. If the command name matches neither
a Special Command nor the name of a defined function, a new process is
created and an attempt is made to execute the command via an exec
routine [see EXEC(BA_OS)1.

The variable PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon
(:). Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If the command name con­
tains a / the search path is not used; such commands will not be exe­
cuted by the restricted shell. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is
not an executable ("a.out") file, it is assumed to be a file containing
shell commands. A sub-shell is spawned to read it. A parenthesized
command is also executed in a sub-shell.

The following is new in System V Release 2:

The location in the search path where a command was found is remem­
bered by the shell (to help avoid unnecessary ex e c calls later). If the
command was found in a relative directory, its location must be re­
determined whenever the current directory changes. The shell forgets
all remembered locations whenever the PATH variable is changed or
the hash -r command is executed (see below).

Special Commands

Page 106

Except as specified, input/output redirection is not permitted for these
commands in System V Release 1. In System V Release 2, such
redirection is permitted; file descriptor 1 is the default output location.

• file

No effect; the command does nothing. A zero exit code is
returned .

Read and execute commands from file and return. The search
path specified by PATH is used to find the directory containing
file.

break [n]
Exit from the enclosing for or wh i 1 e loop, if any. If n is
specified break n levels.

continue [n]
Resume the next iteration of the enclosing for or wh i 1 e loop.

System V Interface Definition

If n is specified resume at the n-th enclosing loop.
cd [arg]

Change the current directory to argo The variable HOME is the
default argo The variable CDPATH defines the search path for
the directory containing argo Alternative directory names are
separated by a colon (:). The default path is null (specifying the
current directory). Note that the current directory is specified by
a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path
list. If arg begins with a / the search path is not used. Other­
wise, each directory in the path is searched for argo The cd
command may not be executed by r sh.

echo [arg ...]
(Not a Special Command in System V Release 1.) Echo argu­
ments. 'See ECHO(BU_CMD) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output argu­
ments may appear and, if no other arguments are given, cause the
shell input/output to be modified.

exi t [n]
Causes a shell to exit with the exit status specified by n. If n is
omitted the exit status is that of the last command executed (an
end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environ­
ment of subsequently-executed commands. If no arguments are
given, a list of all names that are exported in this shell is printed.
Function names may not be exported.

hash [-r] [name ...]

pwd

(New in System V Release 2.) For each name, the location in
the search path of the command specified by name is determined
and remembered by the shell. The - r option causes the shell to
forget all remembered locations. If no arguments are given,
information about remembered commands is presented.

(Not a Special Command in System V Release 1.) Print the
current working directory. See PWD(BU_CMD) for usage and
description.

read [name ...]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. Only the
characters in the variable IFS are recognized as delimiters. The

System V Interface Definition Page 107

Page 108

return code is 0 unless an end-of-file is encountered.
readonly [name ...]

The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no
arguments are given, a list of all readonly names is printed.

return [n]
(New in System V Release 2.) Causes a function to exit with the
return value specified by n. If n is omitted, the return status is
that of the last command executed.

set [--aefhkntuvx [arg ...]]

-a (New in System V Release 2.) Mark variables which
are modified or created for export.

-e Exit immediately if a command exits with a non-zero
exit status.

-f (New in System V Release 2.) Disable file name gen­
eration

-h (New in System V Release 2.) Locate and remember
function commands as functions are defined (function
commands are normally located when the function is
executed).

- k All keyword arguments are placed in the environment
for a command, not just those that precede the com­
mand name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are exe-

cuted.
Do not change any of the flags; useful in setting $ 1
to -.

Using + rather than - causes these flags to be turned off.
These flags can also be used upon invocation of the shell. The
current set of flags may be found in $-. The remaining argu­
ments are positional parameters and are assigned, in order, to
$ 1 , $ 2, •••. If no arguments are given the values of all names
are printed.

shift [n]
The positional parameters from $n + 1 ... are renamed $ 1
If n is not given, it is assumed to be 1.

test
Evaluate conditional expressions. See TEST(BU _ CMD) for usage and
description.

times
Print the accumulated user and system times for processes run
from the shell.

System V Interface Definition

t rap [arg] [n] ...
The command arg is to be read and executed when the shell
receives signat(s) n. (Note that arg is scanned once when the
trap is set and once when the trap is taken,) Trap commands are
executed in order of signal number. Any attempt to set a trap on
a signal that was ignored on entry to the current shell is
ineffective. If arg is absent all trap(s) n are reset to their original
values. If arg is the null string this signal is ignored by the shell
and by the commands it invokes. If n is 0 the command arg is
executed on exit from the shell. The trap command with no
arguments prints a list of commands associated with each signal
number.

type [name ...]
(New in System V Release 2.) For each name, indicate how it
would be interpreted if used as a command name.

ul imi t [-f n]
If the -f n option is used, then a size limit of n blocks is
imposed on files written by the shell and its child processes (files
of any size may be read). If n is omitted, the current limit is
printed. If no option is given, "-f" is assumed.

umask [nnn]
The user file-creation mask is set to nnn [see UMASK(BA_OS)1. If
nnn is omitted, the current value of the mask is printed.

unset [name ...]
(New in System V Release 2,) For each name, remove the
corresponding variable or function. The variables PATH, PS 1,

PS2, MAILCHECK and IFS cannot be unset.
wait[n]

Invocation

Wait for the specified process and report its termination status.
If n is not given all currently active child processes are waited for
and the return code is zero.

If the shell is invoked through an exee routine [see EXEC{BA_OS)]
and the first character of argument zero is -, commands are initially
read from fete/profile and from $HOME/. profile, if such
files exist. Thereafter, commands are read as described below. The
flags below are interpreted by the shell on invocation only; note that
unless the -e or -s flag is specified, the first argument is assumed to
be the name of a file containing commands, and the remaining argu­
ments are passed as positional parameters to that command file:

-e string If the -e flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain com-

mands are read from the standard input. Any remaining
arguments specify the positional parameters. Shell output
(except for Special Commands) is written to file descriptor
2.

System V Interface Definition Page 109

-i If the -i flag is present or if the shell input and output
are attached to a terminal, this shell is interactive. In this
case TERMINATE is ignored (so that ki 11 0 does not
kill an interactive shell) and INTERRUPT is caught and
ignored (so that wa i t is interruptible). In all cases, QUIT
is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set com­
mand above.

Rsh Only
rsh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of r share identical to those of s h, except that the following
are disallowed:

changing directory [see CD(BU_CMD»),

setting the value of PATH,
specifying path or command names containing / ,
redirecting output (> and > ».

The restrictions above are enforced after . prof i 1 e is interpreted.

When a command to be executed is found to be a shell procedure,
r s h invokes s h to execute it. Thus, it is possible to provide to the
end-user shell procedures that have access to the full power of the stan­
dard shell, while imposing a limited menu of commands; this scheme
assumes that the end-user does not have write and execute permissions
in the same directory.

The net effect of these rules is that the writer of the • profile has
complete control over user actions, by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not
the login directory).

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see also the ex i t command above>.

fete/profile
$HOME/.profile
/dev/null

USAGE
General.

(Not for System V Release 1.) If a command is executed, and a command
with the same name is installed in a directory in the search path before the

Page 110 System V Interface Definition

directory where the original command was found t the shell will continue to
exec the original command. Use the hash command to correct this situa­
tion.

(Not for System V Release 1.) If the current directory or the one above it is
moved t pwd may not give the correct response. Use the cd command with
a full path name to correct this situation.

SEE ALSO
CD(BU _ CMD)t ECHO(BU _ CMD)t PWD(BU _ CMD)t TEST(BU _ CMD)t UMASK(BU _ CMD)t

DUP(BA_OS)t EXEC(BA_OS)t FORK(BA_OS)t PIPE(BA_OS)t SIGNAL(BA_OS)t

SYSTEM(BA_OS)t ULlMIT(BA_OS)t UMASK(BA_OS)t WAIT(BA_OS).

LEVEL
Lev~l 1.

System V Interface Definition Page 111

SLEEP(BU _ CMD)

NAME

sleep - suspend execution for an interval

SYNOPSIS

sleep time

DESCRIPTION
The command sleep suspends execution for time seconds. It is used to
execute a command after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true

USAGE
General.

SEE ALSO

do

done

command
sleep 37

ALARM(BA_OS), SLEEP(BA_OS).

LEVEL
Levell.

Page 112 System V Interface Definition

SORT(BU_CMD)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz]
[-dfinr] [-btx] [+pos1 [-pos2]] [files]

DESCRIPTION
The command so r t sorts lines of all the named files together and writes
the result on the standard output. The standard input is read if - is used as
a file name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is
lexi-:ographic by bytes in machine collating sequence.

The following options alter the default behavior:

-c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal
keys.

-oou tpu t The argument given is the name of an output file to use instead
of the standard output. This file may be the same as one of the
inputs. There may be optional blanks between -0 and out­
put.

-ykmem The amount of main memory used by the sort has a large
impact on its performance. Sorting a small file in a large
amount of memory is a waste. If this option is omitted, sort
begins using a system default memory size, and continues to
use more space as needed. If this option is presented with a
value, kmem, sort will start using that number of kilobytes
of memory, unless the administrative minimum or maximum is
violated, in which case the corresponding extremum will be
used. Thus, -yO is guaranteed to start with minimum
memory. By convention, -y (with no argument) starts with
maximum memory.

- z r e c s z The size of the longest line read is recorded in the sort phase so
buffers can be allocated during the merge phase. If the sort
phase is omitted via the -c or -m options, a popular system
default size will be used. Lines longer than the buffer size will
cause sort to terminate abnormally. Supplying the actual
number of bytes in the longest line to be merged (or some
larger value) will prevent abnormal termination.

The following options override the default ordering rules.

System V Interface Definition Page 113

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Fold lower case letters into upper case.

-i Ignore characters outside the ASCII range 040-0176 in non-numeric
comparisons.

-n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. The -n option implies the - b option (see below).
Note that the -b option is only effective when restricted sort key
specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached
to a specific sort key (described below), the specified ordering options over­
ride all global ordering options for that key.

The notation +pos 1 -pos2 restricts a sort key to one beginning at
po s 1 and ending at po s 2 . The characters at positions po s 1 and
po s 2 are included in the sort key (provided that po s 2 does not precede
po s 1). A missing - po s 2 means the end of the line.

Specifying po s 1 and po s 2 involves the notion of a field, a minimal
sequence of characters followed by a field separator or a newline. By default,
the first blank (space or tab) of a sequence of blanks acts as the field separa­
tor. All blanks in a sequence of blanks are considered to be part of the next
field; for example, all blanks at the beginning of a line are considered to be
part of the first field. The treatment of field separators can be altered using
the options:

-tx Use x as the field separator character; x is not considered to be part
of a field (although it may be included in a sort key). Each occurrence
of x is significant (e.g., xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending posi­
tions of a restricted sort key. If the -b option is specified before the
first +pos 1 argument, it will be applied to all +pos 1 arguments.
Otherwise, the b flag may be attached independently to each +pos 1
or - po s 2 argument (see below).

The arguments pos 1 and pos2 each have the form m.n optionally fol­
lowed by one or more of the flags bdfinr. A starting position specified by
+m.n is interpreted to mean the n+ 1 st character in the m+ 1 st field. A
missing .n means .0, indicating the first character of the m+ 1 st field. If
the b flag is in effect n is counted from the first non-blank in the m + 1 s t
field; +m. 0 b refers to the first non-blank character in the m + 1 s t field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the mth field. A missing

Page 114 System V Interface Definition

SORT(BU_CMD)

.n means .0, indicating the last character of the rnth field. If the b flag is
in effect n is counted from the last leading blank in the rn+ 1 st field;
-rn.1b refers to the first non-blank in the rn+ 1 st field.

When there are mUltiple sort keys, later keys are compared only after all ear­
lier keys compare equal. Lines that otherwise compare equal are ordered
with all bytes significant.

EXAMPLES
Sort the contents of inf i 1 e with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of in f i 1 e 1 and in f i 1 e 2, placing
the output in ou t f i 1 e and using the first character of the second field as
the sort key:

sort -r -0 outfile
infile2

+1.0 -1.2 infile1

Sort, in reverse order, the contents of in f i 1 e 1 and in f i 1 e 2 using the
first non-blank character of the second field as the sort key:

sort -r +1.0b -1.1b infile1 infile2

Print the password file sorted by the numeric user ID (the third colon­
separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file in f i 1 e, suppressing all but the
first occurrence of lines having the same third field (the options -um with
just one input file make the choice of a unique representative from a set of
equal lines predictable):

sort -urn +2 -3 infile

ERRORS
Sort comments and exits with non-zero status for various trouble conditions
(e.g., when input lines are too long), and for disorder discovered under the
-c option.

When the last line of an input file is missing a newline character, sort
appends one, prints a warning message, and continues.

USAGE
General.

SEE ALSO
COMM(BU _ CMD), JOIN(AU _ CMD), UNIQ(BU _ CMD).

LEVEL
Level 1.

System V Interface Definition Page 115

SPELL(BU _ CMD)

NAME

spell - find spelling errors

SYNOPSIS
spell [-v
files]

DESCRIPTION

-b -x +loca1 file

The command s p ell collects words from the named f i 1 e s and looks
them up in a spelling list. Words that neither occur among nor are derivable
(by applying certain inflections, prefixes, and/or suffixes) from words in the
spelling list are printed on the standard output. If no f i 1 e s are named,
words are collected from the standard input.

Under the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise.

Under the -x option, every plausible stem is printed with .. for each word.

Under the +loca1 file option, words found in local file are
removed from s p elI' s output. The argument 10 cal _ t"i 1 e is the
name of a user-provided file that contains a sorted list of words, one per line.
With this option, the user can specify a set of words that are correct spellings
(in addition to s p ell' s own spelling list) for each job.

USAGE
End-user.

FUTURE DIRECTIONS
In order to the command syntax standard, the + 1 0 cal _ f i 1 e option will
be changed to the form - flo cal _ f i 1 e. The old form will continue to
be accepted for some time.

LEVEL
Levell.

Page 116 System V Interface Definition

NAME

split - split a file into pieces

SYNOPSIS
split [-n] [file

DESCRIPTION

SPLlT(BU _ CMD)

name]]

The command s p 1 i treads f i 1 e and writes it in n -1 in e pieces
(default 1000 lines) onto a set of output files. The name of the first output
file is name with aa appended, and so on lexicographically, up to zz (a
maximum of 676 files). The argument name cannot be longer than
{NAME_MAX}-2 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input
file is used.

USAGE
General.

SEE ALSO
CSPLlT(AU _ CMD).

LEVEL
Levell.

System V Interface Definition Page 117

SUM(BU_CMD)

NAME

sum - print checksum and block count of a file

SYNOPSIS

sum [-r] file

DESCRIPTION

The command sum calculates and prints a checksum for the named file, and
also prints the space used by the file, in 512-byte units. The option -r
causes an alternate algorithm to be used in computing the checksum.

The algorithms used are uniform across all System V implementations, so that
the same checksum is obtained for the same file, independent of the hardware
and implementation.

USAGE
General.

LEVEL

Levell.

Page 118 System V Interface Definition

NAME

tail - deliver the last part of a file

SYNOPSIS
tail [±[number][lbc[f]]] [file]

DESCRIPTION
The command ta i 1 copies the named file to the standard output beginning
at a designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number
from the end of the input (if number is null, the value 10 is assumed).
The arguments numb e r is counted in units of lines, blocks, or characters,
according to the appended option 1, b, or c. When no units are
specified, counting is by lines.

With the -f {"follow"} option, if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied, but will
enter an endless loop: it sleeps for a second and then attempts to read and
copy further records from the input file. Thus it may be used to monitor the
growth of a file that is being written by some other process. For example,
the command:

tail -f fred

will print the last ten lines of the file f red, followed by any lines that are
appended to fred between the time tai 1 is initiated and killed. As
another example, the command:

tail -15cf fred

will print the last 15 characters of the file f red, followed by any lines that
are appended to fred between the time tail is initiated and killed.

USAGE
General.

Tails relative to the end of the file are saved in a buffer, and thus are limited
in length.

Various kinds of anomalous behavior may happen with character special files.

LEVEL
Levell.

System V Interface Definition Page 119

NAME

tee - join pipes and make copies of input

SYNOPSIS
tee [- i] [-a] [f i 1 e] ...

DESCRIPTION

The command tee transcribes the standard input to the standard output
and makes copies in the f i 1 e s. The - i option ignores interrupts; the
-a option causes the output to be appended to the f i 1 e s rather than
overwriting them.

USAGE

General.

LEVEL

Levell.

Page 120 System V Interface Definition

NAME

test - condition evaluation command

SYNOPSIS

test expr
[expr]

DESCRIPTION

The command test evaluates the expression expr and, if its value is
true, returns a zero (true) exit status; otherwise, a non-zero (false) exit status
is returned; t est also returns a non-zero exit status if there are no argu­
ments. The following primitives are used to construct expr:

-r file

-w file

-x file

true if f i 1 e exists and is readable.

true if f i 1 e exists and is writable.

true if f i 1 e exists and is executable.

-f f i 1 e true if f i 1 e exists and is a regular file.

-d f i 1 e true if f i 1 e exists and is a directory.

-c f i 1 e true if f i 1 e exists and is a character special file.

- b f i 1 e true if f i 1 e exists and is a block special file.

-p f i 1 e true if f i 1 e exists and is a named pipe (fifo).

-u f i 1 e true if f i 1 e exists and its set-user-ID bit is set.

-g file true if file exists and its set-group-ID bit is set.

-s f i 1 e true if f i 1 e exists and has a size greater than zero.

-dfildes] true if the open file whose file
descriptor number is fildes (t by default) is
associated with a terminal device.

- z s 1 true if the length of string s 1 is zero.

-0 51 true if the length of the string 51 is non-zero.

s 1 == 52 true if strings 5 1 and 52 are identical.

51!- s2 true if strings s 1 and 52 are not identical.

51 true if 51 is not the null string.

n 1 -eq n 2 true if the integers n 1 and n 2 are algebraically equal.
Any of the comparisons -ne, -gt, -ge, -It, and -Ie may
be used in place of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-a binary and operator.

System V Interface Definition Page 121

TEST(BU_CMD)

-0

(expr)

binary or operator (-a has higher precedence than -0).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test.
Notice also that parentheses are meaningful to sh and, therefore, must be
escaped.

In the second form of the command (i.e., the one that uses [), rather than the
word t est) , the square brackets must be delimited by blanks.

USAGE
General.

SEE ALSO
FIND(BU _ CMD), SH{BU _ CMD).

LEVEL
Levell.

Page 122 System V Interface Definition

TOUCH(BU _ CMD)

NAME

touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] file

DESCRIPTION
The command touch causes the access and modification times of each
f i 1 e to be updated. The f i 1 e is created if it does not exist. If no time
is specified the current time is used. The -a and -m options cause touch
to update only the access or modification times respectively (default is
-am). The -c option silently prevents touch from creating the f i 1 e
if it did not previously exist.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist and were
not created).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 123

NAME

tr - translate characters

SYNOPSIS

tr [-cds] [string1 [string2]]

DESCRIPTION

The command t r copies the standard input to the standard output with
substitution or deletion of selected characters. Input characters found in
string 1 are mapped into the corresponding characters of string2.
Any combination of the options -cds may be used:

-c Complements the set of characters in string 1 with respect to
the universe of characters whose ASCII codes are 001 through 377
octal.

-d Deletes all input characters in string 1 •

-s Squeezes all strings of repeated output characters that are in
s t r i n g 2 to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

[a*nl Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A zero or
missing n is taken to be huge; this facility is useful for padding
string2.

The escape character \ may be used to remove special meaning from any
character in a string. In addition, \ followed by 1, 2, or 3 octal digits stands
for the character whose AsaI code is given by those digits.

The following example creates a list of all the words in f i 1 e 1 one per line
in f i 1 e 2, where a word is taken to be a maximal string of alphabetics.
The strings are quoted to protect the special characters from interpretation
by the command interpreter; 012 is the ASCII code for newline.

tr -cs "[A-Z][a-z]" "[\012*]" cfile1 >file2

USAGE
General.

The command tr does not handle ASCII NUL in string 1 or
string2; it always deletes NUL from input.

LEVEL

Levell.

Page 124 System V Interface Definition

NAME

true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

The command true does nothing, and returns exit code zero. The com­
mand fa 1 s e does nothing, and returns a non-zero exit code. They are typ­
ically used to construct command procedures. For example,

while true
do

command
done

USAGE

General.

SEE ALSO

SH(BU_CMD).

LEVEL

Levell.

System V Interface Definition Page 125

UMASK(BU _ CMD)

NAME

umask - set file-creation mode mask

SYNOPSIS

umask [000]

DESCRIPTION

The user file-creation mode mask is set to 000. The three octal digits refer
to read/write/execute permissions for owner, group, and others, respectively
[see CHMOD(BU_CMD)]. The value of each specified digit is subtracted from
the corresponding "digit" specified by the system for the creation of a file.
For example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files created
with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

USAGE
General.

SEE ALSO
CHMOD(BU_CMD).

LEVEL

Levell.

Page 126 System V Interface Definition

NAME

uname - print name of current system

SYNOPSIS

uname [-snrvma]

DESCRIPTION

The command uname prints the current system name on the standard out­
put file. The options cause selected information returned by UNAME(BA_OS)

to be printed:

-s print the system name (default). This is a name by which the system
is known in the local installation.

-n print the nodename. The nodename may be a name by which the sys-
tem is known to a communications network.

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

USAGE

General.

SEE ALSO

UNAME(BA _0S).

LEVEL

Levell.

System V Interface Definition Page 127

NAME

uniq - report repeated lines in a file

SYNOPSIS

uniq [-udo [+n] [-n]] [input [output]]

DESCRIPTION

The command uniq reads the input file comparing adjacent lines. In the
normal case, the second and succeeding copies of repeated lines are removed;
the remainder is written on the output file. The arguments i npu t and
ou tpu t should always be different. Note that repeated lines must be adja­
cent in order to be found [see SORT(BU_CMD)1. If the -u flag is used, just
the lines that are not repeated in the original file are output. The -d option
specifies that one copy of just the repeated lines is to be written. The normal
mode output is the union of the -u and -d mode outputs.

The -0 option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times it
occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

- n The first n fields together with any blanks before each are ignored.
A field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before char­
acters.

USAGE

General.

SEE ALSO
COMM(BU _ CMD), SORT(BU _ CMD).

LEVEL

Levell.

Page 128 System V Interface Definition

WAIT(BU_CMD)

NAME

wait - await completion of process

SYNOPSIS
wait [pid]

DESCRIPTION
With no argument, wa i t waits until all processes started with &. have com­
pleted, and reports on abnormal terminations. If a numeric argument pid
is given, and is the process id of a background process, then wa i t waits
until that process has completed. Otherwise, if pi d is not a background
process, wa i t waits until all background processes have completed.

USAGE
General.

SEE ALSO
SH(BU_CMD), WAIT(BA_OS).

LEVEL
Levell.

System V Interface Definition Page 129

WC(BU_CMD)

NAME

wc - word count

SYNOPSIS
we [-1 we [files]

DESCRIPTION

The command we counts lines, words, and characters in the named files, or
in the standard input if no f i 1 e s appear. It also keeps a total count for
all named files. A word is defined as a maximal string of characters delim­
ited by spaces, tabs, or new lines.

The options 1, w, and e may be used in any combination to specify that
a subset of lines, words, and characters are to be reported. The default is
-lwe.

When f i 1 e s are specified on the command line, their names will be
printed along with the counts.

USAGE
General.

LEVEL
Levell.

Page 130 System V Interface Definition

Part III

Advanced Utilities Extension Definition

S.l OVERVIEW

Chapter 5
Introduction

The Advanced Utilities Extension is intended to be the next expansion step after
the Basic Utilities Extension.

The System V Base System and Basic Utilities Extension are prerequisites for this
Extension.

S.2 DESCRIPTION

UTILITIES

at + egrep ** news uulog
batch + ex + od uuname
cancel fgrep ** passwd uupick
chgrp id shl + uustat
chown join stty uuto
cron logname su uux
crontab + lp tabs vi +
csplit lpstat tar wall
cu mail x + tty who
dd mesg uucp write
dircmp newgrp

+ New in System V Release 2.

** Level 2: December 1, 1985.

System V Interface Definition Page 133

System V Interface Definition

Chapter 6
Commands and Utilities

Page 135

NAME

at, batch - execute commands at a later time

SYNOPSIS

at time [date] [+ increment
at -r job ...
at -1 [job] ...

batch

DESCRIPTION

The commands at and batch read commands from standard input to be
executed at a later time. The command a t allows you to specify when the
commands should be executed, while jobs queued with batch will execute
when system load level permits. The option - r removes jobs previously
scheduled with at. The -1 option reports all jobs scheduled for the invok­
ing user.

Standard output and standard error output are mailed to the user unless they
are redirected elsewhere. The environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/1ib/cron/at. allow. If that file does not exist, the file
/usr/1ib/cron/at. deny is checked to determine if the user should
be denied access to a t. If neither file exists, only root is allowed to submit
a job. If only at. deny exists and is empty, global usage is permitted.
The allow/deny files consist of one user name per line.

The time may be specified as 1,2, or 4 digits. One and two digit numbers
are taken to be hours, four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning
hour:minute. A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recog­
nized.

An optional date may be specified as either a month name followed by a
day number (and possibly year number preceded by a comma) or a day of
the week (fully spelled or abbreviated to three characters). Two special
"days", today and tomorrow are recognized. If no date is given,
today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less than the
current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the follow­
ing: minutes, hours, days, weeks, months, or years. (The
singular form is also accepted.)

Thus legitimate commands include:

Page l36 System V Interface Definition

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

The commands at and batch write the job number and schedule time to
standard error.

The command batch submits a batch job. It is almost equivalent to
"at now", but not quite. For one, it goes into a different queue. For another,
"at now" does not work: it is too late (and results in an error message).

The option -r removes jobs previously scheduled by at or batch. The
job number is the number reported at invocation by at or batch. Job
numbers can also be obtained by using the -1 option. Only the super-user
is allowed to remove another user's jobs.

EXAMPLES

FILES

The at and batch commands read from standard input the commands to
be executed at a later time. It may be useful to redirect standard output
within the specified commands.

This sequence can be used at a terminal:

batch
spell filename >outfi1e
EOT

This sequence, which demonstrates redirecting standard error to a pipe, is
useful in a command procedure (the sequence of output redirection
specifications is significant):

batch «I
spell filename 2>&1 >outfi1e I mail loginid

To have a job reschedule itself, a t can be invoked from within the pro­
cedure.

/usr/1ib/cron/at. allow - list of allowed users

/usr/1ib/cron/at. deny - list of denied users

USAGE
General.

SEE ALSO
CRON(AU _ CMD).

LEVEL
Levell.

New in System V Release 2.

System V Interface Definition Page 137

CHOWN(AU _ CMD)

NAME

chown, chgrp - change owner or group

SYNOPSIS

chown owner file

chgrp group file

DESCRIPTION
The command c hown changes the owner of the f i 1 e s to own e r. The
owner may be either a decimal user ID or a login name found in the pass­
word file.

The command chgrp changes the group ID of the f i 1 e s to group.
The group may be either a decimal group ID or a group name found in the
group file.

If either command is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode will be cleared.

FILES
/etc/passwd
/etc/group

USAGE
General.

SEE ALSO
CHMOD(BU _ CMD), CHOWN(BA _OS).

LEVEL
Levell.

Page 138 System V Interface Definition

NAME

cron - clock daemon

SYNOPSIS
/ete/eren

DESCRIPTION

CRON(AU_CMD)

The command eren executes commands at specified dates and times. Reg­
ularly scheduled commands can be specified according to instructions found
in crontab files; users can submit their own crontab file via the crentab
command. Commands which are to be executed only once may be submitted
via the a t command.

A history of all actions taken by cron are recorded in a system log file.

USAGE
Administra tor.

Since eren never exits, it should only be executed once. This is best done
by running it from the initialization process.

SEE ALSO

AT(AU_CMD), CRONTAB(AU_CMD), SH(BU_CMD).

LEVEL

Levell.

System V Interface Definition Page 139

CRONTAB(AU _ CMD)

NAME

crontab - user crontab file

SYNOPSIS

crontab [file]
crontab -r
crontab -1

DESCRIPTION

The command cron tab copies the specified file, or standard input if no
file is specified, into a directory that holds all users' crontabs. The - r
option removes a user's crontab from the crontab directory. The option -1
will list the crontab file f the invoking user.

Users are permitted to use crontab if their names appear in the file
lusr/1ib/cron/cron.a11ow. If that file does not exist, the file
lusr/1ib/cron/cron. deny is checked to determine if the user
should be denied access to crontab. If neither file exists, only root is
allowed to submit a job. If only cron. deny exists and is empty, global
usage is permitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (I -31),
month of the year (1-12),
day of the week (0-6 with O-Sunday).

Each of these patterns may be either an asterisk (meaning all legal values)
or a list of elements separated by commas. An element is either a number or
two numbers separated by a minus sign (meaning an inclusive range). Note
that the specification of days may be made by two fields (day of the month
and day of the week). If both are specified as a list of elements, each one is
effective independent of the other. For example, 0 0 1,15 • 1 would run a
command on the first and fifteenth of each month, as well as on every Mon­
day. To specify days by only one field, the other field should be set to • (for
example, 0 0 • • 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the
command interpreter at the specified times. A percent character in this field
(unless escaped by \) is translated to a newline character. Only the first line
(up to a % or end of line) of the command field is executed by the command
interpreter. The other lines are made available to the command as standard
input. The command cron supplies a default environment, defining the
environmental variables HOME, LOGNAME, and PATH.

NOTE: If standard output and standard error are not redirected, any gen­
erated output or errors will be mailed to the user.

Page 140 System V Interface Definition

CRONTAB(AU _ CMD)

FILES

lusr/1ib/cron/cron. allow list of allowed users

lusr 11 ibl cronl cron. deny list of denied users

USAGE
General.

The new crontab file for a user overwrites an existing one.

SEE ALSO
SH(BU_CMD), CRON(AU_CMD).

LEVEL
Levell.

New in System V Release 2.

System V Interface Definition Page 141

CSPLlT(AU _CMD)

NAME

csplit - context split

SYNOPSIS

csplit [-s] [-k] [-fprefix] file arg1 [••. argn]

DESCRIPTION

The command csplit reads file and separates it into n+l sections,
defined by the arguments arg 1... argn. By default the sections are
placed in xxOO ... xxnn (nn may not be greater than 99). These sections
get the following pieces of f i Ie:

00: From the start of f i I e up to (but not including) the line refer­
enced by arg 1.

01: From the line referenced by arg 1 up to the line referenced by
arg2.

n+ 1: From the line referenced by a r gn to the end of f i Ie.

If the f i I e argument is a - then standard input is used.

The options to c s p lit are:

- s c s p lit normally prints the character counts for each file
created. If the -s option is present, cspli t suppresses the
printing of all character counts.

-k c spl it normally removes created files if an error occurs. If the
- k option is present, c s p lit leaves previously created files
intact.

-fprefix
If the -f option is used, the created files are named pr e­
fixOO ... prefixn. The default is xxOO ... xxn.

The arguments (arg1 ... argn) to csplit can be a combination of
the following:

Page 142

Irexpl A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rexp. (Regular expressions as in ED(BU_CMD)

are accepted.) The current line becomes the line containing
rexp. This argument may be followed by an optional +
or - some number of lines (e.g., /Page/-S).

%rexp% This argument is the same as Irexp/, except that no file is
created for the section.

I ine no A file is to be created from the current line up to (but not
- including) the line number line _ no. The current line

becomes line no.

System V Interface Definition

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument,
that argument is applied n um more times. If it follows
lnno, the file will be split every lnno lines (num times)
from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions may
not contain embedded newlines. The command c s p 1 i t does not affect the
original file; it is the user's responsibility to remove it.

EXAMPLES
This example creates four files, cobolOO ... cobolOS:

cs~lit -fcobol file '/procedure division/'
/parS./ /par16./

After editing the split files, they can be recombined as follows:

cat cobolO[0-3] > file

Note that this example overwrites the original file.

This example would split the file at every 100 lines, up to 10,000 lines:

csplit -k file 100 {99}

The -k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit -k prog.c '%main('" '/"}/+1' {20}

Assuming that prog. c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog. c.

ERRORS
An error is reported if an argument does not reference a line between the
current position and the end of the file.

USAGE
General.

SEE ALSO
ED(BU_CMD), SH(BU_CMD).

LEVEL
Levell.

System V Interface Definition Page 143

NAME

cu - call another system

SYNOPSIS
cu [-s speed] [-1 1 ine] [-h] [-t] [-d] [-0

-e] [-n] te 1no

cu [-s speed] [-h] [-d] [-0 : -e] -1 line

cu [-h] [-d] [-0 : -e] systemname

DESCRIPTION

The command cu calls up another system, which will usually be a System V
system, but may be a terminal, or a non-System V system. It manages an
interactive conversation, with possible transfers of ASCII files.

The third form above, using systemname, is new in System V Release 2.

The command cu accepts the following options and arguments:

-s speed Specifies the transmission speed. The default value is "Any"
speed which will depend on the order of the lines in the system
devices file.

-11 in e Specifies a device name to use as the communication line. This
can be used to override the search that would otherwise take
place for the first available line having the right speed. When
the -1 option is used without the - s option, the speed of a
line is taken from the devices file. When the -1 and - s
options are both used together, c u will search the devices file
to check if the requested speed for the requested line is avail­
able. If so, the connection will be made at the requested speed;
otherwise, an error message will be printed and the call will not
be made. If the specified device is associated with an auto
dialer, a telephone number must be provided. Use of this option
with systemname rather than te1no is not allowed (see
systemname below).

-h

-t

-d

-0

-e

Page 144

Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage­
return-line-feed pairs is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data sent to
the remote system.

Designates that even parity is to be generated for data sent to
the remote system.

System V Interface Definition

-n

te1no

(New in System V Release 2.) For added security, will prompt
the user to provide the telephone number to be dialed rather
than taking it from the command line.

When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of 4 seconds.

systemname A uucp system name may be used rather than a telephone
number; in this case, cu will obtain an appropriate direct line
or telephone number from a system file.

Note: the systemname option should not be used in con­
junction with the -1 and -s options as cu will connect to
the first available line for the system name specified ignoring
the requested line and speed.

After making the connection, cu runs as two processes: the transmit pro­
cess reads data from the standard input and, except for lines beginning with
-, passes it to the remote system; the receive process accepts data from the
remote system and, except for lines beginning with -,passes it to the standard
output. Normally, an automatic DC3/DCl protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with - have
special meanings.

The transmit process interprets the following user initiated commands:

terminate the conversation.

- I

-lcmd.

-$cmd.

-%cd

escape to an interactive command interpreter on the
local system.

execute cmd on the local system

run cmd locally and send its output to the remote
system for execution.

change the directory on the local system. (N ew in
System V Release 2.)

-%take from [to] copy file from (on the remote system) to file to
on the local system. If to is omitted, the from
argument is used in both places.

- %pu t from [to] copy file from (on local system) to file to on
remote system. If to is omitted, the from argu­
ment is used in both places.

--line

-%break

-%nostop

send the line -1 ine to the remote system.

transmit a BREAK to the remote system (which can
also be specified as - %b).

toggles between DC3/DCl input control protocol and
no input control. This is useful in case the remote

System V Interface Definition Page 145

system is one which does not respond properly to the
DC3 and DC 1 characters.

The receive process normally copies data from the remote system to its stan­
dard output.

The use of -%put requires STTY(AU_CMD) and CAT(BU_CMD) on the remote
side. It also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local system.
Backslashes are inserted at appropriate places.

The use of - %take requires the existence of echo and caton the
remote system. Also, tabs mode [see STTY(AU_CMD)] should be set on the
remote system if tabs are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently
used on system Y to connect to system Z, commands on system Y can be
executed by using --. For example, uname can be executed on Z, X, and Y
as follows (the response is given in brackets):

uname
[Z]
- [X] 1 uname
[X]

- - [Y] 1 uname
[Y]

In general, - causes the command to be executed on the original machine; -­
causes the command to be executed on the next machine in the chain.

EXAMPLES

To dial a system whose telephone number is 9 1 201 555 1212 using 1200
baud (where dial tone is expected after the 9):

cu -s 1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line:
cu -1 /dev/ttyXX

or
cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s 1200 -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -1 cu1XX 9=12015551212

To use a system name:
cu systemname

ERRORS

Exit code is 0 for normal exit, otherwise, -1.

Page 146 System V Interface Definition

USAGE
End-user.

SEE ALSO
CAT(BU _ CMD), ECHO(BU _ CMD), STTY(AU _ CMD), UNAME(BU _ CMD),

UUCP(AU _ CMD).

LEVEL
Level 1.

System V Interface Definition Page 147

NAME

dd - convert and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

The command dd copies the specified input file to the specified output with
possible conversions. The standard input and output are used by default.
The input and output block size may be specified to take advantage of raw
physical 110.

Option
if=file
of=file
ibs=n
obs=n
bs=n

cbs=n
skip=n
seek=n
count=n
conv=ascii
ebcdic
ibm
lcase
ucase
swab
noerror
sync

Values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding i b s
and obs; also, if no conversion is specified, it is particu­
larly efficient since no in-core copy need be done
conversion buffer size
skip n" input blocks before starting copy
seek n blocks from beginning of output file before copying
copy only n" input blocks
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input block to ibs
several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a
pair of numbers may be separated by x to indicate a product.

The option cbs is used only if as c i i or e b cd i c conversion is
specified. In the former case cbs characters are placed into the conversion
buffer, converted to ASCII, and trailing blanks trimmed and newline added
before sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks added to
make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and
output blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per block into the ASCII file x:

Page 148 System V Interface Definition

dd if=/dev/rmt/Om of=x ibs=800 cbs=80
conv=ascii,lcase

Note the use of raw magtape. The command dd is especially suited to 110
on the raw physical devices because it allows reading and writing in arbitrary
block sizes.

USAGE
General.

New-lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC.

LEVEL
Levell.

System V Interface Definition Page 149

DIRCMP(AU _ CMD)

NAME

dircmp - directory comparison

SYNOPSIS

dircmp [-d] [-s] dir1 dir2

DESCRIPTION

The command dircmp examines dir 1 and dir2 and generates various
tabulated information about the contents of the directories. Listings of files
that are unique to each directory are generated for all the options. If no
option is specified, a list is output indicating whether the file names common
to both directories have the same contents.

-d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in DIFF(BU_CMD).

-s Suppress messages about identical files.

USAGE

General.

SEE ALSO
CMP(BU _ CMD), DIFF(BU _ CMD).

LEVEL

Level 1.

Page 150 System V Interface Definition

NAME
egrep, fgrep - search a file for a pattern

SYNOPSIS
egrep

fgrep

DESCRIPTION

options

options

expression] [files

strings] [files

The egrep and fgrep commands search the input files (standard
input default) for lines matching a pattern. Normally, each line found is
copied to the standard output. The patterns used by egrep are full regular
expressions; fgrep patterns are fixed strings. The following
options are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep

only).
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons.
-1 Only the names of files with matching lines are listed (once),

separated by newlines.
-n Each line is preceded by its relative line number in the file.
-e expression

(egrep only.) Same as a simple expression argument, but
useful when the expression begins with a -

-f file
The regular expression (egrep) or strings list (fgrep)
is taken from the f i 1 e.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using characters in expression that may also be
meaningful to the command interpreter. It is safest to enclose the entire
expression argument in single quotes ' ... '.

fgrep searches for lines that contain one of the strings separated by
newlines.

egrep accepts regular expressions as in ED(BU_CMD), except for \ (and
\) , with the addition of:

1. A regular expression followed by + matches one or more occurrences
of the regular expression.

2. A regular expression followed by? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by I or by a newline match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is II, then .? +, then concatenation,
then I and newline.

System V Interface Definition Page 151

ERRORS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

USAGE
General.

Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ
is defined in /usr/include/stdio.h.)

FUTURE DIRECTIONS
The functionality of egrep and fgrep will eventually be provided in
GREP(BU _ CMD), and these two commands discontinued.

SEE ALSO
ED(BU _ CMD), GREP(BU _ CMD), SED(BU _ CMD).

LEVEL

Level 2: December 1, 1985.

Page 152 System V Interface Definition

NAME

ex - text editor

SYNOPSIS
ex [-] [-v] [-r] [-R] [+command] [-1]
[file

DESCRIPTION

The command ex is a line oriented text editor, which supports both com­
mand and display editing [see VI(AU_CMD)1. The command line options are:

-v

-r

-R

+command

-1

Suppress all interactive-user feedback. This is useful in
processing editor scripts.

Invokes vi

Recover the named files after an editor or system crash. If
no files are named a list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the
file.

Begin editing by executing the specified editor search or
positioning command.

LISP mode; indents appropriately for lisp code; the () {}
[[and]] commands in vi are modified to have mean­
ing for lisp.

The f i 1 e argument (s) indicates files to be edited, in the order specified.

The name of the file being edited by ex is the current file. The text of
the file is read into a buffer, and all editing changes are performed in this
buffer; changes have no effect on the file until the buffer is written out expli­
citly.

The alternate file name is the name of the last file mentioned in an edi­
tor command, or the previous current file name if the last file mentioned
became the current file. The character '%' in filenames is replaced by the
current file name, and the character '#' by the alternate file name.

Th~ named buffers a through z may be used for saving blocks of text dur­
ing the edit. If the buffer name is specified in upper case, the buffer is
appended to rather than being overwritten.

The read-only mode can be cleared from within the edit by setting the
noreadon1y edit option (see Edit Options below). Writing to a different
file is allowed in read-only mode; in addition, the write can be forced by
using '!' (see the wr i t e command below).

When an error occurs e x sends the BEL character to the terminal (to sound
the bell) and prints a message. If an interrupt signal is received, ex returns
to the command level in addition to the above actions. If the editor input is
from a file, ex exits at the interrrupt. (The bell action may be disabled by

System V Interface Definition Page 153

the use of an edit option, see below.)

If the system crashes, ex attempts to preserve the buffer if any unwrtten
changes were made. The command line option -r is used to retrieve the
saved changes.

At the beginning, ex is in the command mode, which is indicated by the
':' prompt. The input mode is entered by append, insert, or
change commands; it is left (and command mode re-entered) by typing a
period '.' alone at the beginning of a line.

Command lines beginning with the double quote character "" are ignored.
(this may used for comments in an editor script.)

Addressing

Page 154

n

$

%

+n
-n

/pat/
?pat?

'x

Dot '.' refers to the current line. There is always a
current line; the positioning may be the result of an expli­
cit movement by the user, or the result of a command
that affected multiple lines (in which case it is usually the
last line affected).

The nth line in the buffer, with lines numbered sequen­
tially from 1.

The last line in the buffer.

Abbreviation for "1,$", the entire buffer.

An offset relative to the current line. (The forms '.+3',
'+3', and '+++' are equivalent.)

Line containing the pattern (regular expression) pat,
scanning forward (! /) or backward (??). The trailing /
or ? may be omitted if the line is only to be printed. If
the pattern is omitted, the previous pattern specified is
used.

Lines may be marked using single lower case letters (see
the mark command below); 'x refers to line marked x.
In addition, the previous current line is marked before
each non-relative motion; this line may be referred to by
using' for x.

Addresses to commands consist of a series of line addresses (specified as
above), separated by ',' or ';'. Such address lists are evaluated left-to­
right. When ';' is the separator, the current line is set to the value of
the previous address before the next address is interpreted. If more
addresses are given than the command requires, then all but the last
one or two are ignored. Where a command requires two addresses, the
first line must precede the second one in the buffer. A null address in a

System V Interface Definition

EX(AU_CMD)

list defaults to the current line.

Command names and abbreviations
abbrev ab next n unmap uom
append a number #nu version ve
args ar preserve pre visual vi
change c print p write w
copy co put pu xit x
delete d quit q yank ya
edit e read re (window) z
file f recover re (escape) !
global gv rewind rew (lshift) <
insert set se (rshift) >
join shell sh (resubst) & s
list source so (scroll) AD
map substitute s (Hne no)
mark kma unabbrev una
move m undo u

Command descriptions
In the following, 1 ine is a single line address, given in any of the
forms described in the Addressing section above; range is a pair of
line addresses, separated by a comma or semicolon (see the Addressing
section for the difference between the two); count is a positive
integer, specifying the number of lines to be affected by the command;
flags is one or more of the characters '#', 'p', and '1'; the correspond­
ing command to print the line is executed after the command com­
pletes. Any number of '+' or '-' characters may also be given with
these flags.

When count is used, range is not effective; only a line number
should be specified instead, to indicate the first line affected by the
command. (If a range is given, then the last line of the range is taken
as the starting line for the command.)

These modifiers are all optional; the defaults are as follows, unless oth­
erwise stated: the default for 1 ine is the current line; the default for
range is the current line only (.,.); the default for count is 1; the
default for f lags is null.

When only a line or a range is specified (with a null command),
the implied command is pr in t; if a null line is entered, the next line
is printed (equivalent to ' . + 1 p')

ab word rhs
Add the named abbreviation to the current list. In visual mode, if
word is typed as a complete word during input, it is replaced by
the string rhs.

line a
Enters input mode; the input text is placed after the specified line.

System V Interface Definition Page 155

EX(AU_CMD)

Page 156

ar

If line 0 is specified, the text is placed at the beginning of the
buffer. The last input line becomes the current line, or the target
line, if no lines are input.

The argument list is printed, with the current argument inside '['
and 'J'.

range c count
Enters input mode; the input text replaces the specified lines. The
last input line becomes the current line; if no lines are input, the
effect is the same as a delete.

range co line flags
A copy of the specified lines (range) is placed after the specified
destination line; line 0 specifes that the lines are to be placed at
the beginning of the buffer.

range d buffer count
The specified lines are deleted from the buffer. If a named buffer
is specified, the deleted text is saved in it. The line after the
deleted lines becomes the current line, or the last line if the deleted
lines were at the end.

e +line file

f

Begin editing a new file. If the current buffer has been modified
since the last write, then a warning is printed and the command is
aborted. This action may be overridden by appending the charac­
ter '!' to the command (" elf i 1 e"). The current line is the last
line of the buffer; however, if this command is executed from
within visual, the current line is the first line of the buffer. If
the + 1 in e option is specified, the current line is set to the
specified position, where line may be a number (or $) or
specified as "/pat" or "?pat".

Prints the current file name and other information, including the
number of lines and the current position.

range g /pat/ cmds
First marks the lines within the given range that match the given
pattern. Then the given command(s) are executed with '.' set to
each marked line.

Cmds may be specified on multiple lines by hiding newlines with a
backslash. If cmds are omitted, each line is printed.
Append, change, and insert commands are omitted; the
terminating dot may be omitted if it ends cmds. Visual
commands are also permitted, and take input from the terminal.

The global command itself, and the undo command are not
allowed in cmds. The edit options autoprint,

System V Interface Definition

EX(AU_CMD)

auto indent and report are inhibited.

range v /pat/ cmds
This is the same as the global command, except that cmds is
run on the lines that do not match the pattern.

line i
Enters input mode; the input text is placed before the specified
line. The last line input becomes the current line, or the line
before the target line, if no lines were input.

range j count flags
Joins the text from the specified lines together into one line.
White space is adjusted to provide at least one blank character, to
if there was a period at the end of the line, or none if the first fol­
lowing character is a ')'. Extra white space at the start of a line is
discarded.

Appending the command with a '!' causes a simpler join with no
white space processing.

range 1 count flags
Prints the specified lines with tabs printed as '''I' and the end of
each line marked with a trailing '$'. (The only useful flag is '#',
for line numbers.) The last line printed becomes the current line.

map x rhs
The rna p command is used to define macros for use in vis ua 1
mode. The first argument is a single character, or the sequence
'#n', where n is a digit, to refer to the function key n. When
this character or function key is typed in vis u a 1 mode, the
action is as if the corresponding rhs had been typed. If '!' is
appended to the command map, then the mapping is effective
during insert mode rather than command mode. Special charac­
ters, white space, and newline must be escaped with a control-V to
be entered in the arguments.

line rna x
(The letter k is an alternative abbreviation for the mark com­
mand.) The specified line is given the specified mark x, which
must be a single lower case letter. (The x must be preceded by a
space or tab.) The current line position is not affected.

range m line

n

Moves the specified lines (range) to be after the target line. The
first of the moved lines becomes the current line.

The next file from the command line argument list is edited.
Appending a '!' to the command overrides the warning about the
buffer having been modifed since the last write (discarding any
changes). The argument list may be replaced by specifying a new

System V Interface Definition Page 157

Page 158

one on this command line.

range nu count flags

pre

(The character '#' is an alternative abbreviation for the number
command,) Prints the lines, each preceded by its line number.
(The only useful flag is 'I',) The last line printed becomes the
current line.

The current editor buffer is saved as though the system had just
crashed. This command is for use in emergencies, for example
when a write does not work, and the buffer cannot be saved in any
other way.

range p count
Prints the specified lines, with non-printing characters printed as
control characters in the form '''x'; DEL is represented as '''?'. The
last line printed becomes the current line.

line pu buffer

q

Puts back deleted or "yanked" lines. A buffer may be specified;
otherwise, the text in the unnamed buffer {where delted or yanked
text is placed by default} is restored.

Causes termination of the edit. If the buffer has been modified
since the last write, a warning is printed and the command fails.
This warning may be overridden by appending a '!' to the com­
mand {discarding changes}.

line r file
Places a copy of the specified file in the buffer after the target line
{which may be line 0 to place text at the beginning}. If no f i 1 e
is named the current file is the default. If there is no current file
then f i 1 e becomes the current file. The last line read becomes
the current line; in visual the first line read becomes the
current line.

If file is given as "!string" then string is taken to be a
system command, and passed to the command interpreter; the
resultant output is read in to the buffer. A blank or tab must pre­
cede the '!'.

ree file
Recovers f i 1 e from the save area, after an accidental hangup or
a system crash.

rew
The argument list is rewound, and the first file in the list is edited.
Any warnings may be overridden by appending a'!'.

System V Interface Definition

EX(AU_CMD)

se parameter

sh

With no arguments, the set command prints those options whose
values have been changed from the default settings; with the
parameter a 11 it prints all of the option values.

Giving an option name followed by a '1' causes the current value
of that option to be printed. Th~ '1' is necessary only for Boolean
valued options. Boolean options are given values by the form 'se
option' to turn them on, or 'se nooption' to turn them off;
string and numeric options are assigned by the form 'se
option-value'. More than one parameter may be given; they
are interpreted left to right.

See Edit Options below for further details about options.

The user is put into the command interpreter [usually s h; see
SH(BU_CMD)]; editing is resumed on exit.

so file
Reads and executes commands from the specified file. Such so
commands may be nested.

range s Ipat/repll options count flags
On each specified line, the first instance of the pattern pat is
replaced by the string repl. (See Regular Expressions and
Replacement Strings below.) If options includes the letter 'g'
(global), then all instances of the pattern in the line are substi­
tuted. If the option letter 'c' (confirm) is included, then before
each substitution the line is typed with the pattern to be replaced
marked with ,A, characters; a response of 'y' causes the substitution
to be done, while any other input aborts it. The last line substi­
tuted becomes the current line.

una word

u

Delete word from the list of abbreviations.

Reverses the changes made by the previous editing command. For
this purpose, global and visual are considered single com­
mands. Commands which affect the external environment, such as
wri te, edit and next, cannot be undone. An undo can
itself be reversed.

unm x
The macro definition for x is removed.

ve
Prints the current version of the editor.

line vi type count
Enters visual mode at the specified line. The type is optional,

System V Interface Definition Page 159

EX(AU_CMD)

Page 160

and may be '.' or '.', as in the z command, to specify the position
of the specified line on the screen window. (The default is to place
the line at the top of the screen window.) A count specifies an
initial window size; the default is the value of the edit option
window. The command Q exits visual mode. [For more infor·
mation, see VI(AU_CMD)]

range w file

x

Writes the specified lines (the whole buffer, if no range is
given) out to f i 1 e, printing the number of lines and characters
written. If f i 1 e is not specified, the default is the current file.
(The command fails with an error message if there is no current
file and no file is specified.)

If an alternate file is specified, and the file exists, then the write
will fail; it may be forced by appending a '!' to the command. An
existing file may be appended to by appending '> >' to the com·
mand. If the file does not exist, an error is reported.

If the file is specified as '!string', then string is taken as a
system command; the command interpreter is invoked, and the
specified lines are passed as standard input to the command.

The command wq is equivalent to a w followed by a q; wq I is
equivalent to w I followed by q.

Writes out the buffer if any changes have been made, and then On
any case) quits.

range ya buffer count
Places the specified lines in the named buffer. If no buffer is
specified, the unnamed buffer is used (where the most recently
deleted or yanked text is placed by default).

line z type count
If type is omitted, then count lines following the specified
line (default current line) are printed. The default for count is
the value of the edit option window.

If type is specified, it must be '.' or '.'; a '.' causes the line to be
placed at the bottom of the screen, while a '.' causes the line to be
placed in the middle. The last line printed becomes the current
line.

command
The remainder of the line after the '!' is passed to the system com·
mand interpreter for execution. A warning is issued if the buffer
has been changed since the last write. A single '!' is printed when
the command completes. The current line position is not affected.

System V Interface Definition

Within the text of command '%' and '#' are expanded as
filenames, and '!' is replaced with the text of the previous 'I' com­
mand. (Thus 'I!' repeats the previous '!' command.) If any such
expansion is done, the expanded line will be echoed.

rangel command
In this form of the 'I' command, the specified lines (there is no
default; see previous paragraph) are passed to the command inter­
preter as standard input; the resulting output replaces the specified
lines.

range < count
Shift the specified lines to the left; the number of spaces to be
shifted is determined by the edit option s h if t wid t h. Only
white space (blanks and tabsHs lost in shifting; other characters
are not affected. The last line changed becomes the current line.

range > count
Shift the specified lines to the right, by inserting white space (see
previous paragraph for further details).

range & options count flags
Repeats the previous substitute command, as if '&' were replaced
by the previous 's/pat/rep1/'. (The same effect is obtained by
omitting the '/pat/rep1/' string in the substitute com­
mand.)

"0 (control-D)
Control-D (ASCII EOT) prints the next n lines, where n is the
value of the edit option s c rolL

line =
Prints the line number of the specified line (default last line). The
current line position is not affected.

Regular Expressions
Regular expressions are interpreted according to the setting of the edit
option magic; the following assumes the setting magic. The
differences caused by the setting nomagic are described below.

The following constructs are used to construct regular expressions:

char An ordinary character matches itself. The following char­
acters are not ordinary, and must be escaped (preceded by
'\') to have their ordinary meaning: '''' at the beginning of
a pattern; '$' at the end of a pattern; ,*, anywhere other
than the beginning of a pattern; '.', '\', '[', and' " anywhere
in a pattern.

When at the beginning of a pattern, matches the beginning
of the line.

System V Interface Definition Page 161

$ When at the end of a pattern, matches the end of the line.

matches any single character in the line.

\ < Matches the beginning of a "word". That is, the matched
string must begin in a letter, digit, or underline, and be pre­
ceded by the beginning of the line or a character other than
the above.

\> Matches the end of a "word" (see previous paragraph).

[string] Matches any single character in string. Within.string,
the following have special meanings: a pair of characters
separated by '-' defines a range (e.g., '[a-z]' defines any
lower case letter); the character '''', if it is the first one in
string, causes the construct to match characters other
than those specified in s t r in g. These special meaning
can be removed by escaping the characters.

*

\C.\)

Matches zero or more occurrences of the preceding regular
expression.

Matches the replacement part of the last substi tute
command.

A regular expression may be enclosed in escaped
parentheses; this serves only to identify them for substitu­
tion actions.

A concatenation of two regular expressions is a regular expression that
matches the concatenation of the strings matched by each component.

When nomagic is set, the only characters with special meanings are
,", at the beginning of a pattern, '$' at the end of a pattern, and '\'.
The characters '.', '*', or', and" lose their special meanings, unless
escaped by a '\'.

Replacement Strings
The character '&' ('\&' if nomagic is set) in the replacement string
stands for the text matched by the pattern to be replaced. The charac­
ter ,-, ('\ -, if noma 9 i c is set) is replaced by the replacement part of
the previous substitute command. The sequence '\n', where n is
an integer, is replaced by the text matched by the pattern enclosed in
the nth set of parentheses '\ (' and '\)'. The sequence '\ u' ('\ 1 ')
causes the immediately following character in the replacement to be
converted to upper-case (lower-case), if this character is a letter. The
sequence '\U' ('\L') turns such conversion on, until the sequence '\E'
or '\e' is encountered, or the end of the replacement string is reached.

Edit Options

Page 162

The command ex has a number of options that modify its behavior.
These options have default settings, which may be changed using the
set command (see above). Options may also be set at startup by

System V Interface Definition

EX(AU_CMD)

putting a set command string in the environmental variable
EXINIT, or in the file • exrc in the HOME directory, or in • exrc
in the current directory.

Options are Boolean unless otherwise specified.

autoindent, ai
If autoindent is set, each line in insert mode is indented (using
blanks and tabs) to align with the previous line. (Starting inden­
tation is determined by the line appended after, or the line
inserted before, or the first line changed,) Additional indentation
can be provided as usual; succeeding lines will automatically be
indented to the new alignment. Reducing the indent is achieved
by typing control-D one or more times; the cursor is moved back
shiftwidth spaces for each control-D. (A ,A, followed by a
control-D removes all indentation temporarily for the current line;
a '0' followed by a control-D removes all indentation.)

autoprint, ap
The current line is printed after each command that changes
buffer text. (Autoprint is suppressed in globals,)

autowrite, aw
The buffer is written (to the current file) if it has been modified,
and a next, rewind, or I command is given.

beautify, bf
Causes all control characters other than tab, newline and
formfeed to be discarded from the input text.

directory, dir
The value of this option specifies the directory in which the editor
buffer is to be placed. If this directory is not writeable by the
user, the editor quits.

edcompatible, ed
Causes the presence of g and c suffixes on substitute commands
to be remembered, and toggled by repeating the suffixes.

ignorecase, ic
All upper case characters in the text are mapped to lower case in
regular expression matching. Also, all upper case characters in
regular expressions are mapped to lower case, except in character
class specifications.

lisp
Autoindent mode, and the {} [[]] commands
in vi sual are suitable modified for lisp code.

list
All printed lines will be displayed with tabs shown as 'AI', and the
end of line marked by a '$'.

System V Interface Definition Page 163

Page 164

magic
Changes interpretation of characters in regular expressions and
substitution replacement strings (see the relevant sections above).

number, nu
Causes lines to be printed with line numbers.

paragraphs, para
The value of this option is a string, in which successive pairs of
characters specify the names of text-processing macros which
begin paragraphs. (A macro appears in the text in the form
, • XX', where the '.' is the first character in the line.)

prompt
When set, command mode input is prompted for with a ':'; when
unset, no prompt is displayed.

redraw
The editor simulates an intelligent terminal on a dumb terminal.
(Since this is likely to require a large amount of output to the ter­
minal, it is useful only at high transmission speeds'>

remap
If set, then macro translation allows for macros defined in terms
of other macros; translation continues until the final product is
obtained. If unset, then a one-step translation only is done.

report
The value of this option gives the number of lines that must be
changed by a command before a report is generated on the
number of lines affected.

scroll
The value of this option determines the number of lines scrolled
on a control-D, and the number of lines displayed by the z com­
mand (twice the value of scroll).

sections
The value of this option is a string, in which successive pairs of
characters specify the names of text-processing macros which
begin sections. (See paragraphs option above.)

shiftwidth, sw
The value of this option gives the width of a software tab stop,
used during auto indent, and by the shift commands.

showmatch, sm
In vi sua 1 mode, when a) or } is typed, the matching (or { is
shown if it is still on the screen.

slowopen, slow
In visual mode, prevents screen updates during input to
improve throughput on unintelligent terminals.

System V Interface Definition

FILES

tabstop, ts
The value of this options specifies the software tab stops to be
used by the editor to expand tabs in the input file.

terse
When set, error messages are shorter.

window
The number of lines in a text window in vi sual mode.

wrapscan, ws
When set, searches (using 'II' or '11') wrap around the end of the
file; when unset, searches stop at the beginning or the end of the
file, as appropriate.

wrapmargin, wm
In visual mode, if the value of this option is greater than zero
(say n), then a newline is automatically added to an input line,
at a word boundary, so that lines end at least n spaces from the
right margin of the terminal screen.

writeany, wa
Inhibits the checks otherwise made before write commands, allow­
ing a write to any file (provided the system allows it).

lusr/lib/terminfo/*l* terminfo terminal capability database

$HOME/.exrc

.I.exrc

editor initialization file

editor initialization file

USAGE
End-user.

The undo command causes all marks to be lost on lines that were changed
and then restored.

The z command prints a number of logical rather than physical lines. More
than a screen-ful of output may result if long lines are present.

Null characters are discarded in input files and cannot appear in resultant
files.

SEE ALSO
VI (AU _ CMD).

LEVEL

Levell.

System V Interface Definition Page 165

ID(AU_CMD)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
The command i d writes a message on the standard output giving the user
and group IDs and the corresponding names of the invoking process. If the
effective and real IDs do not match, both are printed.

USAGE
General.

SEE ALSO
LOGNAME(AU _ CMD), GETUID(BA_ OS).

LEVEL
Levell.

Page 166 System V Interface Definition

JOIN(AU _ CMD)

NAME

join - join two files on identical-valued field

SYNOPSIS
join [options] file1 file2

DESCRIPTION

The command j 0 i n performs an "equality join" on the files f i 1 e 1 and
f i 1 e 2. If f i 1 e 1 is -, the standard input is used in its place.

A field must be specified for each file as the -"join field", on which the files are
compared. There is one line in the output for each pair of lines in f i 1 e 1
and f i 1 e 2 that have identical join fields. The output line normally con­
sists of the common field, then the rest of the line from f i 1 e 1, then the
rest of the line from f i 1 e 2. This format can be changed by using the -0

option (see below).

The files f i 1 e 1 and f i 1 e 2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, normally the first in
each line.

The default input field separators are blank, tab, or newline. In this case,
multiple separators count as one field separator, and leading separators are
ignored. The default output field separator is a blank.

Some of the options below use the argument n. This argument should be a
1 or a 2 referring to either f i 1 e 1 or f i 1 e 2, respectively. The follow­
ing options are recognized:

-an

-es

-jnm

In addition to the normal output, produce a line for each unpair-
able line in file n, where n is 1 or 2.

Replace empty output fields by string s.

Join on the mth field of file n. If n is missing, use the mth
field in each file. Fields are numbered starting with 1.

-01 i s t Each output line comprises the fields specified in 1 i s t, each
element of which has the form n. m,1 where n is a file number
and m is a field number. The common field is not printed unless
specifically requested.

-to Use character 0 as a separator, for both input and output.

USAGE

General.

Every appearance of 0 in a line is significant.

Filenames that are numeric may cause conflict when the - 0 option is used
right before listing filenames.

SEE ALSO
AWK(BU _ CMD), COMM(BU _ CMD), SORT(BU _ CMD), UNIQ(BU _ CMD).

System V Interface Definition Page 167

JOIN(AU _CMD)

LEVEL
Levell.

Page 168 System V Interface Definition

NAME

logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(AU_CMD)

The command logname returns the user's login name.

USAGE

General.

LEVEL

Levell.

System V Interface Definition Page 169

LP(AU_CMD)

NAME

lp, cancel - send! cancel requests to an LP line printer

SYNOPSIS
lp [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s]
[-tti tIe] [-w] files

cancel [ids] [printers]

DESCRIPTION
The command lp arranges for the named files and associated information
(collectively called a request) to be printed by a line printer. If no file
names are mentioned, the standard input is assumed. The file name -
stands for the standard input and may be supplied on the command line in
conjunction with named files. The order in which files appear is the
same order in which they will be printed.

lp associates a unique ID with each request and prints it on the standard
output. This ID can be used later to cancel (see cancel) or find the status
[see LPSTAT(AU_CMD)] of the request.

The following options to lp may appear in any order and may be inter­
mixed with file names:

-c

-ddest

-m

Page 170

Make copies of the f i I e s to be printed immediately
w hen I p is invoked. Normally, f i I e s will not be
copied, but will be linked whenever possible. If the -c
option is not given, then the user should be careful not to
remove any of the f i I e s before the request has been
printed in its entirety. It should also be noted that in the
absence of the -c option, any changes made to the named
f i Ie s after the request is made but before it is printed
will be reflected in the printed output.

Choose de s t as the printer or class of printers that is to
do the printing. If des t is a printer, then the request will
be printed only on that specific printer. If de s t is a class
of printers, then the request will be printed on the first
available printer that is a member of the class. Under cer­
tain conditions (printer unavailability, file space limitation,
etc,), requests for specific destinations may not be accepted
[see LPSTAT(AU_CMD)1. By default, dest is taken from
the environmental variable LPDEST (if it is set). Other­
wise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems
[see LPSTAT(AU_CMD)1.

Send mail [see MAIL(BU_CMD)] after the files have been
printed. By default, no mail is sent upon normal completion
of the print request.

System V Interface Definition

-nnumber

-ooption

-s

-ttitle

-w

LP(AU_CMD)

Print number copies (default of 1) of the output.

Specify printer-dependent or class-dependent options.
Several such options may be collected by specifying the
-0 key letter more than once.

Suppress messages from lp such as "request id is ... ".

Print tit 1 e on the banner page of the output.

Write a message on the user's terminal after the f i 1 e s
have been printed. If the user is not logged in, then mail
will be sent instead.

The command cancel cancels line printer requests that were made by the
lp command. The command line arguments may be either request ids (as
returned by lp) or printer names [for a complete list, use
LPSTAT(AU_CMD).] Specifying a request id cancels the associated request
even if it is currently printing. Specifying a printer cancels the request
which is currently printing on that printer. In either case, the cancellation of
a request that is currently printing frees the printer to print its next available
request.

USAGE
General.

SEE ALSO
LPSTAT(AU _ CMD), MAIL(BU _ CMD),

LEVEL

Levell.

System V Interface Definition Page 171

NAME

lpstat - print LP status information

SYNOPSIS
Ips tat [options]

DESCRIPTION

The command Ipstat prints information about the current status of the
LP line printer system.

If no options are given, then Ips tat prints the status of all requests
made to LP(AU_CMD) by the user. Any arguments that are not options
are assumed to be request ids as returned by Ip [see LP(AU_CMD)]. The
command Ips tat prints the status of such requests. The options may
appear in any order and may be repeated and intermixed with other argu­
ments. Some of the key letters below may be followed by an optional 1 i s t
that can be in one of two forms: a list of items separated from one another
by a comma, or a list of items enclosed in double quotes and separated from
one another by a comma and/or one or more spaces. For example:

-u "user 1, user2, user3"

The omission of ali s t following such keyletters causes all information
relevant to the keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

-a[1 i s t] Print acceptance status of destinations for output requests.
1 i s t is a list of intermixed printer names and class names.

-cl 1 i s t] Print class names and their members. 1 i s t is a list of class
names.

-d Print the system default destination for output requests.

-o[1 i s t] Print the status of output requests. 1 i s t is a list of inter-
mixed printer names, class names, and request ids.

-p[1 i s t] Print the status of printers. 1 i s t is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

-t Print all status information.

-u[1 i s t] Print status of output requests for users. 1 i s t is a list of
login names.

-v[1 i s t] Print the names of printers and the path names of the devices
associated with them. 1 i s t is a list of printer names.

Page 172 System V Interface Definition

USAGE
General.

SEE ALSO
LP(AU_CMD}.

LEVEL
Levell.

System V Interface Definition

LPSTAT(AU _ CMD)

Page 173

MAILX(AU _ CMD)

NAME

mailx - interactive message processing system

SYNOPSIS

maiIx [options] [name ..•]

DESCRIPTION

The command ma i Ix provides a comfortable, flexible environment for
sending and receiving messages electronically. When reading mail, ma i 1 x
provides commands to facilitate saving, deleting, and responding to messages.
When sending mail, mai Ix allows editing, reviewing and other modification
of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the system
mailbox for that user. When maiIx is called to read messages, the mail­
box is the default place to find them. As messages are read, they are marked
to be moved to a secondary file for storage, unless specific action is taken, so
that the messages need not be seen again. This secondary file is called the
mbox and is normally located in the user's HOME directory (see MBOX, in
ENVIRONMENT VARIABLES below for a description of this file). Messages
remain in this file until specifically removed.

On the command line, options start with a dash (-) and any other argu­
ments are taken to be destinations (recipients). If no recipients are specified,
ma i 1 x will attempt to read messages from the mailbox. Command line
options are:

-e Test for presence of mail. The command maiIx prints
nothing and exits with a successful return code if there is
mail to read.

-f [filenamel Read messages from filename instead of mailbox. If no
filename is specified, the mbox is used.

- F Record the message in a file named after the first recipient.
Overrides the "record" variable, if set (see ENVIRONMENT
VARIABLES) .

-hnumber The number of network "hops" made so far. This is pro­
vided for network software to avoid infinite delivery loops.

-H Print header summary only.

-i Ignore interrupts. See also "ignore" (ENVIRONMENT VARI-

ABLES).

-n Do not initialize from the system default M ailx.re file.

-N Do not print initial header summary.

-raddress Pass address to network delivery software. All tilde com-
mands are disabled.

Page 174 System V Interface Definition

-ssubject

-uuser

Set the Subject header field to subject.

Read user's mailbox. This is only effective if user's mail­
box is not read protected.

When reading mail, ma i Ix is in command mode. A header summary of
the first several messages is displayed, followed by a prompt indicating
maiIx can accept regular commands (see COMMANDS below). When send­
ing mail, ma i Ix is in input mode. If no subject is specified on the com­
mand line, a prompt for the subject is printed. As the message is typed,
ma i I x will read the message and store it in a temporary file. Commands
may be entered by beginning a line with the tilde (-) escape character fol­
lowed by a single command letter and optional arguments. See TILDE
ESCAPES for a summary of these commands.

At any time, the behavior of ma i Ix is governed by a set of environmental
variables. These are flags and valued parameters which are set and cleared
via the set and unset commands. See ENVIRONMENT VARIABLES below
for a summary of these parameters.

Regular commands are of the form

[command] [msgIist] [arguments]

If no command is specified in command mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not
treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a 'current' message, marked by a '>' in the header summary.
Many commands take an optional list of messages (msglist) to operate on,
which defaults to the current message. A msglist is a list of message
specifications separated by spaces, which may include:

n

$

*
n-m
user
/string
:c
d
n
o
r
u

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case ignored).
All messages of type c, where c is one of:
deleted messages
new messages
old messages
read messages
unread messages

Note that the context of the command determines whether this type of mes­
sage specification makes sense.

System V Interface Definition Page 175

MAILX(AU _ CMD)

Other arguments are usually arbitrary strings whose usage depends on the
command involved. File names, where expected, can be specified with meta­
characters understood by the command interpreter. Special characters are
recognized by certain commands and are documented with the commands
below.

At start-up time, ma i Ix reads commands from a system-wide file to initial­
ize certain parameters, then from a private start-up file
($HOME/ • mailrc) for personalized variables. Most regular commands
are legal inside start-up files, the most common use being to set up initial
display options and alias lists. The following commands are not legal in the
start-up file: I, Copy, edit, followup, Followup, hold,
mail, preserve, reply, Reply, shell, and visual. Any
errors in the start-up file cause the remaining lines in the file to be ignored.

COMMANDS

The following is a complete list of ma i I x commands:

I command
Escape to the command interpreter. See "SHELL" (ENVIRONMENT
VARIABLES) .

comment
Null command (comment). This may be useful in .mailrc files.

Print the current message number.

?
Prints a summary of commands.

a lias alias name ...

group alias name ...
Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .maUrc file.

alternates name ...
Declares a list of alternate names for the user's login. When respond­
ing to a message, these names are removed from the list of recipients
for the response. With no arguments, alternates prints the current list
of alternate names. See also "allnet" (ENVIRONMENT VARIABLES).

cd [directory]

c hdir [directory]
Change directory. If directory is not specified, $HOME is used.

copy [filename]

copy [msglist] filename
Copy messages to the file without marking the messages as saved. Oth­
erwise equivalent to the save command.

Page 176 System V Interface Definition

MAILX(AU _ CMD)

Copy [msglist]
Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set, the next mes­
sage after the last one deleted is printed (see ENVIRONMENT VARI­
ABLES).

discard [header-field .. .1
ignore [header-field .. .1

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status"
and "cc." The fields are included when the message is saved. The
Print and Type commands override this command.

dp [msglist1
d t [msglist]

Delete the specified messages from the mailbox and print the next mes­
sage after the last one deleted. Roughly equivalent to a delete com­
mand followed by a print command.

echo string ...
Echo the given strings (like ECHO(BU _ CMD).)

edit [msglistJ

exit
xit

Edit the given messages. The messages are placed in a temporary file
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES). Default editor is ed.

Exit from ma i 1 x, without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with
the following substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" variable
(see ENVIRONMENT VARIABLES).

System V Interface Definition Page 177

followup [messagel
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" vari­
able, if set. See also the Followup, Save, and Copy commands and
"outfolder" (ENVIRONMENT VARIABLES) .

FOllowuP [msglistl
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from
the first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the f ollowuP,
Save, and Copy commands and "outfolder" (ENVIRONMENT VARI­
ABLES).

from [msglist 1
Prints the header summary for the specified messages.

group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

headers [messagel
Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRON­
MENT VARIABLES). See also the z command.

help
Prints a summary of commands.

hold [msglistl
pr eserve [msglistl

Holds the specified messages in the mailbox.

if sir
mail-commands
else mail-commands
endif

Conditional execution, where s will execute following mail-commands,
up to an else or endif, if the program is in send mode, and r
causes the mail-commands to be executed only in receive mode. Useful
in the .mailrc file.

ignore header-field .. .
discard header-field .. .

list

Page 178

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are "status"
and "cc." All fields are included when the message is saved. The Print
and Type commands override this command.

Prints all commands available. No explanation is given.

System V Interface Definition

MAILX(AU _ CMD)

mail name ...
Mail a message to the specified users.

mbox [msglist1
Arrange for the given messages to end up in the standard mbox save
file when mailx terminates normally. See MBOX (ENVIRONMENT

VARIABLES) for a description of this file. See also the exit and quit
commands.

next [message]
Go to next message matching message. A msglist may be specified,
but in this case the first valid message in the list is the only one used.
This is useful for jumping to the next message from a specific user,
since the name would be taken as a command in the absence of a real
command. See the discussion of msglists above for a description of
possible message specifications.

pipe [msglist] [command]
[msglist1 [command]

Pipe the message through the given command. The message is treated
as if it were read. If no arguments are given, the current message is
piped through the command specified by the value of the "cmd" vari­
able. If the "page" variable is set, a form feed character is inserted
after each message (see ENVIRONMENT VARIABLES).

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist1

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist1
type [msglist1

quit

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the PAGER environment variable. The
default command is pg. (See ENVIRONMENT VARIABLES).

Exit from ma i 1 x, storing messages that were read in mbox and
unread messages in the mailbox. Messages that have been explicitly
saved in a file are deleted.

Reply [msglist]
Respond [msglist1

Send a response to the author of each message in the msglist. The sub­
ject line is taken from the first message. If "record" is set to a file
name, the response is saved at the end of that file (see ENVIRONMENT
VARIABLES) .

System V Interface Definition Page 179

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the
message. If "record" is set to a file name, the response is saved at the
end of that file (see ENVIRONMENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, followup, and Followup commands and "outfolder" (ENVIRON­
MENT VARIABLES).

save [filename]
save [msglist] filename

set

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when
maiIx terminates unless "keepsave" is set (see also ENVIRONMENT
VARIABLES and the exit and quit commands).

set name
set name-string
set name-number

shell

Define a variable called name. The variable may be given a null,
string, or numeric value. set by itself prints all defined variables and
their values. See ENVIRONMENT VARIABLES for detailed descriptions of
the mai Ix variables.

Invoke an interactive command interpreter (see also SHE L L

(ENVIRONMENT VARIABLES» .

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglist1
Print the top few lines of the specified messages. If the "toplines" vari­
able is set, it is taken as the number of lines to print (see ENVIRON­

MENT VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox upon normal
termination. See exit and quit.

Type [msglist]
Print [msglist]

Print the specified messages on the screen, including all header fields.

Page 180 System V Interface Definition

MAILX(AU _ CMD)

Overrides suppression of fields by the ignore command.

type [msglist1
print [msglist]

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the PAGER variable. The default command
is pg. (See ENVIRONMENT VARIABLES).

undelete [msglist1
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If "autoprint" is set, the last mes­
sage of those restored is printed (see ENVIRONMENT VARIABLES).

un~et name ...
Causes the specified variables to be erased. If the variable was
imported from the execution environment (i.e., an environment vari­
able) then it cannot be erased.

version
Prints the current version and release date.

visual [msglistJ
Edit the given messages with a screen editor. The messages are placed
in a tempqrary file and the VI SUAL variable is used to get the name
of the editor (see ENVIRONMENT VARIABLES).

write [msglist1 filename

xit
exit

Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

z[+1-1
Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning
a line with the tilde escape character (-). See "escape" (ENVIRONMENT VARI­

ABLES) for changing this special character.

- I command
Escape to the command interpreter.

Simulate end of file (terminate message input).

mail-command
- mail-command

System V Interface Definition Page 181

MAILX(AU _ CMD)

Perform the command-level request. Valid only when sending a mes­
sage while reading mail.

- ? Print a summary of tilde escapes.

- A Insert the autograph string "Sign" into the message (see ENVIRONMENT
VARIABLES) .

- a Insert the autograph string "sign" into the message (see ENVIRONMENT
VARIABLES) .

-b name ...
Add the names to the blind carbon copy (Bcc) list.

-c name ...
Add the names to the carbon copy (Cc) list.

- d Read in the dead.letter file. See "DEAD" (ENVIRONMENT VARIABLES)

for a description of this file.

- e Invoke the editor on the partial message. See also EDITOR
(ENVIRONMENT VARIABLES).

- f (msglist)
Forward the specified messages. The messages are inserted into the
message, without alteration.

- h Prompt for Subject line and To, Cc, and Bcc lists. If the field is
displayed with an initial value, it may be edited as if it had just been
typed.

- i string
Insert the value of the named variable into the text of the message.
For example, - A is equivalent to

- m (msglist)
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

- p Print the message being entered.

- q Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead. letter. See
DEAD (ENVIRONMENT VARIABLES) for a description of this file.

-r filename
- <.filename
- <!command

Page 182

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary system com­
mand and is executed, with the standard output inserted into the mes­
sage.

System V Interface Definition

N s string ...
Set the subject line to string.

Nt name ...
Add the given names to the To list.

N v Invoke a preferred screen editor on the partial message. See also
VISUAL" (ENVIRONMENT VARIABLES).

NW filename
Write the partial message onto the given file, without the header.

N x Exit as with N q except the message is not saved in dead. letter.

N command
Pipe the body of the message through the given command. If the com­
mand returns a successful exit status, the output of the command
replaces the message.

ENVIRONMENT VARIABLES

The following are environment variables taken from the execution environ­
ment and are not alterable within rna i Ix.

HOME-directory
The user's base of operations.

MAILRc-filename
The name of the start-up file. Default is $HOME/. rnai1rc.

The following variables are internal rnailx variables. They may be
imported from the execution environment or set via the set command at
any time. The un set command may be used to erase variables.

all net All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifications to
behave similarly. Default is noa11net. See also the a1 ter­
na te s command and the "metoo" variable.

append
Upon termination, append messages to the end of the mbox file instead
of prepending them. Default is noappend.

as.kcc
Prompt for the Cc list after message is entered. Default is noaskcc.

asksub
Prompt for subject if it is not specified on the command line with the
-s option. Enabled by default.

autoprint
Enable automatic printing of messages after de 1 ete and
undelete commands. Default is noautoprint.

bang
Enable the special-case treatment of exclamation points (!) in escape

System V Interface Definition Page 183

command lines as in VI(AU_CMD). Default is nobang.

c md =command
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. Conversion is
disabled by default. See also "sendmail" and the -u command line
option.

crt=number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable (PG(BU_CMD) by
default). Disabled by default.

D EAD=filename
The name of the file in which to save partial letters in case of untimely
interrupt or delivery errors. Default is $HOME/dead.letter.

debug

dot

Enable verbose diagnostics for debugging. Messages are not delivered.
Default is nodebug.

Take a period on a line by itself during input from a terminal as end­
of-file. Default is nodot.

ED I TOR ==command
The command to run when the edit or - e command is used. Default
is ED(BU_CMD).

escape==c
Substitute c for the - escape character.

f 0 Ide r-directory
The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name
with this directory name to obtain the real file name. If directory does
not start with a slash (f), $HOME is prepended to it. In order to use
the plus (+) construct on a ma i I x command line, "folder" must be an
exported environment variable. There is no default for the "folder"
variable. See also "outfolder" below.

header
Enable printing of the header summary when entering Ina i Ix.
Enabled by default.

hold
Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up

Page 184 System V Interface Definition

lines. Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated by
a period (.) on a line by itself or by the -. command. Default is
noignoreeof. See also "dot" above.

keep
When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBox-filename
The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message explicitly
in another file. Default is $HOME/mbox.

me too
If the user's login appears as a recipient, do not delete it from the list.
Default is nome too.

LIS TER -command
The command (and options) to use when listing the contents of the
"folder" directory. The default is 1 s.

onehop
When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative
to the originating author's machine for the response. This flag disables
alteration of the recipients' addresses, improving efficiency in a network
where all machines can send directly to all other machines (i.e., one
hop away).

outfolder
Causes the files used to record outgoing messages to be located in the
directory specified by the "folder" variable unless the path name is abso­
lute. Default is nooutfolder. See "folder" above and the Save,
Copy, f ollowup, and Followup commands.

page
Used with the pipe command to insert a form feed after each mes­
sage sent through the pipe. Default is nopage.

PAGER-COmmand
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg.

prompt-string
Set the command mode prompt to string. Default is "? ".

System V Interface Definition Page 185

FILES

quiet
Refrain from printing the opening message and version when entering
rnai1x. Default is noquiet.

record-filename
Record all outgoing mail in filename. Disabled by default. See also
"outfolder" above.

save
Enable saving of messages in dead. letter on interrupt or delivery error.
See "DEAD" for a description of this file. Enabled by default.

screen-number
Sets the number of lines in a screen-full of headers for the headers
command.

sendrnai1-command
Alternate command for delivering messages. Default is rna i 1.

sendwait
Wait for background mailer to finish before returning. Default is
nosendwai t.

SHELL-command
The name of a preferred command interpreter. Default is sh.

showto
When displaying the header summary and the message is from the
user, print the recipient's name instead of the author's name.

sign-string
The variable inserted into the text of a message when the - a (auto­
graph) command is given. No default {see also - i (T I LDE

ESCAPES».

Sign-string
The variable inserted into the text of a message when the -A com­
mand is given. No default {see also - i (TILDE ESCAPES».

top1 ine s-number
The number of lines of header to print with the top command.
Default is 5.

VI SUAL-command
The name of a preferred screen editor. Default is vi.

$HOME/.mailrc

$HOME/mbox

USAGE

users's start-up file

secondary storage file

End-user.

Page 186 System V Interface Definition

SEE ALSO
MAIL(BU_CMD), PG(BU_CMD), LS(BU_CMD), VI(AU_CMD).

LEVEL
Levell.

New in System V Release 2.

System V Interface Definition

MAILX(AU _ CMD)

Page 187

NAME

mesg - permit or deny messages

SYNOPSIS

mesg [yIn]

DESCRIPTION

The command me sg with argument n prevents another user from writing
to the invoking user's terminal, (e.g., by using wr i te [see
WRITE(AU_CMD)]). The command mesg with argument y reinstates write
permission. With no arguments, me s g reports the current state without
changing it.

ERRORS

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

FILES

Idev/tty*

USAGE

General.

SEE ALSO
WRITE(AU _ CMD).

LEVEL
Levell.

Page 188 System V Interface Definition

NEWGRP(AU _ CMD)

NAME

newgrp - change to a new group

SYNOPSIS
newgrp [-] group]

DESCRIPTION

FILES

The command newgrp changes a user's group identification. The user
remains logged in and the current directory is unchanged, but calculations of
access permissions to files are performed with respect to the new real and
effective group IDs.

Exported environment variables retain their values after invoking newgrp;
however, all un exported variables are either reset to their default value or set
to null. Environment variables (such as PS 1, PS2, PATH, MAIL, and
HOME), unless exported, are reset to default values.

With no arguments, newgrp changes the group identification back to the
group specified in the user's password file entry.

If the first argument to newgrp is a -, the environment is changed to
what would be expected if the user actually logged in again.

/etc/group

/etc/passwd

USAGE

system's group file

system's password file

End-user.

SEE ALSO
SH(BU _ CMD).

LEVEL

Level 1.

System V Interface Definition Page 189

NAME

news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION

FILES

The command news prints files from the system news directory.

When invoked without arguments, news prints the contents of all current
files in the news directory, most recent first, with each preceded by an
appropriate header. news stores the "currency" time as the modification
date of a file named • news time in the user's home directory (the iden­
tity of this directory is deteriiIined by the environmental variable HOME);

only files more recent than this currency time are considered "current."

The -a option causes news to print all items, regardless of currency. In
this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist,
without printing their names or contents, and without changing the stored
time.

All other arguments are assumed to be specific news items that are to be
printed.

If an interrupt (DEL or BREAK) is typed during the printing of a news item,
printing stops and the next item is started. Another interrupt within
one second of the first causes the program to terminate.

fete/profile
$HOME/.news time

USAGE
End-user.

LEVEL

Levell.

Page 190 System V Interface Definition

NAME

od - octal dump

SYNOPSIS

od [-bcdosx] [file] [[+]offset[.][b]]

DESCRIPTION

The command od prints f i 1 e in one or more formats as selected by the
options. If no file is specified, the standard input is used. If no option is
specified, -0 is the default.

For the purposes of this description, word refers to a 16-bit unit, independent
of the word size of the machine.

The meanings of the options are:

- b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: NUL-\O, BS-\b, FF-\f, NL-\n, CR-\r, HT-\t;
others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

- s Interpret words in signed decimal.

-x Interpret words in hex.

The offset argument specifies the offset in the file where dumping is to com­
mence. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the offset is
interpreted in units of 512 bytes. If the file argument is omitted, the offset
argument must be preceded by +.

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 191

NAME

passwd - change login password

SYNOPSIS

passwd [name]

DESCRIPTION

FILES

The command passwd changes or installs a password associated with the
login name.

Ordinary users may change only the password which corresponds to their
login name.

The command passwd prompts ordinary users for their old password, if
any. It then prompts for the new password twice. If password aging is in
effect, then the first time the new password is entered, pa s swd checks to
see if the old password has "aged" sufficiently. If "aging" is insufficient the
new password is rejected and passwd terminates.

If "aging" is sufficient, a check is made to insure that the new password
meets construction requirements. When the new password is entered a
second time, the two copies of the new password are compared. If the two
copies are not identical the cycle of prompting for the new password is
repeated for at most two more times.

The super-user may change any password; hence, passwd does not prompt
the super-user for the old password. The super-user is not forced to comply
with password aging and password construction requirements. The super-user
can create a null password by entering a carriage return in response to the
prompt for a new password.

/etc/passwd

USAGE

End-user.

LEVEL
Levell.

Page 192 System V Interface Definition

SHL(AU_CMD)

NAME

shl - shell layer manager

SYNOPSIS

shl

DESCRIPTION

The command s h 1 allows a user to interact with more than one shell from
a single terminal. The user controls these shells, known as layers, using the
commands described below.

The current layer is the layer which can receive input from the keyboard.
Other layers attempting to read from the keyboard are blocked. Output from
multiple layers is multiplexed onto the terminal. To have the output of a
layer blocked when it is not current, the stty option loblk may be set
within the layer.

The stty character swtch (set to control-Z if NUL) is used to switch
control to shl from a layer. The command shl has its own prompt,
> > >, to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device
(;dev/sxt/*). The virtual device can be manipulated like a real tty dev­
ice using stty and ioctl (). [See STTY(AU_CMD) and IOCTL(BA_OS)

respectively.] Each layer has its own process group ID.

Definitions
A name is a sequence of characters delimited by a blank, tab or new­
line. Only the first eight characters are significant. The names (1)
through (7) cannot be used when creating a layer. They are used by
shl when no name is supplied. They may be abbreviated to just the
digit.

Commands
The following commands may be issued from the shl prompt level.
Any unique prefix is accepted.

crea te [name]
Create a layer called name and make it the current layer. If no
argument is given, a layer will be created with a name of the
form (#) where # is the last digit of the virtual device bound
to the layer. The shell prompt variable PS 1 .isset to the name
of the layer followed by a space. A maximum of seven layers can
be created.

block name [name ...]
For each name, block the output of the corresponding layer when
it is not the current layer. This is equivalent to setting the
sttyoption loblk within the layer.

delete name [name ...]
For each name, delete the corresponding layer. All processes in

System V Interface Definition Page 193

SHL(AU_CMD)

FILES

the process group of the layer are sent the SIGHUP signal.

help (or 1)
Print the syntax of the s h 1 commands.

layers [-I] [name ...]
For each name, list the layer name and its process group. The
-1 option produces a long listing. If no arguments are given,
information is presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argu­
ment is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding
layer when it is not the current layer. This is equivalent to set­
ting the sttyoption -lob1k within the layer.

quit
Exit shl. All layers are sent the SIGH UP signal.

name
Make the layer referenced by name the current layer.

Idev/sxt/* Virtual tty devices

USAGE

General.

SEE ALSO
SH(BU_CMD), STTY(AU_CMD), IOCTL(BA_OS), SIGNAL(BA_OS).

LEVEL
Levell.

New in System V Release 2.

Page 194 System V Interface Definition

NAME

stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options

DESCRIPTION
The command s t ty sets certain terminal 110 options for the device that is
its standard input; without arguments, it reports the settings of certain
options; with the -a option, it reports all of the option settings; with the
-g option, it reports current settings in a form that can be used as an argu­
ment to another stty command. Detailed information about the modes
listed in the first five groups below may be found in IOCTL(BA_OS). Options
in the last group are implemented using options in the previous groups. Note
that many combinations of options make no sense, but no sanity checking is
performed. The options are selected from the following:

Control Modes

parenb (-parenb)
enable (disable) parity generation and detection.

parodd (-parodd)
select odd (even) parity.

csS cs6 cs7 cs8
select character size.

o
hang up phone line immediately.

number
Set terminal baud rate to the number given, if possible. (All
speeds are not supported by all hardware interfaces.)

hupcl (-hupcl)
hang up (do not hang up) modem connection on last close.

hup (-hup)
same as hupcl (-hupcl).

cstopb (-cstopb)
use two (one) stop bits per character.

cread (-cread)
enable (disable) the receiver.

clocal (-clocal)
assume a line without (with) modem control.

loblk (-loblk)
block (do not block) output from a non-current layer.

Input Modes

System V Interface Definition Page 195

ignbrk (-ignbrk)
ignore (do not ignore) break on input.

brkint (-brkint)
signal (do not signal) INTR on break.

ignpar (-ignpar)
ignore (do not ignore) parity errors.

parmrk (-parmrk)
mark (do not mark) parity errors.

inpck (-inpck)
enable (disable) input parity checking.

istrip (-istrip)
strip (do not strip) input characters to seven bits.

inlcr (-inlcr)
map (do not map) NL to CR on input.

igncr (-igncr)
ignore (do not ignore) CR on input.

icrnl (-icrnl)
map (do not map) CR to NL on input.

iuclc (-iuclc)
map (do not map) upper-case alphabetics to lower case on input.

ixon (-ixon)
enable (disable) START/STOP output control. Output is stopped
by sending an ASCII DC3 and started by sending an ASCII DC 1.

ixany (-ixany)
allow any character (only OCt} to restart output.

ixoff (-ixoff)
request that the system send (not send) START/STOP characters
when the input queue is nearly empty/full.

Output Modes

Page 196

opost (-opost)
post-process output (do not post-process output; ignore all other
output modes).

olcuc (-olcuc)
map (do not map) lower-case alphabetics to upper case on output.

onlcr (-onlcr)
map (do not map) NL to CR-NL on output.

ocrnl (-ocrnl)
map (do not map) CR to NL on output.

System V Interface Definition

onocr (-onocr)
do not (do) output CRs at column zero.

onlret (-onlret)
on the terminal NL performs (does not perform) the CR function.

of ill (-of ill)
use fill characters (use timing) for delays.

of de 1 (-ofdel)
fill characters are DELs (NULs).

crO cr1 cr2 cr3
select style of delay for carriage returns.

nlO n11
select style of delay for line-feeds.

tabO tab1 tab2 tab3
select style of delay for horizontal tabs.

bsO bs1
select style of delay for backspaces.

ffO ff1
select style of delay for form-feeds.

vtO vt1
select style of delay for vertical tabs.

Local Modes

isig (-isig)
enable (disable) the checking of characters against the special
control characters INTR, QUIT, and SWTCH.

icanon (-icanon)
enable (disable) canonical input (ERASE and KILL processing).

xcase (-xcase)
canonical (unprocessed) upper/lower-case presentation.

echo (-echo)
echo back (do not echo back) every character typed.

echoe (-echoe)
echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed char­
acter on many CRT terminals; however, it does not keep track of
column position and, as a result, may be confusing on escaped
characters, tabs, and backspaces.

echok (-echok)
echo (do not echo) NL after KILL character.

System V Interface Definition Page 197

lfkc (-lfke)
the same as echok (-echok); obsolete.

echonl (-echonl)
echo (do not echo) NL.

noflsh (-noflsh)
disable (enable) flush after INTR, QUIT, or SWTCH.

Control Assignments

control-character c
set control-character to c, where control­
character is erase, kill, intr, qui t, swtch,
eof, eol, min, or time (min and time are used with
-icanon). If c is preceded by a caret ("), then the value used
is the corresponding CTRL character (e.g., "" d" is a CfRL-d);
""1" is interpreted as DEL and "" -" is interpreted as undefined.

line i
set line discipline to i (0 < i < 127).

Combination Modes

Page 198

evenp or parity
enable parenb and cs7.

oddp
enable parenb, cs7, and parodd.

-pari ty, -evenp, or -oddp
disable parenb, and set csS.

raw (-raw or cooked)
enable (disable) raw input and output (no ERASE, KILL, INTR,
QUIT, SWTCH, EOT, or output post processing).

nl (-nl)
unset (set) icrnl, onlcr. In addition -nl unsets
inlcr, igncr, ocrnl, and onlret.

lcase (-lcase)
set (unset) xcase, iuclc, and olcuc.

LCASE (-LCASE)
same as lcase (-lcase).

tabs (-tabs or tabS)
preserve (expand to spaces) tabs when printing.

ek
reset ERASE and KILL characters back to normal # and @.

sane
resets all modes to some reasonable values.

System V Interface Definition

USAGE
End-user.

SEE ALSO
IOCTL(BA_OS).

LEVEL
Levell.

System V Interface Definition Page 199

NAME

su - become super-user or another user

SYNOPSIS

su [-] [name [arg ...]]

DESCRIPTION

FILES

The command s u allows one to become another user without logging off.
The default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new environment with
the real and effective user ID set to that of the specified user. The new com­
mand interpreter will be the optional. program named in the specified user's
password file entry, or the default if none is specified. Normal user ID
privileges can be restored by entering EOT (control-D).

Any additional arguments given on the command line are passed to the com­
mand interpreter.

The following statements are true only if the command interpreter named in
the specified user's password file entry is sh [see SH(BU_CMD)1. If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. Otherwise, the
environment is passed along with the possible exception of PATH.

All attempts to become another user using su are logged.

/etc/passwd system's password file

/etc/profile system's profile

$HOME/.profile user's profile

USAGE
General.

SEE ALSO

SH(BU_CMD).

LEVEL

Levell.

Page 200 System V Interface Definition

TABS(AU_CMD)

NAME

tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [+mn] [-Ttype]

DESCRIPTION

The command tabs sets the tab stops on the user's terminal according to
the tab specification tabspec, after clearing any previous settings.

Three types of tab specification are accepted for tabspec: "canned,"
repetitive, arbitrary. If no tabspec is given, the default value is -8, i.e.,
"standard" tabs. The lowest column number is 1. Note that for tabs,
column 1 always refers to the leftmost column on a terminal, even one whose
column markers begin at 0.

- code Gives the name of one of a set of "canned" tabs. The legal codes
and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM System/370, first format

-a2 1,10,16,40,72
Assembler, IBM System/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted).

-c 3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than
-c 2. This is the recommended format for COBOL.

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PLII

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n

n1,n2, ...

A repetitive specification requests tabs at columns 1 +n,
1 +2*n, etc. Of particular importance is the value -8:
this represents the "standard" tab setting, and is the most
likely tab setting to be found at a terminal. Another special
case is the value -0, implying no tabs at all.
The arbitrary format permits the user to type any chosen
set of numbers, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an incre­
ment to be added to the previous value. Thus, the tab lists

System V Interface Definition Page 201

TABS(AU _ CMD)

1,10,20,30 and 1,10,+ 1 0, + 1 0 are considered identical.

Any of the following may be used also; if a given flag occurs more than once,
the last value given takes effect:

-Ttype

+mn

The command tabs usually needs to know the type of
terminal in order to set tabs and always needs to know the
type to set margins. The argument type is a terminal
name. If no -T flag is supplied, tabs searches for the
environmental variable TERM. If no type can be found,
tabs tries a sequence that will work for many terminals.
The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+ 1 the left margin. If +m is given without a
value of n, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will
move even further to the right. The normal (leftmost) mar­
gin on most terminals is obtained by + mO. The margin for
most terminals is reset only when the +m flag is given
explicitly.

Tab and margin setting is performed via the standard output.

USAGE
End-user.

LEVEL
Levell.

Page 202 System V Interface Definition

TAR(AU_CMD)

NAME

tar - file archiver

SYNOPSIS
tar [option] [file ...

DESCRIPTION
The command tar creates archives of files; it is often used to save files on
(and restore from) magnetic tape. Its actions are controlled by the
option argument. The option is a string of characters containing at
most one function letter and possibly one or more modifiers. Other argu­
ments to the command are f i 1 e s (or directory names) specifying which
files are to be archived or restored. In all cases, appearance of a directory
name refers to the files and (recursively) subdirectories of that directory.

The function portion of the option is specified by one of the following letters:

r The named f i 1 e s are written on the end of the archive.

x The named f i 1 e s are extracted from the archive. If a named
file matches a directory whose contents had been written onto the
archive, this directory is (recursively) extracted. If a named file in
the archive does not exist on the system, the file is created with the
same mode as the one in the archive, except that the set-user-ID
and set-group-ID modes are not set unless the user is super-user. If
the files exist, their modes are not changed except as described
above. The owner, group, and modification time are restored Of
possible) . If no f i 1 e s argument is given, the entire content of
the archive is extracted. Note that if several files with the same
name are in the archive, the last one overwrites all earlier ones.

t The names of all the files in the archive are listed.

u The named f i 1 e s are added to the archive if they are not
already there, or have been modified since last written into the
archive. This option implies option r.

c Create a new archive; writing begins at the beginning of the
archive, instead of after the last file. This option implies the r
option.

The following characters may be used in addition to the letter that selects the
desired function:

v Normally, tar does its work silently. The v (verbose) modifier
causes it to type the name of each file it treats, preceded by the
option letter. With the t option, v gives more information about
the archive entries than just the name.

w Causes tar to print the action to be taken, followed by the name
of the file, and then wait for the user's confirmation. If a word
beginning with y is given, the action is performed. Any other
input means "no". This modifier is invalid with the t option.

System V Interface Definition Page 203

TAR(AU_CMD)

f Causes tar to use the next argument as the name of the archive
instead of the default, which is usually a tape drive. If the name of
the file is -, tar writes to the standard output or reads from the
standard input, whichever is appropriate. Thus, tar can be used
as the head or tail of a pipeline. The command tar can also be
used to move directory hierarchies with the command:

(cd fromdir; tar cf - .) I (cd todir; tar xf -)

Causes tar to use the next argument as the blocking factor for tape
records. The default is 1, the maximum is 20. This option should
only be used with (raw) magnetic tape archives (see f above).
The block size is determined automatically when reading tapes
(options x and t) . .

1 Tells tar to report if it cannot resolve all of the links to the files
being archived. If 1 is not specified, no error messages are printed.
This modifier is valid only with the options c, r, and u.

m Tells tar not to restore the modification times. The modification
time of the file will be the time of extraction. This modifier is
invalid with the t option.

o Causes extracted files to take on the user and group identifier of the
user running the program rather than those on the archive. This
modifier is valid only with the x option.

ERRORS
The command tar reports bad option characters and read/write errors.
It also reports an error if enough memory is not available to hold the link
tables.

USAGE
General.

LEVEL
Levell.

Page 204 System V Interface Definition

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-s]

DESCRIPTION
The command tty prints the path name of the user's terminal. The -s
option inhibits printing of the terminal path name, allowing one to test just
the exit code.

ERRORS
Exit codes:

2 if invalid options were specified,
o if standard input is a terminal,

otherwise.

An error is reported if the standard input is not a terminal and -s is not
specified.

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 205

UUCP(AU _ CMD)

NAME
uucp, uulog, uuname - system-to-system copy

SYNOPSIS
uucp [options] source-files destination-file

uu10g [-s system

uuname [-1]

DESCRIPTION

uucp

The command u u c p copies files named by the sour c e - f i 1 e arguments
to the destination-file argument. (Note that some uucp options
are new to Release 2; see the options paragraph below for details'> A file
name may be a path name on your machine, or may have the form:

system-namelpath-name

where system-name is taken from a list of system names that uucp
knows about. The destination system-name may also be a list of names
such as

system-namelsystem-namel ... lsystem­
namelpath-name

in which case, an attempt is made to send the file via the specified route to
the destination. Care should be taken to ensure that intermediate nodes in
the route are willing to forward information.

The shell metacharacters 1, ., and l ... J appearing in path-name will be
expanded on the appropriate system.

Path-names may be one of:

(1) a full path-name.

(2) a path-name preceded by -name where name is a login name
on the specified system and is replaced by that user's login direc­
tory. Note that if an invalid login is specified, the default will be
to the public directory (PUBDIR).

(3) a path-name specified as -/dest, where the destination dest
is appended to PUBDIR.

NOTE: This destination will be treated as a file name unless more
than one file is being transferred by this request or the destination
is already a directory. To ensure that it is a directory, follow the
destination with a 'I'. For example, -/danl as the destination will
make the directory,PUBDIR/dan if it does not exist and put the
requested file(s) in that directory.

(4) anything else is prefixed by the current directory.

Page 206 System V Interface Definition

UUCP(AU _CMD)

If the result is an erroneous path-name for the remote system, the copy will
fail. If the destination-file is a directory, the last part of the
source-file name is used.

The command u u c p gives universal read and write permissions and
preserves execute permissions across the transmission.

The following options are interpreted by uucp:

-c Do not copy local file to the spool directory for transfer to the
remote machine {default}.

-c Force the copy of local files to the spool directory for transfer.

-d Make all necessary directories for the file copy {default}.

-f Do not make intermediate directories for the file copy.

- j Output the job identification ASCII string on the standard output.
This job identification can be used by u us tat to obtain the
status or terminate a job. (This option is new to System V
Release 2.)

-m Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer; just queue the job. (This option is
new to System V Release 2.)

uulog

The command uulog queries a log file of uucp or uuxqt transactions.

If the - s option is specified, then uulog prints information about file
transfer work involving system system.

uuname

The command uuname lists the uucp names of known systems. The -1
option returns the local system name.

USAGE
General.

The domain of remotely accessible files can {and for obvious security reasons,
usually should} be severely restricted.

SEE ALSO
MAIL(BU _ CMD), UUSTAT(AU _ CMD), UUX(AU _ CMD).

LEVEL
Levell.

System V Interface Definition Page 207

UUSTAT(AU _ CMD)

NAME

uustat - uucp status inquiry and job control

SYNOPSIS
uustat [options]

DESCRIPTION

The command uusta t will display the status of, or cancel, previously
specified uucp commands, or provide general status on uucp connections
to other systems.

Notall combinations of options are valid. Only one of the following options
can be specified with u us tat:

-q
-k jobid

-r jobid

List the jobs queued for each machine.
Kill the uucp request whose job identification is jobid. The
killed uucp request must belong to the person issuing the
uusta t command unless that user is the superuser.
Rejuvenate jobid. The files associated with jobid are touched so
that their modification time is set to the current time. This
prevents the cleanup daemon from deleting the job until the jobs
modification time reaches the limit imposed by the daemon.

The options below may not be used with the ones listed above; however, these
options may be used singly or together:

-s sys
-u user

Report the status of all uucp requests for remote system sys.
Report the status of all uucp requests issued by user.

When no options are given, u us tat outputs the status of all u u c p
requests issued by the current user.

USAGE
General.

SEE ALSO
UUCP(AU _ CMD).

LEVEL

Levell.

Page 208 System V Interface Definition

NAME

uuto, uupick - public system-to-system file copy

SYNOPSIS
uuto [-p] [-m] source-files destination

uupick [-s system

DESCRIPTION
uuto

The command uuto sends source-files to destination. The
command uuto uses the UUCP(AU_CMD) facility to send files, while it allows
the local system to control the file access. A source-file name is a path name
on the user's machine. Destination has the form: "system I user" where
system is taken from a list of system names that uucp knows about [see
uuname in UUCP(AU_CMD).1 The argument user is the login name of
someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or subtrees if directories are specified) are sent to a public direc­
tory (PUBDIR) on system. Specifically, the files are sent to the directory

PUBDIR/receive/user/fsystem,
where user is the recipient, and fsystem is the sending system.

The recipient is notified by ma i 1 of the arrival of files.

uuplck

The command uupick may be used by a user to accept or reject the files
transmitted to the user. Specifically, uupick searches PUBDIR on the
user's system for files sent to the user. For each entry (file or directory)
found, one of the following messages is printed on the standard output:

from system: dk dirname ?

from system: file file-name ?

The command u u pic k then reads a line from the standard input to deter­
mine the disposition of the file. The user's possible responses are:

<newline>

d

m [dir]

Go on to next entry.

Delete the entry.

Move the entry to named directory d i r. If d iris not
specified as a complete path name a destination relative to
the current directory is assumed. If no destination is
given, the default is the current directory.

System V Interface Definition Page 209

a [dir]

p

q

EOT

I command

*

Same as rn except moving all the files sent from s y s -
tern.

Print the content of the file to standard output.

Stop and exit.

{control-OJ Same as q.

Escape to the command interpreter to execute command.

Print a usage summary for uu to.

The command uupick invoked with the -s system option will only
search for files (and list any found) sent from system.

USAGE
General.

SEE ALSO
MAIL(BU _ CMD), UUCP(AU _ CMD), UUST AT(AU _ CMD), UUX(AU _ CMD),

LEVEL
Levell.

Page 210 System V Interface Definition

NAME
uux - remote command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
The command u ux will gather zero or more files from various systems, exe­
cute a command on a specified system, and then send the standard output of
the command to a file on a specified system.

The command-string is made up of one or more arguments that are
similar to normal command arguments, except that the command and any file
names may be prefixed by system-name!. A null system-name is
inte.rpreted as the local system.

The following statements are relevant if SH(BU_CMD) is the command inter­
preter.

The metacharacter • will not give the desired result.

The redirection tokens > > and < < are not implemented.

A file name may be specified as for uucp: it may be a full path name, a
path name preceded by -name (which is replaced by the corresponding
login directory), a path name specified as - Idest (dest is prefixed by
PUBDIR), or a simple file name (which is prefixed by the current directory).
See UUCP(AU _ CMD) for the details.

As an example, the command
uux "Idiff usgl/usr/dan/file1
pwbal/a4/dan/file2 >I-/dan/file.diff"

will get the file 1 and file2 files from the "usg" and "pwba"
machines, execute d iff, and put the results in f i 1 e . d iff in the local
PUBDIR/dan directory. (PUBDIR is the uucp public directory on the local
system.)

The execution of commands on remote systems takes place in an execution
directory known to the uucp system. All files required for the execution
will be put into this directory unless they already reside on that machine.
Therefore, the non-local file names (without path or machine reference) must
be unique within the u ux request. The following command will not work:

uux "aldiff bl/usr/dan/xyz cl/usr/dan/xyz
>Ixyz.diff"

because the file xy z will be copied from the b system as well as the c sys­
tem, causing a name conflict. The command

uux "aldiff al/usr/dan/xyz cl/usr/dan/xyz
>Ixyz.diff"

System V Interface Definition Page 211

will work (provided d iff is a permitted command), because the local file
xyz (which is not copied) does not conflict with the copied file xyz from
the c system.

Any characters special to the command interpreter should be quoted either
by quoting the entire command- string or quoting the special characters
as individual arguments.

The command u ux will attempt to get all files to the execution system. For
files that are output files, the file name must be escaped using parentheses.
For example, the command

uux alcut -f1 bl/usr/file \(cl/usr/file\)

gets lusr/file from system "b", sends it to system "a", performs a cut
command on that file, and sends the result of the cut command to system
"c".

The command u ux will notify the user (by maiO if the requested command
on the remote system was disallowed. This notification can be turned off by
the -n option. The response comes by mail from the remote machine.

The following options are interpreted by uux:

The standard input to u ux is made the standard input to the
command-string.

-j Output the job identification ASCII string on the standard output. This
job identification can be used by u us tat to obtain the status or ter­
minate a job. (This option is new to Release 2.)

-n Do not notify the user if the command fails.

USAGE
General.

Note that, for security reasons, many installations will limit the list of com­
mands executable on behalf of an incoming request from u ux. Many sites
will permit little more than the receipt of mail via uux.

Only the first command of a pipeline [see SH(BU_CMD)] may have a
system-name!. All other commands are executed on the system of the
first command.

SEE ALSO
UUCP(AU _ CMD), UUST AT(AU _ CMD).

LEVEL
Levell.

Page 212 System V Interface Definition

NAME

vi - screen-oriented (visual) display editor

SYNOPSIS

vi [-r file] [-1] [-wn] [-R] [+command]
file ...

DESCRIPTION

Vi (visual) is a display-oriented text editor. It is based on the underlying
line editor EX(AU _ CMD): it is possible to switch back and forth between the
two, and to execute e x commands from within vi.

When using vi, the terminal screen acts as window into the file being
edited. Changes made to the file are reflected in the screen display; the posi­
tioI'. of the cursor on the screen indicates the position within the file.

The environmental variable TERM must give the terminal type; the terminal
must be defined in the terminfo database. As for ex, editor initialization
scripts can be placed in the environmental variable EXINIT, or the file
• exrc in the current or home directory.

Options

The following options are interpreted by vi:

-rfile

-1

-wn

-R

+ command

VI COMMANDS

General Remarks

Recover file after an editor or system crash. If file is
not specified a list of all saved files will be printed.

set LISP mode (see Edit Options below).

Set the default window size to n.

Read only mode; the readonly flag is set, preventing
accidental overwriting of the file.

The specified ex command is interpreted before edit­
ing begins.

See EX(AU_CMD) for the complete description of ex. Only the
visual mode of the editor is described here.

At the beginning, vi is in the command mode; the input mode is
entered by several commands used to insert or change text. In input
mode, ESC (escape) is used to leave input mode; in command mode, it
is used to cancel a partial command; the terminal bell is sounded if the
editor is not in input mode and there is no partially entered command.

The last (bottom) line of the screen is used to echo the input for search
commands (/ and ?), for ex commands (:), and system commands 0).
It is also used to report errors or print other messages.

System V Interface Definition Page 213

VI(AU_CMD)

An interrupt (BREAK or DEL) typed during text input, or during the
input of a command on the bottom line, terminates the input (or can­
cels the command) and returns the editor to command mode. During
command mode an interrupt causes the bell to be sounded; in general
the bell indicates an error (such as unrecognized key).

Lines displayed on the screen containing only a ,-, indicate that the last
line above them is the last line of the file (the ,-, lines are past the end
of the file). On a terminal with limited local intelligence, there may be
lines on the screen marked with an '@': these indicate space on the
screen not corresponding to lines in the file. (These lines may be
removed by entering a 'control-R', forcing the editor to retype the
screen without these holes.)

Command Summary

Page 214

Most commands accept a preceding number as an argument, either to
give a size or position (for display or movement commands), or as a
repeat count (for commands that change text). For simplicity, this
optional argument will be referred to as count when its effect is
described.

The following operators can be followed by a movement command, in
order to specify an extent of text to be affected: c, d, y, <, >, !,
and =. The region specified is from the current cursor position to just
before the cursor position indicated by the move. If the command
operates on lines only, then all the lines which fall partly or wholly
within this region are affected. Otherwise the exact marked region is
affected.

In the following, control characters are indicated in the form 'AX',
which stands for 'control-X'. The intended ASCII character name is
also given.

Unless otherwise specified, the commands are interpreted in command
mode and have no special effect in input mode.

AD (STX) Scrolls backward to display the window above the current
one. A count specifies the number of windows to go back.
Two lines of overlap are kept if possible.

AD (EOT) Scrolls forward a half-window of text. A count gives the
number of (logical) lines to scroll, and is remembered for
future AD and AU commands.

In input mode, backs shiftwidth spaces over the
indentation provided by auto indent or "T.

"E (ENQ) Scrolls forward one line, leaving the cursor where it is if
possible.

"F (ACK) Scrolls forward to display the window below the current
one. A count specifies the number of windows to go

System V Interface Definition

forward. Two lines of overlap are kept if possible.

AG (BEL) Prints the current file name and other information, includ­
ing the number of lines and the current position.
(Equivalent to the ex command f.)

AU (BS) Moves one space to the left (stops at the left margin). A
count specifies the number of spaces to back up. (Same as
h.)

In input mode, backs over the last input character without
erasing it.

A J (LF) Moves the cursor down one line in the same column. A
count specifies the number of lines to move down. (Same as
"N and j.)

AL (FF) Clears and redraws the screen. (Used when the screen is
scrambled for any reason.)

AM (CR) Moves to the first non-white character in the next line. A
count specifies the number of lines to go forward.

"N (SO) Same as AJ and j.

"p (DLE) Moves the cursor up one line in the same column. A count
specifies the number of lines to move up. (Same as k.)

AR (DC2) Redraws the current screen, eliminating the false lines
marked with '@' (which do not correspond to actual lines in
the file).

AT (DC4) In input mode, if at the beginning of the line or preceded
only by white space, inserts shiftwidth white space.
This inserted space can only be backed over using AD.

AU (NAK) Scrolls up a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future AD
and AU commands.

AV (SYN) In input mode, quotes the next character to make it possible
to insert special characters (including ESC) into the file.

"W (ETB) In input mode, backs up one word; the deleted characters
remain on the display.

"Y (EM) Scrolls backward one line, leaving the cursor where it is if
possible.

"((ESC) Cancels a partially formed command; sounds the bell if
there is none.

In input mode, terminates input mode.

When entering a command on the bottom line of the screen
(ex command line or search pattern with \ or 1),

System V Interface Definition Page 215

Page 216

terminates input and executes command.

SPACE Moves one space to the right (stops at the end of the line).
A count specifies the number of spaces to go forward.
(Same as I.)

An operator which passes specified lines from the buffer as
standard input to the specified system command, and
replaces those lines with the standard output from the com­
mand. The! is followed by a movement command specify­
ing the lines to be passed (lines from the current position to
the end of the movement) and then the command (ter­
minated as usual by a return). A count preceding the ! is
passed on to the movement command after !.

Doubling! and preceding it by a count causes that many
lines, starting with the current line, to be passed.

Precedes a named buffer specification. There are named
buffers 1-9 in which the editor places deleted text. The
named buffers a-z are available to the user for saving
deleted or yanked text.

$ Moves to the end of the current line. A count specifies the
number of lines to go forward. (e.g., 2$ goes to the end of
the next line.)

% Moves to the parenthesis or curly brace which matches the
parenthesis or brace at the current cursor position.

& Same as the ex command & (repeats previous substitute
command).

When followed by a " returns to the previous context, plac­
ing the cursor at the beginning of the line. (The previous
context is set whenever a non-relative move is made.)
When followed by a letter a-z, returns to the line marked
with that letter (see the m command), at the first non-white
character in the line.

When used with an operator such as d to specify an extent
of text, the operation takes place over complete lines. (See
also '.)

When followed by a " returns to the previous context, plac­
ing the cursor at the character position marked. (The pre­
vious context is set whenever a non-relative move is made.)
When followed by a letter a-z, returns to the line marked
with that letter (see the m command), at the character posi­
tion marked.

When used with an operator such as d to specify an extent
of text, the operation takes place from the exact marked

System V Interface Definition

place to the current position within the line. (See also '.)

((Backs up to the previous section boundary. A section is
defined by the value of the sections option. Lines
which start with a formfeed ("L character) or { also stop [(.

If the option lisp is set, stops at each (at the beginning of a
line.

n Moves forward to a section boundary (see ([).

Moves to the first non-white position on the current line.

(Moves backward to the beginning of a sentence. A sentence
ends at a . ! or ? which is followed by either the end of a
line or by two spaces. Any number of closing)] " and •
characters may appear between the . ! or ? and the spaces
or end of line. A count moves back that many sentences.

If the lisp option is set. moves to the beginning of a LISP
s-expression. Sentences also begin at paragraph and section
boundaries (see (and [[below).

Moves forward to the beginning of a sentence. A count
moves forward that many sentences. (See (.)

Moves back to the beginning of the preceding paragraph. A
paragraph is defined by the value of the paragraphs
option. A completely empty line, and a section boundary
(see [[above), are also taken to begin paragraphs. A count
specifies the number of paragraphs to move backward.

Moves forward to the beginning of the next paragraph. A
count specifies the number of paragraphs to move forward.
(See (.)

Requires a count; the cursor is placed in that column (if
possible).

+ Moves to the first non-white character in the next line. A
count specifies the number of lines to go forward. (Same as
"M,)

Reverse of the last f F t or T command, looking the other
way in the current line. A count is equivalent to repeating
the search that many times.

Moves to the first non-white character in the previous line.
A count specifies how many lines to move back.

Repeats the last command which changed the buffer. A
count is passed on to the command being repeated.

/ Reads a string from the last line on the screen, interprets it
as a regular expression, and scans forward for the next

System V Interface Definition Page 217

Page 218

occurrence of a matching string. The search begins when
return is entered to terminate the pattern; it may be ter­
minated with an interrupt (or DEL).

When used with an operator to specify an extent of text, the
defined region is from the current cursor position to the
beginning of the matched string. Whole lines may be
specified by giving an offset from the matched line (using a
closing / followed by a +n or -n).

Regular expressions are described in EX(AU_CMD).

o Moves to the first character on the current line. Os not
interpreted as a command when preceded by a non-zero
digit.)

Begins an e x command. The:, as well as the entered
command, is echoed on the bottom line; It is executed when
the input is terminated by entering a return.

Repeats the last single character find using f F t or T. A
count is equivalent to repeating the search that many times.

< An opera tor which shifts lines left one s h i f t wid t h.
May be followed by a move to specify lines. A count is
passed through to the move command.

When repeated « <), shifts the current line (or count
lines starting at the current one).

> An operator which shifts lines right one shiftwidth.
(See <.)

?

A

B

c

D

E

If the 1 i s p option is set, then reindents the specified lines,
as though they were typed in with lisp and autoindent set.
May be preceded by a count to indicate how many lines to
process, or followed by a move command for the same pur­
pose.

Scans backwards, the reverse of I. (See I,)

Appends at the end of line. (Same as Sa.)

Backs up a word, where a word is any non-blank sequence,
placing the cursor at the beginning of the word. A count
gives the number of words to go back.

Changes the rest of the text on the current line. (Same as
cS.)

Deletes the rest of the text on the current line. (same as
dS.)

Moves forward to the end of a word, where a word is any
non-blank sequence. A count gives the number of words to

System V Interface Definition

go forward.

F Must be followed by a single character; scans backwards in
the current line for that character, moving the cursor to it if
found. A count is equivalent to repeating the search that
many times.

G Goes to the line number given as preceding argument, or
the end of the file if no preceding count is given.

H Moves the cursor to the top line on the screen. If a count is
given, then the cursor is moved to that line on the screen,
counting from the top. The cursor is placed on the first
non-white character on the line. If used as the target of an
operator, full lines are affected.

I Inserts at the beginning of a line. (Same as tiJ

J Joins the current line with the next one, supplying appropri­
ate white space: one space between words, two spaces after
a period, and no spaces at all if the first character of the
next line is). A count causes that many lines to be joined
rather than two.

L Moves the cursor to the first non-white character of the last
line on the screen. A count moves to that line counting
form the bottom. When used with an operator, whole lines
are affected.

M Moves the cursor to the middle line on the screen, at the
first non-white position on the line.

N Scans for the next match of the last pattern given to / or ?,
but in the reverse direction; this is the reverse of n.

o Opens a new line above the current line and enters input
mode.

P Puts the last deleted text back before/above the cursor.
The text goes back as whole lines above the cursor if it was
deleted as whole lines. Otherwise the text is inserted just
before the cursor.

May be preceded by a named buffer specification ("x), to
retrieve the contents of the buffer.

Q Quits from vi and enters ex command mode.

R Replaces characters on the screen with characters entered,
until the input is terminated with ESC.

S Changes whole lines (same as cc). A count changes that
many lines.

System V Interface Definition Page 219

VI(AU_CMD)

Page 220

T Must be followed by a single character; scans backwards in
the current line for that character, and if found, places the
cursor just after that character. A count is equivalent to
repeating the search that many times.

U Restores the current line to its state before the cursor was
last moved to it.

W Moves forward to the beginning of a word in the current
line, where a word is a sequence of non-blank characters. A
count specifies the number of words to move forward.

X Deletes the character before the cursor. A count repeats
the effect, but only characters on the current line are
deleted.

Y Places (yanks) a copy of the current line into the unnamed
buffer (same as yy). A count copies that many lines. May
be preceded by a buffer name to put the copied line(s) in
that buffer.

ZZ Exits the editor, writing out the buffer if it was changed
since the last write. (Same as the e x command x.)

a Enters input mode, appending the entered text after the
current cursor position; A count causes the inserted text to
be replicated that many times, but only if the inserted text
is all on one line.

b Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics, or a sequence of spe­
cial characters. A count repeats the effect.

c Deletes the specified region of text, and enters input mode
to replace it with the entered text. If more than part of a
single line is affected, the deleted text is saved in the
numeric buffers. If only part of the current line is affected,
then the last character to be deleted is marked with a $. A
count is passed through to the move command.

d

e

f

h

Deletes the specified region of text. If more than part of a
line is affected, the text is saved in the numeric buffers. A
count is passed through to the move command.

Moves forward to the end of the next word, defined as for b.
A count repeats the effect.

Must be followed by a single character; scans the rest of the
current line for that character, and moves the cursor to it if
found. A count repeats the find that many times.

Moves the cursor one character to the left. (Same as "u.)
A count repeats the effect.

System V Interface Definition

k

VI(AU_CMD)

Enters input mode, inserting the entered text before the cur­
sor. (See a.)

Moves the cursor one line down in the same column. (Same
as AJ and AN.)

Moves the cursor one line up. (Same as Ap.)

Moves the cursor one character to the right. (Same as
SPACE.)

m Must be followed by a single lower case letter x; marks the
current position of the cursor with that letter. The exact
position is referred to by 'x; the line is referred to by 'x.

n Repeats the last / or ? scanning commands.

o Opens a line below the current line and enters input mode;
otherwise like O.

p Puts text after lbelow the cursor; otherwise like P.

r Must be followed by a single character; the character under
the cursor is replaced by the specified one. (The new char­
acter may be a newline.) A count replaces each of the fol­
lowing count characters with the single character given.

s Deletes the single character under the cursor, and enters
input mode; the entered text replaces the deleted character.
A count specifies how many characters from the current line
are changed. The last character to be changed is marked
with a $, as for c.

t Must be followed by a single character; scans the rest of the
line for that character. The cursor is moved to just before
the character, if it is found. A count is equivalent to
repeating the search that many times.

u Reverses the last change made to the current buffer. If
repeated, will alternate between these two states, thus is its
own inverse. When used after an insert which inserted text
on more than one line, the lines are saved in the numeric
named buffers.

w Moves forward to the beginning of the next word, where
word is the same as in b. A count specifies how many
words to go forward.

x Deletes the single character under the cursor. With a count
deletes that many characters forward from the cursor posi­
tion, but only on the current line.

y Must be followed by a movement command; the specifed
text is copied (yanked) into the unnamed temporary buffer.

System V Interface Definition Page 221

If preceded by a named buffer specification, "x, the text is
placed in that buffer also.

z Redraws the screen with the current line placed as specified
by the following character: return specifies the top of the
screen, . the center of the screen, and - the bottom of the
screen. A count may be given after the z and before the
following character to specify the new screen size for the
redraw. A count before the z gives the number of the line
to place in the center of the screen instead of the default
current line.

USAGE
General.

SEE ALSO
EX(AU _ CMD).

LEVEL
Levell.

Page 222 System V Interface Definition

NAME

wall - write to all users

SYNOPSIS
/ete/wa11

DESCRIPTION
The command wa 11 reads its standard input until an end-of-file. It then
prints this message on the terminals of all users currently logged-in, preceded
by:

Broadcast Message from login-id

The sender must be super-user to override any protections the users may have
invoked [see MESG(AU_CMD)1.

USAGE

Administrator.

The command wall is used to warn all users, typically prior to shutting
down the system.

SEE ALSO
MESG(AU _ CMD), WRITE(AU _ CMD).

LEVEL

Levell.

System V Interface Definition Page 223

WHO(AU_CMD)

NAME

who - who is on the system

SYNOPSIS

who [options] [file

who am i

who am I

DESCRIPTION

The command who can list the user's name, terminal line, login time,
elapsed time since activity occurred on the line, and the process-ID of the
command interpreter for each current system user. It examines the
/etc/utmp file to obtain its information. If file is given, that file is
examined instead.

The command who with the am i or am I option identifies the invoking
user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [comment]
[exit]

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the ini t process. These
options are:

-u This option lists only those users who are currently logged in. The
name is the user's login name. The line is the name of the line as
found in the directory /dev. The time is the time that the user
logged in. The act i v it y is the number of hours and minutes
since activity last occurred on that particular line. A dot (.) indi­
cates that the terminal has seen activity in the last minute and is
therefore "current". If more than twenty-four hours have elapsed or
the line has not been used since boot time, the entry is marked old.
This field is useful when trying to determine whether a person is work­
ing at the terminal or not. The pid is the process-ID of the user's
login process.

-T This option is the same as the -u option, except that the s tat e of
the terminal line is printed. The s tat e describes whether someone
else can write to that terminal. A + appears if the terminal is writ­
able by anyone; a - appears if it is not. The super-user can write to
all lines having a + or a - in the s tat e field. If a bad line is
encountered, a ? is printed.

-1 This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other
fields are the same as for user entries except that the s ta t e field
does not exist.

Page 224 System V Interface Definition

FILES

WHO(AU_CMD)

-H This option will print column headings above the regular output.
(This option is new in System V Release 2.)

-q This is a quick who, displaying only the names and the number of
users currently logged on. When this option is used, all other options
are ignored. (This option is new in System V Release 2.)

-p This option lists any other process which is currently active and has
been previously spawned by ini t.

-d This option displays all processes that have expired and not been
respawned by ini t. The exi t field appears for dead processes
and contains the termination and exit values of the dead process. This
can be useful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-l eve 1 of the ini t pro-
cess.

-t This option indicates the last change to the system clock.

-a This option processes let c I u tmp or the named f i 1 e with all
options turned on.

-s This option is the default and lists only the name, 1 ine, and
time fields.

letc/utmp
Idev/tty*

USAGE
General.

LEVEL
Level 1.

System V Interface Definition Page 225

WRITE(AU _ CMD)

NAME

write - write to another user

SYNOPSIS

write user [terminal]

DESCRIPTION

The command wr i t e copies lines from the user's terminal to that of
another user. When first called, it sends the message:

Message from sender-login-id (ttynn) date
) ...

to the user addressed. When it has successfully completed the connection, it
also sends two bells to the sender's terminal to indicate that what the sender
is typing is being sent.

The recipient of the message should write back, by typing wr i t e
sender-login-id, on receipt of the initial message. Whatever each
user types (except for command escapes, see below) is printed on the other
user's terminal, until an end-of-file or an interrupt is sent. At that point
wr i t e writes "EOT" on the other terminal and exits. The recipient can also
stop further messages from coming in by executing "mesg nil.

To write to a user who is logged in more than once, the terminal argu­
ment may be used to indicate which terminal to send to (e.g., ttyO 0); oth­
erwise, the first writable instance of the user found in /etc/utmp is
assumed and an informational message is written.

A user may deny or grant write permission by use of the me s g command.
Certain commands disallow messages in order to prevent interference with
their output. However, if the sender has super-user permissions, messages
can be forced onto a write-inhibited terminal.

If the character I is found at the beginning of a line, wr i te calls the
command interpreter to execute the rest of the line as a command.

ERRORS
The following errors are reported:

FILES

the user addressed is not logged on.

the user addressed denies write permission [see MESG(AU_CMD»).

the user's terminal is set to me S g n and the recipient cannot
respond.

the recipient changes permission (mesg n) after wri te had
begun.

/etc/utmp

USAGE
End-user.

Page 226 System V Interface Definition

SEE ALSO

MESG(AU_CMD), WHO(AU_CMD).

LEVEL
Levell.

System V Interface Definition

WRITE(AU _ CMD)

Page 227

Part IV

Administered Systems Extension Definition

7.1 OVERVIEW

Chapter 7
Introduction

The Administered System Extension mostly comprises utilities used for system
administration. Many of these are in fact restricted to the super-user.

The System V Base, the Kernel Extension, the Basic Utilities Extension, and the
Advanced Utilities Extension, are prerequisites for the Administered System Exten­
sion.

7.2 DESCRIPTION

UTILITIES

acctcms dodisk mknod sadp
acctcom fsck monacct sar
acctconl fsdb mount setmnt
acctcon2 fuser mvdir shutacct
acctdisk fwtmp ncheck ** startup
acctmerg grpck nice sync
accton init prctmp sysdef
acctprcl ipcrm prdaily timex
acctprc2 ipcs prtacct turnacct
acctwtmp killall pwck umount
chargefee labelit runacct unlink
ckpacct lastlogin sal volcopy
clri ** link sa2 whodo
devnm mkfs sadc wtmpfix
diskusg

** Level 2: December 1, 1985.

7.3 SPECIAL PROCESSES

This section is intended to provide some background information about the system
process spawner Onit), and about how a user is logged in (getty and login). The
description here is a general one; there may be minor differences between different
implementations of System V.

System V Interface Definition Page 231

7.3.1 INIT

The init process is invoked at system initialization, as one of the steps in the boot
procedure; its primary role is to create processes according to entries in the file
I etc/inittab.

One kind of entry in this file specifies how the getty program (see "Getty" section
below) is to be executed on the individual terminal lines available for users to log
in. Other entries control the initiation of autonomous processes required by any
particular system.

The system administrator communicates with the init process by execilting the
ini t command [see INIT(AS_CMD)1. Ot is important to keep in mind die distinc­
tion between the two; here init refers to the special system process, while ini t
refers to the command that allows communication with the special system process.>

Init considers the system to be in a particular run-level at any given time. A run­
level can be viewed as a software configuration of the system, where each
configuration is defined by the collection of processes that are to be spawned. The
specification of the run-levels (that is, the specification of the processes to be
spawned by init) is defined in the /etc/ini ttab file. There are eight allowed
run-levels, 0 -6 and s (or S). The run-level may be changed when the adminis­
trator runs the ini t command.

When it is invoked at system initialization, the first thing the init process does is to
look for the / etc / i nit tab file and see if there is an entry of the type in i t­
de f au 1 t. If there is, init uses the run-level specified in that entry as the initial
run-level to enter. If this entry is not in / etc/ini ttab, then init requests
that the user enter a run-level from the virtual system console,
/dev/console.

The run-level s (S) corresponds to the SINGLE USER level. This is the only run­
level that does not require the existence of a properly formatted
/etc/ini ttab file. If /etc/ini ttab doesn't exist, then by default init
enters the SINGLE USER level. (Note: Since other run-levels may also be
configured for single-user, the SINGLE USER level need not be the only level in
which only one user is allowed on the system.>

The levels 0 through 6 have no special meaning; they are defined by the entries in
the /etc/inittabfile.

Whenever a new run-level is entered, init scans the /etc/ini ttab file and
processes all entries corresponding to that run-level. In addition, entry to and exit
from the SINGLE USER level results in some special actions, as follows:

1. When the SINGLE USER level is entered in the boot sequence, letc/inittab is
scanned for any entries of the type sys ini t. These entries are processed
before any other actions in state "s".

2. The first time init leaves the SINGLE USER level, it scans letc/inittab for spe­
cial entries of the type boot and bootwai t. Entries of this type, for
which the specified run-level matche~ the new run-level to be entered, are

Page 232 System V Interface Definition

performed before any normal processing of letc/inittab takes place.

In this way any special initialization of the operating system, such as mounting file
systems, can take place before users are allowed onto the system.

In a normal operating environment (multi-user), the / etc / in itt a b file is
usually set up so that init will create a process for each terminal on the system.

After it has spawned all of the processes specified by the /etc/ini ttab file,
init waits for one of its child processes to die, a powerfail signal, or until a request
is made via the ini t command. to change the system's run-level. When one of
the above three conditions occurs, init re-examines the /etc/inittab file.
New entries can be added to this file at any time; however, init still waits for one of
the above three conditions to occur. (To get an immediate response the ini t
command may be invoked with the option q in order to force init to re-examine the
/ etc/ini ttab file.

When init is requested to change run-levels, all processes defined in the current
run-level, that are undefined in the target run-level, are terminated. This is done
by first sending the signal SIGTERM (which serves as a warning for processes that
catch it), and, after a brief delay, sending the signal SIGKILL.

If init finds that it is continuously respawning an entry from /etc/inittab
(more frequently than some specified rate), it will assume that there is an error in
the command string, generate an error message on the system console, and refuse
to respawn this entry until either some time has elapsed or it receives a directive
from the ini t command. This prevents init from eating up system resources
w hen someone makes a typographical error in the / etc / in itt a b file or a pro­
gram is removed that is referenced in /etc/ini ttab.

7.3.2 GETIY

Getty is a program that is invoked by the init process, to allow a user to login on a
terminal line. It is thus the getty process that the user encounters when logging in
to the system.

The actions of getty are controlled by entries in the file /etc/gettydefs.
These entries specify what line speed should be used initially, what the login mes­
sage should look like, what the initial tty settings are, and what speed to try next
should the user indicate that the speed is inappropriate (by typing a BREAK char­
acter).

If a null character (or framing error) is received, it is assumed to be the result of
the user pushing the "break" key. This will cause getty to attempt the next speed
in a sequence defined in /etc/gettydefs.

Finally, the login command is called to allow the user to complete logging in.

7.3.3 LOGIN

The login process is invoked by the getty process, as described above, at the begin­
ning of each terminal session. It is the means by which the user is identified to the
system.

System V Interface Definition Page 233

If the user has a password, login asks for it, and verifies its correctness. If system
echoing has been enabled, it is turned off during the typing of the password.
(However, echoing will continue to occur if local echo has been enabled).

If the login is not completed successfully within a certain period of time (e.g., one
minute), the user may be disconnected.

After a successful login, the user-ID, the group-ID, the working directory, and the
command interpreter, are initialized.

Page 234 System V Interface Definition

System V Interface Definition

Chapter 8
Commands and Utilities

Page 235

ACCT(AS _ CMD)

NAME

accton, acctwtmp, chargefee, ckpacct, dodisk, lastlogin, monacct, prdaily,
prtacct, shutacct, startup, turnacct - miscellaneous accounting and support
commands

SYNOPSIS

lusr/1ib/acct/accton file]

lusr/1ib/acct/acctwtmp "reason"

lusr/1ib/acct/chargefee login-name number

lusr/1ib/acct/ckpacct [blocks

lusr/1ib/acct/dodisk [files

lusr/1ib/acct/1ast1ogin

lusr/1ib/acct/monacct number

lusr/1ib/acct/prdai1y [-1

lusr/1ib/acct/prtacct file

[-c] [mmdd

"heading"

lusr/1ib/acct/shutacct ["reason"]

lusr/1ib/acct/startup

lusr/1ib/acct/turnacct on I off I switch

DESCRIPTION

The accounting software provides utilities to collect data on: process
accounting, connect accounting, disk usage, command usage, summary com­
mand usage, and users' last login.

The runnacct [see RUNACCT(AS_CMD)] and monacct commands use
the utilities listed here to produce daily and monthly summary files and
reports that can be printed using prdai1y; they use a number of inter­
mediate files and support utilities that can also be used to tailor-make new
accounting systems. Many of these utilities produce or manipulate "total
accounting" (tacct) records which can be summarized by acctmerg [see
ACCTMERG(AS_CMD)] and printed using prtacct.

The command accton without parameters turns process accounting off. If
f i 1 e is given, a c c t on will turn accounting on. The argument f i 1 e
must be the name of an existing file (normally lusr/adm/pacct), to
which the system appends process accounting records [see ACCT(KE_OS)J.

The command acctwtmp writes a utmp structure in record to its standard
output. The record contains the current time and a string of characters that
describe the reason. A record type of ACCOUNTING is assigned. The
argument reason must be a string of (11 or less) characters, numbers, $,
or spaces. For example, the following are suggestions for use in startup and
shutdown procedures, respectively:

Page 236 System V Interface Definition

acctwtmp "acctg on" » /etc/wtmp
acctwtmp "acctg off" » /etc/wtmp

ACCT(AS_CMD)

The command chargefee is invoked to charge a number of units to
login-name. An ASCII taeet record is written to /usr/adm/fee, to
be merged with other accounting records by acctmerg.

The command ckpacct is typically initiated via cron It periodically
checks the size of /usr/adm/pacct. If the size exceeds blocks,
1000 by default, turnacct will be invoked with argument switch. If
the number of free disk blocks in the / u s r file system falls below 500,
ckpacct will automatically turn off the collection of process accounting
records via the off argument to turnacct. The accounting will be
activated again on the next invocation of ckpacct when at least this
number of blocks is restored.

The command dodisk is typically invoked by cron to perform the disk
accounting functions. By default, it will do disk accounting on the special
files in /etc/checklist. If files are used, they should be the spe­
cial file names of mountable filesystems; disk accounting will be done on
these filesystems only.

The command lastlogin is invoked <typically by runacct} to update
/usr/adm/acct/sum/1oginlog, which shows the last date on which
each person logged in.

The command monacct is typically invoked once each month. The argu­
ment number indicates which month or period it is. If number is not
given, it defaults to the current month (01-12). This default is useful if
monacct is to executed via cron on the first day of each month. The
command monacct creates summary files in
/usr/adm/acct/fisca1, restarts summary files in
/usr/adm/acct/sum, and deletes the previous days' accounting reports
(see prdaily below).

The command prdaily is invoked (typically by runacct) to format a
report of the previous day's accounting data. The report resides in
/usr/adm/acct/sum/rprtmmdd where mmdd is the month and day
of the report. The current daily accounting reports may be printed by typing
prda i ly. Previous days' accounting reports can be printed by using the
mmdd option and specifying the report date desired. The -1 option prints a
report of exceptional usage by login id for the specifed date. Previous daily
reports are removed and therefore inaccessible after each invocation of
monacct. The -c option prints a report of exceptional resource usage by
command, and may be used on current day's accounting data only.

The command prtacct can be used to format and print any total
accounting (taeet) file.

The command shutacct is typically invoked during a system shutdown
(usually in /etc/shutdown) to turn process accounting off and append

System V Interface Definition Page 237

ACCT(AS_CMD)

FILES

a "reason" record to I etc/wtmp.

The command startup is typically called by the system initialization rou­
tine to turn on process accounting whenever the system is brought up.

The command turnacct is an interface to accton to turn process
accounting on or off. The switch argument turns accounting off, moves
the current lusr/adm/pacct to the next free name in
/usr/adm/pacctincr (where incr is a number starting with 1 and
incrementing by one for each additional pacct file), then turns accounting
back on again.

/etc/wtmp

/etc/passwd

/usr/lib/acct

/usr/adm/£ee

/usr/adm/pacct

login/logoff summary

used for login name to user 10 conversions

directory for accounting commands

accumulator for fees

current file for process accounting

/usr/adm/acct/sum summary directory

USAGE

Administra tor.

SEE ALSO
ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS _ CMD),

ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMD), CRON(AU _ CMD), DISKUSG(AS _ CMD),

FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_OS).

LEVEL

Levell.

Page 238 System V Interface Definition

ACCTCMS(AS _ CMD)

NAME

acctcms - command summary from per-process accounting records

SYNOPSIS
lusr/lib/acct/acctcms [optio~s] files

DESCRIPTION
The command acctcms reads one or more files, normally in the form
produced by ACCT(KE_OS). It adds all records for processes that executed
identically-named commands, sorts them, and writes them to the standard
output, normally using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The
output includes command name, number of times executed, total
kcore-minutes, total CPU minutes, total real minutes, mean size (in K),
mean CPU minutes per invocation, "hog factor", characters transferred,
and blocks read and written, as in ACCTCOM(AS_CMD). Output is nor­
mally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
- j Combine all commands invoked only once under ".**other".
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal summary

format.

The following options may be used only with the - a option.

-p Output a prime-time-only command summary.

-0 Output a non-prime {otTshift} time only command summary.

When -p and -0 are used together, a combination prime and non-prime
time report is produced. All the output summaries will be total usage except
number of times executed, CPU minutes, and real minutes which will be split
into prime and non-prime.

A typical sequence for performing daily command accounting and for main­
taining a running total is:

acctcms file ... >today
cp total previous total
acctcms -s today previous total >total
acctcms -a -s today

USAGE
Administrator.

SEE ALSO
ACCT(AS _ CMD), ACCTCON(AS _ CMD), ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMD),

FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCTCOM(AS_CMD), ACCT(KE_OS).

LEVEL
Levell.

System V Interface Definition Page 239

ACCTCOM(AS _ CMD)

NAME

acctcom - search and print process accounting file(s)

SYNOPSIS

acctcom [[options] [file]] •••

DESCRIPTION

The command acctcom reads file, the standard input, or
/usr/adm/pacct, in the form produced by ACCT(KE_OS) and writes
selected records to the standard output. Each record represents the execution
of one process and shows the COMMAND NAME, USER, TTYNAME, START
TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally,
F (the fork/exec flag: 1 for fork without exec), STAT (the system
exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD, and
BLOCKS R!W (total blocks read and written).

The command name is prepended with a # if it was executed with
super-user privileges. If a process is not associated with a known termi­
nal, a ? is printed in the TTY NAME field.

If no f i 1 e s are specified, and if the standard input is associated with a
terminal or /dev/null, /usr/adm/pacct is read; otherwise, the
standard input is read.

If any f i 1 e arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by process
completion time. The options are:

-a

-b

-f

-h

-i
-k
-m
-r
-t

-v
-1 line
-uuser

-ggroup

Page 240

Show average statistics about the processes selected. The
statistics will be printed after the output records.
Read backwards, showing latest commands first. This
option has no effect when the standard input is read.
Print the fork/exec flag and system exit status columns in
the output.
Instead of mean memory size, show the fraction of total avail­
able CPU time consumed by the process during its execution
(the "hog factor").
Print columns containing total blocks read and written.
Instead of memory size, show total kcore-minutes.
Show mean core size (the default).
Show CPU factor (user time! (system-time + user-time).
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal / dev / line.
Show only processes belonging to user that may be specified by:
a user 10, a login name that is then converted to a user 10, a #
which designates only those processes executed with super-user
privileges, or ? which designates only those processes associated
with unknown user IDs.
Show only processes belonging to group. The group may be

System V Interface Definition

FILES

-stime

-etime
-Slime
-Etime

-npattern

-q

-oofile

-Hfactor

-Osec

-Csec

-Ichars

ACCTCOM(AS _ CMD)

designated by either the group ID or group name.
Select processes existing at or after time, given in the format
hr [: min [: sec]] .
Select processes existing at or before time.
Select processes starting at or after time.
Select processes ending at or before time. Using the same
time for both -S and -E shows the processes that existed
at time.
Show only commands matching pattern that may be a regular
expression as in ED(BU_CMD) except that + means one or more
occurrences.
Do not print any output records, just print the average statistics
as with the -a option.
Copy selected process records in the input data format to ofile;
suppress standard output printing.
Show only processes that exceed factor, where factor is the
"hog factor" as explained in option -h above.
Show only processes with CPU system time exceeding sec
seconds.
Show only processes with total CPU time, system plus user,
exceeding sec seconds.
Show only processes transferring more characters than the cut­
off number given by chars.

fetc/passwd
fetc/group
/usr/adm/pacct

USAGE

Administra tor.

SEE ALSO

ACCT(KE _OS), ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCON(AS _ CMD),

ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMD), FWTMP(AS _ CMD),

RUNACCT(AS _ CMD).

LEVEL

Levell.

System V Interface Definition Page 241

ACCTCON(AS _ CMD)

NAME

acctcon 1, acctcon2, prctmp - connect-time accounting

SYNOPSIS
/usr/1ib/acct/acctcon1 [options]

/usr/1ib/acct/acctcon2

/usr/1ib/acct/prctmp

DESCRIPTION
The command acctcon 1 converts a sequence of login/logoff records read
from its standard input to a sequence of session records, one per login session.
Its input should normally be redirected from /etc/wtmp. The record for­
mat is ASCII, giving device, user ID, login name, prime connect time
(seconds), non-prime connect time (seconds), session starting time (numeric),
and starting date and time. The options are:

-p

-t

-1 file

-0 file

Print input only, showing line name, login name, and time (in
both numeric and date/time formats).

Acctcon 1 maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that
its input is a current file, so that it uses the current time as the
ending time for each session still in progress. The -t flag causes
it to use, instead, the last time found in its input, thus assuring
reasonable and repeatable numbers for non-current files.

File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and
find software and hardware oddities. Various events during logoff
each generate logoff records, so that the number of logoffs is often
three to four times the number of sessions.

File is filled with an overall record for the accounting period, giv­
ing starting time, ending time, and the count and type of various
accounting records produced by acctwtmp [see
ACCT(AS _ CMD)].

The command acctcon2 expects as input a sequence of login session
records (as produced by acctcon 1), and converts them into total
accounting records.

The argument Prctmp can be used to print the session record file as pro­
duced by acctcon 1.

EXAMPLES

These commands are typically used as shown below. The file ctmp can be
used by acctprc 1 [see ACCTPRC(AS_CMD»):

Page 242 System V Interface Definition

ACCTCON(AS _ CMD)

FILES

acctcon 1 -t -1 1ineuse -0 reboots <wtmp

+1n +2 >ctmp

acctcon2 <ctmp I acctmerg >ctacct

letc/wtmp

USAGE
Administrator.

sort

The command wtmpf ix [see FWTMP(AS_CMD)] can be used to correct for
the confusion caused by date changes.

SEE ALSO
ACCT(AS_CMD), ACCTCMS(AS_CMD), ACCTCOM(AS_CMD), ACCTMERG(AS_CMD),
ACCTPRC(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_OS).

LEVEL
Level 1.

System V Interface Definition Page 243

ACCTMERG(AS _ CMD)

NAME

acctmerg - merge or add total accounting files

SYNOPSIS

/usr/lib/acct/acctmerg [options] [file ...]

DESCRIPTION

The command acctmerg reads its standard input and up to nine addi­
tional files, all in the total accounting (tacet) format or an ASCII version
thereof. It merges these inputs by adding records whose keys (normally user
10 and name) are identical, and expects the inputs to be sorted on those keys.
Options are:

-a Produce output in ASCII version of tacct.
- i Input files are in ASCII version of taeet.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user 10, rather than user 10 and name.
-v Produce output in verbose ASCII format, using more precise notation

for floating point numbers.

EXAMPLES

The following sequence is useful for making "repairs" to any file kept in this
format:

acctmerg -v <file1 >file2
(edit f i 1 e 2 as desired)
acctmerg -i <file2 >file1

USAGE

Administrator.

SEE ALSO

ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS __ CMD),

ACCTPRC(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_OS).

LEVEL

Levell.

Page 244 System V Interface Definition

ACCTPRC(AS_CMD)

NAME
acctprc 1, acctprc2 - process accounting

SYNOPSIS
/usr/lib/acct/acctprc1 [ctmp]

/usr/lib/acct/acctprc2

DESCRIPTION

FILES

The command acctprc 1 reads input in the form produced by
ACCT(KE_OS), supplies login names corresponding to user IDs, then writes for
each process an ASCII line giving user ID, login name, prime CPU time (tics),
non-prime CPU time (tics), and mean memory size (in memory segment
units). A memory segment of the mean memory size is a unit of measure for
the number of bytes in a logical memory segment on a particular processor.
For example, this measure could be in 64-byte units on one machine and in
512-byte units on another. If ctmp is given, it is expected to contain a list
of login sessions, in the form described in ACCTCON(AS _ CMD), sorted by user
ID and login name. If this file is not supplied, it obtains login names from
the password file. The information in c tmp is used to distinguish among
different login names that share the same user ID.

The command acctprc2 reads records in the form written by
acctprc 1, merges and sorts them by user ID and name, then writes them
to the standard output as total accounting records.

These commands are typically used as shown below:

acctprc1
>ptacct

ctmp </usr/adm/pacct acctprc2

letc/passwd

USAGE
Administrator.

SEE ALSO
ACCT(AS_CMD), ACCTCMS(AS_CMD), ACCTCOM(AS_CMD), ACCTCON(AS._CMD),

ACCTMERG(AS_CMD), FWTMP(AS_CMD), RUNACCT(AS_CMD), ACCT(KE_OS).

LEVEL
Levell.

System V Interface Definition Page 245

CLRI(AS _ CMD)

NAME

clri - clear i-node

SYNOPSIS
/etc/clri file-system i-number •••

DESCRIPTION

The command c 1 r i writes zeros on the 64 bytes occupied by the i-node{s}
numbered i-number. The argment file-system must be a special
file name referring to a device containing a file system. After c 1 r i is exe­
cuted, any blocks in the affected file will show up as "missing" in an fsck
[see FSCK(AS_CMD)] of the file-system. This command should only be
used in emergencies and extreme care should be exercised.

Read and write permission is required on the specified file-system dev­
ice. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason
appears in no directory. If it is used to clear an i-node which does appear in
a directory, care should be taken to track down the entry and remove it.
Otherwise, when the i-node is reallocated to some new file, the old entry will
still point to that file. At that point removing the old entry will destroy the
new file. The new entry will again point to an unallocated i-node. so the
whole cycle is likely to be repeated again and again.

USAGE
Administrator.

SEE ALSO
FSCK(AS _ CMD), FSDB(AS _ CMD), NCHECK(AS _ CMD).

LEVEL
Level 2: December 1, 1985.

Page 246 System V Interface Definition

NAME

devnm - device name

SYNOPSIS
/etc/devnm [pathname]

DESCRIPTION
The command devnm identifies the special file associated with the mounted
file system where the named file or directory resides. The full path name
must be given.

EXAMPLE

FILES

The command:
/etc/devnm /usr

produces
/dev/dsk/Os1 /usr

if /usr is mounted on /dev/dsk/Os 1.

/dev/dsk/*
/etc/mnttab

USAGE

Administrator.

SEE ALSO
SETMNT(AS _ CMD).

LEVEL

Levell.

System V Interface Definition Page 247

DISKUSG(AS _ CMD)

NAME

diskusg, acctdisk - generate disk accounting data by user ID

SYNOPSIS
lusr/1ib/acct/diskusg [options special-file
. ..]

lusr/1ib/acct/acctdisk

DESCRIPTION
The command dis ku s g generates disk accounting information for the
file-system identified by the s p e cia 1- f i 1 e s. 0 is ku s g prints lines
on the standard output, one per user, in the following format:

where

uid -

login -

#blocks -

uid login #b1ocks

the numerical user ID of the user.

the login name of the user; and

the total number of disk blocks allocated to this user.

The command dis ku s g recognizes the following options:

FILES

-s

-v

The input data is already in dis ku s g output format. The
command dis ku s g combines all lines for a single user into a
single line.

Verbose; print a list on standard error of all files that are
charged to no one.

-i fnm1ist Ignore the data on those file systems whose file system name
is in fnm1ist. The argument fnm1ist is a list of file
system names separated by commas or enclose within quotes.
The command \f(CWdiskusg compares each name in this list
with the file system name stored in the volume ID [see
1abe1i t in VOLCOPY(AS_CMD)1.

- P f i 1 e Use f i 1 e as the name of the password file to generate login
names. letc/passwd is used by default.

- u f i 1 e Write records to f i 1 e of files that are charged to no one.
Records consist of the special file name, the i-node number, and
the user ID.

The argument a c c t dis k expects a sequence of disk accounting informa­
tion' as produced by dis ku s g (sorted by user-id and login name), and
generates total accounting records that can be merged with other accounting
records. The command diskusg is normally run in dodisk [see
ACCT(AS _ CMD)1.

Page 248 System V Interface Definition

DISKUSG(AS_CMD)

/etc/passwdused for user ID to login name conversions

USAGE
Administra tor.

SEE ALSO
ACCT(AS_CMD), VOLCOPY(AS_CMD), ACCT(KE_OS).

LEVEL
Levell.

System V Interface Definition Page 249

NAME

fsck - file system consistency check and interactive repair

SYNOPSIS

/etc/fsck [options] [file-systems]

DESCRIPTION

The command f s ck audits and interactively repairs inconsistent conditions
for files. If the file system is consistent then the number of files, number of
blocks used, and number of blocks free are reported. If the file system is
inconsistent the user is prompted for concurrence before each correction is
attempted. It should be noted that most corrective actions will result in some
loss of data. The amount of data lost and its severity may be determined
from the diagnostic output. The default action for each consistency correc­
tion is to wait for the user to respond ye s or no. If the user does not have
write permission fsck will default to a -n action.

The file system should be unmounted while fsck is used. If this is not pos­
sible, care should be taken that the system is quiescent and that it is rebooted
immediately afterwards.

The following options are interpreted by f s ck.

-y Assume a yes response to all questions asked by f s ck .

-n Assume a no response to all questions asked by f s c k; do not
open the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a new
one. X is a hardware dependent option, which specifes how the
free list is to be created; if it is not given, the values used when
the file system was created, or other default values, are used.

-SX Conditionally reconstruct the free list. This option is like -sX

above except that the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using -s will force a
no response to all questions asked by f s ck. This option is use­
ful for forcing free list reorganization on uncontaminated file sys­
tems.

-t f i 1 e If f s ck cannot obtain enough memory to keep its tables, it
uses a scratch file. If the -t option is specified, the file named in
the next argument is used as the scratch file, if needed. Without
the -t flag, f s ck will prompt the user for the name of the
scratch file. The file chosen should nOl: be on the file system being
checked, and if it is not a special file or did not already exist, it is
removed when f s ck completes.

-q Quiet fsck. Do not print size-check messages in Phase 1.
Un referenced FIFOs will silently be removed. If f s ck requires
it, counts in the superblock will be automatically fixed and the
free list salvaged.

Page 250 System V Interface Definition

FILES

-D Directories are checked for bad blocks. Useful after system
crashes.

-f Fast check. Check block and sizes (Phase 1) and check the free
list (Phase 5). The free list will be reconstructed (Phase 6) if it
is necessary.

If no file-systems are specified, fsck will read a list of default file
systems from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free list.
2. Blocks claimed by an i-node or the free list outside the range of the
file system.
3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad i-node format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated i-node.
I-node number out of range.

8. Super Block checks:
More than {INODE_MAX} inodes.
More blocks for i-nodes than there are in the file system.

9. Bad free block list format.
10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
user's concurrence, reconnected by placing them in the lost+found
directory, if the files are nonempty. The user will be notified if the file or
directory is empty or not. If it is empty, f s c k will silently remove them.
F s ck will force the reconnection of non empty directories. The name
assigned is the i-node number. The only restriction is that the directory
los t + found must preexist in the root of the file system being checked
and must have empty slots in which entries can be made. This is accom­
plished by making los t + found, copying a number of files to the direc­
tory, and then removing them (before fsck is executed).

Checking the raw device is almost always faster and should be used with
everything but the root file system.

/ etc/ checklist

USAGE
Administrator.

I-node numbers for. and •. in each directory should be checked for validity.

System V Interface Definition Page 251

LEVEL

Levell.

Page 252 System V Interface Definition

NAME

fsdb - file system debugger

SYNOPSIS

/etc/fsdb special [-]

DESCRIPTION

The command f s db can be used to patch up a damaged file system after a
crash. It has conversions to translate block and i-numbers into their
corresponding disk addresses. Also included are mnemonic offsets to access
different parts of an i-node. These greatly simplify the process of correcting
control block entries or descending the file system tree.

The command f sdb contains several error-checking routines to verify i­
node and block addresses. These can be disabled if necessary by invoking
f s db with the optional - argument or by the use of the 0 symbol. (from
the superblock of the file system as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed
with a zero. During any assignment operation, numbers are checked for a
possible truncation error due to a size mismatch between source and destina­
tion.

The command f s db reads a block at a time and will therefore work with
raw as well as block 110. A buffer management routine is used to retain
commonly used blocks of data in order to reduce the number of read system
calls. All assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by f s db are:

absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+-, address arithmetic
q quit
>,< save, restore an address

numerical assignment
=+ incremental assignment

decremental assignment
character string assignment

0 error checking flip flop
p general print facilities
f file print facility
B byte mode
W word mode
D double word mode
I escape to the command interpreter

System V Interface Definition Page 253

FSDB(AS _ CMD)

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before printing
begins. It advances with the printing and is left at the address of the last
item printed. The output can be terminated at any time by typing the delete
character. If a number follows the p symbol, that many entries are printed.
A check is made to detect block boundary overflows since logically sequential
blocks are generally not physically sequential. If a count of zero is used, all
entries to the end of the current block are printed. The print options avail­
able are:

i print as i-nodes
d print as directories
o print as octal words
e print as decimal words
c print as characters
b print as octal bytes

The f symbol is used to print data blocks associated with the current i­
node. If followed by a number, that block of the file is printed. (Blocks are
numbered from zero.) The desired print option letter follows the block
number, if present, or the f symbol. This print facility works for small as
well as large files. It checks for special devices and that the block pointers
used to find the data are not zero.

Dots, tabs, and spaces may be used as function delimiters but are not neces­
sary. A line with just a new-line character will increment the current address
by the size of the data type last printed. That is, the address is set to the
next byte, word, double word, directory entry or i-node, allowing the user to
step through a region of a file system. Information is printed in a format
appropriate to the data type. Bytes, words and double words are displayed
with the octal address followed by the value in octal and decimal. A • B or
• D is appended to the address for byte and double word values, respectively.
Directories are printed as a directory slot offset followed by the decimal i­
number and the character representation of the entry name. I-nodes are
printed with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

Page 254

md mode
1 n link count
uid user ID number
g i d group ID number
sz file size
a # data block numbers (O - 12)
a t access time
m t modification time
ma j major device number
min minor device number

System V Interface Definition

EXAMPLES

386i

In=4

In=+1

fc

2i.fd

dSi.fc

S12B.pOO

prints i-number 386 in an i-node format. This now
becomes the current working i-node.

changes the link count for the working i-node to 4.

increments the link count. .by 1.

prints, in ASCII, block zero of the file associated with the
working i-node.

prints the first 32 directory entries for the root i-node of
this file system.

changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the
above command. The first logical block of the file is then
printed in ASCII.

prints the superblock of this file system in octal.

2 i . a 0 b • d 7 = 3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

d7.nm=

a2b.pOd

USAGE
Administrator.

SEE ALSO
FSCK(AS _ CMD).

LEVEL
Levell.

changes the name field in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

prints the third block of the current i-node as directory
entries.

System V Interface Definition Page 255

NAME

fuser - identify processes using a file or file structure

SYNOPSIS

/etc/fuser [-ku] files [-] [[-ku] files]

DESCRIPTION

The command f use r lists the process IDs of the processes using the
f i 1 e s specified as arguments. For block special devices, all processes using
any file on that device are listed. The process 10 is followed by c, p or r
if the process is using the file as its current directory, the parent of its
current directory (only when in use by the system), or its root directory,
respectively. If the -u option is specified, the login name, in parentheses,
also follows the process 10. In addition, if the -k option is specified, the
SIGKILL signal is sent to each process. Only the super-user can terminate
another user's process [see KILL(BA_OS»] Options may be respecified between
groups of files. The new set of options replaces the old set, with a lone dash
canceling any options currently in force.

The process IDs are printed as a single line on the standard output, separated
by spaces and terminated with a single new line. All other output is written
on standard error.

EXAMPLES

fuser -ku /dev/dsk/1s?
will terminate all processes that are preventing disk drive one from
being unmounted if typed by the super-user, listing the process 10 and
login name of each as it is killed.

fuser -u /etc/passwd
will list process IDs and login names of processes that have the pass­
word file open.

fuser -ku /dev/dsk/1s? -u /etc/passwd
will do both of the above examples in a single command line.

USAGE

Administrator.

The command fuser works with a snapshot of the system tables, which is
true only for an instant. It is possible that other processes begin accessing
the specified file(s) after this snapshot is taken.

SEE ALSO

KILL(BA _OS).

LEVEL

Levell.

Page 256 System V Interface Definition

NAME

fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]

/usr/lib/acct/wtmpfix [files]

DESCRIPTION

fwtmp

FILES

The command fwtmp reads from the standard input and writes to the stan­
dard output, converting binary records of the type found in / etc/wtmp to
formatted ASCII records. The ASCII version is useful to enable editing bad
records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output
is to be written in binary form.

wtmpflx

The command wtmpf ix examines the standard input or named files in
wtmp format, corrects the time/date stamps to make the entries consistent,
and writes to the standard output. A - can be used in place of f i 1 e s to
indicate the standard input. If time/date corrections are not performed,
acctcon 1 will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to
/etc/wtmp. The first record is the old date denoted by the string old
time placed in the line field and the flag OLD_TIME placed in the type
field of the <utmp. h> structure. The second record specifies the new date
and is denoted by the string new time placed in the line field and the flag
NEW _ TIME placed in the type field. The command wtmpf ix uses these
records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpf ix will check the vali­
dity of the name field to ensure that it consists solely of alphanumeric char­
acters or spaces. If it encounters a name that is considered invalid, it will
change the login name to INVALID and write a diagnostic to the standard
error. In this way, wtmpfix reduces the chance that acctcon 1 will
fail when processing connect accounting records.

/etc/wtmp

USAGE
Administrator.

SEE ALSO
ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS __ CMD),

ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMD), RUNACCT(AS _ CMD), ACCT(KE _OS).

System V Interface Definition Page 257

LEVEL
Levell.

Page 258 System V Interface Definition

NAME

init - change system run level

SYNOPSIS
/etc/init [0123456sq]

DESCRIPTION

FILES

The command in i t is used to direct the actions of the in i t process,
which is the system process spawner. (The ini t command provides the
ini t process with certain directives; it is important to keep in mind the
distinction between the two.)

The system is in a particular run-1 eve 1 at any given time. The
processes spawned by the ini t process for each of these run-1eve 1 s is
defined in the / etc / in itt a b file. The system can be in one of eight
run-levels, 0-6 and s (or S). The run-level is changed when
the System Administrator runs the ini t command.

If the run-level s (S) is specified, the init process goes into the
SINGLE-USER level. This is the only run-level that does not require
the existence of a properly formatted /etc/ini ttab file. (If that file
does not exist, then by default the SINGLE USER level is entered.)

If a run -1 eve 1 of 0 through 6 is specified, the in i t process enters
the corresponding run-1 eve 1.

The following arguments are accepted by ini t:

0-6 tells ini t to place the system in one of the run­
levels 0-6.

q (or Q) tells init to re-examine the /etc/inittab
file. It is often used after that file has been changed, in
order to check its correctness.

s (or S) tells ini t to enter the SINGLE-USER level. When
this level change is effected, the virtual system terminal,
/dev/conso1e, is changed to the terminal from which
the command was executed.

/etc/inittab

USAGE
Administra tor.

LEVEL

Levell.

System V Interface Definition Page 259

IPCRM(AS _ CMD)

NAME

ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS

ipcrm [options

DESCRIPTION

The command ipcrm will remove one or more specified message, sema­
phore or shared memory identifiers. The identifiers are specified by the fol­
lowing options:

-q msqid removes the message queue identifier msqid from the system
and destroys the message queue and data structure associated
with it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with
it are destroyed after the last detach operation.

- s semid removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated
with it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data
structure associated with it.

-M shmkey removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment and
data structure associated with it are destroyed after the last
detach.

-s semkey removes the semaphore identifier, created with key semkey,
from the system and destroys the set of semaphores and data
structure associated with it.

The details of the removes are described in MSGCTL(KE_OS), SHMCTL(KE_OS),

and SEMCTL(KE_OS). The identifiers and keys may be found by using
IPCS(AS _ CMD).

SEE ALSO
IPCS(AS_CMD), MSGCTL(KE_OS), MSGGET(KE_OS), MSGOP(KE_OS),

SEMCTL(KE _OS), SEMGET(KE _OS), SEMOP(KE _OS), SHMCTL(KE _OS),

SHMGET(KE_OS), SHMOP(KE_OS).

LEVEL
Levell.

Page 260 System V Interface Definition

IPCS(AS _ CMD)

NAME

ipcs - report inter-process communication facilities status

SYNOPSIS

ipcs [options

DESCRIPTION

The command ipcs prints certain information about active inter-process
communication facilities. Without options, information is printed in
short format for message queues, shared memory, and semaphores that are
currently active in the system. Otherwise, the information that is displayed is
controlled by the following options:

-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about
only those indicated will be printed. If none of these three are specified,
information about all three will be printed.

-b Print biggest allowable size information. (Maximum number of
bytes in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for sema­
phores.) See below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-0 Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg­
ments.)

-p Print process number information. (Process ID of last process to
send a message, process ID of last process to receive a message on
message queues, process ID of creating process, process ID of last
process to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last
msgsnd and last msgrcv operations on message queues, last shmat
and last shmdt operations on shared memory, last semop operation
on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b,
-c, -0, -p, and -t.)

-c corefile
Use the file corefile in place of Idev/kmem.

-N namelist
The argument will be taken as the name of an alternate

System V Interface Definition Page 261

IPCS(AS_CMD)

name 1 i s t file, instead of the default.

The column headings and the meaning of the columns in an ipcs listing
are given below; the letters in parentheses indicate the options that cause
the corresponding heading to appear; all means that the heading always
appears. Note that these options only determine what information is
provided for each facility; they do not determine which facilities will be
listed.

T (all)
Type of the facility:

q message queue;

m shared memory segment;

s semaphore.

ID (all)
The identifier for the facility entry.

KEY (all)
The key used as an argument in calls to msgget, semget,
or shmget to create the facility entry. (Note: The key of a
shared memory segment is changed to IPC_PRIVATE when the
segment has been removed until all processes attached to the seg­
ment detach it.)

MODE (all)

Page 262

The facility access modes and flags: The mode consists of 11
characters, interpreted as follows.

The first character is:

S if a process is waiting on a msgsnd operation;

D if the associated shared memory segment has been
removed. It will disappear when the last process
attached to the segment detaches it;

if the corresponding condition is not true.

The second character is:

R if a process is waiting on a msgrcvoperation;

C if the associated shared memory segment is to be
cleared when the first attach operation is executed;

if the corresponding condition is not true.

The next 9 characters are interpreted as three sets of three !>its
each. The first set refers to the owner's permissions; the next to
permissions of others in the user-group of the facility entry; and
the last to all others. Within each set, the first character indi­
cates permission to read, the second character indicates

System V Interface Definition

permission to write or alter the facility entry, and the last charac­
ter is currently unused.

The permissions are indicated as follows:

r if read permission is granted;

w if write permission is granted;

a if alter permission is granted;

if the indicated permission is not granted.

(Thus the first character in a set of three can either be r or -; the
second character can be w, a, or -; the last character can only be
-.)

OWNER (aU)

The login name of the owner of the facility entry.

GROUP (aU)
The group name of the group of the owner of the facility entry.

CREATOR (a,c)
The login name of the creator of the facility entry.

CGROUP (a,c)
The group name of the group of the creator of the facility entry.

CBYTES (a,o)
The number of bytes in messages currently outstanding on the
associated message queue.

QNUM (a,o)
The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b)

LSPID

LRPID

STIME

The maximum number of bytes allowed in messages outstanding
on the associated message queue.

(a,p)
The process ID of the last process to send a message to the associ­
ated queue.

(a,p)
The process ID of the last process to receive a message from the
associated queue.

(a,t)
The time the last message was sent to the associated queue.

RTIME (a,t)
The time the last message was received from the associated
queue.

System V Interface Definition Page 263

criME (a,t)
The time when the associated entry was created or changed.

NA ITCH (a,o)
The number of processes attached to the associated shared
memory segment.

SEGSZ (a,b)

CPID

LPID

ATiME

The size of the associated shared memory segment.

(a,p)
The process ID of the creator of the shared memory entry.

(a,p)
The process ID of the last process to attach or detach the shared
memory segment.

(a,t)
The time the last attach was completed to the associated shared
memory segment.

DTiME (a,t)
The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b)

OTiME

SEE ALSO

The number of semaphores in the set associated with the sema­
phore entry.

(a,t)
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

MSGOP(KE_OS), SEMOP(KE_OS), SHMOP(KE_OS).

USAGE
Things can change while ipcs is running; therefore the status it reports
may no longer be accurate at the time it is seen.

LEVEL
Levell.

Page 264 System V Interface Definition

KILLALL(AS _ CMD)

NAME

killall - kill all active processes

SYNOPSIS

/etc/ki11a11 [signal

DESCRIPTION

The command kill a 11 is a procedure used to kill all active processes not
directly related to the calling procedure.

The command kill a 11 is chiefly used to terminate all processes with
open files so that the mounted file systems will be un busied and can be
unmounted.

The command kill a 11 sends signa 1 to all remaining processes not
belonging to the above group of exclusions. If no signal is specified, SIG­
KILL is used.

USAGE

Administra tor.

LEVEL

Levell.

System V Interface Definition Page 265

LlNK(AS _ CMD)

NAME

link, unlink - exercise link and unlink system calls

SYNOPSIS

/etc/link file1 file2

/etc/unlink file

DESCRIPTION
The commands link and unlink perform their respective system calls
on their arguments, without any error checking.

These commands may only be executed by the super-user.

USAGE
Administra tor.

SEE ALSO

LINK(BA _OS), UNLlNK(BA _OS).

LEVEL
Levell.

Page 266 System V Interface Definition

MKFS(AS _ CMD)

NAME

mkfs - construct a file system

SYNOPSIS
/etc/mkfs
blocks/cyl]

special blocks[:i-nodes]

/etc/mkfs special proto [gap blocks/cyl]

DESCRIPTION

[gap

The command mkf s constructs a file system by writing on the special file
according to the directions found in the remainder of the command line. The
command waits 10 seconds before starting to construct the file system. If the
second argument is given as a string of digits, mkf s builds a file system
with a single empty directory on it. The size of the file system is the value of
blocks interpreted as a decimal number. This is the number of 512-byte
units the file system will occupy. The boot program is left uninitialized.

If the second argument is a file name that can be opened, mkf s assumes it
to be a prototype file proto, and will take its directions from that file.
The prototype file contains tokens separated by spaces or new-lines. The first
token is the name of a file to be copied onto block zero as the bootstrap pro­
gram. The second token is a number specifying the size of the created file
system in physical disk blocks. Typically it will be the number of blocks on
the device, perhaps diminished by space for swapping. The next token is the
number of i-nodes in the file system. The next set of tokens comprise the
specification for the root file. File specifications consist of tokens giving the
mode, the user ID, the group ID, and the initial contents of the file. The syn­
tax of the contents field depends on the mode.

The mode token for a file is a 6-character string. The first character specifies
the type of the file. (The characters -bed specify regular, block special,
character special and directory files respectively.) The second character of
the type is either u or - to specify set-user-ID mode or not. The third is g or
- for the set-group-ID mode. The rest of the mode is a 3 digit octal number
giving the owner, group, and other read, write, execute permissions.

Two decimal number tokens come after the mode; they specify the llser and
group IDs of the owner of the file.

If the file is a regular file, the next token is a path name whence the contents
and size are copied. If the file is a block or character special file, two
decimal number tokens follow which give the major and minor device
numbers. If the file is a directory, mkf s makes the entries and then reads a
list of names and (recursively) files specifications for the entries in the direc­
tory. The scan is terminated with the token $.

If a prototype is used, there is an upper limit on the size of a file that can be
initialized. This limit is implementation dependent, but is at least 64K bytes.

A sample prototype specification follows:

System V Interface Definition Page 267

MKFS(AS_CMD)

USAGE

Istand/di skboot
4872 110
d--7553 1
usr d--755 3 1

sh

$

ken

bO
cO
$

Administra tor.

LEVEL
Levell.

Page 268

---755 3 1 Ibin/sh
d--75561
$
b--6443 100
c--6443 100

System V Interface Definition

MKNOD(AS _ CMD)

NAME

mknod - build special file

SYNOPSIS

/etc/mknod name c I b major minor

/etc/mknod name p

DESCRIPTION

The command mknod makes a directory entry and corresponding i-node for
a special file.

The command mknod can also be used to create FIFOs (named pipes)
(second case in SYNOPSIS above).

The first argument is the name of the entry. In the first case above, the
second argument is b if the special file is block-type (disks, tape) or c if it
is character-type (other devices). The last two arguments are numbers speci­
fying the major device type and the minor device (e.g., unit, drive, or line
number), which may be either decimal or octal (any number with a leading
zero).

The assignment of major device numbers is specific to each system.

The command mknod may only be used by the superuser, to make special
files.

USAGE
Administrator.

SEE ALSO

MKNOD(BA _OS).

LEVEL

Levell.

System V Interface Definition Page 269

NAME

mount, umount - mount and dismount file system

SYNOPSIS

/etc/mount [special directory [-r]]

/etc/umount special

DESCRIPTION
The command mount announces to the system that a removable file system
is present on the device special. The directory must exist already;
it becomes the name of the root of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked with no
arguments, mount prints the table.

The option -r indicates that the file is to be mounted read-only. Physically
write-protected and magnetic tape file systems must be mounted in this way
or errors will occur when access times are updated, whether or not any expli­
cit write is attempted.

The command umoun t announces to the system that the removable file
system previously mounted on device special is to be removed.

ERRORS

FILES

The command mount issues a warning if the file system to be mounted is
currently mounted under another name.

The command umoun t reports an error if the special file is not mounted or
if it is busy. The file system is busy if it contains an open file, a user's work­
ing directory, or another mounted file system.

/etc/mnttab mount table

USAGE
Administra tor.

Some degree of validation is done on the file system; however, it is generally
unwise to mount garbage file systems.

SEE ALSO
SETMNT(AS _ CMD), MOUNT(BA_ OS), UMOUNT(BA_ OS).

LEVEL
Levell.

Page 270 System V Interface Definition

NAME

mvdir - move a directory

SYNOPSIS

/etc/mvdir dirname name

DESCRIPTION

The command mvd i r moves directories within a file system. The argument
d i rname must be a directory; name must not be an existing file. If
name is a directory, then dirname is moved to name/dirname pro­
vided no such file or directory already exists. Neither name may be a sub-set
of the other (/x/y cannot be moved to /x/y/z, nor vice versa).

Only the super-user can use mvdir.

USAGE
Administra tor.

LEVEL

Levell.

System V Interface Definition Page 271

NAME

ncheck - generate names from i-numbers

SYNOPSIS

/etc/ncheck [-i i-numbers
file-system]

DESCRIPTION

[-a -s

The command ncheck with no argument generates a path-name vs. i­
number list of all files on a set of default file systems. Names of directory
files are followed by /.. The -i option reduces the report to only those
files whose i-numbers follow. The -a option allows printing of the names
/. and / .. , which are ordinarily suppressed. The -s option reduces the
report to special files and files with set-user-ID mode; it is intended to dis­
cover concealed violations of security policy.

A file system may be specified.

ERRORS

When the file system structure is improper, ?? denotes the "parent" of a
parentiess file and a path-name beginning with •.• denotes a loop.

USAGE

Administra tor.

SEE ALSO
FSCK(AS_CMD).

LEVEL

Level 2: December 1, 1985.

Page 272 System V Interface Definition

NAME

nice - run a command at low priority

SYNOPSIS

nice [-increment] command

DESCRIPTION

NICE(AS_CMD)

The command nice executes command with a lower CPU scheduling
priority.

The increment is a positive integer less than {NZERO}; if it is not given,
the default is half of that (rounded up).

The super-user may run commands with priority higher than normal by using
a negative increment, e.g., n ice - - 2.

An increment larger than the maximum is equivalent to the maximum.

The command nice returns the exit status of the subject command.

USAGE

General, except for super-user restriction stated above.

SEE ALSO

NICE(KE_OS).

LEVEL

Level 1.

System V Interface Definition Page 273

PWCK(AS_CMD)

NAME

pwck, grpck - password/group file checkers

SYNOPSIS

/etc/pwck [file]

/etc/grpck [file]

DESCRIPTION

FILES

The command pwck scans the password file and notes any inconsistencies.
The checks include validation of the number of fields, login name, user ID,
group ID, and whether the login directory and optional program name exist.
The default password file is /etc/passwd.

The command grpck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group ID, and whether
all login names appear in the password file. In addition, group entries in
/etc/group with no login names are flagged. The default group file is
/etc/group.

/etc/group
/etc/passwd

USAGE

Administra tor.

LEVEL

Level 1.

Page 274 System V Interface Definition

RUNACCT(AS_CMD)

NAME

runacct - run daily accounting

SYNOPSIS
lusr/lib/acct/runacct [mmdd [state]]

DESCRIPTION
The command runacct is the main daily accounting procedure. It is nor­
mally initiated via cron. The command runacct processes connect, fee,
disk, and process accounting files. It also prepares summary files for
p r d ail y or billing purposes.

Unless otherwise specified, files named here reside in the directory
lusr/adm/acct/nite.

The command runacct takes care not to damage active accounting files
or summary files in the event of errors. It records its progress by writing
descriptive diagnostic messages into the file act i v e . When an error is
detected, a message is written to Idev/console, mail is sent to the users
root and adm, and runacct terminates. The command runacct
uses a series of lock files to protect against re-invocation. The files lock
and lock 1 are used to prevent simultaneous invocation, and the file
lastdate is used to prevent more than one invocation per day.

The command runacct breaks its processing into separate, restartable
states using statefile to remember the last state completed. It
accomplishes this by writing the state name into statefile. The
command runacct then looks in statefile to see what it has done
and to determine what to process next. The states are executed in the
following order:

SETUP
Move active accounting files into working files.

WTMPFIX
Verify integrity of letc/wtmp file, correcting date changes if neces­
sary.

CONNECTl
Produce connect session records [see ACCTCON(AS_CMD»).

CONNECT2
Convert session records into total accounting records.

PROCESS
Convert process accounting records into total accounting records.

MERGE
Merge the total connect and process accounting records.

FEES
Convert output of chargefee into total accounting records and
merge with the above (connect and process) total accounting records.

System V Interface Definition Page 275

RUNACCT(AS_CMD)

FILES

DISK
Merge disk total accounting records with the above (connect, process,
and fee) total accounting records. This merge forms the daily total
accounting records.

MERGETACcr
Merge the daily total accounting records with the summary total
accounting records in lusr/adm/acct/sum/tacct.

CMS
Produce command summaries in internal format.

USEREXIT
Any installation-dependent accounting programs can be included here.

CLEANUP
Write ASCII command summaries
lusr/adm/acct/sum/rprtxxxx [see
ACCT(AS_CMD»). Remove temporary files and exit.

into the
prdaily

file
in

To restart runacct after a failure, first check the active file for diag­
nostics, then fix up any corrupted data files such as
pacct\f (CWor\f (Cwwtmp. The lock files and lastdate file
must be removed before runacct can be restarted. The argument mmdd
is necessary if runacct is being restarted, and specifies the month and day
for which runacct will rerun the accounting. Entry point for processing
is based on the contents of s tat e f i 1 e; to override this, include the
desired s tat e on the command line to designate where processing should
begin.

lusrlsrc/cmd/acct/nite/active
lusrlsrc/cmd/acct/nite/lock
lusrlsrc/cmd/acct/nite/lockl
lusrlsrc/cmd/acct/nite/lastdate
lusrlsrc/cmd/acct/nite/statefile
lusr/adm/acct/sum/rprtxxxx
lusr/adm/acct/sum/tacct
lusr/adm/pacct
letc/wtmp

USAGE

Administrator.

Normally runacct should not be restarted in the SETUP state. SETUP
should be run manually and restart should be done by:

runa c c t mmdd WTMPFIX

SEE ALSO
ACCT(AS _ CMD), ACCTCMS(AS _ CMD), ACCTCOM(AS _ CMD), ACCTCON(AS _ CMD),

ACCTMERG(AS _ CMD), ACCTPRC(AS _ CMO), CRON(AU _ CMD), FWTMP(AS _ CMO),

Page 276 System V Interface Definition

ACCT(KE_OS).

LEVEL
Levell.

System V Interface Definition

RUNACCT(AS _CMD)

Page 277

NAME

sal, sa2, sadc - system activity report package

SYNOPSIS

lusr/lib/sa/sade [t n] [ofile]

lusr/lib/sa/sa1 [t n]

lusr/lib/sa/sa2 [options
[-i see]

[-s time] [-e time]

DESCRIPTION

FILES

System acti~ity data can be accessed at the special request of a user [see
SAR(AS_CMD)] and automatically on a routine basis as described here. The
operating system contains a number of counters that are incremented as
various system actions occur. These include CPU utilization counters, buffer
usage counters, disk and tape 110 activity counters, TTY device activity
counters, switching and system-call counters, file-access counters, queue
activity counters, and counters for interprocess communications.

The commands sade, sa 1, and sa2, are used to sample, save, and
process this data.

The command sade, the data collector, samples system data n times every
t seconds and writes in binary format to 0 f i 1 e or to standard output. If
t and n are omitted, a special record is written. This facility is typically
used at system boot time to mark the time at which the counters restart from
zero ..

The utility sa 1, a variant of sade, is used to collect and store data in the
binary file lusr/adm/sa/sadd where dd is the current day. The
options t and n cause records to be written n times at an interval of t
seconds, (once if the options are omitted).

The utility sa2, a variant of sar, writes the day's system activity report in
the file Ius r I a dml s a I s a r dd. The options are explained in
SAR(AS _ CMD).

lusr/adm/sa/sadd daily data file
lusr I adml sal sardd daily report file

USAGE
Administrator.

SEE ALSO
SAR(AS _ CMD).

LEVEL
Levell.

Page 278 System V Interface Definition

NAME
sadp - disk access profiler

SYNOPSIS
sadp [-th] [-d device[-drive]] s [n]

DESCRIPTION
The command sadp reports disk access location and seek distance, in tabu­
lar or histogram form. It samples disk activity once every second during an
interval of s seconds. This is done repeatedly if n is specified.

The argument dr i ve specifies the disk drives and it may be:

a drive number in the range supported by device,
or

two numbers separated by a minus (indicating an inclusive range),
or

a list of drive numbers separated by commas.

The -d option may be omitted, if only one device is present.

The -t option {default} causes the data to be reported in tabular form.
The -h option produces a histogram of the data on the printer. Default is
-to

USAGE
Administrator.

LEVEL
Levell.

Optional.

System V Interface Definition Page 219

SAR(AS_CMD)

NAME

sar - system activity reporter

SYNOPSIS
sar [options] [-0 file] t [n]

sar options [-s time] [-e time] [-i sec]
[-f file]

DESCRIPTION
In the first form above, the sar command, in the first instance, samples
cumulative activity counters in the operating system at n intervals of t
seconds. If the -0 option is specified, it saves the samples in f i 1 e in
binary format. The default value of n is 1. In the second form, with no
sampling interval specified, sar extracts data from a previously recorded
file, either the one specified by the -f option or, by default, the standard
system activity daily data file /usr/adm/sa/sadd for the current day
dd. The starting and ending times of the report can be bounded via the -s
and -e time arguments of the form hh[:mm[:ss1]. The -i option
selects records at sec second intervals. Otherwise, all intervals found in the
data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, run­
ning in system mode, idle with some process waiting for block I/O, and
otherwise idle.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
lread/s, Iwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e. g., 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive. When
data is displayed, the device specification d s k - is generally used to
represent a disk drive. The device specification used to represent a tape
drive is machine dependent. The activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, numb~r of
bytes transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek,
rotational latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;

Page 280 System V Interface Definition

rcvin/s, xmtin/s, mdmin/s
rates.

-c Report system calls:

receive, transmit and modem interrupt

scali/ s - system calls of all types;
sread/s, swrit/s, forkls, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system
calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number
of 512-byte units transferred for swapins and swapouts (including ini­
tial loading of some programs);
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblkls.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to
run.

-v Report status of process, i-node, file, record lock and file header tables:
proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz - entries/size for each table,
evaluated once at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-A Report all data (all options effective).

EXAMPLES

FILES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

/usr/adm/sa/sadd daily data file, where dd are digits representing
the day of the month.

USAGE
Administrator.

SEE ALSO
SA 1 (AS _ CMD).

System V Interface Definition Page 281

SAR(AS_CMD)

LEVEL

Levell.

Page 282 System V Interface Definition

NAME

setmnt - establish mount table

SYNOPSIS

/etc/setmnt

DESCRIPTION

The command setmnt creates the /etc/mnttab table, which is
needed for both the mount and umount [see MOUNT(AS_CMD)] com­
mands. The command s e tmn t reads standard input and creates a
mnttab entry for each line. Input lines have the format:

filesys node

where filesys is the name of the file system's special file and node is
the root name of that file system. Thus filesys and node become the
first two strings in the / etc / mn t tab entry.

FILES
/etc/mnttab

USAGE

Administrator.

SEE ALSO
MOUNT(AS _ CMD).

LEVEL
Levell.

System V Interface Definition Page 283

SYNC(AS_CMD)

NAME
sync - flush system buffers

SYNOPSIS
sync

DESCRIPTION
The command sync executes the sync system source routine. If the sys­
tem is to be stopped, sync must be executed to ensure file system integrity.
It will flush all previously unwritten system buffers out to disk, thus assuring
that all file modifications up to that point will be saved.

USAGE
Administrator.

SEE ALSO
SYNC(BA_OS).

LEVEL
Levell.

Page 284 System V Interface Definition

NAME

sysdef - system definition

SYNOPSIS

/etc/sysde£ [opsys [master]]

DESCRIPTION

SYSDEF(AS _ CMD)

The command sysde£ analyzes the named operating system file (or the
default one if none is specified) and extracts configuration information. The
master file contains the hardware and software specifications. (The default
master file is used if one is not specified.) This includes all hardware devices
as well as system devices and all tunable parameters.

USAGE
Administrator.

LEVEL

Levell.

System V Interface Definition Page 285

NAME

timex - time a command; report process data and system activity

SYNOPSIS

timex [options] command

DESCRIPTION

The given command is executed; the elapsed time, user time and system
time spent in execution are reported in seconds. Optionally, process account­
ing data for the command and all its children can be listed or summarized,
and total system activity during the execution interval can be reported.

The output of timex is written on standard error.

The options are:

-p List process accounting records for command and all its children.
Suboptions f, h, k, m, r, and t modify the data items reported,
as defined in ACCTCOM(AS_CMD). The number of blocks read or writ­
ten and the number of characters transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data
items listed in SAR(AS_CMD) are reported.

USAGE
General.

SEE ALSO
ACCTCOM(AS _ CMD), SAR(AS _ CMD).

LEVEL

Levell.

Page 286 System V Interface Definition

VOLCOPY(AS _CMD)

NAME

volcopy, labelit - copy file systems with label checking

SYNOPSIS
letc/vo1copy [options] fsname specia11 vo1name1
specia12 vo1name2

letc/1abe1it special [fsname volume [-n]]

DESCRIPTION

volcopy

The command vo1copy makes a literal copy of the file system using a
blocksize matched to the device. The options are:

-a invoke a verification sequence requiring a positive operator response
instead of the standard delay before the copy is made

- s (default) invoke the DEL if wrong verification sequence.

Other options are used only with tapes:

-bpidensity bits-per-inch

-feetsize

-ree1num

-buf

size of reel in feet

beginning reel number for a restarted copy,

use double buffered 110.

The program requests length and density information if it is not given on the
command line or is not recorded on an input tape label. If the file system is
too large to fit on one reel, vo1copy will prompt for additional reels.
Labels of all reels are checked. Tapes may be mounted alternately on two
or more drives. If vo1copy is interrupted, it will ask if the user wants to
quit or wants to escape to the command interpreter. In the latter case, the
user can perform other operations (e.g.: 1 abe 1 it) and return to vo 1-
copy by exiting the command interpreter.

The f sname argument represents the file system name on the device (e.g.:
root, u 1) being copied.

The s p e cia 1 should be the physical disk section or tape (e.g.:
Idev/rdskl 1 s5, Idev/rmt/Om, etc.).

The volname is the physical volume name and should match the external
label sticker. Such label names are limited to six or fewer characters. The
argument volname may be - to use the existing volume name.

The arguments specia11 and volname 1 are the device and volume
from which the copy of the file system is being extracted. The arguments
specia12 and volname2 are the target device and volume.

labellt

System V Interface Definition Page 287

VOLCOPY(AS _ CMD)

The command 1 abe 1 i t can be used to provide initial la bels for
unmounted disk or tape file systems. With the optional arguments omitted,
labe 1 it prints current label values. The -n option provides for initial
labeling of new tapes only (this destroys previous contents).

USAGE
Administrator.

LEVEL
Levell.

Page 288 System V Interface Definition

NAME
whodo - who is doing what

SYNOPSIS
/etc/whodo

DESCRIPTION
The command whodo produces mergedt reformattedt and dated output
from the WHO(AU _ CMD) and PS(BU _ CMD) commands.

FILES
/etc/passwd

USAGE
General.

SEE ALSO
PS(BU_CMD)t WHO(AU_CMO).

LEVEL
Level 1.

System V Interface Definition Page 289

Part V

Software Development Extension

9.1 OVERVIEW

Chapter 9
Introduction

The Software Development Extension provides facilities for the compilation and
maintenance of C language software. Principal components are the C compiler
cc and its related utilities, the program development aids yacc and lex, and
the Source Code Control System (sees) utilities.

The System V Base, the Basic Utilities Extension, and the Advanced Utilities
Extension are prerequisites for the Software Development Extension.

9.2 DESCRIPTION

UTILITIES

admin dis # make strip
as # env nm time
cc get prof tsort
cftow ld prs unget
chroot lex rmdel val
cpp lint sact what
cxref lorder sdb xargs
delta m4 size yacc

ROUTINES

The following routines were defined in Volume 1. They must be present (that is,
compilation of programs that use these routines must be supported) to satisfy the
requirements of the Software Development Extension. (See the "C Libraries" sec­
tion below for a discussion of library specification.)

System V Interface Definition Page 293

Operating System Service Routines

abort fileno getuid setpgrp
access fopen ioctl setuid
alarm fread kill signal
calloc free link sleep
chdir freopen lockf ++ stat
chmod fseek mallinfo + stime
chown fstat malloc system
clearerr ftell mallopt + time
dup fwrite mknod times
exit getcwd pause ulimit
fclose getegid pclose umask
fcntl geteuid pipe uname
fdopen getgid popen unlink
feof getpgrp realloc ustat
ferror getpid rewind utime
mush getppid setgid wait

close execlp fork read
creat execv lseek umount
execl execve mount write
execle execvp open

_exit sync

General Routines

_tolower hsearch memchr strcpy
_toupper isalnum memcmp strcspn
abs isalpha memcpy strlen
advance isascii memset strncat
asctime isatty mktemp strncmp
atof iscntrl modf strncpy
atoi isdigit mrand48 strpbrk
atol isgraph ntand48 strrchr
bsearch islower perror * strspn
clock isprint putenv + strtod +
compile ispunct qsort strtok
crypt isspace rand strtol
drand48 isupper seed48 swab
encrypt isxdigit setjmp tdelete
erand48 jrand48 setkey tfind +
frexp lcong48 srand toascii
ftw ldexp srand48 tolower
getenv lfind + ssignal ** toupper

Page 294 System V Interface Definition

getopt localtime step tsearch "
gmtime longjmp strcat ttyname
gsignal ** lrand48 strehr twalk
hcreate lsearch stremp tzset
hdestroy memcepy

Stdio Routines

ctermid getc puts tmpfile
fgete getchar putw tmpnam
fgets gets seanf ungetc
fprintf getw setbuf vfprintf +
fpute printf setvbuf + vprintf +
fputs putc sprintf vsprintf +
fscanf putchar tempnam

Math Routines

acos erfe jI sinh
asin exp jn sqrt
atan fabs log tan
atan2 floor log10 tanh
ceil fmod matherr yO
cos gamma pow yl
cosh hypot sin yn
erf jO

In addition to the above, the following library routines must also be present. These
routines are defined in this volume.

Additional Routines

a641 getgrgid getutid pututline
assert getgrnam getutline setgrent
endgrent getlogin 164a setpwent
endpwent getpass MARK # setutent
endutent getpwent monitor # sgetl
fgetgrent getpwnam nlist sputl
fgetpwent getpwuid putpwent utmpname

System V Interface Definition Page 295

•
••

+

getgrent getutent

Level 2: January 1, 1985 .
Level 2: December 1, 1985.
Optional.
New in System V Release 2.

9.3 C LIBRARIES

The standard C library is automatically included {that is, searched to resolve
undefined external references}. This includes all of the "Operating System Service
Routines", "General Routines", and the "Stdio Routines" listed above. Inclusion of
other libraries requires specific loader options on the C compiler c c command
line. For example, the mathematical library {"Math Routines" above} is searched
by including the option -1m on the command line:

cc fi1e.c -1m

Notes on other libraries:

• The lex library (cc option -11) is required for the compilation of pro­
grams generated by lex [see LEX(SD_CMD)1.

• The object file library (c c option -11 d) contains routines used for the
manipulation of object files. The only such routines required for this Exten­
sion are sput1 and sget1 [see SPUTL(SD_LIB»).

• The yacc library (cc option -ly) facilitates the use of yacc [see
YACC(SD_CMD)1.

Page 296 System V Interface Definition

System V Interface Definition

Chapter 10
Library Routines

Page 297

A64L(SD _LIB)

NAME

a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS

long a64l (S)

char *s;

char *164a (1)
long 1 ;

DESCRIPTION

These routines are used to maintain numbers stored in base-64 ASCII charac­
ters. This is a notation by which long integers can be represented by up to
six characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent 'digits' are • for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38-63.

The routine a64l takes a pointer to a null-terminated base-64 representa­
tion and returns a corresponding long value. If the string pointed to by s
contains more than six characters, a 6 41 will use the first six.

The routine 164a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, l64a returns a
pointer to a null string.

APPLICATION USAGE

The value returned by 164a may be a pointer into a static buffer, the con­
tents of which would therefore be overwritten by each call.

LEVEL

Levell.

Page 298 System V Interface Definition

ASSERT(SD _LIB)

NAME

assert - verify program assertion

SYNOPSIS
#include <assert.h>

void assert (expression)
int expression;

DESCRIPTION

The ass e r t macro is useful for putting diagnostics into programs. When
it is executed, if expression is false (zero), assert prints

assertion failed: expression, file xyz, line
nnn

on the standard error output and aborts. In the error message, xyz is the
name of the source file and nnn the source line number of the ass e r t
statement.

SEE ALSO
ABORT(BA _OS).

APPLICATION USAGE
Compiling with the preprocessor option -DNDEBUG or with the preprocessor
control statement #define NDEBUG ahead of the #include
<assert. h> statement will stop assertions from being compiled into the
program.

LEVEL

Levell.

System V Interface Definition Page 299

GETGRENT(SD _LIB)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file
entry

SYNOPSIS
#include <grp.h>
#include <stdio.h>

struct group *getgrent

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent

void endgrent

struct group *fgetgrent (f)
FILE *f;

DESCRIPTION
The routines getgrent, getgrgid and getgrnam each return
pointers to an object with the following structure containing the broken-out
fields of a line in the / etc/ group file. Each line contains a 'group'
structure, defined in the <grp. h> header file.

The structure contains at least the following members:

char
int
char

*gr _name;
gr_gid;
**gr_mem;

/* the name of the group */
/* the numerical group ID */

/* array of pointers to member names */

The routine getgrent when first called returns a pointer to the first
group structure in the file; thereafter, it returns a pointer to the next group
structure in the file; so, successive calls may be used to search the entire file.

The routine getgrgid searches the file until a numerical group id match­
ing 9 i d is found, and returns a pointer to the particular structure in which
it was found.

The routine getgrnam searches the file until a group name matching
name is found, and returns a pointer to the particular structure in which it
was found.

If an end-of-file or an error is encountered on reading, these functions return
a NULL pointer.

The routine setgrent effectively rewinds the group file to allow repeated
searches.

The routine endgrent may be called to close the group file when process­
ing is complete.

Page 300 System V Interface Definition

GETGRENT(SD _LIB)

The routine fgetgrent returns a pointer to the next group structure in
the file f; this file must have the format of /etc/group.

RETURN VALUE

A NULL pointer is returned on end of file or an error.

FILES

/etc/group

SEE ALSO

GETLOGIN(SD _LIB), GETPWENT(SD _LIB).

APPLICATION USAGE

All information may be contained in a static area, so it should be copied if it
is to be saved.

LEVEL

Levell.

System V Interface Definition Page 301

GETLOGIN(SD _LIB)

NAME

getlogin - get login name

SYNOPSIS

char *getlogin ();

DESCRIPTION

The routine get login returns a pointer to the login name as found in the
file / etc/u tmp. It may be used in conjunction with the routine
getpwnam [see GETPWENT(SD_LIB)] to locate the correct password file entry
when the same user ID is shared by several login names.

If get login is called within a process that is not attached to a terminal,
it returns a NULL pointer. The correct procedure for determiping the login
name is to call get login and if it fails to call getpwuid.

RETURN VALUE

Returns a NULL pointer if name is not found.

FILES

/etc/utmp

SEE ALSO
GETGRENT(SD _LIB), GETPWENT(SD _LIB).

APPLICATION USAGE
The return value may point to static data whose content would therefore be
overwritten by each call.

LEVEL
Levell.

Page 302 System V Interface Definition

NAME

getpass - read a password

SYNOPSIS
char .getpass (prompt)
char .prompt;

DESCRIPTION

GETPASS(SD _LIB)

The routine getpass reads up to a newline or an EOF from the file
/dev/tty, after prompting on the standard error output with the null­
terminated string prompt and disabling echoing. A pointer is returned to
a null-terminated string of at most 8 characters. If /dev/tty cannot be
opened, a NULL pointer is returned. An interrupt will terminate input and
send an interrupt signal to the calling program before returning.

FILES
/dev/tty

APPLICATION USAGE
The return value points to static data whose content is overwritten by each
call.

LEVEL
Levell.

System V Interface Definition Page 303

GETPWENT(SD _LIB)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get pass­
word file entry

SYNOPSIS
#include <pwd.h>
#include <stdio.h>

struct passwd *getpwent

struct passwd *getpwuid
int uid;

struct passwd *getpwnam
char *name;

void setpwent

void endpwent

struct passwd *fgetpwent
FILE *f;

DESCRIPTION

(uid)

(name)

(f)

Each of the routines getpwent, getpwuid and getpwnam returns a
pointer to a structure containing the broken-out fields of a line in the
jet c j pas s wd file. Each line in the file contains a 'passwd' structure,
declared in the < pwd . h> header file.

The structure contains at least the following members:

char *pw name; j* login name *j -
char *pw passwd; j* encrypted password *j -
int pw uid; j* numerical user id *j

int pw_gid; j* numerical group id *j

char *pw dir; j* initial working directory *j -
char *pw shell; j* command interpreter */ -
The routine getpwen t when first called returns a pointer to the first
passwd structure in the file; thereafter, it returns a pointer to the next passwd
structure in the file; so successive calls can be used to search the entire file.

The routine getpwuid searches the file until a numerical user 10 match­
ing uid is found, and returns a pointer to the particular structure in which
it was found.

The routine getpwnam searches the file until a login name matching
name is found, and returns a pointer to the particular structure in which it
was found.

If an end-of-file or an error is encountered on reading, these functions return
a NULL pointer.

The routine setpwent effectively of rewinds the password file to allow
repeated searches.

Page 304 System V Interface Definition

GETPWENT(SD _LIB)

The routine endpwent may be called to close the password file when pro­
cessing is complete.

The routine fgetpwent returns a pointer to the next passwd structure in
the file f, which must have the format of /etc/passwd.

RETURN VALUE

A NULL pointer is returned on end of file or error.

FILES

/etc/passwd

SEE ALSO

GETLOGIN(SD _LIB), GETGRENT(SD _LIB).

APPLlCAT~ON USAGE

All information may be contained in a static area, so it should be copied if it
is to be saved.

LEVEL

Levell.

System V Interface Definition Page 305

GETUT(SD _LIB)

NAME

getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access
utmp file entry

SYNOPSIS

#inc1ude <utmp.h>

struct utmp *getutent

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getut1ine
struct utmp *1 ine ;

void putut1ine (utmp)
struct utmp *utmp;

void setutent

void endutent

void utmpname (file)
char *fi1e;

DESCRIPTION

(line)

Each of the routines getutent, getutid and getut1ine returns a
pointer to a structure, which is defined in the header file < U tmp . h>. The
structure contains at least the following members:

char ut user[]; /* User login name */ -
char ut id[]; /* /etc/inittab id */ -
char ut 1ine[]; /* Device name */ -
short ut pid; /* Process id */ -
short ut type; /* Type of entry */ -

In addition, (at least) the following type values for u t _ type are defined:
EMPTY, RUN_LVL, BOOT_TIME, OLD_TIME, NEW_TIME,
INIT _ PROCESS, LOGIN_PROCESS, USER_PROCESS,
DEAD _ PROCESS, ACCOUNTING.

The routine getutent reads in the next entry from the /etc/utmp
file. If the file is not already open, it opens it. If it reaches the end of the
file, it fails.

The routine get uti d searches forward from the current point in the
/etc/utmp file; if the ut type value of the structure id is
RUN LVL, BOOT TIME, OLD TIME or NEW TIME, then it stops
when-it finds an entry with a ut=type matching the ut_type of the
structure ID. If the ut type value is INIT PROCESS,
LOGIN PROCESS, USER PR-OCESS, or DEAD PROCESS, then it
stops when it finds an entry- whose type is one of these four and whose
uti d field matches the uti d field of i d. If the end of file is reached
without a match, getutid fails.

Page 306 System V Interface Definition

GETUT(SD _LIB)

The routine get u t 1 in e searches forward from the current point in the
/etc/utmp file until it finds an entry of the type LOGIN PROCESS or
USER PROCESS which also has a ut line value matching that of
1 in e:- If the end of file is reached without a match, get u t 1 in e fails.

The routine pututline writes out the supplied /etc/utmp structure
into the /etc/utmp file. It uses getutid to search forward for the
proper place if it finds that it is not already at the proper place. It is
expected that normally the user of pu t u t 1 in e will have searched for the
proper entry using one of the above routines. If so, pututline will not
search. If pututline does not find a matching slot for the new entry, it
will add a new entry to the end of the file.

The routine setutent resets the input stream to the beginning of the file.
This should be done before each search for a new entry if it is desired that
the entire file be examined.

The routine endutent closes the currently open file.

The routine u tmpname allows the user to change the name of the file
examined by these routines, from / etc/u tmp to any other file. Usually,
this other file will be /etc/wtmp. If the file does not exist, this will not
be apparent until the first attempt to reference the file. (This is because
u tmpname does not open the file. It just closes the old file if it is currently
open and saves the new file name.)

RETURN VALUE

FILES

A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

/etc/utmp
/etc/wtmp

APPLICATION USAGE

The most current entry is saved in a static structure. Multiple accesses
require that it be copied before further accesses are made.

Each call to either get uti d or get u t 1 in e sees the routine examine
the static structure before performing more 110. If the contents of the static
structure match what it is searching for, it looks no further. For this reason,
to use getutline to search for multiple occurrences, it would be neces­
sary to zero out the static after each success, or getutline would just
return the same pointer over and over again.

There is one exception to the rule about removing the structure before
further reads are done. The implicit read done by pututline (if it finds
that it is not already at the correct place in the file) will not hurt the con­
tents of the static structure returned by the getutent, getutid, or
get u t 1 in e routines, if the user has just modified those contents and
passed the pointer back to pututline.

System V Interface Definition Page 307

GETUT(SD _LIB)

The sizes of the arrays in the structure can be found using the s i z eo f
operator.

LEVEL

Levell.

Page 308 System V Interface Definition

MARK(SD _LIB)

NAME

MARK - profile within a function

SYNOPSIS

#define MARK

#include <prof.h>

void MARK (name)

DESCRIPTION

The macro MARK will introduce a mark called name that will be treated
the same as a function entry point. Execution of the mark will add to a
counter for that mark, and program-counter time spent will be accounted to
the immediately preceding mark or to the function if there are no preceding
marks within the active function.

The identifier name may be any combination of letters, numbers or under­
scores. Each name in a single compilation must be unique, but may be the
same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file <prof. h> is included. This may be defined by a preprocessor
directive as in the synopsis, or by a command line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the
source files containing them and will be ignored.

EXAMPLE

In this example, marks can be used to determi~e how much time is spent in
each loop. Unless this example is compiled with MARK defined on the com­
mand line, the marks are ignored.

#include <prof.h>

foo()
{

int i, j;

MARK (loop1);
for (i 0; i < 2000; i++) {

MARK (loop2) ;
for (j 0; j < 2000; j++)

}

System V Interface Definition Page 309

MARK(SD _LIB)

SEE ALSO

PROFIL(KE_OS), MONITOR(SD_LlB), PROF(SD_CMD).

LEVEL

Levell.

Optional. (Requires the profil system service routine).

Page 310 System V Interface Definition

MONITOR(SD _LIB)

NAME

monitor - prepare execution profile

SYNOPSIS

#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc) (), (*highpc) ();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION

The routine moni tor is an interface to the prof i 1 system service rou­
tine [see PROFIL(KE_OS)]; lowpc and highpc are the addresses of two
functions; buffer is the address of a (user supplied) array of bufsize
WORDs (WORD is defined in the <mon. h> header file). The monitor
routine arranges to record a histogram of periodically sampled values of the
program counter, and of counts of calls of certain functions, in the buffer.
The lowest address sampled is that of lowpc and the highest is just below
hiqhpc; lowpc may not equal 0 for this use of monitor. At most
nfunc call counts can be kept; only calls of functions compiled with the
profiling option -p of c c are recorded.

An executable program created by using the -p option with c c a.utomati­
cally includes calls for the monitor routine with default parameters;
therefore moni tor need not be called explicitly except to gain fine control
over profiling.

For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few times
smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern int etext();

monitor «int (*)(»2, etext, buf,
bufsize, nfunc);

The routine etext lies just above all the program text.

To stop execution monitoring and write the results, use

moni tor « int (*)(» 0 , (int (*)(» 0 ,
0,0,0);

The prof command [see PROF(SD_CMD)] can then be used to examine the
results.

The name of the file written by monitor is controlled by the environmen­
tal variable profdir. If PROFDIR is not set, then the file 'mon. out'
is created in the current directory. If PROFDIR is set to the null string,
then no profiling is done and no output file is created. Otherwise, the value

System V Interface Definition Page 311

MONITOR(SD _LIB)

FILES

of PROFDIR is used as the name of the directory in which to create the
output file. If PROFDIR is dirname, then the output file is named
'dirnamelpid. mon. out', where pid is the program's process 10. (When
moni tor is called automatically by using the -p option of cc, the file
created is 'dirnamelpid.progname', where progname is the name of the
program.>

mon.out

SEE ALSO

PROFIL(KE_OS), CC(SD_CMD), PROF(SD_CMD).

LEVEL

Levell.

Optional. (Requires the prof i 1 system service routine.>

Page 312 System V Interface Definition

NLlST(SD _LIB)

NAME

nlist - get entries from name list

SYNOPSIS

#include <nlist.h>

int nlist (file-name, nl)
char -file-name;
struct nlist -nl;

DESCRIPTION

The routine n lis t examines the name list in the executable file whose
name is pointed to by file-name, and selectively extracts a list of values and
puts them in the array of ntist structures pointed to by nl. The name list
nl consists of an array of structures containing names of variables, types and
values. The list is terminated with a null name; that is, a null string is in the
name position of the structure. Each variable name is looked up in the name
list of the file. If the name is found, the type and value of the name are
inserted in the next two fields. The type field will be set to 0 unless the file
was compiled with the -9 option of cc. If the name is not found, both
entries are set to O.

This function is useful for examining the system name list kept in the namel­
ist file. In this way programs can obtain system addresses that are up to
date.

RETURN VALUE

Returns -1 upon error; otherwise returns O.

All value entries are set to 0 if the file cannot be read or if it does not con­
tain a valid name list.

LEVEL

Levell.

System V Interface Definition Page 313

PUTPWENT(SD _LIB)

NAME

putpwent - write password file entry

SYNOPSIS

#include <pwd.h>

int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION

The routine putpwent is the inverse of getpwent. Given a pointer to
a password structure created by getpwent (or getpwuid or
getpwnam), putpwent writes a line on the file f, which must have the
format of /etc/passwd.

RETURN VALUE

Returns a non-zero value if an error was detected during its operation, other­
wise returns O.

SEE ALSO

GETPWENT(SD _LIB).

LEVEL

Levell.

Page 314 System V Interface Definition

SPUTL(SD _LIB)

NAME

sputl, sgetl - access long integer data in a machine-independent fashion.

SYNOPSIS

void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION

The routine sputl takes the four bytes of the long integer value and
places them in memory starting at the address pointed to by bu f fer. The
ordering of the bytes is the same across all machines.

The routine s get 1 retrieves the four bytes in memory starting at the
address pointed to by buffer and returns the long integer value in the
byte ordering of the host machine.

The combination of s pu t 1 and s get 1 provides a machine-independent
way of storing long numeric data in a file in binary form without conversion
to characters.

A program which uses these functions must be compiled with the object file
library, by using the -11 d option of c c .

LEVEL
Levell.

System V Interface Definition Page 315

System V Interface Definition

Chapter 11
Commands and Utilities

Page 317

ADMIN(SD _ CMD)

NAME

admin - create and administer sees files

SYNOPSIS

admin [-n] [-i[name]] [-rrel] [-t[name]]
[-fflag[flag-val]] [-dflag[flag-val]] [-alo­
gin] [-elogin] [-m[mrlist]] [-%[comment]]
[-h] [-z] file

DESCRIPTION

The command admin is used to create new sees files and change parame­
ters of existing ones. Arguments to admin, which may appear in any
order, consist of options, which begin with -, and named files (note that
sees file names must begin with s.). If a named file does not exist, it is
created, and its parameters are initialized according to the specified options.
Parameters not initialized by an option are assigned a default value. If a
named file does exist, parameters corresponding to specified options are
changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-sees files Oast component of
the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one named file
is to be processed since the effects of the options apply independently to each
named file.

-n

-ilnamel

-rrel

Page 318

This option indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file
is to be taken. The text constitutes the first delta of the file
(see -r option for delta numbering scheme). If the i
option is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file
is encountered. If this option is omitted, then the sees file
is created empty. Only one sees file may be created by an
admin command on which the i option is supplied.
Using a single admin to create two or more sees files
requires that they be created empty (no -i option). Note
that the -i option implies the -n option.

The release into which the initial delta is inserted. This
option may be used only if the -i option is also used. If
the -r option is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by
default initial deltas are named 1.1).

System V Interface Definition

-tlname]

b

cceil

ffloor

dSID

i[str]

j

llist

n

ADMIN(SD _CMD)

The name of a file from which descriptive text for the sees
file is to be taken. If the -t option is used and admin is
creating a new sees file (the -n and/or -i options also
used) t the descriptive text file name must also be supplied.
In the case of existing sees files: (I) a -t option without
a file name causes removal of descriptive text {if any}
currently in the sees filet and (2) a -t option with a file
name causes text {if any} in the named file to replace the
descriptive text {if any} currently in the sees file. This
option specifies a flagt andt possiblYt a value for the flagt to
be placed in the sees file. Several f options may be sup­
plied on a single admin command line. The allowable
flags and their values are:

Allows use of the - b option on age t command to
create branch deltas.

The highest release {i.e.t "ceilingtt} t a number less
than or equal to 9999t which may be retrieved by a
get command for editing. The default value for an
unspecified c flag is 9999.

The lowest release {i.e., "floor"}, a number greater
than 0 but less than 9999, which may be retrieved by
age t command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SID) to be used by a get
command.

Causes the "No id keywords" message issued by get
or de 1 ta to be treated as a fatal error. In the
absence of this flag, the message is only a warning.
The message is issued if no sees identification key­
words (see get) are found in the text retrieved or
stored in the sees file.

Allows concurrent get commands for editing on the
same SID of an sees file. This allows multiple con­
current updates to the same version of the sees file.

A list of releases to which deltas can no longer be
made (get -e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::- <range> I <list> , <range>
<range> ::- RELEASE NUMBER I a

The character a in the list is equivalent to specifying
all releases for the named sees file.

Causes de 1 ta to create a "null" delta in each of
those releases {if any} being skipped when a delta is

System V Interface Definition Page 319

ADMIN(SD _ CMD)

qtext

mmod

ttype

v[pgm]

-dflag

-a login

-elogin

Page 320

made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
sees file, preventing branch deltas from being created
from them in the future.

User definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by
get.

Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get. If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get.

Causes de 1 ta to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an M R number
validity checking program. (If this flag is set when
creating an sees file, the m option must also be used
even if its value is null).

Causes removal (deletion) of the specified flag from an
sees file. The -d option may be specified only when pro­
cessing existing sees files. Several -d options may be
supplied on a single admin command. See the -f
option for allowable flag names. (The llist flag gives a list
of releases to be "unlocked". See the -f option for
further description of the I flag and the syntax of a list.}

A login name, or numerical group ID, to be added to the list
of users which may make deltas (changes) to the sees file.
A group ID is equivalent to specifying all login names com­
mon to that group ID. Several a options may be used on a
single admin command line. As many logins, or numeri­
cal group IDs, as desired may be on the list simultaneously.
If the list of users is empty, then anyone may add deltas. If
login or group ID is preceded by a ! they are to be denied
permission to make deltas.

A login name, or numerical group ID, to be erased from the
list of users allowed to make deltas (changes) to the sees
file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e options

System V Interface Definition

FILES

-y[comment]

-m[mrlist]

-h

-z

ADMIN(SD _CMD)

may be used on a single admin command line.

The comment text is inserted into the sees file as a com­
ment for the initial delta in a manner identical to that of
de 1 tao Omission of the -y option results in a default
comment line being inserted in the form:
date and time created yylMMIDD HH:MM:SS by login
The -y option is valid only if the - i and/or -n options
are specified (Le.t a new sees file is being created).

The list of Modification Requests (MR) numbers is inserted
into the sees file as the reason for creating the initial delta
in a manner identical to de 1 tao The v flag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program). Diagnos­
tics will occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees filet and
to compare a newly computed check-sum (the sum of all
the characters in the sees file except those in the first line)
with the check-sum that is stored in the first line of the
sees file. Appropriate error diagnostics are produced.

This option inhibits writing on the filet so that it nulJifies the
effect of any other options supplied. It is only meaningful
when processing existing files.

The sees file check-sum is recomputed and stored in the
first line of the sees file (see -h, above).

Note that use of this option on a truly corrupted file may
prevent future detection of the corruption.

All sees file names must be of the form s .file-name. New sees files are
given read-only permission mode (see chmod). Write permission in the
pertinent directory iSt of courset required to create a file. All writing done by
admin is to a temporary x-filet called x .file-namet [see GET(SD_CMD)]t
created with read-only mode if the admin command is creating a new
sees filet or with the same mode as the sees file if it exists. After success­
ful execution of admint the sees file is removed (if it exists)t and the x­
file is renamed with the name of the sees file. This ensures that changes are
made to the sees file only if no errors occurred.

The command admin also makes use of a transient lock file (called
z .file-name)t which is used to prevent simultaneous updates to the sees file
by different users. See GET(SD_CMD) for further information.

SEE ALSO
DEL T A(SD _ CMD)t GET(SD _ CMD)t PRS(SD _ CMD)t WHAT(SD _ CMD).

USAGE
General.

System V Interface Definition Page 321

ADMIN(SD _CMD)

It is recommended that directories containing sees files be writeable by the
owner only, and that sees files themselves be read-only. The mode of the
directories allows only the owner to modify sees files contained in the direc­
tories. The mode of the sees files prevents any modification at all except by
sees commands.

LEVEL

Levell.

Page 322 System V Interface Definition

AS(SD_CMD)

NAME

as - common assembler

SYNOPSIS

as [-0 objfile] [-m] [-V] file-name

DESCRIPTION

The as command assembles the named file. The following options may be
specified in any order:

-oobjfile
Put the output of the assembly in objfile. By defaultt the output file
name is formed by removing the suffixt if there is onet from the input
file name and appending a suffix.

-m Run the m4 macro pre-processor on the input to the assembler.

-V Write the version number of the assembler being run on the standard
error output.

SEE ALSO
CC(SD_CMD)t LD(SD_CMD)t M4(SD_CMD).

USAGE

General.

The command cc is the recommended interface to the assembler. The as
command may not be present on all implementations of System V.

If the -m option (m4 macro pre-processor invocation) is usedt keywords for
m4 [see M4(SD_CMD)] cannot be used as symbols (variablest functionst labels)
in the input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

FUTURE DIRECTIONS
The -Y option is reserved for future use. It will be used to allow the user to
specify the directories where the m4 preprocessort and the file of predefined
macros are located.

Users will also be able to specifYt by means of the TMPDIR environmental
variablet the directory in which any temporary files are to be created.

These additions are part of the effort to eliminate hard-coded pathnames
from the compilation system.

LEVEL

Levell.

Optional.

System V Interface Definition Page 323

CC(SD_CMD)

NAME

cc - C compiler

SYNOPSIS

cc [options] file •••

DESCRIPTION

The c c command is the interface to the C compilation system. The system
conceptually consists of a preprocessor, compiler, optimizer, assembler, and
link-editor. The cc command processes the supplied options and then exe­
cutes the various tools with the appropriate arguments.

The suffix of a file-name argument indicates how the file is to be treated.
Files whose names end with • c are taken to be C source programs, and may
be preprocessed, compiled, optimized, and link-edited. The compilation pro­
cess may be stopped after the completion of any pass if the appropriate
options are supplied. If the compilation process is allowed to complete the
assembly phase, then an object program is produced; the object program for
a source file called xyz. c is created in a file called xyz. o. However,
the • 0 file is normally deleted if a single C program is compiled and loaded
all at one go.

In the same way, arguments whose names end with • s are taken to be
assembly source programs, and may be assembled and link-edited. Files with
names ending in • i are taken to be preprocessed C source programs and
may be compiled, optimized, assembled, and link-edited. Files whose names
do not end in • c, • s, or • i are handed to the link-editor.

By default, if an executable file is produced (Le., the link-edit phase is
allowed to complete), the file is called a. out. This default name can be
changed with the -0 option (see below).

The following options are interpreted by c c:

-c Suppress the link edit phase of the compilation, and do not remove any
object files that are produced.

-f Include floating-point support for systems without an automatically
included floating-point implementation. This option is ignored on sys­
tems that do not need it.

-9 Cause the compiler to generate additional information needed for the
use of sdb.

-ooutfile
Use the name outfile, instead of the default a. out, for the exe­
cutable file produced. This is a link-editor option.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, a profiled
version of the standard C library is linked, and monitor [see
MONITOR(SD_LIB)] is automatically called. Amon. out file will then
be produce at normal termination of execution of the program. An

Page 324 System V Interface Definition

FILES

execution profile can then be generated by use of prof.

-q This option is reserved for specification of implementation specific
profiling directives.

-E Run only epp on the named C programs and send the result to the
standard output.

-F This option is reserved for implementation specific optimization direc­
tives.

-0 Do compilation phase optimization. This option will not affect files.

-p Run only epp on the named C programs and leave the result on
corresponding files suffixed . i. This option is passed to epp.

-s Compile and do not assemble the named C programs, and leave the
assembler-language output on corresponding files suffixed • s.

-wc,argl[,arg2 ...]
Hand off the argument[s] argi to phase c where c is one of [p02a1]
indicating preprocessor, compiler, optimizer, assembler, or link editor,
respectively. For example, -Wa, -m passes -m to the assembler
phase.

The ee command also recognizes the options -C, -D, -I, and -u,
and passes them (and their associated arguments) directly to the preprocessor
without using the -W option. Similarly, the loader options -a, -1,
-0, -r, -s, -u, -L, and -v are recognized and passed directly to
the loader. See CPP(SD_CMD) and LD(SD_CMD) for descriptions of these
options.

Other arguments are taken to be C-compatible object programs, typically
produced by an earlier ee or pee run, or perhaps libraries of C-compatible
routines, and are passed directly to the link-editor. These programs, together
with the results of any compilations specified, are linked (in the order given)
to produce an executable program with the name a. ou t (unless the -0

link-editor option is used).

The standard C library is automatically available to the C program. Other
libraries (including the math library) must be specified explicitly using the
-1 option with e e; see LD(SD _ CMD) for details.

fi1e.e
fi1e.i
fi1e.o
fi1e.s
a.out

input file
preprocessed C source file
object file
assembly language file
link-edited (executable) output

SEE ALSO
CPP(SD_CMD), LD(SD_CMD), PROF(SD_CMD), SDB(SD_CMD), EXIT(BA_OS),

MONITOR(SD _LIB).

System V Interface Definition Page 325

USAGE

General.

Arbitrary length variable names are allowed in the C language, starting with
System V Release 2.

Since the c c command usually creates files in the current directory during
the compilation process, it is typically necessary to run the c c command in
a directory in which a file can be created.

FUTURE DIRECTIONS
The -y option is reserved for future use. It will be used to allow the user to
specify the directories searched by the various components of c c.

Users will also be able to specify, by means of the TMPDIR environmental
variable, the directory in which any temporary files are to be created.

These additions are part of the effort to eliminate hard-coded pathnames
from the compilation system.

LEVEL
Levell.

Page 326 System V Interface Definition

CFLOW(SD _ CMD)

NAME

cflow - generate C flowgraph

SYNOPSIS
cf10w [-r] [-ix] [-i] [-dnum] files

DESCRIPTION

The command cf10w analyzes a collection of C, YACC, LEX, assembler,
and object files and attempts to build a graph charting the external refer­
ences. Files suffixed in • y, .1, • c, and • i are YACC'd, LEX'd, and C­
preprocessed (bypassed for • i files) as appropriate, and then run through
the first pass of lint. (The -I, -D, and -U options of the C-preprocessor
are also understood by c flow.) Files suffixed with • s are assembled and
information is extracted (as in • 0 files) from the symbol table. The output
of all this processing is collected and turned into a graph of external refer­
ences which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by a
suitable amount of indentation indicating the level. Then the name of the
global (normally only a function not defined as an external or beginning with
an underscore; see below for the - i inclusion option) a colon and its
definition. For information extracted from C source, the definition consists of
an abstract type declaration (e.g., char .), and, delimited by angle brack­
ets, the name of the source file and the line number where the definition was
found. Definitions extracted from object files indicate the file name and loca­
tion counter under which the symbol appeared (e.g., t ext) .

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition may
be found. For undefined references, only < > is printed.

The following options are interpreted by c flow:

-r Reverse the "caller:callee" relationship producing an inverted list­
ing showing the callers of each function. The listing is also sorted
in lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-i Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix k; used).

-dnum The num decimal integer indicates the depth at which the
flowgraph is cut oft'. By default this is a very large number.
Attempts to set the cutoff depth to a non-positive integer will be
ignored.

SEE ALSO
CC(SD _ CMD), LEX(SD _ CMD), LINT(SD _ CMD), YACC(SD _ CMD).

USAGE

General.

System V Interface Definition Page 327

CFLOW(SD _CMD)

Files produced by 1 e x and ya c c cause the reordering of line number
declarations which can confuse cf low. To get proper results, feed
cflow the yacc or lex input.

LEVEL
Levell.

Page 328 System V Interface Definition

NAME

chroot - change root directory for a command

SYNOPSIS

/etc/chroot newroot command

DESCRIPTION

The command chroot executes the given command, relative to the new
root. The meaning of any initial slashes (/) in path names is changed for a
command and any of its children to newroot. Furthermore, the initial
working directory is newroot.

This command is restricted to the super-user.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroot argument is relative to the
current root of the running process.

SEE ALSO
CHDIR(BA _OS)

USAGE

General.

The user should exercise caution when referencing special files in the new
root file system.

LEVEL

Levell.

System V Interface Definition Page 329

CPP(SD_CMD)

NAME

cpp - the C language preprocessor

SYNOPSIS

LIBDIR/cpp [option ..•] [ifile [ofile]]

DESCRIPTION

The command cpp is the C language preprocessor, which is invoked as the
first pass of any C compilation using the c c command. Thus the output of
c pp is designed to be in a form acceptable as input to the next pass of the C
compiler.

LIBDIR is usually Ilib.

The cpp command optionally accepts two file names as arguments;
if i 1 e and 0 f i 1 e are respectively the input and output for the preproces­
sor. They default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-p Preprocess the input without producing the line control informa­
tion used by the next pass of the C compiler.

-c By default, cpp strips C-style comments. If the -c option is
specified, all comments (except those found on cpp directive
lines) are passed along.

-Uname Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor.

-Dname
-Dname-de!

-Idir

Define name as if by a # de fin e directive. If no = d e f is
given, name is defined as 1. The - D option has lower precedence
than the -U option. That is, if the same name is used in both a
-u option and a -D option, the name will be undefined regard­
less of the order of the options.

Change the algorithm for searching for #include files whose
names do not begin with / to look in d i r before looking in the
directories on the standard list. Thus, #include files whose
names are enclosed in "" will be searched for first in the directory
of the file with the #include line, then in directories named
in - I options, and last in directories on a standard list. For
#include files whose names are enclosed in <>, the directory
of the file with the #include line is not searched.

Two special names are understood by cpp. The name _LINE_ is defined
as the current line number (as a decimal integer) as known by cpp, and
_FILE_is defined as the current file name (as a C string) as known by
cpp. They can be used anywhere (including in macros) just as any other
defined name.

Page 330 System V Interface Definition

CPP(SD_CMD)

All epp directives start with lines begun by I. Any number of blanks and
tabs are allowed between the I and the directive. The directives are:

Idef ine name token-string
Replace subsequent instances of name with token-string.

Idefine name(arg, ••• , arg) token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma­
separated set of tokens, and a) by token-string, where each
occurrence of an arg in the token-string is replaced by the correspond­
ing set of tokens in the comma-separated list. When a macro with
arguments is expanded, the arguments are placed into the expanded
token-string unchanged. After the entire token-string has been
expanded, epp re-starts its scan for names to expand at the beginning
of the newly created token-string.

lundef name
Cause the definition of name (if any) to be forgotten from now on. No
additional tokens are permitted on the line after name.

line 1 ude ''filename''
line 1 ude <filename>

Include at this point the contents of filename (which will then be run
through epp). When the <filename> notation is used, filename is
only searched for in the standard places. See the -I option above for
more detail. No additional tokens are permitted on the line after the
final" or >.

IIi n e integer-constant ''filename''
Causes epp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file where it comes from. If ''filename'' is not given,
the current file name is unchanged. No additional tokens are permitted
on the line after the final ".

lendif
Ends a section of lines begun by a test directive (I if, Ii f d e f, or
lifndef). Each test directive must have a matching lendif. No
additional tokens are permitted on the line.

lifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous Idefine without being the subject of
an intervening lundef. No additional tokens are permitted on the
line after name.

lifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous Ide fin e without being the sub­
ject of an intervening lundef. No additional tokens are permitted

System V Interface Definition Page 331

CPP(SD_CMD)

on the line after name.

i f constant -expression
Lines following will appear in the output if and only if the constant­
expression evaluates to non-zero. All binary non-assignment C opera­
tors, the ?: operator, the unary -, I, and @ operators are all legal
in constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms:
def ined (name) or defined name. This allows the utility of
#ifdef and #ifndef in a #if directive. Only these operators,
integer constants, and names which are known by cpp should be used
in constant-expression. In particular, the sizeof operator is not
available.

#else
The else part of an #ifdef, #ifndef, or #if. The lines preced­
ing are ignored, and the lines following (upto the #endif) are
included in the output if the test is false.

The test directives and the optional # e 1 s e directives can be nested.

EXAMPLE

In order to test whether either of the two symbols abc and de! are defined,
use

#if defined (abc) I I defined (def)

SEE ALSO
CC(SD_CMD) ..

USAGE
General.

The recommended way to invoke cpp is through the cc command. See
M4(SD_CMD) for a general macro processor.

Include directives should avoid using hard-coded path-names: for example,
#include <file. h> should be used, rather than
#include "/usr/include/file.h"

FUTURE DIRECTIONS

The option -y is reserved for future use. It will be used to specify a direc­
tory to be used instead of the standard list, when searching for # inc 1 u de
files.

Users will also be able to specify, by means of the TMPDIR environmental
variable, the directory in which any temporary files are to be created.

LEVEL
Levell.

Page 332 System V Interface Definition

NAME

cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION
The command cxref analyzes a collection of C files and attempts to build
a cross-reference table. Information from #define lines is included in the
symbol table. A listing is produced on standard output of all symbols (auto,
static, and global) in each file separately, or with the -c option, in combina­
tion. Each symbol contains an asterisk (*) before the declaring reference.

In addition to the -D, -I, and -u options (which are identical to their
interpretation by cc) the following options are interpreted by cxref:

-c

-wnum

-0 file

-s

SEE ALSO
CC(SD_CMD).

USAGE

General.

LEVEL

Levell.

Print a combined cross-reference of all input files.

Width option which formats output no wider than num
(decimal) columns. This option will default to 80 if num is not
specified or is less than 51.

Direct output to named file.

Operate silently; does not print input file names.

System V Interface Definition Page 333

DEL TA(SD _CMD)

NAME

delta - make a delta (change) to an sees file

SYNOPSIS

delta -rSID -s -n] -glist
-m[mrlist]] [-y[comment] [-p] file •..

DESCRIPTION

The command del t a is used to permanently introduce into the named
sees file changes that were made to the file retrieved by get (called the
g-file, or generated file).

The del t a command makes a delta to each named sees file. If a direc­
tory is named, del ta behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the
path name does not begin with s.) and unreadable files are silently ignored.
If a name of - is given, the standard input is read; in this case the -y
option (see below) is required on the command line; if the -m option (see
below) would normally be required, then it too is required on the command
line. Each line of the standard input is taken to be the name of an sees file
to be processed.

The de 1 ta command may issue prompts on the standard output depending
upon certain keyletters specified and flags [see ADMIN(SD_CMD)] that may be
present in the sees file (see -m and -y keyletters below).

Lines beginning with an SOH ASeII character (binary 001) cannot be placed
in the sees file unless the SOH is escaped. This character has special mean­
ing to sees and will cause an error.

Keyletter arguments apply independently to each named file.

-rSID

-s

-0

-gUst

Page 334

Uniquely identifies which delta is to be made to the sees
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the
same sees file were done by the same person (login name).
The SID value specified with the -r keyletter can be either
the SID specified on the get command line or the SID to
be made as reported by the get command [see
GET(SD_CMD)J. A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on the command
line.

Suppresses the issue, on the standard output, of the created
delta's SID, as well as the number of lines inserted, deleted
and unchanged in the sees file.

Specifies retention of the edited g-file (normally removed at
completion of delta processing).

Specifies a list [see GET(SD_CMD) for the definition of list]
of deltas which are to be ignored when the file is accessed

System V Interface Definition

-m[mrlist]

-y[comment]

-p

SEE ALSO

at the change level (SID) created by this delta.

If the sees file has the v flag set [see ADMIN(SD_CMD)] then
a Modification Request (MR) number must be supplied as
the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a termi­
nal, no prompt is issued. The MRs? prompt always pre­
cedes the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the v flag has a value, it is taken to be the
name of a program which will validate the correctness of
the MR numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

Arbitrary text used to describe the reason for making the
delta. A rtull string is considered a valid comment.

If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is
not a terminal, no prompt is issued. An unescaped new-line
character terminates the comment text.

Causes de 1 ta to print (on the standard output) the sees
file differences before and after the delta is applied in
diff format [see DIFF(BU_CMD)].

ADMIN(SD _ CMD), GET(SD _ CMD), PRS(SD _ CMD), RMDEL(SD _ CMD).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 335

NAME

dis - disassembler

SYNOPSIS
dis [-0] [-V] [-L] [-F function] [-1 string
files

DESCRIPTION
The dis command produces an assembly language listing of each of its
f i 1 e arguments, each of which may be an object file or an archive of object
files. The listing includes assembly statements and an octal or hexadecimal
representation of the binary that produced those statements.

The following options are interpreted by the disassembler and may be
specified in any order.

-0

-V

-L

Will print numbers in octal. Default is hexadecimal.

Version number of the disassembler will be written to standard
error.

Invokes a lookup of C source labels in the symbol table for sub­
sequent printing.

- F function Disassembles only the named function in each object file
specified on the command line. This option may be specified a
number of times on the command line.

-1 string Will disassemble the library file specified as string. For exam­
ple, the command dis -1m will disassemble the math
library.

SEE ALSO
AS(SD_CMD), CC(SD_CMD).

USAGE

General.

FUTURE DIRECTIONS
The -s option is reserved for future use. It will be used to specify symbolic
disassembly.

LEVEL

Levell.

Optional.

Page 336 System V Interface Definition

NAME

env - set environment for command execution

SYNOPSIS

env [-] [name=value] [command]

DESCRIPTION

The command env obtains the current environment, modifies it according to
its arguments, then executes the command with the modified environment.
Arguments of the form name=value modify the execution environment:
they are merged into the inherited environment before the command is exe­
cuted. The - option causes the inherited environment to be ignored com­
pletely, so that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed, one name­
value pair per line.

SEE ALSO
SH(BU _ CMD).

USAGE

General.

LEVEL

Levell.

System V Interface Definition Page 337

GET(SD_CMD)

NAME

get - get a version of an sees file

SYNOPSIS
get [-r SID] -c cutoff] [-e] [-b] -i
list] [-x list] [-k] [-1 [p]] [-p] -s
] [-m] [-n] [-g] [-t] file 000

DESCRIPTION
The command get generates an ASCII text file from each named sees file
according to the specifications given by its keyletter arguments, which begin
with -. The arguments may be specified in any order, but all key letter
arguments apply to all named sees files. If a directory is named, get
behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin
with so) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an sees file to be processed. Again, non-Sees files and unreadable
files are silently ignored.

The generated text is normally written into a file called the g-fi1e whose
name is derived from the sees file name by simply removing the leading So;

(see also FILES, below).

Each of the keyletter arguments is explained below as though only one sees
file is to be processed, but the effects of any keyletter argument applies
independently to each named file.

-rSID The sees Identification string (SID) of the version (delta) of
an sees file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an sees file is retrieved (as well
as the SID of the version to be eventually created by de 1 ta if
the -e keyletter is also used), as a function of the SID
specified.

-ccutoff

-e

Page 338

Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after
the specified cutoff date-time are included in the generated
ASCII text file. Units omitted from the date-time default to
their maximum possible values; that is, -c7502 is equivalent to
-c750228235959o Any number of non-numeric characters
may separate the various 2-digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form:
"-c77/2/2 9:22:25".

Indicates that the get is for the purpose of editing or making
a change (delta) to the sees file via a subsequent use of
del tao The -e keyletter used in a get for a particular ver­
sion (SID) of the sees file prevents further gets for editing

System V Interface Definition

-b

-ilist

-xlist

-k

-I[p]

-p

GET(SD _CMD)

on the same SID until de 1 ta is executed or the j (joint edit)
flag is set in the sees file. Concurrent use of get -e for
different SIOs is always allowed.

If the g- f i 1 e generated by get with an -e keyletter is
accidentally ruined in the process of editing it, it may be regen­
erated by re-executing the get command with the -k
keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor, and author­
ized user list stored in the sees file are enforced when the -e
key letter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file or if
the retrieved de 1 ta is not a leaf de 1 tao (A leaf de 1 ta
is one that has no successors on the sees file tree.)
Note: A branch de 1 ta may always be created from a non­
leaf delta.

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following syn­
tax:

<list> ::- <range> I <list> , <range>
<range> ::- SID I SID - SID

SID, the sees Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1. Partial SIOs
are interpreted as shown in the "SID Retrieved" column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the -i keyletter for the list
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The -k keyletter is
implied by the -e keyletter.

Causes a delta summary to be written into an 1- f i 1 e. If
-lp is used then an 1-fi1e is not created; the delta sum­
mary is written on the standard output instead. See FILES for
the format of the 1-fi1e.

Causes the text retrieved from the sees file to be written on
the standard output. No g - f i 1 e is created. All output
which normally goes to the standard output goes to standard
error instead, unless the -5 key letter is used, in which case it
disappears.

System V Interface Definition Page 339

GET(SD_CMD)

-s Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to standard
error) remain unaffected.

-m Causes each text line retrieved from the SCCS file to be pre­
ceded by the SID of the delta that inserted the text line in the
SCCS file. The format is: SID, followed by a horizontal tab,
followed by the text line.

-0 Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -0 keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the -m
keyletter generated format.

-g Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an 1- f i 1 e, or to verify the
existence of a particular SID.

-t Used to access the most recently created ("top") delta in a
given release (e.g., -rt), or release and level (e.g., -rl.2).

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more than
one named file or if a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed following the notation "Included"; if the -x
keyletter is used, excluded deltas are listed following the notation
"Excluded" .

TABLE I. Determination of sees Identification String

SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none* no R defaults to mR mR.mL mR.(mL+I)

none* yes R defaults to mR mR.mL mR.mL.(mB+I).1

R no R> mR mR.mL R.I***

R no R-mR mR.mL mR.(mL+I)

R yes R> mR mR.mL mR.mL.(mB+I).1

R yes R-mR mR.mL mR.mL.(mB+I).1

R R < mR and hR.mL** hR.mL. (mB+ 1).1
R does not exist

R Trunk succ.# R.mL R.mL.(mB+I).1
in release > R

Page 340 System V Interface Definition

R.L
R.L
R.L

R.L.B
R.L.B

R.L.B.S
R.L.B.S
R.L.B.S

*

**

t

:I:

GET(SD_CMD)

and R exists

no No trunk succ. R.L R.(L+})
yes No trunk succ. R.L R.L.(mB+l).l

Trunk succ. R.L R.L.(mB+l).1
in release ~ R

no No branch succ. R.L.B.mS R.L.B. (mS+ 1)

yes No branch succ. R.L.B.mS R.L.(mB+l).l

no No branch succ. R.L.B.S R.L.B. (S+ 1)

yes No branch succ. R.L.B.S R.L.(mB+l).l
Branch succ. R.L.B.S R.L.(mB+l).l

"R", "L", "B", and "S" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means
"maximum". Thus, for example, "R.mL" means "the maximum
level number within release R"; "R.L. (mB+ 1).1" means "the first
sequence number on the new branch (i.e., maximum branch
number plus one) of level L within release R". Note that if the
SID specified is of the form "R.L", "R.L.B", or "R.L.B.S", each
of the specified components must exist.
"hR" is the highest existing release that is lower than the
specified, nonexistent, release R.
This is used to force creation of the first delta in a new release.
Successor.
The -b keyletter is effective only if the b flag is present in the
file. An entry of - means "irrelevant".
This case applies if the d (default SID) flag is not present in the
file. If the d flag is present in the file, then the SID obtained
from the d flag is interpreted as if it had been specified on the
command line. Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the sees file
by replacing identification keywords with their value wherever they occur.
The following keywords may ~e used in tlte text stored in an sees file:

Keyword
%M%

%1%

%R%
%L%
%8%
%S%
%D%
%H%
%T%
%E%

Value
Module name: either the value of the m flag in the file, or if
absent, the name of the sees file with the leading s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY IMM/DD).
Current d~te (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).

System V Interface Definition Page 341

GET(SD _CMD)

FILES

%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file.
sees file name.
Fully qualified sees file name.
The value of the q flag in the file.
Current line number. This keyword is intended for identifying
messages output by the program such as "this should not have
happened" type errors. It is not intended to be used on every line
to provide sequence numbers.
The 4-character string @(#) recognizable by what.
A shorthand notation for constructing what strings.
%W% - %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what (SD_CMD)
strings.
%A% == %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get. These files are known gener­
ically as the g - f i 1 e , 1- f i 1 e , p - f i 1 e, and z - f i 1 e . The
letter before the hyphen is called the tag. An auxiliary file name is formed
from the sees file name: the last component of all sees file names must be
of the form s.module-name, the auxiliary files are named by replacing the
leading s with the tag. The g- f i 1 e is an exception to this scheme: the
g-file is named by removing the s. prefix. For example, S .xyz. c,
the auxiliary file names would be xyz. c, 1. xyz . c, p. xyz . c, and
z . xyz . c, respectively.

The g - f i 1 e, which contains the generated text, is created in the current
directory (unless the -p keyletter is used). A g - f i 1 e is created in all
cases, whether or not any lines of text were generated by the get. It is
owned by the real user. If the -k keyletter is used or implied it is writeable
by the owner only (read-only for everyone else); otherwise it is read-only.
Only the real user need have write permission in the current directory.

The 1-f i 1 e contains a table showing which deltas were applied in gem­
erating the retrieved text. The 1- f i 1 e is created in the current directory
if the -I keyletter is used; it is read-only and it is owned by the real user.
Only the real user need have write permission in the current directory.

Lines in the 1- f i 1 e have the following format:

a. A blank character if the delta was applied;
• otherwise.

b. A blank character if the delta was applied or was not applied and
ignored;
• if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:

"I": Included.

Page 342 System V Interface Definition

GET(SD _CMD)

"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY IMM/DD HH:MM:SS) of creation.
h. Blank.
L Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizon­
tal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
keyletter along to de 1 tao Its contents are also used to prevent a subse­
quent execution of get with an -e keyletter for the same SID until
de 1 ta is executed or the joint edit flag, j, is set in the sees file. The p­
file is created in the directory containing the sees file and the effective
user must have write permission in that directory. It is writeable by owner
only, and it is owned by the effective user. The format of the p-file is:
the gotten SID, followed by a blank, followed by the SID that the new delta
will have when it is made, followed by a blank, followed by the login name of
the real user, followed by a blank, followed by the date-time the get was
executed, followed by a blank and the -i keyletter argument if it was
present, followed by a blank and the -x key letter argument if it was present,
followed by a new-line. There can be an arbitrary number of lines in the
p - f i 1 e at any time; no two lines can have the same new delta SID.

The z - f i 1 e serves as a lock-out mechanism against simultaneous updates.
Its contents are the binary process ID of the command (Le., get) that
created it. The z - f i 1 e is created in the directory containing the sees file
for the duration of get. The same protection restrictions as those for the
p-file apply for the z-file. The z-file is created read-only.

SEE ALSO
ADMIN(SD _ CMD), DEL T A(SD _ CMD), PRS(SD _ CMD), WHAT(SD _ CMD).

USAGE
General.

LEVEL
Level 1.

System V Interface Definition Page 343

NAME

ld - link editor for object files

SYNOPSIS

1d [options] file ...

DESCRIPTION

The 1 d command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and 1 d combines them, producing an object module that can either
be executed or, if the -r option is specified, used as input for a subsequent
1 d run. The output of 1 d is left in a. ou t. By default this file is exe­
cutable if no errors occurred during the load. If any input file f i 1 ename,
is not an object file, 1d assumes it is an archive library.

If any argument is a library, it is searched at the point it is encountered in
the argument list. Only those routines defining an unresolved external refer­
ence are loaded. The library (archive) symbol table is searched to resolve
external references which can be satisfied by library members. The ordering
of library members is unimportant, unless there exist multiple library
members defining the same external symbol.

The following options are recognized by 1 d:

-e epsym Set the default entry point address for the output file to be that of
the symbol epsym.

-Ix Search the library which has the abbreviation x (e.g., -1m to search
the math library). A library is searched when its name is encountered,
so the placement of a -1 option is significant.

-ooutfile
Produce an output object file by the name out file. The name of the
default object file is a. ou t .

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a subse­
quent 1 d run. The link editor will not complain about unresolved
references, and the output file will not be made executable.

-s Strip all symbolic information from the output object file.

-u symname
Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the load­
ing of the first routine.

-L dir

Page 344

Change the algorithm of searching for the library x to look in dir
before looking in the default library directories. This option is effective
only if it precedes the -1 option on the command line.

System V Interface Definition

FILES

LD(SD_CMD)

-v Output a message giving information about the version of Id being
used.

"a.out" output file

SEE ALSO
AR(BU_CMD), CC(SD_CMD), STRIP(SD_CMD).

USAGE
General.

When the link editor is called through CC, a startup routine is linked with
the user's program. This routine calls exit () after execution of the main
program. If the user calls the link editor directly, then the user must ensure
that the program always calls exit () rather than falling through the end
of the entry routine.

The symbols etext, edata, and end are reserved and are defined by
the link editor. It is erroneous for a user program to redefine them.

FUTURE DIRECTIONS

The option -Y is reserved for future use. It will be used to specify a direc­
tory to be used instead of the standard list, when searching for libraries.

Users will also be able to specify, by means of the TMPDIR environmental
variable, the directory in which any temporary files are to be created.

LEVEL

Levell.

System V Interface Definition Page 345

LEX(SD_CMD)

NAME

lex - generate programs for simple lexical analysis of text

SYNOPSIS
lex [-ctvn] [file]

DESCRIPTION

The command 1 ex generates programs to be used in lexical processing of
character input and may be used as an interface to yacc.

The input fi1e(s), which contain lex source code, contain a table of reg­
ular expressions each with a corresponding action in the form of a C program
fragment. Multiple input f i 1 es are treated as a single file. When 1 ex
processes fi1e(s), this source is translated into a C program. Normally
lex writes the program it generates to the file lex. yy. c. If the -t
option is used, the resulting program is written instead to the standard out­
put. When the program generated by lex is compiled and executed, it will
read character input from the standard input and partition it into strings that
match the given expressions. When an expression is matched, the input
string was matched is left in an external character array yy1ex and the
expressions corresponding program fragment, or action, is executed. During
pattern matching the set of patterns will be searched for a match in the order
in which they appeared in the lex source and the single longest possible
matchwill be chosen at any point in time. Among rules that match the same
number of characters, the rule given first will be matched.

The program generated by 1 ex, e.g., 1 ex. yy. c, should be compiled
and loaded with the 1 e x library (using the -11 option with c c.

The option -c indicates C language actions and is the default, -t causes
the program generated to be written instead to standard output, -v pro­
vides a one-line summary of statistics of the finite state machine generated,
-n will not print out the - summary.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%pn
%nn
%en
%an
%kn
%on

number of positions is n
number of states is n
number of parse tree nodes is n
number of transitions is n
number of packed character classes is n
size of the output array is n

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.

The general format of lex source is:
{definitions}
%%
{rules}
%%

Page 346 System V Interface Definition

{user subroutines}
The definitions and the user subroutines may be omitted. The first % % is
required to mark the beginning of the rules (regular expressions and actions);
the second % % is required only if user subroutines follow.

Any line in the source beginning with a blank is assumed to contain only C
text and is copied to lex. yy. c; if it precedes % % it is copied into the
external definition area of the 1 ex. yy . c file. Anything included between
lines containing only % { and %} is copied unchanged to lex. yy. c and
the delimiter lines are discarded. Anything after the third % % delimiter is
copied to lex. yy. c.

Definitions

Rules

Definitions must appear before the first % % delimiter. Any line in
this section not contained between % { and %} lines and beginning in
column 1 is assumed to define a 1 ex substitution string. The format
of these lines is

name substitute
The name must begin with a letter and be followed by at least one
blank or tab. The substitute will replace the string {name} when it is
used in a rule. The curly braces do not imply parentheses; only string
substitution is done.

The rules in 1 e x source files are a table in which the left column con­
tains regular expressions and the right column contains actions and pro­
gram fragments to be executed when the expressions are recognized.

re whitespace action
re whitespace action

Because the regular expression, (re) , portion of a rule is terminated by
the first blank or tab, any blank or tab used within a regular expression
must be quoted (its special meaning escaped). That is, it must appear
within double quotes, square brackets or must be preceded by a
backslash character.

The program fragment which is the action associated with a particular
re may extend across several lines if it is enclosed in curly braces:

re whitespace program statement
program statement }

Regular Expressions
The 1 e x command supports the sets of regular expressions recognized
by ed and awk, and some additional expressions. Some characters
have special meanings when used in an re and are called regular
expression operators. Below is a table of expressions supported by
lex.

System V Interface Definition Page 347

LEX(SD _CMD)

Page 348

Regular
Expression

c

\c

"cn

$

[s]

("s]

r*

r+

r?

(r)

rx

rlx

<s>r

r/x

IS}

rIm,n}

Pattern
Matched

the character c where c is not a spe­
cial character.
the character c where c is any char­
acter.
the character c where c is any char­
acter except \.
the beginning of the line being com­
pared.
the end of the line being compared.
any character in the input but new­
line
any character in the set s where s is
a sequence of characters andlor a
range of characters, c-c.
any character not in the set s, where
s is defined as above.
zero or more successive occurrences
of the regular expression r.
one or more successive occurrences
of the regular expression r.
zero or one occurrence of the regular
expression r.
the regular expression r. (Grouping)
the occurrence of regular expression
r followed by the occurrence of regu­
lar expression x. (Concatenation)
the occurrence of regular expression
r or the occurrence of regular
expression x.
the occurrence of regular expression
r only when the program is in start
condition (state) s.
the occurrence of regular expression
r only if it is followed by the
occurence of regular expression x.
(Note this is r in the context of x
and only r is matched.)
the substitution of S from the
Definitions section.
m through n successive occurrences
of the regular expression r.

The notation r{m,n} in a rule indicates between m and n instances of
regular expression r. It has higher precedence than I, but lower than *,
?, +, and concatenation.

The character A at the beginning of an expression permits a successful
match only immediately after a new-line, and the character $ at the end
of an expression requires a trailing new-line.

System V Interface Definition

LEX(SD _CMD)

The character I in an expression indicates trailing context; only the part
of the expression up to the slash is returned in yytext, but the remainder
of the expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within double quotes, "c"; pre­
ceded by \, \c; or is within square brackets, [c1. Two operators have spe­
cial meaning when used within square brackets. A - denotes a range,
[c-c], unless it is just after the open bracket or before the closing
bracket, [-c] or [c-] in which case it has no special meaning. When used
within brackets, ... has the meaning "complement or' if it immediately fol­
lows the open bracket, [AC], elsewhere between brackets, rcA], it stands
for the ordinary character The special meaning of the \ operator can
be escaped only by preceding it with another \.

Actions
The default action when a string in the input to a lex.yy.c program is
not matched by any expression is to copy the string to the output.
Because the default behavior of a program generated by 1 ex is to
read the input and copy it to the output, a minimal lex source pro­
gram that has just %% will generate a C program that simply copies
the input to the output unchanged. A null C statement, the statement
';', may be specified as an action in a rule. Any string in the lex.yy.c
input that matches the pattern portion of such a rule, will be effectively
ignored or skipped.

Three special actions are available, L REJECf, and ECHO. The action I
means that the action for the next rule is the action for this rule.
ECHO prints the string yytext on the output. Normally only a single
expression is matched by a given string in the input. REJECT means
"continue to the next expression that matches the current input" and
causes whatever rule was second choice after the current rule to be exe­
cuted for the same input. Thus, it allows multiple rules to be matched
and executed for one input string or overlapping input strings. For
example, given the expressions xyz and yz and the input xyz, normally
only one pattern, xyz would match and the next attempted match
would start at z. If the last action in the xyz rule is REJECT, both
this rule and the yz rule would be executed.

The lex command provides several routines that can be used in the
lex source program: yymoreO, yyless(n), input ° , output(c), and
unput(c).

The function yymoreO may be called to indicate that the next input
string recognized is to be concatenated onto the end of the current
string in yytext rather than overwriting it in yytext.

yyless(n) returns to the input some of the characters matched by the
currently successful expression. The argument "n" indicates the number
of initial characters in yytext to be retained; the remaining trailing
characters in yytext are returned to the input.

System V Interface Definition Page 349

EXAMPLE

D
%%

inputO returns the next character from the input. input returns 0 on
end of file.

unput(c) pushes the character c back onto the input stream to be read
later by inputO.

output(c) writes the character c on the output.

To perform custom processing when the end of input is reached, a user
may supply their own yywrapO function. yywrapO is called whenever
lex.yy.c reaches an end-of-file. If yywrapO returns a one, lex.yy.c con­
tinues with the normal wrap-up on end of input. The default yywrapO
always returns a one. If the user wants lex.yy.c to continue processing
with another source of input, then a yywrapO must be supplied that
arranges for the new input and returns a zero. These routines may be
redefined by the user.

The external names generated by 1 ex all begin with the prefix yy or
YY.

The program generated by lex is named yylexO; if the user does not
supply a main routine, the default mainO routine calls yylexO. If the
user supplies a mainO routine, it should call yylexO.

[0-9]

if
[a-z]+
O{D}+
{D}+

printf("IF statement\n ");
printf("tag, value %s\n",yytext};
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext};
printf("unary op\n"); "++"

"+"
"/."

FILES

lex.yy.c.

SEE ALSO

printf("binary op\n");
{ loop:

while (inputO !- '.');
switch (inputO)

{
case I I': break;
case '.': unput('.');
default: go to loop;
}

CC(SD_CMD), YACC(SD_CMD).

USAGE

General.

Page 350 System V Interface Definition

LEVEL
Levell.

System V Interface Definition

LEX(SD_CMD)

Page 351

LlNT(SD_CMD)

NAME

lint - a C program checker

SYNOPSIS

lint [options] file

DESCRIPTION

The command 1 in t attempts to detect features of the C program files that
are likely to be bugs, non-portable, or wasteful. It also checks type usage
more strictly than the compilers. Among the things that are currently
detected are unreachable statements, loops not entered at the top, automatic
variables declared and not used, and logical expressions whose value is con­
stant. Moreover, the usage of functions is checked to find functions that
return values in some places and not in others, functions called with varying
numbers or types of arguments, and functions whose values are not used or
whose values are used but none returned.

The options are described below. Note, however, that the options -c and
-0 are new to System V Release 2.

Arguments whose names end with . c are taken to be C source files. The
following behavior is new in System V Release 2.

Arguments whose names end with . 1 n are taken to be the result of an ear­
lier invocation of lint with either the -c or the -0 option used. The
. 1 n files are analogous to • 0 (object) files that are produced by the c c
command when given a . c file as input.

Files with other suffixes are warned about and ignored.

The command 1 in t will take all the • c, . 1 n, files, and 11 i b-
1x(specififed by -Ix), and process them in their command line order. By
default, 1 in t appends the standard C lint library to the end of the list of
files. However, if the -p option is used, the portable C lint library
(llib-port .1n) is appended instead. When the -c option is not used,
the second pass of 1 in t checks this list of files for mutual compatibility.
When the -c option is used, the . 1 n files and the lint libraries are
ignored.

Any number of 1 int options may be used, in any order, intermixed with
file-name arguments. The following options are used to suppress certain
kinds of complaints:

-a

-b

-h

Page 352

Suppress complaints about assignments of long values to variables
that are not long.

Suppress complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result
in many such complaints).

Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

System V Interface Definition

-u Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for
running 1 in t on a subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but
never used.

The following arguments alter 1 in t 's behavior:

-Ix Include additional lint library x (e.g., -1m for the math library).

-n Do not check compatibility against either the standard or the portable
lint library.

-p Attempt to check portability.

-0 Cause 1 in t to produce a . 1 n file for every . 0 file on the com-
mand line. These . 1 n files are the product of 1 in t 's first pass only,
and are not checked for inter-function compatibility.

-0 lib Cause lint to create a lint library with the name lib. The -c
option nullifies any use of the -0 option. The lint library produced is
the input that is given to 1 in t 's second pass. The -0 option simply
causes this file to be saved in the named lint library. To produce the
lint library without extraneous messages, use of the -x option is sug­
gested. The -v option is useful if the source file(s) for the lint library
are just external interfaces. These option settings are also available
through the use of "lint comments" (see below).

The -0, -U, and -I options of cpp [see CPP(SD_CMD)] are also recog­
nized as separate arguments.

(The following is new to System V Release 2.) The -g and -0 options of
o c are also recognized as separate arguments. These options are ignored,
but, by recognizing these options, 1 in t 's behavior is closer to that of the
c c command. Other options are warned about and ignored. The pre­
processor symbol "lint" is defined to allow certain questionable code to be
altered or removed for 1 in t . Therefore, the symbol "lint" should be
thought of as a reserved word for all code that is planned to be checked by
lint.

Certain conventional comments in the C source will change the behavior of
lint:

/*NOTREACHEO*/
at appropriate points stops comments about unreachabie code.
(This comment is typically placed just after calls to functions like
exit.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first

System V Interface Definition Page 353

n arguments are checked; a missing n is taken to be O.

/*ARGSUSED*/
turns on the -v option for the next function.

/*UNTUBRARY*/
at the beginning of a file shuts off complaints about unused func­
tions and function arguments in this file. This is equivalent to
using the -v and -x options.

The command 1 in t produces its first output on a per-source-file basis.
Complaints regarding included files are collected and printed after all source
files have been processed. Finally, if the -0 option is not used, information
gathered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or
from one of its included files, the source file name will be printed followed by
a question mark.

The behavior of the -0 and the -0 options allows for incremental use of
lint on a set of C source files. Generally, lint is invoked once for each
source file with the -0 option. Each of these invocations produces a • In
file which corresponds to the .0 file, and prints all messages that are about
just that source file. After all the source files have been separately run
through 1 in t, it is invoked once more (without the -0 option), listing all
the . 1 n files with the needed -Ix options. This will print all the inter-file
inconsistencies. This scheme works well with make; it allows make to be
used to 1 in t only the source files that have been modified since the last
time the set of source files were checked by 1 in t.

SEE ALSO
CC(SD_CMD), CPP(SD_CMD), MAKE(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 354 System V Interface Definition

LORDER(SD _CMD)

NAME

lorder - find ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION

The input is one or more object or library archive files [see AR(BU_CMD)].

The standard output is a list of pairs of object file names, meaning that the
first file of the pair refers to external identifiers defined in the second. The
output may be processed by tsort to find an ordering of a library suitable
for one-pass access by the link editor ld Note that ld is capable of multi­
ple passes over an archive in the portable archive format and does not require
that lorder be used when building an archive. The usage of the
lorder command may, however, allow for a slightly more efficient access
of the archive during the link edit process.

EXAMPLE

The following example builds a new library from existing . 0 files.

ar -cr library 'lorder *.0 I tsort'

SEE ALSO

AR(BU_CMD), LD(SD_CMD), TSORT(SD_CMD).

USAGE

General.

LEVEL

Levell.

System V Interface Definition Page 355

M4(SD_CMD)

NAME

nn4 -- nnacro processor

SYNOPSIS

m4 [options] [file ...]

DESCRIPTION

The connnnand m4 is a nnacro processor intended as a front end for Ratfor,
C, and other languages. Each of the argunnent files is processed in order; if
there are no files, or if a file nanne is -, the standard input is read. The
processed text is written on the standard output.

The options and their effects are as follows:

-s Enable line sync output for the C preprocessor (i.e., #line direc­
tives).

This option nnust appear before any file nannes and before the fol­
lowing options.

-Dname[=va/]
Defines name to valor to null in vats absence.

-Uname undefines name.

Macro calls have the fornn:

name (arg1 ,arg2, ... , argn)

The (nnust innnnediately follow the nanne of the nnacro. If the nanne of a
defined nnacro is not followed by a (, it is deenned to be a call of that
nnacro with no argunnents. Potential nnacro nannes consist of alphabetic
letters, digits, and underscore ,where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
argunnents. Left and right single quotes are used to quote strings. The value
of a quoted string is the string stripped of the quotes.

When a nnacro nanne is recognized, its argunnents are collected by searching
for a nnatching right parenthesis. If fewer argunnents are supplied than are
in the nnacro definition, the trailing argunnents are taken to be null. Macro
evaluation proceeds nornnally during the collection of the argunnents, and any
connnnas or right parentheses which happen to turn up within the value of a
nested call are as effective as those in the original input text. After argunnent
collection, the value of the nnacro is pushed back onto the input streann and
rescanned.

The connnnand m4 nnakes available the following built-in nnacros. They nnay
be redefined, but once this is done the original nneaning is lost. Their values
are null unless otherwise stated.

define

Page 356

the second argunnent is installed as the value of the nnacro
whose nanne is the first argunnent. Each occurrence of $n in
the replacennent text, where n is a digit, is replaced by the n-th

Systenn V Interface Definition

M4(SD_CMD)

argument. Argument 0 is the name of the macro; mlssmg
arguments are replaced by the null string; $ # is replaced by
the number of arguments; $ * is replaced by a list of all the
arguments separated by commas; $@ is like $*, but each
argument is quoted (with the current quotes).

undefine removes the definition of the macro named in its argument.

de fn returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

pushdef like define, but saves any previous definition.

popdef removes current definition of its argument(s), exposing the pre­
vious one, if any.

if de f if the first argument is defined, the value is the second argu­
ment, otherwise the third. If there is no third argument, the
value is null.

s h i f t returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that will subsequently be
performed.

changequote change quote symbols to the first and second arguments.
The symbols may be up to five characters long. the command
change quote without arguments restores the original values
(i.e., '').

change com change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism is
effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-line.
With two arguments, both markers are affected. Comment
markers may be up to five characters long.

divert The command m4 maintains 10 output streams, numbered 0-9.
The final output is the concatenation of the streams in numeri­
cal order; initially stream 0 is the current stream. The
di vert macro changes the current output stream to its
(digit-string) argument. Output diverted to a stream other
than 0 through 9 is discarded.

undi vert causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

divnum

dnl

returns the value of the current output stream.

reads and discards characters up to and including the next
new-line.

System V Interface Definition Page 357

M4(SD_CMD)

ifelse

incr

decr

eval

len

index

substr

has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If
not, and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is
either the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value
of the argument is calculated by interpreting an initial digit­
string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, ., /, %,
(exponentiation), bitwise & , I, ", and ; relationals;
parentheses. Octal and hex numbers may be specified as in C.
The second argument specifies the radix for the result; the
default is 10. The third argument may be used to specify the
minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argu­
ment begins (zero origin), or -1 if the second argument does
not occur.

returns a substring of its first argument. The second argument
is a zero origin number selecting the first character; the third
argument indicates the length of the substring. A missing third
argument is taken to be large enough to extend to the end of
the first string.

trans 1 it transliterates the characters in its first argument from the set
given by the second argument to the set given by the third. No
abbreviations are permitted.

incl ude returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the
file is inaccessible.

syscmd executes the system command given in the first argument. No
value is returned.

sysval is the return code from the last call to syscmd.

maketemp fills in a string of XXXXX in its argument with the current pro­
cess ID.

m4exit causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is O.

m4wrap argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup() ')

Page 358 System V Interface Definition

errprint

dumpdef

traceon

traceoff

SEE ALSO

prints its argument on the diagnostic output file. ,

prints current names and definitions, for the named items, or
for all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by
specific calls to traceoff.

CC(SO _ CMO), CPP(SO _ CMO).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 359

MAKE(SD _CMD)

NAME

make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n]
[-e] [-t] [-q] [name ...

DESCRIPTION

The options are interpreted as follows:

-p

-i

-k

-s

-r

-n

-e

-t

-q

Description file name. The argument makefile is
assumed to be the name of a description file. A file name of
- denotes the standard input.

Print out the complete set of macro definitions and target
descriptions.

Ignore error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears in
the description file.

Abandon work on the current entry if it fails, but continue
on other branches that do not depend on that entry.

Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ are printed.

Environmental variables override assignments within
makefiles.

Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date.

The following target names may be defined in the makefile, and are
interpreted as follows:

.DEFAULT

• PRECIOUS

• SILENT

Page 360

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists.

Dependents of this target will not be removed when quit or
interrupt are hit.

Same effect as the -s option .

System V Interface Definition

MAKE(SD _CMD)

• IGNORE Same effect as the -i option .

The command m executes commands in makefile to update one or more
target names. The argument name is typically a program. If no -f
option is present, makefile, Makefile, and the SCCS files
s .makefile, and s .Makefile are tried in order. If makefile is
-, the standard input is used. More than one -fmakefile argument
pair may appear.

The command make updates a target only if its dependents are newer than
the target. All prerequisite files of a target are added recursively to the list
of targets. Missing files are deemed to be out-of-date.

The argument ma kef i 1 e contains a sequence of entries that specify
dependencies. The first line of an entry is a blank-separated, non-null list of
targets, then a :, then a (possibly null) list of prerequisite files or depen­
dencies. Text following a ; and all following lines that begin with a tab are
commands to be executed to update the target. The first line that does not
begin with a tab or # begins a new dependency or macro definition. Com­
mands may be continued across lines with the <backslash> <new-line>
sequence. Everything printed by make (except the initial tab) is passed
directly to the command interpreter as is.

The symbols # and new-line surround comments.

The following makefile says that pgm depends on two files a. 0 and
b .0, and that they in turn depend on their corresponding source files (a. c
and b. c) and a common file inc 1. h:

pgm: a . 0 b . 0 c ca. 0 b . 0 -0 pgm
a. 0: incl. h a. c cc -c a. c
b. 0: incl. h b. c cc -c b. c

Command lines are executed one at a time. The first one or two characters
in a command can be the following: -, @, -@, or @-. If @ is present,
printing of the command is suppressed. If - is present, make ignores an
error. A line is printed when it is executed unless the -s option is present,
or the entry .SILENT: is in ma kef i 1 e, or unless the initial character
sequence contains a @. The -n option specifies printing without execution;
however, if the command line has the string $ (MAKE) in it, the line is
always executed (see discussion of the MAKEFLAGS macro under Environ­
ment). The -t <touch) option updates the modified date of a file without
executing any commands.

Commands returning non-zero status normally terminate make. If the
- i option is present, or the entry .IGNORE: appears in ma kef i 1 e, or the
initial character sequence of the command contains -, the error is ignored.
If the -k option is present, work is abandoned on the current entry, but
continues on other branches that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a depen­
dent of the special name .PRECIOUS.

System V Interface Definition Page 361

MAKE(SD _CMD)

Environment
The environment is read by mak e. All variables are assumed to be
macro definitions and processed as such. The environmental variables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environmental variables. The
-e option causes the environment to override the macro assignments in
a makefile.

The environmental variable MAKEFLAGS is processed by make as
containing any legal input option (except -f and -p) defined for the
command line. Further, upon invocation, make "invents" the variable
if it is not in the environment, puts the current options into it, and
passes it on to invocations of commands. Thus, MAKEFLAGS always
contains the current input options. This proves very useful for "super­
makes". In fact, as noted above, when the -n option is used, the com­
mand $ (MAKE) is executed anyway; hence, one can perform a
make -n recursively on a whole software system to see what would
have been executed. This is because the -n is put in MAKEFLAGS

and passed to further invocations of $ (MAKE). This is one way of
debugging all of the makefiles for a software project without actually
doing anything.

Macros
Entries of the form string 1 - string2 are macro definitions.
The macro string2 is defined as all characters up to a comment
character or an unescaped new-line. Subsequent appearances of
$ (string1[:substl-[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used and
there is no substitute sequence. The optional : sub s t 1-subst2 is a
substitute sequence. If it is specified, all non-overlapping occurrences
of subst 1 in the named macro are replaced by subst2. Strings
(for the purposes of this type of substitution) are delimited by blanks,
tabs, new-line characters, and beginnings of lines. An example of the
use of the substitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writ­
ing rules for building targets.

$* The macro $* stands for the file name part of the current depen­
dent with the suffix deleted. It is evaluated only for inference
rules.

$@ The $@ macro stands for the full target name of the current tar­
get. It is evaluated only for explicitly named dependencies.

$ < The $ < macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out-of-date with
respect to the target (i.e., the "manufactured" dependent file
name). Thus, in the .c.o rule, the $ < macro would evaluate to

Page 362 System V Interface Definition

MAKE(SD _CMD)

the . c file. An example for making optimized . 0 files from
. c files is:

.c.o:
cc -c -0 $*. c

or:

. c .0:
cc -c -0 $<

$1 The $? macro is evaluated when explicit rules from
the makefile are evaluated. It is the list of prere­
quisites that are out-of-date with respect to the target;
essentially, those modules which must be rebuilt.

$ % The $ % macro is only evaluated when the target is
an archive library member of the form
1 ib (f i 1 e .0). In this case, $@ evaluates to
1 ib and $% evaluates to the library member,
file. o.

Four of the five macros can have alternative forms. When an upper
case D or F is appended to any of the four macros, the meaning is
changed to "directory part" for D and "file part" for F. Thus,
$ (@D) refers to the directory part of the string $@. If there is no
directory part, . I is generated. The only macro excluded from this
alternative form is $?

Suffixes

Certain names (for instance, those ending with . 0) have inferable
prerequisites such as . c, . s, etc. If no update commands for such a
file appear in make f i 1 e, and if an inferable prerequisite exists, that
prerequisite is compiled to make the target. In this case, make has
inference rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use.
Inference rules in the makefile override the default rules.

The internal rules for make are compiled into the make program.
To print out the rules compiled into the make program, the following
command is used:

make -fp - 2>/dev/null </dev/null

A tilde in the above rules refers to an sees file. Thus, the rule .c .0

would transform an sees C source file into an object file (.0). Because
the s. of the sees files is a prefix, it is incompatible with make's
suffix point of view. Hence, the tilde is a way of changing any file
reference into an sees file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x
from x.c. In effect, the other suffix is null. This is useful for building
targets from only one source file (e.g., command scripts, simple C pro­
grams).

System V Interface Definition Page 363

MAKE(SD _CMD)

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and a
rule exist is inferred as a prerequisite.

Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine. Multi­
ple suffix lists accumulate; .SUFFIXES: with no dependencies clears the
list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
c ca. 0 b . 0 -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For example,
BCFLAGS, BLFLAGS, and BYFLAGS are used for compiler options
to cc, lex, and yacc, respectively. Again, the previous method
for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a
file with suffix . 0 from a file with suffix . c is specified as an entry
with .c.o: as the target and no dependents. Commands associated with
the target define the rule for making a .0 file from a .c file. Any target
that has no slashes ira it and starts with a dot is identified as a rule and
not a true target.

Libraries

Page 364

If a target or dependency name contains parentheses, it is assumed to
be an archive library, the string within parentheses referring to a
member within the library. Thus 1 i b (f i 1 e . 0) and $(US) (file.o)
both refer to an archive library which contains file.o. (This assumes the
LIB macro has been previously defined.) The expression $(US) (filel.o
file2.0) is not legal. Rules pertaining to archive libraries have the form
.XX.a where the xx is the suffix from which the archive member is to
be made. The most common use of the archive interface follows.
Here, we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

System V Interface Definition

FILES

MAKE(SD_CMD)

In fact, the .c.a rule listed above is built into make and is unnecessary
in this example. A more interesting, but more limited example of an
archive library maintenance construction follows:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o-.c)
ar TV lib $?
rm $? @echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $?
list is defined to be the set of object file names (inside lib) whose C
source files are out-of-date. The substitution mode translates the .0 to
.c. Note also, the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes very
cumbersome if the archive library contains a mix of assembly programs
and C programs.

[Mm]akefile and s.[Mm]akefile

SEE ALSO
CC(SD_CMD), LEX(SD_CMD), SH(BU_CMD), YACC(SD_CMD).

USAGE

General.

The characters == : @ in file names may give trouble.

LEVEL

Level 1.

System V Interface Definition Page 365

NAME

nm - print name list of common object file

SYNOPSIS

nm [options] file ...

DESCRIPTION

The nm command displays the symbol table of each common object file
f i 1 e. The argument f i 1 e may be a relocatable or absolute common
object file; or it may be an archive of relocatable or absolute common object
files. For each symbol, at least the following information will be printed:

Name

Value

Size

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its size in bytes, if available.

The output of nm may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of
decimal.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols Ctext, .data and
.bss}, normally suppressed.

-u Print undefined symbols only.

-v Print the version of the nm command executing on the standard
error output.

SEE ALSO
CC(SD_CMD), LD(SD_CMD).

USAGE

General.

LEVEL

Levell.

Page 366 System V Interface Definition

PROF(SD _ CMD)

NAME

prof - display profile data

SYNOPSIS
prof [-tcan] [-ox] [-g] [-z] [-m mdata] [prog]

DESCRIPTION
The command prof interprets a profile file produced by the monitor
routine. The symbol table in the object file prog (a. out by default) is
read and correlated with a profile file (mon. ou t by default). For each
external text symbol the percentage of time spent executing between the
address of that symbol and the address of the next is printed, together with
the number of times that function was called and the average number of mil­
liseconds per call.

The mutually exclusive options t, c, a, and n determine the type of
sorting of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address
of each symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

- z Include all symbols in the profile range, even if associated with zero
number of calls and zero time.

-m mdata
Use file mda ta instead of mon. ou t as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
cc This option to the cc command arranges for calls to monitor at the
beginning and end of execution. It is the call to moni tor at the end of
execution that causes a profile file to be written. The number of calls to a
function is tallied if the -p option was used when the file containing the
function was compiled.

The name of the file created by a profiled program is controlled by the
environmental variable PROFDIR If PROFDIR is not set, "mon.out" is
produced in the directory current when the program terminates. If
PROFDIR-string, "string/pid.progname" is produced, where

System V Interface Definition Page 367

PROF(SD _ CMD)

FILES

progname consists of argv[O] with any path prefix removed, and pid is
the program's process ID. If PROFDIR is set, but null, no profiling output
is produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro [see MARK(SD_LlB)1.

mon. outfor profile
a . ou t for namelist

SEE ALSO

CC(SD_CMD), EXIT(BA_OS), PROFIL(KE_OS), MONITOR(SD_LlB), MARK(SD_LlB).

USAGE

General.

The times reported in successive identical runs may show variances, because
of varying cache-hit ratios due to sharing of the cache with other processes.
Even if a program seems to be the only one using the machine, hidden back­
ground or asynchronous processes may blur the data.

In rare cases, the clock ticks initiating recording of the program counter may
"beat" with loops in a program, grossly distorting measurements. Call counts
are always recorded precisely, however.

Only programs that call exi t or return from main are guaranteed to
produce a profile file, unless a final call to monitor is explicitly coded.

LEVEL

Level 1.

Optional. Requires the prof i 1 system service routine.

Page 368 System V Interface Definition

PRS(SD_CMD)

NAME

prs - print an sees file

SYNOPSIS

prs [options] files

DESCRIPTION

The command pr s prints, on the standard output, parts or all of an sees
file in a user-supplied format. If a directory is named, pr s behaves as
though each file in the directory were specified as a named file, except that
non-SeeS files (last component of the path name does not begin with s.), and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
sees file or directory to be processed; non-SeeS files and unreadable files
are silently ignored.

Arguments to prs, which may appear in any order, consist of options, and
file names.

All the described options apply independently to each named file. (Note that
the -0 option is new to System V Release 2.)

- d[dataspec1 Used to specify the output data specification. The dataspec
is a string consisting of sees file data keywords (see DATA

KEYWORDS) interspersed with optional user supplied text.
to specify the sees identification string of a delta for which
information is desired. If no SID is specified, the SID of the
most recently created delta is assumed.

- rSID Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter or the
date given by the -0 option.

-1 Requests information for all deltas created later than and
including the delta designated via the -r keyletter or the
date given by the -0 option.

- C£date-time] The cutoff date-time is in the form:

-a

DATA KEYWORDS

YY[MM[DD[HH[MM[SS]]]]]

Units omitted from the date-time default to their maximum
possible values; for example, -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters
may separate the various 2-digit pieces of the cutoff date in
the form: "-c77/2/2 9:22:25".

Requests printing of information for both removed, i.e.,
delta type - R, [see RMDEL(SD _CMD)] and existing, i.e.,
delta type - D, deltas. If the -a keyletter is not specified,
information for existing deltas only is provided.

Data keywords specify which parts of an sees file are to be retrieved and

System V Interface Definition Page 369

PRS(SD _CMD)

output. All parts of an SCCS file have an associated data keyword. There is
no limit on the number of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and
(2) appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword sub­
stitution is direct, or Multi-line (M), in which keyword substitution is fol­
lowed by a carriage return.

User-supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \D. The default
da ta keywords are:

":Dt:\t:DL:\DMRs:\n:MR:COMMENTS:\n:C:"

TABLE 1. SCCS Files Data Keywords

Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics :Li:/:Ld:I:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D or R S

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S
:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: ... S
:Dx: Deltas excluded (seq #) :DS: :DS: ••. S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta text M

:C: Comments for delta text M

Page 370 System V Interface Definition

PRS(SD_CMD)

:UN: User names User Names text
:FL: Flag list Flags text
:Y: Module type flag text

:MF: MR validation flag yes or no
:MP: MR validation pgm name text
:KF: Keyword error/warning flag yes or no
:KV: Keyword validation string text
:BF: Branch flag yes or no
:J: Joint edit flag yes or no

:LK: Locked releases :R: ...
:Q: User-defined keyword text
:M: Module name text
:FB: Floor boundary :R:
:CB: Ceiling boundary :R:
:Ds: Default SID :1:
:ND: Null delta flag yes or no
:FD: File descriptive text Comments text
:BD: Body Body text
:GB: Gotten body text
:W: A form of what (SD_CMD) string N/A :Z::M:\t:l:
:A: A form of what (SD _ CMD) string N/A :Z::Y: :M: :I::Z:
:Z: what (SD _ CMD) string delimiter N/A @(#)
:F: SCCS file name N/A text

:PN: SCCS file path name N/A text

* :Dt: - :DT: :1: :D: :T: :P: :DS: :DP:

EXAMPLES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/1211 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

M
M
S
S
S
S
S
S
S
S
S
S
S
S
S
S
M
M
M
S
S
S
S
S

System V Interface Definition Page 371

PRS(SD_CMD)

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

SEE ALSO
ADMIN(SD_CMD), DELTA(SD_CMD), GET(SD_CMD), WHAT(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 372 System V Interface Definition

RMDEL(SD _CMD)

NAME

rmdel - remove a delta from an sees file

SYNOPSIS

rmdel -r

DESCRIPTION

The command rmdel removes the delta specified by the SID from each
named sees file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named sees file. In addition,
the SID specified must not be that of a version being edited for the purpose of
making a delta (i.e., if a p-file [see GET(SD_CMD)] exists for the named sees
file, the SID specified must not appear in any entry of the p-file).

If a directory is named, rmde 1 behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component of
the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed; non­
sees files and unreadable files are silently ignored.

The restrictions on removal of a delta are: (1) the user who made a delta
can remove it; (2) the owner of the file and directory can remove a delta.

SEE ALSO
DEL TA(SD _ CMD), GET(SD _ CMD), PRS(SD _ CMD).

USAGE

General.

LEVEL

Level 1.

System V Interface Definition Page 373

SACT(SD _CMD)

NAME

sact - print current sees file editing activity

SYNOPSIS

sact files

DESCRIPTION

The command sac t informs the user of any impending deltas to a named
sees file. This situation occurs when get -e has been previously exe­
cuted without a subsequent execution of de 1 tao If a directory is named on
the command line, sac t behaves as though each file in the directory were
specified as a named file, except that non-Sees files and unreadable files are
silently ignored. If a name of - is given, the standard input is read with
each line being taken as the name of an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

SEE ALSO

Field 1

Field 2

Field 3

Field 4

Field 5

specifies the SID of a delta that currently exists in the sees
file to which changes will be made to make the new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
(i.e., executed age t for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

DEL T A(SD _ CMD), GET(SD _ CMD), UNGET(SD _ CMD).

USAGE

General.

LEVEL
Levell.

Page 374 System V Interface Definition

NAME

sdb - symbolic debugger

SYNOPSIS

sdb [objfile [corfile [directory-list]]]

DESCRIPTION

The command s db is a symbolic debugger that can be used with C and
Fortran77 (F77) programs. It may be used to examine their object files and
core files and to provide a controlled environment for their execution.

The argument ob j f i leis an executable program file which has been
compiled with the -g (debug) option; if it has not been compiled with the
-g option, or if it is not an executable file, the symbolic capabilities of s db
will be limited, but the file can still be examined and the program debugged.
The default for objfile is a. out. The argument corfile is
assumed to be a core image file produced after executing ob j f i 1 e; the
default for corfile is core. The core file need not be present. A -
in place of cor f i 1 e will force s db to ignore any core image file. The
colon-separated list of directories (directory-list) is used to locate the source
files used to build 0 b j f i 1 e.

It is useful to know that at any time there is a current line and current file.
If cor f i 1 e exists then they are initially set to the line and file containing
the source statement at which the process terminated. Otherwise, they are
set to the first line in mainU. The current line and file may be changed
with the source file examination commands.

By default, warnings are provided if the source files used in producing
ob j f i 1 e cannot be found, or are newer than ob j f i 1 e •

Names of variables are written just as they are in C or F77. (The command
sdb does not truncate names.) Variables local to a procedure may be
accessed using the form procedure:variable. If no procedure name is given,
the procedure containing the current line is used by default.

It is also possible to refer to structure members as variable.member, pointers
to structure members as variable-> member and array elements as
variablelnumberl. Pointers may be dereferenced by using the form
pointenOI. Combinations of these forms may also be used. F77 common
variables may be referenced by using the name of the common block instead
of the structure name. Blank common variables may be named by the form
.variable.. A number may be used in place of a structure variable name, in
which case the number is viewed as the address of the structure, and the
template used for the structure is that of the last structure referenced by
sdb. An unqualified structure variable may also be used with various com­
mands. Generally, sdb will interpret a structure as a set of variables.
Thus, s db will display the values of all the elements of a structure when it
is requested to display a structure. An exception to this interpretation occurs
when displaying variable addresses. An entire structure does have an
address, and it is this value sdb displays, not the addresses of individual

System V Interface Definition Page 375

elements.

Elements of a multidimensional array may be referenced as
variablelnumberllnumberl ••• , or as variablelnumber,number, .. .l. In place of
number, the form number;number may be used to indicate a range of values,
• may be used to indicate all legitimate values for that subscript, or sub­
scripts may be omitted entirely if they are the last subscripts and the full
range of values is desired. As with structures, s db displays all the values of
an array or of the section of an array if trailing· subscripts are omitted. It
displays only the address of the array itself or of the section specified by the
user if subscripts are omitted. A multidimensional parameter in an F77 pro­
gram cannot be displayed as an array, but it is actually a pointer, whose
value is the location of the array. The array itself can be accessed symboli­
cally from the calling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in naming
variables may be used. Number is the occurrence of the specified procedure
on the stack, counting the top, or most current, as the first. If no procedure
is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file is
used.

While a process is running under sdb, all addresses refer to the executing
program.

Commands

The commands for examining data in the program are:

Page 376

t

T

b

h

1

Print a stack trace of the terminated or halted program.

Print the top line of the stack trace.
Print the value of variable according to length 1 and for­
mat m. A numeric count c indicates that a region of memory,
beginning at the address implied by variable, is to be
displayed. The length specifiers are:

one byte

two bytes (half word)

four bytes (long word)

System V Interface Definition

Legal values for mare:

c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
s Assume variable is a string pointer and print characters

starting at the address pointed to by the variable.
a Print characters starting at the variable's address. This for­

mat may not be used with register variables.
p pointer to procedure

disassemble machine-language instruction with addresses
printed numerically and symbolically.

The length specifiers are only effective with the formats c, d, u, 0 and x.
Any of the specifiers, c, I, and m, may be omitted. If all are omitted,
s db choses a length and a format suitable for the variable's type as
declared in the program. If m is specified, then this format is used for
displaying the variable. A length specifier determines the output length
of the value to be displayed, sometimes resulting in truncation. A
count specifier c tells sdb to display that many units of memory,
beginning at the address of variable. The number of bytes in one such
unit of memory is determined by the length specifier I, or if no length is
given, by the size associated with the variable. If a count specifier is
used for the s or a command, then that many characters are printed.
Otherwise successive characters are printed until either a null byte is
reached or 128 characters are printed. The last variable may be
redisplayed with the command .I.

linenumber? 1m
variable:? 1m

Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the for­
mat 1m. The default format is 'i'.

variable -1m
linenumber -1m
number-1m

Print the address of variable or linenumber, or the value of
number, in the format specified by 1m. If no format is given, then
Ix is used. The last variant of this command provides a con­
venient way to convert between decimal, octal and hexadecimal.

variable!value
Set variable to the given value. The value may be a number, a
character constant or a variable. The value must be well defined;
expressions which produce more than one value, such as struc­
tures, are not allowed. Character constants are denoted 'charac­
ter. Numbers are viewed as integers unless a decimal point or

System V Interface Definition Page 377

SDS(SD _CMD)

Page 378

exponent is used. In this case, they are treated as having the type
double. Registers are viewed as integers. The variable may be
an expression which indicates more than one variable, such as an
array or structure name. If the address of a variable is given, it is
regarded as the address of a variable of type into C conventions
are used in any type conversions necessary to perform the indi­
cated assignment.

x Print the machine registers and the current machine-language
instruction.

The commands for examining source files are:

e procedure
efile-name
e directory/
e directory file-name

The first two forms set the current file to the file containing pro­
cedure or to file-name. The current line is set to the first line in
the named procedure or file. Source files are assumed to be in
directory. The default is the current working directory. The
latter two forms change the value of directory. If no procedure,
file name, or directory is given, the current procedure name and
file name are reported.

/regular expression/
Search forward from the current line for a line containing a string
matching regular expression as in ED{BU _ CMD). The trailing /
may be deleted.

?regular expression?
Search backward from the current line for a line containing a
string matching regular expression as in ED{BU_CMD). The trail­
ing? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the
current line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new
current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command
with no arguments reuses the previous arguments to the program
while the R command runs the program with no arguments. An
argument beginning with < or > causes redirection for the

System V Interface Definition

SDB(SD_CMD)

standard input or output, respectively. If count is given, it
specifies the number of breakpoints to be ignored.

Iinenumber c count
Iinenumber C count

Continue after a breakpoint or interrupt. If count is given, the
program will stop when count breakpoints have been encountered.
With the C command, the signal which caused the program to
stop is reactivated; with the c command, it is ignored. If a line
number is specified then a temporary breakpoint is placed at the
line and execution is continued. The breakpoint is deleted when
the command finishes. (It may not be possible to set breakpoints
in some places, e.g., with shared libraries')

s count
S count

I

Single step the program through count lines. If no count is given
then the program is run for one line. S is equivalent to s except it
steps through procedure calls.

Single step by one machine-language instruction. With the I
command, the signal which caused the program to stop is reac­
tivated; with the i command, it is ignored.

k Kill the program being debugged.

proced ure (arg 1 ,arg2, .. .>
procedure(arg 1 ,arg2, .. .> / m

Execute the named procedure with the given arguments. Argu­
ments can be integer, character or string constants or names of
variables accessible from the current procedure. The second form
causes the value returned by the procedure to be printed accord­
ing to format m. If no format is given, it defaults to d.

linen umber b commands
Set a breakpoint at the given line. If a procedure name without a
line number is given (e.g., "proc:"), a breakpoint is placed at the
first line in the procedure even if it was not compiled with the -g
option. If no linen umber is given, a breakpoint is placed at the
current line. (It may not be possible to set breakpoints in some
places, e.g., with shared libraries')
If no commands are given, execution stops just before the break­
point and control is returned to s db. Otherwise the commands
are executed when the breakpoint is encountered and execution
continues. Multiple commands are specified by separating them
with semicolons. If k is used as a command to execute at a
breakpoint, control returns to s db, instead of continuing execu­
tion.

B Print a list of the currently active breakpoints.

System V Interface Definition Page 379

SDB(SD _CMD)

FILES

a.out
core

SEE ALSO

linenumber d
Delete a breakpoint at the given line. If no linenumber is given
then the breakpoints are deleted interactively. Each breakpoint
location is printed and a line is read from the standard input. If
the line begins with a y or d then the breakpoint is deleted.

D Delete all breakpoints.

Print the last executed line.

Miscellaneous commands:

!command
The command is interpreted by the command interpreter.

new-line
If the previous command printed a source line, then advance the
current line by one line and print the new current line. If the
previous command displayed a memory location, then display the
next memory location.

end-of-file
Scroll. Print the next 10 lines of instructions, source or data
depending on which was printed last. (The end-of-file character
is usually control-D.}

< filename
Read commands from filename until the end of file is reached,
and then continue to accept commands from standard input.
When sdb is told to display a variable by a command in such a
file, the variable name is displayed along with the value. This
command may not be nested; < may not appear as a command in
a file.

" string
Print the given string. The C escape sequences of the form
\character are recognized, where character is a nonnumeric char­
acter.

q Exit the debugger.

CC(SD _ CMD), ED(BU _ CMD).

USAGE

General.

LEVEL

Levell.

Page 380 System V Interface Definition

NAME

size - print section sizes of object files

SYNOPSIS
size [-0] [-x] [-V] files

DESCRIPTION

SIZE(SD _ CMD)

The size command produces section size information for each section in the
loaded object files. The sizes of the loaded sections are printed along with
the sum of these sizes. If an archive file is input to the size command, the
information for all archive members is displayed.

Numbers will be printed in decimal unless either the -0 or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respec­
tively.

The - V flag will supply the version information on the size command.

SEE ALSO

CC(SD_CMD), LD(SD_CMD).

USAGE

General.

LEVEL

Levell.

System V Interface Definition Page 381

STRIP(SD _CMD)

NAME

strip - strip symbolic information from an object file

SYNOPSIS

strip [-xl [-rl [-Vl file ...

DESCRIPTION

The strip command strips the symbolic information from object files or
archives of object files.

The amount of information stripped from the symbol table can be controlled
by using any of the following options:

-x Do not strip static or external symbol information.

-r Do not strip static or external symbol information, or relocation
information.

- V Print the version of the strip command, on the standard error out-
put.

If there is any relocation information in the object file and any symbol table
information is to be stripped, strip will report an error and terminate without
stripping file unless the -r flag is used.

SEE ALSO
AR(BU _ CMD), CC(SD _ CMD), LD(SD _ CMD).

USAGE

General.

The purpose of this command is to reduce the file storage overhead taken by
the object file.

LEVEL

Levell.

Page 382 System V Interface Definition

TIME(SD _CMD)

NAME

time - time a command

SYNOPSIS

time command

DESCRIPTION

The command is executed; after it is complete, time prints the elapsed
time during the command, the time spent executing system code, and the
time spent in execution of the user code. Times are reported in seconds.

The times are printed on standard error.

USAGE
General.

When time is used on a multi-processor system the sum of system and user
time could be greater than real time.

LEVEL

Levell.

System V Interface Definition Page 383

TSORT(SD _ CMD)

NAME

tsort - topological sort

SYNOPSIS

tsort [file]

DESCRIPTION

Tsort produces on the standard output a totally ordered list of items con­
sistent with a partial ordering of items mentioned in the input f i 1 e. If no
f i leis specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
LORDER(SD _ CMD).

USAGE
General.

LEVEL

Levell.

Page 384 System V Interface Definition

UNGET(SD _CMD)

NAME

unget - undo a previous get of an sees file

SYNOPSIS

unget [-rSID] [-s] [-n] files

DESCRIPTION

Unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in
the directory were specified as a named file, except that non-SeeS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an sees file to be
processed.

Keyletter arguments apply independently to each named file.

-rSID

-s

-0

SEE ALSO

Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the new delta). The use of
this key letter is necessary only if two or more outstanding gets
for editing on the same sees file were done by the same person
(login name). An error is reported if the specified SID is ambigu­
ous, or if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the intended
delta's SID.

Causes the retention of the file that was obtained by get,
which would normally be removed from the current directory.

DEL TA(SD _ CMD), GET(SD _ CMD), SACT(SD _ CMD).

USAGE

General.

LEVEL

Levell.

System V Interface Definition Page 385

VAL(SD_CMD)

NAME

val - validate sees file

SYNOPSIS
val

val -s] [-rSCCS] [-mname] [-ytype] file

DESCRIPTION
The command va 1 determines if the specified f i 1 e is an sees file meet­
ing the characteristics specified by the options. The arguments may appear
in any order.

val has a special argument, -, which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independentlY
processed as if it were a command line argument list.

val generates diagnostic messages on the standard output for each com­
mand line and file processed, and also returns a single 8-bit code upon exit as
described below.

The options are defined as follows. The effects of any option apply indepen­
dently to each named file on the command line.

- s Silences the diagnostic message normally generated on the stan­
dard output for any error that is detected while processing each
named file on a given command line.

- rSID SID (sees Identification String) is an sees delta number. A
check is made to determine if the SID is ambiguous (e. g., - r 1 is
ambiguous because it physically does not exist but implies 1.1,
1.2, etc., which may exist) or invalid (e. g., - r 1.0 or - r 1.1.0
are invalid because neither case can exist as a valid delta
number). If the SID is valid and not ambiguous, a check is made
to determine if it actually exists.

-mname name is compared with the sees %M% keyword in f i 1 e .

- y type t yp e is compared with the sees % Y% keyword in f i 1 e .

The 8-bit code returned by val is a disjunction of the possible errors, i. e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

Page 386

bit 0 == missing file argument;
bit 1 == unknown or duplicate keyletter argument;
bit 2 == corrupted sees file;
bit 3 == cannot open file or file not sees;
bit 4 == SID is invalid or ambiguous;
bit 5 == SID does not exist;
bit 6 == %Y%, -y mismatch;
bit 7 == %M%, -m mismatch;

System V Interface Definition

Note that val can process two or more files on a given command line and
in turn can process multiple command lines (when reading the standard
input). In these cases an aggregate code is returned - a logical OR of the
codes generated for each command line and file processed.

SEE ALSO
ADMIN{SD _ CMD), DEL T A{SD _ CMD), GET{SD _ CMD), PRS{SD _ CMD).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 387

WHAT(SD _CMD)

NAME

what - identify sees files

SYNOPSIS

what [-s] files

DESCRIPTION

The command wha t searches the given files for all occurrences of the pat­
tern that the get command substitutes for %Z% (@(#» and prints out
what follows until the first ", >, new-line, \, or null character. For example,
if the C program in file f.c contains

char ident []
tion" ;

"@(#)identification informa-

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c: identification information

f.o: identification information

a.out: identification information

Wha t is intended to be used in conjunction with the sees get command,
which automatically inserts identifying information, but it can also be used
where the information is inserted manually.

There is only one option (new in System V Release 2):

- s Quit after finding the first occurrence of pattern in each file.

ERRORS

Exit status is 0 if any matches are found, otherwise 1.

SEE ALSO

GET(SD _ CMD).

USAGE

General.

LEVEL

Levell.

Page 388 System V Interface Definition

XARGS(SD _CMD)

NAME

xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [options] [command[initia1-arguments]]

DESCRIPTION
Xargs combiries the fixed initial-arguments with arguments read
from standard input to execute the specified command one or more times.
The number of arguments read for each command invocation and the
manner in which they are combined are determined by the options specified.

If command is omitted, echo is used.

Arguments read in from standard input are defined to be contiguous strings
of characters delimited by one or more blanks, tabs, or new-lines; empty lines
ate always discarded. Blanks and tabs may be embedded as part of an argu­
ment if escaped or quoted. Characters enclosed in quotes (single or double)
are taken literally, and the delimiting quotes are removed. Outside of quoted
strings a backslash (\) quotes the next character.

Each argument list is constructed starting with the in i t i a 1-
arguments, followed by some number of arguments read from standard
input (Exception: see -i). Options -i, -1, and -n determine how
arguments are selected for each command invocation. When none of these
options are code~, the initial-arguments are followed by arguments
read continuously from standard input until an internal buffer is full, and
then command is executed with the accumulated args. This process is
repeated until there are no more args. When there are conflicts (e.g., -1 vs.
-n), the last option has precedence. The recognized options are:

-lnumber Command is executed for each non-empty number lines of

-irep/str

arguments from standard input. The last invocation of com­
mand will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first
new-line un 1 e s s the last character of the line is a blank or a
tab; a trailing blankltab signals continuation through the next
non-empty line. If number is omitted, 1 is assumed. Option
-x is forced.

Insert mode: command is executed for each line from stan­
dard input, taking the entire line as a single arg, inserting it in
ini tia1-arguments for each occurrence of rep1str.
A maximum of 5 arguments in initial-arguments
may each contain one or more instances of rep1str.
Blanks and tabs at the beginning of each line are thrown away.
Constructed arguments may not grow larger than 255 charac­
ters, and option -x is also forced. {} is assumed for
rep1str if not specified.

System V Interface Definition Page 389

XARGS(SD _CMD)

-nnumber Execute command using as many standard input arguments
as possible, up to number arguments maximum. Fewer
arguments will be used if their total size is greater than s i z e
characters, and for the last invocation if there are fewer than
number arguments remaining. If option -x is also invoked,
each numb e r arguments must fit in the s i z e limitation,
else xargs terminates execution.

-t Trace mode: The command and each constructed argument
list are echoed to standard error just prior to their execution.

-p Prompt mode: The user is asked whether to execute com­
mand each invocation. Trace mode (-t) is turned on to print
the command instance to be executed, followed by a ? ••
prompt. A reply of y (optionally followed by anything) will
execute the command; anything else, including just a carriage
return, skips that particular invocation of command.

-x Causes xargs to terminate if any argument list would be
greater than s i z e characters; -x is forced by the options
-i and -1. When neither of the options -i, -1, or -n
are coded, the total length of all arguments must be within the
size limit.

-ssize The maximum total size of each argument list is set to s i z e
characters; s i z e must be a positive integer less than or equal
to 470. If -s is not coded, 470 is taken as the default. Note
that the character count for s i z e includes one extra charac­
ter for each argument and the count of characters in the com­
mand name.

-eeofstr Eofstr is taken as the logical end-of-file string. Underscore (_)
is assumed for the logical EOF string if -e is not invoked.
The option -e with no eofstr coded turns off the logical
EOF string capability (underbar is taken literally). Xargs
reads standard input until either end-of-file or the logical EOF
string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it
cannot execute, command. (Thus command should explicitly exit
with an appropriate value to avoid accidentally returning with -1.)

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

Is $1 I xargs -i -t mv $1/0 $2/0

The following will combine the output of the parenthesized commands onto
one line, which is then echoed to the end of file log:

Page 390 System V Interface Definition

XARGS(SD _ CMD)

(logname; date; echo $0 $.) I xargs > > log

The user is asked which files in the current directory are to be archived and
archives them into arc h (1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -1 ar r arch
2. Is I xargs -p -1 I xargs ar r arch

The following will execute with successive pairs of arguments originally typed
as command line arguments:

echo $. I xargs -n2 diff

SEE ALSO
ECHO(BU _ CMD).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 391

YACC(SD_CMD)

NAME

yacc - a compiler-compiler

SYNOPSIS

yaee [-vd1t] grammar

DESCRIPTION

The yaee command provides a general tool for describing the input to a
program. More precisely, yaee converts a context-free grammar into a set
of tables for a simple automaton which executes an LR(I) parsing algorithm.
The grammar may be ambiguous; built-in precedence rules are used to break
ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical
analyzer function, . yy 1 ex, as well as ma i nand yye r r 0 r, an error
handling routine. These routines must be supplied by the user (however, see
the description of the yaee library below); lex is useful for creating lexi­
cal analyzers usable by yaee.

If the -v option is used, the file y. ou tpu t is prepared, which contains a
description of the parsing tables and a report on conflicts generated by ambi­
guities in the grammar.

If the -d option is used, the fiie y. tab. h is generated with the #define
statements that associate the yaee-assigned "token codes" with the user­
declared "token names". This allows source files other than y.tab.c to access
the token codes.

If the -1 option is used, the code produced in y.tab.c will not contain any
#line constructs. This should only be used after the grammar and the associ­
ated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yaee's -t option is used, this debugging code
will be compiled by default. Independent of whether the -t option was
used, the runtime debugging code is under the control of YYDEBUG, a pre­
processor symbol. If YYDEBUG has a non-zero value, then the debugging
code is included. If its value is zero, then the code will not be included. The
size and execution time of a program produced without the runtime debug­
ging code will be smaller and slightly faster.

Yacc Library

Page 392

The yaee library liby.a facilitates the initial use of yaee by provid­
ing the routines:

main 0

yyerror(s)
char *s;

These routines may be loaded by using the -ly option with ee.
mainO just calls yyparseO. yyerrorO simply prints the string (error

System V Interface Definition

message) s when a syntax error is detected.

YACC SPECIFICATIONS
The yacc user constructs a specification of the input process; this includes
rules describing the input structure. code to be invoked when these rules are
recognized, and a low-level routine to do the basic input. Ya c c then gen­
erates the (integer-valued) function yyparse; it in turn calls yylex, the
lexical analyzer, to obtain input tokens.

A structure recognized (and returned) by the lexical analyzer is called a ter­
minal symbol, here referred to as a token (literal characters must also be
passed through the lexical analyzer, and are also considered tokens). A
structure recognized by the parser is called a nonterminal symbol. Name
refers to either tokens or nonterminal symbols.

Every specification file consists of three sections: declarations,
grammar rules, and programs, separated by double percent marks
("%%"). The declarations and programs sections may be empty. If the
latter is empty. then the preceding %% mark separating it from the rules sec­
tion may be omitted.

Blanks. tabs and newlines are ignored, except that they may not appear in
names or multi-character reserved symbols. Comments are enclosed in
/* ... */. and may appear wherever a name is legal.

Names may be of arbitrary length, made up of letters, dot ".", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. Names
beginning in "yy" should be avoided. since the y a c c parser uses such
names.

A literal consists of a character enclosed in single quotes. The C escape
sequences (e.g., '\n') are recognized.

Declarations
The following declarators may be used in the declarations section:

% token
Names representing tokens must be declared; this is done by writ­
ing

%token namel name2 ...
in the declarations section. Every name not defined in this section
is assumed to represent a nonterminal symbol. Every nonterminal
symbol must appear on the left side of at least one grammar rule.

% start
The start symbol represents the largest, most general
structure described by the grammar rules. By default, it is the
left hand side of the first grammar rule; this default may be over­
ridden by declaring:

%start symbol

System V Interface Definition Page 393

Page 394

% left

% right

%nonassoc
Precedence and associativity rules attached to tokens are declared
using these keywords. This is done by a series of lines, each
beginning with one of the keywords %left, %right, or %nonassoc,
followed by a list of tokens. All tokens on the same line have the
same precedence level and associativity; the lines are in order of
increasing precedence or binding strength. %left denotes that the
operators on that line are left associative, and %right similary
denotes right associative operators. %nonassoc denotes operators
that may not associate with themselves. (A token declared using
one of these keywords need not be declared by %token as well.)

%prec
Unary operators must, in general, be given a precedence. In cases
where a unary and binary operator have the same symbolic
representation, but need to be given different precedences, the
keyword %prec is used to change the precedence level associated
with a particular grammar rule. %prec appears immediately after
the body of the grammar rule, before the action or closing semi­
colon (see Grammar Rules below), and is followed by a token
name or a literal. It causes the precedence of the grammar rule
to become that of the following token name or literal.

% union
By default, the values returned by actions and the lexical analyzer
are integers. Other types, including structures, are supported:
the ya c c value stack is declared to be a union of the various
types of values desired. Ya c c keeps track of types, and inserts
appropriate union member names so that the resulting parser will
be strictly type-checked. The declaration is done by including a
statement of the form:

%union {
body of union

Alternatively, the union may be declared in a header file, and a
typedef used to define the variable YYSTYPE to represent this
union. The header file must be included in the declarations sec­
tion, by using a "#include" construct within %{ and %} (see
below). Union members must be associated with the various
names. The construction < name> is used to indicate a union
member name; if this follows one of the keywords %token %left,
%right, and %nonassoc, the union member name is associated
with the tokens listed.

% type
This key word is used to associate union member names with

System V Interface Definition

nonterminals, in the form:
%type <ntype> a b ...

Other declarations and definitions can appear in the declarations sec­
tion, enclosed by the marks "%{" and "%}". These have global scope
within the file, so that they may be used in the rules and programs sec­
tions.

Grammar Rules

The rules section is comprised of one or more grammar rules. A gram­
mar rule has the form:

A:BODY;
A represents a nonterminal name, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are
yacc punctuation. If there are several successive grammar rules with
the same left hand side, the vertical bar 'I' can be used to avoid rewrit­
ing the left hand side; in this case the semicolon must occur only after
the last rule. The BODY part may be empty to indicate that the non­
terminal symbol matches the empty string.

The ASCII NUL character (0 or '\0') should not be used in grammar
rules.

With each grammar rule, the user may associate actions to be per­
formed each time the rule is recognized in the input process. These
actions may return values, and may obtain the values returned by previ­
ous actions. In addition, the lexical anlayzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input or out­
put, call subprograms, and alter external variables. An action is one or
more statements enclosed in curly braces "{" and "}". Certain pseudo­
variables can be used in the action: a value can be returned by assign­
ing it to $$; the variables $1, $2, ... , refer to the values returned by the
components of the right side of a rule, reading from left to right. By
default, the value of a rule is the value of the first element in it.
Actions may occur in the middle of a rule as well as at the end; an
action may access the values returned by symbols (and actions) to its
left, and in turn the value it returns may be accessed by actions to its
right.

Internal rules to resolve ambiguities are:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the gram­
mar rule that occurs earlier in the input sequence.

In addition, the declared precedences and associativities (see Declara­
tions Section above) are used to resolve parsing conflicts as follows:

System V Interface Definition Page 395

YACC(SD _CMD)

1. A precedence and associativity is associated with each grammar
rule; it is the precedence and associativity of the last token or
literal in the body of the rule. If the %prec keyword is used, it
overrides this default. Some grammar rules may have no pre­
cedence and associativity.

2. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two rules given above are
used.

3. If there is a shift/reduce conflict, and both the grammar rule and
the input symbol have precedence and associativity associated
with them, then the conflict is resolved in favor of the action
(shift or reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is used; left asso­
ciative implies reduce, right associative implies shift, and nonasso­
ciative implies error.

Conflicts resolved by precedence are not counted in the shift/reduce
and reduce/reduce conflicts reported by yacc.

The token name "error" is reserved for error handling. This name can
be used in grammar rules; in effect, it suggests places where errors are
expected, and recovery might take place. When an error is encoun­
tered, the parser behaves as if the token "error" were the current looka­
head token, and performs the action encountered. The lookahead token
is then reset to the token that caused the error. If no special error rules
have been specified, the processing halts when an error is detected.

In order to prevent a series of error messages, the parser, after detect­
ing an error, remains in error state until three tokens have been suc­
cessfully read and shifted. If an error is detected when the parser is
already in error state, no message is given, and the input token is
quietly deleted.

The statement
yyerrok;

in an action resets the parser back to its normal mode; it may be used
if it is desired to force the parser to believe that an error has been fully
recovered from.

The statement
yyclearin;

in an action is used to clear the previous lookahead token; it may be
used if a user-supplied routine is to be used to find the correct place to
resume input.

Programs

Page 396

The programs section may include the definition of the lexical analyzer
yy 1 e x, and any other functions, for example those used in the actions

System V Interface Definition

YACC(SD _ CMD)

specified in the grammar rules.

yylex is an integer-valued function, which returns the token number,
representing the kind of token read. If there is a value associated with
that token, it should be assigned to the external variable yy 1 va 1.
The parser and yylex must agree on these token numbers in order
for communication between them to take place. The numbers may be
chosen by yacc, or chosen by the user. In either case, the "#define"
construct of C is used to allow yylex to return these numbers sym­
bolically. If the token numbers are chosen by yacc, then literals are
given the numerical value of the character in the local character set,
and other names are assigned token numbers starting at 257.

A token may be assigned a number by following its first appearance in
the declarations section with a nonnegative integer. Names and literals
not defined this way retain their default definition. All token numbers
must be distinct.

The end of the input is marked by a special token called the end­
marker. The endmarker must have token number 0 or negative.
{these values are not legal for any other token.} All lexical analyzers
should return 0 or negative as a token number upon reaching the end of
their input. If the token upto, but excluding, the endmarker form a
structure which matches the start symbol, the parser accepts the
input. If the endmarker is seen in any other context, it is an error.

ERRORS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also
reported.

FILES
y.output
y.tab.c
y.tab.h

SEE ALSO
LEX(SD_CMD).

USAGE
General.

LEVEL
Levell.

System V Interface Definition Page 397

Part VI

Terminal Interface Extension Definition

12.1 OVERVIEW

Chapter 12
Introduction

The Terminal Interface Extension (Tn consists of the facilities provided by the
curseslterminfo package to allow application programs to perform terminal­
handling functions in a way that is independent of the type of the terminal actually
in use. Currently, the curseslterminfo package supports asynchronous character
terminals.

The System V Base, the Basic Utilities Extension, the Advanced Utilities Exten­
sion, and the Software Development Extension are prerequisites for the Terminal
Interface Extension.

The components of the Terminal Interface Extension are new in System V Release
2.

12.2 DESCRIPTION

DATA FILES

lusr/lib/terminfol? 1*

UTILITIES

tic tput

System V Interface Definition Page 401

LIBRARY ROUTINES

General Routines

addch getyx mvwinsch standend
addstr hasjc mvwprintw standout
attroff hasjl mvwscanw subwin
attron idlok newpad touchwin
attrset inch newterm typeahead
baudrate initscr newwin unctrl
beep insch nl waddch
box insertln nocbreak waddstr
cbreak intrflush nodelay wattroff
clear keypad noecho wattron
clearok killchar nonl wattrset
clrtobot leaveok noraw wclear
clrtoeol longname overlay wclrtobot
def -'prog_ mode move overwrite wclrtoeol
deCshell_mode mvaddch pnoutrefresh wdelch
delay_output mvaddstr prefresh wdeleteln
delch mvdelch printw werase
deleteln mvgetch raw wgetch
delwin mvgetstr refresh wgetstr
doupdate mvinch reset -'prog_ mode winch
echo mvinsch reset _shell_mode winsch
endwin mvprintw resetterm * * winsertln
erase mvscanw resetty wmove
erasechar mvwaddch saveterm ** wnoutrefresh
fix term ** mvwaddstr savetty wprintw
flash mvwdelch scanw wrefresh
flushinp mvwgetch scroll wscanw
getch mvwgetstr scrollok wsetscrreg
getstr mvwin set_term wstandend
gettmode ** mvwinch setscrreg wstandout

Terminfo Level Routines

mvcur setterm ** tparm vidattr
putp setupterm tputs vidputs

Page 402 System V Interface Definition

tgetent **
tgetflag **

Termeap Compatibility Routines

tgetnum **
tgetstr **

tgoto **

•• Level 2: December 1, 1985.

12.3 DEFINITIONS

tputs

The following environment varirables are used by the components of the TI exten­
sion. See SH(BU _ CMD) for information on the shell environment.

TERM

The environmental variable TERM usually contains a user's current terminal type
and can be set by the user.

TERMINFO
The environmental variable TERMINFO, if set, contains the place(s) where local
terminal descriptions can be found. TERMINFO can be set by the user. If it is
set, any program using CURSES(TI_LlB) will check the TERMINFO location for a
terminal's description before checking lusr/lib/terminfo, the standard
location for terminal descriptions. See CURSES(TI_LlB) for further information.

LINES and COLUMNS
The environmental variables LINES and COLUMNS, if set, contain the number
of lines and number of columns, respectively, on a terminal screen and can be set
by the user. If defined, the values of these variables, LINES and COLUMNS,
will override the screen size values given in a terminal's terminfo description. See
CURSES(TI_LlB) for further information.

12.4 TRADEMARKS

Tektronix is a registered trademark of Tektronix, Inc.
TeleVideo is a registered trademark of TeleVideo Systems, Inc.
VT100 is a trademark of Digital Equipment Corporation.
LSI is a trademark of Lear Siegler, Inc.
HP is a trademark of Hewlett-Packard Co.
Tektronix 4010 is a registered trademark of Tektronic, Inc.
Beehive is a trademark of Beehive International.
Ann Arbor is a trademark of Ann Arbor Terminals, Inc.
Teleray is a trademark of Research, Inc.
Micro-Term, ACT, and MIME are trademarks of Micro-Term, Inc.
Concept is a trademark of Human Designed Systems, Inc.
Teletype is a trademark of AT&T Teletype Corporation.

System V Interface Definition Page 403

System V Interface Definition

Chapter 13
Environment

Page 405

TERMINFO(TI_ENV)

NAME

terminfo - terminal capability database

SYNOPSIS

lusr/lib/terminfol?l*

DESCRIPTION

The terminfo database describes terminals, by giving a set of capabilities
which they have, by describing how operations are performed, by describing
padding requirements, and by specifying initialization sequences.

Entries in terminfo consist of a number of comma-separated fields. White
space after each comma is ignored. The first entry for each terminal gives
the names which are known for the terminal, separated by vertical bar (D
characters. The first name given is the most common abbreviation for the
terminal, the last name given should be a long name fully identifying the ter­
minal, and all others are understood as synonyms for the terminal name. All
names but the last should be in lower case and contain no blanks; the last
name may well contain upper case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using
the following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, "tty4424". Modes
that the hardware can be in, or user preferences, should be indicated by
appending a hyphen and an indicator of the mode. The following suffixes
should be used where possible:

Suffix Meaning
- w Wide mode (more than 80 columns)
-am With auto. margins (usually default)
-nam Without automatic margins
-n Number of lines on the screen (e.g., -60)
-na No arrow keys (leave them in local)
-np Number of pages of memory (e.g., -8p)
- rv Reverse video

To avoid conflicts with the naming conventions used in describing the
different modes of a terminal (e.g., -w), it is recommended that a terminal's
root name not contain hyphens. Further, it is good practice to make all ter­
minal names used in the terminfo database unique.

Capabilities

In the table below, "Variable" is the name by which the programmer (at the
terminfo level) accesses the capability. "Capname" is the short name used in
the text of the database, and is used by a person updating the database. The
"Termcap Code" is the two letter code that corresponds to the old termcap
capability name.

Capability names have no hard length limit, but an informal limit of 5 char­
acters has been adopted to keep them short. Whenever possible, names are

Page 406 System V Interface Definition

TERMINFO(TI_ENV)

chosen to be the same as or similar to the ANSI X3.64-1979 standard. Seman­
tics are also intended to match those of the specification.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the Strings
section of the table below, are denoted by the string key_ at the beginning of
their variable name.

(G) indicates that the string is passed through tparmO with parms as
given (#;).

(*) indicates that padding may be based on the number of lines affected

(#;) . d' h .th 10 Icates tel parameter.

Variable Cap- Term- Description
name cap

Code
Dooleans:
autoJeft_margin bw bw cubl wraps from colO to last column
auto Jight _margin am am Terminal has automatic margins
(Reserved) xsb xb Beehive (fl-escape, f2"'ctrl C)
ceol_standout~litch xhp xs Standout not erased by overwriting
eat_newline~litch xenl xn Newline ignored after 80 cols
erase_overstrike eo eo Can erase overstrikes with a blank
generic _type gn gn Generic line type (e.g. dialup, switch)
hard_copy hc hc Hardcopy terminal
has_meta _key km km (Reserved)
has_status Jine hs hs Has extra "status line"
insert_null~litch in in Insert mode distinguishes nulls
memory_above da da Display may be retained above screen
memory_below db db Display may be retained below screen
move jnsert _mode mir mi Safe to move while in insert mode
move _standou t _mode msgr ms Safe to move in standout modes
over_strike os os Terminal overstrikes
statusJine_esc_ok eslok es Escape can be used on the status line
(Reserved) xt xt Destructive tabs, magic smso char
tilde~litch hz hz Cannot print tildes
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff handshaking

Numbers:
columns cols co Number of columns in a line
init_tabs it it Tabs initially every # spaces
lines lines li Number of lines on screen or page
lines _ oC memory 1m 1m Lines of memory if > lines, O-varies
magic_cookie ~litch xmc sg # of blank chars left by smso or rmso
padding_baud Jate pb pb Lowest baud where padding is needed
virtual_terminal vt vt (Reserved)
width_status Jine wsl ws # of columns in status line

System V Interface Definition Page 407

TERMINFO(TI_ ENV)

Strings:
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
carriage Jeturn cr cr Carriage return (*)
change_scroll Jegion csr cs change to lines #1 through #2 (G)
clear_all_tabs tbc ct Clear all tab stops
clear_screen clear cl Clear screen and home cursor (*)
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display (*)
column_address hpa ch Horizontal position absolute (G)
command_character cmdch CC Term. settable cmd char in prototype
cursor_address cup cm Cursor motion to row #1 col #2 (G)
cursor_down cudl do Down one line
cursor_home home ho Home cursor (if no cup)
cursor jnvisible civis vi Make cursor invisible
cursor -'eft cubl Ie Move cursor left one space
cursor _ mem _address, mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal (undo vs/vi)
cursor Jight cufl nd Non-destructive space (cursor right>
cursor _to-'l II II Last line, first column (if no cup)
cursor_up cuul up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
delete_character dchl dc Delete character (*)
delete -'ine dll dl Delete line (*)
dis _sta tus -'ine dsl ds Disable status line
down_half -'ine hd hd Half-line down (forward 1/2 linefeed)
enter _alt _ charset _mode smacs as Start alternate character set
enter_blink _mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter _ ca _mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim _mode dim mh Turn on half-bright mode
enter jnsert _mode smir im Insert mode (enter)
enter "protected _mode prot mp Turn on protected mode
enter _reverse_mode rev mr Turn on reverse video IPode
enter_secure _mode invis mk Turn on bla.nk Jlloqe (chars invisible)
enter _standout_mode smso so Begin standout mode
enter_underline _mode smul us Start underscore mode
erase_chars ech ec Erase #1 characters (G)
exit _ alt _ charset _mode rmacs ae End alternate character set
exit_attribute_mode sgrO me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit jnsert _mode rmir ei End insert mode
exit_standout _mode rmso se End standout mode
exit_underline _mode rmul ue End underscore mode
flash_screen flash vb Visible bell (may not move cursor)
formjeed ff ff Hardcopy terminal page eject (*)

Page 408 System V Interface Definition

TERMINFO(TI_ENV)

from _status Jine fsl fs Return from status line
init_Istring isl il Terminal initialization string
init_2string is2 is Terminal initialization string
init_3string is3 i3 Terminal initialization string
initJile if if Name of file containing is
iniU)rog iprog iP Path name of program for init
insert_character ichl ic Insert character
insertJine ill al Add new blank line (*)
insert "'padding ip ip Insert pad after character inserted(*)
key_a 1 kal KI Upper left of keypad
key-a 3 ka3 K3 Upper right of keypad
key_b2 kb2 K2 Center of keypad
key_cl kcl K4 Lower left of keypad
key_c3 kc3 K5 Lower right of keypad
key_backspace kbs kb Sent by backspace key
key-catab ktbc k; Sent by clear-all-tabs key
key-clear kclr kC Sent by clear screen or erase key
key-ctab kctab kt Sent by clear-tab key
key-dc kdchl kD Sent by delete character key
key_dl kdll kL Sent by delete line key
key_down kcudl kd Sent by terminal down arrow key
key_eic krmir kM Sent by rmir or smir in insert mode
key_eol kel kE Sent by clear-to-end-of-line key
key_eos ked kS Sent by clear-to-end-of-screen key
keyJO kfO kO Sent by function key fO
keyJI kfl kl Sent by function key fl
keyJ2 kf2 k2 Sent by function key f2
keyJ3 kf3 k3 Sent by function key f3
keyJ4 kf4 k4 Sent by function key f4
keyJ5 kf5 k5 Sent by function key f5
keyJ6 kf6 k6 Sent by function key f6
key]7 kf7 k7 Sent by function key f7
keyJ8 kfS k8 Sent by function key f8
keyJ9 kf9 k9 Sent by function key f9
keyJIO kflO ka Sent by function key fl 0
key-home khome kh Sent by home key
keyjc kichl kI Sent by ins char/enter ins mode key
keyjl kill kA Sent by insert line
keyJeft kcubl kl Sent by terminal left arrow key
keyJI kll kH Sent by home-down key
key_npage knp kN Sent by next-page key
key"'ppage kpp kP Sent by previous-page key
key_right kcufl kr Sent by terminal right arrow key
key_sf kind kF Sent by scroll-forward/down key
key_sr kri kR Sent by scroll-backward/up key
key_stab khts kT Sent by set-tab key
key_up kcuul ku Sent by terminal up arrow key
keypad Jocal rmkx ke Out of "keypad transmit" mode
keypad_x mit smkx ks Put terminal in "keypad transmit" mode

System V Interface Definition Page 409

TERMINFO(TI_ENV)

labJO lfO 10 Labels on function key fO if not fO
labJI Ifl 11 Labels on function key fl if not fl
labJ2 If2 12 Labels on function key f2 if not f2
labJ3 10 13 Labels on function key f3 if not 0
labJ4 If4 14 Labels on function key f4 if not f4
labJ5 If5 15 Labels on function key f5 if not f5
labJ6 If6 16 Labels on function key f6 if not f6
labJ7 1f7 17 Labels on function key f7 if not f7
labJ8 1f8 18 Labels on function key f8 if not f8
labJ9 If9 19 Labels on function key f9 if not f9
labJI0 IflO la Labels on function key flO if not flO
meta_off rmm mo (Reserved)
meta_on smm mm (Reserved)
newline nel nw Newline (like cr followed by If)
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars (G*)
parm _delete Jine dl DL Delete #1 lines (G*)
parm _ down_cursor cud DO Move cursor down #1 lines (G*)
parmjch ich IC Insert #1 blank chars (G*)
parmjndex indn SF Scroll forward #1 lines (G)
parm jnsert Jine il AL Add #1 new blank lines (G*)
parm Jeft _cursor cub LE Move cursor left #1 spaces (G)
parm _right_cursor cuf RI Move cursor right #1 spaces (G*)
parmJindex rin SR Scroll backward #1 lines (G)
parm _up_cursor cuu UP Move cursor up #1 lines (G*)
pkey_key pfkey pk Prog funct key #1 to type string #2
pkeyJocal pftoc pi Prog funct key #1 to execute string #2
pkey_xmit pfx px Prog funct key #1 to xmit string #2
print_screen mcO ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
repea t _char rep rp Repeat char #1 #2 times (G*)
reset _1 string rsl rl Reset terminal completely to sane modes
reset _2string rs2 r2 Reset terminal completely to sane modes
reset _3string rs3 r3 Reset terminal completely to sane modes
resetJile rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row _address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position
scroll Jorward ind sf Scroll text up
scroll Jeverse ri sr Scroll text down
set_attributes sgr sa Define the video attributes #1-#9 (G)
set_tab hts st Set a tab in all rows, current column
set_window wind wi Current window: lines #1-#2 cols #3-#4
tab ht ta Tab to next 8 space hardware tab stop
to _sta tus _line tsl ts Go to status line, column #1
underline_char uc uc Underscore one char and move past it
up_halfJine hu hu Half-line up (reverse 112 linefeed)

Page 410 System V Interface Definition

TERMINFO(TI_ ENV)

A Sample Entry

The following entry, which describes the Concept-l 00, is among the more
complex entries in the terminfo file.

concept100 I c100 I concept I c1041 c100-4p I concept 100,

am, bel=AG, blank='EH, blink='EC, clear=AL$<2*>, cnorm=\Ew,

cols#80, cr=AM$<9>, cub1=AH, cud1=AJ, cuf1=\E=,

cup='Ea%p1%' '%+%c%p2%' '%+%c,

cuu1=\E;, cvvis='EW, db, dch1='E AA$<16*>, dim=\EE, d11=\E AB$<3*>,

ed='E AC$<16*>, el='E AU$<16>, eo, flash='Ek$<20>'EK, ht=\t$<8>,

i11=\E AR$<3*>, in, ind=AJ, • ind=AJ$<9>, ip=$< 16*>,

is2='EU'Ef'E7'ES'E8'El'ENH'EK'E'200'Eo&'200\Eo\47\E,

kbs=Ah, kcub1='E>, kcud1='E<, kcuf1='E=, kcuu1='E;,

kf1=\ES, kf2='E6, kf3='E7, khome=\E?,

lines#24, mir, pb#9600, prot=\EI, rep='Er%p1%c%p2%' '%+%c$<.2*>,

rev='ED, rmcup='Ev $<6>'Ep\r'n, rmir=\E'200, rmkx='Ex,

rmso='Ed'Ee, rmul='Eg, rmul='Eg, sgrO=\EN'200,

smcup=\EU'Ev 8p'Ep'r, smir='EAp, smkx='EX, smso='EE\ED,

smul='EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the begin­
ning of each line except the first. Lines beginning with "#" are taken as
comment lines. Capabilities in terminfo are of three types: boolean capabili­
ties which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular features,
and string capabilities which give a sequence which can be used to perform
particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has
automatic margins (i.e., an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence the description of
the Concept includes am. Numeric capabilities are followed by the character
'#' and then the value. Thus cols, which indicates the number of columns the
terminal has, gives the value '80' for the Concept.

Finally, string valued capabilities, such as el (clear to end of line sequence)
are given by the two- to five-character capname, an '-=', and then a string
ending at the next following ','. A delay in milliseconds may appear any­
where in such a capability, enclosed in $ < .. > brackets, as in el-\EK$ < 3 > ,
and padding characters are supplied by t pu t sO [see CURSES(TI_ LIB)] to
provide this delay. The delay can be either a number, e.g., '20', or a number
followed by an '*', i.e., '3*'. A ,*, indicates that the padding required is pro­
portional to the number of lines affected by the operation, and the amount
given is the per-affected-unit padding required. (In the case of insert charac­
ter, the factor is still the number of lines affected. This is always one unless
the terminal has xenl and the software uses it.> When a ,*, is specified, it is
sometimes useful to give a delay of the form '3.5' to specify a delay per unit

System V Interface Definition Page 411

TERMINFO(TI_ENV)

to tenths of milliseconds. (Only one decimal place is allowed.) If the termi­
nal has xon defined, the padding information is advisory and will only be used
for cost estimates or when the terminal is in raw mode.

A number of escape sequences are provided in the string valued capabilities
for easy encoding of characters there. Both \E and \e map to an ESCAPE
character, AX maps to a control-x for any appropriate x, and the sequences \n,
\1, \r, \t, \b, \1, and \s give a newline, linefeed, return, tab, backspace,
formfeed, and space. Other escapes include \" for A, \\ for \, \, for comma, \:
for :, and \0 for null. (\0 will produce \200, which does not terminate a
string but behaves as a null character on most terminals.) Finally, characters
may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the
example above. Note that capabilities are defined in a left-to-right order and
therefore, a prior definition will override a later definition.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal is a CRT, then the number of lines on the
screen is given by the lines capability. If the terminal wraps around to the
beginning of the next line when it reaches the right margin, then it should
have the am capability. If the terminal can clear its screen, leaving the cur­
sor in the home position, then this is given by the clear capability. If the ter­
minal overstrikes (rather than clearing a position when a character is struck
over) then it should have the os capability. If the terminal is a printing ter­
minal, with no soft copy unit, give it both hc and os. (os applies to storage
scope terminals, such as Tektronix 4010 series, as well as hard copy and APL
terminals.) If there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be carriage return, control
M.) If there is a code to produce an audible signal (bell, beep, etc) give this
as bel. If the terminal uses the xon-xoff flow-control protocol, like most ter­
minals, specify xon.

If there is a code to move the cursor one position to the left (such as back­
space) that capability should be given as cubl. Similarly, codes to move to
the right, up, and down should be given as cull, cuul, and cudl. These local
cursor motions should not alter the text they pass over; for example, 'cull-\s'
would not normally be used, because the space would erase the character
moved over.

A very important point here is that the local cursor motions encoded in ter­
minfo are undefined at the left and top edges of a CRT terminal. Programs
should never attempt to backspace around the left edge, unless bw is given,
and never attempt to go up locally off the top. In order to scroll text up, a
program will go to the bottom left corner of the screen and send the ind
(index) string.

Page 412 System V Interface Definition

TERMINFO(TI_ ENV)

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined when
not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have
the same semantics as ind and ri except that they take one parameter, and
scroll that many lines. They are also undefined except at the appropriate
edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a cufl from
the last column. The only local motion which is defined from the left edge is
if bw is given, then a cubl from the left edge will move to the right edge of
the previous row. If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the terminal
has switch selectable automatic margins, the terminfo file usually assumes
that this is on; i.e., am. If the terminal has a command which moves to the
first column of the next line, that command can be given as nel (newline). It
does not matter if the command clears the remainder of the current line, so if
the terminal has no cr and If it may still be possible to craft a working nelout
of one or both of them.

These capabilities suffice to describe hardcopy and "glass-tty" terminals.
Thus the model 33 Teletype is described as

331tty331ttylmodel 33 teletype,
bel=AG, eols#72, er=AM, eud1=AJ, he,
ind=AJ, os,

while the Lear Siegler ADM-3 is described as

adm3: lsi adm3,
am, bel=AG, elear=AZ, eols#80, er=AM,
eub1=AH, eud1=AJ, ind=AJ, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability. For example, to address the
cursor, the cup capability is given, using two parameters: the row and column
to address to. (Rows and columns are numbered from zero and refer to the
physical screen visible to the user, not to any unseen memory,) If the termi­
nal has memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it
in the manner of a Reverse Polish Notation calculator. Typically a sequence
will push one of the parameters onto the stack and then print it in some for­
mat. Often more complex operations are necessary. Binary operations are in
postfix form with the operands in the usual order. That is, to get x-5 one
would use n%gx%{5}%-".

System V Interface Definition Page 413

TERMINFO(TI_ENV)

The % encodings have the following meanings:

%%
%d
%3d
%03d
%c
%s

%p[l-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}
%1

%+%-
%* %1 %m
%& o/~ %"
%-%> %<
%!%
%i

%? expr %t then part
%e elsepart %;

outputs '%'
print popO as a decimal number
print popO in a field at least 3 spaces wide
use leading zeros to fill
print popO as a character
print popO as a character string

push ith parm
set variable [a-z] to popO
get variable [a-z] and push it
push char constant c
push integer constant nn
push strlen(popO)

arithmetic (%m is mod): push (pop 0 op PoP 0)
bit operations: push(popO op popO)
logical operations: push (pop 0 op pop 0)
unary operations push (op popO)
add 1 to first two parms (for ANSI terminals)

if-then-else, %e elsepart is optional.
else-irs are possible:
%: c1 %t bi :oe c2 :at b2 %~ c3 %t b3 %e b4;
(Cl are conditlOns, bl are bodIes)

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&aI2c03Y padded for 6 milliseconds. Note that the order
of the rows and columns is inverted here, and that the row and column are
printed as two digits. Thus its cup capability is
"cup-\E&a %p2%2dc%p 1 %2dY$ < 6 > ".

The Micro-Term ACT-IV needs the current row and column sent preceded by
a AT, with the row and column simply encoded in binary,
"cup-"T%pl %c%p2%c". Terminals which use "%c" need to be able to back­
space the cursor (cubt), and to move the cursor up one line on the screen
(cuut). This is necessary because it is not always safe to transmit \0, AD, and
\r, as the system may change or discard them. (The library routines dealing
with terminfo set tty modes so that tabs are never expanded, so \t is safe to
send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus "cup-\E-%pl %'\s'%+%c%p2%'\s'%+%c". After send­
ing '\E-', this pushes the first parameter, pushes the ASCII value for a space
(32), adds them (pushing the sum on the stack in place of the two previous
values) and outputs that value as a character. Then the same is done for the
second parameter. More complex arithmetic is possible using the stack.

Page 414 System V Interface Definition

TERMINFO(TI_ENV)

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand corner can be given as II; this may involve going up with cuul
from the home position, but a program should never do this itself (unless II
does) because it can make no assumption about the effect of moving up from
the home position. Note that the home position is the same as addressing to
(0,0): to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on Hewlett-Packard terminals cannot be used for home without los­
ing some of the other features of the terminal.)

If the terminal has row or column absolute cursor addressing, these can be
given as single parameter capabilities bpa (horizontal position absolute) and
vpa (vertical position absolute). Sometimes these are shorter than the more
general two parameter sequence (as with the HP2645) and can be used in
preference to cup. If there are parameterized local motions (e.g., move n
spaces to the right) these can be given as cud, cub, cuf, and cuu with a single
parameter indicating how many spaces to move. These are primarily useful if
the terminal does not have cup, such as the Tektronix 4025.

Area Clears

If the terminal can clear from the current position to the end of the line, leav­
ing the cursor where it is, this should be given as el. If the terminal can clear
from the current position to the end of the display, then this should be given
as ed. The ed capability is only defined from the first column of a line.
(Thus, it can be simulated by a request to delete a large number of lines, if a
true ed is not available.>

Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is,
this should be given as ill; this is done only from the first position of a line.
The cursor must then appear on the newly blank line. If the terminal can
delete the line which the cursor is on, then this should be given as dll; this is
done only from the first position on the line to be deleted. Versions of ill and
dll which take a single parameter and insert or delete that many lines can be
given as it and dl. If the terminal has a settable destructive scrolling region
(like the VT100) the command to set this can be described with the csr capa­
bility, which takes two parameters: the top and bottom lines of the scrolling
region. The cursor position is, alas, undefined after using this command. It is
possible to get the effect of insert or delete line using this command - the sc
and rc (save and restore cursor) commands are also useful. Inserting lines at
the top or bottom of the screen can also be done using ri or ind on many ter­
minals without a true insert/delete line, and is often faster even on terminals
with those features.

To determine whether a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cursor

System V Interface Definition Page 415

TERMINFOCTI_ENV)

to the top line of the scrolling region, and do a reverse index ri followed by a
delete line dll or index indo If the data that was originally on the bottom line
of the scrolling region was restored into the scrolling region by the dll or ind,
then the terminal has non-destructive scrolling regions. Otherwise, it has des­
tructive scrolling regions.

If the terminal has the ability to define a window as part of memory, which
all commands affect, it should be given as the parameterized string wind. The
four parameters are the starting and ending lines in memory and the starting
and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability
should be given; if display memory can be retained below, then db should be
given. These indicate that deleting a line or scrolling a full screen may bring
non-blank lines up from below or that scrolling back with ri may bring down
non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character which can be described using term info. The most common
insert/delete character operations affect only the characters on the current
line and shift characters off the end of the line rigidly. Other terminals, such
as the Concept 100 and the Perkin Elmer Owl, make a distinction between
typed and untyped blanks on the screen, shifting upon an insert or delete only
to an untyped blank on the screen which is either eliminated, or expanded to
two untyped blanks. Users can determine the kind of terminal they have by
clearing the screen and then typing text separated by cursor motions. Type
"abc def' using local cursor motions (not spaces) between t.he "abc" and
the "def'. Then position the cursor before the "abc" and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly
and characters to fall off the end, then the terminal does not distinguish
between blanks and untyped positions. If the "abc" shifts over to the "def'
which then move together around the end of the current line and onto the
next during the insert, then this is the second type of terminal, and the
description should be given the capability in, which stands for "insert null.
While these are two logically separate attributes (one line vs. multiline insert
mode, and special treatment of untyped spaces) we have seen no terminals
whose insert mode cannot be described with the single attribute.

The terminfo database can describe both terminals which have an insert
mode, and terminals which send a simple sequence to open a blank position
on the current line. Give as smir the sequence to get into insert mode. Give
as rmir the sequence to leave insert mode. Now give as ichl any sequence
needed to be sent just before sending the character to be inserted. Most ter­
minals with a true insert mode will not give ichl; terminals which send a
sequence to open a screen position should give it here. (If the terminal has
both, insert mode is usually preferable to ichl. Both should not be given
unless the terminal actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of milliseconds in ip (a string

Page 416 System V Interface Definition

TERMINFO(TI_ENV)

option}. Any other sequence which may need to be sent after an insert of a
single character may also be given in ip. If the terminal needs both to be
placed into an 'insert mode' and a special code to precede each inserted char­
acter, then both smir/rmir and ieht can be given, and both will be used. The
ieh capability, with one parameter, n, will repeat the effects of ieht n times.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g., if there is a tab after the insertion position).
If the terminal allows motion while in insert mode the capability mir cna be
given to speed up inserting in this case. Omitting mir will affect only speed.
Some terminals (notably Datamedia's) must not have mir because of the way
their insert mode works.

Finally, debt can be specified to delete a single character, deh with one
parameter, n, to delete n characters and delete mode by giving smde and rmde
to enter and exit delete mode (any mode the terminal needs to be placed in
for deht to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as eeb with one parameter.

Highlighting, Underlining, and Visible Bells

If the terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. One display form should be
chosen as standout mode, representing a good, high contrast, easy-on-the­
eyes, format for highlighting error messages and other attention getters. (If
there is a choice, reverse video plus half-bright is good, or reverse video
alone.) The sequences to enter and exit standout mode are given as smso and
rmso, respectively. If the code to change into or out of standout mode leaves
one or even two blank spaces on the screen, as the TeleVideo 912 and Teleray
1061 do, then xme should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and
rmul, respectively. If the terminal has a code to underline the current charac­
ter and move the cursor one space to the right, such as the Micro-Term
MIME, this can be given as ue.

Other capabilities to enter various highlighting modes include blink (blink­
ing), bold (bold or extra bright), dim (dim or half-bright), invis (blanking or
invisible text), prot (protected), rev (reverse video), sgrO (turn off all attri­
bute modes), smaes (enter alternate character set mode), and rmaes (exit
alternate character set mode). Turning on any of these modes singly mayor
may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking nine parameters. Each parameter is
either 0 or non-zero, as the corresponding attribute is on or off. The nine
parameters are, in order: standout, underline, reverse, blink, dim, bold, blank,
protect, and alternate character set. Not all modes need be supported by sgr,
only those for which corresponding separate attribute commands exist.

System V Interface Definition Page 417

TERMINFO(TI_ ENV)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies"
when they receive mode-setting sequences, which affect the display algorithm
rather than having extra bits for each character. Some terminals, such as the
Hewlett-Packard 2621, automatically leave standout mode when they move to
a new line or the cursor is addressed. Programs using standout mode should
exit standout mode before moving the cursor or sending a newline, unless the
msgr capability, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement) then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to
find block or blinking underline) give this sequence as evvis. If there is a way
to make the cursor completely invisible, give that as civis. The capability
enorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that
uses these capabilities, the codes to enter and exit this mode can be given as
smeup and rmeup. This arises, for example, from terminals like the Concept
with more than one page of memory. If the terminal has only memory rela­
tive cursor addressing and not screen relative cursor addressing, a one screen­
sized window must be fixed into the terminal for cursor addressing to work
properly. This is also used for the Tektronix 4025, where smeup sets the com­
mand character to be the one used by terminfo.

If the terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstrike, then the capability ul should
be given. If overstrikes are erasable with a blank, then this should be indi­
cated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed,
this information can be given. Note that it is not possible to handle terminals
where the keypad only works in local (this applies, for example, to the
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit
or not transmit, give these codes as smkx and rmkx. Otherwise the keypad is
assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as keubl, keufl, keuul, keudl, and khome, respec­
tively. If there are function keys such as ro, fl, ... , flO, the codes they send
can be given as kfO, kfl, ••• , kflO. If these keys have labels other than the
default ro through flO, the labels can be given as 110, Ifl, ••• , IflO. The codes
transmitted by certain other special keys can be given: kll (home down), kbs
(backspace), ktbe (clear all tabs), kctab (clear the tab stop in this column),
kelr (clear screen or erase key), kdehl (delete character), kdll (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end of
screen), kiehl (insert character or enter insert mode), kill (insert line), knp
(next page), kpp (previous page), kind (scroll forward/down), kri (scroll

Page 418 System V Interface Definition

TERMINFO(TI_ENV)

backward/up), khts (set a tab stop in this column). In addition, if the
keypad has a 3 by 3 array of keys including the four arrow keys, the other
five keys can be given as kat, ka3, kb2, kcl, and ke3. These keys are useful
when the effects of a 3 by 3 directional pad are needed.

Strings to program function keys can be given as pfkey, pfloe, and pfx. Each
of these strings takes two parameters: the function key number to program
(from 0 to 10) and the string to program it with. Function key numbers out
of this range may program undefined keys in a terminal dependent manner.
The difference between the capabilities is that pfkey causes pressing the given
key to be the same as the user typing the given string; pfloe causes the string
to be executed by the terminal in local; and pfx causes the string to be
transmitted to the computer.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab
stop can be given as bt (usually control I). A "backtab" command which
moves leftward to the next tab stop can be given as ebt. By convention, if the
terminal modes indicate that tabs are being expanded by the computer rather
than being sent to the terminal, programs should not use ht or ebt even if
they are present, since the user may not have the tab stops properly set. If
the terminal has hardware tabs which are initially set every n spaces when the
terminal is powered up, the numeric parameter it is given, showing the
number of spaces the tabs are set to. This is normally used to determine
whether to set the mode for hardware tab expansion, and whether to set the
tab stops. If the terminal has tab stops that can be saved in nonvolatile
memory, the terminfo description can assume that they are properly set. If
there are commands to set and clear tab stops, they can be given as tbe (clear
all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include isl, is2, and is3, initialization strings for the termi­
nal, iprog, the path name of a program to be run to initialize the terminal,
and if, the name of a file containing long initialization strings. These strings
are expected to set the terminal into modes consistent with the rest of the ter­
minfo description. They must be sent to the terminal each time the user logs
in and be output in the following order: run the program iprog, output isl;
is2; set tabs using tbe and hts; print the file if; and finally output is3. See the
USAGE section below. Most initialization is done with is2. Spec.'.·l terminal
modes can be set up without duplicating strings by putting the common
sequences in is2 and special cases in isl and is3. A pair of sequences that
does a harder reset from a totally unknown state can be analogously given as
rsl, rs2, rf, and rs3, analogous to is* and if. These strings should be output
when the terminal gets into a wedged state. Commands are normally placed
in rs* and rf only if they produce annoying effects on the screen and are not
necessary when logging in. For example, the command to set a terminal into
80-column mode would normally be part of is2, but on some terminals it
causes an annoying glitch of the screen and is not normally needed since the
terminal is usually already in 80 column mode. Therefore, the command is

System V Interface Definition Page 419

TERMINFO(TI_ ENV)

usually placed in rsl, not is2, for those terminals.

If a more complex sequence is needed to set the tabs than can be described
by using tbc and bts, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the tty driver. These are primarily
needed by hard copy terminals. Delays embedded in the capabilities cr, ind,
cubl, fI', and tab can be used to set the appropriate delay bits in the tty
driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Status Line

If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as an extra
line below the bottom line, into which one can cursor address normally (such
as the Heathkit h19's 25th line, or the 24th line of a VT100 which is set to a
23-line scrolling region), the capability bs should be given. Special strings to
go to the beginning of the status line and to return from the status line can be
given as tsl and fsl. {fsl must leave the cursor position in the same place it
was before tsl. If necessary, the sc and rc strings can be included in tsl and
fsl to get this effect.> The parameter tsl takes one parameter, which is the
column number of the status line the cursor is to be moved to. If escape
sequences and other special commands, such as tab and el, work while in the
status line, the flag eslok can be given. A string which turns off the status
line (or otherwise erases its contents) should be given as dsl. If the terminal
has commands to save and restore the position of the cursor, give them as sc
and rc. The status line is normally assumed to be the same width as the rest
of the screen, e.g., cols. If the status line is a different width (possibly
because the terminal does not allow an entire line to be loaded) the width, in
columns, can be indicated with the numeric parameter wsl.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this
can be given as pad. Only the first character of the pad string is used.

If the terminal can move up or down half a line, this can be indicated with bu
(half-line up) and hd (half-line down). This is primarily useful for super­
scripts and subscripts on hardcopy terminals. If a hardcopy terminal can
eject to the next page (form feed), give this as fI' (usually control L).

If there is a command to repeat a given character a given number of times
(to save time transmitting a large number of identical characters) this can be
indicated with the parameterized string rep. The first parameter is the char­
acter to be repeated and the second is the number of times to repeat it.
Thus, tparm (repea t _ char, ' x' , 10) is the same as
'xxxxxxxxxx' .

Page 420 System V Interface Definition

TERMINFO(TI_ENV)

If the terminal has a settable command character, such as the Tektronix
4025, this can be indicated with cmdch. A prototype command character is
chosen which is used in all capabilities. This character is given in the cmdch
capability to identify it.

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch, dialup, patch, and network, should include the gn (generic)
capability so that programs can complain that they do not know how to talk
to the terminal.

If the terminal uses xon/xoft' handshaking for flow control, give xon. Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted.

If the terminal has more lines of memory than will fit on the screen at once,
the number of lines of memory can be indicated with 1m. A value of Im#O
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the termi­
nal can be given as mcO: print the contents of the screen, mc4: turn off the
printer, and mcS: turn on the printer. When the printer is on, all text sent to
the terminal will be sent to the printer. It is undefined whether the text is
also displayed on the terminal screen when the printer is on. A variation
mcSp takes one parameter, and leaves the printer on for as many characters
as the value of the parameter, then turns the printer off. The parameter
should not exceed 255. All text, including mc4, is transparently passed to the
printer while an mcSp is in effect.

System V Interface Definition Page 421

TERM.NFO(T._ENV)

Special Cases

The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring spe­
cial support by terminfo. These are not meant to be construed as deficiencies
in the terminals; they are just differences between the working model and the
actual hardware.

Terminals which can not display tilde characters, such as certain Hazel­
tine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the
Concept 100, should indicate xenl. Those terminals whose cursor remains on
the right-most column until another character has been received, rather than
wrapping immediately upon receiving the right-most character, such as the
VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top
of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt. This capability is also taken to mean that it is not possible
to position the cursor on top of a "magic cookie"; therefore, to erase standout
mode it is instead necessary to use delete and insert line.

The Beehive Superbee terminals which do not transmit the escape or control
C characters, should specify xsb, indicating that the f1 key is to used for
escape and f2 for control C.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like
the other with certain exceptions. The string capability use can be given with
the name of the similar terminal. The capabilities given before use override
those in the terminal type invoked by use. A capability can be cancelled by
placing xx@ to the left of the capability definition. For example, the entry

tty4424-2:Teletype 4424 - displ func grp ii
rev@, sgr@, smul@, use=tty4424,

defines a Teletype 4424 terminal that does not have the rev, sgr, and smut
capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one use
capability may be given.

FILES

lusr/lib/terminfol?l* Compiled terminal description database

Page 422 System V Interface Definition

TERMINFO(TI_ENV)

SEE ALSO

CURSES(TI_LlB), PRINTF(BA_LIB), TIC(TI_CMD).

USAGE
Administrator and Application Program.

As described in the Tabs and Initialization section above, a terminal's ini­
tialization strings, isl, is2, and is3, if defined, must be output before a curses
program is run. An available mechanism for outputting such strings is the
TPUT(TI_CMD) command. A sample program which performs such initializa­
tion follows:

eval 'tput iprog'
tput isl
tput is2
if [-n "'tput tab'"]
then
stty tabs
else
stty -tabs
fi
tabs
cat -s '''tput ir"
tput is3
echo "\r\c"

A terminal's reset strings, rsl, rs2, and rs3, may be output in a similar
manner.

The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with VI(AU _ CMD) to check that they are
correct. To easily test a new terminal description ihe environment variable
TERMINFO can be set to the pathname of a directory containing the com­
piled description and programs will look there rather than in
lusr/lib/terminfo. To get the padding for insert line right a severe
test is to comment out XOD, edit a copy of a large file at 9600 baud with
VI(AU _ CMD), delete 16 or so lines from the middle of the screen, then hit the
'u' key several times quickly. If the terminal messes up, more padding is
usually needed. A similar test can be used for insert character.

FUTURE DIRECTIONS

The ability to output a terminal's initialization strings or reset strings through
the specification of a single argument will be incorporated into TPUT(TI_CMD).

System V Interface Definition Page 423

TERMINFO(TI_ENV)

The capabilities of terminfo will be enhanced to include a way to specify
mandatory padding; to define additional function keys; to support additional
% codes within the string capabilities; and to support line drawing alternate
character sets.

LEVEL
Levell.

Page 424 System V Interface Definition

System V Interface Definition

Chapter 14
Library Routines

Page 425

CURSES(TI_LlB)

NAME

curses - CRT screen handling and optimization package

SYNOPSIS

#inc1ude <curses.h>

DESCRIPTION

The curses library routines give the user a method of updating screens with
reasonable optimization. A program using these routines must be compiled
with the -1 cur s e s option of c c.

In order to initialize the routines, the routine in its c r 0 must be called
before any of the other routines that deal with windows and screens are used.
The routine endwinO should be called before exiting. To get character­
at-a-time input without echoing (most interactive, screen oriented-programs
want this), the following sequence should be used:

ini tscrO; cbreakO; noechoO;
Most programs would additionally use the sequence:

non1(); intrf1ush(stdscr, FALSE);
keypad(stdscr, TRUE);

Before a curses program is run, a terminal's tabs stops should be set and its
initialization strings, if defined, must be output. See TERMINFO(TI_ENV) for
further details.

The curses library permits manipulation of data structures called windows
which can be thought of as two-dimensional arrays of characters representing
all or part of a CRT screen. A default window called stdscr is supplied,
and others can be created with newwinO. Windows are referred to by
variables declared as "WINDOW *". These data structures are manipulated
with routines described below, among which the most basic are move 0 and
addchO. (More general versions of these routines are included with names
beginning with w, allowing one to specify a window. The routines not begin­
ning with W affect s t d s c r.) Then ref res h 0 is called, telling the rou­
tines to make the user's CRT screen look like stdscr. The characters in
a window are actually of type chtype, so that other information about the
character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows
which are not constrained to the size of the screen and whose contents need
not be completely displayed.

In addition to drawing characters on the screen, video attributes may be
included which cause the characters to show up in such modes as underlined
or in reverse video on terminals that support such display enhancements. On
input, curses is also able to translate arrow and function keys that transmit
escape sequences into single values. The video attributes and input values use
names such as A_REVERSE and KEY _LEFf.

The environment variables LINES and COLUMNS may also be set to over­
ride termin/o's idea of how large a screen is. These may be used in a

Page 426 System V Interface Definition

CURSES(TI_LlB)

Teletype 5620 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using
curses will check for a local terminal definition before checking in the stan­
dard place. For example, if TERM is set to tty 4 4 2 4 ' " then the
compiled terminal definition is found in
lusr/lib/terminfo/t/tty4424. (The "t" is copied from the first
letter of "tty4424" to avoid creation of huge directories.> However, if TER­
MINFO is set to SHOME/myterms, curses will first check
SHOME/myterms/t/tty4424, and if that fails, will then check
lusr/lib/terminfo/t/tty4424. This is useful for developing
experimental. definitions or when write permission in
lusr/lib/terminfo is not available.

The integer variables LINES and eOLS are defined in <curses. h>
and will be filled in by ini tscrO with the size of the screen. The con­
stants TRUE and FALSE have the values 1 and 0, respectively.

The curses routines also define the WINDOW * variable cur s cr which is
used for certain low-level operations like clearing and redrawing a garbaged
screen. curscr can be used in only a few routines. If the window argu­
ment to clearokO is curscr, the next call to wrefreshO with
any window will cause the screen to be cleared and repainted from scratch.
If the window argument to wrefreshO is curscr, the screen in
immediately cleared and repainted from scratch. This is how most programs
would implement a "repaint-screen" function.

Routines

Many of the following routines have two or more versions. The routines
prefixed with w require a window argument. The routines prefixed with p
require a pad argument. Those without a prefix generally use stdscr.

The routines prefixed with mv require x and y coordinates to move to
before performing the appropriate action. The mv routines imply a call to
move before the call to the other routine. The upper left corner is always
(0,0), not (1,1).

The routines prefixed with mvw take both a window argument and x and
y coordinates. The window argument is always specified before the coordi­
nates.

In each case, win is the window affected and pad is the pad affected;
win and pad are always of type WINDOW. Option setting routines
require a boolean flag bf with the value TRUE or FALSE; bf is always
of type bool. The variables ch and attrs below are always of type
chtype. The types WINDOW, bool, and chtype are defined in
<curses. h>. All other arguments are integers.

See the RETURN VALUE section for information on the values returned by
the routines described below.

System V Interface Definition Page 427

CURSES(TI_LlB)

Overall Screen Manipulation

initscrO
The first routine called should almost always be ini tscrO. This
will determine the terminal type and initialize all curses data struc­
tures. in its c r 0 also arranges that the first call to ref res h 0
will clear the screen. If errors occur, ini tscrO will write an
appropriate error message to standard error and exit. If the program
wants a indication of error conditions, newtermO should be used
instead of ini tscrO.

endwinO
A program should always call endwinO before exiting or escaping
from curses mode temporarily. This routine will restore tty modes,
move the cursor to the lower left corner of the screen and reset the ter­
minal into the proper non-visual mode. To resume after a temporary
escape, call refreshO or doupdateO.

SCREEN -newterm(type, outfd, infd)
char -type;
FILE -outfd, -infd;

A program which outputs to more than one terminal should use
newtermO for each terminal instead of ini tscrO. A program
which wants an indication of error conditions, so that it may continue
to run in a line-oriented mode if the terminal cannot support a screen­
oriented program, would also use this routine. The routine
newtermO should be called once for each terminal. It returns a
variable of type SCREEN - which should be saved as a reference to
that terminal. The arguments are the type of the terminal to be used
in place of TERM, a file pointer for output to the terminal, and
another file pointer for input from the terminal. The program must
also call endwinO for each terminal being used when it is done run­
ning.

SCREEN -set_term(new)
SCREEN -new;

This routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. The previous termi­
nal is returned by the routine. This is the only routine which manipu­
lates SCREEN pointers; all other routines affect only the current ter­
minal.

Window and Pad Manipulation

refreshO

wrefresh(win)
WINDOW ·win;

Page 428

These routines must be called to get any output on the terminal, as
other routines merely manipulate data structures. wrefreshO
copies the named window to the physical terminal screen, taking into

System V Interface Definition

CURSES(TI_ LIB)

account what is already there in order to do optimizations.
refreshO is the same, using stdscr as a default screen. Unless
lea v e 0 k 0 has been enabled, the physical cursor of the terminal is
left at the location of the window's cursor.

NOTE: refresh is a macro.

wnoutrefresh(win)
WINDOW *win;

doupdate()
These two routines allow multiple updates with more efficiency than
wr e f res h 0 alone. In addition to all of the window structures,
curses keeps two data structures representing the terminal screen: a
physical screen, describing what is actually on the screen, and a virtual
screen, describing what the programmer wants to have on the screen.

The routine wr e f res h () works by first calling
wnoutrefreshO, which copies the named window to the virtual
screen, and then calling doupdateO, which compares the virtual
screen to the physical screen and does the actual update. If the pro­
grammer wishes to output several windows at once, a series of calls to
wrefreshO will result in alternating calls to wnoutrefreshO
and doupda te 0, causing several bursts of output to the screen. By
first calling wnoutrefreshO for each window, it is then possible
to call doupda te 0 once, resulting in only one burst of output, with
probably fewer total characters transmitted and certainly less CPU time
used.

WINDOW *newwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin y, begin x;

Create a new window with the-given number-of lines, nlines, and
columns, nco 1 s. The upper left corner of the window is at line
begin y, column begin x. If either nl ine s or ncol s is
zero, they will be defaulted to- LINES - begin_yand eOLS -

begin x. A new full-screen window is created by calling
n eww i ~ (0,0,0,0).

mvwin(win, y, x)
WINDOW *win;
int y, x;

Move the window so that the upper left corner will be at position (x,
y). If the move would cause the window to be off the screen, it is an
error and the window is not moved.

*subwin(orig, WINDOW

begin_x)
WINDOW *orig;

nlines, ncols,

int nlines, ncols, begin_y, begin_x;
Create a new window with the given number of lines, nlines, and
columns, ncols. The window is at position (begin y,

System V Interface Definition Page 429

CURSES(TI_LlB)

begin x) on the screen. (This position is relative to the screen, and
not to the window 0 rig.) The window is made in the middle of the
window orig, so that changes made to one window will affect both
windows. When using this routine, often it will be necessary to call
touehwinO before calling wrefreshO.

delwin(win)
WINDOW .win;

Deletes the named window, freeing up all memory associated with it.
In the case of overlapping windows, subwindows should be deleted
before the main window.

WINDOW .newpad(nlines, neols)
int nlines, neols;

Creates a new pad data structure. A pad is like a window. except
that it is not restricted by the screen size, and is not necessarily associ­
ated with a particular part of the screen. Pads can be used when a
large window is needed, and only a part of the window will be on the
screen at one time. Automatic refreshes of pads (e.g. from scrolling or
echoing of input> do not occur. It is not legal to call refreshO
with a pad as an argument; the routines prefreshO or
pnoutrefreshO should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for display.

prefresh(pad, pminrow, pmineol, sminrow, smineol,
smaxrow, smaxeol)
WINDOW .pad;
int pminrow, pmineol, sminrow, smineol, smaxrow,
smaxeol;
pnoutrefresh(pad,
smineol, smaxrow,
WINDOW .pad;

pminrow,
smaxeol)

pmineol, sminrow,

int pminrow, pmineol, sminrow, smineol, smaxrow,
smaxeol;

These routines are analogous to wr e f res h 0 and
wnoutrefreshO except that pads, instead of windows, are
involved. The additional parameters are needed to indicate what part
of the pad and screen are involved. pminrow and pmineol
specify the upper left corner, in the pad, of the rectangle to be
displayed. sminrow, smineol, smaxrow, and smaxeol
specify the edges, on the screen, of the rectangle to be displayed in.
The lower right corner in the pad of the rectangle to be displayed is
calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their
respective structures.

Output

Page 430 System V Interface Definition

CURSES(TI_LlB)

These routines are used to "draw" text on windows.

addch(ch)
chtype ch;

waddch(win, ch)
WINDOW .win;
chtype ch;

mvaddch(y, x, ch)
int y, x;
chtype ch;

mvwaddch(win, y, x, ch)
WINDOW .win;
int y, x;
chtype ch;

The character ch is put into the window at the current cursor position
of the window and the position of the window cursor is advanced. Its
function is similar to that of pu t c ha r . At the right margin, an
automatic newline is performed. At the bottom of the scrolling region,
if scrollokO is enabled, the scrolling region will be scrolled up one
line.

If ch is a tab, newline, or backspace, the cursor will be moved
appropriately within the window. A newline also does a
clrtoeolO before moving. Tabs are considered to be at every
eighth column. If ch is another control character, it will be drawn in
the AX notation. Calling winchO after adding a control character
will not return the control character, but instead will return the
representation of the control character.

Video attributes can be combined with a character by or-ing them into
the parameter. This will result in these attributes also being set. (The
intent here is that text, including attributes, can be copied from one
place to another using inchO and addchO') See standoutO
below.

NOTE: addch, mvaddch, and mvwaddch are macros.

addstr(str)
char .str;

waddstr(win, str)
WINDOW .win;
char .str;

mvaddstr(y, x, str)
int y, x;
char .str;

mvwaddstr(win, y, x, str)
WINDOW .win;
int y, x;
char .str;

System V Interface Definition Page 431

CURSES(TI_ LIB)

These routines write all the characters of the null terminated character
string str on the given window. It is equivalent to calling
wad d c h () once for each character in the string.

NOTE: addstr, mvaddstr, and mvwaddstr are macros.

attroff(attrs)
int attrs;

wattroff(win, attrs)
WINDOW *win;
int attrs;

attron(attrs)
int attrs;

wattron(win, attrs)
WINDOW *win;
int attrs;

attrset(attrs)
int attrs;

wattrset(win, attrs)
WINDOW *win;
int attrs;

standend ()

wstandend(win)
WINDOW *win;

standout()

wstandout(win)
WINDOW *win;

These routines manipulate the current attributes of the named window.
These attributes can be any combination of A _ STANDOUT,

A_REVERSE, A BOLD, A DIM, A BLINK, and
A UNDERLINE. These constants are defined iIi" <curses. h>
and can be combined with the C I (or) operator.

Page 432

The current attributes of a window are applied to all characters that
are written into the window with waddchO. Attributes are a pro­
perty of the character, and move with the character through any scrol­
ling and insert/delete line/character operations. To the extent possible
on the particular terminal, they will be displayed as the graphic rendi­
tion of characters put on the screen.

attrset(attrs) sets the current attributes of the given window to
a ttrs . a ttroff(a ttrs) turns off the named attributes
without turning on or off any other attributes. attron(attrs)
turns on the named attributes without affecting any others. stan­
doutO is the same as attron (A STANDOUT). standendO
is the same as attrset(O), that is,it turns off all attributes.

NOTE: attroff, attron, and attrset are macros.

System V Interface Definition

CURSES(TI_LlB)

beep()

flash()
These routines are used to signal the terminal user. beepO will
sound the audible alarm on the terminal, if possible, and if not, will
flash the screen (visible bell), if that is possible. flashO will flash
the screen, and if that is not possible, will sound the audible signal. If
neither signal is possible, nothing will happen. Nearly all terminals
have an audible signal (bell or beep), but only some can flash the
screen.

box(win, vert, hor)
WINDOW *win;
chtype vert, h~r;

A box is drawn around the edge of the window. vert and hor are
the characters the box is to be drawn with. If vert and hor are 0,
then appropriate default characters will be used.

erase ()

werase(win)
WINDOW *win;

These routines copy blanks to every position in the window.

NOTE: era s e is a macro.

clear()

wclear(win)
WINDOW *win;

These routines are like eraseO and weraseO, but they also call
clearokO, arranging that the screen will be cleared completely on
the next call to wrefreshO for that window and repainted from
scratch.

NOTE: c 1 ear is a macro.

clrtobot()

wclrtobot(win)
WINDOW *win;

All lines below the cursor in this window are erased. Also, the current
line to the right of the cursor, inclusive, is erased.

NOTE: clrtobot is a macro.

clrtoeol ()

wclrtoeol(win)
WINDOW *win;

The current line to the right of the cursor, inclusive, is erased.

NOTE: clrtoeol is a macro.

delay_output(ms)
int ms;

Insert ms millisecond pause in output. It is not recommended that

System V Interface Definition Page 433

CURSES(TI_ LIB)

this routine be used extensively since padding characters are used
rather than a CPU pause.

delch(}

wdelch(win}
WINDOW *win;

mvdelch(y, x}
int y, x;

mvwdelch(win, y, x}
WINDOW *win;
int y, x;

The character under the cursor in the window is deleted. All charac­
ters to the right on the same line are moved to the left one position and
the last character on the line is filled with a blank. The cursor position
does not change (after moving to y, x, if specified). {This does not
imply use of the hardware delete character feature.}

NOTE: delch, mvdelch, and mvwdelch are macros.

deleteln(}

wdeleteln(win}
WINDOW *win;

The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. The cursor position does not change. {This does not imply use
of the hardware delete line feature.}

NOTE: deleteln is a macro.

getyx(win, y, x}
WINDOW *win;
int y, x;

The cursor position of the window is placed in the two integer variables
y and x. This is implemented as a macro, so no & is necessary
before the variables.

NOTE: getyx is a macro.

insch(ch}
chtype ch;

winsch(win, ch}
WINDOW *win;
chtype ch;

mvinsch(y, x, ch}
int y, x;
chtype ch;

mvwinsch(win, y, x, ch}
WINDOW *win;
int y, x;
chtype ch;

Page 434 System V Interface Definition

CURSES(TI_LlB)

The character chis inserted before the character under the cursor.
All characters to the right are moved one space to the right, possibly
losing the rightmost character on the line. The cursor position does not
change, (after moving to y, x, if specified). (This does not imply use
of the hardware insert character feature.}

NOTE: insch, mvinsch, and mvwinsch are macros.

insertln(

winsertln(win)
WINDOW *win;

A blank line is inserted above the current line and the bottom line is
lost. (This does not imply use of the hardware insert line feature.}

NOTE: insertln is a macro.

move(y, x)

wmove(win, y, x)
WINDOW *win;
int y, x;

The cursor associated with the window is moved to the given location.
This does not move the physical cursor of the terminal until
ref res h 0 is called. The position specified is relative to the upper
left corner of the window, which is (0,0).

NOTE: move is a macro.

overlay(srcwin, dstwin)
WINDOW *srcwin, *dstwin;

overwrite(srcwin, dstwin)
WINDOW *srcwin, *dstwin;

These routines overlay srcwin on top of dstwin, that is, all text
in srcwin is copied into dstwin. Scrwin and dstwin are
not required to be the same size. The copy starts at (0,0) on each win­
dow. The difference is that overlayO is non-destructive (blanks
are not copied) while overwri teO is destructive.

printw(fmt [, arg] ..•)
char *fmt;

wprintw (win, fmt [, arg] •••)
WINDOW *win;
char *fmt;

mvprintw(y, x, fmt [, arg] •..)
int y, x;
char *fmt;

mvwprintw(win, y, x, fmt [, arg] .•.)
WINDOW *win;
int y, x;
char *fmt;

These routines are analogous to pr intf. The string which would be

System V Interface Definition Page 435

CURSES(TI_LlB)

output by printfO is instead output using waddstrO on the
given window.

scroll(win)
WINDOW *win;

The window is scrolled up one line. This involves moving the lines in
the window data structure. As an optimization, if the window is
stdscr and the scrolling region is the entire window, the physical
screen will be scrolled at the same time.

touchwin(win)
WINDOW *win;

Input

Throwaway all optimization information about which parts of the win­
dow have been touched, by pretending that the entire window has been
drawn on. This is sometimes necessary when using overlapping win­
dows, since a change to one window will affect the other window, but
the records of which lines have been changed in the other window will
not reflect the change.

The following routines are used to obtain input from windows.

getch ()

wgetch(win)
WINDOW *win;

mvgetch(y, x)
int y, x;

mvwgetch(win, y, x)
WINDOW *win;
int y, x;

Page 436

A character is read from the terminal associated with the window. In
nodelay mode, if there is no input waiting, the value ERR is returned.
In delay mode, the program will hang until the system passes text
through to the program. Depending on the setting of c b rea k (), this
will be after one character, or after the first newline. Unless noe­
choO has been set, the character will also be echoed into the desig­
nated window.

If keypadO is TRUE, and a function key is pressed, the token for
that function key will be returned instead of the raw characters. Possi­
ble function keys are defined in <curses. h> with integers begin­
ning with 0401, whose names begin with KEY • If a character is
received that could be the beginning of a function-key (such as escape),
curses will set a timer. If the remainder of the sequence does not come
in within the designated time, the character will be passed through,
otherwise the function key value will be returned. For this reason, on
many terminals, there will be a delay after a user presses the escape
key before the escape is returned to the program. (Use by a program­
mer of the escape key for a single character function is discouraged,)

System V Interface Definition

CURSES(TI_LlB)

NOTE: getch, mvgetch, and mvwgetch are macros.

getstr(str)
char *str;

wgetstr(win, str)
WINDOW *win;
char *str;

mvgetstr(y, x, str)
int y, x;
char *str;

mvwgetstr(win, y, x, str)
WINDOW *win;
int'o y, x;
char *str;

A series of calls to getchO is made, until a newline and carriage
return is received. The resulting value is placed in the area pointed at
by the character pointer str. The user's erase and kill characters
are interpreted.

NOTE: getstr, mvgetstr, and mvwgetstr are macros.

flushinp()
Throws away any typeahead that has been typed by the user and has
not yet been read by the program.

inch ()

winch(win)
WINDOW *win;

mvinch(y, x)
int y, x;

mvwinch(win, y, x)
WINDOW *win;
int y, x;

The character, of type chtype, at the current position in the named
window is returned. If any attributes are set for that position, their
values will be OR'ed into the value returned. The predefined constants
A CHARTEXT and A ATTRIBUTES, defined in <curses. h>,
cap be used with the &,- (logical and) operator to extract the character
or 'attributes alone.

NOTE: inch, winch, mvinch, and mvwinch are macros.

scanw(fmt [, arg] ...)
char *fmt;

wscanw(win, fmt [, arg] •.•)
WINDO~ *win;
char *fmt;

mv~canw(y, x, fmt [, arg] ...)
int y, x;

System V Interface Definition Page 437

CURSES(TI_L1B)

char *fmt;

mvwscanw(win, y, x, fmt [, arg] ...)
WINDOW *win;
int y, x;
char *fmt;

These routines correspond to scanf. wgetstrO is called on the
window, and the resulting line is used as input for the scan.

Output Options Setting

These routines set options within curses that deal with output. All options
are initially FALSE, unless otherwise stated. It is not necessary to turn
these options off before calling endwin().

clearok(win, bf)
WINDOW *win;
bool bf;

If bf is TRUE, the next call to wrefreshO with this window will
clear the screen completely and redraw the entire screen from scratch.
This is useful when the contents of the screen are uncertain, or in some
cases for a more pleasing visual effect.

idlok(win, bf)
WINDOW *win;
bool bf;

If enabled (bf is TRUE), curses will consider using the hardware
insert/delete line feature of terminals so equipped. If disabled (bf is
FALSE), curses will very seldom use this feature. (The insert/delete
character feature is always considered,) This option should be enabled
only if the application needs insert/delete line, for example, for a screen
editor. It is disabled by default because insert/delete line tends to be
visually annoying when used in applications where it isn't really needed.
If insert/delete line cannot be used, curses will redraw the changed por­
tions of all lines.

leaveok(win, bf)
WINDOW *win;
bool bf;

Normally, the hardware cursor is left at the location of the window cur­
sor being refreshed. This option allows the cursor to be left wherever
the update happens to leave it. It is useful for applications where the
cursor is not used, since it reduces the need for cursor motions. If pos­
sible, the cursor is made invisible when this option is enabled.

setscrreg(top, bot)
int top, bot;

wsetscrreg(win, top, bot)
WINDOW *win;
int top, bot;

Page 438 System V Interface Definition

CURSES(TI_LlB)

These routines allow the user to set a software scrolling region in a win­
dow. top and bot are the line numbers of the top and bottom
margin of the scrolling region. (Line 0 is the top line of the window.)
If this option and scrollokO are enabled, an attempt to move off
the bottom margin line will cause all lines in the scrolling region to
scroll up one line. Only the text of the window is scrolled. (Note that
this has nothing to do with use of a physical scrolling region capability
in the terminal, like that in the VT100. If idlokO is enabled and
the terminal has either a scrolling region or insert/delete line capability,
they will probably be used by the output routines.)

scrollok(win, bf)
WINDOW *win;
bool bf;

This option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either from a
newline on the bottom line, or typing the last character of the last line.
If disabled, the cursor is left on the bottom line. If enabled,
wrefreshO is called on the window, and then the physical terminal
and window are scrolled up one line. (Note that in order to get the
physical scrolling effect on the terminal, is is also necessary to call
idlokO')

nl ()

nonl(
These routines control whether newline is translated into carriage
return and linefeed on output, and whether return is translated into
newline on input. Initially, the translations do occur. By disabling
these translations, curses is able to make better use of the linefeed
capability, resulting in faster cursor motion.

NOTE: n 1 is a macro.

Input Options Setting

cbreak ()

nocbreak(
These two routines put the terminal into and out of CBREAK mode.
In this mode, characters typed by the user are immediately available to
the program and erase/kill character processing is not performed.
When out of this mode, the teletype driver will buffer characters typed
until a newline or carriage return is typed. Interrupt and flow control
characters are unaffected by this mode. Initially the terminal mayor
may not be in CBREAK mode, as it is inherited. Most interactive pro­
grams using curses will set this mode.

def_proC]_mode()

def_shell_mode()

saveterm()

System V Interface Definition Page 439

CURSES(TI_ LIB)

Save the current terminal modes as the "program" (in curses) or "shell"
(not in curses) state for use by the reset prog modeO and
reset shell modeO routines. This is done automatically by
initscrO. -

NOTE: The savetermO routine is being replaced by
de f prog mode 0, which provides the same functionality.
sav;term{) is included here for compatibility and is supported at
level 2.

echo ()

noecho(
These routines control whether characters typed by the user are echoed
by getchO as they are typed. Initially, characters typed are echoed.
Authors of most interactive programs prefer to do their own echoing in
a controlled area of the screen, or not to echo at all, so they disable
echoing. Echoing by the tty driver is always disabled.

intrflush(win, bf)
WINDOW *win;
bool bf;

If this option is enabled, when an interrupt key is pressed on the key­
board (interrupt, break, quit) all output in the tty driver queue will be
flushed, giving the effect of faster response to the interrupt, but causing
curses to have the wrong idea of what is on the screen. Disabling the
option prevents the flush. The default for the option is inherited from
the tty driver settings. The window argument is ignored.

keypad(win, bf)
WINDOW *win;
bool bf;

This option enables the keypad of the user's terminal. If enabled, the
user can press a function key (such as an arrow key) and getchO
will return a single value representing the function key, as in
KEY LEFT. (See Function Keys below') If disabled, curses will not
treat -function keys specially and the program would have to interpret
the escape sequences itself. If the keypad in the terminal can be turned
on (made to transmit) and off (made to work locally), turning on this
option will cause the terminal keypad to be turned on when
wgetchO is called.

nodelay(win, bf)
WINDOW *win;
bool bf;

This option causes getchO to be a non-blocking call. If no input is
ready, getchO will return ERR. If disabled, getchO will hang
until a key is pressed.

raw()

noraw()

Page 440 System V Interface Definition

CURSES(TI_ LIB)

The terminal is placed into or out of raw mode. Raw mode is similar to
CBREAK mode, in that characters typed are immediately passed
through to the user program. The differences are that in RA W mode,
the interrupt, quit, suspend and flow control characters are passed
through uninterpreted, instead of generating a signal. The behavior of
the BREAK key depends on other bits in the tty driver that are not set
by curses.

reset_prog_mode()

reset_shell_mode()

fixterm()

resetterm ()
Restore the terminal to "program" (in curses) or "shell" (out of curses)
state. These are done automatically by endwinO and doup­
dateO after an endwinO, so they would normally not be called
before.

NOTE: The f ixtermO routine is being replaced by
reset prog modeO and the resettermO routine is being
replaced-by re;et shell modeO. fixtermO and reset­
term 0 are included here for compatibility and are supported at level
2.

resetty()

savetty()
These routines save and restore the state of the terminal modes.
savettyO saves the current state in a buffer and resettyO
restores the state to what it was at the last call to savettyO.

typeahead(fd)
int fd;

Curses does "line-breakout optimization" by looking for typeahead
periodically while updating the screen. If input is found, the current
update will be postponed until refreshO or doupdate () is
called again. This allows faster response to commands typed in
advance. Normally, the input FILE pointer passed to newtermO, or
stdin in the case that ini tscrO was used, will be used to do this
typeahead checking. The typeaheadO routine specifies that the
file descriptor f d is to be used to check for typeahead instead. If f d
is -1, then no typeahead checking will be done.

Environment Queries

baudrate()
Returns the output speed of the terminal. The number returned is in
bits per second, for example 9600, and is an integer.

erasechar ()
The user's current erase character is returned.

System V Interface Definition Page 441

CURSES(TI_LlB)

has ic ()
-True if the terminal has insert- and delete-character capabilities.

has il ()
-True if the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions. This might be used to check to
see if it would be appropriate to turn on physical scrolling using
scrollokO.

killchar()
The user's current line kill character is returned.

char *longname()
This routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose
description is 128 characters. It is defined only after the call to
ini tscrO or newtermO. The area is overwritten by each call to
newtermO and is not restored by set termO, so the value
should be saved between calls to newter;O if longnameO is
going to be used with multiple terminals.

Terminfo Level Routines

These low level routines must be called by programs that need to deal
directly with the terminfo database to handle certain terminal capabilities,
such as programming function keys. For all other functionality, curses rou­
tines are more suitable and their use is recommended.

Initially, setuptermO should be called. (Note that setuptermO is
automatically called by ini tscrO and newtermOJ This will define
the set of terminal dependent variables defined in TERMINFO(TI_ENV). The
terminfo variables lines and columns are initialized by setup­
term 0 as follows. If the environment variables LINES and COLUMNS
exist, their values are used. If the above environment variables do not exist
and the program is running in a window, the current window size is used.
Otherwise, the values for line s and columns specified in the terminfo
database are used.

The header files <curses. h> and <term. h> should be included to get
the definitions for these strings, numbers, and flags. Parameterized strings
should be passed through tparmO to instantiate them. All terminfo
strings (including the output of tparmO) should be printed with
tputsO or putpO. Before exiting, reset shell modeO should
be called to restore the tty modes. Programs whlch use cursor addressing
should output enter ca mode upon startup and should output
exi t ca mode before ~xiting (Programs desiring shell escapes should call
reset shell modeO and output exit ca mode before the shell is
called - and -should output ente-r ca mode and call
reset_prog_modeO after returning from the shell.)

Page 442 System V Interface Definition

CURSES(TI_ LIB)

setupterm(term, fildes, errret)
char .term;
int fildes;
int .errret;

setterm(term)
char .term;

Read in the terminfo database, initializing the terminfo structures, but
do not set up the output virtualization structures used by curses. The
terminal type is the character string term; if term is null, the
environment variable TERM will be used. All output is to file descrip­
tor fildes. If errret is given, then setuptermO will
return OK or ERR and store a status value in the integer pointed to
by errret. A status of 1 in errret is normal, 0 means that the
terminal could not be found, and -1 means that the terminfo database
could not be found. If errret is NULL, setuptermO will print
an error message upon finding an error and exit. Thus, the simplest
call is setupterm « char .) 0, 1, (int .) 0), which
uses all the defaults.

NOTE: The settermO routine is being replaced by setup­
termO. The call setupterm(term, 1, (int .) 0) provides the
same functionality as setterm(term). settermO is included
here for compatibility and is supported at level 2.

char *tparm(str, p1, p2, ... , p9)
char .str;
int p1, p2, p3, p4, pS, p6, p7, pS, p9;

Instantiate the string str with parms pi. A pointer is returned to
the result of s tr with the parameters applied.

tputs(str, affcnt, putc)
char .str;
int affcnt;
int (.putc)();

Apply padding info to the string str and output it. str must be a
terminfo string variable or the return value from tparmO,
tgetstrO, or tgotoO. affcnt is the number of lines
affected, or 1 if not applicable. putcO is a putchar like routine
to which the characters are passed, one at a time.

putp(str)
char .str;

A routine that calls tputs (str, 1, putchar).

vidputs(attrs, putc)
int attrs;
int (.putc) () ;

Output the string to put the terminal in the video attribute mode
attrs, which is any combination of the attributes listed below. The
characters are passed to the putchar like routine putc.

System V Interface Definition Page 443

vidattr(attrs)
int attrs;

Like vidputsO, except that it outputs through putchar.

mvcur(oldrow, oldcol, newrow, newcol)
int oldrow, oldcol, newrow, newcol;

Low level cursor motion.

Termcap Compatibility Routines

These routines were included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are emu­
lated using the terminfo database.

tgetent(bp, name)
char -bp, -name;

Look up termcap entry for name. The emulation ignores the buffer
pointer bp.

tgetflag(id)
char id[2];

Get the boolean entry for i d •

tgetnum(id)
char id[2];

Get numeric entry for i d •

char -tgetstr(id, area)
char id[2];
char --area;

Return the string entry for i d . t pu t sO should be used to output
the returned string.

char -tgoto(cap, col, row)
char -cap;
int col, row;

Instantiate the parameters into the given capability. The output from
this routine is to be passed to tpu t sO.

tputs(str,affcnt,putc)
char *str;
int affcnt;
int (-putc) () ;

(See tputs 0 under Termlnfo Level Routines above.>

Miscellaneous

unctrl(c)
chtype c;

This macro expands to a character string which is a printable represen­
tation of the character c. Control characters are displayed in the "'X

Page 444 System V Interface Definition

CURSES(TI_LlB)

notation. Printing characters are displayed as is.

NOTE: unctrl is a macro, which is defined in <unctrl . h>.

gettmode(
No-op.

NOTE: gettmodeO is included here for compatibility and is sup­
ported at level 2.

Attributes

The following video attributes, defined in <curses. h>, can be passed to
the routines attronO, attroffO, and attrsetO.

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD

A_CHARTEXT
A_ATTRIBUTES

Function Keys

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bolq

Bit-mask to extract a character
Bit-mask to extract attributes

The following function keys, defined in <curses. h>, might be returned
by getchO if keypadO has been enabled. Note that not all of these
may be supported on a particular terminal if the terminal does not transmit a
unique code when the key is pressed or the definition for the key is not
present in the terminfo database.

Name Value

KEY_BREAK 0401
KEY_DOWN 0402
KEY_UP 0403
KEY_LEFf 0404
KEY_RIGHT 0405
KEY_HOME 0406
KEY_BACKSPACE 0407
KEY_FO 0410
KEY_F(o) (KEY _FO+(n»
KEY_DL 0510
KEY_IL 0511
KEY_DC 0512
KEY_IC 0513
KEY_EIC 0514
KEY_CLEAR 0515

System V Interface Definition

Key name

Break key
The four arrow keys ...

Home key (upward+left arrow)
Backspace
Function keys; space for 64 keys is reserved.

Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen

Page 445

CURSES(Tt LIB)

KEY_EOS

KEY_EOL

KEY_SF

KEY_SR
KEY_NPAGE

KEY_PPAGE

KEY_STAB
KEY_crAB

KEY_CATAB

KEY_ENTER

KEY_SRESET

KEY_RESET

KEY_PRINT

KEY_LL

KEY_AI

KEY_A3
KEY_Bl

KEY_CI

KEY_C3

RETURN VALUE

0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

0534
0535
0536
0537
0540

Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
Soft (partial) reset
Reset or hard reset
Print or copy
Home down or bottom (lower left)
Keypad is arranged like this:

Al up A3
left B2 right
Cl down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad

All routines return the integer OK upon successful completion and the
integer ERR upon failure, unless otherwise noted in the preceding routine
descriptions.

Routines that return pointers always return (type .) NULL on error.

SEE ALSO
TERMINFO(TI_ ENV).

USAGE

Application Program.

The header file <curses. h> automatically includes the header files
<stdio. h> and <unctrl. h>.

FUTURE DIRECTIONS

The curses routines will be enhanced to define additional function keys; and
to support line drawing alternate character sets.

The tgetstr (id, area) routine will be enhanced to store the string
entry returned for id in the buffer pointed to by area and advance
area.

LEVEL
Levell: All routines except fixtermO, gettmodeO, reset­
termO, savetermO, settermO, and the termcap compatibility
routines.

Page 446 System V Interface Definition

CURSES(TI_ LIB)

Level 2: December 1. 1985 for fixtermO. gettmodeO. reset­
termO. savetermO. settermO. and the termcap compatibility rou­
tines.

System V Interface Definition Page 447

System V Interface Definition

Chapter 15
Commands and Utilities

Page 449

TIC(TI_CMD)

NAME

tic - terminfo compiler

SYNOPSIS
tic [-v[n]] file

DESCRIPTION

FILES

The command tic translates a terminfo file from the source format into
the compiled format. The results are placed in the directory
/usr/lib/terminfo. The compiled format is necessary for use with
the library routines described in CURSES(TI_LlB). The argument file contains
one or more terminfo terminal descriptions in source format [see
TERMINFO(TI_ ENV) 1.

The option -v (verbose) causes tic to output trace information showing
its progress. The optional integer n is a number from 1 to 10, inclusive, indi­
cating the desired level of detail of information. If n is omitted, the default
level is 1. If n is specified and greater than 1, the level of detail is increased.

The command tic compiles all terminfo descriptions in the given file.
Each description in the file describes the capabilities of a particular terminal.
When a use - entry _name field is discovered in the terminal entry currently
being compiled, tic duplicates the capabilities in entry_name for the
current entry, with the exception of those capabilities that are explicitly
defined in the current entry.

If the environment variable TERMINFO is set, the compiled results are
placed there instead of /usr /1 ib/terminfo.

Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

/usr/lib/terminfo/?/* Compiled terminal description database

SEE ALSO
CURSES(TI_LlB), TERMINFO(TI_ENV).

USAGE

Administra tor.

When an entry, e.g. entry _name_ 1, contains a use-entry_name_2 field,
any cancelled capabilities in entry_name_2 must also appear in
en try _ name _ 1 before use- for these capabilities to be cancelled in
entry _name_ 1.

LEVEL
Levell.

Page 450 System V Interface Definition

TPUT(TI_CMD)

NAME

tput - query terminfo database

SYNOPSIS

tput [-Ttype] capname

DESCRIPTION

The command tput uses the terminfo database to make the values of
terminal-dependent capabilities and information available to the shell [see
SH(BU_CMD)]. The command tpu t outputs a string if the attribute is of
type string, or an integer if the attribute is of type integer. If the attribute is
of type boolean, tpu t simply sets the exit code (0 for TRUE if the terminal
has the capability, 1 for FALSE if it does not), and produces no output.

-Ttype indicates the type of terminal. Normally this option is unneces-
sary, as the default is taken from the environment variable
TERM.

capname indicates the attribute from the terminfo database. [See
TERMINFO(TI_ENV).

EXAMPLES

FILES

tput clear
Echo clear-screen sequence for the current terminal.

tput cols
Print the number of columns for the current terminal.

tput -T450 cols
Print the number of columns for the 450 terminal.

bold='tput smso'

offbold='tput rmso'
Set the shell variables "bold" to begin standout mode sequence and
"offbold" to end standout mode sequence for the current terminal. This
might be followed by a prompt, e.g.:
echo "${bold}Name: ${offbold}'c"

tput hc
Set exit code to indicate if the current terminal is a hardcopy terminal.

lusr/lib/terminfol?l*
Compiled terminal description database

RETURN VALUE

If capname is of type boolean, a value of 0 is returned for TRUE and 1
for FALSE.

If capname is of type string or integer, a value of 0 is returned upon suc­
cessful completion.

System V Interface Definition Page 451

TPUT(TI_ CMD)

Any other value returned indicates an error t for examplet the specification of
a bad capname O.e. t terminfo does not support a capability named cap­
name).

SEE ALSO
STTY(AU _ CMD)t TERMINFO(TI_ENV).

USAGE

Application Program.

FUTURE DIRECTIONS

The command tput will be enhanced to support capnames of type string
which require the specification of one or more parameters (which are the
arguments to capname).

The command tpu t will be enhanced to output a terminaPs initialization
strings or reset strings through the specification of a single argument.

LEVEL
Levell.

Page 452 System V Interface Definition

Indexes

Idev/null 105, 111, 241
letc/checklist 237, 252
letc/gettydefs 233
letc/group 68-69, 138, 242, 275, 300-301
letc/inittab 232-233, 260
letc/mkfs 268
letc/mnttab 248, 271, 284
letc/passwd 68-69, 115, 138, 192, 242,

246,249,275,290,304-305, 314
letc/profile 109, 111, 190
letc/shutdown 238
letc/unlink 267
letc/utmp 224-226, 302, 306-307
letc/wtmp 237-238, 243-244, 258, 276-

277, 307
lusr/adm/acct/sum 237
lusr/lib/cron/at.allow 136-137
lusr/lib/cron/at.deny 136-137
usr/lib/cron/cron.allow 140-141
usr/lib/cron/cron.deny 140-141
lusr/liblterminfo 403, 406, 422-423, 427,

450

A

active processes 91, 109,225,266
Administered System Extension 231
Advanced Utilities Extension 4, 19, 133,

231, 293, 401
ANSI 9,407
arbitrary length variable names 326
archives 22-23, 44-45, 203-204, 336, 341,

355, 363-365, 381-382, 391
assembly source programs 324
associativity rules 394

8

Base System 3-7, 11, 19, 133, 231, 293,
401

Basic Utilities Extension 4, 19, 133, 231,
293, 401

block addresses 254
boot time 224, 232, 279, 306
breakpoint 379-380
broadcast message 223

c

C compiler 293, 296, 324-326, 330-332,

System V Interface Definition

General Index
392

C language 3-4, 7, 9, 15, 28, 293, 326-
327, 330, 332, 349

C language preprocessor 324, 330-332,
356-360

C libraries 293, 296, 325
C program 293, 324-325, 333, 346, 352,

364-365, 375, 388, 392
changing directory 35, 106-107, 110, 145,

176, 329, 378
child processes 109, 233
compilation 293, 296, 309, 323-326, 330,

392
compile a C program 324-326
compress file 82
context-free grammar 392
copying file 42-45, 119-120, 145, 148, 158,

206,209
copying file-system 288
current directory 23, 31, 33, 44, 53, 55,

73, 81, 93, 106-108, Ill, 136, 163,
189-190. 206, 209-211, 213, 255-257,
312,326, 342, 367, 378, 385, 391

curses library 403, 426-447, 450
curses routines 426-447, 450
curses/terminfo package 10, 401
cursor motion 412-413, 415-416, 431,

434-438, 444

D

debugger 375
default file systems 252, 273
default input field separators 168
disassemble 336, 377
disk accounting 236-237, 249, 276-277
disk block 82, 237, 249, 254, 268, 281

E

EBCDIC 148-149
ebcdic conversion 148-149
editor 51, 55-64, 95-98, 153-166, 177,

181-183, 186,213-222,325,344-345,
355,438

environmental variable 35, 73, 85, 87, 105,
140, 163, 170, 175, 190, 202, 213,
311, 323, 326, 332, 345, 360, 362,
367,403

escape sequences 39, 54, 84, 85, 95, 380,

Page 455

393,412,420,426,436,440
executable file 36, 67, 73-74, 106, 121,

313, 324, 344, 375
execute permissions 35-36, 74-75, 106,

110, 207, 268
execution monitoring 311-312, 325, 367-

368

F

floating point standards 9
Fortran77 375
function keys 157, 419, 424, 426, 436,

440, 442, 445-446

G

group id 36, 68, 75, 77, i38, 167, 189,
193, 234, 241-242, 255, 268, 275,
300, 321

H

Huffman code 82

i-node 73, 247, 249, 252-256, 268, 270,
282

init process 224-225, 231-233, 260, 306-
307

input redirection 104-105, 378-379
intelligent terminals 164, 416
internationalization 10

K

Kernel Extension 4-5, 10, 231

Level I, definition 7
Level 2, definition 7
lex library 296, 346

L

lexical analyzer 346-351, 392-393, 395-
397

link a file 22, 42-45, 53, 68, 74, 82, 94,
170, 204, 252, 255-256, 267, 324-325,
347-348, 359

link editor 22, 325, 344-345, 355
link-edit phase 324
login process 91-92, 224, 231, 233, 236,

241,246, 257-258, 302, 306-307

Page 456

login session records 243
login-id 223
login-name 236-237

M

mandatory locking 37, 75
mounted file systems 50, 233, 248, 266,

271
moving a file 42

N

namelist file 91, 263, 313
Network Services Extension 9
numeric group id 68
numeric user id 68, 1 15, 243

o

object file 22, 296, 300, 3 I 5, 324, 326-
327, 338, 344, 352, 355, 363, 365-
367,375,381-382

object file library 296, 3 15, 347, 355, 365
output redirection 104- I 05, 137, 378-379

p

parent directory 42, 78, 257
parent process 92, 257
password file I 15, 138, 189, 200, 246, 249,

257,275,302,304-305,314
path-name 102, 106, 110-1 I I, 206-207,

273, 329
pattern-matching 24-26, 28-29, 55-57, 70,

103, 15 I -152, 347-348
permIssIons 4, 35-36, 44, 68-69, 74-75,

77-78, 94, 106, 110, 126, 188-189,
207, 226, 247, 251, 262, 264, 268,
307,321-322, 342,427

pipeline 88, 99, 204, 2 I 2
preprocessor 299, 309, 323-325, 330-322,

356-359
precedence rules 394, 396
process accounting 236-238, 241, 246,

258, 276-277, 287, 306
prompt string 55, 85, 102, 303

R

raw device 149,252,281
reading mail 76,174-175,182
reduce-reduce conflicts 395-396

System V Interface Definition

regular expression 24-26, 28-29, 44, 55,
65, 70, 79, 86, 95, 97, 142-143, 151,
154, 159, 161-162, 164, 21~ 242,
346-350, 378

removing directory 94
removing file 94
restricted shell 99, 103, 105-106, 11 0
root file system 252, 256, 268, 271, 284,

288, 329
run-level 225, 232-233, 260

s

SCCS 293, 318-322, 334-335, 338-343,
369-372, 374, 385-388

sending mail 76-77, 170, 174-175, 182,
207, 209

shell 4,19,44,87,99,101-111,143,176,
180,193,206,403,440-442,451

shift/reduce conflicts 395-396
signal 60, 63, 71, 79, 81, 87-88, 99, 106,

109, Ill, 154, 194, 196, 233, 257,
266, 303, 385, 396, 412, 433, 441

sizeof operator 308, 332
Software Development Extension 4, 293,

401
sort 11, 113-115, 384
Source Code Control System 293, 318-

322, 334-335, 338-343, 369-372, 374,
385-388

source program 293, 324, 346-347, 349-
350, 364, 375, 378-379

standard C library 296, 325, 352
standard error 81, 89, 136-137, 141, 205,

249, 257-258, 287, 299, 303, 323,
336, 340, 366, 382-383, 390, 397, 428

string matching 24-25, 55-58, 62, 103,
151, 162,218,346-351,378

struct group 300
struct nlist 313
struct passwd 304, 314
struct utmp 306
super-user 36, 44-45, 48, 71, 137-138,

192, 200, 203, 223-224, 226, 231,
241, 257, 267, 272, 274, 329

system administration 231
system clock 48, 224-225
system initialization 232-233, 238
system name 127
system process spawner 231, 260
system shutdown 238

T

System V Interface Definition

termcap database 406, 444, 446-447
terminal descriptions 406-424, 442, 450-

452
Terminal Interface Extension 10,401
terminal names 406, 422
terminal settings 88, 195, 201
terminal tabs 88, 197, 201-202, 419-420,

422-423, 426
terminal type 10, 85, 202, 213, 226,401,

403, 416, 422, 428, 443, 451
terminfo database 73, 75, 88, 165, 213,

406-424, 442-445, 451
total accounting records 236, 243, 245-

246, 249, 276-277

u

user id 36, 46, 68, 75, 92, 115, 138, 167,
172, 189, 200, 203, 224, 238, 241,
243, 245-246, 249, 255, 268, 275,
302, 304, 306-307, 321, 371

user login name 68, 76-77, 92, 138, 169,
172, 176, 192, 206, 209, 211, 224,
238, 241, 243, 246, 249, 275, 302,
321, 343

user process 71. 92. 167, 224. 231-233,
241-242. 246,257, 306-307

Page 457

Command and Function Index
A

a64l function 298
abort function 299
acctcms command 238, 239-240, 242,

244-246, 258, 278
acctcom command 238-239, 241-242,

244-246, 258, 278, 287
acctcon 1 command 238-239, 242, 243-

244, 245-246, 258, 276, 278
acctcon2 command 238-239, 242, 243-

244, 245-246, 258, 276, 278
acctdisk command 249-250
acctmerg command 236-239, 242, 244-

245, 246, 258, 278
accton command 236-238
acctprcl command 238-239, 242, 244-245,

246, 258, 278
acctprc2 command 238-239, 242, 244-245,

246, 258, 278
acctwtmp command 236-238, 243
addch function 426, 431
addstr function 431-432
admin command 318-322, 334-335, 343,

372,387
alarm function 112
ar command 22-23, 45, 345, 355, 382
as command 323, 336
assert function 299
at command 136-137, 139
attroff function 432, 445
attron function 432, 445
attrset function 432, 445
awk command 24-29,97, 168, 347

B

banner command 30, 171
basename command 31
batch command 136-137
baudrate function 441
beep function 433
box function 433

cal command 32
calendar command 33
calloc function 5

c

cancel command 170-171, 208, 213-214,

System V Interface Definition

216
cat command 34, 83, 88, 143, 146·147,

423
cbreak function 426, 436, 439
cc command 177-178, 182-183, 220, 293,

296, 309, 311-313, 315, 323, 324·326,
332-333, 336, 345, 351, 353-354, 359,
361-365, 366, 368, 375, 380-382, 392,
426

cd command 35, 45, 93, 102, 107, 110-
111, 175,204

cHow command 327-328
chargefee command 236-238, 277
chdir function 35, 329
chgrp command 138
chmod command 36-37, 43, 68-69, 75,

126, 138
chmod function 37
chown command 138
chroot command 329
ckpacct command 236-238
clear function 433
clearok function 427, 433, 438
clri command 247
clrtobot function 433
clrtoeol function 431, 433
cmp command 38,41,51, 150
col command 39-40
comm command 38,41,51,115,128,168
cp command 42-43, 239
cpio command 43, 44-45, 69
cpp command 325-326, 330-332, .153, 354,

359
cron command 137, 139, 140-141, 237-

238, 276, 278
crontab command 139, 140-141
csplit command 117, 142-143
cu command 144-147
cut command 46-47,84,212
cxref command 333

D

date command 48-49
dd command 148-149
defyrog_mode function 439-440
deCshell_mode function 439-440
delay_output function 433-434
delch function 434
deleteln function 434

Page 459

delta command 322, 334-335, 338-343,
372-374, 385, 387

delwin function 430
devnm command 248
df command 50
diff command 38,41,51-52, 150, 211-212,

335
dircmp command 150
dirname command 31
dis command 14,336
diskusg command 238, 249-250
dodisk command 236-238, 249
doupdate function 428,429, 441
du command 53
dup function III

E

echo command 54, 107, 389-391, 423
echo function 440
ed command 26, 51, 55-64, 65-66, 70, 86,

88, 95, 97, 142-143, 151-152, 177,
184, 197,242,347,378,380

egrep command 70, 151-152
endgrent function 300-301
endpwent function 304-305
endutent function 306-308
endwin function 426, 428, 438, 441
env command 337
erase function 433
erasechar function 441
ex command 153-166, 213, 215-216, 218,

220, 222
exec function Ill, 241
expr command 65-66

F

false command 125
fgetgrent function 300-301
fgetpwent function 304-305
fgrep command 70, 151-152
file command 67
find command 68-69
fixterm function 441, 446-447
flash function 433
f1ushinp function 437
fork function Ill, 241
fsck command 247,251-253, 256, 273
fsdb command 247,254-256
fuser command 257
fwtmp command 238-239, 242, 244-246,

258-259, 278

Page 460

G

get command 319, 321-322, 334-335,
338-343, 374, 385, 387

getch function 436-437, 440, 445
getgrent function 300-301, 302, 305
getgrgid function 300-301
getgrnam function 300-30 I
getlogin function 301, 302, 305
get pass function 303
getpwent function 301-302, 304-305, 314
getpwnam function 302, 304-305, 314
getpwuid function 302, 304-305, 314
getstr function 437
gettmode function 445, 446-447
getuid function 167
getutent function 306-308
getutid function 306-308
getutline function 306-308
getyx function 434
grep command 46-47, 64, 70, 84, 88, 97,

152
grpck command 275

H

has Jc function 442
has JI function 442

id command 167
idlok function 438, 439
inch function 431, 437
init command 231-233, 260
initscr function 426-427, 428,441-442
insch function 434-435
insertln function 435
intrflush function 426, 440
ioctl function 193-195, 199
ipcrm command 261
ipcs command 261, 262-265

J

join command 60, 157, 168

K

keypad function 426, 436, 440, 445
kill command 71
killall command 266
killchar function 442

System V Interface Definition

L

164a function 298
labelit command 249, 288-289
lastlogin command 236·238
Id command 22·23, 323, 325-326, 344-

345, 355, 366, 381·382
leaveok function 429, 438
lex command 293, 296, 327-328, 346-351,

352, 364-365, 392, 397
line command 72
link command 252, 255-256, 267
lint command 327, 352·354
In command 42·43
logname command 140, 167, 169, 374,

391
longname function 442
lorder command 355, 384
Ip command 170-171,172·173
Ipstat command 170-171, 172·173
Is command 37,45, 73-75, 185, 187, 391

M

m4 command 323, 332, 356-359
mail command 76-77, 102, 136·137, 141,

170·171,207,209-210,212,276
mail x command 174-187
make command 360-365
MARK function 309-310, 368
mesg command 188, 223, 226-227
mkdir command 78
mkfs command 268-269
mknod command 270
monacct command 236·238
monitor function 311-312,367-368
mount command 233, 248, 266, 271, 284,

288
move function 426, 435
mv command 31, 42-43
mvaddch function 431
mvaddstr function 431-432
mvcur function 444
mvdelch function 434
mvdir command 272
mvgetch function 436-437
mvgetstr function 437
mvinch function 437
mvinsch function 434-435
mvprintw function 435-436
mvscanw function 437-438
mvwaddch function 431
mvwaddstr function 431-432

System V Interface Definition

mvwdelch function 434
mvwgetch function 436-437
mvwgetstr function 437
mvwin function 429
mvwinch function 437
mvwinsch function 434-435
mvwprintw function 435-436
mvwscanw function 438

N

ncheck command 247, 273
newgrp command 189
newpad function 430
news command 190
newterm function 428, 441-442
newwin function 426, 429
nice command 274
nl command 79-80
nl function 439
ntist function 313
nm command 366
nocbreak function 439
nodelay function 440
noecho function 426, 436, 440
nohup command 81
nonl function 426, 439
noraw function 440-441

od command 191
overlay function 435
overwrite function 435

pack command 82-83

o

p

passwd command 192, 304-305, 314
paste command 46-47, 84
pcat command 82-83
pg command 85·88, 179, 181, 184-185,

187
pipe function III
pnoutrefresh function 430
pr command 80, 84, 89-90
prctmp command 243-244
prdaily command 236-238, 276·277
prefresh function 430
printf function 28
printw function 435-436
prof command 309-312, 325-326, 367-368
prs command 322, 335, 343, 369-372, 373,

Page 461

387
prtacct command 236-238
ps command 71,91-92
putchar function 431
putp function 442, 443
putpwent function 314
pututline function 306-308
pwck command 275
pwd command 35, 93, 101, 108, Ill, 304,

314

raw function 440-441
red command 55

R

refresh function 426, 428, 429-430, 435,
438,441

reset--prog_mode function 441, 442
reset_shell_mode function 441,442
resetterm function 441, 446-447
resetty function 441
rm command 43,69, 78, 94, 365
rmail command 76-77
rmdel command 335, 369, 373
rmdir command 94
rsh command 99-111
runacct command 236-239, 242, 244-246,

258, 276-278

s

sa I command 279, 283
sa2 command 279, 283
sact command 374, 385
sadc command 279
sadp command 280
sar command 279,281-283,287
saveterm function 439-440, 446-447
savetty function 441
scanw function 437-438
scroll function 436
scrollok function 431, 439, 442
sdb command 324, 326, 375-380
sed command 64, 70, 95-98, 152
set_term function 428, 442
setgrent function 300-301
setmnt command 248, 271, 284
setpwent function 304-305
setscrreg function 438-439
setterm function 443, 446-447
setupterm function 442, 443
setutent function 306-308
sgetl function 315

Page 462

sh command 19,31,35,44,46,54,64,66,
68-69,72,81,99-111, 122, 125, 129,
139, 141, 143, 159, 179, 183, 186,
189, 194, 200, 211-212, 269, 337,
365, 403, 451

shl command 193-194
shutacct command 236-238
signal function III
size command 381
sleep command I 12
sort command 41, I 13-115
spell command 116
split command 117
sprintf function 28
sputl function 315
standend function 432
standout function 431, 432
startup command 236-238
strip command 23, 382
stty command 146-147,193-194, 195-199,

423, 452
su command 200
subwin function 429-430
sum command 118
sync command 285
sysdef command 286
system function III

T

tabs command 201-202
tail command II 9
tar command 45, 203-204
tee command 120
test command 121-122
tgetent function 444
tgetflag function 444
tgetnum function 444
tgetstr function 443, 444, 446
tgoto function 443, 444
tic command 246, 423, 450
time command 383
timex command 287
touch command 123
touchwin function 430, 436
tparm function 407, 420, 442, 443
tput command 423, 451-452
tputs function 411, 442,443,444
tr command 124
true command 125
tsort command 349, 384
tty command 205
turnacct command 236-238

System V Interface Definition

typeahead function 441

u

ulimit function III
umask command 109, Ill, 126, 136
umask function III
umount command 271, 284
uname command 68, 127, 146-147
unctrl function 444-445
unget command 374, 385
uniq command 41, 115, 128, 168
unlink command 267
unpack command 82-83
utmpname function 306-308
uucp command 145, 147, 184, 206-207,

208-212
uulog command 206-207
uuname command 206-207, 209
uupick command 209-210
uustat command 207, 208, 210, 212
uuto command 209-210
uux command 207,210,211-212

v

val command 386
vi command 153, 160, 166, 184, 186-187,

213-222,423
vidattr function 444
vidputs function 443, 444
volcopy command 249-250, 288-289

w

waddch function 431, 432
waddstr function 431-432, 436
wait command 99, 109-111, 129
wait function III
wall command 223
wattroff function 432
watt ron function 432
wattrset function 432
wc command 130
wclear function 433
wclrtobot function 433
wclrtoeol function 433
wdelch function 434
wdeleteln function 434
werase function 433
wgetch function 436, 440
wgetstr function 437, 438
what command 322, 388

System V Interface Definition

who command 224-225, 290
whodo command 290
winch function 431, 437
winsch function 434-435
winsertln function 435
wmove function 435
wnoutrefresh function 429, 430
wprintw function 435-436
wrefresh function 427, 428-429, 430, 433,

438-439
write command 226-227
wscanw function 437-438
wsetscrreg function 438-439
wstandend function 432
wstandout function 432
wtmpfix command 244, 258-259, 277

x

xargs command 389-391

y

yacc command 293, 296, 327-328, 346,
351-352, 364-365, 392-397

Page 463

